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Abstract

We develop and apply mathematical models to obtain insights into the dynamics

of human immunodeficiency virus (HIV) and malaria infection. We consider three

case studies.

1. The duration of the time between exposure and detectability of HIV infection

is difficult to estimate because precise dates of exposure are rarely known. There-

fore, the reliability of clinical HIV testing during the first few weeks of infections

is unknown, creating anxiety among HIV-exposed individuals and their physicians.

We address this knowledge gap by fitting stochastic models of early HIV infection

to detailed viral load time-courses, taken shortly after exposure, from 78 plasma

donors. Since every plasma donor in our data eventually becomes infected, we

condition our model to reflect this bias before fitting to the data. Our model predic-

tion for the mean eclipse period is 8-10 days. We further quantify the reliability of

a negative test t days after potential exposure to inform physicians about the value

of initial and follow-up testing.

2. The recently launched Get Checked Online (GCO) program aims at increas-

ing the HIV testing rate in the Vancouver men who have sex with men popula-

tion by facilitating test taking and result delivery. We develop mathematical mod-

els and extract parameter values from surveys and interviews to quantify GCO’s

population-level impact. Our models predict that the epidemic is growing overall,

that its severeness is increased by the presence of a high-risk group and that, even at

modest effectiveness, GCO might avert 34-66 new infections in the next five years.

3. Metarhizium anisopliae is a naturally occurring fungal pathogen of mosqui-

toes that has been engineered to act against malaria by effectively blocking onward

transmission from the mosquito vector. We develop and analyse two mathematical
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models to examine the efficacy of this fungal pathogen. We find that, in many plau-

sible scenarios, the best effects are achieved with a reduced or minimal pathogen

virulence, even if the likelihood of resistance to the fungus is negligible. The re-

sults depend on the interplay between two main effects: the ability of the fungus to

reduce the mosquito population, and the ability of fungus-infected mosquitoes to

compete for resources with non-fungus-infected mosquitoes.
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day−1, d = 23 day−1, n0 = 1. . . . . . . . . . . . . . . . . . . 34

Figure 3.1 Schematics of typical dynamics of plasma virus RNA in a re-

cently infected patient, and approximate time points when dif-

ferent HIV tests become positive, i.e. can detect infection.

vRNA looks for virions directly, p24Ag looks for the p24 anti-

gen, a viral protein. ELISA tests for antibodies, and Western

blot combines several of the above. The dynamics below the

detection limit are unknown, the unobserved growth rate could

be smaller, the same, or larger than the observed growth rate,

as indicated by the dashed lines. Modified from [32]. . . . . . 57

Figure 3.2 Examples of plasma virus RNA of recently infected patients,

from the seroconversion panels obtained in [93] and [103].

Values below the detection limit of 50 copies/ml are reported

as 50 copies/ml. The exposure dates for these patients are un-

known and is to be estimated from the characteristic initial ex-

ponential growth rate and mathematical models in this work. . 60

xii



Figure 3.3 Maximal observed rate of increase of viral RNA concentration,

as calculated for 51 class A seroconversion panels (mean: 1.05

log(RNA copies)/ml/day) and 27 class B panels (mean: 0.99

log(RNA copies)/ml/day). The difference between the two cat-

egories is not significant. If the outlier in group B is removed,

the difference is borderline significant (p = 0.048). . . . . . . 61

Figure 3.4 Model schematics. a. Minimal stochastic birth-death model.

Virions reproduce at rate b and cleared at rate d. b. Pre-

ferred three-state model. Virions infect cells at rate kT and

are cleared at rate c. At rate s infected cells become produc-

tively infected, producing new virions at rate p and dying at

rate δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 3.5 The estimated length of the eclipse phase for all 78 plasma

donors according to the inoculumn size. Each square repre-

sents the estimate for one donor. The vertical bars indicate the

mean and 95% confidence interval. Here we use the naive log-

linear model (3.1), which is not able to capture key HIV char-

acteristics, see Section 3.3.1. Hence this plot is an illustration-

of-concept only. For the final results refer to Figure 3.8. . . . 64

Figure 3.6 The interdependence of the parameters of the T ∗1 -T ∗2 -V model.

From left to right, the stars indicate particular choices of pa-

rameters in three different risk scenarios: low risk and small

inoculum size, medium risk and medium inoculum size, and

high risk and large inoculum size, see Section 3.5. The result-

ing fitted values for p and kT are within the estimates from the

literature. a. The production rate p as it depends on v0 and risk

of infection. b. The infection rate kT as it depends on v0 and

risk of infection. . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 3.7 The effect of the infection bias on the estimated exposure date,

as obtained by fitting the T ∗1 -T ∗2 -V model, unconditioned (dashed

lines, open markers) and conditioned (solid lines, filled mark-

ers), for each exposure category: low risk (pentagon), medium

risk (diamond) and high risk (square). . . . . . . . . . . . . . 71

xiii



Figure 3.8 The estimated length of the eclipse period for all 78 plasma

donors according to the three different exposure-risk categories,

using the conditioned T ∗1 -T ∗2 -V model. Each dot represents the

estimate for one donor. The mean and 95% confidence inter-

vals are indicated by the vertical bars. . . . . . . . . . . . . . 72

Figure 3.9 The five plasma donors with the smallest maximal growth rates

are at or above the 95th percentile of the length of the eclipse

period. Due to the relatively long time-interval between the

RNA measurements where the maximal growth rate occurs,

and the relatively high RNA loads, it is quite likely that the real

maximal growth rate may have been missed for these donors. 73

Figure 3.10 Individual and aggregate likelihood of detectable RNA as a

function of days since exposure, and relative probability of a

false negative test. Each grey line represents the estimate for

one plasma donor. The blue curve is the average of all donors

in the dataset and hence provides our best estimate for a ran-

dom patient from the general population. The largest informa-

tion gains are between day 5 and day 10. Plotted for low risk,

small inoculum to provide an upper bound on the length of the

eclipse period. a. Probability of detectable RNA t days after

exposure, if infection occurs eventually. b. Probability of a

false negative test, assuming that the test is perfectly sensitive

and specific, relative to the baseline probability of infection.

The results for non-perfect tests are similar and summarized in

Table 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xiv



Figure 4.1 Sketch of how the GCO program works, first published in [53].

After answering a questionnaire that assesses their risk and rec-

ommends which sexually transmitted infections (STIS) to test

for, users print their requisition from home. Specimens can be

given anonymously at participating lab locations, and test re-

sults can be viewed online if all tests are negative. Otherwise

the STI clinic contact the user to discuss erroneous specimens

as well as indeterminate or positive results. . . . . . . . . . . 82

Figure 4.2 Schematics of the basic model for GCO. Individuals can be sus-

ceptible, infected and unaware, or infected and aware of their

infection. The mass-action infection rate β = rp is a prod-

uct of the exposure-rate r and the per-exposure probability of

HIV transmission p, and is reduced for individuals who are

aware of their infection. GCO aims to increase the testing rate

τ with which infected individuals become aware of their infec-

tion. The model also accounts for turnover via immigration m

and emigration e in all three compartments. . . . . . . . . . . 84

Figure 4.3 Relationship length and total number of risky events as ob-

tained by the grid data. The horizontal and vertical error bars

indicate the uncertainty in the length of the relationship and

number of risky events, respectively. We chose to bound the

number of risky events by once per day. The marginal his-

tograms show that a large fraction of risk events stem from

one-time sexual encounters. . . . . . . . . . . . . . . . . . . 87

Figure 4.4 Responses to the network grid question “The last time you

had sex with each partner, what sexual acts did you engage

in?”. We use these frequencies together with the biological

per-exposure probabilities from Table 4.1 to calculate the per-

encounter risk of HIV transmission. . . . . . . . . . . . . . . 88

Figure 4.5 Responses to the online survey question “What best describes

your HIV testing pattern?”. A large fraction of the population

gets tested regularly, albeit at different rates, while a smaller

fraction of the population has no regular testing pattern at all. . 91

xv



Figure 4.6 Evolution of all compartments for the next five years, using

parameter values from Section 4.5. The total number of in-

dividuals is constant, hence the (roughly constant) number of

susceptibles is not shown for simplicity. The basic model esti-

mates a total of 1326 new infections and 1666 newly detected

infections over five years. . . . . . . . . . . . . . . . . . . . . 95

Figure 4.7 Sensitivity of the annual incidence rate as it depends on the

testing rate τ , using the parameter values from Section 4.5.

The linear approximation provided by the Direct Differentia-

tion method is accurate for parameter values close to the initial

value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 4.8 The full model accounts for two risk and three testing cate-

gories, and each resulting compartment is modeled using the

basic model. By facilitating testing GCO encourages individ-

uals to increase their testing frequency. We assume that GCO

does not affect risk behavior. . . . . . . . . . . . . . . . . . . 101

Figure 4.9 Per-participant force of infection β = ∑partners rpartner ppartner
U .

We use a two-means clustering algorithm to assign each in-

dividual into a low-risk or high-risk group according to their

force of infection from this bimodal distribution. Notice the

different orders of magnitude as highlighted by the logarith-

mic scale on the x axis. . . . . . . . . . . . . . . . . . . . . . 105

Figure 4.10 Model estimates for the spread of HIV prevalence in the next

five years, without GCO, for the full models with homogeneous

and heterogeneous mixing. . . . . . . . . . . . . . . . . . . . 108

Figure 4.11 The effect of GCO is that it increases the horizontal forward

transition rates and decreases the horizontal backward transi-

tion rates of the full model. This increasing the rate at which

individuals become regular and frequent testers, and decreases

the rate at which people switch to a less frequent testing be-

haviour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xvi



Figure 5.1 Simplified model. The fraction of infected humans in the pop-

ulation is given by h. Infection of susceptible mosquitoes S

occurs at mass-action rate β while removal/recovery occurs at

a rate ρ . Infected mosquitoes I infect susceptible humans with

probability γ , given an encounter. Malaria infection does not

significantly alter the mosquito death rate µ , but fungus infec-

tion, occurring with rate α reflecting the intensity of fungal ap-

plication, increases the death rate by σ . Since neither malaria

nor the fungus is transmitted vertically in the simplified model

all new-born mosquitoes (indicated by κ) are susceptible. . . 122

Figure 5.2 Life-stage structured model. In this model mosquitoes produce

larvae at rate κc. Larvae may be fungal carriers (LF ) or fungus-

free (LS) and undergo density-dependent competition (see text)

with intensity parameter κL. Larvae mature to produce adult

mosquitoes at rate m. The parameter ξ determines the degree

of vertical transmissibility of the fungal pathogen. . . . . . . 124

Figure 5.3 Prevalence of malaria in humans and total number of mosquitoes

for varying fungus deployment rate. The steady state human

malaria prevalence and the total mosquito population, both rel-

ative to baseline, are plotted against the fungus exposure inten-

sity α , with fixed fungal pathogen virulence σ = 0.1 day−1.

As expected, quantities decrease when α increases. Note that,

once α is large enough so that R0 < 1 and malaria is eradi-

cated, he remains constant at 0. Full details of all other chosen

parameter values are given in Appendix C. . . . . . . . . . . 128

xvii



Figure 5.4 Malaria prevalence in humans varying over fungal pathogen

virulence and deployment rate. The heat maps (top row) in-

dicate the endemic malaria prevalence in humans he, relative

to baseline where no fungus is applied, for the given param-

eters, the graphs (bottom row) show a one-dimensional pro-

jection of the heat maps, for a fixed fungal application (spray-

ing) rate. Two distinct cases can be distinguished: (i) If κ −
2µ < 0 (left column) then human malaria prevalence is a de-

creasing function of fungal virulence σ and deployment rate

α . (ii) If κ − 2µ > 0 (right column), the curve describing

the worst-case fungal virulence σ∗ is superimposed, indicating

a non-monotonic relationship between human malaria preva-

lence and σ . Top row: The dark blue region indicates R0 < 1

and hence he = 0. Bottom row: one-dimensional slice through

the heat map above for a fixed value of α = 0.1 day−1 (left)

and α = 0.5 day−1 (right), as indicated by the black line in the

heat map above. Here, µ = 0.1 day−1, while κ = 0.18 day−1

(left) and κ = 0.48 day−1 (right). All other parameter values

are as given in Appendix C. . . . . . . . . . . . . . . . . . . 131

Figure 5.5 Malaria prevalence in humans varying over vertical transmis-

sion, deployment rate and fungal virulence. Each subfigure

shows the endemic malaria prevalence in humans, relative to

the no-fungus baseline, plotted against the fungal virulence

σ , for five different levels of the fungal application (spray-

ing) rate α . The different values of α in each subfigure are

{0.05,0.1,0.15,0.2,0.25} days−1, corresponding to curves from

top to bottom, and the length of the dashing increases with α .

Each subfigure represents a different value of the vertical trans-

missibility ξ from ξ = 0 (no vertical transmission) to ξ = 1

(perfect vertical transmission). All other parameter values are

as given in Appendix C. . . . . . . . . . . . . . . . . . . . . 133

xviii



Figure C.1 Data fitting for κ . We fit an exponential function for six of the

data points reported in [2] to find an approximation for κ−µ . 197

xix



Glossary

ART antiretroviral therapy

BCCDC British Columbia Centre for Disease Control

MSM men who have sex with men, a high-risk group for HIV infection.

IDU injecting drug user, a high-risk group for HIV infection.

GCO Get Checked Online

STI sexually transmitted infection

HIV human immunodeficiency virus

SIV simian immunodeficiency viruses, closely related to HIV the natural host

of SIV are non-human primates. Unlike HIV, SIV infections in their

natural hosts are usually non-pathogenic.

ODE ordinary differential equation

PDE partial differential equation

HIM health Initiative for Men

IRS indoor residual spraying

DDT dichlorodiphenyltrichlo-roethane

PDF Portable Document Format

BC British Columbia

xx



AIDS acquired immunodeficiency syndrome

CD4 cluster of differentiation 4, a glycoprotein found on the surface of

immune cells that HIV requires to infect a cell

xxi



Acknowledgments

This thesis would not have been possible without the support of many great people

throughout the years.

First and foremost I want to thank my family for supporting my wish to seek

the best education and work with the most exciting group, even when that meant

that I would be on the other side of the planet for several years.

Thank you Isabell Graf for being on my side and supporting me, especially

during the difficult and most busy times. Without your help and inspiration this

journey would not have been possible.

I want to thank my supervisor Daniel Coombs for giving me the opportunity

to work in his research team and for his support, encouragement, and guidance

throughout. I remember countless inspiring conversations full of ideas and energy,

always with a healthy portion of humor. It makes me proud to have such a smart

and driven Doktorvater, and I hope to can repay some of your trust with the work

in this thesis.

Thank you to my supervisory committee Leah Keshet, Rachel Kuske, Brian

Wetton and Ruy Ribeiro for your valuable input and advice.

My experience at UBC would not have been nearly as pleasant without many

friends that I was fortunate to meet and work with for several years. I’m excited to

follow your next adventures: Carmen Bruni, Christina Koch, Michael Lindstrom,

Iain Moyles, William Thompson and, of course, Alejandra Donajı́ Herrera Reyes!

I am grateful for financial support from UBC, the International Graduate Train-

ing Centre by the Pacific Institute for the Mathematical Sciences, and the Canadian

Institute of Health Research.

xxii



Chapter 1

Introduction

1.1 Mathematical modeling of infectious diseases
The main goal of mathematical biology is to obtain insights into biological sys-

tems that lead to deeper understanding and useful predictions. To do so requires

describing the biological system in a mathematical manner, using well-defined as-

sumptions and simplifications, analyzing the resulting mathematical problem, and

interpreting its results in the biological context. This approach is most powerful in

systems that are difficult to study experimentally, in particular when facing tech-

nical limitations or ethical considerations. In such situations mathematical models

can be used to surface otherwise hidden dynamics and predict the impact of vari-

ous alterations on the study system or variables of interest. Therefore it is natural

and useful to apply mathematical models to study infectious diseases, which can

broadly be classified into two categories.

Within-host models study the dynamics within a single host or individual, such

as the interaction of pathogens with the immune system or the signaling pathways

responsible for the function of immune cells. Typically the system is difficult to

measure directly, but some general interaction principles that govern the dynamics

are known or proposed. By translating these general principles into well-defined

rules, mathematical models are able to reveal hidden dynamics, increase the under-

standing of the underlying biological system, and ultimately provide suggestions

for new ways to fight the infection. One highlight of within-host infectious disease
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modeling is a story from the early days of studying the human immunodeficiency

virus (HIV). Two teams of experimentalists and theoreticians had formed: George

Shaw with Martin Novak and David Ho with Alan Perelson. These teams published

two historic papers [52, 111] in 1995 that finally refuted a false understanding of

HIV dynamics and ultimately led to new era in fighting the infection. At that time

it was known that the viral load and number of T helper cells (and more generally

cluster of differentiation 4 (CD4) cells, the main target of HIV) of an HIV-infected

individual was roughly constant for many years until eventual disease progression,

which was believed to be indicative of slow and static within-host dynamics. In the

studies patients who received the recently developed first generation of antiretrovi-

ral therapy (ART) were analyzed. The time-series of the viral load of the patients

was measured and showed an exponential decline with rate of about 0.6 day−1, but

it was unclear how this result should be interpreted and what it implied. So a sim-

ple two-dimensional system of ordinary differential equations (ODES) was set-up

to describe the hidden dynamics under ART:

dT ∗

dt
=−δT ∗,

dV
dt

= pT ∗− cV,
(1.1)

where infected target cells T ∗ die at rate δ and produce virions at rate p, while

virions are cleared at rate c. Being a linear system the solution of the change of

viral load is quickly found to be

V (t) =V0
ce−δ t −δe−ct

c−δ
≈V0e−δ t . (1.2)

The approximation is valid because the viral clearance rate was known to be much

faster than the death rate of infected cells, c� δ . This shows that the observed ex-

ponential decay rate corresponds to the death rate of infected target cells, which are

thus found to have an average half-life of ln(2)/0.6 ≈ 1.2 days only! This game-

changing realization, that millions of an infected person’s CD4 cells are killed and

replaced every day, finally refuted the theory that disease progression is slow be-

cause “not much is happening”. In particular, those results imply that HIV is very
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susceptible to interference in the viral life cycle and thus inspired further search

for new ART agents. When several anti-HIV drugs were combined to avoid the

evolution of resistance, a new era in the fight against HIV infection had begun. In

1996, for the first time, an HIV diagnosis was no longer a death-sentence. This

forms a remarkable example of how a simple mathematical model was able to help

improve the lives of millions of people.

The second broad category of infectious-disease models are between-host mod-

els, where the focus is on the dynamics of how an infection spreads in a population.

These models are often developed with the aim of measuring the contribution of

certain transmission channels, predicting the impact of health interventions, and ul-

timately suggesting optimal resource allocation. In the ideal case such models can

contribute to policy decisions and facilitate a fact-based balancing of competing

public-health priorities. One of the first such mathematical models that the author

of this thesis encountered was Predicting the epidemiological impact of antiretro-

viral allocation strategies in KwaZulu-Natal: the effect of the urban–rural divide

by David Wilson, James Kahn and Sally Blower [115], which also inspired the

author’s first publication [65]. The pure model’s ethically questionable prediction

is that focusing all resources in the cities should have the optimal public-health

outcome, which is an important fact that mathematical modeling can make the po-

litical leaders aware of when they design the best allocation strategies. Another

classic example of mathematical modeling is the very first malaria model by Sir

Donald Ross [95]. The pioneer of identifying the mechanism by which malaria

spreads developed and used epidemiological models to quantify and extend his

laboratory findings. His models were also used to estimate the cost-effectiveness

of reducing the mosquito population as a counter-measure to prevent new human

malaria cases. Ross received the 1902 Nobel Prize in Medicine for his discoveries

in the transmission of malaria, but considered his mathematical models as his most

important scientific contribution [58].

In this thesis we use mathematical models to reveal hidden within-host HIV

dynamics in the first days after exposure, quantify the population-level impact and

cost-effectiveness of facilitating HIV testing in Vancouver, and reveal how to opti-

mally engineer a recently developed anti-malarial agent. In order to understand the

background and motivation of these models we first give a more detailed introduc-
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tion into the biology of HIV and malaria.

1.2 The biology and modeling of the human
immunodeficiency virus

HIV causes the acquired immunodeficiency syndrome (AIDS), which is responsi-

ble for an estimated 39 million deaths since its official discovery in 1983. Despite

enormous progress since the 1980’s, we still do not have a potent response to this

worldwide epidemic. The number of annual AIDS related deaths is still in the mil-

lions, no cure (neither clinical, nor functional) has been found, and despite enor-

mous effort no broadly effective vaccine has been developed to date. Major reasons

for these shortcomings include the immense diversity of HIV due to its high muta-

tion rate, the many ways HIV can be transmitted, e.g., sexually, via contaminated

blood (transfusions, needle sharing, occupational) or from mother to child (during

pregnancy, birth, or even breastfeeding), the lack of a good animal model, social

stigma and false beliefs especially in some countries of the developing world, and

the severe resource limitations in the countries that are most affected.

The main targets of HIV are helper T-cells. Ironically and tragically, these cells

play an important role in regulating the adaptive immune response, which is re-

sponsible for fighting foreign antigens. Infected T-cells die at a heightened rate

and, in an untreated individual, their loss can not be compensated for. Hence the

number of T-cells drops over the course of infection until the adaptive immune sys-

tem is so compromised that opportunistic infections can take hold to cause disease

and eventual death.

In order to stop the disease progression we have to understand the viral life-

cycle. A HIV particle enters a target cell by binding to the CD4 receptor, as well as

a chemokine reception, most commonly CCR5 or CXCR4. The binding initiates

fusion with the cell membrane so that the genetic material of the virus can enter the

host cell. Next, reverse transcriptase transcribes the viral RNA in DNA which is

then transported to the cell’s nucleus and integrated in the host DNA. The discovery

of reverse-transcriptase was a paradigm shift that resulted in a Nobel prize – up to

this point the central dogma of molecular biology was that information flows from

DNA to RNA to protein, but not in the reverse direction. This process is also
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very error-prone and the reason for HIV’s high mutation rate that allows the virus

to escape the host’s immune response and quickly develop drug resistance. The

integrated viral DNA gets transcribed into new viral RNA that leaves the nucleus

to be assembled to new viral particles. These new virions are soon released by

budding or bursting and go on to find new host cells to infect.

In this thesis we study the early in vivo viral dynamics of the first few days

following HIV exposure (Chapter 2 and Chapter 3). In most cases early HIV in-

fection has very mild or no symptoms, so that many people are not aware of their

infection. In the case when someone reports a recent possible exposure to the virus

it can be difficult to confirm or exclude infection when the virus population may

not have yet grown to a detectable level. This uncertainty is a source of anxiety for

clinicians and patients alike [103], and catching infections early can be beneficial

for the individual as well as the population in general:

• Evidence from nonhuman primates indicates that HIV reservoirs may be es-

tablished very early after exposure [29], and that the viral set point, which is

established a few weeks after exposure, is an important factor in predicting

time to progression to AIDS [78]. Hence an early intervention that failed to

prevent infection may still have a positive long-term effect if the seeding of

the HIV reservoir had been disrupted or if the viral set point was lowered.

• The importance of early HIV infection on a population level is highlighted by

the fact that the proportion of new infections attributed to individuals in the

early stage of infection is disproportionately high, even if the exact numerical

estimates vary, see Figure 1.1. One reason for this is that recently infected

individuals have a large initial viral load, which increases the likelihood of

transmitting the infection to a susceptible partner.

Due to the low probability that a single exposure leads to infection, and since

the number of virions and cells initially involved is small, the early phase is very

difficult to study clinically. Therefore, this is an area where mathematical models

can make major contributions to gaining new insights that would be difficult or

impossible to obtain otherwise. In fact, the relatively low number of virions and

cells may allow approaches that would be numerically unfeasible in more advanced
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Figure 1.1: Importance of acute HIV infection in new transmissions. Modi-
fied from [20].

stages of the infection. The first project of this thesis is motivated by two practical

questions from clinicians at HIV testing clinics, “What is the expected length of

time from exposure until the virus grows to a detectable level?” and “When should

a confirmatory test be scheduled to catch a real infection as early as possible and

simultaneously exclude infection if negative?”.

Having studied the within host viral dynamics around an HIV test we investigate

in another project the impact of testing on the disease prevalence in the population.

When infected individuals are aware of their infection they can adjust their risk

behaviour to reduce the likelihood to transmit the infection onwards. Therefore,

increasing the testing rate can be a viable strategy to decrease the disease incidence

in a population. This is particularly true in risk groups like the Vancouver men who

have sex with men (MSM) community, where prevalence is high and awareness of

infection is sufficiently low that many transmission events occur every year. The

recently implemented Get Checked Online (GCO) program facilitates HIV testing

by providing printable lab forms and test results online. We develop mathematical

models to predict the population-level impact of GCO, which we parameterize with

survey data from the at-risk population in question.
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1.3 Old and new ways to combat and model malaria
infection

Malaria is an infectious disease which is caused by the Plasmodium parasite, which

affects the red blood cells and other tissues of its host. There are many species of

malaria, but among those infecting humans the most common are Plasmodium

falciparum and Plasmodium vivax [94].

According to the WHO [114], malaria is endemic in over 100 countries and

40% of the world’s population live in malaria-endemic areas. In many developing

countries the disease is the leading cause of illness and death. Despite a slightly

decreasing trend, there are still more than 225 million annual malaria cases, causing

almost 800,000 deaths, which corresponds to 2.23% of all deaths worldwide. 90%

of the malaria-caused deaths occur in sub-Saharan Africa, with young children and

pregnant women among the groups that are most affected.

The dominant mode of parasite transmission between humans is facilitated

by mosquitoes of the Anopheles genus. Most mosquito genera cannot actually

transmit malaria between humans and only female mosquitoes bite, as they require

blood meals for the development of their eggs. The life-cycle of the malaria para-

site is surprisingly complex: Upon biting a human, an infected mosquito passes on

the parasite as sporozoites through its saliva, where they travel through the blood-

stream to the liver. After an incubation period that can range from several days

to several months the parasite reaches the merozoite stage where it begins to in-

vade and rupture red blood cells as it reproduces. Once it has begun to infect red

blood cells, the merozoite stage progresses to the gametocyte stage where the par-

asite develops into male and female gametocytes, which can be transmitted back to

mosquitoes. When an infected female mosquito bites a human in this stage, the fe-

male gametes are fertilized and develop into oocysts on the wall of the mosquito’s

gut. Over approximately ten days the oocyst ruptures and immature sporozoites

leave the gut and enter the salivary glands of the mosquito where they mature and

can then be transmitted to a susceptible human again.

The first mathematical models for malaria transmission were two-dimensional

compartment models of the infected human and mosquito population. The very

first model was developed by Ross in 1911 [94], which was later extended by
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Macdonald [73] and Anderson and May [6], among others. More recently Chit-

nis [18, 19] developed a series of SEIR malaria models where many population

and disease dynamic effects are considered in great detail. Others have adjusted

and extended these mathematical models to include compartments which distin-

guish between infected and infectious humans and mosquitoes and to reflect the

fact that humans can become (temporarily) immune or treated, investigate the im-

pact of indoor residual spraying include spatial heterogeneities and allow for time-

dependent parameters to account for environmental factors such as rainfall and

humidity [4, 64, 99, 101].

The most straightforward way to fight human malaria infection is to remove

mosquitoes. Since mosquitoes often remain indoors for some time after a blood

meal a very promising strategy is indoor residual spraying (IRS) of pesticides (see,

e.g., [101] for a simple mathematical model), which had great success in several

locations around the world and was even able to eradicate malaria from certain ar-

eas. For example, the National Malaria Eradication Program was started in 1947

and eradicated malaria in the United States by 1951, and similar stories can be

told from regions in India, Sri Lanka and other countries. More historical infor-

mation can be found in [47], while [114] is a good starting point for more recent

developments.

However, pesticides can be toxic for humans if taken in large quantities or

when they contaminate agricultural land. For this reason the popular pesticide

dichlorodiphenyltrichlo-roethane (DDT) has been banned in most countries by the

Stockholm Convention 2004. Another disadvantage of pesticides is that mosquitoes

can quickly develop resistance, sometimes even within a timescale of months to a

few years (see e.g. [6, 10, 56, 109, 114]). Largely due to these difficulties no new

pesticides have been approved for malaria control since the 1970’s [114].

Our modeling work is inspired by a recent Science paper [31], that proposed

a new way of fighting the disease. The authors engineered a Metarhizium aniso-

pliae fungus strain that can neutralize malarial sporozoites in the mosquito vector,

preventing onward transmission to humans. In laboratory experiments their engi-

neered fungus was able to dramatically reduce the sporozoite counts in the salivary

glands of mosquitoes, making malaria-infected mosquitoes less infectious to hu-

mans. This new pathogen is particularly appealing because it does not increase the
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mosquito’s death rate until later life-stages when most reproduction has happened,

so we do not expect a rapid development of fungus-resistance in the mosquito pop-

ulation. Further, since this fungus can be engineered in the laboratory we may be

able to modify its induced death rate to maximize the intervention’s impact on the

human malaria prevalence.

Increasing the virulence is likely to induce fungus-resistance, but even if this

effect is neglected the optimal virulence is not obvious: On the one hand, the off-

spring of fungus-infected mosquitoes are potential vectors for transmitting malaria,

so increasing the virulence to reduce the total size of the mosquito population could

be beneficial. On the other hand, it’s the number of malaria-infected mosquitoes

that drives the human epidemic, not the total number of mosquitoes. Since fungus-

infected and malaria-infected mosquitoes compete for the same resources it may

be more beneficial to lower the virulence of the fungus so that the fungus-infected

mosquitoes survive longer to compete with susceptible and malaria-infected mos-

quitoes.

To quantify these effects and trade-offs we built a mathematical model that

includes humans and mosquitoes and larvae, and investigate how the prediction of

the human malaria prevalence changes when fungus parameters are varied. Hence

our model can be used to guide the future development of this engineered pathogen,

and ultimately help developing new ways to fight malaria infection.

1.4 How this thesis is structured
In this thesis we present three case studies where mathematical models reveal new

insights into the dynamics of HIV and malaria infection. Over the last couple of

years we extended well-known results about continuous-time branching processes

to model and efficiently analyze the dynamics of the viral load in early HIV in-

fection. We give a coherent analysis of these methods in Chapter 2. One of the

key clinical questions in the research of early HIV infection is the optimal tim-

ing of early testing, in particular, for how many days after exposure the vial load

remains too small to be detectable. Our modeling work in Chapter 3 uses novel

mathematical models and viral-load time series data to quantify the length of this,

so-called, eclipse phase, and also provides quantitative recommendations for tim-
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ing of follow-up tests. In the following Chapter 4 we model the population-level

impact of Get Checked Online, a program that recently launched in Vancouver

and aims to reduce HIV incidence by simplifying how HIV tests are scheduled and

how test results are delivered. In Chapter 5 we investigate the effectiveness of a

recently proposed anti-malaria fungus and how to engineer its characteristics to

optimize the impact in reducing the human population-level malaria prevalence.

Finally, we conclude with a discussion of future research directions of our work

and mathematical biology in general.

This thesis has three appendices: In Appendix A we analyze variants of the

within-host HIV models presented in Chapter 2 that include infected cells, infec-

tious virions and non-infectious virions. Appendix B provides additional details

on how the time series were pre-processed in Chapter 3, and also shows the model

predictions for each of the different patients. Appendix C gives the detailed proofs

of mathematical statements made in Chapter 5 and explains how the model param-

eters were obtained from the data.
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Chapter 2

Mathematical background of
branching processes

This chapter introduces the theory of continuous-time branching processes, with a

focus on their application to early HIV infection. We are going to derive impor-

tant properties and formulations which we will apply to a case study in Chapter 3.

In contrast to classical textbooks on this topic [39, 46, 59, 60] we do not aim to

formulate our findings in the most general way. Instead we follow the practical

needs of the application and research questions that we are going to answer with

this set of mathematical tools. Our approach allows us to avoid the technical for-

mulations seen elsewhere that are aimed at a statistical and stochastical audience,

and hopefully makes the techniques of this chapter easily accessible to the broader

mathematical modeling community. Having this community in mind we will de-

rive an implementation-ready formulation of all the main results that can readily

be implemented in a numerical computing environment like MATLAB or PYTHON.

Even though none of the individual mathematical results presented here are new

in a strict sense, they have never been combined, interpreted and applied in this

way to be suitable for within-host viral dynamics modeling and to ultimately help

answer import clinical questions in this area of research today.
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2.1 Introduction
Over the previous years the Coombs HIV group (Alejandra Herrera, Bernhard Kon-

rad, Daniel Coombs and Jessica Conway) has worked on translating theoretical

knowledge about branching processes into a more practical form that is ready to

implement in a numerical computing environment like MATLAB or PYTHON. We

also extended some known results and combined them in new ways to suit our

application to within-host HIV modeling. The first application of these techniques

was the modeling of HIV dynamics of patients on treatment, see [21]. The key steps

used for this foundation are summarized in Section 2.4 and Section 2.5, and fur-

ther extensions of this method has allowed us to study several HIV-related research

questions [22, 50, 51]. One major benefit of the tools developed here is that the

popular Gillespie algorithm, which is computationally very time consuming, can

be avoided entirely for branching processes. Unfortunately, though, the methods

of this chapter only apply to processes that satisfy the branching property.

We start by analyzing the birth-death process in great detail. The key ideas and

mathematical justifications for more complex multi-type branching processes are

very similar, but unlike these more complicated models the single-type branching

process admits an analytical solution which is convenient to verify our more gen-

eral techniques and results. We first define our notation and state the assumptions

that we make for our analysis. Then we derive the Kolmogorov differential equa-

tions, also called the master equations, for the probability of each possible state of

the system at any time t. As key tool in the analysis of branching processes we

then introduce the probability generating function and derive its important proper-

ties. Rewriting the Kolmogorov differential equations in terms of the probability

generating function we obtain a system of partial differential equations (PDES) and

a ODE, respectively. Here is where the branching property is used to simplify the

infinite system of ODES to a finite system of ODES, which implies that the proba-

bility generating function can readily be approximated by your favorite numerical

ODE solver. Using the Cauchy-Euler integral formula we then find an integral ex-

pression for the desired corresponding probability distribution.

With this theoretical underpinning we then turn our attention to research ques-

tions in early HIV infection: calculating the probability that the size of the virus
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population is above a detection threshold, and calculating the time from exposure

to detectability of infection. In the latter case we see that conditioning the model

on non-extinction is critical for estimating the length of this time period, and so

we derive the mathematical framework to handle this variant. We then repeat the

analysis for multi-type branching processes to show how the techniques are to be

adjusted to handle more sophisticated models.

2.2 The birth-death model
The birth-death model is a classical example of a branching process and intro-

duced in many textbooks, e.g. [39, 60, 67]. In this process the random variable N

is integer-valued and events, or reactions, occur at random times drawn from expo-

nential distributions. We define the birth and death rates as b and d, respectively.

Then the system can be represented schematically as

individual is born N b−→ N +1,

individual dies N d−→ N−1.

The random variable N counts the number of individuals in the population at time

t. We define the probability of having n individuals at time t ≥ τ , given an initial

population of n0 individuals at time τ:

P(n,n0, t,τ) := P(N(t) = n |N(τ) = n0).

Our first assumption is that the system behaves like a stationary Markov chain.

That is, the future is independent of the past, given the present (Markov prop-

erty)and P(n,n0, t,τ) only depends on the difference t− τ , not the absolute time:

P(n,n0, t,τ) = P(n,n0, t− τ) (stationary).

The second assumption is that the probability of an event in a population of a

single individual in the time span of length h is, to first order, proportional to the

reaction rate and the duration h:

P(2,1,h) = bh+o(h)

P(0,1,h) = dh+o(h)
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P(1,1,h) = 1− (b+d)h+o(h)

The probability of more than one event is assumed to be o(h). Here o(h) denotes

functions f for which limh→0
f (h)

h = 0. When we further assume that individuals

act independently we can generalize this assumption to a population of size n.

For example, a net gain of one individual in a time interval of length h occurs

exactly when one individual gives birth and no other event occurs. All other ways

to achieve a net-gain of one individual are of order o(h). Therefore

P(n+1,n,h) = n(bh+o(h))(1− (b+d)h+o(h))n−1 +o(h)

= nbh+o(h),

and similarly, for a net loss of one individual,

P(n−1,n,h) = n(dh+o(h))(1− (b+d)h+o(h))n−1 +o(h)

= ndh+o(h).

Note also that the two assumptions together imply that the waiting time to the next

event is exponentially distributed. Indeed, let T1 be the time at which the first new

individual is born, and define the waiting time W (t) = P(T1 ≥ t). By definition

W (0) = P(T1 ≥ 0) = 1 and using the assumptions we find

W (t +h) = P(T1 ≥ t +h) = P(T1 ≥ t)P(T1 ≥ t +h |T1 ≥ t)

= P(T1 ≥ t)P(T1 ≥ h |T1 ≥ 0)

=W (t)W (h)

=W (t)(1−bnh+o(h)).

Subtracting W (t) on both sides and then dividing by h and letting h tend to zero

this implies W ′(t) =−bnW (t). Solving this differential equation we find that W (t)

= e−bnt , and hence the waiting time for the birth event is exponentially distributed.

The death event is handled analogously. Therefore, the waiting time until the next

event is also exponentially distributed, as the minimum of exponentially distributed

random variables.
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2.3 Gillespie’s Algorithm - a powerful but costly
stochastic simulation algorithm

Developed by Doob [27] as early as 1945, Gillespie’s algorithm became popular

in 1977 when Gillespie published what became a landmark paper for stochastic

simulations [37]. The algorithm realizes an exact solution path of the evolution

of the population size over time. It works equally well for branching processes

and more complicated Markov processes where the waiting time for reactions is

exponentially distributed, and is a very popular algorithm in many different areas

of mathematical biology and beyond. Unlike most comparable procedures, every

reaction is explicitly simulated and no small time steps are approximated by larger

time steps of fixed length. Gillespie himself was motivated by chemical reactions

of spatially uniformly mixed species in a fixed volume. Therefore a possible reac-

tion is sometimes referred to as reaction channel.

The algorithm works as follows. At time t calculate the rate of each possible re-

action p j, for j = 1, . . . ,n. Since the waiting time for each reaction is exponentially

distributed with parameter p j, the time until the next reaction is also exponentially

with parameter p0 = ∑
n
j=1 p j, as the minimum of exponentially distributed random

variables. Given this rate the time until the next event is obtained by drawing a

random number r1 from an exponential distribution with parameter p0, that is, the

time of the next event is t + r1. The likelihood that the next event is reaction j

is proportional to its relative probability p j/p0, so draw a second random num-

ber that is distributed according to these probabilities. In practice this is achieved

by drawing a uniformly distributed second random number r2 and updating the

population size according to the k-th reaction, where k is the integer that satisfies

∑
k−1
j=1 p j/p0 < r2 ≤ ∑

k
j=1 p j/p0. Repeat the procedure at t = t + r1 until a desired

end-time or population size is reached.

Since each simulation is just one possible realization of the underlying stochas-

tic process, usually many thousand or millions of simulations have to be run to

obtain meaningful summary statistics. This becomes particularly time-consuming

when reactions occur very frequently. This is a common problem when the popu-

lation size, and hence the reaction rates become very large. Another problem with

the basic version of Gillespie’s algorithm is that many simulations have to be run
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Figure 2.1: Sample paths of the stochastic birth-death process, started with
a population size of 100 and ran until a desired threshold is reached.
Birth rate b = 23.9 day−1, death rate d = 23 day−1 and threshold
375,000. This threshold corresponds to the HIV detection limit of 50
RNA copies/ml, at 2 RNA copies per virion in a human with 15L of
extracellular fluid.

to observe rare events. Solutions to these problems, such as a variety of “leaping”

methods as well as importance sampling, have been suggested and remain an active

area of research [9, 16, 26, 38, 55, 68, 72, 79, 120]. Figure 2.1 shows the result

of four Gillespie simulations of the birth-death process. In the remainder of this

chapter we avoid Gillespie’s algorithm altogether and instead derive a mathemati-

cal method to obtain the probability distribution more directly.
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2.4 Derivation of the master equations
Our goal is to calculate the probability P(n,n0, t) for all times t and population

sizes n. Note that it suffices to consider a fixed initial population size n0, that is,

P(n,n0,0) = 1n,n0 , where 1a,b is the indicator function which is 1 when a = b and

0 otherwise. Indeed, if the initial condition is distributed according to a probability

distribution (ρn0)n0≥0 then P(N(t) = n |N(0) = ρn0) = ∑
∞
n0=0 P(n,n0, t)ρn0 . The

first step towards solving for P(n,n0, t) is to consider a time interval (0, t +h) and

split it into a long step (0, t) and a short step (t, t+h). Then, for the total population

size to change from n0 to n in (0, t +h), it could have been at any population size k

at time t and then transitioned from k to n in the remaining time. This leads to the

Chapman-Kolmogorov equation

P(n,n0, t +h) =
∞

∑
k=0

P(k,n0, t)P(n,k,h)

= P(n−1,n0, t)P(n,n−1,h)+P(n+1,n0, t)P(n,n+1,h)

+P(n,n0, t)P(n,n,h)+o(h)

= b(n−1)hP(n−1,n0, t)+d(n+1)hP(n+1,n0, t)

+(1− (b+d)nh)P(n,n0, t)+o(h).

Next, we subtract P(n,n0, t) from both sides, divide the resulting equation by h and

let h→ 0, keeping in mind that limh→0 o(h)/h = 0, to obtain

d
dt

P(n,n0, t) = lim
h→0

P(n,n0, t +h)−P(n,n0, t)
h

= b(n−1)P(n−1,n0, t)+d(n+1)P(n+1,n0, t)

− (b+d)nP(n,n0, t),

P(n,n0,0) = 1n,n0 .

(2.1)

This equation is a forward master equation, or Kolmogorov forward equation. It

can nicely be interpreted as a balance equation: [rate of change of state n] = [sum

of reactions to get into state n] - [sum of reactions to leave state n].

In the above we could have also chosen to split the interval (0, t + h) into a

small step (0,h) followed by a larger step (h, t + h). In order for the population
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size to change from n0 at time 0 to n at time t +h it could have been at any size k

at time h, which leads to the Chapman-Kolmogorov equation

P(n,n0, t +h) =
∞

∑
k=0

P(k,n0,h)P(n,k, t)

= P(n0 +1,n0,h)P(n,n0 +1, t)+P(n0−1,n0,h)P(n,n0−1, t)

+P(n0,n0,h)P(n,n0, t)+o(h)

= bn0hP(n,n0 +1, t)+dn0hP(n,n0−1, t)

+(1− (b+d)n0h)P(n,n0, t)+o(h).

We again subtract P(n,n0, t) from both sides, divide the resulting equation by h and

let h→ 0, keeping in mind that limh→0 o(h)/h = 0, to obtain

d
dt

P(n,n0, t) = bn0P(n,n0 +1, t)+dn0P(n,n0−1, t)− (b+d)n0P(n,n0, t),

P(n,n0, t) = 1n,n0 .
(2.2)

This equation is called the backward master equation, or Kolmogorov backward

equation.

The two sets of master equations are equivalent systems of infinitely many

coupled ODES. In very special cases, e.g. in the pure birth or pure death process,

these equations can be solved recursively for P. The key to finding P for more

sophisticated models is the probability generating function, which we introduce in

the next section.

2.5 The probability generating function
We gain a lot of insight into our model when we can solve Kolmogorov’s forward

or backward differential equation. Unfortunately, a straightforward approach is

not possible as both formulations describe a system of infinitely many, highly in-

terconnected linear ODES, and we generally do not have a natural first equation we

can solve to proceed inductively. Instead we solve all equations at once using the

probability generating function, a power-series expansion with the probabilities as

its coefficients.
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2.5.1 Definition and basic properties

Let D = {z ∈ C : |z| ≤ 1} and define the multi-variable probability generating

function

G : N0× [0,∞)×D→ D, (n0, t,z) 7→
∞

∑
n=0

P(n,n0, t)zn. (2.3)

If we again let N be the random variable of the number of individuals at time t in

a population that started with n0 individuals at time t = 0 we can write the prob-

ability generating function as G(n0, t,z) = E[zN ]. This observation is particularly

useful for proving mathematical properties of the probability generating function.

Further note that the right hand side is well defined and converges absolutely by the

triangle inequality since ∑
∞
n=0 P(n,n0, t) = 1 holds for all t ∈ [0,∞). In particular,

we have that G(n0, t,1) = 1. The probability generating function has a lot of useful

properties:

1. First and foremost, knowing the probability generating function is equivalent

to knowing the probabilities P, in which we are interested.1 To obtain P from

G we make use of the identity

∂ k

∂ zk zn =

 n!
(n−k)! z

n−k, if k ≤ n,

0, if k > n,

so that when z = 0 is plugged in we have

∂ kzn

∂ zk

∣∣∣∣
z=0

= n!1n,k.

Therefore, we can obtain P(n,n0, t) by n-time differentiation of the definition

G(n0, t,z) = ∑
∞
n=0 P(n,n0, t)zn:

P(n,n0, t) =
1
n!

∂ nG(n0, t,z)
∂ zn

∣∣∣∣
z=0

. (2.4)

2. Setting n = 0 in the identity above, we obtain the likelihood P(0,n0, t) that

1This is the main reason why G is sometimes called the “wonderful function” [67].
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the population is extinct at time t as G(n0, t,0).

3. We obtain the mean value of the population size by evaluating

E[N] =
∞

∑
n=0

nP(n,n0, t) =
∞

∑
n=0

nP(n,n0, t)1n−1 =
∂G(n0, t,z)

∂ z

∣∣∣∣
z=1

. (2.5)

4. In fact, we can calculate any higher order moments of N by taking the corre-

sponding number of derivatives. For example, taking two derivatives yields

∂ 2G(n0, t,z)
∂ z2

∣∣∣∣
z=1

=
∞

∑
n=0

(n2−n)P(n,n0, t) = E[N2]−E[N],

which implies that the variance of N is given by

Var(N) = E[N2]− (E[N])2 = (E[N2]−E[N])+E[N]− (E[N])2

=

(
∂ 2G(n0, t,z)

∂ z2 +
∂G(n0, t,z)

∂ z
−
(

∂G(n0, t,z)
∂ z

)2
)∣∣∣∣∣

z=1

.

2.5.2 The differential equation formulations

Just as there are two master equations, there are also two differential equations that

the probability generating function satisfies. The forward master equation leads to

a PDE, while the backward master equation leads to a system of infinitely many

ODES. Starting with the forward master equation (2.1)

d
dt

P(n,n0, t) = b(n−1)P(n−1,n0, t)+d(n+1)P(n+1,n0, t)

− (b+d)nP(n,n0, t)

multiply both sides by zn and sum over all n ∈ N0 to obtain

∞

∑
n=0

d
dt

P(n,n0, t)zn =
∞

∑
n=0

(
b(n−1)P(n−1,n0, t)zn +d(n+1)P(n+1,n0, t)zn

− (b+d)nP(n,n0, t)zn).
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We now rewrite this term-by-term, making use of the fact that the probability of a

negative population size is zero, P(n,n0, t) = 0 for all n < 0.

1. ∑
∞
n=0

d
dt P(n,n0, t)zn = ∂G/∂ t,

2. ∑
∞
n=0 b(n−1)P(n−1,n0, t)zn = b∑

∞
k=0 kP(k,n0, t)zk+1 = bz2∂G/∂ z,

3. ∑
∞
n=0 d(n+1)P(n+1,n0, t)zn = d ∑

∞
k=0 kP(k,n0, t)zk−1 = d∂G/∂ z,

4. ∑
∞
n=0(b+d)nP(n,n0, t)zn = (b+d)z∑

∞
k=0 kP(k,n0, t)zk−1 = (b+d)z∂G/∂ z.

Combining the results above we obtain the PDE formulation for the probability

generating function

∂G(n0, t,z)
∂ t

=
(
bz2 +d− (b+d)z

) ∂G(n0, t,z)
∂ z

,

G(n0,0,z) = zn0 .

(2.6)

Applying the same procedure to the backward master equation (2.2) instead we

find

∞

∑
n=0

d
dt

P(n,n0, t)zn =
∞

∑
n=0

(
bn0P(n,n0 +1, t)zn +dn0P(n,n0−1, t)zn

− (b+d)n0P(n,n0, t)zn).
Notice that, unlike for the forward equations, there is no need to shift the indices,

so we obtain directly

∂G(n0, t,z)
∂ t

= bn0G(n0 +1, t,z)+dn0G(n0−1, t,z)− (b+d)n0G(n0, t,z),

G(n0,0,z) = zn0 .

(2.7)

This is an infinite system of ODES. The crucial step and a key asset of branching

processes is that we can reduce this infinite system to a finite system of ODES by

using the branching property: Individual branches act independently. Let N1, N2

be two independent birth-death processes that both start with a single individual.
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Then, using the independence in the third step, we can calculate directly:

E[zN1+N2 ] =
∞

∑
n=0

P(N1 +N2 = n)zn

=
∞

∑
n=0

n

∑
k=0

P(N1 = k, N2 = n− k)zn

=
∞

∑
n=0

n

∑
k=0

P(N1 = k)P(N2 = n− k)zn

=
∞

∑
n=0

∞

∑
k=0

P(N1 = k)zkP(N2 = n− k)zn−k

=
∞

∑
k=0

P(N1 = k)zk
∞

∑
n=0

P(N2 = n− k)zn−k

=

(
∞

∑
k=0

P(N1 = k)zk

)(
∞

∑
`=0

P(N2 = `)z`
)

= E[zN1 ]E[zN2 ].

Generalizing this to a population of size n0 we obtain that

G(n0, t,z) = (G(1, t,z))n0 (2.8)

for all n0 ∈ N0. It therefore suffices to solve (2.7) for G(1, t,z) only:

∂G(1, t,z)
∂ t

= bG2(1, t,z)+d− (b+d)G(1, t,z),

G(1,0,z) = z.
(2.9)

2.5.3 Calculating the probability distribution from the probability
density function

We now have two differential equations for the probability density function, the

PDE (2.6) and the ODE (2.9). The PDE route is more general, because it can always

be derived for more general stochastic processes. However, PDES are much more

difficult to solve, even numerically. To derive the ODE we used the extra assump-

tion of the branching property, and obtained a standard ODE whose solution can
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easily be approximated numerically. In fact, in the special case of the birth-death

process either equation can be solved analytically: The PDE by using the method

of characteristics, the ODE is a Riccati differential equation. Either way, we obtain

the analytical solution of the probability generating function for the birth-death

process as

G(n0, t,z) =
(

σ(t)−1+(γ−σ(t))z
γσ(t)−1+ γz(1−σ(t))

)n0

, (2.10)

where γ = b/d 6= 1 and σ(t) = e(b−d)t , see e.g., [39].

Now that we know the probability generating function it is time to get back the

probability distribution of the population size. Recall from (2.4) that the probability

distribution can be obtained by evaluating the corresponding derivative of G at z =

0. Again, in this special case we can obtain an analytical expression for P(n,n0, t):

P(n,n0, t) =
min(n0,n)

∑
j=0

(
n0

j

)(
n0 +n− j−1

n0−1

)
α

n0− j
β

n− j(1−α−β ) j,

where α = σ(t)−1
γσ(t)−1 and β = γα , again see e.g., [39].

It is great to have an analytic expression for P(n,n0, t), but the large sum and

huge factorial factors make the above formula unsuitable for numerical algorithms,

unless n and n0 are fairly small. Further, such an analytic solution is only possible if

the analytic solution of the generation function G is available, which is not the case

in general. However, a numerical approximation of the corresponding generating

function of any branching processes is always available by numerically solving the

corresponding ODE. Hence we set the analytical solutions for G and P(n,n0, t)

aside for now, and derive a computationally efficient method to find the probability

distribution that works for more general branching processes.

An accurate numeric approximation of the solution to the ODE formulation

(2.9) is easy to obtain, so we focus on how to translate that to the probability distri-

bution. We could just use (2.4) straight out and start taking derivatives. However,

numerical differentiation is unstable, especially when thousands or even millions

of derivatives are required. Instead, numerical integration is stable, so we remem-

ber Cauchy’s integral formula from complex analysis that links differentiation with
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integration:

dn f
dxn

∣∣∣∣
x=0

=
n!

2πi

∮
C

f (z)
(z−a)n+1 dz.

We choose f (z) = fn0,t(z) = G(n0, t,z), which is a holomorphic function inside the

complex unit circle and continuous on its closure. Since we eventually want to

evaluate the derivatives at a = 0 we let C be the circle with radius 1 around the

origin in the complex plane and obtain

P(n,n0, t) =
1
n!

∂ nG(n0, t,z)
∂ zn

∣∣∣∣
z=0

=
1
n!

(
n!

2πi

∮
C

G(n0, t,z)
zn+1 dz

)
=

1
2π

∫ 2π

0
G(n0, t,eiϕ)e−inϕdϕ,

where we substituted z = eiϕ . Next we split the integral at π and substitute α

= 2π−θ in the second summand. Finally, G(1, t,z) = ∑n P(n,n0, t)zn = G(1, t,z),

ez = e−z, and 2Re(z) = z+ z leads to

P(n,n0, t) =
1
π

Re
(∫

π

0
G(n0, t,eiϕ)e−inϕdϕ

)
. (2.11)

This is the single most important formula of this section, because it gives us a nu-

merically effective formula to obtain the probabilities of interest, without having

to rely on Gillespie simulations. In Figure 2.2 we see that the probability as cal-

culated using (2.11) matches the aggregated results from Gillespie simulation very

well, but is computationally much cheaper. The “trick” of using Cauchy’s integral

formula to avoid numerical differentiation became popular in the late 60’s, but to

our knowledge it was first employed on the generating function of a process that

models HIV dynamics by Conway and Coombs [21].

2.6 Mean behaviour of the stochastic process
In a branching process the average of the random variable is the solution to the cor-

responding deterministic ODE. The typical approach is to consider the ODE first,
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Figure 2.2: The probability P(150,100, t) of population size N(t) = 150 at
time t for a population that starts at N(0) = 100 individuals, with death
rate d = 23 day−1 and birth rate b = 23.9 day−1. The blue line is the ag-
gregate from Gillespie simulations, the red line is obtained by integrat-
ing the probability generating function as described in Equation (2.11).

and then translate the process into its stochastic variant. However, with the proba-

bility generating function we can also go the other way. This allows a verification

that the stochastic variant matches the process that the ODE describes, and, equally

importantly, the derivation of an expression for the deterministic mean behaviour

in cases where this is not immediately obvious.

To begin with, we verify that the mean behaviour of the birth-death process

indeed corresponds to the deterministic ODE. We fix n0 and t, and recall from (2.5)

E[N] = ∑
n

nP(n,n0, t)
∂G(n0, t,z)

∂ z

∣∣∣∣
z=1

.

From the analytical solution (2.10) of the generating function of the birth-death

process we easily verify that indeed E[N] = n0e(b−d)t , that is, E[N] solves the ODE
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˙E[N] = (b−d)E[N], E[N](0) = n0.

In fact, even if the analytical solution of the probability were not available we

could still derive the ODE of the mean of the stochastic process. Set n0 = 1, let f (t)

= E[N1(t)] =
∂G(1,t,z)

∂ z

∣∣∣
z=1

and take the time-derivative to obtain

d f
dt

=
d
dt

(
∂G(1, t,z)

∂ z

∣∣∣∣
z=1

)
=

∂

∂ z
d
dt

G(1, t,z)
∣∣∣∣
z=1

=
∂

∂ z

(
bG2(1, t,z)+d− (b+d)G(1, t,z)

)∣∣∣∣
z=1

= 2b
∂G(1, t,z)

∂ z

∣∣∣∣
z=1
− (b+d)

∂G(1, t,z)
∂ z

∣∣∣∣
z=1

= (b−d) f (t)

with initial condition f (0) = ∂G(1,0,z)
∂ z

∣∣∣
z=1

= 1. The solution to this differential

equation is given by f (t) = E[N1(t)] = e(b−d)t . When we extend this result to an

initial population size of n0 we find that E[N(t)] = ∂G(n0,t,z)
∂ z

∣∣∣
z=1

= n0e(b−d)t , which

agrees with the solution we found earlier.

2.7 Calculating cumulative probabilities
We can also quickly calculate the probability that the total population size is above

or below a certain threshold. Having the detection limit of an HIV test in mind we

call this threshold dL and want to know the probability of being above dL at time

t. This random variable tells us when the HIV test of an infected individual would

be positive, and is therefore of great importance for the clinical questions on the

length of the eclipse phase that we will discuss in Chapter 3.

The straightforward way to calculate the probability that the detection limit

is below the threshold is to sum all probabilities of being at any value n, for

n = 0,1, . . . ,dL− 1. For large values of dL, which is the case for the detection

limit dL, calculating this cumulative probability involves hundreds of thousands of

summands. Instead, a slight algebraic manipulation allows us to replace this large
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sum of integrals with a single integral:

P(N(t)< dL |N(0) = n0) =
dL−1

∑
n=0

P(n,n0, t)

=
dL−1

∑
n=0

(
1
π

Re
∫

π

0
G(n0, t,eiϕ)e−inϕdϕ

)
=

1
π

Re
∫

π

0
G(n0, t,eiϕ)

dL−1

∑
n=0

(e−iϕ)ndϕ

=
1
π

Re
∫

π

0
G(n0, t,eiϕ)

1− e−idLϕ

1− e−iϕ dϕ.

Conveniently, a slight adjustment of the integrand suffices to turn the calculation

from an individual probability to the cumulative probability. On a technical note,

if the numerical integrator evaluates the above integral at the left endpoint ϕ = 0,

each summand in the geometric series is unity, and hence at this one time point the

integrand needs to be replaced by G(n0, t,1)dL.

2.8 The probability of extinction and the basic
reproduction number R0

In order to calculate the probability of extinction, again consider the process that

starts with a single individual. Let qs = P(0,1,s) and q = lims→∞ qs be the prob-

ability that the population is extinct at time s and eventually, respectively. Note

that q is well-defined because qs is increasing in s and bounded by 1. Next, let t

be the time when the initial individual dies. The corresponding waiting time W (τ)

= P(t ≥ τ) is exponentially distributed with parameter d, the death rate. It follows

that

qs = P(0,1,s)

= P(extinction at s | t > s)×P(t > s)+P(extinction at s | t ≤ s)×P(t ≤ s)

= 0× e−ds +
∞

∑
n=0

P(n,1, t)qn
s−t(1− e−ds).

(2.12)
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The last line requires justification. If the initial individual did not die by time

s, then the population could not have gone extinct. Otherwise, we condition on

the population size at time t, and require that each of the identical and independent

offspring branching processes goes extinct in the remaining time span s−t. Letting

s go to infinity yields

q = lim
s→∞

qs = lim
s→∞

∞

∑
n=0

P(n,1, t)qn
s−t(1− e−ds) =

∞

∑
n=0

P(n,1, t)qn = G(1, t,q).

(2.13)

We now want to show that q is the smallest positive number x that satisfies G(1, t,x)=

x. To this end, define the helper function h(x) = G(1, t,x)− x, which has the fol-

lowing properties

1. h(0) = P(0,1, t)≥ 0, h(1) = 0,

2. h′(0)≤ 0, h′(1) = E[N]−1,

3. h is convex, h′′(x)≥ 0.

So x= 1 is always a root of h and since h is convex it has at most one additional root

in [0,1), see Figure 2.3. In fact, this additional root exists if and only if h′(1) =

E[N]− 1 > 0 which corresponds to the case when the population is expected to

grow on average.

If we assume E[N] ≤ 1, then the only root of h in [0,1] is 1, so since q ∈
[0,1] and h(q) = 0 we have q = 1. This case corresponds to guaranteed extinction.

Alternative, assume E[N]> 1, so that the population grows on average. Then h has

an additional root in [0,1], which we denote by x∗ < 1. Since q≥ 0 is also root of

h we obtain q≥ x∗. From the convexity of h it follows that h(x)≥ 0 for 0 < x≤ x∗

and h(x)< 0 for x∗ < x < 1. Since qs is increasing qs−t ≤ qs, so that (2.12) yields

qs =
∞

∑
n=0

P(n,1, t)qn
s−t(1− e−ds)≤

∞

∑
n=0

P(n,1, t)qn
s (1− e−ds) = G(1, t,qs),

or, equivalently, h(qs)≥ 0. Therefore qs ≤ x∗ for all s≥ 0, and by continuity of qs

we obtain q = lims→∞ qs ≤ x∗. Therefore q = x∗ is the indeed that smallest root of
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(b) The helper function
h(x) = G(1, t,x) − x has two roots
in [0,1] if h′(1) = E[N] − 1 > 0. In
this case q < 1 and the population may
survive indefinitely.

Figure 2.3: Whether the population necessarily ultimately goes extinction de-
pends on whether the average growth rate E[N] is larger that 1.

h, as claimed. In summary, if the population grows on average we have q < 1, that

is, extinction is not guaranteed and the population may survive indefinitely.

Taking the time-derivative on both sides of (2.13) we see that the probability

of extinction corresponds to the steady states of the ODE (2.9) of the probability

generating function. In our case this yields

0 = bq2 +d− (b+d)q ⇐⇒ q = 1 or q = d/b. (2.14)

When the death rate is not exceeded by the birth rate, d/b≥ 1, we have q = 1 and

extinction is guaranteed. Otherwise q = d/b < 1 and there is a positive probability

of 1− d/b that the population survives indefinitely. Further note that, since each

individuals act independently due to the branching property, the probability that

a population of size n individuals goes extinct equals qn, the n-th power of the

probability that a population of a single individual goes extinct.

The basic reproduction number R0 is defined as the expected number of de-

scendants of a single individual. In the birth-death process each individual gives

birth at rate b over their expected life-span of 1/d, hence R0 = b/d. For a more

systematic derivation investigate the stability of the trivial steady state of the cor-
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responding ODE. Here Ṅ = (b−d)N, which has the trivial steady state N = 0 and

is stable if and only if R0 = b/d < 1.

2.9 Conditional on non-extinction
In a stochastic process where the “extinct state” is absorbing there is always a

positive probability that the population goes extinct, regardless of the basic repro-

duction number R0. If R0 ≤ 1, however, the population almost surely goes extinct

eventually. In the example of HIV, most exposures do not lead to infection, that

is, the viral population goes extinct. However, extinction is not guaranteed and

hence 1 < R0 = b/d and the average growth rate b−d is positive. However, here

the infection bias becomes critical: only cases where exposure did in fact lead to

infection are clinically observed! This means that we have to adjust our stochastic

model to reflect this bias when we are fitting it to clinical data.

In Gillespie simulations it is easy to bias the calculations accordingly – sim-

ply disregard all realizations that went extinct eventually. The effect of modifying

R0 = b/d (and hence the likelihood of extinction q = d/b) while keeping the av-

erage slope b− d constant and simultaneously conditioning on non-extinction is

highlighted in Figure 2.4, where we use Gillespie simulations with different pa-

rameters to estimate the time until a fixed population size is reached.

To better understand the effect of conditioning on non-extinction we derive a

method to calculate the mean of the conditioned process without having to fall

back to extensive Gillespie simulations. We are interested in the probability that

the population reaches size n at time t under the additional condition that it does

not go extinct later:

P(N(t) = n |N(∞) 6= 0,N(0) = n0).

Note that N(∞) = 0 if and only if N(s) = 0 for some s ≥ 0 (the state space is

discrete). Also note thtamer conditioning on an event that has probability zero is

not a valid operation. Hence, none of the calculations below make sense if R0 < 1

and extinction is guaranteed.

Since the event we condition on is in the future, but the Markov property works

for events in the past, we use Bayes theorem P(A|B,C) = P(B|A,C)P(A|C)
P(B|C) to rewrite
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Figure 2.4: Distributions of the time until a population size of 375,000 is
reached, obtained from Gillespie simulations of the birth-death process
with b− d = 0.9 day−1. Paths that did not reach the desired popula-
tion size were discarded, that is, the processes are conditioned on non-
extinction. Different death rates d = 9× 104 day−1 (red) and d = 23
day−1 (blue) result in a different likelihood of extinction q = d/b. The
larger the likelihood of extinction, the faster the conditioned process
reaches the desired population size.

the above as

P(N(t) = n |N(∞) 6= 0,N(0) = n0)

= P(N(t) = n |N(0) = n0)
P(N(∞) 6= 0 |N(t) = n,N(0) = n0)

P(N(∞) 6= 0 |N(0) = n0)
.

We recognize the first term as our original, unconditioned probability from earlier.

For this we know how to calculate the probability generating function. The nu-

merator can be simplified to P(N(∞) 6= 0|N(t) = n), due to the Markov property

of P that history can be neglected if the present state is known, and then further to

P(N(∞) 6= 0|N(0) = n), due to the time invariance of P that only the relative time

difference between the two events matters, not their absolute time. Finally, the

complementary event that a population of size n does not go extinct is very easy to
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calculate.

P(N(∞) 6= 0 |N(0) = n) = 1−P(N(∞) = 0 |N(0) = n) = 1−qn,

where qn and q are the probabilities that a population of size n and 1 go extinct,

respectively. Plugging this into our equation above we obtain

P(N(t) = n |N(∞) 6= 0,N(0) = n0) = P(N(t) = n |N(0) = n0)
1−qn

1−qn0

=
1

1−qn0
(P(n,n0, t)−P(n,n0, t)qn)

and therefore, the generating function G̃ of the process that is conditioned on not

going extinct is

G̃(n0, t,z) = ∑
n

(
1

1−qn0
(P(n,n0, t)−P(n,n0, t)qn)

)
zn

=
1

1−qn0 ∑
n
(P(n,n0, t)zn−P(n,n0, t)(qz)n)

=
G(n0, t,z)−G(n0, t,qz)

1−qn0
.

Hence, we can directly obtain G̃ once we know G, the generating function of the

unconditioned process. Finally, all we need to do to find the conditional probability

distribution P̃ is to replace G with G̃ in the integral equation (2.11) for P.

2.10 Mean behaviour and cumulative probabilities for
the conditioned process

It is also possible to extend the calculations for the mean behaviour and cumulative

probabilities to the process that is conditioned on non-extinction.

2.10.1 Mean behaviour

We are interested in the mean behaviour of the birth-death process that is condi-

tioned on not going extinct. A corresponding ODE is not obvious, so we let Ñ be

the random variable that counts the number of individuals in the birth-death pro-
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cess conditioned on non-extinction. As before, we first use the analytical solution

of the probability generating function to obtain

E[Ñ] =
∂ G̃(n0, t,z)

∂ z

∣∣∣∣
z=1

=
1

1−qn0

∂ (G(n0, t,z)−G(n0, t,qz))
∂ z

∣∣∣∣
z=1

=
1

1−qn0

(
E[N]− ∂G(n0, t,qz))

∂ z

∣∣∣∣
z=1

)
=

1
1−qn0

(
E[N]−n0qn0e−(b−d)t

)
=

n0(e(b−d)t −qn0e−(b−d)t)

1−qn0
.

Note that in the limit q→ 0, where non-extinction of the unconditioned process

becomes guaranteed, the means of the conditioned and unconditioned processes

coincide, E[Ñ]→ E[N] (q→ 0). Further note that

E[Ñ]→ E[N]

1−qn0
(t→ ∞),

that is, the growth rates of the unconditioned and conditioned process eventually

converge. In Figure 2.5 we see that in cases where extinction is very likely a naive

extrapolation of the growth curve can lead to large error in the extrapolation of

the time of exposure. This is because those paths that do not go extinct typically

were able to initially grow much faster than average. Therefore, these paths do not

need as much time to reach the detection level as one might have estimated from

an unconstrained model fit. In short: this infection bias leads to an earlier estimate

for the time of exposure, and hence to a shorter estimate of the length of the eclipse

phase.

As with the unconditioned process it is valuable to re-derive a ODE for E[Ñ]

that does not use the analytical solution of the probability generating function,

so that the method can be extended to processes where an analytical solution is

not available. Starting with the equation for E[Ñ] above we see that we need to

calculate f (t) = ∂G(n0,t,qz)
∂ z

∣∣∣
z=1

. The calculation is simplified if we first substitute x
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Figure 2.5: Mean of the unconditional E[N] (in blue) and conditional E[Ñ]
(in red) process, in the case where extinction is very likely, q ≈ 96%.
We see a dramatic difference between the means, which can lead to
drastically wrong estimates of the initial time of the process (e.g., time
of HIV exposure) when a naive fit (black line) is extrapolated to E[Ñ] =
1. Parameters: b = 23.9 day−1, d = 23 day−1, n0 = 1.

= qz to obtain

f (t) =
∂G(n0, t,qz)

∂ z

∣∣∣∣
z=1

= q
∂G(n0, t,x)

∂x

∣∣∣∣
x=q

.

Next, we take the time derivative on both sides and use the PDE formulation (2.6).

d
dt

f (t) = q
d
dt

∂

∂x
G(n0, t,x)

∣∣∣∣
x=q

= q
∂

∂x
d
dt

G(n0, t,x)
∣∣∣∣
x=q

= q
∂

∂x

((
bx2 +d− (b+d)x

) ∂

∂x
G(n0, t,x)

)∣∣∣∣
x=q

34



= q (2bq− (b+d))
∂

∂x
G(n0, t,x)

∣∣∣∣
x=q

+q (bq2 +d− (b+d)q)
∂ 2

∂x2 G(n0, t,x)
∣∣∣∣
x=q

.

Note that in the second summand we see the same term as on the right hand side

of the PDE (2.6), with z = q. Since the extinction probability q is such that the

left hand side ∂

∂ t G(n0, t,q) = 0. Therefore the second summand evaluates to zero.

Plugging in q = d/b we obtain

d
dt

f (t) =−(b−d) f (t), f (0) =
∂

∂ z
G(n0,0,qz)

∣∣∣∣
z=1

=
∂

∂ z
(qz)n0

∣∣∣∣
z=1

= n0qn0 .

The solution to this differential equation is f (t) = n0qn0e−(b−d)t , and matches the

result obtained from the analytical solution above.

Note that we could also use Cauchy’s integral formula to evaluate the derivate

f (t) = ∂G(n0,t,qz)
∂ z

∣∣∣
z=1

. Since extinction is not guaranteed we have q < 1 and thus qz

is in the interior of the unit circle where G(n0, t, ·) is analytic. Hence, C can again

be the path along the boundary of the unit circle and we could calculate the partial

derivative of G(n0, t,qz) with respect to z at z = 1 as

∂G(n0, t,qz)
∂ z

∣∣∣∣
z=1

=
∂G(n0, t,qz)

∂ (qz)
∂ (qz)

∂ z

∣∣∣∣
z=1

= q
1

2πi

∫
C

G(n0, t,w)
(w−q)2 dw

=
q

2π

∫ 2π

0

G(n0, t,eiϕ)eiϕ

(eiϕ −q)2 dϕ.

2.10.2 Cumulative probabilities

Finally, we might also be interested in calculating

P(N(t)< dL |N(∞) 6= 0, N(0) = n0),

the probability that the population size is below the threshold dL, conditioned on

non-extinction of the population. This is straightforward when we use the proba-
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bility generating function of the conditioned process:

P(N(t)< dL |N(∞) 6= 0, N(0) = n0)

=
dL−1

∑
n=0

P(N(t) = n |N(∞) 6= 0 , N(0) = n0)

=
dL−1

∑
n=0

1
π

Re
(∫

π

0
G̃(n0, t,eiϕ)e−inϕdϕ

)
=

1
π

Re
(∫

π

0

G(n0, t,eiϕ)−G(n0, t,qeiϕ)

1−qn0

1− e−idLϕ

1− e−iϕ dϕ

)
.

2.11 The T ∗-V model
The techniques developed in the sections above are not exclusive to the birth-death

process. Indeed, they can be extended to processes with more than one type, so-

called multi-type branching processes. The steps required to obtain the correspond-

ing results are very similar to the above, so instead of showing every detail we

highlight how the techniques are generalized. The model of this section is targeted

towards HIV infection and will as such consider HIV particles V and T-lymphocytes

as target cells T . HIV infects target cells to turn them into virus-producing, produc-

tively infected cells, which we denote with a superscript star.

The T ∗-V model is one of the simplest multi-type branching processes that

describes the basic mechanism of HIV infection: Virions infect target cells at rate

kT and are cleared at rate c, while infected target cells die at death rate δ and

produce virions with production rate p. The model can be summarized in ODE

form as
Ṫ ∗ = kTV −δT ∗,

V̇ = pT ∗− (c+ kT )V,
(2.15)

with T ∗(0) = n0 and V (0) = v0. We are particularly interested in models of early

HIV infection, where the virus population size is relatively small and only a few

target cells are infected. Because of this our approximation of a constant pool of

uninfected target cells T is valid, and, unlike other classical HIV models, we do not

have to add a separate equation for T . This assumption implies that (2.15) is linear,
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and so the underlying stochastic process is a branching process. Another contrast

to classical HIV models is the additional −kTV term to explicitly account for the

one virion lost when a new cell is infected. This is done because even a single

virion matters when the total number of virions is small.

For the branching process, let n be the number of infected cells, v be the total

number of virions, and n0, v0 be the initial conditions, respectively. We want to

find the probability

P(n,v,n0,v0, t) = P((T ∗,V )(t) = (n,v) |(T ∗,V )(0) = (n0,v0)).

2.11.1 The master equations

As before we make the assumption that the process is stationary, and that the prob-

abilities of all the possible events in a time span of length h are, to first order,

proportional to their rate and the duration of h:

P(n,v,n+1,v,h) = δ (n+1)h+o(h),

P(n,v,n,v−1,h) = pnh+o(h),

P(n,v,n−1,v+1,h) = kT (v+1)h+o(h),

P(n,v,n,v+1,h) = c(v+1)h+o(h),

while the probability of more than one event is taken to be o(h).

From here we use the Chapman-Kolmogorov equations similarly to the birth-

death model to calculate

P(n,v,n0,v0, t +h) = P(n+1,v,n0,v0, t)P(n,v,n+1,v,h)

+P(n,v−1,n0,v0, t)P(n,v,n,v−1,h)

+P(n−1,v+1,n0,v0, t)P(n,v,n−1,v+1,h)

+P(n,v+1,n0,v0, t)P(v,n,n,v+1,h)

+P(n,v,n0,v0, t)P(n,v,n,v,h)+o(h)

= δ (n+1)hP(n+1,v,n0,v0, t)+ pnhP(n,v−1,n0,v0, t)

+ kT (v+1)hP(n−1,v+1,n,v, t)
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+ c(v+1)hP(n,v+1,n0,v0, t)

+(1−bh)P(n,v,n0,v0, t)+o(h),

which leads to the forward master equation:

d
dt

P(n,v,n0,v0, t) = δ ((n+1)P(n+1,v,n0,v0, t)−nP(n,v,n0,v0, t))

+ p(nP(n,v−1,n0,v0, t)−nP(n,v,n0,v0, t))

+ kT ((v+1)P(n−1,v+1,n0,v0, t)− vP(n,v,n0,v0, t))

+ c((v+1)P(n,v+1,n0,v0, t)− vP(n,v,n0,v0, t)),

P(n,v,n0,v0,0) = 1n,n01v,v0 .
(2.16)

Using the opposite time-step in the Chapman-Kolmogorov equations leads us to

P(n,v,n0,v0, t +h) = P(n0−1,v0,n0,v0,h)P(n,v,n0−1,v0, t)

+P(n0,v0 +1,n0,v0,h)P(n,v,n0,v0 +1, t)

+P(n0 +1,v0−1,n0,v0,h)P(n,v,n0 +1,v0−1, t)

+P(n0,v0−1,n0,v0,h)P(n,v,n0,v0−1, t)

+P(n0,v0,n0,v0,h)P(n,v,n0,v0, t)+o(h)

= δn0hP(n,v,n0−1,v0, t)+ pn0hP(n,v,n0,v0 +1, t)

+ kT v0hP(n,v,n0 +1,v0−1, t)

+ cv0hP(n,v,n0,v0, t)+(1−bh)P(n,v,n0,v0, t)+o(h),

from which we obtain the backward master equation as

d
dt

P(n,v,n0,v0, t) = δn0(P(n,v,n0−1,v0, t)−P(n,v,n0,v0, t))

+ pn0(P(n,v,n0,v0 +1, t)−P(n,v,n0,v0, t))

+ kT v0(P(n,v,n0 +1,v0, t)−P(n,v,n0,v0, t))

+ cv0(P(n,v,n0,v0−1, t)−P(n,v,n0,v0, t)),

P(n,v,n0,v0,0) = 1n,n01v,v0 .

(2.17)
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2.11.2 The probability generating function

The probability generating function is now a function of two complex variables

instead of one:

G : N2
0× [0,∞)×D2→ D, (n0,v0, t,z1,z2) 7→

∞

∑
n=0

∞

∑
v=0

P(n,v,n0,v0, t)zn
1zv

2.

(2.18)

As before, all the information about the branching process is obtainable from the

probability generating function.

1. To calculate the marginal probability distributions, let T ∗n (t) be the probabil-

ity of having n infected T-cells at time t, i.e. T ∗n (t) := ∑
∞
v=0 P(n,v,n0,v0, t).

Then we obtain

T ∗n (t) =
1
n!

∂ nG(n0,v0, t,z1,1)
∂ zn

1

∣∣∣∣
z1=0

.

Similarly, letting Vv(t) be the probability of having v virus particles at time

t, i.e. Vv(t) := ∑
∞
n=0 P(n,v,n0,v0, t), we obtain that

Vv(t) =
1
v!

∂ vG(n0,v0, t,1,z2)

∂ zv
2

∣∣∣∣
z2=0

.

2. In particular, the probability that all infected cells are extinct at time t is

given by ∑
∞
v=0 P(0,v,n0,v0, t) = T ∗0 (t) = G(n0,v0, t,0,1), and the probability

of the virus to be extinct at time t is given by ∑
∞
n=0 P(n,0,n0,v0, t) = V0(t)

= G(n0,v0, t,1,0).

3. The mean value of the number of infected cell and virus particles is calcu-

lated as

E[T ∗] =
∞

∑
n=0

nT ∗n (t) =
∂G(n0,v0, t,z1,1)

∂ z1

∣∣∣∣
z1=1

,

E[V ] =
∞

∑
v=0

vVv(t) =
∂G(n0,v0, t,1,z2)

∂ z2

∣∣∣∣
z2=1

,
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respectively.

4. The variance and all higher moments are calculated analogously to a single-

type branching process.

Next, we derive the PDE and ODE formulation of the probability generating

function. As before, we start with the forward master equation (2.16), multiply

both sides by zn
1zv

2 and sum over all n and v to find

∞

∑
n=0

∞

∑
v=0

d
dt

P(n,v,n0,v0, t)zn
1zv

2 =
∞

∑
n=0

∞

∑
v=0

zn
1zv

2

[
δ
(
(n+1)P(n+1,v,n0,v0, t)

−nP(n,v,n0,v0, t)
)

+ p(nP(n,v−1,n0,v0, t)−np(n,v,n0,v0, t))

+ kT
(
(v+1)P(n−1,v+1,n0,v0, t)

− vP(n,v,n0,v0, t)
)

+ c
(
(v+1)P(n,v+1,n0,v0, t)

− vP(n,v,n0,v0, t)
)]
.

We now rewrite this term-by-term, making use of the fact that the probability van-

ishes whenever one of the species has a negative number of individuals.

1. ∑
∞
n=0 ∑

∞
v=0

d
dt P(n,v,n0,v0, t)zn

1zv
2 = ∂G/∂ t.

2. δ ∑
∞
n=0 ∑

∞
v=0(n+1)P(n+1,v,n0,v0, t)zn

1zv
2

= δ ∑
∞
n=0 ∑

∞
v=0 nP(n,v,n0,v0, t)zn−1

1 zv
2 = δ (∂G/∂ z1).

3. δ ∑
∞
n=0 ∑

∞
v=0 nP(n,v,n0,v0, t)zn

1zv
2 = δ z1(∂G/∂ z1).

4. p∑
∞
n=0 ∑

∞
v=0 nP(n,v−1,n0,v0, t)zn

1zv
2 = pz2 ∑

∞
n=0 ∑

∞
v=0 nP(n,v,n0,v0, t)zn

1zv
2

= pz1z2(∂G/∂ z1).

5. p∑
∞
n=0 ∑

∞
v=0 nP(n,v,n0,v0, t)zn

1zv
2 = pz1(∂G/∂ z1).

6. kT ∑
∞
n=0 ∑

∞
v=0(v+1)P(n−1,v+1,n0,v0, t)zn

1zv
2

= kT ∑
∞
n=0 ∑

∞
v=0 vP(n,v,n0,v0, t)zn+1

1 zv−1
2 = kT λ z1(∂G/∂ z2).

7. kT ∑
∞
n=0 ∑

∞
v=0 vP(n,v,n0,v0, t)zn

1zv
2 = kT z2(∂G/∂ z2).

40



8. c∑
∞
n=0 ∑

∞
v=0(v+1)P(n,v+1,n0,v0, t)zn

1zv
2

= c∑
∞
n=0 ∑

∞
v=0 vP(n,v,n0,v0, t)zn

1zv−1
2 = c(∂G/∂ z2).

9. c∑
∞
n=0 ∑

∞
v=0 vP(n,v,n0,v0, t)zn

1zv
2 = cz2(∂G/∂ z2).

We thus arrive at the following PDE for the probability generating function of the

T ∗-V model:

∂G(n0,v0, t,z1,z2)

∂ t
= [δ (1− z1)+ pz1(z2−1)]

∂G(n0,v0, t,z1,z2)

∂ z1

+[kT (z1− z2)+ c(1− z2)]
∂G(n0,v0, t,z1,z2)

∂ z2
,

G(n0,v0,0,z1,z2) = zn0
1 zv0

2 .

(2.19)

Multiplying both sides of the backward master equation (2.17) with zn
1zv

2 and

summing over all n and v we find

∂G(n0,v0, t,z1,z2)

∂ t
= δn0

(
G(n0−1,v0, t,z1,z2)−G(n0,v0, t,z1,z2)

)
+ pn0

(
G(n0,v0 +1, t,z1,z2)−G(n0,v0, t,z1,z2)

)
+ kT v0

(
G(n0 +1,v0−1, t,z1,z2)−G(n0,v0, t,z1,z2)

)
+ cv0

(
G(n0,v0−1, t,z1,z2)−G(n0,v0, t,z1,z2)

)
,

G(n0,v0,0,z1,z2) = zn0
1 zv0

2 .
(2.20)

The branching property in the case of this multi-type process is

G(n0,v0, t,z1,z2) = (G(1,0, t,z1,z2)
n0)(G(0,1, t,z1,z2)

v0) .

We will abbreviate G1(t) := G(1,0, t,z1,z2) and G2(t) := G(0,1, t,z1,z2). Using

the branching property we can reduce the system of infinitely many ODES (2.20)
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to the following two-dimensional system of ODES

∂G1(t)
∂ t

= δ (1−G1(t))+ p(G1(t)G2(t)−G1(t)),

∂G2(t)
∂ t

= kT (G1(t)−G2(t))+ c(1−G2(t)),

G1(0) = z1,

G2(0) = z2.

(2.21)

To obtain the marginal probability distributions, e.g., of the number of virus

particles Vv(t) we use the very same steps as in the single-type process, namely

Cauchy’s integral formula with simple positively oriented closed circle with radius

one around the origin, and the substitution α = 2π−θ , to find

Vv(t) =
1
π

Re
(∫

π

0
G(n0,v0, t,1,eiθ )e−ivθ dθ

)
. (2.22)

2.11.3 Calculating joint probability

So far we have restricted ourselves to marginal probabilities. This is not required,

we can also calculate joint probabilities. Using the definition of the probability

generating function,

P(n,v,n0,v0, t) =
1
v!

∂ v

∂ zv
2

(
1
n!

∂ n

∂ zn
1

G(n0,v0, t,z1,z2)

∣∣∣∣
z1=0

)∣∣∣∣∣
z2=0

=
1
v!

∂ v

∂ zv
2

(
1

2πi

∫
C

G(n0,v0, t,z1,z2)

zn+1
1

dz1

)∣∣∣∣∣
z2=0

=
1

2πv!
∂ v

∂ zv
2

(∫ 2π

0
G(n0,v0, t,eiϕ ,z2)e−inϕdϕ

)∣∣∣∣
z2=0

=
1

(2π)2i

∫
C

∫ 2π

0 G(n0,v0, t,eiϕ ,z2)e−inϕdϕ

zv+1
2

dz2

=
1

(2π)2

∫ 2π

0

∫ 2π

0
G(n0,v0, t,eiϕ ,eiψ)e−inϕe−ivψdϕdψ.
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We can simplify this to reduce the interval we need to integrate over. The price is

that there will be two slightly different integrands. To begin with, write

P(n,v,n0,v0, t) =
1

(2π)2

∫ 2π

0

∫ 2π

0
G(n0,v0, t,eiϕ ,eiψ)e−inϕe−ivψdϕdψ

=
1

(2π)2

(∫ π

0

∫
π

0
f dϕdψ︸ ︷︷ ︸

=A

+
∫ 2π

π

∫
π

0
f dϕdψ︸ ︷︷ ︸

=B

+
∫

π

0

∫ 2π

π

f dϕdψ︸ ︷︷ ︸
=C

+
∫ 2π

π

∫ 2π

π

f dϕdψ︸ ︷︷ ︸
=D

)
.

Substituting we find that D = A and C = B, the complex conjugate. Indeed, starting

with D we substitute ϕ ′ = 2π−ϕ and ψ ′ = 2π−ψ . Then

D =
∫ 0

π

∫ 0

π

G(n0,v0, t,e−iϕ ′ ,e−iψ ′)einϕ ′eivψ ′(−dϕ
′)(−dψ

′)

=
∫

π

0

∫
π

0
G(n0,v0, t,eiϕ ′ ,eiψ ′)e−inϕ ′e−ivψ ′dϕ

′dψ
′

= A,

where we use the fact that P(n,v,n0,v0, t) is real and hence

G(n0,v0, t,z1,z2) = ∑
n

∑
v

P(n,v,n0,v0, t)zn
1zv

2

= ∑
n

∑
v

P(n,v,n0,v0, t)zn
1zv

2

= G(n0,v0, t,z1,z2).

Accordingly one can show that C = B, since

G(n0,v0, t,z1,z2) = ∑
n

∑
v

P(n,v,n0,v0, t)zn
1zv

2

= ∑
n

∑
v

P(n,v,n0,v0, t)zn
1zv

2

= G(n0,v0, t,z1,z2).
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Consolidating these results we find that

P(n,v,n0,v0, t) =
1

(2π)2 (A+A+B+B) =
1

2(π)2 Re(A+B).

Finally, substituting φ ′ = 2π−ψ in B we obtain that the joint probability is given

by

P(n,v,n0,v0, t) =
1

2π2 Re
[∫ π

0

∫
π

0

{
G(n0,v0, t,eiϕ ,eiψ)e−inϕe−ivψ

+G(n0,v0, t,eiϕ ,e−iψ)e−inϕeivψdϕdψ

}]
.

(2.23)

2.11.4 Mean behaviour of the stochastic process

In order to calculate the mean number of virions we recall

E[V ] = ∑
v

vP(V = v) = ∑
v

v
(

∑
n

P(n,v,n0,v0, t)
)

=
∂G(n0,v0, t,z1,z2)

∂ z2

∣∣∣∣
(z1,z2)=(1,1)

.

We will derive an ODE for ∂G(n0,v0,t,z1,z2)
∂ z2

. For this, we take a time-derivative of the

expression, use the PDE formulation (2.19) and then swap the partial derivatives, to

find

∂

∂ t
∂G(n0,v0, t,z1,z2)

∂ z2
=

∂

∂ z2

∂G(n0,v0, t,z1,z2)

∂ t

=
∂

∂ z2

[
(δ (1− z1)+ pz1(z2−1))

∂

∂ z1
G

+(kT (z1− z2)+ c(1− z2))
∂

∂ z2
G
]

= pz1
∂G
∂ z1

+(δ (1− z1)+ pz1(z2−1))
∂ 2G
∂ z2z1

− (c+ kT )
∂G
∂ z2

+(kT (z1− z2)+ c(1− z2))
∂ 2G
∂ z2

2
.
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Evaluating at (z1,z2) = (1,1) we obtain

∂

∂ t
∂G(n0,v0, t,z1,z2)

∂ z2

∣∣∣∣
(z1,z2)=(1,1)

= p
∂G(n0,v0, t,z1,z2)

∂ z1

∣∣∣∣
(z1,z2)=(1,1)

− (c+ kT )
∂G(n0,v0, t,z1,z2)

∂ z2

∣∣∣∣
(z1,z2)=(1,1)

,

and similarly

∂

∂ t
∂G(n0,v0, t,z1,z2)

∂ z1

∣∣∣∣
(z1,z2)=(1,1)

= kT
∂G(n0,v0, t,z1,z2)

∂ z1

∣∣∣∣
(z1,z2)=(1,1)

−δ
∂G(n0,v0, t,z1,z2)

∂ z2

∣∣∣∣
(z1,z2)=(1,1)

.

Hence, the time-dependent functions f1(t) =
∂G(n0,v0,t,z1,z2)

∂ z1

∣∣∣
(z1,z2)=(1,1)

and f2(t) =

∂G(n0,v0,t,z1,z2)
∂ z2

∣∣∣
(z1,z2)=(1,1)

, which is what we want to calculate, indeed satisfy the

same ODE (2.15) that we started with:

ḟ1 = kT f2−δ f1,

ḟ2 = p f1− (c+ kT ) f2,
(2.24)

with initial conditions f1(0) =∑n ∑v nP(n,v,n0,v0,0) = n0 and f2(0) = v0. Solving

this ODE gives f2(t) = E[V (t)].

2.11.5 Extinction probability, R0 and r

We obtain the probability of extinction by finding the steady states of (2.21), which

are

q1 = 1, q2 = 1, or q1 =
δ

p
c+ kT

kT
, q2 =

δ

p
+

c
c+ kT

.

The interpretation is that q1 is the probability that the process goes extinct if started

with a single cell, while q2 is the probability that the process goes extinct if started

with a single virion.

The basic reproduction number R0 for this model is the expected number of
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new infected cells that are descendants of a single infected cell. Since virions

infect target cells at rate kT and have an average life-span on 1/(c+ kT ), while

target cells produce virions at rate p over their average life span 1/δ we obtain

R0 =
pkT

δ (c+ kT )
. (2.25)

Alternatively, R0 can be obtained by finding the criterion for the trivial steady state

of the original linear ODE to be stable, which leads to the same result.

Further, we get the initial growth rate r as the largest real part of the eigenvalues

of the matrix given by[
Ṫ ∗

V̇

]
=

[
−δ kT

p −c− kT

][
T ∗

V

]

with characteristic polynomial

λ
2 +(δ + c+ kT )λ +δ (c+ kT )− pkT.

For R0 > 1 this polynomial has a negative and a positive root, hence the initial

growth rate is given by

r =
1
2

[
−δ − c− kT +

√
(δ − c− kT )2 +4pkT

]
. (2.26)

2.11.6 Conditioning on non-extinction

We calculate the probability of observing a viral load of V (t) = v, conditioned on

the process not going extinct. First, calculate the probability of the state (T ∗,V )(t)

= (n,v), then sum over all n later. We abbreviate T ∗Vt for (T ∗,V )(t) and the initial

conditions T ∗V0 = (n0,v0) with IC. Using Bayes’ rule

P(T ∗Vt = (n,v) |T ∗V∞ 6= 0, IC)

= P(T ∗Vt = (n,v) | IC)P(T ∗V∞ 6= 0 |T ∗Vt = (n,v), IC)
P(T ∗V∞ 6= 0 | IC)
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= P(T ∗Vt = (n,v) | IC)1−P(T ∗V∞ = 0 |T ∗Vt = (n,v))
1−P(T ∗V∞ = 0 | IC)

= P(T ∗Vt = (n,v) | IC)1− (q1)
n(q2)

v

1−qn0
1 qv0

2
.

Now, we multiply with zn
1zv

2 and sum over all n, v to obtain the probability generat-

ing function G̃ of the conditioned process,

G̃(n0,v0, t,z1,z2) := ∑
n

∑
v

(
P(T ∗Vt = (n,v) | IC)1− (q1)

n(q2)
v

1−qn0
1 qv0

2

)
zn

1zv
2

=
1

1−qn0
1 qv0

2

(
∑
n

∑
v

P(T ∗Vt = (n,v) | IC)zn
1zv

2

−∑
n

∑
v

P(T ∗Vt = (n,v) | IC)(q1z1)
n(q2z2)

v
)

=
G(n0,v0, t,z1,z2)−G(n0,v0, t,q1z1,q2z2)

1−qn0
1 qv0

2
.

As in the non-conditioned process, setting z1 = 1 gives the probability generating

function of the marginal probability distribution for the number of virions, i.e.

G̃(n0,v0, t,1,z2) =
G(n0,v0, t,1,z2)−G(n0,v0, t,q1,q2z2)

1−qn0
1 qv0

2

= ∑
n

∑
v

P(T ∗Vt = (n,v) |T ∗V∞ 6= 0, IC)zv
2,

so that, as before,

∑
n

P(T ∗Vt = (n,v) |T ∗V∞ 6= 0, IC)

=
1

1−qn0
1 qv0

2

1
v!

∂ v (G(n0,v0, t,1,z2)−G(n0,v0, t,q1,q2z2))

∂ zv
2

∣∣∣∣
z2=0

=
1

1−qn0
1 qv0

2

1
v!

(
v!

2πi

∫
C

G(n0,v0, t,1,z2)−G(n0,v0, t,q1,q2z2)

zv+1
2

dz2

)

=
1

1−qn0
1 qv0

2

1
2π

∫ 2π

0

(
G(n0,v0, t,1,eiϕ)−G(n0,v0, t,q1,q2eiϕ)

)
e−ivϕdϕ

=
1

2π

∫ 2π

0
G̃(n0,v0, t,1,eiϕ)e−ivϕ dϕ
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=
1
π

Re
(∫

π

0
G̃(n0,v0, t,1,eiϕ)e−ivϕ dϕ

)
.

We used the same steps as for the one-state model, and in particular the fact that

G(n0,v0, t,z1,z2) = G(n0,v0, t,z1,z2).

2.11.7 Mean behaviour and cumulative probabilities for the
conditioned T ∗-V model

Now on to the mean of the conditioned process. Let Ṽ be the random variable of

the number of virus particles of the conditioned process.

E[Ṽ (t)] = ∑
v

vP(Ṽ = v) = ∑
v

v
(

∑
n

P(T ∗Vt = (n,v) |T ∗V∞ 6= 0, IC)
)

= ∑
n

∑
v

P(T ∗Vt = (n,v) |T ∗V∞ 6= 0, IC)1nv1v−1

=
∂ G̃(n0,v0, t,z1,z2)

∂ z2

∣∣∣∣
(z1,z2)=(1,1)

=
1

1−qn0
1 qv0

2

[
∂G(n0,v0, t,z1,z2)

∂ z2

∣∣∣∣
(z1,z2)=(1,1)

− ∂G(n0,v0, t,q1z1,q2z2)

∂ z2

∣∣∣∣
(z1,z2)=(1,1)

]
.

We recognize the former term as the mean of the unconditioned process, which

we can calculate by solving the ODE (2.15). For the second term we have two

possibilities.

Integral formulation

We use q1 < 1, q2 < 1 so that the point we evaluate the probability generating

function inside the unit circle, where G is analytic.

∂G(n0,v0, t,q1z1,q2z2)

∂ z2

∣∣∣∣
(z1,z2)=(1,1)

=
∂G(n0,v0, t,q1,q2z2)

∂q2z2

∂ (q2z2)

∂ z2

∣∣∣∣
q2z2=q2

= q2
1

2πi

∫
C

G(n0,v0, t,q1,w)
(w−q2)2 dw

48



=
q2

2π

∫ 2π

0
G(n0,v0, t,q1,eiϕ)

eiϕ

(eiϕ −q2)2 dϕ.

ODE formulation

As in the unconditioned process, we can derive an ODE formulation for g1(t) =
∂G(n0,v0,t,q1z1,q2z2)

∂ z1

∣∣∣
(z1,z2)=(1,1)

and g2(t) =
∂G(n0,v0,t,q1z1,q2z2)

∂ z2

∣∣∣
(z1,z2)=(1,1)

by using the

forward PDE (2.19) for G(n0,v0, t,x1,x2). Note that

g1(t) =
∂G(n0,v0, t,q1z1,q2z2)

∂ z1

∣∣∣∣
(z1,z2)=(1,1)

=
∂ (q1z1)

∂ z1

∂G(n0,v0, t,q1z1,q2z2)

∂ (q1z1)

∣∣∣∣
(q1z1,q2z2)=(q1,q2)

= q1
∂G(n0,v0, t,x1,x2)

∂x1

∣∣∣∣
(x1,x2)=(q1,q2)

g2(t) = q2
∂G(n0,v0, t,x1,x2)

∂x2

∣∣∣∣
(x1,x2)=(q1,q2)

.

Taking the time derivative of the above yields

ġ1(t) = q1
∂

∂ t
∂G(n0,v0, t,x1,x2)

∂x1

∣∣∣∣
(x1,x2)=(q1,q2)

= q1
∂

∂x1

[
(δ (1− x1)+ px1(x2−1))

∂G(n0,v0, t,x1,x2)

∂x1

+(kT (x1− x2)+ c(1− x2))
∂G(n0,v0, t,x1,x2)

∂x2

]∣∣∣∣∣
(x1,x2)=(q1,q2)

= q1

[
(−δ + p(x2−1))

∂G(n0,v0, t,x1,x2)

∂x1
+0

+ kT
∂G(n0,v0, t,x1,x2)

∂x2
+0

]∣∣∣∣∣
(x1,x2)=(q1,q2)

= (p(q2−1)−δ )g1(t)+
kT q1

q2
g2(t)

= kT
q1

q2
g2(t)− (δ − p(q2−1))g1(t)
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ġ2(t) = q2
∂

∂ t
∂G(n0,v0, t,x1,x2)

∂x2

∣∣∣∣
(x1,x2)=(q1,q2)

= q2
∂

∂x2

[
(δ (1− x1)+ px1(x2−1))

∂G(n0,v0, t,x1,x2)

∂x1

+(kT (x1− x2)+ c(1− x2))
∂G(n0,v0, t,x1,x2)

∂x2

]∣∣∣∣∣
(x1,x2)=(q1,q2)

= q2

[
px1

∂G(n0,v0, t,x1,x2)

∂x1
+0

− (kT + c)
∂G(n0,v0, t,x1,x2)

∂x2
+0

]∣∣∣∣∣
(x1,x2)=(q1,q2)

= pq2g1(t)− (c+ kT )g2(t).

The second-order partial derivatives vanish because the factor multiplying them

simplifies to zero because q1 and q2 are such that ∂

∂ t G(n0,v0, t,q1,q2) = 0. Next,

let’s calculate the initial condition.

g1(0) = q1
∂G(n0,v0,0,x1,x2)

∂x1

∣∣∣∣
(x1,x2)=(q1,q2)

= q1
∂

∂x1
∑
n

∑
v

P(n,v,n0,v0,0)xn
1xv

2

∣∣∣∣
(x1,x2)=(q1,q2)

= q1
∂

∂x1
∑
n

∑
v
1(n,v),(n0,v0)x

n
1xv

2

∣∣∣∣
(x1,x2)=(q1,q2)

= q1
∂

∂x1
xn0

1 xv0
2

∣∣∣∣
(x1,x2)=(q1,q2)

= q1n0(q1)
n0−1qv0

2 = n0qn0
1 qv0

2 ,

and correspondingly,

g2(0) = q2
∂G(n0,v0,0,x1,x2)

∂x2

∣∣∣∣
(x1,x2)=(q1,q2)

= q2
∂

∂x2
∑
n

∑
v

P(n,v,n0,v0,0)xn
1xv

2

∣∣∣∣
(x1,x2)=(q1,q2)
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= q2
∂

∂x2
∑
n

∑
v
1(n,v),(n0,v0)x

n
1xv

2

∣∣∣∣
(x1,x2)=(q1,q2)

= q2
∂

∂x2
xn0

1 xv0
2

∣∣∣∣
(x1,x2)=(q1,q2)

= q2v0qn0
1 (q2)

v0−1 = v0qn0
1 qv0

2 .

Hence in summary, in order to get E[Ṽ (t)] we have to first find f2(t) by solving

(2.24), then we calculate g2(t) by solving the ODE

ġ1(t) = kT
q1

q2
g2(t)− (δ − p(q2−1))g1(t), g1(0) = n0qn0

1 qv0
2 ,

ġ2(t) = pq2g1(t)− (c+ kT )g2(t), g2(0) = v0qn0
1 qv0

2 ,
(2.27)

(note: δ − p(q2−1) = δ/q1) and plug the results in the equations

E[Ṽ (t)] =
f2(t)−g2(t)
1−qn0

1 qv0
2

.

Since this ODE is linear it is possible to derive an analytical expression for E[Ṽ (t)].

Finally, note that in the limit q1→ 1, q2→ 1 where extinction becomes a certainty,

the ODES (2.15) and (2.27) coincide.

The equations for the cumulative probabilities are exactly the same as in the

birth-death process, with the probability generating function corresponding to the

conditioned or unconditioned T ∗-V model, respectively.

2.12 The T ∗-V -W model with infectious and
non-infectious virions

The process by which infected cells produce new HIV virions is very error-prone.

Indeed, only a fraction Q of virions produced are infectious, where Q is estimated

to be on the order of Q≈ 10−2−10−4 [63, 75, 96]. Non-infectious virions, denoted

as W , are not able to infect new target cells and hence are harmless, and since a

free virion has a very high clearance rate the non-infectious virus compartment is

often ignored or modelled by adjusting the virus production rate p. However, the

presence of non-infectious virions is recorded in HIV RNA tests, which are unable
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to evaluate the functionality of the virus in the assay. The model can be written in

ODE form as
Ṫ ∗ = kTV −δT ∗,

V̇ = pQT ∗− (c+ kT )V,

Ẇ = p(1−Q)T ∗− cW,

(2.28)

with T ∗(0) = n0, V (0) = v0, and W (0) = w0.

Due to the uncertainty about the parameters Q and p we decided to not include

a non-infectious virus compartment in our models in Chapter 3. Nevertheless, the

T ∗-V -W model is worth investigating because it offers new challenges on how to

calculate statistics about the total number of virions V +W ,

P(n,v,w,n0,v0,w0, t) = P((T ∗,V,W )(t) = (n,v,w) |(T ∗,V,W )(0) = (n0,v0,w0)).

Most of the other mathematical derivations for the T ∗-V -W model are similar to

the T -V model and all details and results are shown in Appendix A.

2.13 The T ∗1 -T ∗2 -V model
When an HIV virion enters a target cell several integration and replication steps

need to happen before this newly infected cell starts to produce virus particles.

This intra-cellular delay is featured in another variant of the classic virus dynamics

model, the T ∗1 -T ∗2 -V model. Here T ∗1 -cells do not yet actively produce new virions

while T ∗2 -cells do. Hence this model introduces a single new parameter, the length

of the intra-cellular time delay 1/s and can be written in ODE form as

Ṫ ∗1 = kTV − sT ∗1 ,

Ṫ ∗2 = sT ∗1 −δT ∗2

V̇ = pT ∗2 − (c+ kT )V,

with T ∗1 (0) = m0, T ∗2 (0) = n0, and V (0) = v0. In this variant each cell that gets in-

fected will also eventually become productive, which is a justified approximation

because a cell’s lifespan is much larger than the intra-cellular delay. The T ∗1 -T ∗2 -

V model is our model of choice for calculating the length of the eclipse phase in
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Chapter 3, because it includes key features of the timing of how the virus popu-

lation grows or goes extinct, while keeping a small number of parameters. The

mathematical derivations for this model are similar to the other models discussed

in this chapter so far, and the results are shown in Chapter 3.

2.14 Conclusion and future work
In this chapter we studied single- and multiple-type continuous-time Markov chain

branching processes and derived results for several HIV models. Gillespie’s algo-

rithm is a simple and widely-used stochastic simulation algorithm to analyze these

type of processes. While being straightforward to implement, it is also computa-

tionally expensive, especially when analyzing rare events, very fast reaction times,

and potentially large populations. Here we derive semi-analytical approaches as

alternatives to these extensive computer simulations, and apply them to several

HIV models. The mathematical background for our derivations have mostly been

known to the statistic, stochastic and numerical community, and fragments can be

found in many textbooks. However, we are the first to systematically consolidate

this knowledge so that it can readily be applied to models of latent and early HIV

infection, and more. We have also identified and briefly analyzed the infection bias.

This is a critical effect that needs to be considered when estimating the exposure

time, especially when infection is unlikely yet the only available data is from cases

where infection did occur.

We believe that insights from our analysis of the infection bias could also be

useful when estimating the time of the outbreak of epidemics: Only diseases that

infect a certain number of people can be observed. If such a diseases had a large

probability of going extinct early, but was in fact able to spread, our analysis may

be susceptible to the infection bias. In particular, a naive back-extrapolation to

estimate the time when the outbreak started from observed incidence would predict

a date too far in the past if the infection bias is ignored. We are not aware of a study

that has taken this effect in account.

Finally, we reiterate that the techniques presented here only work under the

branching assumption that each lineage acts independently. While Gillespie’s al-

gorithm can still be used, the methods developed here will not be applicable oth-
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erwise. Having said that, our techniques can be generalized in other ways, for

example constant reaction rates can be replaced by time-dependent reaction rates,

see [22].
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Chapter 3

On the duration of the period
between exposure to HIV and
detectable infection

The content of this chapter and the corresponding Appendix B stem from a collab-

oration with the British Columbia Centre for Disease Control. I am the lead author

of this joint work with Darlene Taylor, Jessica Conway, Gina Ogilvie and Daniel

Coombs.

Abstract: HIV infection cannot be detected immediately after exposure because

plasma viral loads are too small initially. The duration of this phase of infection

(the “eclipse period”) is difficult to estimate because precise dates of exposure are

rarely known. Therefore, the reliability of clinical HIV testing during the first few

weeks of infections is unknown, creating anxiety among HIV-exposed individuals

and their physicians. We address this by fitting stochastic models of early HIV in-

fection to detailed viral load records for 78 plasma donors, taken during the period

of exposure and infection. We first show that the classic birth-death model does

not satisfactorily describe early infection. We therefore apply a stochastic model

that includes infected cells and virions separately. Since every plasma donor in

our data eventually becomes infected, we must condition the model to reflect this

bias, before fitting to the data. Applying our best estimates of unknown parameter
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values, we estimate the mean eclipse period to be 8-10 days. We further estimate

the reliability of a negative test t days after potential exposure. These results can

be used to inform patients and provide a baseline for understanding the value and

timing of initial and follow-up testing.

3.1 Motivation and background
Rapid and reliable diagnosis of HIV infection is an important factor in optimizing

patient care after possible exposure to the virus. However, diagnosis during the

first few weeks after exposure is challenging because initially the virus is present

at only very low levels – the inoculumn size is difficult to estimate but certainly

several orders of magnitude lower than the detection limit – and immune responses

take time to develop to a detectable level [1, 8, 41, 61, 62, 71].

The length of time between exposure and reliable detection of infection (also

called the eclipse period or window period) depends on the virus population dy-

namics and the laboratory test that is applied. Clinically available HIV testing tech-

nologies detect viral RNA, p24 antigen (a viral protein that makes up most of the

viral core), HIV antibodies (ELISA) and antibody/antigen in combination (Western

Blot), and are known to have different window periods.

The relative times at which tests become positive were estimated by Fiebig et

al. in a definitive 2003 paper [32], see Figure 3.1. In that work, Fiebig stage I is

defined as the time period when only a clinical viral RNA test (with a threshold

of 50 copies/ml of viral RNA) is positive. In Fiebig stage II a p24 antigen test

would also be positive, and in Fiebig stage III sensitive HIV antibody tests are also

positive. The individual durations of these first three Fiebig stages were estimated

to be 5.0, 5.3, and 3.2 days, respectively. However, systematic estimates of the

length of time between risky exposure and a viral RNA test becoming positive

are still lacking [32, 103]. The length of the eclipse period is difficult to estimate

because HIV transmission is rare [108] and precise exposure dates are usually not

known. Typically the eclipse period is estimated to last for around 10-14 days: for

instance the WHO has recently suggested that “the window period [for the most

sensitive HIV antibody tests] is about three weeks” [113]. This implies an estimate

of around 11 days for the length of the eclipse period, because according to Fiebig
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Figure 3.1: Schematics of typical dynamics of plasma virus RNA in a re-
cently infected patient, and approximate time points when different HIV

tests become positive, i.e. can detect infection. vRNA looks for virions
directly, p24Ag looks for the p24 antigen, a viral protein. ELISA tests
for antibodies, and Western blot combines several of the above. The dy-
namics below the detection limit are unknown, the unobserved growth
rate could be smaller, the same, or larger than the observed growth rate,
as indicated by the dashed lines. Modified from [32].

et al. a sensitive antibody test becomes positive about 10 days after an RNA test

does [32].

Extrapolating results from animal models of infection, such as the rhesus ma-

caque, must be done cautiously. Infection after a single sexual or occupational

exposures in humans is highly unlikely (estimated at 4 per 10,000 events for penile-

vaginal intercourse and 138 per 10,000 events for receptive anal intercourse) [69,

85], but high-dose simian immunodeficiency viruses (SIV) challenges (up to 103

– 105 more than the median required infective does) are commonly used to obtain

infection, see e.g. [5, 81]. Even though mortality, the humoral immune response

and the peak plasma viral load do not seem to differ in animals between high- and

low-dose challenges, the timing of detectable infection may vary [76]. Further-
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more, if a series of low-dose challenges are made, it can be difficult to know which

challenge eventually led to the sustained infection [62, 92].

As a consequence, a knowledge gap concerning the overall lengths of the win-

dow periods for different tests remains. This lack of knowledge leads to consider-

able uncertainty and anxiety for patients and clinicians alike [54, 57, 70, 82, 116,

117]. The specificity (true negative rate) of an HIV test taken within the eclipse

phase is also unknown, and hence it is unclear when to schedule further tests to

balance the competing goals of early detection and reliable exclusion of infection.

In this work we extract time series of HIV RNA test results from seroconversion

panels (a group of serial bleeds from an individual during early infection when the

first antibody response is mounted) and seek to quantify the length of the eclipse

period and the false negative rate of an HIV test as a function of time since ex-

posure. From this data we first obtain the empirical maximal initial viral growth

rate, similar to [93]. Then we explore and select stochastic models of virus dynam-

ics from exposure to detectability of infection via RNA testing, by comparing fits

to parameter ranges from the literature. Our data is intrinsically biased in that it

only includes measurements from plasma donors that were eventually confirmed

as infected. We therefore derive corrections to the basic models in order to adjust

for this bias. The best model is then used to calculate, within the confines of our

assumptions, the most likely time of exposure, and hence the length of the eclipse

period. Finally, we quantify the specificity of an HIV RNA test as a function of

time since exposure and put forward recommendations for the timing of follow-up

tests.

Throughout this work we focus on commonly used tests that measure viral

RNA, with 50 RNA copies per milliliter of plasma as the lower limit of detection,

and we also assume that no antiretroviral treatment has been used shortly before or

after the exposure and time of testing.

3.2 Extracting the maximal viral growth rates from
seroconversion data

In order to answer our research questions on the early viral dynamics of HIV in-

fection we use data from seroconversion panels that have been used and described
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by others, in [93] (51 panels, no duplicates), and ourselves, in [103] (427 panels,

including duplicates that are repeated in several tables). Seroconversion panels

provide the earliest possible viral load measurements in newly HIV infected indi-

viduals. This data was obtained from regular plasma donors (plasma donations on

average every five days) in the late 1990’s and early 2000’s, before RNA tests were

routinely available. Plasma from regular donors is typically stored for several days

before it is used to allow for screening and removal if any disease is discovered in

the donor later. In our dataset each seroconversion panel contains the results of 2

to 26 HIV RNA tests on distinct days from a minimum of 4 to a maximum of 194

days since the first plasma sample was obtained from the plasma donor. Because

the data was taken before sensitive HIV RNA tests were available, it was, most

likely, an HIV antibody test that became positive in each of our plasma donor’s last

sample, which implied that all previously stored plasma donations from this newly

infected individual were removed from circulation and frozen for future use in re-

search. These frozen plasma samples are very rare and extremely valuable, and

are for example used to benchmark the sensitivity of new HIV tests. All plasma

samples in our dataset were later tested with new HIV RNA tests, similar to those

commonly used to detect new infection in HIV clinics today. These new tests can

detect and quantify the virus in the donor’s plasma in samples where infection

could not be detected by the less advanced HIV tests at the time of donation. Four

typical examples of the seroconversion time series are shown in Figure 3.2.

After carefully cleaning the data to remove and combine duplicate time se-

ries, see Appendix B, we obtained, for each distinct time series, the maximal viral

growth rate as the maximum slope between any two data points during the ramp-

up phase, defined here as all time points before either the viral load drops by more

than 75%, or the dataset ends. We also classify each dataset into one of the two cat-

egories: Class A are those datasets where the maximum slope is measured between

two definite measurements, that is, measurements that are not below the detection

limit (50 copies of RNA per milliliter of plasma) or above the maximum detectable

(varying with the test). Datasets where the maximum slope involved a data point

that was below the detection limit or above the detection limit were classified as

class B. For this class, the actual maximal rate of increase may therefore be greater

than what we inferred. To see if this potential underestimate is significant we com-
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Figure 3.2: Examples of plasma virus RNA of recently infected patients,
from the seroconversion panels obtained in [93] and [103]. Values be-
low the detection limit of 50 copies/ml are reported as 50 copies/ml.
The exposure dates for these patients are unknown and is to be estimated
from the characteristic initial exponential growth rate and mathematical
models in this work.

pared this set of 27 maximal rates of increase with the remaining 51 maximal rates

(Figure 3.3), and found no statistical difference (p = 0.25 with Student’s t-test).

Based on this result we chose to treat all 78 slopes the same way for the remainder

of this study. See Appendix B for the list of all time series and their classification.

Now that we have extracted the maximal viral growth rate for each of the suit-

able seroconversion panels we will carefully choose the most suitable mathemati-

cal model to obtain estimates for the length of the eclipse phase from these growth

rates.
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Figure 3.3: Maximal observed rate of increase of viral RNA concentra-
tion, as calculated for 51 class A seroconversion panels (mean: 1.05
log(RNA copies)/ml/day) and 27 class B panels (mean: 0.99 log(RNA
copies)/ml/day). The difference between the two categories is not sig-
nificant. If the outlier in group B is removed, the difference is borderline
significant (p = 0.048).

3.3 The simple birth-death model
In the previous section we extracted the maximal initial growth rate of the virus

population after it reaches a detectable level. This is the foundation of quantitative

research into early HIV infection, and has been done by others before [93], albeit

with only a subset of our data. The novel part of this chapter is how carefully

selected mathematical models turn these observations into estimates of the length

of the eclipse phase, and the clinical consequences of these estimates.

The within-host events leading to infection after HIV exposure are not fully

known. Hence, instead of building a mathematical model with many unknown

parameters which covers all possible scenarios in detail, we use the opposite ap-

proach and aim for the simplest model, with a minimal number of parameters, that
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Figure 3.4: Model schematics. a. Minimal stochastic birth-death model.
Virions reproduce at rate b and cleared at rate d. b. Preferred three-
state model. Virions infect cells at rate kT and are cleared at rate c.
At rate s infected cells become productively infected, producing new
virions at rate p and dying at rate δ .

explains the observed data and fits our limited knowledge of early HIV infection.

The minimal requirement for a reasonable model of early HIV infection is that

the model exhibits exponential growth that fits the innate growth rate of viral in-

crease observed in the HIV RNA data. We also argue that the model has to ex-

hibit a reasonable per-exposure probability of infection, in the range of 0.1%-5%

[40, 85, 110], and allow for multiple founder strains, as observed in 19%-60% of

cases, depending on the type of exposure [1, 8, 41, 61, 62, 71]. Estimating the size

of the inoculum is extremely challenging, and it potentially depends heavily on the

(unknown) type of exposure and the (unknown) viral load of the donor. In vitro

experiments [85] suggest that 10-15,000 is a reasonable range for the number of

virions that might breach the mucosal barriers and potentially initiate infection.

The simplest mathematical model that allows for exponential growth and viral

extinction is the classic stochastic birth-death process for a single species (Fig-

ure 3.4a). The number of virions V increases via discrete stochastic reproduction

events that occur at rate bV , and decreases via death events that occur at a rate dV .

Starting with an initial population size of V (0) = v0, the average number of virions

is E[V (t)] = v0e(b−d)t , corresponding to the solution of the differential equation
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dV/dt = bV − dV . Later in this subsection will see that the simple birth-death

model is not consistent with our knowledge of early HIV infection, and hence we

will ultimately use a more sophisticated model for the data and research questions

at hand. However, the exponential growth model of the expected value of the birth-

death process allows a naive, yet natural approach to estimating the length of the

window period, and hence deserves exploration:

3.3.1 The simple birth-death model does not adequately describe
early infection

Following the simple birth-death process and setting the length of the eclipse phase

τ to be the time it takes for the expected number of virions to grow from v0 to

detectable levels vdet, we quickly calculate

vdet = v0e(b−d)τ =⇒ τ =
ln(vdet/v0)

b−d
. (3.1)

The slope b−d corresponds to the observed viral growth rates from Figure 3.3,

the detection limit is 50 RNA copies/ml, which corresponds to 50 [RNA/ml] ×
15,000 [ml/human] / 2 [RNA/virion] = 375,000 [virions]. Varying the inoculum

size v0 as the most difficult-to-estimate parameter between large (400 virions),

medium (75 virions) and small (10 virions) we obtain estimates of 7.8 days (4.2-

15.2 days 95% confidence interval), 9.7 days (5.2-18.9 days) and 12.0 days (6.4-

23.4 days), see Figure 3.5.

When we look at the stochastic birth-death model in more detail, however, we

notice that it is not consistent with key HIV parameters. Indeed, using the ex-

pected value of the viral load as above ignores the likelihood that exposure leads

to infection Pext = (d/b)v0 , only the slope of the growth rate b− d is taken into

account. However, a good early infection model should meet the following param-

eter restrictions to be consistent with the literature: (i) Pext ≥ 0.95, to match the

per-exposure probability of infection, which is difficult to measure in an unbiased

way, but most estimates suggest this is the least low bound, see e.g. [85, 108]; (ii)

10≤ v0 ≤ 15,000, to allow for multiple founder strains ([1, 8, 41, 61, 62, 71]) and

match in-vitro estimates of the largest possible inoculum in vaginal transmission

[14]; (iii) We expect the viral death rate d to be reasonably close to the measured
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Figure 3.5: The estimated length of the eclipse phase for all 78 plasma donors
according to the inoculumn size. Each square represents the estimate
for one donor. The vertical bars indicate the mean and 95% confidence
interval. Here we use the naive log-linear model (3.1), which is not able
to capture key HIV characteristics, see Section 3.3.1. Hence this plot is
an illustration-of-concept only. For the final results refer to Figure 3.8.

viral clearance rate of 23 day−1 [91, 119].

The birth-death model is sufficiently simple that the death rate can be expressed

in simple form as

d =
rPext

1/v0

1−Pext
1/v0

,

where r = b− d is the initial growth rate from the data. This expression for d

increases with Pext and v0 virions, yet even for the assumed lower bounds of Pext =

0.95 and v0 = 10 we obtain d ' 2.0× 102 virion−1 day−1, which is already one

order of magnitude larger than the literature value d ' 23 virion−1 day−1. For the

more reasonable estimate Pext = 0.98 and v0 = 75 the resulting death rate is more

than 150 times larger than the literature value. As such, it is impossible for this
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model to reflect our knowledge of early infection and therefore we moved on to a

more complex model which explicitly includes productively infected cells as well

as virions.

3.4 Including infected cells and virions: the T ∗1 -T ∗2 -V
model

To improve on the inadequate model from Section 3.3 we introduce a new model

which features infected and productively infected target cells T ∗1 and T ∗2 , respec-

tively, as well as free virus V , see Figure 3.4b. In this three-state model, produc-

tively infected cells T ∗2 produce new virions at rate p, and die at rate δ . Virions

are cleared at rate c and infect new target cells T ∗1 at rate kT . We assume that the

depletion of target cells T can be neglected in the early dynamics we are consider-

ing, which allows us to use a constant infection rate kT . The rate at which infected

target cells T ∗1 become productively infected, T ∗2 , is denoted by s. This delay is

included to capture the experimentally-observed period between cell infection and

the release of infectious virions. We also assume that the background death rate of

non-productively infected cells is negligible in the early stages of infection.

To account for the stochastic nature of early HIV infection we study the system

as a branching process for the probability Pm,n,v;m0,n0,v0(t) that (T ∗1 (t),T
∗

2 (t),V (t))=

(m,n,v) given the initial condition (T ∗1 (0),T
∗

2 (0),V (0))= (m0,n0,v0). The average

number of virions as a function of time can then be calculated from the underlying

system of linear differential equations

dT ∗1
dt

= kTV − sT ∗1

dT ∗2
dt

= sT ∗1 −δT ∗2 (3.2)

dV
dt

= pT ∗2 − (c+ kT )V.

This is a linear model and so we can calculate the average rate of viral increase r

as the real part of the dominant eigenvalue of the differential equation system. The
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eigenvalues are the roots of the characteristic polynomial

λ
3 +(s+δ + c+ kT )λ 2 +(s(δ + c+ kT )+δ (c+ kT ))λ + s(δ (c+ kT )− pkT ),

(3.3)

which can easily be computed numerically.

A standard calculation, see Chapter 2, gives the probability of viral extinction

(and hence no ongoing infection),

Pext = qm0
1 qn0

2 qv0
3 , (3.4)

where q1 = q2 =min
{

1, δ (c+kT )
pkT

}
, q3 =min

{
1, δ

p +
c

c+kT

}
are the extinction prob-

abilities for an infection started by a single infected cell, productively infected cell

or a single virion, respectively [21, 22, 59, 86].

3.4.1 The T ∗1 -T ∗2 -V model is consistent with data and literature

The T ∗1 -T ∗2 -V model draws a more accurate picture of HIV infection than the sim-

ple birth-death model. However, we need to estimate more parameters. As men-

tioned above, estimates of the viral clearance rate c [91] have found c = 23 day−1

in chronic infection, and a study in macaques [119] suggests that this is also a

good estimate for early infection. Similarly, the death rate δ of productively in-

fected cells in chronically infected patients is estimated to be around 1 day−1 [74],

and exploring a subset of the seroconversion panels that we analyse in this paper,

Ribeiro et al. [93] estimated δ = 0.6 day−1 using the post-peak viral load decay

rate. The average rate s at which infected cells become productively infected has

been estimated as 1 day−1 [25]. We further assume a virus-only inoculum and

hence set T ∗1 (0) = T ∗2 (0) = 0. This leaves the three parameters kT (infection rate),

p (production rate) and v0 (virus inoculum). We use the following information

to constrain these: (i) as above, we assume the virus inoculum ranges between

10 ≤ v0 ≤ 15,000; (ii) we calculate the infection rate kT and the production rate

p such that 0.95 ≤ Pext ≤ 0.995 and that simultaneously the growth rate r of the

model matches the maximal growth rate obtained from the seroconversion panels.

These constraints on kT and p are described via the eigenvalues of system (3.2)
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a. b.

Figure 3.6: The interdependence of the parameters of the T ∗1 -T ∗2 -V model.
From left to right, the stars indicate particular choices of parameters in
three different risk scenarios: low risk and small inoculum size, medium
risk and medium inoculum size, and high risk and large inoculum size,
see Section 3.5. The resulting fitted values for p and kT are within the
estimates from the literature. a. The production rate p as it depends on
v0 and risk of infection. b. The infection rate kT as it depends on v0 and
risk of infection.

and equation (3.4).

For the T ∗1 -T ∗2 -V model to be compatible with our general knowledge of early

HIV infection we expect the fitted infection rate kT and production rate p to be

comparable with estimates from the literature. However, since these parameters

are difficult to measure experimentally, especially in early infection, there exist

only very rough estimates: reports of the infection rate kT and virion production

rate p both span several order of magnitude: kT ' 10−3− 101 cell−1 day−1 [88],

and p' 200-20,000 virions cell−1 day−1[17].

Figure 3.6 shows the resulting fits for kT and p as v0 and Pext vary. In particular,

for a large range of v0 and Pext the fitted parameters from the T ∗1 -T ∗2 -V model

agree with the wide parameter ranges from the literature. Hence, unlike the simple

birth-death model, the T ∗1 -T ∗2 -V model can be parameterized consistently with the

limited data available for early HIV infection. This is the model we will apply from

now on.
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3.5 Risk scenarios
We choose three scenarios within the acceptable area in the parameter space (Fig-

ure 3.6) to calculate the length of the eclipse period, that is, given an infection,

the length of time from exposure to the reliable detection of the HIV infection by

an RNA test. Our choice of per-exposure risk is on the higher end of the large

spectrum found in the literatures, because many study designs, in particular those

of steady partnerships, may bias towards a low risk of transmission (see [108] for

more details), and because a higher per-exposure risk of infection leads to a longer

eclipse period in our model. This way the upper bounds that we will report can

be thought of as a worst-case. We present results for each risk scenario, using the

average of the observed maximal viral growth rates from the data:

1. High risk large inoculum size with per-exposure risk of infection of 5%

and inoculum size of 400 virions (then: kT = 3.6×10−3 cell−1 day−1, p =

21,970 virions/day),

2. Medium risk medium inoculum size with per-exposure risk of infection of

2% and inoculum size of 75 virions (then: kT = 7.5× 10−3 cell−1 day−1,

p = 10,460 virions/day),

3. Low risk small inoculum size with per-exposure risk of infection of 0.5% and

inoculum size of 10 virions (then: kT = 1.4×10−2 cell−1 day−1, p = 5,621

virions/day).

3.6 The infection bias and its consequences
An inclusion criterion for our data is that the plasma donors ultimately became

infected. HIV exposures that did not lead to HIV infection are not recorded. To

reflect this bias in our model, we have to restrict the stochastic process to exclude

extinction. We will denote the conditioned process, which will be used to fit the

data, with a tilde.

3.6.1 Mathematical derivation

For a more detailed discussion of the mathematical background and derivation of

the conditioned model formulation for branching processes like the T ∗1 -T ∗2 -V mod-
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els can be found in Chapter 2. We use Bayes’ rule and the Markov property to

rewrite the probability

P̃m,n,v;m0,n0,v0(t) = P((T ∗1 (t),T
∗

2 (t),V (t)) = (m,n,v) |

(T ∗1 (0),T
∗

2 (0),V (0)) = (m0,n0,v0),

(T ∗1 (∞),T ∗2 (∞),V (∞)) 6= (0,0,0))

of the process conditioned on not going extinct as

P̃m,n,v;m0,n0,v0(t) = Pm,n,v;m0,n0,v0(t)
1−qm

1 qn
2qv

3
1−qm0

1 qn0
2 qv0

3
.

The conditioned process has the generating function

G̃m0,n0,v0(t,z1,z2,z3) =
∞

∑
m,n,v=0

P̃m,n,v;m0,n0,v0(t)z
m
1 zn

2zv
3

=
Gm0,n0,v0(t,z1,z2,z3)−Gm0,n0,v0(t,q1z1,q2z2,q3z3)

1−qm0
1 qn0

2 qv0
3

,

where Gm0,n0,v0(t,z1,z2,z3) =∑
∞
m,n,v=0 Pm,n,v;m0,n0,v0(t)z

m
1 zn

2zv
3 is the generating func-

tion of the unconditioned process which satisfies the branching property

Gm0,n0,v0(t,z1,z2,z3) = G1,0,0(t,z1,z2,z3)
m0G0,1,0(t,z1,z2,z3)

n0G0,1,0(t,z1,z2,z3)
v0 .

Here
d
dt

G1,0,0 = s(G0,1,0−G1,0,0),

d
dt

G0,1,0 = δ (1−G0,1,0)+ pG0,1,0(G0,0,1−1),

d
dt

G0,0,1 = kT (G1,0,0−G0,0,1)+ c(1−G0,0,1),

(3.5)

with G1,0,0(0) = z1, G0,1,0(0) = z2, G0,1,0(0) = z3. From the generating function

we obtain the average number of virions E[Ṽ (t)] of the conditioned process by
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calculating

E[Ṽ (t)] = ∑
m,n,v

vP̃m,n,v;m0,n0,v0(t) =
∂ G̃m0,n0,v0(t,z1,z2,z3)

∂ z3

∣∣∣∣
(z1,z2,z3)=(1,1,1)

=
1

1−qm0
1 qn0

2 qv0
3

[
∂Gm0,n0,v0(t,z1,z2,z3)

∂ z3

∣∣∣∣
(z1,z2,z3)=(1,1,1)

− ∂Gm0,n0,v0(t,q1z1,q2z2,q3z3)

∂ z3

∣∣∣∣
(z1,z2,z3)=(1,1,1)

]

=
f3(t)−g3(t)

1−qm0
1 qn0

2 qv0
3
. (3.6)

Here f3 is the solution corresponding to the V variable in (3.2) above. The rele-

vant system of equations for g3 can be derived by direct partial differentiation of

Gm0,n0,v0 , which leads to the system

ġ1 =
q1

q3
kT g3− sg1, g1(0) = m0qm0

1 qn0
2 qv0

3 ,

ġ2 = sg1−
δ

q2
g2, g2(0) = n0qm0

1 qn0
2 qv0

3 ,

ġ3 = pq3g2− (c+ kT )g3, g3(0) = v0qm0
1 qn0

2 qv0
3 .

We solve the two linear systems of differential equations numerically and then use

(3.6) to calculate and eventually fit the average number of virions of the T ∗1 -T ∗2 -V

model conditioned on non-extinction.

3.6.2 The effect of the infection bias on the estimated length of the
eclipse phase

To illustrate and quantify the different risk scenarios and the effect of the infection

bias we plot the fit of the mean of the T ∗1 -T ∗2 -V model to the data of four sample

plasma donors 1018, PRB966, 9018 and PRB946, for each risk scenario with and

without conditioning (Figure 3.7) on infection. Initially the viral load drops be-

low the inoculum size, because the inoculum contains no target cells, and hence

inoculum-virions need to first infect new target cells before new virions can be

produced. However, the average drop of viral load and initial rate of viral increase
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Figure 3.7: The effect of the infection bias on the estimated exposure date,
as obtained by fitting the T ∗1 -T ∗2 -V model, unconditioned (dashed lines,
open markers) and conditioned (solid lines, filled markers), for each
exposure category: low risk (pentagon), medium risk (diamond) and
high risk (square).

differs among the risk categories, and also depends on whether the infection bias

is taken into account. The fitted eventual growth rate, however, is reached very

quickly by all models, so that the estimated viral load agrees for all models well

before the detection limit is reached.

The big difference between the model estimates of the conditioned and uncon-

ditioned model occurs because the risk of extinction (which we condition against)

declines with population size: initially, when the number of infected target cells

and viral particles is still small, there is a high chance that these populations go

extinct. Once the populations are large enough, the risk of extinction becomes

negligible. Therefore, the effect of conditioning on non-extinction is more pro-
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Figure 3.8: The estimated length of the eclipse period for all 78 plasma
donors according to the three different exposure-risk categories, using
the conditioned T ∗1 -T ∗2 -V model. Each dot represents the estimate for
one donor. The mean and 95% confidence intervals are indicated by the
vertical bars.

nounced around the time of exposure and for higher risk scenarios. Ignoring this

effect and naively fitting the slope and the inoculum size neglects the bias inher-

ent in the data and hence predicts an earlier time of exposure, which leads to an

overestimate of the length of the eclipse period (see Figure 3.5)

3.7 Quantifying the length of the eclipse period on a
population level

We used the conditioned three-state model to calculate the estimated lengths of

the eclipse period for each plasma donor in our data set (Figure 3.8), for each

risk category described above. We observe that the variability between the risk

categories is much smaller than the variability within the risk categories. This
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Figure 3.9: The five plasma donors with the smallest maximal growth rates
are at or above the 95th percentile of the length of the eclipse period.
Due to the relatively long time-interval between the RNA measurements
where the maximal growth rate occurs, and the relatively high RNA
loads, it is quite likely that the real maximal growth rate may have been
missed for these donors.

shows that the uncertainty in the choice of risk category has only minor effects on

our main results. Indeed, the average length of the eclipse period is similar between

the risk groups: high-risk 8.3 days (95% CI: 4.2-16.7 days), medium-risk 9.2 days

(4.7-18.4 days), low-risk 9.9 days (5.1-19.8 days). These confidence intervals are

quite large, from about half the average value to twice the average value.

The skew to longer eclipse periods is driven by a small number of donors for

whom the estimated eclipse period is very long — up to four weeks in the highest

risk category. Generally for these five donors the estimated length of the eclipse pe-

riod is at or above the 95% confidence interval. These are the donors with the small-

est maximal viral growth rate, namely 0.36/day (9028), 0.37/day (9075), 0.44/day

(1814), 0.45/day (PRB933) and 0.45/day (HIV9084). Recall that a small measured

maximal viral growth rate leads via fitting to slow population growth and hence a

longer eclipse period. Looking at the seroconversion panels of these donors (Fig-

ure 3.9) it is possible to argue that the observed maximal growth rate is an under-

estimation of the actual maximal growth rate: The time interval between the two
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test results that account for the observed growth rate is 19 days (9028), 20 days

(9075) and 21 days (PRB933), and all viral loads used to determine the maximal

growth rates are greater than 4.8×104 RNA cp/ml. For HIV9084 the time interval

between the tests was as long as 38 days, while the first viral load measurement for

donor 1814 was already very high at 1.7× 104 RNA cp/ml. Long time intervals

between two tests make it more likely that the actual maximal growth rate has been

missed, and so do high RNA measurements since the maximal viral growth rate is

typically found between two measurements with low RNA loads. We conclude that

if these outliers are actually not properly represented by their seroconversion time

course data, an upper bound of 17 days for the full eclipse period is a very reason-

able estimate. Eliminating these five donors from the plot in Figure 3.8 gives the

following results for the length of the eclipse period: high-risk 7.6 days (95% CI:

4.2-14.1 days), medium-risk 8.4 days (4.7-15.6 days), low-risk 9.1 days (5.1-16.7

days).

As a final point, we also computed the distributions of the length of the eclipse

using the unconditioned T ∗1 -T ∗2 -V model and found that the unconditioned model

substantially overestimates the duration of the eclipse period. The difference in the

mean over all donors was found to be 3.4 days for the high-risk scenario, 4.5 days

for medium-risk, and 6.0 days for the low-risk scenario on average. This shows the

great importance of correctly taking the infection bias in the data into account by

using the conditioned model.

3.8 Probability of a false negative HIV RNA test

3.8.1 Mathematical derivation

Given a lower detection limit of dL total virions of the HIV RNA test, we calculate

the probability that a plasma donor will be infected but have an undetectable viral

load at time t after exposure as

P(Ṽ (t)< dL) =
dL−1

∑
v=0

P(Ṽ (t) = v)
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=
dL−1

∑
v=0

∞

∑
m,n=0

P̃m,n,v;m0,n0,v0(t)

=
dL−1

∑
v=0

1
v!

∂ vG̃m0,n0,v0(t,1,1,z3)

∂ zv
3

∣∣∣∣
z3=0

=
dL−1

∑
v=0

1
π

Re
(∫

π

0
G̃m0,n0,v0(t,1,1,e

iϕ)e−ivϕ dϕ

)
=

1
π

Re
(∫

π

0
G̃m0,n0,v0(t,1,1,e

iϕ)
1− e−idLϕ

1− e−iϕ dϕ

)
.

Note that this formula only applies to plasma donors who become infected follow-

ing exposure. The technical details of this approach are found in Chapter 2 and our

previous work [21, 22].

From the expression above we infer the probability that a person is HIV infected

despite having a negative RNA test at time t after exposure. Using Bayes’ rule

P(A |B) = P(A)P(B |A)
P(A)P(B |A)+P(A)P(B |A)

,

we choose A as “HIV exposure leads to infection” and B as “negative HIV RNA

test at time t”. Using a false positive rate of α (specificity of 1−α) we obtain

P(B |A) = 1−α . For a false negative rate of β (sensitivity of 1−β ) we obtain that

P(B |A) = P(Ṽ (t)< dL)+βP(Ṽ (t)≥ dL)

= 1− (1−β )P(Ṽ (t)≥ dL).
(3.7)

Denoting the probability that HIV exposure does not lead to infection by P(A) =

Pext, we obtain the explicit formula

P(infected despite negative RNA test at t)

=
(1−Pext)(1− (1−β )P(Ṽ (t)≥ dL))

(1−Pext)(1− (1−β )P(Ṽ (t)≥ dL))+Pext(1−α)
.

(3.8)

In particular, we see that the likelihood of being infected despite a negative RNA

test is bigger for tests that are not perfectly specific and not perfectly sensitive.
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3.8.2 Results and implications for the interpretation of HIV test
results and the timing of follow-up tests

We calculate, for each plasma donor, the probability that the viral load has in-

creased above the detection threshold for an HIV RNA test at time t after exposure.

This likelihood increases steadily from 0 (at the time of exposure) to its asymptote

at 1 (since we condition our analysis successful infection), see Figure 3.10. We av-

erage these likelihood curves to obtain, under the assumption that our data gives a

fair representation of the general at-risk population and given that infection will oc-

cur, an estimate for the probability of a positive HIV RNA test t days after exposure,

for an unknown individual who might present at an HIV clinic. These curves are

very similar for each risk category, so in Figure 3.10 we only show the likelihood

curves for the low risk category, which estimates the longest eclipse periods.

Remaining risk Day (since exposure) of negative test.

Values for (α,β ).

relative absolute (0,0) (2%,0) (0,2%) (2%,2%)

95% 0.475% 5.2 5.5 5.2 5.5

90% 0.450% 5.9 6.1 5.9 6.1

75% 0.375% 7.2 7.3 7.2 7.3

50% 0.250% 9.2 9.3 9.3 9.4

25% 0.125% 12.8 12.9 13.2 13.4

10% 0.050% 18.8 18.9 19.8 19.9

5% 0.025% 22.2 22.3 24.6 24.7

Table 3.1: Assuming a per-exposure risk of 0.5% this table shows the re-
quired waiting time until a negative HIV RNA test reduces the risk of
infection to the desired level. The waiting time is longer for tests with
non-zero false positive rate α and non-zero false negative rate β .

However, in the clinical scenario we would not know if the patient is actually

infected or not. Hence the more applicable metric in this case is how much the

confidence in non-infection increases by a negative result from an RNA test. Intu-

itively, after a very early negative test one can hardly assume a lower relative risk of

infection, whereas a negative test several days or weeks after the exposure dramat-
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a. b.

Figure 3.10: Individual and aggregate likelihood of detectable RNA as a
function of days since exposure, and relative probability of a false
negative test. Each grey line represents the estimate for one plasma
donor. The blue curve is the average of all donors in the dataset and
hence provides our best estimate for a random patient from the general
population. The largest information gains are between day 5 and day
10. Plotted for low risk, small inoculum to provide an upper bound on
the length of the eclipse period. a. Probability of detectable RNA t
days after exposure, if infection occurs eventually. b. Probability of
a false negative test, assuming that the test is perfectly sensitive and
specific, relative to the baseline probability of infection. The results
for non-perfect tests are similar and summarized in Table 3.1.

ically decreases the relative risk of infection. Our estimates of relative confidence

are displayed in Figure 3.10, and also summarized in Table 3.1.

For both plots and the table in this subsection we conservatively choose the

parameters for the low risk small inoculum size exposure scenario. This scenario

presents the longest estimated eclipse periods in our model. The results for the

other exposure categories are similar (not shown). We conclude that very little

information would be gained by a repeated test before day five, and that the ad-

ditional information gained in tests more than three weeks after exposure is very

little. Therefore, given a negative HIV RNA test after a recent potential exposure,

our results suggest that a test three weeks after the potential HIV exposure should
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catch 95% of real HIV infections. Removing the five possible outlier cases (as

discussed in the previous section) increases this estimate to 100%.

3.9 Discussion
Uncertainty about the length of the window period for HIV infection remains a

source of anxiety for clinicians and patients alike. Reliable estimates are difficult

to obtain, because, by definition, the virus is not detectable during that time. Efforts

to close this knowledge gap have revealed important insights into the relative time

period between the eclipse phases of different HIV tests [32], which has recently

been refined by ourselves for newer antibody tests [103]. Our goal here was to

calculate the absolute length of the eclipse phase for HIV tests that measure the viral

RNA instead of antigens or antibodies and therefore promise the shortest eclipse

phase. Knowing this absolute time period is critical because the relative estimates

for the eclipse phases of other tests are based on it. Our results suggest that, in

more than 95% of the plasma donors, this period lasts between four and 20 days,

with an average of eight to ten days, depending on the assumed risk category.

To obtain these results we extracted the maximal initial viral growth rate from

HIV seroconversion panels and fitted simple stochastic models, using parameter

estimates from the literature. From a large choice of available mathematical models

of within-host dynamics of HIV infection [87] we chose a model that is as simple

as possible, but not any simpler. We chose to include the delay between infection

and viral production of a target cells, compared to the slightly simpler T ∗-V model,

because this delay slightly affects our estimates of the length of the eclipse period

(by about half a day on average, not shown), and the single additional parameter s

is well-estimated in the literature.

A major limitation of the T ∗1 -T ∗2 -V model is that it assumes that infection hap-

pens in a well-mixed environment. However, depending on the type of exposure

the inoculum has to breach various mucosal layers and spatial effects may become

important. We neglected the delay before the inoculum breaches the mucosa, but

since this delay is assumed to be on the order of a few hours [43, 44], we do not

expect that any our results would change considerably. Similarly, the mucosal lay-

ers greatly constrain the number of donor virions that eventually reach infectible
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tissues, which we accounted for by choosing a relatively small effective inoculum

size in all of our risk categories. Following our principle of keeping the model

simple we also chose to not explicitly include other potentially important effects,

like the formation of local foci of infection and rapid viral replication in lymph

nodes (see [42, 44]). If any of these effects significantly modulates the time-course

of early infection away from an essentially exponential process, then our eclipse

period estimates would need to be adjusted. However, in the absence of compelling

evidence we believe that our simplified models are the most parsimonious choice.

Interestingly, our analysis shows that a simplistic exponential-growth model

can not be used to describe early HIV infection. Further, we determined that it

is important to account for the infection bias in seroconversion data: viral load

growth rates are only available for plasma donors that were eventually infected,

yet most exposures do not lead to infection. Conditioning our model to account for

this fact, we showed that the length of the window period would be considerably

overestimated if this effect was not taken into account.

Finally, we use our model to calculate how quickly the likelihood of a false

negative test decreases over time since exposure. This result can help patients and

clinicians alike to understand the informative value of a negative HIV RNA test. In

our model the likelihood of a false negative test decreases most rapidly between 5

and 10 days after exposure. HIV RNA tests typically have a very high sensitivity,

which is often reported as perfect, and also a very high, but not perfect, specificity,

see [13]. Either error increases the waiting time, so we considered a relatively

poor sensitivity and specificity of 98%. We further assumed here that infection

could be detected at the exact moment that the viral load reaches the detection

limit, whereas in reality the chance of detection increases more steadily with viral

load, due to the uncertainty in the measurement and fluctuations in the viral load of

the patient’s blood stream. Unfortunately, we are not aware of any existing work

that can be used to quantify this uncertainty. In future work, as this data becomes

available, it would therefore be interesting to include a more sophisticated viral-

load dependence in the likelihood of detecting the infection.
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Chapter 4

Modelling the population-level
impact of increasing HIV testing

4.1 Motivation and background
With an estimated 71,300 (range: 58,600 to 84,000) people living with HIV in

Canada in 2011, the overall population prevalence is relatively low at 0.2% [83].

However, when stratifying by exposure category it becomes clear that the epidemic

is concentrated in the men who have sex with men (MSM) community (46.7% of all

HIV infections) and among injecting drug users (IDUS) (16.6%). Indeed, in British

Columbia 59% of all newly diagnosed infections are identified as belonging to

the MSM exposure category, and the HIV prevalence in men who have sex with

men (MSM) in Vancouver is estimated to be approximately 15% [34, 77]. Many

studies have been administered by the British Columbia Centre for Disease Control

(BCCDC) and others to better understand the risk behaviour and disease dynamics

of the MSM population, so that HIV prevention programs can better target this key

risk group. A major source of such information is the largest online survey of gay

and bisexual men in Canada is Sex Now, which has been conducted since 2002 and

annually collects data from thousands of MSM [15].

The importance of the internet as a way to facilitate disease transmission was

first highlighted by the 2004 Sex Now survey, which found that a majority of MSM

meet sexual partners online. At the same time, this group was also found to use
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the web to look for health information, showing that an online presence has the

potential of unprecedented reach to a population at risk of infection. This led to

BCCDC’s first online HIV intervention, the Cyber Outreach Program in 2004, which

offered sexually transmitted infection (STI)/HIV education and live chat services

[33, 84]. This was also around the time when the idea of internet-based testing was

conceived, which eventually led to the initiation of the Get Checked Online (GCO)

program by the BCCDC.

The goal of the study in this chapter is to quantitatively predict the population

impact of increasing HIV testing, with initiatives such as GCO, on the prevalence

and incidence of HIV among Vancouver MSM in the next five years. This estimate

will serve as a key input to future cost-effectiveness studies and, as such, will help

guide the expansion of online testing in British Columbia (BC), other canadian

cities and beyond. First, we by explain how the GCO program works in practice.

Next, we describe how the data for our study was collected. Then we present a

basic model of susceptible and HIV infected individuals that accounts for behaviour

change depending on the awareness of infection. The basic model not only serves

as a point of reference, but we also use it to explain the modeling techniques and

key parameters that we need to identify from the data. We then show a technique

for calculating the sensitivity of the model outcome as it depends on the parameter

values, before we discuss the results and insights we gain from the basic model.

In the following sections we introduce the full model, which incorporates different

testing and risk behaviour, and describe how we obtain the additionally required

parameters from the data. Finally, we summarize our results and predictions, and

indicate how this work could be extended.

4.2 How Get Checked Online works
GCO is a program to improve sexual health by increasing the frequency of STI/HIV

testing, using clinical resources more efficiently, and reaching greater at-risk pop-

ulations, such as the youth or people from rural areas that may otherwise face

barriers to accessing testing. By reducing wait times and increasing the timeliness

of diagnosis GCO may increase the rate of treatment, induce risk-behaviour change

and ultimately reduce onward STI/HIV transmission. On the GCO website users

81



Figure 4.1: Sketch of how the GCO program works, first published in [53].
After answering a questionnaire that assesses their risk and recommends
which STIS to test for, users print their requisition from home. Speci-
mens can be given anonymously at participating lab locations, and test
results can be viewed online if all tests are negative. Otherwise the STI

clinic contact the user to discuss erroneous specimens as well as inde-
terminate or positive results.

with an account answer a questionnaire similar to what they would be asked in a

STI/HIV testing clinic. Based on the answers to these questions the system com-

piles a Portable Document Format (PDF) document of recommended tests that the

person can print and bring to a partnering laboratory where they can give the re-

quired specimens for the corresponding STI test. Once all test results are available

the person gets notified to login and view their results. The results are shown only

if all tests are negative. If any of the tests is positive, indeterminate, equivocal or

if there is any problem with any of the specimens, no result is displayed. Instead,

a message is shown to contact a clinic for follow-up and nurses will make every

effort to contact the person.

It is important to note that the entire GCO process can be done anonymously.
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Each login can be linked to a first and last name, but these fields are not checked

and pseudonyms are explicitly allowed. Either way, the name does not appear

on the printed lab requisition, instead a unique ID is used to link the test results

to the corresponding person. For further privacy protection no test result is stored

longer than 30 days online - results only remain available in the clinical information

system which holds the complete medical record. Another benefit of GCO is a

built-in email-testing-reminder that accounts for the risk category as identified in

the questionnaire.

GCO launched on September 9th 2014 by email invitation only, and was fully

launched in January 2015 when hand-out access codes were distributed to drop-

ins and turn-aways at testing clinics, and social media marketing campaigns were

run. Currently GCO is available for chlamydia, gonorrhea, syphilis, HIV as well as

hepatitis C virus testing.

4.3 Survey data collection
The author was not involved in the collection of the raw data.

The study population was recruited from June 18, 2011 to March 2, 2012 (10

months) at health Initiative for Men (HIM) Sexual Health Centers in Vancouver.

Eligibility conditions were that the participant was at least 19 years of age, self-

identified as gay, bisexual or MSM, intended to reside in the Greater Vancouver

area for the full year of follow-up, and received a negative HIV test at the recruiting

HIM sexual health clinic. Of the 1141 eligible men 194 consented and 166 (14.5%)

completed the baseline survey.

In total there were four surveys and network grid interviews, respectively, on

day 7, day 30, day 180 and day 360 after recruitment. The surveys were online and

self-administered with questions on demographics, HIV testing patterns, personal

sexual history and substance use, disclosure of HIV status and risk of HIV, HIV

knowledge and attitudes, mental health as well as knowledge of other campaigns

targeted at MSM. The network grids were phone interviews with detailed questions

about the five most recent sex partners in the past six months, such as the length of

the relationship, frequency of sex, knowledge of mutual HIV status, and the types

of sexual acts they engage in.
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Figure 4.2: Schematics of the basic model for GCO. Individuals can be sus-
ceptible, infected and unaware, or infected and aware of their infection.
The mass-action infection rate β = rp is a product of the exposure-rate
r and the per-exposure probability of HIV transmission p, and is reduced
for individuals who are aware of their infection. GCO aims to increase
the testing rate τ with which infected individuals become aware of their
infection. The model also accounts for turnover via immigration m and
emigration e in all three compartments.

The survey and grid on day 30 were mainly designed as follow-ups on the

recent test at the recruiting HIM clinic and did not feature the full set of questions

that are relevant in our study. We therefore choose to focus on the data from the

three surveys and three network grids administered on day 7, day 180 and day 360.

Parameter values that cannot be estimated from this data are taken from the

literature.

4.4 The basic model with homogeneous testing patterns
and risk behavior

In the basic model we account for susceptible (denoted by S) and infected indi-

viduals, where infected individual are either unaware (U) or aware (A) of their

infections, see Figure 4.2. All three groups are subject to immigration and emigra-

tion at rates m and e, respectively. We denote r the rate of “risky events”, that is,

events where HIV may be transmitted and we assume that r is independent of the

knowledge of a person’s HIV status. We further assume that a person who knows
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that they are infected has a reduced risk of transmission, e.g., by using condoms,

serosorting (choosing sexual partners with the same serostatus) or being on treat-

ment. The per-encounter risk of disease transmission from unaware and aware

individuals is pU and pA, respectively, with pU > pA. Awareness of infection is

obtained at the testing rate τ .

The mathematical equations for the basic model are given by

dS
dt

= mS−Sr
pUU + pAA
S+U +A

− eSS, S(0) = S0,

dU
dt

= mU +Sr
pUU + pAA
S+U +A

− (eU + τ)U, U(0) =U0,

dA
dt

= mA + τU− eAA, A(0) = A0.

(4.1)

We simplify the above by assuming a constant population size N = S+U +A.

This is a very natural assumption considering the time-span of only a few years

that we are interested in when evaluating the initial impact of GCO. Hence, we set

e = eU = eA = eS, mU = mA = 0 and mS = e(S+U +A). This way e acts as a

renewal or turnover rate at that accounts for sexually active individuals. Note that

this assumption slightly reduces the effectiveness of intervention due to wash-out

of infected individuals. This leads to the following system of ODES,

dS
dt

= e(U +A)−Sr
pUU + pAA

N
, S(0) = S0,

dU
dt

= Sr
pUU + pAA

N
− (e+ τ)U, U(0) =U0,

dA
dt

= τU− eA, A(0) = A0,

dNEWINFECTED

dt
= Sr

pUU + pAA
N

, NEWINFECTED(0) = 0,

dNEWDETECTED

dt
= τU, NEWDETECTED(0) = 0.

(4.2)

We added the last two equations to account for the number of new infections and

newly detected infections.
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4.5 Parameterizing the basic model

4.5.1 The rate of risky events

We define the rate of risky events r as the number of sex acts where HIV may be

transmitted per unit time. We obtain this parameter value from the grid data, where

participants were asked detailed questions about their five most recent relationships

in the past six months. For each relationship the participants provided the date of

first and last sex, whether the relationship was ongoing, and the average frequency

of sex in the past year. From this information we estimate the total number of sex

acts, as the product of the number of days of the relationship in the last year and

the frequency of sex. Since the provided responses to either of these quantities are

often vague or approximations we estimate a generous lower and upper bound for

each relationship.

Some participants reported an unreasonably high number of sex acts, even for

long-term relationships, so we set the maximum number of sex acts to once per

day. Similarly, some participants did not report any sex act with their sex partners,

so we set the minimum number of sex acts to once per relationship, see Figure 4.3.

For each participant and each survey time point we then sum the total number of all

risky events over all their relationships in the past year, and average those numbers

to obtain the final estimate r = 64.5 year−1. When a range on the length of the

relationship and the number of risky events was provided we estimate a generous

lower bound of r = 38.1 year−1 and upper bound of r = 104.7 year−1.

4.5.2 The per-encounter transmission probability

The likelihood of transmitting the infection depends on the type of sex acts that the

partners engage in [85, 89, 107]. From the network grid we know which sexual acts

the participants engaged in the most recent time they had sex with each partner, and

whether a condom was used. We assume that the most recent sex is representative

of the typical sex act for this relationship.

In 79% of the cases more than one type of sex act was performed at the most

recent sexual encounter. Further, in more than 97% of the cases the partners en-

gaged in at least one of the following risky acts with a substantial risk of HIV

86



Sex more 
 often than 
 once per 

 day

1

10

100

365

1 10 100 1000 5000
Relationship length (days)

C
ou

nt
 o

f s
ex

 (
to

ta
l l

as
t y

ea
r)

Figure 4.3: Relationship length and total number of risky events as obtained
by the grid data. The horizontal and vertical error bars indicate the
uncertainty in the length of the relationship and number of risky events,
respectively. We chose to bound the number of risky events by once per
day. The marginal histograms show that a large fraction of risk events
stem from one-time sexual encounters.

transmission: receptive anal sex (with or without condom), insertive anal sex (with

or without condom), receptive oral sex, insertive oral sex. A small number of par-

ticipants reported receptive or insertive anal sex with and without condom at the

same encounter, or that the condom came off at some point during the act. In this

case we only consider the more risky version without a condom. However, partici-

pants may engage in both receptive and insertive anal intercourse, with or without

receptive or insertive oral intercourse at the same encounter, see Figure 4.4.

Among the remaining 3% of cases the reported sex acts were rimming, fisting

or masturbation, which are not considered to be independent risk factors, and have

a negligibly small risk of HIV transmission. We discarded those events in our risk
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"The last time you had sex with each partner,
 what sexual acts did you engage in?"

Figure 4.4: Responses to the network grid question “The last time you had
sex with each partner, what sexual acts did you engage in?”. We use
these frequencies together with the biological per-exposure probabilities
from Table 4.1 to calculate the per-encounter risk of HIV transmission.

analysis.

To calculate the per-encounter risk of infection in the presence of more than

one sex act per encounter, we assume that the likelihood of infection from all risk

factors are independent, to find

P(infected) = 1−P(not infected)

= 1− ∏
x ∈ sex act

P(not infected by x)

= 1− ∏
x ∈ sex act

(1−P(infected by x))

= 1− ∏
x ∈ sex act

(1−P(infected |engaged in x)×P(engaged in x)).

The likelihood of engaging in the sex act is obtained from the grid data as described

above, while the probability of infection for a given sex act is a biological param-

eter and can be obtained from the literature, see Table 4.1. From this data we then

calculate, for each participant and study date, the per-encounter risk of HIV infec-
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tion as the average of the probability of infection for a typical sexual encounter for

each partner, weighted by the total number of sexual encounters with this partner.

Finally, averaging over all participants and study dates we obtain the final average

per-encounter risk of HIV transmission as pU = 0.397%. If we use the lower and

upper bounds of the 95% confidence intervals from Table 4.1 we obtain a lower

estimate of pU = 0.283% and an upper estimate pU = 0.567%, respectively.

All the survey responses from the grid data are from HIV-negative participants

who were recently tested, indicating uncertainty about their status. It is therefore

reasonable to assume that they behave similarly to HIV-positive individuals that

are not aware of their infection. HIV-positive individuals that are aware of their

infection may reduce their rate of sexual encounters, or adjust their risk behaviour

to reduce the risk of onwards transmission. For simplicity we assume that the rate

of risky events r is unchanged by the knowledge of their HIV status, but that the per-

encounter risk of HIV transmission from an individuals that is aware of their status

pA is reduced, e.g., by consistently using condoms. Under this assumption, pA is

calculated similarly as pU with the only difference that for all sex acts we assume

the minimal associated risk that is obtained by condom, that is, each unprotected

receptive or insertive anal intercourse is replaced by receptive or insertive anal

intercourse with condom, respectively. This results in a per-encounter probability

of HIV infection of pA = 0.122%. Again using the 95% confidence intervals from

Table 4.1 we obtain a lower estimate of pA = 0.087% and an upper estimate pA =

0.175%, respectively.

Type of sex Per-exposure risk (95% CI) Reference
Receptive anal 1.38% (1.02%-1.86%) [85]

Receptive anal (condom) 0.28% (0.20%-0.37%) [89]

Insertive anal 0.11% (0.04%-0.28%) [85]

Insertive anal (condom) 0.022% (0.008%-0.056%) [89]

Receptive oral 0.028% (0.020%-0.037%) [107]

Insertive oral 0.014% (0.010%-0.019%) [107]
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Table 4.1: Per-exposure probability of HIV infection for different risk be-
haviours. The use of condoms reduces the per-encounter risk of infection
by 80% [89], while infection via receptive and insertive oral sex is esti-
mated to be a factor of 50 and 100 times less likely than unprotected anal
sex, respectively [107].

4.5.3 The testing rate

The testing rate τ , before the effect of GCO, is obtained from the survey data, more

precisely, from the survey question

“What best describes your HIV testing pattern?”

The aggregated answers from all participants on all study dates are shown in Fig-

ure 4.5. We identify two groups of testers, those with a regular testing interval and

those who test irregularly and infrequently. We resist the temptation to put con-

crete numbers on the vague answers “After risky sex”, “At new relationship” and

“Other” (see Figure 4.5) as it is not clear if this group tests more or less frequent

than those with a regular testing pattern. Taking the weighted average of the testing

rates for the regular testers (every 3 months, every 6 months or every 12 months)

we obtain a testing rate of 2.61 year−1.

Since the data from our study was taken from individuals who just had an HIV

test, we do not sample from the group that has never tested to date. In order to

estimate the size and testing rate of this group we use data from the 2011 Sex Now

survey [15], which reports that 18% of MSM never had an HIV test (31% of MSM

under 30, 14% of MSM over 30). The fraction of MSM under 30 in the Sex Now

study is 22% and the average age is 43 years, so if we assume that the average age

of those under 30 is 25 we obtain an average age of 48 for those over 30. Further,

assuming a minimum age of 15 years and that the random variable of the fraction of

the population that had an HIV test by age t +15 years is exponentially distributed

with parameter λ , we obtain the two estimates

P(X ≤ 10) = 1− e−10λ = 0.69, λ = 0.117,

P(X ≤ 33) = 1− e−33λ = 0.83, λ = 0.053.
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Figure 4.5: Responses to the online survey question “What best describes
your HIV testing pattern?”. A large fraction of the population gets
tested regularly, albeit at different rates, while a smaller fraction of the
population has no regular testing pattern at all.

These estimates only differ by a factor of 2, so we take their average λ = 0.085

year−1 as the testing rate of the 18% of the population that is not represented by

the participants of our survey.

Taking the weighted average of the two obtained testing rates for the regular

testers and irregular testers we find a testing rate of τ = 2.16 year−1. We will use

this as the baseline testing rate before the effect of GCO.

4.5.4 Other parameters from the literature

It is assumed that the total population size of the active Vancouver MSM community

is about 20,000, of which 18.1% are HIV infected and of those infected, 13.8%

are unaware of their HIV infection (2.5% of the total population) [106]. Thus we

choose the initial condition U(0) = 20000×0.025 = 500, A(0) = 20000×0.181−
U(0) = 3120, S(0) = 20000−U(0)−A(0) = 16380. The turnover rate e is more

difficult to estimate. We assume that the average time a MSM is sexually active

with risk of HIV transmission is 20 years. An individual may leave the at-risk study
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population by death, emigration from Vancouver, settling in a monogamous sero-

concordant relationship, or by stopping to be sexually active altogether, among

other things. This rough estimate yields e = 1/20 = 0.05 year−1.

Parameter Interpretation Value Source
N Total size of sexually active 20,000 [106]

MSM population

S(0) Initial number of 16,380 [106]

uninfected MSM

U(0) Initial number of HIV 500 [106]

positive MSM unaware

of their infection

A(0) Initial number of HIV positive 3,120 [106]

MSM aware of their infection

1/e Average time of being sexual 20 years text

active and at-risk

τ Average rate of HIV tests 2.16 year−1 [15], text

pU Average per-encounter risk 0.397% [85, 89, 107],

of infection at encounter 0.283-0.567 text

with unaware individual

pA Average per-encounter risk 0.122% [85, 89, 107],

of infection at encounter 0.087-0.175 text

with aware individual

r Average number of 64.5 year−1 text

risky encounters 38.1-104.7

Table 4.2: Model parameters for the basic model, with 95% confidence inter-
val or lower and upper bound, if applicable.

4.6 Sensitivity analysis - the Direct Differential method
For all our models we want to calculate how much the output variables change

when the parameter values are slightly modified. Sensitivity analysis helps us to
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translate uncertainties in parameter values to uncertainties in model predictions,

and mainly serves two purposes: Firstly, it allows us to estimate how the effects

of GCO impact the outcomes of interest, e.g., the total number of new infections.

Secondly, sensitivity analysis allows us to identify those parameters that our model

outcomes are most sensitive to, which, in turn, can guide the data acquisition and

analysis: More care and focus should be put into getting good estimates for the

parameters that impact our model predictions the most.

The straightforward way to calculate sensitivity is to repeatedly solve the sys-

tem of differential equations for several parameter values and compare the results.

However, when parameter changes are regarded in isolation, that is, only one pa-

rameter is varied at a time, an approximation called the Direct Differential method

allows us to avoid repeated calculations. Instead of solving the same system many

times, a slightly larger system is solved once. Let

d~y
dt

= f (~y,~p, t), ~y(0) =~y0,

be an ordinary differential equation that depends on the parameters ~p. We want

to calculate how the model outcome ~y changes with each parameter p j, i.e., we

want to find ~s j =
∂~y

∂ p j
. To that end we set up a differential equation by taking the

time-derivative:

d
dt
~s j =

d
dt

∂~y
∂ p j

=
∂

∂ p j

d~y
dt

=
∂

∂ p j
f (~y,~p, t)

=
∂ f
∂~y
· ∂~y

∂ p j
+

∂ f
∂ p j

= J~s j +Fj,
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where J =
(

∂ fi
∂~y j

)
i j

is the Jacobian matrix and the expression for Fj =


∂ f1
∂ p j
...

∂ fn
∂ p j

 can

be calculated analytically. The initial condition is given by~s j(0) =
∂~y j(0)

∂ p j
, which is

only non-zero when the initial value of the model depends on the parameters. Often

the relative change~s j× ~p
yi

is more informative than the absolute change, especially

when parameters of different orders of magnitude are compared.

4.7 Results and predictions from the basic model
Here we present the results of and discuss the predictions from the basic model.

We are interested in the immediate impact of GCO and hence run the model for

five years only. Practical insights we could gain from studying the long-term be-

haviour of the model would be very limited, because the parameter values and

model structure are only valid for the current state of the epidemic, and would

need to be adjusted if the epidemic would grow or decrease considerably in the

years to come. For this reason we also refrain from an extensive stability analy-

sis. The model predictions, using the parameters from Section 4.5, are shown in

Figure 4.6. The predicted total number of new infections and newly detected in-

fections in the next five years is 1326 (499-3967) (265 (100-793) averaged annual)

and 1666 (935-3971) (333 (197-794) averaged annual), respectively. These predic-

tions are about twice as high as the 806 new infections found by the BCCDC from

2008-2012 [34], which we discuss below.

4.7.1 Calculating R0

To validate our parameter values, we are interested in the basic reproduction num-

ber R0 for the basic model. Using the next-generation method [23, 24, 49] we

obtain the matrix of new infections F (not to be confused with Fj in the sensitivity

analysis) and transfers of infections V , evaluated at the disease-free equilibrium

(S,U,A) = (N,0,0) as

F =

[
rpU rpA

0 0

]
, V =

[
e+ τ 0

−τ e

]
.
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Figure 4.6: Evolution of all compartments for the next five years, using pa-
rameter values from Section 4.5. The total number of individuals is con-
stant, hence the (roughly constant) number of susceptibles is not shown
for simplicity. The basic model estimates a total of 1326 new infections
and 1666 newly detected infections over five years.

Therefore, R0 is the dominant eigenvalue of G = FV−1, which is

R0 =
r

e+ τ

(
pU +

pAτ

e

)
.

For the parameters obtained in Section 4.5 we find R0 = 1.65 (R0 = 0.70 - 3.87

for the lower and upper estimate of the contact rate r and per-encounter infection

probabilities pU and pA, respectively). For a slow epidemic like HIV a value of

R0 close to unity means that the epidemic is relatively stable, which agrees with

the observations that the number of new diagnosis of MSM in Vancouver did not

change much over the last decade [34].
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4.7.2 Sensitivity analysis

Applying the techniques of Section 4.6 to the basic model (4.2), we obtain that the

model vector~y and the parameter vector ~p are both 5-dimensional.

~y =


S

U

A

NEWINFECTED

NEWDETECTED

 , J =


−r pUU+pAA

N e− rpU
S
N e− rpA

S
N 0 0

r pUU+pAA
N rpU

S
N − (e+ τ) rpA

S
N 0 0

0 τ −e 0 0

r pUU+pAA
N rpU

S
N rpA

S
N 0 0

0 τ 0 0 0

 ,

Fe =


U +A

−U

−A

0

0

 , Fr =


−S pUU+pAA

N

S pUU+pAA
N

0

S pUU+pAA
N

0

 ,

FpU =


−SrU

N

SrU
N

0

SrU
N

0

 , FpA =


−Sr A

N

Sr A
N

0

Sr A
N

0

 , Fτ =


0

−U

U

0

U

 .

Here we used the subscript corresponding to the parameter value for simplicity of

notation. The initial conditions do not depend on the parameter values and hence
~sX(0) = 0. This adds the following differential equations to (4.2):

d~se

dt
= Jse +Fe, se(0) = 0,

d~sr

dt
= Jsr +Fr, sr(0) = 0,

d~spU

dt
= JspU +FpU , spU (0) = 0,

d~spA

dt
= JspA +FpA , spA(0) = 0,

d~sτ

dt
= Jsτ +Fτ , sτ(0) = 0.
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e r pU pA τ

S 0.06 -0.09 -0.01 -0.08 0.01
U -0.18 1.30 0.13 1.18 -1.06
A -0.24 0.32 0.04 0.28 0.01

NEWINFECTED -0.09 1.19 0.15 1.05 -0.09
NEWDETECTED -0.08 0.84 0.11 0.73 0.03

Table 4.3: Sensitivity of the relative change in the outcome predictions of
the basic model (4.2) with respect to its parameters. Positive numbers
indicate that increasing the parameter leads to an increase in the final
size of the corresponding compartment.

Using the parameters from Section 4.5 we numerically approximate the solu-

tion of (4.2) and calculate the sensitivity of the number of new infections to all

parameter values, see Table 4.3. For example, the relative change in the predicted

number of newly infected individuals with respect to the testing rate τ is −0.09.

This means that increasing the testing rate by 25% leads to a relative change in

NEWINFECTED by −0.09× 0.25 = −0.0225. With an estimated 265 (100-793)

new infections annually, this corresponds to 0.0225×265 = 6.0 (2.3-17.8) averted

HIV infections annually, or 29.8 (11.2-89.3) averted infections in five years.

4.7.3 Fitting to the epidemiological data

Up to this point we fitted each parameter individually to the available survey and

grid data and computed the model predictions. This approach has the advantage

that it accurately reflects the collected data as well as the consequences of the model

assumptions. Although we obtain model predictions that are reasonably close to

the epidemiological data, a gap remains, see Figure 4.6. This implies that some

assumptions or effects have been missed or need to be reevaluated. We therefore

revisit each parameter and compute the value that forces the model predictions to

match the external epidemiological data. More precisely, we individually fit each

parameter such that the predicted number of newly detected infections over five

years matches the 806 newly detected infections by the BCCDC. We fit each pa-

rameter individually to gain an understanding of their individual impact, the reality

is likely a combinations of these pure effects.
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Figure 4.7: Sensitivity of the annual incidence rate as it depends on the test-
ing rate τ , using the parameter values from Section 4.5. The linear ap-
proximation provided by the Direct Differentiation method is accurate
for parameter values close to the initial value.

The emigration rate e would need to be increased by a factor of 11.5, from

0.05 year−1 to 0.58 year−1, which would mean that the average length of time of

sexual activity is only 1/0.58 = 1.7 years and implies for the basic reproduction

number R0 = 0.20. Instead, the contact rate r could be reduced by a factor of 3.3

from 64.5 to 19.7 risky annual sex events, which implies R0 = 0.51. When vary-

ing the per-encounter risk of unaware individuals, pU , the best fit is obtained for

minimal values of pU . At the smallest reasonable value, pU = pA, the model still

predicts almost twice as many newly detected infections as desired (1552 instead

of 806, R0 = 1.57). On the other hand, a perfect fit can be found when reducing

the per-encounter risk of aware individuals, pA, by a factor of 4.0 from 0.122%

to 0.031% (R0 = 0.50). Next, a 12.9 fold reduction of the testing rate τ from

2.16 year−1 to 0.17 year−1, implying R0 = 2.39 would also make the model pre-

dictions match BCCDC’s number. Finally, decreasing the total size of the at-risk

Vancouver MSM population by a factor of 2.07, which does not change R0 = 1.65,

also results in a perfect fit. Naturally, combinations of the adjustments above could

also be considered.
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4.8 Discussion of the basic model
The basic model predicts that the Vancouver MSM epidemic is going to be relatively

stable for the next five years. At the current testing rate the number of individuals

who are unaware of their infection is going to slowly decrease. This slowly reduces

the annual incidence rate, and hence eventually leads to a slow decrease in the total

number of HIV positive individuals.

From the sensitivity analysis we estimate the total number of new infections

that are averted if GCO is successful at increasing the testing rate. The estimated

30 (11-89) averted infections in five years should be considered when analyzing

the cost-effectiveness of GCO or similar programs. In fact, the sensitivity analysis

provided here also allows a quick way to estimate the impact of other interventions

that modify any of the model parameters, such as a program to reduce the per-

encounter risk of infection, or the frequency of risky events.

The predicted number of newly detected infections in the next five years is

about twice as high as the corresponding records in the previous five years, which

implies that the basic model may not account for important effects, or that some of

the collected behavioural data may be inaccurate. Hence we individually adjusted

each model parameter to fit the observed size of the epidemic. For some parameters

this results in values that are unlikely, but other findings suggest very reasonable

adjustments: The reported rate of sexual encounters r may well be an overestimate.

Further, our assumption that the main risk-reduction strategy of individuals who

are aware of their infection is using condoms may be overly pessimistic. Indeed,

adjusting risk behaviour, serosorting and treatment may all contribute to a larger

reduction in the per-encounter risk of transmission pA. In particular, a combination

of the two effects above, reducing the number of sex partners and per-encounter

risk, is very plausible and would be sufficient to explain the gap between the model

predictions and epidemiological observations. Finally, the at-risk MSM population

in Vancouver may be smaller than previously estimated, and reducing N by half

would also be sufficient to close the gap.

The basic model assumes a very simplified view of the MSM epidemic in Van-

couver. When exploring the survey and grid data it becomes apparent that risk and

testing behaviour varies widely in the at-risk population. In the remainder of this
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chapter we discuss models that stratify the population according to their risk and

testing behaviour, resulting in more realistic models and (hopefully) more accurate

predictions. Nevertheless, it is valuable to study the methodology and predictions

from the basic model, as they will serve as a foundation for more sophisticated

models.

4.9 The full model with heterogeneous testing patterns
and risk behavior

The basic model (4.2) assumes that the Vancouver MSM population is homoge-

neous in their risk behaviour and testing pattern. However, when looking at the

data in more detail it becomes apparent that reality is more complicated. Indeed,

studying the observed testing patterns reveals that testers can be classified as fre-

quent testers, regular testers, and non-testers. Equally importantly, the risk of in-

fection can broadly be categorized as high and low risk. The existence of a core

group or super-spreaders has been noticed and studied for HIV and other diseases

in textbooks and the literature [7, 12, 24, 45, 90, 102, 118]. To reflect these obser-

vations we extend the basic model by compartmentalizing the total population into

six groups, according to their risk behaviour and testing pattern, see Figure 4.8.

This stratification also implies that the effect of GCO can be modelled more re-

alistically: By advertising and facilitating regular STI testing, GCO aims at encour-

aging at-risk individuals to adopt a regular testing pattern and to test frequently.

Instead of modifying the individual testing rates of each compartment, we model

the effect of GCO as increasing the likelihood that an individual who never tests is

more likely to become a regular tester, and that regular testers are more likely to

become frequent testers. As before, GCO does not affect the risk behavior.

There are two natural assumptions about how to model the contact mixing be-

tween the testing and risk groups in the full model. We assume that a person’s

choice of sexual partner is not directly influenced by their partner’s testing pattern,

but may be influenced by the partner’s risk behaviour. Individuals in the same risk

group may look for sex partners in similar venues or websites, and may have a

similar preference for sexual acts, which may favour mixing within the same risk

group. How much mixing between risk groups occurs is difficult to measure di-
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Figure 4.8: The full model accounts for two risk and three testing categories,
and each resulting compartment is modeled using the basic model. By
facilitating testing GCO encourages individuals to increase their testing
frequency. We assume that GCO does not affect risk behavior.

rectly and can’t be estimated from our data, so we assume both extreme cases to

obtain a lower and upper estimate for the effect of contact mixing.

4.9.1 No contact mixing between risk groups

Here we assume that risky events only occur between individuals of the same risk

category. After all, MSM in the same risk category may look for partners at similar

venues or using similar other channels, and may share sexual preferences. This

assumption leads to the following system of equations, for i = 1,2 and j = 1,2,3,

dSi j

dt
= e(Ui j +Ai j)−Si jri

p(i)U ∑
3
k=1Uik + p(i)A ∑

3
k=1 Aik

Ni
+ transfer[Si j],

dUi j

dt
= Si jri

p(i)U ∑
3
k=1Uik + p(i)A ∑

3
k=1 Aik

Ni
− (e+ τ j)Ui j + transfer[Ui j],

dAi j

dt
= τ jUi j− eAi j + transfer[Ai j],

dNEWINFECTED

dt
=

2

∑
i=1

3

∑
j=1

Si jri
p(i)U ∑

3
k=1Uik + p(i)A ∑

3
k=1 Aik

Ni
,

dNEWDETECTED

dt
=

2

∑
i=1

3

∑
j=1

τ jUi j.

(4.3)
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Here transfer[Xi j] denotes the transfer from other subgroups, i.e.,

transfer[Xi j] = h j−1, jXi, j−1 +h j+1, jXi, j+1 + vi−1,iXi−1, j + vi+1,iXi+1, j

− (h j, j−1 +h j, j+1 + vi,i−1 + vi,i+1)Xi, j,

where hk,` is the rate of horizontal transition from the k-th to the `-th column, and

vk,` is the rate of vertical transition from the k-th to the `-th row.

4.9.2 Full mixing between risk groups

Here we assume that individuals choose their sex partner independently of their or

their partner’s risk group. If two individuals from different risk groups mix it is

reasonable to assume that the per-encounter risk of disease transmission p(1,2)X is

between the individual per-encounter risks, p(1)X ≤ p(1,2)X ≤ p(2)X . For simplicity we

choose the arithmetic mean and hence define

p(i1,i2)U =
p(i1)U + p(i2)U

2
, p(i1,i2)A =

p(i1)A + p(i2)A
2

, (4.4)

for i1, i2 = 1,2. With this notation we obtain the system of differential equations

for the full model with between-risk-group mixing by replacing the mixing term in

(4.3) with

Sri

r1

(
p(1,i)U ∑

3
k=1U1k + p(1,i)A ∑

3
k=1 A1k

)
+ r2

(
p(2,i)U ∑

3
k=1U2k + p(2,i)A ∑

3
k=1 A2k

)
r1N1 + r2N2

.

(4.5)

4.10 Parameterizing the full models from the survey and
grid data

The full model requires additional parameters to those for the basic model. Instead

of one average testing rate for the entire population we now consider three testing

groups, each with their own testing rate. Similarly, the total average contact rate

and per-encounter risk is now divided into a high risk and low risk group. We

further must specify the transition rates between the various compartments, and

extract suitable initial conditions. All other parameters can be carried over from
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the basic model: The total population size, the total fraction of infected individuals

that are aware or unaware of their infection, the population-turnover rate e and the

biological per-exposure risk of HIV transmission.

4.10.1 Obtaining the testing rate τ and the horizontal transition rates

We divide the entire population into three categories according to their testing be-

haviour. The first group is those who never test, hence we have τ1 = 0. From

Figure 4.5 we split the remaining population into regular testers, who test every 6-

12 months (58.3%), and frequent testers who test every 3 months (41.7%). Taking

the weighted average of the rates of those who test every 6-12 months we obtain

τ2 = 1.66 year−1, while the rate for frequent testers is 4 year−1.

To obtain the transition rate h2,3 from the regular testers to the frequent testers

we calculate the fraction of survey participants who change their testing pattern

between the three different time points of the survey. Assuming a constant prob-

ability per unit time of switching from regular testing to frequent testing, leading

to an exponential distribution waiting time for a switch, the fraction f of regular

testers who were not frequent testers at time t satisfies

f = e−h2,3t , h2,3 =−
ln( f )

t
. (4.6)

Comparing between the three time points of the survey this gives us three esti-

mates for h2,3, 0.41 year−1 (1st and 2nd time point), 0.26 year−1 (2nd and 3rd

time point), 0.20 year−1 (1st and 3rd time point), which we average to obtain

h2,3 = 0.29 year−1.

Similarly, for the rate h3,2 at which frequent tester become regular testers, we

calculate the three estimates 0.28 year−1 (1st and 2nd time point), 0.27 year−1 (2nd

and 3rd time point) and 0.31 year−1 (1st and 3rd time point), which we average to

find h3,2 = 0.28 year−1.

Our model does not explicitly account for a direct transition between non-

testers and frequent testers, we assume that individuals become regular testers for

some amount of time before they transition between the extremes. To calculate

the transition rates between the non-testing and regular testing group we set up a

simple linear system of differential equations for the testing part of the full model.
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Initially every individual starts in the never tested group N. Following the horizon-

tal transition rules individuals in the regular testing group R are tested at rate τ2

and individuals in the frequent testing group F are tested at rate τ3. This leads to

the following linear ODE:

dN
dt

= h2,1R−h1,2N, N(0) = 1,

dR
dt

= h1,2N +h3,2F− (h2,1 +h2,3 + τ2)R, R(0) = 0,

dF
dt

= h2,3R− (h32 + τ3)F, F(0) = 0,

dT
dt

= τ2R+ τ3F, T (0) = 0.

(4.7)

From the Sex Now survey [15] we estimate, as in Section 4.5.3, that the average

fraction of those who ever tested by age 25 and 48 is 69% and 83%, respectively.

Again assuming a minimum age of 15 years this yields T (10) = 0.69 and T (33) =

0.83. We use the unknown transition parameters h1,2 and h2,1 to fit the solution of

the ODE above with these constrains.

The fit is sensitive to the forward transition rate h1,2, but insensitive to the

backwards transition rate h2,1. This allows us to estimate h1,2 = 0.08 year−1 with

confidence, but h2,1 is more difficult to estimate. A natural simplification would be

to set h2,1 = 0 by arguing that the number of individuals who were regular testers

and then stopped testing altogether is relatively small. Another natural assumption

is to set h2,1 = h1,2 and assume that individuals are just as likely to become regular

testers as they are to loose the regular testing pattern. The squared difference be-

tween the model prediction and the real testing rates is almost identical for either

choice of h2,1, and we choose h2,1 = h1,2 = 0.08 year−1.

4.10.2 Obtaining the rate of risky events and the vertical transition
rates

In order to split the population into a low-risk and high-risk group we first cal-

culate, as in Section 4.5, the per-encounter risk as reported in the grid, pU , for

each participant and partner. A participant’s total force of infection is then calcu-

lated as β = ∑partners rpartner ppartner
U . Using a two-means clustering algorithm [48]
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Figure 4.9: Per-participant force of infection β = ∑partners rpartner ppartner
U . We

use a two-means clustering algorithm to assign each individual into a
low-risk or high-risk group according to their force of infection from
this bimodal distribution. Notice the different orders of magnitude as
highlighted by the logarithmic scale on the x axis.

we define the cut-off between the low and high risk group as the decision bound-

ary β = 1.485 year−1, see Figure 4.9. This cutoff implies that 8.3% of the study

population is classified as high risk. Averaging the corresponding risk parame-

ters for each group yields for the low-risk group p(1)U = 0.306% (0.219%-0.445%),

p(1)A = 0.108% (0.077%-0.155%), r1 = 51.7 year−1 (30.5 year−1-83.5 year−1) and

for the high-risk group p(2)U = 1.391% (1.013%-1.914%), p(2)A = 0.286% (0.209%-

0.394%), r2 = 205.5 year−1 (122.7 year−1-337.7 year−1). The ranges are obtained

by using the 95% confidence intervals from Table 4.1.

With this we calculate the vertical transition rates between the risk groups in

the same way as in Section 4.10.1 above, which yields v1,2 = 0.137 year−1 and

v2,1 = 2.373 year−1.

Parameter Interpretation Value Source
N Total size of sexually 20,000 [106]
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Parameter Interpretation Value Source
active MSM population

S(0) Initial number of 16,380 [106]

uninfected MSM

U(0) Initial number of HIV positive 500 [106]

MSM unaware of their infection

A(0) Initial number of HIV positive 3,120 [106]

MSM aware of their infection

f1,1 Initial fraction of MSM who 16.5% [106], text

are low risk and do not test

f1,2 Initial fraction of MSM who 43.8% [106], text

are low risk and test regularly

f1,1 Initial fraction of MSM who 31.3% [106], text

are low risk and test frequently

f2,1 Initial fraction of MSM who 1.5% [106], text

are high risk and do not test

f2,2 Initial fraction of MSM who 4.0% [106], text

are high risk and test regularly

f2,3 Initial fraction of MSM who 2.8% [106], text

are high risk and test frequently

1/e Average time of being 20 years text

sexual active and at-risk

τ1 Average rate of HIV tests 0 year−1 text

(non-testers)

τ2 Average rate of HIV tests 1.66 year−1 text

(regular testers)

τ3 Average rate of HIV tests 4 year−1 text

(frequent testers)

h1,2 Average transition rate from 0.08 year−1 [15], text

non-tester to regular tester

h2,1 Average transition rate from 0.08 year−1 [15], text

regular tester to non-tester
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Parameter Interpretation Value Source
h2,3 Average transition rate from 0.29 year−1 text

regular to frequent tester

h3,2 Average transition rate from 0.28 year−1 text

frequent to regular tester

r1 Average number of risky 51.7 year−1 [85, 89, 107],

encounters (low-risk group) 30.5-83.5 text

r2 Average number of risky 205.5 year−1 [85, 89, 107],

encounters (high-risk group) 122.7-337.7 text

p(1)U Average per-encounter risk 0.306% [85, 89, 107],

among unaware individual 0.219-0.445 text

(low-risk group)

p(2)U Average per-encounter risk 1.391% [85, 89, 107]

among unaware individual 1.013-1.914 text

(high-risk group)

p(1)A Average per-encounter risk 0.108% [85, 89, 107],

among aware individual 0.077-0.155 text

(low-risk group)

p(2)A Average per-encounter risk 0.286% [85, 89, 107],

among aware individual 0.209-0.394 text

(high-risk group)

v1,2 Average transition rate 0.137 year−1 text

from low to high risk

v2,1 Average transition rate 2.373 year−1 text

from high to low risk

Table 4.4: Model parameters for the full model, with 95% confidence interval
or lower and upper bound, if applicable.

4.11 Results
As discussed for the basic model, the focus of our modelling work is to estimate

the immediate impact of GCO, so we again focus on the first five years of the model
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Figure 4.10: Model estimates for the spread of HIV prevalence in the next
five years, without GCO, for the full models with homogeneous and
heterogeneous mixing.

predictions. Both mixing assumptions result in reasonable projections for the total

number of new infections in the next five years, 2314 (384-7559) (463 (77-1512)

average annual) for the model with homogeneous mixing and 1878 (333-6612)

(376 (67-1322) average annual) for the model with heterogeneous mixing. The

model predictions for the number of newly detected infections in the five year are

2063 (696-5844) (413 (139-1169) average annual) for the model with homoge-

neous mixing and 1757 (660-5081) (351 (132-1016) average annual) for the model

with heterogeneous mixing. As with the basic model this is about twice as large

as the 806 newly detected infections that the BCCDC reported between 2008-20012

[34].

4.11.1 The basic reproduction number R0

Calculating the basic reproduction number for the full model is more complicated

than for the basic model, because we obtain larger and more complicated matrices.

We are able to derive the matrices of new infections F and transfers of infections

V , but the analytical expression of the next generation matrix G and R0 become too

complicated to be useful. By exploiting the block structure of the matrices F and

V we are able to simplify the required computations for R0, which we ultimately
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solve numerically.

Let X = (U11,U12,U13,U21,U22,U23,A11,A12,A13,A21,A22,A23) be the vector

of all infectious compartments. The matrix of transfers of infections is the same

for both mixing assumptions. It can be written as a block matrix

V =

[
−Σ−Γ+∆ 06×6

Γ −Σ+∆

]
.

Here Σ = eI6×6, Γ = diag(τ1,τ2,τ3,τ1,τ2,τ3) and ∆ is the matrix that stems from

the horizontal and vertical transfer terms,

∆ =

[
∆1,1 ∆1,2

∆2,1 ∆2,2

]
,

where ∆1,2 = v21I3×3, ∆2,1 = v12I3×3,

∆1,1 =

−h12− v12 h21 0

h12 −h21−h23− v12 h32

0 h23 −h32− v12

 ,

∆2,2 =

−h12− v21 h21 0

h12 −h21−h23− v21 h32

0 h23 −h32− v21

 .
Similar to the calculations for the basic model no new infectious arrive in the

aware compartments, so that the bottom half of F is all zeros. Hence the matrix of

new infections has the form

F =

[
F11 F12

06×6 06×6

]
.
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For the homogeneous model we have

F11 =



S11r1
N1

p(1)U
S11r1

N1
p(1)U

S11r1
N1

p(1)U 0 0 0
S12r1

N1
p(1)U

S12r1
N1

p(1)U
S12r1

N1
p(1)U 0 0 0

S13r1
N1

p(1)U
S13r1

N1
p(1)U

S13r1
N1

p(1)U 0 0 0

0 0 0 S21r2
N2

p(2)U
S21r2

N2
p(2)U

S21r2
N2

p(2)U

0 0 0 S22r2
N2

p(2)U
S22r2

N2
p(2)U

S22r2
N2

p(2)U

0 0 0 S23r2
N2

p(2)U
S23r2

N2
p(2)U

S23r2
N2

p(2)U


,

F12 =



S11r1
N1

p(1)A
S11r1

N1
p(1)A

S11r1
N1

p(1)A 0 0 0
S12r1

N1
p(1)A

S12r1
N1

p(1)A
S12r1

N1
p(1)A 0 0 0

S13r1
N1

p(1)A
S13r1

N1
p(1)A

S13r1
N1

p(1)A 0 0 0

0 0 0 S21r2
N2

p(2)A
S21r2

N2
p(2)A

S21r2
N2

p(2)A

0 0 0 S22r2
N2

p(2)A
S22r2

N2
p(2)A

S22r2
N2

p(2)A

0 0 0 S23r2
N2

p(2)A
S23r2

N2
p(2)A

S23r2
N2

p(2)A


,

and for the model with heterogeneous mixing we have

F11 =
1

r1N1 + r2N2



S11r2
1 p(1)U S11r2

1 p(1)U S11r2
1 p(1)U

S12r2
1 p(1)U S12r2

1 p(1)U S12r2
1 p(1)U

S13r2
1 p(1)U S13r2

1 p(1)U S13r2
1 p(1)U

S21r2r1 p(12)
U S21r2r1 p(12)

U S21r2r1 p(12)
U

S22r2r1 p(12)
U S22r2r1 p(12)

U S22r2r1 p(12)
U

S23r2r1 p(12)
U S23r2r1 p(12)

U S23r2r1 p(12)
U

S11r1r2 p(12)
U S11r1r2 p(12)

U S11r1r2 p(12)
U

S12r1r2 p(12)
U S12r1r2 p(12)

U S12r1r2 p(12)
U

S13r1r2 p(12)
U S13r1r2 p(12)

U S13r1r2 p(12)
U

S21r2
2 p(2)U S21r2

2 p(2)U S21r2
2 p(2)U

S22r2
2 p(2)U S22r2

2 p(2)U S22r2
2 p(2)U

S23r2
2 p(2)U S23r2

2 p(2)U S23r2
2 p(2)U


,
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F12 =
1

r1N1 + r2N2



S11r2
1 p(1)A S11r2

1 p(1)A S11r2
1 p(1)A

S12r2
1 p(1)A S12r2

1 p(1)A S12r2
1 p(1)A

S13r2
1 p(1)A S13r2

1 p(1)A S13r2
1 p(1)A

S21r2r1 p(12)
A S21r2r1 p(12)

A S21r2r1 p(12)
A

S22r2r1 p(12)
A S22r2r1 p(12)

A S22r2r1 p(12)
A

S23r2r1 p(12)
A S23r2r1 p(12)

A S23r2r1 p(12)
A

S11r1r2 p(12)
A S11r1r2 p(12)

A S11r1r2 p(12)
A

S12r1r2 p(12)
A S12r1r2 p(12)

A S12r1r2 p(12)
A

S13r1r2 p(12)
A S13r1r2 p(12)

A S13r1r2 p(12)
A

S21r2
2 p(2)A S21r2

2 p(2)A S21r2
2 p(2)A

S22r2
2 p(2)A S22r2

2 p(2)A S22r2
2 p(2)A

S23r2
2 p(2)A S23r2

2 p(2)A S23r2
2 p(2)A


.

With this notation Ẋ = (F +V )X for either model and the next generation

matrix G =−FV−1 is quickly calculated to be

G =−

[
(F11−F12(−Σ+∆)−1Γ)(−Σ−Γ+∆)−1 F12(−Σ+∆)−1

06×6 06×6

]
.

Note that all inverse matrices exist as the inverse of strictly diagonally dominant

matrices. The set of eigenvalues of an upper triangular block matrix is identical to

the set of eigenvalues of the diagonal blocks, hence the basic reproductive number

R0 is the dominant eigenvalue of the upper-left matrix,

R0 = max
{

σ
(
−(F11−F12(−Σ+∆)−1

Γ)(−Σ−Γ+∆)−1)} . (4.8)

We calculate this expression numerically, which yields for the parameter values

obtain in Section 4.10 a reproductive number of Rhom
0 = 2.73 for the model with

homogeneous mixing, and Rhet
0 = 2.50 for the model with heterogeneous mixing.

4.11.2 Sensitivity

In the basic model we model the effect of GCO as increasing the average popula-

tion testing rate. In the full model we can be more specific: By facilitating testing
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(a) Sensitivity of the annual inci-
dence rate on the effect of GCO for the
full model with homogeneous mixing.
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(b) Sensitivity of the annual inci-
dence rate on the effect of GCO for the
full model heterogeneous mixing.

Figure 4.11: The effect of GCO is that it increases the horizontal forward tran-
sition rates and decreases the horizontal backward transition rates of
the full model. This increasing the rate at which individuals become
regular and frequent testers, and decreases the rate at which people
switch to a less frequent testing behaviour.

and by setting automatic reminders GCO achieves its increase in the testing rate by

encouraging individuals who are currently not testing regularly to pick up a reg-

ular testing pattern, and by encouraging individuals with a regular testing pattern

become frequent testers. In our model this effect is reflected by the horizontal tran-

sition rates between the three testing compartments. We therefore model the effect

of GCO as increasing the horizontal forward transition rates, and decreasing the

horizontal backward transition rates by a certain factor.

It is possible to calculate the sensitivity by using the Direct Differential method,

but this approach does not scale well with the number of equations and variables.

Instead we calculate the sensitivity by running the same model repeatedly, varying

one parameter value at a time, and comparing the outcome. We are interested in

the total number of averted infections in the first five years, so we compare the

model predictions of the baseline parameters with those from the model where the

horizontal transition rates have been modified, see Figure 4.11.

If GCO manages to increase the horizontal forward transition rates by 25% and

decrease the horizontal backward transition rate to 80%, the model with homoge-

neous mixing predicts that 13.3 (1.6-34.3) new HIV infections could be averted

annually (66.4 (8.0-171.5) averted infections in five years), while the model with
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heterogeneous mixing predicts a decrease by 7.3 (1.1-42.0) annual infections (36.4

(5.4-210.1) averted infections in five years).

4.12 Discussion and future work
In this chapter we use mathematical models to predict the impact of Get Checked

Online (GCO), a novel program by the British Columbia Centre for Disease Control

(BCCDC) to facilitate testing for sexually transmitted infections (STIS). We first use

a basic model where we average all risk and testing behaviour parameters, which

we then extend into a full model with various risk and testing groups, using two

natural assumptions for the mixing between the risk groups. Our models are based

on parameters that we extract from BCCDC data collected from HIV negative MSM

who tested at a health Initiative for Men (HIM) sexual health clinic in Vancouver

between 2011 and 2012. We give a detailed derivation of how the model parameters

are extracted from the raw data set. The infection rate β is split into a rate of risky

encounters and a per-encounter probability of infection, both of which are obtained

independently from the data. Using a simple clustering algorithm we identify and

parameterize a low risk and high risk group in the MSM population. The resulting

average risk parameters differ by more than one order of magnitude, which has

important consequences on the model predictions. For the testing rate we adjust

for the fact that all study participants were recruited at a testing clinic.

We then calculate the basic reproductive number of the Vancouver HIV epi-

demic in the MSM community, which predicts that the epidemic is still growing,

albeit rather slowly. Using sensitivity analysis we estimate the impact of GCO on

the number of new infections in the first five years of the program. All models

predict that even a modest increase in the testing rates would result in a valuable

reduction of the number of new HIV infections.

We validate our models by comparing the predicted number of newly detected

infection with those reported by the BCCDC in recent years. Our models consis-

tently overestimate the reported numbers by a factor of 2, which indicates that

either BCCDC’s numbers underestimate the size of the epidemic, or that our model

parameters do not accurately represent the entire active MSM community. We there-

fore fit the parameter values that we extracted from our data such that the model
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predictions match the epidemiological observations. Our findings are that the dif-

ference in risk-behaviour between individuals who are unaware and aware of their

infection be larger than we anticipated, that is, aware individuals apply effective

risk-reduction strategies. An alternative explanation is that the size of the at-risk

population may be smaller than previously estimated. Of course, in reality there

may be a combination of these effects.

It is curious that the full model, which distinguished between two risk groups

and three testing groups, predicts a larger number of infections and a larger basic

reproductive number. This effect is highlighted when the contact mixing is limited

to partners from the same risk groups. This suggests that the epidemic is driven

by a small but very active high-risk group. Such a finding may have tremendous

impact on how to fight the disease spread, in particular if this core group is difficult

to identify and reach with interventions. This effect is well known in epidemiol-

ogy and has been described in detail in many articles and standard textbooks, e.g.,

[7, 12, 45, 90, 102, 118]. For the Vancouver epidemic this result underscores the

importance of identifying and reaching out to those at the highest risk of infec-

tion, which, if achieved, can have a great positive effect on the health of the entire

population.

Our models are based on many assumptions and simplifications which offer

room for future work. To begin with, a key model parameter, the number of sexu-

ally active MSM in Vancouver, is difficult to estimate and not very well known in

the literature. More important than the total potential population size is the number

of individuals who are sexually active and at risk, which is even less well defined.

Further, our ODE models do not account for the formation of partnerships. This

key aspect of human relationships, and hence of the HIV transmission network, is

extremely challenging to get meaningful data on. ODE models with partnership

formation are not uncommon in the modelling of epidemics, see e.g., [24], but

would quickly make the resulting system of differential equations too complicated

to handle conveniently, and would most likely violate the underlying assumption

of all ODE models that each subgroup should be “large”.

A natural extension of the work we presented here is an agent-based model,

where each agent represents a MSM that draws its parameters from those extracted

from our dataset or others. This could naturally allow for partner formation, and
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could easily account for a dependence of the rate of risky activities and the HIV

testing rate. Such a model could also incorporate the effect of GCO in ways that

are not possible with ODE models, such as the spread via word-of-mouth or by

reaching out to a user’s sexual partners.

Future work should also seek to incorporate data from HIV positive individu-

als, in particular how their risk behaviour changed when they learned about their

infection. Further, the population could be split into more distinct groups, such as

recently infected individuals with an increased risk of transmission, and individuals

on treatment which a reduced risk of transmission.
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Chapter 5

Assessing the optimal virulence of
malaria-targeting mosquito
pathogens: a mathematical study
of engineered Metarhizium
anisopliae

The content of this chapter and the corresponding Appendix C stem from a course

project in MATH 561: Mathematics of Infectious Diseases and Immunology taught

in 2011 at UBC, the results of which were published in Malaria Journal [66]. I am

the lead author of the publication, which is joint authored with Michael Lindstrom,

Anja Gumpinger, Jielin Zhu and Daniel Coombs. The journal article is distributed

under the terms of the Creative Commons Attribution License (CC-BY) and has

been modified slightly to fit the style and context of this thesis.

Abstract:

Background: Metarhizium anisopliae is a naturally occurring fungal pathogen of

mosquitoes. Recently, Metarhizium has been engineered to act against malaria

by directly killing the disease agent within mosquito vectors and also effectively
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blocking onward transmission. It has been proposed that efforts should be made to

minimize the virulence of the fungal pathogen, in order to slow the development

of resistant mosquitoes following an actual deployment.

Results: Two mathematical models were developed and analysed to examine the

efficacy of the fungal pathogen. It was found that, in many plausible scenarios,

the best effects are achieved with a reduced or minimal pathogen virulence, even if

the likelihood of resistance to the fungus is negligible. The results for both models

depend on the interplay between two main effects: the ability of the fungus to

reduce the mosquito population, and the ability of fungus-infected mosquitoes to

compete for resources with non-fungus-infected mosquitoes.

Conclusions: The results indicate that there is no obvious choice of virulence for

engineered Metarhizium or similar pathogens, and that all available information

regarding the population ecology of the combined mosquito-fungus system should

be carefully considered. The models provide a basic framework for examination

of anti-malarial mosquito pathogens that should be extended and improved as new

laboratory and field data become available.

5.1 Background
The major route of malaria transmission to humans is via blood feeding of female

Anopheles mosquitoes (principally Anopheles gambiae and Anopheles funestus).

Therefore, major efforts have been made to control mosquito populations in ar-

eas where malaria is prevalent. When first introduced, chemical insecticides were

very efficient at reducing malaria prevalence in humans, although not without en-

vironmental damage. However, resistance has been observed to develop rapidly to

broadly-used insecticides and there is a lack of new chemical agents [30, 105]. For

this reason, fungal entomopathogens have been under extensive investigation as

alternatives for mosquito control [11, 98]. Diverse fungal pathogens of mosquitoes

exist in nature and additionally can be genetically modified to generate desirable

properties.

The focus of this work is the application of engineered fungal pathogens of

117



mosquitoes that can neutralize or kill malarial sporozoites in the mosquito vector

itself, preventing onward transmission to humans. This is motivated by the re-

cent development of an engineered (Metarhizium anisopliae) fungus strain [31].

Metarhizium is a natural parasite of mosquitoes that infects through direct con-

tact with the insect cuticle, and therefore is appropriate for control strategies based

on local spraying indoors or baited traps. Recombinant strains of Metarhizium

have been designed to (i) block attachment of malarial sporozoites to salivary

glands of the mosquito; and (ii) neutralize or kill Plasmodium falciparum directly

within the mosquito hemolymph. Under laboratory conditions, these engineered

pathogens were found to substantially reduce sporozoite counts in the salivary

glands of mosquitoes, compared to both fungus-uninfected mosquitoes and wild-

type Metarhizium [31]. This raises the possibility of producing a biological agent

which targets the malaria parasite within the mosquito, and is thus able to disrupt

the transmission cycle and reduce the prevalence of malaria in humans.

Interestingly, because fungal pathogens such as Metarhizium do not kill in-

fected mosquitoes until their later life-stages, after the majority of mosquito re-

production has occurred, it is believed that the selection pressure for mosquito

resistance is quite low and therefore resistance should develop slowly even under

widespread deployment [104]. Mosquito resistance to fungal biopesticides of this

type has not been reported to date. Nonetheless, the concern of emerging resistance

leads Fang et al. [31] to argue against engineering Metarhizium to kill mosquitoes

faster. This argument stands in contrast to a strategy where fungal species are

applied in conjunction with chemical pesticides to reduce the overall numbers of

mosquitoes (discussed in [11]).

However, even in the absence of developing resistance, an interesting question

remains about how to optimize Metarhizium or similar agents in terms of virulence

against mosquitoes: should one expect a high virulence agent to outperform an

alternative low-virulence strain? Indeed, if a high-virulence mosquito pathogen

strain has worse performance than a low-virulence strain even in the absence of

resistance, the threat of resistance additionally counts against it. (In this context,

performance is measured in terms of reducing human malaria prevalence.) This

chapter presents simple mathematical models to investigate this question. It will

be shown that the optimal choice of virulence level is not obvious, and depends
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quite sensitively on the details of the complex ecological system. In certain cir-

cumstances, it is expected to be preferable to apply a low-virulence agent which

penetrates the mosquito population, and is thus able to reduce the prevalence of

malaria parasites in mosquitoes and humans, even though the overall population

level of mosquitoes is not strongly impacted. Under other circumstances, a high-

virulence fungus that more effectively reduces the total mosquito population is

expected to be preferable.

Mathematical modelling has been used in the study of malaria and as a tool

for evaluating possible control strategies for over a century. The first mathematical

models for malaria transmission were pioneered by Ross in 1911 [94] and devel-

oped further by Macdonald [73] and Anderson and May [7]. More recent mathe-

matical models distinguish between exposed and infectious humans and mosquitoes

reflect the fact that humans can become (temporarily) immune, treated or vacci-

nated, allow spatial heterogeneity, or include time-dependent parameters to ac-

count for environmental factors such as rainfall and humidity (see for example

[3, 19, 64, 99]). The current work presents results from simple models for this new

agent and potential improvements for future work are described.

5.2 Methods
Two prototype mathematical models are proposed that take into account the most

fundamental properties of the malaria parasite, transmission between human host

and mosquito vector, and the fungal mosquito pathogen. To derive the models in a

simple form, it is necessary to make a number of simplifying assumptions. These

assumptions could be relaxed in future versions of the model, at the expense of

analytical and intuitive understanding of the model results. Some possibilities for

this work are described in the conclusions.

5.2.1 Simplified model set-up and assumptions

1. The total human population, H, is taken to be constant. This is roughly

equivalent to supposing that the population dynamics of mosquitoes, malaria

parasites and fungal pathogens equilibrate rapidly compared to the human

demographic timescale. The (time-dependent) fraction of humans that are
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able to infect mosquitoes with the malaria parasite is denoted by h(t) and

these patients leave the infected group at rate ρ (for instance due to treatment,

recovery or death). The human population is taken to be homogeneous in all

other ways and the incubation period in the human host is assumed to be

negligible compared to the duration of infectiousness.

2. The mosquito population is represented in three parts: uninfected (suscep-

tible), infected with the malaria parasite, and fungus-infected. These three

populations are denoted by S(t), I(t), and F(t), respectively. It is necessary

to make some simplifying assumptions concerning the population dynamics

of mosquitoes, with and without the malaria parasite or the fungal pathogen.

A commonly simplified model for biological populations is that of logis-

tic growth [28]. This model has been applied in several previous works on

malaria [18, 19, 35, 80]. Here, it is assumed that, in the absence of the

malaria parasite and the fungus, the mosquito population experiences logis-

tic growth with innate growth rate κ̃ and carrying capacity P̃. All mosquitoes

also suffer a natural background death with rate denoted by µ , which is as-

sumed to be independent of infection with the malaria parasite [97]. An

alternative model of mosquito population dynamics, that includes larval and

adult stages, is described below.

3. It is assumed that every mosquito has a human biting rate of β , irrespec-

tive of its infection status, and that if the human host is infectious, the bite

always transmits the malaria parasite to the mosquito. On the other hand

if an infected mosquito bites an uninfected human, the human will develop

transmissible malaria with probability γ .

4. The fungal pathogen is constantly applied to the environment, and causes

mosquitoes to transition from the S and I classes to the F class continuously,

at constant rate α .

5. The fungal virulence (additional death of mosquitos due to fungal infection)

is denoted by σ . To explicitly compare the natural mosquito death rate µ

with the fungal virulence σ , one may rewrite the classical logistic growth
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equation dS/dt = κ̃S(1−S/P̃) in the form presented below, where κ = κ̃+µ

and P = P̃κ/(κ−µ).

6. The fungus is assumed to be perfectly, permanently and immediately effec-

tive at blocking malaria transmission to and from fungus-infected mosquitoes.

Under these assumptions, the following system of ordinary differential equa-

tions can be put forward (t denotes time):

dh
dt

= βγ
I
H
(1−h)−ρh,

dS
dt

= κ (S+ I +F)

(
1− S+ I +F

P

)
−βSh− (µ +α)S,

dI
dt

= βSh− (µ +α)I,

dF
dt

= α(S+ I)− (µ +σ)F.

(5.1)

A model schematic is given in Figure 5.1.

5.2.2 Life-stage-structured mosquito model and assumptions

Recent field studies strongly indicate that mosquito populations are controlled via

density-dependent regulation at the larval stage of development [100, 112]. The

simplified model above was derived under the assumption that these effects can be

captured via a logistic model for the adult mosquito population, since the larval

population is not modelled explicitly. This simplification allows for fairly clean

analytical results, but the biological system may have been oversimplified. Ad-

ditionally, vertical transmission is a feature of certain fungal symbionts of insects

[36]. Therefore, a possible improvement of the engineered fungus would be a verti-

cally transmissible variant, that could be passed from mosquitoes to their offspring.

To accommodate the additional realism of larval competition for resources, and to

consider vertical transmission, an alternative model is now put forward. This model

is built under the following set of additional assumptions:

1. Adult mosquitoes produce new larvae at a constant rate κc, irrespective of

infections with fungus or malaria parasites. The offspring of fungal-infected
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Figure 5.1: Simplified model. The fraction of infected humans in the pop-
ulation is given by h. Infection of susceptible mosquitoes S occurs at
mass-action rate β while removal/recovery occurs at a rate ρ . Infected
mosquitoes I infect susceptible humans with probability γ , given an
encounter. Malaria infection does not significantly alter the mosquito
death rate µ , but fungus infection, occurring with rate α reflecting the
intensity of fungal application, increases the death rate by σ . Since nei-
ther malaria nor the fungus is transmitted vertically in the simplified
model all new-born mosquitoes (indicated by κ) are susceptible.

mosquitoes are themselves infected with probability ξ , representing the prob-

ability of vertical transmission of the fungal pathogen. The populations of

fungus-uninfected and fungus-infected larvae are denoted by LS(t) and LF(t)

respectively. In the absence of information about larval infectibility, it is as-

sumed that larvae are not directly infected by the fungus (although they may

be infected via vertical transmission), and that the fungus has no detrimental

effects in the larval stage.

2. Larvae compete for resources in a density-dependent manner, with the inten-

sity of competition determined by the parameter κL.

3. Larvae mature into adult mosquitoes at rate m. In contrast to the simplified
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model, adult mosquitoes do not directly compete for resources.

Under these additional assumptions, a new life-stage-structured model can be

put forward:

dh
dt

= βγI
(1−h)

H
−ρh,

dLS

dt
= κc(S+ I +(1−ξ )F)−κL (LS +LF)LS−mLS,

dLF

dt
= κcξ F−κL (LS +LF)LF −mLF ,

dS
dt

= mLS−βSh− (µ +α)S,

dI
dt

= βSh− (µ +α)I,

dF
dt

= mLF +α(S+ I)− (µ +σ)F.

(5.2)

A model schematic is given in Figure 5.2.

5.3 Results and Discussion
The goal is now to study the level of malaria in humans (h) as a function of the

fungal parameters: the spraying rate α , fungal virulence σ and fungal vertical

transmissibility ξ . For the simplified model, analytical results will be presented

and applied to find the optimal values of α and σ in terms of reducing malaria

in humans. For the life-stage-structured model, the situation is more complex and

results will be shown only for particular numerical values of the parameters. In

both models, it is found that application of a highly virulent fungus as biopesticide

may not be the best strategy.
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Figure 5.2: Life-stage structured model. In this model mosquitoes produce
larvae at rate κc. Larvae may be fungal carriers (LF ) or fungus-free
(LS) and undergo density-dependent competition (see text) with inten-
sity parameter κL. Larvae mature to produce adult mosquitoes at rate
m. The parameter ξ determines the degree of vertical transmissibility of
the fungal pathogen.

5.3.1 The simplified model with no fungus

If there is no fungus present in the system, the simplified model simplifies to the

following:
dh
dt

= βγ
I
H
(1−h)−ρh,

dS
dt

= κ (S+ I)
(

1− S+ I
P

)
−βSh−µS,

dI
dt

= βSh−µI.

(5.3)

This system has three relevant equilibria: (1) the trivial equilibrium (h,S, I) =

(0,0,0) (no mosquitoes, no malaria); (2) the malaria-free equilibrium (h,S, I) =

124



(0,(1− µ

κ
)P,0) (mosquitoes but no malaria) and (3) the endemic equilibrium

h =
β 2γP(κ−µ)−Hκµρ

β (Hκρ +βγP(κ−µ))
,

S =
µ(Hκρ +βγP(κ−µ))

βγκ(β +µ)
,

I =
β 2γP(κ−µ)−Hκµρ

βγκ(β +µ)
.

(5.4)

From the malaria-free equilibrium it is observed that κ > µ is the basic require-

ment for there to be mosquitoes in the system. This corresponds to the basic

mosquito growth rate κ being large enough to outweigh mosquito death (and with

no mosquitoes there can be no malaria).

The key quantity determining whether malaria will exist in the system is the

basic reproduction number for the no-fungus system, R(NF)
0 = β

√
γSm/(ρµH),

where Sm = P(1− µ

κ
) is the mosquito population at the malaria-free steady state.

This quantity can be calculated using the next-generation method [24]. The square

root occurs in this formula because there are two steps per rounds of transmission,

mosquito to human to mosquito, and the next-generation R0 is, by definition, a

per-step quantity. The parameter β is not included in the square root because it de-

termines the transmissibility human-vector and vector-human. It can also be shown

that if R(NF)
0 < 1 then the malaria-free equilibrium is locally stable and the endemic

equilibrium does not exist, while if R(NF)
0 > 1 then the endemic equilibrium exists

and is locally stable.

5.3.2 Equilibrium analysis of the simplified model

The simplified model including the fungus (5.1) supports three distinctive equilib-

ria, which can be defined as the trivial, malaria-free and endemic equilibria. The

following results on the local stability of these equilibria can then be proven (see

Appendix C for the proofs, which are lengthy but straightforward):

1. The trivial equilibrium (h,S, I,F) = (0,0,0,0) is locally asymptotically sta-

ble if and only if κ < (µ+α)(µ+σ)
µ+α+σ

. This condition is analogous to the condi-

tion κ > µ for the model with no fungus, described above.
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2. The malaria-free equilibrium

hm = 0,

Sm =
P(µ +σ)

µ +α +σ

(
1− (µ +α)(µ +σ)

κ(µ +α +σ)

)
,

Im = 0,

Fm =
Pα

µ +α +σ

(
1− (µ +α)(µ +σ)

κ(µ +α +σ)

)
exists in the positive plane and is locally asymptotically stable if and only if

both of the following conditions are fulfilled:

κ >
(µ +α)(µ +σ)

µ +α +σ
and R0 = β

√
γSm

ρ(µ +α)H
< 1.

The first condition corresponds to the survival of the mosquito population

(exactly as for the trivial equilibrium). The second condition states that the

basic reproductive number for malaria, R0, must be subcritical.

3. The endemic equilibrium

he =
R2

0−1
R2

0 +β/(µ +α)
,

Se =

(
1− β

µ +α +β

R2
0−1
R2

0

)
Sm,

Ie =
β

µ +α +β

R2
0−1
R2

0
Sm,

Fe = Fm

exists in the positive plane and is locally asymptotically stable if and only if

both of the following conditions are fulfilled:

κ >
(µ +α)(µ +σ)

µ +α +σ
and R0 = β

√
γSm

ρ(µ +α)H
> 1.
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By comparing R0 for the simplified model to the equivalent no-fungus quantity

(R(NF)
0 ), it is possible to see the role of the spraying rate α in reducing the repro-

ductive number of the malaria parasite. The virulence of the fungus (parameter σ )

does not affect R0, because it is assumed that mosquitoes that are infected with the

fungus are not able to transmit the malaria parasite.

5.3.3 Optimizing the virulence and application of the fungal
pathogen in the simplified model

The two parameters of the model that are in principle under control in a real appli-

cation are α (the application/spraying rate) and σ (the parameter controlling fungal

virulence). Our goal is to choose α and σ such that the endemic malaria prevalence

in humans

he = he(α,σ) =
R2

0(α,σ)−1
R2

0(α,σ)+β/(µ +α)
,

is minimized. The first and most intuitive result is that he is a monotonic decreasing

function of α , which means that the more the mosquitoes are exposed to the fun-

gus, the lower the endemic malaria prevalence is in humans. Increasing the fungus

application rate is therefore always beneficial. This result is numerically illustrated

in Figure 5.3. It can further be shown (see Appendix C) that the total number of

mosquitoes (S+ I +F) also decreases when α increases, unless the fungal viru-

lence σ is zero, in which case the total number of mosquitoes is independent of

α .

There are two possible effects of continual fungus application that have to be

considered in answering the question of how to find the optimal fungal virulence

σ :

1. The biopesticide effect: Increasing the fungal virulence will lead to a de-

crease in the total number of mosquitoes (S+ I+F). This can be confirmed

mathematically for the presented models (see Appendix C).

2. The competition effect: Fungus-infected mosquitoes F do not contribute

directly to the transmission of the malaria parasite to humans. However,

they do compete for resources with all the non-fungus-infected mosquitoes.
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Figure 5.3: Prevalence of malaria in humans and total number of mosquitoes
for varying fungus deployment rate. The steady state human malaria
prevalence and the total mosquito population, both relative to baseline,
are plotted against the fungus exposure intensity α , with fixed fungal
pathogen virulence σ = 0.1 day−1. As expected, quantities decrease
when α increases. Note that, once α is large enough so that R0 < 1 and
malaria is eradicated, he remains constant at 0. Full details of all other
chosen parameter values are given in Appendix C.

Therefore, if the fungal virulence is low, then the population will have a

higher fraction of non-malaria-carrying mosquitoes and the force of infec-

tion of the malaria parasite on humans could plausibly be reduced.

Hence there is a tradeoff between the two mechanisms above: the total num-

ber of mosquitoes could be minimized by a high-virulence fungus (biopesticide

effect), but what is critical for the prevalence in humans is the total number of

mosquitoes infected with the malaria pathogen - and this might be minimized (via

the competition effect) by a low-virulence fungus.

In order to determine the balance of these two effects, one must carefully anal-

yse the mathematical model. It is then possible to establish a critical threshold for

the relation between the mosquito innate growth rate κ and the natural mosquito
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death rate µ that makes one or the other argument stronger. Specifically, it can be

shown that the malaria prevalence in the human population he(α,σ) and the total

number of infected mosquitoes Ie(α,σ) are both maximized if

σ = σ
∗ ≡ (κ−2µ)

2−κ/(µ +α)
.

This result indicates how to best design the fungus: To avoid the worst case

σ = σ∗, the virulence σ must be chosen far away from σ∗. Note that while

σ = σ∗ maximizes the malaria prevalence in humans as well as the total number

of malaria-infected mosquitoes, it does not maximize or minimize the total num-

ber of mosquitoes. This result reveals the complexity of the tradeoff between the

biopesticide and the competition effect, and indicates the importance of a good un-

derstanding of the mosquito population as well as the fungus-mosquito interaction,

in designing the optimal pathogen for deployment.

5.3.4 Optimal virulence depends on background mosquito growth
rate

Continuing the analysis of the previous section, two interesting cases can be dis-

tinguished: (i) If σ∗ is negative, then σ is necessarily greater than σ∗ and hence

virulence should always be maximized to reduce malaria prevalence in humans (in-

dicating that the biopesticide effect is stronger than the competition effect); (ii) If

σ∗ is positive, however, then a very large σ or a very low σ is desirable, but not an

intermediate value. In the second case, this shows that the choice is either to use the

fungal pathogen as a biopesticide (high virulence) or a distributed anti-Plasmodium

agent (low virulence) in the mosquito population.

The choice depends on the relation between the mosquito growth rate κ , the

mosquito death rate µ and the fungal exposure rate α . If the growth rate κ is small

compared to the mosquito death rate µ (specifically, if κ < 2µ) then σ∗ < 0 for any

value of α , and hence a larger fungal virulence σ is always desirable. This means

that the fungus should be used as a biopesticide for slow-growing mosquito pop-

ulations. On the other hand, if the mosquito population is relatively fast-growing

(κ > 2µ), then σ∗ is negative for 0 < α < (κ − 2µ)/2, while σ∗ is positive for

α > (κ−2µ)/2. Parameter estimation (see Appendix C) yields that κ ≈ 5µ , im-
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plying that in most real mosquito populations, the latter scenario is much more

realistic. Hence, if the fungus can be applied at a sufficient rate, then minimiz-

ing the fungal virulence σ has the most beneficial effect of malaria prevalence in

humans.

Figure 5.4 illustrates these principles for particular parameter choices. The

human malaria prevalence he(α,σ) is plotted, relative to the baseline prevalence

when no fungus is applied, and hence indicating how malaria management can be

optimized. The left column shows the slow-growing result (κ < 2µ) where the

optimal strategy is to use the fungal pathogen as a biopesticide. The right column

shows the more surprising result where, if the fungus deployment rate is sufficient,

it is preferable to select a low-virulence fungus strain. In all cases, verifying the

first result of this section, it can be seen that a higher fungus-exposure rate α is

always desirable.

5.3.5 Equilibrium analysis of the life-stage-structured model

The investigation of the simplified model has shown that depending on the ecology

of the mosquito population, it can be expected that there are circumstances where

the optimal virulence of the fungal pathogen can be zero. However, competition

between mosquitoes in the simplified model takes place in the adult stage, but re-

cent evidence indicates that competition occurs at the larval stage. To examine this

effect it is necessary to use the more complex, life-stage-structured model (5.2),

which includes the larval stage. In this section the effects of vertical transmission

of fungus will also be examined.

5.3.6 Life-stage-structured model without vertical transmission of
fungus

By setting ξ = 0 in the second model, it is possible to investigate the model without

vertical transmission. Similar to the simplified model, it can be shown that this

model supports three easily explained equilibria, corresponding to (i) the trivial

equilibrium with no mosquitoes and no malaria, (ii) a malaria-free equilibrium

with mosquitoes but no malaria, and (iii) an endemic equilibrium state. Provided

that the malaria-free equilibrium with mosquitoes exists, it can be shown that the
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Figure 5.4: Malaria prevalence in humans varying over fungal pathogen vir-
ulence and deployment rate. The heat maps (top row) indicate the en-
demic malaria prevalence in humans he, relative to baseline where no
fungus is applied, for the given parameters, the graphs (bottom row)
show a one-dimensional projection of the heat maps, for a fixed fun-
gal application (spraying) rate. Two distinct cases can be distinguished:
(i) If κ − 2µ < 0 (left column) then human malaria prevalence is a de-
creasing function of fungal virulence σ and deployment rate α . (ii) If
κ − 2µ > 0 (right column), the curve describing the worst-case fungal
virulence σ∗ is superimposed, indicating a non-monotonic relationship
between human malaria prevalence and σ . Top row: The dark blue re-
gion indicates R0 < 1 and hence he = 0. Bottom row: one-dimensional
slice through the heat map above for a fixed value of α = 0.1 day−1 (left)
and α = 0.5 day−1 (right), as indicated by the black line in the heat map
above. Here, µ = 0.1 day−1, while κ = 0.18 day−1 (left) and κ = 0.48
day−1 (right). All other parameter values are as given in Appendix C.
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endemic equilibrium state exists and is stable given the following reproductive

number condition:

R0 =

√
β 2γm2((κc−µ)(µ +α +σ)−ασ)

κLρ(µ +α)3(µ +σ)H
= β

√
γS0

ρ(α +µ)H
> 1,

where

S0 =
m2 ((κc−µ)(µ +α +σ)−ασ)

κL(µ +α)2(µ +σ)

is the equilibrium number of mosquitoes in the population in the absence of the

malaria parasite. Under this condition, the fraction of the human population in-

fected with malaria, at the endemic equilibrium, is given by the same function of

R0 as before (reflecting the very similar structures of the two models),

h(σ) =
R2

0−1
R2

0 +β/(µ +α)
.

The derivative of this function with respect to σ is found to have no zeroes and is

always negative for R0 > 1. This indicates that the human prevalence of malaria

is a strictly decreasing function of σ and therefore the best strategy for the life-

stage-structured model with no vertical transmission of fungus is to increase the

fungal virulence as much as possible. This result (illustrated in Figure 5.5, top left

panel where ξ = 0) stands in contrast to the previous section where more nuanced

conclusions were drawn, and is a consequence of the fact that the competition

effect is occurring at the larval stage, while the biopesticide effect is occurring at

the adult stage. Since it is adult mosquitoes, not larvae, that act as vectors for the

malaria parasite, only the biopesticide effect can reduce malaria incidence in this

version of the model.

5.3.7 Life-stage-structured model with vertical transmission of
fungus

Vertical transmission is a feature of fungal symbionts of insects [36] and it seems

natural to consider this in the context of the model. The life-stage-structured model,
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Figure 5.5: Malaria prevalence in humans varying over vertical transmission,
deployment rate and fungal virulence. Each subfigure shows the en-
demic malaria prevalence in humans, relative to the no-fungus base-
line, plotted against the fungal virulence σ , for five different levels of
the fungal application (spraying) rate α . The different values of α in
each subfigure are {0.05,0.1,0.15,0.2,0.25} days−1, corresponding to
curves from top to bottom, and the length of the dashing increases with
α . Each subfigure represents a different value of the vertical transmissi-
bility ξ from ξ = 0 (no vertical transmission) to ξ = 1 (perfect vertical
transmission). All other parameter values are as given in Appendix C.

where the parameter ξ is the vertical transmission fraction, reflects this possibility

and allows the previous analysis to be repeated. In this case, the analytical expres-

sions for the steady states of the full model can be obtained using a computer alge-

bra system, but are too long to usefully give here. Instead we explore this scenario

numerically, see Figure 5.5. The basic analytical results remain: there are three

potential equilibria of the model, but only one has mosquitoes and malaria. Fur-

ther, although the model is resistant to analytical exploration, it is easy to choose

parameters and work numerically.

Figure 5.5 shows the equilibrium fraction of infected humans as a function of

the fungal virulence σ and application rate α , across a range of possible vertical
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transmission probabilities ξ . It is observed that if vertical transmission is unlikely

then the benefit of the fungus is maximized by high virulence, but when vertical

transmission becomes more likely, an intermediate or low virulence fungus would

be favourable. In fact, in some cases a highly vertically transmissible fungus (ξ ≥
0.85 in Figure 5.5) is predicted to be able to eliminate malaria altogether, provided

the virulence is low, but not too low. In all cases it should be noted that, as is to be

expected, increasing the fungal application rate α is always beneficial.

These results indicate how the biopesticide effect of high virulence, acting at

the adult stage, can be dominated by the competition effect, provided the adult

and larval stages are coupled sufficiently strong via vertical transmission of the

fungus. In this case, highly virulent fungus are found to be less effective because

they prevent the fungus-infected mosquitoes from generating fungus-carrying lar-

vae. This reduces competitive inhibition of fungus-uninfected larvae, thus reducing

the overall effectiveness of the fungus in preventing malaria parasite infection of

mosquitoes, and so ultimately increasing the prevalence of malaria in humans.

5.4 Conclusions
In this chapter, mathematical models have been employed to investigate the ef-

fectiveness of a fungal pathogen that blocks malaria transmission in mosquitoes

to reduce malaria prevalence in humans. Unsurprisingly, all models indicate that

malaria prevalence in humans could be reduced substantially by such a counter

measure, and that the mosquito exposure rate to the fungus should be maximized

to reduce malaria prevalence. However, the main interest of the results is to demon-

strate that the optimal design of an agent that can simultaneously kill mosquitoes,

and malaria parasites within mosquitoes depends quite sensitively on the details

of a complex ecological system.

The first model, in which competition between mosquitoes occurred at the adult

level, showed that in fast growing mosquito populations the fungal pathogen should

be engineered to have low virulence. This result is independent of the possibility

of mosquito resistance developing to the fungal pathogen and can be understood

in very simple terms: fungus-infected mosquitoes do not directly contribute to

the malaria epidemic, but competitively hamper the introduction/survival of new
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susceptible mosquitoes. If mosquito resistance to fungal biopesticides arises in the

field, this argument would additionally be strengthened.

In the second model, competition occurs at the larval stage of development.

This model predicted that, in the absence of vertical transmission of the fungal

pathogen, a highly virulent (biopesticidal) fungus would be desirable. However,

the addition of reliable vertical transmission to this model significantly alters the

predictions. If the fungal pathogen could be engineered in this way, then a high

virulence would be highly detrimental to its efficacy as an anti-malarial strategy.

The key observation that should be drawn is that finding the optimal proper-

ties of agents that can reduce the malaria parasite incidence in mosquitoes is not

an easy task, since several direct and indirect effects need to be parameterized and

balanced, leading to conclusions that depend on the details of the mosquito popu-

lation, fungal pathogen, and environment.

In order to obtain a straightforward analytical treatment, several simplifying as-

sumptions were made throughout. It was assumed that the fungus could completely

block onward malaria transmission. Modifying this assumption in the simplified

model leads to an increased favourability of virulence, but the authors believe that

this issue will best be resolved in a future model where the time dependence of the

fungus-mosquito interaction is explicitly analysed. Also, by assuming a constant

mass-action biting coefficient, human reactions to avoid mosquito bites (bed nets

or indoor residual spraying) were neglected. This was done to study the pure effect

of the fungus interaction, but is likely not a realistic representation of a real-life

setting. Furthermore, the human population was modelled as a homogeneous pop-

ulation, neglecting for example co-infections, age structure, and previous malaria

history. All of the above have an important impact on the malaria epidemic: co-

infections increase the severity of each disease, children are much more vulnerable

to malaria, and previous malaria infections can lead to temporal immunity. The

incubation period of the malaria parasite and of the fungus in mosquitos were also

neglected. This simplification particularly affects the mosquito population, where

the incubation period is of about the same order as the life expectancy. Future

work will include extending the current model to add more details of mosquito

and malaria parasite life history in an age- and life-stage-dependent model of the

mosquito.
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Horizontal fungal transfer between mosquitoes was also not considered here.

This effect has been observed for a number of fungal symbionts of insects and

could play a role similar to vertical transmission in enhancing the effectiveness of

the fungal pathogen. Horizontal transfer (possibly mediated through the environ-

ment) between mosquitoes would also be expected to increase the effectiveness of

fungal spread, and reduce the necessary level of fungal application/spraying in the

environment, which might otherwise have to be very intense. Further, in assuming

a fairly simple logistic growth model, seasonal effects such as rainfall and humidity

were neglected. These effects would lead to temporal variations in the mosquito

population growth rate and carrying capacity, as well as unknown possible effects

on the fungal pathogen. A final topic for possible future work is to consider spatial

heterogeneities such as breeding sites and human habitat.

Despite these limitations, the models are useful in defining an argument for a

minimal virulence of the antimalarial fungal pathogens. In future work, as field

studies of Metarhizium or similar agents are completed, the parameterization of

the model can be improved, and new models that allow insights into the potential

of a large-scale deployment of such controls for malaria and other mosquito-borne

diseases can be developed.
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Chapter 6

Concluding remarks

Mathematical biology is a young and rapidly evolving field. At the same time, it is

also very broad, using a wide range of mathematical techniques to answer an even

wider range of theoretical and practical questions. The collaboration of all parts of

the diverse community of mathematical biologists is necessary to fully unleash the

enormous potential that lies in studying biological systems and phenomena with

the rigor and thoroughness of the language of nature itself – mathematics.

Being a young and diverse field, however, also entails challenges. While there

are many examples of fruitful collaborations between mathematical biologists and

experimentalists (a few are highlighted in the introduction), the usefulness of math-

ematical modelling is not yet universally acknowledged. The author has always

regarded preaching mathematical biology as part of being a mathematical biolo-

gist, and so my Ph.D. work and ultimately this thesis are aimed at proving the

usefulness of mathematical biology by applying mathematical tools to obtain prac-

tical insights into current problems of global scale, HIV and malaria. The ques-

tions that led to the research presented in this thesis were, directly or indirectly,

brought to us by collaborators in the public health sector and even mycologists, so

non-mathematicians. Therefore the focus of this work lies in the modelling of the

underlying biological system, as well as the interpretation and implications of the

model predictions, instead of advancing the theory behind the mathematical tools

that we are using.
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Having said that, this thesis starts with a thorough yet application-focused

introduction to continuous-time branching processes and their use in modelling

within-host viral dynamics. We derive classical results from first principles, and

combine techniques from various mathematical fields in new ways to express our

model results in forms that can readily and efficiently be computed. In particu-

lar, with our approach the full probability density function can be computed effi-

ciently, avoiding the necessity to approximate this distribution by sampling using

the popular Gillespie algorithm. Our theoretical results extend to continuous-time

multi-type branching processes, that can also be conditioned on non-extinction.

This extension becomes very useful in our application to early within-host HIV in-

fection in the first case study. Unfortunately, our technique is limited to branching

processes, and is hence not applicable to a large class of non-linear processes.

In the first of three case studies we model the early dynamics of within-host

HIV infection in order to estimate the length of the eclipse phase, that is, the length

of time between exposure and detectability of infection. The uncertainty about this

length and confidence in an early negative test is a source of anxiety for clinicians

and patients alike. Therefore we collaborated with the British Columbia Centre for

Disease Control (BCCDC) to develop mathematical models that can estimate the

length of the eclipse phase, quantify the uncertainty of an early negative test and

provide a guide for the timing of follow-up testing. Because of the stochastic nature

of these clinical questions we chose a stochastic model, using the previously devel-

oped techniques for continuous-time multi-type branching processes. We highlight

the importance of conditioning our models on non-extinction to match the inclu-

sion criterion for how the data was collected.

We predict that the length of the eclipse phase may be slightly shorter than

previously assumed, that the largest information gains are before day 10 after ex-

posure, and that infection can practically be excluded if a test as short as three

weeks after exposure is negative. To our knowledge these are the first rigorous

results that quantify this uncertainty, and we hope that our work helps clinicians

and patients to alleviate their anxieties and to help schedule follow-up tests. Reli-

able data on the early phase of HIV infection is extremely difficult to collect, so we

chose the simplest model that fits the relatively little data that is available. As our
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understanding of the early dynamics of HIV infection improves, and as more data

becomes available, it would be worthwhile to add more features to our model and

refine our results.

In our second case study we investigate the population-level impact of increas-

ing the HIV testing in the Vancouver men who have sex with men (MSM) com-

munity. The hope is that by encouraging more testing more individuals become

aware of their infection, and as a consequence reduce their risk-behaviour to avoid

spreading the disease. It has long been observed by our collaborators at the BCCDC

that MSM use the internet to find sex partners and to seek health information, so it is

natural to use the internet to facilitate HIV testing and the delivery of results. This

project, called Get Checked Online (GCO), has been developed for many years, and

quantitative data on individual risk and testing behaviour has been collected. This

data allows the development and parameterization of mathematical models, which

in turn allows us to predict the potential impact of this intervention.

We start with a basic model of a homogeneous population, and show how the

model parameters can be derived from the raw data. Since the goal of GCO is to in-

crease the overall testing rate we use sensitivity analysis to estimate how much the

model predictions depend on the testing rate, as well as other model parameters.

We find that our model slightly overestimates the observed size of the epidemic,

and suggest adjustments to the behavioural parameters to match the epidemiolog-

ical observations. Looking at the data more closely reveals that the population is

highly heterogeneous in their risk and testing behaviour, so we extend our basic

model to reflect this observation. Our updated findings confirm a well-studied phe-

nomenon in epidemiology that a relatively small high-risk group can make an epi-

demic much more severe than if this risk is distributed equally in the population.

Our models are designed to lay the ground work for more sophisticated, agent-

based models and to ultimately help to optimize the effect of GCO and calculate

its cost-effectiveness. It has been thrilling to bring the insights from mathematical

models to a long-term initiative that will improve the health of the subpopulation

of Vancouver that is most burdened by the HIV epidemic.

Our third case study is motivated by a recent success in developing new anti-

malarial agents. Instead of killing the mosquito vectors, this team of mycologists
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successfully engineered a fungus that effectively blocks malaria transmission from

infected mosquitoes to humans. Engineering such a fungus raises the question

whether it would be detrimental or beneficial to also add virulence. Decreasing

the total number of mosquitoes is beneficial in general, but the non-infectious

mosquitoes also compete for resources with the infectious mosquitoes, so not re-

moving them at an increased rate could have an even greater positive effect. Math-

ematical modelling is the ideal tool to predict the outcome of either strategy, and

so we developed mathematical models to describe this non-linear system. We find

that, under most conditions, the best outcomes are achieved by minimizing the vir-

ulence, even if resistance to the fungus is ignored. The next logical step in the

development of the fungus is to test it outside of laboratory conditions in a field

trial. In this case our models could be adjusted to the conditions of the trial, and

it would be exciting to compare the model predictions with the observations in the

field.

We hope that the work in this thesis is inspiring to mathematical biologists

eager to apply their skills to real-world data and problems, as well as to non-

mathematicians who might be skeptical about the value of the insights that math-

ematical models can provide. The author’s work as a mathematical biologists has

always been most exciting when working with messy real-world data sets and de-

bating with non-mathematicians about the best tools and approaches to address

those pressing current problems that started the collaboration in the first place.

Time will tell if the models presented in this thesis will add to the long list of suc-

cess stories of mathematical biology, but there is no doubt that this list is only going

to increase as mathematical biology continues to grow and prove its usefulness in

being a valuable tool to understand complex dynamics and worldwide diseases.
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Appendix A

The T ∗-V -W model with
infectious and non-infectious
virions

The T ∗-V -W model accounts for the fact that the viral replication cycle is error-

prone. Only a fraction Q of the virions that are produced by infected target cells are

infectious, where Q is estimated to be on the order of Q≈ 10−2−10−4 [63, 75, 96].

Non-infectious virions, denoted as W , are not able to infect new target cells and

hence are harmless. The model can be written in ODE form as

Ṫ ∗ = kTV −δT ∗,

V̇ = pQT ∗− (c+ kT )V,

Ẇ = p(1−Q)T ∗− cW,

(A.1)

with T ∗(0) = n0, V (0) = v0, and W (0) = w0.

We investigate the probability that the population consists of n infected cells, v

infectious virions and w non-infectious virions at time t given the initial population

size of n0 infected cells, v0 infectious virions and w0 non-infectious virions:

P(n,v,w,n0,v0,w0, t) = P((T ∗,V,W )(t) = (n,v,w) |(T ∗,V,W )(0) = (n0,v0,w0)).
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A.1 The master equations
For convenience of notation we omit arguments that are unchanged from n, v, w,

n0, v0, w0, t, that is, e.g. P(n− 1,v+ 1) is shorthand notation for P(n− 1,v+

1,w,n0,v0,w0, t). Using this notation and the same techniques as before we arrive

at the forward master equation

dP
dt

= kT ((v+1)P(n−1,v+1)+ pQ(nP(v−1)−P)+δ ((n+1)P(n+1)−nP)

+ c((v+1)P(v+1)− vP)+ p(1−Q)(nP(w−1)−nP)

+ c((w+1)P(w+1)−wP),
(A.2)

and correspondingly the backward equation

dP
dt

= kT v0(P(n0 +1,v0−1)−P)+ pQn0(P(v0 +1)−P)+δn0(P(n0−1)−P)

+ cv0(P(v0−1)−P)+ p(1−Q)n0(P(w0 +1)−P)+ cv0(P(w0−1)−P)
(A.3)

A.2 The probability generating function
Define the probability generating function G : N3

0× [0,∞)×D3→ D via

(n0,v0,w0, t,z1,z2,z3) 7→
∞

∑
n,v,w=0

P(n,v,w,n0,v0,w0, t)zn
1zv

2zw
3 .

Then, as before multiplying the forward master equation (A.2) by zn
1zv

2zw
3 and sum-

ming over all n, v, w we obtain the following PDE:

∂G
∂ t

=
[

pQz1(z2−1)+ p(1−Q)z1(z3−1)+δ (1− z1)
]

∂

∂ z1
G

+
[
kT (z1− z2)+ c(1− z2)

]
∂

∂ z2
G+

[
c(1− z3)

]
∂

∂ z3
G

Gn0,v0,w0(0,z1,z2,z3) = zn0
1 zv0

2 zw0
3 .

(A.4)

From the backward equation (A.3) we obtain the following ODE, where we
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omit arguments that are unchanged from n0, v0, w0, t, z1, z2, z3.

dG
dt

= kT v0(G(n0 +1,v0−1)−G)+ pQn0(G(v0 +1)−G)

+δn0(G(n0−1)−G)+ cv0(G(v0−1)−G)

+ p(1−Q)n0(G(w0 +1)−G)+ cw0(G(w0−1)−G),

which we rewrite with G1 = G1,0,0, G2 = G0,1,0, G3 = G0,0,1 and the branching

property to

dG1

dt
= pQG1(G2−1)+ p(1−Q)G1(G3−1)+δ (1−Q)G1(G3−1)+δ (1−G1)

dG2

dt
= kT (G1−G2)+ c(1−G2)

dG3

dt
= c(1−G3)

(A.5)

with G j(0) = z j.

A.3 Calculating total viral load
In order to calculate the total viral load P(V (t)+W (t) = `) we require a careful

but straightforward calculation. For ease of notation we omit the initial conditions

arguments n0, v0, w0 in the probability P and the probability generating function

G. Then, using the definition of the probability generating function we see that

P(V (t)+W (t) = `)

=
`

∑
k=0

P(V = `− k,W = k)

=
`

∑
k=0

∞

∑
n=0

P(n, `− k,k, t)

=
`

∑
k=0

∞

∑
n=0

1
(`− k)!

P(n, `− k,k, t)1n(`− k)!

=
`

∑
k=0

∞

∑
n,v=0

1
(`− k)!

P(n, `− k,k, t)1nv(v−1) · · ·(v− `− k+1)zv−`−k
2

∣∣∣∣
z2=0
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=
`

∑
k=0

∞

∑
n,v=0

1
(`− k)!

∂ `−k

∂ z`−k
2

P(n, `− k,k, t)1nzv
2

∣∣∣∣∣
z2=0

=
`

∑
k=0

∞

∑
n,v=0

(
1

(`− k)!
∂ `−k

∂ z`−k
2

∞

∑
w=0

1
k!

P(n, `− k,k, t)1nzv
2w(w−1) · · ·(w− k+1)zw−k

3

∣∣∣∣∣
(z2,z3)=(0,0)

)

=
`

∑
k=0

∞

∑
n,v,w=0

1
(`− k)!

∂ `−k

∂ z`−k
2

1
k!

∂ k

∂ zk
3

P(n, `− k,k, t)1nzv
2zw

3

∣∣∣∣∣
(z2,z3)=(0,0)

=
`

∑
k=0

1
(`− k)!

1
k!

∂ `

∂ z`−k
2 zk

3

∞

∑
n,v,w=0

P(n, `− k,k, t)zn
1zv

2zw
3

∣∣∣∣∣
(z1,z2,z3)=(1,0,0)

=
`

∑
k=0

1
(`− k)!

1
k!

∂ `G(t,1,z2,z3)

∂ z`−k
2 zk

3

∣∣∣∣∣
(z2,z3)=(0,0)

To calculate the latter, we need to use the Cauchy integral formula twice, i.e., use

a double integral.

P(V = `− k,W = k) =
1

(`− k)!
1
k!

∂ `G(t,1,z2,z3)

∂ z`−k
2 zk

3

∣∣∣∣∣
(z2,z3)=(0,0)

=
1

(`− k)!
∂ `−k

∂ z`−k
2

g(z2)

∣∣∣∣∣
z2=0

,

where

g(z2) =
1
k!

∂ k fz2(z3)

∂ zk
3

∣∣∣∣
z3=0

=
1

2πi

∫
C

fz2(w)
wk+1 dw =

1
2π

∫ 2π

0
fz2(e

iϕ)e−ikϕdϕ

=
1

2π

∫ 2π

0
G(t,1,z2,eiϕ)e−ikϕdϕ,

and hence

P(V = `− k,W = k) =
1

(`− k)!
∂ `−kg(z2)

∂ z`−k
2

∣∣∣∣∣
z2=0
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=
1

2π

∫ 2π

0
g(eiψ)e−i(`−k)ψdψ

=
1

2π

∫ 2π

0

1
2π

∫ 2π

0
G(t,1,eiψ ,eiϕ)e−ikϕdϕe−i(`−k)ψdψ

=
1

(2π)2

∫ 2π

0

∫ 2π

0
G(t,1,eiψ ,eiϕ)e−ikϕe−i(`−k)ψdϕdψ

=
1

π2 Re
∫

π

0

∫
π

0
G(t,1,eiψ ,eiϕ)e−ikϕe−i(`−k)ψdϕdψ,

since G(t,1,z2,z3) = G(t,1,z2,z3). Therefore, summing over all possible values of

k we obtain

P(V (t)+W (t) = `) =
`

∑
k=0

P(V = `− k,W = k)

=
1

π2 Re
∫

π

0

∫
π

0
G(t,1,eiψ ,eiϕ)

`

∑
k=0

e−ikϕe−i(`−k)ψdϕdψ

=
1

π2 Re
∫

π

0

∫
π

0
G(t,1,eiψ ,eiϕ)e−i`ψ 1− e−i(`+1)(ϕ−ψ)

1− e−i(ϕ−ψ)
dϕdψ.

(A.6)

A.4 Mean behaviour of the stochastic process
We calculate the mean number of virus particles V +W at time t. By the linearity

of the expected value we obtain

E[V +W ] = E[V ]+E[W ] =
∞

∑
v=0

vP(V = v)+
∞

∑
w=0

wP(W = w)

=
∞

∑
n,w=0

∞

∑
v=0

P(n,v,w, t)1nv1v−11w +
∞

∑
n,v=0

∞

∑
w=0

P(n,v,w, t)1n1vw1w−1

=

[(
∂

∂ z2
+

∂

∂ z3

)
G(t,z1,z2,z3)

]∣∣∣∣
(z1,z2,z3)=(1,1,1)

.

We now find an ODE for E[V +W ]. The time derivative of the partial derivatives

will be calculated using the PDE formulation (A.4) for G, and swapping the order
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of differentiation.

∂

∂ t
∂G(t,z1,z2,z3)

∂ z2
=

∂

∂ z2

∂G(t,z1,z2,z3)

∂ t

=
∂

∂ z2

[
[pQz1(z2−1)+ p(1−Q)z1(z3−1)+δ (1− z1)]

∂G
∂ z1

+[kT (z1− z2)+ c(1− z2)]
∂G
∂ z2

+ c(1− z3)
∂G
∂ z3

]

= pQz1
∂G
∂ z1

+[pQz1(z2−1)+ p(1−Q)z1(z3−1)+δ (1− z1)]
∂ 2G
∂ z1z2

− (c+ kT )
∂G
∂ z2

+[kT (z1− z2)+ c(1− z2)]
∂ 2G
∂ z2

2

+ c(1− z3)
∂ 2G
∂ z2z3

.

Evaluated at (z1,z2,z3) = (1,1,1) we obtain

∂

∂ t
∂G(t,z1,z2,z3)

∂ z2

∣∣∣∣
(z1,z2,z3)=(1,1,1)

= pQ
∂G(t,z1,z2,z3)

∂ z1

∣∣∣∣
(z1,z2,z3)=(1,1,1)

− (c+ kT )
∂G(t,z1,z2,z3)

∂ z2

∣∣∣∣
(z1,z2,z3)=(1,1,1)

and similarly

∂

∂ t
∂G(t,z1,z2,z3)

∂ z1

∣∣∣∣
(z1,z2,z3)=(1,1,1)

= −δ
∂G(t,z1,z2,z3)

∂ z1

∣∣∣∣
(z1,z2,z3)=(1,1,1)

+ kT
∂G(t,z1,z2,z3)

∂ z2

∣∣∣∣
(z1,z2,z3)=(1,1,1)

∂

∂ t
∂G(t,z1,z2,z3)

∂ z3

∣∣∣∣
(z1,z2,z3)=(1,1,1)

= p(1−Q)
∂G(t,z1,z2,z3)

∂ z1

∣∣∣∣
(z1,z2,z3)=(1,1,1)

− c
∂G(t,z1,z2,z3)

∂ z3

∣∣∣∣
(z1,z2,z3)=(1,1,1)
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Hence, the time-dependent functions f1(t) =
∂G(t,z1,z2,z3)

∂ z1

∣∣∣
(z1,z2,z3)=(1,1,1)

, f2(t) =

∂G(t,z1,z2,z3)
∂ z2

∣∣∣
(z1,z2,z3)=(1,1,1)

and f3(t) =
∂G(t,z1,z2,z3)

∂ z3

∣∣∣
(z1,z2,z3)=(1,1,1)

satisfy the origi-

nal linear ODE (A.1):

ḟ1 =−δ f1 + kT f2,

ḟ2 = pQ f1− (c+ kT ) f2,

ḟ3 = p(1−Q) f1− c f3,

with f1(0) = n0, f2(0) = v0, f3(0) = w0. From the solution to this linear ODE we

obtain

E[V (t)+W (t)] = f2(t)+ f3(t).

A.5 Calculating cumulative probabilities
Building on earlier results we use (A.6) to quickly calculate the probability that the

total viral load is below the detection limit dL:

P(V +W < dL)

=
dL−1

∑
`=0

P(V +W = `)

=
dL−1

∑
`=0

1
π2 Re

∫
π

0

∫
π

0
G(1,eiψ ,eiϕ)e−i`ψ 1− e−i(`+1)(ϕ−ψ)

1− e−i(ϕ−ψ)
dϕdψ

=
1

π2 Re
∫

π

0

∫
π

0

G(1,eiψ ,eiϕ)

1− e−i(ϕ−ψ)

dL−1

∑
`=0

e−i`ψ(1− e−i(`+1)(ϕ−ψ))dϕdψ

=
1

π2 Re
∫

π

0

∫
π

0

G(1,eiψ ,eiϕ)

1− e−i(ϕ−ψ)

(
1− eidLψ

1− e−iψ − e−i(ϕ−ψ) 1− e−idLϕ

1− e−iϕ

)
dϕdψ.
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A.6 The extinction probability, basic reproduction
number R0 and initial growth rate

Since non-infectious virus particles W can not infect new target cells, extinction is

guaranteed for each lineage of W . On the other hand, the T ∗-V cycle is equivalent

to the T ∗-V model in Section 2.11, so we expect the same extinction probabilities

for a T ∗ and V lineage, respectively. To calculate the extinction probabilities q1, q2

and q3 we consider the steady states of the ODE (A.5) to find

q1 = q2 = q3 = 1, or q1 =
δ

pQ
c+ kT

kT
, q2 =

δ

pQ
+

c
c+ kT

, q3 = 1.

The quantities q1, q2 and q3 are the probabilities that an infection that started with

a single T ∗, V or W goes extinct, respectively.

Similarly to the T ∗-V model the basic reproduction number R0 for this model is

the expected number of new infected cells that are descendants of a single infected

cell. Since infectious virions infect target cells at rate kT and have an average life-

span on 1/(c+ kT ), while target cells produce infectious virions at rate pQ over

their average life span 1/δ we obtain

R0 =
pQkT

δ (c+ kT )
.

Next, we get the innate growth rate r as the largest real part of the eigenvalues

of the matrix given by Ṫ ∗

V̇

Ẇ

=

 −δ kT 0

pQ −c− kT 0

(1−Q)p 0 −c


 T ∗

V

W


with characteristic polynomial

(−λ − c)(λ 2 +(δ + c+ kT )λ +δ (c+ kT )− pQkT ).

For R0 > 1 this polynomial has two negative and one positive root, so that in this
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case the innate growth rate is given by

r =
1
2

[
−δ − c− kT +

√
(δ − c− kT )2 +4pQkT

]
. (A.7)

A.7 Conditioning on non-extinction
Following the same steps as for the previous models we obtain the probability

generating function G̃ of the process conditioned on non-extinction as

G̃(n0,v0,w0, t,z1,z2z3) =
G(n0,v0,w0, t,z1,z2,z3)−G(n0,v0,w0, t,q1z1,q2z2,q3z3)

1−qn0
1 qv0

2 qw0
3

A.8 Mean behaviour and cumulative probabilities for the
conditioned T ∗-V -W model

Let Ṽ and W̃ be the random variable of the number of infectious and non-infectious

virus particles in the conditioned process, respectively.

E[Ṽ +W̃ ] =

[(
∂

∂ z2
+

∂

∂ z3

)
G̃(t,z1,z2,z3)

]∣∣∣∣
z=1

=
1

1−qn0
1 qv0

2 qw0
3

[(
∂

∂ z2
+

∂

∂ z3

)
G(z1,z2,z3)

]∣∣∣∣
z=1

− 1
1−qn0

1 qv0
2 qw0

3

[(
∂

∂ z2
+

∂

∂ z3

)
G(t,q1z1,q2z2,q3z3)

]∣∣∣∣
z=1

We know the former summand as the mean of the unconditioned process. To cal-

culate the latter define

g j(t) =
∂G(n0,v0,w0, t,q1z1,q2z2,q3z3)

∂ z j

∣∣∣∣
z=1

for j = 1,2,3 and note that

g j(t) =
∂G(n0,v0,w0, t,q1z1,q2z2,q3z3)

∂ z j

∣∣∣∣
z=1
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= q j
∂G(n0,v0,w0, t,x1,x2,x3)

∂x j

∣∣∣∣
(x1,x2,x3)=(q1,q2,q3)

.

Taking the time-derivative and using the PDE formulation (A.4) for G, we obtain

after swapping the partial derivatives

∂

∂ t
g1(t) = q1

∂

∂ t
∂G(n0,v0,w0, t,x1,x2,x3)

∂x1

∣∣∣∣
(x1,x2,x3)=(q1,q2,q3)

= q1
∂

∂x1

{
[pQx1(x2−1)+ p(1−Q)x1(x3−1)+δ (1− x1)]

∂G
∂x1

+[kT (x1− x2)+ c(1− x2)]
∂G
∂x2

+ c(1− x3)
∂G
∂x3

}∣∣∣
(x1,x2,x3)=(q1,q2,q3)

= q1

{
(pQ(x2−1)+ p(1−Q)(x3−1)−δ )

∂G
∂x1

+(. . .)
∂ 2G
∂x2

1

+ kT
∂G
∂x2

+(. . .)
∂ 2G

∂x1∂x2
+0

∂G
∂x3

+(. . .)
∂ 2G

∂x1∂x3

}∣∣∣
(x1,x2,x3)=(q1,q2,q3)

= q1

(
pQ
(

δ

pQ
+

c
c+ kT

−1
)
−δ

)
∂G
∂x1

+q1kT
∂G
∂x2

∣∣∣∣
(x1,x2,x3)=(q1,q2,q3)

=− δ

q1
g1 +

q1

q2
kT g2

∂

∂ t
g2(t) = q2

∂

∂ t
∂G(n0,v0,w0, t,x1,x2,x3)

∂x2

∣∣∣∣
(x1,x2,x3)=(q1,q2,q3)

= q2
∂

∂x2

{
[pQx1(x2−1)+ p(1−Q)x1(x3−1)+δ (1− x1)]

∂G
∂x1

+[kT (x1− x2)+ c(1− x2)]
∂G
∂x2

+ c(1− x3)
∂G
∂x3

}∣∣∣
(x1,x2,x3)=(q1,q2,q3)

= q2

{
pQx1

∂G
∂x1

+(. . .)
∂ 2G

∂x1∂x2
+(−kT − c)

∂G
∂x2

+(. . .)
∂ 2G
∂x2

2
+0

∂G
∂x3

+(. . .)
∂ 2G

∂x3∂x2

}∣∣∣
(x1,x2,x3)=(q1,q2,q3)

= pQq2g1− (c+ kT )g2

∂

∂ t
g3(t) = q3

∂

∂ t
∂G(n0,v0,w0, t,x1,x2,x3)

∂x3

∣∣∣∣
(x1,x2,x3)=(q1,q2,q3)

= q3
∂

∂x3

{
[pQx1(x2−1)+ p(1−Q)x1(x3−1)+δ (1− x1)]

∂G
∂x1
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+[kT (x1− x2)+ c(1− x2)]
∂G
∂x2

+ c(1− x3)
∂G
∂x3

}∣∣∣
(x1,x2,x3)=(q1,q2,q3)

= q3

{
p(1−Q)x1

∂G
∂x1

+(. . .)
∂ 2G

∂x1∂x2
+0

∂G
∂x2

+(. . .)
∂ 2G
∂x2

2
− c

∂G
∂x3

+(. . .)
∂ 2G

∂x3∂x2

}∣∣∣
(x1,x2,x3)=(q1,q2,q3)

= p(1−Q)q3g1− cg3.

The second-order partial derivatives vanish because the factor multiplying them is

zero by the property of q1, q2 and q3. For the initial conditions, we find

g1(0) = n0qn0
1 qv0

2 qw0
3 ,

g2(0) = v0qn0
1 qv0

2 qw0
3 ,

g3(0) = w0qn0
1 qv0

2 qw0
3 ,

so that we obtain g2(t) and g3(t) by solving the ODE

ġ1(t) =
q1

q2
kT g2−

δ

q1
g1, g1(0) = n0qn0

1 qv0
2 qw0

3

ġ2(t) = pQq2g1− (c+ kT )g2, g2(0) = v0qn0
1 qv0

2 qw0
3

ġ3(t) = p(1−Q)q3g1− cg3, g3(0) = w0qn0
1 qv0

2 qw0
3

Putting these results together we find the expected value of the total viral load for

the T ∗-V -W model, conditioned on non-exinction:

E[Ṽ (t)+W̃ (t)] =
f2(t)+ f3(t)−g2(t)−g3(t)

1−qn0
1 qv0

2 qw0
3

. (A.8)
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Appendix B

Additional material for early HIV

infection

B.1 Preparing the dataset of patient timecourses
In the pre-processing stage we merge all datasets in such a way that there remains

only one time-series for each patient.

We merged all datasets first, for a total of 427 time series (with duplicates). We

are interested in measuring the maximal viral growth rate during the ramp-up phase

immediately after infection. Hence, from the 427 time series we first removed 60

time series that were unsuitable because they only contained a single data point

or recorded a high viral load at the first (not necessarily positive) test (more than

25,000 HIV RNA copies per milliliter), indicating that the ramp-up phase has been

missed. Next, we removed obvious duplicate entries, and combined complemen-

tary time series where disjoint subsets of the plasma samples were tested with

different HIV tests. Many HIV RNA tests have upper limits of detection, which can

differ for different tests. Unfortunately, measurements above the detection limit are

only sometimes labeled as such, other times the upper limit of detection is reported

like an accurate measurement. In cases where two or more HIV RNA tests were

taken on the same sample and had identical numerical values and at least one of the

results was labeled as above the detection limit of the test, we interpreted this as a

result above the limit of detection of both tests. This was the case in 21 samples.
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When several HIV RNA tests of the same sample were recorded as below the detec-

tion limit but did not match, as is the case for 36 time series, we took the geometric

mean to preserve the distribution of measurement error, which is proportional to

the logarithm of the value.

The remaining 129 time series still had some overlap where several tests were

taken for the same patient at the same times, but the measured values were not

identical or compatible in the sense above. In particular, some tests were not able

to detect HIV RNA as early as others, or some tests only provided an upper bound

where other tests measured a definite and different numerical value. We ignore

tests that detected HIV RNA later, or that only provide an upper bound when a dif-

ferent test on the same plasma samples found a definite numerical value because

we believe that these are less accurate tests. As a final tie-breaker we chose the

time series of the test that was used on more plasma samples. Finally, we disregard

time series where fewer plasma samples were tested. After this cleaning we obtain

94 unique time series of 94 patients with measure or averaged HIV RNA measure-

ment at several time points. In 7 of these no meaningful viral growth rate could be

calculated, either because HIV RNA was undetectable in all recorded tests, or be-

cause the viral load decreased initially, indicating that the first test was taken after

the peak viral load. We further removed 5 time series where only two positive test

results were available and they were more than 25 days apart, because it is unlikely

that both tests were taken during the ramp-up stage. This leaves 82 patients, of

which 4 more were excluded by inspection, as follows:

1006: Since the left values of the steepest slope is undetectable, yet preceded

by a positive viral load measurement (110 RNA copies/mL), we suspect the left

value of the steepest slope to be a false negative. Hence the actual steepest slope

should be much more shallow.
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1006: max growth rate 1.51 day−1

above detection limit
numerical test result
below detection limit

63521: Since the left values of the steepest slope is undetectable, yet preceded

by a positive viral load measurement (63 RNA copies/mL), we suspect the left

value of the steepest slope to be a false negative. Hence the actual steepest slope

should be much more shallow.
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63521: max growth rate 1.86 day−1

HIV9011: The bDNA test shows positive values immediately, which are just

above the limit of detection. Due to the number of positive test results it is unlikely,

but not impossible, that these are all false positive tests, and that the real viral

increase is only observed after day 20. If this is not the case we have most likely

missed the initial rate of viral increase.
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HIV9011: max growth rate 0.2 day−1

HIV9012: The bDNA test shows positive values immediately, which are just

above the limit of detection. Due to the number of positive test results it is unlikely,

but not impossible, that these are all false positive tests, and that the real viral

increase is only observed after day 5. If this is not the case we have most likely

missed the initial rate of viral increase.
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HIV9012: max growth rate 1.01 day−1

Finally, patient HIV9031 was also considered for exclusion because of the early

detectable viral load. However, we decided to keep HIV9031 in the dataset be-

cause the single positive bDNA test is followed by eight negative test results, which

makes us believe that the first positive test was a false positive. Further, this time

series is present in another dataset that we use, and there the RNA test found no

HIV RNA in the sample.
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HIV9031: max growth rate 0.58 day−1

B.2 Patient data
Here we plot the data of all 78 patients that were included in our analysis. We also

show the fit for each patient, for all risk categories (see main paper).
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1: max growth rate 1.05 day−1
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1001: max growth rate 0.72 day−1

Low risk, small inoculum
Medium risk, medium inoculum
High risk, large inoculum
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1011: max growth rate 1.24 day−1

10 0 10 20 30

Days since first test

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

H
IV

 R
N

A
 (

cp
/m

l)

A 

1018: max growth rate 0.53 day−1
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1026: max growth rate 1.24 day−1
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1055: max growth rate 1.52 day−1
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12008: max growth rate 1.63 day−1
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1814: max growth rate 0.44 day−1
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199: max growth rate 0.85 day−1
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3: max growth rate 0.47 day−1
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3168: max growth rate 1.23 day−1
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4603: max growth rate 0.48 day−1
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5526-2: max growth rate 1.42 day−1
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6240: max growth rate 1.06 day−1
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6244: max growth rate 1.22 day−1
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6246: max growth rate 1.15 day−1
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6247: max growth rate 1.23 day−1
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63215: max growth rate 1.27 day−1
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63753: max growth rate 0.78 day−1
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9018: max growth rate 0.95 day−1
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9021: max growth rate 1.07 day−1
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9023: max growth rate 1.31 day−1
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9024: max growth rate 1.08 day−1
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9025: max growth rate 0.76 day−1
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9028: max growth rate 0.36 day−1
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9029: max growth rate 0.63 day−1
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9030: max growth rate 1.17 day−1
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9075: max growth rate 0.37 day−1
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9077: max growth rate 1.02 day−1
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9079: max growth rate 1.41 day−1
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HIV6243: max growth rate 0.8 day−1
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HIV6248: max growth rate 0.99 day−1
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HIV9010: max growth rate 0.9 day−1

0 5 10 15 20 25

Days since first test

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

H
IV

 R
N

A
 (

cp
/m

l)

A 

HIV9013: max growth rate 1.3 day−1
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HIV9016: max growth rate 1.11 day−1
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HIV9020: max growth rate 1.04 day−1
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HIV9022: max growth rate 0.95 day−1
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HIV9026: max growth rate 0.58 day−1
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HIV9031: max growth rate 0.58 day−1
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HIV9032: max growth rate 0.86 day−1
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HIV9033: max growth rate 0.63 day−1
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HIV9034: max growth rate 1.55 day−1
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HIV9082: max growth rate 0.77 day−1
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HIV9084: max growth rate 0.45 day−1
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HIV9089: max growth rate 0.92 day−1
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HIV9096: max growth rate 1.26 day−1
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PRB923: max growth rate 0.82 day−1
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PRB931: max growth rate 0.64 day−1
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PRB933: max growth rate 0.45 day−1
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PRB935: max growth rate 1.87 day−1
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PRB939: max growth rate 0.93 day−1
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PRB940: max growth rate 0.52 day−1
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PRB942: max growth rate 1.02 day−1
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PRB943: max growth rate 1.78 day−1
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PRB944: max growth rate 1.22 day−1
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PRB945: max growth rate 1.21 day−1
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PRB946: max growth rate 1.46 day−1
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PRB947: max growth rate 0.51 day−1
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PRB948: max growth rate 2.92 day−1
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PRB949: max growth rate 1.3 day−1
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PRB950: max growth rate 0.74 day−1
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PRB951: max growth rate 1.28 day−1
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PRB952: max growth rate 1.34 day−1
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PRB953: max growth rate 0.97 day−1
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PRB954: max growth rate 1.02 day−1
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PRB955: max growth rate 1.02 day−1
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PRB956: max growth rate 1.56 day−1
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PRB957: max growth rate 0.83 day−1
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PRB958: max growth rate 1.15 day−1
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PRB960: max growth rate 1.64 day−1
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PRB961: max growth rate 1.13 day−1
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PRB962: max growth rate 1.16 day−1
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PRB963: max growth rate 1.01 day−1
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PRB964: max growth rate 1.24 day−1
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PRB965: max growth rate 0.88 day−1
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PRB966: max growth rate 0.86 day−1
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PRB972: max growth rate 0.59 day−1
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SV0401: max growth rate 0.92 day−1
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Appendix C

Additional material for malaria

The content of this appendix and the corresponding Chapter 5 stems from a course

project in MATH 561: Mathematics of Infectious Diseases and Immunology taught

2011 at UBC, which was published in Malaria Journal [66]. I am the lead author

of the publication, which is joint work with Michael Lindstrom, Anja Gumpinger,

Jielin Zhu and Daniel Coombs. The journal article is distributed under the terms

of the Creative Commons Attribution License (CC-BY) and has been modified

slightly to fit the style and context of this thesis.

C.1 Proof of theorems
In this appendix we present the lengthy but straightforward proofs of some mathe-

matical results used in Chapter 5.

C.1 Theorem (Local Stability).
1. The trivial equilibrium (h,S, I,F) = (0,0,0,0) is locally asymptotically sta-

ble if and only if κ < (µ+α)(µ+σ)
µ+α+σ

.

2. The malaria-free equilibrium (h,S, I,F) = (0,Sm,0,Fm) exists in the positive

plane and is locally asymptotically stable if and only if both of the following

conditions are fulfilled:

κ >
(µ +α)(µ +σ)

µ +α +σ
and R0 = β

√
γSm

ρ(µ +α)H
< 1.
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Where Sm = P(µ+σ)
µ+α+σ

(1− (µ+α)(µ+σ)
κ(µ+α+σ) ) and Fm = α

µ+σ
Sm.

3. The endemic equilibrium (h,S, I,F) = (he,Se, Ie,Fe) exists in the positive

plane and is locally asymptotically stable if and only if both of the following

conditions are fulfilled:

κ >
(µ +α)(µ +σ)

µ +α +σ
and R0 = β

√
γSm

ρ(µ +α)H
> 1.

Where he =
R2

0−1
R2

0+β/(µ+α)
, Se =(1− β

µ+α+β

R2
0−1
R2

0
)Sm, Ie =

β

µ+α+β

R2
0−1
R2

0
Sm, Fe =

Fm.

Proof: We first show how to get to the steady states and that the system indeed has

exactly these three steady states. The trivial steady state (h,S, I,F) = (0,0,0,0) is

straightforward.

In the malaria-free steady state neither infected humans (hm = 0), nor infected

mosquitoes (Im = 0) are present, but susceptible mosquitoes Sm and mosquitoes

with fungus Fm are around. The equations reduce to

dS
dt

= κ(S+F)

(
1− S+F

P

)
− (µ +α)S

dF
dt

= αS− (µ +σ)F

Setting the rate of change dF
dt to zero tells us Fm = α

µ+σ
Sm. Plugging this into

the former equation, after we set dS
dt to zero yields (note that Sm +Fm = µ+α+σ

µ+σ
Sm)

0 = κSm
µ +α +σ

µ +σ

(
1− µ +α +σ

µ +σ

Sm

P

)
− (µ +α)Sm

0 =
κ(µ +α +σ)

µ +σ
− κ(µ +α +σ)2

P(µ +σ)2 Sm−
(µ +α)(µ +σ)

µ +σ

Sm =
P(µ +σ)(κ(µ +α +σ)− (µ +α)(µ +σ))

κ(µ +α +σ)2

=
P(µ +σ)

µ +α +σ

(
1− (µ +α)(µ +σ)

κ(µ +α +σ)

)
,
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where we divided by Sm since we assumed Sm 6= 0. If Sm = 0 we reach the trivial

steady state. Therefore

Fm =
α

µ +σ
Sm =

αP
µ +α +σ

(
1− (µ +α)(µ +σ)

κ(µ +α +σ)

)
.

This brings us to the endemic steady state, where he, Se, Ie and Fe are all distinct

from zero. (Note that Se = 0 or Fe = 0 would lead us to the trivial steady state, since

populations can not be negative.)

First, note that we can divide by 1−he, since he 6= 1 due to the first equation in

(1). Setting dh
dt = 0 yields Ie =

ρHhe
βγ(1−he)

. Setting dI
dt = 0 yields Ie =

βSehe
µ+α

. Combining

those those two equations yields Se =
ρH(µ+α)
β 2γ(1−he)

. Next, setting dF
dt = 0 we obtain

Fe =
α

µ +σ
(Se + Ie) =

αρH
β 2γ(µ +σ)(1−he)

(βhe +µ +α).

Therefore,

Se + Ie +Fe =
ρH

βγ(1−he)

(
µ +α

β
+he +

α

β (µ +σ)
(βhe +µ +α)

)
=

ρH
β 2γ(1−he)

(
µ +α +βhe +

α

µ +σ
(βhe +µ +α)

)
=

ρH(µ +α +σ)

β 2γ(µ +σ)(1−he)
(βhe +µ +α)

Plugging this into the equation dS
dt = 0 will lead to he, but not before a lengthy

calculation:

0 = κ
ρH(µ +α +σ)

β 2γ(µ +σ)(1−he)
(βhe +µ +α)

×
(

1− ρH(µ +α +σ)

Pβ 2γ(µ +σ)(1−he)
(βhe +µ +α)

)
−βhe

ρH(µ +α)

β 2γ(1−he)
− (µ +α)

ρH(µ +α)

β 2γ(1−he)
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multiplying by β 2γ(1−he)
ρH yields

0 =
κ(µ +α +σ)

µ +σ
(βhe +µ +α)

(
1− ρH(µ +α +σ)

Pβ 2γ(µ +σ)(1−he)
(βhe +µ +α)

)
− (µ +α)(βhe +µ +α).

Multiplying by µ+σ

κ(µ+α+σ)(βhe+µ+α) , which is positive since he is positive, and re-

arranging we obtain

ρH(µ +α +σ)(βhe +µ +α)

Pβ 2γ(µ +σ)(1−he)
= 1− (µ +α)(µ +σ)

κ(µ +α +σ)

To solve this for he we multiply by the denominator on the left hand side and

expand the resulting terms:

ρH(µ +α +σ)βhe +ρH(µ +α +σ)(µ +α)

= Pβ
2
γ(µ +σ)−Pβ

2
γ(µ +σ)he

− Pβ 2γ(µ +α)(µ +σ)2

κ(µ +α +σ)
+

Pβ 2γ(µ +α)(µ +σ)2

κ(µ +α +σ)
he,

which we rearrange to

he

[
ρβH(µ +α +σ)+Pβ

2
γ(µ +σ)

(
1− (µ +α)(µ +σ)

κ(µ +α +σ)

)]
= Pβ

2
γ(µ +σ)

(
1− (µ +α)(µ +σ)

κ(µ +α +σ)

)
−ρH(µ +α +σ)(µ +α).

We now divide by ρH(µ +α)(µ +α +σ) and recall that

R2
0 =

β 2γSm

ρ(µ +α)H
=

Pβ 2γ(µ +σ)

ρH(µ +α)(µ +α +σ)
(1− (µ +α)(µ +σ)

κ(µ +α +σ)
).

This results in

he

(
R2

0 +
β

µ +α

)
= R2

0−1, or equivalently he =
R2

0−1
R2

0 +β/(µ +α)
.
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From here we can quickly find Se, Ie and Fe:

Se =
ρH(µ +α)

β 2γ(1−he)
=

Sm

R2
0(1−he)

=
Sm

R2
0

R2
0 +

β

µ+α

1+ β

µ+α

= Sm

(
1− β

β +µ +α

R2
0−1
R2

0

)

Ie =
ρHhe

βγ(1−he)
=

βSm

R2
0(µ +α)

he

1−he
=

βSm

R2
0(µ +α)

R2
0−1

R2
0 +

β

µ+α

R2
0 +

β

µ+α

1+ β

µ+α

= Sm
β

β +µ +α

R2
0−1
R2

0

Fe =
α

µ +σ
(Se + Ie) =

α

µ +σ
Sm = Fm

To determine the local stability of the steady states we compute the character-

istic polynomial of the linearized system around the equilibrium. To simplify the

notation we abbreviate ϒ = κ(1−2(S+ I +F)/P).∣∣∣∣∣∣∣∣∣∣
−βγ

I
H −ρ−λ 0 βγ

1
H (1−h) 0

−βS ϒ−βh−µ−α−λ ϒ ϒ

βS βh −(µ +α)−λ 0

0 α α −(µ +σ)−λ

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
−βγ

I
H −ρ−λ 0 βγ

1
H (1−h) 0

0 ϒ− (µ +α)−λ ϒ− (µ +α)−λ ϒ

βS βh −(µ +α)−λ 0

0 α α −(µ +σ)−λ

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
−βγ

I
H −ρ−λ 0 βγ

1
H (1−h) 0

0 ϒ− (µ +α)−λ 0 ϒ

βS βh −(µ +α)−βh−λ 0

0 α 0 −(µ +σ)−λ

∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣ −βγ
I
H −ρ−λ βγ

1
H (1−h)

βS −(µ +α)−βh−λ

∣∣∣∣∣︸ ︷︷ ︸
=:A

×

∣∣∣∣∣ κ (1−ϒ)− (µ +α)−λ κ (1−ϒ)

α −(µ +σ)−λ

∣∣∣∣∣︸ ︷︷ ︸
=:B

The fourth-order polynomial factors nicely into two second-order polynomials.

This is to be expected: Polynomial A says if malaria can invade the population,

polynomial B decides if mosquitoes can invade the environment.

We now split the analysis into the three equilibria:

1. Trivial equilibrium (h,S, I,F) = (0,0,0,0). Then A becomes

A = det

∣∣∣∣∣ −ρ−λ βγ
1
H

0 −(µ +α)−λ

∣∣∣∣∣= (ρ +λ )(µ +α +λ ),

which clearly has the two negative roots λ =−ρ and λ =−(µ +α). Hence,

malaria can not invade a void population and the stability of the trivial steady

state is solely determined by B.

B becomes

B =

∣∣∣∣∣ κ− (µ +α)−λ κ

α −(µ +σ)−λ

∣∣∣∣∣
= ((κ− (µ +α))−λ )((−(µ +σ))−λ )−ακ

= λ
2 +[(µ +σ)+(µ +α)−κ]λ +(µ +α)(µ +σ)−κ(α +µ +σ)

The constant term is positive if and only if

κ <
(µ +α)(µ +σ)

µ +α +σ
= (µ +α)

µ +σ

µ +α +σ
(C.1)

If this condition is not fulfilled, then there is a positive root and hence the

steady state is not stable. If this condition is fulfilled, then κ < (µ +α) <

(µ +α) + (µ + σ) and hence the linear term is also positive. Thus only
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negative roots exist and the steady state is table. Hence the trivial steady

state is stable if and only if the condition (C.1) on κ holds.

2. Malaria-free equilibrium (h,S, I,F) = (0,Sm,0,Fm).

In the malaria-free equilibrium A becomes

A = det

∣∣∣∣∣ −ρ−λ βγ
1
H

βSm −(µ +α)−λ

∣∣∣∣∣= (−ρ−λ )(−(µ +α)−λ )−β
2
γ

Sm

H

= λ
2 +(ρ +µ +α)λ +ρ(µ +α)−β

2
γ

Sm

H
.

This polynomial has only negative roots if and only if the constant term is

positive, i.e. if and only if

ρ(µ +α)−β
2
γ

Sm

H
> 0,

which is equivalent to R0 = β

√
γSm

ρ(µ+α)H < 1.

The polynomial B becomes

B = det

∣∣∣∣∣ κ

(
1− 2(Sm+Fm)

P

)
− (µ +α)−λ κ

(
1− 2(Sm+Fm)

P

)
α −(µ +σ)−λ

∣∣∣∣∣
Before we go about calculating this, let us first simplify the first row a little

bit:

Sm +Fm = Sm +
α

µ +σ
Sm =

µ +α +σ

µ +σ
Sm

= P
κ(µ +α +σ)− (µ +α)(µ +σ)

κ(µ +α +σ)

= P
(

1− (µ +α)(µ +σ)

κ(µ +α +σ)

)
With that we obtain

κ

(
1− 2(Sm +Fm)

P

)
= κ

(
1−2

(
1− (µ +α)(µ +σ)

κ(µ +α +σ)

))
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= 2
(µ +α)(µ +σ)

µ +α +σ
−κ.

Therefore

B = det

∣∣∣∣∣ κ

(
1− 2(Sm+Fm)

P

)
− (µ +α)−λ κ

(
1− 2(Sm+Fm)

P

)
α −(µ +σ)−λ

∣∣∣∣∣
= det

∣∣∣∣∣ 2 (µ+α)(µ+σ)
µ+α+σ

−κ− (µ +α)−λ 2 (µ+α)(µ+σ)
µ+α+σ

−κ

α −(µ +σ)−λ

∣∣∣∣∣
=

(
2
(µ +α)(µ +σ)

µ +α +σ
−κ− (µ +α)−λ

)
(−(µ +σ)−λ )

−α

(
2
(µ +α)(µ +σ)

µ +α +σ
−κ

)
= λ

2 +λ

[
κ +(µ +α)+(µ +σ)−2

(µ +α)(µ +σ)

µ +α +σ

]
+κ(µ +α +σ)+(µ +α)(µ +σ)−2

(µ +α)(µ +σ)

µ +α +σ
(µ +α +σ)

= λ
2 +λ

[
κ +(µ +α)

(
1− µ +σ

µ +α +σ

)
+(µ +σ)

(
1− µ +α

µ +α +σ

)]
+κ(µ +α +σ)− (µ +α)(µ +σ).

It is now obvious that this polynomial has two roots with negative real part,

if only if the constant term is positive, i.e. if

κ >
(µ +α)(µ +σ)

µ +α +σ
.

3. Endemic equilibrium (h,S, I,F) = (he,Se, Ie,Fe).

In the endemic steady state the polynomial A becomes

A =

∣∣∣∣∣ −βγ
Ie
H −ρ−λ βγ

1
H (1−he)

βSe −(µ +α)−βhe−λ

∣∣∣∣∣
= λ

2 +λ

[
βγ

Ie

H
+ρ +µ +α +βhe

]
+βγ

Ie

H
(µ +α)+β

2
γ

Ie

H
he +ρ(µ +α)+βρhe−β

2
γ

Se

H
+β

2
γ

Se

H
he
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= λ
2 +λ

[
βγ

Ie

H
+ρ +µ +α +βhe

]
+βγ

Ie

H
(µ +α)+ρ(µ +α)+β

2
γ

Ie

H
−β

2
γ

Se

H
(1−he),

where we used that ρhe = βγ
Ie
H (1− he). In the constant term we now sub-

stitute Se and Ie with the expressions we just found above, and also use the

definition of R0. Factoring the result yields

A = λ
2 +λ

[
βγ

Ie

H
+ρ +µ +α +βhe

]
+

β 2γSm

H

(
µ +α

β +µ +α

R2
0−1
R2

0
+

1
R2

0
+

β

β +µ +α

R2
0−1
R2

0

− (1−he)

(
1− β

β +µ +α

R2
0−1
R2

0

))

= λ
2 +λ

[
βγ

Ie

H
+ρ +µ +α +βhe

]
+R2

0ρ(µ +α)

(
he +(1−he)

β

β +µ +α

R2
0−1
R2

0

)
,

where we again used the definition of R0. We now see that, if R0 > 1, then

all roots of A have negative real part.

For B, note that Se + Ie +Fe = Sm +Fm, and hence B is the same as in the

malaria-free steady state.

C.2 Theorem (Fungus exposure rate).
The malaria prevalence in humans he = he(α,σ) decreases when the fungus-exposure

rate α increases. The total number of mosquitoes Se+Ie+Fe = (Se+Ie+Fe)(α,σ)

also decreases when α increases, unless the fungus-induced death rate σ is zero,

in which case the total number of mosquitoes is unaffected by α .

Proof: Before we prove the claim, we first show that Sm = Sm(α,σ) is a decreasing

function of α is, i.e.

∂Sm

∂α
(α,σ)< 0
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for all α,σ ≥ 0. A straightforward calculation yields

∂Sm

∂α
(α,σ) =

∂

∂α

[
P(µ +σ)

µ +α +σ

(
1− (µ +α)(µ +σ)

κ(µ +α +σ)

)]
=− P(µ +σ)

(µ +α +σ)2

[(
1− (µ +α)(µ +σ)

κ(µ +α +σ)

)

+
κ(µ +α +σ)(µ +σ)−κ(µ +α)(µ +σ)

κ2(µ +α +σ)

]

=− P(µ +σ)

(µ +α +σ)2

(
1−2

(µ +α)(µ +σ)

κ(µ +α +σ)
+

µ +σ

κ

)
=− P(µ +σ)

(µ +α +σ)2

(
µ +σ

κ

(
1− µ +α

µ +α +σ

)

+

(
1− (µ +α)(µ +σ)

κ(µ +α +σ)

))
< 0,

since κ > (µ+α)(µ+σ)
µ+α+σ

by the assumption that malaria is endemic.

Now, let 0 ≤ α1 < α2 and fix σ ≥ 0. For notational convenience we omit the

argument σ in the following calculation. From the calculation above we can further

deduce that

Sm(α1)> Sm(α2) =⇒ R2
0(α1) =

β 2γSm(α1)

ρ(µ +α1)H
>

β 2γSm(α2)

ρ(µ +α2)H
= R2

0(α2).

Finally, we are now in position to show the first claim:

he(α2)< he(α1)

⇔
R2

0(α2)−1
R2

0(α2)+β/(µ +α2)
<

R2
0(α1)−1

R2
0(α1)+β/(µ +α1)

⇔ 0 < (µ +α1)(µ +α2)(R2
0(α1)−R2

0(α2))

+β (R2
0(α1)(µ +α1)−R2

0(α2)(µ +α2))+β (α2−α1)

⇔ 0 < (µ +α1)(µ +α2)(R2
0(α1)−R2

0(α2))
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+β
β 2γ

ρH
(Sm(α1)−Sm(α2))+β (α2−α1).

The former results show that the last line is true, hence the first claim follows.

To see that the total number of mosquitoes Se + Ie +Fe also decreases with α , we

calculate that

∂Se + Ie +Fe

∂α
(α,σ) =

∂

∂α

µ +α +σ

µ +σ
Sm(α,σ)

=
1

µ +σ
Sm(α,σ)+

µ +α +σ

µ +σ

∂Sm

∂α
(α,σ)

=
P

µ +α +σ

(
1− (µ +α)(µ +σ)

κ(µ +α +σ)

)
− P

µ +α +σ

(
µ +σ

κ

(
1− µ +α

µ +α +σ

)

+

(
1− (µ +α)(µ +σ)

κ(µ +α +σ)

))

=− Pσ(µ +σ)

κ(µ +α +σ)2

≤ 0,

which only vanishes when σ = 0 and hence proves the second claim.

C.3 Theorem (Fungus-induced death rate on mosquitoes).
For α > 0 the total number of mosquitoes, Se + Ie +Fe, decreases if the fungus-

induced death rate σ increases.

Proof: This is a straightforward calculation. Recall Se + Ie + Fe = Sm + Fm =

Sm(1+ α

µ+σ
) = P(1− (µ+α)(µ+σ)

κ(µ+α+σ) ) and calculate

∂ (Se + Ie +Fe)

∂σ
(α,σ) =−P

κ(µ +α +σ)(µ +α)−κ(µ +α)(µ +σ)

κ2(µ +α +σ)2

=− Pα(µ +α)

κ(µ +α +σ)2 ,

which is negative for all α > 0.
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C.4 Theorem (Fungus-induced death rate on malaria prevalence in humans).
If α = 0 (i.e. no fungus spraying) the human malaria incidence rate he = he(0,σ)

is constant in σ . If α > 0 (i.e. the fungus is applied) the malaria prevalence in

the human population he(α,σ), as well as the total number of infected mosquitoes

Ie(α,σ), both have their maximum at

σ
∗ =

(κ−2µ)(µ +α)

(2µ−κ)+2α
.

Proof: Let α ≥ 0 be fixed. To find the local maximum of he(α,σ) we first calculate

the derivative with respect to σ . This yields

∂he

∂σ
(α,σ) =

1+β/(µ +α)

(R2
0(α,σ)+β/(µ +α))2

∂R2
0

∂σ
(α,σ)

so that we see that he(α,σ) has a critical point whenever R2
0(α,σ) has a critical

point. However, R2
0(α,σ) in turn a critical point whenever Sm(α,σ) has a critical

point:

∂R2
0

∂σ
(α,σ) =

β 2γ

ρ(µ +α)H
∂Sm

∂σ
(α,σ).

Thus we first study the critical points of Sm(α,σ).

∂Sm

∂σ
(α,σ) = P

[
α

(µ +α +σ)2

(
1− (µ +α)(µ +σ)

κ(µ +α +σ)

)

− µ +σ

µ +α +σ

(µ +α +σ)(µ +α)− (µ +σ)(µ +α)

κ(µ +α +σ)2

]

=
Pα

(µ +α +σ)2

(
1−2

(µ +α)(µ +σ)

κ(µ +α +σ)

)
.

Now we see that if α = 0, then Sm(0,σ), and hence he(0,σ) is constant for all val-

ues of σ . So from now on let α > 0. Then the value σ∗ that makes ∂

∂σ
Sm(α,σ∗) =

0 solves

1 = 2
(µ +α)(µ +σ∗)

κ(µ +α +σ∗)
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⇔ σ
∗(κ−2(µ +α)) = (µ +α)(2µ−κ)

If κ = 2(µ +α), then the equation above yields 0 = (µ +α)α , which is only true

for α = 0, since µ > 0. As we have asserted before, h2 is constant in this case.

Therefore, if κ = 2(µ +α) no maximum exists. If κ 6= 2(µ +α) we obtain

σ
∗ =

(κ−2µ)(µ +α)

(2µ−κ)+2α
,

i.e. ∂Sm
∂σ

(α,σ∗) = 0 and thus ∂R2
0

∂σ
(α,σ∗) = 0 = ∂he

∂σ
(α,σ∗). We use the second

derivative test to quickly check that the value at (α,σ∗) is indeed a maximum:

∂ 2Sm

∂σ2 (α,σ∗) =
2Pα

(µ +α +σ∗)3

( =0︷ ︸︸ ︷
−1+2

(µ +α)(µ +σ∗)

κ(µ +α +σ∗)

− (µ +α +σ∗)(µ +α)− (µ +σ∗)(µ +α)

κ(µ +α +σ∗)

)
=−2

Pα(µ +α)

κ(µ +α +σ∗)3

(
1− µ +σ∗

µ +α +σ∗

)
< 0.

Since ∂Sm
∂σ

(α,σ) and and ∂he
∂σ

(α,σ) have the same sign everywhere this implies that

he also has its maximum at (α,σ∗). Finally, Ie is an increasing function of he and

hence is also maximized at (α,σ∗).

Parameters
We choose some reasonable parameter values to illustrate our analytical results.

Consider a small village with constant population size of H = 3000 humans. It is

fair to assume that female mosquitoes typically outnumber humans by a factor of

three to ten (see [19, 101]), hence we choose the carrying capacity of mosquitoes to

be P̃ = 10000. About half of bites from infectious mosquitoes lead to an infection

in a human [18, 19], i.e. γ = 0.5.

The biting rate β is difficult to measure as it depends on many factors, in partic-
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ular (seasonal) human behavior. In our simple model we assume a constant mass-

action rate. The value used in [101], βγP̃/H = 0.5 would translates to β = 0.3

day−1, which is about the maximal number of times one mosquito would want to

bite humans per unit time, if humans were freely available, see [18]. Since it is

reasonable to assume that humans are somewhat not always freely available in a

village we choose β = 0.15 days−1. This choice does not significantly affect the

qualitative results of the study. Infected humans leave the infectious class by natu-

ral or malaria-induced death or when they develop (temporal) immunity. The latter

is the dominating contributor, and usually happens after a few months to a year,

hence we choose an average of 200 days, i.e. ρ = 0.005 days−1 (see [18, 64]).

The mean life-time of an outgrown, biting, female mosquito is around ten days

[64, 101] and hence the mosquito death rate is chosen to be µ = 0.1 days−1.

A typical mosquito population is not constant throughout a year but is heavily

influenced by external factors such as rainfall and humidity. A small mosquito pop-

ulation at end of a dry season typically experiences a fast growth at the beginning

of the rain season. Here is field data from [2], where the number of mosquitoes

caught in a trap close to a village in Nigeria was measured between August 2005

and July 2006:

Aug Sep Oct Nov Dec Jan

Anopheles gambiae 23 24 25 21 9 5

Feb Mar Apr May Jun Jul

Anopheles gambiae 12 26 47 50 76 46

The growth phase from January until June can clearly be seen. We assume that,

in this time period, the environmental conditions are so optimal for the mosquito

population, that it experiences exponential growth. So we let M = S+ I be the total

number of mosquitoes, set α = 0, hence F = 0, since in the data no fungus was

applied, and fit the data points above to the simplified model

dM
dt

= (κ−µ)M, M(0) = M0.

Then we perform a least-square fit optimization for (κ−µ) and M0 to obtain (κ−
µ)≈ 0.38 days−1, or simply κ = 0.48 days−1.
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Figure C.1: Data fitting for κ . We fit an exponential function for six of the
data points reported in [2] to find an approximation for κ−µ .

In the life-stage-structured model we need to estimate the larval production rate

κc and intra-specific larval competition parameter κL. For simplicity, we set κc = κ

as estimated above, and then choose κL so that the number of mosquitoes is equal

to the carrying capacity in the absence of the fungus.

Value Interpretation Unit Source

H 3000 Total human population humans -

P̃ 10000 Mosquito carrying capacity mosquitoes [18, 101]

proportion of infectious bites

γ 0.5 from an infected mosquito - [18, 19]

β 0.15 per capita mosquito biting rate days−1 [18]

ρ 0.005 recovery rate of infected humans days−1 [18, 64]
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Value Interpretation Unit Source

µ 0.1 Natural mosquito death rate days−1 [64, 101]

κ 0.48 Innate mosquito growth rate days−1 [2]

α varied Exposure rate of the fungus days−1 -

σ varied Fungus-induced death rate days−1 -

ξ varied Vertical transmissibility of fungus days−1 -

κc 0.48 Mosquito larvae birth rate days−1 see text

κL 3.8e-5 Larval competition parameter days−1 larvae−1 see text

Table C.1: Summary of estimates and references for the parameters used in
the malaria models.
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