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Abstract

Folds and wrinkles are an important visual cue in the recognition of realistically

dressed characters in virtual environments. Wrinkles must, however, move dynam-

ically within the context of an animation to retain much of this realism. Adding

wrinkles to real-time cloth visualization proves challenging, as the animations used

in games, pre-render visualization, and other such applications, often have no refer-

ence shape, an extremely low triangle count, and poor temporal and spatial coher-

ence. I contribute approaches towards the persistence of wrinkles over time, and the

creation and rendering of wrinkle geometry in a real-time context, towards a novel

real-time method for adding believable, dynamic wrinkles to coarse cloth anima-

tions. With this method we trace spatially and temporally coherent wrinkle paths

and overcomes the inaccuracies and noise in low-end cloth animation. We employ

a two stage stretch tensor estimation process, first detecting regions of consistent

surface behaviour, and then using these regions to construct a per-triangle, tempo-

rally adaptive reference shape and a stretch tensor based on it. We use this tensor to

dynamically generate new wrinkle geometry on coarse cloth meshes through use of

the GPU tessellation unit. Our algorithm produces plausible fine wrinkles on real-

world data sets at real-time frame rates, and is suitable for the current generation

of consoles and PC graphics cards.
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Preface

The ideas and algorithms described in this thesis, unless otherwise stated below,

were developed by myself in concert with Craig Peters, and in consultation with

Dr. Alla Sheffer and Nicholas Vining. They were submitted in the research paper:

• R. Gillette, C. Peters, N. Vining, E. Edwards, and A. Sheffer. Real-time dy-

namic wrinkling of coarse animated cloth. In Proc. Symposium on Computer

Animation, SCA ’15, 2015 [15]

Figures and text taken from the publication are copyright (c) SCA (Symposium

on Computer Animation) and have been re-used with permission.

Chapter 4 describes an algorithm developed by Craig Peters in consultation

with Dr. Alla Sheffer. The text from this chapter appears in the above publication

and has been included here for the sake of completeness.

My contributions are found in Chapters 6, 7, and 8. Chapter 6 covers the explo-

ration of shape contours of wrinkles, chapter 7 discusses rendering, and Chapter

8 describes the considerations for proximity tests on both the CPU and GPU. The

comparison of tessellation and per fragment rendering approaches, as described in

Chapter 9, may also be largely attributed to me.
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Chapter 1

Introduction

Wrinkles and folds form at seams, bends, and other regions of cloth where material

has been pushed or pulled from its original shape. This behaviour provides strong

visual cues towards the recognition of shape and motion in garments, and plays

a vital role in the representation of believable cloth in virtual environments such

as film, animation, digital media or games [10]. Wrinkles can be considered fine

details on cloth when compared to general draping movement or the size of the

whole mesh. To capture this level of detail in a physical simulation requires a mesh

of sufficient resolution to represent the wrinkles, much finer than is required to

capture global draping behaviour. While simulation of large scale motion in cloth is

often feasible in modern real-time applications, the fine resolution and subsequent

computation required to simulate fine wrinkle details proves prohibitive to real-

time applications. Offline computation of wrinkles is often not a suitable solution,

as real-time applications may smoothly blend between animations to account for

user input, or else use other dynamically generated content that therefore procludes

the use of precomputed results. We introduce a new method for achieving fine

detail wrinkling in real-time on low-resolution cloth animations, targeted towards

games and virtual environments. An example is shown in Figure 1.1.

Cloth animation for games is not typically generated by a pure physics simu-

lation; the shape of a garment on a character reacts to player input and is driven

by a combination of coarse simulation, inverse kinematics, and animation blend-

ing from multiple sources [29]. Rather than trying to capture fine wrinkling in the
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Figure 1.1: Typical example highlighting input mesh coarseness and finished
results.

2



simulation, we are motivated by offline approaches for adding wrinkles and folds

to cloth simulation as a post-process [24, 35, 43], as illustrated in Figure 2.1, top.

These post-processing methods operate on the key observation that cloth is incom-

pressible [21], and that a mesh without sufficient resolution to show wrinkles will

appear to visually stretch and compress within a local, temoral window. This de-

formation is quantified as compression with respect to a known reference shape

free of deformation in order to determine the amount of material lost due to lack

of resolution. A refined, or user generated mesh of sufficiently high resolution to

express the wrinkles is then mapped to the low resolution input so that areas of

compression may be deformed to account for lost material by forming wrinkles

normal to the mesh and orthogonal to the direction of compression.

Cloth meshes for video games are generated without a meaningful reference

shape against which to measure compression [14]. The animations are non-physical,

and thus a single meaningful reference shape free of deformation may not exist.

We therefore construct an approximate frame of reference, in the form of a local

per-triangle reference shape, which is accurate enough with respect to recently ob-

served frames of animation to create temporally plausible wrinkles. This reference

shape is allowed to change and evolve over time as animation is seen by the viewer,

and is progressively updated as new frames are processed in response to user input

and intrinsic changes in triangle shape are measured. In each frame, we compute

the compression of the current triangle with respect to the per-triangle reference

shape, and use this information to seed and modify wrinkles.

Creating wrinkles to resolve the loss of material indicated by our computed

level of compression requires a mapping of geometry from the coarse input mesh

to a high resolution counterpart. Performing this mapping on the CPU requires

the generation or storage, deformation, and transfer to the GPU of high fidelity

meshes. Transfer to the GPU for rendering results in a copy of the high resolution

mesh existing on both the CPU and GPU and may prove a bottleneck for large

meshes. We resolve these situations using an adaptive tesselation scheme on the

GPU. The mesh is refined only in areas needing high precision, similar to Rohmer

et al. [43], and a high resolution wrinkle mesh exists only on the GPU. In this

manner we have removed the duplicate high resolution and spread computation of

the refined mesh across the many specialized cores of the GPU.
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We directly operate on the piecewise constant tensor data, tracing wrinkle paths

across areas of high compression in our per-triangle compression field. We update

existing wrinkle paths by solving for spatially and temporally smooth positions that

are well aligned with the desired fold directions. We smooth our piecewise paths,

as splines, on the GPU to provide sub-triangle precision and reduce data trans-

fered to the GPU. We use programmable GPU tessellation to selectively refine and

deform the mesh around wrinkle paths: adaptively generating wrinkle geometry.

Normals are computed using a modified distance field and weighted by the height

of each contributing wrinkle to allow visually smooth convergence and divergence

of wrinkles, and to avoid discontinuities arising from euclidean distance calcula-

tions based on piecewise wrinkle paths. This approach enables the generation of

cloth wrinkles across low-end animations at sustained framerates of 60 frames per

second, making it ideally suited for game environments.

Our key technical contributions are three-fold. First, we introduce a method for

generating a temporally adaptive reference shape for typical video game cloth an-

imation sequences, consisting of low-triangle count, hand-animated meshes. Our

approach makes no assumptions about cloth developability, does not rely on a pa-

rameterization of the underlying mesh, has no specific authoring requirements, and

does not rely on training data sets that require updating for every new garment.

Our second contribution is a method for dynamically seeding and evolving wrinkle

paths on a coarse cloth mesh following a piecewise constant per-triangle compres-

sion field. Finally, we show how to generate and render smooth, plausible wrinkle

geometry on cloth in real-time, from piecewise input data, with full use of the

GPU shading and tesselation capabilites. This thesis focuses on the generation of

wrinkle paths, and subsequent mesh refinement and rendering of wrinkles in this

pipeline.

We demonstrate our method on a variety of animated garments taken from real-

world video game titles. We validate our approach by comparing it to alternative

approaches and artist drawn static texture-level folds.
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Chapter 2

Background

Since being posed to the graphics community in works by Weil [52] and Ter-

zopoulos et al.[46], the problem of accurately representing and simulating cloth

has played a vital role in the modeling of virtual environments for movies, anima-

tion, advertisement, and games [9]. Simulation of cloth requires attention to many

important concerns, such as the selection of an appropriate physical model and ad-

equate handling of collisions; these concerns are outside the scope of this thesis.

Our work falls in the category of “wrinkle augmentation” research, which attempts

to refine a coarse cloth simulation with fine details.

The application of graphics hardware to problems in computer graphics has a

diverse history. Modern increases in hardware capability have allowed for work

and problems that were traditionally handled on the CPU to be offloaded to the

GPU. In many cases the GPU is not only an extra computation resource, but also

more efficient at particular tasks. Our work makes heavy use of these capabilities

in a way not previously explored in research.
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(b)

(a)

Figure 2.1: (a) Off-line wrinkling of simulated clothing using a user-provided
reference shape [43]. (b) Our method adds wrinkles to a coarse cloth
mesh typical of real-time applications, where no reference shape exists
and where the animation is too coarse to capture fine intrinsic motion.

2.1 Physical Simulation
In mechanics, the bending outwards from a surface caused by compressive forces

on a thin material is known as buckling. Buckling occurs when internal forces

are overcome by applied compressive forces to result in a state of disequilibrium

[30]. The wrinkling of fabrics is a buckling behaviour heavily dependant on both

the physical properties and geometric structure of the fabric in question[28]. In

woven textiles, for example, internal sheer of the weave structure may be more or

less prevalent as a result of geometric weave strength and material friction between

fibres [21, 28], and may allow for initial deformation inline with the surface prior

to buckling. The physical simulation of cloth attempts to accurately approximate

these properties and structural behaviour by modelling the internal forces they cre-

ate [1, 9, 10].

The formulation of an accurate model for cloth simulation is difficult, and many
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formulations have been given including: non-rigid body dynamics [8, 46], a non-

continuum particle model [6, 11], elastic theory [50], and non-linear shell theory

[12]. The difficulty arises in part due to solution stiffness and instability [9, 10],

and in part due to cloth’s non-linear and often hysteretic (previous-state dependant)

behaviour[10, 21]. Cloth strongly resists stretch and compression, while easily suc-

cumbing to bending. Typical formulations of this in cloth simulation produce a stiff

set of equations due to the strong penalty on stretch and compression that are both

unstable and highly non-linear [9]. Baraff and Witkin [1] account for this stiff-

ness, and allow for larger time steps in their solution, through the use of an implicit

integration approach. Choi and Ko [9] build upon this work using a non-linear for-

mulation of bending energy, allowing buckling to begin as soon as compression is

applied, which overcomes the “post-buckling instability” of previous work.

The problem of buckling has led to novel approaches such as using non-conformal

elements to eliminate stretch and compression during simulation [13] and building

strain limits directly into a continuum-based deformation model [47]. A more in

depth comparison of past approaches may be found in [10, 33].

2.2 Accelerating Simulation with the GPU
Many aspects of the problem of cloth simulation lend themselves well to efficient

implementation on the GPU due to the separability and disjoint nature of its com-

ponent problems. Vasilev et al.[48] use GPU parallelism to compute velocity, nor-

mal, and depth maps for an underlying model. Testing for collision with a point

on the cloth is done efficiently in image space by referencing into the texture at the

screen-space coordinates of the cloth and comparing depth with front- and back-

rendered depth buffers. Tang et al.[44] offload the full computation of collision to

the GPU, treating the GPU as a series of highly parallelizable data stream proces-

sors for the various stages of bounding volume hierarchy tests. Each stream pro-

cessor is responsible for one of the underlying functional modules of the algorithm

such as hierarchy update, bounding volume pairwise tests, and elementary tests.

Li et al.[31] formulate the calculation of forces independently for each vertex and

perform collision detection with a grid-based spatial subdivision algorithm origi-

nally proposed by Zhang et al. [54, 55]. Having posed both calculations as highly
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parallelizable problems, they are able to efficiently compute forces, collisions, and

resulting vertex positions on the GPU. They use the CPU to compute and correct

the over-stretching that results from their choice of a mass-spring model.

Approaches for partial offloading of simulation to the GPU, such as those

above, incur readback costs to the CPU, which impact performance. Alternative

approaches have been suggested which avoid this cost by pushing the complete

simulation to the GPU. Green [17] proposes a method based on Verlet integration

[22] to simulate cloth in 4 rendering passes without explicitly storing velocities.

The constraint pass used for collision detection however, relies on basic shapes

and is unable to handle more complicated cases of intersection arising within or

between geometry. Zeller [53] improves on the collision detection of this approach

with iterative sets of draw calls to evaluate individual springs on each particle and

apply collision constraints. Rodriguez et al. [41] extend the range of acceptable

input meshes to other triangulations and quad meshes with the use of a variable

number of springs per particle and augment the collision detection using a multiple-

camera version of the work by Vassilev et al. [48]. Tang et al. [45] propose a more

complete cloth simulation based on their own previous work [44] and work by Li

et al. [31]. They augment their collision handling with the approach given by Brid-

son and Anderson [7], solving the major constraint of available GPU memory with

deferred front bounding volumes and a compressed diagonal matrix format. This

approach is limited to square or near square cloth meshes, owing to a compressed

system matrix used to represent the chosen spring model.

A more comprehensive approach is proposed by Rodreguez and Susin [40],

computing a finite element solution with linear shape functions, rather than the tra-

ditional polynomial, used for interpolation between nodes. This approach proves

more suitable for the GPU, but requires factorization of the rotational part of the de-

formation gradient to compute the stiffness term for their Lagrangian formulation

of forces. They provide an optimal GPU conjugate gradient method for solving

this system, and use previous approaches for both self and external collision de-

tection. This approach provides plausible results, but the many concessions made

for mathematical stability may introduce error, and the total computational load is

quite heavy.

Simulation of cloth on the GPU remains computationally expensive and suffers
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from limitations imposed on the data representation and model complexity. Our

approach takes advantage of the parallel nature and computational power of the

GPU, runs at real-time rates, and does not suffer from restrictions on geometry.

2.3 Data-Driven Approaches
Data-driven approaches wrinkle cloth meshes with the use of information gained

from offline physical simulations. Guan et al. [18] use a database of simulated

fine garments and mannequins of different shape and pose to generate wrinkles for

new shapes and poses. They construct a per triangle solution from linear trans-

formations applied to garment and mannequin parametrizations and solve for a

consistent solution using least squares. Kim et al. [26] construct a secondary cloth

motion graph that does not explode in size with exploration by collapsing states

of similar trajectories that share primary motion graph state. They efficiently ex-

plore the space of possibilities by expanding the collapsed nodes with the largest

physical error between states. Their novel compression scheme greatly reduce the

memory footprint of the secondary graph and enables real-time traversal of over

33 gigabytes of cloth training data.

Zurdo et al. [56] assume downscaled simulations exhibit similar large scale

deformation and dynamic behaviour to their full resolution counterparts. They

compute a physical simulation on low- as well as high-resolution meshes offline

and preserve a small set of ”example” poses that best capture fine scale wrinkling.

They compute correction vectors on given animations using an adapted pose-space

deformation on edge distances to generate plausible results. Kavan et al. [24] learn

regularization terms from input coarse and fine data sets to solve for upsampling

operators that minimize low frequency differences between the meshes. They make

use of a smart factorization with the offline computation of harmonic bases for

input meshes to improve the computation of compute upsampling operators by two

orders of magnitude. Wang et al. [51] index wrinkle patterns generated per joint

on high resolution simulations of close fitted clothing. Wrinkle meshes for each

joint are interpolated from the database and merged together to produce impressive

results. This work is suitable only for tight-fitted clothing where collision and

friction with the body constrain the range of effect for each joint, and does not
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support loose clothing such as dresses or skirts.

Hahn et al. [20] compute full-space cloth simulations offline, saving a set of

basis vectors for each cluster of poses generated by a principal component analysis

of the results. At run time, they select a relevant subset of the basis vectors of

neighboring nodes in pose space based on similarity to the gradient of the full-space

equation of motion. From these basis vectors, they can compute the reduced-space

hessian, and gradient, with which points in the animation may be updated. This

approach gives impressive wrinkling and torsional folds, but is not fast enough

for real-time applications; it requires close-fitting clothing rigged to a skeleton, a

reference shape, and a set of training simulations.

The data-driven methods are most suited for wrinkling garment animations

with similar design and motion to the training data. Adding a new piece of a

garment typically requires the construction of new training sets. Our framework

does not require training data or a reference shape.

2.4 Real-Time Cloth and Wrinkle Simulation
Real-time cloth simulation for games typically uses a mass and spring system on a

coarse mesh [29], connecting vertices with simple springs designed to apply shear-

ing and stretching forces while maintaining garment structure. These mass and

spring systems form a series of differential equations that are typically integrated

using a stable integration method, e.g. [49]. A detailed example of a cloth simula-

tion in a commercially available video game is discussed by Enqvist [14]. Typical

real-time cloth simulation is very coarse and crude (e.g. 600 to 800 vertices [51]),

and does not address wrinkling or buckling in any part of the simulation.

Adding dynamic wrinkles in video games typically favours simple strategies.

Oat [37] introduces artist-painted wrinkle normal-maps designed to fade-in and out

within key areas of the mesh as cloth stretches and compresses. Wrinkle maps are

easy to implement, with wrinkle regions delineated by texture masks, but are static

and cannot simulate dynamic wrinkle evolution or react to movement not antici-

pated by the artist. Müller and Chentanez [35] attach a high-resolution “wrinkle

mesh” to a coarse cloth simulation and run a static solver in parallel with the mo-

tion of the base mesh to animate the fine-grained wrinkles. This approach requires
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a reliable reference shape and assumes the coarse cloth motion to be spatially and

temporally smooth, which is rarely the case for game-type cloth animations.

2.5 Offline Wrinkle Augmentation
Wrinkle augmentation research attempts to sidestep the myriad of problems asso-

ciated with high resolution physical simulation by adding wrinkling and fine detail

to cloth after an initial simulation is complete. Bergou et al. [2] use constrained

Lagrangian mechanics to add physically-based details such as wrinkles to an artist

animated thin shell, such as cloth. They define their objective function as a weak

formulation of equality (Petrov-Galerkin) between their low resolution input ani-

mation and high resolution output. Petrov-Galerkin equality specifies test functions

which multiply each term and specify the constraints under which equality is sat-

isfied. They design normalized, correlated test functions for the two animations,

with buckling dictated by the distribution of test functions along the surface. They

implement this distribution as the correlation between test functions of either ani-

mation to define a low-distortion mapping between the meshes. Rémillard and Kry

[39] extend this work to simulate the detailed deformation of a thin shell surface on

a deformable solid. They couple a high resolution thin shell to an attached, embed-

ded mesh. Local positional constraints force the shell to match the interior surface

only at low spatial frequency, thus allowing wrinkles without inhibiting large scale

deformations.

Rohmer et al. [42, 43] compute a smooth stretch tensor field between anima-

tion frames and a given garment reference shape. A refined mesh is mapped back

to the original mesh, and wrinkles are modelled along paths traced through the

tensor field on contour lines of high compression. They assume the underlying

animation to be sufficiently smooth in time and space to result in visually coherent

wrinkles. We are inspired by this work in our use of a stretch tensor field on the

mesh to measure deformation; however we do not assume the existence of a valid

reference frame nor expect the garment motion to be smooth. In contrast to these

offline approaches our method is fast enough to provide real-time performance for

interactive applications.
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2.6 GPU-based Wrinkle Augmentation
A common method of avoiding the difficulties and computational overhead of the

above methods is to augment the animation of a coarse cloth mesh with wrinkles

after the fact. Hadap et al. [19] compute the change of area for each triangle in an

input animation with respect to a given rest pose. They note that cloth does not

stretch or compress, and use the patterns within these scalar deformation values to

give preference between different artist painted wrinkle textures. Loviscach [32]

performs all calculation needed to augment a coarse mesh on the GPU, and thus

requires the pre-calculation of adjacency information that is otherwise unavailable.

Assuming the first available animation frame to be an undeformed reference shape,

it creates a set of local orthogonal basis vectors in both pre- and post- deformation

space, and solves for a tensor matrix minimizing their quadric error. This approxi-

mation is not resilient against noise, nor does it necessarily produce a smooth tensor

field. It constructs wrinkles along this field to have constant width, and models the

deformation of the tensors as a sinusoidal height field across the mesh. To pro-

duce a smooth field across vertices varying in height and deformation gradient he

minimizes the phase errors between adjacent vertices using gradient decent. Lo-

viscach does no mesh refinement or deformation, instead using a modified parallax

mapping technique [23] to account for the difference of view perspective. He com-

putes per-fragment normals from the height field and surface normals, resulting in

periodic, uniform, aligned wrinkles, often an unrealistic behaviour.

Our approach constructs a smooth tensor field, resilient to noise, and does not

assume or require any reference shape. Computing high compression paths through

our field allows us to demonstrate wrinkle divergence behaviour that Loviscach

does not achieve. Our computation of height values is more efficient, being poly-

nomic rather than sinusoidal, and by tesselating the underlying mesh we create a

more realistic silhouette, and do not need parallax computations.
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Chapter 3

Overview

This thesis addresses the temporal coherence of wrinkle paths and the real-time

generation and rendering of believable wrinkle geometry on top of low-quality

animations of coarse meshes. In this setup we cannot rely on the surface anima-

tion to capture even the coarse intrinsic surface motion reliably per triangle, and

have no expectation that the mesh will exhibit coherent, temporally and spatially

smooth deformation with respect to some static reference frame [35, 42] (see Fig-

ure 3.3, top). Since we focus on believability rather than correctness, we note that

humans largely rely on local movement when predicting wrinkle appearance on

surfaces. Surfaces lacking wrinkles appear plausible as long as the intrinsic geom-

etry is largely unchanged, and human observers expect wrinkles to show up when

the surface visibly contracts and expect these to dissolve when a surface stretches

following contraction. Real-life wrinkles are also persistent - appearing, moving

and disappearing gradually. Humans anticipate similar behavior from virtual wrin-

kles - expecting them to evolve gradually, and to stay in place in the absence of

underlying surface motion.

Following these observations, our paper is motivated to analyze the local in-

trinsic surface deformation of the mesh to predict wrinkle appearance. Since the

input animation is noisy, our paper denoises this data using spatially and tempo-

rally local trends and constructs a per-triangle reference shape from which a stretch

tensor feild may then be computed. The per-triangle reference shape is smoothly

updated as new frames are rendered, to provide a temporally smooth tensor feild
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on which to further operate. The relevant sections of the paper have been included

in this thesis, unmodified, as Section 4.

We trace wrinkle paths following the stretch component of the stretch tensor

field, orthogonal to the direction of compression, along the surface of the input

garment (Section 5, Figure 3.2, d). We generate both more, and deeper wrinkles

through regions of higher compression. The computed stretch tensor feild is con-

stant per-triangle, and thus cannot be leveraged to obtain temporally persistent and

spatially smooth wrinkles. Due to the coarseness of our meshes, converting it into

a piecewise-linear tensor field by averaging adjacent tensors at mesh vertices and

then using barycentric interpolation (as suggested by [43], for instance) is unde-

sireable due to loss of information (Figure 3.4, b). This thesis examines alternative

approaches towards maintaining temporal persistence of wrinkles in both 3D and

constrained to the 2D mesh surface (Section 5.2). Our final solution constrains the

points of wrinkle paths to move only along mesh edges, and directly optimizes the
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(a) (b)

(c) (d)

(e) (f )

Figure 3.2: Algorithm components: (a) input animation frames; (b) compres-
sion(blue)/stretch(red)/neutral(green) labeling; (c) local stretch tensors
shown by oriented ellipses; (d) temporally coherent wrinkle paths; (e)
final wrinkled cloth rendered at real-time without and (f) with texture.
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Rest Pose

Figure 3.3: Typical game animation frames with intrinsic deformation
(stretch) tensor computed with respect to the first (top) and previous
(bottom) frame. The shape of the tensor shows compression stretch
magnitude ratio and color reflects the larger between the eigenvalues
(blue for compression, red for stretch). Using compression on the top
tensor as cue for wrinkling, will generate no wrinkles on the left knee
(an inverse reference pose will generate no wrinkles on the right). The
local tensor (bottom) provides better, but noisy cues.

Figure 3.4: On coarse meshes smoothing the piecewise constant tensor field
(left) to generate a piecewise linear one (right) leads to loss of details,
such as the compression on the shoulder and across the chest (left)
which are no longer distinguishable on the right.

shape of the individual wrinkle paths, balancing alignment with compression di-

rections against spatial and temporal smoothness (Figure 5.2). The ouput wrinkle

paths are piecewise-linear and both well-aligned with the compression field and

persistent over time.

The construction of wrinkle geometry requires knowledge of the wrinkle height,

width, and the contour shape that the wrinkle will exhibit along the previously con-

structed wrinkle path. We determine wrinkle width from the compression magni-

tude and material properties of the cloth and compute wrinkle height to perserve
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the surface area of the input mesh (Section 6). The wrinkle contour is selected

to visually blend smoothly with the surrounding mesh. In order to achieve sub-

triangle precision for later calculations, we subdivide our piecewise-linear path by

sampling from a spline of the original points. Performing this subdivision on the

GPU allows us to minimize data transfer across the CPU-GPU bus (Section 6.2).

The real-time nature of our target domain requires careful consideration of the

performance implications of data transfer to the GPU, optimizing data packing and

minimizing coupling to mesh size (Section 7.2). Creating wrinkles on the GPU

requires knowledge of both our generated wrinkle paths and the triangles of the

mesh that each of these paths effects. Accurate computation of mappings between

wrinkles and triangles is important to minimize both data transfer size and addi-

tional work done by the GPU. We consider the trade-offs of accurate computation,

with additional CPU workload in Section 8.

Since our input meshes are coarse and not capable of capturing wrinkle detail,

we use programmable GPU tessellation to selectively refine and deform the mesh

around wrinkle paths and adaptively generate wrinkle geometry (Section 7, Figure

3.2, e). This is compared to existing methods on the CPU which directly modify the

animated mesh and require either high resolution input meshes or on-the-fly mesh

refinement to adequately capture the wrinkle details [35, 43]. We further improve

realism through the computation of per fragment normals. Normals are computed

using a modified distance field and weighted by the height of each contributing

wrinkle to allow smooth convergence and divergence of wrinkles, and to avoid

discontinuities arising from euclidean distances from piecewise wrinkle paths. This

combined approach towards realism (Figure 3.2, f) enables the generation of cloth

wrinkles in low-end animations at a sustained framerate of 60 frames per second.
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Chapter 4

Compression Field Construction

The work presented in this section was developed by Craig Peters in consultation

with Alla Sheffer and Nicholas Vining. It has been included without change for the

sake of completeness.

4.1 Compression Pattern Extraction
The first step in computing a reliable stretch tensor field suitable for wrinkle trac-

ing is to locate the regions on the surface which undergo noticeable compression

or stretch (Figure 4.1). The first indication of such changes occurring is the purely

local deformation of an individual triangle within any given frame with respect to

the previous frame; we may classify this behaviour as compressing, stretching, or

resting. The strongest cue for this classification is given by the stretch tensor of

the affine transformation between the two triangles (Section 4.1.1); the indicated

amounts of compression and stretch provide a local measurement of surface be-

havior. However, while real-life cloth deformation is typically both spatially and

temporally smooth, meshes for video games are typically coarse and the anima-

tion may be noisy, with artifacts such as inter-surface penetration and jitter. On

such inputs, these raw measurements are an unreliable indicators of global surface

behavior (Figure 4.1, b). Therefore rather than using the stretch and compres-

sion magnitudes directly to classify the current state of the mesh triangles, we use

this data as input to a more sophisticated labeling process which balances these
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(b) (c)(a)

Figure 4.1: Left to right: per-triangle stretch tensor with respect to previous
frame (red to blue shows stretch to compression ratio); raw deformation
classification (blue - compression, red - stretch, green - rest ); spatially
and temporally coherent classification.

measurements against a preference for spatially and temporally continuous labels

(Figure 4.1, c).

4.1.1 Triangle Stretch Tensor

Given a pair of current and reference triangles we measure the stretch and compres-

sion of the transformation between them using the stretch tensor from continuum

mechanics [3]. Given a current triangle with edge vectors (u1 = (v1− v0),u2 =

(v2− v0)), and reference edge vectors (ū1, ū2), we define the Deformation Gradi-

ent as,

F = [u1,u2][ū1, ū2]
−1. (4.1)

The stretch tensor is then defined as

U =
√

FT F . (4.2)

The matrix U is symmetric positive definite, has eigenvectors pointing in the di-

rections of maximal stretch and compression, and has eigenvalues λmax and λmin

indicating the ratio of current length to rest length for stretch and compression re-

spectively. We define and employ λ̃min =
1/λmin through the rest of the paper, as

we find it more natural to work with. λ̃min is 1 when there is no compression, and
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grows as the triangle compresses. Similarly, λmax is 1 when there is no stretch, and

grows as the triangle stretches.

4.1.2 Graph Cut Formulation

We formulate the problem of triangle labeling using a graph-cut framework. We

solve for a label l ∈ (C,S,R) per triangle where C indicates compression, S indi-

cates stretch, and R indicates a neutral rest state. We construct a graph G = (N,E)

in which each node i ∈ N is a tuple ( f , t) where f is a face and t is a time step.

Each node has three spatial neighbors (the three adjacent triangles in the mesh at

time t) and two temporal ones ( f in frames t−1 and t +1). Triangles along mesh

boundaries as well as those in the first or last frames have fewer adjacencies.

For each node n we compute a unary cost for assigning it a particular label ln,

and for each pair of adjacent nodes we define a label-compatibility cost for each

pair of label combinations assigned to them. We then find a labeling that minimizes

the following discrete functional:

∑
i∈N

A(i, li)+ ∑
(i, j)∈E

B(li, l j) (4.3)

where A(i, li) is the cost of assigning the label li to node i, E is the set of edges in

G, and B(li, l j) is the binary cost of assigning labels li and l j to nodes i and j.

Our unary costs are functions of the stretch tensor magnitudes λ̃ i
min and λ i

max

over each triangle i (Figure 4.2). The rest label’s cost is designed to be low when

λ̃min and λmax are both near 1, and grow as they move away from 1 and is set using

a symmetric Gaussian function,

A(i,R) = 1− e−‖(λ̃
i
min−1,λ i

max−1)‖2
1/2σ2

. (4.4)

The stretching and compressing costs are defined symmetrically using the auxiliary
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Figure 4.2: The unary cost functions for label assignment depend on λ̃ i
min

and λ i
max. Left: A(i,C), Right: A(i,R). These eigenvalues measure

deformation between two frames, not to the rest frame.

function c(a,b):

c(a,b) =

(H−h)e−(
1
2 (a−b)2)/2σ2

+h, a > b
b
a(H−1)+1, a < b

(4.5)

H = e−α(a−1), h = e−βa

A(i,C) = c(λ̃ i
min,λ

i
max) (4.6)

A(i,S) = c(λ i
max, λ̃

i
min) (4.7)

We empirically set σ = 0.05, α = 9, β = 90. The motivation for this design of

the cost function is as follows. We want the cost of the compression label to be

large when λ̃ i
min ≤ 1, and want it to decrease both when λ̃ i

min increases and when it

increasingly dominates λ i
max (i.e. when λ̃ i

min−λ i
max grows). We want a symmetric

behavior for the cost of the stretch label.

The goal of the binary term B(li, l j) is to penalize label changes between adja-

cent faces. It depends only on the labels and is zero when li is equal to l j, and is

positive otherwise. As we expect the animation to be gradual, triangles should not

immediately transition from compression to stretch without at some point resting;
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Figure 4.3: Evolution of reference triangles (bottom) throughout the anima-
tion process.

we therefore assign a higher cost of 0.4 for assigning C and S labels to adjacent tri-

angles and a lower cost of 0.2 for assigning them the R and either C or S labels.We

use the same costs for both temporal and spatial adjacencies. We solve the labeling

problem using the solver of Boykov, Komolgorov, et al.[4, 5, 27], which efficiently

minimizes Equation 4.3.

As designed, the framework can be applied to a frame sequence of any length.

In a scenario where an entire coarse animation sequence is available in advance, we

can therefore label it all at once. In a real-time application where the animation is

on the fly, we apply this framework using a one-lookahead window: given each new

animation frame we fix the labels for the previously displayed frame and solve the

optimization problem for the current frame, while taking the binary cost across the

temporal edges linking the current frame to the fixed, previous, one into account.

For the first frame in the animation this binary cost is treated as zero. This strategy

allows for real-time labeling update and is sufficient to overcome temporal noise in

all the animations we tested our method on.

4.2 Local Reference Triangles
To generate a stretch tensor that guides our wrinkle formation we require a lo-

cal reference shape. Since no such shape is provided a priori we compute one on

the fly as the animation progresses. Intuitively, for a perfect incompressible cloth

animation, for each individual triangle in the mesh its most stretched, or largest

instance in the animation sequence provides the ideal reference shape. However,

22



in real-life data triangles can and do stretch due to noise and animation inaccu-

racy. Our on-the-fly rest triangle estimation (Figure 4.3) is designed around these

observations.

In the first frame of the animation, we set the reference triangles to be identical

to the current one, as we have no other sources of information as to the plausible

reference shape of the garment. The reference triangles are then smoothly updated

as more information becomes available, with the update strategy reflecting the tri-

angle’s intrinsic motion as reflected by our labeling.

If a triangle is labeled as compressed we theoretically could leave its reference

triangle unchanged. However, we anticipate some noise in our reference triangle

estimation, and in particular want to avoid it reflecting outlier stretched triangles.

Thus we choose to dampen the reference triangle size, relaxing it toward the current

mesh triangles as these undergo compression. In order for our tensor field to remain

smooth and consistent with previous frames, this relaxation must partially preserve

the tensor eigenvectors, while smoothly changing the eigenvalues. We therefore

directly modify the eigenvalues of the stretch tensor, and then solve for reference

triangles that generate the updated stretch tensor, as follows.

Let F = AΣBT be the singular value decomposition of the deformation gradient

(Equation 4.1) of the transformation from the reference to the current triangle.

Then, the stretch tensor U can be written as BΣBT , with the eigenvectors encoded

by B and the eigenvalues on the diagonal Σ. We compute new eigenvalues, that

lie closer to one by setting Σ′ = 0.95Σ+ 0.05I, here I is the identity matrix. We

construct a new Deformation Gradient F ′ = AΣ′BT and compute the new reference

triangles as

[ū′1, ū
′
2] = F ′−1[u1,u2] = BΣ

′−1AT [u1,u2].

We expect a stretching label to reflect a dissolving compressed, or wrinkled,

triangle. In this configuration if both eigenvalues of the stretch tensor from the

reference to the current triangle are larger than one they indicate a stretch beyond

the current reference triangle. We interpret this configuration as dissolving of pre-

viously undetected compression wrinkles. We consequently replace the previous

reference triangle with this, new, less compressed one. Since we aim to enrich

the rendered garments, we prefer to err on the side of overestimating the reference
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triangle size, thus we use no smoothing or averaging in this scenario.

If a triangle is currently labeled as being in a rest state, we leave its refer-

ence triangle as is with no adjustment. This choice results in wrinkles that persist

unchanged through periods of the animation with little deformation, such as a char-

acter holding a fixed pose.

24



Chapter 5

Wrinkle Path Tracing

The first step in creating wrinkles is to trace their paths on the mesh surface using

the stretch tensor computed with respect to the local reference shape. Our com-

putation builds on many of the ideas described by Rohmer et al. [43]; however, in

contrast to their formulation that assumes that the tensor field is piecewise linear

and smooth, we modify the framework to operate directly on a piecewise constant

field. This results in wrinkle paths that are linear across triangle faces and need to

be smoothed prior to rendering (as discussed in Section 6.2). The reason for the

change is illustrated in Figure 3.4. Since the meshes we operate on are exceedingly

coarse, converting the per-triangle tensors into a piecewise linear field (averaging

the tensors at the vertices using tensor arithmetic [43] and then using barycentric

coordinates to define values across triangles) smooths out critical details.

Following the logic of [43], a naive approach to wrinkle tracing would be to

maintain a minimal distance between wrinkle paths while following high compres-

sion contour lines in the tensor field. This approach, however, fails to approximate

the behaviour of real wrinkles which can merge or move arbitrarily close to each

other. We instead hold distance constraints only on the points of high compression

at which the wrinkles are seeded, allowing for natural wrinkle behaviour. Since

our tensor field is piecewise constant, the converging and merging behaviour of the

wrinkles cannot be handled implicitly by the field. We address the visual continuity

of merging and overlapping wrinkles in chapter 7, and our approach to determining

the proximity between wrinkles in chapter 8.
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5.1 Wrinkle Initialization
Wrinkles are traced in areas of high compression and are placed orthogonally to the

direction of maximal compression. At each time step in the animation we seed new

wrinkles at random locations within triangles of compression (λ̃ i
min) greater than

compression threshold τ . We initialize wrinkle paths from seed points by propa-

gating a polyline along the mesh surface orthogonal to the maximal compression

direction within each triangle, given by the tensor eigenvectors. Propagation ter-

minates once the compression magnitude drops below the compression threshold

τ , or if the propagated path intersects another wrinkle path. Wrinkle seeding pro-

ceeds per triangle from most compressed to least, holding seed points a minimum

wrinkle width distance from previously generated paths. The parameter τ is set to

reflect the desired fabric stiffness [43]; the expectation is that thinner fabrics, e.g.

silk, will be more sensitive to compression and will also exhibit more and longer

folds than thicker and stiffer materials such as wool or leather [21]. The compu-

tation of wrinkle width is further discussed in Section 6, and further discussion

regarding proximity computation is found in Section 8.

A theoretical possibility is that the stretch tensor may have equal, high com-

pression along both directions; this could occur when a surface region contracts

simultaneously in all dimensions, in which case the choice of tracing direction is

ill-posed. We have not encountered such situations in practice and expect them to

be exceedingly rare. We believe that the best solution in this scenario would be

to avoid seeding wrinkles in such triangles, and maintaining the previous wrinkle

direction if a wrinkle reaches such a triangle during tracing.

While real wrinkles lie on the garment surface and hence follow the local cur-

vature of this surface, they typically have low curvature in the tangential space

of the garment. To mimic this behavior and eliminate undesirably sharp changes

in wrinkle direction, we apply one iteration of tangential Laplacian smoothing to

each path after tracing it, moving each intersection of a path with the mesh edges

along this edge toward the shortest geodesic between the adjacent intersections

(Figure 5.1).
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Figure 5.1: A single iteration Laplacian smooth over wrinkle paths to remove
sharp changes

5.2 Temporal Persistence
Real-life wrinkles are persistent, changing their shape and position gradually over

time. To replicate this behaviour we present three restrictions on generated wrinkle

paths across consecutive frames that preventing jarring discontinuity, and allow

easy association between the motion of a wrinkle and the actions of the animation:

1. A wrinkle path should not move very far between time steps

2. Any change of relative positioning of a wrinkle’s constituent points should

be small and in a similar direction to previous changes

3. A wrinkle’s direction should be close to orthogonal to the compression of

the surrounding region

A simple approach to wrinkle propagation is to reseed wrinkles from scratch

each frame. This approach results in flickering due to the changing positions of

seed points, failing to meet the second of our stated criteria. Rohmer et al. [43]

extend this approach for wrinkle path updating by moving the wrinkle seed points
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Frame i Frame i+1 Frame i+1

Figure 5.2: Wrinkle paths generated independently per frame vary signifi-
cantly in both direction and length as highlighted when rendering both
current and previous paths (center); our temporally coherent wrinkle
paths change gradually across all modalities (right).

based on changes in the stretch tensor field. On a piecewise-constant field or even a

diverging piecewise-linear field however, using this approach can drastically move

the traced wrinkles following even minor directional changes in the field (Figure

5.3). The solution proposed by Rohmer et al. [43] is to restrict the movement of

wrinkle seeds and subsequent propagation to be within a distance of the previ-

ous wrinkle. By adjusting existing wrinkles within this corridor to match their

new eigenvectors, the discontinuity from repropagation within a piecewise field is

avoided. For simplicity this approach requires a 2D parametrization, and our prob-

lem assumes that one is not given and may not exist. Without this parametrization,

the approach proves quite complex; wrinkle point movement needs to be restricted

in 3D, and a means for determining the best distribution of points within the corri-

dor to match the tensor field is unclear.

Exploration of possible alternative approaches lead us to two solutions that

meet our restrictions as listed above. We document them in the following sections.

5.2.1 Solution 1: Restriction to Edges

We represent each wrinkle path as a polyline whose vertices lie on the edges of

the garment mesh. By restricting the movement of wrinkle points to the direction

of edges, we simplify the problem of temporal coherence to one dimension and
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Figure 5.3: Drastic change in wrinkle due to repropagation from seed

restrict wrinkle point movement to the surface of the mesh. Continuous movement

from the previous wrinkle location is easily enforced by restricting the distance

travelled along the edge (accounting for the angle between the edge and the wrin-

kle). If the adjustment of a point following the direction of an edge crosses a vertex

and thus leaves the mesh, the new wrinkle point will require projection to bring it

back to the surface. Following projection, new edge intersections for the geometric

neighbourhood of the crossed vertex must be computed, and the wrinkle updated.

While this approach can be done in a single update pass of a wrinkle, the geometric

update of a wrinkle’s constituent points with respect to the eigenvectors of adjacent

faces often over-corrects for changes in the compression field to result in unstable

positions (jitter).

We frame our problem as an optimization on our three posed criteria at the

beginning of the section. We encode our wrinkle paths as linear combinations of
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Figure 5.4: Recomputation of wrinkle path when wrinkle crosses a vertex

the edge end vertices:

pi = v1
i ti + v2

i (1− ti). (5.1)

We optimize the shape of the path balancing three terms: orthogonality to com-

pression direction, preservation of relative path vertex positions on the mesh, and

wrinkle shape preservation:

E = α

n−1

∑
i=1

((pi+1− pi) · ei)
2 +

n

∑
i=1
‖ti− t̄i‖2 +

n

∑
i=0
‖pi− (pi−1 + pi+1)/2− (p̄i− (p̄i−1 + p̄i+1)/2)‖2 (5.2)

p−1 ≡ p1, pn+1 ≡ pn−1at endpoints

where p̄i and t̄i encode the absolute and relative positions of the wrinkle control

point from the previous frame, and ei is the direction of maximal compression in

the triangle shared by pi and pi+1. The optimization is over just the small number

of ti variables, as we represent pi as a function of ti. Since our computation is

dominated by persistence we use a relatively small α = 0.4. Persistence requires

both position and shape preservation: preserving shape alone allows wrinkles to

slide uncontrollably, while preserving positions alone leads to artifacts when the

underlying mesh triangles undergo significant deformation.

While the solve constrains the vertices to lie on the straight line defined by their

currently associated edges, we avoid explicitly constraining ti to the [0,1] interval
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Figure 5.5: Recomputation of wrinkle path across multiple edges when cross-
ing a vertex

as we want to allow wrinkle paths to slide along the mesh. If and when a computed

ti lands outside the [0,1] interval, we locate the best position for the vertex on the

mesh as follows, and then update the polyline accordingly. To compute the vertex

position we parameterize the umbrella around the relevant edge endpoint (v1
i if

ti < 0 and v2
i if ti > 1) and place pi using the continuation of the edge projection

using Equation 5.1 but constraining it to the umbrella triangles. We then compute

the geodesic paths from the previous/next vertices (vi−1,vi+1) to the new location

and use the path’s intersections with the mesh edges as new wrinkle path vertices

(Figure 5.4).

Lastly, if and when more than one wrinkle path vertex lies in the immediate

vicinity of a single mesh vertex (ti < 0.1 or ti > 0.9) we use only one of these

vertices in the optimization above and then use mesh geodesics to update the new

set of intersection (Figure 5.5). Without this modification, the locations of the

vertices become over-constrained as a movement in their individually preferred
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directions would lead to path self-intersection.

5.2.2 Solution 2: 3D Projection

Restriction of wrinkle point movement to edges may simplify the problem, but it

also restricts movement of wrinkles, creating difficulty maintaining alignment with

the compression field. An alternative formulation of our restrictions on wrinkle

movement with less restriction on direction of motion is given below:

E = α

n−1

∑
i=1

((pi+1− pi) · ei)
2 +

n

∑
i=1
‖pi− p̄i‖2 +

n

∑
i=0
‖pi− (pi−1 + pi+1)/2− (p̄i− (p̄i−1 + p̄i+1)/2)‖2 (5.3)

p−1 ≡ p1, pn+1 ≡ pn−1at endpoints

This formulation restricts wrinkle point movement by displacement distance in

3-space rather than along an edge. Since the solution points are not guaranteed to

lie on the surface, this approach requires a method to project the points back onto

the surface and compute new edge intersections.

We notice that by enforcing temporal coherence we are in fact restricting the

space where the new wrinkle points can move to a local region on the mesh. We

make use of this spatial locality to quickly locate corresponding points of projec-

tion for each point given by our linear solve. Beginning at a known point on the

wrinkle of the previous frame, the mesh is traversed in a greedy descent towards

the first point given by our linear solve, and then between points of the linear solve

until reaching the end of the wrinkle. Using euclidean distance, we have reached

a vertex when any movement would send us past the closest point on the mesh to

that vertex. Once the first point of the linear solve is reached, our new wrinkle path

is constructed as the list of all subsequent edge crossings. We note that traversing

edges of the mesh towards the points of the linear solve is technically susceptible to

getting caught in a local minima (and thus not reaching the point). In practise how-

ever, since our wrinkles are restricted in movement and have the same resolution

as the mesh, this is extremely unlikely in the time-step of a single frame.
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Each step of mesh traversal tests edges of a current triangle against a known

orientation towards a goal to determine which edge to cross, and the location of

crossing. Selection of an appropriate algorithm proves important under certain

traversal conditions where inconsistency in the edge crossing computed from dif-

ferent triangles may prevent reaching solution points given by the linear solve. In

each of Figures 5.6 and 5.7, we depict the wrinkle from the previous frame as a

path in blue, and the solution points from the linear solve as green spheres.

An initial approach to the computation of edge crossings uses the point of min-

imal euclidean distance on the line of travel, a line segment between a source and

target, with a given edge (Figure 5.6 top). This approach generates inconsistent

crossing points between adjacent triangles should the solve point lie directly above

an edge (Figure 5.8 (a)). Two subsequent approaches, differing solely on algorithm,

find the intersection of a line segment with a plane orthogonal to the incoming face.

The first approach uses the plane through the source and target point and the line

segment of the two edge vertices, and the second approach the reverse (Figure 5.6

bottom, Figure 5.7 top). In the case of the second approach, the intersection point

must be projected along the plane back onto the mesh. These approaches rely on

the normal of the incoming face, and thus generate similar inconsistencies to be-

fore (Figure 5.8 (b-c)). The solution is to divide space evenly into cells, finding a

point of intersection in a similar manner to last two approaches, but using planes

constructed as the average of the two adjacent-face normals.(Figure 5.7 bottom)

Consideration of our two approaches lead us to the choice of solution one. A

comparison of the complexity in implementation is strongly in favor of the first

solution, which except at vertices is a single dimensional problem. Furthermore,

by parametrizing the curve as a combination of the mesh vertices, the problem

size of the linear solve is greatly reduced to the benefit of performance. While the

improvement in adhering to the compression tensor field may allow for smoother

transitions in poor geometry, it is likely that in most cases it would be unnoticeable.

5.2.3 Merging and Length Update

As a cloth garment deforms, wrinkles both grow and shrink in length, and migrate
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(1)

(2) (2) (1)(3)

(a) (b)

(c) (d)

Figure 5.6: Methods of projecting points in 3-space back onto the mesh sur-
face. Left Column: navigating the mesh to find the projection of the new
first point of the wrinkle. Right Column: Navigating between points
until the end of the wrinkle to compute all subsequent edge collisions.
(a–b): finding the closest point between line segments. (c–d): finding
intersections with the plane between start and end points.
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(a) (b)

(c) (d)

Figure 5.7: Methods of projecting points in 3-space back onto the mesh sur-
face. Left Column: navigating the mesh to find the projection of the new
first point of the wrinkle. Right Column: Navigating between points
until the end of the wrinkle to compute all subsequent edge collisions.
(a–b): finding the edge intersection as a projection along face normals.
(c–d): finding the edge intersections as a projection along an average
normal plane.
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(a) (b)

(d)(c)

Figure 5.8: Discontinuity in the point chosen due to the method of projection
can result in terminating the walk along wrinkle paths early. (a-c) show
how such a situation arises, while (d) resolves this problem.

along the mesh. We replicate the change in length of wrinkles, for each frame in the

animation, by extending or triming all existing wrinkles based on the magnitude of

the underlying stretch field, using the same compression threshold τ as above. To

maintain temporal continuity, we do not change the length of a wrinkle by more

than 15% per frame. Migration or growth may result in wrinkle paths merging,

at which point we truncate one path and allow the other to proceed. Computation

of the point at which this occurs is covered in Chapter 8. The truncation of wrin-

kles both prevents the undesired crossing or passing of wrinkle paths, and reduces

computation regarding the collision and proximity of duplicate paths.
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Chapter 6

Wrinkle Shape Parameters

To generate actual wrinkle geometry from the traced wrinkle paths, we need to first

assign a target wrinkle height and width to each point along the path. We then refine

the path, smoothly interpolating heights, and generate appropriate cross-sectional

geometry across it.

6.1 Wrinkle Contour
Our goal in the computation of wrinkle height and width is to minimize the change

in surface area as compared to our temporally adaptive rest pose. Similar to Rohmer

et al. [43], we use a formulation that accounts for both material properties and com-

pression values along the wrinkle. The more flexible a material is, the higher we

intuitively expect the fabric wrinkles to be.

Rohmer et al. represent wrinkle shape as a circle contour offset from the sur-

face of the mesh. They define the radius of this circle to be a user defined material-

minimum radius, scaled proportional to the compression on the mesh. They deter-

mine the offset of the circle from the mesh surface to retain an approximate surface

area as compared to the rest pose (Figure 6.1).

We instead numerically pre-compute a set of wrinkle width-height ratios that

exactly preserve a unit arc length on a circle. Given a minimum wrinkle width at

run-time that accounts for material parameters, we scale and interpolate between

these values to compute our desired height. We model our wrinkle shape as a
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smooth b-spline contour, using the computed width and height to preserve cloth

area. This approach is very fast, requiring a constant-time look up and linear-

interpolation at run time. It offers precision based on sample size, and provides a

more intuitive material parameter of wrinkle width, which compared to radius is a

visible property on the surface of the mesh.

Pre-computation of height for given wrinkle widths must be independent of the

user run-time-specified minimal wrinkle width Lmin. Since we seek to maintain

surface area, our arc length s = Lmax, where maximal wrinkle width is computed

simply as the arc length of the minimal width, Lmax = πLmin. To construct a look-up

table that is independent of the user specified Lmin, we can assume our input width

L is unit length, and scale all results at run time. We then need only numerically

solve for the ratio L/s. Using standard trigonometry relationships we can derive

the formula for φ as below:

sinφ − Lφ

s
= 0 (6.1)

We use Newton’s method to pre-compute values of φ for given ratio L/s. Since

L spans [Lmin,Lmax], our sampling domain for this computation is [ 1
π
,1]. Since

the height along a circular arc is sinusoidal, we space our samples across the input

domain as a sinusoidal distribution so that our constructed lookup table has an even

distribution of height. This creates a uniform level of precision for all input wrinkle

widths.

At run time, we look up the index of our desired height through a binary search

of a table of sampling ratios L/Lmax. We interpolate linearly between the two

closest height values given the height look-up index. We then scale the height by

the current width to get our final result.

Our framework also differs from Rohmer et al.’s, in that the compression field

we operate on is piecewise constant instead of piecewise linear. Using pointwise

magnitudes on this input results in discontinuous wrinkle dimensions. Instead we

use the maximal compression along a wrinkle path to obtain the maximal wrinkle

height and corresponding width (Figure 6.2; here the width is L and the height is

h). We then use these values as wrinkle parameters at its mid-point. At the wrinkle

end points we set the width to be equal to the maximal wrinkle width Lmax, and

smoothly interpolate the width along the rest of the wrinkle path. We then use

38



Figure 6.1: Estimation of wrinkle contour used by Rhomer et al.for calcula-
tion of height and width values that preserve area

s
L

ħ R

h

φ

Figure 6.2: We numerically solve for the height h, knowing the maximal
wrinkle width s, and current width L. Since s is defined as the maxi-
mal width, we note that h = 0 implies, L = s.
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Figure 6.3: Wrinkle contour using three quadriatic b-splines

these width values to compute pointwise wrinkle height. Note that when the width

is equal to the maximal width (at the end points) the height is, by construction,

zero. This computation leads to smooth naturally dissolving wrinkle shapes along

each path.

While the use of circular arcs to represent wrinkles is well suited for wrinkle

height and width estimation, real-life wrinkle profiles, or cross-sections, deviate

from this shape and smoothly blend with the surrounding surface. We concisely

state these requirements as a set of boundary conditions on the first derivative of

our cross-section function: f ′(±w) = 0∧ f ′(0) = 0. We offer for consideration

four function families that satisfy these conditions: quartic polynomial, piecewise

circular arcs, sinudsoidal, and piecewise b-spline (Figure 6.4). We empirically

examine the rate of fall-off, simplicity of representation, and ease of calculation in

our selection of a quadratic B-spline for our wrinkle contour.(Figure 6.3).

Quartic polynomials and sinusoidal waves are insufficient for our needs due

to their high curvature at the boundary. Figure 6.5 a) and b) show that the high

curvature results in the perception of a discrete transition due to the Mach band

effect. Approaches to mitigate this effect, such as the addition of Perlin noise are

only partially successful in removing this artifact, are very dependent on wrinkle

scale in their implementation, and add unwanted computational overhead to the

GPU. Piecewise circular arcs and b-splines do not suffer from this effect (Figure 6.5

b and d). The b-spline is the conceptually simpler, and more efficient of the two

methods.
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circular arcs
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Figure 6.4: Cross-section contour possibilities.

d)c)

b)a)

Figure 6.5: Example of each cross-section contour in use. a) quartic b) circu-
lar arcs c) sinusoidal d) b-spline
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6.2 Path Smoothing
We smooth out the path of each wrinkle, replacing the linear segments within each

mesh triangle with Bezier paths whose tangents across triangle edges are set to the

average of the line segment tangents in the adjacent triangles. For efficiency this

computation is done on the GPU in parallel per triangle, and each Bezier segment

is discretized using a polyline.
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Chapter 7

Fast GPU-Based Wrinkle
Modeling

Embedding fine wrinkles in the actual garment mesh requires a very high mesh

resolution. Storing and rendering such a mesh would significantly slow the anima-

tion display and gameplay. We avoid modifying the underlying surface mesh or

animating a finer mesh in parallel by modeling wrinkles, at render-time, directly

on the GPU; specifically, we use the OpenGL tessellation shader to create coarse

wrinkle geometry in real time and use the fragment shader to compute per-pixel

wrinkle normal maps to increase rendered wrinkle believability. The combined

method creates realistic looking wrinkles and is very efficient, allowing on-the-fly

wrinkle modeling at 60 frames per second, when the rendered characters occupy

Figure 7.1: Left to right: wrinkles rendered using only normal maps; tes-
sellated wrinkle region; wrinkles rendered using displacement (tessela-
tion); wrinkles rendered using displacement and normal maps.
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the majority of the screen on a standard computer monitor. While using normal

maps alone is clearly even faster, the results do not appear as realistic as the ren-

dered frames lack inter-wrinkle occlusions and characteristic changes in character

contours (Figure 7.1). Our approach, which leaves the original mesh unchanged,

allows for wrinkle rendering to be enabled or disabled as the character moves fur-

ther away from the viewer.

7.1 GPU Rendering Pipeline
This section is a review of the standard GPU pipeline. Readers already familiar

with this content may skip ahead to Section 7.2. More information may be found

in OpenGL or DirectX online resources [25], [34].

The GPU processes data in a highly parallel pipeline designed to efficiently

process the large amount of geometry that may be present in a scene. Data is

transferred from the CPU to the GPU along a data bus of limited bandwidth, and

stored in either buffers or textures allocated from global or texture/constant mem-

ory. On each render pass, the GPU reads data from user specified buffers, passing

the data through a series of built in operations and compiled shader programs, the

shader pipeline, before outputting the data. Each stage of the shader pipeline op-

erates on the output of the previous stage, and is designed towards a specific task

(Figure 7.2).

The vertex shader (VS) is run independently on each set of vertex information

passed to the GPU and returns a single corresponding set of output data. The tessel-

lation control shader (TCS) then specifies subdivision parameters on the geometry,

defining for a given input patch the level of subdivision along the outer boundary,

and the number of inner subdivision levels to add. The fixed-function tessella-

tor generates new vertices for refined primitives from the input geometry and the

TCS parameters. Each newly generated vertex is then placed by the tessellation

evaluation shader (TES), which has access to the vertex information from which

it was generated. The geometry shader (GS) operates on the subsequently gener-

ated primitives with access to the constituent vertex information. These primitives

are then passed through a number of fixed-functionality (immutable) operations

to generate the fragments on which the Fragment Shader (FS) will operate (Fig-
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Figure 7.2: Summary of the rendering pipeline (fixed functionality in yellow)

ure 7.2).

Of the fixed function operations, vertex post-processing consists of transform-

feedback and clipping. The transform feedback is unused in our framework, but

allows for geometry generated up to this point to be saved for a future render pass.

The clipping stage trims primitives to the viewing volume, before applying a trans-

formation to account for perspective. The Primitive Assembly stage samples the

scene to generate 2D primitives from the geometry, and may discard faces based on

orientation. The generated primitives are rasterized to a series of fragments with

values assigned as either one of, a linear interpolation between, or a perspective

correct interpolation between seeding vertices. The generated fragments are oper-

ated on by the FS before undergoing a number of optional tests to decide if those

pixels should be updated. These tests check against window focus and visibility

(ownership test), fragment screen location (scissor test), fragment depth within the

scene (depth test), and comparison of user provided values to the results of a user

provided test (stencil tests). Fragments are finally combined in some combination

with the existing render target values through blending. Specific write locations

may be explicitly disabled by the user through a final ’masking’ stage.

All stages of the rendering pipeline except the VS may be omitted, in which

case they simply pass the data to the next stage. The rendering pipeline may be

terminated prior to primitive assembly to perform only a transform feedback oper-

ation and the omission of a FS will still update the depth and stencil buffers.

45



An alternative render path is through just a Compute Shader (CS) which uses

the GPU as a highly parallel computing path. The compute path allows the specifi-

cation of both the number of compute groups, specified at invocation, and the local

size of each group, specified within the shader. All compute invocations of the

same group may access and synchronize on shared variables and memory, while

separate groups are disjoint. Compute output may be stored to a local buffer and

mapped back to the CPU, or else rendered to a texture from which data can be read.

7.2 GPU Performance Considerations
Bottlenecks in GPU performance often arise due to pipeline stalls as a result of

resource transfer overhead, resource contention in shared memory, or synchroniza-

tion of shader invocations. Management of these problems requires resource man-

agement and load balancing, and is of particular importance to real-time rendering,

as a performance critical program.

One common location for pipeline stalls is on the initial transfer of data to the

GPU, making it important to minimize the amount of data transferred at any one

time [36]. We refine the wrinkle path for sub triangle precision using a Compute

Shader on the GPU so that only coarsely refined wrinkle path data needs to be

transferred along the bus. Furthermore, we pack the data intelligently, using three

dynamically-sized buffers to removing the need for fixed allocation sizes, and min-

imizing the coupling between data transfer size and mesh size (see Figure 7.3).

With this scheme, the first buffer stores two values for each triangle: the number of

wrinkles that affect it, and an offset into the subsequent array. Beginning at the off-

set into the second buffer, for each triangle with affecting wrinkles, is a set of start

and end indices for each affecting wrinkle in the final buffer which stores wrinkle

information. In this scheme, wrinkle data is passed only once and offsets into this

data are required only for affected triangles.

GPU shaders are run synchronously on multiple shader cores, and may be

stalled by conditional statements. In the case that both branches of a conditional

statement are hit by synchronized shaders, both branches will be evaluated, and the

correct result chosen for each instance [38] [36].
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Figure 7.3: Wrinkle data is packed in three dynamically sized buffers to min-
imize data associated with each triangle (uncouple from problem size)
and to minimize total data transferred over the CPU-GPU bus. Untes-
sellated triangles require 8 bytes each, while tesselated ones require 16.
This may feasibly be reduce to 4 and 8 using half-byte types.
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Figure 7.4: Projection of a point p to the winkle segment vivi+1.

Global memory access suffers from a high latency and low bandwidth [36],

proving to be one of the serious efficiency concerns of our program. The cost of

access is difficult to mitigate due to the need for proximity checks on the GPU in

computation of normals, and is one of the key areas in which our algorithm may

be improved.

7.3 Wrinkle Geometry
We make use of the tessellation shader to subdivide each mesh triangle that falls

within a proximity region of the wrinkle path (Figure 7.1, b, Section 8). We up-

load the list of wrinkles affecting each triangle for a given frame, and tessellate

only those triangles with non-empty wrinkle lists. We use a uniform tessellation

scheme, deciding on Tesselation Control Shader parameters to create a target edge

length that is 3
8 of Lmin. This target edge length is derived from the observation

that four triangles is a minimal requirement to represent a reasonable wrinkle con-

tour. The rate that wrinkle height falls off over the length of a wrinkle allows for

minor deviation towards coarser tessellation to improve efficiency. Since wrinkles

merge smoothly with the mesh at their boundaries and fall off completely within

tesselated regions, there is no concern over the introduction of T-junctions on the

boundary of unrefined and tessellated regions. We offset each generated vertex in

the direction of the triangle normal according to the cross-section height at that
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point. To compute the height at a point p we project that point on to the wrin-

kle path, evaluate the wrinkle height and width at that point, then use the B-spline

shape function to determine the offset at p.

Projecting to the wrinkle path using the Euclidean closest-point is a discontinu-

ous operation in the vicinity of the medial axis of the path (Figure 7.4 top), leading

to discontinuities in the offsets. We avoid such discontinuities by using a modified

projection (Figure 7.4). To find the projection of a point p onto a wrinkle path, we

compute an approximate geodesic Voronoi diagram of the path edges. Within each

Voronoi cell, p is projected parallel to the wrinkle edge vivi+1 onto the Voronoi

facets to find points qi and qi+1. We find the barycentric coordinates α and β of p

with respect to these projected points, and then construct the final projection pn on

to the wrinkle path using the same barycentric coordinates along the wrinkle edge.

To compute the projection efficiently on the GPU, we reformulate this problem

as a single projection from p to pn. We note that the direction of projection is

a linear combination of the two Voronoi edges given by the intersection of our

Voronoi facets with the mesh. We thus solve for the barycentric coordinate α

along the edge directly, as the coefficient for which our interpolated Voronoi edge

direction matches the vector from point pn along the edge to our given point p. We

need not formulate this as a minimization on the angle between the two vectors, as

the Voronoi interpolation spans the full space of vector [p, pn], and thus and exact

solution will exist.

If we let s0 and s1 correspond to the average direction of the wrinkle (orthogo-

nal to the Voronoi edge and easier to compute), then we formulate the problem as

below:

0 = (vi +α ∗ (vi+1− vi)− p) · (α ∗ s0 +(1−α)∗ s1) (7.1)

We can then simplify the problem by substituting z0 = vi+1−vi and z1 = vi− p,

and solve for α .

0 = (z1 +α ∗ z0) · (α ∗ s0 +(1−α)∗ s1) (7.2)

0 = (z0 · (s0− s1))∗α
2 +(z0 · s1 + z1 · (s0− s1))∗α + z1 · s1 (7.3)
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7.4 Wrinkle Normals
In the fragment shader, we use the method shown above to obtain the smooth-

distance projected points and corresponding widths on adjacent wrinkle paths.

While this is a duplication of much of the work from the Tesselation Evaluation

Shader, it is necessary to achieve per fragment precision in terms of wrinkle prox-

imity. Making use of the interpolation across primitives during rasterization would

avoid duplication, but is restricted to linear interpolation, and thus loses accuracy

on our higher order deviation of normals. Interpolating distance rather than nor-

mals gives a good result on a single wrinkle, but results in inconsistent and innacu-

rate results when affected by multiple wrinkles. Loss of accuracy in these cases

results in visual artifacts that are visually unappealing.

Figure 7.5 elaborates on the interpolation across primitives using a signed dis-

tance. We see that between two wrinkle paths distance for either primitive will

deviate linearly. Interpolation across a primitive may result in a good approxima-

tion to the real answer (top) or a completely incorrect result (bottom), depending

on the orientation of the wrinkles, and thus the sign of their overlapping distances.

Additional information may be passed to resolve this discrepancy (a non-signed

distance), however the linear interpolation still fails to provide sufficient precision

for visual fidelity. Furthermore, since vertex locations differ between primitives,

interpolation boundaries will arise between primitives. Higher order interpolation

would solve these problems, but is not yet available in consumer hardware. A vi-

sual comparison between the approaches may be seen in the results (Section 9).

Once an accurate distance to the wrinkle path is computed, we use the B-spline

shape contour formula to obtain an analytic normal. We shade the wrinkles using

the Phong shading model, evaluating the lighting equation directly, per-pixel for

the computed normals. Other shading methods, such as Minneart shading and

physical based rendering models, could be computed on the same normal data.
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Figure 7.5: Given two wrinkles paths along theie respect z-axes, shown is
the signed distance from each wrinkle (orange and blue), and the lin-
ear interpolation that would result across a primitive (brown). Wrinkle
orientation may result in the overlap of similarly signed distance values
(top), or opposite signed distance values (bottom).
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7.5 Blending
One of the main challenges when modeling wrinkles is to believably handle cases

where wrinkles overlap or merge. We found that a simple heuristic generates a

feasible result while avoiding the computational overhead of more complicated

blending operators (e.g., [16]). For each tessellation vertex within the region of in-

fluence of multiple wrinkle paths, we compute the height offset resulting from each

path independently and select their maximum as the final offset. While this proves

a good approximation of the deformed geometry, the discontinuous transition be-

tween contributing wrinkle paths results in an unrealistic, harshly shaded boundary

when applied to normals. In the Fragment Shader we instead compute offsets and

normals independently per path for fragment influenced by multiple paths. We

generate the final normal as an average of these per-path normals weighted by their

computed offsets (Figure 7.6).

Figure 7.6: Result without (left) and (with) wrinkle blending.
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Chapter 8

Proximity Testing Around
Wrinkle Paths

With our wrinkles represented by their path, rather than as inherent constructs of

a particle simulation or height field parametrization, it becomes very important to

efficiently manage the computation of distance between wrinkle paths and from

points on the mesh to these paths. This information is used to properly seed new

wrinkles, to truncate wrinkle paths should they merge or cross (so no wrinkle paths

are duplicated), and to determine the region each wrinkle path affects, so that tri-

angles may be mapped to wrinkles for tessellation on the GPU. The algorithm

chosen for each situation, and the precision it offers in computation of distance,

play a large role in both the result and performance of our wrinkle computation on

both the CPU and GPU.

8.1 Necessary Precision
We measure the precision of a test with respect to the error from the spline of

the wrinkle path that will be computed on the GPU. The necessary precision for

reasonable results varies for each of our use cases. Wrinkle seeding requires the

most precision as we may have multiple seeds in each triangle, and want to ensure

that the paths at each seed are disjoint and non-merging. In this situation full

computation of the spline of each segment is unavoidable. Fortunately it need only
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be done for one wrinkle for each comparison, as comparisons are being done with

respect to the seed point.

Tests for wrinkle collisions or merging are less dependent on precision, as

slight discrepancies are handled nicely by our normal blending. Truncating wrin-

kles upon merging helps reduce the number of wrinkle segments processed on the

GPU, and crossing within the precision difference of a spline from its polyline is

non-perceptible. It is sufficient in this case to merely compare shortest distances

between the wrinkle paths.

In designing the test on proximity of triangles to a given wrinkle path it is not

sufficient to test triangles against a bounding a box, as later refinement of the wrin-

kle path may curve the path outside of the box, resulting in un-tessellated regions

begin deformed, and tears forming in the mesh. However with the sheer number

of comparisons being done it is computationally heavy to compute the spline for

each wrinkle; therefore we instead compute bounding ellipses that encapsulates the

maximum possible deviation from the path that spline will take. Accuracy plays

as much an effect on performance for this application as the algorithm efficiency,

since accuracy effects the amount of data that will be passed to the GPU and sub-

sequently processed.

8.2 Bounds Testing
In all comparison cases it is necessary to narrow down the search space prior to

performing more accurate bounds or distance tests. In the case of wrinkle seed

and wrinkle-wrinkle comparisons, we maintain a look-up table for wrinkles and

their mapped triangles, allowing us to easily avoid the comparisons of wrinkles not

passing through the same triangle. Each segment of a wrinkle path also maintains

the triangle in which it resides, allowing for simple boolean checks for collision on

each segment of a wrinkle prior to performing an actual distance check.

To determining the triangles affected by a given wrinkle for the GPU we walk

radially from each wrinkle segment, as their triangles are known, and test each

triangle we pass against a rough bounding ellipse for distance. We record each

segment affecting a triangle and pass to the GPU a list of affecting wrinkles for

each triangle, and the start and end segment indices within that wrinkle that affect
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the triangle. In the control shader, any triangle with affecting wrinkles is tesselated.
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Chapter 9

Results

We demonstrate our method on a range of meshes and animation sequences, most

of which are taken from currently shipping video game titles. Our method adds

believable, temporally coherent wrinkles to low-resolution character meshes and

geometry (Fig. 9.6, 9.7, 9.8 and elsewhere in the paper.). The skirt example (Fig.

9.8) was provided courtesy of Kavan et al.[24] and is created using coarse physics-

based simulation.

9.1 Parameters
Our system makes use of two tunable parameters closely related to expected ma-

terial properties. Compression sensitivity τ is linked to the ease with which a

modeled fabric bends, and minimal wrinkle width Lmin is linked to how tightly

compressed a material can to become. Compression sensitivity may also depend

on the quality of the animation – one may choose to use a higher sensitivity thresh-

old if the animation is more noisy and exhibits more spurious tangential motion.

Figure 9.1 shows the impact of changing the parameter values. Table 9.1 list the

numbers used for the animation sequences shown in the paper.
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τ = 1.15
Lmin

= 0.5%
τ = 1.25
Lmin= 0.5%

τ = 1.15
Lmin= 1%

τ = 1.25
Lmin= 1%

time = 69ms time = 33ms time = 22ms time = 12ms

Figure 9.1: Impact of different choices of parameter values τ and Lmin.

9.2 Performance
Table 9.1 shows the run-time performance of our algorithm on various meshes,

as well as the mesh triangle counts and wrinkle parameters used. All times are

computed on an Intel Core i7-3930K CPU running at 3.2 GHz, with 32 GB of

RAM and an NVIDIA GeForce GTX 670 graphics card. Frames were rendered at

a resolution of 1920x1080.

Figure 9.1 reports the impact of the choice of parameters on performance. As

expected, performance decreases as the number of wrinkles increases (τ decreases)

and their width increase; however, we maintain interactive performance through-

out. The majority of our time per-frame is spent in the fragment shader, computing

wrinkle normals in real time; in a real world scenario such as a first-person action

game where models occupy smaller portions of the screen, performance increases

accordingly.

An argument can be made against the choice of combining both tessellation

and per-fragment normal computation in terms of performance and results. Exam-

ination of this trade-off shows performance using solely a tessellation scheme to be

heavily reliant on the level of refinement and thus width of each wrinkle. Figures

9.3 and 9.4 use a large number of wrinkles to demonstrate the effect on perfor-

mance. Refining the mesh to a degree that artifacts are not exhibited often brings

the performance well below that of a fragment shader alternative (Figure 9.5). The

fragment shader provides stable results at all levels of refinement, and thus proves

the better choice.
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Animation τ Lmin # avg # avg. ref. shape
tri. wrinkles computation time

Fig. 15 (a) 1.4 0.5% 734 22.75 1.69ms
Fig. 15 (b) 1.3 0.5% 602 5.60 1.69ms
Fig. 15 (c) 1.4 0.5% 534 5.89 1.74ms
Fig. 15 (d) 1.4 0.5% 628 11.80 1.57ms
Fig. 15 (e) 1.2 1% 356 10.57 0.92ms
Fig. 15 (f) 1.4 0.5% 602 19.03 1.72ms

Animation avg. path avg. modeling total frame
tracing time time time

Fig. 15 (a) 5.33ms 8.30ms 12.45ms
Fig. 15 (b) 3.92ms 5.53ms 11.69ms
Fig. 15 (c) 2.46ms 4.68ms 7.39ms
Fig. 15 (d) 3.77ms 6.55ms 10.67ms
Fig. 15 (e) 4.84ms 8.95ms 13.19ms
Fig. 15 (f) 5.69ms 9.78ms 14.66ms

Table 9.1: Performance statistics for various models processed with our al-
gorithm. Lmin computed as percent of character height. All times in
milliseconds.

(a) (b) (c)

Figure 9.2: Left: Artist drawn static texture and our wrinkles without (center)
and with same texture (right).
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Figure 9.3: Use of interpolated normals may introduce artifacts for even wide
wrinkles when reducing tessellation level to reach real time frame rates.
From left to right the tesselation refinement is reduced, and we begin to
see inconsistency in the normals of the highlighted area, resulting from
insufficient granularity to determine the contributing wrinkle path.
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Figure 9.4: For large numbers of small wrinkles, the reduction of tessellation
level results in visible artifacts well before reaching playable framerates.
Three levels of tesselation with corresponding frame times are shown
with normal inconsistencies highlighted in red.
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Wide Wrinkles
Per-Fragment 

Normals
High Re�nement

Wide Wrinkles
Per-Fragment 

Normals
High Re�nement

Wide Wrinkles
Per-Fragment 

Normals
Low Re�nement

Small Wrinkles
Per-Fragment 

Normals
Low Re�nement

Figure 9.5: Fragment shader is not dependent on geometry tessellation for
performance, and offers a stable, mid-level performance as compared to
the range offered by a tessellation solution.

9.3 Comparison to Alternative Strategies
We validate our algorithmic choices against those used by previous work through-

out the paper. Figure 3.3, (top) highlights the infeasibility of employing one of the

frames in an animation sequence as a reference shape. Methods such as [35, 43]

heavily rely on the existence of such reference shape. Figure 3.4 motivates our

use of a path tracing strategy designed to operate on piecewise-constant instead

of smoothed piecewise linear stretch tensor fields [43]. Our combined method is
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dramatically faster than that of Rohmer et al.who report speeds of over a second

per frame.

We also compare our method against the use of artist drawn wrinkles (Figure

9.2). We generate temporal motion-driven wrinkles, such as those on the chest,

where static wrinkles would be meaningless, and place wrinkles at many concave

joints (elbow, ankle, pelvis) where artist placed similarly shaped wrinkles. Since

our method is motion based, if part of the anatomy remains fixed we will not gen-

erate wrinkles in that area; thus our method lacks wrinkles under the arms where

the artist chose to place some.
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Figure 9.6: Some wrinkling results: input frames on top, wrinkled below.
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Figure 9.7: Some wrinkling results: input frames on top, wrinkled below.
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Figure 9.8: Some wrinkling results: input frames on top, wrinkled below.
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Chapter 10

Conclusion and Future Work

We present a practical method for adding real-time wrinkling to cloth surfaces rep-

resented by coarse non-physically animated meshes. We have demonstrated the

construction of a plausible garment reference shape from diverse mesh and ani-

mation inputs, and extracted from it a smooth tensor field through which to trace

wrinkle paths. We generate wrinkle paths that are both spatially smooth and tem-

porally consistant, and make full, efficient use of the GPU to tesselate, deform and

render our wrinkles in real-time. Our method is suitable for interactive wrinkling

of cloth and fabrics for video games on current-generation and next-generation

consoles and hardware.

In the future we would like to explore improvements to both performance and

rendering quality, as well as the application of our approach to other wrinkling sur-

faces, e.g., human skin. Our work addresses only dynamic wrinkles - i.e. those

whose presence is hinted at by the cloth motion, and would benefit from the ad-

dressing of static wrinkles which humans often expect to be present in areas of

negative Gaussian curvature.

Our method, like most previous work, generates outward bulging wrinkles -

well suited for tight garments, but physically inaccurate on looser garments. Fu-

ture work should explore automatic selection of wrinkle direction, or partial dis-

tribution of wrinkle deformation in both directions, to be consistent with human

expectations. Additionally, our method does not currently handle stretch wrinkles,

and incorporating this wrinkling is a source for future investigation.
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Our method makes use of simple approximations for the falloff of wrinkle

height towards its ends, and on the rate at which a wrinkle’s length may change

over time and as compared to compression values. Exploring the benefit of more

detailed representations is a direction of future investigation. Further work may

also explore approaches toward the persistence of wrinkles with less constraint on

motion, or that avoid the need to reconstruct our wrinkle path in the neighbour-

hood surrounding a crossed vertex. Our current approach is restricted to moving

vertices along edges; revisiting 3D walk approaches may offer smoother transition

in a quickly changing discrete field.

A number of possibilities may be explored towards the further improvement

of performance on the GPU. Global memory is accessed in 32, 64, or 128 byte

memory transactions, and alignment of data to these boundaries times may sig-

nificantly reduce the number of fetches required for each access [36]. Storage of

wrinkles in memory location with faster access, such as texture memory or con-

stant memory may also warrant examination. Both of these methods would require

research into the access patterns and memory layout of wrinkles. An alternative is

the complete reduction of required accesses and tests through the improvement of

proximity testing around wrinkle paths.

The duplication of distance calculation to wrinkle paths between the Tesse-

lation Evaluation Shader and Fragment Shader has proven unresolvable with the

current graphics pipeline, however upcoming revisions to the specification propose

changes that may expose the interpolation function during rasterization to the pro-

grammer. This would enable the exploration of higher order approximations for

distance interpolation, or perhaps even height approximations.
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