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Abstract

Legislative actions regarding ozone pollution use air quality models (AQMs)

such as the Community Multiscale Air Quality (CMAQ) model for scientific

guidance, hence the evaluation of AQM is an important subject. Tradi-

tional point-to-point comparisons between AQM outputs and physical ob-

servations can be uninformative or even misleading since the two datasets

are generated by discrepant stochastic spatial processes. I propose an al-

ternative model evaluation approach that is based on the comparison of

spatial-temporal ozone features, where I compare the dominant space-time

structures between AQM ozone and observations. To successfully implement

feature-based AQM evaluation, I further developed a statistical framework

of analyzing and modelling space-time ozone using ozone features. Rather

than working directly with raw data, I analyze the spatial-temporal variabil-

ity of ozone fields by extracting data features using Principal Component

Analysis (PCA). These features are then modelled as Gaussian Processes

(GPs) driven by various atmospheric conditions and chemical precursor pol-

lution. My method is implemented on CMAQ outputs during several ozone

episodes in the Lower Fraser Valley (LFV), BC. I found that the feature-

based ozone model is an efficient way of emulating and forecasting a com-

plex space-time ozone field. The framework of ozone feature analysis is then

applied to evaluate CMAQ outputs against the observations. Here, I found

that CMAQ persistently over-estimates the observed spatial ozone pollution.

Through the modelling of feature differences, I identified their associations

with the computer model’s estimates of ozone precursor emissions, and this

CMAQ deficiency is focused on LFV regions where the pollution process

transitions from NOx-sensitive to VOC-sensitive. Through the comparison

of dynamic ozone features, I found that the CMAQ’s over-prediction is also
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connect to the model producing higher than observed ozone plume in day-

time. However, the computer model did capture the observed pattern of

diurnal ozone advection across LFV. Lastly, individual modelling of CMAQ

and observed ozone features revealed that even under the same atmospheric

conditions, CMAQ tends to significantly over-estimate the ozone pollution

during the early morning. In the end, I demonstrated that the AQM evalu-

ation methods developed in this thesis can provide informative assessments

of an AQM’s capability.
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Chapter 1

Introduction

Ozone is an oxygen compound with chemical composition O3. In the gaseous

form at ground (surface) level, ozone is considered a harmful pollutant es-

pecially on the lung function of people with respiratory conditions. In more

severe instances, prolonged excessive exposure to ozone is linked to asthma,

heart attack and premature death (WHO, 2003; Lippmann, 1989). Over the

years, government agencies around the world have drafted and instituted

standards defining the maximum ozone threshold deemed to be harmful to

humans. In Canada, it is called the Canada Wide Standard (CWS): the

fourth highest annual ozone measurement should not exceed the level of 65

parts-per-billion (ppb) over an “8-hour averaging time” (CCME, 2000). An

ozone standard is enforced through the continuous monitoring and analy-

sis of surface-level ozone (and other air pollutant) concentrations (JAICC,

2005; Reuten et al., 2012).

Ozone formation and destruction is a part of a complex system of in-

terlinked photochemical reactions. The precursor chemicals are the photo-

chemical compounds that once released into the atmosphere, trigger a new

chain of ozone reactions. Precursor chemicals are introduced into the at-

mosphere through human activities; examples of such compounds include

NOx (the generic term for NO and NO2) and Volatile Organic Compounds

(VOC) (Boubel et al., 1994, Chapter 12). Therefore, an ozone standard is

implemented through the reduction of emission level (Reuten et al., 2012).

From the perspectives of the regulatory agencies, it is important to study

and understand the effect of precursor emission on ambient ozone concen-

tration. The Community Multiscale Air Quality (CMAQ) modelling system

is a useful scientific tool for this very purpose.

CMAQ is a process-based Air Quality Model (AQM) used to model the
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spatial-temporal ozone distribution under given meteorological and emis-

sion conditions (Byun and Schere, 2006). CMAQ enables atmospheric re-

searchers and managers to model ozone variation over a range of background

conditions, making forecasts or conducting retrospective analyses. In other

words, CMAQ is useful for estimating the effect of changing weather and

precursor emissions on surface-level ozone. Reuten et al. (2012), Steyn et al.

(2013) and Ainslie et al. (2013) are some of the most recent, extensive im-

plementations of these types of analyses.

As with any modelling system that aims to simulate a real-life event, es-

pecially one as complex as the ozone process, CMAQ users need to have an

informed, “big picture” view of its modelling capability. Hence the evalua-

tion of the CMAQ model (and AQMs in general) is an inherently important

research subject (Dennis et al., 2010; Galmarini and Steyn, 2010). The

topic of CMAQ evaluation is the initial scientific motivation that started

the statistical research in this thesis.

1.1 Overview of Ozone Process and CMAQ

Modelling System

Before discussing CMAQ evaluation it is useful to describe in detail the

science behind the ozone process and CMAQ modelling system.

1.1.1 Tropospheric Ozone Formation Processes

When pollutants are released into the atmosphere, chemical reactions subse-

quently occur to form new pollutants, one of which is ozone. In the simplest

terms, the formation of ozone can be defined as a function of the existing

hydrocarbon mixture and the concentration of NOX plus the intensity of

solar radiation and temperature. The hydrocarbon mixture could comprise

many types of hydrocarbon compounds. For example, about 43 hydrocar-

bon compounds have been identified in the air of St. Petersburg, Florida

in the 1970s (Boubel et al., 1994, Section 12.3). In addition, the precursors

for the creation of ozone would undergo various chemical transformations
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of their own, including reactions with ozone, resulting in a highly complex

system of atmospheric chemical processes.

The process is further complicated by the fact that these gases are being

transported through the atmosphere. Thus, an important aspect of an ozone

modelling system is a meteorology model that forecasts the atmospheric

circulation over a regional scale relevant to the transportation of pollutants.

Also, the meteorology model provides information on ambient conditions

like temperature and humidity, which are in turn necessary to model the

chemical reactions.

In a nutshell, meteorological and chemical reaction models are essen-

tially complex systems of dynamic functions that work jointly to model

the creation and transportation of air pollution. The mechanisms can be

summarized into two fundamental steps: (1) Pollutants are released into

the atmosphere, (2) Subsequent atmospheric chemical transformations oc-

cur, both near the pollution source and over a wide geographical region due

to being transported by atmospheric circulation, mixing and reacting with

ambient gases along the way.

Space-time Aspects of Ozone Processes

An ozone process has important spatial and temporal structure. Human

activities determine the types and intensities of pollutants entering the at-

mosphere (Steyn et al., 2013; Ainslie et al., 2013). Solar radiation and

ambient weather determine the conditions under which the atmospheric re-

actions occur. Since these factors differ across geographical locations and

time periods (hour of the day, season, etc.), pollution concentration naturally

varies across space and time. Furthermore, ozone and other air pollution

processes do not simply occur independently over space and time. Because

of atmospheric transport the pollution level at one location depends on the

pollution at other locations and their proximities with this location. In other

words, pollutant concentration of location s at time t could significantly in-

fluence the pollution at nearby location s′ at some time t′ in the future (Le

and Zidek, 2006). This dynamic aspect of space-time correlation structure
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requires modelling in our statistical methods.

For instance, Figure 1.1 shows the diurnal (daily) trend for the four sum-

Figure 1.1: Diurnal trend during summer months of 2004–2008 at Chilliwack
(BC, Canada). Each hourly concentration is averaged over the 5 years and
the days of the month.

mer months in Chilliwack, BC. Each hourly ozone value is the average ozone

measurement for that hour in the entire month over the years 2004–2008.

The ozone data are recorded in units of parts-per-billion (ppb). Missing

hourly data are filled with the average value of available data for that par-

ticular hour, e.g. the missing 2 p.m. value of August 3rd, 2005 is filled with

the average of the available 2 p.m. values of August 3rd from other years.

Data for any particular hour on a specific date are available for at least 2

years among 2004 to 2008. The same plot based on data from 1984–2008

shows a very similar diurnal trend. As another example, Figure 1.2 shows

daily day-time (8 a.m. to 8 p.m.) mean ozone level for the years 2004–

2008 and the average of these 5 years. One may notice that for Chilliwack,

the annual day-time average peaks during the spring in some years, but

when averaging the daily values over the 5 years, the diurnal fluctuations

are smoothed out and the annual peak is evident during summer.

Figures 1.3 and 1.4 are time series plots of ozone concentrations during

an ozone episode in the summer of 2006. The locations in Figure 1.3 are
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Figure 1.2: Day-time mean ozone level against day of the year at Chilliwack.
The mean is averaged over values from 8 a.m. to 8 p.m.

contained within an area of 8km radius, while the locations in Figure 1.4

are much further apart. This type of plot is useful to visually assess how

closely correlated are the ozone concentration levels at different locations.
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Figure 1.3: Time-series of observed ozone concentrations at 3 close locations
during the time-period 1100PST, June 23rd to 1000PST, June 27th of 2006.
The vertical dashed-lines indicate the hour 0000PST of each day.

1.1.2 The CMAQ Modelling System

This section describes in simple and general terms, the inner working of

the CMAQ modelling system. In Chapter 2, I will provide a more detailed
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Figure 1.4: Time-series of observed ozone concentrations at 3 well-separated
locations during the time-period 1100PST, June 23rd to 1000PST, June 27th
of 2006. The vertical dashed-lines indicate the hour 0000PST of each day.

description of the conditions and settings of CMAQ runs that are relevant

to this research.

As a numerical model, CMAQ is essentially a system of differential equa-

tions which are integrated given initial and boundary conditions. Hence to

implement a CMAQ model run, one requires various inputs for these initial

and boundary conditions of the pollution process. One important input is

provided by the emission model Sparse Matrix Operator Kernel Emission

(SMOKE) (SMOKE v2.5, University of North Carolina, 2012). Given an

annual total emission for a geographical region, the SMOKE modelling sys-

tem distributes this emission figure into spatial grids and time periods: it

provides estimates of the types and amounts of pollutants (reaction precur-

sors) released into the atmosphere, and this information is listed for each

relevant geographical grid cell, at varying height, over given time periods.

For example, when we wish to estimate the pollutant types and amounts

released by household heating during winter, we would first apply appropri-

ate sampling methods to obtain the number of residences within a geo-

graphical region. This is our pollution source, then the follow-up procedure

is described in Boubel et al. (1994, Section 6.4):

1. Identify what gases are produced from home heating, typically CO,

CO2, NOX and CH4.

2. Collect household fuel consumption figures from dealers, utility providers
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and so forth. Without such data, one may apply established distri-

bution models of fuel type and consumption amount to produce an

estimate.

3. Examine the reference literature to decide on relevant emission factors

for the given consumption figure, such as weight of pollutant per vol-

ume of fuel burned. A popular reference on emission factors is “Com-

pilation of Air Pollution Emission Factors” by the U.S. Environmental

Protection Agency1.

4. There exist models that simulate consumption behaviour over time,

allowing us to estimate the time of emission.

5. Calculate the total emission produced within this region at a certain

time period.

The CMAQ system has modelling uncertainties from various sources; the

emission inventories provided by SMOKE account for a large portion of

said uncertainties. This is perhaps unavoidable given its task of estimating

results of human activities.

Other inputs feeding into the CMAQ model include land surface in-

formation and meteorological conditions such as wind speed and direction,

ambient temperature, pressure and solar radiation intensity. These input

data are produced by the Weather Research and Forecasting (WRF) model

(WRF v3.1, Skamarock et al. (2008)).

Finally, the role of the “chemical component” in the air pollution model is

to simulate atmospheric chemical reactions. The emission model tells us the

types and amounts of gases entering into the chemical reactions. Using the

given inputs and working in conjunction with the meteorological model, the

chemical reaction model simulates the systems of chemical transformations

in the ozone process. At the end, a CMAQ model run produces output in

the form of an average value over a geographical grid cell at a point in time.

Thus, hourly averages need to be computed, usually by simple averaging

of a series of outputs. Moreover, the model typically requires input every

1http://www.epa.gov/otaq/ap42.htm
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10 minutes (other time intervals are also possible). Initial and boundary

conditions may be updated every hour, and inputs for shorter time intervals

would be interpolated within the model during simulation.

In summary, CMAQ is a complex machine comprised of purpose-specific

models (WRF, SMOKE, etc.) that operate interactively to model an at-

mospheric air pollution process. Given its complexity, model uncertainties

and errors are an unfortunate but inherent reality of CMAQ. In view of the

use of CMAQ as a “reference guide” to the design of ozone-related policies

(introductory paragraphs of the chapter), it is imperative to evaluate the

modelling capabilities of CMAQ.

The topic of AQM evaluation has garnered substantial attention over

the past few years. Dennis et al. (2010) and Galmarini and Steyn (2010)

contain extensive overview and discussion of this topic. The book series “Air

Pollution Modelling and its Application” (Springer Books) provides up-to-

date summaries of new research relating to all aspects air-quality modelling

every 18 months. One research area covered in this book series is the topic

of AQM evaluation.

1.2 The Problems with “Usual” Means of AQM

Evaluation

The most popular means of AQM evaluation is to analyze the statistics of

point-to-point differences between the AQM output and corresponding (in

space and time) physical observations. Dennis et al. (2010) listed common

evaluation statistics such as Mean Bias Error, Root Mean Squared Error

and Correlation. Willmot et al. (1985) suggested that bootstrap methods

can be applied to obtain the confidence interval and assess the significance

of observation-model difference statistics such as RMSE. Under the context

of climate model evaluation, Preisendorfer and Barnett (1983) compared

model outputs and physical data as two “swarms” of data points in a com-

mon euclidean space. Geometric properties such as the distance between

two swarms’ centroids, differences in their radial scales and space-time evo-
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lutions are proposed as viable measures of a model’s accuracy. Authors then

outlined sampling procedures to obtain the statistical significance and power

of proposed model accuracy measures.

However, Dennis et al. (2010) pointed out that while direct data com-

parisons can be useful to a certain degree, they “provide little insight” on

the deficiency and behaviour of AQM simulated pollution fields. There are

further problems stemming from the point-to-point comparisons.

AQM output and ozone observations are products of different processes

driven by their own space-time mechanisms. AQM ozone is driven by a

system of differential equations that describe specific ozone-related photo-

chemical and atmospheric processes. In case of CMAQ, these equations are

integrated over the inputs from WRF (meteorology) and SMOKE (emis-

sion). Ozone observations are measurements of the real-life ozone processes

that occur during observed meteorological and chemical precursor conditions

(Dennis et al., 2010). The physical monitoring stations are sparsely and ir-

regularly located across a large spatial domain (details in Chapter 2). Hence

observations do not necessarily represent initial and boundary conditions in

the same way as an AQM modelled process.

The AQM ozone and observations are further differentiated by the fact

that the computer model outputs are spatial-averaged concentrations (dis-

cussed in Section 1.1), whereas the physical observations are ozone measure-

ments taken at point locations. In other words, AQM output and observa-

tions each capture ozone process on a different spatial scale.

The quality of physical observations is invariably degraded by stochastic

measurement errors. The error source of AQM outputs are characterized by

inadequacies in model inputs (WRF and SMOKE outputs) and its deficien-

cies in emulating the behaviour of key atmospheric processes. This implies

that AQM modelled ozone and observations have different stochastic struc-

tures in relation to the underlying true ozone. For example, let s and t

denote a location and time, x denotes a set of atmospheric conditions at s

and t, and let the unknown true ozone at (s, t, x) be denoted by Ot(s, t, x).

Then the observed ozone is Ot(s, t, x) + ε: the true underlying ozone plus

random measurement error, whereas the AQM modelled ozone Oc(s, t, x)
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relates to true ozone by Ot(s, t, x) = Oc(s, t, x) + δ(s, t, x), where δ(s, t, x)

is a random process representing the AQM modelling deficiency and often

a nonlinear function of (s, t, x). Such statistical formulation of the AQM

ozone and observations are based on the more general model-measurement

relationship proposed by Kennedy and O’Hagan (2001), which is applied in

later works such as Fuentes and Raftery (2005) and Higdon et al. (2008).

Given the above formulation, the observation-model difference is a ran-

dom non-linear process δ(s, t, x)+ε. Hence, an informative model evaluation

should tell us something about the pattern and behaviour of random pro-

cesses like δ(s, t, x)+ε, these are information that point-to-point comparison

summaries such as RMSE cannot provide.

In summary, AQM outputs and observational data are generated by two

space-time ozone processes with discrepant physical and stochastic struc-

tures. The point-to-point comparison of two datasets only serves to inform

the deviations in their output values, not their difference as individual ozone

processes. Without a more insightful process-level understanding of the two

ozone processes, close agreement based on point-to-point comparison should

be deemed “fortuitous” (Dennis et al., 2010).

This research is motivated by the concerns and topics proposed by the

Air Quality Model Evaluation International Initiative (AQMEII, Galmarini

and Steyn (2010)) and Dennis et al. (2010). The literature discussed exten-

sively the aforementioned problems of direct output-observation comparison,

and highlighted the importance of evaluating the ability of a computer model

such as CMAQ to emulate the interacting atmospheric processes within a

space-time air pollution system.

1.3 Research Topics and Objectives

In the most general terms, my research objective is to develop statistical

methods of AQM evaluation that are more informative than direct observation-

model comparison. These “informative” methods should be able to provide

useful insights into the way AQM and physical observations differ as ozone

processes, and to identify possible sources of AQM deficiency. In addition,
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the evaluation methods should correct or at least account for the fact that

model output and observation are generated from individual processes with

discrepant physical and statistical properties. The statistical analyses in

this thesis are based on data (model output and physical observations) re-

lated to ozone pollution and the CMAQ system. However, the general ideas

and statistical methods are intended to be applicable to other air pollution

problems and AQM evaluations.

The AQM evaluation methods proposed in this thesis are based on the

analysis and modelling of spatial-temporal ozone features. An ozone feature

is a data component/mode that captures certain space-time structure of the

underlying ozone process and/or recover non-trivial amount of data varia-

tion. One example of ozone features is the spatial or temporal ozone means.

Suppose there is a space-time ozone dataset O of dimension t× n, t and n

being the number of hours and locations in a dataset. The column means of

Ot×n are the spatial field of temporal ozone means: ozone averaged across

time at each location. The row means of Ot×n are the time series of spatial

ozone means: ozone averaged across space at each hour.

Analyses in later chapters will show that ozone features allow for statis-

tical or real-world interpretability. In addition to space-time ozone mean, an

ozone feature may also capture some dynamic patterns of ozone advection

(atmospheric ozone transport).

In this thesis, I propose and implement two general methods of feature

based evaluation of AQM against the observations:

1. The first approach is to compare the ozone features between AQM

outputs and physical measurements, and analyze how the two ozone

data differ in their underlying space-time structures. As mentioned,

an ozone feature captures either the mean structure or some dynamic

patterns of ozone advection. The advection patterns reveal the most

fundamental mechanisms of the underlying atmospheric process, hence

the comparison of such advection features is a means of process level

AQM evaluation.

I also propose to model the ozone feature differences to identify and
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analyze the statistical associations between specific AQM inputs and

feature differences. Here, the AQM inputs are variables representing

the background meteorology, ozone precursor emission rates and at-

mospheric concentrations. This is a way of understanding how the

components of an AQM (weather, emission, etc.) are associated with

its deficiencies in capturing the physical field.

2. The second approach is to build statistical ozone feature models for

both AQM and observations, then compare the two statistical mod-

els as another means of process-level AQM evaluation. For instance,

one can use the fitted models to produce the AQM features and the

observed features given the same regional meteorology and ozone pre-

cursor pollution. These features can then be compared and checked

for the significance of their differences in space and time. Another

evaluation can analyze how two ozone features react to the same vari-

ations in background atmospheric conditions. This is a process level

comparison of the stochastic properties of AQM ozone and physical

process.

This thesis will present a coherent set of statistical analyses that argue

the following claim: an informative and “big-picture” AQM evaluation can

be achieved through the analysis and modelling of ozone features.

1.3.1 Topics of Ozone Feature Analysis and Modelling

To successfully implement the proposed evaluation approaches, I will need to

develop the necessary statistical tools and framework that: (1) extract ozone

features from space-time ozone data, (2) model individual ozone features and

model the complete space-time ozone field through these features. These are

my other research topics in addition to the statistical AQM evaluation.

In this research, methods of Principal Component Analysis (PCA) are

used to decompose space-time ozone data into ozone features. One PCA-

related topic is to determine the number of ozone features that are meaning-

ful for statistical analysis. A “meaningful” ozone feature should be a data
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mode that either can be interpreted statistically, or captures the underlying

physical process that created the ozone field. At the very least, a “mean-

ingful” feature should recover a non-trivial amount of data variation. By

determining the number of meaningful ozone features, one is able to answer

whether a complex space-time ozone data can be analyzed using a few ozone

features, i.e., simpler data components.

Furthermore, there are several PCA-related complications that should

be addressed to ensure convincing implementation of the proposed feature-

based AQM evaluation. One such complication is the ozone feature “de-

generacy” (North et al., 1982), where a feature’s order of extraction and/or

its mode of variation are “mixed” with other features. Failure to address

this and other PCA-related complications may result in the event where one

feature from AQM is evaluated against an entirely different feature from the

observations, resulting in erroneous conclusion about the AQM performance.

Thus, it is important to determine a specific PCA procedure that ensures,

or at least maximizes feature correspondence during model evaluation.

Aforementioned PCA related topics will be studied in Chapter 3 using

both the CMAQ outputs and synthetic ozone data. These topics are all part

of the first step in the framework of ozone feature analysis and modelling:

the extraction of ozone features. The second step is to develop statistical

models for individual spatial-temporal ozone features, and this will be done

in Chapter 4.

The proposed ozone feature models are variations of Gaussian Processes

(GPs) driven by the background atmospheric and chemical precursor condi-

tions. As the reader will see, the structures of ozone features can be highly

non-linear, making the task of model estimation an interesting and challeng-

ing one. One such challenge is to determine the ideal design and composition

of model covariates; a significant portion of my modelling effort is focused on

this topic. Typically for a statistical research, once the model is estimated,

one need to implement the proposed model using appropriate data, which

in this case are CMAQ-WRF-SMOKE outputs. The purpose is to carefully

scrutinize the modelling and forecasting capabilities of individual ozone fea-

ture models through a series of goodness-of-fit tests, model diagnostics and
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exercises in ozone forecasting.

This framework of ozone feature extraction, analysis and modelling forms

the core statistical methods on which my proposed AQM evaluation is based.

Although ozone feature models are developed as a means to AQM evaluation,

the developed methodology is potentially an useful contribution in itself: it

is a novel and computationally efficient means of modelling a complex space-

time air pollution field.

1.3.2 Relation to Existing Model Evaluation Projects

As discussed earlier in this section, Galmarini and Steyn (2010) and Dennis

et al. (2010) pointed out the importance of an air quality modelling system

to emulate the interacting atmospheric processes within a space-time air

pollution system. They term this type of model evaluation as Diagnostic

Evaluation. The authors also categorized three more types of AQM evalua-

tion. Dynamic Evaluation analyzes an AQM’s ability to model the changes

in pollution concentration due to the fluctuations in meteorological condi-

tions and emissions. Operational Evaluation refers to “generating statistics

of the deviations” between the AQM outputs and corresponding observa-

tions, and examination of the results based on a few “selected criteria”.

Probabilistic Evaluation proposes to model the AQM outputs and/or obser-

vations as random processes following certain probability density functions

(pdfs), then the estimated pdfs are used to carry out various evaluations of

AQM against observation. My proposed AQM evaluation approach may be

viewed as a mixture of above categories of model evaluation done though a

probabilistic framework.

This research is also closely related to the works of Steyn et al. (2011)

and Steyn et al. (2013). In these works, the authors used CMAQ to simulate

the space-time ozone fields during ozone episodes in the Lower Fraser Valley

(LFV), British Columbia (BC). Among other things, the authors carried

out point-to-point comparison of CMAQ outputs with available observa-

tions, and identified the precursor-sensitivities of local ozone fields within

LFV. The statistical analyses in this thesis deals exclusively with ozone data
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during LFV ozone episodes, and all my dataset are those used in Steyn et al.

(2013). More detailed discussions of Steyn et al. (2011), Steyn et al. (2013)

and other related LFV ozone papers will be done throughout the thesis.

In the end, my goal is to generate useful statistical methodologies and

analyses that can be incorporated into the overall body of works in the fields

of AQM evaluation and LFV regional air quality study.

1.4 Literature Review

The literature review is organized according to the main steps of the thesis

research: (1) PCA of space-time processes, (2) methods of modelling the

non-linear processes that produce both computer model outputs and physi-

cal observations, and (3) existing AQM evaluations based on the comparison

of data features.

1.4.1 PCA and Extraction of Data Features

Principal Component Analysis (PCA) was originally introduced by Pearson

(1902). One earliest application of PCA in the field of atmospheric and

climate science can be traced to Lorenz (1956), where sea level pressure

(SLP) data were decomposed into Empirical Orthogonal Functions (EOFs)

in space and time. The term “EOF” used in this paper is widely adopted

in atmospheric science.

The application of PCA/EOF has since gained prominence for the pur-

pose of data decomposition, where the central idea is to decompose a non-

linear climate system (sea level pressure, surface temperature, etc.) into

independent physical modes of variation. A rich body of literature explores

various topics stemming from the PCA of space-time physical processes.

The general topics relevant to this research include (1) the interpretation

and selection of data features (Richman, 1986; Preisendorfer, 1988), and

(2) estimate error associated with EOF-decomposition, which relates to the

separability and identifiability of data features (North et al., 1982; Mona-

han et al., 2009). These two topics and further references will be exten-
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sively discussed in Chapter 3 on PCA. Furthermore, a useful summary of

PCA/EOF-decomposition, their related issues, extended methodologies, and

applications in atmospheric science can be found in the books by (Storch and

Zwiers, 1999, Chapter 13) and Jolliffe (2002)) and review articles (Bjornsson

and Venegas, 1997; Hannachi et al., 2007).

More recently, methods of PCA have been applied to study the spatial

and temporal patterns of ozone process. These papers deal with an ozone

process at a global or continental scale. Orsolini and Doblas-Reyes (2003)

studied the spatial pattern of leading EOFs decomposed from monthly col-

umn ozone data observed by Total Ozone Mapping Spectrometer (TOMS)

during the spring months between 1948-2000. The spatial field covers the

Euro-Atlantic sector (20o to 90o latitude and 60o to -90o longitude) and

the data are measured at 500mb geopotential height. From the patterns of

leading EOFs, the authors were able to identify the pressure system that

is associated with the pattern of each EOF. They found that the most im-

portant pressure system is the North Atlantic Oscillation (NAO), and other

leading weather patterns are the Scandinavian, east Atlantic and European

Block. Principal Component (PC) time-series were also studied for long-

term trends. The purpose of this paper is to study the link between ozone

EOFs and known climate patterns.

Jrrar et al. (2006) carried out similar analysis using outputs from Chem-

ical Transport Model (CTM) SLIMCAT and identified 5 climate patterns

from the spatial plots of 5 leading ozone EOFs. Camp et al. (2003) imple-

mented PCA on column ozone data across the tropics, which are measured

by both TOMS and Solar Backscatter Ultraviolet (SBUV) instruments. The

key tropical oscillation patterns are identified from the ozone EOFs. The

above mentioned ozone PCA literature has since been extensively cited over

the past 10 years.

Similar ideas have been used in other fields. For example, Liu et al.

(2003) implemented a modified Singular Value Decomposition (SVD) tech-

nique on an affymetrix microarray, or gene expression data. By analyzing

the decomposition, they isolate a vector of data features that enables them

to order gene types according to the level of data variation attributed to
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each genome.

There are certainly other ways of decomposing and visualizing high-

dimensional data: spectral decompositions (Fourier transform, etc.), and

neural networking techniques like self-organizing maps (Kohonen, 1982, 1990)

and multidimensional scaling (Borg and Groenen, 2005). Methods of PCA or

EOF-decomposition are use here because they are widely adopted in both

statistics and atmospheric science. Aforementioned literature are simply

well-known examples among an extensive collection of works that demon-

strate the use of PCA for extracting structure/dynamic modes from high-

dimensional datasets. Furthermore, the usefulness of PCA methods are also

reiterated in this particular research.

1.4.2 Emulation of Non-linear Computer Models and

Physical Processes

My proposed statistical analysis involves the modelling of AQM outputs.

AQMs such as CMAQ are referred to as “numerical models” or “computer

models” in the sense that the mathematics involves numerical solutions of

governing atmospheric dynamic equations and chemical kinetic equations,

and only the input conditions are required to implement a model run that

produces a deterministic output. In contrast, a “statistical model” is built

around the idea of modelling randomness with probability functions, and

sample data are needed to fit a model to output. On the surface, the nature

of CMAQ makes statistics inapplicable; after all, statistics requires random-

ness.

For a complex computer model, a model run at every possible input value

is impractical at best. When we implement a model run for given input, the

output is deterministic, but outputs at untried inputs remain unknown. In

this sense the numerical model output follows a stochastic process because

of these uncertainties in the output. This is the historical reasoning behind

treating model output as a realization of a stochastic process (Sacks et al.,

1989). Over the years, statistical methods have been developed based on

such a formulation, for the purpose of using computationally cheap statisti-
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cal models to emulate the computer model outputs, and the real processes

they try to estimate.

As mentioned, Sacks et al. (1989) were among the earliest authors to

treat a deterministic model output as a realization of a random process.

They suggested that the deterministic model output Y (x) given covariate

set x is a realization from a random function such as

Y (x) =
k∑
j=1

βjfj(x) + Z(x). (1.1)

The random process Z(x) is assumed to have zero mean and covariance

σ2R(x,x′), where R(x,x′) is the correlation measure between computer

“input sites” x and x′. In such a function, Z(x) models the random de-

viation from the regression function βT f(x), where β = (β1, . . . , βk)
T and

f(x) = (f1(x), . . . , fk(x))T . They further put forth the idea that the ran-

dom process Z(x) (hence Y (x)) is governed by a Gaussian Process (GP).

As the name implies, the assumption is that the random process follows a

Normal distribution.

This fundamental approach has since gained prominence, and it has been

studied and refined for a wide range of applications. Kennedy and O’Hagan

(2001) introduced the idea of a joint-GP that combines deterministic outputs

and physical data in a method called Bayesian Melding. The application is

to calibrate the computer output using its correlation structure with the

observed physical data. This idea of “melding” computer model output and

physical observations has been adapted into more complex forms to tackle

the problems of air pollution as spatial processes (Fuentes and Raftery,

2005; Liu, 2007). In these two works, the “grid-cell average” computer

output is set to equal a weighted sum of latent point processes, where the

weights are defined by exponential kernel functions of the distances between

the locations of latent process and the grid-cell centroid. Such function

“downscales” the spatial scale of computer output to match that of the

observation.

Berrocal et al. (2009) and Zidek et al. (2012) ventured one step further
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by implementing particular forms of hierarchical regression model whose co-

efficients follow GPs and are allowed to vary in both space and time, thus

modelling the air-pollution as spatial-temporal processes. All the above

mentioned literature implemented their model formulation using variations

of a Hierarchical Bayesian Algorithm. Lindstrom et al. (2014) proposed an-

other hierarchical regression model that contains a temporal basis function,

this function is either assumed to be known or decomposed from data, and

it is scaled by a spatial coefficient that follows GP.

Berrocal et al. (2012) evaluated of the temperature outputs from the

Regional Climate Model (RCM), where the data are quarterly mean tem-

peratures from 1962 to 2002 in South Central Sweden. In this paper, in-

formation from observation data are scaled, using statistical models, onto

the “grid-box level” for comparison with RCM outputs. The spatial scal-

ing is done using both the space-time downscaler model in Berrocal et al.

(2009) and an upscaler model in Craigmile and Guttorp (2011). The statis-

tical model outputs are Bayes estimates of spatially scaled quarterly mean

temperatures.

Using the the methodologies of Sacks et al. (1989), Gao et al. (1996)

showed that a GP model can be applied to model observational ozone con-

centrations. They analyzed daily ozone data from Chicago for the period

1981 to 1991, and found that a properly designed GP-based model can be

a capable modeller of process-driven temporal ozone processes. The main

purpose of the paper is to correct the trend over years for changing meteo-

rology, and to assess the impact of regulatory initiatives. Dou et al. (2010)

also applied GP methodologies in modelling temporal ozone patterns: the

authors used a form of time-series model whose coefficients are modelled as

GPs. Cooley et al. (2007) modelled the observed “extreme precipitation re-

turn” in Colorado using a Pareto-based distribution. To account for spatial

non-stationarity, the Pareto-parameters are modelled as spatial Gaussian

Processes. The latter two works implemented their models using variations

of a Hierarchical Bayesian Algorithm.

The aforementioned literature is only a selection among a rich collection

on theories and applications relating to GPs. The popularity and diversity
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in the applications is a testament to GP’s capability to interpolate and ex-

trapolate systems of complex non-linear functions. Progressive refinements

made to the basic framework of a GP model also point to its flexibility that

allows for extensive fine-tuning and elaboration.

Unlike aforementioned literature, I do not model ozone data directly. In-

stead, the spatial and temporal ozone features are modelled as multivariate

GPs. More specifically, they are modelled as GPs driven by the background

processes conducive to a space-time ozone process, e.g., meteorological con-

ditions, chemical precursor emission rates and ambient concentrations.

1.4.3 Feature-based AQM Evaluation

My literature review reveals that although there are earlier precedents, PCA-

based model evaluation is not a widely and frequently adopted technique.

This sentiment is also reflected in Eder et al. (2014).

Preisendorfer and Barnett (1983) is among the earliest works that pro-

posed the idea of computer model evaluation based on data decomposition.

As mentioned in Section 1.2, Preisendorfer and Barnett (1983) proposed a

few statistical summaries of point-to-point data differences. The authors also

mentioned a model evaluation approach where the data of observation-model

differences are decomposed, and the leading EOF and PC are visually as-

sessed to extract useful information about model deficiency. The paper then

evaluated General Circulation Model2 (GCM) outputs for January sea-level

pressure field. However, this PCA-based model evaluation is mentioned only

briefly as a possible complementary analysis to point-to-point data compar-

ison.

Cohn and Dennis (1994) and Li et al. (1994) later proposed PCA-based

AQM evaluations with more extensive implementations and discussions than

the one presented in Preisendorfer and Barnett (1983). Cohn and Dennis

(1994) used PCA to evaluate the capability of Regional Acid Deposition

Models (RADMs). The model output for various aerosol species is evaluated

against corresponding observations collected over Eastern United States at

2An early version from National Centre for Atmospheric Research.
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high altitude (1000-1500 meters) during August-September, 1988. The data

are averaged over space: each column is a time-series data of one aerosol

specie. The RADM outputs are further separate into sulfur system (O3,

SO2, H2O2 and SO2−
4 ) and nitrogen system (O3, NO, NO2, etc.). The two

groups of outputs and observations are then decomposed through PCA and

their PCA results compared. Comparison metrics include percent varia-

tion explained by leading PC loadings, and angles between the PC spaces.

The results indicated systematic RADMs deficiency in the nitrogen sys-

tem. Through the scatter plots of O3 outputs against NO2 outputs, author

pointed out the possibility of RADM producing fewer molecules of O3 per

NO2 photochemical cycling.

Li et al. (1994) used PCA to evaluate the Eulerian Acid Deposition and

Oxidation Model (ADOM) against observations collected from the Eule-

rian Model Evaluation Field Study (EMEFS). Through PCA, the modelled

chemical process is decomposed into three distinct components simulating

the process of chemical aging/transport, diurnal cycle and area emission.

The resulting PC scores, which are in the form of a time series, are com-

pared between ADOM and EMEFS to identify specifics of the computer

model’s temporal bias.

Fiore et al. (2003) evaluated AQMs’ abilities to model space-time ozone

processes. In this paper, two models are evaluated: Multiscale Air Quality

Simulation Platform (MAQSP) and global GEOS-CHEM model at two spa-

tial resolutions. The ozone EOFs from these AQMs are compared against

corresponding EOFs of observations, both visually and through correlation

statistics such as linear slope and R2. Furthermore, from the spatial varia-

tions of the leading EOFs, the authors discussed the possible wind patterns

responsible for ozone transport across the Eastern U.S. The evaluation re-

vealed that all three models captured similar east-west spatial feature shown

in the observed EOF, while both resolutions of GEOS-CHEM misplaced a

midwest-northeast EOF. All three models also shown to capture the general

patterns of leading temporal features from the observations.

Dennis et al. (2010) also contains an review of AQM evaluations based

on data decomposition. For example, Hogrefe et al. (2000) and Porter
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et al. (2010) applied spectral decomposition to longterm time-series data of

CMAQ output and O3 observations, then compared the decomposed spectral

bands of varying frequencies, e.g., diurnal, seasonal and long-term fluctua-

tions.

A more recent work is Eder et al. (2014), published during the writing

of this thesis. In this paper, PCA methods are used to evaluate CMAQ

outputs for SO−4 and NH4 against weekly observations from the Clean Air

Status and Trend Network (CASTNet) over 2001-2006. Moreover, PCA

is implemented on the difference of CMAQ outputs and observations, not

individual data. The authors identified some systematic features of CMAQ-

observation differences. For example, the third SO−4 spatial feature revealed

five high-elevation locations in the eastern U.S., and corresponding temporal

features indicated a seasonal cycle where CMAQ under-predicted the con-

centrations during late summer months and over-predicted for rest of the

year. Authors found that the Meso-scale Model (MM5, weather model of

CMAQ) under-predicted relative humidity and over-predicted solar radia-

tion in high-elevations. These weather model deficiencies are shown to be

significant from Mann-Whiteney nonparametric tests between MM5 outputs

and weather observations. In the end, author suggested that the aforemen-

tioned CMAQ deficiency with high-elevation SO−4 modelling is caused by

issues with the parameterization of clouds in CMAQ.

Another recent example of PCA-based CMAQ evaluation can be found

in Marmur et al. (2009). This paper instead applied Positive Matrix Fac-

torization (PMF) to the CMAQ output for numerous chemical species and

associated observations. As with earlier literature, comparison matrices such

as “percent data variation explained” and PC scores time-series were com-

pared between CMAQ outputs and observations.

There is also a general method of climate model evaluation called opti-

mal fingerprinting. Linear regression is used to compare climate observations

(the responses) with model outputs under some external climate forcing (re-

gressors). Usually the response and regressors are data features obtained

from decomposition (Hasselmann, 1993; Allen and Tett, 1999). These data

features, representing significant departures from normal climate variations,
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are called “fingerprints”. The extensive literature on optimal fingerprinting

includes Hobbs et al. (2015). Here, the authors evaluated climate models

of Antarctica ice coverage (a proxy for climate change), where above men-

tioned linear regression is used to analyze the seasonal feature/fingerprints

of observation-model deviations.

Other works used combined analyses of PCA and cluster analysis on

meteorological data to study measurement-model discrepancy. Beaver et al.

(2010) used EOF to categorize daily physical observations and correspond-

ing model outputs into clusters of weather patterns. They then assessed

how often the outputs and observations match in this categorization. The

clustering is based on hourly wind speed data: it is recorded in vector com-

ponents u and v, and the measurement stations cover the bay-area of Cal-

ifornia. The hourly wind data are first concatenated into daily data, then

the PCA-compressed data are clustered based on the criteria of minimum

sum of squared errors. The defining wind pattern within each cluster is

visually interpreted and defined. In the end, the authors recorded the num-

ber of days where observation and model output were assigned to different

clusters, and analyzed the meteorological patterns during the days that are

mis-categorized. The article concluded that the instances of observed mis-

categorization (model inadequacy) are consistent with what they already

knew from experience regarding the behaviour of models being analyzed.

Ainslie and Steyn (2007) ventured one step further. The authors imple-

mented EOF-decomposition and cluster analysis of mesoscale wind data for

regions around LFV. They then defined four types of synoptic wind patterns

associated with LFV’s regional ozone exceedance, where the “ozone thresh-

old” is defined by CWS mentioned in the introductory paragraphs (page 1).

Reuten et al. (2012) further applied results from Ainslie and Steyn (2007)

to forecast the frequencies and types of regional ozone exceedance for the

future time period 2046 to 2065. In this thesis, the four LFV wind patterns

identified in Ainslie and Steyn (2007) will provide an important reference

point in the ozone feature analysis and CMAQ evaluations to be presented

in Chapter 3 and 5. The key results and conclusions in this paper will also

be discussed in detail in Section 3.1.
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1.5 Novelty of Proposed AQM Evaluation

Methods

In this section, I will discuss in the most general terms, the novelties and

potential contributions of my proposed AQM evaluation approaches. The

goal of this thesis is then to present a coherent set of statistical analyses

that demonstrate the usefulness of my proposed evaluation methods.

In the existing literature, the differences in data features (in the form of

PC scores and loadings) are compared using correlation measures, RMSE

or linear regression (optimal fingerprinting). To the best of my knowledge,

no previous attempt has been made to model the feature differences using

GP or other non-linear functions, which I propose here. As this thesis will

demonstrate, ozone features have highly non-linear structures, which makes

my proposed non-linear modelling a practical improvement over existing

evaluations.

The aim of modelling data feature is to identify any statistical asso-

ciation between the observation-AQM feature differences and specific input

conditions of AQM run. Using the feature difference models, one can further

analyze how the feature differences change with variations in AQM inputs.

I will show later in this thesis that the modelling of feature differences can

reveal useful and specific insights into an AQM’s capability.

My second proposed method (Section 1.3) is also a novel means of

feature-based AQM evaluation. In this method, statistical ozone feature

models are used to predict the AQM feature and the observation feature

under the same background conditions, e.g., weather and precursor pollu-

tion. These “same-condition” features are then compared in space and time,

and the significance of their feature differences are assessed. In essence, this

proposed evaluation compares the stochastic properties of two air pollution

processes.

The complexities of an AQM such as CMAQ dictate that one cannot run

AQMs under the same real-world conditions that generated the observations.

This is evident from literature regarding the CMAQ modelling of LFV air

pollution, such as Reuten et al. (2012), Steyn et al. (2013) and Ainslie
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et al. (2013). Therefore, the second proposed evaluation can provide useful

statistical answers to the question: “can AQM produce results that are

statistically similar to observations after correcting for deviations in basic

background conditions?”

1.6 Thesis Structure

Chapter 2 will describe the data used in this thesis. Specifically, they are

model outputs from CMAQ, WRF and SMOKE, as well as physical observa-

tions on air pollution and accompanying meteorology. I will also discuss the

specific set-up of CMAQ modelling runs that produced the available data.

As discussed in Section 1.3, I will develop the necessary statistical tools

for AQM evaluation. In Chapter 3, I will study the PCA-related topics that

are crucial for an informative and defensible AQM evaluation. In Chapter 4,

I will develop statistical models for individual ozone features. Specifically,

I will estimate the exact formulation of the models, diagnose relevant sta-

tistical assumptions, and evaluate the prediction capability of these ozone

feature models. Furthermore, I will analyze whether a complete space-time

ozone fields can be modelled using combinations of ozone features.

Chapter 5 and 6 bring everything back to my original research motiva-

tion: the statistical evaluation of AQMs, which in this case, the CMAQ.

The two general AQM evaluation approaches proposed in the beginning of

Section 1.3 will be developed and implemented individually. Combined in-

sights and modelling methodologies developed in Chapters 3 and 4 will be

applied while evaluating CMAQ output against the observations.
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Data

Space-time ozone fields are either produced by the CMAQ modelling system

or physically observed at monitoring locations. In addition to ozone, this

research also uses space-time data (either from computer model or obser-

vation) of variables representing meteorological conditions, ozone precursor

emission rates and surface level concentrations.

Section 2.1 introduces the sources of data and provide some background.

Section 2.2 presents the way CMAQ outputs and observation data are pro-

cessed for CMAQ evaluation in Chapter 5 and 6. I refer to data presented

in Sections 2.1 and 2.2 as the real data to differentiate them from the simu-

lated or synthetic data that are discussed in Appendix A.1 and used in B.1.

Simulated ozone processes are useful for answering statistical questions that

are difficult, or impossible, to answer unequivocally using the real data.

2.1 Air-quality Model Output and Physical

Observations

Data undergo extensive numerical processing during statistical modelling.

The details behind each data-processing procedure will be discussed at ap-

propriate stages of the statistical analyses. Section 2.1 simply informs the

reader of the original source of all my data. The computer model outputs3

used in this thesis are part of those used in Steyn et al. (2011) and Steyn

et al. (2013).

3All available CMAQ outputs are calculated using the BORA server at the University of
British Columbia.
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2.1.1 Data from Computer Models

CMAQ models ozone on a regular grid system, in which outputs are pre-

sented in the form of hourly grid-cell averaged ozone concentration in units

parts-per-billion (ppb) (Byun and Schere, 2006). The geographical size of

a grid cell, commonly referred to as the CMAQ resolution, is defined by

users. The coarsest resolution available for this study is a single grid cell

size of 36km × 36km with 93 cells in the east-west direction and 95 in the

north-south direction. Smaller grid cell sizes available are 12km×12km and

4km×4km, with grids of 70×89 (E-W×N-S) cells and 172×103 respectively.

In this regional ozone study, I use CMAQ outputs at 4km× 4km resolution.

In addition to ozone, CMAQ outputs the concentrations of 124 photo-

chemical compounds. Furthermore, CMAQ models the air-pollution fields

at 48 different atmospheric heights. My analysis of interest is the surface

level ozone.

Chemical precursor data came from the CMAQ and the SMOKE models.

Each model output represents one major source of photochemical precursor:

precursors already present in the atmosphere (CMAQ output) and precur-

sors “newly” emitted into the atmosphere (SMOKE output).

The statistical analysis in this thesis will use data on the emission rates

and antecedent concentrations of NOx (oxides of Nitrogen) and VOC (volatile

organic compounds). NOx is the sum of NO and NO2 data, while VOC data

are created by adding the scaled values of 16 families of volatile organic com-

pounds. The reactivity scale for each compound is calculated as the ratio

between the Carbon-Bond 5 (CB5) reaction rate of that compound and the

median of the 16 reaction rates (Yarwood et al., 2005).

The antecedent concentrations represent the hourly atmospheric NOx

and VOC concentrations (in ppb) associated with CMAQ ozone modelling at

each grid cell. These data are generated using lagged NOx and VOC outputs

from CMAQ and spatially-weighted according to surrounding wind flow for

each grid cell. The detailed method of generating antecedent concentration

data will be discussed in Section 4.3.

I will also use space-time data on temperature, wind direction and speed,
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and planetary boundary layer height. These meteorology data are WRF

model outputs, which are post-processed by Meteorology-Chemistry Inter-

face Processor (MCIP) into a format usable for CMAQ, and convenient for

statistical analysis using R. Moreover, WRF output has accompanying geo-

graphical coordinate data and the topography of the modelled region, which

is linked to the CMAQ output. Within the CMAQ system, each grid cell is

spatially indexed by the longitude and latitude of its centre.

The WRF and SMOKE outputs are produced on the same spatial do-

main and grid system used by the CMAQ model. Their outputs at each

location and hour is presented as the numerical result from the spatial-

interpolation and temporal-averaging of each respective grid-cell’s initial

and boundary conditions. The details of aforementioned model variables, as

well as the reasonings behind their selection will be discussed extensively in

Chapter 4.3.

The setup of CMAQ modelling runs

In Chapter 1, I described a generalized picture in the way CMAQ-WRF-

SMOKE modelling system is run interactively to model space-time ozone.

This subsection summarizes the specific setups of CMAQ, SMOKE and

WRF modelling runs that produced the data in this thesis.

The SMOKE emission model generates an emission inventory and dis-

tributes the emissions into spatial grids and time periods at varying degrees

of resolutions/intervals (SMOKE v2.5, University of North Carolina, 2012).

The emission inventory generated in this study is further adjusted for both

the amount and source location to reflect the change in LFV’s “population

density and economic activity” over the years (Steyn et al., 2011, 2013).

The overall annual emission rates of NOx, VOC and other pollutants are

obtained from the Metro Vancouver forecast and backcast emission inven-

tories reported by Greater Vancouver Regional District (GVRD) in 20074.

The SMOKE output used here is the sum from 10 types of emission

source: light and heavy duty vehicles, off-road vehicles, rail-roads, aircrafts,

4Prepared by Metro Vancouver.

28



2.1. Air-quality Model Output and Physical Observations

marine, other emission sources, biogenic emissions, point and area sources.

The LFV mobile (vehicle) emission rates are modelled by MOBILE6.2 and

MOBILE6.2C models (US Environmental Protection Agency, 2010) using

backcast emission totals from the above mentioned GVRD inventory. The

regional ozone modelling in this thesis is analyzed at 4km×4km spatial res-

olution, such detailed biogenic emission modelling is handled by MEGAN

version 2.04 (Guenther et al., 2006).

WRF (v3.1, Skamarock et al. (2008)) produces the 3-dimensional meteo-

rological fields for ozone modelling. The meteorological conditions were sim-

ulated at 48 vertical levels to model air pollution at all elevations. As with

CMAQ and SMOKE, it can simulate a space-time process at varying spa-

tial resolutions. The Kain-Fritsch convective parameterization is applied to

model “unresolved cloud updraft and downdraft”, and Asymmetric Convec-

tive Model (ACM, version 2) accounts for “unresolved Planetary Boundary

Layer” process (Steyn et al., 2013). Data from Moderate Resolution Imaging

Spectroradiometer (MODIS), either weekly average values or weekly values

around the episode dates, were used to initiate the simulations of sea-surface

temperatures (Steyn et al., 2013).

The CMAQ (EPA Model-3) modelling system of version 4.7.1 models

the overall photochemical process. For each ozone episode, the modelling is

done over a period of 96 hours with a 13-hour “spin-up” period (Steyn et al.,

2011, 2013). This means that, a full 96-hour ozone episode dataset contains

three full days of ozone simulation plus additional 11 hours on the last day.

This spin-up period is determined based on past experiences of our CMAQ

data providers. Due to the recirculation of pollutants within LFV (Seagram

et al., 2013), the pollutants from the previous day remains in LFV as the

initial pollutants of a new diurnal ozone process.

Furthermore, background ozone, CO and NOx concentrations were pro-

vided by Re-analysis of TROpospheric chemical composition (RETRO) monthly

average outputs, which in turn are simulated jointly by general circula-

tion model, and chemical and aerosol model called ECHAM5-MOZ: Euro-

pean Centre Hamburg Model-Model for Ozone and Related chemical Tracers

(Steyn et al., 2013). Carbon-bond 5 (CB05) gas phase chemical mechanism
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2.1. Air-quality Model Output and Physical Observations

with chlorine (Yarwood et al., 2005) using the Aerosol Energetics (AE-5)

aerosol module was used.

The computation time of CMAQ depends on the available computing

power. In our case, it took CMAQ approximately one day to simulate one

day of ozone at 4km× 4km resolution5.

Episodes and spatial domain of our study

At 4km × 4km resolution, the CMAQ modelling region covers an area in

the Pacific Northwest that includes parts of Washington state in the U.S.,

Alberta in the east and northern BC mountains. I focus my modelling

around the Lower Fraser Valley (LFV): a region of British Columbia that

encompasses Greater Vancouver Regional District (Metro Vancouver) and

Fraser Valley Regional District. The Fraser Valley Regional District spans

from Abbotsford to Hope in the east.

Specific for this thesis, the “full” region under analysis is a rectangular

approximation to the valley floor of the LFV. The large “pins” in Figure 2.1

indicate the corners that define my rectangular LFV region. This rectangu-

lar LFV includes a small portion of the north shore mountains immediately

adjacent to some urban areas, and excludes the area around Hope (to the

east of Chilliwack). This modelling region is comprised of 229 CMAQ (hence

WRF and SMOKE) grid cells, whereas a complete CMAQ model domain

contains 17716 grid cells at 4km× 4km resolution.

Each CMAQ run is used to model a summer-time ozone episode, which

typically lasts 96 hours that span over 5 days: 13 hour spin-up period on

the first day, 3 full days in the middle and 11 hours on the last day. In

all, model outputs for 5 episodes are used in this study, they took place in

the years 1985, 1995, 1998, 2001 and 2006 (Steyn et al., 2013; Ainslie et al.,

2013). Table 2.1 shows the start and end time of each episode.

5From Bruce Ainslie, who produced all the CMAQ outputs used in this thesis
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Year Time span

1985 July 18th, 1100PST - July 22nd, 1000PST

1995 July 16th, 1100PST to July 20th, 1000PST

1998 July 24th, 1100PST to July 28th, 1000PST

2001 August 9th, 1100PST to August 13th, 1000PST

2006 June 23rd, 1100PST to June 27th, 1000PST

Table 2.1: CMAQ modelled ozone episodes: years and the episode durations.

2.1.2 Observational Data from Air-quality Monitoring Sites

The observed data on ozone and other variables are collected at air-quality

monitoring locations across the lower mainland of BC (Metro Vancouver,

2012). At each location, there is an instrument that draws in ambient air

and measures the pollutant concentrations in the air sample. This procedure

can be done every few seconds, and such rapid-response data collection

allows for various averaging times depending on the type of data analysis

(Metro Vancouver, 2013). The data currently available are based on hourly

averages.

Besides air-quality data on ambient ozone and NOx concentrations, each

monitoring location also collects accompanying weather data on tempera-

ture, wind direction and speed. Although weather data are recorded multiple

times per hour, available data are hourly averages. The VOC concentrations

are measured only at 4 of the 17 ozone monitoring stations, and they are

usually available as daily values. The physical measurements of LFV plan-

etary boundary layer height are not available for our study (Steyn et al.,

2011).

I make use of observation data collected from monitoring sites located

within my rectangular LFV region. The small “red pins” in Figure 2.1

show the 17 monitoring locations that recorded the data for 2001 and 2006

(Ainslie et al., 2009), and Table 2.2 shows the associated station coordinates

and names. The number and locations (longitude and latitude) of available

monitoring stations vary by the episode. One reason is that between 1985

to 2006, some monitoring stations were retired from service while new lo-

cations were established. Moreover, for certain years some of the locations
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2.1. Air-quality Model Output and Physical Observations

contain a large number of missing measurements and data collected from

such locations are discarded from analysis. The 1985, 1995, 1998 , 2001 and

2006 episodes have observation data available from 11, 16, 16, 17 and 17

monitoring sites.

Figure 2.1: Locations of current measuring stations (small pins) and the
corners of my self-defined rectangular LFV region (large pins). The station
coordinates and names associated with the numbers 1 to 17 are in Table 2.2.
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Number Longitude Latitude Name

1 -123.16 49.26 Kitsilano
2 -123.15 49.19 YVR
3 -123.12 49.28 Robson square
4 -123.11 49.14 Richmond south
5 -123.08 49.32 Mahon park
6 -123.02 49.30 North Vancouver
7 -122.99 49.22 Burnaby south
8 -122.97 49.28 Kenshington park
9 -122.90 49.16 North Delta
10 -122.85 49.28 Rocky Point Park
11 -122.79 49.29 Coquitlam
12 -122.71 49.25 Pitt Meadows
13 -122.69 49.13 Surrey east
14 -122.58 49.22 Maple Ridge
15 -122.57 49.10 Langley central
16 -122.31 49.04 Central Abbotsford
17 -121.94 49.16 Chilliwack

Table 2.2: The Station names and coordinates of the numbers 1 to 17 in
Figure 2.1: the map of the LFV monitoring network.

2.2 Data for CMAQ Evaluation in Chapters 5

and 6

This section describes the various numerical processing of CMAQ output

and observation data used for CMAQ evaluations in Chapters 5 and 6.

2.2.1 Interpolated CMAQ Data

A proper implementation of my proposed CMAQ evaluation approach re-

quires that CMAQ outputs and observations be matched on a spatial-temporal

domain. Being both hourly data, CMAQ outputs and observation are

matched in time. However, this is not the case with space: CMAQ out-

puts are air pollution data on a regular spatial grid across the entire LFV,

while observations cover an irregular and sparse set of locations (Section

2.1).
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2.2. Data for CMAQ Evaluation in Chapters 5 and 6

The CMAQ evaluation analyses in Chapter 5 and 6 will be based on

observation data from the nobs monitoring sites and CMAQ-WRF-SMOKE

outputs spatially interpolated onto the locations of these nobs locations.

Therefore, the spatial domain of statistical CMAQ evaluation is defined

by the “ozone monitoring space”, not the “CMAQ modelling space”. As

discussed in Section 2.1, the monitoring locations vary by the episode, so

the CMAQ interpolation is done by the episode.

Each computer model output is spatially indexed by the longitude-latitude

of the corresponding grid-cell’s centre point. While the example below shows

how spatial interpolation is done for CMAQ ozone output, the method is

the same for other variables.

1. For each ozone monitoring station, choose 4 neighbouring CMAQ grid

cells using the combined criteria: closeness in Euclidean distance and

good coverage around the point-location of the monitoring site. Fig-

ure 2.2 shows for selected observation stations, the chosen 4 CMAQ

neighbours that were used for interpolation.
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Figure 2.2: For 8 selected monitoring stations, the 4 CMAQ neighbours to
be used for interpolation. The red dot is the location of a monitoring station
and the squares are the centres of the 4km×4km CMAQ grid cells.
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2. For each monitoring location, interpolate the 4 CMAQ outputs via

Inverse Squared Weighting:

ws =
1

d2s

(
4∑
s=1

1

d2s

)−1
, Ocint =

4∑
s=1

ws ·Ocs,

where Ocint denotes “interpolated CMAQ”. Ocs is the CMAQ output at

grid cell s, ds is the Euclidean distance between s and the monitoring

site, and s = 1, . . . , 4 for each monitoring site.

In the end, one obtains space-time data of interpolated CMAQ outputs,

whose locations are matches to the longitude-latitude of observations.

Here, the interpolation at each observation location is based on only

the four nearest CMAQ grid-cells. For such a local field, inverse squared

weighting is an adequate interpolation method. For interpolations based on

larger and more complex fields, one might need to adjust the power of in-

verse weighting according to the dataset’s “coefficients of spatial variations”

(Gotway et al., 1996). Alternatively, one may interpolate CMAQ outputs at

the observation locations using Kriging methods (Matheron, 1963; Cressie,

1990).

2.2.2 Missing Observations and Measurement Errors

For an episode, the percentage of missing data is typically ≤ 5% for all vari-

ables. In addition, data are usually missing for just an hour or occasionally,

a few hours. There are also instances where the observations are completely

unavailable for one or more stations, e.g., the temperature data during the

2006 episode are not available for the Robson Square and North Vancouver

stations, and the percentage of missing data reached ≈ 12% in total (across

all 17 stations and 96 hours).

When the data are missing for 3 or fewer consecutive hours, I interpolate

the missing observations by simple linear regression: “ozone concentration”

is the response variable and “hour” the regressor along with an intercept

term, and the regression is fitted with two available observations at either

side of the missing period. Otherwise, a “proxy station” is chosen for each
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2.2. Data for CMAQ Evaluation in Chapters 5 and 6

location, and the missing observations at this location are filled-in with data

from the “proxy station”. The proxy station is selected based on the visual

criteria of spatial-temporal homogeneity.

For example, at Pitt Meadows, the ozone observations are missing for 4

hours on June 26th, 2006. These missing data are filled with the same-hour

observations from the Rocky Point Park. Figure 2.3 shows the spatial plot

of 96-hour ozone mean produced from the 2006 CMAQ output: it helps

to assess the spatial homogeneity between locations. The contour of LFV

shoreline, and the locations of the Pitt Meadows and Rocky Point Park

monitoring sites are also shown. The plot of mean field indicates that the

96-hour ozone means are similar between two locations. Figure 2.4 plots

the hourly observations from the two locations; it helps to compare their

temporal patterns. As shown, the observations from the two locations closely

track each other by the hour, except that the ozone peak is higher for Pitt

Meadow on the 3rd day. However, the data are missing during the pre-noon

hours on the 4th day, and observations from the previous days show that

during these hours the ozone levels are similar between the two locations.

Figure 2.3: From the 2006 CMAQ ozone output: the spatial plot of the
96-hour ozone means overlaid with the LFV shoreline. Note that Longitude
is expressed differently from the other plots: it is the usual longitude angle
plus 360◦, simply used to overlay the available map data.
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2.2. Data for CMAQ Evaluation in Chapters 5 and 6

Figure 2.4: Hourly ozone observations from Pitt Meadow and Rocky Point
Park during the 2006 ozone episode. The dashed line indicate the hour 0000
of each day. Notice the effect of nocturnal down mixing at 0400PST, the
25th, in Rocky Point Park

When a station have ozone observations that are missing or flagged as

incorrect readings for consecutive 8 or more hours, the data from this sta-

tion are not used for analysis. This is because observations are used as

“reference data” for CMAQ evaluation, and excessive amount of interpo-

lated/estimated inputs would introduce unwanted bias into the statistical

analysis.

As Figure 2.4 shows, there is a hour long spike in the early-morning for

Rocky Point Park. This is the result of what is known as Down Mixing

(Salmond and McKendry, 2002). It is a nocturnal process in the boundary

layer of LFV, which creates vertical mixing and downward transport of pol-

lutants from the atmosphere above. The natural consequence is the sudden

spike of ozone and precursor concentrations in particular locations around

LFV, such as this example at Rocky Point Park. This phenomenon is be-

yond the scope of my current analysis. I chose to replace the down-mixing

affected data points using the average measurements from adjacent hours at

the same location.
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2.3 Summary of Data Used in the Thesis

I also generated synthetic/simulated ozone data that emulates the space-

time structure of the real LFV ozone field. I then implemented a few analyses

using these synthetic data to complement the ozone PCA in Chapter 3. Since

these synthetic data are analyzed in Appendix B.1, the details regarding the

design and creation of such data is described in Appendix A.1 instead of this

chapter.

In summary, the types of data used in this thesis are:

• CMAQ ozone output and associated data on meteorology, chemical

precursor emission rates and antecedent concentrations (processed from

WRF, SMOKE and CMAQ output).

• Physical Observations. These are data recorded at monitoring stations

across LFV. Observation data include ozone and NOx concentrations,

temperature, wind speed and direction.

• Above mentioned synthetic ozone data.

In Section 2.1, I mentioned that the full spatial domain of my analysis is

the rectangular LFV shown in Figure 2.1. In upcoming statistical analyses

in Chapter 3 to 6, I will analyze data based on either this “full” rectangular

LFV or subregions of it. The decision is based on the specific goal of analysis

at hand. The list below gives a quick overview of the regions analyzed:

1. In Chapter 3, I will analyze CMAQ ozone outputs across part of LFV

where the elevation is below 150 meters. This region represents the

triangular “valley floor” of LFV. This is a region where most of the

ozone activities (chemical reactions and atmospheric transportation)

occur. I will simply refer to this region as “LFV”.

2. In Chapter 4, I will use CMAQ-WRF-SMOKE data across the full

rectangular LFV. I refer to this region as “rectangular LFV” to differ-

entiate it from the “LFV” defined above.
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3. The CMAQ evaluation analyses in Chapters 5 and 6 will be based

on the area defined by the nobs monitoring locations. As discussed,

the computer model outputs will be spatially interpolated onto the

observation locations.
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Chapter 3

Principal Component

Analysis of Space-time Ozone

My research explores methods of AQM evaluation based on the the analysis

and modelling of ozone features. The term ozone features describes the

dominant spatial-temporal structures of a space-time ozone field. In this

research, methods of PCA are used to decompose a space-time ozone data

into spatial and temporal features. Since data features capture the key

space-time variation within a dataset, one may argue conceptually that they

are the most informative portion of the data for statistical analysis.

In this chapter, I use Principal Component Analysis (PCA) of CMAQ

outputs to address important topics related to the statistical analysis of

ozone features. Specifically, I aim to accomplish three things:

1. Determine the most appropriate PCA method for feature-based AQM

evaluation. The exact PCA method will then be applied consistently

in this study.

2. Analyze whether a space-time ozone field can be understood and an-

alyzed through a small number of ozone features.

3. Interpret the ozone features: either as statistical summaries of data,

or as space-time structures that explain important underlying mecha-

nisms of the ozone process.

The following discussion explains the purposes of these analyses.

An important topic relating to the comparison of ozone features is the

topic of “feature correspondence” between ozone data. In order to compare

ozone features between AQM modelled ozone and physical observations, it
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is crucial that we understand whether the same types of features are being

evaluated. Otherwise, one type of ozone feature from AQM will be judged

against an entirely different feature from observations, leading to wrong con-

clusions about the computer model’s performance. One way of addressing

above concern is to understand what types of ozone features dominate the

ozone field being analyzed. If one is able to interpret the extracted fea-

tures from both datasets, subsequent feature-to-feature evaluations can be

concluded in ways that is both logically justifiable and informative.

Each spatial ozone feature is numerically represented by an Empirical

Orthogonal Function (EOF) vector, and each temporal feature is represented

by a Principal Component (PC) vector. Hence, PCA is used to extract EOFs

from an ozone dataset, and these EOFs are the estimates (from sample

dataset) of the unknown true EOFs of the ozone field under analysis. The

following are two main PCA-related complications due to uncertainty in

estimating EOFs, or sampling uncertainty. One needs to address them in

order to assure feature correspondence during AQM evaluation.

• All pairs of EOF vectors are orthogonal. If the 1st EOFs of two data

sets capture different, thus incomparable, types of features, then this

feature discordance will carry over to higher-order features due to the

aforementioned orthogonality constraint (Cohn and Dennis, 1994). In

addition, if the 1st EOF of an analyzed ozone field is estimated in-

correctly, perhaps due to the sparseness of sample data, then the or-

thogonality requirement of EOFs results in the propagation of EOF

estimate errors towards higher-order features (Cohn and Dennis, 1994;

Monahan et al., 2009).

• Identifiability or separability of ozone features: whether extracted

ozone features are individual space-time fields separable from the rest,

or whether multiple features form an inseparable couplet or multiplet.

This is a data-specific statistical property defined by EOF estimate

errors, and it informs us which features can be compared individually

or jointly.

In this chapter, above mentioned topics will be analyzed using CMAQ ozone
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outputs for the LFV during the 5 episodes in 1985, 1995, 1998, 2001 and

2006 (Section 2.1).

Through ozone PCA in this chapter, I will establish the exact PCA pro-

cedure that will be implemented in all subsequent statistical analyses. This

procedure is meant to address aforementioned PCA-related complications

and to maximize interpretability of ozone features.

I will further examine the number of spatial and temporal ozone features

that are meaningful for statistical analyses. First, this question is addressed

by analyzing the amount of data variation as well as the importance of space-

time structure each ozone feature can capture. Secondly, I will implement a

simulation-based approach to construct a statistical test that determines the

number of meaningful ozone features. These analyses address the question

of whether a complex space-time air pollution field can be understood and

analyzed through simpler data features.

As discussed in Section 2.1, CMAQ outputs are produced on a regular

grid with high spatial resolution of 4km×4km, while observations are ir-

regularly placed at most, 17 locations in LFV. This means that, compared

to observations it will be easier to interpret the spatial ozone features of

CMAQ. Therefore in this chapter, for the purpose of learning about ozone

PCA and LFV ozone features, I will use CMAQ outputs instead of obser-

vation data. However, later in Chapter 5, I will implement PCA on ozone

observations to compare the CMAQ features to the observed features.

Before proceeding, I need to define a few important recurring termi-

nologies. Let Ot×n be an ozone dataset of dimension t × n, t being the

number of hours and n the number of locations. The term spatial field of

temporal ozone means refers to the column means of Ot×n: ozone averaged

across t hours, resulting in a spatial field of ozone means. Short descriptions

“mean field” or “field of means” will also be used to describe the temporal

ozone means. The term hourly spatial ozone means refers to the row means

of Ot×n: a time series of ozone averaged across n locations at each hour.

“Hourly LFV mean ozone” will mostly be used to describe this time series.

Similarly, temporal ozone standard deviation is calculated across time,

i.e., the column standard deviation of Ot×n. Spatial ozone standard devia-
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3.1. LFV Ozone during an Episode

tion is then the standard deviation calculated across space.

Section 3.1 summarizes what is already known about LFV’s ozone episodes.

Section 3.2 reviews the PCA or EOF-decomposition methods relevant to this

research, and determines the PCA procedure to be used in this thesis. In

Section 3.3, I will discuss the number of ozone features useful for further

analysis. In Section 3.4, I will implement PCA on the space-time CMAQ

outputs from the 5 episodes (Table 2.1), where the goal is to formulate un-

derstandings and interpretations of extracted ozone features that are useful

for the upcoming AQM evaluations. Section 3.5 summarizes the findings in

Chapter 3.

3.1 An Overview of LFV Ozone Field during an

Episode

The following discussion will use CMAQ outputs to highlight the distinct

space-time structures of LFV ozone fields during an episode. Later in Section

3.4, I will determine whether the visible qualitative ozone patterns can be

extracted through PCA.

Figures 3.1 and 3.2 show for selected hours during the 1985 and the 2006

episodes, the 3-dimensional spatial ozone fields outputted by CMAQ. During

a summer-time ozone episode, an ozone plume forms in the morning across

the west of LFV. This plume keeps building in concentration before the

early afternoon peak while slowly travelling east (Ainslie and Steyn, 2007;

Steyn et al., 2013). This eastward movement, driven by daytime westerly

winds, carries the ozone plume inland throughout the day. As night falls,

the intensity of the ozone process (its creation and destruction) decreases

dramatically due to the absence of UV radiation. Hence during the night

and following morning, there exists low-level background ozone across the

triangular valley floor of LFV (Salmond and McKendry, 2002).

Furthermore, as the map in Figure 3.3 shows, the LFV is surrounded

by mountains from the northeast and the southwest. Combined with a low

boundary layer height, these surrounding mountains act as a physical bar-
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Figure 3.1: For selected hours during the 1985 ozone episode, 3-dimensional
spatial plots of the hourly ozone field. The spatial domain is the “rectangular
LFV” including the north shore mountains.
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Figure 3.2: For selected hours during the 2006 ozone episode, 3-dimensional
spatial plots of the hourly ozone field. The spatial domain is the “rectangular
LFV” including the north shore mountains.
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rier to the eastward horizontal advection of pollutants that channels them

along the valley (Taylor, 1991; Steyn et al., 1997), and subsequently creates

a “bottleneck effect” (Robeson and Steyn, 1990) that traps the pollution

within LFV’s mountainous barrier. Therefore, during the night time as

ozone within LFV’s valley floor reverts to background level, the surround-

ing mountains and parts of eastern LFV generally suffer from high ozone

pollution due to the accumulation of the plume produced earlier in LFV.

This is noticeable from the ozone fields at 2100PST and 0600PST in both

Figures 3.1 and 3.2. The high ozone pollution along the mountains remains

for the entire duration of an episode.

Figure 3.3: Locations of current measuring stations (small pins) and the
corners of the complete rectangular LFV region (large pins).

Each episode is also defined by slight deviations in its space-time struc-

ture from the generalized LFV ozone structure I just described. The 1985

episode has a pronounced ozone plume around the city of Vancouver, and

the plume transports eastward in a discernible wavelike pattern along the

northern part of LFV (1300PST and 1700PST plots of Figure 3.1). The

2006 episode (Figure 3.2) has an ozone plume forming in the middle LFV

and transports eastward as a “block” of plume that is evenly distributed from

north to south. Perhaps more significant is the difference in the night time

ozone fields between 1985 and 2006. For 2006, the night time spatial ozone

variation is consistent with the generalized LFV night time pattern, and the
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maximum ozone level is around 20 ppb at the valley floor (2100PST plot

of Figure 3.2). For 1985, there is a heavy accumulation of ozone pollution

around the southwest corner of LFV by the evening, where the maximum

ozone level exceeds 60 ppb (2100PST plot of Figure 3.1). This is in addition

to the high ozone levels along the north shore mountains.

Therefore, despite the fact that every ozone episode happens at a narrow

and specific set of weather conditions and regional pollution (Steyn et al.,

2013), differences do exist. One needs to consider the ever changing local

emission standards that can shift the spatial patterns of air pollution over

the years (Steyn et al., 2011). Furthermore, the between-episode differences

in ozone structures are partly influenced by the prevailing regional wind

patterns.

Each ozone episode is defined by its unique wind regime, i.e., combination

of mesoscale wind direction and speed. Using wind observations at YVR,

Ainslie and Steyn (2007) identified four types of possible mesoscale wind

regimes during an LFV ozone episode, and characterized the dominant wind

patterns of each episode. Figure 3.4 shows the hodograph of the four wind

regimes from Ainslie and Steyn (2007). A point in the plot indicates the

direction from which the wind blows towards the origin, the distance from

the origin shows the wind speed, and the number above each point indicate

the hour of the day. As shown, the daytime atmospheric circulation is

usually defined by a westerly wind system. Regime IV also displays easterly

winds in the evening. Table 3.1 summarizes the wind regime of the middle

3 full days of each episode (remember that the first and last days are half

days).

Year Dates Wind Regime

1985 July 19-20-21 I-IV-IV
1995 July 17-18-19 III-III-III
1998 July 25-26-27 II-III-II
2001 August 10-11-12 II-II-II
2006 June 24-25-26 I-I-III

Table 3.1: The daily wind regime for the middle 3 full days of each episode.
Figure 3.4 shows what circulation types I-IV look like.
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3.1. LFV Ozone during an Episode

Figure 3.4: The four types of LFV wind regime during an ozone episode as
described by Ainslie and Steyn (2007). The wind regimes are presented as
hodograph: the number on top of a point indicates the hour of the day, the
point’s position indicates the direction in which the wind blow towards the
origin and the distance from origin indicates the speed.
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In Section 3.4, the LFV ozone structure and space-time patterns de-

scribed in this section will be used as physical references for interpreting the

ozone features. Furthermore, PCA will be done episode-by-episode to iden-

tify any changes (man-made or weather-driven) in LFV’s ozone structure

over the years. PCA will be also be done on ozone fields under separate

wind regime types. This helps to analyze possible influence of wind regime

on the dominant pattern of LFV ozone advection.

3.2 PCA Methods and Related Topics

This section defines the PCA notations and methods used throughout the

thesis. I will also (1) review the mathematical properties and identities

of PCA that are useful for subsequent statistical analyses, and (2) discuss

the PCA-related complications (briefly described in the beginning of this

chapter) that require attention during feature-based AQM evaluations in

Chapters 5 and 6.

3.2.1 Definitions of EOFs and PCs

Let O be a t×n matrix of ozone data, where t is the number of time points

and n the number of locations (longitude and latitude concatenated). In a

general sense, a column of O can be viewed as containing t observations on

one of n variables, and a row of O is one set of observations on n variables.

PCA is typically implemented on centered or standardized data. In

centered data, each ozone value in Ot×n is “centered” by subtracting its

location-specific mean over the t hours. Denote the column centered data

as Õt×n, where the j-th column of Õ is

Õt×n[, j] = O[, j]−
∑t

i=1 O[i, j]

t
.

Hence (1/n)ÕT Õ is an n×n sample covariance matrix since the mean of each

column (corresponding to one ozone location) is 0. Standardized data are

subsequently obtained by dividing each column of Õ by its column standard
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deviation. Column standardization maps the origins of data vectors onto a

common origin in data space, and the scales are unitless and comparable.

However, I believe data centering/standardization is unnecessary given

the purpose of my analyses. In this research, decompositions are performed

on space-time data of single photochemical or meteorological quantities, so

all data elements have the same units and scale. The space-time data pro-

duced by computer models are well-behaved, and except for rare occasions

of equipment malfunctioning, observed data are well behaved as well. Hence

influential data outliers are not a pressing concern. More importantly, given

my goal of feature-based AQM evaluation and space-time ozone modelling,

it is reasonable to keep the mean structure intact during PCA. This point

will be elaborated at the end of this section. First, I will present the PCA

procedures and properties that are relevant to this research. The discussions

in this chapter are focused on the data matrix Ot×n, but the presented al-

gebraical properties are also applicable to Õt×n (and any data in general).

In PCA, the matrix OT O undergoes eigen-decomposition OT O = EΛET ,

giving the matrix En×n whose columns are n-length eigenvectors of OT O,

and a diagonal matrix of n eigenvalues Λ. Here, each of the n eigenvectors

is referred to as an EOF, and PCA eigen-decomposition is interchangeably

referred to as EOF decomposition. There is an eigenvalue corresponding

to each eigenvector. Denote each eigenvalue as λj , j = 1, . . . , n, we have

Λ = diag{λ1, . . . , λn}. Multiplying Ot×n by En×n gives a matrix of PCs

P = OE, which has the same dimension as the original data Ot×n. The

combined analyses of EOF decomposition and PC calculations are referred

to here as PCA.

P is an orthogonal basis for O, and each column of P consists of t

weighted row-sums of O. In other words, each value in a PC is the location-

weighted sum of the ozone values at the corresponding time point. There-

fore, the values in an EOF can be seen as the spatial weights, or the “im-

portance”, of each location over the time period t captured by O. Here,

each column of E, denoted as Ej , j = 1, . . . , n, is a normalized eigenvector.

Hence the EOF values are unitless. Each column of P is denoted as Pj , and

the PC values have the ozone unit ppb.
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As discussed above, each element in an Ej represents a certain type of

spatial weight of the corresponding location. To state it explicitly, each Ej

contains n “spatial variables” that can be defined on the spatial domain

of Ot×n: each element of Ej can be located on the spatial domain by the

location of its corresponding column in Ot×n. This leads to the fact that all

Ej ’s are in essence, spatial processes that can be conveniently plotted over

the spatial domain of the ozone field. The same can be said for the Pj ’s:

each of the t elements in a Pj is the weighted row-sum of Ot×n at hour i,

where i = 1, . . . , t. Hence each Pj can be plotted as a time-series of length t.

The nature of the Ej and Pj will be illustrated by the ozone feature analysis

in following sections.

3.2.2 Mathematics of PCA

The data in this thesis can have t > n (observations and interpolated CMAQ

output) or t < n (CMAQ output for LFV). Although the following discussion

on the mathematical properties of PCA is presented for the the case of t > n,

equivalent results hold for t < n.

An important property of E is its orthogonality, i.e., any pair of columns

is orthogonal. Moreover, I will also show the orthogonality of the columns

is also a property of the principal component matrix Pt×n. Taking into

account the orthogonality of E and P, one may derive and arrive at some

useful definitions and relationships.

Interpretation of Eigenvalues

Starting with the definition of eigenvectors and eigenvalues, we have:

(OT O)E = EΛ, (3.1)
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where Λ is an n × n diagonal matrix of eigenvalues. Left-multipling each

side by ET , we arrive at PT P = Λ:

ET OT OE = ET EΛ⇒ ET OT P = ET EΛ

⇒ (OE)T P = Λ⇒ PT P = Λ.

Hence P is column-orthogonal, and the eigenvalues correspond to the second

moments of the variables represented by the columns of P. Furthermore,

right-multiplying (3.1) by ET gives OT O = EΛET . It can be easily shown

that the trace (diagonal sum) of OT O is equal to the trace of Λ:

tr(OT O) = tr(EΛET ) = tr(E(ΛET )) = tr((ΛET )E) = tr(Λ).

Note that the diagonal elements of OT O correspond to the second moments

of the variables in O. One may conclude that the sums of the second mo-

ments of O and P are equal. Using this important relationship, we can

estimate the proportion of data variation explained by each EOF-PC pair:

proportion of data variation accounted for by Ej and Pj =
λj∑n
j=1 λj

,

where λj is the j-th diagonal element of Λ.

Since P is column-orthogonal, any cross-product (uncorrected for the

means) between the variables in P is 0. Therefore, E maps O, a column-

wise correlated matrix (correlated variables) into a new data matrix P whose

variables are orthogonal.

In this thesis, I rank the Ej ’s and Pj ’s, j = 1, . . . , n, according to the

amount of data variation the j-th EOF-PC pair explains. Thus, the “1st

EOF” and “1st PC” together account for the most data variation (equivalent

to having the largest λj), and so forth for the successively higher order EOFs

and PCs. Here, the “order ” of an EOF-PC pair corresponds to their rank

j: compared to E1 and P1, Ej ’s and Pj ’s of j ≥ 2 are referred to as “higher

order” data features.
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Data Reconstruction via EOFs and PCs

The data matrix O can be constructed as follow:

P = OE⇒ multiply each side by ET ⇒

PET = OEET ⇒ O = PET .

The equality O = PET can be explicitly expanded into a sum of n EOF-PC

terms:

Pt×nE
T
n×n =


P11E11 P11E21 . . . P11En1

P21E11 P21E21 . . . P21En1
...

...
...

...

Pt1E11 Pt1E21 . . . Pt1En1

+


P12E12 . . . P12En2

P22E12 . . . P22En2
...

...
...

Pt2E12 . . . Pt2En2

+ . . .+


P1nE1n . . . P1nEnn

P2nE1n . . . P2nEnn
...

...
...

PtnE1n . . . PtnEnn



=
[
P1 . . . Pn

]ET
1

. . .

ET
n

 = P1E
T
1 + P2E

T
2 . . .+ PnE

T
n

=
n∑
j=1

PjE
T
j . (3.2)

Pj and Ej are vectors of length t and n respectively.

The t× n matrix PjE
T
j is the j-th order space-time component of data

Ot×n that captures the space-time interaction between Ej and Pj . In other

words, PjE
T
j is the j-th spatial-temporal ozone feature. As equation (3.2)

shows, a complete ozone data can be recovered or constructed by summing

n spatial-temporal ozone features.

The PCA of CMAQ outputs in the following sections will show that the

eigenvalues decrease rapidly as the order of the EOF/PC increases. The

implication here is that the amount of data variation explained by higher-
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order space-time ozone features decreases rapidly. Indeed, the traditional

statistical purpose of PCA is to reduce the dimensionality of a large dataset,

using the fewest possible components to explain the most possible data vari-

ation (Hardle and Simar, 2012). If the first p features capture most of the

variation in O, instead of (3.2), we write

O ≈
p∑
j=1

PjE
T
j , p� n. (3.3)

The values of p will be discussed in Section 3.3.

Relationship Between PCA and SVD

PCA is related to Singular Value Decomposition (SVD). In general terms,

SVD decomposes data as O = UMVT , where UT = U−1 and VT = V−1.

When O is a non-square matrix, M is a rectangular-diagonal matrix of

nonnegative real numbers. It follows that:

OT O = (UMVT )T UMVT = VMT UT UMVT = VMT MVT .

In addition, V is an eigenvector matrix of OT O (i.e., V = E), and U

is an eigenvector matrix of OOT . Utilizing the aforementioned equality

OT O = EΛET , we have

EΛET = VMT MVT .

In other words, E ≡ V and Λ ≡MT M.

When t < n, there will be t = min(t, n) Ej ’s and λj ’s. The upcoming

PCA in this chapter and the ozone feature modelling in Chapter 4 will be

implemented using CMAQ outputs with t < n. However, to avoid confusion

in notation, I will still denote the dimension of E and Λ by n×n. Written as

such, λj values of orders j > t will be 0, and Ej ’s of j > t will be structured

such that associated Pj is an approximately zero-vector. In other words,

data components PjE
T
j of orders j > t will recover no additional data

variation.
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3.2.3 Relevant PCA-Related Topics

Feature-based AQM evaluation approach requires that following PCA-related

complications to be addressed: (1) the ozone features may be incomparable

between AQM and observations, (2) propagation of EOF estimate errors

from E1 towards higher-order features, and (3) the ozone features may be

inseparable or arbitrarily ordered. In addition, it is important to discuss

PCA methods that may enhance the interpretability of ozone features.

Complications from Orthogonality Constraint and Data

Column-Centering

If E1 from the AQM modelled ozone captures a different type of spatial ozone

feature from the observed E1, then these E1’s are incomparable. Due to the

orthogonality requirement of Ej , this problem of feature discordance will be

carried over to higher-order features, making the practice of feature-based

AQM evaluation problematic. This problem is mentioned in the context of

Acid Deposition Model evaluation in Cohn and Dennis (1994).

Moreover, the Ej calculated from the PCA of Ot×n are estimates of the

true EOF of the underlying ozone process. This is because Ot×n can be

regarded as sample data, i,e, one realization of the process. Suppose the

estimated 1st-order feature E1 is incorrect or different from the true EOF,

then the EOF orthogonality will cause j ≥ 2 Ej ’s to be incorrect. This

is the problem of “error propagation” between Ej ’s, and the implication

here is that AQM outputs will be evaluated against observations based on

incomparable sets of features.

The PCA of original un-centered data Ot×n helps to maximize feature-

correspondence during CMAQ/AQM evaluation. As PCA from subsequent

sections and chapters will show, for a LFV ozone field, the spatial-temporal

mean dominates the ozone variation and it is reliably captured by E1 and P1.

Therefore, by keeping the mean structure of Ot×n intact, i.e., no column-

centering, we may use the actual data of spatial and temporal means as

reference points to assess (1) whether E1 and P1 are comparable between

AQM and observations, and (2) how “close to correct” the extracted E1
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and P1 are. Without the mean structure in Ot×n, the 1st-order features

may capture dynamic modes of ozone variations that cannot be properly

interpreted or assessed for their EOF estimate errors.

Furthermore, except for the feature representing ozone means, PCA of

column-centered data Õt×n gave same set of individual ozone features as

those from the PCA of original data (Appendix B.2). The differences lie in

the orders of said features. Therefore, for our particular LFV ozone data, no

additional ozone features or dynamic patterns are uncovered by subtracting

out the mean structure.

There are other practical reasons for not centering data. For feature-

based AQM evaluation, the space-time mean structure is the most fun-

damental and important feature that can be compared. Column-centering

prior to PCA will process out this key feature from evaluation. Furthermore,

in Chapter 4, I will use equation (3.3) to model space-time ozone process

using individual ozone features. PCA of Õt×n means that ozone features can

only be constructed to model an ozone process without the mean structure.

Earlier in this section, it was also pointed out that all PCA in this research

is done on individual data with uniform within-data units and scale. Thus,

the usual statistical reasoning behind data centering/standardization does

not apply.

Considering the aforementioned results, the ozone PCA in this thesis

will be implemented on the original un-centered data Ot×n.

“Degeneracy” of EOFs and Eigenspectrum

North et al. (1982) explained the concept of “effective degeneracy” of EOFs

in terms of the sampling error of eigenvalues. As the case with EOFs,

eigenvalues λj ’s calculated by the PCA of Ot×n are estimates of some true

eigenvalues of the underlying physical process. If the error associated with

a certain λj is close to its distance to an adjacent λj+1, then Ej and Ej+1

form a “degenerate multiplet” where their estimated orders and captured

features become arbitrary.

The implication for this research is that “degenerate” ozone features are
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ordered and separated arbitrarily, making the same-order feature compari-

son of AQM and observations difficult to analyze. For instance, if E1 and E2

from AQM are inseparable, then the equivalent features from observations

may be captured by EOFs of different orders, i.e., the E1 from AQM and

observations may capture different, thus incomparable ozone features. Fur-

thermore, if E1 and E2 (from either AQM or observation) form a degenerate

couplet, then the ozone features they capture may be “mixed” or “contam-

inated” into each other (Storch and Zwiers, 1999; Bjornsson and Venegas,

1997). One should note that the last problem is not always the case, as I

will show in Section 3.4 with PCA of LFV ozone data.

A generally applied rule of thumb to assess the separation between adja-

cent eigenvalues is summarized by North et al. (1982) based on asymptotic

results. It states that a “confidence interval” of an eigenvalue λj is

λ̂j ·

(
1+

√
2

t

)
, (3.4)

where λ̂j is the eigenvalue estimate, and t is the number of hours in Ot×n or

the number of data observations. Due to correlations between observations,

one may use “effective sample size”, denoted as ne, ne ≤ t, in place of t

(Hannachi et al., 2007). Estimates of ne based on time-series autocorre-

lation measures have been introduced by Thiebaux and Zwiers (1984) and

Preisendorfer (1988), among others. There does not seem to be a definitive

approach to estimate ne, and some existing literature (North et al., 1982;

Hannachi et al., 2007) simply applied the sample size n. One example of

an estimating equation from Thiebaux and Zwiers (1984), also referenced in

EOF review paper Hannachi et al. (2007), has the form (using this thesis’s

notations):

ne = t

(
1 + 2

t−1∑
k=1

1− k/t
ρ(k)

)−1
,

where ρ(k) is the autocorrelation function of order k and t is number of

hours in Ot×n.

Another means of estimating the sampling error of an eigenvalue is by
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Monte Carlo (MC) based sampling (Bjornsson and Venegas, 1997). One

sampling approach, applied in Section 3.4, randomly samples locations from

predetermined LFV subregions to form subsamples of space-time ozone data,

then PCA is applied to the subsample. Repeated realizations of subsample

PCA yield a MC sampling distribution of Ej ’s, j = 1, . . . , n, and the eigen-

spectrum can be constructed. However, the sampling analysis in Section 3.4

is done for purposes other than estimating eigenspectrum.

Rotation of EOFs

By design, PCA extracts data features Ej that are orthogonal to each other,

and this constraint may introduce difficulties in interpreting data features.

One reason is that, for a real world physical process the features are not

independent, hence the orthogonality of features should not be expected

(Monahan et al., 2009). Richman (1986) provided an extensive discussion on

the complications facing PCA of spatial processes, two of which are related

to our study: “domain shape dependence” and “subdomain stability” of

PCA.

Domain shape dependence suggests that the shapes of the extracted

Ej ’s are influenced by the topography of the studied region, and important

underlying physical processes will not be properly captured. Subdomain

stability is related to the problem when data from a portion of the domain

is used in PCA to make conclusions about dominant modes of a physical

process. For example, if an Ej decomposed from a complete LFV ozone

data is different from a same-order Ej from a sub-regions data from the

lower valley, which Ej captures the true underlying feature?

In our case, one may account for the problem of domain shape depen-

dence by implementing PCA on a part of LFV with similar topography, e.g.,

locations with low elevation. Such ozone PCA will be implemented in Sec-

tion 3.4, where the region of interest will be the part of the rectangular LFV

(Figure 3.3) where elevations are below 150 meters. In Section 3.4, I will

also use a method of spatial sampling to analyze LFV ozone’s subdomain

stability.
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There are also purely mathematical approaches to alleviate the afore-

mentioned concerns of regular PCA, and rotation of EOFs is “perhaps the

most widely used” method for such purpose (Hannachi et al., 2007). This

procedure rotates the estimated EOFs by maximizing the spatial weights

within the Ej ’s toward specific regions, potentially highlighting underlying

spatial variation/structure and aid EOF interpretation. There are various

approaches to the rotation of EOFs, but the general idea is the same. Sup-

pose an EOF rotation matrix Mr of dimension p × p, where p � min(n, t)

is the number of dominant data features. Then the rotated EOF Er of

dimension n× p is

Er
n×p = E[, 1 : p]Mr

p×p.

The matrix Mr is found by solving the maximization problem MAX [f(E[, 1 :

p]Mr
p×p)] where f(·) represents a function defining a specific rotation method.

A review of the literature suggests that VARIMAX rotation is the most

commonly used method, e.g., see the recent work by Eder et al. (2014).

Hannachi et al. (2007) also mentioned VARIMAX as being the “most well-

known and used” rotation method. In VARIMAX rotation, the maximiza-

tion of f(E[, 1 : p]Mr
p×p) is implemented under the constraint Mr(Mr)T =

(Mr)TMr = Ip×p, i.e., the rotation matrix is orthogonal. The function

f(E[, 1 : p]Mr
p×p) = f(Er

n×p) has the form

f(Er
n×p) =

p∑
k=1

n n∑
j=1

Er[j, k]4 −

 n∑
j=1

E[j, k]2

2 .
A numerical feature of VARIMAX is that elements or individual weights in

the rotated Ej ’s are shifted towards either 0 or +1, thus revealing a more

focused and simpler spatial pattern for interpretation.

Appendix B.2 shows the comparison plots between normal Ej ’s and p = 4

VARIMAX rotated Ej ’s, where the Ot×n data is the CMAQ output for

the 2006 episode. The results indicate that the utility of EOF rotations is

not obvious for the LFV ozone data: the pattern shifting and focusing of

Ej ’s spatial weights do not result in easier-to-interpret ozone features. This

59



3.3. The Number of Useful Ozone Features

is also true for higher-order features with closely spaced eigenvalues, i.e.,

features that form degenerate multiplets. In the end, I found no reason to

apply EOF-rotation given our data, and the upcoming feature-based ozone

analyses will proceed without further considering EOF-rotation.

Poorly conditioned covariance matrix

Ledoit and Wolf (2004) pointed out that large-dimensional sample covari-

ance matrices are often non-invertible and ill-conditioned, and decomposing

such a matrix will give a more “dispersed” sets of eigenvalues than the under-

lying truth. The authors proposed an optimal covariance matrix estimator

that is the linear combination of the sample covariance and scaled identity

matrices, where the scales are estimable from the sample and proved to be

asymptotically consistent. The idea is to “shrink” the sample covariance

towards the identity matrix to be well-conditioned.

Eigen-decomposition does not require a matrix to be full-rank. One can

still decompose Ot×n into Ej ’s and Pj ’s when the sample covariance matrix

is ill-conditioned. The main problem is that the sample Ej may be poorly-

estimated and not allow meaningful further analysis. However, as I will

show in Section 3.4, this is not the case here. Moreover, it can be argued

that highly dispersed λj are preferable in our application. First, it means

that a very small number of ozone features can capture most of the data

structure. Secondly, by North’s rule-of-thumb, well-separated λj alleviate

the problem of feature degeneracy, thus allowing for individual analysis of

the leading features.

Thus the method of sample covariance correction, although a viable al-

ternative, is not attempted.

3.3 The Number of Useful Ozone Features

Before delving into the analysis of ozone features, it is useful to first define

criteria for the number p of ozone features that are useful for further anal-

ysis. A useful ozone feature should at the very least, recover a non-trivial
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amount of space-time ozone data variation. Ideally, it should also capture

interpretable ozone features that enhance our big picture understanding of

an ozone process, i.e., interpretability makes subsequent feature-based ozone

modelling (Chapter 4) and CMAQ evaluation (Chapter 5 and 6) more in-

formative.

The number of “useful” EOFs is often determined by the number re-

quired to explain a large portion of data variation, so that these EOFs are

sufficient to represent the original data. What constitutes “a large portion

of variation” is rather an arbitrary decision. Typically the chosen EOFs

should combine to explain ≥ 80% of data variation (Higdon et al., 2008;

Hannachi et al., 2007).

3.3.1 Recovering Data Variations

Figures 3.5 and 3.6 shows the hourly RMSEs of Ot×n reconstruction for all

five episodes. Here, Ot×n is the CMAQ output for different episodes over the

entire 96 hours with spatial domain containing the locations at elevation≤
150 meters. The plots show the RMSE by hour between Ot×n and the

reconstructions from
∑p

j=1 PjE
T
j done for p = 1, . . . , 4. Note that there is

no modelling of Ej ’s and Pj ’s involved in this result. I simply recovered the

CMAQ outputs using increasing numbers of space-time components, used

these reconstructions as ozone estimates and calculated RMSEs at each hour.

As shown, the first two space-time features recover most of the day-

time ozone variation, with notable exceptions during afternoons of 1998,

where the addition of the 3rd ozone components improves the RMSE no-

ticeably. Similar improvements are also observed to lesser extent during last

afternoons of 2001 and 2006. Otherwise, the addition of the 3rd feature

recovers variations between late evening and morning hours. Subsequent

ozone features capture mostly ozone variations during nocturnal hours of

diminished ozone activity. This result supports the findings in the following

section that successive higher order features capture increasingly localized

ozone variations in space and time. As I will elaborate in the next section,

the description “localized variation” means that the recovered space-time
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Figure 3.5: Hourly RMSE (units ppb) of the Ot×n reconstruction
(
∑p

j=1 PjE
T
j ) using an increasing number of data components to p = 4.

The Ot×n are the 1985, 1995 and 1998 CMAQ outputs across the LFV at
elevation≤ 150m.
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Figure 3.6: Hourly RMSE (units ppb) of the Ot×n reconstruction
(
∑p

j=1 PjE
T
j ) using an increasing number of data components to p = 4.

The Ot×n are the 2001 and 2006 CMAQ outputs across the LFV at
elevation≤ 150m.
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variations are confined to a narrow window of time period and geographical

region. Furthermore, these features capture space-time variations that are

generally episode specific, and they are neither influential nor structured

enough to allow for definite interpretation.

Figures 3.7a and 3.7b show for select hours during day 3 of the 2006

episode, the spatial ozone fields of the CMAQ output (original data) and

the corresponding approximation with p = 4:
∑4

j=1 PjE
T
j . The hourly

spatial plots show that the sum of leading p = 4 ozone features appear to

recover the defining space-time structure of their originating ozone data.

Table 3.2 shows the Ot×n reconstruction RMSEs averaged across all

location and hours for all five episodes, and Table 3.3 shows the proportion

of data variation explained by leading ozone features. The main results

are consistent across episodes: (1) E1 and P1 jointly recover ≥ 90% of

data variation and the proportion of recovered variation quickly decreases

to ≈ 0% at order j = 5 (Table 3.3), and (2) the improvement in RMSE

decreases to ≤ 0.6 ppb from p = 5 onward (Table 3.2).

p: number of features used for reconstruction
Episode 1 2 3 4 5 6 7 8

1985 10.4 7.57 6.01 5.15 4.78 4.34 4.04 3.93
1995 10.8 7.82 6.32 5.17 4.72 4.28 3.87 3.63
1998 13.2 8.94 6.37 5.69 5.25 4.71 4.25 4.04
2001 11.1 7.84 6.23 5.16 4.72 4.35 3.92 3.77
2006 7.66 5.80 4.07 3.27 2.83 2.62 2.39 2.29

Table 3.2: For the CMAQ outputs of 5 episodes: the Ot×n reconstruction
RMSEs in units ppb (averaged across all location and hours) at p = 1, . . . , 8.
The decompositions are for the entire episode h = 96 hours.

Furthermore, ozone feature analysis in Chapters 4 to 6 will model ozone

features as spatial or temporal processes driven by background meteorol-

ogy, chemical precursor emissions and antecedent concentrations. It will

be shown that statistical models begin to lose their predictive capability

with high-order ozone features j ≥ 3, suggesting diminishing associations

between these features and process-driving background conditions.

In summary, for real CMAQ outputs of most episodes, P1E
T
1 and P2E

T
2
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(a) Original ozone fields.

(b) Ozone fields recovered with leading p = 4 ozone features.

Figure 3.7: For selected hours, the spatial field of the 2006 CMAQ out-
put and corresponding feature-based data reconstruction using p = 4:∑4

j=1 PjE
T
j . The colour scales are held consistent for all plots.
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EOF/PC order j
Episode 1 2 3 4 5

1985 0.91 0.04 0.02 0.01 0.00
1995 0.91 0.04 0.01 0.01 0.00
1998 0.93 0.04 0.02 0.01 0.00
2001 0.90 0.05 0.02 0.01 0.00
2006 0.95 0.03 0.02 0.01 0.00

Table 3.3: For the 5 ozone episodes: the proportion of data variation ex-
plained by the leading 5 EOFs/PCs. The decompositions are done for the
entire episode t = 96 hours.

are sufficient for the analysis of daytime ozone process in terms of recovering

variations in the data. Features of orders j = 3, 4 recover the remainder of

daytime ozone variations and most of the variations outside of daytime ozone

peak hours. The ozone features of orders j ≥ 5 do not recover significant

amounts of space-time variation.

I also implemented a simulation-based analysis (Appendix B.1) where the

ozone feature sum
∑p

j=1 PjE
T
j from one synthetic dataset is used to predict

another realization of a space-time ozone field, the procedure is repeated

a large number of times for various values of p. I then found that the

predictive accuracy starts to deteriorate at order p = 3. This indicates a

lack of structure, i.e., domination of data noise within the ozone features

of orders j ≥ 3. Since the synthetic ozone field emulates the structures of

the daytime LFV ozone field, the simulation-based statistical test implies

that there is no practical reason for using more than j = 2 ozone features

to model a complete daytime process. This result are consistent with the

aforementioned results using real CMAQ outputs.

The just described simulation-based approach combines the elements of

the PC selection methods proposed in the Chapter 5 of Preisendorfer (1988),

which are categorized into three general selection rules. In “Dominant Vari-

ance” selection rule, synthetic data are generated from assumed Gaussian

processes, these data are then decomposed to obtain a sample of eigenvalues.

An EOF/PC pair from the real data is retained if their associated eigenvalue

is above the 95th percentile of the sample eigenvalue (called Rule N). The
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3.3. The Number of Useful Ozone Features

“Time History” selection rule uses statistical tests of spectral whiteness of

serial correlation to assess the nosiness of PCs, which determines the PCs

to keep. Lastly, in the “Space-map” rule, Ej decomposed from data are

compared to a set of well-understood modes of variation, such as those from

a General Circulation Model. Any Ej from the real data that has a close

match (based on tests of conical direction angles) to a dynamic mode is

retained.

3.3.2 Order of Ozone Feature Degeneracy

The number of useful ozone features may also be determined through the

spectra of PCA eigenvalues. From the eigenspectra, one may judge the

order j at which Ej ’s begin to lose their separability, thus making individual

feature analysis questionable.

Figure 3.8 shows for the 1985 and 2006 episodes, the eigenspectra com-

posed using North’s rule-of-thumb described in Section 3.2. Here, the 1st

eigenvalue is not shown because its high value makes the higher-order eigen-

spectrum difficult to visualize. The PCA is based on different datasets: for

1985, the dataset is from its last two full days which are dominated by type

IV wind regime, and for 2006, the dataset is the first two full days that are

driven by type I regime.

It was mentioned in Section 3.2 that various estimates of effective sample

size ne exist, most of which are based on autocorrelation measures calculated

form the data. I tried methods described in Thiebaux and Zwiers (1984)

and Preisendorfer (1988), and found all estimated ne resulted in eigenspec-

turms that give the same overall conclusion regarding the separability of

leading features. Both plots are made using ne = 18, which is lower than all

estimated ne. Hence, based on equation (3.4) the width of the confidence

band can only be narrower, i.e., the order of EOF degeneracy can only get

higher than those shown.

The 1985 eigenspectrum shows that for ozone fields dominated by the

type IV regime, although eigenvalues λ2 and λ3 are significantly higher than

the rest, they cannot be separated themselves. For the 2006 episode, the
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Figure 3.8: The eigenspectra of λj , j = 2, . . . , 10, decomposed from the the
1985 (top) CMAQ output under type IV regime and 2006 (bottom) outputs
under type I regime. The spectrum is based rule-of-thumb of North et al.
(1982). The dashed-lines indicate the orders of ozone features that can be
separated from the rest, whether individually or as degenerate sets.
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first 2 ozone features are separable from the rest, while the 3rd and 4th-order

ozone features form a couplet. This latter result is the case for all episodes

not dominated by type IV wind regime.

These results from the PCA eigenspectrum are crucial when analyzing

individual ozone features, and Figure 3.8 will be revisited in the next section.

The evidence from eigenspectra suggests that for ozone process driven by

wind regime types I, II and III, the first two ozone features can be studied

independently. For episodes dominated by the type IV regime, the 2nd

and 3rd-order ozone features should be interpreted jointly, or analyzed with

consideration of the other.

Various analyses presented in this section and Appendix B.1 are de-

signed to help answer the question: how many ozone features are useful?

The answer is that ozone features of order j = 1, 2, 3, 4 should be the fo-

cus. However, given the specific contexts and foci of upcoming statistical

analyses, the number of useful ozone features will be less. The reasoning

behind the use and analysis of any particular feature will be discussed at

the appropriate places in following chapters.

3.4 Ozone Features of LFV Ozone Episodes

In this section, PCA will be implemented on CMAQ ozone outputs to iden-

tify and understand what types of ozone features define the LFV ozone

field during an episode. Such an exercise also determines if interpretable

ozone features can be obtained through the PCA of space-time ozone data.

Here, I am not attempting to interpret physical modes of variation. By

“interpretable”, I am referring to an ozone feature that either represents

statistical summaries of data, or captures recognizable LFV ozone struc-

tures and behaviour, e.g., general patterns of diurnal ozone advection across

LFV. Furthermore, the ozone feature analysis is done by accounting for the

non-separability or “degeneracy” of multiple ozone features. Lastly, the end

of this section contains a study of LFV’s PCA subdomain stability.

PCA is implemented on CMAQ outputs by episode, and CMAQ outputs

where days are separated into wind regime types. It should be noted that I
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3.4. Ozone Features of LFV Ozone Episodes

do not combine datasets from different episodes under the same wind regime.

PCA of each wind regime type is instead analyzed episode-by-episode. PCA

of specific regime within the same episode helps to analyze the effect of

regional wind pattern on dominant ozone features. Same episode PCA such

as this controls the effect of changing emission source distribution over the

years (Section 2.2). PCA based on wind regime is also a means of CMAQ

evaluation without comparison with observations. It evaluates how well

CMAQ can capture the effect of regional wind flow on its modelling of

LFV’s ozone process.

The PCA results to be shown are implemented on ozone fields at eleva-

tions ≤ 150 meters. Such datasets capture the ozone field across a roughly

triangular region covering the lower valley of the “rectangular” LFV (Figure

3.3), with Chilliwack on the eastern edge. I will simply refer to this lower

valley region as “LFV”. LFV is where the physical ozone monitoring stations

are located, and it is the region of interest for CMAQ model evaluation.

In this study, I also implemented PCA on data of dimension n× t. The

resulting ozone features (not shown) are equivalent to the upcoming results,

where the spatial and temporal features are captured by Pj and Ej instead.

3.4.1 Common Ozone Features of All Episodes

Figure 3.9 shows the spatial plots of temporal ozone means (the mean field)

summarized from the 96-hour CMAQ outputs. The same figure also shows

the spatial plots of the 1st-order features E1 extracted from the same CMAQ

outputs. Figure 3.9 shows that the spatial patterns of mean fields are similar

between episodes, and the pattern of each mean field is accurately and reli-

ably captured by the corresponding E1. Eastern LFV has distinctly higher

temporal means than the west. This result indicates that the eastward

ozone advection (in combination with low boundary layer heights, Section

3.1) causes the eastern LFV to experience continuous high level of ozone pol-

lution, thus higher temporal means. The same advection pattern also gives

the western LFV, the main source of ozone formation, a diurnal cycle of

increase-peak-decrease. Thus, western LFV locations have smaller temporal
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means.

Figure 3.10 shows the spatial plots of ozone standard deviations (cal-

culated across time) and the 2nd-order spatial features E2 of each episode.

As shown, E2 captures the spatial pattern of ozone standard deviation, and

its values range from negative to positive. The spatial variation of ozone

standard deviation can be explained by aforementioned behaviour of LFV’s

ozone process: pronounced ozone fluctuation in the west and continuous

high pollution in the east. Hence, once summarized over time, the west-

ern LFV locations have higher ozone standard deviation than the eastern

locations.

As I will elaborate in Section 3.4.3, E2 can be interpreted as the spatial

ozone contrast between the area of ozone plume formation (western LFV)

and the area where most of the ozone move to (eastern LFV). More impor-

tantly, the interactive space-time feature P2E
T
2 will be shown to capture a

specific pattern of eastward ozone advection, as well as the magnitudes of

ozone formation and destruction across LFV.

Figure 3.11 shows the hourly spatial ozone means (averaged across space)

and P1 decomposed from the 5 ozone episodes. As in Figures 3.9 and 3.10,

the PCA is based on the entire 96-hour period of each episode. Hence these

P1 are the temporal ozone features associated with the spatial features E1

in Figure 3.9. As shown, the P1 captures the temporal pattern of hourly

LFV mean ozone, and the temporal patterns of 1st-order ozone features

between-episodes are near identical. One exception is the last afternoon of

1985, where we see a bi-modal ozone peaks not evident in other episodes,

and this pattern is captured by the 1985 P1.

Lastly, Figure 3.12 shows the temporal patterns of hourly LFV ozone

standard deviations and P2 from the 5 ozone episodes. These time series

indicate that the standard deviations of ozone across space varies temporally

in a less consistent way from one episode to another. It also shows that each

2nd-order temporal ozone feature P2 captures a pattern of temporal ozone

contrasts that cycles diurnally. Temporal trend of P2 further corresponds

to a smoothed and inverse curve of hourly LFV standard deviation over the

96 hours.
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Figure 3.9: Plots of the mean fields and E1’s of the 5 ozone episodes. The
PCA is implemented on the ozone episodes in their entirety (96 hours).
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Figure 3.10: Plots of spatial field of temporal ozone standard deviations
(calculated across time) and E2’s of the 5 ozone episodes. The PCA is
implemented on the ozone episodes in their entirety (96 hours).
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Figure 3.11: Time series plots of hourly spatial (LFV) ozone means and
P1’s of the 5 ozone episodes. The number in each PC plot heading is the
proportion of data variation explained. All plotted data have units ppb.
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Figure 3.12: Time series plots of hourly LFV ozone standard deviations
(calculated across space) and P2’s of the 5 ozone episodes. The number
in each PC plot heading is the proportion of data variation explained. All
plotted data have units ppb.
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Figures 3.9 to 3.12 illustrate an important point that LFV ozone is con-

sistently dominated by the same systematic ozone structures during every

episode, and they can be reliably captured by the first 2 EOFs and PCs.

These results highlight the stable recurring nature of dominant LFV ozone

features, despite the episodic variations in emissions and wind regimes. In

the remainder of this section, I will interpret ozone features in terms of their

space-time interactions PjE
T
j , i.e,, interpreting the spatial-temporal ozone

features.

3.4.2 P1E
T
1 : Structure of Space-Time Ozone Mean

Figures 3.13 gives the dynamic spatial plots of space-time feature P1E
T
1 of

the 2006 episode. Each space-time ozone feature PjE
T
j is a data matrix of

dimension t× n, where each row i, i = 1, . . . , t, relates to the spatial ozone

feature of that particular hour i. The presented dynamic spatial plots are

for selected hours from the 3rd day of 2006.

Figure 3.13: From the 2006 ozone episode under the type I regime: spatial
plots of P1E

T
1 (units ppb) at selected times shown in plot headers.

When multiplied, P1 and E1 capture the space-time interaction between

the spatial and temporal ozone means; a spatial-temporal feature that rep-

resents the underlying mean structure of the data Ot×n. As the episode pro-

gresses (hour changes and different rows of P1E
T
1 selected), P1E

T
1 ’s hourly

pattern of ozone variation remain as defined by E1, only the spatial values
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are scaled by P1 at each hour. P1E
T
1 ’s from other episodes capture very

similar dynamic structure illustrated in Figure 3.13. The aforementioned

general pattern of the 1st-order ozone feature (as well as ozone means) re-

mains consistent when ozone PCA is done based on wind regime type (not

shown).

Lastly, without subtracting the column means out of Ot×n, the space-

time mean structure P1E
T
1 dominates LFV’s regional ozone variation. It

account for > 90% of data variation of any ozone episode or ozone data

under any wind regimes. The exact proportions were shown in the header

of each P1 plots and summarized in Table 3.3 from Section 3.3.

3.4.3 P2E
T
2 : Dominant Patterns of Ozone Advection

In the following discussion, the joint spatial-temporal ozone features of or-

ders j ≥ 2 are extracted from ozone data under individual wind regime types.

I should note again that I do not combine dataset from different episodes

under the same regime. PCA of each regime type is done episode-by-episode:

each decomposed dataset is the part of an episode under one specific regime.

Similar analysis can still be made based on PCA of entire episodes, but ozone

feature discussions under the context of background wind regime provide a

clearer picture of the way CMAQ models ozone advection across LFV.

Figure 3.14 shows the dynamic spatial plot of P2E
T
2 for the 2006 CMAQ

output under type I wind regime (first 2 full days). The result reveals that

the second ozone feature captures the dynamic evolution of spatial ozone

contrast between the west and the east of LFV. More specifically, E2 captures

the spatial contrast between the area of ozone plume formation (western

LFV) and the area that is the destination of ozone advection. The term

“contrast” is also used in Jin et al. (2011) to highlight two ozone regions

with contrasting signs.

During the afternoon ozone-peak hours, the spatial contrast is positive

in the west and negative in the east. The spatial contrast then reverses

sign from 2000PST onward, and this diurnal evolution of ozone contrast is

repeated throughout the episode. This dynamic alternation of contrast sign
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Figure 3.14: From the 2006 ozone episode under the type I regime: spatial
plots of P2E

T
2 (units ppb) at selected hours.

is the result of E2 and P2 representing corresponding spatial and tempo-

ral ozone contrasts (Figures 3.10 and 3.12). As discussed, E2 has positive

contrast in the west and negative contrast in the east. Regardless of the

episode, P2 is a dipole wave that alternates between (+) during daytime

and (−) during night time to early morning. Thus, the interaction of E2

and P2 results in the type of dynamic spatial contrast shown.

Interpretation of P2E
T
2 : the dominance of westerly wind flow

The first ozone feature P1E
T
1 contains only positive values, and it captures

the underlying structure of the space-time ozone mean. Each element in

P1E
T
1 represents the base ozone concentration at a particular location and

time. Higher order (j = 2, 3, . . .) ozone features have values ranging from

negative to positive; they are ozone correction or adjustment terms that in

successive order of j = 2, 3, . . ., subtract or add ozone values that are specific

to each location and time.

During the afternoon peak hours (1300PST, Figure 3.14), contrast is

positive around western LFV, indicating the formation of ozone plume in

the west. By evening (2100PST, Figure 3.14), the P2E
T
2 values changes to

negative in the west, indicating that ozone plume is transported out of this

region between 1300PST and 2100PST. During the same hours, the eastern
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LFV (Chilliwack to be specific) has contrast change from (−) to (+): the

ozone from the west are transported to the east. Therefore, this P2E
T
2

captures a processes of west-to-east ozone advection driven by a general

westerly wind system. Its order of decomposition further indicates that this

westerly wind is the most dominant flow regime of LFV ozone.

The magnitudes of positive and negative ozone contrasts further reveal

the numerical amount of ozone formation or destruction based on the ozone

means P1E
T
1 . For example, Figure 3.14 shows that at 1300PST, the center

of ozone formation (western LFV) creates about 10 ppb of ozone in addition

to the underlying ozone means. At 2100PST, the contrast is generally at

−10 ppb, indicating that ozone is lost by this amount due to both advection

and local photochemical reactions. At 2100PST in Chilliwack (eastern tip

of the map), the positive contrasts show that this area gained around 10-15

ppb of ozone due to both the transport of pollution system from the west

and local ozone creation.

The hourly values of P2E
T
2 are near 0 ppb during the “transitional”

hours when the positive contrast switches from west to east. This implies

that during these hours the pattern spatial ozone resembles the underlying

mean.

P2E
T
2 of Episodes dominated by Type I, II and III Wind Regime

All 2nd-order ozone features P2E
T
2 from episodes dominated by type I, II

and III wind regimes capture the same general structure of dynamic east-

west ozone contrast (Figure 3.14). As I will now show, although differences

in spatial patterns do exist between P2E
T
2 ’s, they are subtle. In following

discussions I will use “type I ozone feature” as short for “the feature of ozone

fields dominated by type I wind regime”, and so forth.

The 2006 episode is dominated by wind regime type I on the first 2 full

days and type III on the 3rd day, hence comparison of P2E
T
2 between wind

regime types I and III is done through the PCA of the two subsets of 2006

CMAQ output. Selected dynamic spatial plots of P2E
T
2 under regime types

I and III are shown in Figure 3.15. When compared to the feature under
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type III regime, the type I feature has positive contrast covering a smaller

area of LFV during the hour of daily ozone peak (1300 PST). At night time

the negative contrast is also larger in magnitude for the type I feature.

Figure 3.15: From the 2006 episode under type I (top) and III (bottom)
wind regime: P2E

T
2 (units ppb) from the same selected hours.

Figure 3.16 shows the P2E
T
2 from the 2001 CMAQ output, which is

dominated by a type II wind regime. As shown in Figure 3.4, the directional

flow under the type II regime stays close to 290◦ throughout the day, so it is

defined by a stable northwesterly flow regime. The PCA results show that

the P2E
T
2 of 2001 episode (all type II) and 1998 episode (type II for two

days) also captured the same form of dynamic east-west ozone contrasts as

seen in type I and III features. One unique pattern for the year 2001: the

eastern ozone contrast extends beyond Chilliwack to include a large portion

of Abbotsford, whereas the area of eastern contrast from other wind regime

types are focused solely around Chilliwack.

In summary, any variations between the space-time patterns of P2E
T
2

under regime types I, II and III are slight. and they do not affect the overall

conclusion that P2E
T
2 under these wind regimes represent the same form

of space-time ozone contrast. Interpreted as atmospheric process, preceding

analyses reveals that the eastward ozone advection, driven by a westerly

wind system, is the most dominant advection mechanism of LFV ozone

process under the type I, II and III wind regimes.
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Figure 3.16: From the 2001 episode under type II wind regime: P2E
T
2 (units

ppb) from selected hours.

Ozone features of the 1985 episode: type IV wind regime

From Figure 3.4, one can see that the type IV regime is dominated by

easterly winds for most of the day, and westerly wind is only observed during

a few afternoon hours. Figure 3.1 showed the 3-dimensional ozone fields from

selected hours of the 1985 episode under the type IV wind regime. One main

feature of this episode is the heavy accumulation of ozone in the southwest

LFV during night time, a feature of which is not noticed during the 2006

episode (Figure 3.2).

The following results are based on the PCA of CMAQ ozone output for

the 3rd and 4th full days of 1985: the days dominated by type IV wind

regime. Figure 3.17a shows P2E
T
2 from selected hours. As shown, the

2nd-order ozone feature still captured a form of dynamic east-west ozone

contrast. However, it differs from the preceding results (features of type I to

III regimes) in that the east-west alternation of spatial contrast takes place

around 2300PST to midnight, not evening. Furthermore, this feature did

not capture the aforementioned night-time ozone pollution around southwest

LFV.

Figure 3.17b shows the dynamic spatial plots of P3E
T
3 at selected hours.

This feature captures a diurnal evolution of spatial ozone contrast between

the area around Vancouver’s city core (northwest LFV) and the southwest
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(a) Hourly plots of P2E
T
2 (in units ppb).

(b) Hourly plots of P3E
T
3 (in units ppb).

Figure 3.17: From the 1985 episode under type IV regime: dynamic spatial
plots of P2E

T
2 and P3E

T
3 (in units ppb).
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of LFV. More specifically, the contrast in northwest LFV transitions from

positive in the morning to negative in the evening, while the opposite is

true for southwestern LFV. This pattern of dynamic contrast shows that

P3E
T
3 captures the advection of ozone plume from northwest LFV to the

southwest. Moreover, P3E
T
3 captures spatial contrasts between morning

and evening, which is different from the 2nd-order feature which contrasts

afternoon peak hours and late night.

Figure 3.18 shows the dynamic spatial plot of joint ozone feature P2E
T
2 +

P3E
T
3 . During the afternoon, instead of an eastward advection, the ozone

plume circulates from northwest LFV towards the southwest. This is evi-

dent from the movement of positive ozone contrast from the northwest to

the southwest between 1300PST and 2000PST. The positive contrast then

transitions to the eastern tip of LFV at the conclusion of a diurnal cy-

cle. Therefore, P2E
T
2 and P3E

T
3 jointly capture the continuous space-time

mechanism of LFV ozone driven by the unique flow pattern of the type IV

regime. Here, the space-time structure is defined by an advection pattern of

northwest→southewest→east. This complex dynamic is expressed via east-

west spatial contrast captured by P2E
T
2 and north-south spatial contrast

captured by P3E
T
3 .

Figure 3.18: From the 1985 episode under type IV regime: dynamic spatial
plot of joint ozone features P2E

T
2 + P3E

T
3 (units ppb).

As shown in the eigenspectrum analysis (Figure 3.8) of Section 3.3, for

83



3.4. Ozone Features of LFV Ozone Episodes

the two days of 1985 under type IV regime, the ozone features of orders

j = 2, 3 form a degenerate couplet. The main implications are: (1) the ex-

tracted patterns of these features are possibly mixed into each other, making

individual interpretations difficult, and/or (2) the orders of feature extrac-

tion are arbitrary. The results in this section do not support the first im-

plication. As shown in Figures 3.10 and 3.17a, the E2 from 1985 captured

the same general contrast pattern as other episodes. This means that E2

from 1985 still managed to clearly capture the defining east-west contrast

of LFV, and that there is no significant evidence of EOF-estimate error or

mixing of ozone features between E2 and E3. Therefore, the above men-

tioned feature degeneracy indicates that for an ozone field under the type

IV regime, P2E
T
2 and P3E

T
3 capture well defined individual features that

are equally important and should be analyzed jointly.

Summary discussion of Section 3.4.3

The general structure of P2E
T
2 remained consistent across episodes domi-

nated by wind regime types I, II and III, all of which are defined by westerly

wind flow. The conclusion here is that P2E
T
2 captures the space-time pro-

cess of eastward ozone advection driven by a westerly wind system, and it is

the most important advection pattern of LFV ozone. The ozone field under

type IV regime has more complex structure. The PCA results show that

the ozone advection towards southwest LFV represents an equally important

dynamic behaviour as the eastward advection.

The hodograph in Figure 3.4 (from Ainslie and Steyn (2007)) showed

that the type IV regime is dominated by easterly flow for most of the day.

However, the ozone features from the 1985 episode revealed a more complex

pattern of ozone advection that cannot be clearly explained by this prior

knowledge. The wind regime hodograph was made from average of observed

wind speed and direction at YVR. Hence, preceding ozone feature analyses

showed that the type IV wind regime should be defined by a regional-scale

flow pattern that cannot be properly captured by point-based information

at YVR. Steyn et al. (2011) also raised the similar point that the wind data
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from YVR sometimes may not capture the complexity of LFV’s regional

wind. However, Ainslie and Steyn (2007) did correctly categorize the 1985

episode as driven by its unique wind regime, which was shown (in this sec-

tion) to create dynamic ozone features that are different from the features

under regimes types I to III.

3.4.4 Higher-order Ozone Features

Figure 3.19 shows the dynamic spatial plots of P3E
T
3 and P4E

T
4 from the

2006 episode under type I regime. As shown, the higher-order features

P3E
T
3 and P4E

T
4 are “active” mainly between late evening and early morn-

ing. The term “active” indicates that an hourly PjE
T
j spatial field contains

moderately non-zero values, i.e., the feature PjE
T
j recovers non-trivial ozone

variation from the data. Therefore, the 3rd and 4th-order data features may

be viewed as nocturnal ozone features, where they recover ozone variations

during hours with minimal ozone formation and destruction. Ozone features

of orders j ≥ 3 under regime types II and III, as well as type IV features of

orders j ≥ 4 also capture nocturnal ozone features.

Figure 3.19: From the 2006 episode under type I regime: P3E
T
3 and P4E

T
4

(units ppb) from selected hours.

Overall, the higher-order ozone features do not generate easily inter-

pretable spatial or temporal patterns, although they certainly capture well-

defined spatial structures, especially P3E
T
3 . This lack of interpretability can

85



3.4. Ozone Features of LFV Ozone Episodes

be attributed mainly to the fact that wind regimes I to III do not deviate

significantly from a general westerly flow system. This wind system creates

a relatively simple ozone processes where the ozone plume forms in the west

and accumulates in the east due to eastward advection. As discussed ear-

lier in this section, these features can be sufficiently captured by P1E
T
1 and

P2E
T
2 . Therefore, the higher-order features are left to recover location and

time-specific ozone corrections or adjustments. For ozone fields dominated

by the type IV regime, the leading 3 ozone features capture a slightly more

complex ozone structure, hence ozone features of orders j ≥ 4 are left to

recover non-systematic data variations.

In summary, j ≥ 3 or j ≥ 4 ordered ozone features recover episode-

specific and localized ozone variations in space and time. This assertion

is also supported by the data reconstruction RMSEs showed in Section 3.3

(Table 3.2, Figures 3.5 and 3.6). These higher-order features can be under-

stood as the representations of particular deviations from the general LFV

ozone structure.

3.4.5 Sampling Stability of Ozone Features

As discussed by Richman (1986), the “correctness” of EOFs estimated from

a space-time data can be affected by the quality of spatial sampling of that

data. This is an important point to consider when one uses the EOF from

a subsample of space-time data to estimate the unknown EOF of the whole

domain. The Ej and associated PjEj shown earlier in this chapter should

not suffer from sampling errors. This is because the decomposed data are

high-resolution CMAQ output in 4km-by-4km grids, and any defining fea-

tures of CMAQ modelled ozone should be sufficiently captured.

However, when CMAQ modelled ozone features are evaluated against the

observed features, one needs to consider the subdomain sampling stability

of LFV ozone. As discussed in Chapter 2, the spatial domain of evalu-

ated CMAQ outputs are matched to observations by spatially interpolating

CMAQ outputs onto the locations of the nobs irregularly placed monitoring

sites. This means that I will be implementing PCA on a sub-sample of the
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“full LFV” ozone fields.

Therefore, it is useful to analyze whether the sub-domain PCA gives the

same ozone features we have seen in this chapter. One way of doing so is to

(1) randomly sample nobs number of locations from the space-time LFV data,

(2) decompose the sample data into ozone features, and (3) repeat these two

steps to obtain a sample of ozone features. To assess the sampling stability

of PCA, one may compare the patterns of sample Pj , j = 1, . . . , nobs, to the

Pj decomposed from the full LFV data.

The preceding results have shown that PjEj capture space-time features

that represent the interactions between Ej and Pj . If the type of temporal

feature captured by subsample Pj remains stable, then the associated sub-

space Ej may be interpreted similarly to the j-th spatial feature of the full

field. For instance, if sub-domain P2 captures day-night contrast as before

(Section 3.4.3), then E2 still captures the path of diurnal ozone advection.

As a result, the ozone feature interpretations formulated in the preceding

sections are applicable to later CMAQ evaluations.

PCA sample plots shown in Figures 3.20, 3.21 and 3.22 are designed

to analyze the above mentioned PCA sampling stability of LFV ozone. In

each Pj sample plot, the red-coloured time series is the Pj of full LFV data

during the middle 3 days of the 2006 CMAQ output. Here, the “full” LFV is

the same triangular lower valley region we analyzed thus far in this chapter.

Each grey-coloured curve is the Pj decomposed from one LFV subset with

nobs = 17 randomly sampled locations, and this subset covers the same time

period as the full data. The Pj ’s of order j = 1, 2, 3 are each sampled 50

times to create Figures 3.20, 3.21 and 3.22.

As discussed in Section 3.2, the PCs in this thesis are calculated as

Pt×n = Ot×nEn×n: each Pj contains hourly weighted sums of Ot×n where

Ej are the spatial weights. This explains the difference in scale between

P1’s from the full LFV data and its subsamples. As shown, the patterns

of sampled P1, P2 and P3 remained stable throughout the episode. The

exceptions being P2 and P3 during a few nocturnal hours. The same PCA

sampling analyses of different ozone episodes gave the same results. In

the end, there is no reason to believe that PCA sampling error or feature
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Figure 3.20: Sampling stability of PCA for P1. The full dataset is the 2006
CMAQ output within the LFV region with elevation≤ 150 meters (the “full
LFV” analyzed thus far in this chapter). The red curve is P1 of full LFV and
each grey curve is P1 decomposed from one sub-data with n = 17 randomly
sampled LFV locations.
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Figure 3.21: Sampling stability of PCA for P2. The full dataset is the 2006
CMAQ output within the LFV region with elevation≤ 150 meters (the “full
LFV” analyzed thus far in this chapter). The red curve is P2 of full LFV and
each grey curve is P2 decomposed from one sub-data with n = 17 randomly
sampled LFV locations.
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Figure 3.22: Sampling stability of PCA for P3. The full dataset is the 2006
CMAQ output within the LFV region with elevation≤ 150 meters (the “full
LFV” analyzed thus far in this chapter). The red curve is P3 of full LFV and
each grey curve is P3 decomposed from one sub-data with n = 17 randomly
sampled LFV locations.

instability is an overriding concern for LFV ozone field.

3.5 Chapter Conclusion

This chapter answered PCA-related topics that are crucial for feature-based

AQM evaluation and ozone modelling in the following chapters. In chapter

introduction, I raised the point of feature correspondence between AQM

output and observations. This allows for direct comparison of ozone features

and subsequent statistical modelling of feature differences.

First, it was determined that the ozone PCA in this thesis will be done

on original ozone data without the use of column-centering/standardization

(Section 3.2). The worry here is that if the 1st-order feature E1’s are incom-

parable, then the orthogonality of EOF will make all higher-order feature

comparisons questionable. The analyses in this chapter have shown that E1

reliably captures the pattern of the spatial field of temporal ozone means,

and this mean field can be calculated directly from the data and plotted.

This physical reference can then be used to assess the “correctness” of the

extracted E1 and determine whether the E1’s from AQM and observations
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represent comparable features. This decision is further supported by the

results where the PCA of anomaly data did not reveal additional features

of LFV regional ozone (Appendix B.2).

Another means of ensuring defensible and informative feature compari-

son is to formulate an understanding of ozone features being evaluated. Here

are the key features of the LFV ozone modelled by CMAQ:

• All episode have the same general structure of space-time ozone means,

and this feature is reliably captured by P1E
T
1 . This result reveals

the highly consistent nature of LFV ozone process during an episode.

Over the period of 1985 to 2006, the changes in emission standard and

differences in weather condition did not significantly alter the space-

time distribution of LFV ozone.

• For episodes driven by wind regime types I, II and III, the 2nd-order

feature P2E
T
2 consistently captured the same form dynamic east-west

ozone contrast. This dynamic contrast revealed the most dominant

pattern of ozone advection across LFV: it is the eastward horizontal

transport of ozone plume, which is driven by a westerly wind system.

Wind regime types I to III are defined mostly by a westerly wind

system with little deviations in direction.

The ozone feature under type IV wind regime is different in that P2E
T
2

and P3E
T
3 jointly capture a more complex advection pattern, where

ozone plume moves from the northwest to the southwest during the

afternoon, and then advects eastward by the end of a diurnal cycle.

This advection feature is only present from days dominated by the

type IV wind regime.

• Higher order ozone features are less interpretable, and they primarily

recover localized space-time ozone variations rather than systematic

space-time features. Here, the “higher order” means j ≥ 3 for episodes

under regimes types I, II and III, and j ≥ 4 for episode under regime

type IV.
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These results also fill an existing knowledge gap regarding the regional-scale

features of LFV ozone.

Furthermore, existing works on ozone PCA (Section 1.4) rely on visual

analyses of Ej to interpret possible modes of variation. This is useful when

the pollution field covers a large spatial domain where one can identify the

underlying climate systems, e.g., North Atlantic Oscillation. However, such

large scale process is not readily identifiable when analyzing a smaller, but

complex regional pollution field such as the LFV ozone. Instead of analyzing

Ej on its own, it was found that the analysis of space-time interaction feature

PjE
T
j provides a more informative and big picture understanding of the

underlying dynamic process. In summary, a PjE
T
j at j ≥ 2 is a dynamic

ozone contrast that captures certain spade-time advection process. Three

pieces of information can be interpreted from PjE
T
j plots: (1) the direction

of ozone advection, (2) the time period (within an episode) during which

the advection took place, and (3) the order j, i.e., the importance of this

advection to the overall ozone process.

Study in this chapter also showed that one may analyze a space-time

ozone field using a few leading ozone features; a high-dimensional data can be

analyzed through simpler data components Ej and Pj . As discussed, these

few leading features capture the systematic structure and behaviour of LFV

ozone. Therefore, through feature-based AQM evaluation, one may draw

up a “big picture” of how AQM modelled ozone differ from the real-world

physical field. As mentioned, the actual evaluation will be implemented

in Chapters 5 and 6. In the next chapter, I will proposed a framework

for modelling individual ozone features, as well as the complete space-time

ozone process defined by these features.
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Chapter 4

A Statistical Model of

Space-Time Ozone Features

In the previous chapter, I presented the PCA methods used to extract ozone

features Ej ’s and Pj ’s and discussed topics related to ozone feature analysis.

In this chapter, I propose methods of modelling individual ozone features

as random processes driven by variables capturing atmospheric conditions,

ozone precursor emission rates and antecedent concentrations. I will also

analyze a method of modelling a complete space-time ozone process through

its features. The statistical ozone feature models are intended to apply to

both AQM ozone and physical observations. The purpose of this chapter is

to estimate the details of ozone feature models and assess their modelling

capability through goodness-of-fit analyses and exercises in space-time ozone

forecasting.

I am placing significant effort on identifying the Gaussian Process co-

variates that can be used to model the process behind each ozone feature.

This model developing exercise is driven by my prior experience that spatial

and temporal variables such as longitude, latitude and “hour of the day”

are not sufficient in modelling ozone fields. The complexities of the AQM

modelling system (Chapters 1 and 2) also means that it does not have a

clearly definable input structure typical of a computer model. Hence, care-

ful analysis is need to formulate a set of AQM input conditions useful for

statistical modelling.

All modelling analyses in this chapter will be done using CMAQ-WRF-

SMOKE outputs (Section 2.1, Table 2.1). Due to the richness of information

the computer models can provide, their outputs are used instead of obser-
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vation data to estimate the ozone feature models. The computer models

produce data for a comprehensive list of variables representing regional me-

teorology and particulate pollution (more details in Section 4.3), whereas

observations provide data on a few basic weather and air pollution measure-

ments. Moreover, computer model outputs are produced on a dense and

regular spatial grid covering a large geographic domain and they, unlike the

observations, do not suffer from missing or erroneous data.

The statistical ozone feature model developed in this chapter will then

be applied in Chapters 5 and 6 to implement two distinct types of feature-

based AQM evaluation. As discussed in the introductory chapter, for one

evaluation, I will model the difference in ozone features between AQM and

observations as functions of AQM input conditions. In another evaluation,

I will estimate statistical ozone feature models for both AQM ozone and

physical observation, then compare the statistical properties of two ozone

processes under the same condition.

Besides serving as a means to my main objective of AQM evaluation, the

methodologies developed in this chapter are a novel and efficient approach

for modelling of space-time air pollution processes (not limited to ozone).

The bulk of existing statistical air pollution models deal only with either a

spatial process or a time series (temporal process). In a spatial model, the

random process is the spatial air pollution field whose values are usually a

temporal summary, i.e., summer time means (Fuentes and Raftery, 2005;

Liu, 2007). In a temporal model, the random process is expressed by a time

series of air pollution whose values are either based on a point location, or

a spatial average (Gao et al., 1996). Spatial-temporal pollution modelling

has received more attention in recent years, much of it is based on Gaussian

Processes and Kriging (Berrocal et al., 2009; Conti and O’Hagan, 2010;

Zidek et al., 2012). Usually, Gaussian Process based models are designed to

handle data in their original form - what I call the “raw data”.

Before preceding, a reminder on the terminology. “Spatial ozone means”

describe the ozone averaged across space, and “temporal means” describe

averages across time. Hence, a “spatial field of temporal ozone means”, or

“mean field” and “field of means” for short, describes a spatial field of mean
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values obtained by averaging ozone across time. Similarly, “time series of

spatial means” or “hourly LFV mean ozone” describe a times series obtained

by averaging ozone across space for each hour.

Similarly, “spatial ozone standard deviation” and “temporal ozone stan-

dard deviation” are summarized respectively, across space and time. The

same way of describing spatial and temporal summaries are also used for

other variables like temperature, NOx and VOC emission rates, etc.

Section 4.1 presents the general model formulations for ozone features

Ej ’s and Pj ’s. Section 4.2, summarizes the kriging-based methods for pre-

dicting unobserved spatial/temporal processes and approach to estimate GP

model parameters. Section 4.3 introduces the covariates used to model

spatial-temporal ozone features and methods of covariate selection. Sec-

tion 4.4 outlines the framework of implementing feature-based ozone mod-

elling using methods described in Sections 4.1 to 4.3. Data analyses are on

Sections 4.4-4.7, where the ozone feature models will be estimated and their

modelling capability will be assessed. The data used in this chapter are 2006

CMAQ output over the entire “rectangular” LFV domain (more details in

Section 4.4).

4.1 Ozone Features and Gaussian Process Models

Be it a CMAQ output or a physical measurement, ozone values are influenced

by a number of background meteorological processes, chemical emissions

and reactions. As discussed in Section 1.4, without physically measuring or

making an estimate using CMAQ, the ozone value given a set of background

conditions is unknown, hence it is reasonable to treat this unknown ozone

value as a random variable. Since the EOFs and PCs are extracted from

data treated as random ozone values, both the EOFs and the PCs are by

logic, random vectors (multivariate data).

Denote the extracted EOFs as Ej , j = 1, . . . , p, where p is the number

of EOFs used for modelling. Similarly, Pj (j = 1, . . . , p) denotes the PC

vectors. As before, I define the dimension of space-time ozone data as t×n,

t and n are respectively the number of time points and locations. As such,
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each EOF vector is multivariate random spatial data of size n, and each PC

vector is multivariate random temporal data of length t.

I showed in the last chapter that Ej ’s and Pj ’s capture strong spatial

and temporal structures, this implies the presence of spatial and tempo-

ral correlations, i.e, the spatial and temporal features are not dominated

by white noise. Hence the ozone feature models should be derived from

multivariate distributions that explicitly account for internal correlations.

In this study, Gaussian Process models are used. As its name suggests,

this model is built on the idea that a vector of random variables can be

modelled by a Multivariate Normal (MVN) distribution (Sacks et al., 1989;

Kennedy and O’Hagan, 2001). In the introductory chapter, I discussed its

well-documented proficiencies in modelling both computer model outputs

and physical observations, and the initial reasoning behind my application

of GP models for this research. The theoretical and practical appropriate-

ness of GP models will be examined during data analyses.

4.1.1 Gaussian Process Model for an EOF

Let the n × k matrix XE j denotes the model covariate set for the n × 1

response vector Ej , where k is the number of covariates. These covariates

will be selected in Section 4.5.

I propose a GP-based model for Ej :

Ej |XE j = F(XE j)βE j + ZE j . (4.1)

The regression function F(XE j)βE j is the mean of the GP model, where

βE j is the regression coefficient vector. I define the regression design matrix

as F(XE j) = {f(xj,1), . . . , f(xj,n)}T , where f(xj,1), . . . , f(xj,n) are column

vectors of functions of the covariates, and xT
1 , . . . ,x

T
n are rows of XE j . ZE j
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is a zero-mean Gaussian Process:

ZE j ∼ MVN(0, σ2E jRE j), where

RE j =



1 R(Ej,1, Ej,2) R(Ej,1, Ej,3) . . . R(Ej,1, Ej,n)

R(Ej,2, Ej,1) 1 R(Ej,2, Ej,3) . . . R(Ej,2, Ej,n)

R(Ej,3, Ej,1) R(Ej,3, Ej,3) 1 . . . R(Ej,3, Ej,n)
...

...
...

. . .
...

R(Ej,n, Ej,1) R(Ej,n, Ej,2) R(Ej,n, Ej,3) . . . 1


.

The correlations between Ej elements Ej and E′j are quantified by a function

of covariate distances: R(Ej , E
′
j) = fR(xj − x′j), where xj and x′j are the

respective covariate sets for Ej and E′j . Multiplied by the constant variance

σ2E j , one obtains the model covariance.

The mean represents the fixed component in (4.1), and models the simple

association between Ej and XE j as a regression function. The random com-

ponent ZE j models the stochastic behaviour of Ej based on Ej ’s correlation

structure (a function of XE j). In my experience, it is often reasonable to

simply specify the fixed regression term to be a constant scalar mean (though

I do introduce more general regression terms during model implementation

later in the chapter). The true focus of GP model lie with the modelling of

the stochastic process ZE j .

The distribution of Ej is given by:

Ej |XE j =


Ej,1|xj,1

...

Ej,n|xj,n

 ∼ MVN



fT (xj,1)βE j

...

fT (xj,n)βE j

 , σ2E jRE j

 .

Ej,1, . . . , Ej,n are the n elements of Ej , f
T (xj,1)βE j , . . . , f

T (xj,n)βE j and

xj,1, . . . ,xj,n are means and covariate sets of each random variable in Ej .
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4.1.2 Gaussian Process Model for a PC

If XP j is the covariate matrix of Pj , a Principal Component vector is mod-

elled similarly by

Pj |XP j = F(XP j)βP j + ZP j , (4.2)

where ZP j is a zero-mean Gaussian Process:

ZP j ∼ MVN(0, σ2P jRP j), where

RP j =



1 R(Pj,1, Pj,2) R(Pj,1, Pj,3) . . . R(Pj,1, Pj,n)

R(Pj,2, Pj,1) 1 R(Pj,2, Pj,3) . . . R(Pj,2, Pj,n)

R(Pj,3, Pj,1) R(Pj,3, Pj,2) 1 . . . R(Pj,3, Pj,n)
...

...
...

. . .
...

R(Pj,n, Pj,1) R(Pj,n, Pj,2) R(Pj,n, Pj,3) . . . 1


.

4.1.3 Modelling a Complete Space-time Ozone Process

To model the ozone process in its original space-time field and value scale

(ppb), I apply the constructive relationship between space-time ozone and

its defining ozone features:

Ot×n|XE,XP ≈
p∑
j=1

(Pj |XP j)(Ej |XE j)
T , p� min(t, n). (4.3)

In essence, I propose to model the spatial and temporal ozone features as

GPs, then the complete space-time ozone process as the joint sum of outer

products of its defining features. This is a departure from the traditional

statistical practice of directly modelling given data. I name this approach

the feature-based ozone model to emphasize this central idea.

4.1.4 Use of GPs for Modelling Ozone Features

I showed in Chapter 3 that the structures of individual spatial and tem-

poral ozone features are highly non-linear, implying that the usual linear
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regression models are not sufficient for modelling these features. Bloom-

field et al. (1996) and Thompson et al. (2001) provided good examples of

the deficiencies of linear regression when modelling non-linear air pollution

processes.

Given the GP assumption of individual ozone features, the resultant

space-time ozone process has a complicated distribution. It is common to

transform space-time data, e.g., a square-root transformation, before ap-

plying the GP model (Le and Zidek, 2006). So it is reasonable to place

the assumption of non-normality on a complex process such as space-time

ozone. Examples also exist where the GP assumption is imposed on the

original data, e.g., Gao et al. (1996) and Fuentes and Raftery (2005) (in the

context of SO2 modelling). However, the research in this thesis is focused

on the analysis and statistical modelling of ozone features rather than the

original ozone field. Given this particular focus, it is sensible to place any

statistical assumption on the ozone features, i.e., the random process being

analyzed directly.

Furthermore, by modelling each Ej (and each Pj) as a GP, I am assuming

that a particular ozone feature of a particular episode is treated as one

realization of GP. The purpose of GP model is to predict the outcome of this

particular realization for unobserved values of the covariates. This analysis

will be done in Chapters 5 and 6 to evaluate CMAQ.

In practice, the use of a GP is mainly for convenience. It is also a decision

informed by both my past experience and existing literature (Section 1.4),

where GP-based models were shown to be proficient in emulation complex

non-linear processes. Analysis later in this chapter will further validate

the appropriateness, thereby the usefulness of GPs for modelling the ozone

features.

Lastly, I should note that the general concept of “modelling the data

components as GPs” is a recent one. Higdon et al. (2008) built a statis-

tical emulator of a computerized “implosion simulator”. This is a high-

dimensional output computer model in that it produces multiple outputs

for every model run. The authors applied SVD to decompose a data ma-

trix of model outputs into loading components (in PCA terminology) that
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are regarded as invariant basis vectors. The model output data is a ma-

trix of multiple model runs, where each row contains the multi-dimensional

output from one model setting. The high-dimension model output is then

statistically modelled as a scaled-sum of said invariant basis vectors, and

each “scale” is modelled as a GP. Kleiber et al. (2014) implemented this

approach to emulate the output of a “geomagnetic storm simulator”. The

“scales” in Higdon et al. (2008) are expanded into vectors of Principal Com-

ponents and modelled as GPs, the loading components are still regarded as

invariant. These works are both motivated by the objective of “computer

model calibration” while data-decomposition is applied to reduce the di-

mensionality of the model output in order to increase the efficiency of their

calibration algorithms, which are both based on Bayesian methodologies.

One might view the feature-based ozone modelling framework as an elab-

oration of the above mentioned modelling ideas, but driven by a different

focus and intended application. My focus is to develop individual ozone

feature models as means to feature-based CMAQ evaluation. Whereas the

common focus of Higdon et al. (2008) and Kleiber et al. (2014) is to re-

duce computation load during computer model calibration, attention was

not placed in detailed modelling of data components. The computer models

in Higdon et al. (2008) and Kleiber et al. (2014) are simple enough to have

a definitive set of model covariates, which is not the case in my air pollu-

tion modelling. Furthermore, there is no invariant basis in my modelling

framework; all data features Ej ’s and Pj ’s are modelled, whereas the afore-

mentioned references both regarded their equivalent of the E’s as vectors of

an invariant basis.

4.2 Background on Gaussian Process Models

In this section, I first present a non-parametric (without assumptions about

a specific probability distribution) prediction method and discuss its con-

nection with Gaussian Processes. I will then present the general method

of estimating Gaussian Process models. For ease of discussion, I use the

generic notation of Y as a random response and X as process covariates.

99



4.2. Background on Gaussian Process Models

4.2.1 Best Linear Unbiased Predictor (BLUP)

Let y = (y1, . . . , yn)T be realizations of a random vector Yn×1. Each yi,

i = 1, . . . , n, is realized given a set of k covariates xi = (xi1, . . . , xik)
T . In

more general notation, the GP model for Y(x) has the formulation

Y(x) = Fβ + Z(x). (4.4)

F = (f(x1), . . . , f(xn))T is a row matrix of n covariate functions, where

the i-th covariate function is f(xi) = (f1(xi), . . . , fk(xi))
T , making F an

n × k design matrix. β = (β1, . . . , βk)
T is a regression coefficient vector.

Z(x) is a zero mean random process with covariance matrix σ2R. The

elements of R quantify the correlation between random variables in Z(x),

and subsequently Y(x) (Z(x) is the random component of Y(x)). Also as

mentioned, correlation between any ij-th pair Yi(xi) and Yj(xj) is a function

of some distance measure between relevant covariate pairs (xi,xj).

One way to predict the response at an “unobserved” covariate setting

x0 is called universal kriging (Matheron, 1963; Cressie, 1990), named af-

ter the South African mining engineer Danie G. Krige. Sacks et al. (1989)

adapted the same mathematics to problems in computer experiments with

higher-dimensional covariates. Given n “observed covariate inputs” XS =

(x1, . . . ,xn)T , we have corresponding output/data yS = (y1(x1), . . . , yn(xn))T ,

and the universal kriging predictor has the form ŷ(x0) = wT (x0)yS with

w(x0) being an n × 1 vector. It is essentially a weighted average of the

data. From the frequentist perspective, yS and y(x0) are realizations of

equation (4.4). The Best Linear Unbiased Predictor (BLUP) is the w(x0)

that minimizes Mean Squared Error (MSE)

MSE [ŷ(x0)] = E [wT (x0)YS − Y (x0)]
2 (4.5)

subject to the unbiasedness constraint E [wT (x0)YS] = E [Y (x0)], i.e.,

wT (x0)Fβ = βT f(x0) for all β.

When one takes the usual Bayesian approach, ŷ(x0) is the posterior mean

E [Y (x0)|yS]. Currin et al. (1991) suggested modelling Z(x) as a Gaussian
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Bayesian prior on the unknown function and Handcock and Stein (1993)

applied Bayesian methodologies in estimating model parameters.

In addition to R, a matrix of correlations between Y ’s at “observed”

settings x, we have the correlation between Y at an “unobserved” x0 and

the Y ’s at x (Sacks et al., 1989). This correlation is represented by the n×1

vector r(x0) = [R(x1,x0), ..., R(xn,x0)]
T .

Without accounting for the aforementioned unbiasedness constraint, the

MSE in equation (4.5) can be expanded to arrive at the expression:

MSE (ŷ(x0)) = [(wT (x0)F− fT (x0))β]2+ (4.6)

σ2[1 + wT (x0)Rw(x0)− 2wT (x0)r(x0)],

where the first term in (4.6) is the squared prediction bias. Incorporating

the unbiasedness constraint (wT (x0)F − fT (x0))β = 0, one is left to min-

imize the second term in (4.6). This term is generally referred to as the

“unbiased MSE equation”. To obtain the w(x0) that minimizes the term

1 + wT (x0)Rw(x) − 2wT (x)r(x0) under said constraint, one would add

the k × 1 Lagrangian term λT (x)[FT w(x0) − f(x0)] to the unbiased MSE

equation, differentiate and find w(x0) defining the BLUP from the equation(
0 FT

F R

)(
λ(x)

w(x0)

)
=

(
f(x0)

r(x0)

)
.

Making use of the following result regarding the inversion of a partitioned

matrix:(
0 FT

F R

)
=

(
R−1 −R−1FK−1FT R−1 R−1FK−1

K−1FR−1 −K−1

)
,

where K = FT R−1F, one may solve for w(x0). This results in the predictor

ŷ(x0) = fT (x0)β̂ + rT (x0)R
−1(yS − Fβ̂), (4.7)

with β̂ being the generalized least-square estimate.
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Substituting the optimized w(x0) into the unbiased MSE equation, one

obtains the prediction standard error

SE (ŷ(x0)) = σ[1− rT (x0)R
−1r(x0)+ (4.8)

(f(x0)− FT R−1r(x0))
T K−1(f(x0)− FT R−1r(x0))]

1
2

The preceding derivations are based on a single-point prediction at x0.

For a multivariate prediction (simultaneous predictions of multiple responses),

the prediction equation for individual response is still (4.7). However, due

to the correlation between unobserved responses, we now have a prediction

covariance matrix in place of a single prediction standard error (or variance)

(Bastos and O’Hagan, 2009). Let Y(X0) be a vector of m “unobserved” re-

sponses, where X0 is the m× k matrix of the covariates. Further denote F0

as the corresponding m× k design matrix of X0. The prediction covariance

matrix is

Σ(ŷ(X0)) = σ2[Rm − rTm(x0)R
−1rm(x0)+ (4.9)

(F0 − FT R−1rm(x0))
T K−1(F0 − FT R−1rm(x0))],

where Σ(ŷ(X0)) has dimension m×m. Rm is the m×m correlation matrix

of Y(X0). The correlation matrix rm(x0) has dimension n×m, each of its

columns is a n-length vector of correlations between an element in Y(X0)

and YS. As one can see, multivariate-prediction does not change the com-

ponents involving training data, it simply increases the dimensions of terms

that are functions of X0. Moreover, the diagonal elements of Rm are 1,

hence the individual prediction standard errors are still calculated as (4.8).

4.2.2 Connecting the BLUP to a Gaussian Distribution

Suppose the random response Y(x) follows a multivariate normal (Gaussian)

distribution, and let YJ = (YS, Y (x0))
T denote the n × 1 vector of the

training responses and the response to be predicted. Then YJ is also MVN
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with density:

fYJ
(yJ|β, σ,Rn+1) =

1

(2πσ2)n/2det (Rn+1)
×

exp

(
−

(yJ − FJβ)T RT
n+1(yJ − FJβ)

2σ2

)
,

where FJ = (FT , f(x0))
T ,

and Rn+1 =

(
R r(x0)

rT (x0) 1

)
.

The multivariate distribution of YS can be written out in the same fashion.

The conditional distribution of Y (x0) given YS is

fY (x0)|YS
(y(x0)|yS) =

fYJ
(yJ|β, σ,Rn+1)

fYS
(yS|β, σ,R)

. (4.10)

It can be shown through rather tedious matrix algebra, that the conditional

distribution (4.10) follows a normal (Gaussian) distribution with mean and

variance:

E (Y (x0)|YS) = fT (x0)β + rT (x0)R
−1(yS − Fβ)

Var (Y (x0)|YS) = σ2[1− rT (x0)R
−1r(x0)].

One may notice that the conditional mean has exactly the same expres-

sion as the BLUP (4.7), while the conditional variance is the squared BLUP

standard error (4.8) without the 3rd term inside the bracket. This is because

the above expressions for Y (x0)|YS is derived under the assumption that β

is known, whereas the BLUP is derived using the Generalized Least Square

(GLS) estimator β̂. The 3rd bracketed term in (4.8) simply represent the

extra error resulting from not knowing β.

4.2.3 Estimating GP Parameters: Fitting the GP Models

A decision needs to be made regarding the form of the correlation func-

tion R(x,x′). The requirement here is that the resultant covariance matrix
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σ2R(x,x′) is positive-definite (Nychka et al., 2002; Fuentes and Raftery,

2005). One possible specification of R(x,x′) is the power-exponential corre-

lation function, which has form

R(x,x′) = exp(−
k∑
j=1

θj |xj − x′j |αj ), θj > 0 and 1 ≤ αj ≤ 2, (4.11)

where xj and x′j are one of k covariates of x = (x1, .., xk)
T and x′ =

(x′1, ..., x
′
k)

T respectively. Such a correlation function is utilized repeatedly

in the literature: Sacks et al. (1989), Gao et al. (1996) and Kennedy and

O’Hagan (2001) for example.

This formulation is attractive in its ease of interpretation. A small nor-

malized distance between x and x′ gives high correlation that tends to 1

as the distance between x and x′ goes to 0, and conversely, the correlation

approaches 0 when the distance becomes large. A small value of θj im-

plies that Y as a function of xj is relatively insensitive to the fluctuation of

xj . In other words, for any fixed distance xj − x′j , covariate xj ’s numerical

influence in (4.11) tends to 0 when θj is small, where a zero-value inside

the exponential function gives a perfect correlation of 1 between Y (x) and

Y (x′) for dimension j. Thus θj can be viewed as a measure of correlation

strength or “activity” of associated covariate xj . The parameter αj controls

the smoothness of the correlation function, where αj = 2 gives a smooth

surface (infinitely differentiable). Furthermore, such a correlation function

makes the GP model scale-invariant to the covariate inputs. Notice in (4.11),

when a covariate xj is scaled as s̃xj (s̃ being the scaling factor), the resultant

correlation parameters are simply scaled up to αj-th power θj/s̃
αj to keep

R(x,x′) constant. Discussions of the interpretation of θ and α can be found

in Welch et al. (1992) and Jones et al. (1998).

Assuming Y (x) follows a Gaussian process (GP), one may write the
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likelihood based on β, σ2 and the correlation parameters in R(x,x′) as:

L(β, σ,θ,α|yS,F) = (4.12)

1

(2πσ2)n/2|R|1/2
exp

[
−(yS − Fβ)T R−1(yS − Fβ)

2σ2

]
.

Given the correlation parameters, the Maximum Likelihood Estimator (MLE)

of variance σ2 has expression

σ̂2 =
1

n
(yS − Fβ̂)T R−1(yS − Fβ̂),

and the Generalized Least Squared estimator of β is

β̂ = (FT R−1F)−1FT R−1yS.

Placing these two expressions back into the likelihood function, one is left

with a profile likelihood that is a function of the correlation parameters

(Sacks et al., 1989; Jones et al., 1998). This profile likelihood is then maxi-

mized over the correlation parameters θ = {θ1, . . . , θk} and α = {α1, . . . , αk}.
In this thesis, all GP model parameter estimates are MLEs. I will use

the common statistical expression “fit the model” to describe the procedure

of estimating GP model parameters given a dataset.

Strictly speaking, the BLUP results in Section 4.2.1 assume that the

covariance parameters θ and α are known. In practice however, they are

usually estimated by the methods described here, or by fitting a certain var-

iogram model, which is often used in geo-statistics instead of the correlation

function. The variogram is

2γ(x,x′) = Var [Y (x)− Y (x′)]

= σ2R(x,x) + σ2R(x′,x′)− 2σ2R(x,x′) = 2σ2[1−R(x,x′)]

and γ(x,x′) is called the semi-variogram. Le and Zidek (2006) described

popular variogram models, such as the exponential and spherical variograms.

Cressie (1990) also derived the predictive function based on the semi-variogram
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under the weighting condition
∑
w(x) = 1 (i.e., Ordinary Kriging).

4.3 Variable and Covariate Selection

In this thesis, the term model variable refers to: temperature, wind speed,

planetary boundary layer height, NOx and VOC emission rate and ambient

concentration. The term model covariate refers a function of a variable used

in the statistical model. For instance, “temperature” is a variable, while the

form of temperature values inputted into the model, such as 24-hour mean

temperature, is a covariate. The term design matrix denotes a matrix of

model covariates.

This section discusses one of the most important aspects of model devel-

opment: selecting model covariates. Naturally, an ozone model with a well-

chosen set of covariates should properly model the spatial-temporal features

of an ozone process. This desired attribute is expressed numerically through

a combination of high likelihood value and low prediction error. Likelihood

based statistical analyses are theoretical assessments of model quality, while

prediction-error based analyses are practical measurements of how well a

model performs.

Proper variable and covariate selection also make the GP models more

parsimonious, i.e., devoid of unnecessary model covariates. This is partic-

ularly useful for my application. When modelling physical observations,

the accompanying variable measurements are not always available. Hence

from a practical standpoint, a model containing fewer variables/covariates

is easier to implement.

From the following discussion, readers will notice that my variable and

covariate selection process is a balancing act between statistical analysis and

scientific reasoning.

4.3.1 Model Variables

In this subsection, I discuss and analyze the usefulness of various variables

for the ozone model. Below is a list of scientifically relevant variables:
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• Location and time variables: I use longitude, latitude, elevation

and hour of the day. As an alternative to longitude and latitude,

one may also use unitless values that index point locations on a 2-D

x − y Cartesian grid. Considering the aforementioned scale-invariant

property of the GP model, the scale of a location variable is arbitrary.

I chose longitude, latitude and elevation to allow identification of real-

life locations in modelling, an important feature for the upcoming

CMAQ model evaluation against observations.

• Meteorological variables: These are wind speed and direction, tem-

perature, pressure, humidity and boundary-layer height. Boundary-

layer height is the depth of the atmospheric layer in which the surface-

bound photochemical processes are contained (Stull, 1988). Taylor

(1991) and Salmond and McKendry (2002) are examples of works dis-

cussing the associations between LFV’s boundary layer height and its

ozone process.

• Chemical precursor information: Important precursors to ozone

are NOx (oxides of Nitrogen) and VOC (volatile organic compounds).

I use two types of precursor variables: the incoming rate of new precur-

sor molecules (rate of emissions) in units of mole per second, and con-

centrations of precursors (in ppb) already present in the atmosphere,

which is referred to here as antecedent precursors. As discussed in Sec-

tion 2.1, NOx is the sum of NO and NO2 data, while VOC data are

created by adding the scaled values of 16 families of volatile organic

compounds.

As mentioned in Chapter 2, the meteorological variables are outputs from

WRF (with MCIP post-processing), and precursor emission rates are out-

puts from SMOKE. These variables are created over the same spatial do-

main and time period as CMAQ. The antecedent precursor concentrations

are processed from CMAQ outputs; the processing methods are discussed

in a later subsection titled “Antecedent Precursor Concentrations”. As for

GP models of observed ozone features, the model variable data are the cor-
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responding (in space and time) observations. Related details of observation-

based modelling are presented in Chapter 6, the discussion here is focused

on the statistical modelling of the CMAQ ozone features.

Selecting Meteorological Variables

On the matter of variable selection (not covariate selection), the decisions

are based on available scientific advice and references. In previous chapters,

I discussed the defining space-time behaviours of a LFV ozone process and

its relationship with the dominant wind regime. The following paragraphs

further complete the picture on the meteorological conditions that are con-

ducive to an ozone episode, they provide the reasoning and justification

behind my science-based variable selection approach.

The start of an ozone episode requires meteorological conditions such as

high temperatures, clear sky and low wind speed (Robeson and Steyn, 1990;

Taylor, 1991; Ainslie and Steyn, 2007). All these conditions can be triggered

by a meso-scale high pressure system. High pressure near ground creates a

low pressure system in the atmospheric layer above, the cold (thus dense)

air from above moves downward and warms due to adiabatic heating. This

results in a clear sky that allows unobstructed UV radiation, directly driv-

ing the photochemical process. A high pressure system also results in low

wind speed: fast enough for localized chemical mixing, but not fast enough

to transport the ongoing photochemical process out of the LFV quickly. In

short, pressure is negatively correlated to wind speed and positively corre-

lated to temperature (Taylor, 1992; Ainslie and Steyn, 2007).

However, an ozone model based solely on pressure without temperature

or wind speed is hard to justify. Although high pressure is indirectly es-

sential to the formation of an ozone episode in the most generalized way,

temperature and wind speed are the meteorological forces that drive the

more detailed photochemical and atmospheric transportation process; tem-

perature and wind are simply more relevant and useful for the geographical

scale of my ozone modelling (Beaver et al., 2010; Jin et al., 2011; Reuten

et al., 2012). Furthermore, my statistical analysis has shown that the addi-
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tion of pressure along with temperature and wind as model variables tends

to degrade the goodness-of-fit and forecasting capability of my feature-based

ozone model.6 This is perhaps partially the result of covariate confounding

introduced by the addition of pressure. Therefore, pressure is not used for

my ozone modelling.

The intensity of ultra-violet radiation, measured by UV index, is another

important variable. As discussed, an ozone episode takes place during days

with clear sky, thus unobstructed UV radiation. This variable is not used

in modelling for two reasons. First, it is collinear with temperature: during

summer days, intense UV radiation results in higher regional temperature.

Secondly, the UV radiation is near uniformly distributed in space (at least

within LFV). Thus, the practical utility of including UV index in statistical

ozone modelling is questionable.

In the end, I decided to incorporate 3 meteorological variables: temper-

ature (in units Kelvin), wind speed (in meter/second) and boundary layer

height (in meter). Boundary layer height is particularly important given the

topography of LFV. The mountains surrounding the LFV act as a physical

“barrier” to the horizontal advection of pollutants that channels them along

the valley (Steyn et al., 1997), and a shallow boundary layer would trap

the pollutants within the LFV’s barrier (Robeson and Steyn, 1990; Tay-

lor, 1991). An ozone episode may be initiated by this accumulation of air

pollutants in conjunction with the meteorology conducive to photochemical

reactions: high temperature, light wind and strong UV (Boubel et al., 1994,

Chapter 17).

The use of wind direction data and generating data for

antecedent precursor concentrations

Although wind direction is an integral part of CMAQ that dictates the direc-

tion of ozone plume transport (as I have shown in chapter 3), its usefulness

in ozone feature modelling is questionable. This is because its values are

6The types of “statistical analyses” mentioned here are presented from Sections 4.5 to
4.7.
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measured as the angle that orients clockwise from the north. Given an an-

gle, the direction of the vector (from the origin) is the direction in which the

wind blows from, e.g., a wind direction value of 270◦ represents a westerly

wind (blowing directly from the west). As I will discuss in more detail, the

covariate data, which are space-time in nature, will be numerically summa-

rized before being incorporated into my model. Sets of wind direction data

with vastly different temporal or spatial profiles may end up being similar

in value when summarized. This lack of identifiability would make the mod-

elling effect of wind direction difficult to interpret, thus wind direction is not

incorporated directly as a model variable. However, the influence of wind

direction (hence wind regime) on spatial-temporal ozone patterns are in-

stead expressed through the creation of a new variable: antecedent chemical

precursor concentrations.

For grid cell s at hour h, CMAQ produces concentrations for O3, NOx,

and VOC (among others). CMAQ integrates a system of partial-differential

equations given the initial and boundary conditions for the grid cell. For

each s, concentration at h is integrated over the time period between h− 1

and h, where h in indexed in ”hours”. So output at hour 1300 is an averaged

concentration during 1201 − 1300. Within this hour, CMAQ produces air

pollution estimates in smaller time-intervals. I denote this small-interval

time variable as τ , where ∆τ � ∆h and ∆ represents incremental time

scale of τ and h. Therefore, from an input-output perspective of a computer

model, precursor concentrations from τ − ∆τ are the “inputs” to ozone

output at τ : they are corresponding antecedent precursor information. As

is the case with ozone output, hourly CMAQ outputs for NOx and VOC’s

are the ∆τ -interval concentrations integrated over an hour.

NOx and VOC concentrations at h are used as antecedent precursor

data associated with O3 at h. This is because atmospheric photochemical

reactions happen at a rate more appropriately indexed by τ , and lagged con-

centrations at h−1 (previous hour) are too far back in time considering both

the reaction rates and mesoscale wind speed. This point can be illustrated

through simple mathematics: under a light wind of 3 ms−1, which is typical

during an ozone episode within LFV (Section 2.2), the per-hour-distance of
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ozone-plume advection is 3 ms−1 · 3600 s = 10800 m = 10.8 km. This is

much larger than the CMAQ grid-cell size of 4km×4km.

Furthermore, due to the presence of atmospheric circulation, each grid

cell s has two sources of antecedent precursor chemicals: its own grid cell

and all neighbouring grid cells (Kalenderski and Steyn, 2011). In a regular

grid system, each s has 8 immediate neighbours.

At time h, the neighbouring precursor concentrations are part of the

initial/boundary conditions for s, and the wind direction of grid cell s at

time h determines how neighbouring cell concentrations affect its ozone pro-

duction process. I weight lagged neighbouring precursor concentrations us-

ing a scheme called Arcsin Weighting. The entire range of wind direction

(0◦ − 360◦) is partitioned into four intervals: > 315◦ and ≤ 45◦, between

45◦ and 135◦, between 135◦ and 225◦, and between 225◦ and 315◦. The

wind direction value of s at time h will fall into one of the intervals. Fig-

ure 4.1 illustrates how the arcsin weighting is done when the wind direction

is within the range 225◦ and 315◦. Within any interval, only three neigh-

bours are used for weighting: the lagged concentration of “directly upwind

neighbour” (U in Figure 4.1) is multiplied by 1/(1 + 2/
√

2), while the two

neighbours adjacent to the upwind one (A in Figure 4.1) are each multiplied

by (1/
√

2)/(1 + 2/
√

2). The antecedent concentrations at time h for each s

is the sum of the concentration from s and arcsin weighted concentrations

from its neighbours.

In total, there are 4 types of chemical precursor variables: the NOx and

VOC emission rates, and antecedent (or lagged) NOx and VOC concentra-

tions.

4.3.2 Selection of Model Covariates

Remember that a space-time ozone field is decomposed into spatial and tem-

poral components Ej ’s and Pj ’s, j = 1, . . . , p. Since the meteorological and

chemical variables are also space-time in nature, a function is needed to

transform model variables into numerical expressions appropriate for mod-

elling ozone features. Several designs of transform function are explored and
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Figure 4.1: Illustration of how the arcsin weighting is done when the wind
direction is 270◦. There are 8 neighbours to the grid cell s, the NOx and VOC
concentrations from the upwind neighbour “U” and two adjacent neighbours
“A” will be used. The precursor concentration in “U” is scaled by 1/(1 +
2/
√

2) and the concentrations in “A” is each scaled by (1/
√

2)/(1 + 2/
√

2).
Their weight sum is then calculated.

the two best functions (in terms of modelling capability) are presented in

this section.

Model I: Covariates are Spatial or Temporal Means of Variables

With random response variables representing either spatial or temporal

ozone patterns, their corresponding covariates can be spatial and tempo-

ral means of the model variables. A t × n space-time ozone dataset has

meteorological and chemical data from the same spatial-temporal domain.

An n-length vector of temporal variable means is obtained by averaging t×n
variable data by column (across time): such a vector represents the mean

field of each variable. A t-length vector of spatial variable means forms by

averaging the variable data by row (across space): this is the hourly time

series of LFV variable means.

The n-length vectors of temporal variable means (variable mean fields)

are model covariates of Ej ’s, i.e., spatial ozone features. The t-length vector

of LFV variable means are the covariates of Pj ’s, i.e., temporal ozone fea-

tures. Covariate selection is not necessary with such a formulation: within

any ozone feature model, each variable is represented by one covariate only.
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Moreover, all spatial feature models Ej have the same set of covariates, and

likewise for the temporal feature models Pj .

Model II: Covariates are EOFs or PCs of Variables

As with the decomposition of ozone data, I can use the PCA of variable data

to extract spatial and temporal features of model variables. EOFs of model

variables are the covariates for spatial ozone feature models, while PCs of

model variables are the covariates for temporal ozone feature models.

To better understand how variable EOFs and PCs can be incorporated

into GP models, one needs to first analyze the PCA results of model vari-

ables. The results from PCA of model variable data are presented in Ap-

pendix C.1. The data are CMAQ-WRF-SMOKE outputs from 2006, the

spatial domain is the “rectangular” LFV (Section 2.1, Figure 2.1) and the

data contain all 96 hours of output. For all model variables, the first 3 EOF-

PC pairs capture over 90%, or in certain cases, close to 100% of data varia-

tion, hence the full model covariate set is comprised of the first 3 EOFs/PCs

extracted from all 7 variable data. The purpose of model variable PCA is not

to closely analyze the decomposition of model variables. The objective is to

confirm that the model variable EOFs and PCs do indeed capture noticeable

space-time structures and variations, interpretability is not a priority.

The next step of analysis is covariate selection: determine the number

of useful EOFs and PCs from each variable. Intuitively, one may view co-

variate selection as a procedure in which I determine the “useful number” of

data features from each variable for the modelling of ozone features. After

extensive analysis and experimentation with a variety of covariate selection

schemes, I decided on a forward selection method which I refer to as Itera-

tive Improvement. Relative to other selection methods I explored, iterative

improvement delivered the best combination of model goodness-of-fit and

ozone feature forecasting capability. This iterative approach is based on the

method of maximum likelihood (4.12). Take the GP model of any ozone

EOF as an example, the iterative procedure proceeds as follow:

Step 1: The starting covariate set contains longitude, latitude, elevation and

113



4.3. Variable and Covariate Selection

E1’s of all 7 meteorological and precursor variables. As a reminder,

these are temperature, wind speed, boundary layer height, NOx and

VOC emission rates and antecedent concentrations.

Fit the GP model containing the starting covariate set and record the

maximized likelihood. Denote this starting likelihood value as `start.

The likelihood maximizing method (thus model estimate method) is

described in Section 4.2 and the detailed implementation will be de-

scribed during data analysis in Sections 4.5 to 4.6.

All 1st order model-variable features are used since they capture/recover

the most fundamental features of each variable. The iterative im-

provement procedure is in essence, a means of incorporating useful

additional covariate information into each GP model.

Step 2: The candidate set contains the remaining Q covariates. Initially, Q =

14 (E2’s and E3’s from 7 meteorological and precursor variables). Fit

Q GP models, where model q, q = 1, . . . , Q, is the GP model with the

q-th covariate added to the starting covariate set in the previous step.

Denote each maximized likelihood as `q, the largest one as `max, and

its corresponding covariate as xmax.

Step 3: If the likelihood test statistic δmax = 2(`max − `start) is larger than

the critical value χ2
0.95, df=2, then I say that the addition of covariate

xmax is a significant improvement over the starting model. Update the

starting covariate set by incorporating xmax, and update the candidate

set by removing xmax. Note that the χ2 degree of freedom is 2 because

there are correlation and power parameters attached to each additional

covariate in the GP model for an ozone EOF.

Step 4: Repeat step 1 to 3 until the likelihood test statistic in step 3 is smaller

than the critical value. This is the point where the addition of more

candidate covariates fails to improve the GP model fit in a statistically

significant way. If the initial step 3 fails to add any covariates, then I

conclude that the original starting set is the best.
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The alternative to iterative improvement is its backward selection counter-

part: start with a full covariate set with all possible model covariates and

iteratively remove covariates one-by-one until further omission of covariates

results in a statistically significant drop in the log-likelihood.

The iterative covariate selection for ozone PC models proceed in the

same manner using the PCs of model variables as candidate covariates.

The iterative improvement algorithm is built upon rejecting the null

hypothesis (type I error), whereas the backward selection is based on not

rejecting the null (type II error). Intuitively, the iterative improvement

algorithm should arrive at the optimized covariate set quickly if the set is

small. Conversely, the backward selection approach is recommended if the

final covariate set is expected to be large: it requires less iterations to delete

a small number of candidate covariates than to add a large number of them.

The likelihood test is especially useful since I have multivariate (corre-

lated) data, where many statistical tests are inapplicable. A likelihood-based

test takes into account the inherent correlation structure within the data.

Furthermore, it can be shown that maximizing the likelihood is the same

as “minimizing the expected predictive deficiency” (Currin et al., 1991).

Therefore, one may interpret my proposed covariate selection algorithm as

a statistical procedure that searches for a model that is expected to deliver

the best prediction.

4.3.3 Goodness-of-fit Statistics

Summary statistics based on cross-validation errors (or residuals) are help-

ful for assessing model quality from a practical, goodness-of-prediction per-

spective. As usual, let Yn×1 be a vector of n responses and Xn×k its corre-

sponding covariate matrix. Denote an entry of the response-covariate set as

yi and xi, i = 1, . . . , n. Let Y−i and X−i be the response and covariate data

without the i-th entry. In cross validation, I fit GP model using Y−i and

X−i, and predict yi|xi. Repeating for all entries in the data, one obtains

n cross-validation predictions ŷi|{xi,Y−i,X−i}, i = 1, . . . , n, each with ac-

companying prediction error. Cross-validation root mean squared error, or
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CVRMSE, is calculated as

CVRMSE =

√∑n
i=1(yi − ŷi|{xi,Y−i,X−i})2

n
.

I also use mean percentage error (MPE), which during cross-validation is

calculated as

MPE =
1

n

n∑
i=1

(
yi − ŷi|{xi,Y−i,X−i}

yi
∗ 100%

)
.

In the MPE calculation, the positive and negative errors can offset each

other, and it can be applied as a measure of prediction bias. When the

CV-residuals are taken as absolute values, MPE becomes Mean Absolute

Percentage Errors (MAPE).

Furthermore, a prediction ŷi|{xi,Y−i,X−i} and its prediction error are

estimates of the conditional mean and variance of a normal distribution

yi|Y−i. In theory (Gao et al., 1996; Bastos and O’Hagan, 2009), I can check

the assumptions of a Gaussian Process model by analyzing plots of standard-

ized cross validation residual (yi − ŷi)/se(ŷi) (to be implemented in Section

4.6).

4.4 The Framework of Feature-based Ozone

Modelling

In the remainder of this chapter, I will estimate individual spatial and tem-

poral ozone feature models and assess their goodness-of-fit and predictive

capabilities. It is worth re-emphasizing that the ozone models developed in

this chapter are intended to both serve as the basis for air quality model

evaluation and as an efficient means of modelling a large space-time air

pollution process.

The framework below details the steps for (1) estimating individual spa-

tial and temporal ozone feature models, and (2) applying said models to

forecast LFV ozone features and subsequent space-time ozone fields.
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• Step 1: Partition a complete space-time ozone dataset into the train-

ing set and the predictive set. The data can be separated by spatial

locations, time periods, or both. In my analyses, I partition ozone

data by the time periods within an episode.

The training dataset is used to fit the ozone feature models and carry

out model diagnostics. The predictive set contains variable data fu-

ture to the training set. It provides statistical model inputs to make

forecasts of ozone features and space-time ozone fields. This helps us

to further assess the capabilities of ozone feature models.

In this thesis, the term “prediction” is used to describe the procedure

of estimating unobserved values of an ozone process, whereas the term

“forecast” is specific to prediction of future ozone process in relation

to the training set.

• Step 2: Model selection. In Section 4.3, I proposed a type of ozone

feature model where the covariates are selected from the leading 3

EOFs or PCs of model variables. The covariate selection is done using

an iterative improvement procedure. This model selection method will

be implemented using the ozone feature data and the model covariate

data obtained from the PCA of the training dataset.

• Step 3: With model covariates for each GP determined, fit individual

GP models (estimate model parameters) for Ej and Pj , j = 1, 2, 3, us-

ing their respective training data. Forecasts of regional ozone features

can then be made from the fitted models using the EOFs and PCs of

model variables from the predictive dataset.

The predictive data contain information on the LFV’s atmospheric

and pollution conditions during the time period following the training

set. Hence, I am making ozone-feature forecasts for the LFV region.

Kriging-based prediction methods were discussed in Section 4.2.

• Step 4: Combine EOF and PC forecasts via (4.13) below to forecast

the hourly LFV ozone fields. Denote the predictive set covariate data

by xE j and xP j , j = 1, . . . , p, and the estimated model parameters
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by ξ̂E,j = {θ̂E,j , α̂E,j , β̂E,j , σ̂E,j} and ξ̂P,j = {θ̂P,j , α̂P,j , β̂P,j , σ̂P,j}
(parameter notations from Section 4.2). The predictive equation for a

space-time ozone field is the “prediction based” form of (4.3):

Ôpred|xpred =

p∑
j=1

(P̂j pred|xP j , ξ̂P,j)(Êj pred|xE j , ξ̂E,j)
T . (4.13)

The data xpred are the variable data of a predictive set: the data from

which xE and xP are extracted. Opred is the prediction target, i.e, the

space-time ozone field of the predictive set. Furthermore, the training

set and predictive set can have different data dimensions (different

numbers of locations and time points).

In its entirety, my proposed ozone modelling scheme follows the path:

decompose ozone training data into separate ozone features ⇒ select model

covariates and fit the ozone feature models ⇒ apply the covariate inputs

from the predictive data to forecast ozone features ⇒ combine predicted

features to forecast the complete space-time ozone field.

4.4.1 Details of Training Set and Predictive Set

The data analysis in this chapter uses the 2006 CMAQ output across the

entire “rectangular” LFV domain shown in Figure 4.2 (originally from Figure

2.1 in Chapter 2). This LFV domain includes north shore mountains as well

as the valley floor analyzed in the last Chapter. In total, this region contains

n = 229 CMAQ grid cells. The training data is the first 2 full days of 2006

episode (June 24th and 25th), and the prediction is made for the remaining

full day (June 26th), so ttrain = 48 and tpred = 24. The training ozone field

is dominated by a type I wind regime and the predictive day is driven by a

type III regime (Table 3.1, Ainslie and Steyn (2007)).

As such, I am using ozone feature models estimated for an ozone field

under one wind regime type to forecast an ozone field under a different

regime. In addition, the modelling is implemented on a complex pollu-

tion field that includes a large metropolitan area, farm lands (Abbotsford),

and surrounding mountains with elevations sometimes exceeding 500m. A
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Figure 4.2: Map of the complete “rectangular” LFV domain being modelled
in this Chapter. The red dots indicate the corners of the modelled domain,
the coordinate of each corner is also shown.

simpler modelling exercise can be based on the low-elevation LFV field an-

alyzed in Chapter 3, and have both training and predictive set under the

same wind regime type, e.g., 1995 or 2001 episodes. Therefore, the analyses

in this chapter is a rather tough assessment of the modelling capability of

the proposed ozone feature models.

One also needs to produce the antecedent NOx and VOC data for the

predictive set. As discussed in Section 4.3, the antecedent precursor data

are processed from CMAQ outputs. The implication here is that one cannot

obtain the actual antecedent precursor data without running CMAQ, or in

the case of predicting physical observations, making measurements during

the prediction hours. In practice, it is redundant to run CMAQ or take

measurements to obtain NOx and VOC data before predicting ozone fields,

because the real ozone values are also obtained. One straightforward solution

is to use the previous-day antecedent precursor data as a proxy.

However, this is not an issue for the analyses in this thesis. Here, the

predictions/forecasts are done for the sole purpose of evaluating the capa-

bility of ozone feature models. In fact, to properly evaluate these statistical

models, it is essential to apply the actual NOx and VOC antecedent con-
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centrations from the day of prediction. Hence, all forecasts in this chapter

are done using NOx and VOC data from June 26th, 2006; the day for which

the ozone forecasts are made.

4.4.2 PCA of CMAQ Output over the “Rectangular” LFV

Figures 4.3 and 4.4 show that the type of spatial-temporal ozone features

over the “rectangular LFV” domain are more or less consistent with what

were learned from Chapter 3, where the analyses are done for the low-

elevation “valley floor” of LFV. However, the 2nd EOF now captures the dy-

namic spatial contrast between the lower valley and the mountains, whereas

in Chapter 3 for the valley floor, the spatial contrast was between eastern

and western LFV. The leading temporal features are still interpreted the

same: P1 is the hourly spatial mean, and P2 is a daytime-nighttime tem-

poral contrast that interacts with E2 to capture a diurnal eastward ozone

transport.

Figure 4.5 shows the eigenspectra from the ozone PCA of training dataset.

The ozone features form degenerate multiplets starting at j = 4. Based on

the eigenspectrum interpretations discussed in Sections 3.2 and 3.3, one may

conclude that for the “rectangular” LFV ozone field, the leading 3 ozone fea-

tures are identifiable as individual features and separable from the others.

4.5 Covariate Selection

This section presents the results from covariate selection using the training

data. A covariate is denoted using the abbreviation of the variable name,

with subscripts indicating the order of EOF or PC. For example, TempE,2

and NOx-lagP,1 denote respectively, the 2nd EOF of temperature and the

1st PC of antecedent (lagged) NOx concentration.
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Figure 4.3: From the training set, day 2 and 3 of the 2006 Ozone episode:
Spatial plots of temporal ozone means and standard deviations (calculated
across time), and the first 4 EOFs. The ozone mean and standard deviation
have units ppb, while E1, . . . ,E4 are unitless.
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Figure 4.4: From the training set, day 2 and 3 of the 2006 Ozone episode:
Time series of hourly spatial ozone means, standard deviation and the first
four PCs. The number in each PC plot heading is the “proportion of data
variation explained”. All plotted data have units ppb.
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Figure 4.5: Eigenspectrum from the PCA of the training data: 2006 CMAQ
output for June 24th and 25th, over the rectangular LFV domain (area
including the mountains). The dashed line indicates the ozone feature when
feature degeneracy occurs. No spectrum is shown for λ1, which has a much
larger eigenvalue that is distinct from those shown.

4.5.1 Implementation Details

As discussed in Section 4.2, the multivariate normal based profile likelihood

(4.12) is maximized to find estimates for the GP model parameters, and

the GP correlation functions are power exponential. I use the program

GASP written by William J. Welch to optimize all my Gaussian-based profile

likelihoods. This program iterates through different non-linear optimization

approaches like the Nelder-Mead method to maximize a likelihood function.

It is a reliable GP optimizer that has been applied in many published works

(Jones et al., 1998; Aslett et al., 1998).

GASP outputs a number of optimization summaries, one of which is called

the Condition Number. It shows the number of significant figures lost to nu-

merical error in the maximum likelihood results. In other words, it indicates

the precision and reliability of optimization: the higher the Condition Num-

ber, the smaller the number of accurate significant digits, which in term

indicates a lessened degree of optimization quality. As such, it is desir-
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able to have a small condition number. In practice, a condition number of

> 1 × 106 gives cause for concern. All the optimizations presented in this

thesis have smaller condition numbers.

The regression part of Ej GP models (4.1) contains longitude, latitude,

elevation and an intercept term: f(XE) = (1, lon, lat, elev)T . The covariates

in the regression term are fixed. I only select covariates for the stochastic

process ZE, i.e., covariates that define spatial correlations within each Ej .

As mentioned in Section 4.1, the regression term is often treated as a con-

stant. Based on my past experience working with spatial Gaussian Processes

and existing literature (Gao et al., 1996; Jones et al., 1998), the inclusion of

spatial linear regression may slightly improve the models’ predictive qual-

ities. Hence, I chose to use the 4-term regression function, make its form

constant, and focus my covariate selection analyses on the stochastic com-

ponents of GPs.

The starting covariate set contains longitude, latitude, elevation and the

1st EOF of all 7 variables: NOx and VOC emission rates, temperature, wind

speed, boundary layer height, NOx and VOC antecedent concentrations.

Once again, at any time point t, the antecedent values (NOx and VOC) of

each grid cell are the sum of antecedent concentration from that cell and

neighboring cells weighted via Arcsine Weighting (Section 4.3). Given the

starting covariate set, I initiate the iterative improvement algorithm outlined

in Section 4.3. This algorithm is stopped once no statistically significant

improvement can be made by introducing more covariates into the model,

and the covariate set at termination is my covariate set of choice. This

iterative operation is implemented for the ozone feature models Ej , j =

1, 2, 3.

For PC covariate selection, I fix the regression term at f(XP) = (1, hour)T .

I experimented with different functions of hour, e.g., hour2 and auto-regressive

time series of lag 1. However, added model complexities came with no notice-

able improvements in models’ predictive qualities. I decided that a simple

2-term regression is sufficient for the Pj GP models (4.2).

The focus here is once again, selecting covariates for the stochastic pro-

cess ZP. For selection of parameters in ZP 1, ZP 2 and ZP 3, the starting
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covariates are respectively TempP,1, VOCP,1 and NOx-lagP,3. They are se-

lected because single-covariate models of ZP 1, ZP 2 and ZP 3 with these

covariates have the highest model-fit likelihood. Iterative improvement is

then implemented to identify additional model covariates.

4.5.2 Selection Results

Table 4.1 shows the results of covariate selection from iterative improvement

using the 2006 training data mentioned in Section 4.4. The covariates shown

are in addition to longitude, latitude and elevation for the Ej models. As

shown, for both Ej and Pj models, the variable temperature consistently

has multiple EOFs and PCs selected, reflecting its expected importance in

an ozone process. Moreover, for Ej models the chemical precursor variables

are more likely than meteorological variables to have covariates included.

Table 4.2 shows the cross-validation RMSEs from the models selected by it-

erative improvement and the standard deviations of their respective training

data. The RMSEs can be compared with those of a null model, where the

prediction is just the mean of the training data, i.e., the training data stan-

dard deviations also shown in Table 4.2. As shown, the fitted ozone feature

models have much lower CVRMSE than the data standard deviation.

Figure 4.6 plots the goodness-of-fit results from various model fits for

E1. Performances are compared from four covariate sets:

• Covariates selected through iterative improvement.

• The covariates are the 1st EOFs of model variables.

• All candidate model covariates.

• Only longitude, latitude and elevation as covariates.

A circle in the plot indicates that using a likelihood-ratio test with a signif-

icance level of 0.05, that there is no significant difference between a simpler

model and the full model containing all possible covariates. An ”x” indicates

otherwise.
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Model Covariate

EOF 1 NOxE,1, NOxE,2, VOCE,1, TempE,1, TempE,2, WindE,1,
WindE,2, BLE,1, NOx-lagE,1, VOC-lagE,1, VOC-lagE,2

EOF 2 NOxE,1, VOCE,1, TempE,1, TempE,2, WindE,1,
BLE,1, NOx-lagE,1, VOC-lagE,1

EOF 3 NOxE,1, VOCE,1, TempE,1, TempE,3, WindE,1, BLE,1,
NOx-lagE,1, NOx-lagE,2, NOx-lagE,3, VOC-lagE,1

PC 1 TempP,1, TempP,3, WindP,2, BLP,1, VOC-lagP,1
PC 2 VOCP,1, TempP,3, WindP,1, WindP,3, NOx-lagP,1
PC 3 NOx-lagP,3, BLP,2, NOx-lagP,1, TempP,2, TempP,3, WindP,1

Table 4.1: Covariate selection results from the iterative improvement algo-
rithm. The data are the 2006 training data mentioned in Section 4.4. “BL”
is the boundary layer, “NOx-lag” and “VOC-lag” indicate antecedent pre-
cursor concentration. For the EOF models, the covariates shown are those
used in addition to longitude, latitude and elevation.

EOF 1 EOF 2 EOF 3

CVRMSE of iterative improvement 0.0006 0.0039 0.0064
Standard deviation 0.015 0.065 0.066

PC 1 PC 2 PC 3

CVRMSE of iterative improvement 5.60 5.92 3.58
Standard deviation 142.6 117.23 48.98

Table 4.2: Training data Cross-validation RMSE of the models chosen by
the iterative improvement method and the standard deviation of the ozone
feature data. The units of Pj model CVRMSE and standard deviation are
ppb. The CVRMSE and standard deviation are unitless for the Ej ’s.

Figure 4.6 shows that the model with only the location variables fits

noticeably worse than models containing meteorological and precursor vari-

ables. These results highlight that, due to the complex non-linear structures

of ozone features, longitude and latitude are not sufficient for ozone feature

modelling. Meteorological and ozone precursor variables are statistically

important for ozone modelling here.
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Figure 4.6: Cross-validation MPE versus cross-validation RMSE for four
models with different covariate sets. A circle indicates via a likelihood-ratio
test, that there is no significant difference between a simpler model and the
full model.

4.6 Modelling and Forecasting Ozone Features

This section will present results including diagnostic tests of model assump-

tions and evaluation of the predictive quality of the ozone feature models.

Here, “prediction” refers to the forecasts of future ozone-feature patterns

and space-time ozone fields for the predictive set. This is not to be confused

with the cross-validation done in the previous section, which is prediction

within the training set. Forecasting is a more stringent test of a model’s

capabilities than cross-validation.

This section presents the results from two types of ozone feature models

discussed in Section 4.3:

1. Models where the covariates are spatial and temporal means of model

variables, which I refer to as the Variable Mean (VM) models. For

VM models of Ej , the covariates are model variables’ temporal means

(averaged across time): these are spatial fields of variable means. For

the VM models of Pj , the covariates are model variables’ spatial means
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(averaged across space): these are time series of variable means.

2. Models where covariates are variable data decomposed into EOFs/PCs

and selected via the iterative improvement procedure, the results of

which are shown in the previous section. I refer to such ozone feature

models as Covariate Iterative Improvement (CII) models.

A further note on terminology: the ozone EOF models based on formulations

VM and CII are referred to as EOF-VM and EOF-CII models. Similarly,

the ozone PC models are PC-VM and PC-CII.

In Section 4.2, I presented the Best Linear Unbiased Predictor (BLUP)

for the unobserved response Y0 given observations y. Its two main properties

are:

• Let ŷ0 denote the BLUP of Y0, then by the unbiasedness property

E (ŷ0) = E (Y0), and the mean of random variable Y0 − ŷ0 is 0.

• The predictor ŷ0 is also the mean of the conditional Normal (Gaussian)

distribution f(Y0|y).

Summarizing the above properties, one would expect that, if Y0 (and Y)

indeed follow a Normal (or MVN) distribution, then the random variable

(Y0− ŷ0)/SE (ŷ0) would follow a standard normal distribution (ignoring esti-

mation of the parameters). Therefore, the assumption of Gaussian Processes

for EOFs and PCs can be tested by analyzing how closely the distribution of

(Y0− ŷ0)/SE (ŷ0) resembles a standard normal. By running cross-validations

on the training data and obtaining standardized Cross Validation (CV) er-

rors, I obtain samples of (Y0 − ŷ0)/SE (ŷ0). I then plot and examine the

standard normal Q-Q plots of the (Y0 − ŷ0)/SE (ŷ0) samples to assess the

appropriateness of the Gaussian Process assumption (Gao et al., 1996; Jones

et al., 1998).

4.6.1 Modelling and Forecasting of Spatial Ozone Features:

EOFs

Figure 4.7 shows for the 3 Ej models based on CII (EOF-CII), standard nor-

mal QQ-plots of the standardized cross-validation errors. Given how closely
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the scatter plot of “theoretical quantile vs. sample quantile” lie along the line

y-axis= x-axis, I conclude that based on this quantile-to-quantile criterion,

the assumption of a Gaussian Process is appropriate. The model fitting and

diagnostic results are similar for the EOF-VM models (not shown).

Figure 4.7: For the three EOF-CII models: standard normal QQ-plots of
standardized CV-errors. The x-axis is the theoretical quantiles of a stan-
dard normal distribution and the y-axis is the sample quantiles from cross-
validation.

An important model fitting result is that the fitted correlation smooth-

ness (power) parameters α̂ are either equal or very close to 2. A value

α = 2 indicates an infinitely differentiable and smooth correlation function.

In addition, at α = 2, a power-exponential function becomes a Gaussian

correlation.

Forecasting the Spatial Features

With GP model parameters estimated from the two days of training data,

the corresponding covariate data from the predictive set are used in the

multivariate form of BLUP (4.7) to make forecasts of spatial ozone features

for the LFV on June 26th, 2006.

Table 4.3 contains the forecast RMSEs calculated as

RMSEj =

√∑n
i=1(Eij − Êij)2

n
, j = 1, 2, 3. (4.14)
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Here, Êij denotes the forecast made at location i for j-th ozone feature,

and n = 229 is the number of forecast locations. When Êj = Ēj in (4.14),

one obtains the standard deviations of the true EOFs being predicted (also

in Table 4.3). The true EOFs are decompositions of the ozone data from

the predictive set, i.e., they are the real-life spatial ozone features we try

to forecast. These true standard deviations provide useful reference points

when assessing the scale of RMSE. Note that the response variables are the

ozone EOFs, which are unitless.

When compared to the standard deviations of the true ozone EOFs, the

estimated ozone feature models delivered reasonably low prediction RMSEs.

However, it is worth noting that the RMSEs of both E3 models (VM and

CII) are about 77% of the true EOF’s standard deviation. As discussed in

Chapter 3, the 3rd-order and 4th-order ozone features capture the space-

time behaviour of the nocturnal ozone process, which is not as influenced

by the model variables as the daytime ozone. In other words, they may

not be process-driven enough to be adequately modelled as ozone features.

This translates to the difficulties we see in the modelling of E3. Table 4.3

shows, however, that E1 and E2 have smaller forecasting error relative to

the standard deviations of the true EOFs.

EOF 1 EOF 2 EOF 3

RMSE of EOF-VM models 0.009 0.020 0.051
RMSE of EOF-CII models 0.008 0.016 0.047

S.D. of the true EOFs 0.020 0.065 0.066

Table 4.3: Prediction RMSE of the EOF models. The last row contains the
standard deviations of the true EOFs being predicted. The Ej ’s are unit
less.

Figures 4.8, 4.9 and 4.10 display the spatial patterns of the true EOFs

and their predictions. For reference, refer to Figure 4.2 in Section 4.4 for the

map of modelled LFV domain. As shown, the model forecasts captured the

true EOFs’ gross regional-scale spatial patterns as well as some of the finer-

scale spatial variations. This type of visual test informs us how closely the
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Figure 4.8: Spatial plots of true E1 to be predicted and its GP model pre-
dictions (all unitless). The colour scales are the same between plots.
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Figure 4.9: Spatial plots of true E2 to be predicted and its GP model pre-
dictions (all unitless). The colour scales are the same between plots.
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Figure 4.10: Spatial plots of true E3 to be predicted and its GP model
predictions (all unitless). The colour scales are the same between plots.

133



4.6. Modelling and Forecasting Ozone Features

statistical models can predict future spatial variations of the ozone features,

which is especially useful in this application of ozone feature modelling. The

results show that despite moderate RMSEs, the ozone feature models are

capable of forecasting the complex non-linear structure of the leading ozone

features.

4.6.2 Modelling and Forecasting of Temporal Ozone

Features: PCs

Figure 4.11 shows for the three ozone PC-CII models (the covariate formu-

lations shown in Table 4.1), the standard normal QQ-plots of standardized

CV-errors. While the centres of the sample distributions correspond closely

to that of a standard normal, the lower tails of P2 and P3 are both higher

than expected for a standard normal. There are also 3 upper-tail standard-

ized errors that deviated noticeably from the standard normal assumption.

Therefore, except for its deficiency in modelling the extremities of higher-

order PCs, models with a Gaussian assumption do a satisfactory job of

describing the distribution of temporal ozone features. The QQ-plots from

the PC-VM model fits (not shown) delivered similar results. In the end, I

found little reason to doubt the appropriateness of the Gaussian assumption

when modelling ozone features.

Figure 4.11: For the three PC-CII models: standard normal QQ-plots of
standardized CV-errors. The x-axis is the theoretical quantiles of a stan-
dard normal distribution and the y-axis is the sample quantiles from cross-
validation.
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Forecasts of the Temporal Features

Table 4.4 shows the prediction RMSE’s along with the standard deviations

of the true PCs for reference. It should be noted again that the PCs are the

weighted row-sums of Ot×n (Section 3.2), which explains the high RMSEs

and standard deviations shown. The space-time ozone field Ô = P̂ÊT will

contain appropriate ozone values once scaled by E. Relative to the standard

deviations of the true PCs, both P1 and P2 predictions have lower RMSEs.

Again, the prediction of a higher-order ozone feature, P3, is relatively less

accurate, with an RMSE of about 70% of the standard deviation of true P3.

PC 1 PC 2 PC 3

RMSE of PC-CII models 92.21 ppb 45.95 ppb 42.22 ppb
RMSE of PC-VM models 74.29 ppb 49.46 ppb 40.70 ppb

S.D. of the true PCs 177.23 ppb 113.60 ppb 56.64 ppb

Table 4.4: Prediction RMSEs of the PC models, where predictions are made
using the “real” predictive set on antecedent precursors. The standard de-
viations of the true PCs are shown for comparison.

Figure 4.12 plots the temporal patterns of predicted PCs overlaid with

the true PCs. As shown, the temporal patterns of the forecasts reflect

the general trends of true PCs. Figure 4.12 does show a few exceptions:

my models for P1 over-predict the LFV ozone means in the early-morning

and after 1900PST; there are also slight discrepancies between the true P2

and predictions during early-morning and late-night. However, my models

forecasted the day-time temporal ozone features very well, which is the most

important conclusion drawn.

Figure 4.13 shows from the CMAQ 2006 ozone output, the temporal

plots of hourly spatial mean, standard deviation (both summarized across

space) and the 1st 4 PCs over the course of the whole ozone episode (includ-

ing both the training and predictive days). There is a trend of decreasing

night-time hourly LFV means through the episode, and by the 4th day (pre-

dictive set), the hourly LFV mean experiences a dramatic decline from which
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4.7. Forecast of Space-Time Ozone Fields

Figure 4.12: Time-series plots of the true temporal ozone features in the
predictive set (black), their predictions using ozone feature models PC-CII
(blue) and PC-VM (red).

it barely recovers as this episode concludes. This daily trend is naturally

reflected in the temporal pattern of P1. Recall that days 2 and 3 are used

as the training set, in which this “sudden decline” in night-time ozone is not

observed. Therefore, such within-episode variation of the ozone process is

not “learned” when estimating the P1 models, and P1’s numerical relations

with available covariates are not sensitive enough to forecast this night-time

feature. In short, this is a problem of extrapolation.

It is worth noting that the magnitude of P1 is noticeably larger than

the others (Figure 4.12). From the ozone prediction function (4.13), one

can deduce that E1 prediction receives a larger weighting in the final ozone

modelling/prediction, an expected result given the importance of the spa-

tial/temporal mean to an ozone (or any air pollution) process. The P3

values are smallest in magnitude, hence assigning the smallest weight to-

wards the E3 prediction. As a result, the effect of any prediction errors in

the 3rd EOF-PC models are subsequently alleviated.

4.7 Forecast of Space-Time Ozone Fields

With the ozone features forecasted, (4.13) is used to forecast the regional

ozone fields for the last day of the ozone episode: June 26th, 2006. Once

again, the ozone field being modelled is the CMAQ produced output, not
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Figure 4.13: Temporal plots of hourly spatial ozone mean, standard devia-
tion and the 1st 4 PCs over the course of the entire episode. Notice the sharp
night-time decline of P1 during the 4th day (predictive set), as highlighted
by a red circle. The vertical dashed lines indicate the hour 0000, and the
value in the heading of each PC plot is the “proportion of data variation
explained”.
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physical observations.

Figures 4.14 and 4.15 show for selected hours, the scatter plots of the

model forecasts against the true CMAQ output. The feature-based model

gave good forecasts during the afternoon peak hours: the points are scat-

tered near the line x = y. As expected from the over-prediction of P1 in

the last section, nighttime forecasts are higher than the true ozone level at

a number of locations.

Figures 4.16 to 4.19 present forecasts for selected hours as regional ozone

fields visualized through 3-dimensional plots. There are four types of ozone

field: true CMAQ output, true CMAQ output constructed from only the

leading 3 EOFs/PCs, and my predictions using the CII model (the covariates

are variable EOFs and PCs selected via iterative improvement) and the VM

model (covariates are variables’ spatial and temporal means).

There are two sources of prediction (or forecast) error inherent to the

feature-based ozone model: (1) the error from directly predicting ozone

features, and (2) the error from using p = 3, or in general, p � min(t, n)

ozone features to predict a complete space-time ozone field. The second error

source is extensively discussed in Chapter 3. Hence, I believe it is useful

to present the patterns of the true regional ozone reconstructed with only 3

EOFs and PCs. Comparison between forecasted hourly ozone fields (bottom

plots in each set of four plots in Figures 4.16 to 4.19) to the corresponding

“true CMAQ with first 3 EOFs/PCs” (upper right of a set) evaluates the

feature-based ozone model’s capability from the sole perspective of error

source (1) mentioned above.
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Figure 4.14: For hours 0100, 0700 and 1200 of June 26th, 2006 (the predic-
tive set): the scatter plots of predictions from the CII model and the VM
model versus the true CMAQ output. The three lines are y=x, y=2x and
y= 1

2x.
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Figure 4.15: For hours 1400, 1600 and 2000 of June 26th, 2006 (the predic-
tive set): the scatter plots of predictions from the CII model and the VM
model versus the true CMAQ output. The three lines are y=x, y=2x and
y= 1

2x.
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4.7. Forecast of Space-Time Ozone Fields

Figure 4.16: Hour 0100 and 0700 of June 26th, 2006 (the predictive set): 3-D
spatial ozone fields of true CMAQ output (upper-left), true CMAQ output
with only the first 3 EOFs and PCs (upper-right), forecasts using CII model
(lower-left) and VM model (lower-right).

141



4.7. Forecast of Space-Time Ozone Fields

Figure 4.17: Hour 1000 and 1200 of June 26th, 2006 (the predictive set): 3-D
spatial ozone fields of true CMAQ output (upper-left), true CMAQ output
with only the first 3 EOFs and PCs (upper-right), forecasts using CII model
(lower-left) and VM model (lower-right).
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Figure 4.18: Hour 1400 and 1600 of June 26th, 2006 (the predictive set): 3-D
spatial ozone fields of true CMAQ output (upper-left), true CMAQ output
with only the first 3 EOFs and PCs (upper-right), forecasts using CII model
(lower-left) and VM model (lower-right).
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Figure 4.19: Hour 2000 and 2200 of June 26th, 2006 (the predictive set): 3-D
spatial ozone fields of true CMAQ output (upper-left), true CMAQ output
with only the first 3 EOFs and PCs (upper-right), forecasts using CII model
(lower-left) and VM model (lower-right).
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4.7. Forecast of Space-Time Ozone Fields

At 0100PST and 0700PST, the spatial patterns of ozone fields resemble

those of the regional topography: near background ozone level across the

valley, and a high-level ozone plume blanketing the north shore mountains.

During these hours my predictions effectively capture this reality, including

higher-resolution spatial details such as the “peaks-and-troughs” along the

north shore mountains. As one might expect from the forecasts of P1 (pre-

vious section), my CII model over-predicts the southwest LFV ozone fields

during the night-time period of 2000PST-2300PST. This over-prediction can

be seen from Figure 4.19. Although the VM model also over-predicted the

2000PST CMAQ ozone field, its predictive quality improved noticeably in

the following hours, as seen in the prediction for 2200PST (Figure 4.19).

Both statistical models’ over-prediction at 2000PST is also evident from the

scatter plots in Figure 4.15: some of the true CMAQ output are near 0 ppb

while their corresponding predictions are noticeably higher.

However, day-time is the most important period for ozone modelling.

Much ozone research focuses on the mean 8-hour daily maximum: the av-

erage ozone levels during the highest 8-hour window of each day, and gov-

ernment policies and regulations are based on compliance with this statistic

(CCME, 2000; Yarwood et al., 2005; Reuten et al., 2012). My feature-based

ozone models delivered good predictions during the day-time, as evident

from both the 3-D spatial plots (Figures 4.17 and 4.18) and scatter plots

of true CMAQ vs. prediction (hours 1200PST, 1400PST and 1600PST in

Figures 4.14 and 4.15).

Table 4.5 shows for the CII and VM models, the hourly prediction RM-

SEs and MPEs at 3 mid-day hours and the RMSE/MPE summarized over

the 8-hour maximum. The table also shows the hourly LFV standard devi-

ations of the true ozone fields being predicted: these values help to put in

context the scale of the CII/VM model forecasting accuracy. Hourly LFV

standard deviation is also mathematically the same as hourly RMSE of pre-

dictions made by the true ozone mean of that hour (averaged across space).

Using RMSE as the reference, both models displayed similar prediction ac-

curacy during the afternoon ozone peak hours. However, the CII model

gave predictions with noticeably smaller MPE throughout the 8-hour daily
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4.7. Forecast of Space-Time Ozone Fields

maximum as well as the entire 24 forecasting hours (not shown). Further-

more, the hourly LFV standard deviations of the true ozone are more than

double the hourly RMSEs of ozone feature models. The prediction MPE is

near 0% at 1300PST for the CII model, and the MPEs of the VM model are

consistently higher than the CII model in magnitude throughout the diurnal

cycle.

Hour (PST) Hours from
1200 1300 1400 8-hour maximum

RMSE of CII (in ppb) 4.08 4.24 7.19 7.60
RMSE of VM (in ppb) 4.34 5.24 6.88 7.50
Std. deviation of true data 14.78 15.59 16.24 16.84

MPE of CII (in %) -2.08 0.33 1.18 -4.95
MPE of VM (in %) -6.52 -3.09 -1.28 -7.90

Table 4.5: Prediction RMSE and MPE from the two feature-based ozone
models and the standard deviation of the true ozone field. The predic-
tion statistics are presented as hourly value for hours 1200PST, 1300PST,
1400PST and summarized across the hours during the 8-hour ozone maxi-
mum. The forecasting day is June 26th, 2006 and the spatial domain is the
rectangular LFV field (Figure 4.2).

RMSE in ppb MPE in %
day 1 day 2 day 1 day 2

CII model 2.84 2.80 -0.85 -0.63
VM model 3.45 3.47 -0.82 -0.47

Table 4.6: RMSE and MPE of cross-validation predictions made on complete
ozone fields. The statistics are summarized over the 8-hour ozone maximum
of June 24th and 25th, 2006 (day 1 and 2 from training data). The spatial
domain is the rectangular LFV field (Figure 4.2).

Overall, the ozone feature models delivered space-time ozone forecasts

with reasonably low error-statistics, and their predictions manage to cap-

ture the complex spatial structures of LFV’s hourly ozone fields through a

diurnal cycle. One caveat is their over-predictions during night-time hours
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(especially for the CII model). This is the result of over-predicting the tail

of P1, which as discussed in the previous section, is due to extrapolation.

However, this over-prediction is limited to a particular area of LFV (the

southwest) and the hours of 2000PST and 2100PST.

Table 4.6 shows the RMSE and MPE of cross-validation predictions of

complete ozone fields for the two days of training data. This is analogous to

the Table 4.2, where CV-RMSE and CV-MPE of individual ozone feature

models are shown. The RMSEs and MPEs are summarized over the 8-

hour maximum of each day. The cross-validation statistics are described in

Section 4.3, but now applied to reconstructed ozone rather than the features.

As shown, compared to the predictions done for ozone fields outside of the

training data (Table 4.5), both RMSE and MPE are noticeably smaller

for the cross-validation. This is especially true for the percentage of mean

prediction error, where the MPEs are < 1% for cross-validation compared

to −4.96% and −7.90% for ozone forecasting (Table 4.5).

The accuracy of cross-validation RMSE and MPE may be viewed as

a goodness-of-fit statistics for the ozone feature models: CV-RMSE and

CV-MPE show how well a statistical model can emulate the space-time

structure of LFV ozone in the training set. As results from cross-validations

have shown, both types of ozone feature models are capable of modelling a

complex weather and pollution driven regional ozone process.

4.8 Model Fits from other Episodes

Ozone feature models like those developed in this chapter will be applied to

AQM evaluations in Chapters 5 and 6. As I will discuss in Section 5.1, the

evaluations to be presented in this thesis are done for individual episodes.

Hence, the ozone feature models were fitted per-episode in this chapter, and

the 2006 model in particular was analyzed in detail between Sections 4.4

to 4.7. Tables 4.7 and 4.8 show the cross-validation RMSEs of the fitted

models for the other four episodes along with the standard deviations of the

training data. As shown, all fitted models have CVRMSEs that are much

lower than the standard deviations, and these CVRMSEs are comparable
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across episodes between 1985 and 2001.

Episode
1985 1995 1998 2001

E1 0.0008 0.0007 0.001 0.0008
(0.016) (0.011) (0.011) (0.016)

E2 0.0033 0.0026 0.0038 0.0037
(0.065) (0.066) (0.065) (0.065)

E3 0.0071 0.0062 0.0071 0.005
(0.066) (0.066) (0.066) (0.066)

Table 4.7: Cross-validation RMSE of the fitted E1, E2 and E3 models,
whose covariates are selected by iterative improvement. The numbers in
parentheses are standard deviations of the training data. The CVRMSE
and standard deviation are unitless for the Ej ’s.

Episode
1985 1995 1998 2001

P1 (ppb) 17.46 17.29 19.62 15.9
(216.02) (252.87) (335.12) (230.63)

P2 (ppb) 17.91 20.33 10.67 15.86
(159.49) (153.31) (188.21) (138.16)

P3 (ppb) 10.77 15.15 10.37 11.06
(71.31) (75.10) (91.27) (76.51)

Table 4.8: Cross-validation RMSE of the fitted P1, P2 and P3 models,
whose covariates are selected by iterative improvement. The numbers in
parentheses are standard deviations of the training data. The CVRMSE
and standard deviation have units ppb.

An alternative model-fitting procedure is to merge all CMAQ outputs

and fit ozone feature models describing all episodes. This is a reasonable

approach if the objective is to estimate a statistical emulator of CMAQ

process. However, as mentioned the ozone feature models in this chapter

were estimated for per-episode CMAQ evaluations. Therefore, I decided to

not pursue the “merged-data” approach to model estimation.
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4.9 Chapter Conclusion

In this chapter, statistical models of spatial-temporal ozone features are de-

veloped. These ozone feature models displayed notable capability in mod-

elling the non-linear structures of the ozone features.

Individual features are modelled as GPs driven by a set of variables

describing background temperature, wind speed, planetary boundary layer

height, ozone precursor emission rates and ambient concentrations. The

covariates of each feature model are selected through a forward selection

algorithm based on a combination of goodness-of-fit statistics. The models

are then fitted by maximizing the GP profile-likelihood. The fits and pre-

dictive capabilities of individual ozone feature models are evaluated through

diagnostic tests, cross-validation and feature forecasting. Here, the forecasts

are made for the 4th day of the 2006 CMAQ output across a complex spatial

domain including LFV and surrounding mountains.

The ozone feature models proved their capability in forecasting the com-

plex non-linear structures of the spatial ozone features, where both the

regional-scale patterns and localized details of the true features are cap-

tured by model forecasts with good numerical accuracy (Section 4.6). Tem-

poral ozone feature models displayed appropriate goodness-of-fits through

low values of cross-validation RMSE (Section 4.5). With the exception of

the night-time forecast of P1, the temporal ozone feature models satisfacto-

rily forecasted the temporal patterns and values of the true features (Section

4.6).

By combining the predicted ozone features via equation 4.13, forecasts

were also made for the complete space-time ozone field. The feature-based

ozone model is able to forecast the hourly LFV ozone fields at great spatial

resolution: compared to the true ozone fields being forecasted, the statisti-

cal model predictions captured the detailed local ozone variations both in

the lower-valley region and across north shore mountains. The forecasting

accuracy was especially good during the important daily ozone peak hours,

with low RMSEs of about 4 ppb to 7 ppb and near 0 prediction biases.
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Use of ozone feature models in Chapters 5 and 6

Compared to the spatial domain of the ozone field modelled in this chap-

ter, the CMAQ evaluation analyses in the following chapters involve the

modelling of a much smaller LFV sub-domain: area within the boundary

of Metro Vancouver monitoring stations. Hence, the ozone feature models

developed here should be well qualified to model a simpler ozone field, thus

serving their original intended purpose of CMAQ evaluation.

An efficient and capable model of space-time ozone process

The analyses in this chapter showed that a complex space-time ozone can be

modelled through a few ozone features, i.e., data components with simpler

structures. This feature-based ozone model combines the methods of PCA

and GP, and it is a novel approach for modelling a space-time air pollu-

tion process. Furthermore, several variables are identified to be useful for

modelling ozone features, and data on wind direction can be used to create

an useful new variable representing the space-time field of antecedent ozone

precursor concentrations.

In addition to the already established modelling capability, the feature-

based ozone model is also a computationally efficient means of modelling a

large air quality dataset. Let N be the size of the data used in modelling;

the ozone feature models has N = n or N = t, while the direct modelling of

“raw” data has N = n ∗ t. The GP modelling is a O(N3) function (Sacks

et al., 1989), which means that the rate of increase in the computational

load is defined by the cube of N . Hence, the computational efficiency of the

statistical models is sensitive to data size. In this case, we are comparing the

computation loads involving N = 229 or N = 48 with N = 229∗48 = 10992.

This notable computational efficiency will prove useful when emulating an

AQM process, which typically generates large datasets.

Lastly, statistical theory suggests that feature-based predictions of ozone

via reconstruction may be biased. As discussed, the predictions of individual

ozone features are unbiased in the sense that they are based on BLUPs.

However, the equation (4.13) for the ozone field is not a BLUP. This topic
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is also explored in my research and I found that the problem of prediction

bias is not an overriding concern here. Appendix C.2 presents statistical

analysis of prediction bias.
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Chapter 5

AQM Evaluation I:

Comparison of Ozone

Features and Modelling of

Feature Differences

The conventional way of evaluating air quality models is to compare model

outputs and observations at a point location and time (Dennis et al., 2010).

The output-observation differences are then summarized by statistics such

as RMSE and MPE (mean percentage error). Preisendorfer and Barnett

(1983) and Willmot et al. (1985) further used sampling methods to esti-

mate the statistical confidence and significance of error statistics. How-

ever, while point-based comparison can be useful “up to a point”, without

a process-level understandings of the compared air pollution fields at hand,

any observation-model agreement (or disagreement) should be deemed “for-

tuitous” (Dennis et al., 2010). The reasoning behind this assertion is dis-

cussed extensively in the introduction Section 1.2.

As mentioned in the introduction, this research is motivated by the need

for a more informative means of air quality model evaluation (Galmarini and

Steyn, 2010). This thesis proposes two general AQM evaluation approaches,

both based on ozone features. These methods are then implemented to

evaluate CMAQ outputs for LFV ozone episodes. Both methods apply the

statistical tools formulated in Chapters 3 and 4: methods for analyzing and

modelling ozone features.
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Evaluation I: Ozone Feature Comparison and Feature

Difference Model

First, I propose to compare individual spatial and temporal ozone features

between AQM output and observations. In Chapter 3, I interpreted the

types of spatial-temporal ozone features that define an LFV ozone process.

In addition to capturing the structure of space-time ozone mean relation-

ships, I also identified the most dominant pattern(s) of ozone advection

(movement of the ozone plume) across the LFV.

The comparison of features between AQM and observations is a means

of evaluation that addresses the need for a more insightful model evaluation.

Feature based observation-AQM comparison allows for evaluations of under-

lying space-time structures and dynamic processes, e.g., evaluate whether

AQM can capture observed patterns of ozone advection, or model the east-

west variation of ozone means caused by westerly wind regime (typical of

an ozone episode in LFV).

Secondly, I propose to statistically model the ozone feature differences

using the GP model and covariates determined in Chapter 4. Feature differ-

ence between AQM and observation can be summarized into error statistics

such as RMSE and other tests for significance. However, such analysis only

provides one summarized value of observation-AQM distance without pro-

viding insight into the pattern and behaviour of observation-AQM difference.

By analyzing the statistical association between observation-AQM fea-

ture difference and various conditions of an AQM run, one may (1) identify

the specific AQM input(s) most responsible for its modelling deficiencies,

and (2) associate the observation-AQM difference with the spatial or tem-

poral variations of said model input(s). This is another means of informative

evaluation of AQM.

AQMs such as CMAQ model the grid-cell ozone average calculated from

a set of initial and boundary conditions, whereas the observations are record-

ings of air pollution levels at points in space and time (Section 1.2). In other

words, AQM outputs and physical observation are defined by discrepant

spatial scales and processes (Dennis et al., 2010), which can make direct
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observation-model comparisons questionable.

The spatial discrepancy between computer models and observations is

not an obvious problem when comparing spatial ozone features Ej . This is

because the values in an Ej are no longer indexed by either grid-cell average

or point location, the Ej are spatial weights that describe specific patterns of

ozone variation in space. We are comparing data structures or “summaries”

rather than data values, thereby avoiding the problems stemming from direct

data comparison. This is an important point that I have not seen raised by

existing literature in PCA-based AQM evaluation (those reviewed in Section

1.4).

In this chapter, the proposed “AQM Evaluation I” will be described in

detail and implemented to evaluate the CMAQ performance against phys-

ical observations for 5 ozone episodes in 1985, 1995, 1998, 2001 and 2006.

Although the chapter focuses on the first method, the second method is also

outlined here to give an overview.

Evaluation II: Comparison of AQM and Observation as

Stochastic Ozone Processes

Another proposed AQM evaluation approach aims to answer the question:

given the same basic conditions in background weather and precursor pol-

lution, will AQM and the physical process produce similar ozone features?

This evaluation is implemented by first building GP-based ozone fea-

ture models for both AQM ozone and physical observation. Comparisons

are then made between the ozone features produced by the two processes

(model predictions) under the same covariate settings that represent various

background conditions.

At a covariate setting, GP model can produce the estimated process

mean and standard deviation at this particular condition. By comparing

the outputs of two GP models under the same setting, one compares the

statistical properties of two ozone processes that generated AQM outputs

and observation data. This point will be discussed more extensively in

Chapter 6.
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Figure 5.1 shows in diagrammatic form the central idea behind the pro-

posed AQM evaluation (in the context of CMAQ) and its departure from the

conventional point-to-point AQM evaluation. As I discussed in Section 1.2,

AQM output and observation data are generated by different air pollution

processes, and direct data comparison only serves to inform the deviation in

their values, not the difference in their behaviour as air pollution processes.

Figure 5.1: Schematics of the idea behind the “AQM/CMAQ Evaluation II”
and the “traditional” point-to-point approach.

My second proposed evaluation method provides the type of insights

not obtainable from either point-to-point evaluations or mere comparison of

air pollution features. The advantage of such analysis is that it evaluates

AQM simulated ozone field against observations as comparable stochastic

processes: both are described by GPs that are governed by the same sets of

background conditions.
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Feature Correspondence during AQM Evaluation

To successfully implement my proposed AQM evaluation, it is crucial to

ensure feature correspondence: the evaluated AQM and observed ozone fea-

tures are indeed comparable. This point was discussed in Chapter 3, and

the analyses in that chapter formulated a set of PCA procedure and inter-

pretations of ozone features that address the topic of feature comparability.

These analyses are means of addressing the complications from EOF/PC

sampling uncertainty. The following is a recap.

First, I found that PCA of original uncentered Ot×n will extract the

spatial and temporal means as the first feature. Specifically, E1 will capture

the structure of the mean field (temporal means) and P1 represents the time-

series of hourly spatial ozone means. Later analyses will also show that the

observed E1 and P1 also capture the mean structures of observation data.

Therefore, the PCA of uncentered Ot×n ensures that the first and the most

important ozone features are indeed comparable, and that they are well-

estimated.

Secondly, I interpreted the other leading features as dynamic data modes

that capture the space-time patterns of diurnal ozone advection, as well as

the area and magnitude of ozone plume formation. These dynamic struc-

tures are interactions between spatial and temporal ozone contrasts (Ej

and Pj). I also found that certain leading features capture more localized

ozone variations during the less important nocturnal hours. Moreover, PCA

sampling stability analysis indicated that the aforementioned LFV feature

interpretations are applicable to smaller sub-domains. Detailed understand-

ing of ozone features allows for an informative and defensible evaluation of

AQM features: the evaluated features are comparable because we already

understood what they are.

Lastly, the test of ozone feature degeneracy can inform on which features

can be analyzed individually or jointly. The analysis of feature degeneracy

is a means of measuring the extent of EOF estimation error during AQM

evaluation.
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The Purpose of the Proposed Evaluation Methods

In summary, my proposed AQM evaluation approaches are designed to

address the shortcomings of conventional methods: lack of of informative

comparison due to observation-AQM discrepancies in physical scale, ozone-

producing conditions and the underlying stochastic process. The proposed

methods in this thesis also aim to add to the existing “statistical toolset” for

PCA-based AQM evaluations, via rigorous statistical analysis and modelling

of air pollution features.

Usually, simulation or sampling-based approaches are used to assess the

usefulness of a statistical model evaluation method. However, such an exer-

cise is mainly beneficial when developing a statistical measure that summa-

rizes point-to-point differences between two dataset.

The proposed CMAQ evaluation involves the modelling of CMAQ and

observation ozone features, as well as the feature differences as processes

driven by background meteorology and atmospheric pollution. Although

there are ways of simulating LFV ozone fields driven by temperature and

wind (Appendix A.1), it is difficult to build an ozone simulation that accu-

rately describes the complex interactions between LFV emission, meteorol-

ogy and surrounding topography. In fact, the best ozone simulation is from

CMAQ itself.

Therefore in this study, the means of assessing the usefulness of an eval-

uation method will be based on whether this method can provide results

and insights into observation-CMAQ differences that are sensible and ex-

plainable by existing knowledge of the LFV pollution process.

5.1 Evaluation Methods and Strategy

I denote the CMAQ ozone output as Oc
t×n and observed ozone data as

Oo
t×n. Suppose either dataset is decomposed into En×n and Pt×n, Ej and

Pj then represent spatial and temporal features. Let Ec
j and Pc

j denote

the features of CMAQ, and Eo
j and Po

j the features of observations. Ozone

feature differences will be denoted by Ed
j = Eo

j − Ec
j and Pd

j = Po
j −Pc

j for
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any j. Furthermore, PCA will be implemented on the original data without

column-centering, and rotation of Ej is not applied (Section 3.2).

In the previous 2 chapters, Ej is analyzed and modelled as unitless (nor-

malized) eigenvectors of OT O. In the context of CMAQ evaluation, the

comparison of Ec
1 and Eo

1 is the unitless comparison of spatial variations of

temporal ozone means. That is, the spatial weights in E1’s are compared

without considering the magnitude of ozone values from both data.

In order to evaluate CMAQ’s capability in capturing both the spatial

patterns and the numerical values of the observed mean fields, one may

multiply Ec
1 and Eo

1 by their respective PCA eigenvalues
√
λc1 and

√
λo1.

This way, the magnitudes of data values are incorporated into the spatial

ozone features. I denote this scaled E1 as Ẽ1 = E1

√
λ1, and this can be

done for all j ≥ 2 ozone features under evaluation. The observation-CMAQ

difference of scaled-EOF is denoted as

Ẽd
j = Eo

j

√
λoj −Ec

j

√
λcj , j = 1, . . . , p.

It is worth noting that
√
λ1-scaling is done for the purpose of this AQM

evaluation. The eigenvalues are always incorporated into Pj for my specific

data decomposition (Section 3.2), so the reconstruction of Ot×n still requires

the use of E1.

5.1.1 Model of Feature Differences Ẽd
j and Pd

j

Kennedy and O’Hagan (2001) formulated an often used mathematical re-

lationship between computer model outputs and their associated physical

data. Using the ozone feature notation of this thesis, for scaled-EOF and

PC the formulas are:

Ẽo
j = Ẽc

j |XẼc j + Ẽd
j |XẼd j + εE j , and (5.1)

Po
j = Pc

j |XP c j + Pd
j |XP d j + εP j . (5.2)

Here, Ẽd
j and Pd

j are the spatial and temporal ozone feature difference: they

are multivariate random processes representing the modelling deficiencies of
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CMAQ. Equation 5.1 is also applicable to Ej , the following CMAQ evalua-

tion will be focused on Ẽ due to its easier interpretability.

A few more comments regarding the observation-CMAQ relationship

formulated by equations (5.1) and (5.2):

• XẼc j and XP c j are the covariates representing CMAQ ozone features.

• XẼd j and XP d j are covariates of the random processes represent-

ing CMAQ modelling deficiency; they are either equal to XẼc j and

XP c j or are subsets of them. The latter case indicates that CMAQ

inadequacies are influenced by a few particular CMAQ inputs.

• εE j and εP j are random observation errors are assumed to be i.i.d

N(0, σEj) and N(0, σPj).

• The above formulation implies that Ẽc
j + Ẽd

j and P̃c
j + P̃d

j are the

true underlying mean processes representing the j-th ozone feature.

Physical observation is the sum of true ozone feature and random

error.

• The Ẽd
j (similarly for Pd

j and Ed
j ) is defined as Ẽo

j − Ẽc
j : a negative

difference is interpreted as CMAQ over-estimate of observed feature

and vice versa.

The model diagnostic and goodness-of-fit assessments in Sections 4.5 and

4.6 supported the GP assumption for individual ozone features of orders

j = 1, 2, 3. If one regards Ej and Pj as Gaussian Processes, then it is

reasonable to model Ẽd
j ’s and Pd

j ’s as GPs.

For temporal computer models, Guttorp and Walden (1987) further pro-

posed that the model deficiency be represented by two terms: one for inad-

equacy in describing the physical system, one for not tracking the extreme

observations due to model outputs being temporal averages. The second

source of model deficiency should not be a concern here: the CMAQ runs

are specifically used to simulate an extreme event (ozone episode), and the

outputs are generated on a high-resolution spatial grid during the same time
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period as the physical process. Hence, a single term AQM deficiency process

(Ẽd
j or Pd

j ) is sufficient for my evaluation.

By analyzing the importance of each covariate in XẼd j and XP d j for

the processes Ẽd
j and Pd

j , one may formulate insights into the underlying

association between the magnitude of ozone feature difference and specific

covariate/input of AQM modelling run. It provides the CMAQ modeller

with a statistical reference for calibrating and interpreting CMAQ outputs.

With feature differences Ẽd
j and Pd

j modelled as Gaussian Processes,

their covariates XẼd j and XP d j are selected through the iterative improve-

ment algorithm proposed in Chapter 4. This algorithm adds one-by-one,

the model covariates (from a candidate set of covariates) into a GP model

until no more statistically significant covariates are left. In addition to find-

ing the most parsimonious form of model formulation, this model selection

method is also designed to rank the model covariates in terms of their statis-

tical importance in modelling a GP. It has shown proficiency in finding the

appropriate forms of GP models for ozone EOFs and PCs (Sections 4.5 to

4.7). In this AQM evaluation, candidate covariate sets for XẼd j and XP d j

are respectively, the temporal and spatial means of CMAQ model variables:

NOx and VOC emission rates and antecedent concentrations, temperature,

wind speed and planetary boundary layer height.

This iterative improvement procedure can also be viewed as significance

tests of the statistical associations between individual AQM model inputs

and feature differences.

5.1.2 PCA of CMAQ Outputs and Observation Data

The PCA is implemented individually for CMAQ output and observation

data, then Ej and Pj of the same order between CMAQ and observations are

compared. Here, CMAQ-WRF-SMOKE outputs for the 5 episodes (Table

2.1) are interpolated onto n = nobs locations, where nobs is the number of

LFV observation locations available for a given year. The interpolation is

done for both the ozone data and model variable data: temperature, wind

speed, boundary layer height, NOx and VOC emission rates and ambient
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concentration. This way, the original computer model outputs will be placed

on a comparable space and time domain as the physical observation. Readers

may refer back to Section 2.2 for the way data are processed for evaluation

use. Furthermore, for both CMAQ and observation of all episodes, I used

the data from the middle 3 full days (complete diurnal cycles) of the episode.

When I use the term “episode mean”, I am referring to the ozone averaged

over this 3 day period.

Table 5.1 shows the portion of data variation explained by the first 8

ozone features of Oc
t×n and Oo

t×n. As the table shows, the underlying mean

structure (E1) dominates the data variation, and the amount of variation

explained by features of j ≥ 2 orders decrease rapidly to ≈ 0 from j = 5

onward. CMAQ and observed features of the same order explain similar

proportions of their data variations.

The order j of Ej and Pj

Episode 1 2 3 4 5 . . . 8

1985 CMAQ 0.94 0.03 0.02 0.01 0.00 . . . < 0.00
1985 Obs. 0.94 0.02 0.01 0.01 0.00 . . . < 0.00

1995 CMAQ 0.94 0.03 0.02 0.01 0.00 . . . < 0.00
1995 Obs. 0.94 0.02 0.01 0.01 0.00 . . . < 0.00

1998 CMAQ 0.94 0.03 0.02 0.01 0.00 . . . < 0.00
1998 Obs. 0.95 0.02 0.01 0.01 0.00 . . . < 0.00

2001 CMAQ 0.93 0.03 0.01 0.01 0.00 . . . < 0.00
2001 Obs. 0.94 0.02 0.01 0.01 0.01 . . . < 0.00

2006 CMAQ 0.96 0.02 0.01 0.01 0.00 . . . < 0.00
2006 Obs. 0.93 0.02 0.01 0.01 0.01 . . . < 0.00

Table 5.1: Proportion of data variation explained by ozone features of orders
j = 1, 2, 3, 4, 5, . . . , 8.

Table 5.2 shows the RMSEs from data reconstruction
∑p

j=1 PjE
T
j for

increasing value of p. These results show from a prediction perspective the

amount of data variation that can be recovered by successive ozone features.

Here, the improvement in RMSE gradually decreases between p = 2 to p = 4,

and from p = 4 onward the improvement in RMSE becomes ≤ 1 ppb for

both CMAQ outputs and observations of all episodes. At p = 1 and p = 2,
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the RMSE of observation is smaller than CMAQ for 3 out of 5 episodes.

However, starting from p = 4, the reconstruction RMSEs of CMAQ become

smaller than the RMSEs of observation for all episodes except for 1995.

The number p used for data reconstruction
Episode 1 2 3 4 5 . . . 8

1985 CMAQ 8.62 6.07 4.13 2.76 2.01 . . . 0.60
1985 Obs. 9.84 7.73 6.02 4.94 4.12 . . . 2.10

1995 CMAQ 8.88 6.62 4.56 3.73 3.14 . . . 1.53
1995 Obs. 5.34 4.21 3.39 3.01 2.61 . . . 1.77

1998 CMAQ 10.14 7.71 5.51 3.79 3.14 . . . 1.87
1998 Obs. 7.55 5.98 4.86 4.19 3.68 . . . 2.54

2001 CMAQ 9.42 6.59 5.10 3.92 3.29 . . . 1.95
2001 Obs. 7.53 6.41 5.45 4.78 4.21 . . . 2.91

2006 CMAQ 6.59 4.70 3.77 2.92 1.95 . . . 1.16
2006 Obs. 7.01 5.87 4.89 4.09 3.49 . . . 2.27

Table 5.2: Data reconstruction RMSE at p = 1, 2, 3, 4, 5, . . . , 8. The units
are ppb.

As discussed in Chapter 3, each Ej has an associated eigenvalue λj . If

λj is not statistically significantly different from λj+1 or even high-ordered

eigenvalues, then Ej forms a degeneracy set with higher-order EOF(s). The

consequence is that these “degenerate EOFs” may suffer mixing of data

feature/patterns, making them difficult to analyze (North et al., 1982; Mon-

ahan et al., 2009) and the order of these EOFs may also be arbitrary (Cohn

and Dennis, 1994; Hannachi et al., 2007).

This question of “ozone feature separability” is important for feature-

based CMAQ evaluation. Suppose Ec
2 from CMAQ is clearly distinguishable

from the rest, but the observed Eo
2 and Eo

3 form a degeneracy set, then it

is not clear whether Ec
2 should be compared to Eo

2 or Eo
3. This matter is

made worse by the orthogonality constraint of EOFs, because any mismatch

between Ec
j and Eo

j may be carried-over onto higher-order features.

The eigenspectrum (North et al., 1982) is often used to assess the level of

EOF degeneracy of a given dataset. The idea and methodology of eigenspec-

trum are discussed in Section 3.2 and implemented in Section 3.3 to assess
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the orders of feature degeneracy of LFV ozone. For CMAQ evaluation, I

also produced eigenspectra for the n = nobs interpolated CMAQ output and

observed ozone data. The results are summarized in Table 5.3. As shown,

ozone feature separability can be categorized into two groups: one that de-

fines the 1985, 1995 and 1998 episodes, one that defines the 2001 and 2006

episodes.

Episode (wind regime) Orders of ozone feature separability

All episodes E1 is separable from higher-order features.

1985 (I-IV-IV) For both CMAQ and observations: features of
orders j = 2, 3 form a couplet, and the feature of
order j = 4 is separable from the rest.

1995 (III-III-III) The same as 1985.
1998 (II-III-II) The same as 1985.

2001 (II-II-II) j = 3, 4 features form a couplet for CMAQ,
feature inseparability starts at j = 2
for observations.

2006 (I-I-III) The same as 2001.

Table 5.3: The types of ozone features separability of both CMAQ and
observations of all episodes, the parentheses shows the wind regime type(s)
of each episode. The conclusions are drawn based on eigenspectra obtained
from the PCA of individual episodes.

5.1.3 Evaluation Strategy

It was concluded in Section 3.3 that ozone features of order j ≤ 4 should be

the focus of analysis. In Chapter 4, I further built ozone feature models for

Ej and Pj of orders j = 1, 2, 3. There, the j = 4 feature is not modelled due

to degeneracy with j > 4 features. The modelling and forecasting exercises

in Sections 4.6 and 4.7 showed that by modelling only the first 3 spatial and

temporal ozone features, one can closely model a complex space-time ozone

process.

Considering the aforementioned results, the CMAQ evaluation will be fo-

cused on Ej and Pj at j = 1, 2, 3. Based on Table 5.3, the proposed feature-

to-feature evaluation between CMAQ and observation is implemented in the
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following individual analyses:

• Both original and
√
λ1-scaled E1 are compared directly between CMAQ

and observations for all episodes. The 1st-order spatial ozone feature

difference Ed
1 = Ec

1 −Eo
1 and Ẽd

1 = Ec
1

√
λc1 −Eo

1

√
λo1 will be modelled

as Gaussian Processes driven by CMAQ input conditions.

• The same evaluation will be done for 1st-order temporal feature P1.

• For 1985, 1995 and 1998 episodes, the 2nd and 3rd-order features

will be compared jointly. The methods in Krzanowski (1979) and

Cohn and Dennis (1994) will be used to calculate the “joint distance

measures” between CMAQ modelled and observed features. I will also

compare the joint spatial-temporal features P2E
T
2 +P3E

T
3 to examine

any difference in their ozone advection patterns and other underlying

dynamic processes.

• For the two most recent episodes during 2001 and 2006, I will refrain

from feature-to-feature comparison at orders j ≥ 2.

5.1.4 Discussion of Evaluation Methods

The combined results in this section have revealed that regional ozone field

of LFV is simple enough to be dominated by one leading ozone feature, and

have shown high levels of ozone feature inseparability that makes higher-

order feature-based CMAQ evaluation difficult. However, this should not

detract from the main purpose of this chapter as well as Chapter 6, which

is the development of AQM evaluation methods. Furthermore, if an ozone

process is simple enough to be dominated by one leading feature, then one

may say that the CMAQ evaluation based on this feature alone is a near

complete evaluation of CMAQ.

In the following sections, ozone feature comparison statistics will be

shown for all episodes. A more detailed ozone feature comparison and mod-

elling of feature differences will be focused on either 1995 or 2001: one

episode from each type of feature degeneracy shown in Table 5.3.
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The CMAQ evaluations in Chapters 5 and 6 are done individually for

each episode, an alternative is to use combined CMAQ outputs and obser-

vations from all available episodes. Due to the highly consistent nature of

LFV’s dominant features (Section 3.4), per-episode analysis still allows for

a systematic evaluation of CMAQ features against the observed features.

Per-episode evaluation further has the potential to uncover episode specific

deficiencies in the CMAQ system: each CMAQ run is done under episode

specific atmospheric conditions, emission levels and spatial patterns (Steyn

et al., 2013).

5.2 Comparison of the Mean Fields, Ẽ1 and E1

Figures 5.2 and 5.3 show the the spatial plots of temporal ozone means

(the mean fields) from CMAQ output and observation data. The spatially

continuous plots are created by applying a cubic-spline smoothing that in-

terpolates the irregular spatial data into a smooth spatial field within the

longitude-latitude bound of the nobs locations. The between-episode differ-

ence in spatial domain is due to the different locations of available observa-

tions. The colour scale is set to be the same for each episode, because the

focus of comparison here is between CMAQ output and observations from

the same episode, not across episodes. As Figures 5.2 and 5.3 shown, with

the exception of 1985, the episode means (ozone averaged across time) of

CMAQ are near uniformly higher than observed throughout LFV.

5.2.1 General Features of Ẽd
1 and Ed

1

Figure 5.4 compares Ec
1 and Eo

1 for the 2001 episode, where the bottom plot

shows the spatial feature difference Ed
1 = Eo

1−Ec
1. Figure 5.5 shows Ed

1 from

the other 4 episodes. As shown for all episodes, the observed E1 varies over a

wider range of values than the CMAQ feature: higher maximum in the east

and lower minimum in the west. However, both features exhibited similar

patterns of east-west variation. These results imply that CMAQ modelling

is able to capture similar spatial variation of ozone means as the physical
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Figure 5.2: Spatial plots of temporal ozone means (the mean fields) of
CMAQ outputs and observation data of the 1985, 1995 and 1998 episodes.
For the same episode, the colour scale is the same in order to aid comparison.
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Figure 5.3: Spatial plots of temporal ozone means (the mean fields) of
CMAQ outputs and observation data of the 2001 and 2006 episodes. For
the same episode, the colour scale is the same in order to aid comparison.

observation. However, compared to CMAQ modelled ozone, the observed

ozone process is governed by a more pronounced space-time variation: Eo
1

has a larger range and variance than Ec
1.

The scaled-EOF Ẽ = E1

√
λ1 captures the spatial variation of the mean

field while taking the magnitude of Ot×n into account. Figure 5.6 compares

Ẽc
1 and Ẽo

1 from 2001, and Figure 5.7 shows the Ẽd
1 of all other episodes. As

shown, the comparison of Ẽ1 is analogous to the comparison of mean fields

calculated from the data (Figures 5.2 and 5.3). Hence, the comparison

between Ẽc
1 and Ẽo

1 is a means to evaluate CMAQ’s capability in capturing

not only the spatial variations of temporal ozone means in LFV, but also

their magnitudes. This is a spatial ozone feature evaluation using data

information summarized across hours of the episode.

Figures 5.6 and 5.7 show that the Ẽd
1 values are all negative for the 1995,

1998 and 2001 episodes, nearly all-negative on 2006, and mostly positive for

1985. Hence, when evaluated against observations, CMAQ almost system-

atically over-estimated the temporal ozone means throughout the triangular

LFV region. In other words, the mean fields produced by CMAQ modelling
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Figure 5.4: For the 2001 episode: plots of Ec
1 (top), Eo

1 (middle) and Ed
1

(bottom).
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Figure 5.5: Plots of Ed
1 of from the 1985, 1995, 1998 and 2006 episodes.

tend to have uniformly higher values. Moreover, the magnitude of CMAQ

over-estimate is more pronounced in the west around the city of Vancouver

and its suburbs than the eastern LFV.

Table 5.4 shows the angles between Ẽc
1 and Ẽo

1 for all 5 episodes. The

angle between two Ej vectors is a distance measure between the CMAQ

modelled feature and the corresponding observed feature. Cohn and Dennis

(1994) used vector angle to quantify the closeness between the EOFs of acid

deposition model outputs and observations. The authors regarded angles

≤ 15◦ as reasonably low, which indicates good observation-model agree-

ment. The values in table 5.4 show that the E1 angles are 8 − 11◦ for all

episodes. Hence, despite just discussed CMAQ over-estimates, there is con-

sistent close correspondence between the Ẽ1’s (the mean fields) of CMAQ

and observations.

Episode
1985 1995 1998 2001 2006

Angle between Ẽ1’s: 10.73◦ 10.21◦ 9.01◦ 7.98◦ 10.29◦

Table 5.4: Angles between Ẽc
1 and Ẽo

1.

In summary, the CMAQ tends to over-estimate the observed episode
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Figure 5.6: For the 2001 episode: plots of Ẽc
1 (top), Ẽo

1 (middle) and Ẽd
1

(bottom).
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Figure 5.7: Plots of Ẽd
1 of from the 1985, 1995, 1998 and 2006 episodes.

means across LFV, and this difference is captured by Ẽ1 for each episode. In

addition, Ẽ1 has well defined spatial structures that are consistent between

most of the episodes evaluated.

5.2.2 Covariate Selection for Ẽd
1: the Difference in the

Mean Fields

A follow-up to the preceding ozone feature comparison is to analyze the

background factors that influence the feature differences between CMAQ

modelled ozone and physical observation. These “background factors” are

the model covariates of Ẽd
1 selected from a set of candidate model covari-

ates using iterative improvement algorithm (Section 5.1). The covariate

set XE j = (longitude, latitude) is used to start the algorithm. Given the

random observation error in (5.1), the optimization of GP functions will ex-

plicitly include a nugget term that captures the stochastic variation at fixed

point location or time.

Table 5.5 shows the selected model covariates in addition to longitude

and latitude. The results reveal that for 1985, 2001 and 2006 CMAQ mod-

elling runs, the 1st-order observation-CMAQ feature difference is influenced

solely by the mean VOC emission rates of the episodes, i.e., the spatial fields
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of VOC emission rates averaged across time. The 1995 and 1998 feature dif-

ferences are statistically associated with either the episode mean of NOx

emission or antecedent NOx concentrations.

Episode year
1985 1995 1998 2001 2006

XẼd 1 VOC NOx-lag NOx VOC VOC

Table 5.5: Result of covariate selection for Ẽd
1. The listed covariates are those

in addition to longitude and latitude. The notation “-lag” represent the
atmospheric (antecedent/lagged) concentration of the precursor (notation
defined in Section 4.5.)

These model selection results indicate that the deviations in Ẽ1, or the

mean fields, are heavily influenced by the spatial distributions of mean pre-

cursor emission rates or antecedent concentration. On the other hand, no

meteorological variable was determined to be statistically significant through

iterative likelihood testing.

SMOKE/CMAQ modelling deficiencies associated with emission inputs

and chemical reaction modelling is identified by my proposed method of

CMAQ evaluation for all episodes. As mentioned in Chapter 2, Steyn et al.

(2011) and Steyn et al. (2013) described the efforts that went into producing

the CMAQ-WRF-SMOKE data used in this thesis. The papers outlined the

methods of estimating the space-time distributions of NOx and VOC emis-

sion across LFV, especially the way of estimating the year-specific spatial

shift in emission sources. The task of estimating localized emission patterns

is a difficult one, this is noticed from the descriptions in aforementioned

papers as well as the the complexities of SMOKE operations in general

(overview in Section 1.1). Moreover, detailed space-time emission is unob-

servable (unlike the weather), thus CMAQ users are unable to tune SMOKE

outputs against observations.

In addition to CMAQ input uncertainties, there are further uncertainties

when modelling the atmospheric chemical precursor concentrations. Uncer-

tainties in the chemical model within CMAQ come from the fact that one
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is typically unable to know and model every chemical reaction occurring.

Rather, reactions involving one molecule serve as a proxy model for reac-

tions of similar molecules (Finlayson-Pitts and Pitts Jr, 1999), thus mod-

elling deficiencies unavoidably follow.

5.2.3 Detailed Analyses of Ẽd
1 vs. VOC Emission for the

2001 Episode

In this section, I will evaluate the 2001 ozone episode by analyzing the sen-

sitivity of Ẽd
1 to the spatial variation of episode-mean VOC emission rate.

This analysis will show over the course of an episode, how the mean VOC

emission influences the difference between the mean fields of CMAQ and

observations. The 2001 data are used to demonstrate that, by modelling Ẽd
1

one can extract insightful information regarding CMAQ’s modelling defi-

ciency. Similar analysis can be done on any other ozone features from other

episodes.

An estimated sensitivity or univariate effect plot of Ẽd
1 against VOC

emission rate is produced using the method described in Schonlau and Welch

(2006). I first fitted the GP model of Ẽd
1 using CMAQ-SMOKE outputs of

2001, where the covariates are longitude, latitude and the temporal mean

VOC emission rates. I then produced Ẽd
1 outputs at a range of VOC emission

rates while integrating out the two location variables from the GP model.

Thus, the univariate effect of mean VOC emission on Ẽd
1 can be analyzed.

Figure 5.8 shows the estimated univariate effect of Ẽd
1 = Ẽo− Ẽc against

a range of mean VOC emission rate. The dots are Ẽd
1 outputs over VOC

emission rates of 0.2− 1.9 moles·sec−1. The dashed-lines are the 95% confi-

dence interval calculated using the analytical expression derived in Schonlau

and Welch (2006). The training data (2001 SMOKE output) have temporal

mean VOC emission varying between 0.5 − 1.0 moles·sec−1 and one data

point at 1.8 moles·sec−1. This distribution of values partially explains the

large standard error (wide confidence interval) associated with Ẽd
1 outputs

between 1.3− 1.8 moles·sec−1.

The confidence interval indicates the statistical significance of mean fea-
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ture difference at each VOC emission rate. Given a VOC emission rate, if

the confidence interval for the univariate effect on Ẽd
1 contains 0, then we fail

to reject at significance level of 5% the hypothesis that the mean feature dif-

ference is 0. In other words, if the confidence interval is above or below the

line Ẽd
1 = 0 at a given VOC emission, then we conclude that the estimated

univariate effect of VOC emission on Ẽd
1 is statistically significant.

We see from the sensitivity plot that:

• There is a negative trough at VOC = 0.82 moles·sec−1, i.e., CMAQ

over-estimate of temporal ozone mean in space. The confidence in-

terval is below 0, indicating the statistical significance of this ozone

feature difference.

• There is a positive peak at VOC = 1.18 moles·sec−1. However, this

peak value is predicted by the Ẽd
1 model with lower confidence interval

at near 0. Thus, the statistical significance of ozone feature difference

maybe in question. As mentioned, a positive Ẽd
1 indicates a CMAQ

under-estimate of observed feature.

Figure 5.8: Sensitivity or univariate effect plot of Ẽd
1 against episode mean

VOC emission rate. The blue dotted line is the estimate of Ẽd
1 averaged

over locations for VOC emission rates of 0.2− 1.9 moles·sec−1, and the red
triangle lines are point-wise 95% confidence intervals. The GP model of Ẽd

1

is fitted using 2001 CMAQ-SMOKE data.
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Figure 5.9 shows the spatial field of mean VOC emission (averaged across

time) from the 2001 episode, where the dataset is SMOKE output. In the

same figure, the map of the LFV observation network from 2001 is also

provided. Table 5.6 shows the station name associated with each location

number in the network map. From Figure 5.8, the largest feature difference

occurs for VOC ≈ {0.7, 1.2} moles·sec−1. These two values can be identified

to define three areas of LFV: (1) the area north of Abbotsford and west of

Chilliwack has temporal (or episode) mean VOC emission at ≈ 0.7 to 0.8

moles·sec−1, (2) the suburbs of eastern Metro Vancouver (Burnaby, etc,)

have temporal mean VOC emission at ≈ 0.8 moles·sec−1, and (3) the small

area surrounding Vancouver’s city core has temporal mean VOC emission

at ≈ 1.2 moles·sec−1.

Number Longitude Latitude Name

1 -123.16 49.26 Kitsilano
2 -123.15 49.19 YVR
3 -123.12 49.28 Robson square
4 -123.11 49.14 Richmond south
5 -123.08 49.32 Mahon park
6 -123.02 49.30 North Vancouver
7 -122.99 49.22 Burnaby south
8 -122.97 49.28 Kenshington park
9 -122.90 49.16 North Delta
10 -122.85 49.28 Rocky Point Park
11 -122.79 49.29 Coquitlam
12 -122.71 49.25 Pitt Meadows
13 -122.69 49.13 Surrey east
14 -122.58 49.22 Maple Ridge
15 -122.57 49.10 Langley central
16 -122.31 49.04 Central Abbotsford
17 -121.94 49.16 Chilliwack

Table 5.6: Station names and coordinates of numbers 1 to 17 in Figure 5.9:
the map of the 2001 LFV monitoring network.

A high observation-CMAQ feature difference is mostly associated with

VOC emissions at the aforementioned three areas of LFV. Two areas of
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Figure 5.9: For the 2001 episode: the spatial plot of episode mean VOC
emission rate within the LFV region defined by nobs = 17 monitoring sites
(top), and the map of the LFV monitoring network (bottom). The station
names and coordinates associated with the numbers 1 to 17 are in Table 5.6.
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5.2. Comparison of the Mean Fields, Ẽ1 and E1

interest, the suburbs of Metro Vancouver and locations around Vancouver’s

city core, are also areas where daily ozone plume forms (Section 3.1). Hence,

evidence suggests that the CMAQ over-estimation of the observed ozone

field is attributable to the production of a higher-than-observed initial ozone

plume by CMAQ.

Furthermore, Steyn et al. (2011) and Steyn et al. (2013) mentioned that

the city of Vancouver is a “VOC sensitive” region: NOx is the dominating

ozone precursor and its concentration is near saturation, hence any variation

in VOC causes a noticeable change in O3 concentrations. On the other hand,

the eastern LFV (Abbotsford and Chilliwack) are “NOx sensitive” area, i.e.,

high concentration of VOC, making O3 pollution sensitive to variation in

NOx. Combined results from preceding analyses indicate that the eastern

Metro Vancouver, where the ozone process begin to transition from VOC

to NOx sensitive, is the area of interest: the temporal mean VOC emission

produced by SMOKE for this region showed strong statistical association

with the observation-CMAQ difference in their mean ozone fields.

The univariate plot in Figure 5.8 is obtained by averaging out the effect

of location. To uncover any bivariate or interaction effect of location and

VOC emission on Ẽd
1, one can produce “Ẽd

1 versus VOC emission” plots at

multiple locations across LFV. In each plot, the location covariates in the

Ẽd
1 model are fixed at a longitude-latitude setting, and Ẽd

1 is estimated over

a range of VOC emission rates appropriate for this location.

Figure 5.10 shows the Ẽd
1 versus VOC emission plot at 5 locations across

LFV. As shown, for locations across LFV, a negative trough at VOC ≈ 0.82

moles·sec−1 is a common feature. This result is representative of other LFV

locations not shown. Figure 5.10 shows that there is little, if any interaction

effect of VOC and location on CMAQ over-estimate (negative Ẽd
1) of the

episode mean. The over-estimate is most noticeable when the mean VOC

emission is around 0.82 moles·sec−1, and this is a feature of CMAQ modelling

deficiency that is common across LFV locations.
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Figure 5.10: Sensitivity or univariate effect plot of Ẽd
1 against VOC emission

rate at 5 LFV locations. The GP model of Ẽd
1 is fitted using 2001 CMAQ-

SMOKE data.

5.3 Comparison of P1: Hourly LFV Mean Ozone

Figure 5.11 compares Pc
1 and Po

1 for ozone episodes 1985, 1995 and 1998,

while Figure 5.12 does the same for 2001 and 2006. Figures 5.13 and 5.14

show the time series of LFV mean ozone of CMAQ output and observations

data. Comparison with Pc
1 and Po

1 time series reveals that the 1st-order

temporal features of both ozone data captured to near exact detail, the

temporal patterns of their respective ozone means, and the scale of difference

between two ozone means. Therefore, the comparison of P1 is equivalent to

the comparison of hourly LFV mean ozone. It is worth repeating that the

PCs are weighted row sums of Ot×n, hence the high values (in units ppb).

As shown in Figure 5.11, for the 1985 episode, the CMAQ modelled

hourly LFV mean ozone corresponded closely with the observations. For

all other 4 episodes, the pattern of observation-CMAQ differences can be

defined as CMAQ over-estimate of observed hourly LFV ozone during both

the early morning and afternoon peaks hours. The relatively close corre-

spondence of the 1985 temporal features is noticeable from Table 5.7, which

shows the angles between component vectors Pc
1 and Po

1. The 1985 episode

has slightly smaller angle than other episodes, while the 2001 episode has
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the largest angle. However, the angles are low enough (Cohn and Den-

nis, 1994) that there is generally good agreement between the 1st-order

temporal-features of CMAQ and observations.

Episode
1985 1995 1998 2001 2006

Angle between P1’s: 9.77◦ 10.30◦ 12.09◦ 13.02◦ 10.52◦

Table 5.7: Angles between Pc
1 and Po

1.

5.3.1 Modelling Pd
1

Covariate selection for Pd
j is initiated by a GP model with “hour of the day”

as starting covariate, and the iterative improvement procedure is applied as

before. The GP model optimizations are done by including the stochastic

error term εPj in (5.2).

Table 5.8 shows the statistically significant covariates associated with Pd
1,

Episode year
1985 1995 1998

XP d 1 Temp, Wind BL, NOx-lag Temp, Wind

BL, VOC NOx-lag

2001 2006
XP d 1 Temp, Wind Temp, Wind

BL, NOx-lag NOx-lag

Table 5.8: Result of covariate selection for Pd
1. The listed covariates are

those in addition to “hour of the day”.

i.e, observation-CMAQ difference in hourly LFV mean. The descriptions

“NOx-lag” and “VOC-lag” represent the hourly LFV means of NOx and

VOC antecedent concentrations, and “BL” represent hourly LFV means

of boundary layer height. The iterative improvement algorithm delivered

a mixture of meteorological and chemical precursor variables. Unlike the

modelling of Ẽd
1 (Table 5.5), there are no clearly definable CMAQ inputs

responsible for the difference in temporal ozone features between CMAQ

179



5.3. Comparison of P1: Hourly LFV Mean Ozone

Figure 5.11: Time-series of Pc
1 (blue) and Po

1 (red) for the 1985, 1995 and
1998 episodes.
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Figure 5.12: Time-series of Pc
1 (blue) and Po

1 (red) for the 2001 and 2006
episodes.
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Figure 5.13: Time-series of hourly LFV mean ozone (averaged across space)
of CMAQ output (blue) and observations (red) from the 1985, 1995 and
1998 episodes.
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Figure 5.14: Time-series of hourly LFV mean ozone (averaged across space)
of CMAQ output (blue) and observations (red) from the 2001 and 2006
episodes.
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and observations. The forward selection method indeed found statistically

significant covariates based on the Gaussian log-likelihood test (the selection

criteria of iterative improvement, Section 4.3), but the selected covariates

do not allow a clear explanation.

As the analysis in the next chapter will show, there is reason to believe

that the difference in temporal ozone features is to a large degree, caused

by CMAQ not modelling certain real-world ozone processes. In Section 2.2,

I mentioned the phenomenon of nocturnal ozone down-mixing: during the

nocturnal hours, vertical atmospheric mixing draws the upper-layer pollu-

tion downward, causing a short-term spike in the ground level ozone at

some locations in the LFV. The follow-up ozone process is that ozone is

consumed by NOx at the ground level, making surface-level ozone concen-

trations approximately 0 ppb. However, as Figures 5.11 and 5.12 showed,

CMAQ does not seem to capture the reality of NOx-initiated ozone reduc-

tion the way observations do, and it tends to over-estimate the ozone levels

between 0000PST to 0400PST. Furthermore, CMAQ and WRF do not ac-

count for the process of nocturnal ozone down-mixing.

The analysis of temporal ozone feature difference will arrive at some form

of conclusion in the next chapter, where the statistical properties of ozone

features are compared.

5.4 Comparison of Higher-order Features

As described in Section 5.1 and Table 5.3, for the 1985, 1995 and 1998

episodes, E2 and E3 have close enough eigenvalues that make the same-

order feature comparison between CMAQ and observations questionable.

Whereas for the 2001 and 2006 episodes, the degeneracy of the observed

features starts from j = 2, which makes the feature-by-feature comparison

even harder.

Krzanowski (1979) proposed a method of jointly comparing PCA com-

ponents that was later applied by Cohn and Dennis (1994) to evaluate acid

deposition models. Let Ec
n×p and Eo

n×p be a matrix with p leading EOFs,

where p = 3 and n = nobs in this evaluation. Also consider a form of
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joint-covariance matrix M = (Ec)T Eo(Eo)T Ec whose eigenvectors are ej

and eigenvalues are λej , j = 1, 2, 3. It was shown in Krzanowski (1979) that

ecj = Ec
jej form an orthogonal basis for Ec and eoj = Eo

j(E
o
j)

T ej is an or-

thogonal subspace for Eo. Furthermore, ec1 and eo1 are the closest vectors

between the subspaces defined by ozone features Ec and Eo, and their an-

gle is calculated as cos−1(
√
λe1). The subsequent higher-order vectors are

further apart with angles cos−1(
√
λej).

Table 5.9 shows for the episodes 1985, 1995 and 1998, the angles be-

tween the vectors in Ec
n×3 and Eo

n×3 calculated using the joint-comparison

method just described. These angles indicate the observation-CMAQ differ-

ence when the leading p = 3 ozone features are compared jointly. As shown,

the angles between ec1 and eo1 are smaller than 10◦ for all three episodes,

indicating close agreement. While the angles between the 2nd vector sets

are reasonably low, the angles between ec3 and eo3 increased significantly to

near 45◦ for the 1998 episode. These results reveals that, when compared

alone, the 1st-order ozone features have good agreement between CMAQ

and observations, but when the leading 3 features are compared jointly, the

good agreement quickly disappears. This implies a noticeable discordance

of higher-order features.

Angles between ecj and eoj
j=1 j=2 j=3

Episode 1985 6.76◦ 10.2◦ 37.34◦

Episode 1995 9.84◦ 15.0◦ 28.43◦

Episode 1998 4.43◦ 15.83◦ 44.19◦

Table 5.9: Angles from the joint comparison of the leading 3 ozone features
from CMAQ output and physical measurements.

In Chapter 3, I have shown that some ozone features of orders j ≥
2 individually or jointly capture the dynamic patterns of ozone advection

across LFV. However, difference statistics such as ones in Table 5.9 only

gives one value summarizing the observation-CMAQ difference. A more

informative approach is needed to compare dynamic ozone features between

CMAQ and observations.
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As discussed in Section 5.1, the results from eigenspectra pointed out the

closeness between the 2nd and 3rd eigenvalues of both CMAQ and observa-

tions. This implies the possibility of feature degeneracy, which requires that

P2E
T
2 and P3E

T
3 be analyzed jointly. Therefore, one way of performing

the observation-CMAQ comparison of advection patterns is to compare the

sum of ozone features Pc
2E

c
2
T + Pc

3E
c
3
T between CMAQ and observation.

Figures 5.15a and 5.15b compare the Pc
2E

c
2
T +Pc

3E
c
3
T and Po

2E
o
2
T +Po

3E
o
3
T

at selected hours on the 3rd day of 1995. For ease of comparison all con-

tour plots have the same range of values. In the morning hours between

0600PST-0900PST, both CMAQ and observation captured ozone contrasts

that are similar both in pattern and magnitude: the contrast is slightly > 0

ppb in the eastern and western edge of LFV and slightly < 0 ppb in the

middle.

The observation-CMAQ difference emerges during the afternoon ozone

peaks, where the east-west ozone contrast is more pronounced for CMAQ.

At 1300PST the CMAQ ozone feature has contrast values ranging from −12

ppb to 6 ppb whereas the observation has contrast ranging from −5 ppb to

3 ppb. At 1400PST the CMAQ feature still has noticeable ozone contrast

while nearly no spatial ozone contrast is noticeable in observed feature.

Moreover, this contrast pattern of “positive in the west and negative in the

east” lasted from 1100PST to 1500PST for CMAQ and 1100PST to 1300PST

for observations. As discussed in Chapter 3, such dynamic east-west ozone

contrast captures the formation of daytime ozone plume in LFV. Given the

above results, one may conclude that CMAQ generates higher-than-observed

level of ozone plume at western LFV between mid-day to early afternoon.

The night time dynamic ozone contrasts of CMAQ are also more pro-

nounced than observations. At 2100PST, the positive contrast in the eastern

LFV is up to +25 ppb for CMAQ and +8 ppb for observations, the negative

contrast in the western LFV is down to −10 ppb for CMAQ and −4 ppb for

observations. These results imply that aforementioned CMAQ’s “overpro-

duction” of daytime ozone caused higher-than-observed level of night time

ozone in the east.

Earlier analysis in Section 5.2 showed that compared to physical observa-
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(a) Hours 0900PST and 1300PST.

(b) Hours 1500PST and 2100PST.

Figure 5.15: From PCA of the 1995 CMAQ output (top) and ozone observa-
tions (bottom): dynamic spatial plots of joint ozone feature P2E

T
2 + P3E

T
3

at hours 0900PST, 1300PST, 1500PST and 2100PST on the 3rd day of 1995.
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tion, CMAQ persistently overestimated the temporal ozone means through-

out LFV. The comparison of dynamic ozone contrasts in this section revealed

that the problem lies primarily on the fact that CMAQ modelled process

generated (thus transported) higher-than-observed level of ozone plume in

the western LFV. This CMAQ over-production of ozone may further explain

the daytime pattern of feature difference Pd
1 we saw in last section (Figures

5.11 and 5.12). Since CMAQ produces more ozone than the physical process

during the daytime, the spatial means of CMAQ would be higher than that

of the observations, i.e., Pc
1 > Po

1 during some daytime hours.

Furthermore, the joint-comparison of the 2nd and 3rd-order ozone fea-

tures also reveals that the computer model is able to capture the overall

pattern of east-to-west ozone advection that is observed physically. This

is an important result that highlights WRF’s capability of accurately mod-

elling the wind patterns across LFV.

5.5 Chapter Conclusion

In this chapter, I developed and implemented means of CMAQ evaluation by

combining methods of ozone PCA (Chapter 3) and ozone feature modelling

(Chapter 4). Although the statistical analyses are done to evaluate CMAQ’s

capability to model space-time ozone, the overall methodology should apply

to the evaluations of other AQMs. The central idea behind the proposed

AQM evaluation is based on the observation-model comparison of data fea-

tures (space-time structures of an air pollution field), and statistical mod-

elling of the feature differences. The specific purpose of this chapter is to

(1) develop the exact methods of feature-based AQM evaluation, and (2)

implement these methods using CMAQ-WRF-SMOKE outputs and obser-

vation data to show the usefulness and advantages of feature-based model

evaluation.

Implementation of my proposed evaluation methods revealed a few “big

picture” similarities and differences between CMAQ ozone and observations.

Compared to physical measurements, CMAQ tends to over-estimate episode

means (average across hours of the episode) throughout LFV. This is ob-
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served for 4 out of 5 episodes analyzed. However, the pattern of ozone

variation across LFV is similar between CMAQ output and observations:

the mean ozone levels are highest in the east and gradually decrease to-

wards the west. Comparison of ozone features and GP modelling of feature

differences identified two “sources” of this feature discrepancy:

• For all episodes, the difference in temporal means in LFV are statis-

tically associated with the episode means of either the emission rates

or antecedent concentrations of one ozone precursor (NOx or VOC).

A detailed evaluation of the 2001 episode showed that the main source

of discrepancy lies in the area of LFV where the episode averaged VOC

emission rates are between 0.7 to 1.2 moles·sec−1. This corresponds to

the middle LFV, especially the eastern Metro Vancouver. This region

is where much of daily ozone plume forms, and also an area where the

local ozone process transitions from VOC-sensitive to NOx-sensitive.

Furthermore, CMAQ over-estimation of observed episode mean is ex-

pected to be the most pronounced when VOC ≈ 0.82 moles·sec−1.

This is a feature of CMAQ deficiency expected from all LFV loca-

tions.

• Certain ozone features are what I refer to as “dynamic ozone con-

trasts” (Section 3.4), they capture the most dominant patterns of

ozone plume advection across LFV and the magnitude (in ppb) of

ozone formation/destruction. Comparison of these features has shown

that CMAQ tends to produce higher-than-observed level of ozone pol-

lution around Metro Vancouver during the ozone formation stage of a

diurnal cycle. Thus transports a “bigger” ozone plume eastward across

LFV.

However, my analyses have also shown that WRF (the weather com-

ponent of CMAQ) is able to simulate close-to-observed patterns of

diurnal ozone transport across LFV.

In the end, the available evidence suggest that the source of observation-

CMAQ difference lies primarily in the computer models’ deficiencies in sim-
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ulating processes of ozone precursor emission and photochemical reactions.

Furthermore, the ozone feature analyses and CMAQ evaluations are done

for five LFV ozone episodes spanning two decades. I found that LFV ozone

process is dominated by a few recurring spatial-temporal ozone features, and

the episode-by-episode CMAQ evaluation resulted in similar, i.e., system-

atic, sets of conclusions.

These model evaluation results are made possible by the statistical com-

parison and analysis of ozone features. This highlights the important point

that CMAQ (or any AQM) evaluation based on ozone features is more in-

formative than direct observation-model comparison of data values. By

deconstructing CMAQ output and observation data into informative ozone

features, I was able to (1) evaluate how closely CMAQ can emulate the ob-

served structure of space-time ozone means, and (2) how close-to-reality the

CMAQ-WRF-SMOKE system can model the defining patterns of ozone ad-

vection, as well as the magnitude of ozone creation and destruction across

LFV. The combination of ozone PCA and ozone feature comparison is a

means to extract “maximum information” out of two compared ozone data.

With the point-to-point comparison of data values, many important data

structures are simply “hidden” from analysis.

Secondly, I proposed to model the ozone feature differences. As I have

already summarized, this analysis not only revealed a definitive statistical

association between CMAQ deficiency and SMOKE output, it also quan-

tified the non-linear structure of this association. In turn, I was able to

highlight a few specific areas in LFV where future SMOKE modelling ef-

fort should pay close attention. This description of SMOKE’s spatial defi-

ciency is especially useful for AQM modellers. In practice, due to the scarce

availability of detailed emission measurements, one cannot simply analyze

SMOKE-observation comparison data (Steyn et al., 2013). Therefore, the

type of detailed CMAQ/SMOKE evaluations presented in this chapter are

the unique outcomes of my proposed AQM evaluation approaches.

Lastly, in the existing literature of PCA-based AQM evaluation, informa-

tive discussions of AQM capabilities are based on authors’ prior knowledge

of the AQMs. The analyses in this chapter showed that using combined
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methods of PCA and GP modelling, one can also achieve informative and

systematic evaluation of AQM.
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Chapter 6

AQM Evaluation II:

Comparison of AQM and

Observations as Stochastic

Ozone Processes

In this chapter, I will implement the second proposed AQM evaluation

method that was briefly explained at the beginning of Chapter 5. A more

detailed description of this method, written in the context of CMAQ evalu-

ation, follows:

1. Using the methods from Chapter 4, fit CMAQ ozone feature models

using the CMAQ-WRF-SMOKE outputs, and fit separate observation

ozone feature models using data from physical measurements.

2. Use the fitted ozone feature models to produce GP model outputs

(make predictions) under common covariate settings. These model

outputs are the estimated CMAQ and observation ozone features un-

der the same covariates settings that capture the basic conditions of

background weather and precursor pollution.

3. The estimated “common background” ozone features of CMAQ and

observations are then compared.

Figure 5.1 from Chapter 5 showed in diagrammatic form the central idea

behind my CMAQ evaluation.

To discuss the purpose of above evaluation approach, I will use the

CMAQ evaluation of 1st-order feature E1 as an example. Let Ec
1 and Eo

1 be
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the random processes representing the features of CMAQ ozone and physical

observations. Further, let xc and xo denote the covariate sets that represent

individual background conditions that the two ozone processes occur under.

I propose to model Ec
1 and Eo

1 as GPs with xc and xo as model covariates:

Ec
1(x

c) and Eo
1(x

o). After fitting the GP models, one can produce model

outputs at a new common covariate setting x0: Êc
1(x0) and Êo

1(x0). These

GP model outputs are statistically, the process means (or expected values)

estimated at x0 given Ec
1(x

c) and Eo
1(x

o). They are the ozone features that

are statistically expected to be produced by the two GPs.

By applying the same input x0, the outputs Êc
1(x0) and Êo

1(x0) are only

different due to the parameters, i.e., the stochastic structures of Ec
1(x

c) and

Eo
1(x

o). Hence, comparison of Êc
1(x0) and Êo

1(x0) is a means of comparing

the overall statistical properties of CMAQ ozone and physical process under

the same condition. Moreover, every point of model output has an associ-

ated standard error, which allows one to assess the significance of feature

difference in space and time.

My proposed evaluation approach is a statistical means of addressing

the need for a “process level understanding” between AQM and observa-

tions (Dennis et al., 2010; Galmarini and Steyn, 2010), and it is related

to the “Probabilistic Evaluation” approach they mentioned. It should be

noted that I am not evaluating the underlying physical or chemical pro-

cesses governing an air pollution system, such as the chemical kinetics of

specific reactions. Such detailed AQM evaluation are beyond the scope of

my thesis.

The parameters in a Gaussian Process model quantify the influence of

model covariate(s) on the random response variable. As described in Chap-

ter 4, my GP model is the sum of a fixed regression component and a

stochastic Gaussian Process. The regression coefficients model the linear

association between each spatial/temporal ozone feature and variables such

as longitude, latitude and hour of the day. The GP correlation parameters

model the spatial or temporal behaviour of each ozone feature (pattern)

as a non-linear function of model covariates. Hence by comparing the cor-

relation and regression parameters between GP models Ec
j and Eo

j , or Pc
j
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and Po
j , one can analyze how the ozone features of CMAQ and observation

behave differently (or similarly) across a range of meteorological conditions

and precursor pollution.

Such comparison can be purely numerical using statistical testing. How-

ever, as I shall demonstrate in the following analyses, the comparison of

statistical models is more informative when done as I proposed.

6.1 Pre-analysis Comments

In Chapter 4, I estimated the CMAQ ozone feature models as Gaussian Pro-

cesses, performed model diagnostics and assessed the models’ performance

in modelling both individual spatial/temporal ozone patterns and complete

space-time ozone fields. Each ozone feature model is able to emulate the

behaviour of the corresponding spatial or temporal processes. I also con-

cluded that, once combined using equation (4.13), the ozone feature models

are well-suited for forecasting hourly ozone across the entire spatial domain

of the “rectangular” LFV, especially during the important period of daily

8-hour maximum. I believe the feature-based ozone model is an appropriate

foundation upon which to implement my proposed CMAQ evaluation.

This chapter will use the same notations as the previous chapters. Sup-

pose CMAQ or observational data of dimensions t× n are decomposed into

En×n and Pt×n, and GP models (4.1) and (4.2) are fitted to the decom-

positions. Let Ec
j and Pc

j denote the feature-based GP of CMAQ, and Eo
j

and Po
j denote the corresponding features of ozone observations. I further

denote the statistical ozone model of CMAQ and physical observation as Oc

and Oo, hence

Oc ≈
3∑
j=1

Pc
jE

c
j
T and

Oo ≈
3∑
j=1

Po
jE

o
j
T . (6.1)

I will implement the proposed CMAQ evaluation using the 2001 and
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2006 data. Specifically, the middle 3 days (72 hours) of the interpolated

n = 17 CMAQ-related data and observation data from 2006 will be used as

the “training dataset” to estimate the ozone feature models. The 96-hour

2001 CMAQ-WRF-SMOKE outputs at the same 17 locations will be used as

the “common model covariate inputs” to produce the ozone feature model

outputs. The 2006 data is already used as the training dataset in Chapter 4

to fit ozone feature models, so it is used here again for the same purpose. The

2001 CMAQ data captured a set of meteorological and precursor pollution

conditions similar to the 2006, so it is used as model inputs to minimize

uncertainties due to model extrapolation.

It is important to note that in the following data analysis, the ozone

feature models are fitted using 2006 data. This means that CMAQ evalua-

tion is done for the 2006 episode, because the compared stochastic models

describe the 2006 ozone processes. The 2001 CMAQ data are simply used

as common model inputs, but the evaluation is not done for the year 2001.

Moreover, the 2001 CMAQ data are used to provide model inputs based on

realistic combinations of weather conditions and precursor pollution. One

may also use the observed meteorology and precursor data, but as discussed

in Chapter 2, observations data may suffer from missing observations or

measurement error.

As an alternative, one may input into the CMAQ ozone feature mod-

els the covariates from the corresponding observation data. The output

from the CMAQ statistical model can then be compared to the observed

ozones features. In such a test, the physical observations are regarded as

the “benchmark” against which CMAQ is evaluated. One might argue that

this is closer to the usual concept of model evaluation. My proposed CMAQ

evaluation framework is designed not to have a preconceived notion that the

observation is the benchmark, or even the truth. I regard them as individual

ozone processes whose behaviour is being compared.

Guttorp and Walden (1987) discussed using bootstrapping to analyze

the variation, thus the statistical significance of data differences. Compared

to the method proposed here, their approach is non-parametric and thus

more general. However, bootstrapping results can be difficult to interpret
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when the sample is not independently and identically distributed. My pro-

posed method, based on the comparison of GP model predictions, explicitly

takes the process correlation structures into account. It also has the advan-

tage of identifying specific conditions behind statistically significant feature

differences.

Model Covariates

In the previous chapter, I modelled the statistical associations between the

CMAQ model covariates and the ozone feature differences. In this chapter,

the ozone feature models of observations are fitted using the data from

physical measurements, which as mentioned in Chapter 2, only contain data

on wind speed, temperature and ambient (antecedent) NOx concentration.

This evaluation requires that both the CMAQ and observation ozone feature

models have the same types of covariates, e.g., temperature, wind speed and

ambient NOx concentrations. Hence, I am constrained to use fewer model

covariates than those listed in Table 4.1.

The regression covariates of the GP models are the same as I described

in Section 4.5. The stochastic-term covariates are the ones in Table 4.1

that are both available from CMAQ outputs and observation data, they are

summarized in Table 6.1 for each ozone feature model.

6.2 Comparing the Space-time Ozone Processes

One intuitive way of CMAQ evaluation is to compare the space-time ozone

fields produced by the CMAQ-based and the observation-based statistical

ozone models. The detailed procedure is as follows:

1. Fit statistical ozone feature models Ec
j , Eo

j , Pc
j and Po

j , j = 1, . . . , 3.

That is, build GP models for the spatial and temporal ozone features

of CMAQ and observations.

The training data is the 2006 ozone episode. The statistical ozone

models for CMAQ and observations are fitted using corresponding

CMAQ and observed data, and the covariates of both models are those
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Model Covariate

Ec
1 and Eo

1 Longitude, Latitude, Elevation, TempE,1, TempE,2,
WindE,1, WindE,2, NOx-lagE,1

Ec
2 and Eo

2 Longitude, Latitude, Elevation, TempE,1,
TempE,2, WindE,1, NOx-lagE,1

Ec
3 and Eo

3 Longitude, Latitude, Elevation, TempE,1, TempE,3,
WindE,1, NOx-lagE,1, NOx-lagE,2, NOx-lagE,3

Pc
1 and Po

1 TempP,1, TempP,3, WindP,2
Pc

2 and Po
2 TempP,1, TempP,3, WindP,3

Pc
3 and Po

3 TempP,1, TempP,3

Table 6.1: Covariates used for CMAQ evaluation within the stochastic com-
ponent of the ozone feature (GP) models. The covariate sets are shortened
(as compared to Table 4.1) due to the constraint imposed by unavailable ob-
servations. The acronym “NOx-lag” indicates antecedent or ambient NOx
concentrations.

listed in Table 6.1. I did not perform covariate selection for the ob-

servation models due to a dearth of available observation data. Here,

I assume that the observed ozone process is driven by the same back-

ground variables as the CMAQ model. The difference is how these two

random processes behave under the same sets of covariates, and this

“difference in behaviour” is the focus.

2. Apply a common set of covariate inputs to the fitted models. The

input covariates are decomposed from the 96-hour, 2001 CMAQ-WRF-

SMOKE outputs. This model input data have dimension 17× 96.

3. Combine the GP model outputs Êc
j ’s, P̂c

j ’s, Êo
j ’s and P̂o

j ’s into space-

time ozone fields Ôc and Ôo via (6.1).

I should reiterate that the purpose here is not to make predictions, but rather

to produce outputs from the statistical CMAQ and observation models given

the same covariates representing background atmospheric conditions. Since

Ôc and Ôo are ozone fields produced from exactly the same input, the

comparisons between Ôc and Ôo can be viewed as an analysis of the way
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the statistical CMAQ model and observation model differ as space-time

processes. Furthermore, the input data are associated with an actual ozone

episode, hence we are evaluating how CMAQ and observed ozone processes

behave under conditions that are conducive to a real-world ozone episode.

Figures 6.1a and 6.1b show the mean fields of Ôc and Ôo produced by two

statistical ozone models given the same sets of covariate inputs (outputs from

the 2001 episode). Both ozone model outputs Ôc and Ôo have dimension

96×17. The matrices are averaged across the 96 hours to obtain the spatial

field of ozone means at the n = 17 locations, i.e., the Ôt×n data are averaged

by the columns. Cubic-spline smoothing is then applied to interpolate the

n = 17 spatial data within the longitude-latitude boundary of measurement

locations. Both ozone fields are plotted over the same colour scale for easy

comparison. Figure 6.2 shows the equivalent hourly time-series of mean

outputs (averaged across locations) produced by the statistical CMAQ and

observation models.

Both the spatial (Figures 6.1a and 6.1b) and temporal (Figure 6.2) plots

show that, even under the same background conditions, the CMAQ process

tends to produce higher level of ozone than physical observation. Spatially,

this result implies that location-by-location in LFV, the episode or temporal

ozone means produced by CMAQ are uniformly higher than observations.

From the plots of hourly LFV mean ozone (Figure 6.2), we see that using

ozone observations as reference, the CMAQ model tends to over-predict

the spatial means during the hours between 0000PST and 0800PST, in the

second day especially, where the CMAQ spatial means can be more than

twice the observed (shaded area in Figure 6.2). CMAQ also tends to produce

higher LFV means during a few afternoon peak hours, but the magnitude

of over-prediction is not as noticeable as the morning.

In summary, after controlling for differences in background conditions,

the CMAQ modelled ozone fields still showed the same space-time patterns

of over-prediction noticed from the comparison of original data - refer back

to Figures 5.2 and 5.3 for spatial differences, Figures 5.13 and 5.14 for tem-

poral differences. Therefore, the preceding evaluation indicates that the

CMAQ is statistically expected to produce higher temporal/episode ozone
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(a) The mean field (in ppb) produced by the statistical ozone model of CMAQ.

(b) The mean field (in ppb) produced by the statistical ozone model of observations.

Figure 6.1: Spatial fields of ozone means produced by the statistical ozone
models of CMAQ and observation. Statistical ozone feature models are
fitted using the middle 3 full days of 2006 CMAQ and observation data
(72-hours). The common model inputs are the entire 96 hours of 2001
CMAQ/WRF/SMOKE output.

means throughout LFV, and higher hourly LFV mean ozone during the

early morning and afternoon.

199



6.3. Comparison of P̂c
1 and P̂o

1

Figure 6.2: Hourly time series of LFV mean ozone (averaged across space
by the hour) produced by the CMAQ and observation ozone models. The
feature-based statistical ozone models are fitted using the 2006 CMAQ and
observation data. The common input is the 2001 CMAQ data. The dashed
lines indicate hour 0000 of each day, and the shaded region shows the hours
when CMAQ over-prediction is the largest during the 96 hours.

In the last chapter, I modelled the covariates for Pd
1: feature that repre-

sents the hourly differences in LFV mean ozone between CMAQ and obser-

vation. That analysis did not clearly identify one specific input of CMAQ

run that is driving the ozone feature difference. I further raised the issue

that CMAQ does not model certain nocturnal (or early morning) pollu-

tion processes that occur around LFV. The preceding analyses point to a

observation-CMAQ difference of P1 at the process level.

6.3 Comparison of P̂c
1 and P̂o

1

In this section, I will perform statistical comparison of P̂c
1 and P̂o

1, features

estimated under the same weather and pollution settings. Before further

discussion, it is worth repeating that the difference between Pc
1 and Po

1

mirrors the scale and temporal pattern of difference between the hourly

LFV means of CMAQ and observations. This fact allows one to interpret

the following comparison of P1 as a comparison of hourly LFV mean ozone.

One may refer back to Section 5.3 for the discussions of this particular point.
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As discussed in Section 4.2, the GP model output from each set of co-

variate input is the conditional mean of the process at that setting, and this

estimate of the mean has a standard error. Overall, there are 96 P̂1’s and

associated standard errors.

Figure 6.3a shows the temporal patterns of P̂c
1 and P̂o

1 estimated under

the same covariate sets (weather and precursor pollution). I also plotted the

“error bars” whose magnitudes indicate the median P̂1 standard errors for

the two statistical models, and the arrows indicate the hours where the 95%

prediction intervals of Pc
1 and Po

1 do not overlap. As shown, the 1st-order

temporal feature difference between CMAQ and observation (or difference

in hourly LFV means) are statistically significant for a few early morning

hours and one daytime hour on the 3rd day of the 2006 episode.

Figure 6.3b further shows the scatter plot of P̂o
1 vs. P̂c

1. We see that

during early morning hours (when P̂o
1 ≤ 50 ppb), the CMAQ ozone process

tends to over-predict the observed hourly LFV means by more than 100%,

whereas the daytime correspondence between CMAQ and observed ozone

processes is much better.

Figure 6.4 shows the same P̂c
1 and P̂o

1 plotted as functions of TempP 1, a

temperature covariate in both models (Table 6.1). In these plots, P̂c
1’s and

P̂o
1’s at the same hour are averaged across days of the episode, and the same

is done for covariate TempP 1. This averaging is done to smooth the daily

variations of P̂1 at similar TempP 1 values. TempP 1 captures the temporal

features of the hourly mean LFV temperature (Section 4.3 and Appendix

C.1). So to enhance interpretation, the x-axis in Figure 6.4 shows the mean

temperature values that correspond to TempP 1.

The CMAQ model produced higher-than observed P̂1 values across the

temperature range typical of LFV ozone episodes. The small exception is

shown between 26.0◦C-27.0◦C, where it alternates between P̂c
1 < P̂o

1 and

P̂c
1 > P̂o

1. This pattern translates to CMAQ over-predictions of hourly

LFV means during most of the day, but especially during periods of low

temperature such as the hours between the late-night and the morning.
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(a) Time series plots of P̂c
1 and P̂o

1.

(b) Scatter plot of P̂o
1 vs. P̂c

1.

Figure 6.3: Time series plots of P̂c
1 and P̂o

1 and scatter plot of P̂o
1 vs. P̂c

1.
The time-series plot at the top shows the “error bars” whose magnitude
indicate the median P̂1 standard errors from the two ozone feature models,
and the arrow indicate the hour where the difference between P̂c

1 and P̂o
1 is

significant at type-I error = 0.05. The shaded area shows the hours when
differences between P̂c

1 and P̂o
1 are the largest. The lines in the scatter plot

are y = x, y = 2x and y = 1/2x.

6.4 Chapter Conclusion

During CMAQ evaluation in Chapter 5, I found that the 1st-order temporal

feature of CMAQ Pc
1 tends to have noticeably higher values than the ob-

served feature Po
1 during the morning hours between 0000PST to 0800PST,
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Figure 6.4: Univariate covariate-effect of P̂c
1 and P̂o

1 against temperature
input TempP 1 - a feature that represents mean LFV temperature. The
models for Pc

1 and Po
1 are fitted using the 2006 CMAQ and observation

data. The input is processed from the CMAQ data of 2001.

and a few hours during afternoon peak. Compared to observations, this

result corresponds to CMAQ’s over-prediction of hourly LFV mean ozone

during the morning and afternoon. The feature-based evaluations in this

chapter revealed certain process-level differences between CMAQ ozone pro-

cess and the reality (physical observation).

I applied the ozone feature models from Chapter 4 and implemented sta-

tistical analyses that answer the question: “would CMAQ produce higher-

than observed ozone under the same atmospheric condition?” The statistical

comparisons are based on the assumption that the CMAQ and observation

features follow Gaussian Processes in the specific forms estimated in Chap-

ter 4. The reasonableness of this assumption was extensively analyzed in

Chapter 4.

The analyses have shown that, given the same background conditions

in temperature, wind and ozone precursor concentrations, CMAQ is sta-

tistically expected to produce aforementioned temporal patterns of ozone

over-prediction. During some morning hours, these hourly over-predictions

are significant in the sense that the prediction intervals of Pc
1 and Po

1 do not

overlap. Plots of Pc
1 and Po

1 against the temperature covariate further re-

vealed that CMAQ is expected to produce higher-than-observed hourly LFV
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mean ozone at temperatures below 25◦C, i.e., outside of afternoon peaks.

Similar analyses of spatial features also showed that CMAQ will also

produce higher temporal/episode ozone means than the physical observa-

tions throughout LFV. In other words, the spatial CMAQ over-predictions

showed in Section 5.2 are expected to present under the same general weather

conditions and precursor pollution.
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Chapter 7

Conclusion

Traditional method of AQM evaluation directly compares the model out-

puts against observation data and summarize the deviation values into error

statistics such as RMSE and MBE. However, as Dennis et al. (2010) pointed

out (summarized in Section 1.2), AQM outputs and observation data are

generated by discrepant physical processes, and without a deeper under-

standing on the complexities of air pollution system at hand, any direct

observation-model comparisons are “fortuitous”.

More informative and “big picture” approaches to AQM evaluation have

been proposed over the years. These evaluations compare the data features

obtained from the decompositions of AQM outputs and observation data.

However, the differences in the data features are still summarized into statis-

tical measures like correlations, angle between vectors, etc. The systematic

observation-AQM differences are visually interpreted using authors’ prior

knowledge, as atmospheric scientists, about the inner workings of AQMs

and physical processes.

The goal of this research is to develop novel statistical methods of AQM

evaluations that (1) are more informative than the point-to-point data com-

parison, and (2) further the existing methods of feature-based AQM evalu-

ation.

This chapter summarizes the novel contributions made in this thesis,

both in the fields of statistical AQM evaluation and modelling of space-time

ozone process. I will then finish the conclusion by proposing future works.

Since the evaluations in this thesis are done for CMAQ modelling of LFV

ozone, the following discussion will be written mainly under this context.
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7.1 Main Contributions and the Novelty of the

Evaluation Methods

Using combined methods of PCA and Gaussian Process modelling, I pro-

posed and implemented means of AQM evaluations that provide a process-

level understanding of the way AQM simulated ozone differ from physical

observations. Here, the “process-level” evaluation refers to either the fea-

ture comparison of AQM ozone and observations as stochastic processes,

or the comparison of their dynamic features, e.g., the dominant pattern of

ozone advection, and the region and magnitude of ozone formation. A more

detailed process-level evaluation, such as the chemical kinetics of certain

reactions, is beyond the scope of this thesis.

In addition to the structural comparison of ozone features, I proposed

two approaches to AQM evaluation that incorporate the methods of non-

linear spatial and temporal modelling. They are:

1. Statistical modelling of ozone feature differences as Gaussian Processes

driven by AQM inputs representing atmospheric conditions, ozone pre-

cursor emission rates and antecedent pollution. This method evaluates

the statistical associations between the inputs and particular condi-

tions of AQM run to its modelling capability.

2. Comparison of the statistical properties of AQM ozone and physical

processes. This is done by estimating the ozone feature models for

AQM and observations, then comparing their ozone features predicted

under the same sets of background weather condition and precursor

pollution. This method also assesses the statistical significance of any

feature difference in both space and time.

The developed statistical methods are implemented to model and eval-

uate CMAQ ozone. I will now provide a simple recap of the evaluation

results; a more detailed summaries are at the ends of Chapters 5 and 6.

These results serve to demonstrate the usefulness of my proposed evalua-

tion methods, thereby highlighting the contribution of this thesis.
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7.1.1 Recap of Evaluation Results

The ozone feature analyses and CMAQ evaluations are done for five LFV

ozone episodes spanning two decades. We found that LFV ozone process

is dominated by a few recurring spatial-temporal ozone features, and the

episode-by-episode CMAQ evaluation resulted in similar, i.e., systematic

sets of conclusions. The following is an evaluation recap:

• Comparison of the 1st-order spatial features showed that CMAQ tends

to over-estimate the observed local ozone means (averaged across time)

almost uniformly across LFV. The over-estimate is observed for 4 out

of 5 episodes. However, the east-west patterns of spatial ozone varia-

tion are similar between CMAQ outputs and observations.

• GP modelling of feature differences showed that above mentioned dif-

ferences in the mean field are statistically associated with the episode

mean emission rates or the antecedent concentrations of either NOx

or VOC.

A detailed feature difference modelling was performed for the 2001

episode. I found that the main sources of feature difference lie in the

areas of LFV where the VOC emission rates are around 0.82 and 1.18

moles·sec−1. These correspond to the middle of LFV in general, and

eastern Metro Vancouver in particular. This region is where much of

the daily ozone plume forms, and where the ozone process transitions

from being VOC-sensitive to NOx-sensitive.

• Certain ozone features capture the most dominant pattern of ozone

advection across LFV, as well as the area and the magnitude (in ppb)

of ozone formation/destruction. Comparison of these features have

shown that CMAQ tends to produce higher-than-observed level of

ozone pollution around eastern Metro Vancouver during the ozone for-

mation stage of a diurnal cycle. Subsequently, CMAQ ozone process

transports a “bigger” ozone plume eastward across LFV.

However, the same feature comparison also showed that WRF (weather
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component of CMAQ) is able to simulate a close-to-observed general

patterns of eastward ozone advection.

The above results suggest that the source of observation-CMAQ devi-

ations in spatial ozone lies mainly in the CMAQ/SMOKE deficiencies in

simulating LFV’s spatial precursor emissions and their subsequent atmo-

spheric reactions. Specifically, the suburbs of eastern Metro Vancouver are

identified as areas where SMOKE modelling showed its deficiency. Hence,

any future effort in air quality modelling should pay close attention to the

accuracy of emission modelling at aforementioned locations.

The evaluation results relating to SMOKE modelling are especially use-

ful. Due to the scarce availability of detailed emission observations (Steyn

et al., 2013), it is difficult in practice to evaluate SMOKE outputs and

make meaningful associations to CMAQ deficiency. My proposed evalua-

tion method provided a way of addressing this concern.

The second proposed evaluation method analyzes, under the same atmo-

spheric conditions, whether the space and time differences in ozone feature

are significantly different. This is a method that uses the statistical ozone

feature models to compare the stochastic structures of CMAQ ozone and the

physical process. The results showed that, even under the same background

conditions, CMAQ is expected to produce significantly higher-than-observed

hourly LFV mean ozone (averaged across space) during the morning. Anal-

yses also showed that CMAQ tends to over-estimate the hourly LFV mean

at temperatures below 25◦C, which are the temperatures outside of the af-

ternoon peak hours. In addition, CMAQ is also statistically expected to

produce a spatial ozone field with values that are uniformly higher than

observed.

7.1.2 Conclusion on AQM Evaluation

In the end, air-quality model evaluation is not a well-defined science; there is

no “one right way” of evaluation. What separates different model evaluation

techniques and approaches is the different levels of informativeness, judged

by the amount of insight and knowledge into the model behaviour that an
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evaluation method can provide.

My proposed AQM evaluation methods provided the types of insight

into the modelling capability of CMAQ not possible with direct observation-

model data comparison. As the preceding evaluation recap and the detailed

analyses in Chapter 5 and 6 have shown, the proposed AQM evaluations

delivered an informative and coherent set of results that highlighted both

the “big picture” and detailed input-level capability of the CMAQ-SMOKE-

WRF system.

My proposed AQM evaluation methods, which are based on the frame

work of statistical analysis and modelling of ozone features, constitute novel

contributions to the existing works on AQM evaluation (AQMEII, Section

1.3). In particular, the methods proposed in this thesis add to the knowledge

of features-based AQM evaluation (existing works summarized in Section

1.4).

7.2 Additional Contributions

Although the analyses in Chapters 3 and 4 are designed to provide the

necessary tools for subsequent CMAQ evaluation, these works should also be

considered useful contributions on their own. Combined analyses in Chapter

3 and 4 drew an important conclusion that a complex space-time pollution

process can be conceptually understood and modelled statistically using a

few leading features. The ozone feature models developed in Chapter 4 is

especially a novel and efficient means of modelling a complex space-time air

pollution process.

7.2.1 Understanding the Features of LFV Ozone

In Chapter 3, I formulated a detailed understanding of LFV ozone features

during a summer-time ozone episode. I identified spatial-temporal ozone

features that consistently appeared and dominated the ozone processes dur-

ing the years 1985-2006. The effect of different wind flow patterns on the

resultant ozone features are also studied.
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During a LFV ozone episode dominated by wind regime types I, II and

III, the most important dynamic process is the eastward advection of ozone

plume. This transport is driven by a prevailing westerly wind flow. Under a

type IV wind regime, there are two defining ozone circulation patterns: the

daytime northwest-to-southwest ozone advection and nighttime west-to-east

advection. These dynamic processes, in addition to space-time structures of

ozone mean, account for over 90% of space-time ozone variation. Further

analysis of eigenspectra indicates that these few features are statistically

separable from other features.

7.2.2 Ozone Feature Models

I further developed statistical models for individual ozone features, and a

framework where a complete space-time ozone field can be modelled through

its features. Individual features are modelled as GPs driven by a set of vari-

ables describing background meteorology, ozone precursor emission rates and

antecedent concentrations. Each ozone feature model is estimated through

a forward selection algorithm based on statistical goodness-of-fit measures.

Forecasts of ozone features and resultant space-time ozone fields are

made for the 4th day of the 2006 CMAQ output across a complex rectangu-

lar domain including LFV and surrounding mountains. The ozone feature

models displayed good capability in emulating the complex non-linear struc-

tures of respective features. The predicted spatial features captured both the

regional-scale patterns and localized details of the true spatial features with

good numerical accuracy. By combining the predicted features, forecast was

made for the hourly spatial ozone fields. The proposed feature-based ozone

model is able to forecast the LFV’s ozone fields at great spatial resolution,

where the hourly forecasts captured the spatial details of local ozone both in

the lower-valley region and across north shore mountains. The forecasting

accuracy was especially good during the important daily ozone peak hours,

with low RMSEs and near 0 prediction bias.

Given the complexities of running CMAQ (Sections 1.1 and 2.1), the

developed ozone feature model can be useful as a statistical CMAQ emulator.
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Furthermore, compared to the traditional statistical approach of directly

modelling the “raw” space-time data, it is more computationally efficient to

model the data through its features.

7.3 Future Work

Proposed future works mainly include applying the presented statistical

methods on other data and refining the ozone feature models.

7.3.1 Application for Other Air Pollution Data

For the regional ozone fields analyzed in this thesis, one would perform

AQM evaluation based on very few (sometimes only one) spatial-temporal

features. This is because the observed ozone suffers from noticeable fea-

ture degeneracy, making high order feature-by-feature comparison difficult

to justify. The existing works on PCA-based AQM evaluation analyzed data

over a large spatial domain and longer time period. Fiore et al. (2003) and

Eder et al. (2014) performed model evaluations based on air pollution field

over eastern United States. Orsolini and Doblas-Reyes (2003) and Camp

et al. (2003) performed ozone PCAs (not for AQM evaluation) over the

Euro-Atlantic sector (20o to 90o latitude and 60o to -90o longitude) and the

entire global tropic region. These works showed that for a large spatial air

pollution field, the are at least 3 clearly structured and interpretable data

features in addition to the mean.

The relative simplicity (compared to continental air pollution field) of the

LFV ozone shows that, the space-time ozone means and dynamic contrasts

(features capturing patterns of advection) are the only important features.

Moreover, these features consistently dominated all episodes during the two

decades between 1985-2006. Hence, one could justifiably evaluate CMAQ

based on very few (sometimes only one) leading ozone features and construct

a systematic view on the capability of CMAQ-WRF-SMOKE to interactively

model the LFV’s air pollution.

The disadvantage of the relative simplicity of LFV ozone is that I could
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not, as evident in Chapters 5 and 6, compare and analyze many ozone

features in order to demonstrate to fuller extent the utility of my AQM

evaluation method. The aforementioned works on continental/global scale

PCA did not consider the problem of feature degeneracy, so I do not know

whether such large scale AQM evaluation allows for more orders of feature

comparisons. Therefore, my foremost future works will focus on the appli-

cations of the developed evaluation methods to a much larger air pollution

field: to study whether more non-degenerate features can be extracted and

put through feature-based AQM evaluation and statistical modelling.

This thesis analyzed hourly spatial ozone data during episode days. Al-

ternatively, one may apply the presented statistical methods to (1) study

other space-time pollution process, such as hourly PM2.5 exposure, and (2)

analyze long-term ozone data and/or daily maximum data.

7.3.2 Further Works on Ozone Feature Models

My preliminary analysis has shown that an LFV ozone process may be sep-

arated into three sub-regions, i.e., the LFV ozone field can also be modelled

as spatially heterogeneous processes. This result was revealed when I built

“local” ozone models through spatial sampling, where the models are based

on the “raw” ozone data; they are not feature models. Application of k-

means clustering identified three LFV areas with “similar” estimated model

parameters: area across the foot of mountains, western and eastern LFV

separated by Surrey. The ozone feature models developed in Chapter 4 did

not account for possible spatial heterogeneity. Hence, another future work

would be to improve upon the existing ozone feature models where the GP

parameters are allowed to vary in space to account for spatial heterogeneity.

Besides AQM evaluation, the ozone feature models developed here may

serve as a computationally efficient emulator of an AQM. Hence, it may be

practical to summarize all relevant code for PCA and GP modelling into an

R package for fast forecasting of AQM output.

212



Bibliography

Ainslie, B., Reuten, C., Steyn, D. G., Le, N. D., and Zidek, J. V. (2009).

Application of an entropy-based bayesian optimization technique to the

redesign of an existing monitoring network for single air pollutants. Jour-

nal of Environmental Management, 90:2715–2729.

Ainslie, B. and Steyn, D. G. (2007). Spatiotemporal trends in episodic

ozone pollution in the Lower Fraser Valley, British Columbia, in relation

to mesoscale atmospheric circulation patterns and emissions. Journal of

Applied Meteorology and Climatology, 46:1631–1644.

Ainslie, B., Steyn, D. G., Reuten, C., and Jackson, P. L. (2013). A retrospec-

tive analysis of ozone formation in the Lower Fraser Valley, BC, Canada.

part ii: Influence of emission reduction on ozone formation. Atmosphere

Ocean, 51:170–186.

Allen, M. R. and Tett, S. F. B. (1999). Checking for model consistency in

optimal fingerprinting. Climate Dynamics, 15:419–434.

Aslett, R., Buck, R. J., Duvall, S. G., Sacks, J., and Welch, W. J. (1998).

Circuit optimization via sequential computer experiments: design of an

output buffer. Journal of the Royal Statistical Society, Series C, 47:31–48.

Bastos, L. S. and O’Hagan, A. (2009). Diagnostics for gaussian process

emulators. Technometrics, 51:425–438.

Beaver, S., Tanrikulu, S., Palazoglu, A., Singh, A., Soong, S. T., Jia, Y.,

Tran, C., Ainslie, B., and Steyn, D. G. (2010). Pattern-based evaluation

of coupled meteorological and air quality models. Journal of Applied

Meteorology and Climatology, 49:2077–2091.

213



Bibliography

Berrocal, V. J., Craigmile, P. F., and Guttorp, P. (2012). Regional climate

model assessment using statistical upscaling and downscaling techniques.

Environmetrics, 23:482–492.

Berrocal, V. J., Gelfand, A. E., and Holland, D. M. (2009). A spatio-

temporal downscaler for output from numerical models. Journal of Agri-

cultural, Biological, and Environmental Statistics, 15:176–197.

Bjornsson, H. and Venegas, S. A. (1997). A manual for eof and svd analyses

of climate data. Technical Report CCGCR No. 97-1, McGill University.

Bloomfield, P., Royle, A. J., Steinberg, L. J., and Yang, Q. (1996). Account-

ing for meteorological effects in measuring urban ozone levels and trends.

Atmospheric Environment, 30:3067–3077.

Borg, I. and Groenen, P. (2005). Modern Multidimensional Scaling: theory

and applications. Springer-Verlag.

Boubel, R. W., Fox, D. L., Turner, D. B., and Stern, A. C. (1994). Funda-

mentals of Air Pollution. Academic press.

Byun, D. and Schere, K. L. (2006). Review of the governing equations, com-

putational algorithms, and other components of the models-3 community

multiscale air quality (cmaq) modeling system. Applied Mechanics Re-

view, 59:51–77.

Camp, C. D., Roulston, M. S., and Yung, Y. L. (2003). Temporal and spatial

patterns of the interannual variability of total ozone in the tropics. Journal

of Geophysical Research, 108:4643–4660.

CCME (2000). Canada wide standard for particulate matter (pm) and

ozone. Technical report, Canadian Council of Ministries of the Environ-

ment. Available at http://www.ccme.ca/ourwork/air.html?category_

id=99, accessed 2013-09-12.

Cohn, R. D. and Dennis, R. L. (1994). Evaluation of acid-deposition model

using principal component spaces. Atmospheric Environment, 28:2531–

2543.

214

http://www.ccme.ca/ourwork/air.html?category_id=99
http://www.ccme.ca/ourwork/air.html?category_id=99


Bibliography

Conti, S. and O’Hagan, A. (2010). Bayesian emulation of complex multi-

output and dynamic computer models. Journal of Statistical Planning

and Inference, 140:640–651.

Cooley, D., Nychka, D., and Naveau, P. (2007). Bayesian spatial modeling

of extreme precipitation return levels. Journal of American Statistical

Association, 102:824–840.

Craigmile, P. F. and Guttorp, P. (2011). Space-time modelling of trends in

temperature series. Journal of Time-series Analysis, 32:378–395.

Cressie, N. (1990). The origin of kriging. Mathematical Geology, 22:239–252.

Currin, C., Mitchell, T., Morris, M., and Ylvisaker, D. (1991). Bayesian

prediction of deterministic functions, with applications to the design and

analysis of computer experiments. Journal of American Statistical Asso-

ciation, 86:953–963.

Dennis, R., Fox, T., Fuentes, M., Gilliland, A., Hanna, S., Hogrefe, C., Ir-

win, J., Rao, S. T., Scheffe, R., Schere, K., Steyn, D. G., and Venkatram,

A. (2010). A framework for evaluation of regional-scale numerical photo-

chemical modeling system. Environmental Fluid Mechanics, 10:471–489.

Dou, Y., Le, N. D., and Zidek, J. M. (2010). Modelling hourly ozone con-

centration fields. The Annals of Applied Statistics, 4:1183–1213.

Eder, B., Bash, J., Foley, K., and Pleim, J. (2014). Incorporating princi-

pal component analysis into air quality model evaluation. Atmospheric

Environment, 82:307–315.

Finlayson-Pitts, B. J. and Pitts Jr, J. N. (1999). Upper and Lower Atmo-

sphere. Academic Press.

Fiore, A. M., Jacob, D. J., Mathur, R., and Martin, R. V. (2003). Applica-

tion of empirical orthogonal functions to evaluate ozone simulations with

regional and global models. Journal of Geophysical Research, 108:4431–

4445.

215



Bibliography

Fuentes, M. and Raftery, A. E. (2005). Model evaluation and spatial in-

terpolation by bayesian combination of observations with outputs from

numerical models. Biometrics, 61:36–45.

Galmarini, S. and Steyn, D. G. (2010). Advancing approaches to

the evaluation of regional scale air quality modeling system. Tech-

nical report, Air Quality Model Evaluation International Initiative.

Available at http://publications.jrc.ec.europa.eu/repository/

handle/111111111/13563, accessed 2010-06-12.

Gao, F., Sacks, J., and Welch, W. J. (1996). Predicting urban ozone lev-

els and trends with semiparametric modeling. Journal of Agricultural,

Biological and Environmental Statistics, 1:404–425.

Gotway, C. A., Ferguson, R. B., Herbert, G. W., and Peterson, T. A. (1996).

Comparison of kriging and inverse-distance methods for mapping soil pa-

rameters. Soil Science Society of America Journal, 60:1237–1247.

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and

Geron, C. (2006). Estimates of global terrestrial isoprene emissions using

MEGAN (Model of Emissions and Gaxes and Aaerosols from Nature).

Atmospheric Chemistry and Physics, 6:3181–3210.

Guttorp, P. and Walden, A. (1987). On the evaluation of geophysical models.

Geophysical Journal of the Royal Astronomical Society, 91:201–210.

Handcock, M. S. and Stein, M. L. (1993). A bayesian analysis of kriging.

Technometrics, 35:403–410.

Hannachi, A., Jolliffe, I. T., and Stephenson, D. B. (2007). Empirical orthog-

onal functions and related techniques in atmospheric science: A review.

International Journal of Climatology, 27:1119–1152.

Hardle, W. K. and Simar, L. (2012). Applied Multivariate Statistical Anal-

ysis, chapter 9. Springer.

Hasselmann, K. (1993). Optimal fingerprints for the detection of time-

dependent climate change. Journal of Climate, 6:1957–1971.

216

http://publications.jrc.ec.europa.eu/repository/handle/111111111/13563
http://publications.jrc.ec.europa.eu/repository/handle/111111111/13563


Bibliography

Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008). Computer

calibration using high-dimensional output. Journal of American Statisti-

cal Association, 103:570–583.

Hobbs, W. R., Bindoff, N. L., and Raphael, M. N. (2015). New perspec-

tives on the observed and simulated Antarctica sea ice extent trend using

optimal fingerprinting techniques. Journal of Climate, 28:1543–1560.

Hogrefe, C., Rao, S. T., Zurbenko, I. G., and Porter, P. S. (2000). Interpret-

ing information in time series of ozone observations and model predictions

relevant to regulatory policies in the eastern united states. Bulletin of the

American Meteorological Society, 81:2083–2106.

JAICC (2005). A report to CCME: An update in the support of canada

wide standard for particulate matter (pm) and ozone. Technical re-

port, Joint Action Implementation Coordinating Committee. Available

at http://www.ccme.ca/ourwork/air.html?category_id=99, accessed

2013-09-12.

Jin, L., Harley, R. A., and Brown, N. J. (2011). Ozone pollution regimes

modeled for a summer season in California’s San Joaquin Valley: A cluster

analysis. Atmospheric Environment, 45:4707–4718.

Jolliffe, L. (2002). Principal Component Analysis, 2nd ed. Springer.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global op-

timization of expensive black-box functions. Journal of Global Optimiza-

tion, 13:455–492.

Jrrar, A., Braesicke, P., Hadjinicolaou, P., and Pyle, J, A. (2006). Trend

analysis of ctm-derived northern hemisphere winter total ozone using self-

consistent proxies: How well can we explain dynamically induced trends?

Quarterly Journal of Royal Meteorological Society, 132:1969–1983.

Kalenderski, S. and Steyn, D. G. (2011). Mixed deterministic statistical

modelling of regional ozone air pollution. Environmetrics, 22:572–586.

217

http://www.ccme.ca/ourwork/air.html?category_id=99


Bibliography

Kennedy, M. C. and O’Hagan, A. (2001). Bayesian calibration of computer

models (with discussion). Journal of the Royal Statistical Society, Series

B, 63:425–464.

Kleiber, W., Sain, S., Heaton, M., Wiltberger, M., Reese, C., and Bingham,

D. (2014). Parameter tuning for a multi-fidelity dynamical model of the

magnetosphere. Annals of Applied Statistics, 7:1286–1310.

Kohonen, T. (1982). Self-organized formation of topologically correct feature

maps. Biological Cybernetics, 43:59–69.

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE,

78:1464–1480.

Krzanowski, W. J. (1979). Between group comparison of principal compo-

nents. Journal of American Statistical Association, 74:703–707.

Le, N. D. and Zidek, J. M. (2006). Statistical Analysis of Environmental

Space-Time Process. Springer.

Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large-

dimensional covariance matrices. Journal of Multivariate Analysis,

88:365–411.

Li, S., Anlauf, K., Weibe, H., Bottenheim, J., and Pucket, K. (1994). Evalu-

ation of a comprehensive euclidean air-quality model with multiple chemi-

cal species measurement using principal component analysis. Atmospheric

Environment, 28:3449–3461.

Lindstrom, J., Szpiro, A. A., Sampson, P. D., Oron, A. P., Richards, M.,

Larson, T. V., and Sheppard, L. (2014). A flexible spatio-temporal model

for air pollution with spatial and spatio-temporal covariates. Environ-

mental and Ecological Statistics, 21:411–433.

Lippmann, M. (1989). Health effects of ozone. A critical review. Journal of

Air Pollution Control Association, 39:672–695.

218



Bibliography

Liu, L., Hawkins, D. M., Ghosh, S., and Young, S. S. (2003). Robust sin-

gular value decomposition analysis of microarray data. Proceedings of the

National Academy of Sciences, 100:13167–13172.

Liu, Z. (2007). Combining Deterministic and Statistical Methods in Modeling

Environmental Processes. PhD thesis, UBC.

Lorenz, E. D. (1956). Empirical orthogonal functions and statistical weather

prediction. Technical report, Statistical Forecast Project Report 1, Dept.

of Meteorology, M.I.T.

Marmur, A., Liu, W., Wang, Y. H., Russell, A., and Edgerton, E. S. (2009).

Evaluation of model simulated atmospheric constituents with observations

in the factor projected space: CMAQ simulations of SEARCH measure-

ments. Atmospheric Environment, 43:1839–1849.

Matheron, G. (1963). Principles of geostatistics. Economic Geology,

58:1246–1266.

Metro Vancouver (2012). Station information: Lowed Fracer Valley

air-quality monitoring network. Technical report, metrovancouver. Avail-

able at http://www.metrovancouver.org/services/air-quality/

emissions-monitoring/monitoring/network/Pages/default.aspx,

accessed 2013-06-23.

Metro Vancouver (2013). Lowed Fracer Valley air-quality report. Technical

report, metrovancouver. Available at http://www.metrovancouver.

org/services/air-quality/emissions-monitoring/monitoring/

reports/Pages/default.aspx, accessed 2013-06-23.

Monahan, A. H., Fyfe, J. C., Ambaum, M. H. P., Stephenson, D. B., and

North, G. R. (2009). Empirical orthogonal functions: the medium is the

message. Journal of Climate, 22:6501–6514.

North, G. R., Bell, T. L., Cahalan, R. F., and Moeng, F. J. (1982). Sam-

pling errors in the estimations of empirical orthogonal functions. Monthly

Weather Review, 110:699–706.

219

http://www.metrovancouver.org/services/air-quality/emissions-monitoring/monitoring/network/Pages/default.aspx
http://www.metrovancouver.org/services/air-quality/emissions-monitoring/monitoring/network/Pages/default.aspx
http://www.metrovancouver.org/services/air-quality/emissions-monitoring/monitoring/reports/Pages/default.aspx
http://www.metrovancouver.org/services/air-quality/emissions-monitoring/monitoring/reports/Pages/default.aspx
http://www.metrovancouver.org/services/air-quality/emissions-monitoring/monitoring/reports/Pages/default.aspx


Bibliography

Nychka, D., Wikle, C., and Royle, A. J. (2002). Multiresolution models

for nonstationary spatial covariance functions. Statistical Modelling: an

International Journal, 2:315–331.

Orsolini, Y. J. and Doblas-Reyes, F. J. (2003). Ozone signatures of climate

patterns over the euro-atlantic sector in the spring. Quarterly Journal of

Royal Meteorological Society, 129:3251–3263.

Pearson, K. (1902). On lines and planes of closest fit to systems of points

in space. Philosophical Magazine, 2:559–572.

Porter, P. S., Hogrefe, C., Gego, E., Foley, K., Goodwitch, J. M., and Rao,

S. T. (2010). Application of wavelet filters in an evaluation of photochem-

ical model performance. In Steyn, D. G. and Rao, S. T., editors, Air

Pollution Modeling and its Application XX, chapter 4, pages 415–420.

Springer.

Preisendorfer, R. W. (1988). Principal Component Analysis in Meteorology

and Oceanography. Elsevier.

Preisendorfer, R. W. and Barnett, T. P. (1983). Numerical model-reality

inter comparison tests using small-sample statistics. Journal of the At-

mospheric Science, 40:1884–1896.

Reuten, C., Ainslie, B., Steyn, D. G., Jackson, P. L., and McKendry, I.

(2012). The impact of climate change on ozone pollution in the Lower

Fraser Valley, BC. Atmosphere Ocean, 50:42–53.

Richman, M. B. (1986). Review article: Rotation of principal components.

Journal of Climatology, 6:293–335.

Robeson, S. M. and Steyn, D. G. (1990). Evaluation and comparison of

statistical forecast models for daily maximum ozone concentrations. At-

mospheric Environment, 24B:303–312.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. (1989). Design and

analysis of computer experiments (with discussion). Statistical Science,

4:409–423.

220



Bibliography

Salmond, J. A. and McKendry, I. G. (2002). Secondary ozone maxima in a

very stable nocturnal boundary layer: observations from the Lower Fraser

Valley, BC. Atmospheric Environment, 36:5771–5782.

Schonlau, M. and Welch, W. J. (2006). Methods for Experimentation in

Industry, Drug Discovery, and Genetics, chapter 14. Springer. Book

edited by Dean, A. and Lewis, S.

Seagram, A., Steyn, D. G., and Ainslie, B. (2013). Modelled recirculation

of pollutants during ozone episodes in the Lower Fracer Valley, B.C. In

Steyn, D. G. and Timmermans, R., editors, Air Pollution Modeling and

its Application XXII. Springer.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M.,

Duda, M. G., and Powers, J. G. (2008). Description of advanced research

WRF version 3. (technical report NCAR/TN-475+STR). Technical re-

port, National Centre for Atmospheric Research.

Steyn, D. G., Ainslie, B., Reuten, C., and Jackson, P. L. (2011). A ret-

rospective analysis of ozone formation in the Lower Fraser Valley, BC,

Canada. Available at https://circle.ubc.ca/handle/2429/36587, ac-

cessed 2014-10-15.

Steyn, D. G., Ainslie, B., Reuten, C., and Jackson, P. L. (2013). A retrospec-

tive analysis of ozone formation in the Lower Fraser Valley, BC, Canada.

part i: Dynamical model evaluation. Atmosphere Ocean, 51:153–169.

Steyn, D. G., Bottenheim, J. W., and Thomson, R. B. (1997). Overview

of the tropospheric ozone in the Lower Fraser Valley, and the Pacific ’93

field study. Atmospheric Environment, 31:2025–2035.

Storch, H. V. and Zwiers, F. W. (1999). Statistical Analysis of Climate

Research. Cambridge University Press.

Stull, R. B. (1988). An Introduction to Boundary Layer Meteorology.

Springer Books.

221

https://circle.ubc.ca/handle/2429/36587


Bibliography

Taylor, B. (1992). The relationship between ground-level ozone concentra-

tions, surface pressure gradients, and 850mb temperatures in the Lower

Fraser Valley of British Columbia. Technical Report PAES-92-3, Atmo-

spheric Issues and Service Branch, Pacific Region, Environment Canada.

Taylor, E. (1991). Forecasting ground-level ozone in vancouver and the

Lower Fraser Valley of British Columbia. Technical Report PAES-91-3,

Scientific Service Division, Pacific Region, Environment Canada.

Thiebaux, H. J. and Zwiers, F. W. (1984). The interpretation and estimation

of effective sample size. Journal of Climate and Applied Meteorology,

23:800–811.

Thompson, M. L., Reynolds, J., Cox, L. H., Guttorp, P., and Sampson, P. D.

(2001). A review of statistical methods for the meteorological adjustment

of tropospheric ozone. Atmospheric Environment, 35:617–630.

US Environmental Protection Agency (2010). MOBILE6 Vvehicle Emission

Modelling Software. Technical report, U.S.E.P.A. Available at http:

//www.epa.gov/otaq/m6.htm, accessed 2013-11-09.

Welch, W. J., Buck, R. J., Sacks, J., Wynn, H. P., Mitchell, T. J., and

Morris, M. D. (1992). Screening, predicting, and computer experiments.

Technometrics, 34:15–25.

WHO (2003). Health aspects of air pollution with particulate matter,

ozone and nitrogen dioxide. Technical report, WHO Regional Office for

Europe. Available at http://www.euro.who.int/en/health-topics/

environment-and-health/air-quality/publications/pre2009/

health-aspects-of-air-pollution-with-particulate-matter,

-ozone-and-nitrogen-dioxide, accessed 2013-09-13.

Willmot, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. S., Klink, K. E.,

Legates, D. R., O’Donnell, J., and Rowe, C. M. (1985). Statistics for the

evaluation and comparison of models. Journal of Geographical Research,

90:8995–9005.

222

http://www.epa.gov/otaq/m6.htm
http://www.epa.gov/otaq/m6.htm
http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/pre2009/health-aspects-of-air-pollution-with-particulate-matter,-ozone-and-nitrogen-dioxide
http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/pre2009/health-aspects-of-air-pollution-with-particulate-matter,-ozone-and-nitrogen-dioxide
http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/pre2009/health-aspects-of-air-pollution-with-particulate-matter,-ozone-and-nitrogen-dioxide
http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/pre2009/health-aspects-of-air-pollution-with-particulate-matter,-ozone-and-nitrogen-dioxide


Yarwood, G., Rao, S., Yocke, M., and Whitten, G. Z. (2005). The carbon

bond mechanism: CB05. Technical report, U.S. Environmental Protection

Agency.

Zidek, J., Le, N. D., and Liu, Z. (2012). Combining data and simulated data

for space-time fields: application to ozone. Environmental and Ecological

Statistics, 19:37–56.

223



Appendix A

Appendix Related to

Chapter 2

A.1 Details on Simulated Ozone Data

The aim is to emulate, in a simplified form, the space-time feature of west-

to-east ozone advection in LFV (Sections 3.1 and 3.4). This simulation

does not include the ozone process over the mountains. Simulation provides

space-time ozone data whose underlying structures and statistical properties

are known exactly; it also allows for repeated realizations of the same ozone

process. The usefulness of simulated data is demonstrated in Appendix B.1.

I simulate 3 types of space-time ozone data:

1. Simulated true ozone: this is the underlying true space-time process,

which in reality, is never known.

2. Simulated CMAQ output. This is created based on simulated true

ozone. Moreover, I simulate CMAQ output on a complete and regular

spatial grid as well as an irregular grid at the real-life observation

locations shown in Figure 2.1.

3. Simulated physical observations. These are simulated at locations

where real-life ozone monitoring stations are situated.

Simulated CMAQ output and physical observations are both generated by

adding error functions to the simulated true ozone. Temporally, the simula-

tions are created for a 24-hour period of 0000-2300 during an episode.

In this section, I will first present the method of generating the true LFV

ozone field, followed by the methods of generating synthetic CMAQ outputs
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and physical observations.

A.1.1 Simulated True Ozone Data

Before developing simulated data, I first define a few key variables:

• The usual geographical coordinate system of longitude-latitude is not

used. Although frequently used to identify locations on a 2-D plane,

they actually measure the angle of a location in reference to the merid-

ian and equator, and it is only necessary in large domain studies

where the curvature of the earth makes the horizontal and vertical

coordinates non-Cartesian. To avoid misunderstanding, self-defined

LFV is mapped onto a 2-D Cartesian coordinate system. The South-

west corner of the LFV is (x, y) = (0, 0) and the Northeast corner

is (x, y) = (100, 100). My formulas for generating simulated data

are based on this (x, y) Cartesian coordinate, x = 0, . . . , 100 and

y = 0, . . . , 100.

• The ozone generating functions are also time-dependent. Since the

simulation runs between 0000 to 2300, I define an hourly time variable

h, h = 0, . . . , 23, and transform functions f(h) and fT (h):

f(h) =

{
1.714 · h− 10.286 h = 6, . . . , 20

0 h = 0, . . . , 5 and 21, . . . , 23,

fT (h) =

{
0.333 · h− 1.667 h = 5, . . . , 20

0 h = 0, . . . , 4 and 21, . . . , 23.

The units of f(h) and fT (h) are both hour. The above formulation is

by no means necessary, these step-wise linear functions f(h) and fT (h)

are used to transform daily hour values h = 0, . . . , 23 into a series of

values (found by trial and error) convenient for simulating daily ozone

and temperature.
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Weather Variables

There are two weather variables built into the simulation: wind and temper-

ature. Wind represents the driving force behind the phenomenon of ozone

transportation. Here, I define a westerly wind system that transports the

ozone plume eastward (Taylor, 1991; Ainslie and Steyn, 2007) with a con-

stant speed of 3 m · s−1, below which is considered a light wind (Ainslie and

Steyn, 2007).

Temperature is an important factor controlling the rate of photochemical

reactions (Robeson and Steyn, 1990; Taylor, 1992; Reuten et al., 2012).

During a summer-time ozone episode, it has a diurnal profile similar to

Figure A.1. This curve is created using the equation

T (h) = {−[fT (h) · Uh]2 + 5 · fT (h) · Uh + 17} · UT , t = 0, . . . , 23,

where Uh = 1 · hour−1 to make the hourly function terms unitless and

UT = 1◦C to give T (·) an appropriate temperature unit. This function

allows for a season-appropriate minimum daily temperature of 17◦C during

the early-morning and the evening. The 2nd order term in turn creates

a concave downward function during the daytime with daily maximum of

23◦C occurring between noon and 1300.

Figure A.1: Simulated diurnal temperature profile.
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The Ozone Field

Let x and y range from 0 to 100, and h vary from 0 to 23. Equation (A.1)

produces a eastward-moving “Gaussian hill” that simulates daytime ozone,

tO(x, y, h) = {c(h) · exp

[
−
(
x− µx(h)

σx(h)

)2

−
(
y − µy(h)

σy(h)

)2
]

+ 15ppb}.

(A.1)

As I will show, the term c(h) has unit ppb, while (x − µx(h))/σx(h) and

(y − µy(h))/σy(h) are unit less. Together with the addition of the constant

15ppb, (A.1) produces ozone data with unit ppb.

It should be noted that Gaussian function (A.1) is used for the purpose

of generating simulation. It is a simplistic description of the more complex

real-life ozone process, and the use of gaussian spatial profile is a convenient

approximation.

Equation (A.1) contains a collection of time-dependent functions: c(h),

µx(h), µy(h), σx(h) and σy(h). The aforementioned wind and temperature

variables are incorporated into these functions, thus influencing the Gaussian

ozone function. Here are the details needed to construct (A.1).

• c(h) incorporates the diurnal temperature and ozone pattern, and acts

as a time-dependent scaling function in (A.1). It is described by the

function:

c(h) =

{
c0(h) T (h) ≤ 20◦C

1
20◦C · T (h) · c0(h) T (h) > 20◦C

T (h) is the aforementioned diurnal temperature profile. The stepwise

function scales the daily temperature values to 1 at T (h) ≤ 20◦C and

to values above 1 at T (h) > 20◦C using 20◦C−1. The scaled hourly

temperatures are then applied to (A.1).

c0(h) depends on time as:

c0(h) = 24ppb ·
{

1 +
−[f(h) · Uh]2 + 24f(h) · Uh − 48

48

}
,
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where f(h) and Uh are already defined hourly function and its unitless

scalar. The constant 24ppb gives the scaling function c(h) a desired

diurnal profile and a unit of ppb. By definition, c0(h) is 0 when f(h) =

0. In turn, c(h) becomes 0 and the equation (A.1) will take a minimum

background ozone of 15ppb. This takes place between late evening

and early morning. c(h) takes positive values during 0600-2000. The

diurnal profile of c(h), h = 0, . . . , 23, is shown in Figure A.2.

Figure A.2: Simulated diurnal profile of c(h), the time-dependent scaling
factor in (A.1).

• µx(h) and µy(h) are the locations of the maximum of the Gaussian

hill along the x-axis and y-axis, i.e., the hourly location of the highest

ozone concentration. Making these vary by the hour will enable the

ozone field to travel in any direction as the day goes by. In order to

mimic the commonly observed ozone movement in the LFV, µy(h) is

fixed at the middle of the y-range: µy = 50 for h = 0, . . . , 23. As the

map in Figure 2.1 shown, the LFV’s vertical extent is less than the

horizontal extent. Because I specified both location variables x and

y to range from 0 to 100, it is not sensible to let both have the same

unit. Here, I let x have unit kilometre (km) and y have an arbitrary

distance unit Uy. The units of x and y are not critical since both

(x− µx(h))/σx(h) and (y − µy(h))/σy(h) terms are unitless.
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Moreover, letting µx(h) increase during daytime would simulate an

eastward ozone movement. Conversely, a decreasing µx(h) translates

to a westward ozone movement. µx(h) has form

µx(h) = Wind · Uw · f(h) + 24 · km.

As discussed, the parameter Wind is fixed at 3m/s, together with

a positive sign, it corresponds to an eastward ozone movement at a

constant speed of 3m/s. The constant Uw = 3.6(km · s)/(hour · m)

transforms the wind parameter into unit kilometres per hour (km ·
hour−1). The larger the parameter Wind, the faster the simulated

ozone plume travels. Multiplied by f(h), an hourly variable with unit

hour, I obtain a distance unit km for the µx(h).

An additive term of 24 ·km results in µx(7) ≈ 30km, i.e., the centre of

ozone formation at 0700 takes place near x = 30km, the approximate

centre of Vancouver city in this simulated LFV.

• σx(h) and σy(h) are time-varying spatial values that control the “spread”

of the Gaussian field in x and y orientations. Observations and mod-

ellings show that the spatial variation is larger from East to West than

North to South, so σx(h) > σy(h) for h = 0, . . . , 23. I define them as

time-dependent 2nd order functions:

σy(h) = 24 ·
{

1 +
24f(h)Uh − [f(h)Uh]2

144

}
· Uy and

σx(h) = (1.5km) · (σyU−1y ).

A quick explanation of unit constants: Uy is the aforementioned dis-

tance unit of y, the constant 1.5km in the second equation gives σx a

unit of km.

In summary, the defining characteristics of the simulated true ozone data

are easily summarized by understanding the temporal functions c(h), µx(h),

µy(h), σx(h) and σy(h). The scaling function c(h) incorporates diurnal tem-

perature and ozone trend to increase or decrease the spatial ozone levels at
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the appropriate hours. The means µx(h) and µy(h) incorporate the wind

information to transport the simulated ozone field with the appropriate di-

rection and speed (ozone advection). The mean functions also define the

hourly locations of high ozone concentrations. Finally, the spatial devia-

tion functions σx(h) and σy(h) control how widely the hourly ozone field is

spread along the East-West and North-South orientations.

All functional coefficients and scale values were determined following ex-

tensive fine-tuning. Figures A.3 and A.4 show for selected hours, the spatial

ozone field of the simulated true data. The simulated data are produced

over a spatial grid of 51 × 51 (horizontal×vertical) cells, hence the ozone

data shown have dimension 24× 2601.

A.1.2 Simulated CMAQ Output and Observation

The CMAQ model output and physical observation are commonly regarded

as functions of the true underlying ozone level tO(x, y, h) with an additive

random error (Kennedy and O’Hagan, 2001; Fuentes and Raftery, 2005). If
cO(x, y, h) and oO(x, y, h) are the simulated CMAQ output and observation

respectively at location (x, y) and time h, they are expressed by the formulas:

cO(x, y, h) = fcmaq[
tO(x, y, h)] and (A.2)

oO(x, y, h) = tO(x, y, h) + εo,

where εo is independent random error of observation. Although the ob-

served value is often treated as the “true” ozone level when judging against

air-quality model output, random measurement error (εo) is in reality un-

avoidable. The task of ozone monitoring may further be complicated by a

host of factors. However, in general it is sufficient to regard physical mea-

surement as the sum of true value and an additive error (Dennis et al.,

2010). Observations are simulated at the actual observation locations: I

transformed the longitude-latitude of ozone monitoring sites onto the 2-D

(x, y) coordinate system of simulated true ozone field.

The procedure for simulating a space-time CMAQ output is more in-

volved. First, one needs to conceptualize the real-life relationship between
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(a) Hours 0400 and 0700.

(b) Hours 1000 and 1300.

Figure A.3: Simulated true ozone fields at hours 0400, 0700, 1000 and 1300.

observation and corresponding (in space and time) CMAQ model output.

Figure A.5 plots observations against CMAQ using data from June 26th,

2006, the 4th day of the 2006 ozone episode at all observation locations.

The middle diagonal line is x = y, the other two lines are x = 0.5 · y and

x = 2 · y. CMAQ output are interpolated on the locations of the physical

measurements as described in Section 2.2.
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Figure A.4: Simulated true ozone fields at hours 1600 and 1900.

The goal is to simulate the slightly downward concave pattern seen in

Figure A.5. After some trial and error, the detailed formulation of cO(x, y, h)

in (A.2) is determined to be

cO(x, y, h) = fs[δ(x, y, h)] · δ(x, y, h), where (A.3)

δ(x, y, h) = |tO(x, y, h) + εc|, εc ∼ N(µc, σ
2
c ), and

fs[δ(x, y, h)] = af sδ(x, y, h)2 + bf sδ(x, y, h) + 1.02,

where af s = −1.25 · 10−4
1

ppb2 , bf s = 6.74 · 10−3
1

ppb
.

The function δ(x, y, h) ≥ 0 ppb is the absolute value of the sum: true

simulated ozone plus random error. The εc is the random additive error of

CMAQ, it has unit ppb.

In order to capture aforementioned CMAQ behaviour into the simulated

data, I use multiplicative scaling function fs[δ(x, y, h)] in (A.3), which pro-

duces scaling factors for cO(x, y, h). A plot of scaling factors against a range

of δ(x, y, h) is shown in Figure A.6. Values of fs[δ(x, y, h)] start above 1 at

δ(x, y, h) = 0 and drop below 1 when δ(x, y, h) reaches higher ozone lev-

els. Such scaling profile helps to simulate the concave pattern in Figure

A.5. Note that the constants af s and bf s in the scaling function have units
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Figure A.5: CMAQ output vs. observation for June 26th, 2006, the 4th day
of 2006 ozone episode.

that make fs[δ(x, y, h)] unit less, which gives cO(x, y, h) a unit ppb when

multiplied by δ(x, y, h).
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Figure A.6: fs[δ(x, y, h)] (scaling term in (A.3)) plotted against δ(x, y, h).

Lastly, one need define the parameters of the random errors: εo ∼
N(0, σ2o) and εc ∼ N(µc, σ

2
c ). Table A.1 lists the parameter values, which
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are based on the grand mean of the simulated true data:

Z̄ =
1

24 · 100 · 100

23∑
h=0

100∑
x=1

100∑
y=1

tO(x, y, h) = 31.5ppb.

In keeping with the knowledge of CMAQ deficiency in low-concentration

ozone modelling, the mean and variance of random errors increase when
tO(x, y, h) ≤ 30ppb.

σ2o µc(
tO(x, y, h) > 30ppb) σ2c (

tO(x, y, h) > 30ppb)

values 0.20 · Z̄ 0.1 · Z̄ 0.25 · Z̄
µc(

tO(x, y, h) ≤ 30ppb) σ2c (
tO(x, y, h) ≤ 30ppb)

values 0.1 · Z̄ + 2 · ppb 0.25 · Z̄ + 3 · ppb

Table A.1: Parameter values used for generating additive errors in simulated
CMAQ and observation.

Figure A.7b plots the simulated CMAQ against the simulated observa-

tions, the same plot using the real data is shown again for convenience in Fig-

ure A.7a. The percentage of points lying within the bounds are around 70%

for both simulation and real data. As seen from the “scatter patterns”, the

simulations captured the main characteristics of the “real” CMAQ outputs

and observations. Figure A.8 shows the same scatter plot of the simulated

CMAQ against observations, where the CMAQ is simulated without the use

of scaling function fs[δ(x, y, h)] in (A.3). It is noticeable that without the

scaling factors, the simulated CMAQ output no longer capture the impor-

tant “concave relationship” with the observations, indicating the importance

of fs[δ(x, y, h)] as a part of simulation procedure.

The simulated ozone observations are not used in ozone PCA. Due its

straightforward relationship with true ozone, observations are simulated to

provide reference points for the formulation of (A.3) (method of simulating

CMAQ output).

234



A.1. Details on Simulated Ozone Data

0 20 40 60 80 100

0
20

40
60

80
10
0

June 26th, 2006

Observed ozone (ppb)

C
M

A
Q

 o
ut

pu
t (

pp
b)

(a) CMAQ output vs. observation for June 26th, 2006, the 4th day of 2006
ozone episode (repeated from Figure A.5).
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(b) Simulated CMAQ vs. simulated observation.

Figure A.7: Scatter plots for assessing “similarities” between the real data
and simulated data.
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Figure A.8: Plot of simulated CMAQ vs. simulated observation, where the
CMAQ data are simulated without the use of scaling function fs[δ(x, y, h)].
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Appendix B

Appendix Related to

Chapter 3

B.1 Analyses of Simulated (Synthetic) Ozone

Field

This appendix section presents the simulation-based analysis that deter-

mines the number of meaningful ozone features, this analysis was quickly

summarized in Section 3.3. This simulation analysis is based on the repeated

generations of simulated (synthetic) CMAQ data described in Appendix A.1,

and it proceeds as follow:

1. Generate two sets of synthetic space-time CMAQ outputs: one dataset

is used as the “modelling set” and the other the “testing set”, which

I denote as Omodel and Otest.

2. The “modelling set” is subjected to PCA, and the output EOFs and

PCs are used to build ozone predictions for Otest via (3.3):
∑p

j=1 Pj ∗
ET
j for p = 1, p = 2 and so forth. That is, make predictions for Otest

using increasing number of Ej ’s and Pj ’s decomposed form Omodel.

Moreover, these simulations are generated with dimension n× t. This

step also shortens the simulation time: OT
modelOmodel has dimension

t× t instead of n× n, where it is usually n > t in a synthetic data.

3. Predictions with p = 1, . . . , 6 are evaluated against the simulated “test-

ing set” Otest and their Root Mean Squared Errors (RMSEs) are cal-

culated.

4. Repeat the above 3 steps. I chose a repetition size of 500.
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B.1. Analyses of Simulated (Synthetic) Ozone Field

This simulation exercise is designed around the idea that ozone data

simulated using exactly the same simulation parameters are multiple real-

izations of the same process. In other words, these simulated CMAQ fields

are driven by a common ozone formation-circulation mechanism, and any

differences between simulations are purely due to random noise. Adding

more EOFs to (3.3) increases the prediction quality for the modelling set

as more underlying ozone feature and patterns (data components) are used.

However, notice that the EOFs from one simulation are used in (3.3) to

predict another simulation, and it can be argued that after a certain point,

the act of adding EOFs into (3.3) will cease to be beneficial and the predic-

tion quality for the testing set will deteriorate. Since EOFs are noise after

a few spatially or temporally “meaningful” ones, adding additional EOFs is

tantamount to using one set of noise to predict another set of noise, and the

modelling quality subsequently suffers. The transition between “beneficial”

to “detrimental” is the p value to choose in (3.3), as it signals that additional

EOFs no longer represent useful ozone features.

Each simulation produces 6 RMSEs, denoted as RMSEj , j = 1, . . . , 6.

With a simulation size of 500, there are 500 sets of (RMSE1, . . . ,RMSE6),

and subsequently the differences (RMSE1−RMSE2, . . . ,RMSE5−RMSE6).

I use these RMSEj −RMSEj+1 samples to determine the number of “use-

ful” EOFs/PCs. Figure B.1 shows the histograms of eachRMSEj−RMSEj+1

and Table B.1 shows the 95% confidence intervals of the means of RMSEj−
RMSEj+1’s, which are calculated as

Sample Mean(RMSEj −RMSEj+1) +

1.96 · Sample Std.deviation(RMSEj −RMSEj+1)√
n

.

The histograms in Figure B.1 are approximately Normally distributed, hence

I used the multiplier +1.96 that defines a 95% confidence region of a Normal

distribution. As shown, the RMSEj −RMSEj+1 start to become negative

at j = 3. The range of RMSEj−RMSEj+1 is completely negative at p = 4,

implying that a model with 4 EOFs is worse than that with 3 EOFs.

238
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Using our simulated CMAQ fields as the reference data, analyses in this

subsection show that at p = 3, EOFs/PCs begin to capture less-structured

patterns. From p = 4 onward, the EOFs/PCs extracted from our simulated

CMAQ fields begin to be dominated by random noise.

Lower bound Upper bound

RMSE1 −RMSE2 0.09 0.24
RMSE2 −RMSE3 -0.03 0.11
RMSE3 −RMSE4 -0.32 -0.19
RMSE4 −RMSE5 -0.31 -0.18
RMSE5 −RMSE6 -0.28 -0.18

Table B.1: Table of estimated 95% confidence intervals for the means of
RMSEj −RMSEj+1’s.

Figure B.1: Histograms of RMSEi −RMSEi+1 from simulation.

B.2 Plots of Ej from Column-centered Ozone

Data and Rotated-Ej

Figure B.2 compares the Ej (left), j = 2, 3, 4, decomposed from Ot×n to

Ecentre
j from column-entered ozone data of orders j = 1, 2, 3. Figure 3.9 in
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Section 3.4 showed that E1 from original data captures the spatial variation

of LFV’s temporal ozone mean. Subtracting the mean from each location

results in Ecentre
1 no longer capturing said mean feature. As Figure B.2

shown, spatial features captured by Ecentre
j is similar to Ej−1. Hence, the

PCA of column centred data extracted similar feature as PCA of original

data, albeit the feature rank j is one order lower.

Figure B.2: Comparison plots between the Ej from the PCA of original
Ot×n (left) and column-centered ozone data (right). The EOF orders are
j = 2, 3, 4 for the original data and j = 1, 2, 3 for the centered data. The
ozone data is the CMAQ output for the entire 96 hours of the 2006 episode.

Figures B.3 shows the time-series of hourly LFV ozone means and stan-

dard deviations of the 2006 CMAQ output, along with Pcentre
j , j = 1, . . . , 4,

obtained from the PCA of column-centered data (the 2006 CMAQ output).

Figure B.4 shows the same-ordered Pj from the original data. The 1st-

order temporal feature captures the time-series pattern of the hourly LFV

mean with PC values ranging from negative to positive. This shows that the

subtraction of the mean field will retain the structure of the hourly spatial
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B.2. Plots of Ej from Other PCA Methods

ozone mean. The space-time feature Pcentre
1 (Ecentre

1 )T is not the dynamic

east-west contrast captured by P2E
T
2 (Section 3.4): it shows the pattern

of Ecentre
1 scaled positive during the daytime and negative at night, where

the magnitude of ozone values (in both negative and positive direction) are

higher for the western LFV. The dynamic patterns of Pcentre
j (Ecentre)Tj ,

j ≥ 2, reflects those of PjE
T
j at j ≥ 3.
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Figure B.3: From the PCA of centered ozone data: plots of hourly LFV
ozone mean, standard deviation and Pj , j = 1, . . . , 4. The number in PC
plot headings indicate the proportion of data variation each feature recovers.
The ozone data is the CMAQ output for the entire 96 hours of the 2006
episode.

Figure B.5 compares the original Ej , j = 1, . . . , 4, to VARIMAX rotated

EOFs of the same order. The EOF rotation is done for Ej , j = 1, . . . , 4,

simultaneously; the Ej ’s of orders j ≥ 5 remain unrotated. As shown, the

rotated-E1 captures a spatial ozone pattern with region of positive spatial

weights around the middle LFV with maximum at Maple Ridge, and ar-

eas of negative spatial weights at two edges of LFV. When multiplied by

corresponding P1, which is strictly positive, the dynamic spatial pattern

(not shown) captures a daily peak around middle of LFV during afternoon

(1400PST to 1600PST) and negative peak at edges of LFV during the same

afternoon hours. After rotations, EOFs of orders j = 2, 3, 4 revealed a sim-
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Figure B.4: From PCA of original ozone data: plots of hourly LFV ozone
mean, standard deviation and Pj , j = 1, . . . , 4. The number in PC plot
headings indicate the proportion of data variation each feature recovers.
The ozone data is the CMAQ output for the entire 96 hours of the 2006
episode.

ilar spatial features as un-rotated Ej ’s (Figure B.5). We also experimented

with data from other episodes, data with different sized spatial domains and

various orders of VARIMAX rotation (how many Ej to rotate). It was found

that for the particular LFV ozone data under analysis, rotated EOF did not

provide clear advantage in interpretability compared to regular EOFs.
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Figure B.5: Comparison plots between the original (left) and VARIMAX
rotated (right) Ej , j = 1, . . . , 4. The VARIMAX rotation is done for the 1st
4 Ej ’s only. The dataset is the CMAQ output for the entire 96 hours of the
2006 episode.
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Appendix C

Appendix Related to

Chapter 4

C.1 PCA of Meteorological and Chemical

Precursor Variables

This section shows the spatial-temporal ozone means and standard devia-

tions, as well as PCA outputs Ej ’s and Pj ’s of ozone model variables. They

are space-time data of: temperature, wind speed, planetary boundary layer

height, NOx and VOC emission rates and antecedent concentrations.

• NOx: The 1st EOF captures the structures and variations of both

the field of means and standard deviations of NOx emission (Figure

C.1a). The 3rd EOF shows a well-defined spatial structure, albeit with

less interpretability. The 2nd and 4th EOFs both have spatial fields

that show little variation. The 1st PC reflects the temporal patterns

of both hourly spatial means and standard deviations (Figure C.1b).

Note the double peak of NOx production at morning and afternoon,

illustrating how emissions are distributed inside SMOKE. The first PC

alone accounts for about 98% of data variation, although the higher-

order PCs still represent noticeable temporal patterns.

• Temperature: The 1st and 2nd EOF capture the spatial patterns of

the episodic means and standard deviations (averaged across 96-hours

of the episode, Figure C.2a). The 3rd EOF shows a spatial pattern re-

flecting the topography of my self-defined LFV: it captures the spatial
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C.1. PCA of GP Model Variables

contrast in temperature between the “valley floor” and the mountain-

ous region. The first 3 PCs show distinctive diurnal hourly patterns.

It seems that the 2nd and 3rd PCs each capture a specific feature of

the hourly spatial standard deviation of temperature (Figure C.2b).

• Wind speed: The 1st EOF and 2nd EOF have near identical spa-

tial distributions to the data means and standard deviations (Figure

C.3a). Like temperature, the 3rd EOF shows a spatial pattern akin

to the topography of the LFV. The 1st PC as usual, reflects the time-

series of the hourly wind speed averaged across space (Figure C.3b).

When examined closely, the 2nd PC is inversely related to the hourly

pattern of spatial standard deviation. The later PCs also capture clear

temporal structures. Together, the first 3 EOFs/PCs are responsible

for over 95% of data variation.

• Boundary layer height: The spatial fields of means and standard

deviations have patterns that are very similar, both of which are cap-

tured by the 1st EOF (Figure C.4a). The diurnal patterns of the 1st

PC and the hourly spatial means (Figure C.4b) closely resemble the

1st-order temperature feature (Figure C.2b). Higher order EOFs and

PCs also exhibit discernible spatial and temporal patterns.

• Antecedent NOx: As with NOx emission, the spatial fields of episodic

means and standard deviations have similar pattern, and it is captured

by the 1st EOF (Figure C.5a). The diurnal patterns of hourly spa-

tial means and standard deviations are similar: they peak early in

the morning, then decreases significantly during the daytime before

recovering late in the afternoon (Figure C.5b). This indicates that the

peak of photochemical reaction, thus NOx consumption, takes place

during daytime, whereas morning and night-time are times for NOx

deposition. As with all aforementioned model variables, the higher-
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order data features decomposed from the antecedent NOx data display

strong spatial and temporal structures.

• VOC emission rate and antecedent VOC: The conclusions are

similar to those for NOx emission and antecedent NOx concentration

(Figures not shown).

As one might expect, without centering (or standardizing) the space-

time data, the spatial/temporal mean and standard deviation become the

dominant features. Once again, I do not perform centering or standardiza-

tion on the data because my goal is to analyze the most important data

features. For all model variables, the first 3 EOF-PC pairs capture over

90%, or in certain cases, close to 100% of data variation. Hence the full

covariate set of ozone feature models contain the first 3 EOFs/PCs of all 7

variables.
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(a) From the NOx emission data for the 2006 CMAQ ozone (SMOKE output):
plots of the spatial fields of means, standard deviations and the first four EOFs.

(b) From the NOx emission data for the 2006 CMAQ ozone (SMOKE output):
plots of hourly spatial means, standard deviations and the first four PCs. The
value in the PC plot heading indicate the proportion of data variation explained.
The dashed line indicate the hour 0000 of each day.

Figure C.1: Spatial and temporal feature plots of NOx emission rates asso-
ciated with the 2006 CMAQ output
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(a) From the temperature data for the 2006 CMAQ ozone (WRF output): plots of
the spatial fields of means, standard deviations and the first four EOFs.

(b) From the temperature data for the 2006 CMAQ ozone (WRF output): plots of
hourly spatial means, standard deviations and the first four PCs. The value in the
PC plot heading indicate the proportion of data variation explained. The dashed
line indicate the hour 0000 of each day.

Figure C.2: Spatial and temporal feature plots of temperature associated
with the 2006 CMAQ output
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(a) From the wind speed data for the 2006 CMAQ ozone (WRF output): plots of
the spatial fields of means, standard deviations and the first four EOFs.

(b) From the wind speed data for the 2006 CMAQ ozone (WRF output): plots of
hourly spatial means, standard deviations and the first four PCs. The value in the
PC plot heading indicate the proportion of data variation explained. The dashed
line indicate the hour 0000 of each day.

Figure C.3: Spatial and temporal feature plots of the wind speed associated
with the 2006 CMAQ output
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(a) From the data of BL height for the 2006 CMAQ ozone (WRF output): plots of
the spatial fields of means, standard deviations and the first four EOFs.

(b) From the data of BL height for the 2006 CMAQ ozone (WRF output): plots of
hourly spatial means, standard deviations and the first four PCs. The value in the
PC plot heading indicate the proportion of data variation explained. The dashed
line indicate the hour 0000 of each day.

Figure C.4: Spatial and temporal feature plots of the boundary-layer (BL)
height associated with the 2006 CMAQ output.
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C.1. PCA of GP Model Variables

(a) The antecedent NOx concentration data associated with the 2006 CMAQ out-
put: plots of the spatial fields of means, standard deviations and the first four
EOFs.

(b) The antecedent NOx concentration data associated with the 2006 CMAQ out-
put: plots of hourly spatial means, standard deviations and the first four PCs. The
value in the PC plot heading indicate the proportion of data variation explained.
The dashed line indicate the hour 0000 of each day.

Figure C.5: Spatial and temporal feature plots of the antecedent NOx con-
centration data associated with the 2006 CMAQ output.
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C.2 Prediction Bias of Feature-Based Ozone

Model

Table 4.5 showed Mean Percentage Errors. Due to not taking the abso-

lute values of prediction residuals, positive errors offset the negative errors.

Hence MPE can be viewed as a rough measurement of prediction bias. The

MPE results show that the ozone predictions are close to unbiased during

the day-time, but the bias becomes more pronounced towards the night-

time. At 1900PST, the mean prediction residual is −5 ppb for the CII model

and −7 ppb for the VM model. The residual means for both models gradu-

ally increase as the night progresses, while they are close to 0 during earlier

hours.

In addition to the discussed “lack-of-accuracy in night-time PC predic-

tions”, I suspect there is also the issue of ozone prediction bias. As discussed,

the predictions of each ozone features are unbiased owing to the application

of BLUP. However, as I will now show, the use of equation (4.13) entails

that the ozone field prediction is biased.

Let Ei,j denote i-th element of Ej and Ph,j be h-th element of Pj , hence

the ozone prediction at the i-th location and h-th hour of my self-defined

modelling region is

Ôh,i =

p∑
j=1

P̂h,jÊi,j ,

where p = 3, h = 1, . . . , 24 and i = 1, . . . , 229.

Here, the “hat” notation indicates an estimate. The issue is that Ôh,i is

a statistically biased prediction of Oh,i. This conclusion can be verified by
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expanding the covariance equation between Ei,j and Ph,j :

Cov (Ph,j , Ei,j) = E [(Ph,j − E (Ph,j))(Ei,j − E (Ei,j))]

= E (Ph,jEi,j)− E (Ph,j)E (Ei,j) ⇒

E (Ph,jEi,j) = E (Ph,j)E (Ei,j) + Cov (Ph,j , Ei,j) and similarly

E (P̂h,jÊi,j) = E (P̂h,j)E (Êi,j) + Cov (P̂h,j , Êi,j)

I have established unbiasedness of ozone feature predictions, E (Êi,j) =

E (Ei,j) and E (P̂h,j) = E (Ph,j). Therefore, space-time ozone predictions

P̂jÊ
T
j ’s become unbiased predictors by adding a correction term:

Cov (Ph,j , Ei,j)− Cov (P̂h,j , Êi,j).

That is, the covariances of all EOF-PC pairs between elements of Ej ’s and

Pj ’s subtract by covariances of their corresponding predictions. The resul-

tant unbiased ozone prediction function is

{Ôh,i}unbiased =

p∑
j=1

{P̂h,jÊi,j − Cov (P̂h,j , Êi,j) + Cov (Ph,j , Ei,j)}, (C.1)

and it can be shown that for each j,

E [(P̂h,jÊi,j)unbiased] = E (P̂h,jÊi,j)− Cov (P̂h,j , Êi,j) + Cov (Ph,j , Ei,j)

= E (P̂h,j)E (Êi,j) + Cov (Ph,j , Ei,j)

= E (Ph,jEi,j).

For any j-th EOF/PC, Cov (Ph, Ei) is not the covariance between lo-

cation i and time h. Rather, it is the covariance between the i-th element

of an EOF and h-th element of the corresponding PC: it measures the co-

variance between the spatial feature at a particular location Ei,j and the

temporal feature at a particulate hour Ph,j . Similar interpretation can be

made for the covariance Cov (P̂h,j , Êi,j). Using the data at hand, I devised

a way of estimating the covariances between all 24× 229× 3 = 16488 pairs
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of {Ph,j , Ei,j} and corresponding {P̂h,j , Êi,j}.

Re-sampling Method

Given ozone data of dimension t × n, one can only extract one pair of

{Ph,j , Ei,j}. To obtain a sample for any pair of {Ph,j , Ei,j}, one may re-

peatedly sample from the complete t×n data to construct subsamples. For

each subsample, decompose and extract {Ph,j , Ei,j}. The detailed imple-

mentation preceeds as follow:

1. Create a subsample from the complete t × n ozone data. To create a

sample of any particular pair of {Ph,j , Ei,j}, include dataset on lo-

cation i at hour h in every subsample. Remember that after the

EOF-decomposition of Ot×n, row i in E corresponds to the EOFs

(summarized spatial data) for location i, and row h of P is the PC

at hour h. By decomposing a subsample, I can acquire Ei,j and

Ph,j , for all j = 1, . . . , 3, from the appropriate rows of Esubsample and

Psubsample. Hence from one subsample, I obtain exactly one EOF-PC

pair {Ph,j , Ei,j} between location i and h at j = 1, 2, 3.

Repeating the above for multiple subsamples that include the data

point at location i and hour h, I obtain a sample of {Ph,j , Ei,j}. Sample

covariance is then used for estimating all corresponding Cov (Ph,j , Ei,j)’s

at j = 1, 2, 3.

2. Repeat step 1 for every i = 1, . . . , n and h = 1, . . . , t. In the end, I have

the sample covariances of all (Ph,j , Ei,j)’s , i = 1, . . . , n, h = 1 . . . , t

and j = 1, 2, 3. Here, I let n = 229 (defining the the LFV modelling

region), and t = 24, based on the assumption that EOF-PC correlation

is a type of diurnal behaviour.

The dimension of each resampled-data and the number of repetitions

are determined through experimentation.

The 24 × 229 sampled ozone data are obtained by separating the 48-hour

ozone training set into two daily 24 × 229 data, then average them across

254



C.2. Prediction Bias of Feature-Based Ozone Model

the same hour of the day h and location i.

Following the procedure, I can collect all 3×229×24 covariance estimates

into j = 3 number of 24× 229 “EOF-PC covariance matrix”, where element

(h, i) in j-th matrix contain the sample estimation of Cov (Ph,j , Ei,j).

For estimating the covariance Cov (P̂h,j , Êi,j), I propose to implement the

aforementioned sampling method on the 24 × 229 data of ozone forecasts:∑
P̂jÊ

T
j . Subsequently, one may collect the estimated covariances into cor-

responding j = 3 covariance matrices of Cov (P̂h,j , Êi,j), where i = 1, . . . , 229

and h = 1, . . . , 24.

In the end, by adding the two types of covariance matrices to match-

ing PjE
T
j via (C.1), one obtains sample based covariance-corrected ozone

predictions.

Results of Correcting Ozone Prediction Bias

As the analyses below show, biased prediction is not an issue during the all-

important day-time ozone modelling. During night-time modelling, covariance-

corrected predictions do induce a level of “localized spatial variations” at

the right locations. However, at a regional level, these fine spatial variations

introduce a fair amount of noise into the modelled ozone field.

First, I made space-time ozone forecasts using only the first two EOFs

and PCs: Ôt×n = P̂1Ê
T
1 + P̂2Ê

T
2 . As the results at 1400PST in Figure C.6

shown, with only 2 predicted space-time features and no bias correction, the

daytime ozone fields are still well-forecasted. The bottom plots in Figure C.6

show that a noticeable lack of prediction quality emerges at night-time. This

is because the P1E
T
1 and P2E

T
2 capture the underlying spatial-temporal

mean structures and “daytime” ozone features.

Also shown in Figure C.6, are predictions from two types of improvement

scheme: (1) adding the 3rd space-time component P̂3Ê
T
3 , and (2) apply the

bias-correction covariance matrices. The first method gives the model I

had in Section 4.7. As for the bias-correction method, there is evidence

that by correcting for prediction bias, the night-time prediction quality is

improved by the addition of detailed spatial ozone variations at appropriate
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locations. However, the improvement is not as drastic as the method 1:

using additional ozone feature forecasts P̂3Ê
T
3 (Figure C.6). Furthermore,

I am inclined to conclude that, since little prediction bias exists during the

daytime, there is no practical reason for the application of covariance-based

correction terms.

In summary, the addition of P̂3Ê
T
3 into the space-time ozone forecast

Ôt×n improves the quality of night-time prediction without inducing unnec-

essary “local spatial noise” into the modelled ozone fields. These results

indicates that, the statistical ozone model’s issue with night-time modelling

is attributed more to not modelling higher-order ozone features; less to the

presence of prediction bias. In the end, I believe the issue of prediction bias

should be approached given one’s particular research focus. In my case,

the importance of day-time ozone (or daily 8-hour maximum) coupled with

relevant modelling results inform my decision to forgo the application of

EOF-PC covariances for bias-correction.
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Figure C.6: Hours 1400 and 2100 of June 26th, 2006 (the predictive set):
3-D spatial ozone fields of true CMAQ output (upper-left), prediction made
by the VM model with 2 and 3 sets of predicted EOFs/PCs (upper-right
and lower-left), the lower-right plots shows the bias-corrected version of the
VM model prediction made with 2 sets of EOFs/PCs.
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