
Whose Cache Line Is It Anyway?

Automated Detection of False Sharing

by

Mark Anthony Spear

B.S.E., Princeton University, 2008

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

August 2015

c© Mark Anthony Spear 2015

Abstract

The abstraction of a cache is useful to hide the vast difference in speed of

computer processors and main memory. For this abstraction to maintain

correctness, concurrent access to memory by different processors has to be

coordinated such that a consistent view of memory is maintained.

Cache coherency protocols are responsible for this coherency, but can

have adverse implications for performance. The operational granularity of

these protocols is a “cache line” (e.g. 64 bytes). Depending on the data

contained in the cache line and the data’s access patterns, the coherence

can be superfluous and the performance implications severe: Consider the

case where each byte within a cache line is exclusively read and written by

specific cores and no coherence between cores should be necessary.

My collaborators and I developed a system which detects this phe-

nomenon, known as false sharing, (my thesis), and present a system that

can automatically rewrite programs as they are running to avoid the per-

formance penalty. Some parallel programming benchmarks such as linear

regression can see up to 3x-6x performance improvement.

ii

Preface

This thesis presents work done in part of a larger system built in collabora-

tion with Mihir Nanavati, Nathan Taylor, Shriram Rajagopalan, Dutch T.

Meyer, William Aiello, and Andrew Warfield. It has been published as a

paper entitled “Whose Cache Line is it Anyway: Operating System Support

for Live Detection and Repair of False Sharing”, in the proceedings of the

8th European Conference on Computer Systems (EuroSys 2013)[22].

Chapter 4 describes the architecture of the entire system and has been

designed collectively with Mihir Nanavati, Nathan Taylor, Shriram Ra-

jagopalan, Dutch T. Meyer, William Aiello, and Andrew Warfield. The im-

plementation of the page granularity analysis (Section 4.2.2) belongs to Mi-

hir Nanavati, the byte-level analyis (Section 4.2.3) to Shriram Rajagopalan

and Mihir Nanavati, and the final diagnosis (Section 4.2.4) to the author

and Mihir Nanavati.

The remapping technique described in Section 4.2.5 belongs to Nathan

Taylor and Mihir Nanavati, and has also been published as Cachekata: Mem-

ory Hierarchy Optimization via Dynamic Binary Translation[26].

The integration of the performance counters (Section 4.2.1) into Xen and

CCBench (Section 5.3) have been implemented in collaboration with Mihir

Nanavati.

All other parts of this thesis, unless specified otherwise, are the work of

the author.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

Glossary . viii

Acknowledgements . ix

Dedication . x

1 Introduction . 1

2 Background . 3

2.1 Cache Coherence and False Sharing 3

2.1.1 Cache Coherence on the x86 Architecture 5

2.1.2 A Concrete Example of False Sharing 6

2.1.3 Significance . 8

2.2 Performance Counters . 8

2.2.1 Precise Event Based Sampling 9

2.3 Page Tables . 9

3 Related Work . 11

3.1 Memory Performance and False Sharing 11

iv

Table of Contents

3.2 Detecting False Sharing via Instrumentation 11

3.3 Simulation . 12

3.4 Sampling Event Counters . 12

3.5 Dynamic Analysis for Performance 12

4 Design and Architecture of False Sharing Detection 14

4.1 Design Overview . 14

4.2 System Architecture . 14

4.2.1 Performance Counters 14

4.2.2 Page Granularity Analysis 17

4.2.3 Byte Level Analysis 17

4.2.4 Diagnosis . 18

4.2.5 Remapping . 19

4.2.6 Precise Event Based Sampling 19

5 Evaluation . 21

5.1 Performance Counter Selection 21

5.2 Detection Times and Execution Under Plastic 22

5.3 CCBench . 23

5.4 Shared Memory Benchmarks 24

5.5 Effect of Rewriting Optimizations 24

6 Discussion . 27

6.1 Future Work . 27

7 Conclusion . 29

Bibliography . 30

Appendix

A Selected Code Listings . 35

v

List of Tables

4.1 Performance counters useful for detecting false sharing. . . . 15

5.1 Microbenchmarks in CCBench 24

vi

List of Figures

2.1 True, false, and no sharing of data 4

2.2 False sharing in Phoenix’s linear regression benchmark. . . . 6

2.3 False sharing of lreg as a product of cores. 7

4.1 System Architecture . 15

4.2 Performance counter values after running Listing A.1 16

4.3 Sharing status of a byte in the access log. 18

4.4 Independent data on a single cache line. 19

5.1 SNOOP RESPONSE.HITM values over time while running various

applications. 22

5.2 Linear regression running under Plastic. 23

5.3 Performance of Phoenix, Parsec and CCBench suites running

with Plastic. 25

5.4 Normalized Performance of Linear Regression with and with-

out Plastic. 26

vii

Glossary

EPT Extended Page Tables

HITM HIT-Modified

HVM Hardware Virtual Machine

MA Machine Address

MESIF Modified Exclusive Shared Invalid Forward (A cache coherence

protocol based on MESI)

MESI Modified Exclusive Shared Invalid (A cache coherence protocol)

MIPS Millions of instructions per second

MMU Memory Management Unit

MSR model-specific register

PA Physical Address

PEBS Precise Event Based Sampling

PMU Performance Monitoring Unit

RDMSR Read MSR

RDPMC Read Performance Monitoring Counters

RFO Read for ownership

VA Virtual Address

WRMSR Write MSR

viii

Acknowledgements

This thesis would not have been possible without the guidance and patience

of my supervisor, Andrew Warfield, and my collaborators and fellow students

in the NSS lab. Over my time a UBC we have worked on many fun projects,

both successes and failures, where the fun of the projects was only second

to the fun of the scotch and beer after them.

ix

For Kathleen, Dad, Mom, and Mike,

who have wanted this thesis done more than anyone.

x

Chapter 1

Introduction

Performance of individual processor cores have shown stagnant growth for a

number of years, and the current trend toward faster computation is increas-

ing the number of cores [12]. However, this architectural shift requires a si-

multaneous paradigm shift for programmers who are used to single-threaded

programming. Programmers must now be aware of additional potential

problems including scheduling, cache coherency, synchronization, communi-

cation, resource contention, and various other issues. Many of these issues

have been around for years in larger distributed systems, but now they are

being faced on individual machines.

CPUs try to hide some of the underlying distributed nature using mech-

anisms like cache coherence to pretend memory accesses are uniformly con-

sistent. However, programs which are written obliviously to the underlying

microarchitecture are prone to be caught by the mismatch between pro-

gramming model and machine model for memory access performance. False

sharing is an example of this class of problem: Ignorance of the hardware’s

“cache line” granularity for cache coherence can result in an application

with unrelated data accessed by separate cores on the same cache line. The

coherence protocol will be invalidating data in the various cores’ caches,

resulting in coherence misses instead of cache hits.

As we will discuss in Chapter 3, designing systems to detect false sharing

is not new, but one would typically not want to use these systems due to

the impracticality of their performance overhead.

We cannot rely on developers for performance testing for every microar-

chitecture (some of which have not even been developed yet). Nor can we

rely on always having access to source to recompile/modify programs.

A system for detecting false sharing must be low-overhead so that we

1

Chapter 1. Introduction

can always keep it running, yet precise enough to find the exact pieces of

data contributing to false sharing. A dynamic solution is necessary: Plastic.

This thesis presents a false sharing detection system which uses a staged

approach described in Chapter 4. This design achieves these goals by us-

ing some low-overhead advanced processor features (performance counters,

event sampling) combined with sparing temporary use of high-overhead de-

tection (page table manipulations and breakpoints) and analysis algorithms.

The performance of the end-to-end system is demonstrated on various

workflows in Chapter 5. Our results show 3-6x speedup in workloads which

exhibit significant amounts of false sharing.

2

Chapter 2

Background

The work presented in this thesis depends on a number of specifics about

the x86 (and related) architectures: Cache coherence (and the related phe-

nomenon of false sharing), performance counters, and virtualized memory

address spaces implemented with page tables.

2.1 Cache Coherence and False Sharing

Multiple-core parallel computing systems have private per-core caches, but

present a coherent view of memory to all execution units. In order to

achieve a coherent view, cache coherency protocols such as Modified Ex-

clusive Shared Invalid (MESI) and Modified Exclusive Shared Invalid For-

ward (MESIF) to provide a view which is easier for programmers to reason

about.

These coherence protocols are optimized for the common case where

most data that is shared is being read, potentially even read-only. Writes

to non-exclusive cache lines can be particularly slow, as old data needs to

be invalidated everywhere, and potentially repopulated.

In Figure 2.1, consider a single cache line of 8 DWORDS (64 bytes), C,

with multiple accessors: Core A and Core B. If the same data in cache line

C is being read and written by Core A and Core B, then we have an instance

of true sharing. A lock or a reference counter are common examples of true

sharing. By necessity, the cache line will be in each core’s caches at various

times. If the data being read from cache line C by Core A is disjoint from

the data which was written by Core B (e.g. as in cache line C-2), and the

data is only incidentally on the same cache line, then we have an instance

of false sharing. It is a case of unfortunate luck that the granularity of

3

2.1. Cache Coherence and False Sharing

d0 d1 d2 d3 d4 d5 d6 d7 C

A,B A,B

True Sharing

d0-2 d1-2 d2-2 d3-2 d4-2 d5-2 d6-2 d7-2 C-2

A B A,B

False Sharing

d0-3 d1-3 d2-2 d3-2 d4-2 d5-2 d6-2 d7-3 C-3

A A

d0-4 d1-4 d2-4 d3-4 d4-4 d5-4 d6-4 d7-4 C-4

B B

No Sharing

Figure 2.1: True, false, and no sharing of data: Only in the case of false
sharing does a cacheline granularity view of accessors differ from the finer-
grained view.

data isolation (a cache line) is too coarse for the actual coherency needs

during a false sharing scenario. If the data were laid out different, e.g. in

separate cache lines C-3 and C-4, then each line would be protected from

invalidations due to the other core’s execution.

In the absence of multiple cores and other code being executed, since core

A continually reads its data in cache line C, one would expect it to remain in

cache. However if Core B writes to cache line C, the data in Core A’s cache

becomes invalidated, and then Core A’s reads would result in a coherence

miss. This happens because the cores negotiate what data should be stored

in their caches to preserve consistency. The cache coherence protocol will

be performing invalidations and generating coherence misses, even though

4

2.1. Cache Coherence and False Sharing

the various cores don’t need the rest of the contended data on the cache

line. As we will see in Chapter 5, this can result in significant performance

implications.

2.1.1 Cache Coherence on the x86 Architecture

The x86 processor cache architecture remains relatively unchanged since In-

tel’s release of the Nehalem microarchitecture in 2008. In order to account

for the increasing speed differential between CPUs and main memory, mod-

ern processors have multiple layers of caches. The Nehalem architecture

has multiple cores per physical socket, each of which has a private L1 and

L2 cache. All cores on the same socket share a larger common L3 cache.

Between these different caches, replicated on all sockets in the system, and

main memory, there is significant effort required to keep a coherent view of

data at any given time.

The MESIF cache coherency protocol is responsible for maintaining con-

sistency between caches on multiple cores. Each core’s cache lines each have

a state associated with them, and the shared L3 cache acts as a directory [10].

Simultaneous reads by multiple cores cause cache lines to exist in a “Shared”

state. Any write requires exclusive ownership. “Modified” state represents

exclusive ownership but with data which has not been written back to main

memory. “Exclusive” is exclusive ownership, but the data in the cache is

also in main memory. Entering either of these states mean the same cache

line (if present) will become “Invalid” in other cores.

In order for a modified cache line to be read by another core, the data

must propagate to a common location. For a local (on-socket) core’s cache

lines, the modified data will be updated in the packages shared L3 cache.

However, a cross-socket read of modified data will require the data to be

written back to main memory. Latencies of contentious memory access thus

vary significantly depending on the topology of the cores involved [21].

5

2.1. Cache Coherence and False Sharing

struct {

 pthread_t tid; POINT_T *points;

 int num_elems; long long SX;

 long long SY; long long SXX;

 long long SYY; long long SXY;

} lreg_args ;

Despite di�erent heap organizations and structure padding,

both 32- and 64-bit binaries exhibit false sharing.

Allocation of lreg_args array on 64-bit binary

Allocation of lreg_args array on 32-bit binary

0 63 cache line n+1 127cache line n

0 63 cache line n+1 127cache line n

lreg_args[0]

SX

SX

t
i
d

6
4

-b
it

3
2

3
2

p
o
i
n
t
s

n
u
m
_
e

S
X

S
Y

S
X
X

S
Y
Y

S
X
Y

S
X

S
Y

S
X
X

S
Y
Y

S
X
Y

t
i
d

t
i
d

p
o
i
n
t
s

n
u
m
_
e

S
X

S
Y

S
X
X

S
Y
Y

S
X
Y

tid

tidp

pnum

numSY

SY

SXX

SXX

SYY

SYY

SXY

SXY SX

SX

tid

p

num

SY

SY

SXX

SXX

SYY

lreg_args[1]

lreg_args[0] lreg_args[1] lreg_args[2]

allocation

metadata

a.
m

.

{

{
{

Figure 2.2: False sharing in Phoenix’s linear regression benchmark.

2.1.2 A Concrete Example of False Sharing

The “linear regression” test of the Phoenix [25] parallel benchmark suite’s

linear is a popular example of false sharing [16, 32]. Figure 2.2 shows the

lreg args structure which is responsible for false sharing. Each thread of

the linear regression application stores its state in one of these structures,

and they are all stored consecutively in memory in an array. The program

has each thread continually updating these structures in a tight loop as

the benchmark runs. Because the threads run independently on their own

struct for the majority of execution time, there is no true sharing occuring.

6

2.1. Cache Coherence and False Sharing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

 R
e

la
ti
v
e

 t
o

 L
in

e
a

r
S

p
e

e
d

u
p

Number of Cores

w/ False Sharing
w/o False Sharing

Figure 2.3: False sharing of lreg as a product of cores.

However, since the structures are packed onto the same cache line, they do

exhibit false sharing. In fact, the false sharing is so severe that the program

performs worse as it is given more cores to execute on. Figure 2.3 com-

pares the program’s scalability against a version that has the data aligned

to eliminate false sharing. Without false sharing, the program scales nearly

linearly. With false sharing, updates must be committed to memory be-

fore ownership can be transferred, reducing the performance of the cache

hierarchy to that of main memory.

False sharing depends on many dynamic properties in a system. Work-

load is one: per-thread structures in the linear regression example receive

continuous updates from all threads, while examples in the Linux kernel

often feature a single variable with frequent updates surrounded by read-

mostly data [7]. The organization of the program binary is another: Fig-

ure 2.2 also shows the same source file compiled as both 32-bit and 64-bit

7

2.2. Performance Counters

binaries. Despite identical source and identical cache organization, the na-

ture of false sharing is different: one case results in a 52-byte structure that

tiles poorly across cache lines, where the other produces an ideally sized

64-byte structure, but then misaligns it because of allocator metadata. This

is not a compiler or language specific issue: For example, Java 7 is known

to optimize out manually-added cacheline padding [28] which was added by

the programmer to try to avoid false sharing.

2.1.3 Significance

False sharing is a significant issue in cache coherent systems, and is one that

will increase in significance in the future. Experimental hardware architec-

tures [11, 27] and operating systems [3] have begun explorations in systems

without cache coherence but the requirement of coherence for general pur-

pose computing will likely not vanish any time soon. A scalability analysis

of the Linux kernel [7] shows that current architecture will continue to work

well with greater degrees of parallelism on existing models. Researchers have

also shown that is it practical to scale cache coherence protocols to highly

parallel architectures [19].

There are numerous examples of false sharing problems that are at larger

scales than current x86 server architectures. David Dice has discussed false

sharing issues with the Java garbage collector implementation on a 256-

core Niagara server [8]. Similarly, the previously mentioned Linux kernel

scalability investigation [7] revealed a number of cache contention issues

relating to both true and false sharing.

2.2 Performance Counters

Hardware performance counters are implemented using extra special-purpose

registers on the processor to track performance-impacting behaviours of the

hardware. There are many kinds of events which can be counted, but the

set of events can vary from one processor to another. Cross-platform use

of performance counters can be difficult since the kinds of events one cares

8

2.3. Page Tables

about may be different from architecture to architecture. In recognition

of this difficulty, Intel has created a number of “Architechtural” counters

which behave consistently across microarchitectures and will continue to be

supported on subsequent revisions [13].

There are only a few of these counter registers available, and the specific

number varies by platform. For example Intel’s Nehalem microarchitecture

has 4 performance counters available. While few in number, the counters

are programmable and thus a wide combination of different things can be

monitored simultaneousy.

The Intel Nehalem PMU guide [31] discusses the specific details about

how performance counters are configured via the Write MSR (WRMSR)

instruction writing to specific control registers. The counters themselves are

also implemented as model-specific registers (MSRs) and thus can be read

with the Read MSR (RDMSR) instruction, but a faster instruction exists

for reading performance counters: Read Performance Monitoring Counters

(RDPMC). One of the most important factors about using performance

counters is that the overhead of using them is negligible [6].

2.2.1 Precise Event Based Sampling

Precise Event Based Sampling (PEBS) is an extension to hardware profil-

ing facilities available on Intel processors used to capture more information

profiling workload behaviour.

PEBS-enabled performance counters can be configured to periodically

sample information about the processor state when the counter overflows a

preconfigured threshold. The machine state captured includes the values in

various registers: flags, instruction pointer, general purpose registers, and

some specialized fields which were added in Nehalem.

2.3 Page Tables

Another hardware technology leveraged by Plastic is hardware page table

support for virtual memory.

9

2.3. Page Tables

All modern x86 CPUs support virtual memory, and hypervisors require

virtualizing virtual memory [1].

A Memory Management Unit (MMU) is responsible for mapping a Vir-

tual Address (VA) space (usually per-process) to a Physical Address (PA)

space. Some processors have means of extending this mechanism to support

virtualization in hardware: Extended Page Tables (EPT) is Intel’s version

of this technology. This exta level of indirection allows the hypervisor to

control PA to Machine Address (MA) mappings on a per-virtual-machine

level. For systems without hardware support for MMU virtualization, there

is a software technique which can be used: Shadow Page Tables. Shadow

page tables are under the control of the hypervisor, and are the composition

of the VA-PA and PA-MA mappings.

In addition to just allowing for mapping one address to another, page

table entries have associated permissions bits which we take advantage to

carefully control access to memory during the detection pipeline in Plastic.

10

Chapter 3

Related Work

3.1 Memory Performance and False Sharing

Many memory allocators use private heaps, which helps avoid false sharing

due to the potential performance implications [2]. Allocators can be sus-

ceptible to two kinds of false sharing: active false sharing (when objects

allocated by different threads can wind up on the same cache line) and pas-

sive false sharing (when objects freed by a remote thread are immediately

allocatable by the same remote thread). TCMalloc is susceptible to both

kinds of allocator-generated false sharing [2]. Hoard is a memory allocator

designed for scalability (and avoiding false sharing is an explicitly considered

factor), though it is still subject to passive false sharing [2, 5].

3.2 Detecting False Sharing via Instrumentation

Pluto uses Valgrind to keep track of load and store events across different

threads and performs worst-case analysis of possible false sharing, while

imposing 2 orders of magnitude of overhead [9].

Sheriff [16] detects false sharing (with no false positives) and approxi-

mately 20% overhead on average. Their system makes assumptions about

the usage of the pthread threading library which can break correctness guar-

antees if the assumptions are violated, e.g. if the application uses lock-free

data structures.

Predator samples memory accesses using instrumented binaries and pre-

dicts false sharing on “virtual cache lines”, which can detect potential false

sharing even if it did not actually occur with the given object alignment

and hardware cache configuration [17]. This approach has 6x performance

11

3.3. Simulation

and 2x memory overhead. While predator can predict different-alignment

false sharing, the theoretical predications may not be relevant for a given

compiled binary/system.

All instrumentation-based approaches are quickly discounted for a general-

purpose false sharing detection and mitigation system since modifying the

source may not be an option.

3.3 Simulation

Cache simulation methods can provide data about behaviour in systems with

various memory hierarchies and coherence algorithms. Cmp$im (a simulator

which uses Pin [18]) can simulate workloads running at 4-10 Millions of

instructions per second (MIPS), and is three orders of magnitude faster

than more accurate simulators [15]. However, this is still quite slow, and

thus unlike Plastic, Cmp$im [15] is only suitable for development and testing

environments, and cannot reasonably run on general purpose systems.

3.4 Sampling Event Counters

Intel Performance Tuning Utility [30] uses performance counters to identify

the presence of cache line contention. However, it suffers from a high false

positive rate as it does not attempt to distinguish if the contention is caused

by true sharing, or if it actually is false sharing. It does not analyze the per-

formance implications of specific data being falsely contended, nor integrate

with a solution attempt to alleviate performance impacts.

3.5 Dynamic Analysis for Performance

Feedback driven optimization is a technique which can be used to inform

compiler optimization decisions based on representative workloads of a run-

ning system [24]. An instrumented version of code is run to collect profiling

information, which is used as an input for subsequent optimized recompi-

lation. Such a system can not be used on generic applications, for which

12

3.5. Dynamic Analysis for Performance

source code may not be available. Plastic is a part of a larger system that

(once it detects false sharing) remaps data and rewrites code for generic

applications which exhibit false sharing [22, 26]. As shown in this thesis,

these techniques for detecting and remapping falsely-shared data can lead

to 3x-6x performance improvement in severe cases of false sharing.

13

Chapter 4

Design and Architecture of

False Sharing Detection

4.1 Design Overview

Figure 4.1 shows the high-level architecture of the false sharing detection

pipeline in Plastic. Precise detection of false sharing is expensive in terms

of the performance hit on the running system. However, various more per-

formant heuristics can be used to detect potential false sharing. Each phase

of Plastic uses increasing expensive techniques for identifying (potential)

false sharing, but on a narrower and narrower scope. This detection funnel

is sufficiently lightweight on one end that it can continuously run without

adverse performance impact, and is sufficiently precise to detect significant

false sharing so that a dynamic binary rewriting system can significantly

increase system performance. PEBS, however, is not integrated into this

funnel due to platform limitations described in Section 4.2.6.

4.2 System Architecture

4.2.1 Performance Counters

As mentioned in Section 2.2, performance counters can track performance-

impacting behaviour of hardware. However, these are still physical registers,

and thus must be shared by all code executing on the system. This sharing

includes multiple processes running under an operating system, and mul-

tiple virtual machines running under a hypervisor. These supervisor-level

systems manage what is being counted, and do the appropriate saving and

14

4.2. System Architecture

Performance Counters §4.2.1

Precise Event-Based Sampling §4.2.6

Coarse-grained MMU-based conflict analysis §4.2.2

Fine-grained MMU-based conflict analysis §4.2.3

Contention diagnosis §4.2.4

Figure 4.1: System Architecture

restoring of the register state when the currently running applications and

VMs switch. Intel has published guidelines for sharing access to the Perfor-

mance Monitoring Unit (PMU) [14], however for the purposes of Plastic we

currently assume we are the only part of the system using the PMU.

Performance Counter Name Description

SNOOP RESPONSE. HITM A cache snoop request to a particular
core was a hit and the value was mod-
ified from what is in memory.

MEM UNCORE RETIRED.
OTHER CORE L2 HITM

A HITM occurred and modified data was
found in another core’s cache.

EXT SNOOP.
ALL AGENTS.HITM

A similar HITM counter for Intel Core 2
architectures.

INST RETIRED. ANY The number of instructions retired (com-
pleted).

L2 TRANSACTIONS. RFO RFO requests for prefetches and demand
misses.

Table 4.1: Performance counters useful for detecting false sharing.

A number of the important performance counters we keep track of are

listed in Table 4.1. HITM counters are relevent to detecting cache line

contention because they indicate the requested data was in a remote cache

line, when the remote cache line is in a modified state. A high ratio of these

15

4.2. System Architecture

relative to the total number of executed instructions can indicate potential

false sharing, but also occur when true sharing is occuring [29].

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

L2_RFO L2_HITM SNOOP_HITM

V1
V2
V3
V4
V5

Figure 4.2: Performance counter values after running Listing A.1

In Figure 4.2 we show several false-sharing-related performance coun-

ters tested against 5 modes of false sharing generated by the code found in

Listing A.1. SNOOP RESPONSE.HITM responds quite well to all modes of false

sharing, so we use it as our primary indicator of potential false sharing.

In order to disambiguate the potential false sharing with true sharing,

16

4.2. System Architecture

when this high-HITM-per-instruction scenario is encountered we turn on

more heavyweight instrumentation. This allows us to precisely determine if

this truly is a case of false sharing (and if so: where the false sharing is oc-

curing), without subjecting typical system execution to the slower detection

stages.

4.2.2 Page Granularity Analysis

Xen is a virtualization platform that manages the physical hardware of ma-

chines and provides a common abstraction to guest virtual machines. It

manages per-virtual-machine address spaces using mechanisms like shadow

pages tables or EPT. In Plastic we extend this concept to per-core page

tables, though operating systems can use similar techniques with per-thread

page tables [4, 16]. Each of these per-core pages begins by being marked as

protected. When data on the page is accessed, the permissions are updated

to allow the access. The type of access (i.e., read vs. write) is recorded

along with the page. Results and permissions are periodically reset, so that

evaluation is done in a series of epochs. Since contention requires at least

one writer and one other accessor, the output of this stage is the set of pages

which are in the intersection of the write bitmap for one core and the access

bitmap for all other cores. This contention could still be a case of true shar-

ing at this point, so further analysis is required to differentiate the class of

contention.

4.2.3 Byte Level Analysis

Byte level analysis is done by causing every relevent memory access to fault.

The set of contended pages detected in Section 4.2.2 are configured to have

the processor fault on every access. The fault handler logs the access, re-

stores the appropriate permissions for the page in order for the access per-

form as expected, and sets up a single-step breakpoint. As soon as the

memory-accessing instruction is retired, the permissions are again reconfig-

ured to cause the next access to generate a fault. Thus, every access will

generate a fault and the memory access will be logged.

17

4.2. System Architecture

Since sharing is more closely associated with different threads than dif-

ferent cores (e.g. a thread migrating from Core A to Core B is not really

“sharing” data even if we detect accesses on two different cores) we dis-

tinguish threads by logging an appropriate segment register: fs(x86 64) or

gs(x86).

The output of this phase is the set of accessed bytes, along with the

identity of the accessors and the mode of access.

4.2.4 Diagnosis

Unaccessed

Read Only (RO)

Read Write (RW)
(exclusive)

Read Only (ROS)
 (shared)

Read Write (RWS)
 (shared)

R

R

R/W

R/W

R/W

R
R

(other accessor)

(o
th

er accesso
r)

(other accessor)

W

W

W

W

(same accessor)

(same accessor)

(sa
m

e
 a

c
c

e
sso

r)

Figure 4.3: Sharing status of a byte in the access log.

Feeding the byte level access log into the state machine depicted in Fig-

ure 4.3 allows Plastic to make a determination of the sharing state for each

byte. A contended cache line has at least one writer (cache lines with bytes

in either the RW or RWS states), and multiple accessors. False sharing is

happening if there are bytes with different accessors (as determined by the

logged thread identifiers). Regions within the cache line are grouped ac-

18

4.2. System Architecture

cording to accessor, and groups with writes are relocated to their own cache

lines on the isolated page by the remapping engine (Section 4.2.5).

4.2.5 Remapping

After determining that false sharing is occuring at a particular location,

Plastic forwards that information to a remapping engine [23, 26]. This

engine safely moves contended data onto separate cache lines, and rewrites

executing code to refer to data in the new location. Figure 4.4 demonstrates

the repositioning of data onto different cache lines. The performance benefits

of removing false sharing in this way are demonstrated in the evaluation in

Chapter 5.

0x1000: Original 4K page

cache line-length region

contending data structures

“hole” -- area with overlaid
mappings

0x1700

0x170c

0x1730

0x1000: Original 4K page

0xf0000: Remapping data pool

0x1700

0x170c

0x1730

0xf1000: underlay page

0xf1700

0xf170c

0xf1730

0xf2000: isolated data

0xf2000

0xf2280

1. Detector reports false sharing

FS contention at:

(0x170c, 4), (0x1730, 8)

2. Remappings requested

remapper_isolate(0x170c, 4)

remapper_isolate(0x1730, 8)

3. Remapping rules installed

map(0x1000, 0x70c, 0xf1000)

map(0x170c, 0x4, 0xf2000)

map(0x1710, 0x20, 0xf1710)

map(0x1730, 0x8, 0xf2280)

map(0x1738, 0xd1e, 0xf1738)

0x1700

0x170c

0x1730

NA:
All accesses

result in a
page fault and

trigger
remapping.

Before remapping: After remapping:

Remapping allows

the original data

page to be composed

from multiple byte-

granularity regions.

Figure 4.4: Independent pieces of data on a single cache line can cause false
sharing. To avoid the negative performance impact, they can be remapped
onto separate cache lines.

4.2.6 Precise Event Based Sampling

With the exception of PEBS, Plastic’s detection proceeds in a stepwise man-

ner. PEBS is exceptional in that, while it has the potential for helping with

detection, the Nehalem-era implementation does not provide the additional

data necessary to help identify false sharing.

19

4.2. System Architecture

For false sharing detection, the interesting information currently recorded

in Nehalem would be the instruction pointer. However, this only really helps

for inspecting the code, as we need to determine the location of the data

being potentially falsely shared. It’s insufficient to know some instructions

which contribute to false sharing (especially since PEBS actually records

the “at-retirement” state of the instruction and thus it records the “IP +

1” (where “1” is in reference to the subsequent instruction, rather than a

literal byte offset). Consider the case where we believe data is contributing

to false sharing. If we wish to remap the data to another location in the ad-

dress space, we must ensure that all instructions which would ever attempt

to access this data will be redirected to the correct location. Sampling in-

structions may give us an idea of the cost of remapping, but in itself cannot

give an exhaustive list of places to remap.

Future work could use PEBS to determine whether to proceed to subse-

quent detection stages. Looking at samples of instructions that are accessing

the candidate-false-shared data may be able to filter out un-rewritable code.

i.e. even if this definitely is false shared data, we may not be able to do any-

thing about it, so don’t bother trying to make the precise determination.

The specialized fields relating to load latency recorded by the PEBS

mechanism could be used in the future (Section 6.1).

20

Chapter 5

Evaluation

Plastic is evaluated on a dual socket, 8-core Nehalem system with 32 GB of

memory. Each processor is a 4-core 64-bit Intel Xeon E5506 with private,

per-core L1 and L2 caches and a shared L3. Plastic is implemented as

an extension to Xen 4.2 and runs a Linux 2.6.32.27 kernel as Dom0. All

tests are run inside an 8-core Ubuntu Hardware Virtual Machine (HVM)

guest. First, we describe our selection of performance counters, then show

the detailed execution of a false sharing workload under Plastic, followed by

an evaluation of Plastic across a range of applications.

5.1 Performance Counter Selection

As the first phase of our detection pipeline, careful selection of events that

are representative of potential false sharing is crucial to success. Candidate

counters were selected by analyzing Intel’s platform documentation [13, 30,

31] and evaluating behaviour under many workloads. The workloads con-

tained known examples of false sharing and applications which did not ex-

hibit false sharing. Candidate performance counters were selected on the

basis of how effectively they discriminated between these two cases. Fig-

ure 5.1 shows an example counter which is only significantly incremented in

applications which exhibit false sharing. (Many similar graphs are left out

for space reasons.)

21

5.2. Detection Times and Execution Under Plastic

Figure 5.1: SNOOP RESPONSE.HITM values over time while running various
applications.

5.2 Detection Times and Execution Under

Plastic

Figure 5.2 demonstrates the behaviour of an example workload which ex-

hibits false sharing 1 running under Plastic. Because of the false sharing in

the application, the workload immediately exhibits low performance due to

the costly coherence invalidations. Plastic quickly identifies that false shar-

ing is occurring (within 2 seconds). After the locations of false sharing are

given to the rewrite engine of Plastic, the HITM rate significantly decreases

and the throughput jumps significantly for the remainder of the program’s

1Specifically, this is the linear regression benchmark from Phoenix.

22

5.3. CCBench

B
e
n
c
h
m

a
rk

 (
m

ill
io

n
 r

e
c
o
rd

s
)

0

100

200

300

400

500

600

700

800

900

Time (ms)

0 1000 2000 3000 4000 5000 6000 7000 8000

H
IT

M
 C

o
u
n
t
(m

ill
io

n
s
)

0

10

20

30

40

50

Benchmark Throughput

HITM Count

tool

perf

pebs

logall

emulation

remap

rewrite_faults

Figure 5.2: Linear regression running under Plastic.

execution.

5.3 CCBench

False sharing is a well-understood phenomenon from the perspective of hard-

ware implementations and those programmers who actively think about

hardware-level operation. Often its grave performance impact is mitigated

during development due to careful profiling and testing. However, some-

times real workloads are beyond the scale of parallelism tested. CCBench is

a microbenchmark suite designed to simulate similar troublesome workflows

at a much smaller scale.

Table 5.1 taxonomizes different kinds of memory access patterns, ob-

served in these real workloads, responsible for scalability bottlenecks and

the performance of the corresponding microbenchmarks with and without

Plastic.

23

5.4. Shared Memory Benchmarks

Name Description Examples Fixable?

fs independent Multiple acces-
sors to indepen-
dent variables
(At least one
writer)

Linear Regression in
Phoenix [25]
spinlock pool in
Boost [20]
Bookeeping in the Java
GC [8]

Yes

fs mixed Shared read-
only data
co-located with
contended data

net device struct in
Linux [7]

Yes

bitmask Bitmasks and
flags

page struct in Linux [7] No

true share Shared read-
write data

Locks and global coun-
ters

No

Table 5.1: Microbenchmarks in CCBench. The fixable column denotes
whether it can be fixed by simply remapping memory.

5.4 Shared Memory Benchmarks

In Figure 5.3 we see the impact of Plastic on a number of workloads in

CCBench, Phoenix, and Parsec.

Programs exhibiting clear, pessimal false sharing, like linear regression

and the synthetic workload, enjoy a significant performance improvement

while running under Plastic. Those without false sharing show low overhead,

and the overall performance is indistinguishable within the error bars.

5.5 Effect of Rewriting Optimizations

Figure 5.4 shows how the performance of the linear regression benchmark

scales from 1 to 8 cores, normalized against idealized linear speedup. Four

versions of the program are shown:

• a version with false sharing executing normally

24

5.5. Effect of Rewriting Optimizations

0.00

0.20

0.40

0.60

0.80

1.00

bitm
ask

fs_independent

fs_m
ixed

true_share

histogram

km
eans

linear_regression

m
atrix_m

ultiply

pca
string_m

atch

w
ord_count

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

raytrace

stream
cluster

sw
aptions

vips
x264

CCBench Phoenix Parsec
N

o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

R
e
la

ti
v
e
 t
o
 L

in
e
a
r

S
p
e
e
d
u
p w/o Plastic

w/ Plastic

4.4x

0.4x

2.6x

Figure 5.3: Performance of Phoenix, Parsec and CCBench suites running
with Plastic.

• an unmodified version running under Plastic without optimized rewrit-

ing

• an unmodified version running under Plastic with optimized rewriting

• a version of the program where false sharing was fixed by hand

With an increase in cores, performance of the unmodified version de-

creases exponentially. As the number of coherency misses increases to the

point that cores are constantly stalling, the multi-threaded version is slower

than a single threaded version, even in terms of absolute run time. The

source optimized version shows almost linear speedup. The version run-

ning unoptimized instrumentations does not suffer from false sharing, but

has to perform enough comparisons that it is even slower than the version

with false sharing. Using specialized rewriting under Plastic, yields a 3-6x

performance improvement over the regular version.

An important takeaway is the observation that remapping can poten-

tially have a negative impact on performance as well. We currently assume

that the optimized instrumentation to remove false sharing is always desir-

able. Future work should take into account the rate of non-Plastic instruc-

tions retired as an indicator that Plastic should roll back the remappings

and run with the original code and original data layout.

25

5.5. Effect of Rewriting Optimizations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

 R
e

la
ti
v
e

 t
o

 L
in

e
a

r
S

p
e

e
d

u
p

Number of Cores

False Sharing
Source Fixed

Detector (Optimized)
Detector (Unoptimized)

Figure 5.4: Normalized Performance of Linear Regression with and without
Plastic.

26

Chapter 6

Discussion

Plastic is a functional proof of concept demonstrating that dramatic false

sharing can be identified and fixed in a manner which does not have signif-

icant performance impact on workloads which do not exhibit false sharing.

For benign workloads, the temporary performance impact only occurs dur-

ing short detection phases (if at all, as most workloads tend not to even

progress into the slower phases of detection).

Therefore it is feasible to consider the Plastic system as a desirable layer

of system software, protecting applications from unexpected performance

characteristics of the underlying hardware consistency model.

With additional performance counters, one can imagine other hardware

“worst case scenarios” being detected and mitigated in similar ways. The

utility of this system can be thought of like a post-compiler binary opti-

mization step, similar to the HotSpot JVM’s adaptive optimization, but

generalized to x86 / x86 64 instructions rather than Java bytecode.

6.1 Future Work

Plastic is currently part of a system aimed at dynamically improving the

behaviour of existing binaries at runtime. However, the detection pipeline

could be integrated with debug symbols and development toolchains to al-

low developers to fix the problem at the source. This method of fixing false

sharing would prove a larger performance win compared to the rewritten bi-

nary, and would be increasingly relevant for an extended detector which can

identify other sources of poor performance which cannot be automatically

mitigated.

If Plastic were to continually run alongside an arbitrary system, it should

27

6.1. Future Work

be made to adhere to Intel’s recommendations for sharing the PMU [14].

These recommendations include “Agents must be able to be configured and

function without PerfMon resources” which would mean Plastic would be

idle while the PMU is in use by other agents. Unfortunately running in

the hypervisor is insufficient to guarantee that we always have access to the

PMU since firmware may also use counters: When discussing not laying

claim to an in-use counter: “This includes the VMM. The VMM should

ensure any counter in-use by firmware is not disabled.”

In post-Nehalem architectures when PEBS facilities can export memory

locations corresponding to HITM events, future stages of the pipeline could

be restricted to even fewer memory pages to track. This could decrease

detection overhead even further. PEBS integration would also be useful

for other cache analyses unrelated to false sharing by providing a gauge on

how accessing some data takes many cycles to be loaded due to poor cache

utilization. The remapping engine may be able to determine a more optimal

arrangement of data so that a larger portion of the working set is available

in cache.

More architectural performance counters would be necessary for cross-

microarchitecture compatability of any system that would rely on them.

While detection/analysis during development could reasonably run only on

a restricted set of platforms, widespread availability of counters would serve

two goals: 1) Being able to deploy a system like Plastic on end-users systems,

and 2) Since development and deployment environments are different, they

could be running into different sets of hardware-inflicted performance issues.

28

Chapter 7

Conclusion

Plastic demonstrates that an operating system (or hypervisor) can take

responsibility for intelligent resource management of shared hardware re-

sources being used inefficiently by software. Software can generate patho-

logical use cases for caches with significant negative performance implica-

tions, by being unaware of low level implementation details like hardware

cache line size. Plastic shows that low overhead detection of hardware issues

can be combined with a larger system [22] in order to dynamically fix these

cases, resulting in 3x-6x improved throughput.

This work intelligently uses pieces of data exported by the hardware, and

can be used to motivate exposing more counters and more information about

data or code which is causing hardware to press up against the inefficient

parts of its design. In the case of Plastic we show that some classes of

issues can be automatically alleviated, though in general feedback could be

directed to software developers to work around these hardware limitations

when possible.

29

Bibliography

[1] Ole Agesen. Software and hardware techniques for x86 virtualization.

Palo Alto CA, VMware Inc, 2009. → pages 10

[2] Martin Aigner, Christoph M Kirsch, Michael Lippautz, and Ana

Sokolova. Fast, multicore-scalable, low-fragmentation memory alloca-

tion through large virtual memory and global data structures. arXiv

preprint arXiv:1503.09006, 2015. → pages 11

[3] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,

Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schupbach, and

Akhilesh Singhania. The multikernel: a new OS architecture for scalable

multicore systems. In SOSP, 2009. → pages 8

[4] T. Bergan, N. Hunt, L. Ceze, and S.D. Gribble. Deterministic process

groups in dos. In OSDI, 2010. → pages 17

[5] Emery D Berger, Kathryn S McKinley, Robert D Blumofe, and Paul R

Wilson. Hoard: A scalable memory allocator for multithreaded appli-

cations. ACM Sigplan Notices, 35(11):117–128, 2000. → pages 11

[6] Georgios Bitzes and Andrzej Nowak. The overhead of profiling using

pmu hardware counters. 2014. → pages 9

[7] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey

Pesterev, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich.

An analysis of linux scalability to many cores. In OSDI, 2010. → pages

7, 8, 24

[8] David Dice. False sharing induced by card table marking. David Dice’s

Weblog, Feb 2011. → pages 8, 24

30

Bibliography

[9] Stephan M. Gunther and Josef Weidendorfer. Assessing cache false

sharing effects by dynamic binary instrumentation. In WBIA, 2009. →
pages 11

[10] John L. Hennessy and David A. Patterson. Computer Architecture,

Fifth Edition: A Quantitative Approach. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 5th edition, 2011. → pages 5

[11] John Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David

Finan, Gregory Ruhl, Devon Jenkins, Howard Wilson, Nitin Borkar,

Gerhard Schrom, et al. A 48-core ia-32 message-passing processor with

dvfs in 45nm cmos. In Solid-State Circuits Conference Digest of Tech-

nical Papers (ISSCC), 2010 IEEE International, pages 108–109. IEEE,

2010. → pages 8

[12] Wei Huang, Karthick Rajamani, Mircea R Stan, and Kevin Skadron.

Scaling with design constraints: Predicting the future of big chips.

IEEE Micro, (4):16–29, 2011. → pages 1

[13] Intel Corporation. Intel 64 and IA-32 Architectures Software Developers

Manual. 043 edition, 2012. → pages 9, 21

[14] Peggy Irelan and Shihjong Kuo. Performance monitoring unit sharing

guide. https://software.intel.com/sites/default/files/ea/95/

30388. → pages 15, 28

[15] Aamer Jaleel, Robert S. Cohn, Chi keung Luk, and Bruce Jacob. CMP-

Sim: A pin-based on-the-fly multi-core cache simulator. In MOBS, 2008.

→ pages 12

[16] Tongping Liu and Emery D. Berger. Sheriff: precise detection and au-

tomatic mitigation of false sharing. In Proceedings of the 2011 ACM

international conference on Object oriented programming systems lan-

guages and applications, OOPSLA ’11, pages 3–18, New York, NY,

USA, 2011. ACM. → pages 6, 11, 17

31

https://software.intel.com/sites/default/files/ea/95/30388
https://software.intel.com/sites/default/files/ea/95/30388

Bibliography

[17] Tongping Liu, Chen Tian, Ziang Hu, and Emery D. Berger. Predator:

Predictive false sharing detection. In Proceedings of the 19th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP ’14, pages 3–14, New York, NY, USA, 2014. ACM. → pages 11

[18] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur

Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim

Hazelwood. Pin: building customized program analysis tools with dy-

namic instrumentation. In Proceedings of the 2005 ACM SIGPLAN

conference on Programming language design and implementation, PLDI

’05, 2005. → pages 12

[19] Milo M K Martin, Mark D Hill, and Daniel J Sorin. Why on-chip cache

coherence is here to stay. To appear, CACM, 2012. → pages 8

[20] mcmcc. false sharing in boost::detail::spinlock pool?

http://stackoverflow.com/questions/11037655/

false-sharing-in-boostdetailspinlock-pool, June 2012. →
pages 24

[21] Daniel Molka, Daniel Hackenberg, Robert Schone, and Matthias S.

Muller. Memory performance and cache coherency effects on an In-

tel Nehalem multiprocessor system. In PACT, 2009. → pages 5

[22] Mihir Nanavati, Mark Spear, Nathan Taylor, Shriram Rajagopalan,

Dutch T Meyer, William Aiello, and Andrew Warfield. Whose cache line

is it anyway?: operating system support for live detection and repair of

false sharing. In Proceedings of the 8th ACM European Conference on

Computer Systems, pages 141–154. ACM, 2013. → pages iii, 13, 29

[23] Mihir Nanavati, Mark Spear, Nathan Taylor, Shriram Rajagopalan,

Dutch T. Meyer, William Aiello, and Andrew Warfield. Whose cache

line is it anyway?: Operating system support for live detection and

repair of false sharing. In Proceedings of the 8th ACM European Con-

ference on Computer Systems, EuroSys ’13, pages 141–154, New York,

NY, USA, 2013. ACM. → pages 19

32

http://stackoverflow.com/questions/11037655/false-sharing-in-boostdetailspinlock-pool
http://stackoverflow.com/questions/11037655/false-sharing-in-boostdetailspinlock-pool

Bibliography

[24] Vinodha Ramasamy, Paul Yuan, Dehao Chen, and Robert Hundt.

Feedback-directed optimizations in gcc with estimated edge profiles

from hardware event sampling. In Proceedings of GCC Summit 2008,

pages 87–102, 2008. → pages 12

[25] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski,

and Christos Kozyrakis. Evaluating MapReduce for multi-core and mul-

tiprocessor systems. In Proceedings of the 2007 IEEE 13th International

Symposium on High Performance Computer Architecture, HPCA ’07,

pages 13–24, Washington, DC, USA, 2007. IEEE Computer Society. →
pages 6, 24

[26] Nathan Bryan Taylor. Cachekata: memory hierarchy optimization via

dynamic binary translation. 2013. → pages iii, 13, 19

[27] C. Thacker. Beehive: A many-core computer for fpgas (v5). Unpub-

lished Manuscript, Jan 2010. → pages 8

[28] Martin Thompson. Re: kernel + gcc 4.1 = several problems. http://

ondioline.org/mail/cmov-a-bad-idea-on-out-of-order-cpus. →
pages 8

[29] Avoiding and identifying false sharing among

threads. http://software.intel.com/en-us/articles/

avoiding-and-identifying-false-sharing-among-threads/.

→ pages 16

[30] Intel performance tuning utility. http://software.intel.com/

en-us/articles/intel-performance-tuning-utility/. → pages

12, 21

[31] Intel microarchitecture codename nehalem performance monitoring

unit programming guide (nehalem core pmu). https://software.

intel.com/sites/default/files/76/87/30320. → pages 9, 21

[32] Qin Zhao, David Koh, Syed Raza, Derek Bruening, Weng-Fai Wong,

33

http://ondioline.org/mail/cmov-a-bad-idea-on-out-of-order-cpus
http://ondioline.org/mail/cmov-a-bad-idea-on-out-of-order-cpus
http://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads/
http://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads/
http://software.intel.com/en-us/articles/intel-performance-tuning-utility/
http://software.intel.com/en-us/articles/intel-performance-tuning-utility/
https://software.intel.com/sites/default/files/76/87/30320
https://software.intel.com/sites/default/files/76/87/30320

and Saman Amarasinghe. Dynamic cache contention detection in multi-

threaded applications. In VEE, 2011. → pages 6

34

Appendix A

Selected Code Listings

Listing A.1: Selected variations of code triggering false sharing

#ifndef GNU SOURCE

#define GNU SOURCE 1

#endif

#include <s t d i o . h>

#include <s t d l i b . h>

#include <uni s td . h>

#include <s t r i n g . h>

#include <errno . h>

#include <pthread . h>

unsigned long ∗ g l oba lva r ;

int qu i t = 0 ;

unsigned long i t e r a t i o n s = (1UL << 3 2) ;

void ∗worker (void ∗ t)

{
long id = (long) t ;

unsigned long i = i t e r a t i o n s ;

int reader = id & 1 ;

int o f f = id / 2 ;

unsigned long l o c a l v a r = 0 ;

unsigned char ∗ptr = (char ∗) (g l oba lva r + id) ;

while (i−−)

35

Appendix A. Selected Code Listings

{
#i f V1

// s imple increment

g l oba lva r [id]++;

#e l i f V2

// increment v ia temporary s t a c k v a r i a b l e

l o c a l v a r = g loba lva r [id] ;

l o c a l v a r ++;

g l oba lva r [id] = l o c a l v a r ;

#e l i f V3

// update par t o f 8 by t e word

ptr [id]++;

#e l i f V4

// a l t e r n a t i n g reads & wr i t e s

(i & 1) ? (l o c a l v a r = g loba lva r [id]) : (++g loba lva r [id]) ;

#e l i f V5

// always read or always wr i t e

reader ? (l o c a l v a r = g loba lva r [o f f]) : (++g loba lva r [o f f]) ;

#endif

}
}

#define PIN THREADS 1

int main (int argc , char ∗argv [])

{
pthread t ∗ threads ;

p t h r e a d a t t r t ∗ a t t r ;

c p u s e t t cpuset ;

int i , nthreads ;

nthreads = syscon f (SC NPROCESSORS ONLN) ;

i f (nthreads < 0) {
per ro r (” f a i l e d to get number o f o n l i n e p r o c e s s o r s ”) ;

36

Appendix A. Selected Code Listings

return −1;

}
i t e r a t i o n s /= nthreads ;

posix memalign ((void ∗)& g loba lvar , 4096 , 4096) ;

memset (g loba lvar , 0 , 4096) ;

threads = mal loc (s izeof (pthread t) ∗ nthreads) ;

a t t r = mal loc (s izeof (p t h r e a d a t t r t) ∗ nthreads) ;

#i f PIN THREADS

// pin main thread to cpu0

CPU ZERO(&cpuset) ;

CPU SET(0 , &cpuset) ;

s c h e d s e t a f f i n i t y (0 , s izeof (cpuset) , &cpuset) ;

// pin threads

for (i = 0 ; i < nthreads ; i++) {
CPU ZERO(&cpuset) ;

CPU SET(i , &cpuset) ;

p t h r e a d a t t r i n i t (& a t t r [i]) ;

p t h r e a d a t t r s e t a f f i n i t y n p (& a t t r [i] , s izeof (cpuset) , &cpuset) ;

}

for (i = 0 ; i < nthreads ; i++)

pth r ead c r ea t e (&threads [i] , &a t t r [i] , worker , (void ∗) i) ;

#else

for (i = 0 ; i < nthreads ; i++)

pth r ead c r ea t e (&threads [i] , NULL, worker , (void ∗) i) ;

#endif

for (i = 0 ; i < nthreads ; i++)

p t h r e a d j o i n (threads [i] , NULL) ;

37

Appendix A. Selected Code Listings

f r e e (g l oba lva r) ;

f r e e (threads) ;

f r e e (a t t r) ;

return 0 ;

}

38

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgements
	Dedication
	Introduction
	Background
	Cache Coherence and False Sharing
	Cache Coherence on the x86 Architecture
	A Concrete Example of False Sharing
	Significance

	Performance Counters
	Precise Event Based Sampling

	Page Tables

	Related Work
	Memory Performance and False Sharing
	Detecting False Sharing via Instrumentation
	Simulation
	Sampling Event Counters
	Dynamic Analysis for Performance

	Design and Architecture of False Sharing Detection
	Design Overview
	System Architecture
	Performance Counters
	Page Granularity Analysis
	Byte Level Analysis
	Diagnosis
	Remapping
	Precise Event Based Sampling

	Evaluation
	Performance Counter Selection
	Detection Times and Execution Under Plastic
	CCBench
	Shared Memory Benchmarks
	Effect of Rewriting Optimizations

	Discussion
	Future Work

	Conclusion
	Bibliography
	Selected Code Listings

