
Cavity Cooling of Leptons for Increased

Antihydrogen Production at ALPHA

by

Nathan Evetts

B.Sc., The University of British Columbia, 2011

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Physics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

August 2015

c© Nathan Evetts 2015



Abstract

Precise spectroscopic measurements of anti-hydrogen at the ALPHA experi-
ment are hindered by small numbers of cold anti-atoms. This thesis describes
a cooling technique for positron plasmas which can be used to increase the
number of trappable anti-hydrogen atoms. The technique builds on previous
work which allows control of spontaneous emission via the Purcell E�ect.
Our implementation incorporates a novel microwave resonator into an exist-
ing Penning trap to enhance spontaneous emission. Preliminary data sug-
gests that temperatures and cooling rates for these plasmas can be improved
by at least a factor of 10. Eventually this work could result in an order of
magnitude increase in anti-hydrogen production at ALPHA
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Preface

Chapter 7 details measurements of electron plasma temperatures and cool-
ing rates at resonances within the cavity presented in chapter 3. The data
presented in chapter 7 was taken primarily by Eric Hunter at Berkeley. The
plasma apparatus (with the exception of the cavity) was built and main-
tained by Alex Povilus at Berkeley.

The cavity was conceptualized at the University of British Columbia
by Walter Hardy. Later I designed, simulated and characterized the cavity
presented in this thesis.

The electro-deposition (described in section 3.4) of a nichrome-like alloy
onto the cavity was conducted by Isaac Martens.

The nuclear magnetic resonance measurements of chapter 6 were per-
formed by Carl Michal.
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Chapter 1

Introduction

1.1 Antimatter

At the time of the big bang when the universe was very hot and very dense,
matter-antimatter particle pairs are believed to have been created in abun-
dance and to have eventually cooled to produce today's observable universe.
This paradigm has the fundamental problem of predicting a universe pop-
ulated with equal parts matter and antimatter. The postulate remains in
stark contrast with our matter dominated universe and has posed a mystery
which cries out for investigation.

Formally the equivalence of matter and antimatter is expressed via the
CPT theorem. CPT symmetry states that any local Lorentz-invariant quan-
tum �eld theory is invariant under combined operations of charge-conjugation
(C), parity (P), and time-reversal (T) [38]. Antimatter is what results when
these operations are performed on matter. Every particle, therefore, has
an antimatter counter particle with identical mass but opposite charge and
spin. The invariant nature of the symmetry would demand that the physics
of a pure antimatter system be identical to that of its matter analogue. In
essence, the goal of the ALPHA experiment is to observe a violation of this
symmetry. That is, we are attempting to detect a di�erence between anti-
matter and matter, or at least to place constraints on possible di�erences.

Our chosen antimatter system is anti-hydrogen: the bound state of a
positron (anti-electron) to an anti-proton. Multiple measurements on other
antimatter systems have already been made and place upper bounds on the
possible discrepancies between certain quantities (for examples, see table
1.1).1

Hydrogen, however, has the advantage that it is a very simple, neutral
system. As a result spectroscopic properties of hydrogen have been measured

1Signals of CPT violation have also been observed in the cosmic microwave background
(CMB) at 2σ [23] and by the BaBar collaboration using Bo−Bo oscillations at 2.2σ [15].
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1.2. Thesis overview

to extremely high precision. The most promising measurements are the 1S
- 2S transition (which has been done to a relative precision of 4.2 × 10−15

[45]), and the ground state hyper�ne splitting (with a relative precision of
10−12 [31]).

Quantity Relative
precision

Absolute
Energy
Di�erence

Reference

Ko −Ko mass 4× 10−18 300 kHz [3]
e+-e mass 8× 10−9 0.9 THz [22]

charge 4× 10−8 - [32]
gyromagnetic moment 2.1× 10−12 - [54]

p̄− p mass 7× 10−10 159 THz [16]
charge 7× 10−10 - [16]

Table 1.1: A summary of matter-antimatter measurements. Where appli-
cable I have included absolute energy di�erence (in frequency units) since it
has been argued to be the relevant �gure of merit [6] rather than the relative
precision.

ALPHA is not likely to reach these precisions any-time soon, however a
�rst step towards hyper�ne spectroscopy has been taken in 2012 when the
spin of antihydrogen atoms was likely �ipped [18]. Since demonstrating an
ability to trap ground state antihydrogen atoms for long periods of time (up
to 15 minutes) [20, 19], the ALPHA apparatus has been modi�ed to incorpo-
rate laser windows for optical spectroscopy. In particular 1S-2S, 1S-2P and
hyper�ne spectroscopy measurements are being pursued. All of these mea-
surements, however, are greatly hindered by the small number of antiatoms
which can be trapped. Typically only one or two atoms are contained at any
given time!

The goal of this work is to demonstrate a cooling technique which can
alleviate this problem by increasing the number of trappable antihydrogen
atoms at ALPHA.

1.2 Thesis overview

This chapter is intended to provide background, motivation, and context for
the work of this thesis. The backdrop is, of course, antimatter measure-

2



1.2. Thesis overview

ments, CPT violation and the ALPHA experiment. Section 1.1 provides a
terse summary of antimatter mysteries and measurements. Section 1.3 will
give a very brief overview of the ALPHA apparatus and the antihydrogen
production procedure.

Chapter 2 is an overview of the Purcell e�ect. At heart a method for
resonantly enhancing a spontaneous emission rate, this e�ect is the founda-
tion on which our proposed cooling technique is built. The original theoret-
ical framework as presented by Purcell is given and many of the original ex-
periments are discussed. This chapter also characterizes a failed 2011 search
for spontaneous emission enhancement at ALPHA. Finally, our own classi-
cal model of the Purcell e�ect, speci�c to the case of a positron in cyclotron
motion, is developed and predictions about possible cooling enhancements
are made.

Chapter 3 describes a novel microwave resonator designed for com-

patibility with a Penning trap. Resonator design considerations are
presented along with cavity resonance characterization both via numerical
simulation and observation. Considerations for enhancing the cooling power
of this resonator with unique surface preparations are detailed.

Chapter 4 models many body e�ects unique to this refrigerative

implementation of the Purcell e�ect. Namely, if there are too many
particles radiating energy into our cavity, its refrigeration powers will be
diminished. This is a many body problem in the vicinity of a resonance.
Numerical results are shown from systems of a few particles up to a few
hundred particles. The results are extrapolated in order to make predictions
about the maximum number of particles our technique is capable of cooling.

Chapter 5 describes a �laser pass - microwave �lter� device we

have constructed. This �lter is designed with a tubular geometry in-
tended to allow laser access to antihydrogen trapping regions while attenuat-
ing unwanted microwave radiation which might cause heating of the positron
plasma.

Chapter 6 describes measurements which characterize the mag-

netic properties of the ALPHA Penning trap electrodes.

3



1.3. ALPHA apparatus

Chapter 7 presents preliminary data which con�rms our assertion

that positrons can be cooled via the Purcell e�ect.

1.3 ALPHA apparatus

The ALPHA apparatus is, at its heart, a Penning trap superimposed with
a magnetic minimum trap. The Penning trap is an apparatus for control-
ling charged particles: positrons and antiprotons. Once these are mixed
and (neutral) antihydrogen is formed, a magnetic minimum trap is used to
contain the antiatom(s).

Figure 1.1: The Penning trap of the ALPHA apparatus is shown surrounded
by Octupole and mirror coils which impose a magnetic minimum trap for anti
atoms. Also shown is the silicon detector used to reconstruct annihilation
events. Figure adapted from [2].

Antiprotons are created by colliding high energy protons on an iridium
target. The antiprotons produced by these collisions are decelerated to en-
ergies of ' 5.3 MeV by a facility called the Antiprotron Decelerator (AD)
[39]. These low energy antiprotons are shared between a number of antimat-
ter and antihydrogen experiments which have developed around this unique
facility. At ALPHA we direct antiprotons from the AD into a dedicated

4



1.4. The Penning trap

Penning trap (called the "catching trap") where they are cooled, both sym-
pathetically by an electron plasma and, afterwards by evaporation. Once
cooled, antiprotons are transferred to the "mixing trap" shown in �gure 1.1.

Positrons are emitted via beta decay from a radioactive sodium-22 source.
A Surko-type positron accumulator [43] stores these positrons for injection
into the mixing trap.

Once both antiprotons and positrons are in the same central Penning
trap, the two species are mixed using a technique called auto-resonant mix-
ing [17]. The technique is tuned to mix the particles while heating them
minimally. During mixing antihydrogen forms, likely through three body
collisions [49] between two positrons and one antiproton.

Most of the antiatoms which are created in this manner likely annihilate
on the inner wall of the Penning trap. However, those in either of the upper
two spin states, with a kinetic energy less than about 0.5 K can be trapped.
(The trap depth is set by the strength of the octupole magnetic �eld at the
Penning trap wall: Antiatoms with enough energy to reach higher �elds will
annihilate here and be lost.)

The ALPHA apparatus in its entirety is an extremely complex device
and many important aspects have been left out of this description. Some of
the omitted subsystems include: particle detectors (silicon, caesium-iodide,
plastic scintillators); plasma diagnostics (faraday cup, micro-channel plates,
phosphor screens); vacuum and cryogenics; microwave equipment, lasers and
optics. Greater detail can be found in [2, 41].

1.4 The Penning trap

Because of its central importance to both the ALPHA experiment and the
present work, a more detailed overview of the Penning trap is provided here.

The Penning trap is merely a segmented hollow metal tube which traps
charged particles using static electric and magnetic �elds. Each segment,
or electrode, of the tube is electrically isolated from all the others. This
isolation allows each electrode to be held at a di�erent voltage. To trap
positrons, for example, a central electrode (or group of electrodes) is held
at some low voltage (ground in �gure 1.2) while outer electrodes are held at
high voltage. If the potential energy �hill� provided by the end electrodes is
high enough, particles will be axially con�ned.

5



1.4. The Penning trap

Figure 1.2: A sketch of a Penning trap which contains positrons axially via
electrostatic forces. Figure adapted from [10].

To obtain 3-dimensional con�nement, a large axial magnetic �eld is ap-
plied. This �eld imposes a centripetal Lorentz force:

F = q~v × ~B (1.1)

which causes the charged particles to oscillate in a circular motion (cyclotron
motion) as in �gure 1.3. 2

Because these charged particles are accelerating, they are also radiating.
This radiation is the primary cooling mechanism for positron plasmas at AL-
PHA. Until very recently 3 the positron temperatures were typically 50 - 100
K. Speculation is that radiative heating from objects in poor thermal contact
with the cryostat, electronic noise, and/or magnetic �eld inhomogeneities
could prevent positrons from reaching temperatures set by the Penning trap
wall at ' 7− 10 K.

2A �magnetron� motion, where the plasma as a whole, spins about its axis, is also
present in trapped plasmas, though not discussed in this thesis.

3Near the end of 2014, ALPHA saw positrons with temperatures as low as 30 K.

6



1.4. The Penning trap

Figure 1.3: An axial magnetic �eld imposes a centripetal force which causes
circular motion. Radiation is emitted at the cyclotron frequency.

A competition between these heating mechanisms with cooling due to
radiation sets the positron temperature. In this light, Chapter 3 will point
out that a cavity can reduce the equilibrium positron temperature on two
fronts. First the cooling rate will be greatly enhanced. Second, radiative
heating can be reduced since photons from warm external objects tend not
to couple into the cavity. In the absence of any other heating mechanisms,
the positrons would cool to the temperature of the Penning trap electrodes.

7



Chapter 2

Overview of the Purcell E�ect

2.1 Theory and history

The historical beginnings of this work lie in a 1946 abstract for a paper
published by Purcell [1]. Purcell noted that nuclear magnetic resonance
(NMR) transitions could be enhanced by a large factor if the sample under
measurement is coupled to a resonant circuit 4. In that work Purcell pointed
out that the decay rate of some excited state |i > to some lower state |f > is
modi�ed under this resonant coupling. This decay rate is expressed according
to Fermi's Golden rule as

Γ = 2πρ(E)
| < f |H|i > |2

h̄
(2.1)

where H is a perturbing Hamiltonian; ρ(E) is the density of states at energy
Ef − Ei = hν, for frequency ν; and where 2πh̄ is Plank's constant.

If an excited state of some system decays in a free space environment, the
density of states for the emitted photon is 8πν2/c3. In the case of coupling
to a resonator, however, there now exists only one state in the frequency
bandwidth of the resonator ∆ω. The enhancement factor Purcell derived is

3Qλ3

4π2V
(2.2)

where λ is the resonant wavelength of radiation emitted by NMR transitions,
Q is the resonator quality factor and V is the resonator volume.

Decades later, Kleppner [37] would elucidate a physical interpretation for
this e�ect: that the resonator has enhanced vacuum �eld �uctuations at the
resonant frequency (ν) which "stimulate" spontaneous emission. Indeed the
state transition frequency must be matched to a resonance of the environ-
ment for enhancement to occur. If the emission frequency is o� resonance the
density of states approaches zero and spontaneous emission can be greatly
inhibited.

4In NMR this e�ect is usually termed "radiation damping" [4].
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2.1. Theory and history

Environments inhibiting and enhancing spontaneous emission are sketched
qualitatively in �gure 2.1 alongside a free space environment. Both inhibited
and enhanced spontaneous emission have been observed across a number of
diverse systems throughout the 1980's. These experiments (to be discussed
further in the next section) involve electron plasmas, Rydberg atoms, semi-
conductor devices and dye molecules.

Figure 2.1: Three separate environments are sketched. a) shows a metallic
two dimensional box which constrains the density of states for photons emit-
ted from a radiating dipole (red arrow). If the electromagnetic resonance
frequency of the box is tuned to the characteristic emission frequency of the
dipole, spontaneous emission is enhanced. b) Shows the same dipole in a box
signi�cantly smaller than the resonant wavelength. No states exist for pho-
tons at this frequency and the dipole will not emit. c) Free space boundary
conditions allow the dipole to emit "normally".

Although not the focus of this thesis, it would be imprudent to omit
two other main features of this theoretical framework. Firstly, in addition
to a�ecting the spontaneous emission rate of a multi-state system, a cavity
also a�ects the energy levels of that system. That is, the energies of states
|i > and |f > when coupled to a cavity are di�erent than in free space.
Fortunately (for this work) the energy shift is a higher order e�ect which
can be ignored when one is solely interested in the decay rate, Γ.

Secondly, and more importantly, all these cavity e�ects fall under the
larger branch of what is now known as Cavity Quantum Electrodynamics,
or Cavity QED. Cavity QED represents a large and interesting �eld in its
own right. While emission rate and energy level shifts typically occur un-
der weak cavity coupling, the strong coupling regime o�ers an even richer
variety of physics. Under strong coupling, cavity photons can become en-
tangled with a matter system. These systems o�er opportunities for tests of
quantum mechanics, quantum non-demolition measurements, and potential

9



2.2. Some experiments

applications in quantum information [56]. Most of cavity QED, however, lies
beyond the scope of this thesis and will not be considered further.

Finally, applications of the Purcell e�ect are also widespread in solid state
systems where device performance is often limited by spontaneous emission.
Much work been done to improve these limits using cavities or cavity-like
structures [62].

2.2 Some experiments

Although the �rst experiment was actually performed with dye molecules
[13], experimental Cavity QED has largely resided within the realms of
atomic and solid state physics. This section will therefore provide a brief
review of experiments from these �elds which demonstrate control of spon-
taneous emission before moving on to the context of lepton plasmas with
which we are primarily concerned. For a more comprehensive review see
[56].

2.2.1 Rydberg atoms

In 1981 Kleppner �rst proposed that Rydberg atoms would make good candi-
dates for observations of spontaneous emission control [37]. Rydberg atoms
were attractive candidates since transitions between closely spaced energy
levels would produce resonance frequencies of hundreds of GHz. This meant
that the wavelength of the emitted radiation would be on the scale of µm or
mm and that cavities could therefore be easily constructed to constrain or en-
hance this radiation. The environment Kleppner proposed was a waveguide
in the vicinity of cut-o�.

Given that the mode structure of waveguides is well known [48], Kleppner
was able to analytically calculate the density of states (see �gure 2.2). The
high frequency, long wavelength limit approaches free space conditions but
large departures from this limit appear near waveguide cut-o� frequencies
where the density of states for photons is very high.

With this geometry in mind, prototypical Rydberg atom experiments
were conceived as in �gure 2.3. Generally some atomic Rydberg state is
created in an atomic beam by use of appropriate laser excitation. Next the
beam is directed into a cavity consisting of two metallic plates or mirrors
which constrain the density of states for photons in that region. After some
transit time the states of atoms in the beam are analysed usually by a com-
bination of laser induced transitions and ionization. A signal is produced in
the detection region by tuning the laser or ionizing electric �eld such that
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2.2. Some experiments

Figure 2.2: A reproduction of Kleppner's 1981 calculation for the photonic
density of states in a rectangular waveguide. The result is compared with
the free space case
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2.2. Some experiments

atoms are ionized according to their state. By comparing the transit time
for atoms to cross the cavity to the spontaneous emission rate in free space,
inhibition or enhancement can be observed.

Figure 2.3: A typical experiment exhibiting spontaneous emission control of
Rydberg atoms.

In [33] inhibited spontaneous emission was inferred when Caesium atoms
in state |n, |m| >= |22, 21 > were observed to transit a cavity without de-
caying. The cavity transit time being about equal to the free space decay
time meant that more |22, 21 > atoms arrived on the other side of the cavity
than should have. The transition resonance was tuned using the Stark e�ect:
by applying an electric �eld to the Rydberg atom, the resonant transition
frequency could be shifted above and below the cut-o� of the cavity.

A similar experiment was performed in [35] using Caesium atoms in the
5D5/2 state. Although multiple atomic decay channels from that state exist,
spontaneous emission inhibition was observed when some of those channels
are blocked. Decay channels with ∆m = ±1 emit photons polarized di�er-
ently than those with ∆m = 0, and coupling to these decay channels could be
tuned by varying a background magnetic �eld such that this �eld direction
was either parallel or perpendicular to the cavity plates.

The �rst observation of enhanced spontaneous emission [26] followed the
archetypal set-up of �gure 2.3 except that the cavity transit time was shorter
than the free space decay time. Sodium atoms prepared in the 23S state were
observed in the detection region to have decayed to states 22P1/2 and 22P3/2,
much faster than predicted by free space spontaneous emission. An addi-
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2.2. Some experiments

tional di�erence between this and previous work includes the low temper-
ature nature of the apparatus. Superconducting niobium plates in contact
with a liquid helium bath were used to form the cavity. The superconduct-
ing plates set a cavity Q ' 106 . Additionally, the atomic production region
was separated from cavity and state detection region by thermal shields and
microwave absorbers. This cold environment had the advantage that back-
ground (blackbody) radiation induced emission from the Rydberg atoms was
negligible. The radiation temperature was set by the temperature of the cav-
ity plates (about 7 K). Tuning the cavity on or o� the transition resonance
was achieved by moving one plate with a �ne tuning screw (with the greatest
enhancement observed on resonance).

Later, transitions at optical frequencies in ytterbium atoms were observed
in a Fabry-Perot cavity [30]. For some time these resonators were thought
to be impractical since the enhancement factor (λ3/V from equation 2.2) is
small at optical frequencies. To counteract this e�ect the experiment uses
a large number of degenerate (transverse mode) resonances. They observe
control of spontaneous emission by measuring �orescence emitted from atoms
in the resonator.

In a similar set up, this group was able to observe energy level shifts
in Barium atoms resulting from cavity interactions [29]. Energy levels are
mapped by weakly coupling a laser into the Fabry-Perot resonator, and scan-
ning both the cavity length and laser frequency. When the cavity comes into
resonance with the atomic transition, many excited atoms suddenly decay
and a lower intensity of �orescence is measured.

2.2.2 Solid state systems

Soon after the initial results in atomic and plasma physics Yablonovitch [61]
noted that it might be bene�cial to control spontaneous emission in electron-
hole pairs in semiconductors. These electron-hole pairs form dipoles with
energy levels and radiation patterns not dissimilar to atomic systems. The
practical devices (lasers, transistors, solar cells etc) based on these materials
often exhibit performance limited by spontaneous emission.

Enhancing spontaneous emission rates can provide lasers with larger
bandwidth (when tunability is desired), lower lasing thresholds, and in-
creased quantum e�ciency [62]. Inhibited spontaneous emission rates can
be used to sharpen spectral features and enhance operation speeds of light
emitting diodes (LEDs). In the strong coupling regime where Cavity QED
e�ects produce entanglement of emitters and photons, quantum cryptogra-
phy applications result [57].
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2.2. Some experiments

Yablonovitch proposed that a Fabry-Perot type resonator with distribu-
tive Bragg re�ectors (DBR) in place of mirrors surrounding a semi-conductor
�led cavity (see �gure 2.4) would provide the sought after control.5

Figure 2.4: A distributive Bragg re�ector is constructed of alternating layers
of high and low dielectric materials. Each layer has a thickness λ/4 which
enforces an interference pattern demanding re�ection. If two such structures
were placed on either side of a semi conducting slab, a Fabry Perot cavity is
formed which constrains spontaneous emission.

Demonstration of spontaneous emission control came soon afterwards
[60] with a di�erent experiment than proposed above. These authors placed
thin semi-conducting �lms on a variety of di�erent substrates in an e�ort
to change the local electric �eld which induces spontaneous emission. As
motivation, the authors note that the electric �eld creation operator ( E+ )
within Fermi's Golden rule (expressed as Γ = 2πρ(E) |<xE

+>|2
h̄ , with x the

dipole operator) is also modi�ed by the environment.6

5 Yablonovitch thought of the DBR as having a "photonic band gap" - a range of
frequencies for which electromagnetic wave propagation was forbidden. This thought
foreshadows the �eld of photonic crystals where 3-dimensional periodic structures exhibit
photonic band gaps with widespread applications, among them control of spontaneous
emission [44].

6 We also hope to capitalize on this type of enhancement. See section 2.4 for a discussion
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2.2. Some experiments

As an example, if a semi-conducting sphere is surrounded by some ex-
ternal material with a di�erent index of refraction η (rather than an index
matched material), then the �eld needed to be rescaled according to standard
results from electrostatics:

E+
int =

3

η3
int/η

3
ext + 2

E+
ext (2.3)

By varying the substrate which supports the semi-conductor sample, radia-
tive recombination was inhibited by a factor of about 5.

2.2.3 Plasmas

In 1985 Gabrielse observed the microwave cavity formed by a set of Penning
trap electrodes to inhibit spontaneous emission [25].Those electrodes took the
form of a metallic box with hyperbolic walls 7 as in �gure 2.5. The experiment
was conducted in a magnetic �eld of 6 T which sets the cyclotron wavelength
to be about 2 mm. Due to the hyperbolic shape of the electrodes, the exact
microwave mode structure was not known. It was, however, inferred that
cavity e�ects must play a role since the distance between the electron and
metal wall (' 6.7 mm) was comparable to the cyclotron wavelength.

This work was carried out in the context of precision measurements of
the electron g-factor. Measurements of g required precision measurements
of the cyclotron frequency (ωc). As with Rydberg atoms, the cavity signif-
icantly perturbed the energy levels of the system (which, in this case, set
the cyclotron frequency). Cavity e�ects had to be accounted for [9, 46] and
much experimental and theoretical work was devoted to this end.

To make theoretical predictions about this e�ect, the authors included
electric forces resulting from microwave resonances in the Penning trap in the
equations of motion for their trapped electron [9, 8] (equation 2.4). Other
terms in equation 2.4 result from the usual trapping forces; namely, the
applied magnetic and electrostatic �eld.

~̇v − ~ωc × ~v + (e/m)∇V (~r) +
1

2
γc~v = (e/m) ~E(~r) (2.4)

By changing to a circular cylindrical Penning trap geometry the microwave
resonances of the system became analytically tractable. Solving for ~E(~r)
with the method of images the authors were able to predict shifts in ωc and

of our �ll factor.
7This choice of electrode geometry was selected to obtain a quadrupole electrostatic

potential.
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2.2. Some experiments

Figure 2.5: Hyperbolic electrodes were used to create a harmonic axial po-
tential. The electrodes are circularly symmetric about the vertical axis.
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2.3. A null result at ALPHA

γc resulting from interaction with microwave resonances of the trap. In par-
ticular those resonances with strong transverse electric �elds at the location
of the electron were shown to strongly perturb the cyclotron frequency and
enhance the spontaneous emission rate.

Methods for detecting cavity modes in-situ were developed [53, 50, 51,
27]. These methods made use of equivalent circuit analyses [12, 59], and the
perturbative coupling of the axial plasma oscillation to the cyclotron and spin
degrees of freedom via magnetic nickel strips. Voltage measurements across
electrodes at the axial plasma frequency, ωz (typically in the MHz regime),
allow inference of the cyclotron spontaneous decay rate and a mapping of
the cavity resonance frequencies.

2.3 A null result at ALPHA

The �rst attempt to realize the Purcell E�ect as a cooling technique at
ALPHA occurred in 2011.

By matching the cyclotron frequency of positron plasmas to a microwave
resonance of the ALPHA Penning trap (measured in [21]) we hoped to ob-
serve plasma temperatures drop to a new equilibrium temperature set by the
Penning trap wall. The drop should occur at a much enhanced (relative to
free space) rate set by the Purcell E�ect.

By slowly incrementing the axial magnetic �eld we were able to scan the
cyclotron frequency over a region thought to contain microwave resonances.
We simultaneously monitor the temperature via a non-destructive technique
[14] sketched in �gure 2.6.

The technique excites and measures the quadrupole mode of electrostatic
oscillation in the plasma. Detection is achieved through voltages induced by
the plasma oscillation on a nearby electrode.

The quadrupole mode frequency, f2, depends on the plasma temperature
(T ) according to

(f ′2)2 − (f2)2 = 5

(
3− α2

2

f2
p

(f c2)2

∂2g(α)

∂α2

)
kB∆T

mπ2L2
(2.5)

where α = L/2r is the plasma aspect ratio, f c2 is the quadrupole fre-
quency in the cold �uid limit, kB is the Boltzmann constant, and g(α) =

2Q1

(
α/
√
α2 − 1

)
/(α2− 1) with Q1 the �rst order Legendre function of the

second kind. The plasma frequency is fp = 1
2π

√
ne2/mεo, where n is the

plasma number density.
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2.3. A null result at ALPHA

In the limit f ′2−f2
f2

� 1, changes in the plasma quadrupole oscillation
frequency are proportional to changes in the plasma temperature.

∆f2 ' β∆T (2.6)

By measuring changes in this oscillation frequency, the relative plasma tem-
perature can be monitored.

Figure 2.6: The plasma quadrupole mode inside a Penning trap is sketched
. A transmission line attached to a nearby electrode detects this oscillation
signal via image charges induced in the electrode.

Figure 2.7 shows the plasma temperature and quadrupole frequency ver-
sus the cyclotron frequency. The plot reveals complicated structure not
consistent with the resonant frequencies of the trap. Additionally the tem-
perature shows no great drop at any frequency. Multiple cross checks were
made on this measurement involving alternate temperature measurement
methods, magnetic �eld calibrations, reduction of positron number within
the plasma, and simple repetition, none of which revealed an obvious result.
A more detailed description of that test can be found in [24].

Two candidates for potential disruption of the cavity cooling e�ect at
ALPHA have been identi�ed. Firstly, these experiments were conducted
with N ' 105 - 106 positrons, a number much greater than other experiments
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2.3. A null result at ALPHA

Figure 2.7: The quadrupole mode is monitored while scanning the cyclotron
frequency across the measured frequencies of three cavity modes. No obvious
mode structure revealed itself in the positron temperature measurements.
Figure adapted from [24].
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2.4. Circuit formulation of the Purcell E�ect for a cyclotron oscillator

mentioned above. If the cooling e�ect is distributed over too many electrons
then it could feasibly become ine�ective and negligible. This many body
e�ect is discussed in Chapter 4 and, using di�erent techniques , in [47] . Our
chosen solution is outlined in section 3.4.

Secondly, the properties of microwave resonances in the replica ALPHA
stack may vary signi�cantly depending on the environment. This seems
likely since microwaves were found to leak through the gaps between elec-
trodes allowing environmental factors to in�uence cavity resonances. For
example, a number of striplines run axially down the outside of the ALPHA
stack at CERN which were not present for the measurements in [21]. These
striplines could act as antennas, carrying energy away and reducing both
the Q and the positron-cavity coupling (the �ll factor, χ, of section 2.4). To
mitigate possible microwave leakage at gaps between electrodes and desen-
sitize the cavity to its surrounding environment, choke structures have been
incorporated into the cavity presented in chapter 3.

2.4 Circuit formulation of the Purcell E�ect for a

cyclotron oscillator

This section presents our own formulation of the Purcell e�ect for the case of
a single charged particle in a strong magnetic �eld. For comparison's sake,
we �rst derive the free space decay rate. Both models are purely classical.

2.4.1 Cooling in free space

The cyclotron cooling rate of a particle in a �eld B, due to radiation into
free space is given by

1/τc =
P

EKE
(2.7)

where P is the power radiated by a charged particle in a circular orbit and
EKE is the kinetic energy of the particle. Combining the Larmor formula
for the radiation of an accelerated particle

P =
e2a2

6πεoc3
(2.8)

with EKE = 1
2mω

2r2, one obtains the well known formula
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2.4. Circuit formulation of the Purcell E�ect for a cyclotron oscillator

1/τc =
e2ω2

3πεoc3m
=

e4B2

3πεoc3m3
. (2.9)

For a plasma su�ciently dense that the (two) cyclotron degrees of freedom
easily equilibrate with the (third) axial degree of freedom, this cooling rate
has to be multiplied by a factor 2/3 to give:

1/τnet =
2e4B2

9πεoc3m3
. (2.10)

For electrons and positrons in a 1 Tesla �eld this gives τc = 3.87 sec, to be
compared to measured values of about 4 sec in the ALPHA apparatus.

Note that this result is derived for a single charged particle. It is appli-
cable to a dilute plasma under the assumption that the individual phases
of the cyclotron orbits of the particles are randomly distributed. Also, the
formula is only valid in the classical limit, where h̄ω is much less than the
average excitation energy of the cyclotron levels. For electrons and positrons
in a 1 Tesla �eld, h̄ω ' 1.5 Kelvin, so that we expect the results to apply to
the ALPHA lepton plasmas.

2.4.2 Cyclotron cooling of a particle inside a resonant

cavity

A cavity with conducting walls can strongly perturb the spectrum of the
�nal states into which a particle can decay. We use a very simple model of a
charged particle in a B-�eld parallel to the plates of a capacitor (�gure 2.8,
and then generalize the result to an arbitrarily shaped cavity.

Figure 2.8: An electron in circular orbit in a capacitor

The oscillating component of the charge on the capacitor is 2er cos(ωt)/d
so that the open circuit voltage across the capacitor is
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v =
q

C
=

2er cos(ωt)

d× (εoA/d)
=
er cos(ωt)

εoA
(2.11)

where ω is the cyclotron frequency eB/m, and d is the gap between capacitive
plates of area A.

Figure 2.9: The capacitor of �gure 2.8 in a resonant circuit.

If we now put the capacitor in a series resonant circuit (see �gure 2.9)
such that ωo = 1/

√
LC coincides with the cyclotron frequency, then the

average power delivered to the resistance R is

P =
< v2 >

R
=

4e2r2

2ε2oA
2R

(2.12)

Therefore the damping rate of the cyclotron motion is

1/τc =
P

EKE
=

4e2

εoA2mω2R
. (2.13)

Using R = 1/(ωCQ) we obtain

1/τc =
4e2Q

εomωVc
. (2.14)

where Vc = Ad is the volume of the capacitor.
Using ω = eB/m and including the factor of 2/3 to account for the axial

degree of freedom one obtains

1/τnet =
8eQ

3εoBVc
. (2.15)
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For a cavity with non-uniform values of the electric �eld ~E, this generalizes
to

1/τnet =
8eQ

3εoBVc

E2
o

< E2 >
(2.16)

or more formally

1/τnet =
8eQ

3εoB

E2
o´

E2 dV
(2.17)

Here, for a particular cavity mode, Eo is the value of the electric �eld normal
to the cyclotron orbit when the cavity is excited and, at the same excitation
level, < E2 > is the mean square electric �eld in the cavity. For a simple
capacitor with d�

√
A, ~E is uniform and χ = 1/V . For the bulge resonator

proposed in section 3 (with V = 26cm3) the �ll factor is seen to vary by
factors of 10 depending on mode type. Simulation and measurements of χ
yield

χ =
E2
o´

E2 dV
' 106 1

m3
. (2.18)

for the TE1lm modes.
As an example, a cavity with the above �ll factor, a resonant frequency

at 28 GHz with Q = 4000 predicts a cooling time of

1/τnet ' 5ms (2.19)

representing an improvement over the free space case by a factor of about
1000.

2.4.3 Decay rate for an oscillator inside a cavity with

non-uniform �elds

Consider the case of a physically small LC circuit inside the capacitor of
a physically large LRC circuit as in �gure 2.10. The mutual capacitance
will be used to calculate the voltage induced on the latter resonator by the
former. The cooling rate will be derived in this context in order to motivate
the �ll factor, χ.

The decay rate is now
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Figure 2.10: A small loss-less LC resonator is placed near the capacitive
edge of a large, lossy LRC resonator.
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1/τ =
P

U1
(2.20)

where P =< V 2
2 > /R2 is the power dissipated in the large resonator and

U1 =
q21

2C1
is the energy stored in the small resonator.

The voltages across these capacitors (for respective charges q1 and q2) are

V1 =
q1

C1
+

q2

C21

V2 =
q2

C2
+

q1

C12

Neglecting the self-capacitive terms we have

P =
q2

1

2C2
12R2

(2.21)

so that the decay rate (with the de�nition for U1) is

1/τ =
C1

C2
12R2

(2.22)

In order to �nd C12 we make use of the reciprocity of mutual capacitance

C12 = C21 (2.23)

and write

V1 '
q2

C21

V1 =E1d1

V1 =E2(r)d1

to obtain

C12 = C21 =
q2

E2(r)d1
(2.24)

together with C1 = εoA1/d1 the decay rate is

1/τ =
εoA1d

2
1E

2
2(r)

d1q2
2R2

(2.25)
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The energy in the second capacitor U2 =
q22

2C2
= εo

2

´
E2 dV allows us to

remove q2 from equation 2.25.

1/τ =
V1

C2R2

E2
2(r)´
E2 dV

(2.26)

Finally we use Q2ωo = 1/R2C2 to arrive at

1/τ = V1ωoQ2χ (2.27)

This can be seen to match the result of the last section if one allows some
phenomenological or e�ective volume

V1 =
4e2

εomω2
o

(2.28)

2.4.4 Comparison with the quantum result

Beginning with Fermi's Golden Rule (equation 2.1) we attempt to derive the
cavity enhanced cooling rate.

Γ = 2πρ(E)
| < f |H|i > |2

h̄
(2.29)

The perturbing Hamiltonian results from a dipole interaction:

H = exE(x) (2.30)

with e the electron charge, x the charge's position and E(x) the electric
�eld at that location. Expressing the position operator as a sum of raising
and lowering operators (x =

√
h̄/2mωo[a+ + a−]), allows us to compute the

emission and absorption rates:

Γemission =
πρe2E2(x)

mωo
(l + 1)

Γabsorption =
πρe2E2(x)

mωo
l

where l is the quantum number for the harmonic oscillator excitation and
we have used a−|l >=

√
l|l − 1 > and a+|l >=

√
l + 1|l + 1 >.
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The cooling rate is

Γ =Γemission − Γabsorption

=
πρe2E2(x)

2mωo

=
πe2E2(x)

2mωoh̄∆ω

=
πQe2E2(x)

2mω2
o h̄

where we have used the density of states appropriate for a cavity resonance.

ρ =
1

h̄∆ω

=
Q

h̄ωo

Following [7] we normalize the electric �eld according to the number of pho-
tons in the cavity. We perform the rescaling E2 → E2/n with

nh̄ωo =
εo
2

ˆ
E2 dV. (2.31)

The cooling rate becomes

Γ =
πQe2E2(x)

h̄mω2
o

2h̄ωo
εo
´
E2 dV

=
2πQe2

εomωo
χ

which matches the classical expression up to a factor of π/2.
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Chapter 3

The Bulge Cavity

This chapter of the thesis describes a microwave cavity which has been shown
to cool electrons at a collaborative plasma experiment at Berkeley. A de-
scription of the Berkeley apparatus can be found in [47].

The Penning trap at Berkeley is designed in the style of that used at AL-
PHA and often used as a testing ground for new plasma techniques. Absent
from the experiment at Berkeley are many of the strict design requirements
necessary for a full antihydrogen experiment. This relaxation allows us to de-
sign a so called bulge resonator compatible with the open tubular geometry
of this style of Penning trap. The resonator is shown in �gure 3.5.

3.1 Resonances of a cylindrical cavity

Figure 3.1: The right circular cylinder represents the inner space of a
metallic container.

The resonator described in this section strongly resembles a simple cylin-
drical cavity (�gure 3.1). Therefore, throughout our study we make use of
the nomenclature surrounding this geometry. Additionally, we often revert
to thinking about the right circular cylinder when testing simple ideas or
developing intuition about the behaviour of the more complicated cavity
resonances to be presented in later sections. Accordingly, a short section is
now devoted to electromagnetic resonances inside a conducting cylinder.
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3.1. Resonances of a cylindrical cavity

Beginning from the Helmholtz equation ( ∇2 ~E + k2 ~E = 0 ) for electric
and magnetic �elds, one may split the Laplacian operator into parts as

∇2 → ∇2
T +

∂2

∂z2
(3.1)

where ∇2
T represents the transverse Laplacian in the cylindrical coordinates

r and φ. Assuming that these electromagnetic waves propagate axially, the
z dependence satis�es

∂2 ~E(r, φ, z)

∂z2
= −β2 ~E(r, φ, z) (3.2)

and the Helmholtz equation becomes

∇2
T
~E = k2

c
~E (3.3)

where the cut-o� wavevector has been de�ned k2
c = k2 − β2.

By using Maxwell's equations ( ∇ × ~E = −iω ~H and ∇ × ~H = iωε ~E )
together with tedious algebra, one may show that all �eld components can
be expressed in terms of the axial �elds only.

Er = − i

k2
c

(
β
∂Ez
∂r

+
ωµ

r

∂Hz

∂φ

)
Eφ =

i

k2
c

(
−β
r

∂Ez
∂φ

+ ωµ
∂Hz

∂r

)
Hr =

i

k2
c

(
ωε

r

∂Ez
∂φ

+ β
∂Hz

∂r

)
Hφ = − i

k2
c

(
ωε
∂Ez
∂r

+
β

r

∂Hz

∂φ

)
(3.4)

Therefore, a solution to

∇2
TEz = k2

cEz (3.5)

together with the correct boundary conditions for the cylinder will yield
complete �eld solutions to cavity resonances.

These solutions generally fall into two categories: transverse electric (TE)
waves and transverse magnetic (TM) waves. The former have Ez = 0 and
the latter have Hz = 0. Separation of variables shows that, for the TE waves,
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3.1. Resonances of a cylindrical cavity

Hz = (AJn(kcr) +BNn(kcr)) (C cos(nφ) +D sin(nφ)) (3.6)

where Jn and Nn are the nth order Bessel functions of the �rst and second
kind respectively. Applying boundary conditions allows us to reduce this
expression considerably. B = 0 since �elds must be �nite at the origin
(r = 0) and D = 0 by a judicious choice of the origin for φ.

Figure 3.2: Electric �elds for transverse electric resonances of a cylindrical
cavity: TE01 , TE11 ,TE21, TE02, TE12, TE22. The above �eld contours are
taken for sin(βz) = 1.

The conducting boundary conditions on the radius of the cylinder (Eφ =
0 at r = a) gives

kc =
p′nl
a

where p′nl is the zero of of the relevant Bessel function derivative (J ′(p′nl) =
0). Imposing the axial boundary conditions on equations 3.4
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3.1. Resonances of a cylindrical cavity

Hz = AJn(kcr) cos(nφ) (AL exp(−iβz) +AR exp(+iβz))

Er ∝ Eφ ∝ i (AL exp(−iβz) +AR exp(+iβz))

Hr ∝ Hφ ∝ i (−βAL exp(−iβz) + βAR exp(+iβz)) ,

gives AR = −1/2 and AL = 1/2. As a result Er ∝ Eφ ∝ sin(βz) with an
"axial wavevector" β = mπ

L .
Finally, the solutions take the form

Hz = AJn(kcr) cos(nφ) sin(mπz/L)

Hφ =
nβ

k2
cr
AJn(kcr) sin(nφ) cos(mπz/L)

Hr =
β

kc
AJ ′n(kcr) cos(nφ) cos(mπz/L)

Er = −iωµn
k2
cr
AJn(kcr) sin(nφ) sin(mπz/L)

Eφ = −iωµ
kc
AJ ′n(kcr) cos(nφ) sin(mπz/L)

where the factor of i in the electric �eld expressions represents a π/2 phase
shift (in time) relative to the magnetic �elds. The �elds of a speci�c cav-
ity resonance are completely determined by the three wavenumbers: n, l,
and m. It is common, therefore, to denote cavity resonances with the no-
tation TEnlm. These �eld patterns are shown in �gure 3.2 for a handful of
resonances.

The frequency of such a resonance can be written

flnm = c

√(
p′nl
2πa

)2

+
(m

2L

)2

The corresponding solutions for TM modes (shown in �gure 3.3) are
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3.1. Resonances of a cylindrical cavity

Hφ = −iωε
kc
AJ ′n(kcr) cos(nφ) cos(mπz/L)

Hr = −inωε
k2
cr
AJn(kcr) sin(nφ) cos(mπz/L)

Ez = AJn(kcr) cos(nφ) cos(mπz/L)

Er =
β

kc
AJ ′n(kcr) cos(nφ) sin(mπz/L)

Eφ =
βn

k2
cr
AJn(kcr) sin(nφ) sin(mπz/L)

with

fnlm = c

√( pnl
2πa

)2
+
(m

2L

)2

Figure 3.3: Electric �elds of TMnlm resonances of a cylindrical cavity. :
TM01 , TM11 ,TM21, TM02, TM12, TM22. The �elds point axially out of
the page. The above �eld contours are taken for sin(βz) = 1.

The axial variation for a few of these modes is shown in �gure 3.4.
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3.2. Bulge design

Figure 3.4: Axial dependence of TE and TM modes.

3.2 Bulge design

Our bulge resonator maintains the cylindrical symmetry of the right circu-
lar cylinder (above), but removes the traditional axial boundary conditions.
Instead we create some localized region where a microwave mode can propa-
gate, surrounded by regions where propagation is forbidden. To achieve this,
the inner radius swells across three electrodes from small end regions to a
larger central region. In the central region a mode can propagate, while in
the end regions this same mode is beyond cut o� and must decay exponen-
tially. Both the outer surfaces of the electrodes and the segmented nature
of the cavity were designed to be compatible with the existing Penning trap
at Berkeley.

The inner bulge surface is parametrized as

r =− 1.25mm cos(t) + 11.25mm

z =
L

2π
t+ b

where L = 75.6 mm, b is a constant that places the maximum radius in
the middle of the central electrode and t ∈ (0, 2π). Detailed drawings are
included in appendix A.

This geometry was chosen to produce a high Q resonance near the elec-
tron cyclotron frequency at 1 Tesla (28 GHz). A high Q dictates a high
emission rate according to the Purcell e�ect. In order to couple to the cy-
clotron motion the resonance must also have strong transverse electric �elds
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3.2. Bulge design

Figure 3.5: Pro�les of the bulge resonator are shown. a) shows an isometric
outer view of three electrodes; b) the same view in cross-section with elec-
trically isolating ceramics labelled; c) shows another cross-section labelled
according to regions which trap microwaves versus regions in which propa-
gation of these modes is forbidden. The inset of (c) shows the choke structure
which prevents microwave leakage through the gaps between electrodes.
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3.3. Simulations of resonant �elds and frequencies

at the location of the plasma. For on-axis plasmas this limits useful reso-
nances to the set of TE1lm and TM1lm modes. Additionally, higher order
(higher l) TE modes are generally preferred since they produce the most
favourable �ll factors (χ, equation 2.17 ). We also note that an appropri-
ately smooth evolution of the inner radius is required. Sharp steps in the
radius may case so-called mode conversion, leakage of microwave energy from
the cavity, and consequent lowering of the resonance Q.

3.3 Simulations of resonant �elds and frequencies

Although we use the right circular cylinder to guide our intuition about mi-
crowave resonances in this structure, the exact boundary conditions for this
geometry are signi�cantly more complicated and make analytical solutions
for the resonant electric and magnetic �elds impossible. In order to deter-
mine resonant frequencies of this cavity, a commercial microwave simulation
program (HFSS) is employed. Using �nite element analysis multiple �trapped
modes� of the bulge are identi�ed. As expected, resonances resemble those
of the right circular cylinder. Figure 3.6 shows �eld patterns of the TE131

mode identi�ed via simulation. The axial dependence of the magnitude of
the electric �eld is shown in �gure 3.7 where one sees that the mode is well
localized within the bulge region.

Gaps between electrodes (as well as the choke structure of section 3.6) are
not shown but were included and found to have little e�ect on the resonances.
Opened axial faces of end electrodes are approximated to have free space
boundary conditions (Z = 377 Ω). The radial face is modelled as a general
conductor having the resistivity of our alloy (see section 3.4 and appendix
B). A summary of the simulation results for cavity modes observed to cool
electrons is in table 3.1.

3.4 Lowering the cavity Q

An attempt to lower the Qmay seem contrary to our desire for strong cooling
via a high spontaneous emission rate according to equation 2.17. However,
this cooling rate prediction was made for a single particle interacting with
the cavity. To be useful for anti-hydrogen production, many positrons must
be cooled. Indeed a typical experiment either at Berkeley or ALPHA involves
millions or hundreds of millions of leptons.

In light of the many-particle reality, it seems possible that the cavity
would be receiving energy from leptons faster than it can dissipate this en-
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3.4. Lowering the cavity Q

Figure 3.6: Simulated resonant electric �elds resembling a TE131 mode
are shown. The frequency and Q of this mode were near 33 GHz and 4000
respectively.

Cavity Mode fo (GHz) Q χ (106) m−3 τ (ms) (equation 2.17)

TE121 21.8 1580 1.66 6.2
TE123 25.3 1090 0.99 17.4
TE131 34.3 2660 3.20 2.9
TE132 36.5 2200 2.46 5.2
TE133 38.4 1440 2.10 9.2
TE134 40.1 1300 1.63 14.0

Table 3.1: A summary of the simulated cavity resonances. Only the TE131

was characterized experimentally. Its measured frequency and Q were fo =
33.80 GHz and Q ' 2500. χ = E2

o/
´
E2 dV is the �ll factor (equation 2.18).
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3.4. Lowering the cavity Q

Figure 3.7: |E(r = 0)|2, the simulated on-axis electric �eld magnitude is
shown as a function of the axial coordinate z.
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3.4. Lowering the cavity Q

ergy. A deeper analysis of this e�ect can be found in chapter 4 and by Povilus
in [47], both of which make predictions for the maximum number of leptons
a cavity can cool. Both of these analyses conclude that, in order to cool a
large number of electrons, the cavity Q needs to be appropriately lowered so
as to remove energy from the lepton-cavity coupled system faster.

Energy loss from our cavity is set by two primary mechanisms: leakage
out the axial end faces, and resistive losses in the metallic cavity walls.

Ideally, radiation should not be able to couple into or out of our cavity.
Such coupling would allow room temperature blackbody radiation from re-
moved parts of the experiment to a�ect the equilibrium temperature of the
plasmas. One expects a copper cavity of our size, with no leakage, to have a
Q ' 104. That the measured (and simulated) Q of this cavity is only ' 103

indicates that microwave leakage is signi�cant. Unfortunately, reducing loss
by this mechanism would require a redesign of the cavity geometry.

The second energy loss mechanism, resistive losses in the cavity, can be
a�ected by coating the inner face of the copper cavity with a resistive alloy8.
Isaac Martens of the Bizzotto Electro-chemistry group at UBC intervened
here to electroplate the inner face of the resonator with a Nichrome-like
alloy. Nichrome (nickel-chromium) is a metallic alloy with a temperature
independent conductivity a factor of about 100 lower than room temperature
copper.

If resistive losses dominated the resonatorQ, we would expect a reduction
in Q by a factor √

σNichrome

σcopper
' 10 (3.7)

However, since microwave leakage is not negligible, we see some intermediate
reduction and achieve Q ' 2200 in both simulation and experiment. (This
represents reduction by a factor of ' 2 from the case of a bare copper cavity
wall: Q = 4500 ).

We note that it was not obvious beforehand that this method for lowering
the Q would work. Discussion is in appendix B

8Attempts to lower the cavity Q by use of a coupling loop (see, for example, �gure
3.11) terminated by a cold load, were attempted but not used. Simulations showed that
this kind of local perturbation caused severe reduction of the �ll factor due to generation
of unwanted waveguide modes.
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3.4. Lowering the cavity Q

3.4.1 Anti-static coatings

Nichrome, like copper, will oxidize. The oxide will be poorly conducting and
may hold a static charge which could compromise the cylindrical symmetry
of the trap. This has the potential to induce diocotron instabilities [58]
which threaten our control of the plasma. Therefore, as is common with any
Penning trap apparatus, the surfaces exposed to the plasmas must be coated
in some non-oxidizing material. Usually gold is electroplated onto the trap
electrodes.

Gold

Coating the inner surface of our microwave cavity with gold would also raise
the cavity Q thus counteracting the e�ect of the nichrome. We investigated
whether or not a thin layer of gold could be used as an anti-static coating
without shielding cavity modes from resistive losses which are desired in the
underlying nichrome layer. Calculations and experimental con�rmation are
left to an appendix, but our conclusion is that a thin gold layer (thinner than
the skin depth) would be acceptable. At 30 GHz the skin depth of gold is '
450 nm and results (see �gure B.4) show that a gold layer of 100 nm would
not change the surface resistance unbearably.

Graphite

Another solution for anti-static coatings exists: colloidal graphite. Graphite
is preferable since it does not require di�cult electroplating processes. Also,
the shielding e�ect which occurs with a gold anti-static layer is negligible.
Manufacturer speci�cations [52] indicate a graphite (Acheson Aerodag G)
resistivity of

ρg ' 3× 10−2 Ω ·m (3.8)

which implies a skin depth at 30 GHz of ' 0.5 mm. As a test of the graphite's
low temperature resistivity, we applied about 1 µm of graphite to a glass tube
and measured the sheet resistance in a liquid helium bath. The results are
shown in table 3.2.

300 K 4 K

Rs kΩ/square 24 89

Table 3.2: Measured sheet resistance of Aerodag G at room-temperature
and at 4 K.
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3.4. Lowering the cavity Q

An increase in the resistivity of a factor of about 3.5 is seen at low
temperatures. This is consistent with literature results [36]. Since the anti-
static layer is much thinner than the skin depth, its e�ect on the microwave
losses in the cavity will be negligible.

For this cavity we choose the graphite anti-static coating. The �nal inner
surface of the bulge cavity is shown in �gure 3.8 with nichrome and graphite
layered on top of copper.

Figure 3.8: The layered inner surface of the bulge cavity is shown. A
nichrome like alloy was electroplated to the bulk copper in an e�ort to lower
the cavity Q. Colloidal graphite was added on the outermost layer as an
electrostatic shield.

3.4.2 Magnetism

The nichrome-like alloy displays considerably higher magnetic susceptibility
than standard 80/20 nichrome. This is not too surprising in light of an
elemental analysis conducted by Isaac Martens which revealed that the alloy
is principally nickel (and < 1% chromium). Once plated to the inner cavity
wall we magnetize the alloy with an ion pump magnet (B ' 1200 Gauss).
After the magnet is removed we used a Hall probe to measure the on-axis
magnetic �eld resulting from the alloy (see set-up in �gure 3.9)

Figure 3.10 shows the magnetic �eld �t to the model discussed in chapter
6.

Equation 6.9 provides an estimate for the alloy thickness:

t ' 7µm (3.9)
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3.4. Lowering the cavity Q

Figure 3.9: The set up for measurements of the magnetic �eld resulting from
a nichrome-like alloy plated to the inner surface of the cavity.

Figure 3.10: Hall probe measurements of the on-axis magnetic �eld are
plotted with a �t to the model of chapter 6.

41



3.5. Cavity �ll factor χ

3.5 Cavity �ll factor χ

We measure the cavity �ll factor by inserting a small dielectric bead inside
the cavity (see �gure 3.11) and employing cavity perturbation analysis.

Figure 3.11: A small te�on bead is inserted into the cavity. The changes
in frequency of two resonances are monitored via inductive coupling to a
network analyzer. The frequency shifts allow us to map the electric �eld of
these modes.

Following Waldron [55] we have

∂ω

ωo
=
−3(ε− 1)V1

2(ε+ 2)

E2
o´

E2 dV
(3.10)

where ∂ω is the shift in resonance frequency due to the presence of a small
dielectric sphere, ωo is the unperturbed resonance frequency, V1 is the di-
electric volume, and ε is the relative permittivity of the perturbing te�on.

This, combined with the de�nition for the �ll factor E2
o´

E2 dV
(section 2.4)

gives
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3.5. Cavity �ll factor χ

χ = −∂ω
ωo

2(ε+ 2)

3(ε− 1)V1
(3.11)

Figure 3.12: The frequency shift of two orthogonal cavity resonances as a
function of the radial position of a small perturbing te�on bead.

Using the frequency shift at r = 0 we obtain

χ = 3.2× 106 m−3 (3.12)

in good agreement with the simulated result from table 3.1.
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3.6. Chokes

3.6 Chokes

Chokes are λ/4 structures conventionally used in microwave waveguides to
prevent radiation leakage at joints where two guides have been connected.
At such a joint electrical contact is typically poor and this structure serves
to �fake� good contact. We employ the structure to prevent microwaves from
leaking radially at the gaps between electrodes: see the inset in �gure 3.5 (c)

Transmission line theory provides some intuition for the working mech-
anism of a choke. The input impedance (Zin) of a lossless transmission line
of characteristic impedance Z0, terminated with a load impedance ZL as in
�gure 3.13, is

Zin = Z0
ZL + iZ0 tan(2πl/λ)

Z0 + iZL tan(2πl/λ)
(3.13)

Figure 3.13: A transmission line schematic with input impedance Zin,
characteristic impedance Z0, and load impedance ZL labelled. If the length
(l) is tuned correctly, ZL can be transformed to desired values at Zin.

In the limit l = λ/4, we have Zin → Z2
0/ZL. If the load is a short circuit

(ZL = 0) the input impedance is in�nite. On the other hand if the load is
an open circuit (ZL → ∞) then the input impedance is zero. We therefore
see that λ/4 is a special length for a transmission line. A short circuit at
this distance is transformed into a open circuit . Similarly, an open circuit is
transformed into a short. Transforms of this type (see �gure 3.14 ) simulate
electrical contact between electrodes for a range of microwave frequencies
(centred on c/λ).
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Figure 3.14: The metal bottom of the λ/4 groove acts as a short which
is transformed twice to the edge of the cavity where it serves to simulate
electrical contact.

45



Chapter 4

Simulations of N Coupled

Resonators: Cavity and

Electrons

The purpose of this chapter is to investigate the cooling of many electrons by
a single cavity. In the case of a single electron the description of section 2.4
is valid. To be useful as a cooling technique at ALPHA, the method must
be able to cool large numbers of positrons simultaneously. However, there
exists a certain number of particles above which the cooling e�ectiveness of
the cavity begins to diminish. This occurs when the rate of energy entering
the cavity (due to the combined cyclotron radiation from all leptons) starts
to perturb the equilibrium thermal excitation of the relevant cavity mode.

Here we develop a classical circuit model to describe the many body
cooling process. This simpli�ed model neglects much of plasma physics: in
particular the z motion, as well as the magnetron motion of the particles.
In spite of this, we predict that our cavity can e�ectively cool 104 - 105

electrons.

4.1 The circuit model

We model N electrons in cyclotron motion coupled to a dissipative microwave
cavity resonance as N RLC circuits inductively coupled to one lossy RLC res-
onator as in �gure 4.1. The requirement of low loss in our electron resonators
relative to the cavity can be expressed as Ri/R0 � 1 or Qi/Q0 � 1 where
Q is the circuit quality factor.

For electrons directly coupled to the cavity (but not to each other) we
can write the circuit equations as

0 =
q0

C0
+ q̇0R0 + q̈0L0 +

N∑
i=1

Miq̈i (4.1)

and
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4.1. The circuit model

Figure 4.1: N RLC circuits (model electrons) with low Ri, inductively
coupled to one lossy (high R0) RLC circuit (a microwave cavity resonator).

0 =
qi
Ci

+ q̇iRi + q̈iLi +Miq̈0 (4.2)

where Mi is the mutual inductance between the ith �electron�-circuit and
the "cavity" circuit, and qi is the charge on its capacitor. q0 represents the
charge on the �cavity�-circuit capacitor.

Dividing through by the inductances and using

ω =
1√
LC

Q =
ωL

R
(4.3)

we can rewrite equations 4.1 and 4.2 as
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4.1. The circuit model

0 = ω2
0q0 +

ω0

Q0
q̇0 + q̈0 +

N∑
i=1

kiq̈i (4.4)

0 = ω2
i qi +

ωi
Qi
q̇i + q̈i + kiq̈0 (4.5)

with a coupling parameter ki = Mi/Li.
Substituting 4.5 into 4.4 to eliminate q̈i

0 = ω2
0q0 +

ω0

Q0
q̇0 + q̈0 −

N∑
i=1

ki

(
ω2
i qi +

ωi
Qi
q̇i + kiq̈0

)

= ω2
0q0 +

ω0

Q0
q̇0 + (1−Nk2

i )q̈0 −
N∑
i=1

ki

(
ω2
i qi +

ωi
Qi
q̇i

)
(4.6)

gives us a solution for q̈0. Setting all coupling constants equal to each other,
ki = k, we have

q̈0 =
−ω2

0q0 − ω0
Q0
q̇0 +

∑N
i=1 k

(
ω2
i qi + ωi

Qi
q̇i

)
1−Nk2

(4.7)

substituting this into 4.5 we get an analogous equation for q̈i

q̈i = −ω2
i qi −

ωi
Qi
q̇i − kq̈0

q̈i = −ω2
i qi −

ωi
Qi
q̇i − k

−ω2
0q0 − ω0

Q0
q̇0 +

∑N
j=1 k

(
ω2
j qj +

ωj
Qj
q̇j

)
1−Nk2


q̈i =

kω0

1−Nk2
q0 −

∑
i 6=j

k2ω2
j

1−Nk2
qj −

(
k2ω2

i

1−Nk2
+ ω2

i

)
qi +

kω0

(1−Nk2)Q0
q̇0

−
∑
i 6=j

k2ωj
(1−Nk2)Qj

q̇j −
(

kωi
(1−Nk2)Qi

+
ωi
Qi

)
q̇i (4.8)

We may now solve the system of coupled di�erential equations as an eigen-
value matrix problem.

De�ning a vector
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4.1. The circuit model

~q =



q0

q1

q2
...

qN−1

qN
q̇0

q̇1

q̇2
...

q̇N−1

q̇N



(4.9)

and assuming that the time dependence of each charge follows qi = eαt, then
there are 2(N + 1) eigenvalues (α) which are the solution to

~̇q = α~q = A~q (4.10)

A is a matrix whose components are found as coe�cients in equations 4.7
4.8. The decay rates and frequencies are then Re(α) and Im(α) respectively.

Once the eigenvalues are known the general solution is

qp(t) =

N∑
l=0

clvp,le
αlt (4.11)

where vp,l is the pth component of the lth eigenvector, αl is the corresponding
eigenvalue, and cl is a constant set by the initial conditions.

4.1.1 Results

We de�ne a cavity decay (αc) rate as the average of the two fastest decay
rates (Re(α)) and a electron decay rate (αe) as the average of the remaining
Re(α). The decay times are

τc =
1

αc

τe =
1

αe
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4.1. The circuit model

ω0 2π × 30GHz
Q0 1000
Qi 109

Table 4.1: Typical simulation parameters.

An example simulation result for these decay times as a function of the
number of electrons coupled to the cavity is shown in �gure 4.2. We chose
resonant frequencies and quality factors (table 4.1) to resemble the physical
case of electrons in a 1 Tesla magnetic �eld.

The resonant frequencies of the electrons were chosen from a normal
distribution centred around ω0 and with standard deviation σ ≈ ω0

10Q0
. The

coupling parameter k was chosen such that, for the single electron case (N =
1),

τe ≈ 100τc. (4.12)

This condition is satis�ed for k between 10−4 and 10−5. This choice was made
since, to �rst order, we expect overloading when τe = τcN , and since N =
100 requires a comfortable amount of computational power for a reasonable
desktop computer.

Figure 4.2: Decay times for N electrons coupled to a microwave resonance
as a function of N. The result is normalized to the single particle decay time
for the cavity.
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4.1. The circuit model

The result in �gure 4.2 shows overload to occur just below N = 100.
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4.1. The circuit model

4.1.2 Overloading analysis

In terms of energy conservation, overloading will occur when the power dis-
sipated in the cavity is less than that dissipated by the electrons

Pc < NPe
E

τc/2
< N

E

τe/2

τc >
τe
N

(4.13)

as in the last section. This gives an overload number No

No =
τe
τc

(4.14)

However since τc and τe are both functions of N (as is obvious when looking
at �gure 4.2), the overload number must be determined self-consistently:

No =
τe(No)

τc(No)
(4.15)

In addition to this complication, τe and τc may also depend on all the other
parameters in the problem k, σ, ω0, Q0, and Qi. It would therefore be
easier if we knew No in terms of the single particle decay times which can
be calculated from theory according to equation 2.17.

We may relate the single electron decay time to that at overload through
empirical trends present in the simulations.

The electron decay time at overload is approximately half that as for the
single electron case9, while the cavity decay time at overload is about twice
that as for the single electron case (This trend is shown for various couplings,
k, in �gure 4.3).

τe(No) =
τe,1
2

τc(No) =2τc,1

We may write the single electron cavity decay time using Qc = ω0
2αc

τc,1 =
2Q0

ω0
(4.16)

9We note that this result is dubious: Why should the cavity be not be able to cool a
single particle as well as some intermediate number?
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4.1. The circuit model

Figure 4.3: Decay times at overload versus single particle decay times

Therefore the overload number is

No =
τe,1
4τc,1

No =
τe,1ω0

8Q0

(4.17)

This prediction is plotted versus the overload number read o� from simula-
tion results in �gure 4.4.

Next we use the cavity cooling equation for a single electron ( equation
2.17 with a factor of 2 inserted to account for the doubly degenerate reso-
nance of this cavity)

τe,1 =
3εoB

16eQ0χ

τe,1 =
3εomω0

16e2Q0χ

(4.18)

for �ll factor χ and magnetic �eld B = mω0/e.
The overload number is

No =
3εomω

2
0

128e2Q2
0χ

(4.19)
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4.1. The circuit model

Figure 4.4: Predicted overload number versus overload result from simula-
tion.

This overload number is plotted as a function of Q in �gure 4.5
The overload number is calculated in table 4.2 for cavity resonances de-

scribed in chapter 3.

Cavity Mode No(104)

TE121 3.4
TE123 15.9
TE131 1.4
TE132 3.6
TE133 9.4
TE134 17.0

Table 4.2: Cavity resonance overload predictions.

54
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Figure 4.5: Overloading numbers for the ALPHA cavity and the Berkeley
cavity as a function of cavity Q. For the Berkeley Cavity, ω0 = 2π× 34GHz
and χ = 3.2× 106 m−3 was used. For the ALPHA cavity the parameters are
ω0 = 2π × 25GHz and χ = 5.1× 104 m−3. The ALPHA Q was 6000, giving
No = 490,000, while a Berkeley Q = 2660 gives No = 14,000.

4.2 Averaging theory and the rotating frame

4.2.1 General formulation

In non-linear dynamics, averaging theory is a well known and powerful tool
for solving complex systems. The general system

ẍ+ x+ δh(x, ẋ) = 0 (4.20)

can be recast in a "rotating frame" with the transformations

x = ρ(t) cos(t+ φ(t))

y = ẋ = −ρ(t) sin(t+ φ(t))

(4.21)

where the amplitude and phase (ρ and φ) are both functions of time. At �rst
glance this seems incorrect. With the second transform de�ning y, did we not
neglect time derivatives of ρ and φ? Actually Equation 4.21 is a de�nition
and we will shortly return to impose the correct di�erential equation on our
new variables.
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4.2. Averaging theory and the rotating frame

We impose

ẏ = −x− δh(x, y)

y = ẋ

(4.22)

Then,

ρ2 = x2 + y2

ρρ̇ = ẋx+ ẏy

ρρ̇ = yx− y(x+ δh(x, y))

ρρ̇ = −δh(x, y)y

(4.23)

Now substitute the rotating frame transform for y

ρρ̇ = δh(x, y)ρ sin(t+ φ)

(4.24)

to obtain the equation of motion for ρ

ρ̇ = δh(x, y) sin(t+ φ).

(4.25)

We are now in a position to employ averaging theory on this rotating frame
variable ρ

4.2.2 Simple example: a single damped harmonic oscillator

First, a simple example is shown to illustrate the elegance of this technique.
A damped harmonic oscillator obeys

ẍ+ x+ δẋ = 0 (4.26)

for which h(x, y) = y
The equation of motion is now
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4.2. Averaging theory and the rotating frame

ρ̇ = −δρ sin2(t+ φ)

(4.27)

and by averaging over one cycle ( < sin2(t+φ) >= 1/2 ) we obtain a familiar
result

ρ̇ = −δ
2
ρ

(4.28)

The solution for ρ is an exponential

ρ ∝ e−
δ
2
t (4.29)

so that the amplitude or envelope of the oscillator decays at a rate δ/2 as
we know that it should using simpler methods.

4.2.3 N coupled harmonic oscillators

We now move on to the system of interest: many coupled oscillators.
As before we create new variables from the rotating frame transformation:

x = q0 = ρ(t) cos(ω0t+ φ(t))

y = q̇0 = −ω0ρ(t) sin(ω0t+ φ(t))

a = qi = ri(t) cos(ωit+ θ(t))

b = q̇i = −ωir(t) sin(ωit+ θ(t))

(4.30)

Next we apply the di�erential equations of the system:

y = ẋ

b = ȧ

(4.31)

along with equations 4.7 and 4.8
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4.2. Averaging theory and the rotating frame

to

ρ2 = x2 + y2

r2
i = a2

i + b2i

ω0t+ φ = tan−1(− y

ω0x
)

ωit+ θi = tan−1(− bi
ωiai

)

(4.32)

Below are the equations of motion in the rotating frame for a single
electron

ρ̇ = − ω0ρ

2Q0(1− k2)
+

kω2
1

1− k2
r

[
s0s1

Q1
− s0c1

]
ṙ = − ωir

2Q1(1− k2)
+

kω2
0

ω1(1− k2)
ρ

[
s0s1

Q0
− c0s1

]
φ̇ =

ω0k
2

2(1− k2)
+

kω2
1

ω0(1− k2)

r

ρ

[
c0s1

Q1
− c0c1

]
θ̇ =

ω1k
2

2(1− k2)
+

ω2
0k

ω1(1− k2)

ρ

r

[
s0c1

Q0
− c0c1

]
(4.33)

and the averaging has been lumped into the factors

s0si =< sin(ω0t+ φ) sin(ωit+ θi) >=
ω0

2π

ˆ t+π/ω0

t−π/ω0

sin(ω0t+ φ) sin(ωit+ θi) dt

s0ci =< sin(ω0t+ φ) cos(ωit+ θi) >=
ω0

2π

ˆ t+π/ω0

t−π/ω0

sin(ω0t+ φ) cos(ωit+ θi) dt

c0si =< cos(ω0t+ φ) sin(ωit+ θi) >=
ω0

2π

ˆ t+π/ω0

t−π/ω0

cos(ω0t+ φ) sin(ωit+ θi) dt

c0ci =< cos(ω0t+ φ) cos(ωit+ θi) >=
ω0

2π

ˆ t+π/ω0

t−π/ω0

cos(ω0t+ φ) cos(ωit+ θi) dt

(4.34)
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4.2. Averaging theory and the rotating frame

Weak coupling k � 1

loss-less electrons Q1 � 1

On resonance ω0 = ω1 = ωi
�cold� cavity, �hot� electrons ρ� r

Arbitrary initial cavity phase φ = 0

Table 4.3: Simplifying limits for the rotating frame system.

Next I will impose the limits from table 4.3 in order to simplify the model
and draw insights about the system.

Mathematically, the phase dynamics for this single particle limiting case
obeys

θ̇ ' 0

φ̇ ∝ −kωo
r

ρ
c0c1,

so that φ̇ = 0 when c0c1 = 0. Therefore, the oscillator phases will evolve to
an equilibrium at

φ− θ → π/2, 3π/2, 5π/2 . . . (4.35)

The single particle amplitude equations are reduced to

ρ̇ '− ρω0

2Q0(1− k2)
± krω2

i

2(1− k2)ω0

ρ̇ '− ρω0

2Q0(1− k2)

and

ṙ '− rωi
2Q1(1− k2)

∓ kρω2
0

2(1− k2)ωi

ṙ '∓ kρω2
0

2(1− k2)ωi

For the N electron problem, the equations of motion are
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4.2. Averaging theory and the rotating frame

ρ̇ = − ρω0

2Q0(1−Nk2)
+

k

ω0(1−Nk2)

N∑
i=1

ω2
i ri

[
s0si
Qi
− s0ci

]
ṙi = −riωi

2Qi

(
1 +

k2

1−Nk2

)
+

kω2
0

ωi(1−Nk2)
ρ

[
s0si
Q0
− c0si

]
+

k2

ωi(1−Nk2)

N∑
j 6=i

ω2
j rj

[
−sjsi
Qj

+ sicj

]

φ̇ =
ω0Nk

2

2(1−Nk2)
+

k

1−Nk2

N∑
i=1

ω2
i ri
ω0ρ

[
c0si
Qi
− c0ci

]

θ̇i =
ωik

2

2(1−Nk2)
+

kω2
0

ωi(1−Nk2)

ρ

ri

[
s0ci
Q0
− c0ci

]
+

k2

1−Nk2

N∑
j 6=i

ω2
j rj

ωiri

[
−sjci
Qj

+ cicj

]
(4.36)

By integrating these equations numerically, we con�rm the phase predictions
of equation 4.35. Figure 4.6 shows the phase and amplitude behaviour for the
single particle case. Figure 4.7 shows the same result for N = 5 electrons.
For the latter case, the phase dynamics is unclear. In the limit of large
electron numbers however, equation 4.36 suggests that the cavity phase will
evolve such that

N∑
i=1

c0ci → 0 (4.37)

Unfortunately solving for large numbers of electrons in the time domain is
not computationally feasible. Inferences about the large N electron cooling
time and/or phase dynamics have therefore not been attempted.
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4.2. Averaging theory and the rotating frame

Figure 4.6: The phases and amplitudes of one electron (red, left scale)
coupled to a cavity (blue).

Figure 4.7: The phases and amplitudes of �ve electrons (red, left scale)
coupled to a cavity (blue). The electrons were given uniformly random initial
phases (between 0 and 2π)
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Chapter 5

Laser Pass - Microwave Stop

Tubes

The ALPHA apparatus has been upgraded so as to include apertures which
allow lasers access to the anti-hydrogen region 5.1. These 14.3 mm ID copper
tubes act as waveguides and direct the microwave band of room temperature
black body radiation towards the cryogenic region of the experiment. In
particular this radiation will cause resonant heating of positrons which could
result in a devastating reduction in anti-hydrogen production. This chapter
describes a design which allows laser light through but which attenuates the
unwanted microwave radiation.

Figure 5.1: An exploded view of a laser pass tube. Optical spectroscopy
necessitates use of windows and apertures to allow laser light to interact with
trapped anti-hydrogen. These windows allow room temperature blackbody
radiation to propagate into the experiment and causes unwanted heating of
positron plasmas.
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5.1. Theory of operation

Figure 5.2: An assembled view of a laser pass tube.

5.1 Theory of operation

The design for the laser-pass tubes was inspired by a well known result from
classical electromagnetism (see, for example [48]). As in �gure 5.3, if a thin
resistive sheet is placed a distance of λ/4 from a conducting plane then a
normally incident plane wave will be 100% absorbed if the sheet impedance
is matched to free space (Zsheet = Zo).

Figure 5.3: A plane wave incident on a good conductor can be perfectly
absorbed if a thin sheet with surface impedance (Zsheet) matched to free
space (Zo) is placed a distance λ/4 from the conductor.

An analogy with transmission line theory explains the mechanism for this
absorption. We have already seen in section 3.6 that λ/4 is a special length
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5.1. Theory of operation

for a transmission line. At that length a short (like the conducting plane
in �gure 5.3) is transformed into an open circuit. Any object placed at this
distance is therefore �in parallel� with an open circuit, or in�nite impedance.
The plane wave will therefore not use this branch of the �circuit� and see
only the impedance presented by the thin resistive sheet.

If the sheet has the impedance of free space (Zo) then no re�ections occur:

S11 = Ereflected/Eincident =
Zsheet − Zo
Zsheet + Zo

(5.1)

The above geometry achieves 100% absorption only for normal incidence
and only at one frequency. However, by modifying to a tubular geometry
(�gure 5.4 we allow nearly all the radiation to be incident at a glancing
angle. The angle of incidence modi�es the λ/4 requirement and complicates
the attenuation analysis. A distribution of incident angles will produce a
distribution of resonantly absorbed frequencies. Perhaps because of this, we
observe that the �lter is e�ective over a wider range of frequencies rather
than just one.

Figure 5.4: The λ/4 requirement wrapped onto a cylindrical geometry. The
gap between the alumina tube is exaggerated to allow visualization of the
beryllium-copper springs used for heat contact. The assembled gap is 0.5
mm.
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5.2. Fabrication

5.2 Fabrication

Thin nichrome �lms are deposited on the inner face of an alumina tube via
a thermal evaporation process.

A tungsten �lament tightly wrapped in nichrome wire is threaded through
the alumina tube. This apparatus is placed in a moderate vacuum of about
10−5 Torr and high a current is run through the �lament heating the nichrome.
Hot atoms evaporate from the nichrome wire and are deposited on the cooler
polished alumina surface.

Figure 5.5: A cartoon of the apparatus used to deposit a thin nichrome
layer onto the inner surface of a long, narrow alumina tube. A high cur-
rent is passed through a tungsten �lament which evaporates atoms from the
nichrome wire.

The narrowness of the alumina tube (inner diameter 11 mm) means that
the hot tungsten �lament is necessarily very close to the target surface during
deposition. This presented a number of challenges to be overcome.

Firstly, the nichrome generally deposited unevenly on the alumina. Nor-
mally during vapour deposition, the �lament is placed far from the target
surface such that the particle �ux at the target location is nearly uniform.
To mitigate this e�ect great care was taken to place the �lament at the cen-
ter of the tube: even a small displacement from center results in an uneven
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5.2. Fabrication

deposition. However, even if carefully centred, the �lament will sag or distort
its shape and position once heated. To reduce this sagging, the �lament was
placed under tension using a spring such that once hot and deformable, the
�lament stretched and roughly maintained its orientation.

Secondly, the alumina tube re�ected outgoing thermal radiation back to-
wards the �lament creating a furnace e�ect. This caused the temperature
inside the tube to be very sensitive to currents applied to the �lament. As a
result the �lament would often overheat and melt. 10

Lastly, a quartz crystal oscillator is commonly used as a thickness monitor.
The crystal oscillation frequency will change as material is deposited on its
surface. If this oscillator is placed near the target sample an accurate mea-
sure of the deposition thickness can be obtained. In our geometry however,
the alumina target shields the thickness monitor from the nichrome source
essentially �blinding� the sensor.

These last two problems were solved by implementing a common web-cam
as a sensor. The sensor is capable of detecting relative deposition rates as
well as changes in temperature. Figure 5.6 shows the red, green and blue
pixel intensities recorded in our camera during a typical nichrome deposition.
Abrupt jumps in this signal correspond to increases in current. The subse-
quent decay in transmitted light intensity indicates nichrome deposition on
the inner surface of the alumina tube. As expected, higher decay rates in
the transmission signal are associated with higher currents which produce
hotter �laments with faster deposition rates.

The absolute thickness of deposited nichrome for these �lters is not known.
However, the technique could be calibrated to produce such a measurement.
The thickness can be inferred from measurements of the nichrome surface
resistance and correlated with the deposition time as well as the exponential
decay rate of the transmitted light.

10Molten nickel is known to attack tungsten [5] quickly, so we suspect that once the
nichrome has melted, a nickel tungsten alloy forms. This alloy could have a melting point
lower than either nichrome or tungsten. Formation of such an alloy would explain the
sudden liquefaction of the �lament.
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5.2. Fabrication

Figure 5.6: CCD pixel values for red, green, and blue are recorded during a
thermal evaporation of nichrome onto the inner surface of an alumina tube.
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5.3. Microwave attenuation

5.3 Microwave attenuation

Microwave transmission through a cylindrical waveguide which incorporates
a �laser-pass tube� is characterized using the apparatus shown in �gure 5.7.
Two large cavities serve as input/output ports for microwave power from a
network analyser. The cavities are connected with a cylindrical waveguide
which matches laser aperture dimensions at ALPHA and which can house our
microwave �ltering tube. The cavities are designed to approximate free-space
and irregular conductors are placed inside to help randomize the microwave
mode structure thereby approximating microwave thermal radiation. The
transmitted microwave power is measured both with the microwave �ltering
tube in place and absent from the apparatus. To determine the e�ect of the
�lter, the former scenario is normalized to the latter. The power transmitted
through the �lter (relative to an empty waveguide) is shown in �gure 5.8

Additionally, the surface resistance of the nichrome �lm deposited on
the inner face of one of the alumina tubes was measured using a Ohm-
meter. The nichrome surface deposited in 5.6 had a surface resistance of
Rs = 200± 40Ω/square. Using standard resistivity values for nichrome and
the relationship ρ = Rst one can approximate the thickness of the nichrome
deposition at t ' 7 nm.

5.4 Thermal conductivity measurement

Absorbing thermal microwaves will cause heating of the ceramic tubes. We
must therefore test the thermal conductance of the beryllium copper springs
which connect the alumina tube to the surrounding copper tube at 4 K.

We silver epoxy the springs to a mock laser tube made from aluminium.
The aluminium tube is inserted into a copper tube with the same inner
diameter as at ALPHA. The copper tube is placed in thermal contact with
a liquid helium bath at about 4 K. The void between the aluminium tube
and copper is pumped to a vacuum pressure of about 10−5 Torr. The set up
can be viewed in �gure 5.9.

Two resistors are �xed with good thermal contact to the aluminium tube.
R1 is a "Heater" resistor and R2 is a thermometer. The heater is a thin metal
�lm type resistor and its resistance does not change much with temperature.
R1 is a ceramic core resistor whose resistance depends strongly on tempera-
ture thus allowing inference of temperature from a resistance measurement.
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5.4. Thermal conductivity measurement

Figure 5.7: The apparatus used to measure microwave transmission through
a �laser-pass tube�. Two large cavities serve to randomize the microwave
mode structure in an attempt to approximate free-space thermal radiation.
Transmission through the laser pass tube is normalized to that of the empty
waveguide.
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5.4. Thermal conductivity measurement

Figure 5.8: The microwave power transmitted through the laser pass tube.
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5.4. Thermal conductivity measurement

Figure 5.9: Thermal contact experiment set-up.
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5.4. Thermal conductivity measurement

5.4.1 Results

By applying di�erent voltages to the heater resistor, we vary the heat load to
be conducted to the surrounding liquid helium bath via the beryllium copper
springs. When a heat load is applied a new, higher, equilibrium temperature
is reached. Once in equilibrium we abruptly remove the heat load and the
part is allowed to cool to near 4 K. An exponential �t to this temperature
decay is performed with the �t function

T − 4.2K = ∆Toe
−t/τ (5.2)

where T is temperature, t is the time since the heat load is removed, ∆To
is the temperature change of the tube at t = 0, and τ is the characteristic
cooling time of the part.

Figure 5.10: Di�erent voltages (heat loads) are applied to the tubes and
exponential cooling times are measured from the decay (red dots) which
results when the load is turned o� and the part comes back to equilibrium
with the surrounding liquid helium.
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5.4. Thermal conductivity measurement

Figure 5.10 shows temperature data for the part while multiple di�erent
heat loads are applied and then removed. The results are summarized in
table 5.1

Scenario ∆To (K) τ (s) Heat load (mW) Thermal Conductance (mW/K)
a) 0.33 6.2 1.1 3.32
b) 0.62 6.9 2.12 3.42
c) 1.2 7.0 4.33 3.60
d) 3.0 9.1 13.26 4.42
e) 4.9 11.8 27.06 5.52
f) 7.9 16.0 54.25 6.87
g) 12.2 23.5 108.20 8.87

Table 5.1: A summary of the thermal conductance measurements on the
laser pass tubes.

These numbers can be compared to the total power incident on the laser
aperture according to the Stephan-Boltzmann law

P = σT 4 Ω

π
πr2 (5.3)

where σ = 5.67× 10−8 W
m2K4 is the Stephan-Boltzmann constant, T = 300 K

(room temperature), Ω is the solid angle of room temperature surface seen by
the laser aperture (conservatively estimated at π/2), and r = 11 mm is the
radius of the aperture. The calculation results in P ' 87 mW. Comparing
with the results of table 5.1 we see that the part may heat as much as 10 K
if the thermal radiation can be characterized as 300 K radiation. However,
given the construction of the ALPHA apparatus, the e�ective microwave
temperature in the region of the tubes is likely to be lower than this.
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Chapter 6

Magnetic Electrodes

Great care is taken at ALPHA to remove magnetic materials from the ap-
paratus. Any such material has the potential to become magnetized in some
unpredictable way by the many coils regularly turned on or o� during a typi-
cal antihydrogen production sequence. Field impurities from these materials
have the potential to disrupt plasma control, a�ect antihydrogen dynamics
and degrade the magnetic �eld homogeneity necessary for precision spec-
troscopy.

This chapter quanti�es the magnetic properties of the ALPHA catching
trap electrodes. These electrodes are constructed from aluminium and an
antistatic coating is achieved with a gold plated surface. Unfortunately gold
will not stick well when plated directly onto aluminium, and it is necessary
to �rst plate a intermediate adhesion layer which will stick to both metals.
We have discovered that this adhesion layer is magnetic, likely containing
nickel.

6.1 Measurement technique

The ALPHA electrodes are placed in a home-built nuclear magnetic reso-
nance (NMR) spectrometer operating at proton resonance frequency of 360
MHz (' 8.5 T) [40]. A 1 mm diameter water NMR probe is placed on the
axis of the electrodes and the precession frequency is monitored as a mea-
sure of the magnetic �eld inhomogeneity introduced by the electrode. The
spectra were acquired by Carl Michal of the UBC Solid State NMR group
using a simple Bloch decay pulse sequence.

By moving the electrodes relative to the probe and monitoring the pre-
cession frequency we can map the net magnetic �eld as a function of position

f =
γ

2π
B(z) (6.1)

With γ = eg
2m where g is the gyromagnetic ratio, e the elementary charge,

and m the proton mass. For the water probe, the frequency to magnetic
�eld conversion is
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6.2. Model for a thin magnetized tube

∆B =
f − fo

42.58× 106 Hz
T

(6.2)

where fo is the measured precession frequency without electrodes present
and ∆B is the �eld caused by the presence of the electrode.

A sketch of the apparatus is shown in �gure 6.1

Figure 6.1: A 1 mm diameter water NMR probe is placed on the axis of our
electrodes. The precession frequency is used to monitor the magnetic �eld.

6.2 Model for a thin magnetized tube

A model for the magnetic �eld of a thin magnetized tube is derived.
The on-axis �eld for a uniformly magnetized, solid rod is

B =
µoM

2
(cosβ − cosα) (6.3)

B =
µoM

2

(
z + L√

(z + L)2 +R2
− z − L√

(z − L)2 +R2

)
(6.4)

For a thin tube, to �rst order
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6.2. Model for a thin magnetized tube

Btube = t
∂B

∂R
= −tµoMR

2

(
z + L

[(z + L)2 +R2]3/2
− z − L

[(z − L)2 +R2]3/2

)
(6.5)

For R = 2.3 cm and L = 1.0 cm L = 2.0 cm (for the case of one and two
electrodes respectively) and employing a �t to the two electrode case (there
is not enough data for a good �t in the one electrode case) we can plot Btube
on top of the data

Figure 6.2: The measured extra magnetic �eld as a function of the axial
position of the water probe is �t to the model in equation 6.6.

In �gure 6.2 the �t function is

Btube = BotR

(
z + L

[(z + L)2 +R2]3/2
− z − L

[(z − L)2 +R2]3/2

)
(6.6)

and the result is BotR = 2.4± 0.4 Gauss·cm2.
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6.3. Approximating the thickness of the nickel strike

6.3 Approximating the thickness of the nickel

strike

Assuming that this �eld is the result of a thin nickel "strike" layer applied to
the aluminium electrodes as a part of the gold plating process, we can deter-
mine the thickness of this nickel layer. We take the saturation magnetization
for nickel to be

Bsat = µoMsat = 0.57 Tesla (6.7)

and use the z = 0 �eld value from equation 6.5

Btube = −tµoMsatR
L

(L2 +R2)3/2
. (6.8)

Rearranging

t = −Btube
Bsat

(L2 +R2)3/2

2LR
. (6.9)

where the extra factor of 1/2 has been added to account for a strike on each
side of the tube (since both sides are gold plated).

From �gure 6.4, for two electrodes, we see that Btube ' −0.35 × 10−4

Tesla , giving

t ' 1.9µm (6.10)

6.4 Extrapolating to many electrodes

Using equation 6.6 with z = 0 and varying L, we can estimate the �eld inside
the magnetized Penning trap at ALPHA. Considering 13 central electrodes
with a total length of 27.4 cm (L = 13.7 cm) we �nd

Btube = (2.4± 0.4)× 10−2Gauss (6.11)

The �eld as a function of tube length is shown in �gure 6.4.

6.5 Conclusion

Although the nickel layer seems excessively thick (∼ 2µm) for the purposes
of an adhesion layer between gold and aluminium, the length of the ALPHA
Penning trap helps to mitigate the e�ect by about an order of magnitude.

77



6.5. Conclusion

Field vs length of Penning trap.

The expected magnetic �eld added by such an adhesion layer at ALPHA is
∼ 0.05 G. This is to be compared with a recent spin-�ip measurement at AL-
PHA with uncertainties governed by magnetic �eld inconsistencies [18]. That
experiment achieved a spin-�ip frequency uncertainty of 100 MHz which re-
sults from a ∼ 3000 G magnetic �eld anomaly due to pinning of magnetic
�ux in nearby superconducting wire. Further, the next most limiting �eld
inhomogeneity is ∼ 350 G and results from variance in the �eld of the mag-
netic minimum trap. Indeed, a 0.05 G magnetic �eld is small enough to
go unnoticed by a precision hyper�ne spectroscopy experiment in the style
of [28]. A simple solution to this minor problem may be to use colloidal
graphite as an anti-static shielding layer (as in chapter 3) in favour of gold.
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Chapter 7

Preliminary Observation of

Enhanced Cooling of Electrons

at Cavity Resonances

Figure 7.1: A sketch of the Berkeley Experiment with the UBC bulge
cavity installed is shown. The broken connection indicated left one of the
cavity electrodes �oating at some unknown, but seemingly stable voltage.
This uncertainty means that the location of the plasma in the cavity is not
precisely known.

An experiment is conducted at Berkeley which demonstrates the cooling
power of the cavity from chapter 3.

Large plasmas are contained in two storage regions within the Penning
trap at Berkeley (see �gure 7.1). These reservoirs allow rapid temperature
measurements of di�erent plasmas within the bulge cavity. We are therefore
able to slowly scan the plasma cyclotron frequency while monitoring the
temperature of plasmas which are continually loaded into and ejected from
the trap.

A typical sequence goes as follows: A plasma of about one million elec-
trons is loaded from a reservoir into the cavity where cooling occurs. After
a speci�ed time ( usually 0.5 seconds) this same plasma is ejected onto a
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Chapter 7. Preliminary Observation of Enhanced Cooling of Electrons at Cavity Resonances

Figure 7.2: Electron plasma temperature is measured as a function of the
cyclotron frequency ωc. When ωc matches a cavity mode, the temperature
is reduced by about an order of magnitude. This particular peak matches
the frequency of the TE133 mode to better than 1 %. Di�erent �eld scans
(shown in di�erent colours) show that only the temperature drop near the
TE133 is reproducible.

80



Chapter 7. Preliminary Observation of Enhanced Cooling of Electrons at Cavity Resonances

micro-channel plate (MCP). Secondary electrons leaving the MCP are inci-
dent on a phosphor screen which converts these electrons to photons. The
emitted light is directed onto a photodiode by Fresnel lenses. From the pho-
todiode signal a plasma temperature can be inferred 11. The process is then
repeated at di�erent cyclotron frequencies.

We observe that, near a cavity resonance, cooling occurs (see �gure 7.2).

Figure 7.3: Electron plasma are held in the cavity for various times before
a temperature measurement is performed. An exponential �t (red) of the
form T (t) = Toe

−Γt + Tf allows us to infer the cooling rate.

Once a cavity resonance is identi�ed, we leave the cyclotron frequency
constant at the resonance frequency, but vary the amount of time the plasma

11The photodiode signal is modelled as resulting from the hottest electrons (which leave
the Penning trap �rst as the electrode voltage is lowered) from a Maxwell-Boltzmann
distributed electron plasma. A �t to the photodiode current and the electrode voltage
yields the plasma temperature. [47]
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Chapter 7. Preliminary Observation of Enhanced Cooling of Electrons at Cavity Resonances

Figure 7.4: Electron plasma cooling rate is measured as a function of the
cyclotron frequency ωc. When ωc matches a cavity mode, the rate is en-
hanced. This particular peak matches the frequency of the TE133 mode to
better than 1 %.
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Chapter 7. Preliminary Observation of Enhanced Cooling of Electrons at Cavity Resonances

is allowed in the cavity before ejecting to the MCP and performing a temper-
ature measurement. Figure 7.3 shows the plasma temperature versus time
spent in the cavity. An exponential �t allows us to infer the plasma cooling
rate. Performing this procedure at various cyclotron frequencies in the vicin-
ity of the cavity resonance shows the rate enhancement due to the Purcell
e�ect (�gure 7.4).

By scanning the cyclotron frequency and measuring the plasma temper-
ature we were able to identify six cavity resonances with enhanced cooling
ability. Figures 7.2, 7.3, and 7.4 focus on the TE133 resonance since it was
found to have the strongest cooling power. Cooling ability of the remaining
detected modes are summarized in table 7.1.

More details on the plasma apparatus and experiment can be found in
[47].

Cavity Mode B (Tesla) fc = eB
2πm (GHz) Relative

frequency
discrepancy
%

Cooling
Rate En-
hancement

TE121 0.775 21.70 -0.18 1.4
TE123 0.91 25.48 -0.12 2
TE131 1.209 33.84 0.21 2
TE132 1.309 36.65 -0.20 4
TE133 1.380 38.64 -0.05 10
TE134 1.443 40.40 -0.35 2.3

Table 7.1: A summary of the observed cooling power of di�erent cavity
modes. The relative frequency discrepancy represents the fractional di�er-
ence between the cyclotron frequency and the measured or simulated cavity
resonance frequency (see table 3.1) after a correction for the thermal con-
traction has been applied.

7.0.1 Outlook

The observed spontaneous emission rate enhancements of order 1 -10 from
table 7.1 may seem rather disappointing given that section 2.4 predicted
an enhancement factor of ' 1000. However, one must remember that this
prediction was made for the case of a single particle coupled to the cavity.
These experiments involved about 106 particles and section 4.1.2 predicted
that the cavity could not cool more than 104 - 105 electrons (depending on
the mode).
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These results come with another �aw: the broken connection to a cavity
electrode (see �gure 7.1). Since this electrode was �oating at some unknown
(but seemingly stable) voltage, the exact axial position of any plasma in this
experiment is also unknown. This means that the �ll factor of section 2.4
needs to be computed as an average weighted by the plasma density. If the
plasma happened to be localized near a null in the standing electric �eld
wave, the cooling ability of the cavity would be much reduced.

The results of this chapter, therefore, need to be re-investigated without
the hindrance of any �oating electrodes within the Penning trap. It is hoped
that with greater control over the plasma location, the spontaneous emission
rate enhancements provided by this cavity can be improved.

The next step towards increasing the number of trappable antihydrogen
atoms at ALPHA involves a cavity redesign. The Penning trap wall at AL-
PHA is only 1 mm thick and any increase in the thickness would bring matter
further into the antihydrogen trapping region. This causes the annihilation
of anti-atoms that would otherwise stay trapped and available for experi-
mentation. The loss is very sensitive to this thickness because of the strong
radial dependence of the octupole trapping �eld. An increase in the thick-
ness of only 1 mm would reduce the number of trapped atoms but about 35
%. To overcome this challenge we look to the �eld of meta-materials where
electromagnetic material properties can be chosen by design.
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Appendix A

Detailed Drawings of a Bulge

Resonator

Detailed drawings of the bulge resonator are presented.
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Figure A.1: Detailed bulge cavity drawings
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Appendix B

A Model for E�ective Sheet

Resistance of Multiple Thin

Conducting Layers

B.1 Complex poynting theorem

The time averaged work done by �elds on sources (each with assumed time
dependence eiωtis

1

2

ˆ
~J∗ · ~E d3x (B.1)

using the complex Maxwell Equations for harmonic �elds we have

∇× ~E = iω ~B (B.2)

∇× ~H + iω ~D = ~J (B.3)

together with the vector identity

∇ · (E ×H) = H · (∇× ~E)− E · (∇× ~H) (B.4)

Equation B.1 becomes

1

2

ˆ
~J∗ · ~E d3x =

1

2

ˆ
~E · (∇× ~H∗ − iω ~D∗) d3x

=

ˆ
−∇ · ( ~E × ~H∗)

2
− iω

2
( ~E · ~D∗ − ~B · ~H∗) d3x

=

ˆ
−∇ · ~S − i2ω(we − wm) d3x

(B.5)

where the electric and magnetic energy densities are
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B.2. Resistance and reactance

we =
1

4
~E · ~D∗ (B.6)

wm =
1

4
~B · ~H∗ (B.7)

Conservation of energy is then expressed via the complex Poynting the-
orem:

1

2

ˆ
~J∗ · ~E d3x− i2ω

ˆ
we − wm d3x+

˛
~S · ~nda = 0 (B.8)

B.2 Resistance and reactance

For a coaxial input (with current I and voltage V ) to a general two terminal,
linear, passive electromagnetic system (with impedance Z) as in �gure B.1,
the power dissipation is

Figure B.1: An arbitrary surface S surrounding a general two terminal
electromagnetic structure. ~n is the unit normal vector outwards from the
surface, and Si is an input surface occupied by the coaxial line.

1

2
I∗V =

1

2

ˆ
~J∗ · ~E d3x− i2ω

ˆ
we − wm d3x+

˛
S−Si

~S · ~nda. (B.9)

With V = ZI and Z = R− iX, the real and imaginary parts of Equation
B.9 give us the resistance and reactance (R, X) in terms of �eld quantities.
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B.3. Sheet resistance for a metallic plane

R =
1

|I|2
Re

[ˆ
~J∗ · ~E d3x− i4ω

ˆ
we − wm d3x+ 2

˛
S−Si

~S · ~nda

]
(B.10)

and

X =
1

|I|2
Im

[ˆ
~J∗ · ~E d3x− i4ω

ˆ
we − wm d3x+ 2

˛
S−Si

~S · ~nda

]
(B.11)

The last term in Equations B.9, B.10 and B.11 relates to escaping radia-
tion and can usually be neglected in the low frequency limit. However, for the
case of our bulge cavity, this term represents the dominate loss mechanism:
leakage out the open ends of the resonator.

Disregarding this for the moment, the expressions for R and X can be
approximated in the low frequency limit

R =
1

|I|2

ˆ
σ|E|2 d3x (B.12)

X =
4ω

|I|2

ˆ
(we − wm) d3x (B.13)

As a side note, dropping the second term in equation B.10 will always be
valid at a cavity resonance since the resonance condition can be expressed
as we = wm [42].

Up to now the treatment has followed Jackson Section 6.9 [34]. We
now look to combine this expression for R with the known solutions for
electromagnetic �elds near a conducting surface.

B.3 Sheet resistance for a metallic plane

For some tangential magnetic �eld (Ho) outside a conducting semi-in�nite
plane occupying z ≥ 0 the magnetic �eld inside the metal is

Hc = Hoe
−z/δeiz/δ (B.14)

where δ =
√

2
ωµσ is the skin depth and σ is the conductivity. Neglecting

the displacement current in the conductor as well as x and y derivatives
within the ∇ operator, the electric �eld is found according to

σ ~Ec = ∇× ~Hc (B.15)
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B.4. Sheet resistance for layered thin metals

~Ec =

√
µω

2σ
(1− i)(~n× ~Ho)e

−z/δeiz/δ (B.16)

|Ec|2 =
2

σ2δ2
(~n× ~Ho)

2e−2z/δ (B.17)

Inserting equation B.17 into equation B.12 and integrating from zero to
in�nity we obtain a comforting result

dR

dA
= Rs =

(~n× ~Ho)
2

|I|2

ˆ ∞
0

2σe−2z/δ

σ2δ2
dz

=
2

σδ2

[
e0 − e−∞

2/δ

]
=

1

σδ

=
ρ

δ
(B.18)

B.4 Sheet resistance for layered thin metals

Figure B.2: A thin layer of material 1 on top of a thick (semi-in�nite) layer
of material 2.

We now apply expression B.12 to the case of Figure B.2 : one thin metal
(of thickness ξ, conductivity σ1 and skin depth δ1) on top of a thick (semi-
in�nite) metal plane (of conductivity σ2 and skin depth δ2). We may write
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B.4. Sheet resistance for layered thin metals

Rs =
(~n× ~Ho)

2

|I|2

[ˆ ξ

0

2e−2z/δ1

σ1δ2
1

dz +

ˆ ∞
ξ

2e−2z/δ2

σ2δ2
2

dz

]

=
1− e−2ξ/δ1

σ1δ1
+

1

σ2δ2
(e−2ξ/δ2 − e−∞)

=
1− e−2ξ/δ1

σ1δ1
+

e−2ξ/δ2

σ2δ2

= Rs1(1− e−2ξ/δ1) + e−2ξ/δ2Rs2 (B.19)

The expression satis�es our expectations for limiting cases. Namely,

lim
ξ→∞

Rs = Rs1

lim
ξ→0

Rs = Rs2 (B.20)

An e�ective conductivity can be derived from equation B.19 by setting

Rs =
1

σeδe
=

√
ωµ

2σe
(B.21)

and solving for σe. After some algebra we arrive at

σe =
σ1σ2

(
√
σ2(1− e−2ξ/δ1) +

√
σ1e−2ξ/δ2)2

(B.22)

Like the surface resistance Rs the e�ective conductivity still depends on
frequency via the skin depths δ1 and δ2.

Two cases of primary interest to the experiment will now be explored via
direct observation.

B.4.1 Observation

This model is tested using a coaxial resonator as in �gure B.3. The center
conductor of the resonator is electroplated with thin layers of a second metal
and the resonance Q allows us to infer the surface resistance. The Q of such
a resonator is [55, 11]

Q =
ωoµoLln(a/b)

Rsa
L
a +Rsb

L
b

(B.23)
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Figure B.3: A short center conductor placed in a long metallic tube will act
as a coaxial resonator. The electric �elds of the �rst harmonic are sketched
on the center conductor. An inductive loop coupler allows us to measure the
frequency and Q of the resonance using a network analyser. Knowledge of
the Q allows us to infer the surface resistance of the inner conductor.

where L is the length of the center conductor, a is its radius, Rsa is its
surface resistance, b is the radius of the outer conductor, Rsb is its surface
resistance, and ωo/2π is the mode frequency.

Using B.19 for Rsa we can make a prediction for the Q of these modes
as a function of the thickness of the electro-deposited top metallic layer on
the center conductor. The result, for gold electroplated onto nichrome is in
�gure B.7. For a nichrome-like alloy plated onto copper, see �gure B.8.

B.4.2 Thin gold on thick nichrome

Firstly we inquire about the sheet resistance of a thick layer of nichrome
underneath a thin layer of gold (�gure B.4). Our aim here is to test the
possibility of lowering the Q of a resonant mode (at about 30 GHz) inside
our bulge cavity while maintaining good electrostatic shielding for plasmas.
The thin gold layer will shield the plasmas from oxide layers on the nichrome
that may acquire static charges. However, if the gold is thick enough, it will
also shield the relevant microwave mode from excess losses occurring in the
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Figure B.4: A thin layer of gold on top of a thick (semi-in�nite) layer of
Nichrome.

nichrome and thus prevent the lowering of the mode Q. Figures B.5 and B.6
show the predicted e�ective surface resistance and conductivity for a layer
of gold (of thickness z) over top of a thick layer of nichrome.

Figure B.7 shows the measured Q of four di�erent resonance from the
cavity of �gure B.3 as a function of the thickness of electroplated gold. A �t
to the conductivity of gold was allowed since the deposition is likely porous
and uneven. The �t conductivity for gold was always 60% - 80% of the
accepted value.
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Figure B.5: E�ective surface resistance for a layer of gold (thickness z)
over top of a thick layer of Nichrome. The result is normalized to the sheet
resistance of Nichrome at 30 GHz (Rs,nichrom = 422mΩ ) and approaches
the sheet resistance of gold (Rs,gold = 54mΩ ) for large z. The skin depths
of gold and nichrome at 30 GHz are 450 nm and 3.5 µm respectively.

Figure B.6: E�ective conductivity for a layer of gold (thickness z) over top
of a thick layer of nichrome.
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Figure B.7: The measured Q's (blue) for various cavity resonances as a
function of the thickness of an electroplated gold layer on the inner conductor
(see �gure B.3). A �t for the conductivity of gold was allowed since the
deposition is likely porous and uneven. The �t conductivity for gold was
always 60% - 80% of the accepted value. The best �t models are in red.
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B.4.3 Thin nichrome on thick copper

Estimate of alloy conductivity

Figure B.8: The measured Q's for various cavity resonances as a function
of the thickness of an electroplated �nichrome� layer on a copper inner con-
ductor (see �gure B.3). The �t is poor for small z suggesting the presence
of a heavy oxide layer on the copper outer conductor.

After the fact it was discovered that our electroplated nichrome actually
contained very little chromium (<5 %). However, a measurement of a cavity
Q at both room-temperature and liquid nitrogen temperatures gave identical
values to 5% . This leads us to believe that the electroplated metal is acting
as an electrical alloy.

To estimate the conductivity of this alloy the coaxial resonator of �gure
B.3 is utilized, this time with a copper center conductor onto which we plate
our nichrome-like alloy.

Again the cavity Q's are measured as a function of the thickness of de-
posited alloy. This data is �t to the theoretical Q (equation B.23) using the
our model for e�ective surface resistance of metallic layers (equation B.19).
The best �t conductivity for this alloy is

σalloy ' 4.5× 105S/m, (B.24)

slightly lower than, but more or less in agreement with the accepted value
for nichrome: ' 6.6 × 105S/m. The data along with the best �t model is
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shown in �gure B.8. The �t is poor for small z indicating that our value for
the conductivity of copper (σc = 5.8 × 107S/m) may be too low, possibly
due to a heavy oxide layer on the outer conductor.

Both model and data show that a nichrome layer of 5 - 6 µm would be
enough to minimize a resonator Q by this method.

Sheet resistance at 10 kHz

We want to check that diocotron waves [58] are not excited as a result of
introducing resistive materials to the Penning trap. We model the e�ective
sheet resistance for a surface of nichrome (thickness z) over a thick copper
layer. The result is plotted in Figure B.4.3. We see immediately that even a
very thick nichrome layer will not change the surface resistance much at 10
kHz.

E�ective surface resistance for a layer of nichrome(thickness z) over top of
a thick layer of Copper. The result is normalized to the sheet resistance of
copper at 10 kHz (Rs,copper = 26µΩ). The skin depths of nichrome and

copper at 10 kHz are 6 mm and 650 µm respectively.

B.4.4 Conclusions

To achieve an increased surface resistance at 30 GHz we electroplate about
7µm of the nichrome-like alloy to the inner face of the bulge cavity. The
model and data presented in this appendix show that a nichrome layer of 5

103



B.4. Sheet resistance for layered thin metals

- 6 µm is enough to minimize the resonator Q. Q measurements performed
at liquid nitrogen temperatures show that the alloy has a temperature inde-
pendent conductivity about the same as nichrome despite there being very
little chromium present in the alloy.

To provide an anti-static shielding layer we utilize colloidal graphite.
However, this appendix has investigated the practicality of a gold electro-
static shielding layer. We �nd that this gold layer must have a thickness
less than about 100 nm to maintain resistivity introduced by the underlying
alloy.

Meanwhile the surface resistance at 10 kHz would not appreciate consid-
erably due to the presence of the nichrome unless the nichrome layer had a
thickness comparable to or greater than a millimetre.
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