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Abstract 
 

Rationale: Several laboratories have shown that the decline in lung function in Chronic 

Obstructive Pulmonary Disease (COPD) is associated with increased formation of tertiary 

lymphoid follicles.  This provides direct histological evidence in support of the hypothesis that 

the decline in lung function is associated with activation of an adaptive immune response.  The 

antigens responsible for driving this immune activation remain poorly understood.  The recent 

realization that the human lung contains a bacterial microbiome that changes in association with 

the presence of COPD suggests the hypothesis that bacteria arising from within this microbiome 

might be responsible for activating the adaptive immune response in COPD.   

Approach: The research described in this thesis examines the lung tissue bacterial microbiome 

from patients with mild to moderate COPD as well as patients with very severe COPD.  The 

bacterial microbiome from these studies utilized either nested or touchdown PCR followed by 

454TM pyrotag sequencing of specific variable regions on the 16S rRNA gene.  Changes in the 

microbiome were examined in relation to histological estimates of emphysematous destruction of 

the lung and inflammatory immune cell infiltration associated with this tissue remodeling 

process.  Finally, Haemophilus influenzae, a bacterium identified from this microbiome, known 

to cause inflammation was compared to the host tissue repair process.   

Results: The different bacterial community was present in control and mild (GOLD 1) compared 

to moderate (GOLD 2) COPD.  The community composition was also different between donor 

lung tissue and very severe (GOLD 4) COPD.  Further, the analysis identified a list of 10 OTUs 

that discriminated between lung tissue affected by GOLD 4 COPD and controls.  In addition, the 
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data presented here indicate that the host immune response to these organisms precedes the 

structural changes associated with COPD.   

Conclusion: Collectively, these data confirm that there is a small but diverse microbiome in the 

normal human lung that becomes less diverse in COPD.  Furthermore, the 

disappearance/appearance of certain OTUs can discriminate between control and COPD affected 

lung tissue and that some of these OTUs are associated with the inflammatory immune cell 

infiltration and tissue destruction that occurs in COPD.  
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Chapter 1: Background 

1.1 Chronic Obstructive Pulmonary Disease (COPD) 

1.1.1 Burden of COPD in the World: 

 

A recent report has now placed COPD in the top 10 for years of life lost and top 3 for causes of 

death globally (1).  This recent study used real world data and emphasizes the point that previous 

projections made back in 2006 and 2008 may have been too conservative in their estimate of 

COPD being the 4th leading cause of death by 2030 (2,3).  Furthermore as smoking rates remain 

constant and still very high in certain parts of the world (4–6) the contribution of COPD to all 

cause mortality is projected to continue to rise while those of diseases like HIV/AIDS and 

respiratory infections are projected to continue to fall (2,3).  The increased prevalence of COPD 

represents a very real global health problem which ranges from increased comorbidities, 

including heart disease (the leading cause of death worldwide), asthma, lung cancer, depression, 

and child health impairment (in the form of increased susceptibility to respiratory infections) 

(7,8), to increased cost of hospitalizations (9,10);  with the cost for treatment in North America 

being more than some of the figures quoted internationally (11).  Recent findings that even in a 

normal population COPD can be detected at a reasonable rate, 6.6% for GOLD 1 (mild COPD) 

and 5.6 % for GOLD 2 and above (moderate to severe) (12), further emphasizes the importance 

of identifying viable treatment options and increased research into the pathogenesis of the 

disease itself.  Clearly, with younger and larger smoking populations in other parts of the world 

(6,13), along with under diagnosis and mismanagement in some of these countries (14), this 

disease will only see increased importance on the world stage for years to come.                  
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1.1.2 COPD Diagnosis 

 

The primary risk factor for developing COPD is cigarette smoking (15), but other factors 

including the burning of biomass fuel for cooking and heat (16,17), atmospheric pollution from 

the exhaust of internal combustion engines and industrial processes (18), and the genetic 

background of the subjects (19), of which alpha-1 anti-trypsin is the most widely reported 

(20,21), are also involved.  The diagnosis of COPD is primarily based on criteria set out by the 

Global Initiative for Chronic Obstructive Lung Disease (GOLD), initially sponsored by the 

World Health Organization (WHO) and the Heart, Lung and Blood Institute (NHLBI) in the 

United States.  These guidelines are updated on an annual basis and currently recommend  that a 

diagnosis of COPD requires a reduction in the post bronchodilator FEV1/FVC ratio to below 0.7 

(22–24).  The severity can be classified into four grades (from 1-4) based on measurements of 

FEV1 expressed as a percentage of its predicted value for each subject [Table 1] (24).  The most 

recent modifications of the GOLD guidelines now include measurements of quality of life, 

exacerbation history, and symptoms (24).  This has redefined the categories according to GOLD 

group A – D (24) in which group A and C have fewer symptoms and group B and D have more 

symptoms [Figure 1].  Although this newer classification system is designed to improve 

management, and provide better estimates of the effect of treating symptoms (25), it does not 

appear to add value to simple spirometry in predicting mortality (26,27). Further investigation of 

the relationship between symptoms and mortality are clearly needed (28).  In addition there is 

urgent need for simple tests capable of predicting what Fletcher and colleagues termed “the 

susceptible minority of smokers”.  This minority develop the rapid rate of decline in FEV1 that 

leads to severe (GOLD 3) and very severe (GOLD 4) grades of COPD.  Some of these tests may 
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include improvements in the quantitative analysis of inspiratory and expiratory High-Resolution 

Computed Tomography (HRCT) scans (29–32) as well as blood tests for predictive biomarkers 

of the decline in FEV1 (33).  

 

Table 1: Breakdown of Cutoffs for GOLD Grades of Disease  

GOLD Grade FEV1 FEV1/FVC 

GOLD 1 ≥ 80% predicted < 0.7 

GOLD 2 50% ≤ FEV1< 80% predicted < 0.7 

GOLD 3 30% ≤ FEV1 < 50% predicted < 0.7 

GOLD 4 FEV1 < 30% predicted < 0.7 
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Figure 1: Overview of GOLD A, B, C, and D Categories 

 

1.1.3  The Different Phenotypes of COPD 

 

COPD is an umbrella term that encompasses individuals who suffer from variable combinations 

of chronic bronchitis, emphysema, and/or small airways disease (34).   

 

Chronic bronchitis is defined by the presence of a chronic productive cough that occurs daily for 

at least three months of the year for two successive years (35,36).  It is also associated with 

mucus hypersecretion, epithelial remodeling, and alteration of airway surface tension (34,37).  
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There is also histological evidence of chronic inflammation and enlargement of bronchial mucus 

glands as well as goblet cell metaplasia of the epithelial lining of the cartilagenous airways (i.e. , 

bronchi) in the lower respiratory tract.  The goblet cell metaplasia normally starts at the trachea 

and main stem bronchi and continues all the way down to airways that measure approximately 3 

mm in diameter (38).  Additionally the increased mucus production, estimated from cough and 

sputum production, correlates with an increased inflammatory immune cell infiltration and 

remodeling of muscle, connective tissue, and microvasculature in these airways (39,40).      

 

Emphysema is defined by enlargement of the airspaces with destruction of the alveolar lung 

tissue and can be divided into either a Centrilobular (CLE), Panlobular (PLE), or Paraseptal 

phenotype (41,42).  Before the introduction of computed tomography (CT), diagnosis of 

emphysema and the classification of these 3 basic phenotypes of destruction was based on the 

examination of post mortem lungs in a fixed inflated state (43,44).  Clinical diagnosis of 

emphysema, before the availability of CT scans, was based on symptoms of dyspnea, wheezing, 

and signs of hyperinflation of the lung caused by advanced destruction of lung tissue and the 

formation of emphysematous bullae (45).  The presence of less severe emphysema in inflated 

lung specimens, resected as treatment for lung cancer, demonstrated that emphysema was 

sometimes present in smokers without COPD and this observation has been repeatedly 

confirmed in living patients since the introduction of  CT scans (46,47).  Furthermore, several 

studies now indicate that this early appearance of emphysema in patients with normal lung 

function may predict those most likely to show the rapid decline in FEV1 that leads to severe 

COPD.  The centrilobular phenotype (CLE) is the most common form of emphysema observed 

in smokers and is characterized by destruction of respiratory bronchioles in the centriacinar 
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regions of the lung lobule with the initial preservation of the more distal alveolar ducts and sacs 

(42).  However, the natural progression of CLE leads to the destruction of the entire lung lobule 

with eventual coalescence of many destroyed lobules to form bullous lesions.  The emphysema 

seen in CLE is typically heterogenous and tends to involve the upper lobes to a greater degree 

than the lower lobes (48,49).   The panlobular phenotype (PLE) of emphysematous destruction 

produces much more uniform destruction of the entire lung lobule and is commonly but not 

exclusively observed in alpha-1 antitrypsin deficiency (42).  Although PLE is normally 

distributed across the whole lung it is predominately found in the lower lobes (49).  Paraseptal 

emphysema represents the third separate phenotype that destroys the outer portions of the acini 

leaving the center intact (50).  It has been implicated in the pathogenesis of pneumomothorax in 

young adults (51) and is often found in association with centrilobular emphysematous 

destruction in the middle aged and elderly.   

 

The final pathologic phenotype of COPD is the airway dominant disease in which there is little if 

any emphysematous destruction.  The rate at which the gas exchanging tissues of the lung fill 

and empty, is determined by the resistance to flow offered by the airways that conduct air to the 

gas exchanging tissue and the elastic properties of these tissue that stores energy during their 

expansion, that is used to drive air out of the lung.  Moreover as the product of the units of 

resistance to flow through the airways (cm H2O/litre/second) and the compliance (cm H2O/litre) 

of the alveolar tissue simplifies to time; increases in either the resistance to flow produced by 

obstruction in the small airways or compliance produced by emphysematous destruction of lung 

elastic recoil lengthen the time required to empty the lung.  Furthermore, when the time required 

to empty the lungs exceeds the maximum time between breaths, gas will remain trapped within 
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the lungs and the vital capacity will be reduced (52).  Although the small conducting airways 

(less than 2mm in internal diameter) offer very little resistance to airflow in normal adult lungs, 

they become the major site of obstruction to airflow in COPD (53).  The introduction of 

microCT made it possible to identify and count the total number of terminal bronchioles / lung.  

Using this approach provided evidence that COPD is associated with a massive destruction of 

terminal bronchioles, before emphysema can be detected by microCT (54) examination, and long 

before the emphysematous lesions become large enough to be visualized by HRCT (55–58).  The 

qualitative analysis of MDCT scans taken at full inspiration and expiration has made it possible 

to estimate where the gas was trapped at the end of a forced expiration.  Moreover the 

application of parametric response mapping allows for the discovery of regions of the lung that 

have functional small airways disease (fSAD).  This was done by registering the voxels of scans 

taken on full inspiration to those present on full expiration in order to discover the regions of 

lung that trapped gas excessively on full expiration, but were emphysema free on inspiration.  

Additionally, the ability to repeat this analysis over time in the same person has made it possible 

to show regions of the lung that initially had functional small airways disease develop 

emphysema over time (59).   

 

Work from several laboratories has shown that the pathology found in the small conducting 

airways increases in association with a decline in FEV1.   These changes include an increased 

infiltration of the airway wall tissue and lumen with innate inflammatory cells, that include 

polymorphonuclear leukocytes (PMN) and marcophages, as well as cells that participate in the 

adaptive immune response, like CD4+ T-cells and B cells (53).  This increase in inflammatory 

immune cells has also been attributed to an increase in inflammatory cytokines (IL6, IL1β, TNF-
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α, interferon-γ, etc.) (60).  These cytokines can recruit other cells into the lungs like CD8+ T-

cells, which have been found to be increased in COPD (61).  These CD8+ T-cells have the 

capacity to release elastolytic enzymes such as MMP2, MMP9, and MMP12 capable of 

degrading lung tissue (62).  Additionally, as CD4+ T-cells and B-cells increase with COPD 

severity so do the number of tertiary lymphoid follicles associated with the small airways (53).  

This observation suggests that there may be an adaptive immune response to an antigen that 

potentially drives the progression of disease (63).  Although the innate immune response is 

important in COPD it is possible that the adaptive immune response, predominantly driven by 

CD4+ T-cells and B-cells, may orchestrate the persistent inflammation seen in COPD and the 

destruction mediated by both CD8+ T-cells and neutrophils.   

 

Acute exacerbations of COPD are defined by an increase in symptoms over baseline everyday 

secretion, production, purulence, viscosity, or volume of sputum.  This can be accompanied with 

nasal discharge (runny nose), sore throat, fever, and increased coughing or wheezing (64).  

Expert opinion suggests that these symptoms generally need to last for at least 2 days in order to 

constitute an exacerbation (65).  The new guidelines recently created for diagnosis of an acute 

exacerbation of COPD states that there should be continuous worsening of an individual’s 

condition from their usual stable state (24,66).  However, there are still multiple definitions or 

interpretations of what an acute exacerbation in COPD is and recent studies have found that only 

around 20% of clinical trials use symptom based definitions for acute exacerbations (67).  

Bacteria and viruses have long been associated with exacerbations and have been found to be the 

major cause of most exacerbations in COPD (68–70).  Infectious agents (whether they are virus, 
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or bacteria) account for close to 80% of all causes of acute exacerbations.  Additionally, air 

pollution can worsen these symptoms and increase the need for hospitalization (71,72).   

 

1.1.4 Potential Inflammatory Initiator of COPD 

 

A decline in FEV1 can be associated with increased inflammatory and immune cell infiltration of 

the lung tissue.  This infiltration has been shown to be a mixed population of inflammatory 

immune cells that include macrophages, CD4+ and CD8+ T-cells, and B cells (73).  Very 

recently a study comparing lung tissue from smokers with the “usual” centrilobular phenotype of 

emphysematous destruction to lung tissue from patients with the panlobular emphysematous 

phenotype of COPD had the same infiltrating immune and inflammatory profiles (74).  This new 

data suggests the hypothesis that the elastase anti-elastase imbalance created by A1AT 

deficiency could cause disease by producing abnormal elastin fragments that act as autoantigens 

capable of driving an adaptive immune response in A1AT deficiency (75,76).  Alternatively, the 

reduction in diversity observed within the microbiome of patients with COPD might either create 

conditions that allow new species of organisms to emerge and produce infection or present new 

microbial antigens that stimulate the host immune system to respond.   

 

The recognition that the decline in lung function associated with COPD is correlated with 

increased exacerbation frequency is well established in the literature (77), as is the concept that 

exacerbations are primarily caused by either viruses or bacteria (78).  Moreover a recent report 

from CanCOLD shows that the symptoms of exacerbations are frequently observed in subjects 

without COPD (79).  This finding supports an old clinical adage that the common cold, that is an 
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annoyance to persons with healthy lungs, may be a life threatening event in a person whose lung 

defenses are severely compromised by COPD.  These observations are relevant to the vicious 

cycle hypothesis where a background of impaired lung defense causes increased microbial 

colonization, which leads to an acute inflammatory response, leading to increased destruction of 

the lung which never fully recovers before the next infection/colonization by a bacteria or virus 

(78).  Moreover they also fit with certain aspects of the Dutch hypothesis where a hyperreactive 

host response is thought to contribute to the pathogenesis of COPD and asthma as well as the 

British hypothesis that implicated mucus hypersecretion to the symptoms of both asthma and 

COPD.   

 

Although there is substantial evidence for important overlaps between asthma and COPD (80), 

there are still attributes that are quite different between the two (81).  One of the key differences 

is that asthma is dominated by a T-helper 2 lymphocyte (Th2) cell response as well as increases 

in eosinophil and mast cell populations within the lungs (82).  COPD cell infiltration into the 

lung, in contrast, is typified by increases in neutrophils, macrophages, and cytotoxic T-cells (82).  

CD4+ T-cells and B-cells have also been found to be substantially increased in COPD (53).  This 

milieu is more usual of the T-helper 1 lymphocyte (Th1) response.  Although there are 

differences, synergistic worsening of symptoms does occur when both diseases are present.  

First, in a 20 year study it was shown that asthmatics had the highest hazard and attributable risk 

factor for developing COPD (80).  Second, declines in lung function have been shown to be 

more severe when the smoker is asthmatic (83).  Third, a family history of asthma and smoking 

can increase the probability that an individual will have COPD (84).   
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 So how does COPD relate to the bacterial microbiome within our lungs?  Can changes to this 

identified microbiome have any impact on the progression of disease or are these communities 

merely bystanders in the overall pathogenesis?  Before I attempt to show data to help provide 

some answers to these questions it is first important to review what the microbiota is and what 

has already been published both on the bacterial microbiome in lungs and in COPD.             

 

1.2 The Bacterial Microbiome1 

1.2.1 What is the Microbiota?  

 

In general, the microbiota consists of microorganisms that inhabit a particular site or place (e.g., 

the gastrointestinal tract, skin, lung, etc.) (85–87). These microorganisms can consist of, but are 

not limited to, bacteria, viruses, and fungi (88,89), of which the most widely studied is the 

bacteria.  In the human body bacteria out number our human cells by a factor of 10 (90).  Most of 

these bacteria are found in the gastrointestinal (GI) tract (90).  Other sources of habitation 

include the mouth, nose, and skin (91).  Bacteria co-exist with fungi and viruses in these 

locations; however, their role and function within these eco-systems are now only recently being 

established (92–94).  The first large scale human microbiome studies were conducted on the gut 

(95,96).  The initial hypothesis was that most microorganisms residing in the GI tract could pose 

health threats for humans (97).  However, with careful investigation, it became clear that many 

bacteria in the GI tract were beneficial in providing protection against death and disease (98).  

For example, some bacteria are required for the production of essential micro-nutrients (such as 

                                                           
1 This section has been previously published in the International Journal of Chronic Obstructive Pulmonary Disease. 
   Sze MA, Hogg JC, Sin DD.  Bacterial microbiome of lungs in COPD. Int J Chron Obstruct Pulmon Dis. 2014 Feb;    
   9:229-38. Doi: 10.2147/COPD.S38932.eCollection. 
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vitamin K), protection against pathogens (such as C.difficile), and regulation of the host 

inflammatory responses (99,100), and disease phenotypes (101–103).  It is now recognized that 

perturbations in the gut microbiome may be responsible for a wide range of diseases including 

pseudomembranous colitis (104), inflammatory bowel disease (105), and even non-GI conditions 

such as obesity and cardiovascular diseases (106).     

 

1.2.2 The BAL, Bronchial Brushing, and Endotracheal Lung Microbiome  

 

Studies of the lung microbiome are now just emerging.  Hilty et al. were the first to show that the 

lungs were not sterile and bacteria are found in the lower airways (107).  Using clone libraries, 

they interrogated the 16S rRNA gene fragments for bacterial communities in healthy control 

subjects (n=8), patients with asthma (n=11), and those with moderate to severe COPD (n=5).  

They demonstrated that bronchoalveolar lavage (BAL) fluid and bronchial brushings contained 

different bacterial communities to those found in the nasal cavity or the oropharynx (107).  More 

specifically, they showed that there was increased representation of Proteobacteria in the COPD 

and asthmatic airways, which was accompanied by a reduction in Bacteriodetes in the COPD 

samples (107).  This was the first study to suggest that there was a unique bacterial community in 

the lungs, which may change with disease.     

 

Erb-Downward et al. evaluated the bacterial microbiome in non-smokers and smokers with 

normal lung function (101).  This study evaluated mostly BAL fluid, complemented by lung 

tissue samples, which were obtained from patients with very severe COPD (101).   They found 

that there was no significant difference in the overall bacterial community composition between 
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non-smokers, healthy smokers, and COPD patients (101).  However, they showed that there was 

significant heterogeneity and diversity in the bacterial micorbiome across different regions of the 

same lung (101).   

 

Huang et al., extended these findings by using a bacterial 16S phylo chip to determine bacterial 

composition of endotracheal aspirates, which were obtained in a small number of intubated 

patients with severe COPD (108).  Interestingly, however, they noted two distinct and divergent 

bacterial populations in the COPD samples (108).  One group of COPD patients demonstrated a 

loss of diversity in their bacterial composition, similar to what was reported by Hilty et al. 

previously (108).  The second group, on the other hand, showed increased diversity of 

community composition and in particular an in the increase number of bacteria in the Firmicute 

phylum (108).  They hypothesized that disease progression in COPD was associated with greater 

bacterial diversity and increased airway representation of Firmicutes (108). 

 

These observations were supported by data generated with resected lung tissue specimens of 

patients with very severe COPD, which demonstrated increased representation of Firmicutes 

(109).  As with other studies (101,103,109), this study also showed that there was no difference 

in the bacterial community composition in the lungs between smokers and non-smokers.  Finally, 

although the total bacterial load was much lower in the lung tissue samples compared with BAL 

fluid, neither the tissue samples nor BAL fluid have shown any significant differences in the total 

bacterial load between COPD patients and healthy (control) subjects (107,109).   
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Pragman et al. extended these prior studies by determining the lung microbiome in a small group 

of control subjects and in patients with moderate to severe COPD using BAL fluid samples.  

They found that the bacterial communities of COPD lungs were distinct from those of normal 

lungs, though there were no significant differences across disease severity (102).  This was the 

first study that used BAL fluid to evaluate the lung microbiome across GOLD (Global initiative 

for Chronic Obstructive Lung Disease) grades of severity.  These data suggest that those with 

COPD, regardless of severity, have a different bacterial microbiome in their lungs compared 

with those who do not have COPD and that changes in the microbial communities occur very 

early in the disease process.  Importantly, they also showed that there was segregation of 

bacterial communities according to the use (or non-use) of inhaled corticosteroids or 

bronchodilators (102).  However, since this study was cross-sectional, causality could not be 

ascribed (102).   

 

Together, the studies to date suggest that the changes in the lung microbiome in COPD occur 

early in the disease process and remain relatively stable with disease progression.  Finally, 

although there is a lack of uniformity on the organisms found in the lung microbiome of COPD 

and normal lungs, most studies have reported both an increased representation of bacteria in the 

Firmicute phylum as well as an overall numeric dominance of the Proteobacteria phylum in the 

COPD lungs. 

 

One limitation of these studies is that they focused solely on the DNA component.  Therefore, it 

is possible that many of the bacteria studied are in fact dead.  What needs to be done in the 

COPD field are studies that have been done by researchers in the cystic fibrosis field and 
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compare the communities identified by the DNA approach to those that can be found by an RNA 

approach (110,111).  This importance in sorting out the living bacteria from the dead bacteria is 

even more important due to studies that show a large proportion of sequences that are identified 

do not belong to living bacteria (112). This comparison would help in sorting out what may be 

dead cells from living cells.  Further, there are other approaches that can be used on DNA 

samples to limit the contribution that dead bacteria will have on the sample (113,114).   

 

Traditionally it is believed that the airways below the vocal cords are sterile (101–103,107–

109,115).  It has been well documented that the mucociliary transport system is a key component 

in keeping the level of bacteria in the lungs low (116).  Numerous reports have shown that a 

dysfunctional mucociliary transport can lead to infection (117–119).  Further, macrophages and 

neutrophils clear any microorganism or particle that evades this transport system (120,121).  

Although many studies have found bacterial sequences within the lower airways caution needs to 

be used when discussing whether these bacteria truly live in this environment.  Based on the 

historical literature there is wide acceptance that bacteria get into the lower airways on a regular 

basis (122) and are cleared by normal processes (116,120).  These DNA based approaches are a 

good first step but to truly prove that the lung is not “sterile” will require more than just 

sequencing studies since these studies may just be detecting bacteria that normally “invade” 

airways but are later cleared without causing any harm to the host.  As well, changes in the 

bacteria community that gets into the lung could still be just as important to the progression of 

COPD.    
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1.2.3 The Lung Tissue Bacterial Microbiome 

 

The first analysis of the bacterial lung tissue microbiome in COPD was performed by Sze et al., 

which largely confirmed the previous findings of Hilty et al.  Both groups showed that there was 

a significant difference in the bacterial community composition detected between COPD and 

“normal” (control) lungs (109).  Notably, they found that the total number of bacteria in lung 

tissue, which has a bacterial density of 10-100 bacterial cells per 1000 human cells, was 

relatively small as compared with the gut microflora (109).  However, even at this low 

concentration, Sze et al found using two separate techniques (terminal restriction length 

polymorphism analysis and pyrotag sequencing) that the lungs of patients with very severe 

COPD contained a different community of bacteria than those of controls or patients with cystic 

fibrosis (109).  Using indicator species analysis, they noted that these differences were largely 

driven by bacteria belonging to either the Proteobacteria or Firmicute phylum (109), which was 

consistent with what was previously reported by Hilty et al. and Huang et al.  However, by using 

lung tissue samples rather than bronchoscopic specimens (which are prone to upper airway 

contamination), Sze et al provided the first evidence that lungs of COPD patients harbored a 

distinct microbiome (more on this in the subsequent section). 

In a separate study done in cystic fibrosis, Goddard et al showed that the microbial diversity 

within the upper airways was significantly greater than what could be found in the lower airways 

of explanted tissue (123).  This means that many studies based on sputum may actually over –

estimate the bacterial diversity as well as bacterial density that actually gets into the lower 

airways and lung tissue.   
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1.2.4 The Initial Location of the Bacterial Lung Microbiome 

 

To date most studies of lung bacterial microbiome data have been generated using BAL samples.  

However, because the bronchoscope has to traverse through the upper airways, these data may be 

confounded by contamination of organisms in the mouth or the nose (115,124). To surmount this 

limitation Charlson et al instituted several quality measures in their bronchoscopic techniques 

including rinsing of mouth with an antispectic solution prior to bronchoscopy, restraints on 

suctioning through the bronchoscope in the upper airways during the procedure, and discarding 

of initital BAL samples (124).  Similar to previous studies (which did not implement these 

stringent quality measures for bronchoscopy), they found that the overall bacterial load was 

higher in the BAL samples when compared with the negative controls (124) and that there was 

good concordance of the bacterial community across the samples (124).      

 

From other lung disease research the major source of bacteria for the lung microbiome is thought 

to be from the upper airways (125,126).  In COPD this notion is supported in part by a recent 

study conducted by Segal et al (115).  They found that some healthy individuals carried 

organisms in the BAL fluid that were commonly observed in the supraglottic region, whereas 

other individuals demonstrated unique organisms in the BAL fluid that were not found in the 

upper airways (115).  Interestingly, individuals in whom there was substantial overlap in the 

microbiome between BAL fluid and the upper airway demonstrated increased lung 

inflammation, characterized by increased lymphocytes and neutrophils in the BAL fluid, 

compared to those whose BAL microbiome was distinct from that of the upper airways.  These 

results suggest that “contamination’ of bacteria from the supraglottic region into the lungs may 
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elicit an inflammatory response in the lungs.  These data raise the possibility that bacteria from 

the mouth may alter the normal lung microbiome, contributing to “disease”.  However, it is also 

possible that these data were confounded by contamination of microbial flora during 

bronchoscopy. 

 

1.2.5 Can the Oral Bacterial Microbiome Play a Role in COPD?   

 

Few studies have evaluated possible changes in the bacterial communities of the oral cavity of 

smokers as compared to non-smokers (103,127).  Charlson et al. found that there was indeed a 

difference in the oral microbiome between smokers and non-smokers, most notably in the 

Firmicute phylum (127).  This was supported by Morris et al. who also showed using a much 

larger sample size that there were detectable differences in the oral microbiome between smokers 

and non-smokers (103).  Both studies found differences in the representation of Neisseria species 

(103,127).  They also showed that many bacteria in the oral cavity can be found in the lungs. 

However, some bacteria (such as Enterobacteriaceae, Haemophilus, Methylobacterium, and 

Ralstonia), which are found in both areas, are enriched in the lungs as compared with the oral 

cavity (103).  The substantial overlap in the microbiome between the oral cavity and lungs may 

be related to micro-aspiration (122).  It is well known that nearly all individuals micro-aspirate 

during sleep (122).  However, aspirated bacteria are cleared by an intact mucociliary clearance 

system during the day, which prevents pneumonia (128).  In individuals with COPD there is an 

impairment of this mucociliary clearance system (129).  This impairment could lead to mucus 

hypersecretion, pooling of mucus and mucus plugging in the airways (130), entrapping these 

aspirated bacteria in the lungs and causing them to acclimate and grow in this new ecosystem.  
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This process may also elicit a local immune response, contributing to the persistent lung 

inflammation observed in COPD airways (even following smoking cessation).  It is possible that 

these “aspirated” bacteria may stimulate the formation of the tertiary lymphoid follicles, which 

are prominent in the small airways of patients with very severe COPD.  The impaired 

mucociliary clearance and cilia (131) in COPD lungs may also permit the entry and growth of 

non-commensal bacterial pathogens in the lung causing acute worsening of symptoms and 

exacerbations.  The persistence of non-commensal organisms, coupled with the ongoing 

inflammatory response, may shift the lung microbiome in COPD (108,109).  

 

1.2.6 The Microbiome and Inflammation in COPD  

 

Very little research has been done to investigate the role the microbiome plays in inflammation 

with respect to COPD.  One of the first studies to look at the potential role the microbiome may 

have in inflammation in COPD was by Segal et al (115) and was previously discussed.  A more 

detailed study on specific bacteria within the lung microbiome was done by Larsen et al (132).  

In this study they tested the bacteria identified previously (107) to be important in asthma or 

COPD against dendritic cells.  What they found was that commensal bacteria had lower cytokine 

expression of IL-23, IL-12p70, and IL-10 than bacteria believed to be pathogenic (Haemophilus 

spp and Moraxella spp.) (132). They also went on to show that Prevotella spp, a bacterium 

identified as a commensal, could reduce the amount of Haemophilus influenza-induced IL-12p70 

(132).  Others have studied Lactobacillus and their role in reducing airway inflammation in 

mouse models of asthma (133,134).  At this point in time these types of studies have found that 

in general commensal organisms can have an overall anti-inflammatory effect while non-
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commensals can have a pro-inflammatory effect.  Caution needs to be taken with these results 

since what is commensal in one body site may be pathogenic in another (135).  These data show 

promise in identifying both bacteria that could be important in dampening the immune response 

and those that could accentuate it.  Ultimately, both in vivo and in vitro studies investigating how 

different bacteria can drive the tertiary lymphoid follicle formation and increased infiltration of 

B-cells and CD4 T-cells into the lungs of those with COPD are what need to be accomplished to 

push this area forward.                 

 

 

1.2.7 What We Have Learned So Far on the Lung Microbiome in COPD 

 

 Overall, our understanding of the lung bacterial microbiome in COPD is still in its infancy.  

Despite excitement about the lung microbiome, there remain inconsistencies in data and poor 

reproducibility of findings across studies.  For example, although the first few studies to 

investigate COPD (mostly using BAL or sputum samples) have found that the bacterial diversity 

decreases as disease worsens (101,107), subsequent studies using lung tissue samples have failed 

to show significant differences in bacterial diversity (109).  One possible explanation for this 

conflict is that tissue samples contain mostly parenchyma (mixed with airways and blood 

vessels), while BAL and sputum samples mostly reflect the airways [Table 2], which could result 

in a greater airway to alveolar sampling admixture.  This could suggest that the bacterial 

microbiome within the airways is different from those in the alveolar tissue giving rise to 

different micro-niches within different compartments of the lung.  It should also be noted that the 

concept of reduced diversity with disease progression has not been consistently replicated even 
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in studies using BAL samples (102).  Contrary to earlier studies, one recent study showed that 

diversity paradoxically increased in severe COPD as compared with controls (102).   

 

One common finding so far from the COPD studies is the increased abundance of bacteria in the 

Firmicute phylum in moderate, severe, and even very severe disease (102,107,109), with a few 

notable exceptions (101,136).  Erb-Downward et al found in patients with very severe disease 

that the predominant bacteria in lung tissue were those from the Proteobacteria phylum (101).  

This finding is similar to what has been found by Hilty et al.  Huang et al. provide a plausible 

explanation to reconcile these differences.  They speculated that there are two types of bacterial 

microbiomes related to COPD, one that is dominated by Proteobacteria and the other that is 

dominated by Firmicutes and which is associated with increased diversity (108). Further studies 

will be needed to investigate and resolve this controversy and determine the role of the lung 

microbiome in disease progression of COPD.   

 

Although we can draw knowledge from the cystic fibrosis and bronchiectasis literature, the role 

the bacterial microbiome plays in those two disease process is more than likely to be very 

different.  There are some similarities between the diseases with respect to the bacterial 

microbiome.  For example, in COPD and other lung diseases a loss of diversity can be associated 

with worse disease.  However, in COPD this does not necessarily lead to an outgrowth of single 

organisms as it does in cystic fibrosis and a corresponding loss in community evenness.  This 

difference along with the low bacterial density in COPD versus cystic fibrosis implies that 

bacteria potentially have very different roles in either disease progression.  Many of these studies 

are based in DNA sequencing approaches and may only identify bacteria that simply pass 
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through the lungs yet the type of bacteria that the lung is exposed to, even at low bacterial 

density, may have a large impact on inflammation and progression in COPD. 

Table 2: Breakdown of the different bacterial microbiome studies in COPD 

Study Controls COPD 
Sampling 

Method 

Predominant 

Stage of COPD 

Hilty et al.[115] 8 5 Bronchial Brush 2-3 

 

Erb-Downward 

et al.[109] 

10 4 BAL* 1 

0 6 Tissue 4 

Huang et al.[116] 0 8 
Endotracheal 

Aspirates 
Exacerbation 

Sze et al. [117] 16 8 Tissue 4 

Pragman et al. 
[110] 

10 22 BAL 2 

*Abbreviation: BAL = bronchoalveolar lavage 

 

These previous studies have been observational survey studies of the bacterial microbiome 

between control and COPD.  Those that focused on more mild disease did not find any 

difference between COPD and control (102).  The studies that focused on more severe disease 

found measurable shifts in the bacterial microbiome between control and COPD (107,109).  

These data suggest that the bacterial microbiome may not change until later GOLD grade, 

specifically at moderate COPD.  Additionally, these survey studies have not tried to tackle the 

question of whether or not this bacterial microbiome or specific bacteria within it could be an 

active facilitator in the progression of disease.  This thesis aims to first pinpoint at what GOLD 

grade bacterial community composition changes can be detected in lung tissue and how changes 

in this bacterial microbiome could potentially influence and drive the disease pathogenesis of 

COPD.   
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Chapter 2: Experimental Approach 

2.1 Working Hypothesis 

 

There is a detectable effect of the bacterial microbiome or specific bacteria within this 

microbiome on chronic obstructive pulmonary disease (COPD) pathogenesis. 

 

 2.2 Specific Aims 

 

1) Determine if changes in the bacterial microbiome found in very severe (GOLD 4) COPD 

can also be seen in mild and moderate COPD versus control lung tissue. 

2) Determine if the bacterial microbiome as well as specific bacteria in this microbiome 

correlate with structural changes that occur in COPD. 

3) Determine if the bacterial microbiome as well as specific bacteria in this microbiome 

correlate with inflammatory and immune cell changes in COPD. 

4)  Determine the role of a specific bacterium from aims 2 and 3 and whether it has different 

effects on adaptive immune activation and immune cells. 
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Chapter 3: The Bacterial Microbiome in Mild and Moderate 

COPD  
 

3.1 Introduction 

 

Chronic Obstructive Pulmonary Disease (COPD) is currently the 4th leading cause of death 

worldwide (2).  A loss of terminal bronchioles as well as a robust inflammatory process that 

involves the innate and adaptive immune system has been characterized in disease 

(53,57,61,137).  Additionally, increased infiltration of macrophages, CD4+ T-cells, and B cells 

has been correlated with emphysematous tissue destruction, as measured by the mean linear 

intercept (Lm) (138,139).  The correlation between Lm and these infiltrating inflammatory cells 

occurs before emphysematous destruction can be detected by regular MDCT scans (57,140).  

However, the target of this adaptive immune response is not known.  Some possible reasons 

involve either an autoimmune response to structural components like elastin (141) or 

environmental responses to viruses or bacteria (142–144).     

 

Recent work on the bacterial microbiome has focused largely on COPD GOLD 4 disease 

(101,108,109).  A few studies have examined the bacterial microbiome in more mild disease 

(102,107,115), however their results are mixed.  Although there are some marked differences 

between control samples and COPD (102,107) the differences between various GOLD grades are 

not clear.  Further, there is some controversy over whether contamination from either the mouth 

or nose is a key contributor to the sequences analyzed for the bacterial microbiome.  Studies 

have shown that both BAL and bronchial brush samples can have many potential sources of 

contamination, including bacteria from the mouth (115,124).  Thus many of the bacteria 
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sequenced may not identify the bacteria that are reflective of the communities found in the lower 

respiratory tract and alveolar tissue of the lungs.  However, newer studies that use similar 

protocols show that contamination due to the mouth bacterial microbiome is minimal 

(136,145,146).  Even if this latest result proves to be true, many of the currently published 

studies analyze a relatively small sample size.  Additionally, there has not yet been a study on the 

lung tissue bacterial microbiome in mild and moderate COPD. 

  

This current study has the largest number of independent tissue samples studied for the bacterial 

microbiome in mild and moderate COPD.  The main hypothesis tested was that the bacterial 

microbiome is different among control, mild, and moderate COPD.  It  also investigated whether 

early inflammation, in particular macrophages, B cells, and CD4+ T-cells, could be detected 

before noticeable increases in Lm occur and whether these infiltrating inflammatory cells are 

potentially driven by either bacterial communities or specific bacteria within the microbiome.  

 

3.2 Methods 

3.2.1 Tissue Preparation and Extraction 

 

Lung tissue was obtained from the tissue registry at St. Paul’s Hospital.  Ethics approval was 

obtained for this study from the University of British Columbia - Providence Health Care (UBC-

PHC) research ethics board.  Informed consent was obtained, through a written consent form, 

and approved by the UBC-PHC research ethics board for patients who underwent lung resection 

therapy for various pulmonary conditions for collection and use in this study.  Lung tissue from 

the tumor-free part of the resected lung segment was used.  Three individuals (one from the 
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control group, two from the COPD group) had used inhaled corticosteroids, and none had 

symptoms of an acute respiratory tract infection documented in the two weeks prior to surgery.  

Individuals from whom the lung tissue cores were obtained had the following diagnoses: 

adenocarcinoma (n = 13), squamous cell carcinoma (n = 12), large cell carcinoma (n = 9) and 

other (n = 6) [Table 3].  The other category is made up of both non-malignant and rarer types of 

cancer.   

Table 3: The Breakdown of the Different Tumor Types from Resection Therapy 
 

 Adenocarcinoma Squamous Cell Other 

Control 11 (39%) 3 (11%) 14 (50%) 

GOLD 1 4 (19%) 10 (48%) 7 (33%) 

GOLD 2 5 (20%) 11 (44%) 9 (36%) 

  

Resected lung tissues were inflated with cryomatrix (OCT) at constant pressure (30cm H2O) and 

then frozen in liquid nitrogen.  2 cm thick contiguous transverse slices were then made and tissue 

samples were taken from one of these slices.  From the same core, consecutive frozen sections 

were cut on a cryomicrotome and were assigned as follows: sections 1–5, 8–12, 14–18 were 

allocated for qPCR or microbiome analysis, and sections 6–7, 13, 19–20 were allocated for  

histological and immunohistochemical staining. This sectioning protocol was repeated in 

quintuplicate for each lung tissue core and at least two tissue cores were examined from each 

patient specimen.  Samples for histology were stained for CD4+ T-cells, CD8+ T-cells, B-cells, 

Neutrophils (PMN), Macrophages, and Eosinophils.  A hematoxylin and eosin (H&E) and Movat 

pentachrome stain were used to quantify elastin, airway wall thickness, and mean linear intercept 

(Lm).  Table 4 lists the breakdown of staining for the different cell types.  Optimal staining 

concentrations were determined from a serial dilution of each antibody and both a positive 
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control (tissue known to contain the cell of interest) and a negative control (staining protocol 

without the target antibody) were performed. 
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Table 4: Immunohistochemical Staining of Airway Inflammatory Cells 

 

* Hansel stain used for Eosinophils 

Antibody name Antibody Type Host Species Against Company Catalog # Clone Name Dilution Pre-treatment 

CD68+ (Macrophage) Monoclonal Mouse Human DAKO M0718 EBM11 1/75 
acetone 10 min. at  
room temperature 

NK1+ (Natural Killer Cell) Monoclonal Mouse Human DAKO M1014 DAKO-NK1 1/50 
acetone 10 min. at  
room temperature 

CD79α+ (B-lymphocyte) Monoclonal Mouse Human DAKO M7050 JCB117 1/50 
acetone 10 min. at  
room temperature 

CD4+ (Helper-inducer T-
lymphocyte) 

Monoclonal Mouse Human DAKO M0716 MT310 1/100 
acetone 10 min. at  
room temperature 

CD8+ (Cytotoxic T-
lymphocyte) 

Monoclonal Mouse Human DAKO M7103 C8/144b 1/100 
acetone 10 min. at  
room temperature 

Neutrophil Elastase 
(Neutrophil) 

Monoclonal Mouse Human DAKO M752 NP57 1/100 
acetone 10 min. at  
room temperature 
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3.2.2 Study Design 

 

In total there were 28 individuals in the control group (normal lung function as measured by 

spirometry), 21 individuals in the GOLD 1 group and 25 individuals in the GOLD 2 group.  

DNA was extracted for both qPCR and 454TM pyrotag sequencing [Figure 2].  The qPCR was 

performed to determine the total bacterial load at two lung heights within the same individual.  

The 454TM pyrotag sequencing was used to compare the bacterial community composition 

(measured by both the alpha diversity (the number of species and evenness (147)) and beta 

diversity (the turnover of species (147)).  The bacterial community composition was then 

compared to the data on the inflammation and emphysematous tissue destruction (Lm) to 

identify potential individual bacteria or community measures that were associated with either a 

protective or destructive role in COPD.  Both PCR controls (negatives) and DNA extraction 

controls (extraction negatives) were sequenced with the above protocol.  The extraction 

negatives were water controls subjected to the same DNA extraction process and nested PCR as 

the tissue samples.  The negatives were subjected to the same nested PCR as the tissue samples.       

 

 

Figure 2: Workflow of the Different Components of the Study on Mild and Moderate COPD. 
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3.2.3 Quantitative Histology 

 

Digital images of these slides were obtained using the Aperio ePathology slide capture system 

(Aperio systems, Newark, NJ, USA) and analyzed using Image-Pro Plus software (Media 

Cybernetics, Rockville, MD, USA) to obtain volume fractions (Vvs) occupied by each of the 

infiltrating cells.   

 

The volume fraction was obtained by using a 40x magnification and subsequent counting of the 

ratio of positive cells to total tissue.  A grid was placed on the entire section and each box on the 

grid was assigned a number.  A random number generator was used to select 4 locations where a 

40x magnification image was to be taken and quantified.  Total positive cell counts needed to be 

approximately 200 cells and extra images were obtained if the 4 images were not sufficient.  A 

grid based system was used for counts and only tissue or positive cells that fell on these points 

were counted.  For alveolar tissue measurements the airways and blood vessels were excluded 

from the random number generator selection process. 

     

Lm was measured using a standardized grid with lines (1 mm in length) that surrounded the 

entire image.  Airways and blood vessels were excluded so any lines crossing these structures 

were not counted.  After this exclusion the number of times alveolar tissue crossed the lines 

(intercepts) was counted.  Lm was then calculated using the following equation: 

 

Lm = [(Number of lines) x (line length)] / (Number of intercepts) 
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Airway wall thickness was measured from the volume of the lumen being subtracted from the 

total volume of the airway and dividing by the area of the basement membrane.  This is depicted 

in equation form below. 

 

Airway wall thickness = [(Volume of Airway) – (Volume of Lumen)] / (Area of the Basement 

Membrane) 

   

3.2.4 QPCR 

 

The 16S rRNA gene assay standard curve was based on a serial dilution of genomic DNA 

extracted from Escherichia coli JM109.  The E.coli JM109 was grown on LB medium agar 

plates and DNA was extracted on a pooled sample of 7 medium sized colonies.  In order to 

obtain a cell count of the sample the average size of the E.coli JM109 genome of 4.5 million base 

pairs was converted to Daltons (660 Daltons per base pair).  The Dalton measurement was then 

converted to grams / cell using the DNA concentration (ng/µL) of the extracted genomic DNA of 

E.coli JM109 to obtain a cell / µL value.  A single dissociation curve was observed for both the 

16S rRNA gene assay at 84-85°C.  The cycling conditions for the 16S rRNA gene were 

previously published [117].  Modifications to this existing protocol included normalization to µg 

of DNA instead of to the human housekeeping gene Rpp40.  This was done since both gave 

similar results with respect to finding no difference between the 16S bacterial load between 

controls and disease.  Further running a single plate rather than two plates decreased the time that 

needed to be spent on performing 16S quantification. 
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The standard curves for the 16S rRNA gene assays were y = -3.2543x + 29.03, R2 = 0.99, with 

an efficiency of 102.9% and y = -3.2896x + 29.526, R2 = 0.99, with an efficiency of 101.4%.  

The average of all the negative control samples were subtracted from the sample average and this 

value was then multiplied by 7 to generate a 16S copy number and then divided by 5 to generate 

a 16S/µL value.  This was then divided by the ng of DNA/µL and multiplied by 1000 to generate 

the 16S copies / µg of DNA. 

  

3.2.5 454TM Pyrotag Sequencing 

 

HotstarTaq DNA Polymerase, 10x PCR Buffer, and dNTP mix from Qiagen (Maryland, USA), 

along with primers from SIGMA (Missouri, USA), and RNase and DNase free water was used 

for all reactions.  The exact volume in a single tube was 5µL of 10x PCR Buffer, 1µL dNTP mix 

2µL of the forward primer, 2µL of the reverse primer, 0.25 µL of HotstarTaq DNA polymerase, 

34.75µL of RNase and DNase free water, and 5µL of the template DNA.  All the PCR reactions 

were carried out on a Bio-Rad MyCycler Thermal Cycler (Ontario, Canada).   

 

A nested PCR approach was utilized to generate a 550bp product, which spanned the V1-V3 

region of the 16S rRNA gene [117], used for the sequencing.  The first round of PCR consisted 

of the following cycling conditions: 

[95°C for 15 minutes] x 1 

[94°C for 40 seconds, 57°C for 30 seconds, 72°C for 1 minute and 30 seconds] x 40 

Using the forward primer 27F (5’- AGAGTTTGATCMTGGCTCAG) and reverse primer 907R 

(5’- CCGTCAATTCMTTTGAGTTT) to generate an 881bp product.   A second round of PCR 
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consisted of a forward primer (5’-AGAGTTTGATCMTGGCTCAG) and a reverse primer (5’-

GWATTACCGCGGCKGCTG) at the following cycling conditions: 

[95°C for 15 minutes] x 1 

[94°C for 40 seconds, 61°C for 40 seconds, 72° for 1 minute] x 40 

[72°C for 10 minutes] x 1    

Barcodes were included with each primer to allow for the samples to be sequenced in a pooled 

library.  This consisted of two half runs utilizing 84 unique primer and barcode combinations 

within each run [Table 5].  The fusion sequence needed to attach the amplicons to the 454TM 

beads was CCATCTCATCCCTGCGTGTCTCCGACTCAG for the forward primers and 

CCTATCCCCTGTGTGCCTTGGCAGTCTCAG for the reverse primer.  
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Table 5: List of Barcodes Used for 454TM Pyrotag Sequencing 
 

Name Unique Barcode Name 
Unique 
Barcode Name 

Unique 
Barcode 

MID1 ACGAGTGCGT MID30 AGACTATACT MID57 CGCGTATACA 

MID2 ACGCTCGACA MID31 AGCGTCGTCT MID58 CGTACAGTCA 

MID3 AGACGCACTC MID32 AGTACGCTAT MID59 CGTACTCAGA 

MID4  AGCACTGTAG MID33 ATAGAGTACT MID60 CTACGCTCTA 

MID5 ATCAGACACG MID34 CACGCTACGT MID61 CTATAGCGTA 

MID6 ATATCGCGAG MID35 CAGTAGACGT MID62 TACGTCATCA 

MID7 CGTGTCTCTA MID36 CGACGTGACT MID63 TAGTCGCATA 

MID8 CTCGCGTGTC MID37 TACACACACT MID64 TATATATACA 

MID10 TCTCTATGCG MID38 TACACGTGAT MID65 TATGCTAGTA 

MID11 TGATACGTCT MID39 TACAGATCGT MID66 TCACGCGAGA 

MID13 CATAGTAGTG MID40 TACGCTGTCT MID67 TCGATAGTGA 

MID14 CGAGAGATAC MID41 TAGTGTAGAT MID68 TCGCTGCGTA 

MID15 ATACGACGTA MID42 TCGATCACGT MID69 TCTGACGTCA 

MID16 TCACGTACTA MID43 TCGCACTAGT MID70 TGAGTCAGTA 

MID17 CGTCTAGTAC MID44 TCTAGCGACT MID71 TGTAGTGTGA 

MID18 TCTACGTAGC MID45 TCTATACTAT MID72 TGTCACACGA 

MID19 TGTACTACTC MID46 TGACGTATGT MID73 TGTCGTCGCA 

MID20 ACGACTACAG MID47 TGTGAGTAGT MID74 ACACATACGC 

MID21 CGTAGACTAG MID48 ACAGTATATA MID75 ACAGTCGTGC 

MID22 TACGAGTATG MID49 ACGCGATCGA MID76 ACATGACGAC 

MID23 TACTCTCGTG MID50 ACTAGCAGTA MID77 ACGACAGCTC 

MID24 TAGAGACGAG MID51 AGCTCACGTA MID78 ACGTCTCATC 

MID25 TCGTCGCTCG MID52 AGTATACATA MID79 ACTCATCTAC 

MID26 ACATACGCGT MID53 AGTCGAGAGA MID80 ACTCGCGCAC 

MID27 ACGCGAGTAT MID54 AGTGCTACGA MID81 AGAGCGTCAC 

MID28 ACTACTATGT MID55 CGATCGTATA MID82 AGCGACTAGC 

MID29 ACTGTACAGT MID56 CGCAGTACGA MID83 AGTAGTGATC 

 

3.2.6 Pipeline to Generate Samples 

 

Samples were run on a 1% agarose gel to confirm the presence of the 881bp product.  Samples 

that contained the product continued onto the second PCR while those that did not contain the 

product had the first PCR round redone until an 881bp product was detected on the 1% agarose 
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gel.  Upon confirmation of a product in the first PCR, 5µL of this PCR was used as a template 

for the second PCR.  These samples were then purified using the Beckman-Coulter Agencourt 

Ampure 5mL Kit system (Ontario, Canada) and eluted out in Qiagen EB buffer.  Samples were 

assessed for quality and quantity using a Nanodrop.  A 1% agarose gel was run to confirm a 

single product at approximately 550bp and that no smaller products remained after the 

purification.  The samples were stored in a -20ºC freezer and thawed once to transfer in strip 

tubes to Genome Quebec.  

 

3.2.7 Data Analysis 

 

The Vv of each cell and tissue type present within the bronchiolar and alveolar tissue of the 

stained histological sections were inserted into a multi-level cascade sampling design to compute 

the accumulated volume of infiltrating inflammatory immune cells.  To assess correlations 

between quantitative histological measures linear mixed-effects models (‘lme’ function of the R 

nlme package) were used and correlations with an FDR < 0.1 were considered significant.  

Linear mixed-effect models were chosen to account for the fact that multiple samples were 

obtained from the same individual and not truly independent of one another. 

 

The total number of reads for each community (tissue samples, negative controls, and extraction 

negative controls) was normalized, using random sub-sampling, to 3302 the smallest number of 

reads among the samples after denoising. The OTU abundance table was also filtered to exclude 

OTUs with a cumulative summed abundance of ≤5 reads.  These steps were done to control for 

differences in sequencing depth before alpha diversity and community similarity analyses.  The 
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extraction negative controls were analyzed in the same way as the samples and all downstream 

tests were designed to explore differences between both the GOLD grade groups and controls 

and differences in the extraction negative controls and the GOLD and control samples.  

Community similarity was visualized with non-metric multidimensional scaling analysis 

(NMDS) of pair-wise Bray-Curtis dissimilarities computed from square-root transformed OTU 

relative abundances. The effects of disease status, were statistically examined with a 

permutational multivariate analysis of variance (PERMANOVA; (148), which enabled the 

quantification of the relative proportion of variability explained by each source of variation in the 

model (149). Ordinations and PERMANOVA were performed using the vegan package in R and 

R studio software (150). 

 

To identify OTUs that discriminate between control and GOLD 4 communities, we used the 

Random Forests (RF) algorithm, an ensemble-based supervised classification method that 

generates multiple weak classifier decision trees (151). The classification error rate was 

measured by out-of-bag (OOB) estimation for each group. An importance measure was 

calculated for each feature (OTU) based on the loss of accuracy in classification when the OTU 

was removed from analysis. The importance measure was then determined using the Boruta 

package, a feature selection algorithm built around the RF algorithm (152).  RF and Boruta 

analyses were performed in R and R studio.  

 

In order to compare between the bacterial microbiome and quantitative histological 

measurements within the lung tissue regularized canonical correlation analysis (RCCA)(19,153) 

was utilized.  Networks were generated using the built in functionality of the mixOmics R 
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package  (153).   For all linear mixed-effects analysis, values with an FDR < 0.1 were considered 

significant.  The RCCA does not generate significance values commonly used (e.g. P-value, or T 

statistic). 

 

3.3 Results 

 

There was no significant difference between the controls, GOLD 1, and GOLD 2 groups with 

respect to age and sex.  There was also no difference in the smoking histories of the three groups 

(P > 0.05).  There was a significant difference in the measured lung function of all three groups 

with controls having the highest lung function and GOLD 2 having the lowest [Table 6] (P < 

0.05).   Data on antibiotic usage on these specific samples was not well documented. 

 

Table 6: Clinical Characteristics of the Sample Groups (average ± SD) 
 

 
Controls 
(n=28) 

GOLD 1 
(n=21) 

GOLD 2 
(n=25) 

Age 65.7 ± 9.6 66.0 ± 8.9 63 ± 9.2 

Sex (M:F:Unknown) 16:11:1 14:7:0 17:8:0 

Smoking History (pack-years) 44.8 ± 31.1 48.0 ± 25.2 47.3 ± 27.8 

Smoking Status 

(Never:Current:Ex:Unknown) 
1:14:10:3 0:12:7:2 0:17:5:6 

FEV1/FVC 77.4 ± 4.9 64.3 ± 4.3* 62.0 ± 7.0** 

FEV1 (percent predicted) 100.0 ± 12.5 89.9 ± 9.0† 69.0 ± 6.6** 

* P<0.0001 between controls versus GOLD 1 

**P<0.0001 between controls versus GOLD 2 

†P<0.0001 between GOLD 1 versus GOLD 2 

 

The overall distribution of the emphysematous tissue destruction (Lm) for all three groups was 

similar [Figure 3 & 4].  The majority of the Lm measurements fall between the 250-300 µm 
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range [Figure 3] and, although lower, is comparable to what was found in controls using 

microCT (57).  Although the control distribution seems to have a number of measurements 

distributed in the 200-400 µm range (left shifted versus the overall distribution) the GOLD 1 and 

GOLD 2 groups have a similar distribution pattern [Figure 4] as the overall distribution [Figure 

3].      
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Figure 3: Overall Distribution of Lm in All Groups.  The x-axis represents the range of Lm that was measured while 

the y-axis represents the number of observations for that respective Lm range.  The range for each column is 50 

um. 
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Figure 4: Histogram Breakdown of the Distribution of Lm amongst the Different Groups.  The x-axis represents 

the range of Lm that was measured while the y-axis represents the number of observations for that respective Lm 

range.  The range for each column is 50 um.  A) Histogram for the control group.  B) Histogram for the GOLD 1 

group. C) Histogram for the GOLD 2 group. 
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Using the measurements obtained from both the immunohistochemical stains and the Lm 

measurements, comparisons using linear mixed-effect models were made [Table 7 & Figure 5]. 

The strongest correlations were between markers for macrophages, CD4+ T cells, CD8+ T cells, 

B cells, Lm, total tissue percent, and elastin.  Overall, out of the 8 total significant correlations, 5 

of these correlations included CD4+ T-cells (62.5%).   

 

Table 7: Significant Results from Quantitative Histology Measurements within the Alveolar Tissue 

Comparison Coefficient T-Stat P-Value FDR 

CD68 (Alv) ~ CD4 (Alv) 0.519 6.20 1.34x10-8 1.47x10-7 

CD4 (Alv) ~ Bcell (Alv) 0.451 4.88 3.80x10-6 3.48x10-5 

CD68 (Alv) ~ Bcell (Alv) 0.358 3.83 4.33x10-4 3.41x10-3 

Lm ~ Total Percent Tissue -4.117 -3.03 2.65x10-3 0.016 

CD4 (Alv) ~ CD8 (Alv) 0.283 2.88 4.55x10-3 0.025 

CD68.Alv ~ Elastin (Alv) -0.514 -2.68 8.67x10-3 0.043 

CD4 (Alv) ~ Lm 0.000 2.31 2.05x10-2 0.087 

CD4.Alv ~ Elastin (Alv) -0.475 -2.34 2.01x10-2 0.087 
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Figure 5: Summary Network of Significant Quantitative Histology Results.  Structural components are 

represented by circles while the cellular components are represented by rectangles. 

 

With respect to total 16S load there was a trend for a smaller total bacterial load in the GOLD 2 

group versus the control and GOLD 1 group [Figure 6].  However, analysis with ANOVA found 

that there was no statistically significant difference between all three groups (P > 0.05).  The 

overall bacterial load is similar and consistent with what has previously been reported (101,109).   
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Figure 6: Overall total 16S Bacterial Loads of the Different Samples by COPD Grade.  Total bacterial load was 

calculated by normalizing to the total DNA concentration of each sample used to the measured 16S from qPCR. 

 

There was no difference in the alpha diversity of the bacterial community composition between 

the three groups (P-value > 0.05) [Table 8].   Further, there was no difference between Shannon 

diversity measures, evenness, or species richness (P-value > 0.05) between the three groups 

[Table 8].  However, there was a trend for increased species richness in the GOLD 1 and 2 

groups versus controls. There was also a trend for decreased Shannon diversity and evenness 

between GOLD 2 versus GOLD 1 and controls.  

 

When the alpha diversity was broken down by relative position, which was based on the location 

of where the lung resection was performed for each patient, there was no significant decrease in 

Shannon diversity between the three groups [Figure 7] (P < 0.05) at the top of the lung.  In this 
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analysis top refers to a lung resection at the apex of the lung, middle to a resection from the 

middle of the lung, and bottom for a resection at the base of the lung [Figure 7-9].  It should be 

noted that there was a trend for decreased Shannon diversity in the GOLD 2 group when 

compared to either the control or GOLD 1 group at all three lung positions (top, middle, and 

bottom).  Further, when looking at the absolute change versus the average Shannon Diversity 

(individual Shannon Diversity – Average GOLD Group Shannon Diversity (value obtained from 

table 8)) there was no significant difference between the three groups (P > 0.05) [Figure 7D-F].  

However, it should be noted that at all three positions (top, middle, and bottom) the COPD 

GOLD 2 group had trends for increased absolute difference from the overall average Shannon 

diversity.  In other words, there was a trend for a larger difference (positive or negative) from the 

average in the GOLD 2 group when compared to either the control or GOLD 1 group.           

 

Table 8: Overall Average of Alpha Diversity Measurements of All Groups.  Data is reported as mean ± standard 
deviation. 

 Shannon Diversity Evenness Species Richness 

Control “At Risk” 2.91 ± 0.28 0.86 ± 0.03 30.39 ± 7.62 

GOLD 1 2.89 ± 0.22 0.86 ± 0.03 30.10 ± 5.69 

GOLD 2 2.77 ± 0.60 0.83 ± 0.12 29.64 ± 10.73 

 

There was no significant difference between the three groups when broken down by position in 

the lung for evenness [Figure 8] (P > 0.05).  Although there was a slight trend for a decrease in 

evenness in the COPD GOLD 2 group when compared to both the control and GOLD 1 group.  

The absolute change in evenness (individual sample evenness – average GOLD group evenness 

(obtained from table 8)) showed no significant difference between the three groups by lung 
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position (P > 0.05).  However, there was a trend for the GOLD 2 group to have a larger absolute 

change in evenness versus either the control or GOLD 1 group. 

 

There was no significant difference between the three groups at top, middle and bottom when 

analyzing the species richness [Figure 9] (P > 0.05).  When the absolute change in species 

richness was investigated there was also no significant difference between the three groups and 

relative lung position (top, middle, and bottom) (P > 0.05).  However, there was a trend in the 

GOLD 2 group to have slightly higher species richness than the control and GOLD 1 group at all 

lung positions. 
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Figure 7: Breakdown of Shannon Diversity by Relative Position within the Lung Resection Sample. A) Shannon 

diversity in early COPD between control, GOLD 1, and GOLD 2 at the top of the lung.  B) Shannon diversity in early 

COPD between control, GOLD 1, and GOLD 2 at the middle of the lung.  C) Shannon diversity in early COPD 

between control, GOLD 1, and GOLD 2 at the bottom of the lung.  D) Absolute change in Shannon diversity at the 

top of the lung.  E) Average change in Shannon diversity at the middle of the lung.  F) Average change in Shannon 

diversity at the bottom of the lung. 
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Figure 8: Breakdown of Evenness by Relative Position within the Lung Resection Sample.  A) Evenness in early 

COPD between control, GOLD 1, and GOLD 2 at the top of the lung.  B) Evenness in early COPD between control, 

GOLD 1, and GOLD 2 at the middle of the lung.  C) Evenness in early COPD between control, GOLD 1, and GOLD 2 at 

the bottom of the lung.  D) Absolute change from average evenness at the top of the lung.  E) Absolute change 

from average evenness at the middle of the lung.  F) Absolute change from average evenness at the bottom of the 

lung. 
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Figure 9: Breakdown of Species Richness by Relative Position within the Lung Resection Sample.  A) Richness in 

early COPD between control, GOLD 1, and GOLD 2 at the top of the lung.  B) Richness in early COPD between 

control, GOLD 1, and GOLD 2 at the middle of the lung.  C) Richness in early COPD between control, GOLD 1, and 

GOLD 2 at the bottom of the lung.  D) Absolute change from average richness at the top of the lung.  E) Absolute 

change from average richness at the middle of the lung.  F) Absolute change from average richness at the bottom 

of the lung. 
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There was a significant difference between the five groups tested, driven predominantly by the 

negative, extraction negative, and GOLD 2 groups (PERMANOVA < 0.05) [Figure 10].  This 

was done by using a post-hoc test on the first two components of the ordination.  However, the 

GOLD 2 group was not significantly different than the negative control group (P>0.05) with 

respect to overall bacterial community composition. Interestingly a group of GOLD 2 samples 

seem to have quite a different community composition versus all the other samples [Figure 10]. 

 

 

Figure 10: Non-Metric Multidimensional Scaling Analysis of the Bacterial Microbiome from the Mild and 

Moderate COPD Data Set. Extraction negatives are represented by ex.neg and negatives by neg. 

 

When looking for whether or not the type of cancer had any relationship to the bacterial 

microbiome observed the initial PERMANOVA analysis showed a significant difference 
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between groups [Figure 11] (P < 0.05).  However, when using the previously mentioned post-hoc 

analysis it was observed that these differences were driven by the extraction negative controls 

being different from some of the cancer groups (Large Cell Carcinoma (LCC), Non-Small Cell 

Carcinoma (NSCC), Adenocarcinoma (AC), Bronchioalveolar Carcinoma (BAC), and 

Carcinoma (CS)) as well as the extraction negative controls being significantly different from the 

negative controls [Figure 12] (P <0.05).     

 

 

Figure 11: Non-Metric Multidimensional Scaling Analysis of the Mild and Moderate COPD Data Set Separated by 

Tumor Type. 
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Figure 12: Post-Hoc Test of the PERMANOVA for Mild and Moderate COPD which had a P-value < 0.05 

 

Using Boruta feature selection with Random Forest analysis, 24 OTUs were found to be 

important in separating the different groups.  The following heatmap shows that those with 

darker blue are found at a higher relative abundance and those found in red are at a lower relative 

abundance with white representing samples that did not contain those particular OTUs [Figure 

13].  OTUs that aligned to Flavobacteriaceae, Burkholderiales, Bacillaceae, Massilia Timonae, 

Sphingomonas, Fusobaccterium, Burkholderia Fungoru, Planomicrobium, Acenetobacter 

gyllenberi, Diaphorobacter, and betaproteobacteria were not found in the extraction negative 

controls. Another important observation is that one of the OTUs that aligned to Massilia Timona 

was only found in the GOLD 1 group and was not present in the other groups [Figure 13].  

Additionally, an OTU that aligned with the Fusobacterium family was only present in the GOLD 

2 group [Figure 13].  The differences between the controls, GOLD 1, and GOLD 2 groups 

showed that many of the OTUs were present in the control group but not in GOLD 1 or GOLD 2 

(e.g. Burkholderiales, Burkholderia Fungoru, and Planomicrobium) suggesting that these 24 

discriminative OTUs were able to separate between control, mild, and moderate COPD mostly 
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due to a generalized loss of these OTUs from the control and GOLD 1 groups [Figure 13].  

Finally, there were a few OTUs that were present in control and GOLD 2 groups but not in the 

GOLD 1 group (e.g. Ralstonia, Actinomycetales, Burkholderiaceae, and Burkholderia 0X-0).           

 

 

 

Figure 13: Heatmap of Boruta Picked Discriminative OTUs between the Different Groups.  White represents not 

present, red represents low relative abundance, and blue represents high relative abundance.  

 

There were no significant correlations between Lm and the microbiome in mild and moderate 

COPD.  Using regularized canonical correlation analysis (RCCA) it was found that the 



52 

 

Proteobacteria phyla were negatively correlated with alveolar B-cells, CD4 T-cells, and 

macrophages.  The Bacteroidetes phyla were positively correlated with alveolar macrophages 

and CD4+ T-cells and the Firmicutes phyla were positively correlated with total tissue percent 

[Figure 14 & 15].  As a brief aside in figure 15 the positive correlations between variables are 

when two measurements are closely clustered together (e.g. Bacteroidetes and CD4. Alv) while 

negative correlations can be visualized by two variables that are far apart (e.g. Proteobacteria and 

CD4.Alv).  However, when the  data was analyzed using a linear mixed-effects model, to 

account for multiple samples from the same individual, these correlations were no longer 

significant (FDR > 0.1).       

 

 

 

Figure 14: Graph of the Correlations between the Microbiome and Quantitative Histology in the Mild and 

Moderate COPD Data Set.  Correlation cutoff was set an R of 0.35. 
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Figure 15: Network of the strongest Correlations between Histology and the Microbiome in Mild and Moderate 

COPD Data Set. The R value cutoff used was 0.50. Red represents positive correlations over the R value cutoff of 

0.5 while blue represents the R value cutoff under -0.5 for the negative correlations.  The lowest R value possible 

for the negative correlations was -0.57. 

 

3.4 Discussion 

 

Within areas of lung without appreciable emphysema, as measured by Lm, there were significant 

amounts of inflammation.  The major inflammatory cells that were involved were macrophages, 

B cells, and CD4+ T-cells.  In particular, the CD4+ T-cells were a central hub positively 

correlated with Lm, CD68+ macrophages, and B cells.   It is possible that certain bacteria that are 
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either lost or gained in the bacterial lung tissue microbiome during mild and moderate COPD 

could provide the antigenic targets for these specific inflammatory and immune cells. 

 

One notable absence in this data set versus others is the correlation between CD8+ T-cells versus 

specific disease markers of COPD severity.  Previous research has shown that CD8+ T-cells are 

increased in COPD versus smokers (154) and can undergo reduced apoptosis (155).  In contrast 

this data set shows that CD8+ T-cells are not correlated with Lm.  There are a few possible 

explanations to this.  First, although not correlated directly to Lm the CD8+ T-cells are positively 

correlated with CD4+ T-cells [Figure 5].  So it could be possible that the CD8+ T-cells do have 

an impact on severity but it is an indirect one.  In fact a very recent study has shown that CD8+ 

T-cells can indeed help activate CD4+ T-cells (156) and this might be what is going on in mild 

and moderate COPD.  Second, this research was also one of the first to investigate Lm 

specifically in mild and moderate COPD and how it could relate to various inflammatory cells.  

Thus it cannot be discounted that CD8+ T-cells simply do not correlate with Lm.  Newer 

published abstract data from the Hogg lab would support this position (138,139).   

 

There was no difference in total bacterial 16S load between controls, GOLD 1, and GOLD 2 

groups.  However, there was a difference in the bacterial community composition between 

GOLD 2 versus GOLD 1 and control groups.  These changes were not due to any particular 

increase or decrease in Shannon diversity.  Additionally, cancer diagnosis did not make a 

significant contribution to the differences observed in the GOLD 2 group.  A total of 24 specific 

bacterial OTUs were identified to be important in discriminating the three groups from each 
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other and by using RCCA it was found that certain phyla had correlations with particular 

quantitative histological measures of inflammation.   

     

This data suggests that, at the earliest stages of the disease, an active, robust, localized 

inflammatory response is occurring.  This response could be the predominant driver of the 

emphysematous destruction seen in later more severe disease.  Further, this inflammation 

involves macrophages, CD4+ T-cells, and B cells suggesting that an active adaptive immune 

response is present even at the earliest grades of the disease. The correlation between CD4+ T-

cells and Lm suggest that this adaptive immune response is directly related to emphysematous 

tissue destruction.  This link between CD4+ T-cells and disease progression has been shown 

previously (53,54) but never in mild and moderate disease before any emphysematous tissue 

destruction is clearly noticeable (57,58).   

 

Although there are some limitations to the Lm measurement such should not drastically change 

the findings.  Some limitations to the Lm measurement include shrinkage from the fixation used 

as well as the OCT inflation of the lung tissue.  Fixation shrinkage due to the use of formalin is 

well documented in the literature (157–159) and could artificially lower the Lm measurements 

such that they are artificially below the 95% confidence interval of 495 µm observed for Lm 

seen in controls from a previous study (57).  The second limitation is the use of OCT for 

inflation of lung tissue.  Although the inflation was done at a constant pressure, OCT is rather 

sticky and can get stuck while being perfused through the lung.  Thus certain areas will 

encounter incomplete inflation and artificially small Lm values.  In order to correct for this, 

sections that looked artificially compressed were excluded from the analysis.  Further studies, 
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whose aims are to control for these factors, need to be completed to confirm these results and 

findings in mild and moderate COPD.    

 

There was no significant difference between the 16S bacterial load in all three groups and this is 

consistent with previous research (101,109).  There was a slight overall decrease in the total 

bacterial 16S load in the GOLD 2 group and this could suggest that there was a potential loss of 

a small number of bacterial species without any corresponding increase in any of the other 

bacterial species present.  From previous data, COPD GOLD 4 total bacterial 16S load is similar 

to that of both smokers without airflow limitation and non-smokers with normal lung function 

(109).  Thus if there is a loss of bacterial species that manifest in decreased total bacterial 16S 

load this might eventually rebound in later disease, perhaps by a replacement with those bacterial 

species that are able to survive and thrive in that particular environment.  This can be partially 

supported by research done in BAL and bronchial brushings of moderate COPD where an overall 

decrease in diversity compared to controls was observed (107) yet no such difference was 

observed in later disease (109).   

 

Although a significant difference was found between the GOLD 2 versus control or GOLD 1 

group using NMDS analysis, no such differences were found in the alpha diversity along with its 

different components (Shannon Diversity, evenness, richness).  This information could indicate 

that the bacterial community changes are small and involve particular OTUs rather than large 

scale community changes.  These changes do not manifest in significant differences in evenness 

or in changes to the species richness.  The loss of OTUs and potentially bacterial diversity would 
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be consistent with other chronic inflammatory diseases in which the bacterial microbiome plays 

an important role (105,106).   

 

One of the potential limitations of this data set was that it was obtained as a population of 

convenience and every individual in the study had a co-variable of a cancer diagnosis.  Analysis 

showed that there was no difference by cancer diagnosis except that most of the groups were 

significantly different from both the extraction negative and negative controls.  Thus cancer in 

this population could be ruled out as a possible confounder of this patient population and data set 

with respect to the bacterial microbiome.      

 

Many OTUs are lost in both GOLD 1 and GOLD 2 versus the controls [Figure 13].  Yet even 

with this loss there are specific OTUs that are only seen in either GOLD 1 (e.g. Massilia 

Timonae) or GOLD 2 (e.g. Fusobacterium).  What is observed could possibly be an early 

disturbance of the bacterial microbiome, with a small number of OTUs being lost and replaced as 

the bacterial lung tissue microbiome moves towards what is observed in GOLD 4 grade disease.  

These specific OTUs that are lost may have specific anti-inflammatory roles, interactions, or just 

may be bystanders that could no longer adapt to live in the toxic environment created by the 

combination of inflammation and remodeling.  A recent study by Salter, et al. (160)  suggests 

that a large number of the bacteria identified in the mild and moderate COPD microbiome could 

be from contamination.  However, some of the species and genera identified by this study 

(Pseudomonas, Ralstonia, Streptococcus, etc.) have been previously identified as either specific 

to the lung or important in discriminating between control and disease (101,103).  Based on this 

information caution does need to be exercised when interpreting the results that were obtained in 
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this study.  It is likely that Massilia, Sphingomonas, and certain Burkholderia genera are 

environmental contaminants.  In contrast, Ralstonia may be a true signal based on the previous 

literature.  Overall, there may be a few OTUs that represent genuine bacteria from the lung tissue 

microbiome. 

 

Another potential limitation was that many OTUs were not represented in every sample, with a 

vast majority of the OTUs only present in less than 50%.  This makes statistical analysis using 

linear models difficult since the many missing values tend to lead to non-normal distributions, 

making analysis skewed and easily influenced by outliers.  With this in mind phyla were utilized 

due to their relatively continuous distribution throughout every sample.  However, this leads to a 

new limitation in that different bacteria within one specific phylum will not have the same role as 

others.  Using phyla for the analysis allows for the use of sophisticated linear models in the 

analysis but in doing so we have to make broad generalizations that do not necessarily hold true 

for each bacterial species within that phylum. 

 

Using RCCA it was possible to show that certain phyla were correlated with specific 

inflammatory and immune cells.  The phyla most closely correlated with Lm were the 

Actinobacteria [Figure 14].  Another interesting observation was that the Firmicutes phylum was 

positively correlated with total tissue percent [Figure 14].  Additionally, Lm and total tissue 

percent are negatively correlated [Figure 14].  This provides evidence that the phyla, Firmicutes 

and Actinobacteria are either involved in the loss of alveolar tissue, protective against tissue loss, 

or are bystanders to this loss and are reduced simply due to the fact that they are losing particular 

places in which they can thrive.  Since no active inflammatory response is correlated with either 
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of these two phyla it would suggest that the more plausible mechanism is that of a bystander.  

These two phyla could simply decrease as a consequence of the inflammation and remodeling 

that occurs.   

 

Increasing the R value cutoff to 0.5 removes the Actinobacteria and Lm correlation, but nicely 

shows a dynamic interplay between Proteobacteria and Bacteroidetes phyla and their 

relationship with CD4+ T-cells and CD68+ macrophages within the alveolar tissue [Figure 15].  

What is interesting is that certain bacteria within the Proteobacteria and Bacteroidetes phyla 

seem to be antagonizing of each other.  Proteobacteria are negatively correlated with B cells, 

CD4+ T-cells, and CD68+ macrophages.  This would suggest that specific or multiple bacterial 

species within this phylum could be targeted by an adaptive immune response.  Alternatively, 

Bacteroidetes is positively correlated with both CD68+ macrophages and CD4+ T-cells.  This 

would suggest that as particular bacterial species within the Proteobacteria phyla are destroyed 

more bacteria from the Bacteroidetes phylum grow and potentially fill the void left by bacteria 

from the Proteobacteria phyla.  This analysis suggests that even in the earliest grades of disease 

there could be an adaptive immune response to bacteria within specific phyla in COPD.  

Collectively, this data suggests that in mild and moderate disease, before Lm increases 

significantly, there are close correlations between CD4+ T-cells, B-cells, and CD68+ 

macrophages occurring.  While this occurs specific OTUs are either decreased or increased 

within the bacterial lung tissue microbiome.  Ultimately these small changes result in a 

significant difference between the GOLD 2 bacterial community composition and those of the 

GOLD 1 and control groups.  Overall comparison of the histological measurements with the 

bacterial lung tissue microbiome suggests that the bacteria within the Proteobacteria and 
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Bacteroidetes phyla could be potentially important players in the severity of COPD due to their 

close correlations with important cells that have previously been correlated with disease severity 

(53,61,161).   

 

From this chapter it can be shown that the bacterial microbiome within the lung tissue changes 

from controls to COPD GOLD grade 2, although no direct evidence of correlations of specific 

OTUs could be found to structural changes or inflammatory changes within the lung tissue.  

There were interesting data showing that changing the balance of different phyla could 

potentially have an impact on inflammatory cell infiltration into the lung tissue.  Such suggests 

that a changing bacterial microbiome could influence certain cellular components involved with 

COPD pathogenesis.   In the next chapter the host response to the bacterial microbiome is 

explored in more detail.  In addition, I try to find specific OTUs within this bacterial microbiome 

that may be important to disease progression.   
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Chapter 4: The Host Response to the Bacterial Microbiome in 

COPD2 
 

4.1 Introduction 

 

Chronic obstructive pulmonary disease (COPD) is a progressive, debilitating lung disease with 

multiple co-morbidities that  affects more than 200 million people worldwide and is responsible 

for approximately 3 million deaths each year (3). Although the pathogenesis of small airways 

obstruction and emphysematous destruction responsible for the progressive airflow limitation in 

COPD has been associated with the host innate and adaptive inflammatory immune response 

(53,137,162), the antigens that drive this response remain poorly understood.  The British 

Hypothesis, that smoking compromised the host response to allow colonization and infection of 

the lower respiratory tract by organisms that caused chronic bronchitis and the decline in the 

forced expiratory volume, was rejected based on a  prospective longitudinal study conducted  by 

Fletcher and associates (163).  This study showed that many people with chronic bronchitis 

never developed airflow limitations and that many others developed severe airway obstruction in 

the absence of chronic bronchitis (163,164).  Sethi, Murphy and their colleagues reawakened 

interest in the possible role of bacteria in the pathogenesis of COPD by showing that acute 

exacerbations of COPD were commonly associated with the emergence of new bacterial strains 

that could be isolated from the sputum and protected bronchial brushings (142).  Moreover, 

Wedzicha and her associates  extended these observations by showing  that  frequent 

                                                           
2 This section has been published in the American Journal of Respiratory and Critical Care Medicine. 
Sze MA, Dimitriu PA, Suzuki M, McDonough JE, Campbell JD, Brothers JF, Erb-Downward JR, Huffnagle GB, Hayashi 
S, Elliott WM, Cooper JD, Sin DD, Lenburg ME, Spira A, Mohn WW, Hogg JC. The host response to the lung 
microbiome in chronic obstructive pulmonary disease. 2015 (Accepted) 
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exacerbations of COPD within the same individual are associated with an accelerated rate of 

decline in lung function leading to COPD (77).   

 

The application of culture independent techniques to the identification and community analysis 

of bacteria led to the discovery that the  human gastrointestinal and genitourinary tracts, as well 

as in the skin, mouth and upper airways  host relatively large and complex microbiomes that live 

commensally within the host  (165–168). In contrast the long held view that the lung was sterile 

below the larynx persisted until Hilty and associates (107) used these techniques to challenge this 

hypothesis by analyzing the microbiome in bronchial brushings and washings from human lungs. 

Their new data suggested that lower airways of patients with asthma and COPD contained a 

microbiome that became less diverse and was associated with the emergence of potential 

pathogens (107).    Although these results were criticized as artifact produced by contamination 

of the bronchial brushings and washing as they passed through the upper airways, this criticism  

was refuted by Erb-Downward, et al (101) and Sze , et al. (109)  in studies that demonstrated a 

human lung microbiome in samples obtained by either brushing the airways of explanted lungs 

where the upper airways were absent (101) or rapidly freezing the explanted lung solid to allow 

peripheral lung samples to be  removed without disturbing the central airways (109).  The 

present report extends these observations by examining the microbiome in relation to 

emphysematous destruction of the lung gas-exchange surface and providing preliminary 

evidence that this destruction is associated with the development of a host immune response to 

this microbiome.  Some of the results of these studies have been previously reported in the form 

of an abstract (169–172).   
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4.2  Methods 

 

4.2.1 Consent 

 

Informed consent was obtained either directly from the patients being treated for very severe 

COPD by lung transplantation, or from the next of kin of organ donors who agreed that the lungs 

could be released to serve as controls when considered unsuitable for transplantation.  The 

conditions under which consent was obtained were approved by the appropriate committees at 

each of the participating institutions (57,173) and the shipment of specimens between institutions 

was compliant with the US Health Insurance Portability and Accountability Act.  

 

4.2.2 Specimen Preparation 

 

Specimen preparation has been described in detail in our previous publications (19,57,173) and 

in the online supplement.  Briefly 5 explanted lungs from patients with GOLD 4 COPD and the 4 

donor (control) lungs were fully inflated with air to 30 cm trans pulmonary pressure (PL) and 

then deflated and held at a PL of 10 cm H2O while frozen solid in liquid nitrogen vapor. These 

lung specimens were kept frozen on dry ice while a volumetric multi-detector computed 

tomography (MDCT) scan was obtained and while the specimen was cut into contiguous 2cm 

thick transverse slices from lung apex to its base.  A cluster of 4 cores of lung tissue was 

removed from each slice for each of the investigations outlined below. 
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4.2.3 Microbiome Analysis 

 

The pipeline for protocol 1 is fully described by Schloss et al. (174,175) and was developed at 

the University of Michigan based on touchdown PCR amplification of the V3-V5 region of the 

bacterial 16S rRNA gene with pyrotag sequencing of the amplified DNA at the  University of 

Michigan Microbiome Sequencing Facility using a low-biomass protocol (101,103,176,177).  

The pipeline for protocol 2 used to analyze the bacterial 16S ribosomal DNA is fully described in 

our previous publications (53,57,109,173) and the online supplement.  Protocol 2 was developed 

in Vancouver and based on nested PCR amplification of the V1 to V3 region of the bacterial 16S 

rRNA gene and pyrotag sequencing of the amplified DNA by Genome Quebec (109).  It was 

used as an independent method to confirm microbiome results obtained from protocol 1 [Figure 

16]. 
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Figure 16: Overall Workflow of the Bacterial Microbiome Analysis. 

 

 

4.2.4 Microbial Diversity 

 

Microbial diversity was assessed using:  

H = EH x lnS (Equation 1)    

where H is the Shannon diversity index, EH represents the evenness of the community of OTUs 

in the sample and lnS represents the natural log of OTU richness (or numbers of different 

OTUs).  Differences between the bacterial community composition in control and COPD lung 
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samples were visualized using principle components analysis (PCA) of pair-wise Bray-Curtis 

dissimilarities and tested with permutational multivariate analysis of variance (PERMANOVA) 

(148). 

 

4.2.5 Emphysematous Destruction 

 

Emphysematous destruction was assessed by measuring the alveolar surface area (SA) of each 

lung sample: 

                   SA = 4 x V /Lm (Equation 2)    

where SA is the internal surface area of the core of lung tissue removed at each of the sampled 

sites, V is the total volume of lung in the tissue core removed from the lung and Lm is the mean 

linear intercept.  

 

4.2.6 Immune Cell Infiltration 

 

The infiltration of inflammatory immune cells into the tissue was estimated by point counting the 

volume fraction (Vv) of the bronchiolar and alveolar tissues occupied by polymorphonuclear 

leukocytes (PMN), macrophages, CD4+, CD8+ and B lymphocytes on appropriately stained 

histological sections from companion cores of tissue to those examined by microCT in the lungs 

from patients treated by lung transplantation and their controls.  
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4.2.7 Host Gene Expression 

 

Detailed methods for gene expression profiling can be found in the online supplement (Section 

4.4) and in a previously published manuscript (19).  These gene expression data are available 

through the Gene Expression Omnibus (GEO) under the accession GSE27597.  In total four 

different core tissue samples were used, one for each part of the analysis.    

 

4.2.8 Statistics 

 

A linear mixed-effects model was used to compare OTU richness to emphysematous destruction 

assessed from measurements of the lung surface area, as well as the host response to this tissue 

destruction. These were obtained by Vv of the tissue occupied by inflammatory immune cells or 

gene expression profiling studies conducted on the RNA isolated from histological sections cut 

in close proximity to those examined by histology.  The linear mixed- effects model allowed 

correction for the effect of lung height and position of samples within each lung slice (19).  Gene 

expression pathways were further analyzed using DAVID (178).   

 

Only the phyla and families that achieved significant correlations with at least one of Vv or 

microCT measurements were compared to host gene expression.  If a phyla or family was 

undetected in more than 30% of the samples the data were converted to a categorical variable 

(positive or negative) and then analyzed using the linear mixed-effects model.  To identify the 

OTUs that were most likely driving the correlations with phyla, the data were separated based on 

the average value of the host measurement of interest and a high and low group were created.  If 
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an OTU was significantly different between these two groups and matched the direction of 

correlation found in the phyla analysis, it was considered a potentially important OTU.  

Additionally, OTUs identified by Boruta feature selection (152) after Random Forest analysis, as 

discriminative for control and GOLD 4, were also analyzed using linear mixed-effect models and 

compared to microCT, quantitative histology, and gene expression data.  Gene Set Enrichment 

Analysis (GSEA) was used to compare similarity in the overall gene expression data sets.  

Further details on the full data analysis are provided in the online supplement.  

 

4.3 Results 

 

Table 9 and Table 13-14 of the online supplement summarize the data concerning age, gender, 

smoking history, lung function, number of tissue samples used for each analysis, and the number 

of reads per sample on all the subjects in this study. 

 

Table 9: Demographics Data for Patients Analyzed 

 
Controls 

(n=4) 
GOLD 4 

(n=5) 

Age 53.8 ± 4.3 60.0 ± 1.6 

Sex 

(M:F:Unknown) 
4:0:0 3:2:0 

FEV1/FVC N/A 0.31 ± 0.07 

FEV1 % 

Predicted 
N/A 17.89 ± 5.47 

Samples / 

Individual (n) 
8 (3), 5(1) 8(5) 
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Microbial diversity as measured by OTU richness declined as emphysematous destruction 

increased [Figure 17] and that there was a linear correlation (R2 = 0.27) between OTU richness 

and alveolar surface area.   This was confirmed after applying a second independent protocol to 

assess the microbiome [Figure 19].  Furthermore, the PCA showed differences in the bacterial 

communities between GOLD 4 lung tissue samples and the control lungs (Figure 17B, P = 

0.001) based on PERMANOVA (179).  This difference was also found using the alternative 

protocol [Figure 19B] (p< 0.01).   Although there was a trend for Shannon diversity to be lower 

in samples of lung from patients with GOLD 4 COPD this difference only became statistically 

significant (P<0.05) in samples from position 6 [Figure 17C] (1=apex 12=base).  The difference 

observed between the controls and GOLD 4 were 3.40 ± 0.24 vs. 2.25 ± 0.69, (mean ± SD) and 

the negative water controls 1.6 ± 0.1.   



70 

 

 

Figure 17: Protocol 1 or Touchdown Approach with V3-V5 primers.  OTU richness as a function of alveolar 

surface area (A), Ordination of samples based on Bray-Curtis dissimilarity of microbiomes (B).  Shannon Diversity 

versus lung height between control and GOLD 4 (C).  A) Alveolar surface area values and OTU richness determined 

from spatially adjacent cores (R2 = 0.27,  P<0.05). B)  Dissimilarity was calculated using the same approach as graph 

C.  The two groups were significantly different (PERMANOVA; pseudo-F=6.58; P=0.001).  C)  Lower lung height 

values represent lung tissue taken closer to the apex while higher lung height values represents lung tissue taken 

closer to the base.  There was a significant difference between control and GOLD 4 (P < 0.05) at the relative middle 

of the lung 
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Relative abundances of bacterial phyla differed (P < 0.05) between GOLD 4 and control lungs 

[Figure 18A].  Based on Bonferroni post hoc testing the expansion of the Proteobacteria phylum 

was the most significant driver of the difference between control and GOLD 4 (P <0.05).  

Overall, the largest differences between the two groups was seen between the Proteobacteria 

(controls: 46 ± 16%, GOLD 4: 66.0 ± 1.6%), Firmicutes (controls: 17.7 ± 19.6 %, GOLD 4: 7.04 

± 0.87%), and Bacteroidetes (controls: 31.7 ± 11.3 %, GOLD 4: 21.1 ± 4.1 %).  The 

Proteobacteria, Haemophilus influenzae, was among the 10 OTU’s that were important for 

discriminating between the control and GOLD 4 bacterial microbiome [Figure 18B] according to 

Boruta feature selection with the Random Forest analysis.  Although the majority of these 

bacterial species decreased in abundance in GOLD 4 COPD lung tissue, a notable exception was 

Elizabethkingia meningoseptica [Figure 18C].  The similarity and differences between the two 

methods for the important OTUs can be found in the online supplement [Table 15].   
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Figure 18:  Bacterial Microbiome Overview.  Phylum relative percent abundances in control and GOLD 4 lung 

tissue (A).  Most important species for discriminating control and GOLD 4 microbiomes, using Random Forest 

analysis with Boruta feature selection (B).  Heatmap of the important bacterial species (C).  A)  The distribution 

of phyla was significantly different between control and GOLD 4 (P<0.05), and this was driven by Proteobacteria (P 

< 0.05).  B) The average (± SD) 10-fold cross validated error rate was 17 ± 2% with a per class error rate of 34 ± 4% 

for the controls and 6 ± 3% for the GOLD 4 group.  C) The samples were clustered by similarity and the three color 

coded bars at the top represent control or COPD GOLD 4 group, patient, and lung height, respectively.      
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In order to assess contamination, negative water controls were assessed for the important OTUs 

identified by Boruta feature selection with random forest analysis for both protocol 1 and 2 

[Figure 20 & 21].  Except for Streptococcus in protocol 1 all OTUs that were identified as 

discriminative for control and GOLD 4 lung tissue contained very low square root relative 

abundances or they were not identified at all in the negative control samples [Figure 20 & 21]. 

 

Table 10 summarizes the results obtained by comparing the microbiome data at the phyla level to 

the host response measured in terms of the Vv of lung tissue occupied by infiltrating 

inflammatory immune cells.  These comparisons show that Shannon diversity is negatively 

correlated to CD4+ lymphocyte infiltration and also shows Shannon diversity was positively 

correlated to lung surface area.  OTU richness was also negatively correlated with CD4+ 

lymphocyte infiltration.  Further analysis shows that neutrophil infiltration was negatively 

associated with the presence of Proteobacteria, Comamonadaceae, Pseudomonas, and 

Betaproteobacteria OTUs [Table 10 & 11].  In addition, it also shows that eosinophil infiltration 

and elastin content were positively associated with Actinobacteria OTUs and B cell infiltration 

with Propionibacterium, Micrococcaceae and Atopobium OTUs.  
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Table 10: Summary of Phyla and Diversity Correlations 

Significant 

Result 
Coefficient P-Value FDR 

Shannon Diversity 

vs. Alveolar CD4 

T-cells 

-6.99 0.0042 0.05 

Shannon Diversity 

vs.  Surface area 
0.12 0.014 0.09 

OTU Richness vs. 

CD4 T-cells 
-183 0.006 0.06 

Proteobacteria vs. 

Neutrophils 
-1.63 0.011 0.09 

Actinobacteria vs. 

Eosinophils 
8.63 2.2x10-5 0.0005 

Actinobacteria vs. 

Alveolar B-cells 
2.11 0.0025 0.037 

Actinobacteria vs. 

Elastin 
0.13 0.0054 0.067 
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Table 11: Summary of Significant Genus and Species Results 

Significant Result Direction P-Value FDR 

Comamonadaceae 

(OTU2) and 

Neutrophils 

Negative 0.005 0.06 

Comamonadaceae 

(OTU49) and 

Neutrophils 

Negative 4.5x10-4 0.019 

Pseudomonas 

(OTU42) and 

Neutrophils 

Negative 0.0042 0.06 

Betaproteobacteria 

(OTU83) and 

Neutrophils 

Negative 0.0058 0.06 

Propionibacterium 

acnes (OTU22) and 

B-cells 

Positive 0.015 0.086 

Micrococcaceae 

(OTU41) and B-cells 
Positive 0.026 0.087 

Atopobium (OTU98) 

and B-cells 
Positive 0.023 0.057 

 

The data in table 12 summarizes the relationships between predictive OTUs selected by the 

Random Forest analysis and the results obtained by quantitative histology and microCT.  These 

data show that the Vv of neutrophil infiltration was positively correlated with Dialister (FDR = 

0.0001), Bacteroidales (FDR=0.03), Streptococcus spp.  (FDR =0.06), and H. influenzae 

(FDR=0.06).  The number of terminal bronchioles/mL was positively correlated with both H. 

influenzae and Dialister spp. (FDR < 0.05).  E. meningoseptica was positively correlated with 

Vv of elastin, CD4+ T-cells, and Lm (FDR <0.1) and negatively correlated with total alveolar 

collagen (FDR = 0.09).  Flavobacterium succinicans was negatively correlated with CD4 + T-

cells while Flavobactierum gelidilacus was positively correlated with alveolar surface area (FDR 

<0.06).   
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The changes in microbiome composition were associated with a number of host gene expression 

differences.  We identified 859 genes whose expression was associated with the presence of 

bacteria from the Firmicutes phylum at an FDR cutoff < 0.1 [Table 16].  DAVID analysis 

indicated that the downregulated genes were mostly involved with Zinc Finger domain regions 

(FDR < 2.5E-10) while the upregulated genes were involved with pathways with disulfide 

bonding, signal peptides, membrane, and defense response (FDR < 2E-3).  This finding does not 

change if an FDR cutoff of 0.05 is used instead of 0.10 (data not shown).  Additionally, 

Proteobacteria were associated with 235 genes below an FDR of 0.1 [Table 16].  No pathways 

were identified from the downregulated genes but the upregulated genes were involved with 

pathways for splicing, cilium, cell projection, and cell-cell junctions (FDR < 0.1).  When the 

most important predictive bacterial OTUs were analyzed for a correlation with human host gene 

expression only H. influenzae was associated with a single gene below an FDR cutoff of 0.1 

(C21orf51, FDR=0.05).  The GSEA analysis comparing host gene expression versus the 

microbiome from protocol 2 to those reported here from protocol 1 shows that the same genes 

were up and down regulated in relation to Shannon diversity and OTU richness [Table 17, Figure 

19, 22-23].   In addition, the analysis based on DAVID of protocol 2 showed that Shannon 

diversity was positively associated with genes in the dynein, coiled coil, cilium, and microtubule 

motor activity pathways [FDR < 0.0004] required to clear the mucosal surface.  Whereas, 

negative association between Shannon diversity and gene expression involving genes  in the 

immunoglobulin, glycoprotein, and Fc gamma receptor III pathways that are related to the 

immune response.  The genes used for this analysis can be found in the data appendix.     
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Table 12: Summary of the Results Obtained of the 10 Discriminative OTUs versus both Structural and Cellular 

Lung Components. 

Comparison Coefficient P-Value FDR 

Dialister and Vv of 

neutrophils 
0.32 6.93x10-7 9.01x10-5 

E. meningoseptica 

and Vv of Elastin 
0.23 1.58x10-4 0.01 

H. influenzae and 

Number of Terminal 

Bronchioles 

0.01 7.0x10-4 0.02 

Flavobacterium 

gelidilacus and 

Surface Area 

3.0x10-4 6.32x10-4 0.02 

Bacteroidales and Vv 

of neutrophils 
0.62 1.24x10-3 0.03 

Dialister and Number 

of Terminal 

Bronchioles 

2.7x10-3 2.49x10-3 0.05 

Streptococcus and Vv 

of neutrophils 
1.35 3.65x10-3 0.06 

Flavobacterium 

succinicans and Vv of 

CD4 T-cells 

-2.58 3.96x10-3 0.06 

H. influenzae and Vv 

of neutrophils 
0.48 4.35x10-3 0.06 

E. meningoseptica 

and Lm 
0.02 4.40x10-3 0.06 

E. meningoseptica 

and Vv of CD4 T-

cells 

1.00 5.03x10-3 0.06 

E. meningoseptica 

and Vv of Total 

Collagen 

-0.08 8.00x10-3 0.09 

 

4.4  Discussion 

 

The present results confirm earlier reports showing that adult human lungs contain a sparse, yet 

relatively complex microbiome that maintains density but becomes less diverse in the lungs of 

patients with COPD (102,103,109).  They also extend these observations by showing that both a 
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touchdown PCR (protocol 1) used to amplify the V3-V5 region and nested PCR (protocol 2) 

used to amplify the V1-V3 region of the same bacterial 16S rRNA gene showed a decline in 

OTU richness is association with emphysematous destruction of the lung surface [Figure 17A 

and 19A].  Both methods also showed differences in the microbial community composition 

between control lung tissue and tissue from patients with GOLD 4 COPD [Figure 17B & 19B].  

In addition they confirm and extend earlier reports (107) by showing [Figure 18] that both the 

Proteobacteria and to a lesser extent the Actinobacteria expand in COPD as compared to controls 

whereas the Firmicute and Bacteroidetes phyla contract as the alveolar surface is being destroyed 

by emphysema in lungs affected by COPD.  Most importantly they show that these changes 

produce a measureable host response in lung tissue.  

 

A recent study by Salter, et al (160), has highlighted the fact that sample contamination is an 

important source of error in the analysis of sparse yet relatively diverse microbiomes, such as the 

lung.  Therefore it is a  concern that some of the OTUs identified as important by the Random 

Forest analysis in this study (noticeably Flavobacterium and Streptococcus) also do not align to 

genera identified as potential contaminants (160). Even though the negative controls included 

with our samples showed these same OTUs were either absent or greatly reduced in our negative 

control samples [Figure 20 & 21], we cannot conclusively rule out contamination as playing a 

role in some of the bacteria identified (e.g.,  Flavobacterium, E. meningoseptica, and Dialister).  

Therefore, these findings need to be interpreted with caution until more precise methods of 

ruling out contaminating organisms are developed.         
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A Random Forest analysis showed [Figure 18B] that the OTUs best able to distinguish between 

lung tissue from control subjects and patients with severe GOLD 4 COPD had both positive and 

negative effects.  For example, the observation that H.influenzae is virtually absent in very 

severe GOLD 4 COPD and increases in association with the numbers of terminal bronchioles 

observed in the milder forms of COPD could suggest a protective phenomenon.  This type of 

effect has been previously demonstrated in mice: where simultaneous inoculation of H.influenzae 

and S. pneumonia onto the upper respiratory mucosal surface showed that H.infleunzae out 

competes S.pneumonia for the mucosal surface by inducing a host response that brings in 

neutrophils to destroy the S.pneumonia (180).  These observations suggest the hypothesis that 

H.influenzae is capable of causing infection and producing acute exacerbations in the early 

stages of COPD (142).  Moreover it is also consistent with the hypothesis that the decline in 

terminal bronchioles and increase in emphysematous destruction associated with progression of 

COPD destroys the habitat that favored the emergence of H.influenzae and allows a different set 

of microbes to emerge, colonize, and infect lung tissue in late stage COPD.  Additionally, the 

tissue vacated by H.influenzae might provide a niche for certain exotic bacterium such as 

E.meningoseptica that correlate with inflammatory immune cell infiltration and the tissue 

remodeling that correlate with progression of COPD in this study.  However, additional studies 

that take into account all of the recently reported corrections for contamination will need to be 

performed to get the best description of the host response to the microbiome in COPD.   

 

The relative expansion of Proteobacteria, and to a lesser extent Actinobacteria, that occurred in 

relation to the contraction of the Firmicutes and Bacteroidetes phyla, in this study, is consistent 
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with a competition for space on the reduced alveolar surface created by emphysematous 

destruction.  For example, the expanded Proteobacteria phylum [Figure 18A] contributed all five 

of the individual OTUs associated with neutrophil infiltration and 1/4 of the OTUs associated 

with B cell infiltration [Table 10 & 11].  The smaller expansion of the Actinobacteria phylum 

contributed 3/4 OTUs associated with B cell infiltration as well as a very strong association with 

eosinophil infiltration.  In contrast, the Firmicute phylum did not contain any OTUs associated 

with specific responses and the Bacteroidetes phylum only contained E. meningoseptica that 

helped separate the control from COPD GOLD 4 cases.  Collectively these data suggest that 

OTUs located within the phyla that expand as the alveolar surface is destroyed stimulate the host 

reponse to a greater degree than OTUs in the phyla that contract.  Moreover, they suggest the 

hypothesis that the organisms that compete successfully for the contracting bronchiolar and 

alveolar surface are recognized by the host immune surveillance system that normally doesn’t 

respond to the bacterial microbiome of the lung. 

  

The gene expression profiling data provide additional evidence in support of a robust host 

response to changes in the composition of the bacterial microbiome, e.g., by showing that 859 

and 235 genes whose expression was either up or down regulated in association with the 

presence of bacteria from the Firmicutes or Proteobacteria phylum, respectively, at an FDR 

cutoff < 0.1 [Table 16].   Moreover, the GSEA analysis showed that many of the bacteria 

associated with changes in host genes were directionally the same using both protocol 1 and 

protocol 2 
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Approximately 20 years ago Fredricks and Relman (181) upgraded Koch’s postulates for 

situations where  identification of microorganisms is based on sequencing technology.  These 

revised criteria include 1) the nucleic acid sequence of the putative pathogen must be 

preferentially found in organs or anatomic sites within organs known to be diseased. 2) Fewer or 

no copies of that sequence should be found in non diseased regions of affected organs.  3) 

Resolution of the disease should be associated with a decrease in copy number and relapse with 

increased copy number of the putative pathogen.   4) A causal relationship is more likely if 

sequence detection predates disease and increases in copy number occur in association with 

disease progression.  5) The nature of the microorganism inferred from the available sequence 

data is consistent with the known biological characteristics of that group of organisms thought to 

be responsible. 6) That in situ hybridization techniques be used to demonstrate the relationship 

between organism and disease at the cellular level.  7) All of the sequence-based forms of 

evidence for microbial causation should be reproducible.   

 

Although the present results do not satisfy all of these criteria they provide preliminary data 

showing that OTUs within the expanding Proteobacteria and Actinobacteria phyla account for all 

the associations observed between individual OTUs and infiltrating inflammatory immune cells.  

Based on these findings we postulate that the persistent low level inflammatory immune 

response that has been associated with the progression of COPD (53) is primarily driven by 

OTUs from within the phyla that expand on a diminishing bronchiolar and alveolar surface with 

progression of COPD (57).  Further, we suggest that the milieu created by these changes allows 

particular OTUs from within these expanding phyla to punctuate this progressive decline with 

acute exacerbations of COPD.   
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An important limitation of this study is that a relatively large number of samples needed to be 

studied from a small number of individuals, in order to observe the progression of disease within 

individuals on the same genetic background.  The heterogeneity of the disease within individuals 

and the observation that terminal bronchioles are destroyed prior to the onset of emphysematous 

destruction makes it possible to assess the response at different levels of tissue destruction (57), 

but future studies of larger numbers of cases that include better methods of assessing the host 

response to specific microbial antigens are needed to confirm the present results. Despite this 

obvious shortcoming the experimental approach described here provides preliminary evidence in 

support of the hypothesis that there is a host response to the microbiome in COPD and that it is 

primarily directed at OTUs within the expanding Proteobacteria and Actinobacteria phyla that 

have successfully competed for space on a reduced alveolar surface.  Further, even though none 

of the patients receiving a transplant had an exacerbation at the time of their transplant, we 

postulate that the milieu present within the lung microbiome might encourage the emergence of 

strains from within the expanding Proteobacteria phylum that is known to contribute many of the 

organisms that produce acute exacerbations of COPD (182,183). 

 

4.4  Online Data Supplement 

4.4.1 Consent 

 

Consent was obtained directly from patients treated for very severe COPD by lung 

transplantation at the Hospital of the University of Pennsylvania and from the next of kin for 
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unused donor lungs obtained through the Gift of Life Program in Philadelphia.  Consent for the 

use of specimens removed as treatment for lung cancer at St. Paul’s Hospital in Vancouver was 

obtained directly from the patients before the surgery was performed.   

 

4.4.2 Sample Preparation 

4.4.2.1 Lung Specimen Preparation and Sampling  

 

The mainstem bronchus was cannulated and the lung was fully inflated with air to a 

transpulmonary pressure of 30 cm H2O, then deflated to a transpulmonary pressure of 10 cm 

H2O, and held in that position while frozen solid by liquid nitrogen vapor.  The specimen was 

kept frozen while a multi detector computed tomography (MDCT) scan was performed and then 

cut into approximately 10-14 contiguous 2 cm thick transverse slices between the lung apex and 

base.  The position of each sample was recorded in the MDCT scan of the intact specimen by 

comparing the photographs of the slices to the corresponding slices of the MDCT scan. This 

allowed representative samples to be obtained by comparing the CT densities of the samples 

within each cluster to the distribution of the CT densities of all the samples in the entire 

specimen. 

 

A cluster of 4 cores of tissue approximately 1.2 cm in diameter and 2cm in length located in 

close proximity to each other were removed from each of these lung slices. One sample from 

each cluster was assigned to microCT examination (57), the 2nd for gene expression profiling 

(19), the 3rd to quantitative histological analysis, and the 4th to bacterial 16S ribosomal DNA 

sequencing and microbiome analysis.  
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Additionally, lungs for both the controls and COPD GOLD 4 were all processed at the same 

institution by the exact same people.  Likewise the slicing and coring of the lung were performed 

by the exact same people and in the same room for every lung.  After samples were cored only a 

piece of tissue from the middle of the sample was utilized for DNA extraction and the other side 

was used for tissue printing culture.  The procurement of tissue for DNA extraction and tissue 

printing occurred in a biosafety cabinet level 2. 

 

4.4.2.2 MicroCT 

 

The samples processed for microCT were kept at -80ºC while fixed in a solution of pure acetone 

and 1% gluteraldehyde (freezing point -92ºC) overnight. The fixed specimens were then warmed 

to room temperature and processed for microCT examination as previously described (57).    The 

analysis of the electronic record of the microCT scans provided measurements of the number of 

terminal bronchioles/ml tissue in each core and the mean linear intercept (Lm) measured at 20 

different levels within each tissue core.  

 

4.4.2.3 Quantitative Histology 

 

Portions of the 53 cores of tissue assigned to histology were vacuum embedded in a solution 

(50%v/v Tissue-Tek O.C.T. (Sakura Finetek USA Inc, Torrance, CA, USA) in PBS with 10% 

sucrose) at 1°C and immediately refrozen on dry ice. Cryosections cut from these blocks stained 

with hematoxylin and eosin (H&E) were examined microscopically to establish that 42 of the 61 
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frozen sections contained bronchioles suitable for histological analysis. Bronchiolar wall 

thickness was measured from histological sections as previously described (53).  Additional sets 

of serial histological sections were immunostained with appropriate antibodies to identify type I 

collagen (collagen I), type III collagen (collagen III), elastin, macrophages, CD4+ and CD8+ T 

cells, B cells, natural killer (NK) cells, and polymorphonuclear neutrophils (PMNs). Eosinophils 

were identified by Hansel’s stain and picrosirius red staining was used to identify total collagen. 

Digital images of the histological sections were stored and subsequently analyzed using Image-

Pro Plus software (Media Cybernetics, Bethesda, MD, USA) (53).  

 

4.4.2.4 Gene Expression Profiling 

 

High molecular weight (HMW; mRNA-containing fraction) RNA was isolated from each tissue 

core using the miRNeasy Mini Kit (Qiagen) and assigned to gene expression profiling. The RNA 

integrity was assessed using an Agilent 2100 Bioanalyzer and RNA purity was assessed using a 

NanoDrop spectrophotometer. One gram of RNA was processed and hybridized onto the Human 

Exon 1.0 ST array (Affymetrix Inc.) according to the manufacturer’s protocol as previously 

described (184). Expression Console Version 1.1 (Affymetrix Inc.) was used to generate 

transcript-level gene expression estimates for the “core” exon probe sets via the robust multichip 

average (RMA) algorithm. Gene symbols of transcript IDs were retrieved using DAVID 

(http://david.abcc.ncifcrf.gov/) (178).  
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4.4.2.3 Bacterial Microbiome Analysis 

 

Total bacteria qPCR (109) and pyrotag sequencing (185,186) of the 16S bacterial ribosomal 

DNA were performed on DNA from 69 lung tissue cores, on 8 negative controls where  sterile 

water was used in place of the sample DNA and on five technical replicates of randomly chosen 

control lung samples.  A total of 29 control samples and 40 samples from subjects with very 

severe COPD were analyzed.   

 

4.4.2.4 Touchdown PCR Approach with V3-V5 Primers 

 

The protocol is reported in PLoS One (175).  Briefly, pyrosequencing flowgrams were trimmed 

to 450 flows and denoised using shhh.flows function in mothur.  Denoised reads were filtered 

further by removing sequences containing homopolymers longer than 8 bp and extraction of 

sequences at least 200 bp in length.  Sequences were aligned using the SILVA database 

(http://www.arb-silva.de/) and then organized so that sequences would all be approximately the 

same size.  Chimeras were removed using UCHIME and any reads that did not align to bacteria 

were also removed.  The remaining reads were clustered into OTUs based on a ~97% similarity 

threshold utilizing the dist.seqs command in mothur.  This was the processing used to prepare 

data for all figures in the earlier sections of this chapter.   
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4.4.2.5 Nested PCR Approach with V1-V3 Primers 

 

Pyrosequencing flowgrams were first trimmed to 450 flows and denoised with PyroNoise (187).  

Denoised reads were filtered further by removing sequences containing homopolymers > 6 bp, 

followed by extraction of variable regions V1 and V2 with V-Xtractor (188). Chimeras were 

removed using UCHIME (189), and the remaining reads clustered into operational taxonomic 

units (OTUs) delineated by a ~97% similarity threshold using a Levenshtein-distance-based 

algorithm [crunchclust (http://code.google.com/p/crunchclust/)] (190). We obtained a consensus 

taxonomy for each OTU (using a 50%-majority voting scheme) after taxonomically classifying 

reads using the Bayesian method with a bootstrap support of ≥ 80%) (191). To increase 

classification depth, sequence classification was performed against the full Greengenes database 

(192) trimmed, via V-Xtractor, to regions V1-V2 (193). Additionally, the SILVA database was 

used instead of the Greengenes database for classification to examine the effect of database 

usage on the final results.  Except for the V-Xtractor trimming, all steps were performed using 

mothur v. 1.27 (194) and software implementations therein.     

 

4.4.3 Data Analysis   

4.4.3.1 MicroCT 

 

MicroCT was analyzed  using a previously described modification of a multi-level cascade 

sampling design where the  reference volume for the entire lung was computed from the HRCT 

scans of the intact specimen,  and the sub volumes present in each tissue core were measured 

from the electronic record of their microCT scan. This allowed terminal bronchioles to be 
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identified anatomically within each tissue core, their number /ml of sample counted and their 

lumen diameter measured (57). The product of the mean number of terminal bronchioles/ml lung 

and total lung volume provided the total number of terminal bronchioles /lung. In addition the 

comparison of the number of terminal bronchioles / ml to the mean linear intercept (Lm) 

measured at 20 equidistant intervals from top to bottom of each tissue core allowed the number 

of terminal bronchioles in each tissue core to be compared to the  emphysematous destruction 

present in that core of tissue.  Also the Lm obtained by microCT was used to compute the 

alveolar surface area (SA) of each tissue core using the formula: SA = 4 x V/Lm where V = the 

volume of the tissue core.   

 

4.4.3.2 Microarray Analysis  

 

Two linear mixed-effects models were used to identify gene expression profiles associated with 

bacteria within the microbiome, with structural lung components, or volume fractions of cellular 

infiltrates with the latter three denoted as lung components (LC). 

Equation (1) representing the first model is the following  

 

 

(1) Geneij = 0 + Slice*Sliceij + j + ij 
 

 

Where Geneij is the log2 expression value for sample i in patient j for a single gene. Slice is a 

fixed effect controlling for the position within the lung from which the sample core was 

obtained. The random term ij represents the random error which was assumed to be normally 

distributed, j represents the random effect for patient, and 0 represents the intercept. 
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Equation (2) representing the second model is: 

 

 

(2) Geneij = 0 + Slice*Sliceij + LC*LCij + j + ij 

i=1,2,…,8; j=1,2,…,8ij ~ N(0, 2) j ~ N(0, 2j ) 

 

The model in equation (2) contains an additional fixed effect term for LC (e.g. macrophages, 

Ralstonia, etc.). A gene’s expression profile was considered associated with a particular LC if 

model (2) fit better than model (1) as determined by a significant p-value from a likelihood ratio 

test between the two models after applying a false discovery rate (FDR) correction.  This 

approach has some limitations, for the gene expression, in that not every value of LC to be 

considered against every other value of LC although it allows for all possible values of a specific 

LC to be considered by slice within the same individual.  However, for the quantitative histology 

no such limitation occurred with this model and it considered all combinations of correlations 

between the Vv and important bacterial OTUs.   All statistical analyses were conducted using R 

statistical software v 2.9.2 and the nlme package in Bioconductor v2.4 (195). 

Functional enrichment analysis was performed using DAVID 2008 (178).  For DAVID, 

functional enrichment was examined among Gene Ontology (GO) categories, and KEGG and 

BIOCARTA pathways. All genes in the species Homo sapiens were used as a reference set.  

 

 4.4.3.3 Quantitative Histology  

 

The volume fraction (Vv) of each cell and tissue type present within the bronchiolar and alveolar 

tissue as determined on the stored digital images of the stained histological sections were 
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inserted into a multi-level cascade sampling design to compute the accumulated volume of 

infiltrating inflammatory immune cells, as well as the volume of each tissue type present at 

different levels of emphysematous destruction.  

 

4.4.3.4 Bacterial Microbiome Analysis  

 

For both protocols the total number of reads for each community (lung core) was normalized, 

using random sub-sampling, to the smallest number of reads among the samples after denoising 

[Table 13], to control for differences in sequencing depth before alpha diversity (observed OTU 

richness; S) and community similarity analyses.  Community similarity was visualized with 

principal coordinates analyses (PCoA) ordination of pair-wise Bray-Curtis dissimilarities 

computed from square-root transformed OTU relative abundances. The effects of disease status, 

that is control versus COPD GOLD 4; patient effects; and the position of core sample in the lung, 

on bacterial community composition differences were statistically examined with a 

permutational multivariate analysis of variance (PERMANOVA; (148)), which enabled us to 

quantify the relative proportion of variability explained by each source of variation in the model 

(149). Ordinations and PERMANOVA were performed with vegan in R for protocol 1 and with 

the PIMER-E software for protocol 2. 

For both protocols further OTU-level analyses, the OTU abundance table was filtered to exclude 

OTUs with a cumulative summed abundance of ≤5 reads. All downstream analysis was 

performed on the square root relative abundance for each OTU.  To identify OTUs that 

discriminate between control and GOLD 4 communities, we used the Random Forests (RF) 

algorithm, an ensemble-based supervised classification method that generates multiple weak 
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classifier decision trees (151). The classification error rate was measured by out-of-bag (OOB) 

estimation for each group. An importance measure was calculated for each feature (OTU) based 

on the loss of accuracy in classification when the OTU was removed from analysis. The 

importance measures was then determined using the Boruta package, a feature selection 

algorithm built around the Random Forest algorithm (152). RF and Boruta analyses were 

performed with the Genboree Microbiome Toolset (196).  Since error rate was similar regardless 

of whether RF included negative controls or not (data not shown), we excluded negative controls 

for selection of discriminative OTUs. 
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Table 13: List of Reads per Sample for both Protocol 1 and 2 

Patient Core 
Protocol 1 Reads per 

Sample 

Protocol 2 Reads per 

Sample 

6965 9 1809 4259 

6965 4 1351 5977 

6965 6 1685 4458 

6965 5 1266 5285 

6965 8 1517 3933 

6965 10 2006 4899 

6965 7 1111 4573 

6965 3 918 4336 

6969 11 1834 5836 

6969 9 1389 3005 

6969 4 1814 5684 

6969 7 2185 7116 

6969 5 1525 5370 

6969 2 1358 6822 

6969 8 1697 6730 

6971 3 822 5566 

6971 2 918 6210 

6971 11 1785 4520 

6971 7 1378 7386 

6971 5 1335 6964 

6971 8 1305 7585 

6971 6 1245 6494 

6971 4 954 6022 

6978 8 1518 5124 

6978 10 1333 6147 

6978 7 2020 4756 

6978 6 851 6505 

6978 9 1421 5415 

6978 3 1637 5834 

6978 4 1893 7753 

6978 5 654 3967 

6982 11 1821 5337 

6982 2 958 6097 

6982 7 4031 2113 

6982 3 1111 5527 

6982 9 2891 3210 

6982 4 1348 3551 
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Patient Core 
Protocol 1 Reads per 

Sample 

Protocol 2 Reads per 

Sample 

6982 6 1618 2980 

6983 3 2428 8399 

6983 6 2399 3743 

6983 9 1716 4383 

6983 4 1944 6414 

6983 2 802 9334 

6983 7 2174 4277 

6983 10 1875 5072 

6983 5 2307 4006 

6989 3 883 6783 

6989 10 2174 5443 

6989 6 777 5202 

6989 11 2896 6288 

6989 9 799 6408 

7010 8 1787 6127 

7010 7 1623 8816 

7010 10 1923 8312 

7010 4 1700 7532 

7010 3 1097 8148 

7010 5 1751 6721 

7010 6 2956 10751 

7010 2 1363 6957 

7014 5 1244 7293 

7014 6 1015 7825 

7014 4 866 8302 

7014 7 1181 9884 

7014 2 1171 7286 

7014 3 1393 8054 

7014 8 1054 7344 

7014 9 1310 5594 
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Table 14: Breakdown of Cases and Cores Used in the Different Analysis of the Study 

 
Total Cases Total  Cores 

Analysis Controls GOLD 4 Controls GOLD 4 

microCT 4 3 29 24 

Gene Expression 2 3 16 24 

Quantitative Histology 4 3 29 24 

Bacterial Microbiome 4 5 29 40 
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Table 15: Summary of Random Forest with Boruta Feature Selection for Important OTUs for the Discrimination 

between Control and GOLD 4 Based on Database Used. 

Greengenes 

Protocol 2 

SILVA Protocol 

2 

SILVA 

Protocol 1 

Ralstonia Prevotella oris Prevotella oralis 

Streptococcus 

pseudopneumonia 

Prevotella 

melaninogenica 
Streptococcus 

Prevotella oris Streptococcus Prevotella oris 

Streptococcus 
Streptococcus 

pseudopneumonia 
Porphyromonas 

Flavobacterium Ralstonia 
Flavobacterium 

succinicans 

Streptococcus 

anginosum 
Gemella 

Haemophilus 

influenzae 

Porphyromonas Prevotella histicola Bacteroidales 

Prevotella Prevotella 
Elizabethkingia 

Meningoseptica 

Streptococcus 

constellatus 
Fusobacterium Dialister 

Prevotella 

melaninogenica 

Streptococcus 

constellatus 

Flavobacterium 

gelidilacus 

Gemella Porphyromonas 
 

Veillonella parvus Flavobacterium 
 

Propionibacterium 

acnes   

Prevotella histicola 
  

Fusobacterium 
  

Sphingomonas 

asaccharolytica   

Sphingobium 

yanoikuyae   

Streptococcus 
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Protocol 2 had a significantly higher richness and Shannon Diversity (P<0.0001) and a lower 

evenness (P<0.0001) versus protocol 1.  There was poor direct correlation between the two 

methods with evenness having the best correlation (R = 0.58) and richness having the worst (R = 

0.28).  Both control and GOLD 4 samples had sparse bacterial communities, with densities, as 

measured by qPCR, that were not different (P>0.05, data not shown) and were in the range of 

those previously reported in lung tissue (109).  With respect to detecting bacteria that can 

commonly cause exacerbations, protocol 1 performed much better than protocol 2.  Protocol 2 

detected a single read of Streptococccus pneumonaie, 7 reads for Haemophilus influenzae, and 0 

reads for Moraxella catarrhalis.  In contrast, protocol 1 detected a single read of Streptococcus 

pneumonaie, 1258 reads of Haemophilus influenzae, and 0 reads for Moraxella catarrhalis.   

 

 

Figure 19: Nested PCR Approach with V1-V3 Primers (Protocol 2) 
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Figure 20: Protocol 1 Overall Breakdown between Control, GOLD 4, and Negative Controls.  The top 10 most 

discriminative OTUs for control (n=29) and GOLD 4 (n=40) versus negative water controls (n=2) run alongside the 

samples.  For all of the top 10 except Streptococcus the OTU was absent from our negative controls.  Results 

reported as mean ± SEM. 
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Figure 21: Protocol 2 Overall Breakdown between Control, GOLD 4, and Negative Controls.  The top 12 most 

discriminative OTUs for control (n=29) and GOLD 4 (n=40) versus negative water controls (n=8) run alongside the 

samples.  The top 12 OTUs were either absent or much lower than samples for the negative controls with the 

exception of Streptococcus being close to equivalent between negative controls and GOLD 4.  Results reported as 

mean ± SEM 
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Figure 22: GSEA of Shannon Diversity.  Top two panels are downregulated genes and the bottom two panels are 

for upregulated genes.  Genes were taken that were below an FDR of 0.25 or from a random selection of 100 

genes from both protocol 1 and 2. 
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Figure 23: GSEA of OTU Richness.  Top two panels are downregulated genes and the bottom two panels are for 

upregulated genes.  Genes were taken that were below an FDR of 0.25 or from a random selection of 100 genes 

from both protocol 1 and 2. 
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Table 16: Top 10 Pathways Identified by DAVID from Genes Correlated with either Firmicutes or Proteobacteria 

Top 10 Human Pathways  Identified by 

DAVID Correlated with Firmicute Number 

Top 10 Human Pathways Identified by 

DAVID Correlated with Proteobacteria 

Number 

Downregulated Upregulated Downregulated Upregulated 

Zinc Finger, C2H2-

type 
Disulfide Bond 

No Pathways 

Identified 
Alternative Splicing 

Zince Finger, C2H2-

like 
Signal  Splice Variant 

zinc finger region: 

C2H2-type 11 
Glycoprotein  Cilium Membrane 

zinc finger region: 

C2H2-type 10 

Glycosylation site: N-

linked (GlcNAc) 
 Cell-cell Junction 

zinc finger region: 

C2H2-type 4 
Signal Peptide  

Cell Projection 

Membrane 

zinc finger region: 

C2H2-type 6 
Disulfide Bond  Cilium Part 

zinc finger region: 

C2H2-type 7 

Topological domain: 

Extracellular 
 Cilium 

zinc finger region: 

C2H2-type 1 

Topological domain: 

Cytoplasmic 
 Cell Projection 

zinc finger region: 

C2H2-type 3 
Membrane  BBSome 

zinc finger region: 

C2H2-type 9 
Defense Response  Cell Projection Part 
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Table 17: Gene Set Enrichment Analysis of Shannon Diversity and OTU Richness between Protocol 1 and 

Protocol 2. 

 Shannon Diversity OTU Richness 

 FDR 
Enrichment 

Score 
FDR 

Enrichment 

Score 

Upregulated 

(FDR < 0.25) 
0 0.46 0 0.36 

Upregulated 

Random 100 

Genes 

0.0028 0.35 0.045 0.31 

Downregulated 
(FDR < 0.25) 

0 -0.67 0.066 -0.41 

Downregulated 

Random 100 

Genes 

0 -0.59 0.016 -0.36 
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Within this chapter it has been shown that changes in the bacterial microbiome can correlate with 

both structural and inflammatory components that are important in the progression of COPD.  

Further, a specific set of 10 OTUs were identified in being able to discriminate between control 

and COPD GOLD 4 lung tissue samples.  In the next chapter I will present data that shows how 

ddPCR is better than qPCR in detecting a low concentration of 16S rRNA.  This will add a 

valuable perspective when approaching Chapter 6 where a high sensitivity assay was needed to 

explore how H.infleunzae, one of the 10 discriminative OTUs, could potentially drive the 

severity of COPD. 
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Chapter 5: Droplet Digital PCR in the Analysis of Bacterial Load 

in Lung Tissue3 
 

5.1 Introduction 

 

Recently, we reported that lung tissue samples of smokers, non-smokers and those with, chronic 

obstructive pulmonary disease (COPD), and cystic fibrosis (CF) showed increased bacterial 

population as compared with controls (109).  We used qPCR quantitation of 16S rRNA to detect 

levels of bacterial microbiome in these samples. For absolute quantitation of 16S rRNA, serial 

dilution of Escherichia coli (E.coli) DNA was required for generation of a standard curve on 

every plate. This process can be time consuming and costly, and limits sample throughput. 

Moreover, one needs to ensure that the standard curve is optimized and contains an effective 

dynamic range for accurate quantitation of target genes in desired samples (197). Often, results 

could be misleading as the reaction efficiency of the standard samples may vary from the 

reaction efficiency of test samples due to differences in sample content and presence of inhibitors 

(198,199). The requirement for a large number of technical replicates when assessing low 

abundance genes is another major hurdle associated with this technique, which could be 

problematic when amount of sample is limited (200). The concentration of 16S rRNA in lung 

tissue samples is extremely low (1-10 copies/µL), and very close to the lower detection limit of 

qPCR. Precise and accurate measurement of the low copies of 16S rRNA in lung tissues is 

                                                           
3 This section has been previously published in PLOS One. 
  Sze MA, Abbasi M, Hogg JC, Sin DD.  A comparison between droplet digital and quantitative PCR in the analysis of     
  bacterial 16S load in lung tissue from control and COPD GOLD 2.  PLOS One. 2014,  
  9(10):e110351.doi:10.1371/journal.pone.0110351 
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essential to differentiate between negative controls, smokers, non-smokers, COPD, and CF 

samples. For this purpose, a more precise method is required for 16S rRNA quantification. 

 

Droplet digitalTM PCR (ddPCR) allows for absolute quantitation of nucleic acids without the 

requirement for standard curves. The technique is based on partitioning of a single sample into 

20,000 much smaller, segregated reaction vessels (known as droplets). A standard PCR reaction 

can then be employed to amplify the target(s) in each droplet which can be individually counted 

by the associated target dependant fluorescence signal as positive or negative. The simple 

readout of droplet partitions as a binary code of ones (positive) and zeroes (negative) represents 

the “digital” aspect of the technique and because the presence of a target in a given droplet is a 

random event, the associated data fits a Poisson distribution (201,202). This permits the direct 

and simple calculation of DNA copy numbers in a sample without the requirement of a standard 

curve. Since ddPCR is an end point PCR reaction, data are not affected by variations in reaction 

efficiency and as long as the amplified droplets display increased fluorescence intensity 

compared to the negative droplets, absolute copy number of target genes can be obtained with a 

high degree of confidence. Owing to the high precision and accuracy of this technique, the need 

for technical replicates is reduced (203), and the Poisson distribution provides 95% confidence 

intervals for measured copies from single wells which provides robust estimates of data 

dispersion obtained from technical replicates (204). This can significantly increase sample 

throughput, save time, and effectively allow accurate quantitation of precious samples.  
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Sample partitioning in ddPCR also improves sensitivity when quantifying low concentration of 

target genes in a highly concentrated complex background (203,205,206). When quantifying a 

low amount of 16S bacterial rRNA in DNA extracted from human lung tissue, the 16S primers 

have a difficult task of browsing through the large number of non-specific sequences contained 

in the complementary strand. This reduces sensitivity of the assay by introducing noise in target 

amplification. By using ddPCR to partition sample into 20,000 droplets we are able to increase 

the signal to background ratio by a factor of 20,000 and the primers and probes are able to locate 

the target sequence from a far less concentrated background. Using this technique, we aim to 

increase accuracy and sensitivity in detecting total bacteria within the lung of smokers, non-

smokers, and COPD patients. 

 

5.2 Methods 

 

5.2.1 Tissue Samples  

 

Lung tissue was obtained from the tissue registry at St. Paul’s Hospital.  Ethics approval was 

specifically obtained for this study from the University of British Columbia - Providence Health 

Care (UBC-PHC) Research ethics board.  Informed consent was obtained, through a written 

consent form, and approved by the UBC-PHC Research ethics board for patients who underwent 

lung resection therapy for various pulmonary conditions, such as lung cancer, for collection and 

use in this study.  For this study, we used lung tissue from the tumor-free part of the resected 

lung segment.  Samples were obtained from 16 control (FEV1/FVC >0.7) and 16 patients with 

moderate COPD GOLD 2 (Global initiative for chronic Obstructive Lung Disease) (FEV1/FVC 
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< 0.7, and 50% < FEV1 < 80%) were used.  Resected lung tissues were inflated with cryomatrix 

(OCT) and then frozen in liquid nitrogen.  From this, 2cm thick contiguous transverse slices 

were made and tissue samples were taken from one of these slices.  Frozen sections were 

obtained by cutting the tissue sample on a cryotome with some sections assigned for DNA 

extraction and others used for quantitative histology (144).      

 

5.2.2 Experimental Protocol   

 

DNA from all samples was extracted using a Qiagen DNeasy Extraction kit according to the 

manufacturer’s instructions and the concentration was assessed using Nanodrop.  qPCR (Applied 

Biosystems ViiA7) was performed on these samples using a previously published 16S rRNA 

assay (109) that utilized a standard curve of a serial dilution of Escherichia coli (cycling 

conditions were 1 cycle at 95ºC for 15 minutes, 40 cycles at 95ºC for 15 seconds and 60ºC for 1 

minute, followed by a standard denaturation curve protocol).   The assay was a SYBR green 

qPCR assay and three replicates were used per sample.  Data were collected using the ABI 

ViiA7 RUO software program.  The same assay was adapted to ddPCR (Bio-Rad QX200TM) and 

the experiments were performed using the following protocol: 1 cycle at 95ºC for 5 minutes, 40 

cycles at 95ºC for 15 seconds and 60ºC for 1 minute, 1 cycle at 4ºC for 5 minutes, and 1 cycle at 

90ºC for 5 minutes all at a ramp rate of 2ºC/second.  Bio-Rad’s T100 thermal cycler was used for 

the PCR step.  No standard curve was required for the ddPCR and the droplets were quantified 

using the Bio-Rad Quantisoft software.  A total of two replicates were used per sample.  A 

threshold cutoff of 20000 was chosen based on preliminary experiments, which accurately 
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separated positive from negative droplets.  For both protocols, negative controls that comprised 

of DNase and RNase free water were used and were run alongside the samples.     

 

5.2.3 Quantitative Histology  

 

Sections were stained with Movat pentachrome stain and Hematoxylin and Eosin (H&E) to 

obtain the mean linear intercept (Lm) which is a marker of emphysematous destruction of 

airspaces (56,57).  The arithmetic mean of the Lm obtained from the Movat pentachrome and 

H&E stained sections were used as the analytic value of Lm for each tissue sample.  

Immunohistochemical staining for both the small airway and alveolar volume fraction (Vv) of 

CD4 T-cells, CD8 T-cells, B-cells, macrophages, and neutrophils (PMN) were obtained by using 

a grid based point counting method to obtain a positive cell:tissue ratio for each cell type (53). 

 

5.2.4 Data Analysis  

 

Analysis involved testing whether ddPCR and qPCR protocols could differentiate 16S in tissue 

samples from those of the negative controls.  Direct comparison of the total 16S obtained with 

both methods was made to detect differences between tissue samples and negative controls.   The 

coefficient of variation between ddPCR and qPCR methods was then compared.  Finally, the 

data generated from both techniques were compared with important histological measures of 

COPD to determine the relationship of 16S findings from ddPCR and qPCR with parameters of 

COPD.  Grouped analysis used Kruskall-wallis ANOVA analysis with Tukey’s post hoc testing.  

Standard t-tests were used in non-grouped analysis.  Using a standard test statistic for 
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significance of the regression line was tested for its difference from 0.  A P-value < 0.05 was 

considered statistically significant and all analysis was performed using Prism v. 5 (GraphPad 

Software Inc. La Jolla California).  

 

5.3 Results 

 

5.3.1 16S Detection with qPCR or ddPCR 

 

Both qPCR and ddPCR were assessed for their ability to detect 16S and whether the samples 

were above the negative non-template control samples.  Figure 24A shows that the qPCR assay 

was able to detect the bacterial 16S rRNA gene and that both controls and moderate COPD 

samples were significantly higher than that of the negative controls (P < 0.05).  Figure 24B 

shows that the ddPCR could also detect the bacterial 16S rRNA gene and that both controls and 

moderate COPD samples were significantly higher than the negative controls (P < 0.05).  Both 

methods showed no significant difference in total 16S bacterial load between control and 

moderate COPD (P > 0.05).   
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Figure 24: Head to Head Comparison of QPCR and ddPCR 16S Quantification.  Bars represent the mean ± SEM and 

an ANOVA with a Tukey pot hoc test was utilized for statistical analysis.  

 

5.3.2 Comparison of the qPCR to ddPCR 16S rRNA Assay  

 

The ddPCR negative controls had a much smaller standard deviation versus the qPCR negative 

controls (0.28 versus 0.70).  Both the qPCR and ddPCR detected a similar bacterial load for the 

control and moderate COPD groups.  For the moderate COPD group, qPCR values were 2.32 ± 

0.67 16S copies (mean ± SD) and ddPCR values were 2.80 ± 1.80 16S/uL and for  
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the control group the qPCR and ddPCR values were 2.25 ± 1.55 16S copies and 2.36 ± 1.95 

16S/uL (mean ± SD) respectively.  There was a significant decrease in the negative control 16S 

bacterial load using the ddPCR technique compared with qPCR (P < 0.0032).  The ddPCR had a 

value of 0.55 ± 0.28 16S/uL and the qPCR having a value of 1.00 ± 0.70 16S copies [Figure 

25A].  There was a significant positive relationship between the qPCR and ddPCR 16S counts 

with an R2 value of 0.27 [Figure 25B]; the line of best fit was y = 0.33x + 1.44.  Further, the 

ddPCR coefficients of variation (CV) were significantly lower than those obtained by the qPCR 

assay (P-value < 0.0001) [Figure 26A].  The average CV for the ddPCR was 0.18 ± 0.14 while 

for the same samples the CV for the qPCR was 0.62 ± 0.29.  Using a Bland-Altman plot to 

further analyze the CV data and using the ddPCR as the reference against the qPCR the bias was 

found to be -0.44 ± 0.29.  This means that on average for any given sample the qPCR CV will be 

0.44 ± 0.29 higher than the ddPCR CV [Figure 26B]. 

 

 

Figure 25: Negative Control and Direct 16S ddPCR versus qPCR Comparisons.  The bars represent the mean ± 

SEM.  A standard T-test was utilized for panel A while a standard test statistic was used to test departure from zero 

in panel B. 
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Figure 26: Comparison of the Coefficients of Variation (CV) between qPCR and ddPCR.  The bars represent the 

mean ± SEM.  A T-test was used for the analysis of panel A and a Bland-Altman plot was used for panel B.  

 

5.3.3 Comparison of the qPCR to ddPCR 16S rRNA Assay and Correlations to 

Important Tissue Measurements of COPD 

 

Using quantitative histology [52], we examined the relationship between ddPCR values and 

qPCR values and parameters of tissue remodeling and lung inflammation, which are salient 

histologic features of COPD.  Both methods generally were similar when there was no 

significant correlation between the 16S counts and histologic measurements for tissue 

remodeling or inflammation (P>0.05).  However, correlations with CD4 that was not previously 

significant using qPCR became significant when we used ddPCR [Figure 27C & D].  When there 

were significant correlations (P<0.05) ddPCR data was more tightly associated with the 

histologic measures of tissue remodeling compared with qPCR [Figure 27A & B].  Overall 
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ddPCR demonstrated a larger slope than qPCR and also tended to have a greater dynamic range 

[Figure 27].  Figure 30A and 30B show the improved correlation between emphysematous tissue 

destruction (Lm) and total 16S bacterial counts with ddPCR (P-value < 0.0001, R2 = 0.54) versus 

qPCR (P-value = 0.015, R2 = 0.19).  Similarly, figure 28C and 28D show the improved 

correlation between infiltration CD4 T-cells into the alveolar tissue and total 16S bacterial counts 

with ddPCR (P-value = 0.0004, R2 = 0.69) versus qPCR (P- value = 0.242, R2 = 0.12).      

 

 

Figure 27: The Relationship between Quantitative Histology Parameters and ddPCR or qPCR Measurements.  For 

all four panels linear regression analysis was used to test the correlation between the two variables. 
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5.4 Discussion 

 

The first bacterial microbiome papers of the lungs were generated from materials obtained in 

bronchoalveolar lavage (BAL) and bronchial brushings (101,107).  The total bacterial counts 

ranged from 103 to 105 total 16S within the lung (101,107,115,124).  However, when similar 

assays were performed in resected lung tissue, these counts dropped to ranges between 1 and 102 

total 16S per lung (109).  The lower range of bacterial 16S impinges on the lower limit of 

detection for traditional qPCR assays and as such cannot be accurately quantified using this 

technique.  In this study, we determined whether ddPCR significantly improves detection of 

bacterial load compared with traditional techniques of quantification.  Compared with traditional 

qPCR, ddPCR has lower detection limits and a larger dynamic range of detection.  Consistent 

with these properties, we found that the ddPCR assay reduced CV and thus the noise to signal 

ratio of bacterial detection, enabling robust quantification [188].  This is important because 

although there were no significant difference in total bacterial count in control and moderate 

COPD tissue samples [Figure 24], the ddPCR technique improved the tightness and dynamic 

range of the relationship between total bacterial count and important parameters of COPD such 

as Lm and CD4 counts in the small airways [Figure 27].   

 

To date, most papers have not found a significant difference between the total bacterial load and 

COPD (101,108,109).  However, there may be subtle but important differences in diversity of the 

bacterial microbiome between normal lungs and COPD lungs that might affect disease 

pathogenesis and progression (102,115).  Our data suggest that using more sensitive PCR 

technology (ddPCR), we may gain important insights into potential disease mechanisms that may 
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have been elusive using the traditional qPCR approach.  This approach would also be a way of 

validating or investigating specific bacterial species identified from unbiased sequencing and 

their potential role in COPD disease pathogenesis.  ddPCR may be the preferred method given 

that many important OTUs (Operational Taxonomic Units) identified in these previous studies 

were found in very low relative abundance (102,107,109).  The traditional qPCR technique may 

not have the ability to differentiate the samples owing to its relatively high detection limits.  

Another potential application of this technology may be in evaluating a select number of 

bacterial species in longitudinal studies in lieu of full Roche 454TM pyrotag or MiSeqTM Illumina 

sequencing, which are expensive.  ddPCR may provide the needed sensitivity to follow specific 

low abundance bacterial species over time.  The major advantage of ddPCR is in samples that 

contain relatively low abundance of bacterial load [Figure 26].  Moving the lung microbiome 

field beyond the cross-sectional experimental design (to longitudinal studies) has been one of the 

major limitations in discovering and confirming the important bacterial genera and species 

involved in the pathogenesis of the disease (207–209) and may provide the crucial technology 

needed to assess specific bacteria within the tertiary lymphoid follicles seen in very severe 

COPD.   

 

This improvement may not be limited to the bacterial microbiome, ddPCR may be useful in 

detecting low copies of specific virus.  ddPCR may also be able to analyze differences in 

bacterial strains and help to investigate the emergence of new strains (142,210) or and how they 

interact with the microbiome to help drive COPD progression. Overall this promising technology 

provides a measurable improvement over the traditional qPCR bacterial 16S assays used in 

assessing the bacterial load.   
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There were some limitations to the present study and ddPCR. We used a SYBR-green based 

assay rather than TaqMan-probe based methods for bacterial load quantification, which is  

thought to be more sensitive and less variable than SYBR-green based techniques (211).  

However, with strict standardization and optimization of procedures (as we did for the present 

study), these advantages of TaqMan-probe based assays over SYBR-green based methods 

largely disappear (212).  Therefore, it is likely that ddPCR would be superior to TaqMan-based 

PCR with higher precision and faster throughput. A head-to-head comparison between these two 

methods would be needed to validate this hypothesis.  A limitation associated with ddPCR is that 

it does not work well with high abundance samples and specifically for concentrations higher 

than ~ 105 target copies (202).   This is due to the partitioning aspect of the technology, number 

of droplets generated, and the Poisson equation used to accurately measure the number of DNA 

copies in the samples (202).  Along these lines the samples need to be diluted below 105 copies 

of the gene if ddPCR is to be used for target quantitation.  Otherwise qPCR can be applied for 

measuring samples with high abundance.  Additionally, using ddPCR, the sample processing 

time increases by approximately 45 minutes and depending on the number of samples the droplet 

read time adds 1-2 hours to the overall process.  However, the increased time required to 

complete the assay may be an appropriate trade-off in low abundance samples because ddPCR is 

superior to the qPCR assay by allowing for extremely accurate quantification while reducing the 

overall 16S bacterial reads detected in the negative control background samples.  ddPCR is a 

promising new technology that can potentially greatly advance the lung microbiome field by 

helping to move the field from hypothesis generating to hypothesis testing.       
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Chapter 6: Using Droplet Digital PCR to Elucidate the Role of 

Haemophilus influenzae in COPD 
 

6.1 Introduction 

 

Chronic Obstructive Pulmonary Disease (COPD) is fast becoming a global health epidemic (2) 

and will be the 4th leading cause of death in the world (2).  Previous studies have shown that 

active inflammation and remodeling of the airways occurs throughout the disease process 

(58,61,120,137,213).   In a recent study by McDonough, et al. it was shown that the terminal 

bronchioles in COPD are significantly reduced before emphysematous destruction could be 

detected by MDCT (57).   

 

An active adaptive immune response has been documented in COPD tissue (53).  This adaptive 

response involves tertiary lymphoid follicles associated with the small airways and can be 

increasingly found as disease severity worsens (53).  What drives this adaptive immune response 

is not well characterized.  Some previous studies have shown that an autoimmune response to 

elastin may be present (141).  Alternatively, bacteria, viruses, and other environmental factors 

could also be important for driving this response (71,78,142,144,210).   

 

Recent studies on the bacterial microbiome in COPD have shown that there is a shift in bacterial 

community composition compared to controls (101,107,109).  Additionally, a recent study has 

shown that there is a possible host response to bacteria within this shifted bacterial microbiome 

(214).  Haemophilus influenzae was a bacterium predicted to be important between control and 

COPD GOLD 4 lung tissue samples (214).  However, the bacterium was found to be associated 
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with control rather than GOLD 4 lung tissue and would seem to be at odds with the existing 

literature about the observation of H.influenzae and  its role in exacerbations and generalized 

inflammation in COPD (142)(215)(216).      

 

Using H.influenzae as a model bacterium, the data from previous studies suggests that it is 

possible specific bacteria identified in a shifted bacterial microbiome could provide targets for 

the adaptive immune response.  This adaptive immune response could then in turn provide a 

continuous activation of the inflammation observed in COPD and provide a mechanism by 

which the terminal bronchioles may be remodeled and/or destroyed.  Ultimately, this process 

could also eventually lead to a dramatic increase in tertiary lymphoid follicles over time.   

 

The null hypothesis that was tested was that H.influenzae is not correlated with the adaptive 

immune response or its activation.  There were two specific aims for this study.  First, it 

investigated whether H.influenzae was associated with the adaptive immune system in mild and 

moderate COPD.  Second, it investigated if there was a difference in the adaptive immune 

system activation between H.influenzae positive and negative tissue samples.  The study 

involved two parts.  The first part utilized “at risk” or control to GOLD 2 grade tissue samples to 

investigate whether H.influenzae could potentially illicit an immune response in mild and 

moderate COPD.  The second part utilized multiple tissue samples from both control and GOLD 

4 individuals.  The multi-sampling was used to investigate disease within individuals and to test 

whether samples within the same individual showed different activation patterns when 

H.influenzae was present or not.    
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6.2 Methods 

 

6.2.1 Sample Population and Tissue Procurement 

 

Patient demographics from the mild and moderate study [Table 18] show a well matched 

population for sex, age, and smoking history.  In contrast, demographic data for the adaptive 

immune activation arm show a higher number of males in controls versus the COPD GOLD 4 

group [Table 19].  Tissue from the mild and moderate COPD group was obtained from patients 

undergoing lung resection therapy at St. Paul’s hospital.  Tissue resections were inflated with 

OCT, frozen in liquid nitrogen vapors, cored, and then stored in a -80ºC freezer for future use.  

Tissues from the adaptive immune activation group were from patients undergoing lung 

transplant or from donors for which no suitable recipient could be found.  The lungs were 

inflated with air, frozen in liquid nitrogen vapors, sliced, cored, and then stored at -80ºC for 

future work.  More information on either of these protocols can be found in previously published 

studies (53,57,173).   
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Table 18: Demographic Data of the Mild and Moderate COPD group 

 
Controls 
(n=28)  

GOLD 1 
(n=21)  

GOLD 2 
(n=25)  

Age  65.7 ± 9.6  66.0 ± 8.9  63 ± 9.2  

Sex (% Male)  57  58  68  

Smoking 

History 
(cigarette-years)  

895.4 ± 

622.8  
1061.8 ± 

410.5  945.0 ± 555.7  

FEV1/FVC  77.4 ± 4.9  64.3 ± 4.3*  62.0 ± 7.0**  

FEV1 (percent 

predicted)  
100.0 ± 

12.5  89.9 ± 9.0†  69.0 ± 6.6**  
* P<0.0001 between controls versus GOLD 1  

**P<0.0001 between controls versus GOLD 2  

†P<0.0001 between GOLD 1 versus GOLD 2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



121 

 

Table 19: Demographic Data of the Adaptive Immune Activation Group 

 
Controls (n=3)  GOLD 4 (n=3)  

Age  57.3 ± 5.7  59.3 ± 3.5  

Sex (% Male)  100  33  

FEV1/FVC  N/A  0.28 ± 0.06  

FEV1 % 

Predicted  N/A  17.0 ± 6.2  

Samples / 

Individual (n)  8 (3)  8(3)  

 

6.2.2 Mild and Moderate COPD Group 

 

DNA from two tissue samples per patient were extracted using the company defined protocol for 

the Qiagen DNeasy extraction kit (Qiagen Inc, Toronto, Canada).  DNA concentration was 

quantified using a Nanodrop machine (Nanodrop products, Wilmington, USA).  Each sample 

was quantified for H.influenzae using a modified assay for the QX200 ddPCR system (Bio-Rad 

Laboratories, Mississauga, Canada) (217,218).  The samples were run in duplicate and if at least 

one of the duplicates were positive the sample was classified as positive for H.influenzae [Figure 

28].  Sections from each tissue sample were mounted onto glass slides and stained for the 

following inflammatory cells: Macrophages, CD4+ T-cells, CD8+ T-cells, B-cells, and 

neutrophils.  Point counting with a grid based system was used to obtain the volume fraction 

(Vv) of each inflammatory cell using Aperio (Leica Microsystems Inc., Concord, Canada) and 
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ImagePRO Plus software version 4.0 (MediaCybernetics Inc., Bethesda, MD).  An H&E and 

movat pentachrome stain were completed in order to quantify total tissue percent, Vv of elastin, 

and Vv total collagen.  Mean linear intercept (Lm) was measured on the H&E and movat 

sections with the average of the two being used for the overall Lm value. 

 

 

Figure 28: Overall Workflow of the Two Sample Groups used in this Study 

 

6.2.3 Adaptive Immune Response Activation Group 

 

The protocol was similar to the mild and moderate COPD cohort except that eight samples per 

patient were used instead of two [Figure 28].  The inflammatory cell quantitative histology was 
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expanded to include natural killer cells and eosinophils.  The ddPCR protocol was used as 

previously specified.  Elastin was quantified using an immunohistochemical stain instead of a 

Movat pentachrome stain.  Collagen I and III were also measured in addition to total collagen.  

The Nanostring nCounter analysis system with a custom codeset [Table 20] (Nanostring 

Technologies, Seattle USA) was used to measure the adaptive immune response activation.  

   

Table 20: List of Adaptive Immune Activation Genes used on Nanostring Platform. 

CXCL13 BCAP BTK NFATC2 

CD79A NFATC3 CD19 TCRA 

CD79B ILF2 LYN TCRB 

CCR7 LAT2 BLNK CD28 

CR2 GRB2 CLNK ZAP70 

CD22 PTPN12 FCGR1A LCK 

FCRLA TAL1 FCGR2A FYN 

BCL11A PAG1 FCGR3A FYB 

NOPE CD4 BCL6 LCP2 

IGH@ CD8A BCL10 LAT 

IGLL1 IL17A NFKB1 TRAF6 

IGLL5 IL17F CDC42  

CD45 FOXP3 SYK  
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6.2.4 Statistical Analysis 

 

In the mild and moderate COPD data set T-tests were used to determine whether H.influenzae 

positive tissue samples were significantly different versus H.influenzae negative tissue samples.   

ANOVA with Bonferroni correction was used to test for increases in Vv of inflammatory cells 

according to GOLD grade.  Regression random forest analysis with Boruta feature selection 

(152) was used to analyze which quantitative histological measures were predictive of 

H.influenzae concentration.  A multiple linear mixed-effect model was used to confirm whether 

these measurements were significant after correction for samples coming from the same patient.  

For the adaptive immune response activation analysis a regularized canonical correlation 

analysis (RCCA) was used to test if more genes were correlated with quantitative histological 

measures in the H.influenzae positive group versus negative group.  Linear mixed-effect models 

with FDR correction were used as previously described (19) to test whether CD79a and TCRA 

gene expression correlated differently with the other adaptive immune activation genes in 

H.infleunzae positive and negative samples.  A p-value of 0.05 and an FDR of less than 0.1 were 

considered significant.  Statistical analysis was performed using R (Version 3.1.2), R Studio 

(Version 0.98.1091), and Prism v. 5 (GraphPad Software Inc. La Jolla California).         

 

6.3 Results 

6.3.1 H.influenzae Measurement with ddPCR 

 

A comparison between qPCR and ddPCR was done for H.infleunzae measurement in tissue 

samples.  Both assays targeted the protein D (hpd) gene of H.influenzae.  For the qPCR a total of 
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2 patient’s tissue were positive for H.influenzae (2.7%).  For the ddPCR a total of 37 individuals 

were positive for H.influenzae (50%) [Table 21 & 22].   Further, the same 2 samples that were 

positive in the qPCR were also positive in the ddPCR.  Additionally, every extraction negative 

control was negative for H.influezae as measured by ddPCR [Table 23].  From this data it was 

concluded that ddPCR was a more sensitive measure and for this study it was utilized for 

H.influenzae detection.  The specificity of this assay in a qPCR system has previously been 

demonstrated (217). 

 

Table 21: ddPCR on Each Tissue Sample for H.influenzae 

 
Positive Samples Negative Samples % Positive 

At Risk 18 36 33.33 

GOLD 1 11 29 27.50 

GOLD 2 16 26 38.10 

 

 

Table 22: ddPCR for Each Individual for H.influenzae Positivity 

 
Positive Individuals Negative Individuals % Positive 

At Risk 15 13 53.57 

GOLD 1 9 12 42.86 

GOLD 2 13 12 52.00 
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Table 23: ddPCR for H.influenzae of Extraction Negative Controls run with the Tissue Samples 

 Positive Negative % Positive 

Run 1 0 14 0 

Run 2 0 14 0 

Run 3 0 14 0 

Run 4 0 6 0 

 

6.3.2 Mild and Moderate COPD Cohort 

 

There was no difference between the Lm of controls (292.98 ± 77.15 µm), GOLD 1 (318.84 ± 

69.35 µm), and GOLD 2 (304.31 ± 65.27 µm) groups (P > 0.05).  When all tissue samples were 

examined, regardless of GOLD grade, the H.infleunzae positive were different from their 

H.influenzae negative counterparts by having lower Vv of elastin and higher Vv of macrophages 

(P-value < 0.02).  However, with Bonferroni correction for multiple comparisons these were no 

longer significant [Figure 29].   When the data was stratified by GOLD grade, CD68+  

macrophages were significantly increased in GOLD 1 and GOLD 2 H.influenzae positive 

samples compared to negative samples (P < 0.05) after Bonferroni correction [Figure 30A].  

Interestingly, CD79a+ B-cells were significantly increased in the GOLD 2 H.influenzae positive 

group compared to the H.influenzae negative group (P-value < 0.05) after Bonferroni correction 

[Figure 30B].  Boruta feature selection with a regression random forest analysis identified the Vv 

of CD79a+ B-cells and CD68+ macrophages as the most important predictors of determining the 

H.influenzae concentration within lung tissue samples.  The Vv of elastin was a tentative marker 
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of H.influenzae concentration.  In other words, an equal number of votes for importance and 

unimportance of the Vv of elastin to predict H.influenzae was made by the random forest 

classifier.  All other measurements were determined to be unimportant for prediction.  Together 

the measurements predicted 14.2% of the observed variation of H.influenzae according to 

Random Forest.  Using a multiple linear mixed-effect model analysis to correct for tissue 

samples being obtained from the same patient both the Vv CD68+ macrophages and CD79a+ B-

cells remained statistically significant (P-value < 0.002) [Table 24].   

 

 

Figure 29: Significant Volume Fraction Differences between Haempohilus influenzae Positive and Negative 

Tissue Samples A) Vv of Elastin based on H.influenzae positivity.  The P-value was less than 0.02 for student T-test 

but with Bonferroni correction P > 0.05.  B)  Vv of CD68+ macrophages based on H.influenzae positivity.  The P-

value was less than 0.02 for student T-test but with Bonferroni correction P-value > 0.05. 
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Figure 30: Significant Differences between Haemophilus influenzae Positive and Negative Tissue Samples 

Stratified by GOLD Grade. A) Vv of CD68+ macrophages by GOLD grade and H.influenzae positivity.  A significant 

difference between GOLD 1 and GOLD 2 grade H.influenzae positive and negative samples was found (*P-value < 

0.05 with Bonferroni correction).  B) Vv of CD79a+ B-cell by GOLD grade and H.influenzae positivity.  A significant 

difference between GOLD 2 grade H.influezae positive and negative samples was observed (*P-value < 0.05 with 

Bonferroni correction).  Blue bars represent H.influenzae  negative samples while the red bars represent 

H.influenzae positive samples.  
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Table 24: Multivariate Linear Mixed Effect Analysis of H.influenzae Concentration and Quantitative Histology 

Meaurements 

Measurement Value Std. Error DF T-value P-value 

Tissue Percent 0.0003 0.0001 15 2.10 0.05 

PMN (Alv) -0.0236 0.0383 15 -0.61 0.55 

Lm 0.00002 0.00001 15 1.29 0.22 

Macrophages (Alv) 0.0626 0.0159 15 3.94 0.001 

Elastin (Alv) -0.02 0.0144 15 -1.38 0.19 

CD8 (Alv) -0.0152 0.0207 15 -0.73 0.48 

CD4 (Alv) -0.0275 0.0209 15 -1.31 0.21 

B cell (Alv) 0.0786 0.0194 15 4.05 0.001 

 

 

6.3.3 Adaptive Immune Response Activation Cohort 

 

Regularized Canonical Correlation analysis (RCCA) was used to explore the relationships 

between Vv of inflammatory immune cells and adaptive immune activation genes in 

H.influenzae negative and positive samples.  Using RCCA H.influenzae negative samples had 

less positive correlations with adaptive immune response genes than H.influenzae positive 

samples with respect to Vv of CD68+ macrophages, Vv CD4+ T-cells, Vv of eosinophils, Vv of 

CD79a+ B-cells, and CD8+ T-cells [Figure 31A & B].  Using network analysis and an R-value 

cutoff of 0.7 a similar pattern can be observed between H.influenzae negative samples and 

H.influenzae positive samples [Figure 31C & D].  For the H.influenzae negative samples most 
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correlations were related to a negative correlation between Vv of neutrophils and adaptive 

immune response genes [Figure 31C].  In contrast, H.influenzae positive samples had strong 

positive correlations between Vv of CD68+ Macrophages, Vv of CD79a+ B-cells, and Vv of 

CD4+ T-cells and adaptive immune response genes [Figure 31D].  However, even in the 

H.influenzae positive samples the negative correlation between Vv of neutrophils and adaptive 

immune response genes was still present [Figure 31D].              
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Figure 31: Regularized Canonical Correlation Analysis of Adaptive Immune System Activation Genes and Volume 

Fraction of Inflammatory Cells for Haemophilus influenzae Positive or Negative Samples A) Heatmap of 

Regularized Canonical Correlation (RCC) analysis of H.influenzae negative tissue samples (n=28) of quantitative 

histology analysis of Vv of inflammatory cells versus adaptive immune system activation genes.  B) Heatmap of RCC 

analysis of H.influenzae positive tissue samples (n=12) of quantitative histology analysis of Vv of inflammatory cells 

versus adaptive immune system activation genes. For the heatmap stronger positive correlations are represented 

by darker red, stronger negative correlations are represented by darker blue, and no correlation is represented by 

a green-yellow.  C) Network analysis of H.influenzae negative tissue samples (n=28) between Vv of inflammatory 

cells and adaptive immune system activation genes.  D) Network analysis of H.influenzae positive tissue samples 
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(n=12) between Vv of inflammatory cells and adaptive immune system activation genes.  For the network analysis 

an R-value cutoff of 0.7 was used to create the network.  

 

When analyzing the CD79a gene expression correlation to other adaptive immune response gene 

expression, H.influenzae negative samples had more correlations survive FDR correction than 

H.influenzae positive samples [Table 25 & 26].  However, some notable differences between the 

two groups exist.  The H.influenzae positive group had a significant positive correlation between 

CD79a and IGLL5, BCL10, and MEF2C that was not seen in the H.influenzae negative group.  

There were also significant negative correlations between CD79a and FYN and CD22 that was 

not observed in the H.influenze negative group.  This same pattern held for the TCRA gene 

expression comparison to adaptive immune response genes in H.influenzae negative and positive 

samples [Table 27 & 28].  Similar to the CD79a comparison the H.influenzae group had 

significant correlations to TCRA to BCL10, IGLL5, and NFATC3 not seen in the H.influenzae 

group.  No significant negative correlation difference was seen between the two groups with 

respect to TCRA comparisons.   
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Table 25: Significant CD79a Gene Comparison to Adaptive Immune Response Genes in H.influenzae Negative 

Samples  

Comparison Coefficient T-stat P-value FDR 

CD79A_CD19 0.780799 10.52682 7.20E-12 8.63E-10 

CD79A_BLNK 1.900204 10.14001 7.77E-09 3.11E-07 

CD79A_CCR7 1.014037 6.93754 1.58E-07 3.16E-06 

CD79A_CR2 0.551909 6.141866 3.89E-07 4.67E-06 

CD79A_CD22 1.169934 6.280659 3.76E-07 4.67E-06 

CD79A_FOXP3 1.422133 6.223797 3.65E-07 4.67E-06 

CD79A_BCL11A 1.261514 6.277124 7.04E-07 7.56E-06 

CD79A_CD28 1.2482 5.847284 9.01E-07 7.88E-06 

CD79A_IgD 0.783689 5.896684 9.19E-07 7.88E-06 

CD79A_TCRB 1.298712 7.335565 1.62E-06 1.23E-05 

CD79A_NFATC2 1.370311 6.2637 3.85E-06 2.71E-05 

CD79A_LCK 1.549997 6.647797 4.50E-06 3.00E-05 

CD79A_ZAP70 1.139924 5.942258 8.61E-06 4.92E-05 

CD79A_LAT 1.173926 5.233922 1.09E-05 5.96E-05 

CD79A_CXCL13 0.364781 4.918662 1.41E-05 7.06E-05 

CD79A_TCRA 1.059553 5.715847 4.14E-05 0.000191 

CD79A_IGH 0.6416 3.733348 4.35E-04 0.00158 

CD79A_CLNK 0.866986 3.777744 5.27E-04 0.001861 

CD79A_CD8A 1.231034 3.249233 1.69E-03 0.005192 

CD79A_FYB 0.843453 2.795239 6.00E-03 0.017549 

CD79A_MEF2C 1.966291 2.794445 8.67E-03 0.024781 

CD79A_BCAP 1.044198 2.71695 9.18E-03 0.025027 

CD79A_CD4 1.395452 3.009078 1.02E-02 0.027104 

CD79A_KLHL6 0.891159 2.53842 1.17E-02 0.030508 

CD79A_NFATC3 1.755937 2.341437 1.88E-02 0.045471 

CD79A_LCP2 1.113228 2.338178 1.89E-02 0.045471 

CD79A_SYK 1.201478 2.186159 2.69E-02 0.058754 

CD79A_FCGR1A 0.732889 2.113526 3.21E-02 0.068743 

CD79A_FCRLA 0.657863 2.019196 4.08E-02 0.080975 

CD79A_BCL10 1.79148 2.019797 4.14E-02 0.080975 

CD79A_IL17A 0.537263 2.005341 4.18E-02 0.080975 

CD79A_TRAF6 1.297757 1.997486 4.31E-02 0.082138 
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Table 26: Significant CD79a Gene Comparison to Adaptive Immune Response Genes in H.influenzae Positive 

Samples 

Comparison Coefficient T-stat P-value FDR 

CD79A_CCR7 1.506857 9.01034 1.63E-05 0.000392 

CD79A_NFATC2 1.323612 9.812951 6.17E-06 0.000392 

CD79A_ZAP70 1.177633 9.053367 1.55E-05 0.000392 

CD79A_LAT 1.229212 9.262671 1.19E-05 0.000392 

CD79A_TCRA 1.094349 6.566869 2.38E-05 0.000476 

CD79A_CD19 0.818628 6.225925 2.96E-05 0.000508 

CD79A_BLNK 1.612251 5.345454 1.56E-04 0.001336 

CD79A_CD38 0.851346 4.502223 3.78E-04 0.002688 

CD79A_BCL11A 1.316035 6.414505 6.84E-04 0.003729 

CD79A_TCRB 1.307519 6.438638 6.57E-04 0.003729 

CD79A_CD4 2.163954 5.424618 9.88E-04 0.005115 

CD79A_LCK 1.548863 6.17395 1.02E-03 0.005115 

CD79A_BCL10 3.640939 3.319375 1.95E-03 0.009143 

CD79A_MEF2C 2.838889 3.281242 2.13E-03 0.00921 

CD79A_KLHL6 1.328388 4.272185 6.10E-03 0.023624 

CD79A_CD8A 1.305069 2.715739 7.96E-03 0.02985 

CD79A_CLNK 1.087249 4.93844 9.90E-03 0.035646 

CD79A_FOXP3 1.278399 4.833721 1.22E-02 0.038589 

CD79A_CR2 0.848399 3.037497 1.32E-02 0.039522 

CD79A_IGH 0.75281 2.481355 1.35E-02 0.039522 

CD79A_IGLL5 2.811344 4.784527 1.35E-02 0.039522 

CD79A_CXCL13 0.394369 2.532313 1.55E-02 0.044251 

CD79A_CD28 1.092285 3.034235 1.79E-02 0.049848 

CD79A_CD83 1.016485 3.150857 2.09E-02 0.053388 

CD79A_NFKB2 1.684044 3.258202 2.76E-02 0.067488 
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Table 27: Significant TCRA Gene Comparison to Adaptive Immune Response Genes in H.influenzae Negative 

Samples 

Comparison Coefficient T-stat P-value FDR 

TCRA_LCK 1.19819 11.98047 3.90E-13 2.34E-11 

TCRA_CD4 1.667912 8.145546 2.00E-08 2.67E-07 

TCRA_CD28 0.931163 6.832731 6.17E-08 6.73E-07 

TCRA_BLNK 1.311301 8.4106 1.60E-07 1.60E-06 

TCRA_FYB 0.857293 5.753182 1.43E-06 1.07E-05 

TCRA_LAT 0.894218 6.470268 1.69E-06 1.19E-05 

TCRA_CCR7 0.639872 5.726452 2.26E-06 1.29E-05 

TCRA_ZAP70 0.805259 6.132637 2.11E-06 1.29E-05 

TCRA_CXCL13 0.253755 5.384682 4.44E-06 2.05E-05 

TCRA_CD45 0.879795 5.237601 1.12E-05 4.48E-05 

TCRA_SYK 1.416838 5.071943 1.31E-05 5.03E-05 

TCRA_CD8A 1.100547 4.858444 1.65E-05 6.02E-05 

TCRA_BCAP 0.99976 4.819555 1.87E-05 6.59E-05 

TCRA_LCP2 1.194699 4.553476 4.27E-05 0.000138 

TCRA_CD86 0.978912 4.406488 6.31E-05 0.000199 

TCRA_CD79A 0.527148 5.545141 6.89E-05 0.000212 

TCRA_FCGR1A 0.829934 4.284347 1.08E-04 0.000316 

TCRA_GRB2 1.837488 3.962258 2.21E-04 0.00059 

TCRA_CLNK 0.64784 4.221627 2.32E-04 0.000605 

TCRA_FOXP3 0.928439 4.781123 2.46E-04 0.000628 

TCRA_IGLL5 0.97839 5.740493 2.68E-04 0.000671 

TCRA_NFATC2 1.035511 7.2031 3.15E-04 0.000771 

TCRA_CD79B 0.58734 3.902144 3.38E-04 0.00081 

TCRA_CD22 0.637453 3.748444 4.10E-04 0.000965 

TCRA_IGH 0.447259 3.728709 4.34E-04 0.001001 

TCRA_CD19 0.361368 3.734579 5.75E-04 0.001302 

TCRA_NOPE 0.929116 3.69054 1.61E-03 0.003444 

TCRA_CR2 0.26617 3.205332 1.92E-03 0.004037 

TCRA_BTK 0.833317 3.158054 2.54E-03 0.005164 

TCRA_KLHL6 0.713602 3.057987 3.01E-03 0.00602 

TCRA_MEF2C 1.718349 3.786635 6.40E-03 0.012004 

TCRA_NFKB1 1.653795 2.719885 8.54E-03 0.015716 

TCRA_PAG1 0.833182 2.676108 9.58E-03 0.016912 

TCRA_FCGR3A 0.543658 2.415489 1.56E-02 0.025973 

TCRA_CD83 0.44248 2.457512 1.81E-02 0.02941 

TCRA_LAT2 0.601486 2.145731 3.33E-02 0.051246 

TCRA_LYN 1.173777 2.146468 3.73E-02 0.056583 
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Comparison Coefficient T-stat P-value FDR 

TCRA_IgD 0.271374 1.977595 4.58E-02 0.067859 

TCRA_NFKB2 0.695319 2.072164 5.29E-02 0.077422 

TCRA_ILF2 -2.35853 -1.86018 5.90E-02 0.085371 
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Table 28: Significant TCRA Gene Comparison to Adaptive Immune Response Genes in H.influenzae 

Positive Samples 

Comparison Coefficient T-stat P-value FDR 

TCRA_LCK 0.841584 10.09623 2.70E-07 2.94E-05 

TCRA_LAT 1.138591 8.094045 8.72E-07 3.07E-05 

TCRA_ZAP70 0.937201 9.534567 4.84E-06 8.30E-05 

TCRA_CD4 1.881754 9.192716 7.33E-06 0.00011 

TCRA_CD79A 0.746692 8.488665 1.80E-05 0.00024 

TCRA_BLNK 1.403876 6.596051 2.10E-05 0.000252 

TCRA_CD79B 1.170236 7.260623 1.01E-04 0.000932 

TCRA_CCR7 1.16318 7.292309 9.63E-05 0.000932 

TCRA_CD28 1.205559 7.310173 9.38E-05 0.000932 

TCRA_NFATC2 1.010024 7.115317 1.26E-04 0.001077 

TCRA_CD8A 1.257037 4.388448 2.14E-04 0.001635 

TCRA_CD19 0.692503 5.882776 9.36E-04 0.004883 

TCRA_IGH 0.80751 3.734692 1.21E-03 0.006051 

TCRA_FOXP3 1.037762 5.316675 2.61E-03 0.01158 

TCRA_KLHL6 1.05293 5.137971 3.65E-03 0.015123 

TCRA_IGLL5 2.217046 4.714069 8.42E-03 0.030628 

TCRA_CLNK 0.843214 4.588025 1.09E-02 0.037361 

TCRA_MEF2C 2.030073 2.527369 1.13E-02 0.037657 

TCRA_BTK 1.099538 2.6329 1.18E-02 0.038235 

TCRA_CR2 0.863781 3.841628 1.27E-02 0.039223 

TCRA_CD83 0.805702 2.732233 1.51E-02 0.044096 

TCRA_BCL10 2.439985 2.271143 2.05E-02 0.055814 

TCRA_CD22 -0.72712 -3.779 2.93E-02 0.073224 

TCRA_NFATC3 1.757153 2.206221 2.87E-02 0.073224 

TCRA_TRAF6 1.308358 2.086464 3.68E-02 0.09003 

TCRA_Fas 1.271987 1.940404 4.15E-02 0.099622 

 

 

6.4 Discussion 

 

This study builds upon previous literature on H.influenzae and COPD(215)(182,216).  However, 

most of these studies were performed in sputum cultures and this is one of the first studies to 

investigate H.influenzae in lung tissue specifically.  One recent study by King, et al. investigated 
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COPD lung tissue to specifically identify response differences in T-cells to H.influenzae between 

COPD, non-smoking, and smoking control tissue (219).  Interestingly, they found an increased 

production in certain cytokines in COPD T-cells stimulated with H.influenzae (219).  Their study 

focused on two specific cell types while our study tries to investigate the adaptive immune 

system response to H.influenzae as a whole.   

 

As compared to previous studies the overall H.influenzae load in lung tissue was quite low and 

qPCR was not as sensitive as ddPCR in identifying tissue samples with H.influenzae.  The results 

show that before any noticeable emphysematous destruction can be measured in lung tissue 

H.influenzae positive samples have increased Vv of both macrophages and B-cells dependent on 

GOLD grade [Figure 30].  Further, a larger number of correlations between quantitative 

histology and adaptive immune activation genes can be found in H.influenzae positive tissue 

samples [Figure 31].  Finally, specific differences in the types of gene to gene correlations with 

either CD79a or TCRA could be found between H.influenzae positive and negative samples.  

Most notably IGLL5 and BCL10 were positively correlated with both CD79a and TCRA in the 

H.influenzae positive samples but not in negative samples.  Overall this data provides evidence 

that an adaptive immune response could be directed towards H.influenzae in lung tissue and that 

this may happen before emphysema is detectable.   

 

H.influenzae has been known to be a common colonizer of the nasopharynx along with other 

species such as Streptococcus pneumoniae (180).  The dynamics between bacteria in the 

nasopharynx is complex with some data showing that H.influenzae can increase clearance of 

S.pneumoniae by activating neutrophils and complement-dependent clearance pathways (180).  It 
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is possible that in healthy individuals an active immune response to this bacterium is not 

normally made.  However, in lung diseases, such as COPD, impaired mucociliary clearance 

(129), mucus plugging (220), and other immune impairments (221) could lead to the bacterium 

travelling into the lower airways, staying in these locations, and eliciting an immune response. If 

the immune response in COPD is directed against what are normally commensal organisms then 

it could explain why vaccination of H.influenzae has been unsuccessful in lowering overall 

bacterial loads (222).  It could also support the notion that the emergence of new strains of the 

bacterium in COPD (142) could be due to it trying to survive in an environment that has become 

increasingly hostile.  Some inflammatory data shows that dendritic cells can be activated by 

H.influenzae and the bacterium can cause significantly higher release of IL-23, IL-12p70, and 

IL-10 cytokines (132).  An increase in the anti-inflammatory IL-10 could support the idea that 

under normal conditions this bacterium does not elicit the strong adaptive immune response seen 

in COPD.    

 

Alternatively, H.influenzae could be needed to initially drive the inflammation in COPD.  

Although Teo, et al.  showed no decrease in bacterial load there was a significant decrease in 

antibiotic usage and a potential increase in quality of life in the H.influenzae vaccinated groups 

in their meta analysis (222).  Other literature shows that after viral infection there is outgrowth of 

H.influenzae in COPD patients (223) and worsening of daily symptoms in those with 

H.influenzae (224).  A recent study has shown that H.influenzae along with cigarette smoke can 

better reproduce a human like COPD phenotype in mice (215).  In fact it was found that low 

dose of H.influenzae created a macrophage dominated inflammatory profile (215) and this 
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observation matches well with previous literature on COPD in lung tissue (53).  Further, without 

bacterial exposure goblet cell metaplasia and lymphoid aggregates were not observed (215).           

 

Our data neither confirms nor disproves either of these two possible scenarios.  Both of these 

hypotheses stipulate an adaptive immune response to H.influenzae which our data supports.  

However, further work needs to be done to show whether it is the bacterium that drives the 

inflammation or if the targeting of the bacterium is due to a dysfunctional, over active 

inflammatory response caused by other factors.  Some data supports the idea that it could be the 

specific individual’s response to the bacterium that can affect inflammatory cytokine production 

and not the bacterium itself (225).  These variations from person to person could ultimately 

dictate why some individuals progress in GOLD grade while others do not.  However, other data 

support the idea that H.influenzae has a direct role in causing the progression of COPD.  For 

example, one such study found that H.influenzae lowered IgA specific antibodies targeted 

against it and increased MMP-9 in sputum samples (226).  It is likely that both hypothesis are 

true and that a unique interplay between the deficiencies in some individuals host response and 

H.influenzae are at play.  In other words, smoking and H.influenzae alone are not enough to drive 

disease since only a small percentage of smokers develop COPD.  Specific differences in host 

immune response to the bacterium combined with the inflammatory environment of smoking are 

most likely the key driver of the observed correlations we report here on the adaptive immune 

response and H.influenzae.  

 

Although this study builds upon the existing ground work of literature on H.influenzae and 

COPD there are a few caveats.  First, secondary studies in lung tissue, especially with respect to 
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the adaptive immune response activation, need to be completed due to the small numbers of total 

patients analyzed.  Second, the findings in this study are correlations and more in-depth analysis 

of specific cell types, most notably B-cells, CD4+ T cells, and macrophages, need to be 

investigated.  By examining how the response to H.influenzae differs between COPD and 

smoking controls it may be possible to figure out what specific part of the immune response is 

dysfunctional in those that rapidly progress to very severe COPD.  Third, although there are 

increased correlations in the H.influenzae group between gene expression and Vv of the specific 

cells they may not be necessarily activated.  As an example, correlations to specific genes such 

as IL-17A, IL-17F, and CXCL13 that can be more indicative of immune cell activation  

(227,228) are absent in the H.influenzae positive group [Figure 31].  This could mean that 

H.influenzae supports a generalized increase in CD4+ T-cells as well as B-cells without the 

corresponding or adequate activation of these respective cells.                     

      

Although the ddPCR technology gets us tantalizingly close to identifying a potential mechanism 

by which H.influenzae could impact COPD severity a few other studies will need to be 

completed before this can be confirmed.  First, it will need to be confirmed either in a repeat 

experiment or one with a slightly different protocol whether or not immune activation genes 

along with general immune genes are correlated with H.influenzae.  If it is just a general increase 

then investigating why there is no subsequent activation of these specific cells would be a highly 

relevant area to pursue.  In contrast, if activation can be shown by adding more specific genes 

that are markers for immune activation then investigating the tertiary lymphoid follicles for 

H.infleunzae may eventually be able open a window into a potential target of the adaptive 

immune system in COPD. 
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Chapter 7: Conclusion 
 

This research successfully builds upon previous studies on the bacterial microbiome by showing 

that changes in the bacterial community can be observed as early as moderate (GOLD2) COPD.  

Secondly, they show that these changes in the bacterial community correlated with both the 

increase in the inflammatory response and with the structural changes associated with tissue 

repair.  Third, the results obtained indentify a list of OTUs that are potentially important for 

driving some of these changes.  Fourth, Haemophilus influenzae, a bacterium identified in this 

list of OTUs, correlated with the volume fraction of B-cell and macrophages infiltrating into the 

tissue before emphysematous tissue destruction appeared.  Fifth, Haemophilus influenzae can 

induce small differences in adaptive immune cell activation.  Taken together this data strongly 

suggests that the pathogenesis of COPD may be influenced by specific bacteria located within 

the microbiome of the lungs. 

 

The data reviewed in Chapter 1and previously reported as part of my MSc thesis of which most 

is previously published (109) suggested that the Firmicute phyla contributed to the severity of 

COPD.  In contrast the data presented in   Chapter 3indicate Proteobacteria may be more 

important in mild and moderate COPD.  Moreover this opinion was reinforced in Chapter 4 

where the data showed that OTUs in the Proteobacteria phyla correlate with inflammatory 

markers and structural changes associated with the host response to injury and tissue repair.  

Although these findings differ from  the previous literature on the bacterial microbiome in COPD 

(109), other data  also suggests that Proteobacteria are important in the pathogenesis of COPD 

(101).  One potential reason for this discrepancy is the fact that the new data presented in  
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Chapter 3 and Chapter 4 provide information about parameters of the host response that were not 

investigated in previous studies showing that Firmicutes were important.  In fact the major 

difference between the two studies is that new work presented in Chapter 3 and 4 on the response 

to the bacterial microbiome was measured in terms of the specific features of the host response to 

injury rather than to estimates of the decline in lung function made from the GOLD category of 

COPD.  Additionally differences between the findings presented in Chapter 4 and Chapter 3 are 

understandable since comparisons were made between tissue obtained from patients with end 

stage COPD treated by lung transplantation and from patients with very severe COPD to control 

lungs obtained from donors in Chapter 4 while in Chapter 3 tissue was obtained for the data from 

patients with mild to moderate COPD that required lung resection as treatment for lung cancer.  

A second  possible reason for this difference is that the difference was based on the phenomenon 

originally described by Huang, et al. (108) where COPD GOLD 4 had two different groups with 

respect to the predominant phyla, one that was Firmicutes and the other that was Proteobacteria.  

In that the samples were obtained from a small group of patients that were biased towards e 

Firmicute in the data reported in Chapter 1 and Proteobacteria in the larger group of cases from 

different levels of COPD in Chapter 4.    

      

Future studies based on larger groups of subjects with better sampling techniques and more 

exhaustive analytical procedures will be able to resolve these differences and improve our 

understanding of the nature of the bacterial microbiome as well as the factors that control the 

host response to it.  Overall, the culmination of all the work presented in this thesis provides a 

good first step in providing support for the central hypothesis that the bacterial microbiome in 

lung tissue does have a role to play in the pathogenesis of COPD.   
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Data Appendix 1 List of significant genes correlated with Specific Phyla Using the Michigan 

Method (Protocol 1). Table relates to Chapter 4 results.  

Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

CD24 GAS7 

FMO3 IGF1 

PLAC8 NLRP3 

TRIM32 MT1IP 

ZFP90 METTL7B 

SNRPN MS4A6E 

ZNF211 ABCC2 

ECHDC2 ZNF179 

SFTPC TRIM7 

EPB49 SLC22A16 

RCAN3 RAC3 

NPAL3 CD300E 

CHL1 OLFML2B 

TUSC3 HPD 

CYP4B1 PI3 

TFDP2 GPR173 

MGC50559 SNX18 

PKHD1L1 CES7 

ZNF417 CACNA1E 

MAPK10 SC65 

IGBP1 C16orf82 

C7 ADAMTSL4 

FOXO4 TFF1 

ZNF138 APRT 

ZSCAN18 KIAA0774 

NXF3 C10orf90 

FOLR1 LDLRAD3 

FLJ45803 NR5A1 

FGFR2 CEACAM3 

CPAMD8 NAB1 

PGM5 DDR1 

ING4 KRT8 

PERP MTMR1 

ULK2 PLAGL2 

CHD6 PRSS12 

CTSO STAM2 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

EPC1 TMTC2 

IQCA SPINT2 

ZNF84 NCALD 

TRPC4 EFHC1 

SEPT4 DLG5 

RAD52 ARL6IP6 

C8orf70 SLFN13 

PLEKHA5 C10orf57 

ITGA10 MID1 

NCALD ABCA5 

TAS2R5 GPR177 

KLK11 DOPEY1 

OSBPL6 BMP3 

LASS4 ECHDC2 

SLFN13 DNAJC6 

ANTXR1 UXS1 

CRIP1 SERTAD4 

C5orf42 NCOA7 

PRELP RNF2 

CYP4X1 SCRN1 

TPPP3 BBS5 

PXDNL TDRD10 

CYBRD1 FARP1 

CTGF MUC15 

C6orf204 UST 

MAP3K13 CLIC5 

RP1-21O18.1 TP63 

CSRP1 ZNF417 

CTDSPL ZER1 

CELSR1 KLF5 

PPM1K C11orf49 

GCC2 RASSF9 

SLC25A29 SATB1 

SOX13 BAIAP2L1 

NLRX1 CAPRIN2 

TRIM68 ANK3 

GEN1 OCIAD2 

PUS10 C18orf10 

ISYNA1 PLEKHA5 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

CX3CL1 PARD6B 

KBTBD3 ACSS1 

HNT C9orf45 

SPON1 ZNF345 

RIPK5 ERV3 

C2orf40 CHD6 

ZC3H6 CLSTN1 

ZBTB33 PIGQ 

TIMP4 CEP97 

WEE1 SPEF2 

KIAA1704 TUFT1 

GOLPH3L C19orf33 

ZNF483 ZNF295 

TEAD1 RFXDC2 

INMT C16orf80 

LOC492311 BTBD6 

EXPH5 POGZ 

FST transcript 3184925, GenBank AK054857 

SMARCA2 HIVEP1 

BTBD6 C14orf159 

RTTN C5orf42 

PRELID2 ILDR1 

BBS1 PERP 

ST6GALNAC2 FAM107B 

MAOB C11orf63 

FLNB ZNF678 

CGNL1 PPP2R3A 

MUC15 C8orf70 

GALT FUZ 

PRDM11 C9orf93 

C4orf34 KIAA1407 

KIAA1841 PER3 

EPHX2 C4orf31 

SCRN1 PCTK3 

TMEM159 USP28 

FOXP1 FANCL 

GPR126 LIMA1 

PSD3 TFDP2 

ST6GALNAC6 FMO3 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

EFHA2 AGBL5 

RNF125 THEM4 

TTC12 ZNF713 

C11orf52 NPAT 

PLEKHB1 FOXP1 

TDRD10 GOLPH3L 

STRBP CD24 

CLIC5 IDS 

ZNF132 AKAP9 

ZNF461 GNRH1 

A2M TUSC3 

MUC20 KIAA1324 

PTPN13 CDH1 

tcag7.1177 SCNN1G 

ZNF678 OSBPL6 

FCGBP ST3GAL4 

FHL1 C11orf60 

C6orf155 JARID1B 

KIAA1407 AQP3 

SRPX2 IFT52 

AEBP2 DNHD1 

AKAP9 C11orf52 

RNF2 ZDHHC13 

CLIC5 TTC12 

MGC24039 CHIA 

MYO6 LRBA 

GPR177 MAP3K13 

PGDS MGC50559 

DTX3 BACE1 

ACSF2 LAMB3 

C11orf63 CACHD1 

FBLN5 AK1 

FABP4 MUC20 

KIAA0831 KPNA5 

HLF transcript 3092561, GenBank L17325 

MLLT3 TDH 

DENND2C IFT80 

DAB1 SH3YL1 

KLHDC1 TMEM98 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

KPNA5 AEBP2 

CD9 IQCA 

IRF6 SYTL2 

LRRC37B2 MYO1B 

MFAP4 CD9 

IFT80 TMPRSS3 

ZNF235 KIAA0408 

CYP2B7P1 IGBP1 

CEP97 SFTPC 

TMEM106C MAPK10 

TWSG1 LOC400566 

PALLD FABP4 

SSBP3 CLDN1 

ABCA5 EPHX1 

RAD50 PRKCQ 

PER3 C6orf60 

PRSS12 ERGIC3 

CP110 B3GALT2 

MARCH8 ULK2 

C1orf198 CDH3 

ZNF713 SDK1 

ZER1 CNKSR1 

CHRNB2 BTC 

TMEM98 ALDH1A1 

ZNF383 ST6GALNAC6 

LOC51149 SLC4A4 

EPHX1 LOC51149 

C7orf31 BTBD9 

RPL24 C2orf40 

ERCC4 IKZF2 

NIPSNAP3B CELSR1 

ZNF470 USP11 

TRIB2 EPB49 

C7orf58 CHCHD6 

PLXNB1 HIBADH 

PIGQ SALL2 

COQ10A SUSD2 

MYH10 HISPPD2A 

NPAT C1QTNF3 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

SAMD12 ATP2C2 

EPB41L4A PTPRF 

CAMK2N1 AIG1 

SYNE1 SLC4A8 

FLJ22374 CRIP1 

LMBRD1 FAM125B 

TCTN2 BBS1 

transcript 3184925, GenBank AK054857 PH-4 

HMG20A PTPN13 

DGKG EXPH5 

MZF1 PLEKHB1 

ZNF606 DLG3 

H2AFV SLC35A1 

C8orf37 TPPP3 

DSTN TTC8 

TGFB2 ZNF334 

ZDHHC15 SNRPN 

C9orf126 ZNF545 

KALRN FGFR2 

ST3GAL4 TMEM116 

C13orf15 CKB 

STAM2 NELL2 

TGFB3 C1orf101 

EMP2 IRF6 

YPEL1 CTSO 

NPNT SGSM2 

HIBADH MLLT3 

LBH JUP 

TINAGL1 PLAC8 

GUCY1A2 INADL 

ZNF426 PSD3 

C21orf63 NPAL3 

CRIM1 CGNL1 

RTKN2 FOLR1 

PLA1A LASS4 

STXBP4 LRIG1 

NMT2 KLC4 

IFI27 FXYD3 

PCDHB9 RGNEF 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

C16orf80 BTD 

SCN7A RCAN3 

SOX5 EPHX2 

GJC1 C8orf34 

PLEKHH2 

 LRIG1 

 C9orf61 

 ZNF680 

 SLC4A8 

 PGAP1 

 BTC 

 transcript 3092561, GenBank L17325 

 N4BP2L2 

 CCDC123 

 ZNF180 

 ZNF343 

 TPM1 

 CA3 

 ZNF197 

 C8orf42 

 CCDC76 

 GCNT4 

 AIG1 

 PXMP2 

 LZTFL1 

 ZBTB10 

 ZFP2 

 POGZ 

 ZNF14 

 CDRT4 

 LRBA 

 CTPS2 

 C7orf36 

 PLEKHF2 

 NTN4 

 ZNF567 

 DPY19L4 

 FAM122C 

 ARGLU1 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

EMCN 

 EFHC1 

 KIF13A 

 SH3RF1 

 HBB 

 RBL2 

 INPP4B 

 RAMP2 

 GAS6 

 IDS 

 CKB 

 TMEM116 

 CEACAM6 

 SALL2 

 RAVER2 

 FLJ11710 

 AHSA2 

 CACNA1D 

 ODF2L 

 MGAT5 

 PPP2R5A 

 HIST1H4B 

 KRT8 

 WHSC1L1 

 DKK3 

 RASSF9 

 COX4I2 

 PPAP2A 

 ZFP3 

 ZNF345 

 NELL2 

 BTBD16 

 TTC21B 

 CACNA2D3 

 SPEF2 

 SLIT2 

 CCDC146 

 MORN3 

 CDC14A 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

PTPRM 

 ZMAT1 

 STX17 

 ZNF571 

 THEM4 

 KALRN 

 SHPK 

 AMIGO2 

 NDRG2 

 NEGR1 

 ALKBH8 

 TMPRSS3 

 MLLT4 

 FOXJ1 

 TNXB 

 ATF7IP2 

 PTN 

 ZNF706 

 transcript 2793198, GenBank AB062480 

 PLK2 

 ZNF75A 

 MTERFD3 

 ZNF721 

 ABCC9 

 C7orf41 

 EPN2 

 GPR56 

 NR3C2 

 GRIA1 

 RPSA 

 USP11 

 TSPAN8 

 EML1 

 LAMA5 

 GPC3 

 C2orf13 

 FLJ11996 

 ADHFE1 

 ZNF597 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

HSPA12B 

 PAPD5 

 ARHGAP6 

 TXNDC13 

 KAL1 

 MIER3 

 SVIL 

 FLJ20160 

 ABI2 

 ZNF140 

 BBS2 

 PRDM5 

 LOC401152 

 KIF27 

 ZEB1 

 KLF12 

 ZNF34 

 ABCA6 

 ZHX3 

 CSPG4 

 DMD 

 HSPA2 

 PDCD7 

 DZIP3 

 BPTF 

 NEO1 

 ESCO1 

 TMEM47 

 KLHL23 

 PTPRS 

 SERPING1 

 PHLPP 

 GPM6B 

 C9orf68 

 RGN 

 TJP1 

 PTPRD 

 SCUBE1 

 INADL 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

ERV3 

 SHANK2 

 KIAA1217 

 PZP 

 PPP1R14A 

 RBJ 

 CYP2B6 

 WDR27 

 SMARCC2 

 CNTN4 

 ADARB1 

 PDZD2 

 transcript 2363679, GenBank AK096078 

 ZNF228 

 C1QTNF7 

 ZNF510 

 FAM125B 

 BBS5 

 FABP3 

 PRKAR2B 

 LOC51336 

 CD109 

 MANEA 

 TEK 

 TSPAN6 

 MUSK 

 ABCA8 

 ZNF83 

 ZNF799 

 C1orf102 

 ZNF585B 

 FRY 

 GSTM2 

 ZNF280D 

 ZNF627 

 KIAA0515 

 STMN1 

 LRRCC1 

 FGFR3 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

TGFBR3 

 LOC100130950 

 SPATA6 

 GABRB2 

 KIAA1324 

 CWF19L2 

 ZNF792 

 ALS2CR11 

 GYPE 

 CBX7 

 CIRBP 

 PARVA 

 ZNF396 

 TTBK2 

 SUSD2 

 FXYD3 

 ZNF33B 

 CLDN4 

 HIF3A 

 PHF3 

 FARP1 

 ZNF718 

 ZNF329 

 TNRC6C 

 SPIN1 

 CAPRIN2 

 LARGE 

 COL21A1 

 APPBP2 

 BBS4 

 GSTA3 

 TC2N 

 OFD1 

 LCA5 

 ENPP5 

 C1orf149 

 PTGDS 

 USP28 

 KIAA0460 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

PAK3 

 GRK5 

 TDH 

 WDR52 

 GHR 

 PVRL3 

 AK3 

 CFD 

 TSPYL1 

 SLC12A2 

 NR1D2 

 TMEM190 

 KLF5 

 TRIM56 

 CDH6 

 FANCL 

 ZNF568 

 SH3BP4 

 KIAA1244 

 SDK1 

 LANCL1 

 C6 

 DIXDC1 

 ADRB1 

 ERCC6 

 KIF2A 

 PTPRF 

 AGER 

 NFATC3 

 ANKH 

 AFF2 

 MAP2 

 FERMT2 

 C9orf52 

 RNF182 

 HSPC105 

 SLCO2A1 

 USP12 

 NOX4 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

CRY1 

 IQCK 

 SLC25A23 

 ARHGEF12 

 ANGPT1 

 WDR60 

 WDR31 

 GAB1 

 APBB2 

 ATP6V1E2 

 GPR116 

 DNAJB1 

 ADH1B 

 ZBTB4 

 ZNF664 

 MACF1 

 PARD3B 

 DNAH1 

 BAIAP2L1 

 PRKAA2 

 SLC9A3R2 

 DST 

 FUZ 

 MED6 

 OLFML2A 

 SLC16A12 

 RPGR 

 TSPAN12 

 CAPS 

 KCNRG 

 FAM107B 

 THSD4 

 LTBP4 

 CCND1 

 ARHGAP29 

 IL16 

 CPA3 

 ITGA8 

 RGNEF 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

ZMYND11 

 PARD6B 

 UBTF 

 ARHGAP5 

 TMPO 

 GATM 

 ISLR 

 AMOTL2 

 NEK4 

 LYRM5 

 PSCD3 

 CCDC117 

 PER2 

 FRS2 

 SPTBN1 

 GLCCI1 

 VPS13A 

 MYO5B 

 NAB2 

 KITLG 

 CAP2 

 C5orf4 

 CTNND1 

 DLEC1 

 ZNF618 

 SLC6A16 

 DNAL1 

 CABLES1 

 BMPR1A 

 RALA 

 C1orf201 

 ZNF544 

 ZBTB39 

 GEM 

 ZBTB6 

 KIAA0408 

 FARS2 

 ZNF208 

 LRP11 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

YTHDC1 

 SLC44A3 

 SOD1 

 PH-4 

 THAP6 

 TMEM107 

 AQP3 

 KIAA0423 

 ZFP1 

 PARD3 

 VKORC1L1 

 EPB41L2 

 ZNF134 

 TMEM67 

 LOC201229 

 CHIA 

 PTPRK 

 PLEKHA1 

 SLC44A4 

 ANUBL1 

 RAB40B 

 LRRC51 

 WDR78 

 USP54 

 TMEM59 

 SPOCK2 

 SYNE2 

 PUM2 

 STXBP1 

 PHF17 

 ZNF337 

 AKR1C2 

 C2orf67 

 PLCE1 

 ADAMTSL3 

 C10orf118 

 GNA14 

 KIF9 

 ZBTB44 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

AKR1C3 

 PRPSAP1 

 DPT 

 UBL3 

 VEZF1 

 SMURF2 

 TFF1 

 TAS2R60 

 WISP3 

 GABPA 

 LAIR1 

 GIP 

 CTSB 

 GLI1 

 EBI3 

 HCLS1 

 CAMKK1 

 SOX30 

 WNT3 

 C16orf24 

 CTD-2090I13.4 

 NHLH1 

 CSF2RB 

 SMAP2 

 CHST11 

 transcript 2772160, GenBank AF241539 

 SPI1 

 EPHA10 

 TNFRSF1B 

 NAGS 

 SLC11A1 

 TMSL1 

 RCVRN 

 RPS6 

 CLEC11A 

 CAMLG 

 MS4A6A 

 ACPT 

 ADAMTS2 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

CALR 

 UNQ6193 

 OR2AK2 

 FBXW9 

 C5orf29 

 SEMA6B 

 TTYH3 

 UNQ9419 

 APOL5 

 ATF5 

 TREML2 

 IGSF11 

 CHRNB4 

 C2orf7 

 ZNHIT1 

 KLK15 

 KY 

 C5orf27 

 LILRB3 

 MAGEC3 

 SPATC1 

 RETNLB 

 SLC16A3 

 MYH7 

 CCL19 

 ADAMDEC1 

 CLRN3 

 IFNW1 

 DUPD1 

 AQP7 

 TSEN34 

 KCNJ13 

 HRH2 

 C15orf27 

 COL5A1 

 GSX2 

 ALDOAP2 

 C21orf70 

 TRIM7 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

EFHD2 

 AMPD3 

 SOLH 

 SLC43A2 

 GLDN 

 GMIP 

 CACNA2D4 

 FAM71C 

 PIK3AP1 

 DARC 

 HK3 

 COX6A2 

 SNX18 

 ADORA3 

 LY6G6C 

 LILRB4 

 ZNF541 

 GLTSCR1 

 HS3ST4 

 RHOG 

 ADAMTSL4 

 PKM2 

 OSR1 

 C5AR1 

 AURKC 

 GMPPA 

 CD163 

 LOC642864 

 C6orf81 

 GRM3 

 SIGLEC1 

 TBC1D16 

 MUSP1 

 SPDYA 

 AKR1D1 

 C10orf90 

 TMEM180 

 GSTTP1 

 TNC 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

ROR2 

 PLTP 

 FCGR2B 

 LRRC15 

 SIGLEC9 

 VSIG4 

 C12orf28 

 LOC554234 

 C20orf59 

 NLN 

 ISOC2 

 PIK3R5 

 NOD2 

 TIMP1 

 GAS7 

 TG 

 XDH 

 LILRP2 

 CACNA1E 

 SLC38A7 

 GALNT2 

 TNFSF9 

 SLC35E4 

 RIN1 

 IL1R2 

 KLRG2 

 EGLN1 

 TRAPPC5 

 OMG 

 C16orf82 

 MT1IP 

 DSC2 

 PFKFB3 

 FCER1G 

 SLC25A22 

 MXD1 

 FLVCR2 

 SNX32 

 TMEM171 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

TKTL2 

 MAFB 

 STAB1 

 TXNDC17 

 GLUL 

 DSE 

 NR5A1 

 SIGLEC5 

 LYN 

 TCIRG1 

 GRINA 

 FLJ44006 

 RNF149 

 ACTN3 

 GAFA1 

 RHBDF2 

 AGTRAP 

 KCNQ5 

 CES7 

 GPR77 

 CASQ1 

 SHKBP1 

 TPST1 

 FLJ27255 

 MPP1 

 NPM3 

 CTSL1 

 OR1D2 

 MMP3 

 C3AR1 

 CST9 

 EPB41L3 

 GPR84 

 APRT 

 EMR2 

 TLR8 

 ARRB2 

 RNF166 

 BOP1 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

ELOVL4 

 C1orf162 

 BAT1 

 C4orf18 

 EBI2 

 TLR2 

 C12orf34 

 LRRC33 

 ASGR2 

 KIAA1949 

 ORM2 

 CLPP 

 MGC13053 

 MLLT1 

 LILRB2 

 SIRPB2 

 NUP50 

 AMPH 

 RCN3 

 CD300E 

 AP3B2 

 CLEC10A 

 MTP18 

 MRPL27 

 NDP 

 ORM1 

 MERTK 

 WAS 

 SLC38A5 

 LDLRAD3 

 RGL1 

 RAC3 

 SIGLEC10 

 PI3 

 IGF1 

 KCTD5 

 DPYD 

 C1orf38 

 SLC22A16 
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Human Genes Correlated with 

Firmicute Number 

Human Genes Correlated with 

Proteobacteria Number 

SAMSN1 

 METTL7B 

 OLFML2B 

 MS4A6E 
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Data Appendix 2 List of significant genes correlated with Shannon Diversity or OTU richness.  Table relates to Chapter 4 on gene 

expression correlation to the bacterial microbiome. 

Shannon Diversity 

(FDR <0.1) 

Shannon Diversity 

(FDR <0.25) Total Bacterial Species (FDR <0.1) Total Bacterial Species (FDR <0.25) 

FCGR2B FCGR2B EYA1 EYA1 

EYA1 EYA1 TJP3 TJP3 

PAX9 PAX9 CERKL CERKL 

  CDC20B SEC14L3 SEC14L3 

  RP11-738I14.8 CDC20B CDC20B 

  CCDC78 EPB41L4B EPB41L4B 

  MLL C1orf168 C1orf168 

  KRT5 CLGN CLGN 

  PTTG2 RIBC2 RIBC2 

  CCDC108 ZMYND12 ZMYND12 

  CCNE1 ALDH3A1 ALDH3A1 

  SULF2 PAX9 PAX9 

  SEC14L3 BTG4 BTG4 

  EPB41L4B FAT2 FAT2 

  MAP3K14 KRT5 KRT5 

  PSCA DNAH2 DNAH2 

  CERKL CCDC78 CCDC78 

  NUP50 KRT15 KRT15 

  KCNRG AK7 AK7 

  CDK3 IGFBP2 IGFBP2 

  FCGR3A C6orf117 C6orf117 

  FLJ45803 IFLTD1 IFLTD1 

  C22orf15 TGM3 TGM3 

  PTGS2 HSPA4L HSPA4L 
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Shannon Diversity 

(FDR <0.1) 

Shannon Diversity 

(FDR <0.25) Total Bacterial Species (FDR <0.1) Total Bacterial Species (FDR <0.25) 

  PI15 SLC22A23 SLC22A23 

  ZNF660 RP11-738I14.8 RP11-738I14.8 

  VWA3A CLDN8 CLDN8 

  MARCH1 STK33 STK33 

  CYP2J2 FOXJ1 FOXJ1 

  FAT2 CCNE1 CCNE1 

  SLC22A23 FUZ FUZ 

  C21orf96 EHF EHF 

  DNAH2 ANKFN1 ANKFN1 

  CXorf21 GSTA1 GSTA1 

  SP110 VWA3A VWA3A 

  C1orf168 FLJ22167 FLJ22167 

  CSF1R C11orf70 C11orf70 

  HRH1 IQCH IQCH 

  HIST1H3D CCDC17 CCDC17 

  C21orf59 DPY19L2P2 DPY19L2P2 

  KRT15 LOC286187 LOC286187 

  DBF4 CHST9 CHST9 

  OR1L8 RABL5 RABL5 

  FCGR2A CXorf22 CXorf22 

  CASZ1 FLJ40298 FLJ40298 

  CCDC103 ALOX15 ALOX15 

  TUBB2C CASC2 CASC2 

  ST6GALNAC2 DNAI2 DNAI2 

  LRRC23 BAIAP3 BAIAP3 

  AK7 ARMC4 ARMC4 

  STK33 SLITRK6 SLITRK6 
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Shannon Diversity 

(FDR <0.1) 

Shannon Diversity 

(FDR <0.25) Total Bacterial Species (FDR <0.1) Total Bacterial Species (FDR <0.25) 

  C2orf55 C10orf93 C10orf93 

  CCDC67 ST6GALNAC2 ST6GALNAC2 

  DYDC2 GOLSYN GOLSYN 

  KLK11 ARMC3 ARMC3 

  KIF21A WFDC1 WFDC1 

  SLC8A1 CAPS CAPS 

  CCDC17 CCDC65 CCDC65 

  DPY19L2P2 C3orf25 C3orf25 

  CLGN MMP21 MMP21 

  UGT1A9 LRRC23 LRRC23 

  WFDC1 DYNLRB2 DYNLRB2 

  CHST9 PSCA PSCA 

  EHF C11orf16 C11orf16 

  ZMYND12 UGT1A9 UGT1A9 

  ANKFN1 ALDH3B1 ALDH3B1 

  MORN1 CASC1 CASC1 

  RIBC2 C1orf87 C1orf87 

  GSTA1 KIF6 KIF6 

  C20orf165 CAPSL CAPSL 

  SLPI LOC165186 LOC165186 

  CLEC10A CCDC135 CCDC135 

  ZNF434 GLB1L2 GLB1L2 

  GYS2 TUBB2C TUBB2C 

  STOX1 KLK11 KLK11 

  NQO1 KIF21A KIF21A 

  ZNF436 TTLL6 TTLL6 

  CCDC135 SLPI SLPI 
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Shannon Diversity 

(FDR <0.1) 

Shannon Diversity 

(FDR <0.25) Total Bacterial Species (FDR <0.1) Total Bacterial Species (FDR <0.25) 

  ATP12A LOC200383 LOC200383 

  IFITM3 CELSR1 CELSR1 

  IFLTD1 PTPRT PTPRT 

  ARMC4 RAB36 RAB36 

  ALDH3A1 APOBEC4 APOBEC4 

  LIN37 YSK4 YSK4 

  KNDC1 DNAI1 DNAI1 

  PQLC3 ZMYND10 ZMYND10 

  KIF6 CCNA1 CCNA1 

  C6orf150 MORN2 MORN2 

  FOXJ1 CETN2 CETN2 

  CCDC40 DNAH10 DNAH10 

  CAPS FRMPD2 FRMPD2 

  CXorf22 FAM81B FAM81B 

  FLJ40298 PACRG PACRG 

  SOX2OT CCDC67 CCDC67 

  SLC6A4 DYDC2 DYDC2 

  GOLSYN C1orf173 C1orf173 

  TJP3 RSPH1 RSPH1 

  C6orf117 C14orf50 C14orf50 

  LOC100129540 RP11-529I10.4 RP11-529I10.4 

  CELSR1 ATP12A ATP12A 

  LOC376693 C2orf39 C2orf39 

  DNAJA4 NEK5 NEK5 

  C8orf4 IQUB IQUB 

  DNAI2 PHGDH PHGDH 

  C1orf87 DCDC5 DCDC5 
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Shannon Diversity 

(FDR <0.1) 

Shannon Diversity 

(FDR <0.25) Total Bacterial Species (FDR <0.1) Total Bacterial Species (FDR <0.25) 

  HSPA4L FLJ46266 FLJ46266 

  PLLP RTDR1 RTDR1 

  IL1R2 DNAH3 DNAH3 

  C1QA APOBEC3G APOBEC3G 

  BAIAP3 FCGR2A FCGR2A 

  KCND2 RUVBL2 RUVBL2 

  ADCY7 C20orf26 C20orf26 

  RCAN1 DNAH10 DNAH10 

  PRPF40B ANKRD54 ANKRD54 

  CASC2 C6orf118 C6orf118 

  VIPR1 FGF14 FGF14 

  C9orf9 RGS22 RGS22 

  CCDC65 PDE4B PDE4B 

  OBFC2A CXorf21 CXorf21 

  RGS2 RHOH RHOH 

  XAF1 KIAA0319 KIAA0319 

  C10orf93 TMC4 TMC4 

  GPX2 SPA17 SPA17 

  FLJ22167 TRIM29 TRIM29 

  LAMA1 CCDC60 CCDC60 

  DYX1C1 LRRC34 LRRC34 

  HSPA6 TSPAN6 TSPAN6 

  CLDN8 AKAP14 AKAP14 

  SIGLEC1 C1orf102 C1orf102 

  NCF4 transcript 3683871, GenBank AK027211  transcript 3683871, GenBank AK027211  

  ARID5A KRT19 KRT19 

  C11orf70 SPATA17 SPATA17 
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Shannon Diversity 

(FDR <0.1) 

Shannon Diversity 

(FDR <0.25) Total Bacterial Species (FDR <0.1) Total Bacterial Species (FDR <0.25) 

  CCNA1 LRGUK LRGUK 

  SLC20A2 C11orf66 C11orf66 

  CETN2 OBFC2A OBFC2A 

  SLC9A9 C10orf63 C10orf63 

  IKZF1 CCDC33 CCDC33 

  ARMC3 NEK10 NEK10 

  APOL4 C2orf55 C2orf55 

  PACRG KCNRG KCNRG 

  STAB1 ANKRD22 ANKRD22 

  CAPSL C19orf51 C19orf51 

  CLCA2 APOL4 APOL4 

  SOCS1 DCDC1 DCDC1 

  FUZ C1orf88 C1orf88 

  TSPAN6 CCDC103 CCDC103 

  C14orf50 GSTA2 GSTA2 

  FLT3 DNAH7 DNAH7 

  CCDC81 EFCAB1 EFCAB1 

  CA11 CCDC81 CCDC81 

  C1orf110 LRRIQ1 LRRIQ1 

  MUC15 SLC44A4 SLC44A4 

  HRH2 FCGR3A FCGR3A 

  LILRB1 ASB14 ASB14 

  SLC2A9 C22orf15 C22orf15 

  TACC2 EFCAB6 EFCAB6 

  G6PC2 SP110 SP110 

  SLC27A2 LIN37 LIN37 

  HSPBP1 KNDC1 KNDC1 
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(FDR <0.1) 

Shannon Diversity 

(FDR <0.25) Total Bacterial Species (FDR <0.1) Total Bacterial Species (FDR <0.25) 

  TMEM176A PPP5C PPP5C 

  BNIP3L TNFSF13B TNFSF13B 

  ESRRA MLL MLL 

  C20orf26 C1orf110 C1orf110 

  DCDC1 ZNF474 ZNF474 

  GPR87 WDR69 WDR69 

  LUM CYP2J2 CYP2J2 

  C2orf39 ROPN1L ROPN1L 

  PTPRT C21orf59 C21orf59 

  RAB36 FLJ23834 FLJ23834 

  STC1 RORC RORC 

  PDE4B PLLP PLLP 

  HAO1 PIH1D2 PIH1D2 

  RUVBL2 DNAJA4 DNAJA4 

  CLDN16 CDS1 CDS1 

  FRMPD2 C10orf107 C10orf107 

  CCDC60 LRRC43 LRRC43 

  NDRG4 LRRC48 LRRC48 

  SMAD5OS SLC9A11 SLC9A11 

  DCDC5 DNAH5 DNAH5 

  RP11-529I10.4 C1orf158 C1orf158 

  CMTM4 C6orf165 C6orf165 

  PRRX1 C21orf96 C21orf96 

  FLJ45121 RICS RICS 

  KRT79 GPR87 GPR87 

  C1orf173 SLC27A2 SLC27A2 

  KIAA1199 CXorf41 CXorf41 
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Shannon Diversity 

(FDR <0.25) Total Bacterial Species (FDR <0.1) Total Bacterial Species (FDR <0.25) 

  ARNT2 DYX1C1 DYX1C1 

  MIPEP FCGR2B FCGR2B 

  CASC1 DUOX1 DUOX1 

  FOXA1 C10orf79 C10orf79 

  FLJ46266 TEKT2 TEKT2 

  DNAI1 TEKT3 TEKT3 

  MAGEF1 GAS2L2 GAS2L2 

  BHLHB5 KLHL32 KLHL32 

  SDC3 RAGE RAGE 

  TEKT2 CYP4X1 CYP4X1 

  SCUBE2 SOX2OT SOX2OT 

  LEKR1 KIAA1324 KIAA1324 

  SEC14L2 PFN2 PFN2 

  C1orf88 TACC2 TACC2 

  RASSF4 VWA3B VWA3B 

  LRRIQ1 CASZ1 CASZ1 

  LOC286187 NTF3 NTF3 

  GLB1L2 DSP DSP 

  ANKRD22 KATNAL2 KATNAL2 

  DNAH3 EFHC2 EFHC2 

  CTHRC1 DNAH12L DNAH12L 

  TIAM1 WDR65 WDR65 

  DNAH7 C14orf179 C14orf179 

  SPA17 HSPBP1 HSPBP1 

  DNAH10 C20orf96 C20orf96 

  UGT2A1 C9orf116 C9orf116 

  SCO2 PRDX5 PRDX5 
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(FDR <0.25) Total Bacterial Species (FDR <0.1) Total Bacterial Species (FDR <0.25) 

  RABL5 MORN1 MORN1 

  RGS22 WDR16 WDR16 

  PRND ANKRD35 ANKRD35 

  C3orf25 MUC15 MUC15 

  AKAP14 FBXO15 FBXO15 

  DOC2A CCDC13 CCDC13 

  CD74 ZNF660 ZNF660 

  IQUB IL1R2 IL1R2 

  DUOXA1 C14orf45 C14orf45 

  RORC PTTG2 PTTG2 

  ROPN1L NUP62CL NUP62CL 

  ADORA2A TCTN1 TCTN1 

  C19orf51 DNAJB13 DNAJB13 

    MS4A8B MS4A8B 

    TTN TTN 

    PTPRU PTPRU 

    C12orf63 C12orf63 

    CCDC11 CCDC11 

    ABHD11 ABHD11 

    

transcript 3973556, ENSEMBL Prediction 

GENSCAN00000028495  

transcript 3973556, ENSEMBL Prediction 

GENSCAN00000028495  

    MIPEP MIPEP 

    AGBL2 AGBL2 

    FAM50B FAM50B 

    C20orf85 C20orf85 

    MDH1B MDH1B 

    SPAG1 SPAG1 
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(FDR <0.25) Total Bacterial Species (FDR <0.1) Total Bacterial Species (FDR <0.25) 

    NUP50 NUP50 

    ANKRD45 ANKRD45 

    DUOXA1 DUOXA1 

    FANK1 FANK1 

    TPH1 TPH1 

    ZBBX ZBBX 

    C9orf9 C9orf9 

    TEX9 TEX9 

    KLHDC9 KLHDC9 

    SPAG16 SPAG16 

    CLCA2 CLCA2 

    FOLH1 FOLH1 

    CDON CDON 

    C10orf81 C10orf81 

    TTC18 TTC18 

    C6orf206 C6orf206 

    IFT172 IFT172 

    KCNE1 KCNE1 

    DYDC1 DYDC1 

    SLC22A4 SLC22A4 

    KIF9 KIF9 

    C9orf24 C9orf24 

    C9orf98 C9orf98 

      OSBPL6 

      RELT 

      CAPS2 

      HUNK 
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      MARCH10 

      STOML3 

      NME5 

      SERPINI2 

      DNAH9 

      FAM13A1 

      KRT79 

      NQO1 

      SPAG6 

      SOCS1 

      SLC2A9 

      FAM92B 

      C9orf68 

      HOMER2 

      NSUN7 

      CCDC113 

      LRRC46 

      MKS1 

      TTC29 

      WDR49 

      SULF2 

      C17orf87 

      LOC100128751 

      SPAG17 

      LRRC50 

      C3orf67 

      GLYATL2 
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      ARMC2 

      CCDC148 

      CCDC40 

      NDRG4 

      CMTM4 

      PLEK 

      PROM1 

      LCA5L 

      ARID5A 

      WDR31 

      WDR78 

      MORN3 

      TIAM1 

      FAM3D 

      NEK11 

      DNAH11 

      PLEKHB1 

      ZEB2 

      SCGB3A1 

      WDR66 

      HHLA2 

      LEKR1 

      CCDC108 

      RP1 

      RABL2B 

      OR1L8 

      ESRRG 
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      RFX3 

      UBXD3 

      SPATA18 

      CCNO 

      LRP11 

      DLEC1 

      THSD4 

      EFHB 

      TSPAN5 

      KCTD1 

      CDK3 

      RFX2 

      ARHGAP30 

      BMPR1B 

      C6orf97 

      SLC8A1 

      DNHL1 

      ADORA2A 

      SLC20A2 

      LOC389118 

      CCDC37 

      HYDIN 

      ALS2CR12 

      FOXA1 

      WDR63 

      KLF5 

      ZDHHC1 
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      MARCH1 

      VTCN1 

      HELB 

      TTC16 

      TPM2 

      EZR 

      BCAS1 

      CHST6 

      CA11 

      C15orf26 

      ADCY7 

      CLEC9A 

      SLC25A4 

      C9orf18 

      CD86 

      CLDN7 

      SRGAP3 

      GSTA3 

      INDOL1 

      HEXIM2 

      ST6GALNAC1 

      FLT3 

      TRAF3IP1 

      NCKAP1L 

      C8orf4 

      TEKT1 

      HSPB2 
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(FDR <0.25) Total Bacterial Species (FDR <0.1) Total Bacterial Species (FDR <0.25) 

      RCAN1 

      C13orf30 

      TCTN2 

      FLJ37464 

      ADH7 

      AQP3 

      FLJ45803 

      NEDD4L 

      LRRC51 

      PCSK2 

      FAM81A 

      C6orf150 

      ZNF440 

      MMP9 

      ALCAM 

      DNAL1 

      FLNB 

      VSTM2L 

      TPPP3 

      GLRX 

      PDK1 

      LOC376693 

      C10orf64 

      LAX1 

      GPX2 

      SPATA4 

      C3orf15 
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(FDR <0.25) Total Bacterial Species (FDR <0.1) Total Bacterial Species (FDR <0.25) 

      TMED6 

      NEK10 

      HRH1 

      DOK2 

      DOCK2 

      ICA1L 

      ITGB4 

      CLEC10A 

      KRT8 

      TAGLN 

      GPR162 

      ZNF436 

      TRIM38 

      TMEM156 

      NCF4 

      RABL4 

      C10orf92 

      SCNN1A 

      TSPAN1 

      WDR93 

      NPR1 

      APOBEC3D 

      DMKN 

      MAT1A 

      SERPINB4 

      GRHL1 

      CYBA 
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      TTC26 

      TUBA4B 

      ZNF434 

      INPP5D 

      RIBC1 

      LOC100129540 

      TAS2R40 

      PSAT1 

      NME7 

      COL4A5 

      UNQ5814 

      ASNS 

      TMEM45B 

      KIF24 

      NPHP1 

      GRHL2 

      RBM24 

      CLDN16 

      TP63 

      DOC2A 

      ABCA1 

      ACTN4 

      B9D1 

      CCRK 

      CCDC108 

      FAM72A 

      UGT2A1 
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      CLEC7A 

      SH3BP1 

      HGF 

      DOCK8 

      CDC42EP3 

      MOXD1 

      BTN2A3 

      DENND1C 

      GPR20 

      SLC2A3 

      REEP1 

      TNFAIP2 

      FSIP1 

      C9orf6 

      TSNAXIP1 

      CD69 

      SRD5A2 

      IQCK 

      PIK3CG 

      LRWD1 

      PTGS2 

      FSD1L 

      CD40 

      CD19 

      SPATS1 

      ATP1B1 

      FKBP11 
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      CTTN 

      TTC25 

      IGLV6-57 

      ADAM19 

      PTPRC 

      DMGDH 

      KIF19 

      CLDN4 

      TPPP 

      TMEM190 

      GSTO2 

      SULT1B1 

      IKZF1 

      PTAFR 

      POU2F2 

      LUM 

      SLC9A9 

      KALRN 

      STK36 

      GYS2 

      TLCD1 

      FBLN2 

      UBAC1 

      SLC6A4 

      MAP1A 

      TRIP13 

      C1orf201 
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      CYP1B1 

      KRT23 

      ACYP1 

      CLMN 

      DEGS2 

      PLEKHG7 

      BLK 

      LRRC27 

      EFHC1 

      CCDC114 

      MAP3K14 

      C4orf22 

      CAP2 

      ABBA-1 

      VIPR1 

      MDFIC 

      DTX3 

      PRUNE2 

      GBP5 

      DSC3 

      CCDC57 

      TJP2 

      SLC23A1 

      MGC2752 

      UPP1 

      FBXO16 

      SLAMF1 
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      SLC44A5 

      RCSD1 

      IFT140 

      FLJ25439 

      RUVBL1 

      KIAA1199 

      LILRB1 

      VCAM1 

      SPEF2 

      ANKRD18A 

      PLXNB1 

      IFI44L 

      IFT81 

      FLJ21511 

      C1orf92 

      CCDC19 

      TMEM17 

      HIST1H3D 

      GAL3ST4 

      YAP1 

      CSF1R 

      DIRAS1 

      MS4A14 

      CNN1 

      PEG10 

      XAF1 

      FCRLA 



206 

 

Shannon Diversity 

(FDR <0.1) 

Shannon Diversity 

(FDR <0.25) Total Bacterial Species (FDR <0.1) Total Bacterial Species (FDR <0.25) 

      CTLA4 

      SP140 

      TTC12 

      TACSTD2 

      IL2RG 

      LPAR3 

      IGJ 

      C1orf34 

      TRIM14 

      KIAA0125 

      DVL1 

      IL5RA 

      APOO 

      PSCD4 

      HAL 

      SCO2 

      CDC7 

      N6AMT1 

      LOC400566 

      CDKL3 

      KCTD5 

      MYEF2 

      ABCC8 

      IL1B 

      LDHC 

      LRP2BP 

      SIRPD 
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      TSGA10 

      ACTR3B 

      IRF8 

      CHRM1 

      VAV1 

      MAPRE3 

      TMEM67 

      GPR141 

      SERPINB11 

      BHLHB5 

      CPVL 

      CUEDC1 

      FAP 

      IFFO 

      DEFB1 

      SAE1 

      TM4SF19 

      CCR2 

      PRND 

      MMP2 

      VSIG1 

      MAPK15 

      ARNT2 

      PIK3C2G 

      USP2 

      POPDC3 

      transcript 3739859, GenBank AF269286  
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      PQLC3 

      CD164L2 

      PI15 

      TRIM69 

      TRIM2 

      SCUBE2 

      LPAL2 

      PIGU 

      LCN2 

      MCAT 

      RNASET2 

      BTLA 

      MAP4K1 

      SPEF1 

      P2RY13 

      WDR13 

      DPY19L2P2 

      PIK3CD 

      FXC1 

      PTPN3 

      BEST4 

      RNF43 

      CSF2RB 

      CDKL5 

      HS3ST3B1 

      ADAM12 

      KCND2 
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      OR4D10 

      PLD2 

      SAMD3 

      ASPHD2 

      PEBP4 

      LOC400451 

      C10orf57 

      PKP1 

      CLDN3 

      C20orf12 

      PLB1 

      MYL9 

      TMEM206 

      DUSP6 

      ACSBG2 

      LAT 

      NCF2 

      CYP2B6 

      MEI1 

      RGS2 

      SHROOM3 

      GSTP1 

      LRRC39 

      GUCY1B2 

      TBX3 

      IFITM3 

      EPSTI1 
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      MAPK10 

      KCNJ16 

      MUC20 

      NFX1 

      ARHGAP15 

      OSM 

      ENOSF1 

      ANKMY1 

      C10orf67 

      FCAR 

      CCDC146 

      NBEA 

      WDR54 

      BACH1 

      PIK3AP1 

      LLGL2 

      SRGN 

      ALOX5 

     

 


