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Abstract

The deluge of mobile data demands a drastic increase of wireless network capacity. A

heterogeneous network design, in which small cells are densely deployed, is required to

satisfy this demand. However, it is critical that this dense deployment does not lead to a

surge in energy cost. The aim of this thesis is to design energy-efficient resource alloca-

tion methods and explore the value of cooperation in terms of energy cost. In particular,

three different cooperation schemes are studied. First, a multi-cell coordination scheme

is proposed for maximizing the energy efficiency of heterogeneous networks. Although

this problem is not convex, convergent algorithms are devised to find an efficient power

allocation. We found that this simple coordination can offer a significant energy efficiency

gain even in dense networks. Second, a joint energy allocation and energy cooperation

is proposed for heterogeneous networks with hybrid power sources and energy storage

systems. For this study, an offline optimization problem is considered, in which the cells

allocate their energy over time based on average rate contraints, the changing channel

conditions and the fluctuating energy arrivals. It is found that an optimal use of the har-

vested energy significantly improves the energy efficiency. A much larger gain is obtained

when energy cooperation is also leveraged, i.e. when the cells can exchange their har-

vested energy through a smart-grid infrastructure. Third, the trade-off between energy

cost and performance is addressed for cooperative clustered small-cell networks. In this

cooperative model, the small-cell base stations form a cluster of distributed antennas to

collectively serve their mobile users. Hence, a joint optimization of cell clustering and co-

operative beamforming is proposed to minimize the total energy cost while satisfying the

users’ quality of service. The problem is formulated as a mixed-integer convex program
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Abstract

and solved with a decomposition method. For a given clustering, a distributed beam-

forming algorithm is also designed to achieve near-optimal performance at a small cost of

signaling overhead. Through simulations, it is shown that these algorithms converge fast

and enable the cooperative small cells to save valuable energy.
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Chapter 1

Introduction

The efficient allocation of resources is a constant and primary concern in the design and

operation of wireless cellular networks. Reliable wireless communications fundamentally

depend on two key resources: radio frequency spectrum and energy. Since the early days

of mobile telephony, it is recognized that the spectrum is a very scarce resource and must

be efficiently reused [2]. In response, the cellular concept was invented at Bell Labs in

1947 as an effective way to improve the spectrum efficiency, expand the service coverage

and increase the network capacity. This is done by installing more base stations, splitting

existing cells into smaller ones [3] and by reusing the spectrum across distant cells. In

fact, cell splitting is still one of the main drivers for capacity growth in all four generations

of cellular networks [4].

Today, network operators face a greater challenge since the proliferation of smart-

phones and the explosion of mobile multimedia applications have led to an exponential

growth of mobile data traffic. Unfortunately, this trend is expected to continue as emerging

Internet-of-Things applications will further amplify this traffic growth. Such applications

will drive more physical objects, such as transportation vehicles, health monitoring systems

or even construction diggers, to be remotely connected to the Internet [5]. In the light of

these data-hungry applications, the wireless industry faces a tremendous challenge to sup-

port a 1000-fold increase in traffic demand over the next decade [6].

Such capacity crunch will require an intense densification of the networks [4]. This

trend will result in a heterogeneous multi-tier design, in which a mixture of small cells and

macrocells is used. The small cells are deployed over macrocells to upgrade the capacity in
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urban and densely populated areas. As a result, each user is brought closer to the network,

ideally within 10-30 meters of the closest small-cell base station. This heterogeneous

design has many benefits, which include lowered link power budget, decreased load per

cell, higher link data rate and better indoor coverage [7].

However, the dense deployment of small cells also raise important questions about

the energy efficiency of such networks. Even if a small cell is served by low-power base

stations, the high density of base stations may lead to a surge in energy cost. Recently,

operators have realized the importance of managing their networks in an energy efficient

way. In fact, studies show that information and communications technology infrastructure

contributes to a 2% of the total amount of CO2 emission levels [8]. Given the exponential

increase in data traffic, it becomes critical to maintain the energy cost at its current level.

This is possible only if more emphasis is placed on energy efficiency when designing and

operating future networks.

In spite of these pressing needs, there is a lack of understanding on how to improve

the energy efficiency of cellular networks. For example, the implication of heterogeneous

networks on energy cost is not well understood. In fact, previous works have mainly

focused on the rate maximization problem. Although there exist some studies on energy-

efficient resource allocation, they have considered only the simplest cases such as a point-

to-point system [9] or a single-cell downlink system with orthogonal transmissions [10,

11]. In contrast, maximizing the energy efficiency in a multi-cell multi-user scenario, such

as small-cell networks, is a challenging open problem. This problem is further complicated

by the inevitable presence of the interference due to the need for full spectrum reuse. Thus,

new methods are needed to maximize the energy efficiency of heterogeneous networks.

In addition, network operators also need new sustainable energy solutions to increase

the capacity in a cost-effective manner. An attractive solution is to harvest inexpensive

and clean energy at each cell from renewable sources such as solar, wind or even radio-

frequency waves [8]. Given the fluctuation of the harvested energy, it is required to com-
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bine the renewable sources with a conventional power source to avoid a detriment of the

quality of service. Actually, this hybrid approach has already been applied to power net-

works in remote or rural areas [12]. For example, network operators have relied on solar

panels, batteries and diesel generators due to lack of consistent access to electricity [12].

Nonetheless, further research efforts are needed to study the efficient use of hybrid source

in large-scale heterogeneous networks. Previous works on resource allocation with hybrid

sources have only considered very simple scenarios [13–15].

Another important consideration is the use of cooperation schemes among the cells.

In fact, there are three ways in which cells can cooperate. The first cooperation scheme

is coordinated multi-cell power allocation. The second cooperation is multi-cell energy

sharing, in which the cells can exchange their harvested energy. This form of cooperation

is motivated by recent efforts by the power industry to modernize electrical power sys-

tems. In particular, future smart-grid technologies will enable a bidirectional energy flow

between distributed energy generators and consumers [16]. This new capability should

be leveraged to better utilize the limited energy in future heterogeneous networks. The

third cooperation scheme is based on coordinated multi-point (CoMP) transmission, in

which the cells share their antennas to collectively serve their users. Using this cooper-

ative transmission scheme, the small cells can better mitigate the interference, achieve a

spatial multiplexing gain and counter the negative effects of the wireless channel fading.

Although many works have explored the benefits of CoMP for spectrum efficiency improve-

ment [17–23], its value in terms of energy efficiency is not yet completely understood.

This thesis deals with the design of energy-efficient resource allocation methods using

a mathematical programming approach. Given that base stations are the most power-

hungry equipment in cellular networks [8], we focus on the downlink of heterogeneous

networks with multiple cells and multiple users. Our goal is to answer the following

two questions. How to achieve energy-efficient transmissions in a multi-cell multi-user

environment? What is the value of cooperation when the cells share their energy or their

3
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antennas?

To do that, we consider three specific network models, each mainly characterized by

the kind of cooperation used by the cells. These models are chosen in order to explore

different solutions for enabling energy-efficient heterogeneous networks, and to capture a

variety of deployment and cooperation scenarios. The first model is a small-cell network

with a centralized architecture. Specifically, the cells are served by radio remote units,

which are connected to a central unit through fronthaul fiber links. In this scenario, the

power allocation of the cells is coordinated by the central unit to maximize the sum of

their energy efficiencies. The second model is a heterogeneous small-cell network with a

hybrid power source. Precisely, each cell is powered by both a conventional power grid

and by renewable sources. In addition to this hybrid power supply, an energy cooperation

is also used so that the cells can exchange their harvested energy through a smart-grid

infrastructure. In this second scenario, the cells also maximize their energy efficiency by

efficiently allocating the pool of harvested energy over a finite time horizon. Finally, the

third model consists of distributed small-cells with conventional power source. The cells

do not share their energy but they can cooperate by sharing their antennas and jointly

transmitting to their users. In contrast to energy cooperation, this type of cooperation is

used to improve the performance at the expense of energy consumption. In this case, the

cells should minimize the total energy cost by optimizing the degree of cooperation and

their beamforming design given a target quality of service.

In the rest of this chapter, the model of heterogeneous networks is described, the con-

sidered resource allocation and multi-cell cooperation schemes are presented in more de-

tails, and the main results of the thesis are outlined.
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1.1. Background

1.1 Background

1.1.1 Wireless Heterogeneous Networks

A heterogeneous multi-tier design will play an important role to support the escalating

traffic demand of future mobile applications [6]. In heterogeneous multi-tier networks, a

large number of small cells are added to complement the macrocells. These small cells can

be of different sizes and include microcells, picocells, indoor femtocells as well as remote

radio units.

There are several benefits to adding small cells [24]. First, they offer a capacity boost in

hot spots with high traffic demand. Next, they improve the coverage in areas not covered

by the macrocells both outdoors and indoors. They also improve the overall network

performance by offloading the traffic from the large macrocells. As a result, heterogeneous

networks can offer a much higher peak and average rates per user as well as a higher bit

rates per unit area.

Unfortunately, a heterogeneous network architecture also comes with many technical

challenges [24, 25]. As explained earlier, it is crucial to minimize the energy cost of the

network in spite of the dense small-cell deployment. Because the spectrum is also limited,

it must be fully reused while mitigating the resulting interference between the cells to an

acceptable level. Another drawback of a heterogeneous design is the need to connect the

small cells’ base stations to the core network through backhaul or fronthaul links [24].

Given different usage and deployment scenarios, both centralized and distributed ar-

chitectures have been envisioned for heterogeneous networks [24]. These are illustrated

in Figure 1.1.

Distributed network architecture

In a distributed deployment scenario, each small cell has a standalone access point or base

station. Each base station has its own power supply. The radio access network functions

5
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Macro Base Station

Remote Radio UnitCentral Unit Fronthaul 
optical link

Backhaul optical 
or mmWave link

Small-cell Base Station

Figure 1.1 – Centralized (left) and distributed (right) heterogeneous RAN architectures.

of each cell, such as user scheduling, resource allocation and baseband processing, are

performed by its own base station. In this case, backhaul links are needed to connect each

cell to the core network. When coordination is needed between the cells, some signaling

information must also be exchanged through backhaul links. This backhaul infrastructure

can be implemented either with optical fiber links or with wireless millimeter-wave links

with a large bandwidth [26].

Centralized network architecture

Recently, there is a strong interest to deploy small cells using a centralized radio access

network architecture (C-RAN), also known as “cloud” RAN. In this case, each cell is served

by a remote radio unit (RRU). The remote units are then connected to a central unit

(CU) via fronthaul optical fiber links. In contrast to the distributed deployment, the radio

access network functions of the cells are performed by the central unit. As a result, the

energy consumption due to processing is controlled by the central unit. This centralized

architecture facilitates the coordination between the cells and can also improve the energy

efficiency of the network [27, 28].
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Figure 1.2 – Rate and energy efficiency vs. power (dB)

1.1.2 Resource Allocation Problems in Wireless Networks

The efficient usage of the spectrum and energy is critical to improving the overall expe-

rience of mobile users and to reducing the operational costs of the network. Typically, a

resource allocation problem is first formulated as an optimization problem based on spe-

cific objectives and constraints. Then, algorithms must be developed to find a feasible and

efficient solution to the optimization problem.

There are several possible design objectives in wireless communications. To give a

simple illustration, let us first consider a single-user single-carrier communication system

with a bandwidth W , a transmit power P and a signal-to-noise power ratio g
σ2 .

A common design goal is to maximize the Shannon’s channel capacity C given by [29]:

C = W log2

(
1 +

gP

σ2

)
. (1.1)

This capacity function, which defines the maximum achievable data rate for reliable com-

munications is a strictly increasing function of the transmit power.
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From energy-limited systems, it is instead desirable to either minimize the energy con-

sumption necessary to satisfy a given rate requirement or to maximize the energy effi-

ciency, also known as the bits-per-Joule capacity [9, 30]:

EE =
W

P0 + ψP
log2

(
1 +

gP

σ2

)
. (1.2)

In (1.2), P0 is the processing power dissipated in the circuit blocks and ψ is the power

amplifier efficiency. In contrast to the capacity (1.1), the energy efficiency function (1.2)

is not a monotonically increasing function of the transmit power. As shown in Figure 1.2,

there is a point at which the effective amount of data transmitted per unit of power is max-

imum. Another important difference between these two functions is that the rate utility

function is concave whereas the energy efficiency function is not. More precisely, (1.2)

is a quasi-concave function. This subtle difference makes the energy efficiency maximiza-

tion problem much more difficult to solve, especially in a multi-user interference-limited

scenario. In fact, it has been solved only in simplest scenarios, such as single-user system

[9] or in single-cell downlink system with orthogonal multi-access scheme [10]. Unfor-

tunately, the algorithm used [9] and [10] cannot be applied to a multi-cell environment,

such as heterogeneous networks.

As previously mentioned, this thesis focuses on the downlink of cellular networks be-

cause the energy consumption of base stations is of a greater concern to network operators.

Note that our design objective is different from that of wireless sensor networks. Since

sensors are powered solely by batteries, the main concerns in these systems are rather to

minimize the transmission delay or to maximize the expected amount of data transmitted

until the sensor’s battery dies [31].
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1.1.3 Coordination and Cooperation Schemes in Heterogeneous

Networks

In a heterogeneous network, the coordination and cooperation between the cells has a

positive impact on the performance in multi-cell environments. We consider three types of

cooperation in this thesis.

First, multi-cell coordination is beneficial for power control and interference manage-

ment. In fact, significant research efforts have been devoted to develop enhanced inter-cell

interference management (eICIC) schemes in heterogeneous networks [32–35]. This is due

to the fact that traditional frequency reuse and orthogonal multi-access schemes are inef-

ficient or infeasible for a large-scale and heterogeneous deployment [32]. To facilitate the

coordination between cells, a centralized network architecture, such as a C-RAN based de-

ployment is desirable. In fact, a distributed coordination is more complicated as signaling

information needs to be exchanged between the cells. In this case, the signaling overhead

should be kept at a minimum level due to the limited capacity of the backhaul links [36].

Second, coordinated multi-point transmission or CoMP is a more powerful cooperation

scheme in which the small-cell base stations form a cluster in order to jointly transmit the

data to each user [37]. It can be used both in downlink and uplink. When CoMP is used in

a heterogeneous network, a number of cells is involved in the data transmission to or from

each user. However, CoMP requires that the transmissions are synchronized and that the

user data are available at every point. Hence, it requires backhaul or fronthaul links with

a higher capacity. Moreover, a C-RAN based deployment can facilitate its implementation

[38]. However, this form of cooperation can incur a large energy consumption due to the

multi-point processing.

Third, an energy cooperation scheme can also be envisaged for distributed small cells

that are powered by a hybrid power source, i.e. each cell draws energy from both re-

newable and conventional energy sources. However, previous works that considered the

dynamic energy management of hybrid-powered cellular networks only considered the

9
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single-cell scenario [10, 39, 40]. For example, [10] studied the energy-efficient power al-

location for a single-cell downlink system. [40] proposed a detailed model of smart hybrid

power system and a real-time energy management to reduce the operational cost of a

base station. Given the recent developments of smart-grid technologies [16, 41], it will

also be important to explore the future possibility for the cells to exchange their harvested

renewable through the smart-grid [42].

1.2 Outline of Thesis

The focus of this thesis is to explore the design of energy-efficient resource allocation

methods as well as the value of cooperation in heterogeneous multi-cell networks. The

outline and the contributions of each chapter are as follows.

Chapter 1, this present chapter, gives the motivation, background and contributions of

this thesis.

Chapter 2 develops a simple multi-cell coordination scheme for maximizing the energy

efficiency of wireless heterogeneous networks. Precisely, each cell optimizes their power

allocation to transmit the maximum number of bits per unit of energy. In this optimization

problem, a wide variety of power constraints can be accommodated including determinis-

tic and probabilistic interference constraints. In addition, two scenarios with orthogonal

transmissions and full spectrum sharing are both treated. Using a parametric approxima-

tion approach, the original complicated non-convex problem is related to a much simpler

family of convex parametric problems. Given this result, the energy-efficient power allo-

cation problem can then be solved within the powerful framework of convex optimization

theory. In particular, convergent algorithms are derived and proven to converge to global

optimum for the case of orthogonal transmissions, and to at least a local optimum for the

case of full spectrum sharing. These algorithms are tested in a simulation of small-cell net-
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works. The simulation results show that the proposed algorithms have a fast convergence

and achieve much better performance compared to an existing game-theoretical scheme.

Chapter 3 considers the joint energy allocation and energy cooperation for heteroge-

neous networks with hybrid power sources. We assume that each cell has access to a

renewable energy source and to the conventional power grid; and has also an energy

storage system. The cells thus allocate their energy over time by considering the time-

varying channel conditions and energy arrivals. The objective is to maximize the energy

efficiency subject to average rate constraints, battery limit constraints and energy causality

constraints. Furthermore, an energy cooperation scheme, in which the cells can exchange

their harvested renewable energy through a smart-grid infrastructure, is also considered.

The goal of this study is to investigate the benefits of using hybrid power source and energy

cooperation scheme in heterogeneous networks. Therefore, offline energy-efficient power

allocation algorithms are developed for this goal. To do that, the optimization framework

of Chapter 2 is extended to handle the dynamic energy constraints and the non-convex

rate constraints.

Chapter 4 considers the joint clustering and cooperative beamforming optimization in

heterogeneous network. In this model, the cells cooperate not by sharing their energy but

instead by sharing their antennas. In other words, they perform a coordinated multi-point

transmission by forming a cluster of distributed antennas. This multi-cell cooperation can

greatly improve the performance of the cells at the expense of an increased energy cost.

Thus, the focus of this chapter is to develop practical methods to achieve an efficient trade-

off between energy and performance. Specifically, a convergent algorithm is proposed for

finding the joint optimal clustering and beamforming vectors. In addition, a distributed

multi-cell beamforming with limited signaling is designed for a given clustering. The con-

vergence and performance of these algorithms are analyzed through simulations.

Finally, Chapter 5 summarizes the main results of the thesis and indicate some inter-

esting directions for future research.
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Chapter 2

Energy Efficiency Optimization in

Wireless Two-tier Networks

2.1 Introduction

In this chapter, we present a generic optimization framework for the energy-efficient power

allocation in wireless heterogeneous two-tier networks. The two-tier base stations control

their transmission powers to maximize the sum of their energy efficiency while respecting

various power constraints. Moreover, we assume that the two-tier network can share the

spectrum with a primary system.

The main contribution in this chapter is an optimization framework for maximizing

the sum energy efficiency of the two-tier cells subject to shared and individual power con-

straints. Before presenting the system model in Section 2.3, we give a detailed review of

state-of-the-art research in energy efficient resource allocation in Section 2.2. In contrast

to earlier works, we focus on the more difficult multi-cell energy-efficient power allocation

problem. We solve this non-convex problem by looking at both the orthogonal multi-

access and full spectrum reuse scenarios. In Section 2.5, we first assume that the cells’

transmissions are non-interfering or orthogonal. Despite the non-convexity of the prob-

lem, we show that it is possible to exploit the problem structure using convex parametric

programming. Then, we derive an algorithm which converges to the global optimal power

allocation.
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Next, we relax the orthogonality constraint in Section 2.6 and allow the cells to inter-

fere with each other while sharing the spectrum. Another algorithm that monotonically

converges to at least a local optimum is derived by applying the minorization-maximization

principle in conjunction with the Newton method.

We also extend the application of the optimization framework to energy-efficient power

allocation problems with imperfect channel state information between the two-tier base

stations and the primary users. In this case, the interference power constraints become

probabilistic. In Section 2.7, we show how to handle such probabilistic constraints using

different robust approximation methods.

Finally, we present some simulation results in Section 2.8, which validate the conver-

gence of these algorithms. In addition, we compare their performance against existing

schemes and analyze the effect of network parameters on the energy efficiency.

2.2 Related Works

The design of energy-efficient resource allocation schemes is not a trivial task mainly be-

cause of the non-concavity of the energy efficiency utility function.

As mentioned in Chapter 1, the energy efficiency maximization was studied only under

simplified network scenarios. First, a single-user point-to-point setting was considered by

[9] and [43]. In [9], Isheden et. al. showed that the energy efficiency function is pseudo-

concave for a single-user system. As a result, the simple Dinkelbach algorithm [44] can

be used to find the optimal solution. The Dinkelbach method could be further applied to

more complicated scenarios under two conditions. First, the utility function must consist

of a single ratio of the sum rate over total power consumption. Second, the multi-user

transmissions should happened over orthogonal non-overlapping channels. For instance,

this approach was used in [45] and [46] for the orthogonal single-cell downlink system

and in [47] for the single-cell uplink system. Similarly, [48] used these two assumptions
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and considered different utility functions for the downlink and uplink systems. For the

uplink system, the considered design objective is to maximize the minimum energy effi-

ciency among all the users. In addition, [48] proposed low-complexity algorithms to find

suboptimal solutions. In [49], the downlink energy optimization of a simultaneous wire-

less information and power transfer system is studied. Again, [49] assumed orthogonal

transmissions. This study was then extended by [50], which also takes the imperfections

of the channel estimation and the multi-user scheduling into account. Finally, similar

energy-efficient resource allocation schemes were proposed for OFDMA relay networks.

For example, [51] solved a joint relay selection, subcarrier allocation and power alloca-

tion problem. The Dinkelbach method was leveraged with an integer relaxation and dual

decomposition to derive practical algorithms. Furthermore, the cooperative beamforming

problem was studied in [52] for a virtual MIMO system consisting of a single source node,

a single destination node and several distributed relay nodes. [52] analyzed the number

of relay nodes that maximizes the efficiency for a given outage constraint. In addition, a

mode-switching algorithm between cooperative beamforming and direct transmission was

studied. Finally, energy-efficient beamforming and scheduling schemes were proposed in

[53] for a coordinated multi-cell downlink network. In that model, a zero-forcing beam-

forming method was used to enforce orthogonality between the transmissions. [53] also

chose the single ratio of sum rate over sum power consumption as the objective function.

These aforementioned works share two basic assumptions: orthogonality between

transmissions is enforced and the energy efficiency utility metric consists of a single frac-

tion. While such a utility function is perfectly valid for a single-cell downlink transmission,

it is not applicable for multi-cell multi-user systems such as a heterogeneous two-tier net-

work. Instead, a more practical utility function is the sum energy efficiency of all users.

In fact, the base station of each cell has independent power amplifier and energy source.

In such setting, the cells also compete for resources. Therefore, it is more natural to use

the sum energy efficiency metric. Actually, it was also shown in [54] that the sum energy
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efficiency utility provides higher degrees of freedom for the system design than the ratio

of sum rate and total power consumption.

However, maximizing the sum energy efficiency is a very hard problem since this util-

ity function is not even quasiconcave. Hence, the Dinkelbach algorithm can no longer

be applied. In addition, the limited spectrum must be reused in heterogeneous two-tier

networks. In fact, it was shown in [55] that the resource allocation becomes inefficient

when channel orthogonality is enforced in two-tier networks. As a result, the interference

between the cells must be mitigated. Nonetheless, the multi-user interference also com-

plicates the resource allocation problem. The previous work in [56] circumvented this

difficulty by aiming for a Nash equilibrium. In contrast, we propose in this chapter a novel

optimization framework that maximizes the energy efficiency maximization in multi-cell

multi-user environments. The framework can handle non-orthogonal transmissions. In

contrast to [56], it achieves at least a local optimum.

2.3 System Model

In this chapter, we consider the downlink of a wireless two-tier network shown in Fig.

2.1. Thus, the system is composed of the two-tier cells C =
{
c1, . . . , c|C|

}
and of the users

U =
{
u1, . . . , u|U|

}
. Here, the notation |S| denotes the cardinal of a set S. Each base station

(BS) of a cell c serves a subset of users Uc. We assume a centralized radio access network

architecture (C-RAN), in which each small cell is served by a radio remote unit (RRU). The

RRUs are connected to a central unit (CU) through fronthaul optical or millimeter-wave

links. The resource allocation is centralized at the CU. In the rest of this chapter, we use

the terms RRU and small-cell base station (SBS) interchangeably. We assume that the BSs

and the users are equipped with single antennas. Moreover, the multi-cell transmissions

are performed over a set of subcarriers S = {1, . . . , N}.
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   Small-cell User (SU) Primary User (PU)Macro Base Station (MBS) Remote Radio Unit

Central Unit
Fronthaul link Desired signal Interference

Figure 2.1 – Wireless two-tier network model.

The power allocation vector of all BSs is denoted by the vector p = (pu,n)u∈U , n∈S ∈

RN |U|
+ . Thus, the signal-to-interference-plus-noise ratio (SINR) of user u on subcarrier n is

given by:

SINRu,n (p) =
pu,nguu,n∑

j∈U\{u}
pj,nguj,n + σ2

u,n

, (2.1)

where σ2
u,n is the variance of an additive white Gaussian noise (AWGN) at user u. In

(2.1), guj,n denotes the channel gain between user u and the BS serving another user j.

It accounts for the path loss attenuation, the large-scale shadowing and the small-scale

Rayleigh fading with distribution CN (0, 1) between the BS and the user.

Remark 2.1. We assumed a Rayleigh distribution to model the fading envelope distribution

of both the desired and interference channels. This is a somewhat conservative assumption

given that, in some small-cell environments such as indoor femto-cells, there can be a

dominant line-of-sight path between the BS and the user. Nonetheless, our assumption

is meant to simplify the analysis. In fact, more generalized models such as the Rician

16



2.4. Problem Formulation

fading model would require more knowledge about the specific propagation environment.

In particular, the Rician K-factor, which is the power ratio between the fixed and scatter

components, is itself a random variable that varies with time, frequency and the location

[57].

For convenience, let us express the power allocation of cell c by pc = (pu,n)u∈Uc, n∈S ∈

RN |Uc|
+ and those of the other cells by the vector p−c , (pj)j∈U\Uc, n∈S ∈ RN(|U|−|Uc|)

+ . The

sum rate of the cell c is thus given by:

Rc (pc,p−c) =
W

N

∑
u∈Uc

N∑
n=1

log (1 + SINRu,n)

where W is the total system bandwidth.

By adopting the linear energy consumption model proposed in [58], the overall power

cost for cell c is given by

Cc (pc) = Pf,c + ψc
∑
u∈Uc

N∑
n=1

pu,n

where Pf,c denotes the fixed power cost due to the BS circuitry and cooling equipment and

ψc is the BS power amplifier efficiency.

2.4 Problem Formulation

In this chapter, we consider the general problem of maximizing the sum of energy efficien-

cies of the two-tier cells subject to a set of power constraints:

maximize
p

∑
c∈C EEc (pc,p−c)

subject to hl (p) ≤ 0, ∀l ∈ V .

(2.2)
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where each function hl, ∀l ∈ V is assumed to be affine. Here, the bit-per-Joule energy

efficiency of each cell c is given by the ratio of its sum rate over its power cost:

EEc (pc,p−c) =
Rc (pc,p−c)

Cc (pc)
. (2.3)

In general, the sum energy efficiency is appropriate to measure the overall energy effi-

ciency of two-tier networks assuming the BSs have independent transmissions and power

sources. However, the following system energy efficiency metric can also be used

EE0 (p) =

∑
c∈C Rc (pc,p−c)

Cc (pc)
(2.4)

when the small-cell base stations have a single power source or when they are able share

their energy.

For example, in C-RAN heterogeneous networks, the small cells are served by remote

radio units which are connected to a central unit. In addition, the system energy efficiency

(2.4) is also useful in a future scenario, in which the cells will be able to harvest energy

from renewable sources and share their energy through a smart-grid infrastructure.

Under the above assumptions, the optimization problem becomes:

maximize
p

EE0 (p)

subject to hl (p) ≤ 0, ∀l ∈ V .

(2.5)

Due to the interference, neither the sum energy efficiency (2.3) nor the system energy

efficiency (2.4) is a concave function. Thus, the above problems cannot be directly solved

with standard convex optimization algorithms. In addition, problem (2.2) is more compli-

cated than problem (2.5) since the former maximizes a sum of non-convex fractions. In

these optimization problems, we have the following power constraints1:

1Note that not all these types of power constraints must be imposed. The constraints of the resource
allocation will depend on both the network architecture and deployment scenario.
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Individual transmit power constraints

Due to regulations and hardware limitations, the macrocell and small-cell base stations

are subject to transmit power limitations. For a standard cellular deployment, each base

station has its own power supply and is subject to an individual power constraint:

∑
u∈Uc

N∑
n=1

pu,n ≤ Pc, ∀c ∈ C.

Total transmit power constraint

For the case of cloud-radio access network (C-RAN) deployment, the two-tier cells are

served by RRUs and may share a total transmit power constraint. In a C-RAN, the low

power requirements of RRUs can enable them to be powered by a centralized DC power

supply that is located at the central unit [28]. In that case, the cells may share a total

transmit power constraint:

∑
c∈C

∑
u∈Uc

N∑
n=1

pu,n ≤ Ptotal.

Interference temperature constraints

It is also possible for future two-tier cells to use a spectrum band that is licensed to a

primary system. Using a cognitive underlay model, the primary and secondary systems co-

exist and share the same spectrum. Assuming there are primary users V =
{
v1, . . . , v|V|

}
,

the two-tier cells should not exceed the interference power limit Imax
l measured in Watts

imposed by each primary user l as follows∑
c∈C

∑
u∈Uc

N∑
n=1

pu,nglc,n ≤ Imax
l , ∀l ∈ V , (2.6)

where glu,n is the channel gain on subcarrier n between a primary user l and the BS that

serves a user u. Note that it is also possible to adopt this cognitive underlay mechanism

in the resource allocation of the heterogeneous network. Precisely, the small cells are
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considered as secondary users whereas the macrocell users are the primary users. In fact,

such spectrum sharing scheme has the benefits of mitigating the inter-cell interference and

improve the spectrum efficiency of heterogeneous networks [59, 60].

Probabilistic interference constraints

The aforementioned cognitive underlay scheme works well if the BSs are able to estimate

the channels to the primary users. In practice, the channel information can be imperfect

due to estimation errors. To take this uncertainty into account, the deterministic inter-

ference constraints in (2.6) can be replaced by probablistic interference constraints of the

form:

Pr

{∑
c∈C

∑
u∈Uc

N∑
n=1

pu,nglc,n ≤ Imax

}
≥ 1− ε, ∀l ∈ V (2.7)

In (2.7), glc,n represents the uncertain channel gain which depends on the random variable

ζlc,n in an affine fashion as:

glc,n = ĝlc,n + ∆glc,nζlc,n (2.8)

where ĝlc,n denotes the estimated channel gain and ∆glc,n is the absolute value of the

maximum channel estimation error. The random error variables {ζlc,n} are assumed to

have mutually independent distributions with E [ζlc,n] = 0 and |ζlc,n| ≤ 1, ∀ (l, c, n). In

other words, we assume that the uncertainty region of the random variables ζ = (ζlc,n)∀l,c,n

is given by:

D = {ζ | ‖ζ‖∞ ≤ 1} (2.9)

Note that this bounded uncertainty model is reasonable because, with a limited coor-

dination between the primary and secondary systems, it is difficult for the secondary users

to obtain complete information about the probability distributions. Instead, the small-cell

BSs can get estimate the error bounds on the channel estimation through empirical mea-

surements. Although the probabilistic contraints (2.7) are non-convex, we will show in

Section 2.7 to handle them.
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2.5 Special Case: Orthogonal Multi-cell Transmissions

In this section, we first simplify the generic problem 2.2 by assuming orthogonal transmis-

sions for the users. One way to ensure orthogonality is by scheduling the users on different

frequency subcarriers. We assume that this is performed before the power allocation. An

alternative way to enable orthogonal transmissions is spatial multiplexing scheme but this

requires multiple antennas at the base stations so as to cancel the interference between

the concurrent transmissions.

2.5.1 Parametric Convex Programming

With orthogonal transmissions, there is no interference between the users at each subcar-

rier. Thus, the rate function Rc of each cell c is concave and depends only on its power

allocation vector pc. Nonetheless, the energy efficiency maximization problem is still hard

to solve since the objective function is a sum of quasiconcave functions.

Let us write this problem in its epigraph form to obtain the equivalent formulation:

(P )



maximize
p,θ

∑
c∈C θc

subject to Rc (pc)− θcCc (pc) ≥ 0, ∀c ∈ C,

hl (p) ≤ 0, ∀l ∈ V ,

(2.10)

in which we introduced some auxilliary variables θ , (θc)c∈C ∈ R|C|. To further simplify the

notation, let us gather the convex power constraints into a convex set K of feasible power

allocation as follows:

K ,

 p ∈ RN |U|×1 : hl (p) ≤ 0, ∀l ∈ V

 . (2.11)
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Next, we introduce the following family of parametric convex problems (Px)

(Px)


maximize

p

∑
c∈C αc (Rc (pc)− θcCc (pc))

subject to p ∈ K,

(2.12)

which is parametrized by the following vector of parameters x , (α, θ) ∈ R2|C| with α ,

(αc)c∈U ∈ R|C|. Note that whereas the vector θ corresponds to optimization variables in the

original problem (P ), it is considered as a vector of parameters in (Px). We can interpret

the parametric problem (Px) as a weighted sum rate maximization with penalty terms.

Precisely, α is a priority weight vector and θ is a pricing vector for the penalty terms.

Since (Px) is convex, its solution can be efficiently and reliably computed using standard

algorithms [61]. In our simulations, we employed the disciplined convex optimization

software CVX to solve the convex subproblem (2.12) [1].

To find an easier way to solve the non-convex problem (P ), we establish the following

relation between (P ) and the convex parametric problem (Px).

Proposition 2.1. If
(
p̂, θ̂
)

is an optimal solution of (P ), then there exists α̂ such that p̂ is a

solution of (Px) with x =
(
α̂, θ̂
)

. Moreover, p̂ must satisfy the following equations:

Rc (p̂c)− θ̂cCc (p̂c) = 0, ∀c ∈ C, (2.13)

α̂cCc (p̂c)− 1 = 0, ∀c ∈ C. (2.14)

Proof. See Appendix A.1.

Since the energy maximization problem (P ) in (2.10) is always feasible, the above

results means that there exists at least one parameter x that satisfies the following two

conditions. First, the solution p̂ of the corresponding convex parametric problem (Px)

coincides with the optimal solution of (P ). Second, the solution p̂ must satisfy the system

of 2 |C| nonlinear equations in (2.13) and (2.14).
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For conciseness, let us define a function p̃ (x) : R2|C| → K which takes as input a pa-

rameter x and returns an optimal solution of the parametric problem (Px). Mathematically,

we have:

p̃ (x) = argmax
hl(p)≤0, ∀l∈V

∑
c∈C

αc (Rc (pc)− θcCc (pc)) (2.15)

Then, we also introduce the following system of nonlinear equations:

F (x) = 0, (2.16)

where the components of the vector-valued function F : R2|C| → R2|C| are defined by:

Fc (x) = θcCc (p̃ (x))−Rc (p̃ (x)) , ∀c ∈ C (2.17)

Fc+|C| (x) = αcCc (p̃ (x))− 1, ∀c ∈ C. (2.18)

Each of these component functions is defined by composite functions of the cell rate Rc or

the power cost Cc with the function p̃ defined in (2.15).

Given the above definitions, Proposition 2.1 equivalently says the following. If a power

allocation p̂ solves the energy maximization problem (P ), then there exists a parameter

x =
(
α̂, θ̂
)

such that p̂ = p̃ (x) and the parameter x is a root of the system of nonlinear

equations F (x) = 0. This indicates an indirect route for solving the non-convex optimiza-

tion (P ). When (P ) is feasible, then at least one root of F (x) = 0 exists. Furthermore,

if F (x) = 0 has a unique solution x̂, then a global optimal solution of the sum energy

maximization problem (P ) is exactly given by p̃ (x̂). In the next part, we show that the

solution of F (x) = 0 is indeed unique. As a result, it is possible to solve (P ) by finding the

parameter satisfying F (x) = 0 using an iterative method.

2.5.2 Uniqueness of the Root of F (x) = 0

To establish the uniqueness of the solution of F (x) = 0, we derive some useful properties

of F (x). First, let us define X as the convex and compact set of parameters:
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2.5. Special Case: Orthogonal Multi-cell Transmissions

X ,
{
x = (α, θ) ∈ R2|U|

+ | −αmin
c ≤ αc ≤ αmax

c , −θmin
c ≤ θc ≤ θmax

c

}
. (2.19)

The bounds in (2.19) are defined for each cell c ∈ C as:

αmin
c = min

p∈K

1

Cc (pc)
, αmax

c = max
p∈K

1

Cc (pc)
, (2.20)

θmin
c = min

p∈K

Rc (pc)

Cc (pc)
, θmax

c = max
p∈K

Rc (pc)

Cc (pc)
. (2.21)

These bounds are finite and well-defined whenever the feasible set K in (2.11) is non-

empty.

By definition, any solution of F (x) = 0 has to satisfy the conditions (2.13) and (2.14).

Thus, given the bounds of X in (2.20) and (2.21), we can restrict the function F (x) to

be defined over the set X . Effectively, any solution of F (x) = 0 cannot lie outside of X .

Then, we can obtain the following key properties for the function F (x).

Lemma 2.1. When defined over the set X , the vector function F defined in (2.17) and (2.18)

must satisfy the following:

1. F is differentiable and its Jacobian F′ is a non-singular, diagonal and positive definite

matrix given by:

F′ (x) =


diag

(
(Cc (p̃ (x)))c∈C

)
0|C|×|C|

0|C|×|C| diag
(
(Cc (p̃ (x)))c∈C

)

 . (2.22)

2. F is Lipschitz continuous and strongly monotone in X with constants M ≥ 0 and

m > 0 respectively.

3. The Jacobian F′ of F is Lipschitz continuous and its inverse is bounded.

Proof. The proofs are given in Appendix A.2.
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2.5. Special Case: Orthogonal Multi-cell Transmissions

With the above properties of F, we have the following useful result about the system

F (x) = 0 (2.16).

Proposition 2.2. There is a unique solution to the nonlinear system F (x) = 0 in the set X .

Proof. The proof is given in Appendix A.3.

Consequently, if we can find the unique parameter x̂ that satisfies F (x) = 0, the optimal

solution of the energy efficiency maximization problem (P ) can be determined by solving

the convex problem (Px) with its parameter set to x = x̂.

2.5.3 Damped Newton Algorithm

Given the results of the previous section, we derive an iterative algorithm for solving prob-

lem (P ) using a damped Newton method [62]. The proposed algorithm is listed in Algo-

rithm 2.1 on the next page. First, we initialize the power allocation p(0) ∈ K of the users

and set the initial parameter x(0) =
(
α(0), θ(0)

)
as follows:

α(0)
c =

1

Cc

(
p

(0)
c

) , ∀c ∈ C, (2.23)

θ(0)
c =

Rc

(
p

(0)
c

)
Cc

(
p

(0)
c

) , ∀c ∈ C. (2.24)

In each iteration i, we solve the convex parametric subproblem in (2.12) for a given

parameter x(i) to obtain a new power allocation p̃
(
x(i)
)
. After this, if the termination

condition
∥∥F (x(i)

)∥∥ < ε is satisfied for a given tolerance ε > 0, then we stop the algorithm.

Otherwise, we update the parameter x(i) using a damped Newton method. Precisely, we

first calculate the Newton step at the i-th iteration by:

d(i) = −F′
(
x(i)
)−1

F
(
x(i)
)
, (2.25)
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2.5. Special Case: Orthogonal Multi-cell Transmissions

where F′ is the Jacobian matrix in (2.22) of the vector-valued function F. From Lemma

2.1, F′ (x) is a diagonal positive definite matrix; hence, its inverse can be easily computed.

Then, we use a line search to control the step size 0 < λ < 1 so as to avoid overshooting

[63]. In other words, we start with a full Newton step λ = 1 and reduce it by a factor

0 < σ < 1 until a sufficient decrease in the norm of
∥∥F (x(i) + λd(i)

)∥∥ is obtained [62].

After this line search, we update the parameter vector as:

x(i+1) , x(i) + λd(i). (2.26)

By substituting (2.17), (2.18) and (2.22) into (2.25), the update equation (2.26) of the

parameter x(i) =
(
α(i), θ(i)

)
in step (S.4) is given component-wise by:

α(i+1)
c = (1− λ)α(i)

c + λ
1

Cc

(
p

(i)
c

) , ∀c ∈ C, (2.27)

θ
(i+1)
i = (1− λ) θ

(i)
i + λ

Rc

(
p

(i)
c

)
Cc

(
p

(i)
c

) , ∀c ∈ C. (2.28)

At the next iteration, we solve again the parametric problem (2.12) with the new pa-

rameter x(i+1). This iterative process is carried on until convergence.

Before presenting the convergence of this algoritm in the following proposition, we

should discuss the importance of the parameter updates in (2.27) and (2.28). As men-

tioned earlier, the parameter αc plays the role of a priority weight in the parametric prob-

lem (Px) whereas θc is a pricing factor that corresponds to the power penalty term of cell

c. Intuititely, the priority weight α(i+1)
c for the next iteration is calculated as a weighted

sum of the most recent value α(i)
c and the inverse of the power cost Cc

(
p

(i)
c

)
. The pricing

factor θ(i+1)
i is similarly updated based on the energy efficiency achieved by cell c in the

last iteration.

Proposition 2.3. The iterative damped Newton Algorithm 2.1 converges to an optimal solu-

tion of the power allocation problem (P ) in (2.10).
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2.6. General Case: Non-orthogonal Transmissions

Algorithm 2.1: Algorithmic procedure for solving (P )

Initialize: ε, 0 < (µ, λ, σ) < 1, p(0) ∈ RN |U|.
Set x(0) using (2.23) and (2.24) and set i = 0,
Repeat

(S.1) : Compute p̃
(
x(i)
)

by solving the parametric problem (2.12),
(S.2) : Initialize λ← 1,
(S.3) : Compute x(i) + λd(i) using (2.27)-(2.28),
(S.4) : while

∥∥F (x(i) + λd(i)
)∥∥ > (1− µλ)

∥∥F (x(i)
)∥∥ do λ← σλ

(S.5) : Update x(i+1) ← x(i) + λd(i)

Until
∥∥F (x(i)

)∥∥ ≤ ε

Proof. According to Proposition 2.1, an optimal solution of (P ) must also be a solution of

a parametric problem (Px) whose parameter x is necessarily a solution of F (x) = 0. In

Proposition 2.2, we have shown that F (x) = 0 has a unique solution. Thus, Algorithm 2.1

can retrieve an optimal solution of (P ) by iteratively finding the unique solution of F (x) =

0 and solving the parametric convex problem (Px). A rigorous convergence analysis of the

Newton method is available in [62, 63].

2.6 General Case: Non-orthogonal Transmissions

In this section, we tackle the energy efficiency maximization problem in (2.2) for the

general scenario. In other words, we relax the assumption that the transmissions are

orthogonal. In other words, the cells are now assumed to fully reuse the spectrum and may

interfere with each other. To tackle the difficulty in solving this optimization problem, we

apply the principle of minorization-maximization in conjunction with the previous Newton

method. First, let us give the definition of a minorization.

Definition 2.1. Given a function f defined over K ⊂ Rn, another function g defined over

K ×K is said to minorize f if the following conditions are satisfied:

f (p) ≥ g (p,q) ∀ (p,q) ∈ K ×K, (2.29)

f (p) = g (p,p) ∀p ∈ K. (2.30)
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2.6. General Case: Non-orthogonal Transmissions

In other words, g as a function of p and q is upper-bounded by f and coincides with f when

q = p. This property is very useful when we want to maximize a complicated function f

and have access to a simpler minorizing function g. Instead of solving f directly, we use

the following sequential procedure to solve the original problem:

p(j+1) = argmax
p∈K

g
(
p,p(j)

)
, (2.31)

where at each iteration j, we compute p(j+1) by maximizing the minorization function g

with q = p(j). The minorization-maximization (MM) is a general principle for solving

non-convex optimization problems. For example, it has been widely used in statistics and

machine learning [64]. It has also surfaced in wireless resource allocation and localization

problems in [65–67]. In these cited works, the utility function consists of a difference

of convex (D.C) functions; and the MM principle directly leads to the convex-concave

procedure (CCCP) [68], a special algorithm for D.C programs. In contrast, our problem

does not have this form so that the CCCP algorithm is not directly applicable.

2.6.1 Problem Reformulation

As mentioned previously, the sum energy efficiency function is not convex because of the

interference coupling in the SINR expression and of its sum-fractional form. Therefore, it

is useful to find a minorizing function of the energy efficiency utility function.

For convenience, let us define for each user u ∈ U the following two functions:

vu (p−u) =
N∑
n=1

log

σ2
u,n +

∑
k∈U\{u}

pk,ngk,n

 , (2.32)

lu (p−u,q−u) = vu (q−u) +∇vu (q−u)
> (p−u − q−u) , (2.33)

where p−u ∈ RN(|U|−1) is the power allocation of all users except user u. The gradient of

vu (q−u) in (2.33) is a vector of length N (|U| − 1) given by
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2.6. General Case: Non-orthogonal Transmissions

∇vu (q−u) =

 guj,n
σ2
u,n +

∑
k∈U\{u}

pkgik


j∈U\{u}, n∈S

. (2.34)

Then, we have the following result which provides a way to solve the energy efficiency

maximization (2.2) in its general form.

Lemma 2.2. A minorization function for the sum energy efficiency function is given by

g (p,q) ,
W

N

∑
c∈C

∑
u∈Uc

[∑N
n=1 log

(
σ2
u,n +

∑
j∈U

pj,nguj,n

)
− lu (p−u,q−u)

]
Cc (pc)

. (2.35)

Proof. The sum energy efficiency function (2.3) can be rewritten as

f (p) =
∑
c∈C

∑
u∈Uc

[∑N
n=1 log

(
σ2
u,n +

∑
j∈U

pjguj

)
− vu (p−u)

]
Cc (pc)

,

where the function vu defined in (2.32) is a concave function of p−u. Therefore, it is

bounded above by its first-order Taylor approximation lu defined in (2.33) as

vu (p−u) ≤ lu (p−u,q−u) , ∀p−u,q−u, ∀u ∈ U (2.36)

and the equality holds at q−u. Furthermore, since the power cost Cc (pc) is always a

positive function, then we can deduce that:

g (p,q) =
W

N

∑
c∈C

∑
u∈Uc

[∑N
n=1 log

(
σ2
u,n +

∑
j∈U

pj,nguj,n

)
− lu (p−u,q−u)

]
Cc (pc)

≤ f (p) . (2.37)

In other words, the function g (p,q) defined in (2.35) minorizes the sum energy efficiency

function f (p) and the equality holds when q = p.

The benefit of using g as the objective function of the surrogate maximization prob-

lem (2.31) is that we can compute its global optimal solution using the damped Newton
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2.6. General Case: Non-orthogonal Transmissions

Algorithm 2.2: Minorization-Maximization algorithm based on Newton method
Initialize: ε,p(0) ∈ RN |U| and set j = 0.
Repeat

(S.1) : Minorize the EE utility function f at p(j) using (2.35)
(S.2) : Update the power allocation as p(j+1) = argmax

x∈K
g
(
p,p(j)

)
(S.3) : j ← j + 1

Until
f(p(j+1))−f(p(j))

f(p(j))
≤ ε

method presented in Section 2.5. This is explained in more details in the next subsection.

2.6.2 Minorization-Maximization Algorithm

We derive an iterative algorithm for the sum energy maximization problem for the case of

non-orthogonal transmissions using the minorization-maximization (MM) procedure. At

each iteration j, a minorization function g
(
p,p(j)

)
of the sum energy efficiency is obtained

using equation (2.35). Then, we maximize this surrogate function g
(
p,p(j)

)
using the

damped Newton method presented in Section 2.5. Each solution of this subproblem gives

us a new power allocation p(j+1) which is used to provide a new minorizing function

g
(
p,p(j+1)

)
for the next iteration. This algorithm, which is outlined in Algorithm 2.2, has

a nice convergence property as stated by the following proposition.

Proposition 2.4. The minorization-maximization algorithm monotonically converges to at

least a local optimum of the sum energy efficiency maximization problem.

Proof. To show that the algorithm is monotonically convergent, we prove that:

f
(
p(j+1)

)
≥ f

(
p(j)
)
, ∀j. (2.38)

According to Lemma 2.2, g minorizes the energy efficiency function f . Thus by (2.29), we

have:
f
(
p(j+1)

)
≥ g

(
p(j+1),p(j)

)
. (2.39)

Next, we show that the damped Newton method can be used to compute:
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2.6. General Case: Non-orthogonal Transmissions

p(j+1) = argmax
x∈K

g
(
p,p(j)

)
. (2.40)

Using (2.35), the minorization maximization problem (2.40) can be written in an epigraph

form: 

maximize
p,θ̃

∑
c∈C θ̃c

subject to R̃c (p)− θ̃cCc (pc) ≥ 0, ∀c ∈ C,

hl (p) ≤ 0, ∀l ∈ V ,

(2.41)

where θ̃ are new auxilliary variables.

The minorized functions R̃c in (2.41) are given by

R̃c (p) ,
∑
u∈Uc

[
N∑
n=1

log

(
σ2
u,n +

∑
j∈U

pj,nguj,n

)
− lu (p−u,q−u)

]
, ∀c ∈ C.

In contrast to the cell sum rate function, each minorized function R̃c is strictly concave in

p. As a result, the surrogate problem in (2.40) share the same properties as the problem

(P ) in (2.10). This means that we can also use the convex parametric approach presented

in Section 2.5 to solve (2.40). Hence, the statements in Propositions 2.1 and 2.2 also hold

for (2.40). Thus, the damped Newton method in Algorithm 2.1 can be used to find the

power allocation p(j+1) that maximizes the function g
(
p,p(j)

)
.

Therefore, the following holds at the j-th iteration of Algorithm 2.2:

g
(
p(j+1),p(j)

)
≥ g

(
p(j),p(j)

)
= f

(
p(j)
)
, (2.42)

where the last equality is due to the definition of minorization function in (2.30). By

combining (2.39) and (2.42), we proved that f
(
p(j+1)

)
≥ f

(
p(j)
)
, ∀j.

Even if the original problem is not convex, our proposed algorithm can produce an

efficient power allocation using the minorization-maximization procedure and Newton
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method. In the next section, we verify the convergence properties and analyze the per-

formance of these algorithms.

2.6.3 Practical Issues for Implementation

Given the above-proposed algorithm, we should discuss two aspects that are important for

implementation.

First, the proposed resource allocation scheme relies on accurate channel state esti-

mates. This downlink channel estimation can be done through pilot signal training either

directly from the base stations to the mobile users in a Frequency Division Duplex system

(FDD) or reversely from the mobile users to the base stations in a Time Division Duplex

system (TDD). The later is preferable assuming the channel reciprocity is preserved in the

small-cell propagation environment. In fact, the direct channel estimation requires a feed-

back link for the users to communicate the channel estimates to the base stations. This

may be expensive in terms of spectrum efficiency especially since it has to be done over

the air. Exploiting channel reciprocity in a TDD system, we can avoid this overhead. While

we assume perfect channel information between the base stations and served users of the

two-tier network, it is more difficult to acquire perfect channel information for the channel

towards primary users due to the lack of coordination. In this case, we explicitly consider

the channel uncertainty that may be present in the interference constraints in the next

section.

Second, it is also crucial that the resource allocation must satisfy a delay requirement

that does not exceed the channel coherence time. This coherence time approximately

equals to the inverse of Doppler spread and depends on the mobility of the users. We

can envisage that small-cells are mostly deployed in urban areas where most communi-

cation happens indoor. In such case, the coherence time can be within 500 − 3000ms at

a 2.5Ghz frequency band [69]. Therefore, the channel state information must be shared

by the base stations to the central unit before the channel state changes. To meet this re-
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quirement, high-capacity front-haul links are able to meet such demand. In fact, fronhaul

link requirements, as specified by mobile network operators, should have a delay in the

order of 45-250ms with a maximum supporting distance between the RRU and CU of 50km

[70]. Our proposed method can implemented by solving the inner problem with standard

convex optimization algorithms, such as interior-point methods which have a polynomial-

time complexity [61]. As shown in our simulation results, the algorithm converges very

fast, within 10 iterations. Therefore, it is practical to be used in the presented centralized

framework since the central unit has a much higher processing power than a standard base

station [71, 72].

2.7 Power Allocation with Probabilistic Interference

Constraints

In the following, we consider the energy efficient resource allocation with probablistic in-

terference power constraints due to the channel uncertainty between the primary users

and the small-cell BSs. To handle the intractability of the probabilistic constraints (2.7),

we replace them by robust approximation framework [73]. In other words, we replace the

probabilistic constraints with conservative yet convex ones. Denote the concatenation of

channel uncertainties for each primary user l by the vector ζl , (ζlc,n)c∈C,n∈S . By substitut-

ing the channel gain (2.8), we can rewrite (2.7) for each c as:

Pr

{∑
c∈C

∑
u∈Uc

N∑
n=1

∆glc,npu,nζlc,n ≤ Imax −
∑
c∈C

∑
u∈Uc

N∑
n=1

pu,nĝlc,n

}
≥ 1− ε (2.43)
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Ball-box approximation

The above constraint (2.7) can be replaced by the ball-box approximation given by [73]:

∑
u∈U

pun (ĝlc,n + ∆glc,nζlc,n) ≤ Imax, ∀ζl ∈ Z1 (2.44)

Z1 , {ζl | ‖ζl‖2 ≤ Ω, ‖ζl‖∞ ≤ } (2.45)

which is equivalent to the following system of constraints:

zlc,n + ulc,n = −∆glc,npu,n, ∀u ∈ Uc, ∀c ∈ C (2.46)

∑
c∈C

∑
u∈Uc

N∑
n=1

|zlc,n|+ Ω

√√√√∑
c∈C

∑
u∈Uc

N∑
n=1

u2
lc,n ≤ Imax −

∑
c∈C

∑
u∈Uc

N∑
n=1

pu,nĝlc,n (2.47)

where {zilc}i and {uilc}i are new slack variables. The following proposition, which is due

to [73], states that we can use the above constraints to replace the probabilistic constraints

(2.43).

Proposition 2.5. [73] Every feasible power allocation p of the system of constraints (2.46)-

(2.47) also satisfies the probabilistic interference constraint (2.43) provided that Ω ≥
√

2 ln (1/ε).

Thus, all feasible power allocations with respect to the above constraints (2.46) and

(2.47) satisfy the interference power constraint
∑

c∈C
∑

u∈Uc
∑N

n=1 pu,n (ĝlc,n + ∆glc,nζlc,n) ≤

Imax with a probability of at least 1− ε.

In contrast to the probabilistic constraint (2.43), constraints (2.46) are more tractable

since they are represented by convex conic constraints. Interestingly, constraint (2.46) can

also be interpreted as a robust interference constraint in which the channel uncertainty

belongs to the intersection of a ball with radius Ω and a box with an edge length of 2 both

centered at the origin.

34



2.7. Power Allocation with Probabilistic Interference Constraints

Budgeted robust approximation

Alternatively, we also consider the budgeted robust approximation of the probabilistic con-

straints (2.43) defined by:

∑
u∈U

pun (ĝlc,n + ∆glc,nζlc,n) ≤ Imax, ∀ζl ∈ Z2 (2.48)

Z2 ,

{
ζl | ‖ζl‖∞ ≤ ,

∑
c∈C

∑
u∈Uc

N∑
n=

|ζlc,n| ≤ γ

}
(2.49)

It can also be shown that the above budgeted robust constraints (2.43) can be equiva-

lently represented by the following finite system of linear constraints [73]:

zlc,n + ulc,n = −∆glc,npu,n, ∀u ∈ Uc, ∀c ∈ C (2.50)∑
c∈C

∑
u∈Uc

N∑
n=1

|zlc,n|+ γmax
c∈C
|ulc,n| ≤ Imax −

∑
c∈C

∑
u∈Uc

N∑
n=1

pu,nĝlc,n (2.51)

Then, the following proposition gives the value of the budget parameter γ that guaran-

tees the satisfaction of the probabilistic constraints (2.43) [73].

Proposition 2.6. [73] Let (pi)i∈U be a feasible solution of the system of constraints (2.50)-

(2.51), then it also satisfies the probabilistic interference constraint (2.43) provided that we

set γ ≥
√

2 |U| · |C| ln (1/ε).

Compared to the ball-box approximation (2.46), the budgeted approximation is more

conservative when the uncertainty budget parameter γ is linked to the safety parameter

Ω in the ball-box approximation according to γ = Ω
√
|U| · |C|. However, the advantage of

the budgeted approximation is that we could model the robustness with linear constraints,

thus reducing the computational complexity especially if one wants to decompose the

optimization problem.
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Worst-case robust interference constraints

Finally, it is possible to consider a worst-case robust approach by approximating the inter-

ference constraints with:

∑
c∈C

∑
u∈Uc

N∑
n=1

pu,n (ĝlc,n + ∆glc,nζlc,n) ≤ Imax, ∀ζl∈ Dl (2.52)

Dl , {ζl | −1 ≤ ζil,c ≤ 1, ∀ (i, c) ∈ U × C} (2.53)

This is also equivalent to:

∑
c∈C

∑
u∈Uc

N∑
n=1

|∆glc,npu,n| ≤ Imax −
∑
c∈C

∑
u∈Uc

N∑
n=1

pu,nĝlc,n (2.54)

Consequently, the energy efficiency optimization framework can also handle probabilis-

tic power constrains using the robust approximation framework presented above.

2.8 Simulation Results

In this section, we present our simulation results for a two-tier wireless system composed

of M primary users served by the macrocell and N secondary users, each of which is

served by a hotspot picocell BS. Based on the WINNER models [74], the large-scale path

loss attenuation PL (in dB) is calculated as a function of the distance (in meters) and

carrier frequency (fc in GHz):

PL = A log10 (d) +B + C log10

(
fc
5.0

)
+ S [dB] (2.55)

where S is the random log-normal shadowing. For the two-tier cellular network, the model

parameters for each respective scenario are detailed in Table 2.1. The maximum values of

total transmit powers and the small-cell BSs’ circuit-power consumption are also listed in
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Table 2.1 – Simulation parameters in Chapter 2.

Parameters Values

Carrier frequency fc = 1.9 GHz

System bandwidth 5 MHz

Sub-channel bandwidth 180 kHz

Number of primary macro users 5

SBS-to-SU path loss (model A1-LOS) A = 1.87, B = 46.8, C = 20

SBS-to-PU path loss (model A1-NLOS) A = 3.68, B = 43.8, C = 20

MBS-to-SU path loss (model C1-NLOS) A = 3.36, B = 44.36, C = 23

MBS antenna height hMBS = 50 m

Standard deviation of SBS-to-SU shadowing S = 3 dB

Standard deviation of SBS-to-PU shadowing S = 4 dB

Standard deviation of MBS-to-SU shadowing S = 6 dB

MBS maximum transmit power 46 dBm

SBS maximum transmit power 36 dBm

SBS circuit power consumption 20 W

Noise Power Density −174 dBm/Hz
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Table 2.1. Since we consider only a transmission on one sub-channel, we normalized these

values in accordance with the subchannel bandwidth.

With uniform distribution, we randomly placed N small-cell BS in a 1km by 1km grid

region, at the center of which the macrocell BS is located. The optimization of small-cell

transmissions follows after the cell association. Using a simple weighted max-SNR associa-

tion rule, we determined the macrocell and small-cell coverage regions as multiplicatively

weighted Voronoi tesselations [75]. The weigths were specified by the effective cell asso-

ciation bias β between the macrocell and small cells which can be controlled to expand

or shrink the small-cells’ range. Precisely, β is a weighted ratio of the received SNR from

macrocell BS versus small-cell BS [76]. For simplifying our analysis, we place all small-cell

users on their cell edges as illustrated in Fig. 2.2.

2.8.1 Convergence Results

First, we study the convergence of the proposed algorithms for the case of orthogonal

transmissions and Imax = 0dB with respect to noise level. For simplicity, we set the in-

terference power limit Imax to be equal for every macrocell user. In Fig. 2.3a, a fast

convergence is observed for the damped Newton algorithm. Its convergence is displayed

in terms of ‖F (x)‖. We see that the optimal parameter x∗ can be found within 5 iterations

for a specified tolerance ε = 10−4.

For the general case, we employ Algorithm 2.2 to find an energy-efficient power alloca-

tion. Fig. 2.3b shows that it achieves near-optimal performance within a total of 10 inner

iterations.

2.8.2 Performance Benchmark

In the following, we compare the average performance of the proposed spectrum sharing

scheme with that of the algorithm in [56], which is based on non-cooperative game theory.
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E�ective cell association bias:

= 9dB= 6dB

Macrocell base station Small-cell base station

Macrocell user Small-cell user

Figure 2.2 – Cell association regions of a two-tier network with 5 macro-cell users and 10 small-cell BSs.
Solid and dashed circular lines show the cell edges with effective cell association bias β of 6 dB and 9 dB
respectively. Small-cell users are randomly located on the cell edges.
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Figure 2.3 – Convergence of proposed algorithms.

The comparison is made for different number of small cells N and for different values of

the cell association bias β and of the interference limit Imax (in dB) relative to the noise

power. For a given set of simulation parameters (N, β, Imax), we generate 200 random

instances of the network topology and channel realization, over which we average the

performance of the proposed and comparative schemes.

First, the average sum energy efficiency is shown in Fig. 2.4. It is seen that our proposed

scheme outperforms the non-cooperative approach. When an optimal power allocation is

employed, the energy efficiency increases with the number of active small cells. In contrast,

the performance achieved by the Nash equilibrium solution decreases when more small

cells compete in a selfish way. This result is also reflected in the convergence behavior of

the non-cooperative game as shown in Fig. 2.3b. Furthermore, Fig. 2.4 shows that higher

energy efficiency can be obtained when small-cell uses shorter cell range. This corresponds

to β = 9dB in our example. Next, Fig. 2.5 shows that our proposed scheme provides a

better sum rate performance compared to non-cooperative scheme, especially when the

small cells’ range are bigger, i.e. with β = 6dB.
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Figure 2.6 – Average total interference power at a macro-cell user.

As we expected, the performance of our scheme slightly decreases when the interfer-

ence limit imposed by the macrocell users is stringent. For instance, when Imax = 10dB

and β = 9dB, it appears that the non-cooperative scheme provides a higher sum rate than

our proposed scheme. Nonetheless, the comparison is not fair since the non-cooperative

scheme ignores the interference power limits imposed by the macrocell users. Indeed,

Fig. 2.6 shows that with the non-cooperative scheme, the interference power received by

the primary users always exceed the limit imposed by up to 40dB margin when there are

many active small-cells in the two-tier network. In contrast, our proposed scheme always

satisfies the total interference limit imposed by the primary users.
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Figure 2.7 – Performance of sum rate-optimal power allocation vs. Imax with P0 = 10 dB.

2.8.3 Impact of Imperfect Channel Information

Here, we simulate the resource allocation with probabilistic interference constraints for

a system of 3 small-cells and 2 primary users. We use |C| = 64 subcarriers. For the

probabilistic interference constraints, we set the threshold to ε = 0.1. For simplicity, we

assume that the maximum channel estimation error is set to ∆glc,n = 0.7× ĝlc,n.

First, we plot in Figure 2.7 the performance of the rate-maximizing power allocation.

We see that the optimal sum rate increases to infinity with the allowable interference

temperature limit. In contrast, the resulting energy efficiency reaches a maximum at

I thres
max = −4dB. Increasing the power beyond this threshold will largely reduce the energy

efficiency.

In Figure 2.8, we show the performance of the energy-efficiency maximizing power

allocation. In accordance with the previous observation, we see that the energy-efficiency

and the corresponding sum rate saturate when the interference limit is larger than a cer-

tain threshold I thres
max . Beyond this threshold, the performance of the different robust power
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Figure 2.8 – Performance of energy-efficient optimal power allocation vs. Imax for different P0.
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allocations are equal to that of perfect channel state information (CSI). This is because the

mobile users keep their power transmission at the same level in order to avoid reducing

the energy efficiency. Therefore, when Imax > I thres
max the energy-efficient transmission is au-

tomatically robust against channel uncertainty. When Imax ≤ I thres
max , we can observe that the

worst-case robust power allocation has the lowest performance and that the budgeted ap-

proximation is more conservative than the ball-box approximation. Comparison between

figures 2.8(a) and 2.8(b) show that the optimal energy efficiency decreases when the fixed

power cost P0 increases. However, the mobile users can achieve a higher sum rate up to

5 bps /Hz when P0 = 20 dB and Imax = 5dB. These results illustrate the crucial trade-off

between spectrum and energy efficiencies.
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Chapter 3

Energy Allocation and Cooperation for

Hybrid-Powered Two-tier Networks

3.1 Introduction

In this chapter, we investigate the joint energy allocation and cooperation scheme for

wireless two-tier networks. First, we study the energy-efficiency optimization problem

with each cell having access to both a hybrid power source and an energy storage system.

In other words, each base station is powered by both renewable sources and a conven-

tional grid source. As previously mentioned, the large-scale deployment of small-cell base

stations can pose a problem to the overall energy efficiency of multi-tier networks [8].

Therefore, new sustainable energy solutions are also needed to increase the network ca-

pacity in a cost-efficient manner.

In Section 3.4, we study the energy-efficiency maximization problem with hybrid power

source. By utilizing hybrid source and energy storage, each cell can manage its energy

over time based on the time-varying channel conditions and renewable energy arrivals.

The objective is again to maximize the network energy efficiency by utilizing the available

energy from the hybrid source in the most efficient manner over time. In doing so, we

also seek to satisfy an average rate constraint at each cell. While the main design target

is to improve the energy efficiency of two-tier networks, the spectrum sharing between

macrocell and small cells is also enforced because of the scarcity of wireless spectrum

[77].
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To tackle the fluctuations of renewable energy arrivals, we also investigate the energy

cooperation in the multi-cell resource allocation problem in Section 3.5. Specifically, we

assume that each cell can transfer some of its harvested energy to other cells through a

smart-grid power infrastructure. In this chapter, we focus on offline optimization and as-

sume a non-causal information about the channel and energy arrivals. In fact, our aim

is first to analyze the theoretical benefits of using hybrid power source and energy coop-

eration for wireless two-tier networks. In Section 3.6, we present numerical results and

analyze the potential gain of the proposed schemes. As such, the resource optimization

used in chapter is also performed in a centralized manner. For practical systems, it is how-

ever important to design online and distributed algorithms that coordinate and adapt the

energy allocation between the cells over the time. For the design of such online algorithms,

we later suggest some solution approaches in Section 5.2.

3.2 Related Works

The use of renewable energy and hybrid energy source for powering cellular networks is a

relatively new idea. While many studies have considered pure energy-harvesting systems,

only few have explored the use of hybrid power source and its implications. Previously,

[10] studied the energy-efficient power allocation for a single-cell downlink system with

a hybrid power source. However, [10] assumed an orthogonal access scheme and con-

sidered only a single-cell system. Instead, we consider the multi-cell two-tier system with

full spectrum reuse. The idea of energy cooperation for cellular networks was initially

proposed in [78] and [79] and is motivated by recent progress in renewable energy inte-

gration and two-way energy flow in smart grid [42]. However, the study in [78] used a

simplified model by abstracting the energy demand at each cell. On the other hand, [79]

proposed joint power-spectrum allocation schemes but it assumed that the cells do not

store the harvested energy for future use. Instead, they optimized the energy cooperation
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assuming independent time frames. In contrast to the previous works, we simultaneously

exploit the spatial and time diversities associated with the harvesting of renewable energy

across the cells in a dynamic fashion. When the cells have access to an energy storage,

it is possible for them to dynamically allocate the stored energy depending on the time

fluctuations of the energy harvesting. Similarly, energy sharing between the cells should

help to mitigate the imbalance of energy arrivals across geographically separated cells.

3.3 System Model

Let us consider the downlink of a two-tier multicell network which consists of M macrocell

base stations (MBSs) and K small-cell base stations (SBSs). Together, these base stations

serve a total of N users. Let us denote the set of macrocells and small cells in the network

by M and K respectively. Similarly, the set of users served by a macrocell m is defined

by Um whereas that of a small-cell k is defined by Uk. Therefore, the set of all N users

is U ,

( ⋃
m∈M
Um
)
∪
( ⋃
k∈K
Uk
)

. We assume that all macrocells and small-cells share the

spectrum. Although the resource allocation problem and algorithms studied in this chapter

can be readily applied to multi-carrier systems, we consider the transmission on a single

channel in the following to simplify the exposition. The signal-to-interference-plus-noise

power ratio (SINR) of a macrocell or small-cell user u at the t-th time slot is given by:

γu,t =
guu,tpu,t∑

j∈U\{u}
guj,tpj,t + σ2

u,t

(3.1)

where guu,t and and guj,t are the channel gains of user u at time t respectively from its BS

serving and from an interfering BS that is serving another user j. Then, σ2
u is the variance

of the AWGN noise at user u.

In (3.1), the channel gains accounts for the large-scale path loss attenuation, the log-

normal shadowing due to obstacles in the environment and the small-scale Rayleigh fad-
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Table 3.1 – List of key parameters in Chapter 3.

Symbol Parameter description

M Number of macrocell base stations

K Number of small-cell base stations

N Total number of users

M Set of macrocells

K Set of small cells

c Cell index c ∈M∪K

Uc Set of users served by cell c

t Time slot index

Ts Time slot duration

pu,t Power allocated to user u at time slot t

guj,t Channel gain of user u at time t from the BS serving user j

γu,t SINR of user u at time slot t

pgu,t Power drawn from the conventional source for user u at time slot t

phu,t Power drawn from the renewable source for user u at time slot t

f Energy harvesting frame index

L Number of time slots in one frame

NF Total number of frames

Hc,f Renewable energy harvested by cell c from the renewable source during frame f

ωc,f Excess power ωc,i discarded by cell c at the end of frame f

Bc Capacity of energy storage system at cell c
−→
h c,d,f Renewable energy transferred by cell c to cell d at the end of frame f

η Energy transfer efficiency factor

δc,i Net energy injected by a cell c into the aggregator at the end of frame i
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ing. Furthermore, we assume that the small-scale fading is slow and frequency-flat. The

time correlation of the fading samples is modeled using an autoregressive model according

to Clarke’s scattering model [69, 80].

Remark 3.1. The flat fading assumption holds when the maximum excess delay due to mul-

tipath propagation is smaller than the symbol period of the transmitted signal. For mod-

ern wireless systems, the use of orthogonal frequency division multiplexing technique help

reduce a wideband frequency-selective channel into parallel frequency-flat subchannels

given the subcarrier bandwidth is sufficiently small. In this case, the coherence bandwidth

becomes much larger than the subcarrier bandwidth.

In this work, we assume that every base station receives its energy from the conven-

tional power grid source and from a renewable energy-harvesting source. Moreover, a

battery is used by each BS to store the harvested energy from the renewable source. This

stored energy will then be used for future transmission. Here, we assume that the battery

has no leakage loss because the timeframe for the considered power allocation problem

is relatively short. In (3.1), the power allocated to all users at time slot t is denoted by

the vector pt = (pu,t)u∈U ∈ RN
+ . Since each BS has a hybrid power source, we need to

distinguish between the power pgt =
(
pgu,t
)
u∈U ∈ RN

+ drawn from the conventional power

grid and the transmit power pht =
(
phu,t
)
u∈U∪V ∈ RN

+ from the energy-harvesting source.

These two power usage vectors must add up to satisfy the equation:

pgu,t + phu,t = pu,t, ∀u ∈ U , ∀t. (3.2)

Next, we describe the generic energy management process of the cells. In our model,

we have two different time scales for managing the renewable energy and for allocating

the transmission power. Precisely, each energy-harvesting frame is divided into L com-

munication time slots. Each time slot has a duration Ts. During the i-th frame, each cell

c ∈ M ∪ K harvests a total amount of renewable energy Hc,i from the renewable source.
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Figure 3.1 – Model for renewable energy management.

At the end of the frame, some of this energy is stored into its battery, whose maximum

capacity is denoted by Bc. Then, the BS can allocate some of the stored renewable energy

for transmission during the next frame or the subsequent ones. In summary, the BSs man-

age their harvested energy per energy-harvesting frame and allocate the stored energy for

communication over the time slots. In our model, we consider a total transmit period of

T = LNF time slots where NF is the number of frames. This model is illustrated in Figure

3.1.

As explained above, each cell can store a part of the harvested energy in a battery for

future use. To make sure that the cells can use only the energy that is available before the

beginning of each frame, the following energy causality constraints need to be satisfied:

f∑
i=1

L∑
l=1

∑
u∈Uc

phu,(i−1)L+lTs ≤
f−1∑
i=0

(Hc,i − ωc,i) , ∀c ∈M∪K, ∀f = 1, . . . , NF . (3.3)

The left-hand side of this inequality is the amount of the energy that was used by each cell

c for transmission during the first f frames. It should not exceed the available energy that
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was accumulated up until the beginning of the f -th frame.

The auxiliary variable ωc,i introduced in (3.3) is the excess energy that must be dis-

carded by cell c at the end of the harvesting frame i. This is because cell c has a limited

battery capacity Bc and a maximum transmit power limit Pc. As a consequence, it is pos-

sible that cell c cannot store all the harvested power at the end of an energy-harvesting

frame. This situation arises, for example, when the energy storage is already full at the

beginning of a frame and the cell still harvests a large amount of energy that exceeds its

transmit power limit Pc. Consequently, cell c has to discard the excess power ωc,i at the

end of each frame i to satisfy its battery capacity constraints:

f∑
i=1

(
Hc,i −

L∑
l=1

∑
u∈Uc

phu,(i−1)L+lTs − ωc,i

)
≤ Bc, ∀c ∈M∪K, ∀f = 1, . . . , NF − 1. (3.4)

Given the above hybrid power source model, we employ the energy efficiency metric

defined by:

EEc (p,pgc) =
Rc (p)

Cc (pgc)
, ∀c ∈M∪K.

It is calculated as the ratio of its sum rate Rc (p) =
∑
u∈Uc

T∑
t=1

log
(
1 + γu,t

)
over its overall

power consumption Cc (pcc). Specifically, Cc is an affine function defined by [58]:

Cc (pgc) = P f
c + ψ

T∑
t=1

∑
u∈Uc

pgu,t (3.5)

where P f
c denotes the additional power dissipation due to BS’s circuitry and cooling system

and ψ is the RF power amplifier efficiency respectively. In this model, the cost function

accounts only for the energy drawn from the conventional power grid and considers the

renewable energy as free. In addition, we assume that the circuit-power consumption P f
c

of each BS is powered by the conventional power grid source.
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3.4. Energy Allocation Problem

3.4 Energy Allocation Problem

In the following, we formulate the offline power allocation problem for the hybrid-powered

wireless two-tier systems. The first optimization variable is the vector of power allocation

p = (pt)t=1,...,T ∈ RNT
+ for all users. In addition, we optimize the following three power

usage vectors for the cells: (1) the transmit power pg = (pgt )t=1,...,T ∈ RNT
+ used from

the power grid, (2) the power ph =
(
pht
)
t=1,...,T

∈ RNT
+ used from the energy-harvesting

source, and (3) the renewable power wastage vector w = (ωc,f )f=1,...,NF , k∈U ∈ R(M+K)NF
+

that the cells will not be able to use or store.

Our objective is to maximize the sum of the energy efficiencies of the two-tier cells

while satisfying an average quality of service for each cell:

(P )



maximize
p,pg ,ph,w

∑
c∈M∪K EEc (p,pg)

subject to c1 : 1
T

T∑
t=1

∑
u∈Uc

log
(
1 + γu,t

)
≥ ρc, ∀c ∈M∪K

c2 :
f∑
i=1

L∑
l=1

∑
u∈Uc p

h
u,(i−1)L+lTs ≤

f−1∑
i=0

(Hc,i − ωc,i) , ∀c ∈M∪K, ∀f = 1, . . . , NF ,

c3 :
f∑
i=1

(
Hc,i −

L∑
l=1

∑
u∈Uc p

h
u,(i−1)L+lTs − ωc,i

)
≤ Bc, ∀c ∈M∪K, ∀f = 1, . . . , NF − 1.

c4 :
∑
u∈Uc

pu,t ≤ Pc, ∀c ∈M∪K, ∀t = 1, . . . , T,

c5 : pgu,t + phu,t = pu,t, ∀u ∈ Uc, ∀c ∈M∪K, ∀t = 1, . . . , T,

c6 : p ≥ 0, pg ≥ 0, ph ≥ 0, w ≥ 0.

The first set of constraints c1 in (P ) consists of the average rate constraints for the

macrocell and small cells. Next, the causal energy constraint c2 ensures that the total

renewable power used by each BS for transmission up until the n-th frame will not exceed
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the available amount that was harvested and stored in the previous f − 1 frames. On

the other hand, constraint c3 means that the amount of renewable energy that each BS

can store at the end of each energy-harvesting frame shall not exceed its battery capacity

limit. Consequently, the excess energy must be discarded through the auxiliary variable

w. Then, the transmit power constraints for the BSs are given in c4. Finally, we have the

power usage equality constraints c5 introduced in (3.2) and the non-negativity constraints

c6 of the power vectors.

This offline energy allocation problem described by (P ) is hard to solve due to its

non-convexity. However, we will show that it is still possible to leverage the tools of

convex optimization to find an efficient solution. In particular, we will use sequential and

parametric convex programming techniques to derive a convergent algorithm for problem

(P ).

3.4.1 Minorization-Maximization with Non-convex Rate Constraints

There are intricate difficulties in solving problem (P ). First, the feasibility set implied by

the rate constraints c1−2 is not convex. In fact, the rate functions are not concave due to

the interference between the cells. Thereby, the objective function is not concave either

because it is defined as a sum of ratios between the rate functions and the affine power

costs.

To solve problem (P ), we use an extended version of minorization-maximization proce-

dure, which also minorize the non-convex constraints. Given these additional complexities,
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we will design a new algorithm that relies on the following convex subproblem (Qq):

(Qq)



maximize
p,pg ,ph,w

∑
c∈M∪K ẼEc (p,pg;q)

subject to c1 : R̃c (p;q) ≥ ρcT, ∀c ∈M∪K

Constraints c2−6,

(3.6)

where the vector q ∈ RNT
+ is not an optimization variable but a parameter that defines the

objective function of (Qq).

In fact, this new problem (Qq) is obtained from (P ) by replacing the non-concave

objective function and the non-concave rate functions in c1−2 by their respective concave

minorizing functions. These new functions are respectively denoted by R̃c and ẼEc for the

rate and energy efficiency of the cell c. For completeness, let us first recall the definition

of a minorization.

Before we can solve (Qq), we need to obtain the minorizations for the rate and energy

efficiency functions of each cell. For that, let us first define the following function r̃u for an

arbitrary macro-cell or small-cell user u ∈ U :

r̃u (p;q) ,
T∑
t=1

log


σ2
u,t +

∑
j ∈ U

guj,tpj,t


− li (p−u,q−u) (3.7)

where p−u ∈ R(N−1)T
+ is the concatenation of the power of all users except user u. The

affine function lu in (3.7) is given by

lu (p−u;q−u) =
T∑
t=1

(
vu,t (q−u,t) +∇vu,t (q−u,t)

> (p−u,t − q−u,t)
)
, ∀u ∈ U (3.8)
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where we have

vu,t (p−u,t) = log

σ2
u,t +

∑
j∈U\{u}

guj,tpj,t

 , ∀u ∈ U , ∀t (3.9)

and

∇vu,t (q−u,t) =

 guj,t
σ2
u,t +

∑
k∈U\{u}

gukpk,t


j∈U\{u}

, ∀u ∈ U , ∀t. (3.10)

Having defined the function r̃u for all u ∈ U , the following lemma gives the expressions

for the minorizations of each cell’s rate and energy efficiency functions.

Lemma 3.1. The minorizations of the rate functions {EEc}c∈M∪K and of the energy efficiency

functions {Rc}c∈M∪K of the cells are respectively given by

ẼEc (p,pgc ;q) =

∑
u∈Uc r̃u (p;q)

Cc (pgc)
, ∀c ∈M∪K, (3.11)

R̃k (p;q) =
∑
u∈Uc

r̃u (p;q) , ∀c ∈M∪K. (3.12)

Proof. The proof is similar to that of Lemma 2.2 in Chapter 2.

After we found the minorizations, we now derive an algorithm for solving the original

problem (P ) based on a similar procedure presented in Section 2.6. First we initialize the

iteration index to n = 0 and start with a feasible power allocation p(0). By setting the pa-

rameter q to p(n), we compute the minorizations of the energy efficiency and rate functions

using equations (3.11)-(3.12). Then, we solve at each iteration n the surrogate problem

(Qq) whose solution gives us a new power allocation p(n+1) as well as the corresponding

power usage vectors
{
pg (n+1),ph (n+1),w(n+1)

}
. The new power allocation p(n+1) is then

used to provide new minorizations that will be used for the next iteration. These steps are

repeated until convergence. A reasonable stopping criterion is when the increase of the
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Algorithm 3.1: Offline energy allocation algorithm for solving (P )

Initialize: ε, p(0),pg (0),ph (0) ∈ RNT and w(0) ∈ R(M+K)NF . Set n = 0.
Repeat

(S.1) : Set q← p(n).
(S.2) : Determine the minorizations R̃c, and ẼEc, ∀c ∈M∪K using
(3.11)-(3.12).
(S.3) : Update the power allocation p(n+1) by solving problem (Qq) in (3.6).
(S.4) : n← n+ 1

Until (3.13) is satisfied

sum energy efficiency is less than some threshold ε:

∑
c∈M∪K

EE(n+1)
c −

∑
c∈M∪K

EE(n)
c ≤ ε. (3.13)

This algorithm is summarized in Algorithm 3.1 and its convergence property is summarized

below.

Proposition 3.1. Suppose we start Algorithm 3.1 with feasible power allocation p(0) and

power usage vectors
{
pg (0),ph (0),w(0)

}
. Then, all next iterates p(n) and

{
pg (n),ph (n),w(n)

}
produced in step (S.3) are also feasible ∀n ≥ 1. In addition, the algorithm monotonically

converges to at least a local optimum of the sum energy efficiency maximization problem (P ).

Proof. See Appendix B.

It is therefore important to start with initial power allocation and power usage vectors

that satisfy all the constraints of (P ). For this purpose, we can find a feasible point by
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solving first the following feasibility problem:

(F )



maximize
p,pg ,ph,w,z

∑
c∈M∪K zc

subject to r1 : 1
T

T∑
t=1

∑
u∈Uc

log
(
1 + γu,t

)
+ zc ≥ ρc, ∀c ∈M∪K

Constraints c2−6,

z ≥ 0.

For the feasibility problem (F ), we introduced new positive variable z , (zc)c∈M∪K ∈

RM+K
+ . Each slack variable zc corresponds to the violation of the average rate constraint of

cell c. Furthermore, we replaced the average constraints of (P ) by the relaxed constraints

r1. In contrast to (P ), the feasibility problem (F ) always admits a solution. When a solution

of (F ) satisfies
∑

c∈M∪K zc = 0, then it must be a feasible solution for (P ). Although (F ) is

also not convex, we can again apply the extended minorization-majorization procedure to

find a feasible solution for (P ). This procedure is listed in Algorithm 3.2.

The proposed Algorithm 3.1 for maximizing the sum energy efficiency is therefore an

ascent algorithm. In particular, it offers the benefits of producing iterates that are always

feasible. In addition, it is monotonically convergent. However, the step (S.2) in Algorithm

3.1 depends on the solution of the surrogate problem (Qq). Although problem (Qq) is

less complex than (P ), (Qq) is still not convex due to its fractional objective function.

Therefore, we will next derive another algorithm that finds an optimal solution for problem

(Qq).

3.4.2 Parametric Convex Optimization

In this subsection, we apply the convex parametric approach introduced in Section 2.5 to

solve the surrogate problem (Qq). By putting (Qq) in its epigraph form, we obtain the
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Algorithm 3.2: Solving the feasibility problem (F )

Initialize: ε, p(0),pg (0),ph (0) ∈ RNT and w(0) ∈ R(M+K)NF . Set n = 0.
Repeat

(S.1) : Set q← p(n).
(S.2) : Determine the minorization R̃c, ∀c ∈M∪K using (3.12).
(S.3) : Solve the convex optimization problem:

maximize
p,pg ,ph,w,z

∑
c∈M∪K zc

subject to R̃c (p;q) + zc ≥ ρcT, ∀c ∈M∪K

Constraints c2−6,

z ≥ 0.

(S.4) : n← n+ 1
Until

∑
c∈M∪K z

(n)
c ≤ ε

Output: Feasible power allocation and usage vectors
{
p,pg,ph,w

}
.

equivalent reformulation (Eq):

(Eq)



maximize
p,pg ,ph,w,θ

∑
c∈M∪K θc

subject to c0 : R̃c (p;q)− θcCc (pgc) ≥ 0, ∀c ∈M∪K,

(
p,pg,ph,w

)
∈ S,

(3.14)

where the auxiliary variable θ , (θ1, . . . , θM+K) and the new constraints c0 are introduced

to replace the fractional objective problem by a linear term. For convenience, we also

replaced the convex constraints c1−6 of (Qq) into the convex feasibility set S.

With these manipulations, we have maintained the equivalence between (Eq) and (Qq).

Nonetheless, the two formulations are different. While (Qq) has a non-convex objective

function and convex constraints, the equivalent problem (Eq) has a linear objective func-

tion, a new variable θ and new non-convex constraints c0. Next, we will employ the convex

parametric optimization approach to construct an algorithm that finds an optimal solution
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for (Eq), and hence for (Qq).

Let us consider the following family of parametric convex problems (Px):

(Px)


maximize
p,pg ,ph,w

∑
c∈M∪K αc

(
R̃c (p;q)− θcCc (pgc)

)
subject to

(
p,pg,ph,w

)
∈ S

(3.15)

which is parameterized by the vector of parameters x , (α, θ) with α , (α1, . . . , αM+K).

Observe that the vector θ is not an optimization in (Px) but a parameter. This parametric

problem can be interpreted as a weighted sum utility maximization in which each cell’s

utility is the difference of its sum rate and a pricing penalty term. More importantly, (Px)

is a convex problem and can be used as a vehicle to solve (Eq) due to the following result.

By applying the result in Proposition 2.1, if (Eq) is feasible and admits an optimal

solution
{
p̂, p̂g, p̂h, ŵ, θ̂

}
. Then, there exists α̂ such that

{
p̂, p̂g, p̂h, ŵ

}
is a solution of

(Px) with x =
(
α̂, θ̂
)

. Furthermore, the solution
{
p̂, p̂g, p̂h, ŵ

}
must satisfy the following

system of nonlinear equations:
F (x;q) = 0, (3.16)

where the vector function F : R2(K+M) → R2(K+M) is defined by its component functions

as follows:

Fc (x;q) = θcCc (p̃gc (x))− R̃c (p̃ (x) ;q) , ∀c ∈M∪K, (3.17)

Fc+M+K (x) = αcCc (p̃gc (x))− 1, ∀c ∈M∪K. (3.18)

These component functions are obtained by composing the minorizations
{
R̃c

}
c∈M∪K

or

the power costs {Cc}c∈M∪K with the functions p̃ (x) and {p̃gc (x)}c∈M∪K that return an

optimal power allocation of the parametric problem (Px) for a given parameter x.

Furthermore, the uniqueness of the root of the nonlinear system F (x;q) = 0 was

established in Proposition 2.2. These previous results lead us to a simpler solution method
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for the non-convex problem (Qq). In fact, whenever (Qq) is feasible, an optimal solution{
p̂, p̂g, p̂h, ŵ

}
can be obtained by first solving the system F (x;q) = 0 and then by solving

the parametric convex problem (Px) with x set to the unique root of the system. In other

words, solving the non-convex problem (Qq) reduces to solving a nonlinear system of

equations. In the next subsection, we present an iterative algorithm based on Newton

method which enables us to find the root of F (x;q) = 0 and solve (Qq).

3.4.3 Damped Newton Algorithm for Solving (Qq)

Our proposed algorithm for finding the optimal parameter x and solving (Qq) is based on

a damped Newton method [63]. First, we start with the initial power allocation vector p(0)

of all users and the initial power usage vectors
{
pg (0),ph (0),w(0)

}
of all cells. Then, we

initialize the parameter x(0) =
(
α(0), θ(0)

)
as follows:

α(0)
c =

1

Cc

(
p̃
g (0)
c

) ,∀c ∈M∪K, (3.19)

θ(0)
c =

R̃c

(
p(0)
)

Cc

(
p
g (0)
c

) , ∀c ∈M∪K. (3.20)

At each iteration n ≥ 0 of the algorithm, we solve the convex parametric program (Px)

that is parameterized by x (n). This gives us a new power allocation vector p̃
(
x(n)

)
and

power usage vectors
{
p̃g
(
x(n)

)
, p̃h

(
x(n)

)
, w̃
(
x(n)

)}
. After that, we check if the stopping

criterion
∥∥F (x(n)

)∥∥ < ε is satisfied for a given tolerance ε > 0. If it is satisfied, then we stop

the algorithm. Otherwise, we update the parameter x(n) using a damped Newton method.

To do so, we first compute the Newton step at the n-th iteration as follows:

d(n) = −F′
(
x(n)

)−1
F
(
x(n)

)
, (3.21)

where F′ is the Jacobian matrix of the vector-valued function F. In fact, it can be shown

that F is differentiable and that its Jacobian F′ is a non-singular, diagonal and positive
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definite matrix given by [81]:

F′ (x) =


diag (c) 0(M+K)×(M+K)

0(M+K)×(M+K) diag (c)

 . (3.22)

where the vector c concatenates the power costs of all cells as follows:

c =
(
Cc
(
p̃g
(
x(n)

)))>
c∈M∪K ∈ RM+K

+ .

Since the matrix F′ (x) is diagonal and positive definite, its inverse can be easily cal-

culated. Once we get the Newton step from (3.21), we perform a line search to find an

effective step size 0 < λ < 1. Precisely, we start with the full Newton step, i.e. λ = 1

and reduce it by a constant factor 0 < σ < 1 until a sufficient decrease in the l2-norm of

F
(
x(n) + λd(n)

)
is obtained. After that, we update the parameter vector as:

x(n+1) , x(n) + λd(n). (3.23)

or component-wise as follows:

α(n+1)
c = (1− λ)α(n)

c + λ
1

Cc (p̃g (x(n)))
, (3.24)

θ(n+1)
c = (1− λ) θ

(n)
M + λ

R̃c

(
p̃
(
x(n)

)
;q
)

Cc (p̃g (x(n)))
, (3.25)

Then, we use this new parameter x(n+1) for the next iteration and we repeat this iter-

ative procedure until convergence. This proposed iterative damped Newton algorithm is

summarized in Algorithm 3.3. Its convergence is stated in the following proposition.

According to Proposition 2.3, Algorithm 3.3 converges to an optimal solution of the

convex subproblem (Qq) in (3.6).
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Algorithm 3.3: Subprocedure for solving the surrogate problem (Qq).
Input: Parameter q and constants ε, 0 < (µ, λ, σ) < 1.
Initialize: p(0) ∈ RNT and set n = 0
Repeat

(S.1) : Solve problem (Px) to obtain p̃
(
x(n)

)
, p̃g

(
x(n)

)
, p̃h

(
x(n)

)
and w̃

(
x(n)

)
.

(S.2) : Initialize λ← 1,
(S.3) : Compute x(n) + λd(n) using (3.24)-(3.25).,
(S.4) : while

∥∥F (x(n) + λd(n)
)∥∥ > (1− µλ)

∥∥F (x(n)
)∥∥ do λ← σλ

(S.5) : Update x(n+1) ← x(n) + λd(n)

(S.6) : n← n+ 1
Until

∥∥F (x(n)
)∥∥ ≤ ε

Result: Root x(n) of (3.16).

3.5 Joint Energy Allocation and Energy Cooperation

In this section, we propose an energy allocation and cooperation scheme for the wireless

two-tier network. Again, we assume that the cells are powered by hybrid power sources. In

addition, the cells can exchange their harvested energy through a smart-grid infrastructure.

In fact, recent advancements in smart-grid will integrate the distributed generation of

renewable energy into conventional power grid. This will be achieved by enabling a two-

way energy flow between distributed energy micro-grid generators and the smart-grid

[41]. In this work, we explore this future possibility to efficiently power heterogeneous

networks. Particularly, if a cell harvests more renewable energy than it can store at a

specific frame, then it can inject a portion of that excess energy to the smart-grid instead

of wasting it. On the other hand, a cell that could not harvest or store enough energy

can benefit by drawing some of the transferred renewable energy. As illustrated in Figure

3.2, we assume that there exists a micro-grid aggregator that controls the energy sharing

between the base stations. Thus, the aggregator helps realize the two-way energy flow

between the cells using real-time information about their energy usage. Here, we assume

that the energy transfer happens on a per-frame basis. At the end of each frame, if there is

still an excess energy that cannot be stored by all cells, that energy will be diverted by the

aggregator into the smart-grid for other uses.
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Figure 3.2 – A model of cellular networks with hybrid power source and energy sharing through a smart
micro-grid.

3.5.1 Energy Cooperation between Two-tier Cells

To model the energy cooperation, we introduce the following array of energy exchange

variables
−→
H =

(−→
h c,d,i

)
c,d∈M∪K,i∈1,...,NF

∈ R(M+K)×(M+K)×NF
+ . Each element

−→
h c,d,i ≥ 0

denotes the amount of harvested renewable energy that a cell c transfers to another cell

d at the end of frame i. When cell c transfers an energy
−→
h c,d,i through the smart-grid

power network, we assume that there is an energy loss that is incurred by the transfer. As

a result, the effective energy that cell d can receive is η
−→
h c,d,i with 0 < η < 1 being the

transfer efficiency factor.

Next, we define by the auxiliary variable δc,i as the net energy injected by a cell c into

the aggregator at the end of frame i as:

δc,i =
∑

d∈M∪K\{c}

(−→
h c,d,i − η

−→
h d,c,i

)
, ∀c ∈M∪K, ∀i = 0, ..., NF − 1. (3.26)
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If δc,i is positive, then the cell c is effectively injecting some renewable energy into the

smart-grid. Conversely, it is drawing renewable energy from the smart-grid when δc,i is

negative. Note that our model does not explicitly preclude a cell from drawing and inject-

ing some renewable energy from/into the grid at the same time. Since our focus here is on

offline optimization, we need not explicitly add this constraint in our problem formulation.

After defining these auxiliary variables, we modify the energy causality constraints for

the energy-cooperative two-tier cells as follows:

f∑
i=1

L∑
l=1

∑
u∈Uc

phu,(i−1)L+lTs ≤
f−1∑
i=0

(Hc,i − ωc,i − δc,i) , ∀c ∈M∪K, ∀f = 1, . . . , NF . (3.27)

Similarly, the battery constraints at the cells become:

f∑
i=1

(
Hc,i −

L∑
l=1

∑
u∈Uc

phu,(i−1)L+lTs − ωc,i − δc,i

)
≤ Bc, ∀c ∈M∪K, ∀f = 1, . . . , NF − 1

(3.28)

For the energy cooperation model, we use the following network energy efficiency

metric:

EE0 (p,pg) ,

∑
c∈M∪KRc (p)

C0 (pg)

where the total network power consumption C0 is equal to:

C0 (pg) =
∑

c∈M∪K

[
P f
c + ψ

T∑
t=1

∑
u∈Uc

pgu,t

]
. (3.29)

Because of the energy cooperation between the cells, we use this network energy efficiency

metric as a new objective function. By cooperating, the cells can exchange their harvested

renewable energy and share their battery storage.
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As a result, the problem formulation for the energy allocation and cooperation is given

below:

(C)



variables p,pg,ph,w,
−→
H, δ

maximize EE0 (p,pg)

subject to d1 : 1
T

T∑
t=1

∑
u∈Uc

log
(
1 + γu,t

)
≥ ρc, ∀c ∈M∪K,

d2 :
f∑
i=1

L∑
l=1

∑
u∈Uc p

h
u,(i−1)L+lTs ≤

f−1∑
i=0

(Hc,i − ωc,i − δc,i) , ∀c ∈M∪K, ∀f = 1, . . . , NF ,

d3 :
f∑
i=1

(
Hc,i −

L∑
l=1

∑
u∈Uc p

h
u,(i−1)L+lTs − ωc,i − δc,i

)
≤ Bc, ∀c ∈M∪K, ∀f = 1, . . . , NF − 1,

d4 :
∑
u∈Uc

pu,t ≤ Pc, ∀c ∈M∪K, ∀t = 1, . . . , T,

d5 : pgu,t + phu,t = pu,t, ∀u ∈ Uc, ∀c ∈M∪K, ∀t = 1, . . . , T,

d6 :
∑

d∈M∪K\{c}

(−→
h c,d,i − η

−→
h d,c,i

)
= δc,i, ∀c ∈M∪K, ∀i = 0, ..., NF − 1,

d7 : p ≥ 0, pg ≥ 0, ph ≥ 0, w ≥ 0,
−→
H ≥ 0.

In next subsection, we present an algorithm for solving this new problem.

3.5.2 Offline Optimization Algorithm

Similar to (P ), the problem (C) above is also non-convex. However, it is more tractable

as its objective function consists of one fractional term. Following the approach in the

previous section, we handle the non-convexities in (C) using the extended minorization-

majorization procedure. After that, we use the simple Dinkelbach method [9] to solve the

minorized subproblem.
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First, let us write the expression for the minorization ẼE0 of the objective function of

(C) as:

ẼE0 (p,pg;q) =

∑
c∈M∪K R̃c (p)

C0 (pg)
. (3.30)

Next, we consider the following minorized subproblem associated to (C):

(Mq)



variables p,pg,ph,w,
−→
H, δ, θ

maximize θ

subject to
∑

c∈M∪K R̃c (p;q)− θC0 (pg) ≥ 0,

R̃c (p;q) ≥ ρcT, ∀c ∈M∪K,

Constraints d2−7,

(3.31)

which is obtained by first minorizing the rate functions in (C) at q, and then by rewriting

the resulting problem in its epigraph form. This problem (Mq) is analogous to problem

(Qq) in (3.6). To solve (Mq), we use the following convex parametric subproblem, which

is parameterized by both θ and q:

(Dθ,q)



variables p,pg,ph,w,
−→
H, δ

maximize
∑

c∈M∪K R̃c (p;q)− θC0 (pg)

subject to R̃c (p;q) ≥ ρcT, ∀c ∈M∪K,

Constraints d2−7.

(3.32)

After formulating the subproblem (Dθ,q), we now propose the Algorithm 3.4 for solving
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Algorithm 3.4: Algorithm for solving the energy management and cooperation prob-
lem (C)

Input: Constants ε and δ
Initialize: p(0),pg (0),ph (0) ∈ RNT and w(0) ∈ R(M+K)NF .

−→
H(0) ∈ R(M+K)×(M+K)×NF

+ with feasible values for (C). Set n = 0, k = 0.
Repeat

(S.1) : Set the parameter q(n) ← p(k).

(S.2) : Compute the minorizations
{
R̃c

}
c∈M∪K

and ẼE0 at q(n) using (3.12)

and (3.30).
(S.3) : Initialize θ(k) =

∑
c∈M∪K R̃c

(
p(k);q(n)

)
/C0

(
pg (k)

)
.

(S.4) : while
∥∥∥∑c∈M∪K R̃c

(
p(k);q(n)

)
− θ(k)C0

(
pg (k)

)∥∥∥ > ε do

Solve the convex problem
(
Dλ(k),q(n)

)
to obtain

{
p̂, p̂g, ŵ,

−̂→
H

}
,

Update λ(k+1) ← λ(k) −
∑

c∈M∪K R̃c(p̂;q(n))
C0(p̂c)

,
Update p(k+1) ← p̂,
k ← k + 1

(S.5) : n← n+ 1

Until EE(n+1)
0 −EE(n)

0

EE(n)
0

≤ δ

Output: Power allocation p and power usage vectors
{
p,pg,ph,w,

−→
H
}

.

(C), which is listed in the next page. It consists of two loops. In each iteration k of the

inner loop, we solve a convex subproblem
(
Dλ(k),q(n)

)
that is parameterized by both λ(k) and

q(n). At the end of that iteration, we update the parameter λ(k) using a full Newton step.

In fact, a linear search is not required in the Dinkelbach method to guarantee theoretical

convergence to an optimal solution of (Mq). We exit the inner loop when the value of the

objective function of
(
Dλ(k),q(n)

)
becomes zero. After that, we update the parameter q(n) at

each iteration n of the outer loop and compute new minorizations of the rate and objective

functions using the new parameter. Then, the process is repeated until the increase in the

network energy efficiency is smaller than a specified tolerance δ. Similar to Algorithm 3.1,

this new algorithm enjoys the same convergence properties as those stated in Proposition

2.4.
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Figure 3.3 – Base stations and user locations.

3.6 Simulation Results

Next, we present our simulation results for a wireless two-tier networks with M = 1

macrocell and K = 4 small cells. The MBS serves 3 macrocell users (MUs) whereas the

SBSs each serve one small-cell user (SU). The SBSs and all users are randomly placed in a

1km by 1km grid region as shown in Figure 3.3. The MUs and SUs are denoted by triangles

and rectangles respectively.

We model the large-scale path loss attenuation PL (in dB) using the WINNER model

[74] described in (2.55). The simulation parameters are listed in Table 3.2. In addition, we

model the time-varying small-scale fading as a correlated Rayleigh process in accordance

with Clarke’s scattering model [69]. This was simulated using the autoregressive modeling

technique in [80]. Taking these into account, the time variations of the channel gains for

the first and second SUs are, for instance, illustrated in Figure 3.4.

70



3.6. Simulation Results

Table 3.2 – Path loss model and system parameters in Chapter 3.

Parameters Values

Carrier frequency fc = 1.9 GHz

SBS-to-SU path loss (model A1-LOS) A = 1.87, B = 46.8, C = 20

SBS-to-MU path loss (model A1-NLOS) A = 3.68, B = 43.8, C = 20

MBS-to-SU path loss (model C1-NLOS) A = 3.36, B = 44.36, C = 23

MBS-to-SU path loss (model C1-NLOS) A = 3.36, B = 44.36, C = 23

Standard deviation of SBS-to-SU shadowing S = 3 dB

Standard deviation of SBS-to-PU shadowing S = 4 dB

Standard deviation of MBS-to-SU shadowing S = 6 dB

MBS antenna power gain 12dB

SBS antenna power gain 5dB

Normalized maximum Doppler frequency fdTS = 0.01

Total number of frames NF = 10

Time slot duration Ts = 1sec

Length of energy-harvesting frame L = 10 time slots
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Figure 3.4 – Channel gains for the desired signal (solid line) and inter-cell interference (dotted line) received
by SUs.

3.6.1 Convergence of Algorithms

First, we present the convergence of the proposed Algorithm 3.1. These algorithms were

implemented in Matlab and we used the disciplined convex optimization software CVX

to solve the convex parametric subproblems [1]. In Figure 3.5(a), we observed a fast

convergence as the norm of F (x) , which is defined in (3.17)-(3.18), rapidly decreased

towards zero. Figure 3.5(b) shows that the energy efficiency of each cell also converges

accordingly. For this example, only one inner iteration of the damped newton algorithm

was needed to solve each subproblem (Qq). In other words, a full Newton step satisfied

the norm-decrease condition. However, the line search is in general required to guarantee

convergence. In our experiments, the algorithm converges within 10 to 20 inner iterations

in most cases.

3.6.2 Analysis of Energy Efficiency Performance

Next, we analyze the energy efficiency of the proposed schemes. In our simulation, we

normalized the transmit power Pc, the battery capacityBmax and the energy-harvesting rate
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Figure 3.5 – Convergence of Algorithm 3.1.

of the renewable source by the noise power σ2. Without loss of generality, we assume that

the time slot duration Ts = 1sec to simplify the analysis. We set the maximum normalized

transmit power of the SBS and MBS to 10 dB and 13 dB respectively. Then, the normalized

battery capacity Bmax is set to be equal to 10 dB and 17 dB. The main reasons to normalize

the energy arrival rate and battery capacity to a decibel scale are to simplify the analysis

and to facilitate reproducibility of our simulations. Since the contributions of this chapter

is mainly theoretical, future studies could use the results presented here for performance

benchmark. In such case, normalized energy levels instead of absolute energy in Watts

helps abstract away implementation-specific details such as the type of energy storage

system or energy sources.

In our simulations, we consider three different models for the renewable energy arrival

per frame: (1) constant rate, (2) linearly increasing rate and (3) Poisson random variable.

Although the energy arrival is commonly modeled as a Poisson renewal process [10, 82],

the constant and linear rate models help gain some insight on the energy allocation. For

fair comparison, we set the average harvested energy to be equal for these three scenarios.

In addition, the energy rate is assumed to be equal for each cell. For the Poisson model,
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Figure 3.6 – Comparison of sum energy efficiency for different energy harvesting rates and arrivals.

we average the achieved energy efficiency over 100 different realizations of the energy

arrivals.

Figure 3.6 shows the achieved sum energy efficiency for different energy harvesting

rates. As expected, the energy efficiency performance increases with the energy arrival

rate as this later is increased from 0.1Bmax to Bmax per frame. Moreover, we see that

increasing the capacity of the energy storage at each cell to Bmax = 17 dB significantly

improves the energy efficiency. Finally, Figure 3.6 shows that under the same capacity

limit Bmax = 10 dB, the energy-efficiency performance can be improved by exploiting the

energy cooperation between the cells.

In the next Figure 3.7, we look at the energy efficiency at each cell when arrival rate

is increased from 0.1Bmax to Bmax per frame. We notice similar patterns for the per-cell

energy efficiency under the three different assumptions for the energy arrival rates. Since

SU#1 has favorable channel conditions (see Figure 3.4), the energy efficiency gain of
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Figure 3.7 – Energy efficiency per cell for energy-harvesting rates between 0 dB and 10 dB.

small-cell (SC) #1 (cell index 2 in Figure 3.7) is very high when the arrival rate increases

from 0.1Bmax to Bmax. In contrast, small-cell #2 (cell index 3) suffers from strong inter-

cell interference and its energy efficiency remain the same. Finally, Figure 3.8 shows the

grid power consumption of each cell over time. It is evident from Figure 3.8 that energy

cooperation decreases the required energy drawn from the conventional grid source.
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Figure 3.8 – Grid power consumed per cell for different Poisson arrival rates.
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Chapter 4

Power minimization of Cooperative

Clustered Small-cell Networks

4.1 Introduction

In Chapter 2 and Chapter 3, we consider two-tier networks in which the base stations

have single antennas. In this chapter, we assume that the base stations can have multiple

antennas. Therefore, we extend the power allocation to a cooperative multi-cell beam-

forming scheme, which is also known as coordinated multi-point transmission (CoMP)

[83] or network MIMO. By enabling cooperation between the two-tier cells, we can reap

larger capacity and diversity gains [84] and also to mitigate the interference [85]. This is

achieved thanks to the increased spatial degrees of freedom of CoMP systems.

Despite these benefits of CoMP, it can also come with significant costs [11, 86]. First,

the cooperating BSs must be connected by a backhaul through which they exchange the

channel knowledge and user data. Second, cooperation largely increase the energy con-

sumption due to the extra signal processing [11]. Although the theoretical benefits and

practical issues of CoMP have been studied in many works, only few have looked into its

energy efficient implementation.

In this chapter, we thus propose a flexible cooperation scheme which balances the

trade-off between performance and energy efficiency. Instead of maximizing performance

as in previous works [87–89], our goal is to enable the cells to satisfy their users and

protect the primary users while minimizing their overall power consumption.
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In Section 4.6, we present the state-of-the-art research on green CoMP and distributed

antenna systems. Then, in Section 4.3, we propose a flexible and energy-aware coopera-

tion scheme for cellular two-tier systems. Using the energy consumption model in [11],

we formulate a cross-layer optimization of cooperative beamforming and clustering as a

mixed integer program. By jointly optimizing the clustering and beamforming, we provide

an extra degree of freedom for the cells to adapt their transmission according to changing

parameters such as the users’ locations, service requirements and channel conditions. We

also propose a cognitive resource allocation mechanism to enable the spectrum sharing

between the macrocell and small cells.

In Section 4.4, we present a framework for decomposing this problem into a clustering

master problem and a beamforming subproblem. Then, we derive an optimally conver-

gent algorithm using the generalized Benders decomposition (GBD) method [90]. We also

propose simple techniques for accelerating the convergence of this algorithm.

Then, we propose a decentralized optimization algorithm for the cooperative beam-

forming when the clustering is fixed in Section 4.5. Assuming that the clusters do not

overlap, we exploit the quasi-separability of the problem and derive a distributed algo-

rithm based on the alternating direction method of multipliers (ADMM) [91]. We also

propose limited signaling schemes that can considerably reduce the overhead.

Finally, numerical simulations are presented in Section 4.6 to analyze the trade-off be-

tween performance and energy consumption in a cooperative two-tier systems. In addition,

we examine the convergence and effectiveness of the proposed algorithms. In Section 4.6,

we also study the performance of the proposed decentralized beamforming and signaling

schemes.
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4.2 Related Works

The study of multi-cell joint-transmission system started with the landmark paper in [84].

Within the decade that followed [84], many research efforts followed on looking at the

theoretical benefits of CoMP system from the viewpoint of spectrum efficiency [83]. Sev-

eral papers have also been published on the practical aspects and issues, such as the impact

of limited backhaul signaling [36] or the need for antenna selection and clustering [92].

However, the energy efficiency of CoMP has not received much attention until later.

For instance, [11] was the first to look at the energy consumption model of cooperating

base stations. In [93], an energy efficiency analysis of an idealized CoMP system was pre-

sented. The trade-off between energy efficiency and spectrum efficiency has been studied

by [94]. Then, [45] studied the energy-efficient power allocation in distributed antenna

systems. However, [45] assumed a zero-forcing strategy and did not try to optimize the

cooperative beamforming. However, zero-forcing beamforming is limited by the number

of antennas available at each base station. Therefore, a small number of users can be

accomodated to avoid interference between the multi-cell transmissions. [95] tackled the

difficult problem of energy-efficient transmit precoding design using a parameterization

of the Pareto boundary. They proposed an iterative method in which each user optimally

solves a parameterized energy-efficiency maximization problem and updates the inter-user

interference parameters at each iteration. Nonetheless, they could not prove the optimal

convergence of such algorithm. In contrast, we propose in this chapter a multi-cell beam-

forming optimization scheme for small-cell networks. Instead of solving an energy effi-

ciency maximization problem, we aim to minimize the overall energy consumption of the

CoMP system. In contrast to previous works, we propose a scheme that jointly optimizes

the clustering and the beamforming.

After the results of this chapter were published in [96], there were other papers that

considered the energy efficiency of CoMP. For instance, [97] gave a performance analysis

and designed an optimization scheme for green heterogeneous CoMP networks. Another
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study in [98], which is based on a similar idea proposed in this chapter, investigates dif-

ferent base station sleeping strategies for energy-efficient small-cells.

4.3 System Model

We consider the downlink of a clustered cooperative small-cell networks whose base sta-

tions B =
{
b1, . . . , b|B|

}
are connected through a backhaul interface. Each base station has

m antennas. By sharing their antennas, the small-cell base stations can cooperate to serve

a pool of users U =
{
u1, . . . , u|U|

}
. Here, we make the following assumptions. The small

cells also co-exist with a primary macro-cell system using a cognitive underlay strategy.

In other words, they share the spectrum spectrum under the condition that the secondary

small-cell transmissions do not exceed specific interference limits that are imposed by the

primary macrocell users.

We assume perfect channel information and perfect synchronization for the coopera-

tive beamforming. Next, the backhaul interface is assumed to have enough capacity for

exchanging the user data and signaling information. Hence, we consider the following

cooperation schemes for the secondary small cells:

1. Full cooperation is achieved when all base stations cooperate to jointly serve the

users U . Essentially, this strategy corresponds to a m |B| × |U| network-MIMO trans-

mission [84]. It provides the highest spatial degrees of freedom for multiplexing and

for interference mitigation but incurs the highest cost in terms of signaling and en-

ergy consumption.

2. Inter-cell coordination is the simplest scheme as each user is served by a single

base station. In this case, the interference is mitigated by having the base stations

coordinate the base station-to-user assignment and beamforming.

80



4.3. System Model

3. Flexible cooperation allows each user u to be served either by a single base station

or by multiple cooperating ones. With this flexible strategy, it is thus possible to

balance performance and energy saving.

In our model, we select the flexible cooperation as a general strategy and consider full

cooperation and inter-cell coordination as special cases. Let us define a binary vector

x = (xbu)b∈B, u∈U ∈ {0, 1}
|B|·|U|×1 to model the clustering, where |S| denotes the cardinal of

a set S. The component xbu of x determines whether base station b serves the user u or

not:

xbu =


1 if user u is served by BS b

0 otherwise
(4.1)

Thus, the special case of full cooperation corresponds to x = 1|B|·|U|×1 so that each

user is jointly served by all base stations. On the other hand, the special case of inter-cell

coordination requires the following equality to hold:

∑
b∈B

xbu = 1 ∀u ∈ U (4.2)

to enforce that one and only one base station will be assigned to each user u.

Next, let us describe the signal model by first assuming every base stations serve each

user. Let hu , (hbu)b∈B ∈ Cm|B|×1 be the channel vector from all base stations to a user

u where hbu ∈ Cm×1 is the channel between base station b and user u. Each channel

vector hbu accounts for both the large-scale path loss attenuation as well as the small-

scale Rayleigh fading. Similarly, vu , (vbu)b∈B ∈ Cm|B|×1 is the concatenated beamforming

vector for user u with vbu ∈ Cm×1. Then, all base stations cooperatively transmit the data

symbol su of a user u through the channel hu (see Figure 4.1). Its received signal is thus

given by:

yu = hHu vusu +
∑

j∈U\{u}

hHu vjsj + nu (4.3)
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Table 4.1 – List of key parameters in Chapter 4.

Symbol Parameter description

B Set of base stations

U Set of users

|B| Number of base stations

|U| Total number of users

xbu Binary indicator for user u being served by BS b

yb Binary activity status of BS b

hu Channel vector from all base stations to a user u

hbu Channel vector between base station b and user u.

vu Concatenated beamforming vector for user u

vbu Beamforming vector of BS b for user u

SINRu SINR achieved by user u

ρu Minimum SINR requirement for user u

Ru Achieved rate of user u

Pb Transmit power limit of BS b

V Set of primary users

gbv Channel from the BS b to the primary user v.

Ptotal Total power consumption of the system

Ptx Transmit power radiated by all base stations

Psp Total power cost due to multi-cell processing

Pbh Backhaul power cost

P0 Total fixed power cost of the BSs
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Figure 4.1 – Coordinated multi-point transmission model in distributed and cognitive small-cell networks.

where the symbol (·)H means the conjugate transpose. Moreover, nu ∼ CN (0, σ2
u) is a

circularly complex Gaussian noise with zero-mean and a variance σ2
u. Therefore, the signal-

to-interference-plus-noise ratio (SINR) of the received signal yu is:

SINRu =

∣∣hHu vu∣∣2∑
j∈U\{u} |hHu vj|

2 + σ2
u

(4.4)

and its achievable rate is given by:

Ru = log (1 + SINRu) [bps/Hz] (4.5)

4.4 Joint Clustering and Beamforming Optimization

Our objective is to minimize the total power consumption of the system given SINR targets

of the small-cell users and interference power constraints at the primary users.

4.4.1 Beamforming Power Constraints

Each small-cell base station is subject to power limit constraints:∑
u∈U

‖vbu‖2
2 ≤ Pb, ∀b ∈ B (4.6)
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To model the flexible cooperation scheme, we make sure that if a specific base station

b does not serve user u , i.e. when xbu = 0, then the corresponding beamforming vector

vbu becomes a zero vector. In other words, we enforce that a base station b allocates a

non-zero power for user u only if xbu = 1, through the mixed-integer constraints:

‖vbu‖2
2 ≤ xbu · Pb, ∀u ∈ U , ∀b ∈ B (4.7)

With constraints (4.6), the mixed integer constraint (4.7) simply becomes redundant when

xbu = 1. Although the SINR definition in (2.1) initially assumes full cooperation, it is also

valid for the flexible cooperation scheme after we added constraints (4.7). In fact, when a

subset of BSs B ⊂ B does not serve user u, then constraints (4.7) enforce ‖vbu‖2 = 0, ∀b ∈

B.

In addition, we assume that the two-tier network can co-exist with a primary system

whose users are V =
{
v1, . . . , v|V|

}
. Using a cognitive underlay strategy, the small-cell base

stations opportunistically use the same channel licensed to the primary system under the

condition that they do not exceed a total interference temperature limit Iv ≥ 0 imposed by

each primary user v as follows:

∑
b∈B

∑
u∈U

∣∣gHbvvbu∣∣2 ≤ Iv, ∀v ∈ V (4.8)

with gbv ∈ Cm×1 being the channel from the small-cell base station b to the primary user v.

Note that these constraints couple the transmissions of the small-cell base stations.

4.4.2 Energy Consumption Model

A linear model for the energy consumption of a CoMP system was given by [11, 58] as

follows:

Ptotal = Ptx + Psp + Pbh + P0 (4.9)
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where Ptotal, Ptx, Psp, Pbh and P0 denote the total power consumption, the transmit power

radiated by all base stations, the signal processing power cost, the backhaul power cost

and the fixed power cost respectively. Except for the static consumed power, these costs

scale dynamically with the load, i.e. the number of wireless links between the users and

their serving base stations, as follows [11, 58]:

Ptx =

∑
b∈B

∑
u∈U ‖vbu‖

2
2

µPA
(1 + CPS)

Psp =
∑
b∈B

∑
u∈U

xbupsp

Pbh =
∑
b∈B

∑
u∈U

xburupbh

where ru is the data rate for user u, pbh is the power consumed for transmitting one bit of

information over the backhaul and psp is the power consumed per link for the cooperative

processing. Note that in contrast to the cooperation schemes studied in Chapter 2 and

Chapter 3, the multi-cell cooperation considered in this chapter may lead to significant

energy cost and this cost scales with the cluster size of the cooperating base stations [11].

Finally, the static power P0 is the fixed power consumed by the active base stations:

P0 =
∑
b∈B

ybpstatic (4.10)

where the binary variable yb defines the activity status of base station b such that:

yb =


1 if base station b is actively serving some user(s)

0 otherwise
(4.11)

Therefore, we can define the overall power consumption of the network by a cost

function f of the beamforming variable v and of the binary variables x and y:

f (x,y,v) =
1 + CPS

µPA
·
∑
b∈B

∑
u∈U
‖vbu‖22 +

∑
b∈B

∑
u∈U

xbu (psp + rupbh) +
∑
b∈B

ybpstatic (4.12)

= f1 (v) + f2 (x,y) (4.13)
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where the term f1 in (4.12) is the transmit-dependent power and the term f2 is the sum of

the cooperative processing power and fixed power. Note that v , (vu)u∈U concatenates all

beamforming vectors of small-cell users.

4.4.3 Problem Formulation

Finally, we formulate the joint optimization of clustering and cooperative beamforming

as:

variables x y v

minimize f (x,y,v) (4.14)

subject to xbu ∈ {0, 1} , ∀u ∈ U , ∀b ∈ B (4.15)

yb ∈ {0, 1} , ∀b ∈ B (4.16)

yb ≤
∑
u∈U

xbu, ∀b ∈ B (4.17)

yb ≥ xbu, ∀u ∈ U , ∀b ∈ B (4.18)

SINRu (v) ≥ ρu, ∀u ∈ U (4.19)∑
u∈U
‖vbu‖22 ≤ Pb, ∀b ∈ B (4.20)

∑
b∈B

∑
u∈U

∣∣gHbvvbu∣∣2 ≤ Iv, ∀v ∈ V (4.21)

‖vbu‖22 ≤ xbu · Pb, ∀u ∈ U , ∀b ∈ B (4.22)

where constraints (4.17)-(4.18) ensure that a base station is active if and only if it serves

some users. In (4.19), ρu denotes the target SINR of user u. The above problem is hard to

solve due to the non-convexity of the SINR constraints and to its combinatorial nature.

Let us create the matrix V =
[
vu1 , . . . ,vu|U|

]
∈ Cm|B|×|U| which concatenates all beam-

forming vectors and define the following set Fv of beamforming vectors:
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Fv =



v ∈Cm|B|·|U|×1 :

∥∥∥∥∥∥


hHu V σu

∥∥∥∥∥∥ ≤
√
1 + 1

ρu
hHu vu, ∀u ∈ U

Re
(
hHu vu

)
≥ 0, ∀u ∈ U

Im
(
hHu vu

)
= 0, ∀u ∈ U

∑
u∈U ‖vbu‖

2
2 ≤ Pmax

b , ∀b ∈ B

∑
b∈B

∑
u∈U

∣∣gHbvvbu∣∣2 ≤ Iv, ∀v ∈ V



(4.23)

Thus, the following lemma tells us how to reduce the complexity of the problem.

Lemma 4.1. By fixing the values of the clustering variables to
(
xk,yk

)
, problem (4.14) can

be reduced to a convex beamforming optimization problem
(
Sk
)

defined by:

variable v

minimize f1 (v) + f2

(
xk,yk

)
(4.24)

subject to v ∈ Fv (4.25)

‖vbu‖22 ≤ x
k
bu · Pmax

b , ∀ (u, b) ∈ U × B (4.26)

and the constraint set Fv defined in (4.23) is convex and compact.

Proof. See Appendix C.1

4.4.4 Generalized Benders Decomposition Method

Given the previous results, we will next derive an provably-convergent iterative algorithm

for solving problem (4.14). Using the Benders decomposition method [90], we will sepa-

rate the clustering optimization and the cooperative beamforming design. Define H as the

set of clustering variables for which the corresponding beamforming problem (S) admits a

feasible solution:
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H =
{

(x,y) : ∃v ∈ Fv ‖vbu‖2
2 ≤ xbu · Pmax

b , ∀ (u, b) ∈ U × B
}

(4.27)

Then, we can rewrite the original problem as a clustering master problem (M):

(M)


minimize

x y
g (x,y)

subject to (x,y) ∈ H ∩ F(x,y)

(4.28)

For any arbitrary (x,y), the objective function g of problem (M) returns the optimal value

of the beamforming optimization (S) in (4.24). In (4.28), the set F(x,y) gathers the con-

straints that are only related to the clustering variables as:

F(x,y) =



(x,y) :

xbu ∈ {0, 1} , ∀ (u, b) ∈ U × B

yb ∈ {0, 1} , ∀b ∈ B

yb ≤
∑

u∈U xbu, ∀ (u, b) ∈ U × B

yb ≥ xbu, ∀ (u, b) ∈ U × B



(4.29)

The equivalence between the original problem (4.14) and (4.28) is stated below.

Proposition 4.1. If (x∗,y∗,v∗) is an optimal solution of the original mixed-integer problem in

(4.14), then (x∗,y∗) is optimal for the clustering master problem (M) in (4.28). Conversely,

if (x∗,y∗) solves problem (M) and if v∗ solves the beamforming problem (S) in (4.24) with

(x,y) = (x∗,y∗), then (x∗,y∗,v∗) solves the original problem (4.14). Moreover, the original

problem is infeasible if and only if (M) is infeasible.

Proof. The proof of the above proposition follows directly from the partitioning procedure

described above and from the definitions of the function g and of the master problem

(M).
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To exploit the convexity of (S), we derive an iterative algorithm in which we solve

the subproblem (S) and update the clustering variables at each iteration. But the master

problem (M) cannot be solved in its current form (4.28) since the function g is only known

implicitly. To circumvent this, we will rewrite (M) in its dual form and apply the GBD

method to solve it iteratively.

Dual representation of the master problem

Let us consider the subproblem (S) and define its partial Lagrangian with respect to the

complicating constraints:

L (v, λ;x,z) , f (v;x, z) +
∑
b∈B

∑
u∈U

λbu
(
‖vbu‖2

2 − xbu · Pb
)

(4.30)

where the Lagrange multipliers satisfy λbu ≥ 0, ∀ (u, b) ∈ U × B.

Moreover, we define a second type of Lagrangian function L with a parameter xk as:

L
(
v, µ,xk

)
,
∑
b∈B

∑
u∈U

µbu
(
‖vbu‖2

2 − x
k
bu · Pmax

b

)
(4.31)

where the multiplier µ also satisfies µbu ≥ 0, ∀ (u, b) ∈ U × B. Note that any convex

programming algorithm such as interior point methods can produce the optimal multiplier

vector λk along with vk without any extra computations [61]. Using these Lagrangian func-

tions, we can obtain a more explicit reformulation of problem (M) by using the following

result.

Proposition 4.2. The master problem (M) in (4.28) is equivalent to the following problem

(P ′):
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(P ′)



variables x y γ

minimize γ

(x,y) ∈ F(x,y)

γ ≥ ξ (x,y;λ) , ∀λ ≥ 0

0 ≥ ξ (x;µ) , ∀µ ≥ 0 :
∑

(b,u)∈B×U µbu = 1

(4.32)

where the support functions ξ and ξ are defined as the minimum of the Lagrange functions

with respect to v:

ξ (x,y;λ) = min
v∈Fv

L (v, λ,x,y) (4.33)

ξ (x;µ) = min
v∈Fv

L (v, µ,x) (4.34)

Proof. See Appendix C.2.

Although the equivalent formulation (P ′) is more explicit than (M), there are still two

issues with (P ′). First, the functions ξ and ξ defining constraints (4.32) are represented

as inner minimization problems. Second, (P ′) involves an infinite number of constraints

which makes it computationally impossible to solve. To overcome these, we first obtain an

explicit expression for each support function ξ and ξ.

Lemma 4.2. If vk and λk are optimal primal and dual solutions for the convex subproblem(
Sk
)
, then the function ξ of (x,y), when parameterized by λk, is explicitly given by:

ξ
(
x,y;λk

)
= L

(
vk, λk,x,y

)
, ∀ (x,y) (4.35)

Proof. See Appendix C.3.
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In a similar way, we can also obtain an explicit expression of the function ξ as explained

next.

Lemma 4.3. Suppose that
(
vk, αk

)
and µk are optimal primal and dual solutions for the

following convex feasibility problem
(
F k
)
:

(
F k
)



variables v α

minimize α

subject to v ∈ Fv

α ≥ 0

‖vbu‖2
2 − xkbu · Pmax

b ≤ α, ∀ (u, b) ∈ U × B

(4.36)

Then, the function ξ of x, when parameterized by µk, is explicitly given by:

ξ
(
x;µk

)
= L

(
vk, µk,x

)
, ∀x (4.37)

and the optimal multiplier µk must satisfy
∑

(b,u)∈B×U µbu = 1.

In the feasibility problem
(
F k
)

in (4.36), we relax the complicating constraints (4.22)

and minimize the maximum constraint violation α. Note that
(
Sk
)

is infeasible if and only

if the optimal value of
(
F k
)

is strictly positive. Next, we will use relaxation to solve the

master problem (P ′) iteratively with a finite number of constraints.

Algorithmic procedure

The basic idea of the GBD method is to generate, at each iteration, an upper bound and a

lower bound on the optimum of the original problem until those bounds meet. The lower

bound is obtained by solving a relaxed version of problem (P ′) and the upper bound is
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Figure 4.2 – Generalized Benders Decomposition procedure for joint BS assignment and multi-cell beam-
forming problem.

computed from the optimal values of beamforming subproblems
(
Sk
)
. The overall algo-

rithm is presented in the flowchart in Figure 4.2.

First, we start with an initial assignment x = x0 and y = y0. Next, we solve the sub-

problem
(
Sk
)

which, when feasible, will give us an optimal pair
(
vk, λk

)
of beamformers

and Lagrange multipliers. Then, we use these to generate the following optimality cut

γ ≥ L
(
vk, λk,x,y

)
. Otherwise, when subproblem

(
Sk
)

is infeasible, we solve the feasibil-

ity problem
(
F k
)

and use the solution and multiplier
(
vk, µk

)
to generate a feasibility cut

0 ≥ L
(
vk, µk,x

)
. Depending on whether

(
Sk
)

is feasible or not, an optimality or feasibility

cut is added to the following relaxed version of the master problem (M) at each iteration

k:

92



4.4. Joint Clustering and Beamforming Optimization

(
Mk
)



variables γ,x,y

minimize γ

subject to (x,y) ∈ F(x,y)

γ ≥ L
(
vl, λl,x,y

)
, ∀l ∈ Ikfeas

0 ≥ L
(
vj, µj,x

)
, ∀j ∈ Ikinfeas

where Ikfeas =
{
l ∈ {1, . . . , k} |

(
Sl
)

feasible
}

and Ikinfeas =
{
l ∈ {1, . . . , k} |

(
S l
)

infeasible
}

are the sets of iteration indices up to k for which the subproblems
{(
Sl
)}

l=1,...,k
were fea-

sible or infeasible respectively.

Solving the relaxed problem
(
Mk
)

will give new binary clustering variables
(
xk+1,yk+1

)
for the next iteration k+ 1. In addition, the optimal value γk of

(
Mk
)

gives a lower bound

LBk = γk for the optimal value of the original problem. This lower bound is non-decreasing

with k because adding a new cut at each iteration can only shrink the feasibility set. On

the other hand, the upper bound is updated at each iteration k as UBk , min
l∈Ikfeas

f
(
xl,yl,vl

)
,

which is clearly non-increasing with k. This iterative process is carried on until the dif-

ference between these bounds is less than a prespecified tolerance ε ≥ 0. From [90], the

finite convergence property of this algorithm is restated below.

Proposition 4.3. For any given ε ≥ 0, the GBD method algorithm terminates in a finite

number of iterations.

Proof. The proof directly follows Lemma 4.1 and from the results of Geoffrion in [90].

Convergence acceleration techniques Although the optimal convergence of the Ben-

ders’ algorithm is guaranteed, it can exhibit slow convergence in practice. In fact, the
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binary assignment variables
(
xk+1,yk+1

)
obtained from

(
Mk
)

does not necessarily guaran-

tee that
(
Sk+1

)
will be feasible at each iteration k. Another undesirable feature of cutting

plane algorithms such as Benders decomposition is that in early iterations, the solutions

tend to oscillate from one region of the feasible set to another, thus slowing convergence

[99]. Thus, we propose two techniques to speed up the convergence of the classical Ben-

ders’ algorithm.

• First, when the subproblem
(
Sk
)

becomes infeasible, we solve the feasibility problem(
F k
)

and construct a feasibility cut as prescribed by the classical algorithm. Then,

we check all pairs A of base station and user that create the maximum violation α̂:

A =
{

(b, u) ∈ B × U | xkbu = 0, ‖vbu‖2
2 − x

k
bu · Pb = α̂

}
(4.38)

After that, we select a new feasible assignment variables x by setting xbu = 1, ∀ (b, u) ∈

A, solve the corresponding subproblem to get an extra optimality cut, and add this

later to the master problem with the feasibility cut. The idea is to restore the fea-

sibility whenever we encounter an infeasible assignment and to generate as many

optimality cuts as possible in the first iterations.

• Second, we add valid cuts to the relaxed master problem to speed up the algorithm.

Adding extra constraints shrinks the feasibility set and helps find feasible and more

efficient solution in early iterations. Using our knowledge of the clustering and co-

operative beamforming problem, we add the following constraints:
∑

b∈B xbu ≥ , ∀u ∈ U

xb̄uu ≥ xbu, ∀b ∈ B\
{
b̄u
}
∀u ∈ U

The first constraint enforces that each user must be served by some base stations

whereas the second one ensures that the base station b̄u that has the strongest chan-
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nel to a user u first serve that user. Only when cooperation is required, the other base

stations can jointly serve user u with b̄u.

4.5 Distributed Multi-cell Cooperative Beamforming

In this section, we propose a decentralized algorithm for cooperative beamforming when

the clustering is fixed. In fact, the centralized optimization is impractical since it requires

the exchange of global channel information over the backhaul and may result in large

overhead [86]. Instead, our proposed distributed algorithm requires only local channel

information and some limited signaling.

4.5.1 Problem Reformulation

Denote by C the set of all clusters in the small-cell system. Each cluster c has Bc ⊆ B

as its set of cooperating BSs that jointly serve the users Uc ⊂ U . To simplify the design

of a decentralized algorithm, we assume that the clusters do not overlap, i.e. we have

Bc ∩Bc′ = ∅ and Uc ∩Uc′ = ∅ for each pair of clusters (c, c′) ∈ C2. With this assumption, the

received signal for user u served by a cluster c becomes:

yu = (hcu)
H vcusu︸ ︷︷ ︸

Desired signal

+
∑

j∈Uc\{u}

(hcu)
H vcjsj︸ ︷︷ ︸

Intra-cluster interference

+
∑

c′∈C\{c}

∑
k∈Uc′

(
hc
′
u

)H
vc
′
k sk︸ ︷︷ ︸

Inter-cluster interference

+ nu (4.39)

where hcu , (hbu)b∈Bc ∈ Cm|Bc|×1 and vcu , (vbu)b∈Bc ∈ Cm|Bc|×1.

Our goal is to make the beamforming optimization separable between the clusters. To

this end, we first transform the SINR of each user u as:

SINRu =

∣∣∣(hcu)H vcu

∣∣∣2∑
j∈Uc\{u}

∣∣∣(hcu)H vcj

∣∣∣2 +∑c′∈C\{c} z
2
c′u + σ2

u

(4.40)

by replacing the inter-cluster interference term received by u from each c′ ∈ C\ {c} with a

slack variable z2
c′u ≥ 0. To keep the formulation coherent, we also need the constraints:
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∑
k∈Uc′

∣∣∣∣(hc′u)H vc
′
k

∣∣∣∣2 ≤ z2
c′u, ∀

(
c′, u

)
∈ C\ {c} × Uc, ∀c ∈ C (4.41)

Note that each variable zc′u exactly couples a pair of clusters: user u’s serving cluster c

and its interfering cluster c′. Thus, the interference constraints (4.41) are equivalent to:

∑
l∈Uc

∣∣∣(hcj)H vcl

∣∣∣2 ≤ z2
cj , ∀j ∈ U\Uc, ∀c ∈ C (4.42)

Despite the equivalence, having constraints (4.41) at each cluster c is not useful because

cluster c cannot control the interference power z2
c′u received by its user u ∈ U . Instead,

cluster c can control the interference power z2
cj that it creates to a non-intended user

j ∈ U\Uc through (4.42). To simplify the notation, we collect all coupling inter-cluster

interference variables into z , (zcj)j∈U\Uc, c∈C ∈ R(|C|−1)|U|
+ .

Similarly, we create a new slack variable ic , (icv)v∈V ∈ R|V|+ that collects the interfer-

ence temperature created by cluster c to each primary user. Then, we decompose the total

interference temperature constraints (4.21) as follows:
∑

l∈Uc

∣∣∣(gcv)H vcl

∣∣∣2 ≤ icv, ∀v ∈ V , ∀c ∈ C

∑
c∈C icv ≤ Iv, ∀v ∈ V

(4.43)

As a result, the beamforming optimization problem becomes:
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

variables (vc)c∈C , z, (ic)c∈C

minimize
∑

c∈C
∑

k∈Uc ‖v
c
k‖

2

subject to SINRu
(
vc, (zc′u)c′∈C\{c}

)
≥ ρu, ∀u ∈ Uc, ∀c ∈ C

∑
l∈Uc

∣∣∣(hcj)H vcl

∣∣∣2 ≤ z2
cj, ∀j ∈ U\Uc, ∀c ∈ C

∑
l∈Uc

∣∣∣(gcv)H vcl

∣∣∣2 ≤ icv, ∀v ∈ V , ∀c ∈ C

∑
l∈Uc ‖vbl‖

2
2 ≤ Pmax

b , ∀b ∈ Bc, ∀c ∈ C

∑
c∈C icv ≤ Iv, ∀v ∈ V

(4.44)

Adding local interference variables and consistency constraints

In (4.44), the clusters are still coupled through the variables z, {ic}c∈C and the shared

constraints
∑

c∈C icv ≤ Iv, v ∈ V. To remove the coupling through z, we create a local

variable z̃c for each cluster c, which is defined by z̃c , (z̃rx
c , z̃

tx
c ) ∈ R(|C|−2)|Uc|+|U|

+ . Thus, it

contains only the following inter-cluster interference variables relevant to cluster c:

z̃rx
c , (z̃rx

c′u)(c′,u)∈C\{c}×Uc ∈ R(|C|−1)|Uc|
+ (4.45)

z̃tx
c ,

(
z̃tx
cj

)
j∈U\Uc

∈ R(|U|−|Uc|)
+ (4.46)

The local variable z̃rx
c′u of cluster c denotes the desired interference that cluster c wants its

user u ∈ Uc to receive from an interfering cluster c′ whereas the local variable z̃tx
cj of cluster

c denotes the interference that cluster c desires to transmit to a non-intended user j. To

enforce a consistency between the local and coupling variables, we add the constraints:

z̃c = Bcz, ∀c ∈ C (4.47)
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where Bc is a binary matrix that maps the local z̃c to the part of z relevant to cluster c.

Similarly, we introduce local interference temperature variable ĩc for each c with the

consistency constraints:

ĩc = ic, ∀c ∈ C (4.48)

After this step, the beamforming problem (4.24) is equivalent to:

variables
(
vc, z̃c, ĩc

)
c∈C

, z, (ic)c∈C

minimize
∑

c∈C
∑

k∈Uc ‖v
c
k‖

2

subject to
(
vc, z̃c, ĩc

)
∈ Fc, ∀c ∈ C

∑
c∈C icv ≤ Iv, ∀v ∈ V

z̃c = Bcz, ∀c ∈ C

ĩc = ic, ∀c ∈ C

(4.49)

In (4.49), the local variables
(
vc, z̃c, ĩc

)
belongs to a convex set Fc defined by:
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Fc =



(
vc, z̃c, ĩc

)
:

∥∥∥∥∥∥


(hcu)
H Vc ζ̃u σu

∥∥∥∥∥∥ ≤
√
1 + 1

ρu
(hcu)

H vcu, ∀u ∈ Uc

Re
(
(hcu)

H vcu

)
≥ 0, ∀u ∈ Uc

Im
(
(hcu)

H vcu

)
= 0, ∀u ∈ Uc

∑
l∈Uc

∣∣∣∣(hcj)H vcl

∣∣∣∣2 ≤ z̃2
cj , ∀j ∈ U\Uc

∑
l∈Uc

∣∣∣(gcv)H vcl

∣∣∣2 ≤ ĩcv, ∀v ∈ V

∑
l∈Uc ‖vbl‖

2
2 ≤ Pmax

b , ∀b ∈ Bc



(4.50)

in which the matrix Vc ,
(
vcj
)
j∈Uc

∈ Cm|Bc|×|Uc| concatenates the beamforming vectors

of cluster c and the vector ζ̃u , (z̃c′u)c′∈C\{c} ∈ R1×(|C|−1)
+ collects the local variables of

the interference received by its user u. The new formulation (4.49) is obtained after

using the manipulations in (4.40)-(4.43), introducing the local variables and consistency

constraints (4.47)-(4.48), and rewriting the SINR constraints in a conic form. As a result,

the equivalent beamforming problem (4.49) is now convex and quasi-separable.

4.5.2 Alternating Direction Method of Multiplier (ADMM)

Next, we show how to solve (4.49) using the ADMM method. First, let us form the aug-

mented Lagrangian Laug :

Laug

((
vc, z̃c, ĩc

)
c∈C

, z, (ic)c∈C

)
=
∑
c∈C

∑
k∈Uc

‖vck‖
2 + pIC

c (Bcz, z̃c) + pIT
c

(
ic ,̃ic

) (4.51)

where the penalty functions pIC
b and pIT

b in (4.51) are defined by:

pIC
c (Bcz, z̃c) , λ>c (Bcz−z̃c) +

ωIC

2
‖Bcz−z̃c‖22 (4.52)

pIT
c

(
ic ,̃ic

)
, µ>c

(
ic−̃ic

)
+
ωIT

2

∥∥∥ic−̃ic∥∥∥2

2
(4.53)
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The Langrangian dual variables λc = [λrx
c , λ

tx
c ] ∈ R(|C|−2)|Uc|+|U| and µc ∈ R|V| in (4.52) and

(4.53) play the role of consistency prices, and ωIC, ωIT ≥ 0 are fixed penalty weights for the

quadratic regularization terms.

Using the ADMM method, we can solve problem (4.49) by sequentially updating the

local variables
(
vc, z̃c, ĩc

)
c∈C

, the coupling interference variables
(
z, (ic)c∈C

)
and the dual

variables (λc, µc) at each iteration n with the following three steps:

(S.1) Update the local variables:

(
v(n+)
c , z̃(n+)

c , ĩ(n+)
c

)
c∈C

= argmin
(vc,z̃c ,̃ic)∈Fc, ∀c∈C

Laug

((
vc, z̃c, ĩc

)
c∈C

, z(n),
(
i(n)
c

)
c∈C

)
(4.54)

(S.2) Update the coupling variables:(
z(n+),

(
i(n+)
c

)
c∈C

)
= argmin

z,(ic)c∈C

Laug

((
v(n+1)
c , z̃(n+1)

c , ĩ(n+1)
c

)
c∈C

, z, (ic)c∈C

)
(4.55)

subject to
∑
c∈C

icv ≤ Iv, ∀v ∈ V (4.56)

(S.3) Update the consistency prices:

λ(n+ 1)
c = λ(n)

c + ωIC
(
Bcz

(n+1)−z̃(n+1)
c

)
(4.57)

µ(n+ 1)
c = µ(n)

c + ωIT
(
i(n+1)
c −̃i(n+1)

c

)
(4.58)

Given the convexity of problem (4.49), the convergence properties of the ADMM algo-

rithm are given as follows.

Proposition 4.4. If problem (4.49) has a non-empty feasible set, then the ADMM-based

algorithm converges as follows: (i) the total transmit power converges to the optimal value P ∗T

as n→∞; (ii) a consensus will be reached between the clusters, i.e. Bcz
(n)−z̃(n)

c → 0, ∀c and

i
(n)
c −̃i(n)

c → 0, ∀c as n → ∞, and (iii) the iterates
(
λ

(n)
c , µ

(n)
c

)
will converge to the optimal

multipliers of problem (4.49).
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This result follows from the convexity of problem (4.49). Assuming that the problem

instance is feasible and Slater’s constraint qualification holds, then problem (4.49) satisfies

the required assumptions under which ADMM is guaranteed to converge [100].

4.5.3 Decentralized Beamforming and Signaling Schemes

The previous ADMM-based algorithm can be carried out in a decentralized way by allowing

the clusters to exchange some signaling information. First, the optimization problem in

step (S.1) is completely separable. Thus, each cluster c can independently update its

beamformers and local interference variables.

For the step (S.2) in (4.55), z and (ic)c∈C can be updated separately with:

z(n+1) =
1

2

∑
c∈C

B>c

(
z̃(n+1)
c − 1

ωICλ
(n)
c

)
(4.59)

and the following quadratic program as:

(
i(n+1)
c

)
c∈C

= argmin∑
c∈C icv≤Iv , v∈V

∑
c∈C

µ>c ic +
∑
c∈C

ωIT

2

∥∥∥ic−̃i(n+1)
c

∥∥∥2
(4.60)

Next, the previous z-update and i-update can be carried out locally at each cluster. In

fact, it can be shown that the z-update for cluster c is done component-wise as follows:

z
(n+1)
c′u =

1

2

(
z̃

rx(n+1)
c′u − 1

ωICλ
rx(n)
c′u

)
+

1

2

(
z̃

tx(n+1)
c′u − 1

ωICλ
tx(n)
c′u

)
, ∀u ∈ Uc, ∀c′ ∈ C\ {c} (4.61)

z
(n+1)
cj =

1

2

(
z̃

tx(n+1)
cj − 1

ωICλ
tx(n)
cj

)
+

1

2

(
z̃

rx(n+1)
cj − 1

ωICλ
rx(n)
cj

)
, ∀j ∈ Uc′ , ∀c′ ∈ C\ {c} (4.62)

For this to be possible, each pair of clusters (c, c′) needs to exchange some signaling infor-

mation. Cluster c′ needs to send to cluster c the real vectors
(
z̃

tx(n+1)
c′u − 1

ωICλ
tx(n)
c′u

)
u∈Uc

and(
z̃

rx(n+1)
cj − 1

ωICλ
rx(n)
cj

)
j∈Uc′

and vice versa. Similarly, the coupling variable (ic)c∈C can be lo-

cally updated at each cluster with (4.60) after having each pair of clusters (c, c′) exchange

their local variables
(̃
i
(n+1)
c , ĩ

(n+1)
c′

)
∈ R2|V|.

For step (S.3), each cluster c can update the consistency prices (λc, µc) independently

from (4.57)-(4.58) with no extra signaling cost. As a result, the total signaling overhead
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per iteration required for achieving optimality is:

∑
c∈C

∑
c′∈C\{c}

(|Uc|+ |Uc′ |+ |V|) = 2 (|C| − 1) (|U|+ |V|) (4.63)

In practice, it is however desirable to limit the signaling and aim for a near-optimal per-

formance. To do that, we first limit the number of iterations as done in [101]. Specifically,

the clusters can agree to fix their local interference to the consented values
(
Bcz

(n+1), i
(n+1)
c

)
c∈C

after step (S.2) of an intermediate iteration n. Then, they recompute their beamformers

as: 
minimize

vc

∑
k∈Uc ‖v

c
k‖

2

subject to
(
vc,Bcz

(n+1), i
(n+1)
c

)
∈ Fc

(4.64)

This extra computation (4.64) enables to obtain a feasible solution at an intermediate it-

eration provided that the consented values
(
Bcz

(n+1), i
(n+1)
c

)
c∈C

render the subproblems

(4.64) feasible for all clusters. Otherwise, they need to carry more iterations. Our sim-

ulation results however shows that tens of iterations are enough to achieve near-optimal

performance.

Second, we reduce the signaling overhead per iteration through user grouping. Based

on the local channel information {hcu}u∈Uc (and/or {gcv}u∈V), each cluster c can partition

the small-cell users (and/or the primary users) into two groups as Uc = U1
c ∪ U2

c (and/or

V = V1
c ∪V2

c ). The users in the first group U1
c are those whose desired channel gains from c

are weaker compared to the users in the second group U2
c . On the other hand, the primary

users in V1
c are those whose interference channels are stronger compared to V2

c . Using

different restriction rules, the following limited signaling schemes are proposed:

• Fractional signaling: Since U1
c and V1

c are more vulnerable to interference, the frac-

tional signaling scheme does not impose any restriction on their interference vari-

ables. Instead, each cluster c restricts the inter-cluster interference (and/or interfer-

ence temperature) to be equal for all small-cell (and/or primary) users in the second

102



4.5. Distributed Multi-cell Cooperative Beamforming

Table 4.2 – Overhead per iteration of limited signaling schemes.

Signaling
schemes

Signaling restriction on inter-cluster
interference only

Signaling restriction on inter-cluster interference
and interference temperature

Fractional
∑

c∈C
∑

c′∈C\{c}
(∣∣U1

c

∣∣+ ∣∣U1
c′

∣∣+ |V|+ 2
) ∑

c∈C
∑

c′∈C\{c}
(∣∣U1

c

∣∣+ ∣∣U1
c′

∣∣+ ∣∣V1
c

∣∣+ ∣∣V1
c′

∣∣+ 4
)

Group-wise
∑

c∈C
∑

c′∈C\{c} (4 + |V|) 16 (|C| − 1)

Cluster-wise
∑

c∈C
∑

c′∈C\{c} (2 + |V|) 8 (|C| − 1)

group U2
c (or V2

c ). This can be achieved by adding extra constraints in the optimiza-

tion problem of step (S.1) and by setting the initial consistency prices to be equal

for the users in the second group. With that, it can be verified by induction that for

every iteration n > 0, the signaling information exchanged between (c, c′) become

equal for all small-cell users in U2
c (and/or all primary users in V2

c ), thereby reducing

the overhead.

• Group-wise signaling: As before, each cluster c partitions its users into two groups.

However, the inter-cluster interference (or interference temperature) of the small-cell

(or primary) users are restricted to be equal in each of the groups.

• Cluster-wise signaling: Here, each cluster c does not divide the primary or small-cell

users into two groups but simply enforces the interference received by all small-cell

users and/or all primary users to be equal.

The overhead per iteration of these signaling schemes is summarized in Table 4.2. For

comparison, the total overhead of the central optimization due to the exchange of global

channel information is given by
∑

c∈C
∑

c′∈C\{c} 2m · |Bc′| (|U|+ |V|) assuming that each

complex channel coefficient is sent over the backhaul as two real scalars.
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Table 4.3 – Power cost and system parameters in Chapter 4.

Simulation parameters Values

Number of antenna at base stations m 3

Number of base stations 7

Inter-base station site distance 500m

Maximum transmit power, Pmax 46dBm

System bandwidth 5MHz

Channel bandwidth 200KHz

Thermal noise power density −174dBm/Hz

Power amplifier efficiency, µPA 35%

Static power cost, Pstatic 6.8W

Power supply battery backup, CPS 11%

Dynamic signal processing power, psp 5.8W

Power efficiency of backhaul 0.1W/Mbps

4.6 Simulation Results

Next, we simulate a two-tier network with a total of seven base stations. We assume

that the small cells are the secondary users and they share the spectrum with the primary

macro-cell users. Then, we apply the cognitive resource allocation framework presented

above to this network. As a result, we use the terms macro-cell user and primary user

interchangeably. Similarly, small-cell user and secondary user are used interchangeably in

this section. All these users are uniformly distributed within a circular area with a radius of

1km from the center base station. Our simulation parameters are listed in Table 4.3. The

maximum base station transmit power, the cooperative processing power and fixed con-

sumed power parameters are normalized to the subcarrier bandwidth. In our simulations,

we solved the convex beamforming subproblems using the convex optimization software

CVX [1].
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Figure 4.3 – Optimal clustering for different network topologies and SINR targets

4.6.1 Performance of Joint Clustering and Beamforming

In Figure 4.3, we illustrate the optimal clustering for two different network topologies.

The primary users are denoted by squares whereas small-cell users by circles. The total

interference power limit at each primary user is Iv = 3dB above the noise level. In Figure

4.3(a), the simple inter-cell coordination scheme is optimal when |U| = |V| = 7 and

ρ = 10dB. However, some BS cooperation is required to support a higher SINR target

ρ = 20dB (Figure 4.3(b)) or to serve |U| = 10 small-cell users (Figure 4.3(c)). Thus, the

flexible cooperation scheme allows the BSs to share their antennas only when they need

to jointly serve some cell-edge users with a high quality of service or when their limited

spatial degrees of freedom do not allow them to individually serve more small-cell users

while protecting the primary users.

For the network topology in Figure 4.3(a), we compare the performance and power

cost of the flexible cooperation with those of inter-cell coordination and full cooperation

schemes in Figure 4.4. While the simple inter-cell coordination is optimal at low SINR,

it is no longer feasible when ρ > 10dB. We also observe from Figures 4.4(a)-(b) that full

cooperation achieves the lowest transmit power thanks to the macro-diversity gain. But

since the cooperative power cost is high, significant energy can be saved by resorting to the

105



4.6. Simulation Results

0 5 10 15 20 25
0

5

10

15

20

25

SINR of Small-cell Users (dB)

To
ta

l P
ow

er
 C

os
t (

W
at

ts
)

 

 

Inter−cell Coordination

Flexible Cooperation

Full Cooperation

(a) Total power consump-
tion

0 5 10 15 20 25
−15

−10

−5

0

5

10

15

20

25

SINR of Small-cell Users (dB)

BS
 T

ra
ns

m
it 

Po
w

er
 (d

B)

 

 

Inter−cell Coordination

Flexible Cooperation

Full Cooperation

(b) Total transmit power

0 5 10 15 20 25
−6

−4

−2

0

2

4

6

8

10

12

SINR of Small-cell Users (dB)

To
ta

l I
nt

er
fe

re
nc

e 
to

 p
rim

ar
y 

us
er

s 
(d

B)

 

 

Inter−cell Coordination
Flexible Cooperation
Full Cooperation

(c) Total interference temperature
power

Figure 4.4 – Performance comparison and effect of SINR requirements of small-cell users.
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Figure 4.5 – Effect of the number of small-cell users with 10dB SINR target

flexible cooperation. Figure 4.4(c) shows that the interference to primary users increases

with the SINR target until the limit is reached.

In Figure 4.5, we present the effect of the number of small-cell users on the feasibility

of supporting the primary and small-cell users’ requirements. Here, we have |V| = 7

primary users. For a given number of secondary users, we generate 1000 random network

instances with different user locations and channels. With |U| = 10 and ρ = 10dB, only

15% infeasible cases were encountered when cooperation was used. Otherwise, 65% of the

problem instances were infeasible with the simple inter-cell coordination scheme. Thus,

106



4.6. Simulation Results

0 10 20 30 40 50 60 70 80 90 100 110 120
−5

0

5

10

15

20

25

Iterations

To
ta

l p
ow

er
 c

os
t (

W
at

ts
)

 

 

Improved Benders algorithm

Classical Benders algorithm

Upper Bounds

Lower Bounds

(a) Classical and improved Benders algo-
rithms

20 40 60 80 100 120 140 160 180 200
10−4

10−3

10−2

10−1

100

Iteration

N
or

m
al

iz
ed

 T
ra

ns
m

it 
Po

w
er

 A
cc

ur
ac

y

 

 

    

    

    

ρ = 0dB

ρ = 6dB

ρ = 10dB

(b) ADMM-based decentralized algo-
rithm

Figure 4.6 – Convergence of proposed algorithms

the flexible cooperation scheme enhances the capabilities of the base stations to combat

interference. Although it has the same infeasibility rate as the full cooperation scheme, it

can also save power by reducing the degree of cooperation whenever possible.

4.6.2 Convergence of Proposed Algorithms

Next, we analyze the convergence of our proposed algorithms for scenario in Figure 4.3(c).

For the joint clustering and beamforming problem, we show the convergence of the Ben-

ders algorithm when optimizing the clustering and beamforming for the scenario in Figure

4.3(c). We see that the convergence rate of the algorithm is largely improved by applying

feasibility restoration and by inserting valid cuts. In fact, those two simple techniques en-

abled to strengthen the lower bounds and generate as many optimality cuts as possible in

the early iterations. The typical convergence of the ADMM-based algorithm is shown in

Figure 4.6(b). Note that the normalized power accuracy is defined as |
∑

c∈C
∑

b∈Bc Pb−P ∗T |
P ∗T

.
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Figure 4.7 – Cooperative network with 3 clusters and |U| = 14, |V| = 3.
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Figure 4.8 – Performance comparison of limited signaling schemes with I = 3dB.
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4.6.3 Performance of Decentralized Scheme with Limited Signaling

We consider the network in Figure 4.7 with three clusters, |B| = 7, |U| = 14, ρ = 6dB

and Iv = 3dB. We compare the performance of the decentralized schemes with limited

signaling for different channel realizations. We use the extra computation in (4.64) to

obtain a feasible solution after 10 and 50 iterations. In Figure 4.8(a), we have |V| = 3

and the signaling restriction is imposed only on the inter-cluster interference. In Figure

4.8(b), we increase the number of primary users to |V| = 6 and add restriction on the

interference temperature. Each cluster partitions the users into two groups of equal size

for the fractional and group-wise signaling schemes. Figures 4.8(a) and (b) show that

the fractional signaling, followed by group-wise signaling, perform near the optimum. On

the other hand, the cluster-wise signaling creates a large optimality gap especially when

the channels are badly conditioned. Finally, using (4.63) and Table 4.2, we found that

the fractional and group-wise signaling can reduce the overhead per iteration by about

30% and 60% respectively compared to the optimal ADMM scheme while achieving near-

optimal performance. When compared to the centralized optimization, the total overhead

is reduced by about 67% and 80% respectively with 10 iterations.
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Chapter 5

Summary, Conclusions and Future Work

In order to support the exploding mobile data traffic, wireless operators must drastically

increase the network capacity through an ultra-densification of the network. A huge chal-

lenge for dense heterogeneous deployments is to keep the energy consumption at the

same level as today’s. In this thesis, we studied different resource allocation and coop-

eration schemes for enabling energy-efficient wireless heterogeneous two-tier networks.

In particular, we focused on the coordinated multi-cell power allocation, energy coopera-

tion and cooperative multi-point beamforming in such networks. Throughout this thesis,

we leveraged different convex optimization techniques to solve these non-convex resource

allocation problems. Our proposed algorithms are efficient, provably-convergent and ap-

plicable to various heterogeneous network deployments. In the following, we present a

summary of the contributions made in this thesis along with some concluding remarks.

5.1 Summary and Conclusions

In Chapter 2, we proposed a multi-cell coordination framework for maximizing the energy

efficiency of wireless heterogeneous networks. To enable the coordination between the

cells, the channel state information needs to be shared through some backhaul links. Al-

ternatively, a centralized RAN architecture can also facilitate this coordination by having

a central unit controlling the power allocation of the remote radio units. When develop-

ing energy-efficient power allocation algorithms, we considered two different scenarios:

orthogonal multiple access and full spectrum sharing. Even with orthogonal transmis-
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sions, the resulting optimization problem is not convex and cannot be solved by stan-

dard algorithms. Nonetheless, we derived a useful convex parameterization to handle the

non-convexity. Specifically, an efficient solution of the non-convex energy-efficiency max-

imization problem is found by solving a sequence of convex parametric problems instead.

Moreover, we showed that the optimal parameters of this surrogate problems turn out to

be the unique root of a non-linear system of equations. As a result, an algorithm based on

a damped Newton method is derived and proved to converge to the global optimum. In

addition, we also solved the general scenario of non-orthogonal transmissions, i.e. when

the cells fully share the spectrum. This setup is more difficult due to the multi-user interfer-

ence. Thus, another algorithm was derived using the minorization-maximization principle

and it was shown to monotonically converges to at least a local optimum. These proposed

optimization algorithms can be used with various power constraints such as individual

transmit power, total power constraint and interference constraints. Moreover, we showed

that the proposed framework can be useful even with the presence of probabilistic interfer-

ence constraints. Our simulation results validated the convergence and effectiveness of the

proposed algorithms. By comparing the proposed scheme with a baseline non-cooperative

scheme, we found that a simple coordination between the cells can drastically improve the

energy efficiency of heterogeneous networks. In fact, the achieved energy efficiency in-

creases with the number of active small cells. These results confirm the need for multi-cell

coordination to achieve an efficient operation of dense heterogeneous networks.

In Chapter 3, we studied the energy allocation problem in hybrid-powered wireless

two-tier networks. The dense deployment of base stations in future networks pose a

tremendous challenge to the energy cost. Therefore, it is desirable to use advanced yet

sustainable energy solutions. Specifically, we assumed that each cell has a hybrid energy

source and an energy storage system. The hybrid power source allows each cell to draw

energy from both renewable source and the conventional power grid. With this setup,

we formulated an optimization problem, in which the cells maximize the sum of their
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energy efficiency by allocating their energy over a finite time horizon. Further, each cell

imposes an average sum rate constraint. In contrast to Chapter 2, the new problem for-

mulation takes into account the possible fluctuations of renewable energy arrivals at the

cells. Our objective was to investigate the benefits of the hybrid power source in cellular

two-tier networks. Thus, we focused on offline optimization and assumed a non-causal

knowledge of the channel conditions and renewable energy arrivals. The algorithms pro-

posed in Chapter 2 were extended to handle the non-convex average cell rate constraints.

Whenever the new algorithm starts with a feasible power allocation, the subsequent iter-

ates necessarily satisfy the rate constraints and monotonically converges to at least a local

optimum. Furthermore, we studied the joint energy allocation and energy cooperation in

wireless two-tier networks. Precisely, we extended the energy-saving capability of the net-

work by allowing the cells to exchange their harvested energy through a smart-grid power

infrastructure. In this case, we propose to exploit both the spatial and time diversity of

the renewable energy arrivals across the cells. Our numerical results showed that both

the hybrid power source and the energy cooperation scheme can significantly improve the

energy efficiency of cellular two-tier networks. A much higher gain can be obtained when

they are used together. Hence, energy cooperation is a viable approach for reducing both

the operational and environmental costs of future heterogeneous networks. Nonetheless,

there are still many practical issues that need further investigation to fully realize such

possibility. Some of these open problems are discussed in the next section.

In Chapter 4, we investigated the joint optimization of the clustering and cooperative

beamforming for minimizing the total energy cost in clustered two-tier systems. In con-

trast to Chapter 2 and Chapter 3, we assumed here that the base stations can have multiple

antennas. In addition, they cooperate by sharing their antennas and by jointly transmitting

to their users. To achieve this form of cooperation, the cells must be connected by back-

haul links through which they exchange the user data and/or signaling information. The

advantages of using this coordinated multi-point transmission scheme are the robustness
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against interference and the spatial multiplexing gain. However, this cooperation scheme

may incur some significant energy cost due to the multi-cell processing and the backhaul

signaling. Therefore, we propose a flexible cooperation scheme, in which the cooperative

cluster for each user is optimized to adapt the degree of cooperation of the base stations.

In fact, most existing works in the literature have overlooked this trade-off. Instead, we

explicitly modeled this optimization problem as a mixed-integer program and solved it

using the generalized Benders decomposition method. Precisely, we divided the problem

into a beamforming subproblem and a clustering master problem. The proposed Benders

algorithm optimally converges in a finite number of iterations but it can exhibit a slow

convergence. Therefore, we derived simple techniques to accelerate its convergence. We

also proposed a decentralized cooperative beamforming algorithm when the clusters are

fixed. In fact, the use of distributed algorithms is of practical importance when the cells

are not connected through a central unit. With this distributed coordination, the clusters

were able to manage their interference through consensus. Given the limited capacity of

the backhaul links, it is also important to limit the signaling overhead. By employing some

limited signaling schemes, it is possible to reduce the total overhead by about 30% and

60% respectively at the cost of a marginal increase in total energy consumption. More

importantly, we showed that it is possible to achieve an efficient trade-off between energy

cost and performance when employing a coordinated multi-point transmission in hetero-

geneous networks.

5.2 Future Research Directions

As a result of the work done in this thesis, we present some possible directions of future

research as described in the following sections.
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Distributed algorithms for energy-efficient device-to-device networks

The optimization framework presented in Chapter 2 is suitable for heterogeneous networks

that have a centralized architecture. An example of this is a cloud-RAN based networks

in which the cells are served by remote radio units that are connected to a central unit

through optical fronthaul links. Alternatively, the centralized energy-efficiency optimiza-

tion can also be performed for distributed cells under the condition that they can exchange

their channel information through some backhaul links. Nonetheless, it is preferable if not

necessary in certain scenarios to employ distributed algorithms instead of a centralized

one. For instance, device-to-device communication systems do not have a centralized unit

nor backhaul links that connect the devices. In such case, they need to coordinate their

resource allocation in a self-organized manner. Clearly, distributed algorithms will need to

incur some signaling overhead to enable the devices or cells to achieve good performance.

When designing distributed algorithms, an important criteria is to achieve a good trade-off

between signaling overhead and performance. For this purpose, the centralized algorithm

proposed in Chapter 2 can serve as a benchmark. Moreover, the computational and run-

time complexities of the distributed algorithms should be at least comparable to that of a

centralized one. This should not be too hard if a parallel update method of the Jacobi type

is employed [91]. Nonetheless, it is a challenging yet interesting problem to derive parallel,

convergent and efficient algorithms for the non-convex energy-efficiency maximization. To

our knowledge, only the algorithm in [56], which converges to a Nash equilibrium, has

attempted such parallel updates for this problem. Nonetheless, we showed in Chapter 2 of

this thesis that the achieved Nash equilibrium is not efficient for this problem. In addition,

the distributed algorithm should be able to handle individual as well as shared power con-

straints. Finally, another technical challenge is to analyze the convergence of the designed

distributed algorithm under asynchronous updates. This is an important practical issue for

device-to-device networks given the lack of centralized coordination.
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Stochastic energy-efficiency maximization with imperfect channel

information

In Chapter 2, we addressed the possibility to have imperfect channel information between

the cells and the co-existing primary users in the system. For this, we proposed to use

probabilistic constraints and handle the tractability issue through robust approximation

methods. However, it is also possible that the channel state information between the

cells themselves are uncertain. In this case, the uncertainty is present in the utility func-

tion and our new goal is to maximize the expected energy efficiency. However, even if

the exact probability distribution of the channels is known, it is intractable to obtain a

closed-form expression of such expected utility function. In this case, it is more practi-

cal to use a stochastic approximation approach [102]. In this line, a method was recently

proposed in [103] for stochastic non-convex rate maximization problems. Based on par-

tial linearization [104] and a gradient averaging approach [105], the algorithm consists

of solving a sequence of simpler surrogate subproblems. It was shown to converge to a

stationary point [103]. However, the approximate objective function of the subproblems

need to be strongly convex. Unfortunately, it is not easy to find such approximation for

the non-convex energy-efficiency function. Nonetheless, the application of stochastic ap-

proximation and averaging methods is a promising direction for solving the stochastic

energy-efficiency maximization problem.

Online adaptive optimization for joint energy allocation and energy

cooperation

Another interesting open problem is to design online algorithms for the joint energy allo-

cation and energy cooperation problem. In practice, only information about past channel

conditions as well as past/current energy arrivals are available at each cell. Therefore, a

new framework is needed to solve this optimization problem in an adaptive manner. For-
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tunately, there is a growing interest for online algorithms not only for communications but

also for different applications such as smart-grid and machine learning on data streams. To

our knowledge, some of the frameworks that were previously used to design adaptive algo-

rithms are dynamic programming [106], Lyapunov optimization [107] and online convex

optimization [108]. The traditional approach based on dynamic programming is difficult

to apply here because the algorithm may suffer from the curse of dimensionality [106]. On

the other hand, the algorithms derived from online convex optimization framework (e.g.

mirror descent [108]) first need to be extended to handle the non-convexity of the energy

efficiency function. Moreover, it should be able to satisfy both the time-varying energy

constraints and the average rate constraints. Therefore, further research efforts will be

needed to tackle this interesting problem.

Energy-efficient load balancing and adaptive clustering for

cooperative small-cell networks

With regard to Chapter 4, we assumed that each user has a fixed quality of service require-

ment. This is reasonable if the amount of data traffic created by the users is slowly varying

and predictable. A more applications will be moved to the mobile cloud, future wireless

networks will have to manage a fast-changing and highly volatile data traffic across the

network. Cooperation between the small-cells would be needed in order to balance the

data load and achieve a satisfactory level of service for the users. Hence, the joint cluster-

ing and resource allocation problem, studied in Chapter 4, can be extended to take into

account the load balancing of the cells. A new model and a new utility function will be

needed to capture the trade-off between energy cost and service delay.
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Appendix A

Proof of Results in Chapter 2

A.1 Proof of Proposition 2.1

To prove Proposition 2.1, let us define the following function:

L (θ,p;α,w, λ) = γ
∑
c∈C

θc +
∑
c∈C

αc (rc (pc)− θcCc (pc)) +
∑
l∈V

λlhl (p) , (A.1)

which is parametrized by (γ, α, λ), with λ , (λl)l∈V .

Proof. Suppose that
(
p̂, θ̂
)

is an optimal solution of the original problem (P ) formulated

in (2.10). Then, using the Fritz-John optimality conditions [109], there exists a triple(
γ, α, λ

)
that satisfies:

∂L

∂p
=
∑
c∈C

αc

(
∇pRc (p̂c)− θ̂c∇pCc (p̂c)

)
+
∑
l∈V

λl∇phl (p̂) = 0, (A.2)

∂L

∂θi
= γ − αcCc (p̂c) = 0, ∀c ∈ C, (A.3)

αc

(
Rc (p̂i)− θ̂cCc (p̂c)

)
= 0, ∀c ∈ C, (A.4)

λlhl (p̂) = 0, ∀l ∈ V , (A.5)

Rc (p̂c)− θ̂cCc (p̂c) ≤ 0, ∀c ∈ C, (A.6)

hl (p̂) ≤ 0, ∀l ∈ V , (A.7)

γ ≥ 0, α ≥ 0, λ ≥ 0, (A.8)(
γ, α, λ

)
6= (0,0,0) . (A.9)
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A.1. Proof of Proposition 2.1

Next, we show by contraposition that γ 6= 0 necessarily holds. Suppose that γ = 0.

Hence, we obtain from conditions (A.3) that αc = 0, ∀c ∈ U since Cc (p̂c) > 0, ∀c ∈ C.

Due to the complementary slackness conditions in (A.5), we also have λl = 0 if l /∈ Va.

Here, Va = {l ∈ V | hl (p̂) = 0} is the subset of primary users for which the interference

constraints are active. Thus, (A.2) implies:

∑
l∈Va

λl∇phl (p̂) = 0. (A.10)

Furthermore, if γ = 0 and αc = 0, ∀c ∈ C, then the condition (A.9) implies that

∑
l∈Va

λl > 0. (A.11)

Since the power constraint functions hl, ∀l ∈ V are affine, we can assume that∇phl (p) is a

positive vector. Hence, we obtain from (A.11) that
∑

l∈Va λl∇phl (p̂) > 0, which contradicts

equation (A.10). Consequently, γ = 0 cannot hold.

Since γ 6= 0, we can now redefine the parameters as ŵ = w
γ

and λ̂ = λ
γ

and divide

equations (A.2)-(A.5) by γ to obtain the equivalent equations (A.12)-(A.15):

∑
c∈C

α̂c

(
∇pRc (p̂c)− θ̂c∇pCc (p̂c)

)
+

L∑
l=1

λ̂l∇phl (p̂) = 0, (A.12)

1− α̂cCc (p̂c) = 0, ∀c ∈ C, (A.13)

α̂c

(
Rc (p̂c)− θ̂cCc (p̂c)

)
= 0, ∀c ∈ C, (A.14)

λ̂lhl (p̂) = 0, ∀l ∈ V , (A.15)

Rc (p̂c)− θ̂cCc (p̂c) ≤ 0, ∀l ∈ V , (A.16)

hl (p̂) ≤ 0, ∀l ∈ V , (A.17)

α̂ ≥ 0, (A.18)

λ̂ ≥ 0. (A.19)
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Now, let us consider the parametric problem (Px) with a parameter x = (α, θ). Its

Lagrangian is given by:

Lx (p;λ) =
∑
c∈C

αc (Rc (pc)− θcCc (pc)) +
∑
∀l∈V,

λlhl (p) . (A.20)

We can identify equations (A.12), (A.15), (A.17) and (A.19) as the Karush-Kuhn-Tucker

(KKT) optimality conditions [61] of (Px) with x =
(
α̂, θ̂
)

. Since (Px) is convex, these KKT

conditions are sufficient to prove that p̂ is also an optimal solution of (Px) [61].

Finally, we obtain (2.14) from equation (A.13), i.e. p̂ satisfies:

α̂cCc (p̂c)− 1 = 0, ∀c ∈ C. (A.21)

By definition, we have Cc (pc) > 0, ∀c ∈ C, and with (A.21), we also have α̂c > 0, ∀c ∈

C. Consequently, the complementary slackness conditions in (A.14) simplify to:

Rc (p̂c)− θ̂cCc (p̂c) = 0, ∀c ∈ C. (A.22)

Therefore, it is proved that an optimal solution of (P ) must satisfy the equations in (2.13)

and (2.14).

A.2 Proof of Lemma 2.1

Here, we are going to prove the three properties of the matrix-valued function F (x) stated

in Lemma 2.1. Recall that a function f : X → Y is said Lipschitz continuous on a set X

if and only if there exists a constant K ≥ 0 such that ‖f (x1)− f (x2)‖ ≤ K ‖x1 − x2‖ ,

∀x1,x2 ∈ X .

First, we prove that the Jacobian of F is given by (2.22). We can verify that the ob-

jective function of the parametric problem (Px) is strictly convex by computing its second

derivative. Thus, its solution is unique for a given x, and we get from (2.17) and (2.18)
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that:

∂Fc(x)
∂αd

= 0, ∀d ∈ C, ∂Fc(x)
∂θd

= 0, ∀d ∈ C\ {c} ,

∂Fc+|C|(x)

∂θd
= 0, ∀d ∈ C, ∂Fc+|C|(x)

∂αc
= Cc (p̃c (x)) ,

∂Fc(x)
∂θc

= Cc (p̃c (x)) , ∂Fc(x)
∂αd

= 0, ∀d ∈ C\ {c} .

Correspondingly, the Jacobian matrix F′ (x) is given by the diagonal matrix in (2.22) and

it is positive definite since Cc (pc) > 0, ∀c ∈ C by definition.

Next, we prove the Lipschitz continuity and strong monotonicity of the matrix-valued

function F. By the definition in (2.17) and (2.18), F can be written as a composite function

G ◦ p̃ where G : R|U| → R2|U| is defined by the convex functions:

Gc (p) = θcCc (p)− rc (p) , ∀c ∈ C, (A.23)

Gc+|C| (p) = αcCc (p)− 1, ∀c ∈ C, (A.24)

and p̃ (x) is a function that returns an optimal solution of the parametric convex problem

(Px) for a given x.

First, the component functions Gc and Gc+|C| are all Lipschitz continuous in the set K

defined in (2.11) since K is compact and Gc and Gc+|U| are convex in K for each c ∈ C

(see Theorem C.4.1 in [110]). Therefore, the matrix-valued function G is also Lipschitz

continuous in the set K. Furthermore, by invoking Theorem D.1 in [111], it can be shown

that the function p̃ (x) is Lipschitz continuous in the set X defined in (2.19) since the

parametric problem (Px) admits a unique solution for each x by strict convexity and since

the set X is compact and convex (see also Lemma 2.1 in [112]). If p̃ and G are Lipschitz

continuous in X and K respectively, then it implies that F =G ◦ p̃ is also Lipschitz contin-

uous in K with a certain constant M . This result is due to Theorem 12.6 in [113]. Finally,
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to show that F is strongly monotone, we write:

y>F′ (x)y =
∑
c∈C

(
y2
c + y2

c+|U|
)
Cc (p̃c (x)) ≥

2|C|∑
c=1

y2
cmc ≥ m ‖y‖2 , ∀y ∈ R2|C| (A.25)

where mc , minp∈K Cc (p) = Pf,c for each c ∈ C and m = minc∈U Pf,c > 0. The last

inequality in (A.25) implies that the function F is strongly monotone with a constant

m > 0.

Finally, we use the established properties above to show that F′ is also Lipschitz con-

tinuous and that its inverse F′−1 is bounded. As shown previously, the function p̃ (x) is

Lipschitz continuous in the compact and convex set X . Thus, there is a constant L ≥ 0

such that ‖p̃ (x1)− p̃ (x2)‖ ≤ L ‖x1 − x2‖ for all (x1,x2) ∈ X × X , and we obtain:

|Cc (p̃ (x1))− Cc (p̃ (x2))| = ψc |p̃c (x1)− p̃c (x2)| ≤ ψcL ‖x1 − x2‖ , ∀c ∈ C. (A.26)

From (2.22) and (A.26), we then have:

‖F′ (x1)− F′ (x2)‖ ≤
√

2 |C|
∑

c∈C ψ
2
cL ‖x1 − x2‖ , (A.27)

which means that F′ is also Lipschitz continuous in X . Moreover, its inverse F′−1 equals:

F′−1 (x) =


diag

((
1

Cc(p̃(x))

)
c∈U

)
0|U|×|U|

0|U|×|U| diag
((

1
Cc(p̃(x))

)
c∈U

)
 . (A.28)

Given the bounds of the setX in (2.20) and (2.21), each element 1
Cc(p̃(x))

of F′−1 is bounded

from above by αmax
c . Hence, there exists a constant B > 0 such that ‖F′−1 (x)‖ ≤ B.
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A.3 Proof of Proposition 2.2

Here, we prove in two steps that the system of equations F (x) = 0 has a unique solution.

Before doing that, let us define the mapping P (x) = ProjX (x− µF (x)) where ProjX de-

notes an orthogonal projection onto the convex set X . In addition, we select the parameter

µ ∈
(
0, 2m

M2

)
where m and M are the constants associated with the strong monotonicity and

Lipschitz continuity of F as previously shown.

The first step in proving Proposition 2.2 is to show that P is a contractive mapping in X

for all µ ∈
(
0, 2m

M2

)
. In this case, P is guaranteed to have a unique fixed point. The second

step is then to prove that F (x) = 0 is equivalent to the fixed-point equation P (x) = x for

all µ ∈
(
0, 2m

M2

)
. As a result, the solution of F (x) = 0 will also be unique.

Proof that P (x) is a contraction

Let us prove that P is a contraction. From the properties of F in Lemma 2.1, we can write:

‖P (x1)− P (x2)‖2 = ‖ProjX (x1 − µF (x1))− ProjX (x2 − µF (x))‖2 (A.29)

≤ ‖(x1 − µF (x1))− (x2 − µF (x))‖2 (A.30)

= ‖x1 − x2‖2 − 2µ (x1 − x2)> (F (x1)− F (x2)) + µ2 ‖F (x1)− F (x2)‖2

(A.31)

≤ ‖x1 − x2‖2 − 2µm ‖x1 − x2‖2 + µ2 ‖F (x1)− F (x2)‖ (A.32)

=
(
1− 2µm+ µ2M2

)
‖x1 − x2‖2 , (A.33)

where the inequality (A.30) results from the non-expansiveness of the projection opera-

tor [114]. The inequalities (A.32) and (A.33) are respectively obtained from the strong

monotonicity and Lipschitz continuity of F according to Lemma 2.1.

From (A.33), we obtain ‖P (x1)− P (x2)‖ ≤
√

1− 2µm+ µ2M2 ‖x1 − x2‖. Since µ ∈
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(
0, 2m

M2

)
, we have

√
1− 2µm+ µ2M2 < 1. Thus, we showed that P is a contractive map-

ping.

Proof of equivalence between P (x) = x and F (x) = 0

First, suppose that x̂ ∈ X satisfies F (x̂) = 0. Then, we have:

P (x̂) = ProjX (x̂− µF (x̂)) = ProjX (x̂) = x̂

which means that x̂ is a fixed point of P (x).

Conversely, suppose that x̂ is the unique fixed point of the contractive mapping P for a

given µ ∈
(
0, 2m

M2

)
. In other words, we have P (x̂) = ProjX (x̂− µF (x̂)) = x̂. Then, we next

show that x̂ also satisfies F (x̂) = 0. Since we assume that the problem (P ) is feasible, we

know that there exists x̃ ∈ X such that F (x̃) = 0. We then need to prove that x̂ = x̃. For

that, we use the projection theorem (see Proposition 1.1.9 in [114]) which states that:

(ProjX (z)− z)> (ProjX (z)− y) ≤ 0, ∀y ∈ X .

Setting z := x̂− µF (x̂), we have:

(ProjX (x̂− µF (x̂))− (x̂− µF (x̂)))> (ProjX (x̂− µF (x̂))− y) ≤ 0,

which simplifies to F (x̂)> (x̂− y) ≤ 0, ∀y ∈ X since µ > 0. Next, using the fact that

F (x̃) = 0 and replacing y := x̃, we obtain:

(F (x̂)− F (x̃))> (x̂− x̃) ≤ 0. (A.34)

According to Lemma 2.1, F is strongly monotone with a constant m > 0. It means that:

(F (x̂)− F (x̃))> (x̂− x̃) ≥ m ‖x̂− x̃‖2 . (A.35)

Finally, we combine (A.34) and (A.35) into:
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0 ≤ (F (x̃)− F (x̂))> (x̂− x̃) ≤ −m ‖x̂− x̃‖2 , (A.36)

which implies that x̂ = x̃ since m > 0.

In summary, we showed that the system F (x) = 0 is equivalent to the fixed point

equation P (x) = x for any µ ∈
(
0, 2m

M2

)
. Furthermore, the solution of F (x) = 0 is unique

because the P (x) is a contraction and has a unique fixed point.
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Proof of Result in Chapter 3

Proof of Proposition 3.1

First, we prove by induction that if we start with a feasible point of (P ) then the iterates

generated by the step (S.3) of Algorithm 3.1 are all feasible. Note that for any power

allocation p that satisfies the rate constraints c1 and the transmit power constraints c4, we

can always find a set of feasible power usage vectors
{
pg,ph,w

}
that satisfies the other

constraints c2,3,5,6. Thus, we need only to prove that the iterates
{
p(n)

}
of the power

allocation are feasible. To do that, let us assume that p(n) is feasible for (P ), i.e for each

c ∈ M∪ K, we have Rc

(
p(n)

)
≥ ρcT and

∑
u∈Uc

pu,t ≤ Pc, ∀t = 1, . . . , T . Due to Lemma 3.1,

we obtain:

Rc

(
p(n)

)
= R̃c

(
p(n);p(n)

)
≥ ρcT, ∀c ∈M∪K. (B.1)

(B.1) means that p(n) is also feasible for the subproblem
(
Qp(n)

)
, which further implies

that
(
Qp(n)

)
has a non-empty feasible set.

Then, step (S.2) of the algorithm gives us an optimal solution p(n+1) of subproblem(
Qp(n)

)
. This solution must also be feasible to

(
Qp(n)

)
and satisfies:

R̃c

(
p(n+1);p(n)

)
≥ ρcT, ∀c ∈M∪K. (B.2)

According to Lemma 3.1, the following inequality must also hold:

Rc

(
p(n+1)

)
≥ R̃c

(
p(n+1);p(n)

)
, ∀c ∈M∪K (B.3)
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since R̃c minorizes Rc. Combining (B.2) and (B.3), we obtain Rc

(
p(n+1)

)
≥ ρcT , i.e. the

new iterate p(n+1) is feasible for (P ). By induction, if the initial power allocation p(0) is

feasible, then all subsequent iterates must remain feasible.

Next, we prove that the proposed algorithm is a monotonically convergent and ascent

algorithm. In other words, we will show that:

∑
c∈M∪K

EE(n+1)
c ≥

∑
c∈M∪K

EE(n)
c , ∀n ∈ N

where EE(n+1)
c is the energy efficiency of cell c achieved with the optimal solution p(n+1)

of subproblem
(
Qp(n)

)
, whose parameter is q = p(n). Using Lemma 1 again, we have the

minorization relationship:

∑
c∈M∪K

EE(n+1)
c ≥

∑
c∈M∪K

ẼEc
(
p(n+1),pg (n+1)

c ;p(n)
)
. (B.4)

Moreover, p(n+1) maximizes the objective function of subproblem
(
Qp(n)

)
. Hence, we have:

∑
c∈M∪K

ẼEc
(
p(n+1),pg (n+1)

c ;p(n)
)
≥

∑
c∈M∪K

ẼEc
(
p(n),pg (n)

c ;p(n)
)
. (B.5)

The right-hand side expression of (B.3) is equal to
∑

c∈M∪K EE(n)
c according to Lemma

1. Consequently, the last two inequalities (B.2) and (B.3) imply that
∑

c∈M∪K EE(n+1)
c ≥∑

c∈M∪K EE(n)
c .
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Appendix C

Proof of Results in Chapter 4

C.1 Proof of Lemma 4.1

After fixing the clustering variables to
(
xk,yk

)
, the objective function becomes a convex

function of only the beamforming variable v. Next, we reformulate the non-convex SINR

constraints in conic form [115]. Note that with simple manipulations, the SINR constraints

in (4.19) can be rewritten as:

(
1 +

1

ρu

) ∣∣hHu vu∣∣2 ≥
∥∥∥∥∥∥


hHu V σu

∥∥∥∥∥∥
2

, ∀u (C.1)

Moreover, any phase rotation on a beamforming vector vu preserves the feasibility and the

objective function value. It means we can multiply an optimal v∗u by an appropriate ejθu

and obtain another feasible and optimal beamformer v̂∗u = ejθuvu. In particular, we can

choose θu to make the inner product hHu vu real and positive for each user u. Since such

phase rotation does not change the problem, (C.1) is thus equivalent to:

∥∥∥∥∥∥


hHu V σu

∥∥∥∥∥∥ ≤
√

1 +
1

ρu
hHu vu, ∀u ∈ U (C.2)

Re
(
hHu vu

)
≥ 0, ∀u ∈ U (C.3)

Im
(
hHu vu

)
= 0, ∀u ∈ U (C.4)

with (C.2) defining a second-order conic constraint [61]. As a result,
(
Sk
)

is convex. Since

the second-order cone in (C.2) is closed and the power and interference limit constraints
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C.2. Proof of Proposition 4.2

define compact sets, their intersection, i.e. Fv, is bounded and closed, thus compact.

C.2 Proof of Proposition 4.2

In short, the equivalence between (M) and (P ′) is obtained from the dual representations

of the function g and of the feasible set H defined in (4.27)-(4.28). First, recall from

Lemma 4.1 that the set Fv in (4.23) is convex, closed and bounded and that constraints

(4.26) are convex for any fixed
(
xk,yk

)
∈ F(x,y). Therefore, we can apply Theorem 2.2 in

[90] to express that (x,y) ∈ H if and only if it satisfies the infinite system:

infv∈FvL (v, µ,x) ≤ 0, ∀µ ≥ 0 :
∑

(b,u)∈B×U

µbu = 1

Since (S) is convex by Lemma 4.1, the strong duality theorem gives g (x,y) = sup
λ≥0

inf
v∈Fv

L (v, λ,x,y) ,

∀ (x,y) ∈ H ∩ F(x,y). Substituting g and H with their dual representations, problem (M)

thus becomes:

minimize
x y

sup
λ≥0

inf
v∈Fv

L (v, λ,x,y)

subject to (x,y) ∈ F(x,y)

0 ≥ infv∈FvL (v, µ,x) , ∀µ ≥ 0 :
∑

(b,u)∈B×U µbu = 1

(C.5)

Since Fv is convex and compact, the optimal solution of (S) is bounded. Thus, we can

replace the infimum in (C.5) with minimum. Using the definition of supremum as the

smallest upper-bound, we can obtain (4.32).
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C.3. Proof of Lemma 4.2

C.3 Proof of Lemma 4.2

Since
(
vk, λk

)
is a pair of optimal solution and multiplier for

(
Sk
)
, we have:

vk = argmin
v∈Fv

L
(
v, λk,xk,yk

)
(C.6)

= argmin
v∈Fv

[
f1 (v) + f2

(
xk,yk

)
+
∑
b∈B

∑
u∈U

λkbu

(
‖vbu‖22 − x

k
bu · Pmax

b

)]
(C.7)

= argmin
v∈Fv

(
f1 (v) +

∑
b∈B

∑
u∈U

λkbu ‖vbu‖
2
2

)
(C.8)

where (C.6) is due to the optimality of
(
vk, λk

)
. After replacing the expression of L in

(4.30) into (C.7) and removing the constant terms, we obtain the last equation (C.7).

Now, we can rewrite the function ξ in (4.35) as:

ξ
(
x,y;λk

)
= min

v∈Fv

[
f1 (v) + f2 (x,y) +

∑
b∈B

∑
u∈U

λkbu

(
‖vbu‖22 − xbu · P

max
b

)]
(C.9)

= f2 (x,y)−
∑
b∈B

∑
u∈U

Pmax
b λkbuxbu + min

v∈Fv

(
f1 (v) +

∑
b∈B

∑
u∈U

λkbu ‖vbu‖
2
2

)
(C.10)

From (C.7), we see that the primal solution vk of
(
Sk
)

also solves the minimization term

in (C.10). Thus, we have:

ξ
(
x,y;λk

)
= f2 (x,y)−

∑
b∈B

∑
u∈U

Pmax
b λkbuxbu + f1

(
vk
)

+
∑
b∈B

∑
u∈U

λkbu
∥∥vkbu∥∥2

2
(C.11)

After rearranging the terms in (C.11), we obtain the result ξ
(
x,y;λk

)
= L

(
vk, λk,x,y

)
.

C.4 Proof of Lemma 4.3

First, we write the partial Langragian LF of the feasibility problem
(
F k
)

as:

LF (v, α, µ, x) = α +
∑
b∈B

∑
u∈U

µbu
(
‖vbu‖2

2 − xbu · P
max
b − α

)
(C.12)
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C.4. Proof of Lemma 4.3

Since
(
F k
)

is convex and
(
vk, αk

)
and µk are its optimal primal and dual solutions, then

we have:(
vk, αk

)
= argmin

v∈Fv, α≥0
LF
(
v, α, µk, xk

)
(C.13)

= argmin
v∈Fv, α≥0

α

(
1−

∑
b∈B

∑
u∈U

µkbu

)
+
∑
b∈B

∑
u∈U

µkbu
(
‖vbu‖2

2 − x
k
bu · Pmax

b

)
(C.14)

after rearranging the expression of LF in (C.12). With the optimality condition
∂LF (v,α,µk,xk)

∂α
=

0, we can show that µk must satisfy: ∑
b∈B

∑
u∈U

µkbu = 1 (C.15)

By using the condition (C.15) in (C.14) and removing the constant terms in (C.14), we

obtain:
vk = argmin

v∈Fv

∑
b∈B

∑
u∈U

µkbu ‖vbu‖
2
2 (C.16)

Following the same procedure (C.9)-(C.11) as in the proof of Lemma 4.2, we can exploit

the linear separability of L with the fact (C.16) to show that ξ
(
x;µk

)
= L

(
vk, µk,x

)
.
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