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Abstract

In ball sports, athletes are taught to keep their eyes on the ball to catch or hit it

successfully. This intuitive field experience has already been studied in the labora-

tory, indicating that tracking a moving object with smooth pursuit eye movements

enhances our ability to predict the object’s trajectory in time and space. Simi-

larly, intercepting a moving object critically relies on motion prediction. Here we

assessed the functional significance of eye movements for manual interceptions.

In a novel paradigm, we asked observers (n=32) to track a small moving dot,

back-projected onto a translucent screen, and to intercept it with their index finger

in a designated ‘hit zone’. Hereby, only the first part (100-300 ms) of the trajec-

tory was shown. Thus, observers had to extrapolate the trajectory and intercept its

assumed position anywhere within the hit zone.

Results show that better pursuit (low eye position and velocity error, high ve-

locity gain, few catch-up saccades of small amplitude) lead to more accurate inter-

ceptions. A Hazard analysis yielded two interception strategies: Early interceptors

relied on tracking quality and memory feedback given at the end of each trial,

while late interceptors depended more on tracking smoothness, small initial sac-

cades, and accurate eye latencies. Early interceptions (less time of invisibility)

yielded smaller 2D interception error, while the interception timing was better for

longer periods of smooth tracking (later interceptions).

A regression model tree identified low tracking error and small saccadic eye

movements as those eye parameters predicting accurate interceptions best. Not

only do observers benefit from smooth pursuit eye movements during manual in-

terception, but the interception accuracy also scales with the quality of the eye

movements.
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1 Introduction

In professional baseball, a fastball can be pitched with a velocity of up to

100 mph. Yet, it is possible for batters to ‘get a piece of the ball’. When hit-

ting a home run, the interplay between sensory information (input) and motor ac-

tion (output) is working at its optimum. However, not only professional athletes

are interacting with moving objects in everyday life. We are moving through a

dynamically transforming visual environment. The use of visual sensory informa-

tion and cognitive prediction is required to successfully guide motor commands

while interacting with this constantly changing world. This chapter will give an

introduction on how the visuomotor system is operating to cope with the complex

and constantly changing environment around us. First, the functional properties

of different types of eye movements will be dicussed in Section 1.1, focusing on

saccadic and smooth pursuit eye movements. Next, the visuo-motor coordination

will be addressed in section Section 1.2, giving an introduction to visual tracking

mechanisms for different motor demands. Finally, section Section 1.3 will give a

preview of the research rationale presented in this thesis.

1.1 Types of Eye Movements
When inserting a thin thread into a sewing needle, our fixation system pre-

vents our eyes from actively moving around, to focus the eye of the needle most

accurately. So why are we constantly moving our eyes in every day life? The vi-

sual environment around us is full of objects of interest and while we pass through

this world, neither we nor these objects will remain stationary. Thus, humans use

a combination of different kind of eye movements to keep up with the dynamic

world around them. In principal, the function of these eye movements is either to

1



hold the image of interest steady on the retina, or else, to shift the gaze direction of

the eye to a new point of interest. Four types of eye movements enable stabiliza-

tion of the image of the viewed object on the fovea, that is, the retinal region where

visual acuity is highest; smooth pursuit eye movements, vergence eye movements

(tracking objects in depth), the vestibulo-ocular reflex, and the optokinetic nys-

tagmus. The latter two are evolutionary older involuntary reflexes. Furthermore,

gaze shift or eye reset is accomplished by quick phases of nystagmus or saccadic

eye movements. These functionally different types of eye movements complement

each other in natural situations (e.g. Heinen & Keller, 2004; Krauzlis, 2004).

In the following, functional and physiological properties of these different

types of eye movements will be discussed in more detail. However, this section

will focus on voluntary eye movements that primates mainly use when tracking or

shifting gaze to objects of interest: saccadic and smooth pursuit eye movements.

1.1.1 Saccadic Eye Movements

When looking for Waldo in a busy visual scene of dozens or more people, our

eyes search in a series of fixations connected by quick, ballistic eye movements

called saccades. Saccades rapidly redirect the fovea from one object of interest to-

wards another and correct for errors between eye and target position (Dodge, 1903;

Sparks & Mays, 1990). Visual perception is actively suppressed during these re-

locations of the fovea, presumably to avoid motion blur (Carpenter, 1988). The

distinct velocity profile of a saccade follows a standard waveform consisting of a

single smooth increase and decrease (figure 1.1). Saccade peak velocities can be up

to 900 deg/s while their duration remains rather short (30-100 ms) (Leigh & Ken-

nard, 2004). Saccades show a consistent relationship between peak velocity and

amplitude as well as duration and amplitude, called the main sequence (Becker &

Fuchs, 1969; Bahill et al., 1975). As a single saccade is a very short eye move-

ment, it cannot be controlled by visual feeback. Instead, saccades are regulated

by an internal feedback loop based on an efference copy of the motor command

sent to the motoneurons (Bridgeman, 1995). Remarkably, the latency to initiate a

saccade is relatively long with up to 200 ms for unexpected target motion, suggest-

ing that these discrete eye movements are not just a reflex but require significant

2
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Figure 1.1: Exemplary eye position (A) and velocity (B) during a saccade
with an amplitude of 9.9◦, a peak velocity of 240 ◦/s, and a duration of
100 ms.

preparation by the central nervous system.

1.1.2 Smooth Pursuit Eye Movements

While playing video games such as Pac-Man or Pong we are confronted with

targets (i.e. pac man himself or the pong ball) that are constantly in motion. When

tracking these moving objects, observers will naturally follow them with smooth

pursuit eye movements, a slow rotation of the eyes to compensate for the target’s

movement. These continuous eye movements are primarily driven by visual mo-

tion (Rashbass, 1961; Lisberger et al., 1987; Robinson, 1965). Smooth pursuit eye

movements not only shift the gaze to compensate for the motion of a tracked ob-

ject, but also hold an object steady on the fovea during slow body motion or head

rotation (Ilg, 1997; Carpenter, 1988).

Pursuit eye movements are considerably slower than saccadic eye movements.

Human observers are able to track targets moving between 1-100 deg/s (Meyer

et al., 1985). However, for target velocities exceeding 30 deg/s pursuit is often not

quick enough and will be complemented by so called catch-up saccades (de Brouwer

et al., 2002). Thus, a combination of smooth pursuit tracking and catch-up saccades

is used to compensate for retinal slip , i.e. the error between eye velocity and target

velocity. The appearance of a moving stimulus at 30 deg/s elicits pursuit eye move-

ments with a latency of about 100-150 ms (Carl & Gellman, 1987; Lisberger et al.,

3



1987; Robinson, 1965). Similarly, an unexpected change in the target’s trajectory

would result in an analogous delay (Schwartz & Lisberger, 1994). The magni-

tude of the pursuit latency depends on visual target properties, such as size and

luminance (Tychsen & Lisberger, 1986), as well as predictability of the target tra-

jectory (Bahill & McDonald, 1983). If the future target trajectory is predictable, the

oculomotor system will anticipate the specific target trajectory and initiate smooth

pursuit even earlier than target onset (see figure 1.2 A) (Kowler, 1989; Barnes &

Asselman, 1991).
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Figure 1.2: Exemplary eye position (A: blue trace) and velocity (B: green
trace) compared to target position (grey dashed trace) during smooth
pursuit tracking. Here, the oculomotor system predicts the time of target
onset. Accordingly, the eyes begin to move prior to the target.

The smooth pursuit response is separated into two intervals: first, the open-loop

or initiation phase, and second, the closed-loop or maintenance phase (Lisberger

et al., 1987; Tychsen & Lisberger, 1986). The first ∼ 100 ms pursuit eye move-

ments are mainly driven by the visual motion of the target, i.e. the retinal image

velocity. During this open-loop phase the eye initially accelerates in the same di-

rection as the target (first 0-20 ms) and later (20-100 ms) adjusts to the target’s

velocity (see figure 1.2 B). After this initial phase, visual feedback closes the loop,

that is, the difference between eye and target motion is minimized by means of

a negative feedback control. This feedback control could either be driven by an

efference copy signal from the eye movement and the retinal target motion signal

which are then compared to stabilize the image of the target on the retina (Crapse &

Sommer, 2008), or by proprioceptive feedback, that is, an afferent feedback from
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the stretch receptors in the ocular muscles (Weber & Daroff, 1972). Lisberger et al.

(1987) suggested that the continuation of smooth pursuit is attributed to a neural

velocity memory that maintains the current speed of the eyes unless visual input

provides another command. Ideally, the speed of the eye and pursued target match

closely, resulting in a velocity gain, i.e. the ratio of eye relative to target velocity,

close to 1. When the tracked target disappears, ongoing pursuit can be maintained,

however, at a much lower gain (Becker & Fuchs, 1985; Barnes, 2008). In summary,

pursuit is driven by visual motion, a negative feedback signal, predictive mecha-

nisms, and other cognitive mechanisms, such as attention, reward, or anticipation

(see Barnes, 2008, for review).

Anatomically, physical inputs of visual motion that arrive on the retina will be

processed by retinal ganglion cells. From there, the signal is transmitted to the

lateral geniculate nucleus (LGN) and subsequently to the early visual cortical ar-

eas (V1). Motion signals are then sent to the middle temporal visual area (MT)

and middle superior temporal visual area (MST). These two brain areas are crucial

for processing smooth pursuit. MT has been shown to guide pursuit eye move-

Figure 1.3: Lateral view of the monkey brain. Traditional descending pur-
suit pathway is indicated. MT/MST: middle temporal/middle superior
temoral visual area; FEF: frontal eye fileds; PON: pontine nuclei; PMN:
brain stem premotor nuclei; VN: vestibular nucleus. (Modified from
Krauzlis, 2004)
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ments, containing neurons that code for acceleration, speed, and direction of target

motion (Lisberger & Movshon, 1999) and has also been related to the perception

of motion (Newsome & Pare, 1988). The adjacent area MST has been shown to

play an important role in pursuit maintenance (Dürsteler & Wurtz, 1988) and there

is evidence that MST neurons also respond to extraretinal (i.e. no image motion

on the retina) signals during pursuit (Ilg & Thier, 2008). Next, the target motion

information is passed on to the frontal brain areas, namely the frontal eye field

(FEF). Here, initiation and maintenance of pursuit is facilitated. From the FEF,

the signal is mediated to the pons of the brainstem, in particular the pontine nuclei

(PON), and finally passed on to the cerebellum (compare figure 1.3). From here

a motor command is sent to the extraocular muscles to move the eye. This path-

way is similar for pursuit and saccadic eye movements. The anatomic substrates of

both systems and a detailed discussion of differences and similarities is reviewed

elsewhere Krauzlis (e.g. 2004, 2005).

1.1.3 Other Types of Eye Movements

When driving through the prairies of interior Canada, the visual scene becomes

rather stationary and simple. Staring out the car window, it seems as if there is

no need to voluntarily view any particular point in this endless nothingness. Yet,

the observer’s eyes will move in a sawtooth-like pattern. These involuntary eye

movements are due to the optokinetic reflex (OKR) which consists of two phases: a

slow and continuously following eye movement as well as a fast, discrete resetting

of the eye position (Collewijn, 1969). This reflex is evoked by the stimulation of a

wide visual field, that is, large regions of the viewed image move together. Thus,

the OKR is a feedback system, driven by the error between desired (stabilized

image on the retina) and actual image speed.

Another type of involuntary eye movements is caused by the vestibulo-ocular

reflex (VOR). This reflex is not driven by an external visual scene, but by the

vestibular system. It serves to stabilize the image on the retina during head move-

ments (Ilg, 1997). The semicircular canals of the inner ear sense the head move-

ment velocity and subsequently conduct the signal to the eye muscles via the

vestibular and oculomotor nuclei. For natural head movement velocities the gain of
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the VOR is close approximately 0.7, that is, the evoked eye movement counteracts

the rotation of the head (Leigh & Zee, 1999).

1.1.4 Vision for Action and Perception

The different types of eye movements previously discussed can be viewed as

tools that primates use to navigate through complex visual scenes. However, how

do we eventually identify Waldo, or how do we avoid that Pacman is eaten by the

ghosts chasing him? The visual information available to us is used to establish a

perception of the world around us. Based on earlier work of Mishkin & Unger-

leider (1982), Goodale & Milner (1992) proposed two separate cortical pathways

for visual processing: The ventral, or vision for perception, stream mediates the

perceptual identification and recognition of objects, while the dorsal, or vision for

action, stream facilitates the localization and required sensorimotor transformation

for visually guided actions (i.e. eye movements) towards those objects. This view

of partly independent processing of visual perception and control of motor action

has caused controversy in the literature and has been challenged by others (e.g.

Franz et al., 2000).

Nonetheless, a strong link between pursuit eye movements and perception has

been reported numerous times in many studies (see Spering & Montagnini, 2011,

for review). In particular, smooth pursuit eye movements have been reported to

enhance perception of moving objects in time (Bennett et al., 2010) and space

(Spering et al., 2011). In the former study Bennett et al. (2010) investigated the

judgment of the ‘time to contact’ of a moving stimulus to a given spatially fixed

target in a pursuit versus fixation condition. They found a perceptual advantage

of smooth tracking in this particular time dependent prediction-motion task. Sim-

ilarly, Spering et al. (2011) introduced a paradigm called ‘eye soccer’ , in which

the perceptual ability to judge if a visual target (i.e. the ball) would hit or miss a

vertical line segment (i.e. the goal) was compared between a fixation and a pursuit

condition. Accordingly, subjects either fixated the ball, while the goal was moving

towards the fixation point, or they tracked the ball moving towards the stationary

goal. In both cases, ball and goal were presented only briefly (100-500 ms). They

found that the judgement of ‘hit’ or ‘miss’ trials was more accurate for pursuit than
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for fixation trials and thus concluded that pursuit enabled a more precise estimate

of the predicted spatial target trajectory.

1.2 Visuo-Motor Coordination
While attempting to kill a spider that is quickly running over the kitchen counter,

the brain integrates visual feedback information and prediction of the spider’s path

to trigger the deadly slap. However, how are we able to strike at exactly the right

time and place? Despite the seeming effortlessness with which the spider’s life is

ended, the neural control of this action appears to be rather complex, involving a

fine-tuned interplay between visual feedback signals and experience-based predic-

tive signals (Van Donkelaar et al., 1992; Brenner et al., 1998; Brouwer et al., 2002;

de Lussanet et al., 2004; Zago et al., 2009; Soechting & Flanders, 2008). The

implicit role of eye movements in hand movement tasks, such as hitting, manual

tracking, pointing, or intercepting, will be discussed in the following.

1.2.1 Hitting Moving Objects

To successfully intercept a moving target, the hand must meet the object along

its natural path. The mapping of the three-dimensional object motion on to the

two-dimensional retina represents the so-called inverse problem of vision (Palmer,

1999). Generally, this is an ill-posed problem, that is, one retinal image could be

produced by an infinite number of possible real objects. At the same time, a single

given object can cause several different retinal images depending on the viewpoint,

spatial occlusion, illumination and so on. One theory of how the brain addresses

this problem was developed by Gibson (1979) stating that due to physical laws

the solution to the inverse problem is constrained in such a way that ecologically

impossible solutions become irrelevant. According to Gibson the relevant infor-

mation would be carried through an optic array, specified by the pattern of light

coming from the environment (for a summary see Zago et al., 2009). Later, Lee

(1980) advanced Gibson’s idea that information available in the optic flow field

is used to control activity, to hypothesize that the visual and motor system are

functionally inseparable, being components of a unified perceptuo-motor system.

Lee et al. (1983) also revived Gibson’s idea of the optic variable tau (τ), the ra-
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tio between image size and its expansion velocity, which approximates the time

an approaching object will take to reach the potential catcher or hitter (Lee et al.,

1983; Savelsbergh et al., 1991; Brouwer et al., 2003). While some studies suggest

that subjects initiate their movement when τ reaches a critical value, other studies

show shortcomings of the τ theory (see Tresilian, 1999, for review). Yet, all of

these models share a common approach: Based on a critical time to contact vari-

able, an optimal time to initiate an interceptive motor action to e.g. catch or hit a

moving object is identified, while these studies do not address the spatial outcome

of the movement.

On the one hand, it has been shown that moving the hand rapidly improves

the temporal accuracy when intercepting a moving target (Schmidt, 1969; Newell

et al., 1979; Tresilian et al., 2003). On the other hand, quick motor actions reduce

the spatial accuracy of the interception (Fitts & Peterson, 1964). This is known

as the speed-accuracy trade-off. The spatial and temporal aspects of intercepting

moving objects with respect to hand movement characteristics, such as reaction

time, velocity, acceleration, or initial path, have been studied extensively. However,

fewer studies consider the role of eye movements.

1.2.2 Eye Movements and Manual Interception

Bahill & Laritz (1984) posed the research question ‘why batters can’t keep

their eyes on the ball’. They monitored eye movement strategies of graduate stu-

dents compared to a professional baseball player, when hitting a simulated fast

ball (60-100 mph). While the graduate students used different and very inconsis-

tent strategies, such as preliminary head movements and anticipatory saccades of

various sizes, the professional baseball player tracked the ball with the same com-

bination of head and eye movements each trial. The reported smooth pursuit track-

ing velocity of the professional player was significantly higher, enabling the eyes

to keep up longer with the simulated target. Similarly, Land & McLeod (2000)

conducted a study, in which they compared eye movements in professional and

amateur cricket batsmen. They found that batsmen, generally, view the ball closely

up to the moment the bowler releases it, then make a predictive saccade to the

place where they expect it to bounce of the ground, wait for it to arrive, and sub-
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sequently track its trajectory for 100-200 ms after the bounce. Again, they found

more consistent strategies in professional batsmen compared to amateurs as well as

a shorter latency for the first predictive saccade. Other studies confirm that athletes

use a combination of smooth tracking and saccadic eye movements, when hitting

or catching balls (Ripoll et al., 1986; McKinney et al., 2010; Land & Furneaux,

1997).

Successfully intercepting a moving object critically relies on the ability to pre-

dict the target’s future location. Extrapolation of the target’s path relies on vi-

sual information about its location, velocity, and even acceleration (Brouwer et al.,

2002; Eggert et al., 2005; Soechting et al., 2009; Port et al., 1997; Delle Monache

et al., 2014). Furthermore, experience from previous trials and thereby the use of

memory plays an important role in manual interception tasks (Brouwer et al., 2005;

Brouwer & Knill, 2007; Issen & Knill, 2012).

Several studies have suggested that smooth pursuit eye movements are benefi-

cial for a successful manual interceptions. Mrotek (2013) examined the change of

smooth pursuit eye movements when intercepting moving targets that underwent

speed perturbations at various times. They found a similar response in hand and eye

movements: Both, smooth pursuit and finger movement responded more quickly

when the target speed perturbation occurred earlier in the trial. Based on their

results, they concluded that an active process of visual target path extrapolation

guides eye as well as hand movement. In an earlier study, (Mrotek & Soechting,

2007b) examined characteristics of eye-hand coordination in a manual intercep-

tion task. Here, subjects intercepted a given trajectory by moving their index finger

from a fixed starting position at the bottom of the screen along its surface. They

were free to initiate the movement at any time. Interestingly, subjects tracked the

target’s trajectory right until the point of interception with high-gain smooth pursuit

eye movements without being instructed to do so. Furthermore, the probability of

catch-up saccades was considerably smaller after onset of the manual interception.

Brenner & Smeets (2011) reported that subjects are unable to hold their gaze on

a set fixation point just before hitting a moving target, even if they are instructed

to do so. All these findings stress the importance of eye movements for successful

manual interceptions.
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1.3 Linking the Eye to the Hand
As discussed in section 1.1.4, tracking a moving object with smooth pursuit

eye movements enhances the observer’s ability to predict its future path. Addition-

ally, observers use smooth tracking eye movements in manual interception tasks

without being instructed to do so, indicating that these type of eye movements are

advantageous (Mrotek & Soechting, 2007b). Moreover, the opposite approach also

holds true: Adding hand tracking to an eye-tracking task, improves eye movement

accuracy (Gauthier et al., 1988; Koken & Erkelens, 1992). Thus, a close coupling

between eye and hand movement performance seems plausible.

In the past, several studies have addressed this interplay between ocular and

manual strategies and performance. However, a shortcoming of these studies is

often the unnaturalness of the experimental design and the hand movements in

particular. Delle Monache et al. (2014) investigated whether interceptive perfor-

mance was related to oculomotor behavior. However, the actual task was carried

out by moving a virtual baseball player along the horizontal plane of a simulated

baseball field by moving a computer mouse. Interception was triggered by button

click. Arguably, this task engages the visuo-motor system in a different way than

a fully carried out hand movement directed towards the target. Similarly, Brenner

& Smeets (2011) used a stylus, which had to be slid across a drawing tablet to

intercept the moving target. Even though more extensive hand movements are en-

abled in this task, the two dimensional restriction within a plane is still unnatural.

In a different study Brenner & Smeets (2010) posed the research question: ‘do eye

movements matter when intercepting moving objects’. They compared the spatial

position of a manual interception between fixation (on a static point) and smooth

pursuit (of the moving target) trials. However, subjects were unable to see their

hand during movement and received no feedback about their performance, again

limiting the applicability. Johansson et al. (2001) looked at eye-hand coordination

in a goal-directed bar movement to a target that had to be contacted. Subjects were

instructed to grasp the bar at its right end and move it so that the left end made

contact with the target. This task was performed with and without obstacles. Sub-

jects fixated on critical points such as the grasp site on the bar, the final target,

or the obstacles, rather than the hand or the moving bar. They concluded that the
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gaze strategy was linked to hand movement planning by directing the hand to key

positions when moving the object to a fixed, stationary target.

In conclusion, a lot of these studies have focused on hand movements rather

than on the functional significant of eye movements. This study aims to link the

quality of observer’s eye movements to the quality of the interception. Further-

more, eye and hand movement strategies will be identified and again linked to the

most important eye movement characteristics.
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2 Methods

This chapter introduces a new paradigm to investigate the relationship between

eye movements and predictive, intercepting hand movements. Section 2.1 de-

scribes the experimental design, specific task, and data collection in detail. Sub-

sequently, the analysis of the collected data is discussed in section 2.2. Section

2.3 summarizes the methodology of different types of data driven computational

models.

2.1 Eye-Hand Coordination Task
The core of the experimental methods is a novel paradigm that was developed

to explore the coordination of eye and hand movements in greater detail. In partic-

ular, subjects were asked to track a small moving dot (the ball) back-projected onto

a translucent screen, and to manually intercept its trajectory as accurately as pos-

sible in time and space. The ball disappeared after launching and observers were

instructed to intercept the ball with their index finger after it would have entered a

designated hit zone. Thus, this task requires the ability to extrapolate visual motion

trajectories in order to give an accurate motor response.

2.1.1 Participants

32 players (mean age 19.7 ± 1.4 yrs) of the 2013/2014 UBC Thunderbirds

varsity baseball team participated in the study. Each player gave written informed

consent prior to the experiment. All observers were unaware of the purpose of the

experiment. Experiments were in accordance with the principles of the Declaration

of Helsinki and approved by the Behavioural Research Ethics Board of the Univer-

sity of British Columbia (ID: H12-02564). Out of the 32 male players, 27 reported
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to be right- and 5 to be left-handed. Visual acuity, contrast sensitivity, stereo vision,

and color vision were tested with standardized vision tests (Bailey-Lovie high-low

visual acuity eye chart, Randot stereo vision test, Ishihara color vision) prior to

the experiment. All observers had normal stereo and color vision. Except for two

players (visual acuity of 20/32 & 20/25 on the ETDRS acuity chart), all players had

normal or better than normal vision. The team average ETDRS score was 20/16

and the contrast sensitivity team average was 20/29.

2.1.2 Visual Stimuli and Apparatus

The stimulus was back-projected using a Vivid LX20 LCD projector (Christie

Digital Systems, USA) with a refresh rate of 60 Hz onto a translucent screen that

consisted of a non-distorting projection screen material (Twin White Rosco screen

for front and rear projection) clamped onto a solid glass plate and fixed in a com-

pact aluminum frame. The displayed window was 48.5 (H)× 38.8 (V) cm in size

with a resolution of 1280 (H)× 1024 (V) pixels. Observers were seated in a dimly

lit room at 46.25 cm distance from the screen with their head supported by a com-

bined chin- and forehead-rest (see figure 2.1). Observers viewed stimuli binoc-

ularly. A magnetic tracker probe was tightly attached to the participant’s index

finger (figure 2.1 D). To avoid obstruction, the tracker cable was fixed on a fitted

glove.

Figure 2.1: Experimental setup: Stimuli are back-projected onto a compact
translucent screen (A) using an LCD projector (B). Participant are
seated in reaching distance. The head is supported by a chin and fore-
head rest (C). The finger tracker probe is tightly attached to the index
finger (D) and connected to the trakSTARTM magnetic tracker (E).
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The stimulus display was controlled by the Eyelinkr host computer (graphics

card: NVIDIA GeForce GT 430) and the experiment was programmed in Matlab

7.1 (Mathworks, Natick, MA) using Psychtoolbox 3.0.8. The ball (black Gaus-

sian dot, SD = 0.38) moved across a gray background equally divided into a lighter

(35.87 cd/m2) and darker (31.45 cd/m2) grey zone. The ball’s velocity was set to

3 different speeds (see table 2.1 for details). Participants performed the task with

both hands (randomized block order across all players). The ball moved from left

to right for right handed trials and from right to left for left handed trials, respec-

tively. The trajectory type (linear and curved) was varied block-wise.

For linear trials, the ball followed a straight path in the horizontal plane (y = 0)

with the initial fixation points of x = ±14◦/s depending on the motion direction.

For curved trials, the initial fixation point remained the same. The subsequent tra-

jectory was simulated to be the parabolic flight of a batted baseball on which three

forces act: gravitational force FG, drag force FD, and Magnus force FM (compare

figure 2.2).

Figure 2.2: Forces acting on a spinning baseball in flight. The drag force
FD counteracts the direction of the velocity vector. The Magnus force
FM acts in the ~ω ×~v direction with ω denoting the angular velocity of
the baseball. The gravitational force FG acts downward. Figure from
Nathan (2008).
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Originally the trajectory of a fly ball was described by Brancazio (1985):

FD = 1
2 ρACDv2 (2.1)

mẍ = −FDcos(φ) = FD

(vx

v

)
(2.2)

mÿ = −FDcos(φ) −mFG = FD

(vy

v

)
−mg (2.3)

ẍ = −κvvx (2.4)

ÿ = −κvvy−g, (2.5)

where κ = ρ
ACD
2m . (2.6)

In this equation, FD denotes the magnitude of the aerodynamic drag force, ρ

the air density, A the cross-section of the flying baseball, CD the drag coefficient,

v the ball’s velocity, where vx and vy are the horizontal and vertical component of

the velocity vector, respectively, ẍ and ÿ the horizontal and vertical acceleration

components, m the mass of the ball, φ the angle between the velocity vector and

the horizontal component, and FG = g the gravitational acceleration of the ball (see

table 2.1 for more detail). In addition to the aerodynamic drag force, a baseball

will be exposed to the Magnus force which is a result of its spin. A Magnus force

FM was added to horizontal and vertical accelerations (compare equations 2.7 and

2.8), setting the final path of the simulated curved trajectory to

ẍ = − 1
m

(
Fdcos(φ)−FMcos

(
φ + π

2

))
(2.7)

ÿ = − 1
m

(
Fdsin(φ)−FMsin

(
φ + π

2

))
(2.8)

where FM = K f vCD. (2.9)

Here, f refers to the frequency with which the simulated ball spins and K is an

empirical constant determined by measurements of a spinning baseball in a wind

tunnel by Watts & Ferrer (1987). Note that equation 2.9 only holds for velocities

for which the drag coefficient does not vary strongly, that is, for velocities at which

a hit fly ball travels (Adair, 2002). Baseball related constants as well as initial

conditions used for the simulation are summarized in table 2.1. Figure 2.3 shows
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the full trajectories of the simulated fly-balls for the three initial speeds chosen.

Table 2.1: Constant baseball specific properties of simulated fly ball.

Variable Name Value Source

Air density (20◦C. sea level) ρ = 1.204 kg/m3 ICAO manual

Baseball cross section A = 2π ·0.0365 m2 Bahill et al. (2005)

Drag coefficient CD = 0.3 NASA research

Mass of baseball m = 0.145 kg Adair (2002)

Initial angle of flight φ = 35 ◦ Adair (2002)

Gravitational force g = 9.81 m/s2 System of Units

Frequency of ball spin f = 50 Hz Adair (2002)

Empirical constant K = 1.2 ·10−3 kg Watts & Ferrer (1987)

Initial x-y position [±14.08 ◦, 0] Experimental design

Initial absolute velocities 24.1,29.3 or 34.2 ◦/s Experimental design
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Figure 2.3: Simulated fly-ball trajectories for three different initial speeds
(24.1 ◦/s, 29.3 ◦/s, 34.2 ◦/s) and a constant launch angle (φ = 35 ◦).
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2.1.3 Experimental Procedure and Design

Each player completed 4 sessions of 2 blocks each, that is, a linear and curved

trajectory session with the right and left hand, respectively. At the start of a 2

block session, players did 27 pursuit-only baseline trials and 9 manual interception

practice trials with the entire trajectory visible. The sequence of events during the

actual experiment is shown in figure 2.4. The task was to predict the path of the

ball after it disappeared and to intercept it upon entering a designated hit-zone as

accurately as possible in time and space. In a given trial, the trajectory type and

interception hand was known, while the ball’s speed and presentation duration were

randomly interleaved. Three ball speeds (24.1 ◦/s, 29.3 ◦/s, or 34.2 ◦/s) and three

presentation durations (100 ms, 200 ms, or 300 ms) yielded 9 different conditions.

The initial horizontal position of the fixation spot was at −14 ◦/s for right handed

trials and at +14 ◦/s for left handed trials, while the vertical position was at 0 ◦/s.

The ball’s motion started upon a successful fixation: The subject had to fixate on

the ball within a radius of < 2.8 ◦ for a randomly chosen time between 500 and

700 ms (drift correction).

x 

Fixation (500 or 700 ms) 

Stimulus onset 
(curved or linear) 

Stimulus disappears 
(100, 200 or 300 ms) 

Manual interception 
(x manual intercept 
      true position feedback)   

Strike Zone 

Strike Zone 

Strike Zone 

Strike Zone 

(A) 

(B) 

(C) 

(D) 

Figure 2.4: Trial sequence for non-practice trials: (A) Initial fixation and eye-
tracker drift correction.(B) Upon successful fixation (500-700 ms) ball
motion onset either straight (linear block) or parabolic (curved block).
(C) Ball disappears after 100, 200, or 300 ms (randomized). (D) Player
intercepts at estimated position in darker grey strike zone (red cross)
and gets feedback of the actual ball’s position (black dot).
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2.2 Data Analysis
Data were collected in real time using the Eyelinkr tower. Subsequent data

analysis was carried out with Matlab 8.3.0.532 (R2014a) and R version 3.2.0 run-

ning on Windows 7 Enterprise.

2.2.1 Eye and Hand Movement Recordings and Analysis

Eye position was monitored with a tower-mounted, video-based eye tracker

(EyeLinkr 1000; SR Research Ltd., Ottawa, Ontario, Canada) and sampled at

1000 Hz. Index finger position was recorded with a magnetic tracker (3D Guidance

trakSTAR, Ascension Technology Corporation, Vermont, USA) with a sampling

rate of 240 Hz. Eye and finger velocity were obtained by digital differentiation of

the respective eye and finger position signals over time. The 2D finger interception

position was recorded in x- and y- screen centered coordinates for each trial. Trials

in which the point of interception was not detected were excluded due to techni-

cal error. Eye movements were analyzed off-line using custom-made routines in

Matlab. Eye velocity profiles were filtered using a low-pass, second-order But-

terworth filter with cutoff values of 15 Hz (position) and 30 Hz (velocity). In each

trace saccades were detected using customized criteria: 5 consecutive frames had

to exceed a fixed velocity criterion of target speed±50 ◦/s. Precise on- and offsets

were then determined by finding the eye acceleration’s (digital differentiation of

eye velocity) respective minima and maxima. Saccades were excluded from pur-

suit analysis. Pursuit onset was detected in individual traces using a piecewise lin-

ear function fit to the filtered position trace within a time window between 260 ms

before stimulus motion onset and the first saccade onset or 80 ms after stimulus

onset, whichever occurred earlier. We calculated the following open-loop pursuit

parameters (pursuit onset to 140 ms after pursuit onset): pursuit, initial mean and

peak velocity and acceleration. Furthermore, the closed-loop gain (140 ms after

pursuit onset to point of interception) and the root mean square eye position and

velocity error across the entire trial were determined.

Out of 28556 trials, 243 (0.85%) were excluded due to blinking, 453 (1.59%)

were excluded because the final interception position on the screen was not de-

tected and 57 (0.2%) trials were excluded because the subject moved their hand
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too early.

2.3 Statistical Methods and Learning
General statistical methods applied to the data set are summarized in section

2.3.1 and 2.3.2. Furthermore, statistical learning is discussed in the following sec-

tions. Supervised learning involves building a statistical model for predicting or

estimating an output based on one or more input variables. Accordingly, statistical

learning techniques were applied to the data set in order to identify the relationship

between collected input (eye and finger measures) and output (finger accuracy)

data. Models were trained using the data set D of the 32 players described above

and evaluated using a test set D̃ of 10 new players collected in 2014 (a year after

the original data collection). These statistical models were build in R version 3.2.0.

2.3.1 General Statistical Methods

To flag outliers, a standard score (z Score) analysis was performed on all eye

and finger parameters (previously determined in Matlab) across all players and

all trials. Trials that deviated from the mean value of each parameter for more

than ±3σ were excluded for further analysis (compare figure ??). Furthermore,

effects of target properties (presentation duration, target speed, and trajectory type)

as well as player attributes (handedness and batting side) on the dependent variable

(interception error) were tested using repeated measures ANOVA. Moreover, the

correlation between independent and dependent parameters was analyzed by means

of regression analysis.

2.3.2 Hazard Analysis

Traditionally, the hazard analysis is used to assess the risk of a system to be-

come hazardous to the environment (Watson & Leadbetter, 1964). However, this

so called survival analysis can generally be used to model any kind of time-to-event

critical data. At any given time step a hazard level between 0 (nothing is occurring)

and 1 (all occurrences of the given event) can be calculated. In this case, a hazard

analysis was conducted to find the critical point of interception for each player in-

dividually. The time series from stimulus motion onset to the longest recorded trial
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was divided into 50 ms bins. In every time bin the number of executed intercep-

tions was counted across all trials.
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Figure 2.5: Exemplary hazard curve for a single subject. For each time point
after stimulus disappearance the hazard level is calculated. Favored in-
terception times for each player can be determined.

Next, the hazard levels in each time interval were calculated for every player

(equation 2.10).

Ht =
It

N−
t
∑

i=1
I
, (2.10)

where Ht is the Hazard level at time interval t, It number of interceptions counted

during the same time interval t, N the total number of interceptions made, and
t
∑

i=1
I

the number of interceptions that have occurred in all previous time intervals. Time

dependent Hazard levels can be plotted for each player and the preferred time of

interception can be determined (see figure 2.5).
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2.3.3 Attribute Selection

Redundant (highly correlated) eye and finger parameters were identified using

the CaretR package that provides a findCorrelation function. This function

analyzes a correlations matrix of all attributes (eye and finger) in the given data

set. Attributes with an absolute correlation of 0.75 or higher were reduced to one

parameter for the subsequent model analysis. These uncorrelated eye and hand

movement attributes were then further investigated using the BorutaR package,

a feature selection algorithm that aims to identify all relevant attributes (Kursa &

Rudnicki, 2010). The algorithm implemented in the BorutaR package is a wrapper

built around a random forest regression algorithm (for more detail see Liaw &

Wiener, 2002). The method uses an additional randomly designed shadow attribute

containing shuffled values of original values across all predictors. Attributes are

considered to be relevant if the random forest ranks their importance higher than

the shadow attribute.

2.3.4 Regression Techniques

Linear regression is a simple tool for predicting a quantitative response. In

particular, a multiple linear regression model will serve as a baseline for relating

all predictor variables X j (eye and finger measures) to the response variable Y

(finger accuracy). The multiple linear regression for p distinct predictors takes the

form

Y = β0 +β1X1 +β2X2 + ...+βpXp + ε. (2.11)

Here, β0 is the expected value of Y when X = 0 (intercept term), β j quantifies

and weights the link between the j th predictor variable and the response, and ε is a

mean-zero random error term. The parameters are estimated using a least squares

approach: β0,β1, ...,βp are chosen to minimize the sum of squared residuals

RSS =
n
∑

i=1
(yi− ŷi)

2 (2.12)

=
n
∑

i=1
(yi− β̂0− β̂1xi1− β̂2xi2− ...− β̂pxip)

2, (2.13)
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where the multiple least squares regression coefficient estimates β̂0, β̂1, ..., β̂p min-

imize equation 2.13 (James et al., 2013).

However, the relationship between a single predictor and the response might

not be linear. An extension of the linear regression model is a polynomial re-

gression, that is, the replacement of the linear with a polynomial function. The

polynomial regression model output yi of a single predictor xi is computed by

yi = β0 +β1xi +β2x2
i +β3x3

i + ...+βdxd
i + εi. (2.14)

Here, εi is the error term and d is the degree of the polynomial function, for

instance d = 3 for a cubic regression model. A polynomial regression model fitted

to the single best predictor will serve as another baseline model.

2.3.5 Regression Tree

In general, a decision tree segments the predictor space by applying a set of

optimized splitting rules. One way of visualizing the partitioning of the predictor

space is to draw a schematic tree (compare figure 2.6).

Root node 

Node 1 Node 2 

Node 3 

Terminal Leafs  

Subtree 

Figure 2.6: Terminology of a decision tree. First node is called the root. Inter-
mediate nodes are reached based on splitting rules. End nodes (no fur-
ther splits) are called terminal leafs. A node-system within one branch
of the tree is called a subtree.

Generally, a regression tree is built following two basic steps (James et al.,

2013):
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1. Divide the predictor space, i.e. the set of possible values for predictors

X1,X2, ...Xp, into J distinct and non-overlapping regions R1,R2, ...,RJ . These

regions take the shape of boxes. The goal is to find boxes that minimizes the

sum of squared residuals, given by

RSS =
J

∑
j=1

∑
i∈R j

(yi− ŷR j)
2, (2.15)

where ŷR j is the mean response of the training observations in the j th box.

The division of the predictor space is done by recursive binary splitting:

This approach begins at the top of the tree where all observations belong to

a single region and then successively splits the predictor space on its way

down (compare figure 2.7). The tree will grow until a set minimum number

of observations is reached in the terminal node.

X2 > s4 X2 ≤ s4 

X1 > s3 X1 ≤ s3 X2 > s2 X2 ≤ s2 

X1 > s1 X1 ≤ s1 

X1 

X2 X1 

X2 R3 

R5 R4 

R1 R2 

Figure 2.7: Five-region (R1, ...,R5) example tree. Recursive binary splitting
is done by selecting a predictor variable X j and a cutpoint s such that
the predictor space is split into tregions {X |X j ≤ s} and {X |X j > s}.
Splitting rules are chosen such that the resulting tree has the lowest RSS.

2. Once the regions R1, ...,RJ have been created, the same prediction is made

for every observation that falls into the specific region. The actual response

for a given test observation is predicted using the mean values for the training

observations ŷR j in each R j.
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An extension to the standard regression tree was developed by Quinlan (1992)

who introduced the M5 model tree. This particular method constructs multivariate

linear models instead of distinct values at the terminal leaves, equivalent to piece-

wise linear functions. Later, Wang & Witten (1997) reviewed and revised M5. This

model is implemented in the CubistR function used for regression tree modelling.

The tree is constructed through the following steps:

• The initial tree is built using a splitting criterion that investigates the expected

error at each node, that is, the standard deviation of each attribute’s values is

treated as the measure of error at that node. Accordingly, the attribute chosen

at each note, maximizes the standard deviation reduction (SDR) given by

SDR = sd(y)−∑
i

|yi|
|y|
× sd(yi) (2.16)

• To avoid overfitting the model is then pruned back into a smaller tree with

fewer splits. First, the response values for all training instances are predicted

by incoming predictor values at a given node. The absolute difference be-

tween these predicted responses and the actual response values is averaged.

To prevent underestimation of the expected error, the average is multiplied

by an error factor ξ

ξ =
n+ p
n− p

, (2.17)

where n is the number of training instances (attribute values) and p is the

number of predictors that represent the response at the given node.

• A linear regression model (see section 2.3.4) is built at every interior node

of the unpruned tree. The regression is fitted using predictor attributes that

appear in the subtree below the node of interest. The linear regression models

are optimized through dropping predictor terms. Terms are dropped as long

as the estimated error calculated using equation 2.17 is minimized. Thereby,

the tree is pruned back starting from the terminal leafs until the expected

estimated error no longer decreases.

• Next, the model is smoothed to compensate for discontinuities. Starting with
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the linear model at the terminal leafs, the predicted values for the response

are computed. Then, this predicted value is filtered at each node along its

path back to the root. In particular, this smoothing is done by joining the

predicted value coming into the node with the prediction made at that node:

ρ
′ =

nρ + kq
n+ k

, (2.18)

where ρ ′ is the outgoing prediction that is passed up to the next higher node,

ρ is the incoming prediction from the node below, q is the value that is

predicted by the linear model at this specific node, n the number of training

instances and k is a constant with default value 15 (Wang & Witten, 1997).

• Lastly, boosting can be performed. Boosting is a procedure in which several

trees are grown sequentially (James et al., 2013). Hereby, the information of

each tree is used to grow the next one

f̂ (x) =
B

∑
b=1

λ f̂ b(x), (2.19)

where λ is the shrinkage parameter and B the total number of trees grown.

2.3.6 Neural Network

In general, an artificial neural network is a nonlinear statistical model for pre-

dicting an output variable based on one or more predictor variables. The central

idea of a neural network is to derive features from a given input and subsequently

model the response by fitting a nonlinear function of these features. Thus, building

a neural network is a two-stage regression model (compare figure 2.8) that can be

thought of as an adaptive basis function method. The structure of a feed-forward

neural network (also known as multilayer perceptron) leads to a response function

of the form (Titterington, 2004)

Y = g

{
w00 +

M

∑
j=1

w0 j f

(
w j0 +

p

∑
k=1

w jkXk

)}
+ ε. (2.20)

Here, ε refers to a Gaussian white noise error term, w00 describes the output
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Xp-1 XpX1 X2 X3

Y

Single hidden Layer

Figure 2.8: Schematic network diagram of a single hidden layer, feed forward
neural network. Output Y is predicted by a nonlinear model of derived
features Z1, ...ZM. These features are linear combinations of the input
predictors X1, ...,Xp (modified from Hastie et al., 2008).

bias, w := {w jk} defines the connection weights of input variables X1,X2, ...,Xp

to the hidden nodes Z1,Z2, ...ZM with w j0 denoting the bias term of each hidden

node, while w0 j for j = 1, ...M corresponds to the weight of the connection from

the hidden nodes to the output node. The function g(·) specifies the activation

function at the output node and is chosen to be the identity function for a continuous

response Y . The activation functions at each hidden node are defined by fk(·).
Often the neuron activation function is chosen to be sigmoidal, however, for this

implementation the activation functions are calculated by f (ν) = (e2ν−1)/(e2ν +

1).

In practice, the model will be fitted using a training dataset D of n training

instances (Yi,Xi), yielding a likelihood function p(D|w). The problem of learning

how to map the structure of the feed forward neural network was addressed by
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MacKay (1992) who suggested a Bayesian framework in which the data error is

interpreted as a likelihood function and the regularizer corresponds to a prior prob-

ability distribution over the weights. The posterior distribution of the likelihood

function can be written as

p(w|D,α,β ) ∝ p(w|α) p(D|w,β ), (2.21)

where α (regularizing constant) and beta (precision constant) are hyperparame-

ters determined by Bayes’ rule (for more detail see MacKay, 1992). The brnnR

package uses this Bayesian regularization approach to fit a two-layered (input and

one hidden layer) feed forward neural network to the data set D ((MacKay, 1992;

Foresee & Hagan, 1997). Initial weights are assigned using the Nguyen & Widrow

(1990) algorithm. This algorithm aims to distribute the active region of each neu-

ron approximately uniform across the layer’s input space. The optimization of the

regularization parameters α and β requires solving the Hessian matrix

H = β∇
2ED +α∇

2EW , (2.22)

where ED is the minimized sum of squared errors between data input and network

output during training, and EW is the sum of squares of the network weights. For

the brnn neural network Gauss-Newton approximation is performed to compute

the Hessian matrix which is done using the Levenberg-Marquardt optimization al-

gorithm (Foresee & Hagan, 1997).

2.3.7 Model Evaluation

To compare the different statistical models, the root mean square error (RMSE)

will be determined for each approach described above. The better the model fits

the data, the smaller the value of the RMSE, which is given by

RMSE =

√
1
n

n

∑
i=1

(yi− f̂ (xi))2 , (2.23)

where yi is the actual observation in a test set D̃ and f̂ (xi) the prediction made

for the i th observation. Additionally, the correlation between the actual test val-
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ues yi and the predicted values f̂ (xi) is determined using the Pearson’s correlation

coefficient c given by

c=
cov(y, f̂ )

σy σ f̂
. (2.24)

That is, the covariance of y and f̂ divided by their respective standard deviations.
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3 Results

In this section the relationship between eye movements and interceptive hand

movements will be explored. First, effects of target properties and other external

factors will be analyzed. Then, the significance of different eye and finger mea-

sures on interception accuracy will be investigated. Next, pursuit quality across

all trials and, in particular, over the time course of a single trial will be evaluated.

Furthermore, statistical learning models will be applied to the data set. Finally,

different interception strategies will be identified and discussed in detail.

3.1 Effects of Target Properties
As described in section 2.1, players performed the interception task for linear

and curved trajectories. The mean finger interception error differed in magnitude

between these two trajectory types (linear: M = 2.19, SD = 1.51; curved: M = 2.36,

SD = 1.39). We found a main effect of the trajectory type on the finger interception

error (F(1,31) = 90.18, p< 0.001) and subsequently analyzed the two data sets sep-

arately. Qualitatively, there was no pronounced difference in relating eye attributes

to the finger interception error in later analysis. However, intercepting the curved

trajectory was a more complex task of higher variability. Thus, only results from

curved trajectory trials will be reported from here on.

Players performed the task with both their hands. The data set was split into

natural (interception with player’s strong hand) and unnatural (interception with

player’s weak hand) trials. Subsequently, the means of the interception error of

right- and left-handed players were compared for the natural and unnatural case.

A two sampled, two-tailed t-Test showed no difference in means between the two

groups. Accordingly, data were averaged for all (right- and left-handed) players.

30



Effects of target properties (presentation duration and target speed) on the in-

terception error, finger latency, and peak velocity are summarized in table 3.1. The

target speed had a significant effect on all three finger measures. The target pre-

sentation duration had an significant effect on the interception error, but not on the

finger latency and peak velocity. The interaction between speed and presentation

duration has a significant effect on interception error and finger peak velocity.

Table 3.1: p-Values of repeated measures ANOVA for finger attributes,
i.e. interception (intercept.) error, finger latency and peak velocity (vel.),
with factors speed and presentation duration (pres. dur.).

Fing. attribute Speed Pres. dur. Speed× Pres. dur.
F(1,31) p value F(1,31) p value F(1,31) p value

Intercept. error 73.09 < 0.001 491.85 < 0.001 56.68 < 0.001

Finger latency 123.16 < 0.001 0.85 0.36 2.07 0.15

Finger peak vel. 579.63 < 0.001 0.52 0.47 31.08 < 0.001

Figure 3.1 depicts the mean values of these finger attributes averaged across

all players and trials for each of the respective conditions. The interception error

shows a speed range effect (3.1 A), that is, the interception error is lowest for the

medium target speed (29.3 ◦/s). The effect of target presentation duration can also

be seen: The finger error decreases with longer presentation duration.
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Figure 3.1: Effect of target properties (presentation duration and speed) on
finger attributes. Mean values across all players and trials are plotted
for the respective conditions. Finger interception error (A), latency (B)
and peak velocity (C) are depicted.
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Finger latency and peak velocity mainly depend on target speed. The finger

latency decreases with increasing target speed (figure 3.1 B), while the finger peak

velocity increases for higher target speed (figure 3.1 C).

Main effects of target properties on selected eye attributes (tracking error, ve-

locity gain, eye peak velocity, and cumulative saccades) are summarized in table

3.2. The target presentation duration and the interaction between target speed and

presentation duration have a main effect on all selected eye attributes. The target

speed has a main effect on eye velocity gain, peak velocity and cumulative saccades

but not on the tracking error.

Table 3.2: p-Values of repeated measures ANOVA for eye attributes, i.e. 2D
tracking error, eye velocity gain, peak velocity, and cumulative (cum.)
saccades, with factors speed and presentation duration (pres. dur.).

Eye attribute Speed Pres. dur. Speed× Pres. dur.
F(1,31) p value F(1,31) p value F(1,31) p value

Tracking error < 0.01 0.96 1771.33 < 0.001 42.75 < 0.001

Velocity gain 453.84 < 0.001 863.21 < 0.001 7.26 0.007

Peak velocity 32.59 < 0.001 736.70 < 0.001 57.76 < 0.001

Cum. saccades 996.31 < 0.001 342.02 < 0.001 78.46 < 0.001

Similar to the finger interception error, the eye tracking error (average 2D error

between target and eye position across the entire trial) shows a speed range effect

(figure 3.2 A). The eye velocity gain (ratio of eye and target velocity) systemati-

cally increases with increasing presentation duration and decreases for faster target

speeds (figure 3.2 B). The eye peak velocity increases with increasing presentation

duration (figure 3.2 C). Interestingly, the eye peak velocity decreases with increas-

ing speed for the presentation duration of 100 ms, while it scales positively for 200

and 300 ms presentation duration. The cumulative saccades (sum of all saccade

amplitudes across each trial) increases for higher speeds and slightly decreases for

longer presentation duration (figure 3.2 D).
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Figure 3.2: Effect of target properties (presentation duration and speed) on
eye attributes. For each attribute, i.e. tracking error (A), eye velocity
gain (B), eye peak velocity (C), and cumulative saccades (D), the mean
values across all players and trials are shown for the respective condi-
tions.

3.2 Attribute Selection
Experimentally a large set of eye movement and finger movement attributes

were analyzed and computed. These measures were reduced to a smaller, non

redundant set of 14 target, eye, and finger attributes (see table 3.3). The target at-

tributes were: speed, presentation duration and feedback position or memory. The
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true position of the target was shown to the player (feedback) at the end of each

trial, that is, after he intercepted at the estimated position (figure 2.4 D). The visual

feedback positions shown in all previous trials were averaged for each of the three

respective target speeds. This averaged position was then compared to the inter-

ception position of the current trial, yielding a measure of feedback information,

or memory, players used to intercept.

Table 3.3: Target, eye, and finger attributes for eye-hand coordination task.
Highly correlated measures were reduced to fewer attributes.

Target 
                                                Eye measures 

Finger 
Open loop Closed Loop Saccades 

Speed Eye latency Velocity gain Total number Mean velocity 

Presentation duration Mean velocity 2D tracking error Mean amplitude Peak velocity 

Feedback (memory) Peak velocity 2D velocity error Peak velocity Mean acceleration 

Mean acceleration Tracking time Mean duration Peak acceleration 

Peak acceleration Peak velocity Initial amplitude latency 

Movement time 

Speed 
Presentation duration 
Feedback (memory) 

Eye latency 
Peak velocity 

Velocity gain 
2D tracking error 

Tracking time 
Peak velocity 

Cumulative amplitude 
Initial amplitude 

Peak velocity 
Latency 

Movement time 

Quick eye movements, that is saccades, and pursuit eye movements were an-

alyzed separately. As pursuit initiation and open loop parameter, eye latency and

peak velocity were chosen. Open loop mean velocity as well as mean and peak ac-

celeration were highly correlated with the peak velocity and were thus not included

in further modeling. Similarly, the tracking error, that is, the 2D error between tar-

get and eye position across the entire trial, was correlated to the 2D velocity error.

Consequently, velocity gain (ratio of eye velocity and target speed), peak pursuit

velocity, and tracking error were chosen as closed loop attributes. Additionally, the

smooth tracking time for which smooth pursuit was maintained after target disap-

pearance (i.e. until initial saccade onset), held as a pursuit quality measure. As

discussed in chapter 1.1.1, there is a consistent relationship between saccade am-

plitude and saccadic peak velocity or mean duration, respectively. Thus, saccadic

measures were reduced to cumulative saccadic eye movements (total number of

saccades times the mean amplitude) as well as the size of the initial saccade made
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in each trial. Finger measures were reduced to the peak velocity, hand movement

latency, as well as the time it took from hand motion onset to interception (move-

ment time).
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Figure 3.3: Boxplots of prediction attributes (9 test runs) sorted based on
their importance score during random forest regression. The single most
important attribute is the tracking error, indicated in red.

Next, the set of chosen attributes was analyzed with the BorutaR package (see

section 2.3.1). All attributes were ranked according to their relevance when pre-

dicting the output variable using a random forest algorithm. 9 importance source

runs were performed (confidence level of 95%). Importance was scored between

0 (not relevant) and 1 (most relevant) for each run. Subsequently, the averaged

importance score of each attribute across all runs was compared to the averaged

importance score of a random shadow variable. All variables were found to be

significantly more important for predicting the output (p < 0.05) than the random

shadow attribute (importance score of 0.02 ± 0.006). Using the random forest al-

gorithm, the most important predictor attribute is found to be the tracking error,
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followed by feedback position (memory), and target speed (compare figure 3.3).

Accordingly, the tracking error was used as a predictor for regression models with

a single predictor and the entire subset of 14 predictor attributes was used for sta-

tistical models with multiple predictors.

3.3 Finger Interception Accuracy
This section focuses on the dependent measure, that is, the 2D finger intercep-

tion error. First, pursuit quality is related to the quality of the manual interception.

Next, the temporal evolution of the relationship between tracking and interception

accuracy during the time course of a trial is investigated more closely. Then, the

role of feedback (memory) is explored. Lastly, the interception accuracy is broken

down into a temporal and a spatial component as shown in figure 3.9.

3.3.1 Manual Interception and Pursuit Quality

Interception accuracy improves with more accurate smooth pursuit eye move-

ments, that is, smaller tracking error (figure 3.4) and fewer saccades of smaller size

(figure 3.5). The averaged 2D tracking error of every player is related to the finger

interception error, separated for the three different presentation durations (figure

3.4 panel A to C) and speeds. In each panel the three different speeds are indicated

by color (24.1◦/s: blue; 29.3◦/s: green; 34.2◦/s: red). A linear regression is fitted
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Figure 3.4: Relationship between tracking and interception error averaged
across every player and condition. Relationships are plotted for the re-
spective presentation durations in panel A-C. Different target speeds are
coded in blue (24.1◦/s), green (29.3◦/s), and red (34.2◦/s). The quality
of the linear regression fits are summarized in each panel.
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for each respective condition. The relationship is strongest for the fastest speed

and a presentation duration of 200 ms (figure 3.4 B). The linear regressions show a

significant relationship between tracking and interception error for both, medium

and fast speed levels, for all three presentation durations. However, the relation-

ship between the eye tracking and the finger interception error is very poor for the

slowest speed (R2 < 0.2 for each respective presentation duration).

Likewise, figure 3.5 relates the cumulative saccades to the finger interception

error. Generally, more saccadic eye movements yield a higher interception error.
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Figure 3.5: Relationship between cumulative saccades and interception error
averaged across every player and condition. Relationships are plotted
for the respective presentation durations in panel A-C. Different target
speeds are coded in blue (24.1◦/s), green (29.3◦/s), and red (34.2◦/s).
The quality of the linear regression fits are summarized in each panel.

These results are comparable with the results of the tracking error: The rela-

tionship is strongest for the highest speed and 200 ms presentation duration (figure

3.5 B). Again, the linear model shows a significant relationship between eye move-

ments and finger interception accuracy for the medium (29.3◦/s) and high (34.2◦/s)

speed levels, while the relationship is poor for the slowest speed (R2 ≤ 0.1 for each

respective presentation duration).

Accordingly, results for the two higher target speeds are consistent: A smoother

tracking supports a more accurate interception (lower error). For the slowest speed,

however, the relationship is not as clear. To investigate this further, the eye veloc-

ity gain is plotted for the slowest target speed only in figure 3.6. Here, a higher

gain denotes smoother eye movements, that is, the eye’s velocity follows the target

37



speed more accurately, the closer the gain is to 1. The linear regression model be-

tween velocity gain and interception error is significant for the slowest target speed

(F(1,94)= 16.63, p < 0.001). Thus, better pursuit eye movements, that is, closer

tracking of the target, yield more accurate manual interceptions.
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Figure 3.6: Mean velocity gain values for each player, averaged over for the
slowest speed and every presentation duration (indicated by symbols).
With higher gain, the interception error decreases.

3.3.2 Temporal Evolution of Tracking Towards Interception

The temporal evolution of the relationship between the tracking and intercep-

tion error for a presentation duration of 200 ms is shown in figure 3.7. Trials are

aligned at the point of interception and then segmented into 150 ms intervals go-

ing backwards in time. Same results were found for 100 and 300 ms presentation

duration (not shown). The plot shows that over the time course of each trial (from

A to D) the relationship between the tracking and interception accuracy increases.

Shortly before the time of interception the relationship is strongest (R2 ≥ 0.47 for

all three speeds) and the variability between players is smallest (compare figure 3.7
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Figure 3.7: Temporal evolution of relationship between tracking error and in-
terception error for a presentation duration of 200 ms. Different target
speeds are coded in blue (24.1◦/s), green (29.3◦/s), and red (34.2◦/s).
Trials are aligned at the point of interception (D) and then segmented
into equal time intervals of 150 ms going backwards in time (D-A)

D). In the early phase of the trial, the relationship is not clear, especially for the

slowest target speed. Here, the tracking error is still comparably low for a majority

of all players, which does not necessarily relate to how accurate the interception

was at the end of the trial (figure 3.7 A-B). For these time interval the tracking error

of the slowest target has no significant effect on the interception error (p > 0.5).
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3.3.3 The Role of Feedback or Memory

As discussed in section 3.2 the role of visual feedback at the end of each trial

was considered in the form of a feedback, or memory, attribute. Hereby, the manual

interception position of each trial, was compared to the average feedback position

of the respective target speed shown in all previous trials. Thus, the smaller the

value of the memory attribute, the closer the manual interception to the previously

shown visual feedback. Figure 3.8 shows how this feedback (memory) attribute re-

lates to the interception error. For the medium speed there is a very strong relation-

ship: The closer the player intercepted to the visually shown feedback, the more

accurate the interception. This relationship is similar but weaker for the fastest
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Figure 3.8: Relationship between memory and interception error averaged
across every player and condition. Relationships are plotted for the re-
spective presentation durations in panel A-C. Different target speeds are
coded in blue (24.1◦/s), green (29.3◦/s), and red (34.2◦/s). The quality
of the linear regression fits are summarized in each panel.

speed. For the shortest presentation duration of 100 ms (figure 3.8 A) the linear

model does not reach significance (p > 0.1), while for the longer presentation du-

rations (figure 3.8 B and C) the memory attribute has a significant effect on the

interception error (p < 0.05).

Interestingly, the relationship is negative for the slowest target speed, that is, the

interception error decreases with interception further away from the feedback po-

sition given. This is consistent across all three presentation durations and strongest

for the 100 ms presentation duration (R2 = 0.22). This could indicate that timing

the interception was particularly difficult for the slowest target speed, since a low
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memory value only means that the interception was spatially close to the previously

shown feedback.

3.3.4 Timing and Spatial Interception Error

The previous sections related the 2D interception error to different eye move-

ment attributes. However, the interception might be performed at exactly the right

time but spatially off the trajectory, or the interception might lie on the simulated

trajectory path but is not timed correctly (figure 3.9). Thus, the interception error

is separated into a spatial and a timing component.
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Figure 3.9: The main dependent measure is the 2D interception error (dark
blue). The vertical distance to the simulated trajectory is the spatial
error (purple). The distance along the trajectory describes the timing
error (green).

Figure 3.10 shows the relation between the timing and the spatial error. As

expected, player intercept too early, i.e. ahead of the actual target (positive timing

error) for the slowest speed, and too late, i.e. behind the target (negative timing

error) for the fastest target. Similarly, the spatial error is mainly positive (above

trajectory) for the slowest speed, and negative (below the trajectory) for the fastest

speed. These spatial errors are related to the different trajectory shapes for the
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three different initial speeds (compare figure 2.3). Generally, the timing error is

slightly larger than the spatial error (data points below identity). This is especially

the case for the slowest target speed. As expected, both, timing and spatial errors

are greatest for the shortest presentation duration (solid circles in figure 3.10).
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Figure 3.10: Interception error broken down into a timing and spatial a com-
ponent for the three different presentation durations (100 ms: circles,
200 ms: triangles, 300 ms:rectangles) and target speeds (24.1◦/s: blue,
29.3◦/s: green, 34.2◦/s: red).

How much the target properties effect the timing and spatial component of the

interception error becomes even more apparent when looking at the averaged val-

ues across all players per condition (figure 3.11). Both errors range widest for the

shortest presentation duration. The timing error remains approximately the same

for a target speed of 29.3◦/s across all 3 presentation durations, while the spatial

error slightly decreases to an underestimation (negative) for 300 ms presentation

duration. Timing and spatial errors for the fastest target are largest for 100 ms pre-
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sentation duration and approach zero for timing and slightly below zero (underes-

timation) for the spatial error. The slowest speed is most effected: Both spatial and

timing error are highest compared to the other speeds for each condition. Spatially

the error for a target speed of 24.1◦/s approaches 0 (0.46± 0.21◦) for a presen-

tation duration of 300 ms, however, the timing error remains more than a degree

(1.53±0.25◦) ahead of the actual target.

T
im

in
g

 e
rr

o
r 

[d
e

g
] 

S
p

a
ti

a
l 
e

rr
o

r 
[d

e
g

] 

Presentation duration: 

100 ms        200 ms  300 ms 

A B Presentation duration: 

100 ms        200 ms  300 ms 

24.1°/s 
29.3°/s 
34.2°/s 

Figure 3.11: Effect of target properties (presentation duration and speed) on
time and space component of interception error. Both measures are
averaged across all players and trials and are shown for the respective
conditions.

Similarly to section 3.2, the given target, eye, and finger attributes can be

ranked by importance with respect to the timing or spatial component of the in-

terception error. For both type of errors the target speed is the attribute of most

importance (compare figure 3.12). Interestingly, for the timing error the finger la-

tency is the attribute of second most importance (3.12 A), while for the spatial error

the feedback, or memory, attribute ranks second (3.12 B). Eye attributes, that is,

cumulative saccades and tracking error rank very similarly for both errors. Thus,

finger attributes (latency and movement time) seem to be more important for timing

the interception while the visual feedback given influences the spatial component

of the interception.
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Figure 3.12: Boxplots of most important prediction attributes sorted based on
their importance score during random forest regression for the timing
interception error (A) and the spatial interception error (B).

3.4 Statistical Models
In a first step a linear and a polynomial regression is fitted to the attribute of

most importance (compare section 3.2). Then, the performance of three different

statistical models fitted to the whole set of attributes is compared. Models are

fitted to the training data set D (N = 7896 observations) collected from the UBC

2013/2014 varsity baseball team and subsequently parsed as described in section

2.1. To test the fitted models, a test data set D̃ (N = 2572 observations) was used
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consisting of collected data from 10 new players that joined the team after the

original data collection.

3.4.1 Single Predictor Regression

As single predictor attribute, the tracking error was chosen in accordance with

the previously run attribute selection (compare section 3.2). A linear, quadratic,

and cubic regression was fitted to the training Data set D and then tested on the

test data set D̃. Table 3.4 summarizes the results. Here, the root mean square error

(RMSE) is a measure of how accurate the model predicted the test data, the Pearson

coefficient and the R2 value indicate how well the model fits the data set and the

p-value indicates if the tracking error has a significant effect on the interception

error.

Table 3.4: Different regression models for single predictor model.

Polynomial RMSE [◦] Pearson c R2 p-Value

1 1.510 0.460 0.236 < 0.001

2 1.507 0.467 0.244 < 0.001

3 1.507 0.467 0.244 < 0.001

The accuracy of the prediction does not increase significantly with a higher

polynomial dimension. The coefficients of the cubic regression were fitted to

yi = 2.42+67.89 xi +11.89 x2
i −0.57 x3

i . (3.1)

The third coefficient in equation 3.1 β3 = −0.57 was the only coefficient that did

not reach significance (p > 0.5). Thus, further polynomial regressions of higher

degree were neglected and the quadratic regression was chosen to hold as a baseline

reference for the following statistical modeling approaches.
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3.4.2 Multiple Linear Regression Model

All attributes were fitted to the output variable (interception error) by means

of multiple linear regression. Coefficients estimation and significance levels are

summarized in table 3.5.

Table 3.5: Fitted coefficients for multiple linear regression. The p-values in-
dicate the significance of different attributes.

Attribute Estimate Standard error p-Value

β0 (intercept) 0.600 0.228 < 0.01

Tracking error 0.889 0.023 < 0.001

Feedback (memory) 0.080 0.010 < 0.001

Target speed −0.041 0.004 < 0.001

Finger movement time −2.1 ·10−4 2.2 ·10−4 0.35

Cumulative saccades 0.010 0.005 0.06

Finger latency −0.001 1.9 ·10−4 < 0.001

Finger peak velocity 3.624 2.262 0.11

Eye peak velocity 0.007 0.002 < 0.001

Target presentation duration −2.8 ·10−4 2.6 ·10−4 0.28

Initial saccade amplitude −0.043 0.007 < 0.001

Eye velocity gain −0.127 0.068 0.06

Eye latency −0.002 2.5 ·10−4 < 0.001

Open loop peak velocity 0.005 0.002 < 0.01

Tracking time 1 ·10−3 2.6 ·10−4 < 0.01

Target presentation duration, finger movement time, and finger peak velocity

were the only attributes that did not reach significance (p-value > 0.1) for the mul-

tiple linear regression model. The error between model predictions and actual test

values came to RMSE = 1.488 ◦, the Pearson coefficient was c = 0.488 and the

model fit R2 = 0.268. The model accuracy was consequently improved compared

to the single attribute prediction (compare table 3.8). Removing the non-significant
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variables from the data set did not improve the model accuracy (RMSE = 1.493 ◦,

c= 0.482, R2 = 0.264).

3.4.3 Regression Model Tree

Regression model trees were built using the CubistR package. Figure 3.13

shows the result for a regression tree built without boosting. The model consists

of 23 rules, that is, 23 different linear regressions have been fitted at all terminal

leafs. Predictions are made following the decision rules at each split. This model

improved the prediction accuracy compared to the multiple linear regression by

0.1 ◦, or ≈ 7% (RMSE= 1.390 ◦, c= 0.582).

Tracking error 

Tracking error 

<= 2.63 > 2.63 

Feedback (memory) Target speed 

<= 2.09 > 2.09 

<= 3.69 > 3.69 <= 26.7 > 26.7 

Target speed Feedback (memory) Feedback (memory) 

Cum. saccades 

LR 1 

LR 6 LR 4 LR 5 

<= 5.76 > 3.59 > 5.76 

LR 2 

LR 3 

<= 26.7 > 26.7 

Initial saccade amp. 

<= 3.59 

Feedback (memory) Finger move time 

<= 15.53 > 15.53 

Target speed LR 8 

<= 1.33 > 1.33 

LR 10 LR 11 

<= 31.75 > 31.75 

LR 9 

> 526.5 

Target speed 

<= 526.5 

Feedback (memory) LR 12 

<= 31.75 > 31.75 

Finger move time LR 15 

<= 1.69 > 1.69 

LR 18 LR 19 

<= 488 > 488 

Eye latency LR 7 

<= 10.28 > 10.28 

<= -103.5 > -103.5 

Target speed Finger peak vel. 

LR 13 

> 31.75 

Feedback (memory) 

<= 31.75 

Feedback (memory) LR 14 

<= 5.1 > 5.1 

Open loop peak vel. LR 16 

<= 1.51 > 1.51 

LR 20 LR 21 

<= 3.84 > 3.84 

LR 17 

> 2.52 

Finger latency 

<= 2.52 

LR 22 LR 23 

<= 401.5 > 401.5 

Figure 3.13: Regression model tree without boosting. Linear regressions
(LR) have been fitted at the terminal leafs resulting in 23 rules.

To improve the model performance, the regression tree was boosted, that is,

after building the original tree, several subsequent trees were grown, each one

learning from the model fits of the previous tree. To improve prediction accu-

racy an instance based correction was added. Hereby, predictions are adjusted by

taking nearby instances in the training set into account. Figure 3.14 shows how the
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model accuracy improves for different number of training instances and commit-

tees. The model accuracy improves with increasing number of boosting iterations

(committees). The model prediction performs poorest for 1 instance and best for

9 instances. Accordingly, 100 committees and 9 instances were chosen for the

CubistR model tree. With these parameters the model accuracy was increased to

RMSE = 1.304◦ and the correlation to c= 0.639.

Committees 

R
M

S
E

 (
c

ro
s
s
-v

a
li

d
a
ti

o
n

) 

1 25 50 75 100 

1.2 

1.3 

1.4 

1 instance 

0 instances 

5 instances 

9 instances 

Figure 3.14: Evaluation of boosting and prediction adjustment parameters.
With increasing number of committees the prediction error decreases.
An instance based correction with 9 instances yields the best model fit.

Table 3.6 summarizes the attribute usage of all linear models at the terminal

leafs. The sign in the third column indicates how the predicted interception error

depends on the different attributes. The⊕ sign indicates an increasing interception

error with increasing attribute values, while 	 indicates an increasing interception

error with decreasing attribute values. Finger latency and movement time show a

mixed effect: For very high finger latencies and movement times the dependency
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switches and an increasing movement time yields a higher interception error. The

indicated feedback position generally shows a positive relationship to the intercep-

tion error, that is, an interception further away from the learned feedback position

yields a higher interception error. However, for the slowest target speed, the re-

lationship changes. This could be due to a greater timing error for the slowest

target speed. For saccadic eye movements, the interception error increases with

more saccades of higher amplitude. For trials in which the tracking error is very

high (> 3.1 ◦), correctional saccades of higher amplitude decrease the interception

error.

Table 3.6: Attribute usage of regression models at terminal leafs of the
CubistR tree with 100 committees and a prediction adjustment of 9 in-
stances. The interception error either increases with increasing (⊕) or
decreasing (	) attribute values. 4 variables show mixed effects.

Attribute Usage Sign

Tracking error 86% ⊕
Finger latency 84% 	 (⊕)

Finger movement time 80% 	 (⊕)
Feedback (memory) 74% ⊕ (	)

Cumulative saccades 72% ⊕ (	)
Target speed 71% 	

Initial saccade amplitude 62% 	
Eye latency 56% ⊕

Tracking time 51% ⊕
Target presentation duration 38% 	

Finger peak velocity 37% 	
Eye peak velocity 36% ⊕

Velocity gain 15% 	
Open loop peak velocity 8% ⊕

3.4.4 Neural Network

The brnnR package software minimizes the objective function F = βED +

αEW , with ED denoting the error sum of squares of the actual output values com-
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pared to the predicted values in the training set, and EW the sum of squares of the

networks weights and biases (see section 2.3.6 for more details). Table 3.7 com-

pares the model performance and parameters for different numbers of hidden layer

units (neurons). The neural network with the same number of neurons (14) as at-

tributes listed in table 3.3 has the lowest RMSE (1.271 ◦) and was thus chosen for

further analysis.

Table 3.7: Feed-forward neural network using Bayesian regularization. Re-
sults for different number of hidden units (neurons).

# Neurons RMSE [◦] Pearson c α β

1 1.480 0.499 3.995 34.28

6 1.304 0.655 0.864 54.20

14 1.271 0.674 0.832 61.34

20 1.348 0.636 1.034 64.19

The structure of the neural net is shown in figure 3.15. On the left hand side

14 input attributes feed into the hidden layer, containing 14 neurons. Additionally,

a bias term is added to each hidden input unit. While black lines indicate positive

(+) weights, grey lines indicate negative (-) weights. The magnitude of the weights

is coded by the thickness of the line. 7 attributes have ‘thick’ connections to the

hidden units. Target speed and feedback (memory) have negative weights to neuron

9. Eye velocity gain, cumulative saccades, and finger latency have positive weights

to neuron 14. The tracking error has positive weights to neuron 7 (which is also

strongly biased) and neuron 11. The cumulative saccades attribute has a strong

negative connection to neuron 13. Finally, finger latency and movement time have

positive weights to neuron 13. Neurons 1 and 14 have a strong positive weight to

the output, while neurons 7 and 13 have a negative weight to the output unit. This

relationship, however, is not linear.
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Figure 3.15: Feed-forward neural network using Bayesian regularization for 14 input attributes I1−−I14 and 14 hidden
units (neurons) H1−−H14. The weights are color-coded by sign (black +, grey -) and the magnitude of the
connections is coded by thickness. A bias term feeds into each neuron. The output O1 is connected to every
neuron via a single weight. Input attributes indicated in bold are the attributes with the connections of highest
magnitude.
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3.4.5 Model Comparison

Table 3.8 summarizes and compares the different statistical training models

applied to the data set D. The neural net performs best in predicting the output

variable on a separate training set D̃, followed by the model tree.

Table 3.8: Evaluation of different statistical models applied.

Statistical model # Predictors RMSE [◦] Pearson c

Quadratic regression 1 1.507 0.467

Multiple linear regression 14 1.488 0.488

Cubist model tree 14 1.304 0.639

brnn Neural net 14 1.271 0.674

3.5 Interception Strategy
All data were analyzed with respect to individual player performance. Differ-

ent aspects, such as player’s position, years spent on the team, visual acuity, or

contrast sensitivity were related to the interception performance. Additionally, in-

terception accuracy was compared in between blocks and hands. Although, this

analysis showed a few interesting trends, no clear conclusions have been drawn so

far. Discussing these observational results in detail are beyond the scope of this

thesis and will thus not be reported further.

In the eye-hand coordination task, a positive relationship between the time of

invisible flight (time from stimulus disappearance to point of interception) and

the interception error was generally observed (figure 3.16). The linear regression

model between these two measures is significant (F(1,94), p < 0001). Thus, the

strategy to intercept the ball as soon as it enters the designated hit zone may be

beneficial for this particular eye-hand coordination task. Based on this observation

the question arises whether players use different strategies when to intercept.
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Figure 3.16: Relationship between the time of invisible flight (from time of
disappearance to time of interception) and finger interception error.
Data shown are for all presentation durations, while the target speed is
coded by color (24.1◦/s: blue, 29.3◦/s: green, 34.2◦/s: red).

As described in section 2.3.2 the favored time of interception was determined

for each player by means of a Hazard analysis. Based on these peak values, all

players were separated into two groups of early and late interceptors (figure3.17

A). The division was done by a k-means clustering analysis with two clusters (early

and late), while the hazard peak levels represented the dependent variable. The

cluster centers were at peak interception times of 725 ms (early) and 940 ms (late)

after stimulus disappearance. The averaged hazard level for both respective groups

is plotted in figure 3.17 B. The earliest interceptions were made approximately

275 ms after disappearance. The ball was invisible for at least 250 ms (fastest speed

and longest presentation duration) before it entered the designated hit zone. The

Hazard curve of the early interceptors has a sharp peak at 750 ms, while the broader

Hazard curve of the late interceptors peaks approximately 200 ms later.
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Figure 3.17: Hazard level analysis. All players are divided into a group of
early interceptors (N = 17) and late interceptors (N = 15) based on a
k-means clustering analysis (A). Within each group the hazard levels
are averaged (B).

The eye and finger attributes of these two groups can now be analyzed using

one of the statistical models described in section 3.4. In particular, the CubistR

model tree was run on the data sets of both groups separately. Table 3.9 summarizes

the results. The tracking error scales positive with the finger interception error and

is still the attribute used most for predicting the interception error for both groups.

For early interceptors the feedback component is the attribute that the model uses

second most. It mostly scales positively with the finger interception error (inter-
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Table 3.9: Cubist model tree results compared between early and late inter-
ceptors. The interception error either increases with increasing (⊕) or
decreasing (	) attribute values. Some variables show mixed effects.

Attribute Usage Sign 

Tracking error 87%  

Initial sac. amplitude 63%  

Target speed 59%  

Eye latency 57% 

Eye peak velocity 53%  

Feedback (memory) 52%  

Tracking time 49%  

Attribute Usage Sign 

Tracking error 88%  

Feedback (memory) 85%  

Finger latency 83%  

Target speed 80%  

Finger move time 78%  

Eye latency 67%  

Cumulative saccades 60%  

Early Interceptors Late Interceptors 

ceptions further away from the feedback position yields a higher interception error)

except for the slowest target speed, where the relationship is inverted. Third, the

finger latency is important for the model prediction of early interceptors. For the

latency the relationship with the interception error is mixed, that is, for very short

latencies the relationship is negative, while for latencies higher than 450 ms the

relationship is positive. For both early and late interceptors the relationship of the

target speed is mixed, which is a consequence of the speed range effect discussed

earlier. Generally, the target speed is mainly used for defining the tree’s splitting

rules and is only part of some of the linear regressions models at the terminal leafs.

For late interceptors, a larger initial saccade amplitude leads to a higher finger inter-

ception error and is the attribute, which the model uses second most. This positive

relationship is in contrast to the results of the model on the entire data set (compare

table 3.6), where the a larger initial saccade predicted smaller interception error.

Interestingly, eye latency scales negatively for late interceptors, that is, a later eye

movement onset is beneficial for late interceptors. However, both groups pursuit

on average anticipatory. Thus, a later eye movement onset brings the eye move-

ment closer to the actual target onset. As opposed to the early interceptors, the

memory component of the late interceptors scales negatively for the highest target
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speed (not the slowest) and otherwise positively. Lastly, the tracking time scales

positively. This could indicate that the eye lags behind for longer tracking periods

resulting in larger catch up saccades.

Another interesting comparison between the two groups is to look at the eye

velocity (figure 3.18 A), initial finger displacement (figure 3.18 B), and finger ve-
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Figure 3.18: Early interceptors (N = 17) are plotted in dark blue and late
interceptors (N = 15) in light blue. Averaged eye velocity (A) of each
group across trials of medium speed (29.3◦/s) and longest presentation
duration (300 ms). True target velocity is indicated by the dashed grey
line. Group comparison of initial finger displacement (B) and mean
finger velocity (B).
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locity (figure 3.18 C) averaged across early (N = 17) and late interceptors (N = 15)

for a single exemplary condition (target speed of 29.3◦/s, 100 ms presentation du-

ration), respectively. While the eye velocity of the late interceptors is on average

greater, the finger velocity is higher for the early interceptors. The initial finger dis-

placement of the early interceptors follows a more direct path towards the screen,

while late interceptors move earlier to the side and arrive at the scene further out-

side and at a later point of time.

Lastly, the different types of finger interception error were evaluated for both

groups. Figure 3.19 plots the mean interception values for each condition and the

two respective groups. The relative timing component of the interception error is

plotted on the x-axis, while the spatial component is plotted on the y-axis. Overall

timing errors were larger than spatial errors for both groups. Early interceptors

(dark blue filling) performed better for the fastest speed (red bordered symbols),

however poorer for the slowest target speed (blue bordered symbols). Early inter-

ceptors (cyan filling) had on average a smaller timing error compared to the early

interceptors.
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Figure 3.19: Average interception errors of early (dark blue filling) and late
(cyan filling) interceptors broken down into relative timing (x) and spa-
tial (y) component. Average for each presentation duration (symbols)
and target speed (colors) as previously coded. Standard error of the
mean error bars are included but to small to be visible.
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In conclusion, both groups intercept best for the medium target speed. Early in-

terceptors perform better for the fastest speed and their interception error increases

consistently for a longer presentation duration. Late interceptors outperform the

early group for the slow target speed and their timing remains better for almost all

conditions.
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4 Discussion

In this section, experimental results will be discussed and future research pos-

sibilities will be outlined. Section 4.1 will debate the effects of eye movements on

the accuracy on manual interceptions. Then, the advantages and limitations of the

statistical models applied will be discussed in section 4.3. Next, section 4.2 will

focus on different interception strategies. Furthermore, practical implications will

be presented in section 4.4 before a final conclusion is drawn in section 4.5.

4.1 Manual Interception Improves With Pursuit Quality
Overall, an improvement in interception accuracy is found for higher quality

pursuit eye movements. This is in line with what we expected from the literature,

where it has been shown that tracking a moving object with smooth pursuit eye

movements enhances the observer’s ability to predict the target’s trajectory in time

(Bennett et al., 2010) and space (Spering & Montagnini, 2011). Furthermore, in-

tercepting a moving object critically relies on motion prediction (e.g. Soechting &

Flanders, 2008). Thus, our findings are consistent with these previous studies and

relate the quality of both eye and hand movements in a novel interception task.

To increase the degree of difficulty and to avoid memorization of a certain

entrance points of the target into the hit zone, the target speed and presentation

duration was varied randomly. These target properties significantly effected the

interception error. Interestingly, the slowest target speed yielded, on average, the

highest interception errors. The relationship between tracking error or cumulative

saccades, respectively, and finger interception error was weakest for the slowest

target speed. Moreover, relating the memory of the visual feedback positions to the

finger interception error showed a negative relationship for this speed, that is, the
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interception error was greater for trials that were intercepted closer to the feedback

position. One possible explanation could be the fact that the memory attribute

purely refers to the distance between the feedback position indicated in previous

trials and does not take the timing of the interception into account. In line with

this, the relationship between memory and the interception error is strongest for

the medium speed. However, if this was the only effect, the relationship should be

similar for the slowest and the highest speed, respectively, since we are comparing

the memory feedback position to the 2D interception error (not the timing error).

Figure 2.3 illustrates another possible reason for the discrepancy: The apex of the

simulated fly ball at this speed is reached before the target actually enters the hit

zone. Since the target disappears before the apex is actually reached, it becomes

very difficult to extrapolate the directional change of the trajectory for the slowest

target speed. Mrotek & Soechting (2007a) showed that the direction of smooth

pursuit follows the predicted direction of the target when the trajectory is occluded.

In accordance with this, players might have predicted that the target continued

rising until it entered the hit zone as is true for the fastest and medium target speed.

Manual interception as well as 2D eye tracking error both show a speed range

effect (Poulton, 1975), which is the mean tracking and interception errors are low-

est for the averaged (medium) speed. This is to be expected for three target speeds

and could be avoided by, for example, changing the initial launch angles instead of

the target speed. This way, variability in trajectory shape would still be ensured,

while speed effects would be minimized. Furthermore, for the shortest presentation

duration of 100 ms, the eye movement and manual interception quality is very poor.

When the target is only visible for 100 ms, the smooth pursuit system is still in the

open loop phase and hence the target has disappeared before visual feedback closes

the loop to correct for eye positional error. Thus, this presentation duration might

be too short to yield an accurate motion prediction and effects are consequently not

as strong.

The separation into timing and spatial error yielded interesting results. The

spatial error strongly depends on the memory of visual feedback given in all pre-

vious trials. In a study addressing movement planning, Brouwer & Knill (2009)

found that their subjects integrated remembered target position from previous feed-

back given and peripheral visual information. In accordance with this, the spatial
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position of the interception might be influenced by a movement plan relying on the

feedback given in previous trials. Moreover, the timing of the interception depends

more on movement initiation (finger latency) and is then guided by eye movement

measures and feedback position. In general, timing the interception seemed to be

slightly more challenging than hitting the trajectory path spatially (compare figure

3.10). This could be due to the previously discussed speed range effect, leading to

early interceptions for slow and late interceptions for fast targets, respectively.

Finally, it should be noted that the separation into spatial and timing error was

done by approximating the vertical distance to the simulated trajectory (spatial

error) and then measuring the length of the spatial trajectory-intersection point to

the true target feedback point (timing error). Instead, the spatial component could,

for example, be chosen as the shortest distance to the simulated trajectory, or the

timing error could be calculated based on the time that would have passed until

the trajectory had reached the spatial trajectory-intersection point. These measures

could be explored and compared in future analysis.

4.2 Interception Strategy
In general, it was shown that early interceptions were on average more accurate

(compare figure 3.16). By intercepting the invisible ball as soon as it enters the hit

zone, the player spatially minimizes horizontal error. It now becomes a task to

estimate when the ball will reach the hit zone and where along a vertical line it will

enter. Early interceptors, that might have followed this strategy, made comparably

higher errors for the slowest target speed. Again, comparing figure 2.3, we see that

the entrance points of the three trajectories are not evenly spaced, but the slowest

speed enters at a much lower vertical position. Consequently, even though this

strategy overall lead to a lower interception error in this task, it might not mean

that early interceptors predicted the target motion more accurately over time. That

is, even though late interceptions are more difficult in terms of spatial uncertainty,

they might be more closely related to a baseball player’s performance out on the

field. Here, a batter can not swing as soon as the ball crosses a certain point but

has to time the bat perfectly. Figure 3.18 shows that the late interception group on

average reaches a higher eye velocity, indicating that they might track the ball better
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and take longer to prepare their interception, relying more on their eye movements

than on a remembered feedback position.

To explore this further, a future approach could be to change the task slightly:

Instead of having a large hit zone on one side of the screen, where the ball en-

ters horizontally, a smaller strike zone could be implemented. In particular, the

ball would again disappear some time after launch off and then would have to be

‘caught’ (intercepted) once it vertically enters a smaller box. Additionally, catch

trials, in which the ball misses the strike zone and the player consequently should

not intercept, could be introduced. This way, the task would even more rely on

precise motion prediction and the demands of the visuomotor coordination would

be closely related to an actual baseball bat.

4.3 Statistical Models
Three different statistical models were compared for multiple attribute predic-

tions. The multiple linear regression is easiest in terms of model computation and

interpretation. Statistically, it provides information about attributes that have a sig-

nificant effect on the dependent measure. Mathematically, the coefficients contain

information about the relationship as well as strength between each attribute and

the dependent measure. For example, a lower tracking error yields a lower inter-

ception error (positive relationship), while a higher eye velocity gain yields a lower

interception error (negative relationship). A disadvantage of the multiple regres-

sion is that the fit is done across all samples, e.g. not taking into account differ-

ent target properties. Accordingly, different target speeds or presentation duration

might yield different attribute coefficients and relationships. Lastly, compared to

the other statistical models applied, the multiple linear regression performs poorest

for a prediction of the finger interception error on a training set (see table 3.8 for

reference).

Conversely, the feedforward neural network predicts the interception error most

accurately on a new test data set. However, the neural net structure is highly com-

plex and the hidden layer works as a black box. The mapping from the hidden units

to the output attribute is nonlinear and the weights are thus difficult to interpret. For

interpretation of the functional significance of different input attributes this model
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might thus not be optimal.

Finally, the regression model tree predicts the interception error of a test data

set more accurately than the multiple regression analysis and is easier to interpret

than the neural network. Here, the output of the model is a set of fixed rules re-

sulting in several different linear regression models. The summary of the model

yields an overview of attribute usage for building the splitting rules and the linear

regressions, indicating the attribute importance with respect to the dependent mea-

sure. An advantage compared to the multiple linear regression is that linear models

are fitted to smaller sub-samples of the entire data set, such as to the highest target

speed only, or trials with very high tracking error. In conclusion, the regression

model tree was best suited for exploratory analysis on e.g. attribute importance for

different subject groups.

All of the models presented in this thesis make predictions based on averaged

results across each trial. This way, the richness of the data set within one trial might

be lost. For example, the tracking error across all trials could be extrapolated to be

of same length. Next, these samples could be parsed by means of principal com-

ponent analysis (PCA) or independent component analysis (ICA) to derive new

attributes, that is the principal components. These components would also indicate

at which time point the eye tracking error shows high variability between subjects.

Another approach could be to consider a Bayesian framework for modelling the

manual interception based on eye position data within each trial. In particular, a

Kalman filter could be fitted to each eye position trace. It has already been shown

in the literature that a Kalman filter can be used to model visually guided and pre-

dictive smooth pursuit eye movements (Orban de Xivry et al., 2013). This model

could then be updated by the given feedback position at the end of each trial and be

incorporated into a larger statistical model across all trials. Bayesian models have

shown to be successful representations of e.g. multisensory information integration

(Beierholm et al., 2008) or sensorimotor learning (Körding & Wolpert, 2004). This

approach will be explored in future work.
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4.4 Practical Implications
Vision training in sports is becoming a greater part of many professional pro-

grams every day (see Abernethy & Wood, 2001, for a review). Clark et al. (2012)

reported that the batting average and slugging percentage of the Cincinnati univer-

sity baseball team increased significantly between two seasons after systematically

training the player’s vision. Similarly, Deveau et al. (2014) report that players of

the University of California Riverside baseball team showed significant improve-

ment in visual acuity and visual contrast sensitivity, as well as a lower number of

strike outs and a higher number of runs created, after being part of a specific per-

ceptual learning program. Many other studies and books report anecdotal evidence

of improved athletic performance after vision or perceptual-cognitive training (e.g.

Peters, 2012; Faubert & Sidebottom, 2012). However, these studies often lack a

systematic scientific approach and do not consider for example placebo effects or

matched control groups. Moreover, eye movements are often considered in terms

of gaze strategies, that is fixational eye movements and not smooth pursuit. This

study gives evidence that smooth tracking is beneficial for manual interceptions.

Accordingly, these types of eye movements should be considered when designing

a comprehensive and research based vision training.

The results of this study focused on averaged eye movement and interception

behavior. This could also be broken down in individual player performance and

strategy. This way strength and weaknesses of each player could be identified and

individual consultation could be given to improve the performance of each player.

4.5 Conclusion
In the literature several studies have reported a strong connection between

smooth pursuit eye movements and manual interception (e.g. Mrotek, 2013; Mrotek

& Soechting, 2007b; Koken & Erkelens, 1992). This study shows that observers

not only benefit from smooth pursuit eye movements in a manual interception task,

but also that the interception accuracy scales with the quality of the eye movements.

Additionally, two different interception strategies were identified. Earlier intercep-

tions were biased towards a remembered visual feedback position and guided by

fast hand movements as well as accurate tracking eye movements. Later intercep-
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tions relied overall more of eye movement accuracy, that is low tracking error and

initial saccade, precise eye latency and eye peak velocity.
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