
Low-Stretch Trees for Network Visualization

by

Rebecca Linda McKnight

B.Sc., The University of Victoria, 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

August 2015

c© Rebecca Linda McKnight, 2015

Abstract

Low-stretch trees are spanning trees which provide approximate distance preser-

vation for edges in the original graph by minimizing stretch. We explore the ap-

plication of these trees to network visualization. In particular, we present a novel

edge bundling technique, LSTB, that computes edge bundles explicitly and effi-

ciently and does not rely on fixed vertex positions. This approach is in contrast to

previous methods, which require the user to provide a layout of the input graph.

We introduce an abstract framework for edge bundling methods, which provides a

unifying formalization of bundling terminology and techniques, as well as a clas-

sification of such methods. Based on this framework, LSTB provides algorithmic

support for sophisticated visual encodings, including dynamic layout adjustment

and interactive bundle querying.

In addition, we explore the use of the multiplicative weights update method

to compute a distribution over low-stretch trees in order to achieve low stretch for

all edges in expectation, rather than on average. We present the results of using

this distribution in place of a single low-stretch tree as a routing graph for LSTB.

While the distribution provides better stretch guarantees, we find that from a visual

perspective a single low-stretch tree provides a better routing graph for the LSTB

edge bundling application.

ii

Preface

This thesis is the expanded version of currently unpublished work done with Nicholas

J. A. Harvey and Tamara Munzner. The ideas and algorithms presented here were

developed jointly by us. I performed all implementation and results gathering pre-

sented in Chapter 6. Chapter 5 and Chapter 7 were written solely by me.

Figures 1.2, 6.1a, 6.1c, 6.1e, and 6.1g used with permission.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vii

List of Figures . viii

Acknowledgments . x

1 Introduction . 1

2 Literature Review . 7
2.1 Low-Stretch Trees . 7

2.2 Edge Bundling . 8

2.3 Network Visualization . 9

3 Abstract Framework for Edge Bundling 11
3.1 Framework Details . 11

3.2 Application to Existing Methods 13

3.2.1 Force-Directed Edge Bundling 13

3.2.2 Multilevel Agglomerative Edge Bundling 13

3.2.3 Clustered Edge Routing 14

iv

4 LSTB . 15
4.1 Bundling Algorithm . 15

4.1.1 Routing Graph Generation 15

4.1.2 Edge Routing and Bundling 16

4.2 Visual Encoding . 18

4.2.1 Vertex Layout . 19

4.2.2 Edge Drawing . 19

4.2.3 Interactivity . 21

5 Low-Stretch Trees . 22
5.1 Low-Stretch Tree Construction 22

5.1.1 Parameters . 23

5.2 Distribution over Low-Stretch Trees 25

5.2.1 Multiplicative Weights Update Method 26

5.2.2 Tree Oracle . 27

5.2.3 Analysis . 29

5.2.4 Application to LSTB . 31

6 Results . 32
6.1 Data and Implementation . 32

6.2 LSTB Evaluation . 33

6.3 Distribution over Low-Stretch Trees 35

7 Discussion . 38
7.1 LSTB . 38

7.2 Stretch . 39

7.3 Distribution over Low-Stretch Trees 40

7.4 Future Work . 41

8 Conclusion . 42

Bibliography . 43

v

A Supporting Materials . 46
A.1 Zero-Sum Games and the Minimax Theorem 46

A.2 Proof of Lemma 5.2.3.2 . 47

vi

List of Tables

Table 1.1 A comparison of edge bundling method usage, broken down

based on whether the graph has a layout or hierarchy. Our

method, LSTB, is applicable in all four cases. 6

Table 6.1 Graph statistics for data sets used in this paper. 32

Table 6.2 Performance statistics of LSTB. Running time is in seconds,

and is averaged over 100 runs. 35

Table 6.3 Maximum edge stretch comparison between a single low-stretch

tree T and a distribution D over low-stretch trees, computed as

in Section 5.2 with varying sizes |D | ∈ {2,5,10}. 35

vii

List of Figures

Figure 1.1 Comparison between the input graph and the output of LSTB

on the Poker data set. 2

Figure 1.2 c© 2006 IEEE Comparison between two bundled layouts of

software package interaction data from Hierarchical Edge Bun-

dles [17]. In each case, although the vertex positions differ, the

bundles are the same. 3

Figure 1.3 LSTB system workflow. 3

Figure 1.4 Comparison between trees with poor (high) and good (low)

stretch, respectively. 4

Figure 1.5 Comparison between a minimum spanning tree and a low-

stretch spanning tree for an 8-by-8 grid graph. 5

Figure 3.1 Illustration of the input and output of edge segmentation. . . . 12

Figure 4.1 Illustration of the bundling algorithm of LSTB. A low-stretch

tree T = (V,ET) is computed for use as a routing graph. Seg-

mentation is then performed by routing edges through this tree,

using the routing algorithm illustrated in Figure 4.2. Bundles

are then formed from groups of segments sharing the same

endpoints as edges in ET . 17

Figure 4.2 Illustration of the routing algorithm of LSTB from Section

4.1.2. The algorithm roots tree T = (V,ET) at an arbitrary

vertex in order to speed up queries, which then only need to

find the lowest common ancestor between two vertices. 18

viii

Figure 4.3 Comparison between vertex layout methods for the routing

graph T . 19

Figure 4.4 Examples of visual encoding options for LSTB. 20

Figure 4.5 Comparison between bundle querying and edge querying on

hover. 21

Figure 6.1 Comparison between previous methods and LSTB. 34

Figure 6.2 Comparison between visual results obtained on the Flare data

set using a distribution over two low-stretch trees (b) and a

single low-stretch tree (c) for routing in LSTB. 37

Figure 7.1 Comparison between using an arbitrary spanning tree and a

low-stretch tree as the routing graph in LSTB on the Email

data set. 39

ix

Acknowledgments

I would like to thank my research supervisor, Nick Harvey, for his help over the

past two years. His teaching, both in and out of the classroom, has been invaluable

to me. I am so grateful for the time and effort he put into guiding me through this

process.

I would also like to thank Tamara Munzner for her input and insight into the

visual aspects of this work. Her keen eye for beauty and design was an invaluable

resource and essential to the success of this thesis.

I thank Alex Telea for providing data for comparison and Quirijn Bouts for

providing Figure 6.1e.

I am also deeply grateful to my husband, Christopher, and to my family for

their love and support throughout my degree. Their faith and encouragement give

me motivation to succeed.

x

Chapter 1

Introduction

Graphs are common in many applications, such as: computational biology, com-

puter networking, and natural language processing. Two key areas that study

graphs and their representations are graph theory and information visualization.

Graph theory studies properties and applications of graphs. Common problems

in graph theory include constructing graphs with particular properties, computing

subgraphs with a particular structure, and finding routes through a graph. Infor-
mation visualization (“vis”) creates “visual representations of datasets designed

to help people carry out tasks more effectively” [23]. In particular, network visu-
alization focuses on visualizing graph data.

Finding a visually effective embedding of a given graph is often difficult, how-

ever, unless the data set is very small or the graph admits a nice property, such

as planarity. In order to improve the visual representation of a graph by reducing

visual clutter, two approaches might be considered: adjusting vertex positions and

adjusting edge positions. The latter is known as edge bundling, and has been stud-

ied extensively in the information visualization literature. Edge bundling methods

visually group edges into bundles in order to minimize edge clutter. We intro-

duce a new classification of such methods as either layout-based or layout-free.

Layout-based methods require the input graph to have a pre-computed layout: that

is, geometric positions for all vertices. These methods use information from the

layout, such as edge proximity, to perform bundling. For example, geo-spatial data

includes a specific embedding which can be used to inform bundling. However,

1

a particular layout may not match a user’s intent or needs, or they may not know

how to choose an appropriate layout. In addition, pre-computing a layout may be

expensive. In such situations, layout-based edge bundling will likely not be useful.

In contrast, layout-free edge bundling methods do not use any information re-

garding vertex positions in order to perform bundling. That is, the bundling com-

puted by such methods is independent of layout. Therefore, any graph layout can

be used. An example of this is shown in Figure 1.2, where different tree layouts are

used to draw the same software package interaction data. However, the bundling

in both cases is the same: the same edges are bundled together regardless of ad-

justed vertex positions. This example is taken from Hierarchical Edge Bundles

(HEB) [17], which is the only pre-existing layout-free edge bundling method we

are aware of. HEB takes a compound graph as input: that is, a graph together with a

specific hierarchical relationship defined by a rooted spanning tree on the vertices.

The hierarchy is used as a routing graph, where graph edges are routed through the

hierarchy in order to form bundles.

This method of using a routing graph to perform bundling is also common

among layout-based methods [10, 11, 21, 26]. However, some of the routing graphs

used are dense, which leads to inefficiencies when finding routes. From this per-

(a) Input graph. (b) LSTB bundled graph.

Figure 1.1: Comparison between the input graph and the output of LSTB on the
Poker data set.

2

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 13. A software system and its associated call graph (caller = green, callee = red). (a) and (b) show the system with bundling strength β = 0.85
using a balloon layout (node labels disabled) and a radial layout, respectively. Bundling reduces visual clutter, making it easier to perceive the
actual connections than when compared to the non-bundled versions (figures 2a and 11a). Bundled visualizations also show relations between
sparsely connected systems more clearly (encircled regions); these are almost completely obscured in the non-bundled versions. The encircled
regions highlight identical parts of the system for (a), (b), and figure 15.

Fig. 14. Using the bundling strength β to provide a trade-off between low-level and high-level views of the adjacency relations. The value of β
increases from left-to-right; low values mainly provide low-level, node-to-node connectivity information, whereas high values provide high-level
information as well by implicit visualization of adjacency edges between parent nodes that are the result of explicit adjacency edges between their
respective child nodes.

regarded as being aesthetically pleasing. SIG and FEI Company Eind-
hoven are currently supporting further development by providing us
with additional data sets and feedback regarding the resulting visual-
izations.

More specifically, most of the participants particularly valued the
fact that relations between items at low levels of the hierarchy were
automatically lifted to implicit relations between items at higher lev-
els by means of bundles. This quickly gave them an impression of the
high-level connectivity information while still being able to inspect
the low-level relations that were responsible for the bundles by inter-
actively manipulating the bundling strength.

This is illustrated in figure 14, which shows visualizations using
different values for the bundling strength β . Low values result in vi-
sualizations that mainly provide low-level, node-to-node connectivity
information. High values result in visualizations that provide high-
level information as well by implicit visualization of adjacency edges
between parent nodes that are the result of explicit adjacency edges
between their respective child nodes.

Another aspect that was commented on was how the bundles gave

an impression of the hierarchical organization of the data as well,
thereby strengthening the visualization of the hierarchy. More specif-
ically, a thick bundle shows the presence of two elements at a fairly
high level of the hierarchy, whereas the fanning out of a bundle shows
the subdivision of an element into subelements.

Most participants preferred the radial layout over the balloon layout
and the squarified treemap layout. Another finding was the fact that the
rooted layout and the slice-and-dice treemap layout were considered
less pleasing according to several participants. This is probably due to
the large number of collinear nodes within these layouts, which causes
bundles to overlap along the collinearity axes. This is illustrated in
figure 17.

Although our main focus while developing hierarchical edge bun-
dles was on the visualization itself, interaction is an important aspect
in determining the usability of our technique. Based on our own in-
sight and feedback gathered from participants, we contend that bundle-
based interaction as described below could provide a convenient way
of interacting with the visualizations.

Figure 16 shows how the bundling strength β could be used in con-

Figure 1.2: c© 2006 IEEE Comparison between two bundled layouts of software
package interaction data from Hierarchical Edge Bundles [17]. In each case, al-
though the vertex positions differ, the bundles are the same.

spective, HEB is ideal, since it uses a spanning tree to route edges. HEB requires

this hierarchy as input, though, which renders the method unusable in cases where

no hierarchy is known. For example, a protein interaction graph has no inherent

layout and no underlying tree structure; therefore, neither layout-based methods

nor HEB are sufficient.

To address these problems, we introduce a new edge bundling system: LSTB.

Figure 1.1 shows an example of the input and output of our method. Our system is

comprised of two steps: the edge bundling algorithm and the visual encoding step.

Figure 1.3 shows the system workflow.

Bundling
Algorithm

Visual
Encoding

Input graph
G=(V,E)

Low-stretch tree T,

bundles ℬ,
edge map ε

Figure 1.3: LSTB system workflow.

In the first step, our layout-free bundling algorithm computes a particular type

of spanning tree, a low-stretch tree [3], to use for edge routing. Given a graph

G = (V,E) and a spanning tree T = (V,ET), the stretch [3] is the ratio between

path length in the tree and path length in the original graph. A low-stretch tree is a

spanning tree that approximately minimizes the stretch of edges on average. Such

3

a tree provides the distance preservation that we desire in a good routing graph.

For graph G, the stretch of an edge e = (u,v) ∈ E in tree T is defined as:

sT (e) = dT (u,v)

where dT (u,v) is the path length from u to v in T . The overall stretch of G is

defined as:

sT (G) =
1
|E |

∑
e∈E

sT (e)

Figure 1.4 gives an example of two spanning trees: one with poor (large)

stretch, and one with good (small) stretch.

One of our main contributions is to introduce the use of low-stretch trees to

the problem of edge bundling. Low-stretch trees became objects of interest in the

graph embeddings literature several decades ago, but they are also the key objects

underlying several recent breakthroughs in spectral graph algorithms, such as max-

imum flow in near-linear time [28].

The power of low-stretch trees can be seen through a simple example. Consider

an n-by-n grid graph, or mesh. Arbitrary spanning trees generally do a poor job of

encapsulating the structure of this graph, as shown in Figure 1.5a. However, Alon

et al. [3] show that low-stretch trees succeed at capturing this structure. This is

illustrated in Figure 1.5b.

Most low-stretch tree construction algorithms, however, only guarantee the

preservation of distances on average. In contrast, we explore the use of a distri-

bution over low-stretch trees to achieve low stretch for edges in expectation. Such

u

v

(a) Original graph G, with
comparison edge
e = (u,v) highlighted

u

v

(b) Tree T with sT (e) = 6,
sT (G) = 28/11

u

v

(c) Tree T with sT (e) = 2,
sT (G) = 17/11

Figure 1.4: Comparison between trees with poor (high) and good (low) stretch,
respectively.

4

(a) Minimum spanning tree. (b) Low-stretch spanning tree, as shown
in Alon et al. [3].

Figure 1.5: Comparison between a minimum spanning tree and a low-stretch span-
ning tree for an 8-by-8 grid graph.

a distribution can be obtained via a reduction to a zero-sum game, where the payoff

values are stretches of edges from the input graph in spanning trees. One player

wishes to find an edge with maximum stretch, whereas the other wishes to find a

tree which minimizes the stretch of that edge. By Von Neumann’s Minimax The-

orem, there exists a distribution which gives each player the best possible payoff

given their opponent’s strategy. We use the multiplicative weights update method

[6] to approximate such a distribution. In contrast to using a single tree, we also

explore using this distribution over low-stretch trees for our edge bundling algo-

rithm.

Many existing edge bundling methods perform bundling visually without real

consideration of the bundles themselves: the bundles are either not explicitly com-

puted, or not explicitly shown to the user. In contrast, our bundling algorithm

outputs the bundles directly. In order to explain this concept clearly, we introduce

an abstract framework for edge bundling which includes a formal definition of a

bundle. This definition provides the data abstraction for our visualization design,

according to the nested model [23].

The visual encoding step of our system is responsible for drawing the bundled

graph. This step corresponds to the visual encoding and algorithm levels of the

5

nested model for visualization design [23]. Since our bundling algorithm is layout-

free, we can use any existing vertex layout method. We also explore several ways

of visually encoding bundles; the techniques we use are pre-existing, but their ap-

plication to edge bundles is new. In addition, we incorporate interactive features

such as dynamic layout adjustment and bundle query on hover.

Depending on the task, one bundling algorithm may be more suitable than

another. However, the data in question poses restrictions on which methods are

even feasible. Table 1.1 explains these restrictions in conjunction with our layout-

based and layout-free classifications by comparing method usage depending on

whether the user has a hierarchy or layout for the input graph. As seen in this

table, LSTB can be used in each scenario, and clearly fills a gap in the current edge

bundling literature.

In summary, we report on the following contributions: LSTB, a new layout-free

edge bundling technique that computes bundles explicitly; an abstract framework

for edge bundling that clearly defines terminology and techniques used in such

methods; the utilization of the multiplicative weights update method to compute a

distribution over low-stretch trees; and the introduction of low-stretch trees to the

edge bundling literature.

Has Hierarchy No Hierarchy

Has Layout H3L3: Any method
H7L3: Any layout-based

method, or LSTB

No Layout H3L7: HEB [17], or LSTB H7L7: LSTB

Table 1.1: A comparison of edge bundling method usage, broken down based on
whether the graph has a layout or hierarchy. Our method, LSTB, is applicable in
all four cases.

6

Chapter 2

Literature Review

We discuss prior work related to low-stretch trees, edge bundling, and other visual-

ization techniques. Low-stretch tree computation methods will be reviewed as well

as motivations and popular applications of these objects. We also give an overview

of important work on edge bundling, particularly the methods that inspired LSTB.

In addition, we discuss previous work on several visualization techniques that we

use to display the results of our bundling algorithm.

2.1 Low-Stretch Trees
Low-stretch trees were first introduced by Alon, Karp, Peleg and West in 1995 [3]

for use in the k-server problem, a key problem in online algorithms. They formu-

late a zero-sum game for the problem, where the tree player picks a spanning tree

of the graph and the edge player picks an edge in the graph; the payoff is then the

stretch of the chosen edge in the chosen tree. This framework is described in detail

in Section A.1. By von Neumann’s Minimax Theorem [29], for any fixed strategy

x by the edge player there exists a strategy y for the tree player consisting of a

single tree which achieves miny xᵀMy, where M is the payoff matrix of the game.

Alon et al. assume a uniform strategy for the edge player, and provide an algorithm

that constructs a single tree as a fixed strategy for the tree player which provides

stretch exp(O(
√

log n log log n)) = O(n0.01) for edges on average.

In 2001, Boman and Hendrickson [8] discovered low-stretch trees could be

7

used as preconditioners for solving linear systems where the matrix is the Lapla-

cian of a graph. The work of Spielman and Teng, and others [28] dramatically

extended the work of Boman and Hendrickson by giving provably near-linear time

algorithms for solving Laplacian linear systems. These fast Laplacian solvers are

used in problems such as max flow and bipartite matching [28]. This breakthrough

prompted a renewed interest in developing algorithms for computing low-stretch

trees.

Elkin, Emek, Spielman and Teng [12] introduced a star-decomposition tech-

nique which their algorithm uses to compute a spanning tree with average stretch

O(log2 n log log n). Abraham, Bartal and Neiman [2] extend this technique to com-

pute a distribution T over spanning trees in order to obtain good expected stretch:

ET ∈T [sT (e)] = Õ(log n). This distribution consists of all spanning trees induced

by their hierarchical star partition algorithm with non-zero probability. Based on

this result, they obtain an average stretch guarantee of O(log n log log n(log log log n)3).

A more recent algorithm for computing low-stretch trees from Abraham and Neiman

uses similar ideas to develop a petal-decomposition technique which improves av-

erage stretch to O(log n log log n) [1]. The goals of these algorithms, however,

are to improve stretch guarantees. Therefore, most of these algorithms are very

theoretical and are not practical to implement.

2.2 Edge Bundling
One of the first papers on edge bundling was Hierarchical Edge Bundling (HEB) [17].

As mentioned previously, this algorithm takes as input a compound graph and uses

the hierarchy to route the additional edges. Existing tree drawing methods are used

to lay out the hierarchy, and splines are used to draw the routed edges through the

tree. While this method does not explicitly compute bundles before laying out the

tree, the bundles are layout-independent and therefore this method is layout-free.

Interestingly, all subsequent work has been exclusively layout-based, to the best of

our knowledge.

Some early work on edge bundling focused on routing-based techniques, where

bundles are formed by edges being routed along a mesh or grid. Geometry-Based

Edge Clustering [11] generates a control mesh and computes control points on the

8

mesh which edges are routed through. Winding Roads [21] computes a hybrid

quad-tree/Voronoi diagram according to vertex positions of the input graph, and

then routes the edges along this grid. Force-Directed Edge Bundling (FDEB) [18],

another early method, takes a different approach. This algorithm subdivides edges

and exerts spring forces on the subdivision points in order to attract edges towards

one another. Unfortunately, this iterative procedure tends to be quite slow, and

involves many parameters.

More recent methods employ unique and varied techniques. Skeleton-Based

Edge Bundling (SBEB) [13] clusters similar edges together and generates a skele-

ton from their medial axes, then attracts edges to the skeleton to produce bundles.

Kernel Density Estimation Edge Bundling (KDEEB) [19] computes a density map

of the input graph’s layout using kernel density estimation, and then applies im-

age sharpening to merge local high points in order to form bundles. Multilevel

Agglomerative Edge Bundling (MINGLE) [14] constructs a proximity graph for

edges, then bundles edges according to this graph with the objective of minimizing

ink used. This method does identify bundles explicitly, but does not exploit them

when drawing the resulting bundled graph. However, this method is the fastest

known at this time.

Several recent methods have employed spanners as routing graphs [10, 25, 26].

A spanner is a subgraph that approximately preserves edge distances. These meth-

ods compute a spanner of the visibility graph and use it to route edges. Unfortu-

nately, spanners have known poor guarantees in terms of sparsity: to preserve dis-

tance with factor O(t), Ω(n1+1/t) edges are needed [4]. Furthermore, these meth-

ods are computationally expensive: the most recent method requires O(n2 log2 n)

time to compute a spanner [10]. We will use a routing graph which can be quickly

computed, and provides both sparsity and approximate distance preservation on

average.

2.3 Network Visualization
The computation of the routing graph in our bundling algorithm relies on an itera-

tive coarsening process that is similar in spirit to the coarsening steps used in many

multi-level graph layout systems such as FM3 [15]. However, low-stretch trees

9

come with provable bounds on quality, which make them ideal routing graphs (see

Section 4.1.1 for more details). In our visual encoding step, we employ existing

graph visualization techniques. We use a tree as the backbone for graph layout; this

approach is used by many previous systems, including SPF [5]. We create percep-

tual layers using colour and opacity both statically and dynamically, with support

for interactive highlighting of bundles or edges on hover, as in previous systems

such as Constellation [24].

10

Chapter 3

Abstract Framework for Edge
Bundling

One contribution of this paper is to formalize an abstract framework for edge

bundling that answers the question: what is a bundle? We wish to solidify the

intuitive notion of a grouping of edges in order to explicitly compute and visu-

ally represent edge bundles. Our framework will use this definition to describe the

requisites of a bundling algorithm.

3.1 Framework Details
We define the process of edge segmentation as a key component of all bundling

methods. Let G = (V,E) be a graph with n = |V | vertices and m = |E | edges.

An example graph is shown in Figure 3.1a. We wish to subdivide each edge e =

(u,v) ∈ E into segments, such that each edge can be represented by an ordered

list of segments. A segment s = (x, y) is an edge which cannot be subdivided

further. A segment’s endpoints may be: an endpoint of the original edge e, another

vertex from V , or a dummy vertex. Dummy vertices may be introduced during

segmentation to subdivide an edge. This case is shown for edge (c,d) in Figure 3.1,

where x is a dummy vertex. Alternatively, edges may be routed through existing

vertices in the graph. This case is shown for edge (a,b) in Figure 3.1, where the

segmentation routes through c. Also, an edge may consist only of a single segment.

11

These cases are shown for edges (a,c) and (b,c) in Figure 3.1. The decision of

how to segment edges depends on the bundling algorithm. Once all edges have

been segmented, we have a mapping E from each edge e ∈ E to its corresponding

ordered list of segments.

d

c

a b
(a) Input: original graph G = (V,E),
where edges are differentiated by colour
and dash style.

c

d

x

a b
(b) Output: segmented graph M = (V ∪
{x},S), with corresponding colour and
dash styles.

Figure 3.1: Illustration of the input and output of edge segmentation.

Let S be the multiset of all segments, and U be the set of all dummy vertices.

The result of the segmentation process is a multigraph M = (V ∪U,S), as shown

in Figure 3.1b. A bundle is then a set of two or more segments, B ⊂ S, |B | ≥ 2.

Let B denote the set of all bundles. Segments in the same bundle are referred to as

bundle neighbours, although they need not share any endpoints from V in order

to be bundled together. An edge e ∈ E belongs to any bundle that contains one

of its segments. A segment may be contained in at most one bundle. A particular

bundling algorithm must decide how to assign segments to bundles.

We define an edge bundling algorithm as an algorithm which takes as input a

graph G = (V,E) and outputs a set of bundles B, as well as a mapping E between

edges e ∈ E and ordered lists of segments. Based on this definition, an algorithm

must determine how to perform edge segmentation, as well as how to assign seg-

ments to bundles. While most existing edge bundling methods implement a system

where the output is a graph drawing, we believe the concepts from this framework

apply nonetheless. This framework provides a context from which all bundling

methods can be discussed.

12

3.2 Application to Existing Methods
One of our goals for this framework is to provide a formalization of bundling tech-

niques such that these methods can be compared in a uniform way. We will exem-

plify this by applying the framework to several of the existing methods introduced

in Chapter 2. For each method, we will discuss the edge segmentation process and

how bundles are formed.

3.2.1 Force-Directed Edge Bundling

FDEB [18] models edges as springs which attract one another in order to form

bundles. The algorithm proceeds in cycles, where each cycle consists of a number

of iterations. Edge segmentation is performed using dummy vertices. Edges are

subdivided uniformly by dummy vertices, where the number of such vertices in-

troduced starts at one and doubles each cycle. Consecutive vertices along the same

edge are attracted to one another via a spring force. Edge compatibility measures

are used to determine whether two edges should interact, where pairs of edges with

compatibility above a certain threshold are considered to be interacting edges. For

such pairs of edges, an electrostatic force is used to attract corresponding pairs of

dummy vertices, which is how edges are bundled together.

This method implements a system which outputs the graph drawing directly.

Although edges are drawn together in bundles, the bundles are not explicitly com-

puted, so it is not known whether two edges are bundled together or not. While the

edge compatibility measure indicates whether two edges exert force on each other,

they may not appear visually in the same bundle.

3.2.2 Multilevel Agglomerative Edge Bundling

MINGLE [14] takes as input a set of edges with fixed endpoint positions. Each

edge is considered to be a four-dimensional vector based on the location of its end-

points. An edge proximity graph is constructed by finding the k closest neighbours

of an edge according to Euclidean distance in the 4D space; the vertices of this

graph are edges of the original graph. An iterative coarsening process is then used

to form bundles, where vertices in the proximity graph are bundled together and

coalesced if their bundling minimizes ink used to draw the edges.

13

In this case, edges are bundled without segmentation. Bundles are computed

explicitly, since edges are directly assigned to bundles based on their ink-saving

compatibility. However, these bundles are only used to guide edge drawing, rather

than for additional visual feedback or interactivity. When drawing bundled edges,

edges are segmented using two dummy vertices as meeting points. For a set of

bundled edges, the corresponding dummy vertices of each edge will be drawn in

the same location, so the edges share a common segment. The edges then fan out

from these meeting points to their respective endpoints.

3.2.3 Clustered Edge Routing

Clustered Edge Routing [10] performs edge bundling using spanner-based routing.

First, links are clustered using a well-separated pair decomposition which is con-

sistent with the compatibility measures of Holten and van Wijk [18]. This gives

an explicit bundling, since each well-separated pair of point sets (A,B) induces a

cluster containing edges which have one endpoint in A and the other in B. Next, a

visibility graph is computed such that vertices are connected by an edge if they are

visible to each other. Dummy vertices are also added to route around any obstacles,

which include vertices of the original graph. A spanner of this graph is computed

in order to improve sparsity; this technique is discussed further in Section 2.2. This

spanner is then used to route edges, where edges which are bundle neighbours must

share a common sub-path in the graph. This bundles the edges visually.

As in the previous case, edges are bundled without segmentation and the bun-

dles are only used for drawing. When drawing, each edge is segmented by the

dummy vertices on its route through the routing graph. Several additional tech-

niques are used to reduce visual clutter further, including merging obstacles, edge

ordering and crossing minimization.

14

Chapter 4

LSTB

Our layout-free bundling method takes as input a connected graph G = (V,E). The

first step of the system is the bundling algorithm, which computes the routing tree

T = (V,ET) and the set of bundles B. The visual encoding step then draws the

bundled graph, which includes interactive elements for data exploration.

4.1 Bundling Algorithm
Our novel edge bundling algorithm computes bundles directly without relying on

the geometry of vertices or edges. This layout-free approach routes edges through

a tree to determine both edge segmentation and bundle membership. The algo-

rithm consists of two steps: routing graph generation, where the spanning tree is

computed; and edge routing, where edges are segmented and bundles are formed.

4.1.1 Routing Graph Generation

Bouts and Speckmann [10] quantify several desirable properties of a routing graph,

including two that are layout-independent: sparsity, and that the shortest path be-

tween two vertices in the routing graph should not be much longer than their di-

rect connection in the graph. Since we are computing a spanning tree, the first

property is achieved by definition. Therefore, we focus on the second property,

which amounts to a guarantee that the spanning tree preserves edge distances from

the original graph. This is equivalent to a low-stretch guarantee, as introduced in

15

Chapter 1.

We will use a low-stretch tree as our routing graph for bundling. In order to

compute such a tree, we use the algorithm from Alon et al. [3]. This algorithm

performs an iterative coarsening process in order to compute the low-stretch tree

(LST). This process is explained in detail in Section 5.1.

This algorithm runs in time O(m log n), and the tree is guaranteed to have low

average stretch: exp(O(
√

log n log log n)) = O(n0.01). As discussed in Section 2.1,

other methods with better theoretical guarantees are known [2, 12], but their algo-

rithms are not practical to implement. Regardless, any method can be substituted

to compute the LST in this step, provided there are guarantees on the stretch of the

resulting tree.

4.1.2 Edge Routing and Bundling

Our routing graph is a low-stretch tree T = (V,ET). Let the remainder edges be

those not in the spanning tree: ER = E \ ET . We will segment the remainder edges

by routing them through T . Tree edges ET will be represented by single segments,

as (a,c) and (b,c) are in Figure 3.1b.

For any two vertices in a connected graph, there is a unique path between them

in any spanning tree of the graph. For any edge e = (u,v) ∈ ER , the unique u-v

path through T gives its segmentation. That is, for every edge (x, y) on the u-v

path in T , a new segment will be added and the ordered list of these segments

will represent e. In terms of our framework, we are segmenting through existing

vertices in V , rather than adding dummy vertices. This case is shown for the (a,b)

edge in Figure 3.1.

As discussed in Chapter 3, the output of this segmentation process is a multi-

graph that is supported on the same set of edges as T . We define our bundles as sets

of segments that have the same endpoints. Therefore we will have at most n − 1

bundles, since |ET | = n − 1, and for any segment (x, y) it must also be true that

(x, y) ∈ ET . Figure 4.1 illustrates this process.

To perform segmentation and bundling efficiently, we need a fast subroutine

to handle queries for u-v paths in our spanning tree T . A naı̈ve approach is to

simply perform breadth-first search, but this requires Θ(|V |) time per query. Since

16

d

c

a b
(a) Original graph G, where colour and
dash style are used to differentiate edges.

d

c

a b
(b) Routing tree T .

c

d

a b

B1
B2 B3

(c) Result of the bundling algorithm of LSTB. Seg-
ments have the same colour and dash style as their
corresponding edge in G, and bundles B1,B2,B3 are
indicated.

Figure 4.1: Illustration of the bundling algorithm of LSTB. A low-stretch tree T =
(V,ET) is computed for use as a routing graph. Segmentation is then performed
by routing edges through this tree, using the routing algorithm illustrated in Figure
4.2. Bundles are then formed from groups of segments sharing the same endpoints
as edges in ET .

Ω(|ER |) queries are needed, this approach requires Ω(|V | · |ER |) time. Instead, we

will use a two-phase approach that pre-processes the graph in linear time, but can

then perform queries in time proportional to the length of the returned path (which

is optimal, as the path itself is returned). Performing such a query for every edge

in ER requires time O(sT (G) · |ER |), which is small since it is a low-stretch tree.

This subroutine can be easily implemented as follows. The pre-processing step

simply roots the tree at an arbitrary vertex and directs all edges towards the root.

Then, to find a u-v path in T , step in parallel from each of u and v towards the root,

marking the nodes along the way. The first marked vertex encountered on either

17

path is the lowest common ancestor `, and the time to identify it is proportional

to the length of the u-v path. The path through the tree is then the concatenation

of paths u-` and `-v, and the segmentation of (u,v) is this path. This process is

illustrated in Figure 4.2.

x

(a) Original (unrooted) tree T .

x

(b) T rooted at arbitrary vertex x.

u

v

x

l

(c) To find the path from u to v in T , we find their
lowest common ancestor, `, by climbing up the tree.
The path from u to v is then the concatenation of paths
u-` and `-v.

Figure 4.2: Illustration of the routing algorithm of LSTB from Section 4.1.2. The
algorithm roots tree T = (V,ET) at an arbitrary vertex in order to speed up queries,
which then only need to find the lowest common ancestor between two vertices.

Once the u-v paths have been computed for each (u,v) ∈ ER , bundles are

formed such that all segments that have the same endpoints are bundle neighbours.

The output of our bundling algorithm is then: T , our low-stretch tree; B, our set of

bundles; and E, our map from edges in E to their segmentation.

4.2 Visual Encoding
We wish to take advantage of the key assets of our bundling algorithm when de-

signing the visual encodings for LSTB: namely, that it is layout-free and that it

18

computes bundles directly. We will do so by allowing arbitrary layout adjustment,

as well as adding interactive bundle queries. The figures in this section show the

Poker graph (see Table 6.1 for more details).

4.2.1 Vertex Layout

Since the bundles we compute are independent of layout, we can position the ver-

tices in any manner we choose. We lay out the routing graph T = (V,ET) using the

standard force-directed graph layout built into D3 [9]. Since our routing graph is

a tree, we could also take advantage of tree layouts, such as the Reingold-Tilford

algorithm [27]. Figure 4.3 shows a comparison of these layouts.

(a) Force-directed layout (b) Radial Reingold-Tilford layout

Figure 4.3: Comparison between vertex layout methods for the routing graph T .

Additionally, vertices may be arranged according to a user-defined layout, but

imposing this layout on our tree backbone may not produce an effective visual-

ization. Figure 6.1h shows such an example for comparison purposes. We also

allow dynamic layout adjustment: vertices can be dragged in order to adjust their

position, as discussed further in Section 4.2.3.

4.2.2 Edge Drawing

Previous edge bundling methods draw edges individually, so bundles are shown as

closely located or overlapping edges. However, we wish to also take advantage of

19

(a) Bundles only (b) Remainder edges only

(c) Bundles foreground (d) Remainder edges foreground

Figure 4.4: Examples of visual encoding options for LSTB.

the fact that our algorithm outputs bundles, and that all segments in a bundle share

the same endpoints. We will do so by drawing bundles explicitly, both indepen-

dently from and in combination with individual drawing of remainder edges.

Figure 4.4 shows the different visual encoding options for bundles and edges.

Bundles are depicted by straight lines with tapered endpoints and varying thick-

ness, as shown in Figure 4.4a. The thickness of bundles varies in proportion with

bundle size: that is, the number of segments in a bundle. Individual edges are

drawn as splines, as shown in Figure 4.4b. The control points for the spline of edge

(u,v) are the endpoints of its segments, which correspond to the vertices in the u-v

path in T . This approach is similar to the method of HEB [17].

Bundles and edges can also be drawn simultaneously, where distinct perceptual

layers are created by adjusting opacity. Figures 4.4c and 4.4d show the difference

between having bundles and remainder edges as the foreground layer.

20

4.2.3 Interactivity

Another contribution of our bundling method is increased support for user inter-

action. Vertex re-positioning by dragging is possible without re-running the edge

bundling algorithm because the algorithm is layout-free and bundles are computed

independently of layout, in contrast to previous methods. Different hovering tech-

niques are also possible, since bundles are computed explicitly and edge member-

ship in bundles is known. Figure 4.5a shows how when a bundle is hovered over,

all edges belonging to that bundle are highlighted. Figure 4.5b shows how single

edges are individually highlighted on hover.

(a) Hovering over a bundle high-
lights edges in that bundle

(b) Hovering over an individual
edge highlights that edge

Figure 4.5: Comparison between bundle querying and edge querying on hover.

21

Chapter 5

Low-Stretch Trees

LSTB uses low-stretch trees as routing graphs for edge bundling. The history be-

hind these trees is discussed in Section 2.1. This chapter will go into more detail on

the construction algorithm of Alon et al. in addition to exploring the computation

of distributions over low-stretch trees in order to achieve low stretch for edges in

expectation.

In this chapter, we will consider weighted graphs G = (V,E,w) where w :

E → R≥0. We will update our previous definition of stretch as follows, where

T = (V,ET , z) is a spanning tree of G with weights z : ET → R≥0:

sT (e) =
dT (u,v)
w(e)

for e = (u,v)

Here, dT (u,v) is the z-weighted distance from u to v along the unique path between

them in T .

5.1 Low-Stretch Tree Construction
LSTB computes low-stretch trees using the method of Alon, Karp, Peleg and

West [3]. Their algorithm, given in Algorithm 1, takes as input a weighted n-vertex

multigraph G. The algorithm starts by breaking the edges into weight classes, and

then proceeds in rounds. At each step of the algorithm, the vertices of the graph

are partitioned into clusters such that each cluster has low topological diameter.

A shortest-paths spanning tree is then computed for each cluster, and the edges

22

from these trees are added to the (initially empty) low-stretch tree. Each cluster

is then contracted into a meta-vertex, and edges are added to represent connec-

tions between vertices in different clusters. The algorithm then iterates on this new

multigraph.

The key properties of the clusters are that each cluster has a spanning tree of

radius ≤ y j+1 at round j, and in every non-empty edge class Ei for 1 ≤ i ≤ j, the

fraction of inter-cluster edges is at most 1/x, where the optimal value for x is shown

to be exp(
√

log n log log n). This algorithm is guaranteed to find a low-stretch tree

with stretch exp(O(
√

log n log log n)) = O(n0.01) [3].

In their paper, Alon et al. do not give runtime guarantees for their algorithm.

However, an informal analysis shows that the runtime is O(m log n) by looking at

the number of iterations performed. At each step, the number of edges shrinks by

a factor of x, where x ≈ log n. Therefore the number of iterations is logx m ≤

loglog n n2 = O(log n). At each round we do O(m) work, so the total runtime is

indeed O(m log n).

5.1.1 Parameters

The low-stretch tree algorithm of Alon et al. depends on two key parameters, x

and y. These parameters are set at the beginning of the algorithm, where x =

exp(
√

log n log log n) and y = 27x ln n ·
⌈

ln n
ln x

⌉
. Alon et al. set the values for these

parameters according to their theoretical guarantees for the stretch of the resulting

tree. The x parameter is responsible for controlling the expansion of each cluster.

The cluster starts at a root node, then expands outward to its neighbours, working

level-by-level until the next level contains fewer edges than an x-fraction of the

existing edges in the cluster. The y parameter is used for weighted graphs to segre-

gate edges into weight classes Ei . This way, the algorithm considers lighter edges

first in order to attain the radius bound given earlier.

23

Algorithm 1 AKPW algorithm to compute low-stretch tree T in multigraph G [3]

function LOWSTRETCHTREE(G)

input: Graph G = (V,E,w)

output: Low-stretch tree T = (V,ET ,w)

// Set parameters

x = exp(
√

log n log log n), ρ =
⌈

3 ln n
ln x

⌉
, µ = 9ρ ln n, y = xµ

imax = blogy max(u,v)∈E w(u,v)c + 1

Ei = {(u,v) ∈ E : w(u,v) ∈ [yi−1, yi) for i = 1, . . . , imax

// Perform iterative rounds

j = 1

T = (V,ET = ∅)

while
⋃

i Ei , ∅ do
C = CLUSTER(G j , j,Ei’s, x, y)

for all c ∈ C do
Gc = INDUCEDSUBGRAPH(G j ,c)

Tc = SHORTESTPATHSPANNINGTREE(Gc) // Uses Dijkstra’s alg

for all (u,v) ∈ ETc do
ET = ET ∪ {(u,v)}

VG j+1 = {vc : c ∈ C} // Contract each cluster into a single vertex

EG j+1 = ∅

for all (u,v) ∈ EG j do
if u ∈ ci and v ∈ cj and i , j then

EG j+1 = EG j+1 ∪ {(vci ,vc j)} // Add inter-cluster edges

else
i = blogy w(u,v)c + 1

Ei = Ei \ (u,v) // Remove intra-cluster edges

G j+1 = (VG j+1 ,EG j+1)

j = j + 1

return T = (V,ET ,w)

24

Algorithm 1 AKPW algorithm to compute low-stretch tree T in multigraph G [3]

function CLUSTER(G, Ei’s, j, x, y)

input: Graph G = (V,E,w), edge buckets Ei , and parameters j, x, y

output: Clustering C = {c1, . . . ,cK } where
⋃

k∈{1, ...,K } ck = V

C = ∅

Vrem = V

while Vrem , ∅ do
Choose u ∈ Vrem arbitrarily

V (0) = {u}

Ei (0) = {}

` = 0

repeat
` = ` + 1

V (`) = {v ∈ Vrem : |SHORTESTUNWEIGHTEDPATH(G,u,v) | = `}

Ei (`) = {(v1,v2) ∈ Ei : v1 ∈ V (`),v2 ∈ V (`) ∪ V (` − 1)}

until ∀1 ≤ i ≤ j, |Ei (`) | ≤ 1
x |Ei (1) ∪ Ei (2) ∪ . . . ∪ Ei (` − 1) |

c = V (1) ∪ V (2) ∪ . . . ∪ V (` − 1)

C = C ∪ {c}

Vrem = Vrem \ c

return C

5.2 Distribution over Low-Stretch Trees
Section 2.1 discusses several methods for computing low-stretch trees. In general,

these methods compute a single tree and provide low stretch on average over all

edges in the original graph. The method of Abraham et al., however, gives theo-

retical results based on finding a distribution over low-stretch trees [2]. In doing

so, they provide low stretch for each edge in expectation. Unfortunately, their al-

gorithm is theoretical in nature and not practical to implement. We will present a

practical solution for finding a distribution over low-stretch trees.

We will use a reduction to a zero-sum game, given in Section A.1. We wish to

find a distribution D over trees T such that ET∼D[sT (e)] is small for all e ∈ E. In

25

the zero-sum game framework, for some strategy (i.e. probability distribution) over

trees y, we have ET∼y [sT (ei)] =
∑

T ∈y Pr[T] · sT (ei) = (My)i for any ei ∈ E.

Therefore, our goal is to find miny maxx xᵀMy, which is exactly the goal of the

tree player in the game. Our distribution over trees is thus given by y∗, the opti-

mal distribution from von Neumann’s Minimax Theorem [29]. The multiplicative

weights update method [6] is an algorithm for approximating such distributions.

The Multiplicative Weights Update Method (MWUM) is an algorithmic frame-

work which optimizes decision-making by adjusting weights on decisions. Each

decision has some associated cost, which is revealed only after the decision has

been made. The algorithm proceeds in rounds, updating the weights depending on

the consequences of the decision made in that round. As the algorithm progresses,

the weights are distributed to reflect the knowledge of which decisions are better or

worse in terms of cost. The expected cost of the algorithm can be shown to be not

much worse than making a fixed decision throughout; this holds true for the best

overall decision as well [6].

Arora et al. [6] provide a tailored version of MWUM for solving zero-sum

games approximately. In this case, the algorithm’s rounds correspond to simulated

rounds of the game and weight updates correspond to changes in a player’s strategy.

This method can be used to find strategies x̂ and ŷ such that, for error δ,

min
y

x̂ᵀMy ≥ λ∗ − δ and max
x

xᵀM ŷ ≤ λ∗ + δ (5.1)

Therefore, regardless of their opponent’s strategy, a player following such a strat-

egy is guaranteed payoff at most δ from the optimal. In this case, we wish to find

ŷ, since this will be our distribution over trees. In order to compute the trees in this

distribution, we will use the method of Alon et al. [3].

5.2.1 Multiplicative Weights Update Method

Algorithm 2 adapts the method from Arora et al. to solve our zero-sum game reduc-

tion, with the goal of finding a distribution over trees. If Alice is our edge player

and Bob is our tree player, we want Bob’s distribution over trees to achieve low

stretch for any distribution over edges that Alice may choose. At each round, the

algorithm adjusts Alice’s weights to focus on edges which had high stretch in the

26

previous round, so that the resulting distribution over trees will be robust.

The algorithm performs ρ weight update rounds, where the weights γ are over

the edges (e1, . . . ,em). Note that the graph may have edge weights w as well,

but these should not be confused with the multiplicative weights γ of the algo-

rithm. At the start of round t, the weights γ are normalized to form the distribution

x (t), which is Alice’s current strategy. Then, the TREEORACLE method returns a

low-stretch tree with respect to the distribution x (t) (this will be discussed further

in Section 5.2.2). In doing so, Bob is choosing the best pure strategy given Al-

ice’s distribution. The edge weights are then updated, based on whether an edge

had high or low stretch in the tree, resulting in better or worse payoffs for Alice,

respectively. The process is then repeated in the next round. Once all rounds are

complete, Alice’s final strategy is computed as the average of each round’s distribu-

tion x (t). Bob’s final strategy is computed as the average over the fixed distributions

from each round, giving us a distribution over low-stretch trees.

Some distinctions should be noted. Firstly, the trees are computed on demand,

since we don’t know which trees will be in the distribution before executing the

method. Therefore, the matrix M is not explicitly computed; rather, we keep track

of the trees as they are computed, and calculate the stretch as needed. Also, since

the same tree may be generated in multiple rounds, we only have an upper bound,

ρ, on the number of trees in the distribution. In the case of tree repetition, however,

we will simply have some probabilities equal to zero. In addition, Arora et al.

restrict payoff values to the range [0,1]. Therefore, at each round, stretch values

are normalized according to the maximum stretch of that round.

5.2.2 Tree Oracle

In order for this method to succeed, we need a way to compute a tree which has

low stretch with respect to a distribution over edges. If we think in regards to the

payoff matrix scenario, the TREEORACLE method must find some tree Tj such that

(xᵀM) j is minimized, where x is Alice’s distribution over edges:

arg min
j

(xᵀM) j = arg min
j

∑
i

xi Mi, j = arg min
j

∑
i

xi sT j (ei)

27

Algorithm 2 Multiplicative Weights Update Method for Low-Stretch Trees

function MWUM-LST(δ,G)
input: Desired error δ, graph G = (V,E = (e1, . . . ,em),w)
output: Distributions x̂ ∈ Rm and ŷ ∈ Rρ , and list of trees T
// Set parameters
ε = δ/2, ρ = dln(m)/ε2e

T = []
γ (1)
i = 1 for i = 1, . . . ,m

// Perform iterative rounds
for t = 1, . . . , ρ do

x (t) = γ (t)/
∑m

i=1 γ
(t)
i

T (t) = TREEORACLE(x (t),G)
if T (t) < T then

k = |T| + 1
T[k] = T (t)

y(t)
i =

0 T[i] , T (t)

1 T[i] = T (t) for i = 1, . . . , ρ

smax = maxi sT (t) (ei)
si = sT (t) (ei)/smax for i = 1, . . . ,m // Normalize to fit range [0,1]
γ (t+1)
i = γ (t)

i · (1 + ε · si) for i = 1, . . . ,m

x̂ =
∑ρ

t=1 x (t)/ρ, ŷ =
∑ρ

t=1 y
(t)/ρ

return x̂, ŷ,T

That is, if we consider Alice’s distribution to be an importance weighting of the

edges in the graph G, then Bob will want to choose a tree that minimizes the

stretch of edges according to their importance. Therefore, we define the follow-

ing weighted stretch value for graph G = (V,E,w) and tree T = (V,ET , z):

sT (G, x) =
∑
ei∈E

xi · sT (ei) =
∑

ei=(u,v)∈E

xi ·
dT (u,v)
w(ei)

where x is a distribution over edges in G, so
∑

i xi = 1, xi ≥ 0 ∀i. In the uniform

case, we have xi = 1
|E | ∀ei ∈ E, which gives sT (G), as expected.

Therefore, we need an algorithm which computes a low-weighted-stretch tree

according to the value sT (G, x) for graph G = (V,E,w). We know the algorithm

28

of Alon et al. finds a low-stretch tree T = (V,ET ,w) according to the value

sT (G) =
∑
ei∈E

sT (ei) ·
1
|E |
=

∑
ei=(u,v)∈E

dT (u,v)
w(ei)

·
1
|E |

Therefore, let us re-weight the graph G with weights z : E → R≥0 where

z(ei) =
w(ei)
xi · |E |

Now, the algorithm will compute a tree T = (V,ET , z) according to the value

sT (G = (V,E, z)) =
∑
ei∈E

sT (ei)·
1
|E |
=

∑
ei=(u,v)∈E

dT (u,v)
z(ei)

·
1
|E |
=

∑
ei=(u,v)∈E

xi ·
dT (u,v)
w(ei)

which is equivalent to our weighted stretch value, under T weighted with z. Note

also that in the uniform case, this is equivalent to sT (G = (V,E,w)), since z(ei) =

w(ei) when xi = 1
|E | for all i.

Our oracle, shown in Algorithm 3, will therefore re-weight the graph according

to weights z, so that the low-stretch tree T = (V,ET , z) returned from Algorithm 1

will have low weighted stretch.

Algorithm 3 Compute low-stretch tree WRT distribution over edges

function TREEORACLE(x,G)
input: Distribution x over edges, graph G = (V,E = (e1, . . . ,em),w)
output: Tree T = (V,ET , z) in G with low stretch WRT distribution x
z(ei) = w(ei)/xi · m for i = 1, . . . ,m
T = LOWSTRETCHTREE(G = (V,E, z))
return T = (V,ET , z)

5.2.3 Analysis

We wish to show that the distribution computed by Algorithm 2 provides low

stretch in expectation for all edges in E. That is, for all edges ei ∈ E, ET∼D[sT (ei)]

29

is small. As discussed earlier, for some ei , we have:

ET∼D[sT (ei)] =
∑
T ∈D

Pr[T] · sT (ei) = (My)i

In order to show that this is small, we will use the theorem from Arora et al. [6]:

Theorem 5.2.3.1 (adapted from Arora et al. [6]). Given an error parameter δ ∈

(0,1), MWUM-LST finds x̂ and ŷ such that:

min
y

x̂ᵀMy ≥ λ∗ − δ and max
x

xᵀM ŷ ≤ λ∗ + δ

using O(ln(m)/δ2) calls to TREEORACLE, with an additional processing time of

O(m) per call.

This theorem follows nicely from the next two results.

Lemma 5.2.3.2 (Harvey [16]). For all i,

ρ∑
t=1

x (t)ᵀMy(t)

ρ
≥

ρ∑
t=1

Mi, j (t)

ρ
− δ

where j (t) is the index in T of the tree T (t) chosen at round t, such that y(t)
j (t) = 1.

This lemma shows that the algorithm’s performance will not be much worse

than choosing a fixed action throughout. The key thing to note is that this holds for

all possible fixed actions, including the optimal. The proof of this lemma is given

in Section A.2.

Corollary 5.2.3.3 (Harvey [16]). For any distribution q ∈ Rm , we have

ρ∑
t=1

qᵀMy(t)

ρ
− δ ≤

ρ∑
t=1

x (t)ᵀMy(t)

ρ
≤ λ∗

The lower bound follows from Lemma 5.2.3.2. Since q is a distribution, we

know
∑m

i=1 qi = 1. Therefore, we can multiply both sides by the sum, and simplify

the RHS to obtain our result. The upper bound comes from the observation that

x (t) My(t) = miny x (t) My ≤ λ∗. More details can be found in the full proof [16].

We are now ready to prove Theorem 5.2.3.1.

30

Proof (Theorem 5.2.3.1). In particular, let’s focus on the right-hand guarantee.

The left-hand case is similar [16]. Let ŷ =
∑ρ

t=1 y
(t)/ρ be the result returned from

the algorithm. Apply Corollary 5.2.3.3 to the distribution x = arg maxx xᵀM ŷ.

Then we have:

xᵀM ŷ =

ρ∑
t=1

xᵀMy(t)

ρ
≤ λ∗ + δ

In terms of running time, we know that ρ = ln(m)/ε2 = 4 ln(m)/δ2 rounds are

performed, and TREEORACLE is called once per round. Within each round, we

also update all weights γi for i = 1, . . . ,m. Therefore, we have O(ln(m)/δ2) calls

to TREEORACLE, and perform an additional O(m) work each round.

Theorem 5.2.3.1 shows that the MWUM-LST algorithm returns a distribution

ŷ such that

max
x

xᵀM ŷ ≤ λ∗ + δ

where Alon et al. show that λ∗ ≤ exp(O(
√

log n log log n)), since their tree stretch

is upper bounded by that value. This implies that (M ŷ)i is small for all i. There-

fore, the distribution provides low expected stretch for all edges.

5.2.4 Application to LSTB

In order to utilize this distribution as a routing graph for LSTB, we must determine

how to perform routing and how to draw the resulting bundled graph. For routing,

we use the simple approach of choosing the shortest path among the trees in the

distribution. That is, for some edge e = (u,v) ∈ E, its route through the distribu-

tion is the unique path between u and v in T , where T = arg minT ∈D dT (u,v). To

draw the distribution, we combine the trees into a single routing graph GR with ver-

tices V and edges
⋃

T=(V ,ET)∈D ET . We lay out GR using a force-directed layout

algorithm. Bundled edges are then drawn as described in Section 4.2.2.

Section 6.3 shows the results of using a distribution over trees for routing in

LSTB. For these results, the size of the distribution was fixed by setting the ρ

parameter explicitly.

31

Chapter 6

Results

This chapter presents the results of this work, including visual output and perfor-

mance of LSTB and experiments with distributions over trees.

6.1 Data and Implementation
The data sets listed in Table 6.1 were chosen based on their use in previous work to

enable comparisons to existing methods. The “Case” column indicates which case

from Table 1.1 the data falls under.

Data set |V | |E | Description Case
Flare 220 708 Software class hierarchy1 H3L7

US Airlines 235 1297 US airline network2 H7L3

Poker 859 2127 Poker game network3 H7L7

Email 1133 5451 Email interchange network4 H7L7

Yeast 2224 6609 Protein interaction network4 H7L7

wiki-Vote 7066 100736 Wikipedia admin elections4 H7L7

Table 6.1: Graph statistics for data sets used in this paper.

1https://gist.github.com/mbostock/1044242
2https://github.com/upphiminn/d3.ForceBundle/tree/master/example/bundling data
3Courtesy of A. Telea [19]
4http://yifanhu.net/GALLERY/GRAPHS/

32

https://gist.github.com/mbostock/1044242
https://github.com/upphiminn/d3.ForceBundle/tree/master/example/bundling_data
http://yifanhu.net/GALLERY/GRAPHS/

LSTB was implemented in Python and JavaScript, using D3 [9] for drawing.

Our experiments were run on a MacBook Pro with a 2.6 GHz Intel Core i7 and 16

GB of 1600 MHz DDR3 RAM.

6.2 LSTB Evaluation
The visual results of LSTB are layouts that closely follow the spanning tree back-

bones. Figure 6.1 compares LSTB to previous edge bundling systems: KDEEB [19],

Clustered Edge Routing [10], MINGLE [14], SBEB [13], and HEB [17]. We use

the same layouts as in previous work for the layout-based methods, and when none

was available we provide an arbitrary layout. For both the wiki-Vote (Figures 6.1a

and 6.1b) and Yeast (Figures 6.1c and 6.1d) data sets, the bundled graphs have a

tree-like structure, but LSTB makes it easier to identify clusters of vertices and

disparities in their sizes. For the Email data, shown in Figures 6.1e and 6.1f, Clus-

tered Edge Routing [10] shows a mesh-like structure in contrast to our tree layout,

so choosing the more appropriate method would depend on the task at hand. The

US Airlines data has a geographical layout, so the layout-based bundling shown in

Figure 6.1g would be suitable for tasks that pertain to spatial position. We show

our method of drawing bundles with that geographic layout for comparison pur-

poses in Figure 6.1h, in contrast to the layout computed by LSTB in Figure 6.1i

that emphasizes different patterns in the data. Figures 6.1j-l show the Flare data

set, which is a software package hierarchy where edges represent imports of one

package from another. While the LST used as a routing graph is not the original

package hierarchy, we can see from the package names that similar packages are

still clustered together, and hovering over edge bundles makes it easy to see which

packages call each other.

Our approach achieves competitive performance with the fastest previous method,

MINGLE [14]. Table 6.2 gives running times for our method, which range from

0.06 seconds for a 708-edge graph to 8.067 seconds for a 100736-edge graph. On

this large graph, MINGLE reports a running time of 18.4 seconds, albeit on an older

architecture. We note that while MINGLE is implemented in C using OpenGL on a

GPU, our proof-of-concept implementation uses unoptimized scripting languages;

further speed improvements would result from a GPU port.

33

(a)
wiki-Vote

|V | = 7066
|E | = 100736

H7L7

KDEEB [19]

(b)
wiki-Vote

LSTB

(c)
Yeast

|V | = 2224
|E | = 6609

H7L7

MINGLE [14] (colours inverted)

(d)
Yeast

LSTB

(e)
Email

|V | = 1133
|E | = 5451

H7L7

Clustered Edge Routing [10]

(f)
Email

LSTB

(g)
US Airlines

|V | = 235
|E | = 1297

H7L3

SBEB [13] c© 2011 IEEE

(h)
US Airlines

LSTB

(i)
US Airlines

LSTB

(j)
Flare

|V | = 220
|E | = 708

H3L7

HEB [17] (D3 implementation [9])

(k)
Flare

LSTB

(l)
Flare

LSTB

Figure 6.1: Comparison between previous methods and LSTB.

34

Data set |V | |E | LST Bundling Drawing Total
Flare 220 708 0.022 0.005 0.032 0.060
US Airlines 235 1297 0.035 0.009 0.042 0.086
Poker 859 2127 0.082 0.026 0.108 0.216
Email 1133 5451 0.180 0.053 0.283 0.516
Yeast 2224 6609 0.247 0.070 0.342 0.659
wiki-Vote 7066 100736 4.275 1.010 2.782 8.067

Table 6.2: Performance statistics of LSTB. Running time is in seconds, and is
averaged over 100 runs.

6.3 Distribution over Low-Stretch Trees
The aim of computing a distribution D over low-stretch trees versus a single tree

is to obtain low stretch in expectation for each edge in the graph. We can validate

the results of our experiments by comparing the maximum expected stretch of any

edge over the distribution, maxe∈E ET∼D[sT (e)] to the maximum stretch of any

edge in a single tree T , maxe∈E sT (e). These results are given in Table 6.3. In all

distribution computations we use δ = 0.5.

maxe∈E ET∼D[sT (e)]
Data set maxe∈E sT (e) |D | = 2 |D | = 5 |D | = 10
Flare 9.00 7.10 8.36 8.13
US Airlines5 34.08 34.30 32.24 25.90
Poker 12.00 12.15 10.82 12.07
Email 8.00 7.97 8.34 9.02
Yeast 10.00 10.08 10.19 11.74
wiki-Vote 6.00 6.03 6.29 6.97

Table 6.3: Maximum edge stretch comparison between a single low-stretch tree
T and a distribution D over low-stretch trees, computed as in Section 5.2 with
varying sizes |D | ∈ {2,5,10}.

From these results we can see that the distribution generally fulfills its purpose

of ensuring the expected stretch is low for each edge, versus the single tree. In

5This graph has a non-uniform input weighting.

35

a few cases, however, the maximum expected stretch goes up compared to the

maximum stretch in the single low-stretch tree. Since there is no monotonicity

guarantee, the stretch may not go down at each round. Also, since the guarantees

given in Section 5.2 are for a distribution of size ρ = dln m/ε2e and we compute

distributions of constant size, we may not obtain the optimal result.

Next we will evaluate the results of applying the distribution to LSTB, as dis-

cussed in Section 5.2.4. Figure 6.2 shows the output of LSTB when using a dis-

tribution over two low-stretch trees as the routing graph. When remainder edges

and bundles are shown, there is a large amount of visual clutter and it is hard to

distinguish patterns among edges and bundles. This is particularly evident when

comparing this result, shown in Figure 6.2b, to the original output of LSTB with

a single tree, shown in Figure 6.2c. These issues are only worsened when larger

data sets are used, and for larger distributions. This is discussed in more detail in

Section 7.3.

36

(a) Force layout of unbundled Flare data.

(b) Bundled result using two trees as the
routing graph (with 317 edges). While
this visualization is still somewhat clut-
tered, the maximum expected stretch for
any edge is 7.1.

(c) Bundled result using one tree (orig-
inal LSTB output) as the routing graph
(with 219 edges). This visualization is
less cluttered than (b), but has worse
maximum stretch of 9.0.

Figure 6.2: Comparison between visual results obtained on the Flare data set using
a distribution over two low-stretch trees (b) and a single low-stretch tree (c) for
routing in LSTB.

37

Chapter 7

Discussion

Several interesting issues arise when using low-stretch trees for a network visual-

ization application. This chapter will discuss some of them, including the use of

trees for routing in edge bundling, the deeper meaning behind “low” stretch, and

difficulties in drawing a distribution over trees. We will also evaluate our technique

of using low-stretch trees and a distribution over those trees for edge bundling. This

chapter concludes with ideas for future work.

7.1 LSTB
The crux of this thesis is the use of low-stretch trees for edge bundling. While

routing through a tree results in similar-looking bundled graphs for most data sets,

using a tree provides the sparsity needed for an uncluttered bundling. That said,

LSTB specifically uses a low-stretch tree to route edges. Section 4.1.1 explains

the reasoning behind this decision, but one might also wonder why a different type

of spanning tree is not used. For example, a minimum spanning tree might seem

appropriate, since it minimizes its total weight. In the unweighted case, any span-

ning tree is a minimum spanning tree. In either case, however, this tree structure

depends very little on the edges that are not included in the tree, despite the fact

that these edges are crucial for edge bundling. Edges may therefore be distorted by

having endpoints far apart in the tree. To illustrate this, Figure 7.1 shows a compar-

ison between an arbitrary spanning tree and a low-stretch tree for the unweighted

38

Email data set. In Figure 7.1a, the large bundles along the interior edges imply

many edges are being routed from exterior branches through the middle, which

means endpoints from edges in the graph are far apart in the tree. This congestion

distorts the edges of the original graph.

(a) Arbitrary spanning tree routing
graph.

(b) Low-stretch tree routing graph.

Figure 7.1: Comparison between using an arbitrary spanning tree and a low-stretch
tree as the routing graph in LSTB on the Email data set.

7.2 Stretch
From the name, we have an intuitive sense of what stretch is. From the definition,

we know it is the ratio between the distance between edge endpoints in a tree and

the weight of that edge in the original graph. However, we are also interested in the

meaning of stretch. In particular, what does it mean to have low stretch? We have

seen two quantities: low stretch for edges on average, and low stretch for every

edge. Most low-stretch tree constructions focus on the former [1, 3, 12], while

computing a distribution over trees focuses on the latter [2]. As in many situations,

there is a trade-off: we can achieve low stretch in expectation for every edge, but

we must accept a distribution; on the other hand, we can compute a single tree, but

must be satisfied with low average stretch.

In this work, we faced another trade-off in choosing which low-stretch tree

39

construction to use. We chose the simpler method of Alon et al., but must use the

multiplicative weights update method [6] to obtain a distribution with low expected

stretch for all edges. Had we chosen the method of Abraham et al., we would be

able to sample directly from the distribution, but the implementation would be far

more complex (and likely impractical).

In the unweighted (or uniformly weighted) case, stretch is far easier to under-

stand. The “units” are edges: if two vertices were connected in the original graph,

then their stretch corresponds to the number of edges separating them in a given

tree. In the weighted case, however, things get more complex, particularly when

comparing stretches. In such situations, the meaning of stretch depends on the

weighting. For geographical data, such as the US Airlines data set (see Table 6.1),

edge weights measure physical distance. In other cases, though, the weighting may

be less clear. In these situations, stretch results should be thought about from the

context of the weighting, rather than edge quantity.

7.3 Distribution over Low-Stretch Trees
Based on the results shown in Section 6.3, our distribution over (few) low-stretch

trees performs generally as expected: in most cases, the distribution reduces the

maximum stretch of individual edges. However, with a constant number of trees

in the distribution and no monotonicity guarantee, this may not always be the case.

This caveat should be taken into account when evaluating the use of a distribution

of low-stretch trees for routing in LSTB.

Another factor for evaluation is the method by which edges are routed through

the distribution. Choosing to route an edge through the tree with the shortest path

between its endpoints is simple, but may be computationally expensive. Randomly

sampling a tree from the distribution for each edge is fast, but may not provide the

best stretch. The most important factor to take into consideration, however, is the

visual aspect. Drawing a routing graph which consists of multiple trees presents

several difficulties. One such issue is the representation of weights. The trees have

a uniform probability of being sampled from the distribution, but the tree edges are

weighted. It is unclear what the best way to represent these weights is.

The main problem, though, is visual clutter. In graph theory, any graph with

40

O(n) edges is considered extremely sparse. In network visualization, however,

there is a considerable difference between n edges and 2n edges. While increasing

the size of the distribution leads to better theoretical results, more edges in the

routing graph results in more visual clutter. The graph is more difficult to lay out,

and the number of bundles is increased, making them harder to distinguish. These

effects are highlighted in Figure 6.2. After taking these issues into consideration,

it seems that a single low-stretch tree provides a better routing graph for the LSTB

edge bundling application.

7.4 Future Work
We present several ideas for further research in this area. In terms of improving

LSTB, different graph layouts and visual encodings could be explored. It would

also be interesting to investigate the adaptation of LSTB for layout-based bundling.

Ultimately, a united system of both layout-based and layout-free edge bundling

should be developed.

Rather than using the method of Alon et al. [3] for computation of low-stretch

trees, other methods with better theoretical guarantees could be tried. Along this

vein, using the method of Abraham et al. [2] would remove the dependence on the

multiplicative weights update method for a distribution over low-stretch trees. In

either case, however, the implementation difficulties may outweigh the benefits of

these other methods.

Other sparsifiers may also be tried as routing graphs for edge bundling. As

mentioned in Section 7.3, there is a notable difference between n and 2n edges

for visualization. However, new approaches such as Kolla et al. [20] compute

ultrasparsifiers, which have n + o(n) edges. A famous sparsification result by

Batson et al. [7] proved too slow for practical purposes in early experiments, but

new work by Lee and Sun [22] improves this with a near-linear time algorithm.

In addition, low-stretch trees could be applied to other areas of network vi-

sualization. They are particularly useful for applications which require both the

preservation of edge distances and a sparse representation of the original graph.

41

Chapter 8

Conclusion

We present LSTB, a novel edge bundling technique which is, by our classifica-

tion, layout-free. While previous bundling methods rely on an input graph lay-

out or explicit hierarchical structure, we use topological features of the graph in

order to compute a low-stretch tree which we use to route edges. Our bundling

method is fast and simple, and provides algorithmic support for sophisticated vi-

sual encodings and interactivity. In addition, our abstract framework for edge

bundling presents a formalization of bundling terminology and techniques that al-

lows bundling methods to be compared in a uniform way.

Our application of the multiplicative weights update method to a zero-sum

game over edges and trees enables the computation of a distribution over low-

stretch trees. This distribution ensures all edges in the original graph have low

stretch in expectation. We apply this distribution as a routing graph for LSTB, but

our analysis shows that a single low-stretch tree obtains better visual results.

42

Bibliography

[1] I. Abraham and O. Neiman. Using petal-decompositions to build a low
stretch spanning tree. In Proc. ACM Symp. Theory of Computing (STOC),
pages 395–406, 2012. ISBN 978-1-4503-1245-5. → pages 8, 39

[2] I. Abraham, Y. Bartal, and O. Neiman. Nearly tight low stretch spanning
trees. In Proc. IEEE Symp. Foundations of Computer Science (FOCS), pages
781–790, 2008. → pages 8, 16, 25, 39, 40, 41

[3] N. Alon, R. M. Karp, D. Peleg, and D. West. A graph-theoretic game and its
application to the k-server problem. SIAM Journal on Computing, 24(1):
78–100, 1995. ISSN 0097-5397. → pages 3, 4, 5, 7, 16, 22, 23, 24, 25, 26,
29, 31, 39, 40, 41

[4] I. Althöfer, G. Das, D. Dobkin, and D. Joseph. Generating sparse spanners
for weighted graphs. In Scandinavian Workshop on Algorithm Theory,
volume 447 of Lecture Notes in Computer Science, pages 26–37. Springer
Berlin Heidelberg, 1990. ISBN 978-3-540-52846-3. → pages 9

[5] D. Archambault, T. Munzner, and D. Auber. Smashing peacocks further:
Drawing quasi-trees from biconnected components. Visualization and
Computer Graphics, IEEE Transactions on, 12(5):813–820, 2006. → pages
10

[6] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method:
a meta-algorithm and applications. Theory of Computing, 8(1):121–164,
2012. → pages 5, 26, 27, 30, 40

[7] J. Batson, D. A. Spielman, and N. Srivastava. Twice-ramanujan sparsifiers.
SIAM Journal on Computing, 41(6):1704–1721, 2012. → pages 41

[8] E. Boman and B. Hendrickson. On spanning tree preconditioners.
Manuscript, Sandia National Lab, 2001. → pages 7

43

[9] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents. IEEE
Trans. Visualization & Comp. Graphics (Proc. InfoVis), 17(12):2301–2309,
2011. → pages 19, 33, 34

[10] Q. W. Bouts and B. Speckmann. Clustered edge routing. In Proc. IEEE
Pacific Visualization Symp. (PacificVis), 2015. To appear. → pages 2, 9, 14,
15, 33, 34

[11] W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-based edge
clustering for graph visualization. IEEE Trans. Visualization & Comp.
Graphics, 14(6):1277–1284, Nov 2008. ISSN 1077-2626.
doi:10.1109/TVCG.2008.135. → pages 2, 8

[12] M. Elkin, Y. Emek, D. A. Spielman, and S.-H. Teng. Lower-stretch spanning
trees. SIAM Journal on Computing, 38(2):608–628, 2008. → pages 8, 16, 39

[13] O. Ersoy, C. Hurter, F. V. Paulovich, G. Cantareiro, and A. Telea.
Skeleton-based edge bundling for graph visualization. IEEE Trans.
Visualization & Comp. Graphics, 17(12):2364–2373, Dec 2011. ISSN
1077-2626. doi:10.1109/TVCG.2011.233. → pages 9, 33, 34

[14] E. R. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel
agglomerative edge bundling for visualizing large graphs. In Proc. IEEE
Pacific Visualization Symp. (PacificVis), pages 187–194, 2011. → pages 9,
13, 33, 34

[15] S. Hachul and M. Jünger. Drawing large graphs with a potential-field-based
multilevel algorithm. In Graph Drawing, volume 3383 of Lecture Notes in
Computer Science, pages 285–295. Springer Berlin Heidelberg, 2005. →
pages 9

[16] N. Harvey. Lecture notes in mathematical programming.
http://www.math.uwaterloo.ca/∼harvey/F10/Lecture12Notes.pdf, 2010. →
pages 30, 31, 47

[17] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations
in hierarchical data. IEEE Trans. Visualization & Comp. Graphics, 12(5):
741–748, Sept 2006. ISSN 1077-2626. doi:10.1109/TVCG.2006.147. →
pages viii, 2, 3, 6, 8, 20, 33, 34

[18] D. Holten and J. J. van Wijk. Force-directed edge bundling for graph
visualization. Computer Graphics Forum, 28(3):983–990, 2009. ISSN
1467-8659. → pages 9, 13, 14

44

http://dx.doi.org/10.1109/TVCG.2008.135
http://dx.doi.org/10.1109/TVCG.2011.233
http://www.math.uwaterloo.ca/~harvey/F10/Lecture12Notes.pdf
http://dx.doi.org/10.1109/TVCG.2006.147

[19] C. Hurter, O. Ersoy, and A. Telea. Graph bundling by kernel density
estimation. Computer Graphics Forum, 31(3pt1):865–874, 2012. → pages
9, 32, 33, 34

[20] A. Kolla, Y. Makarychev, A. Saberi, and S.-H. Teng. Subgraph sparsification
and nearly optimal ultrasparsifiers. In Proc. ACM Symp. Theory of
Computing (STOC), pages 57–66, New York, NY, USA, 2010. ACM. →
pages 41

[21] A. Lambert, R. Bourqui, and D. Auber. Winding roads: Routing edges into
bundles. Computer Graphics Forum, 29(3):853–862, 2010. → pages 2, 9

[22] Y. T. Lee and H. Sun. Constructing linear-sized spectral sparsification in
almost-linear time. In IEEE Symp. Foundations of Computer Science
(FOCS), 2015. To appear. → pages 41

[23] T. Munzner. Visualization Analysis and Design, chapter 4, pages 67–93. A
K Peters Visualization Series. CRC Press, 2014. → pages 1, 5, 6

[24] T. Munzner, F. Guimbretiere, and G. Robertson. Constellation: A
visualization tool for linguistic queries from MindNet. In Proc. IEEE Symp.
Information Visualization (InfoVis), pages 132–135, 154, 1999. → pages 10

[25] S. Pupyrev, L. Nachmanson, and M. Kaufmann. Improving layered graph
layouts with edgebundling. In Graph Drawing, volume 6502 of Lecture
Notes in Computer Science, pages 329–340. Springer Berlin Heidelberg,
2011. ISBN 978-3-642-18468-0. → pages 9

[26] S. Pupyrev, L. Nachmanson, S. Bereg, and A. E. Holroyd. Edge routing with
ordered bundles. In Graph Drawing, volume 7034 of Lecture Notes in
Computer Science, pages 136–147. Springer Berlin Heidelberg, 2012. ISBN
978-3-642-25877-0. → pages 2, 9

[27] E. M. Reingold and J. S. Tilford. Tidier drawings of trees. IEEE Trans.
Software Engineering, SE-7(2):223–228, March 1981. → pages 19

[28] N. K. Vishnoi. Lx = b. Foundations and Trends in Theoretical Computer
Science. NOW, 2013. → pages 4, 8

[29] J. von Neumann. Zur theorie der gesellschaftsspiele. Mathematische
Annalen, 100(1):295–320, 1928. → pages 7, 26, 47

45

Appendix A

Supporting Materials

A.1 Zero-Sum Games and the Minimax Theorem
Consider a game between two players, Alice and Bob. Let M be the payoff matrix

such that, on a given turn, if Alice chooses row i and Bob chooses row j, Bob must

pay Alice the value Mi, j . Therefore, Alice wishes to maximize her payoff from

M and Bob wishes to minimize it. We will formulate such a zero-sum game for

low-stretch trees, where the payoff values will be the stretch of a given edge in a

given tree.

For graph G = (V,E), choose an arbitrary ordering of edges e1, . . . ,em where

E = {ei : 1 ≤ i ≤ m}. Let the edges ei = (u,v) of G correspond to the rows of M ,

and let there be ρ columns, each one corresponding to some (currently undefined)

spanning tree Tj . Then the payoff values will be the stretch of a given edge in a

given tree, so Mi, j = sT j (ei). Alice wishes to choose an edge ei that will have high

stretch in whichever tree Bob chooses, and Bob wishes to choose a tree Tj that will

have low stretch for whichever edge Alice chooses.

Let x ∈ Rm be a distribution over edges, and y ∈ Rρ be a distribution over

trees, such that
∑m

i=1 xi = 1 and
∑k

j=1 y j = 1, and all xi and y j are non-negative.

These distributions represent player strategy, where xi denotes the probability that

Alice chooses edge ei , and y j denotes the probability that Bob chooses tree Tj .

The expected value of Alice’s payoff for choosing edge ei , given Bob is playing by

strategy y, is (My)i . Likewise, the expected value of Bob’s payment for choosing

46

tree Tj , given Alice is playing by strategy x, is (xM) j . By von Neumann’s Minimax

Theorem [29], there exists a distribution x∗ over edges and a distribution y∗ over

trees such that:

max
x

min
y

xᵀMy = x∗ᵀMy∗ = min
y

max
x

xᵀMy

where both players achieve the best possible payoff given the other’s strategy. We

denote the value of the game as λ∗ = x∗ᵀMy∗.

A.2 Proof of Lemma 5.2.3.2
Adapted from Harvey [16]. Let Γ(t) =

∑m
i=1 γ

(t)
i . Consider the algorithm’s state

at the start of round t + 1.

Γ
(t+1) =

m∑
i=1

γ (t+1)
i =

m∑
i=1

γ (t)
i · (1 + ε · si)

Recall that si is the normalized stretch of edge ei in tree T (t). That is, si =

sT (t) (ei)/smax. Since we assume M is normalized, this is equivalent to Mi, j (t) ,

where j (t) is the index in T of T (t) such that y(t)
j (t) = 1. Therefore, we also have

Mi, j (t) = (My(t))i . Therefore, we obtain:

Γ
(t+1) =

m∑
i=1

γ (t)
i · (1 + ε · (My(t))i)

=

m∑
i=1

γ (t)
i + εγ (t)

i (My(t))i

=

m∑
i=1

γ (t)
i + ε

m∑
i=1

γ (t)
i (My(t))i

= Γ(t) + εΓ(t)
m∑
i=1

x (t)
i (My(t))i

where the last step uses that x (t) = γ (t)/Γ(t). Simplifying this expression gives us:

Γ
(t+1) = Γ(t) (1 + ε · x (t) My(t))

47

Using that (1 + y) ≤ ey ∀y, this becomes:

Γ
(t+1) ≤ Γ(t) exp(ε · x (t) My(t))

Now, consider the end of the algorithm, after ρ rounds have been performed.

We know that the base case of the recurrence is Γ(1) = m. Therefore, we obtain:

Γ
(ρ+1) ≤ Γ(ρ) exp(ε · x (ρ) My(ρ))

≤ Γ(1)
ρ∏
t=1

exp(ε · x (t) My(t))

= m · exp


ε ·

ρ∑
t=1

x (t) My(t)




where the product has been pulled inside the exponential. This gives us an upper

bound on Γ(ρ+1); next, we will find a lower bound.

Note that any γ (t+1)
i is a lower bound for Γ(t+1) for all i = 1, . . . ,m and t =

1, . . . , ρ since the weights are non-negative. Therefore,

Γ
(t+1) ≥ γ (t+1)

i

≥ γ (t)
i · (1 + ε · Mi, j (t))

Consider the result after ρ iterations. Here, our base case is γ (1)
i = 1. Therefore,

Γ
(ρ+1) ≥ γ

(ρ+1)
i

≥

ρ∏
t=1

(1 + ε · Mi, j (t))

≥

ρ∏
t=1

(1 + ε)Mi, j (t)

since (1 + ε x) ≥ (1 + ε)x for x ∈ [0,1] and ε ≥ 0. Putting the upper and lower

48

bounds together gives:

m · exp


ε ·

ρ∑
t=1

x (t) My(t)


 ≥ Γ(ρ+1) ≥

ρ∏
t=1

(1 + ε)Mi, j (t)

Taking the natural logarithm of both sides gives:

ln m + ε ·
ρ∑
t=1

x (t) My(t) ≥

ρ∑
t=1

Mi, j (t) · ln(1 + ε)

ρ∑
t=1

x (t) My(t) ≥
1
ε


ln(1 + ε)

ρ∑
t=1

Mi, j (t) − ln m




≥ (1 − ε)
ρ∑
t=1

Mi, j (t) −
ln m
ε

≥

ρ∑
t=1

Mi, j (t) − ρε −
ln m
ε

≥

ρ∑
t=1

Mi, j (t) − 2ρε

using the fact that ln(1 + ε) ≥ ε − ε2, and
∑ρ

t=1 Mi, j (t) ≤ ρ. Dividing by ρ, we

obtain our result:

ρ∑
t=1

x (t) My(t)

ρ
≥

ρ∑
t=1

Mi, j (t)

ρ
− 2ε

≥

ρ∑
t=1

Mi, j (t)

ρ
− δ

49

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	1 Introduction
	2 Literature Review
	2.1 Low-Stretch Trees
	2.2 Edge Bundling
	2.3 Network Visualization

	3 Abstract Framework for Edge Bundling
	3.1 Framework Details
	3.2 Application to Existing Methods
	3.2.1 Force-Directed Edge Bundling
	3.2.2 Multilevel Agglomerative Edge Bundling
	3.2.3 Clustered Edge Routing

	4 LSTB
	4.1 Bundling Algorithm
	4.1.1 Routing Graph Generation
	4.1.2 Edge Routing and Bundling

	4.2 Visual Encoding
	4.2.1 Vertex Layout
	4.2.2 Edge Drawing
	4.2.3 Interactivity

	5 Low-Stretch Trees
	5.1 Low-Stretch Tree Construction
	5.1.1 Parameters

	5.2 Distribution over Low-Stretch Trees
	5.2.1 Multiplicative Weights Update Method
	5.2.2 Tree Oracle
	5.2.3 Analysis
	5.2.4 Application to LSTB

	6 Results
	6.1 Data and Implementation
	6.2 LSTB Evaluation
	6.3 Distribution over Low-Stretch Trees

	7 Discussion
	7.1 LSTB
	7.2 Stretch
	7.3 Distribution over Low-Stretch Trees
	7.4 Future Work

	8 Conclusion
	Bibliography
	A Supporting Materials
	A.1 Zero-Sum Games and the Minimax Theorem
	A.2 Proof of Lemma 5.2.3.2

