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Abstract

Despite their phenomenological successes, the Standard Models (SMs) of particle physics and
cosmology remain incomplete. Several theoretical and observational problems cannot be ex-
plained within this framework, including the hierarchy problem, dark matter (DM), and the
baryon asymmetry of the Universe. The objective of this thesis is to investigate phenomeno-
logical and theoretical aspects of the solutions to these issues. We consider two kinds of phase
transitions that can occur in the early or late Universe in extensions of the SM, that can be
either responsible for dark matter and/or baryon asymmetry production or may be used to
constrain possible models of new physics.

In the first part we analyze string theory-inspired models where the Universe transitions
from matter- to radiation-dominated evolution just before Big Bang Nucleosynthesis through
out-of-equilibrium decays of a scalar modulus field. We employ these decays to produce DM
and for baryogenesis. We study the phenomenology of these scenarios and its implications for
high-scale physics.

The second part of this thesis is dedicated to thermodynamic and quantum phase transitions
in the early and late Universe, respectively. In the former case, we investigate the dynamics of
the electroweak phase transition when the electroweak symmetry is broken down to electromag-
netism in the Inert Doublet Model, a simple extension of the SM that can account for DM. Such
transitions can generate the baryon asymmetry in a process called electroweak baryogenesis.
Some extensions of the SM also predict similar transitions through quantum tunnelling that
break the colour and electromagnetic symmetries, indicating that our ground state is unsta-
ble. We use these arguments to put new constraints on the Minimal Supersymmetric Standard
Model.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics has proven to be an extremely successful theory
of strong and electroweak interactions. The Higgs boson, responsible for the breaking of the
electroweak (EW) symmetry, has finally been observed at the Large Hadron Collider (LHC) [12,
13], confirming a 50 year old theoretical prediction by Higgs [14], Englert and Brout [15] and
Guralnik, Hagen and Kibble [16].1 All SM parameters have been measured. On the cosmological
frontier, the Planck experiment has observed the Cosmic Microwave Background (CMB) with
unprecedented precision, with the resulting data in near-perfect agreement with the Standard
Model of cosmology [17], confirming our understanding of the physical processes that occurred
over 13 billion years ago.

These are just some of the latest successes of the Standard Models in a long history of
correct predictions that included new fundamental particles like the electroweak gauge bosons
and the top quark, and baryon acoustic oscillations and the CMB power spectrum. There are,
however, several strong indications of the existence of physical phenomena unexplained by the
SMs. Before describing these shortcomings and thereby motivating the following chapters, we
discuss the structure of the SM in Sec. 1.1. The essential aspects of the Standard Model of
cosmology are described in Sec. 1.2. In Sec. 1.3 we outline some of the central issues that the
models of new physics we consider attempt to address. These include the hierarchy problem,
the nature of dark matter and the creation of the baryon asymmetry of the Universe.

In this thesis we use the following conventions. For the spacetime metric we use the “mostly
minus” version with ηµν = diag(1,−1,−1,−1) in flat space. Unless stated otherwise, formulae
are given in natural units with ℏ = c = 1, so all dimensionful quantities are measured in units
of energy (typically GeV).

1For reasons of brevity we will refer to the Higgs-Englert-Brout-Guralnik-Hagen-Kibble boson as the Higgs
boson as is commonly done.
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1.1 The Standard Model of Particle Physics

1.1.1 Symmetries and Interactions
The fundamental interactions among known particles are well described by gauge field theories.
The SM is a gauge field theoretic description of the strong, weak and electromagnetic forces. All
interactions are completely determined by symmetries and particle content of the theory. The
gauge symmetry of the SM is SU(3)C × SU(2)L × U(1)Y . The first factor, SU(3)C describes
Quantum Chromodynamics (QCD) - interactions of quarks and gluons, which at low energies
manifest themselves in the existence of colour-neutral hadrons, such as protons and neutrons
and their binding into nuclei. The remaining factor SU(2)L×U(1)Y is the electroweak theory: a
unification of the weak and electromagnetic interactions, notably responsible for β radioactivity
of certain nuclei and the existence of atoms.

Gauge symmetry is an invariance of a theory under local (i.e., spacetime dependent) trans-
formations. The implementation of such symmetries requires the existence of a vector gauge
field in the adjoint representation of the corresponding group. In QCD this is the gluon Aa

µ,
where a is the adjoint SU(3)C index running from 1 to 8. The weak triplet W a

µ (a = 1, 2, 3) and
the hypercharge Bµ are the gauge bosons of SU(2)L and U(1)Y , respectively. After electroweak
symmetry breaking (EWSB) W a

µ and Bµ mix to give the mass eigenstates: W± and Z bosons,
and the photon γ, as discussed in Sec. 1.1.3.

The fermion content of the SM consists of three generations of quarks (particles with SU(3)C

charge) and leptons (those with only SU(2)L × U(1)Y charges). All stable matter is made of
the first generation fermions (written in SU(2)L space)

Q =

(
u

d

)
L

: (3,2,+1/6)

L =

(
ν

e

)
L

: (1,2,−1/2)

ucR : (3,1,−2/3)

dcR : (3,1,+1/3)

ecR : (1,1,+1),

where the SU(3)C × SU(2)L × U(1)Y charges are given in parentheses on the right hand side.
The two heavier generations have identical structure. The fermions above are two-component
Weyl fields; two component spinors are reviewed in Ref. [18]. The physical propagating states
are four-component Dirac fermions.2 For example the electron field is (now written in Dirac

2Whether the neutrinos are Dirac or Majorana is still unknown.
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space)

e =

(
eL

eR

)
,

where eR = (ecR)
†. Thus, the SM is a chiral gauge theory, with left- and right-handed fermions

transforming in different representations of the gauge group. The physical consequence of
this structure is violation of parity P in physical processes, such as β decay [19]. General
chiral theories suffer from anomalies – violations of the gauge symmetries arising from quantum
corrections. However, the charges of the SM fermions are such that every possible gauge
anomaly cancels [20].

The final ingredient of the SM is the Higgs boson. The chiral nature of the SM pro-
hibits gauge-invariant mass terms for the gauge bosons and fermions. Gauge invariance can
be preserved if the masses are generated dynamically through spontaneous symmetry break-
ing (SSB), when a new scalar field, charged under SU(2)L × U(1)Y acquires a vacuum expec-
tation value (vev). A priori, boson and fermion mass generation are independent. The SM is
economical in that it uses the same Higgs boson H with charges (1,2, 1/2) to give masses to
all SM states simultaneously. Note that there is no right-handed ν in the SM, so νL remain
massless. This is in conflict with neutrino flavour oscillation observations. We do not include
R-type neutrinos since the origin of the ν mass is still unknown. The field content of the SM
is summarized in Tab. 1.1.

The interactions of the SM is are given by the most general renormalizable Lagrangian
consistent with symmetries and field content of the model. Poincaré invariance allows the
Lagrangian to be written as space integral of a density L which is constructed from Lorentz
invariant objects evaluated at the same spacetime point (as required by causality and locality);
the action is then the full spacetime integral of L . Lorentz invariance is implemented by
ensuring there are no uncontracted vector or spinor indices. General gauge transformations of
a field ψ in the fundamental representation take the form

ψ → eit
aαa(x)ψ, (1.1)

where αa(x) is a spacetime-dependent gauge parameter and ta are the Lie group generators.
Spacetime derivatives of ψ do not transform in a simple way when αa is a function of x. It is
therefore useful to define the covariant derivative

Dµψ =
(
∂µ + igst

a
CA

a
µ + igtaLW

a
µ + ig′Y Bµ

)
ψ, (1.2)

which has a simple transformation rule

Dµψ → eit
aαa(x)Dµψ, (1.3)

4



when the gauge fields transform as discussed below. Above, gs, g and g′ are the strong, weak
and hypercharge gauge couplings, respectively. It is now easy to write down gauge invariant
kinetic terms for the SM fermions and the Higgs field:

Lkin ⊃
∑
i

iψ̄iσ̄
µDµψi + (DµH)† (DµH) . (1.4)

Note that gauge invariance completely fixes the interactions of the matter (and Higgs) fields
with the gauge bosons. Gauge invariance also allows for the following renormalizable Higgs
self-interactions:

LHiggs = −VHiggs = −µ2|H|2 − λ|H|4. (1.5)

To ensure Eq. (1.3) holds, gauge fields must transform under an infinitesimal gauge trans-
formation as

Aa
µ → Aa

µ + fabcαb(x)Ac
µ − 1

g
∂µα

a(x), (1.6)

where g is the gauge coupling and fabc are the group structure constants satisfying

[ta, tb] = ifabctc. (1.7)

The structure constants vanish for an Abelian group. One can construct a gauge invariant field
strength tensor F a

µν from the vector fields:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + ifabcAb

µA
c
ν , (1.8)

where Aa
µ stands for any of the three SM gauge fields. The non-vanishing Lorentz invariant

combinations are then

Lkin ⊃− 1

4
Ga

µνG
a µν − 1

4
W a

µνW
a µν − 1

4
BµνB

µν (1.9)

−
θQCD
32π2

Ga
µνG̃

a µν − θEW
32π2

W a
µνW̃

a µν − θB
32π2

BµνB̃
µν , (1.10)

where Ga
µν , W a

µν and Bµν are the field strengths associated with SU(3)C , SU(2)L and U(1)Y ,
respectively. In the second line F̃ a

µν = ϵµνσρF
a σρ/2 is the dual field strength. One can show

that FF̃ terms are in fact total derivatives. These contribute a surface term (at spacetime
infinity) that vanishes, unless the vacuum gauge field configuration has a non-trivial winding.
Such configurations can exist for non-Abelian gauge theories. In particular, the SU(3)C term
gives rise to the strong CP problem [21]. The electroweak vacuum angle θEW can be removed
from the Lagrangian using appropriate global B (baryon number) and L (lepton number)
transformations [22].
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Gauge Eigenstates SU(3)C SU(2)L U(1)Y

Aa
µ 8 1 0

W a
µ 1 3 0

Ba
µ 1 1 0

Q 3 2 +1/6

L 1 2 −1/2

ucR 3 1 −2/3

dcR 3 1 +1/3

ecR 1 1 +1

H 1 2 +1/2

Table 1.1: Field content of the Standard Model in the gauge eigenbasis. Only one gener-
ation of fermions is shown; the other two families have identical gauge charges.

Next, we have the Yukawa interactions

LYukawa = HϵQYuu
c
R −H†QYdd

c
R −H†LYee

c
R + h.c., (1.11)

where ϵ is the two component Levi-Civita symbol with ϵ12 = +1 and Yi are general complex
3 × 3 matrices in family space. The complete SM Lagrangian at the classical level then takes
the form

LSM = Lkin + LHiggs + LYukawa. (1.12)

1.1.2 Gauge Fixing and Ghosts
Evaluating physical quantities in the quantum theory requires the computation of time ordered
products of fields using path integrals like [23, 24]

⟨0|Tf(x1, x2, . . . )|0⟩ =
∫
[DA]f(x1, x2, . . . ) exp(iS[A])∫

[DA] exp(iS[A]) , (1.13)

where f(x1, x2, . . . ) is a gauge invariant product of fields inserted at positions xi. In writing
the above we have suppressed dependence of the path integrals on fields other than the gauge
field A. Gauge symmetry of the theory is a redundancy in the number of degrees of freedom
specified by A. Thus, the unrestricted integration over A counts contributions from physically
equivalent gauge configurations multiple times. This overcounting factorizes in the numerator
and denominator of Eq. (1.13) and therefore cancels in the ratio.

A second related issue arises when we try to evaluate these path integrals in perturbation
theory where we need to compute the propagator of A, which is the inverse of the quadratic part
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of the equation of motion operator. For example, for an Abelian gauge field with a canonical
kinetic term −FµνF

µν/4, the momentum space propagator Dνρ is the Green’s function defined
by

(−k2gµν + kµkν)D
νρ = iδρµ. (1.14)

The operator on the left hand side is not invertible, since it annihilates any tensor proportional to
kνkρ, which corresponds to the unphysical longitudinal polarizations of A. These zero modes are
responsible for the infinite factors in the path integrals mentioned above. The inversion can be
performed and the propagator constructed if the integration is restricted to field configurations
that are not related to each other by gauge transformations, i.e., if we explicitly fix the gauge.
A particular gauge is specified by a functional F that satisfies

F [Ag
µ] = 0. (1.15)

The superscript g emphasizes that this relation is satisfied only for a unique choice of gauge
transformation. This condition can be enforced in the path integral by employing the Faddeev-
Popov trick [23]. After manipulation, the Lagrangian density is modified by

∆L = − 1

2ξ
(F [A])2 + η̄(x)M(x, y)η(y), (1.16)

where

M(x, y)η(y) =

∫
d4y

δF [Aθ
µ(x)]

δθ(y)

∣∣∣∣∣
θ=0

η(y), (1.17)

and θ is an infinitesimal gauge transformation parameter. The auxiliary fields η̄ and η are
Grassmanian (anti-commuting) scalar fields, called ghosts, that are integrated over in the path
integral. They are required for the cancellation of unphysical gauge field degrees of freedom
in perturbative computations at one- and higher loop orders. The parameter ξ is real and
parametrizes the family of gauges specified by F . The first term in the gauge fixing Lagrangian
of Eq. (1.16) contains pieces quadratic in A that modify the operator in Eq. (1.14), allowing it
to be inverted.

In unbroken gauge theories such as QCD it is often useful to work in a Lorentz covariant
gauge, with a popular choice being

F [A] = ∂µA
µ. (1.18)

With this gauge fixing Eq. (1.14) becomes

(−k2gµν + (1− 1

ξ
)kµkν)D

νρ = iδρµ, (1.19)
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which can be solved for Dνρ, because the operator on the left hand side is now invertible.
Different forms of F lead to different forms of the vector propagator.

There exists a more convenient choice of the gauge fixing functional for spontaneously broken
theories. With SSB, the Higgs kinetic terms in Eq. (1.4) give rise to a mixing between the gauge
bosons and Goldstone bosons via bilinear terms like

Lkin ⊃ igAa
µ(∂

µH†ta⟨H⟩ − ⟨H†⟩ta∂µH), (1.20)

where ⟨H⟩ is the Higgs field vev. To avoid mass matrix diagonalization, the mixing can be
removed by choosing

F a[A] = ∂µAa
µ − iξg(H†ta⟨H⟩ − ⟨H†⟩taH). (1.21)

This family of gauges is known as the Rξ gauges. The full SM Lagrangian which contains gauge
fixing for the entire SU(3)C ×SU(2)L ×U(1)Y and the corresponding ghost terms is presented
in, e.g., [23, 25].

1.1.3 Spontaneous Symmetry Breaking and the Physical Spectrum
The SU(2)L × U(1)Y symmetry forbids mass terms for EW gauge bosons and SM fermions.
To match observations the SM generates masses dynamically through spontaneous symmetry
breaking. The order parameter of the symmetry is the expectation value of the Higgs field; a
general vev can always be chosen (using a global SU(2)L × U(1)Y rotation) to be

⟨H⟩ =

(
0

v/
√
2

)
(1.22)

with v real and positive. At tree-level this pattern of symmetry breaking arises when we take
µ2 < 0 in VHiggs (see Eq. (1.5)). From the Higgs kinetic terms in Eq. (1.4) we obtain mass terms
for the SU(2)L × U(1)Y gauge bosons. The mass matrix in the (W 1,W 2,W 3, B) basis is [26]

M2
gb =

1

4
v2


g2 0 0 0

0 g2 0 0

0 0 g2 −gg′

0 0 −gg′ g′ 2

 . (1.23)

The upper left 2×2 block has two degenerate eigenvalues that correspond to mass of the charged
W bosons

W± =
1√
2
(W 1 ∓ iW 2) (1.24)
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with the value

m2
W =

1

4
g2v2. (1.25)

The (canonically normalized) combination

Z = cWW
3 − sWB (1.26)

receives the mass

m2
Z =

1

4
(g2 + g′ 2)v2, (1.27)

where cW (sW ) are the cosine (sine) of the Weinberg angle, defined by

c2W = cos2 θW =
g2

g2 + g′ 2
. (1.28)

The orthogonal combination

A = sWW
3 + cWB (1.29)

remains massless and is identified with the photon. Thus the full SM gauge symmetry SU(3)C×
SU(2)L × U(1)Y is broken down to SU(3)C × U(1)em. From the kinetic terms of Eq. (1.4) it
follows that A couples to matter with electromagnetic charge

Q = t3L + Y (1.30)

in units of e = gsW = g′cW . The measured masses of theW and Z bosons are 80.385±0.015GeV
and 91.1876± 0.0021GeV [27]. Together with the Higgs vev, v ≈ 246GeV, these numbers set
the fundamental mass scale of the SM. In the following chapters we will refer to masses and
energies of order O(100GeV) as electroweak scales.

As emphasized above, fermion mass generation is a priori unrelated to that of the gauge
bosons. The SM is economical in that it uses the same Higgs field for both tasks. The fermion
mass matrices can be read off from Eq. (1.11) by substituting the Higgs vev, Eq. (1.22), for H:

LYukawa = − v√
2
uLYuu

c
R − v√

2
dLYdd

c
R − v√

2
eLYee

c
R + h.c. (1.31)

Note the absence of a mass term for the neutrinos due to lack of a right handed ν. The
complex Yukawa matrices Yi can be diagonalized using two unitary transformations, U and V ,
corresponding to separate rotations of the L and R type fermions in family space, respectively,

f ′L = UffL, f ′R = VffR, (1.32)
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such that

Mf =
v√
2
UT
f YfVf (1.33)

is diagonal. All gauge interactions, except the quark charged current (CC) terms, are invariant
under these rotations; dropping the primes, the CC interactions can be written as

Lcc = − g√
2
W+

µ (ūLσ̄
µVCKMdL + ν̄Lσ̄

µeL) + h.c., (1.34)

where VCKM = U †
uUd is the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix. Note that

there is no equivalent matrix in the lepton sector because the neutrinos are massless in the SM.
There are 4 physical parameters in the CKM matrix, including 1 phase [26]. The existence of
this complex phase implies that Lcc is not invariant under CP.

The SM and relevant field-theoretic details are described in, e.g., Refs. [20, 23, 25, 26, 28–
32]. The historical development of the electroweak theory and chromodynamics is discussed in
Refs. [33–35].

1.2 The Standard Model of Cosmology

1.2.1 The Expanding Universe
On cosmological scales the Universe appears approximately isotropic and homogeneous. The
most convincing evidence for this is the CMB, which is isotropic to a few parts in 10−5 [36]. Any
general-relativistic description of our Universe should therefore possess these features. The most
general metric satisfying isotropy and homogeneity is the Friedmann-Robertson-Walker (FRW)
metric, with [36, 37]

ds2 = dt2 − a(t)2
(

dr2

1− kr2
+ r2dΩ2

)
, (1.35)

where k = −1, 0,+1 corresponds to constant negative, zero or positive spacial curvature; dΩ2 =

dθ2+sin2 ϕdϕ2 is the usual metric on a sphere. Various observations, including the latest results
from Planck [38, 39] suggest that the Universe is, to a very good approximation, flat with k = 0.
Then the physical (proper) distance to an object at radial coordinate r is given by a(t)r. The
function a(t) is therefore called the scale factor. The present-day scale factor, a(t0), is usually
taken to be 1. When discussing astrophysical observables it is common to use the redshift z
instead of a:

z(t) =
a(t0)

a(t)
− 1, (1.36)
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where t0 is the current time. This is a useful quantity since a photon emitted at time t with
wavelength λ is observed at time t0 to have wavelength (1 + z(t))λ.

The Einstein equations determine the evolution of the metric in the presence of an energy
density distribution [37]

Rµν = 8πG

(
Tµν −

1

2
gµνT

)
, (1.37)

where Rµν is the Ricci tensor (computed from the metric), Tµν is the energy-momentum tensor
(the source for the gravitational field), T = Tµ

µ , and G is Newton’s constant. We will model
energy densities as perfect fluids, that is, continuous distributions that are isotropic in their
rest frame. The state of such fluid is specified by energy density ρ and isotropic pressure p.
The energy momentum tensor for a perfect fluid can be written as [37]

Tµν = (ρ+ p)UµUν + pgµν , (1.38)

where Uµ is the fluid 4−velocity. In its rest frame, we have Uµ = (1, 0, 0, 0).
For an FRW metric Eq. (1.37) reduces to the two Friedmann equations [37]

ä

a
= −4πG

3
ρ− k

ρ+ 3p
, (1.39)

and

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.40)

where the Hubble parameter H determines the rate of expansion of the Universe. The current
value of the expansion rate, H0, is often written in terms of a dimensionless number h as
H0 = 100h km sec−1 Mpc−1, with h = 0.673 ± 0.0012 [27]. Equation (1.40) is frequently
written in dimensionless form as

1 = Ω + Ωk, (1.41)

with

Ω =
ρ

ρc
, Ωk = − k

a2H2
, (1.42)

where the critical density ρc is

ρc =
3H2

8πG
. (1.43)

If the sum of the fluid densities in the Universe is equal to the critical density, the spatial
curvature k must vanish. The density parameters Ω are often used to specify the energy
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density composition of the Universe.
Another useful relationship is the covariant continuity (or energy-momentum conservation)

equation

∂tρ+ 3H(ρ+ p) = 0, (1.44)

which follows from the diffeomorphism/coordinate invariance of the matter action

SM =

∫
d4x

√
−gLM , (1.45)

where g is the determinant of the metric and LM is the matter Lagrangian density. For the
SM, LM is given in Eq. (1.12). Note that the factor √−g gives the minimal coupling of matter
to gravity. We will make use of this coupling when discussing moduli in Chapters 3 and 4.

The fluids relevant to cosmology obey equations of state of the form

p = wρ, (1.46)

with w = 0, 1/3,−1 for matter/dust (non-relativistic particles), radiation (relativistic species)
and vacuum energy, respectively. In each case the continuity equation, Eq. (1.44), can be solved
to yield

ρ ∝ a−3(1+w). (1.47)

For example dust (w = 0) energy density dilutes as a−3, corresponding to the growth of the
comoving volume with a3. If the total energy density ρ is dominated by one fluid, the Friedmann
equation, Eq. (1.40), can be solved for the time dependence of the scale factor. For a spatially
flat Universe (k = 0) we find

a ∝

t
2

3(1+w) w ̸= −1

exp(Kt) w = −1,
(1.48)

where K is a constant and we only wrote down the expanding solutions. Thus, the change in
the rate of expansion depends on the composition of the energy density of the Universe.

Using the above results we can can decompose the total density parameter Ω, defined in
Eq. (1.42), into components

Ω = Ωr +Ωm +ΩΛ, (1.49)

where the three contributions correspond to radiation (w = 1/3), matter (w = 0) and vacuum
energy (w = −1). All present measurements are consistent with Ω ≈ 1 and Ωk = 0, so
throughout this work we will assume that the Universe is spatially flat with k = 0 [27].
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1.2.2 Thermodynamics
We will often be interested in the present day abundances of particles that interacted with the
hot plasma of the early Universe. The thermodynamic properties of an ensemble of particles
are contained in the phase space distribution functions fi(p, T ) where i labels particle species, p
is the momentum and T is the temperature. From these distributions we can compute number
and energy densities, and pressure [40, 41]:

ni = gi

∫
d3p

(2π)3
fi(p, T ), (1.50)

ρi = gi

∫
d3p

(2π)3
fi(p, T )Ei(p), (1.51)

pi = gi

∫
d3p

(2π)3
fi(p, T )

p2

3Ei
(1.52)

where E2
i = p2+m2

i and gi is the number of internal degrees of freedom. In kinetic equilibrium
and at zero chemical potential the distributions have the Bose-Einstein or Fermi-Dirac form:

fi(p, T ) =
1

exp(Ei(p)/T )± 1
, (1.53)

where + is for fermions and − is for bosons. At a given temperature T it is useful to partition
the plasma into relativistic (T ≫ mi) and non-relativistic (T ≪ mi) components. Assuming
kinetic equilibrium, Eqs. (1.50), (1.51), (1.52) can be evaluated in these limits analytically. In
the relativistic limit

ni = gi
ζ(3)

π2
T 3

1 bosons
3
4 fermions

, (1.54)

ρi = gi
π2

30
T 4

1 bosons
7
8 fermions

, (1.55)

pi = ρi/3. (1.56)

In the non-relativistic limit both distributions reduce to

ni = gi

(
miT

2π

)3/2

exp(−mi/T ), (1.57)

ρi = mini, (1.58)

pi = niT. (1.59)

Note that the energy density and pressure of relativistic species are parametrically larger than
those of non-relativistic states. This means that the total energy density and total pressure of
the heat bath are well approximated by the relativistic contributions alone. Summing over all
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Figure 1.1: Number of energy and entropy relativistic degrees of freedom, g∗ and g∗S ,
respectively, for the Standard Model as a function of temperature. The large drop
in the number of degrees of freedom at T ∼ 200MeV corresponds to the QCD phase
transition when quarks and gluons became confined in hadrons.

relativistic species we find the total radiation density and pressure:

ρR =
π2

30
g∗(T )T

4 (1.60)

pR ≈ ρR/3, (1.61)

where g∗ counts the number of relativistic degrees of freedom at temperature T

g∗(T ) =
15

π4

∑
i

gi

(
Ti
T

)4 ∫ ∞

xi

(u2 − x2i )
1/2u2

exp(u)± 1
du (1.62)

≈
∑

i=bosons
gi

(
Ti
T

)4

+
7

8

∑
i=fermions

gi

(
Ti
T

)4

,

where xi = mi/Ti, Ti is the temperature of species i, and T is the photon temperature; the last
equality follows for xi ≪ 1 and the observation that non-relativistic species do not contribute
significantly to ρR.3 The integral in Eq. (1.62) smoothly removes non-relativistic species from
the summation. This function for the SM fields is shown in Fig. 1.1 as the solid blue curve.
The large decrease in g∗ at T ∼ 200MeV corresponds to the QCD phase transition when free
quarks and gluons condensed into hadrons.

We can use the above results to derive the evolution of radiation and entropy density in the
3The function g∗ for pressure is numerically different from g∗ defined above due to different integrands in

Eq. (1.51) and (1.52). pR = ρR/3 exactly only when xi = 0.
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expanding Universe. In the absence of energy injection, the First Law of thermodynamics

dU + PdV = 0, (1.63)

with total energy U and pressure P , as applied to the radiation bath gives

a3dρR + (ρR + pR)da
3 = 0. (1.64)

Using Eq. (1.61) we can write this as

ρ̇R + 4HρR = 0. (1.65)

In equilibrium, entropy S is conserved:

0 = dS = d(sV ) =
d(ρV ) + pdV

T
, (1.66)

where we used the fundamental thermodynamic relation, TdS = dU + pdV , in the second step
and defined the entropy density s as [36]

s =
∑
i

ρi + pi
Ti

. (1.67)

As for the energy, the entropy density is dominated by relativistic species. Using the definitions
of Eq. (1.51) and (1.52) we can rewrite this as

s =
2π2

45
g∗S(T )T

3, (1.68)

where

g∗S(T ) =
45

4π4

∑
i

gi

(
Ti
T

)3 ∫ ∞

xi

(u2 − x2i )
1/2u2

exp(u)± 1
du (1.69)

≈
∑

i=bosons
gi

(
Ti
T

)3

+
7

8

∑
i=fermions

gi

(
Ti
T

)3

,

When all species have the same temperature g∗S ≈ g∗; however, when a relativistic species
decouples from the bath and Ti ̸= T , g∗S ̸= g∗. This can be seen in Fig. 1.1 at low temperatures,
where g∗S is shown as the solid red curve. The difference is due to the decoupling of neutrinos
at T ∼ 1MeV and the subsequent e+e− annihilation for T ≲ 2me (when they become non-
relativistic). The annihilations deposit energy into the photon bath, but not into the neutrinos
(since they are decoupled), leading to T/Tν = (11/4)1/3 at late times [36, 40].

When a massive species decouples from the plasma, its comoving number N = na3 is
(approximately) conserved until present day, unless it decays. Such relics will play key roles
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in Chapters 3 and 4 where we consider dark matter and baryon production. At high enough
temperatures, a particle χ is kept in chemical equilibrium with the thermal bath through
interactions like χχ̄ ↔ XX̄, where X is part of the plasma. For example for T ≳ 1GeV,
χ could be a quark and X a gluon. If equilibrium persists sufficiently long, and χ is stable,
it becomes non-relativistic as the Universe cools and since nχ ∝ exp(−m/T ), its density will
become negligible. However, if the interactions that keep χ in equilibrium are not fast enough
to keep up with the expansion of the Universe, the number density will become frozen-in. This
happens approximately when the interaction rate

Γ = ⟨σv⟩nχ (1.70)

falls below the Hubble expansion rate H, where ⟨σv⟩ is the thermally averaged interaction
rate (defined below). This freeze-out mechanism is quantitatively described by the Boltzmann
equation. In its most fundamental form the Boltzmann equation describes the time evolution
of the particle phase space density f(p)

L[f ] = C[f ], (1.71)

where L = d/dt is the Liouville operator, given by [40–42]

L =
∂

∂t
−H

|p|2
E

∂

∂E
, (1.72)

for a spatially homogeneous distribution in the FRW spacetime and C[f ] is the collision term
that encodes particle interactions. By integrating over phase space, one obtains a time evolution
equation for number densities,

ṅi + 3Hni = gi

∫
C[fj ]

d3p

(2π)3Ei
(1.73)

The general collision term C is a complicated expression that depends on matrix elements for
the forward and reverse reactions, as well as the phase space densities of all of the interacting
particles. We will be primarily interested in decays and 2 → 2 scattering reactions. Several
assumptions can be used to simplify C[f ]:

1. Kinetic and thermal equilibrium is attained immediately by the annihilation products X
and X̄, implying that their interactions with the plasma must be relatively strong. This
will be the case when X is a SM state.

2. Maxwell-Boltzmann statistics is valid, which is a good assumption for non-degenerate
gases with T ≲ 3m [42].

16



Under these assumptions, the collision term for a reaction of the type 12 → 34 reduces to

g1

∫
C[fj ]

d3p

(2π)3E1
= −⟨σv⟩(n1n2 − neq

1 n
eq
2 ), (1.74)

where

⟨σv⟩12→34 =

∫
σvMøle

−E1/T e−E2/Td3p1d
3p2∫

e−E1/T e−E2/Td3p1d3p2
, (1.75)

vMøl =

√
(p1 · p2)2 −m2

1m
2
2

E1E2
, (1.76)

and neq is given by Eq. (1.57). The cross section σ for 12 → 34 is computed using the usual
Feynman rules. For many cases of interest decoupling of a particle from the plasma occurs when
it is already non-relativistic, in which case Eq. (1.75) admits a simple expansion in m/T ≫
1 [42].

We can now write down the simplest Boltzmann equation for a single self-conjugate species
χ annihilating into SM particles:

ṅχ + 3Hnχ = −⟨σv⟩
(
n2χ − (neq

χ )2
)
. (1.77)

The solution of this equation for mχ = 100GeV and σ ∼ 10−11 GeV−2 is shown in Fig. 1.2.
Note that at early times the comoving number density N = nχa

3 tracks the equilibrium, until
the χχ annihilations freeze-out. This occurs at xf = mχ/Tfo ∼ 20, so χ decouples when it is
already non-relativistic. In this simple scenario it is possible to analytically estimate both the
freeze-out point xf and the final abundance of Ωχ. The freeze-out temperature can be found
using the decoupling condition, Eq. (1.70) [40, 43]:

xf = ln
(√

45

4π5
gχ√
g∗
mχMPl⟨σv⟩

)
− 1

2
lnxf , (1.78)

where MPl = 2.435× 1018 GeV is the reduced Planck mass. In particular, note that xf is only
logarithmically sensitive to mχ and ⟨σv⟩, so xf ∼ 20 is generic for weak-scale masses and cross-
sections. The approximate abundance can be obtained by matching the early-time solution
(which tracks neq

χ ) with the late-time solution (where neq
χ can be neglected) [40], with the result

Ωχ =
mχnχ
ρc

= h−2

(
2× 10−10 GeV−2

⟨σv⟩

)(xf
20

)(g∗(Tfo)

85

)−1/2

. (1.79)

Note that the abundance is inversely proportional to the annihilation cross-section: the more
effective χχ annihilations are, the smaller the final abundance.

The above results hold for a single particle with a cross section constant with T . In realistic
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Figure 1.2: Comoving number density N = nχa
3 (solid line) of a self-conjugate particle

χ as a function of mχ/T . The equilibrium number density is shown as a dashed
line. Freeze-out occurs at mχ/T ∼ 20.

models, there can be other states present in the plasma that interact with the long-lived particle
of interest. The annihilation rate can have important features as a function of T , such as
resonances when intermediate states go on shell. These and other effects can significantly
modify the final abundance [43].

1.2.3 The First 400 000 Years
Having discussed thermodynamics in an expanding Universe, we can begin to reconstruct the
thermal history of the Universe. Here we highlight some of the key events. We start at t ∼ 10−43

s, corresponding to temperatures T ∼ 1018 GeV, where a theory of quantum gravity is required
even for a qualitative description. Shortly after this, inflation or another mechanism operates to
solve the horizon and flatness problems [44]. The evolution down to T ∼ 103 GeV has not been
probed experimentally, but many models of baryogenesis and neutrino mass generation operate
above this energy [45, 46]. As we cool further and cross the TeV threshold at t ∼ 10−13 s, we
enter the realm of energies that have been probed experimentally. At T ∼ 100GeV (t ∼ 10−11

s), the Universe undergoes the electroweak phase transition (EWPT) where SU(2)L × U(1)Y

is broken down to U(1)em. The QCD chiral phase transition at T ∼ 200MeV (t ∼ 10−5 s)
occurs when quarks and gluons condensed into hadrons. Neutrinos decouple at T ∼ 1MeV
(t ∼ 1 s), fixing the neutron to proton ratio. Big Bang Nucleosynthesis begins shortly after at
T ∼ 0.1MeV (t ∼ 102 s) when the primordial plasma is cool enough to not disassociate the
majority of newly formed nuclei. The matter density becomes comparable to radiation density
at T = 1 eV (t = 104 years), initiating structure formation. Finally, baryons recombine with
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electrons at T ∼ 0.1 eV (t ∼ 4× 105 years), making the Universe transparent to photons. The
free-streaming photons from that era make up the CMB.

The above history is the canonical account of early Universe cosmology. In particular,
it assumes that the Universe remains radiation-dominated until matter-radiation equality at
T = 1 eV. As we will discuss in Chapters 4 and 3, this idea is experimentally grounded only
for T ≲ 5MeV. There we will consider modifications to this radiation-dominated scenario.

1.3 Outstanding Problems
Despite their innumerable successes, the Standards Models are incomplete. Below we list some
of the major motivations for new physics. In the following, chapters we consider models that
attempt to explain one or more of the following: the hierarchy problem, the baryon asymmetry
of the Universe and dark matter. These are discussed in detail in Sections 1.3.1, 1.3.2 and 1.3.3,
respectively. This is far from an exhaustive list. Other important issues in particle physics
include the origins of neutrino masses and the flavour structure of the SM, the strong CP and
the cosmological constant problems [47]. The latter, in particular, indicates that something
fundamental is missing in our understanding of gravity and particle physics.

1.3.1 Hierarchy Problem and Naturalness
The Higgs boson mass was measured to be ∼ 125 GeV [6]. In order to relate this observation
to other parameters in the theory, we must compute quantum corrections shown in Fig. 1.3,
which contain ultraviolet (UV) divergent integrals over spacetime, that must be regulated. For
example, a fermion with mass Mf , Nc colours and Yukawa coupling yhf̄f/

√
2 shifts the mass

by

m2
h = m2

0 −
y2Nc

8π2
Λ2 + . . . , (1.80)

where the loop integral corresponding to the left diagram in Fig. 1.3 has been regulated using
the momentum cutoff Λ; the ellipsis stands for terms that are at most logarithmically divergent
as Λ → ∞. The SM is a valid effective field theory for energies below Λ. If Λ is much bigger
than the electroweak scale ∼ 100 GeV, then to get mh = 125 GeV we must tune the tree-level
parameter m2

0 very precisely to cancel the large contribution from new physics at scale Λ. We
expect new degrees of freedom to exist at several possible scales associated with, e.g., neutrino
mass generation, unification, or, at the very least, quantum gravity. Taking Λ ∼ MPl, we
find that m2

0 has to be chosen with a precision of one part in 1032. This is called the fine-
tuning or naturalness problem. Equivalently, it is a statement about the enormous hierarchy
in energy scales between gravitational and electroweak physics. In absence of symmetry, one
would naturally expect mh ∼MPl and similar strengths of weak and gravitational interactions.

The disturbing precision of the required cancellation has been a strong motivation for the
development of models where the quadratic divergence in Λ is absent and mh is natural. The
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Figure 1.3: Possible contributions to the Higgs mass parameter from fermions (left graph)
and scalars (middle and right graphs). The momentum integrals associated with
these graphs are UV divergent and give rise to the fine-tuning problem.

solutions can be divided into several categories. First, we may introduce a symmetry that
regulates the size of these large quantum corrections. For example, suppose that in addition to
the new fermion, there exist a pair of complex coloured scalars ϕL,R of mass Ms that couple to
the Higgs boson via

L ⊃ −λ
2
(v + h)2(|ϕL|2 + |ϕR|2). (1.81)

The corresponding quantum corrections are computed from the middle and right graphs of
Fig. 1.3; only the right diagram is quadratically divergent with the result

m2
h = m2

0 +
λNc

8π2
Λ2 + . . . (1.82)

In particular, if λ = y2 the Λ2 contributions to the Higgs self-energy cancel exactly with that
coming from the fermion, and no fine tuning would be required to have mh at the electroweak
scale. The cancellation of quadratic divergences does not depend on the mass difference Mf −
Ms; the logarithmic divergences (not written) cancel if Mf =Ms. This is exactly what happens
in supersymmetry, which we discuss in Ch. 2. Shift symmetries h→ h+α can also forbid large
quantum corrections, resulting in technically natural mh. Such symmetries are associated with
Nambu-Golsdstone bosons (NGBs) of spontaneously broken global symmetries. Since NGBs
are massless and the Higgs is not, the symmetry must be broken explicitly in analogy to pion
mass generation and the breaking of the chiral SU(2) by non-degenerate quark masses. The
class of models where the Higgs boson is a pseudo-NGB are known as Little Higgs theories [48].
In both cases, naturalness demands the existence of new states that couple strongly to the
Higgs with masses close to the electroweak scale. Other explanations include compositeness of
the Higgs [49] and extra dimensions [50, 51]

It is also possible that the Higgs mass is not natural and fine-tuning is required for life to
exist. However, such anthropic arguments are less convincing for the case of Higgs mass (as
opposed to the cosmological constant), since one can get a habitable Universe even when mh ∼
MPl [52]. Anthropic reasoning often emerges in the context of the string theory landscape [53].
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1.3.2 Baryon Asymmetry of the Universe
Relativistic field theory requires the existence of antimatter. Each anti-particle has opposite
gauge charges but otherwise identical properties to the corresponding particle [45]. It is then
puzzling why the local Universe seems to be composed of entirely of matter and not anti-
matter. It is conceivable that the Universe is actually baryon-symmetric – domains of matter
are spatially separated from domains of antimatter. However, pair annihilation at interfaces
of such regions would produce unacceptably high gamma ray fluxes, unless the regions are
separated by distances greater than 10 Mpc (roughly the size of the Virgo cluster) [40]. Still,
annihilation is inevitable, unless the domains are separated by enormous voids. These voids
would appear as inhomogeneities in the CMB [45, 54].

Ignoring the above difficulties, suppose the Universe is baryon-symmetric. At high tempera-
tures baryons are kept in equilibrium with the plasma by pair annihilations with ⟨σv⟩ ∼ m−2

π =

5 × 10−5 GeV2. These interactions freeze-out via the mechanism discussed in Sec. 1.2.2 when
Tfo ≈ 20MeV (from Eq. (1.70)), resulting in baryon abundance that is 9 orders of magnitude
too small [40]. This means that either some mechanism separated baryons from antibaryons
before the annihilations depleted the abundance, or, there was a slight excess of matter over
antimatter, such that only the asymmetry remained at late times. In the former case, the
mass of baryons contained within the horizon at that time was a fraction of a solar mass, so
the mechanism that separates cluster-sized masses of baryons and antibaryons would have to
violate causality [40]. Thus, in this work we consider only the latter possibility.

The observed baryon to photon ratio, η = nB/nγ = 6.19 × 10−10 suggests that at temper-
atures above 1 GeV the excess of quarks over antiquarks was tiny: about one more quark per
every thirty million antiquarks [40]. This asymmetry can be an initial condition or it can be
generated dynamically. The initial condition hypothesis is impossible to test, so we consider
theories of dynamical baryogenesis instead. Sakharov outlined the general conditions necessary
to generate this asymmetry in the early Universe [55]:

1. Baryon number must be violated in order to generate B ̸= 0 from a symmetric initial
state.

2. C (charge conjugation invariance) and CP (charge-parity conjugation invariance) must
be violated to produce more baryons than antibaryons. Given a process i({si}, {pi}) →
f({sf}, {pf}) that produces baryon number, its charge conjugate ī → f̄ yields opposite
baryon number.4 If the rates are equal, there is no net asymmetry produced. Since local
Lorentz invariant theories conserve CPT, CP invariance is equivalent to time-reversal
invariance T. If the rate for the T-conjugate process f({−sf}, {−pf}) → i({−si}, {−pf})
is equal to i({si}, {pi}) → f({sf}, {pf}), no net asymmetry is produced.

3. There must be a departure from thermal equilibrium, since the rates for i→ f and f → i

are equal in equilibrium.
4{si,f} and {pi,f} represent the sets of spins and momenta in the initial or final state.
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The SM has all of the above ingredients: non-perturbative SU(2)L processes can provide
B ̸= 0, while the single phase in the CKM matrix violates C and CP. The departure from thermal
equilibrium is achieved if the electroweak phase transition is first order: bubbles of phase with
non-vanishing Higgs vev nucleate within the plasma, expand and collide until SU(2)L ×U(1)Y

is broken everywhere. This process is described in more detail in Sec. 7.1. In the SM, the EW
phase transition proceeds in that way only if the Higgs boson is light, i.e., mh ≤ 70 GeV [56],
in conflict with the observed value of ∼ 125 GeV. Thus this mechanism does not work in the
SM alone and new physics is required.

In this work we focus on the third requirement, the departure from equilibrium. We consider
two different ways to achieve this. In Ch. 4, we investigate a scenario with an out-of-equilibrium
decay of a new heavy particle. In Ch. 7, we augment the SM with extra matter to ensure that
the EW phase transition is first order and therefore suitable for baryogenesis.

1.3.3 Dark Matter
Observations of radial velocities of galaxies in the Coma cluster provided the first hint for
the existence of dark matter [57–59]. Later, measurements of orbital speeds of visible objects
inside galaxies (i.e., galactic rotation curves) indicated that the galactic mass distribution must
extend beyond luminous matter [60].5 Consider a visible object on a stable orbit around a
galaxy. Assuming Newtonian gravity is valid, the orbital speed for a body at distance r from
the galactic center is

v =

√
GM(r)

r
, (1.83)

where M(r) is the mass enclosed by the trajectory. In particular, if only luminous matter
contributes to M , beyond the visible part of the galaxy M is constant, so the orbital speed must
decrease as v ∝ r−1/2. However observations of many galaxies indicate that the speed does not
decrease at all, but flattens out, implying that M ∝ r in this region. This suggests the existence
of a spherical dark matter halo that extends beyond luminous matter, with density falling as
ρ ∝ r−2. This gives rise to the idea that galaxies are embedded in halos of non-luminous, dark
matter (DM) [61]. Since the initial measurements on cluster scales, the DM hypothesis has
received support from an array of observations over a wide range of distance scales, from sub-
galactic to cosmological. For example, gravitational lensing of galaxies and clusters is sensitive
to the total amount of matter in the lens [62]. These measurements unequivocally show that
the amount of matter in these objects is much larger than what is visible. The possibility that
this missing matter is in the form of massive compact halo objects (MACHOs) is excluded by
microlensing surveys of nearby satellite galaxies [62].

An even more stringent limit on the baryonic contribution to total matter abundance in
5These measurements are usually done using the 21 cm line from Hydrogen hyperfine splitting and optical

surface photometry [61].
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the Universe comes from Big Bang Nucleosynthesis (BBN). Nucleosynthesis is the earliest
epoch in the history of the Universe that is probed observationally, corresponding to times
on the order of 1 second after the Big Bang. Standard BBN has been very successful in
predicting the present-day abundances of the light elements such as helium, deuterium and
lithium [63].6 Nucleosynthesis predictions are very sensitive to the nucleon to photon ratio η
with the equilibrium abundance of element with atomic number A proportional to ηA−1 [40].
As a result, the observed light element abundances constrain the baryonic contribution to total
matter density to be [27]

Ωb ∼ mbnγη/ρc ≲ 0.053. (1.84)

This upper bound on baryonic matter in nucleons combined with total matter density measure-
ments from dynamical (i.e., rotation curves) means and lensing imply that most of the matter
content of the Universe is in the form of DM. Note that, if there exist exotic quark “nugget”
bound states with a sufficiently strong binding, they will not participate in in BBN and DM
can be of baryonic origin – see Ref. [66] for a review of this possibility.

The most precise determination of DM abundance in the Universe comes from fits to cos-
mological data from the expansion of Universe, galaxy clustering, CMB power spectra and
other measurements. The CMB power spectrum, in particular, is sensitive both to the total
amount of matter and its baryonic fraction. For temperatures above about 1 eV, the primordial
plasma is ionized and the baryon fluid is coupled to the photon fluid via electromagnetic inter-
actions (for a review of CMB physics, see, e.g., Refs. [27, 67]).7 This coupled fluid oscillates
in the gravitational potential established by DM over/under-densities, leading to temperature
anisotropies on top of a nearly perfect black body spectrum. The CMB power spectrum of
these anisotropies has been subject of intense experimental study, culminating with the Planck
mission, which provided the most precise measurements of the temperature power spectrum
to date.8 Fitting the standard cosmological model to the latest Planck data yields a baryon
abundance [17] of

Ωb = 0.049± 0.002 (1.85)

and total matter abundance of

Ωm = 0.315± 0.013. (1.86)

This incredibly precise measurement of the matter density on cosmological scales again requires
6At present, the prediction for 7Li is inconsistent with the CMB measurement of η. This is known as the

Lithium problem [64]. Possible solutions can include astro- and nuclear physics effects, as well physics beyond
the Standard Model [65].

7In the astrophysics community “baryon” refers to all SM particles, including baryons and leptons [68].
8Planck is able to detect angular variations of ∼ 0.1◦ on the sky. Ground based telescopes can attain even

higher resolution.
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a large component of non-baryonic DM.
Finally, DM is necessary for the formation of large scale structure consistent with what

is observed today in galactic surveys [69]. The growth of the initial density perturbations in
the primordial plasma occurs at different rates in the matter and radiation-dominated phases.
Gravitational collapse is more efficient during matter domination, which does not occur early
enough with only baryonic matter to reproduce the observed matter power spectrum [62]. If
matter has a significant non-baryonic component that is not strongly coupled to photons, then
the matter dominated epoch can begin earlier. The DM hypothesis thus provides an excellent
fit to the matter power spectrum from cosmological scales down to ∼ 0.1 Mpc (see, e.g., [70]).

The validity of the cold (i.e., non-relativistic), non-interacting DM fluid on small scales (≲ 10

kpc, corresponding to small galaxies and inner regions of larger ones) has been less certain,
as several apparent conflicts between astrophysical observations and many-body simulations
emerged. These difficulties are reviewed in Ref. [71, 72] and are called “core vs cusp”, “missing
satellites” and “too big to fail” problems. The first of these is the statement that DM-only
many-body simulations predict a DM density profile with a cusp near the galactic center,
which provides a poor fit to the inner regions of real galactic rotation curves. Moreover, these
simulations produce many more small satellite galaxies (dwarves) than observed in the vicinity
of the Milky Way. This is the missing satellites problem. Some of these missing DM halos
are so massive that it is puzzling that they have failed to form stars. These issues are facets
of the same problem: DM-only simulations predict more substructure than what is observed.
This has motivated modifications of the standard cold DM paradigm that included warm (semi-
relativistic) and self-interacting DM. The former allows DM to stream out of gravitational wells,
washing out structure of sizes smaller than the free-streaming length; self-interacting DM results
in a hotter halo core that prevents the formation of cusps [68]. However, as emphasized above,
the simulations that lead to these small scale structure anomalies have not included baryonic
physics. These effects include gas outflows, energy feedback from stars and supernovae and
can significantly alter galactic evolution and the form of the resulting DM distribution through
gravitational interactions [68].

Having discussed the successes and difficulties of the dark matter framework, it is important
to note that it is not the only logical possibility to explain the above purely gravitational
observations. In principle, this can also be done by modifying general relativity. In practice,
this is difficult because of the vast range of length scales spanned by these observations (see [73]
for an example of problems faced by modified gravity). Hence in this thesis we assume that
DM is a new particle or a set of particles. With this in mind, DM must be long-lived, massive,
non-relativistic during structure formation and interact only weakly with photons. The SM of
particle physics lacks such a particle and we must look beyond the SM for suitable candidates.

Even with the above requirements, the nature of DM is difficult to determine from cosmo-
logical data alone, with DM masses in viable models spanning ∼ 31 orders of magnitude from
10−15 GeV for axion DM to 1016 GeV for “WIMPzillas”, with interaction strengths varying
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across an even wider range [74]. We will focus on a well-motivated class of DM candidates
with masses in the range 1 − 1000GeV and weak-scale couplings to ordinary matter. This is
the domain of the weakly interacting massive particle (WIMP). Stable particles in this mass
range frequently arise in extensions of the SM that address other issues, such as the hierarchy
problem. Perhaps the best studied examples of WIMPs are the neutralinos of supersymmetric
theories [75], where DM production occurs through the thermal freeze-out process described in
Sec. 1.2.2.

Much of the experimental effort in the search for DM is focused on WIMPs. The experiments
fall into three broad categories. Direct detection searches for collisions of DM particles in the
halo with nuclei in ultra-sensitive detectors. The present status and future prospects for these
experiments are reviewed in Ref. [76]. There have been many observed event excesses in the
last few years, but they have not been corroborated by competing groups. The second class of
experiments searches for energetic DM annihilation products from astrophysical sources, such
as the Galactic Center and dwarf galaxies. The products can be cosmic rays, diffuse or line-like
gamma rays or neutrinos. Both indirect and direct detection are subject to many astrophysical
uncertainties, such as DM substructure and poorly understood backgrounds [77, 78]. Finally,
there are accelerator based methods that seek to produce DM and associated particles in the
laboratory, as opposed to detecting relic DM. Since DM is stable and is expected to be weakly
interacting, it escapes the detector giving a “missing energy” signal. Searches for such signals
give a complementary probe of the “dark sector”, since astrophysical uncertainties are absent.
For a brief review of recent work in this direction see Ref. [79].
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Chapter 2

Aspects of Supersymmetry

2.1 Introduction
The search for solutions to problems in particle physics and cosmology described in the previous
chapter has lead to the development of a wide variety models for physics beyond the standard
models. Supersymmetry (SUSY) has emerged as one of the most fruitful of these ideas, pro-
viding a powerful framework for tackling problems of naturalness, dark matter, baryogenesis,
and gauge coupling unification [80]. Aside from these phenomenological benefits, SUSY en-
ables effective study of field theories in non-perturbative regimes through its dualities and
non-renormalization theorems (for a detailed introduction, see, e.g., Ref. [81]). For example,
it is possible to prove confinement in some theories with extended SUSY [82]. Finally, SUSY
provides a connection to most consistent formulations of string theory, which require super-
symmetry, at least at string scales.

All possible symmetries of the scattering (S) matrix have been analyzed in the “no-go”
theorem of Coleman and Mandula [83]. The Coleman-Mandula theorem states that the full
symmetry group of the S-matrix is necessarily the direct product of the Poincaré spacetime
symmetry and any internal symmetries. This means that it is not possible to augment spacetime
symmetries with, e.g., gauge symmetries. That is, the generators of the new symmetries must
be Poincaré scalars, carrying no spacetime indices. Otherwise, the S-matrix would be trivial
and no interactions would occur. The theorem assumes bosonic generators (those that obey
commutation relations) for the symmetry groups, leaving the possibility of anti-commuting
(fermionic) generators.1 In this sense, SUSY is the unique extension of the usual Poincaré
symmetry that incorporates fermionic generators into the group algebra [84]. Qualitatively, the
action of the SUSY generators Q on states of definite statistics is [80]

Q|boson⟩ = |fermion⟩, Q|fermion⟩ = |boson⟩. (2.1)
1Another assumption is the existence of a mass gap between the vacuum and first excited state, which does not

occur in conformal field theories (CFTs). However, CFTs do not contain particle-like excitations and, therefore,
are not appropriate for the description of particle physics near electroweak scales.
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In order for the above to make sense, Q must carry a fermionic (i.e., a spacetime) index.
Supersymmetry adds to the standard Poincaré algebra of translations, boosts and rotations,
the following relations2 [81, 85]

{QA
α , Q

B
β } = {Q†

α̇ A, Q
†
β̇ B

} = 0, (2.2)

[Pµ, Q
A
α ] = [Pµ, Q

†
α̇ A] = 0, (2.3)

{QA
α , Q

†
α̇ B} = −2σµαα̇Pµδ

A
B. (2.4)

Here α and α̇ are two-component spinor indices; A, B = 1, . . . ,N label different generators;
Pµ is the energy momentum operator (generator of spacetime translations); σµ = (1, σi) where
σi are the Pauli matrices. Theories with N > 1 are called extended supersymmetry. In these
theories fermions arise in vector pairs – one can always write down gauge invariant mass terms.
This is unlike the SM, which is a chiral theory. Thus N = 1 SUSY is considered to be more
applicable for extending the SM [81]. In the following, we work only with N = 1, so we can
drop the labels A and B.

Chapters 3, 4 and 6 make extensive use of supersymmetric model building. Therefore
this chapter is devoted to the introduction of some of the relevant techniques. The outline of
this chapter is as follows. In Sec. 2.2 we describe the superspace formalism for writing down
supersymmetric theories. In Sec. 2.3 we introduce the minimal supersymmetric extension of
the SM and discuss some benefits of SUSY. We discuss supersymmetry breaking in Sec. 2.4 and
review current status of experimental searches in Sec. 2.5.

2.2 Superspace
In the following chapters we will frequently need to construct supersymmetric models. In
this section we outline the formalism of superspace, which efficiently encodes interactions of
supersymmetric theories.

Poincaré invariance is guaranteed if we construct the action S from the unrestricted space-
time integral over a Lorentz scalar Lagrangian density L :

S =

∫
d4xL . (2.5)

Similarly, it is useful to implement supersymmetric invariance using an integral over a “su-
perspace”, where SUSY transformations are represented simply as translations. As with the
Lorentz group, it is useful to work with irreducible representations of the symmetry algebra.
Superspace facilitates this as well, by allowing us to write a supermultiplet (which contains
bosonic and fermionic degrees of freedom) as a single superfield. To achieve this, superspace
is parametrized by the spacetime coordinate xµ (mass dimension -1) and Grassman number
(anti-commuting) spinors θα and θ̄α̇ (mass dimension -1/2). A general function on superspace

2Here we show only a subset of the entire supersymmetry algebra. The complete set can be found in Ref. [85].
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can be expanded in a Taylor series that terminates due to the anti-commuting nature of θ and
θ̄. For example, a general Lorentz scalar superfield is given by [86]:

T = a+ θξ + θ2b+ θ̄χ̄+ θ̄σ̄µθvµ + θ2θ̄ζ̄ + θ̄2c+ θ̄2θη + θ4d, (2.6)

where Greek (Roman) letters denote fermions (bosons). Note that there are 8 complex bosonic
and 8 complex fermionic degrees of freedom. The superspace translations by an infinitesimal
spinor ϵα

θα → θα + ϵα,

θ̄α̇ → θ̄α̇ + ϵ̄α̇, (2.7)

xµ → xµ +∆µ,

with ∆µ = iϵσµθ̄ + iϵ̄σ̄µθ, generate the required supersymmetric transformations that mix
bosons with fermions. The corresponding generators are

Qα = i
∂

∂θα
− (σµθ̄)α∂µ, Q

α̇
= i

∂

∂θ̄α̇
− (σ̄µθ)α̇∂µ. (2.8)

An infinitesimal transformation is then3

δϵT = T (x+∆, θ + ϵ, θ̄ + ϵ̄)− T (x, θ, θ̄) = −i(ϵQ+ ϵQ)T, (2.9)

from which one can derive explicit transformation laws for all components of T . For example,
the lowest and highest components of the superfield T transform as [86]

a→ a+ ξϵ+ χ̄ϵ̄,

d→ d+
i

2
∂µ(ζ̄σ̄

µϵ+ ησµϵ̄). (2.10)

Note that the highest component of any superfield transforms by a total spacetime derivative.
Therefore any action of the form

S =

∫
d4xT |θ4 + h.c. =

∫
d4x

∫
d4θT + h.c. (2.11)

is invariant under supersymmetry transformations. In the last step we wrote the highest com-
ponent of T as an integral over the Grassmannian coordinates. Differentiation and integration
with Grassmannian numbers are reviewed in Refs. [80, 86].

The general superfield of Eq. (2.6) is a reducible representation of SUSY, meaning that
there are objects with fewer degrees of freedom that have simple supersymmetric transformation
properties [81, 86]. Irreducible representations are obtained by imposing restrictions on T . The

3Different authors use various normalizations for the SUSY transformations; see, e.g., Ref. [80].
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first relevant case is the chiral superfield Φ, defined by

D̄Φ = 0, (2.12)

where we introduced the SUSY covariant derivatives

Dα =
∂

∂θα
− i(σµθ̄)α∂µ, D̄

α̇ =
∂

∂θ̄α̇
− i(σ̄µθ)α̇∂µ. (2.13)

These operators obey

{Dα, Dβ} = 0, {Dα, D̄β̇} = 2iσµ
αβ̇
∂µ. (2.14)

The most general solution of Eq. (2.12) is conveniently written in terms of a new coordinate
yµ = xµ + iθ̄σ̄µθ (in which D̄α̇ = ∂/∂θ̄α̇):

Φ = ϕ(y) +
√
2θψ(y) + θ2F (y). (2.15)

The above expression can be related to the components of the general superfield, Eq. (2.6), by
expanding y. The chiral supermultiplet contains a complex scalar ϕ, a Weyl fermion ψ and a
complex scalar auxiliary field F . If ϕ has canonical mass dimension 1 (in 4D), then ψ and F have
dimensions 3/2 and 2, respectively. The only dependence on θ̄ enters through yµ. To construct
realistic theories (i.e., those with interactions), we take products of chiral superfields Φi like
ΦiΦj and ΦiΦjΦk; these superfields are also chiral, because the SUSY covariant derivatives
defined in Eq. (2.13) obey the Leibniz (product) rule. Moreover, by writing the supercharges
Q and Q from Eq. (2.8) in terms of y, one can easily show that

δϵϕ =
√
2ϵψ,

δϵψα = −i
√
2(σµϵ†)α∂µϕ+

√
2ϵαF,

δϵF = −i
√
2ϵ̄σ̄µ∂µψ. (2.16)

Note that the highest component of a chiral superfield transforms by a total derivative, so the
supersymmetry-invariant action can also include terms of the form

S ⊃
∫
d4x

∫
d2θW (Φ) + h.c., (2.17)

where W is a holomorphic function of chiral superfields called the superpotential. The super-
potential must have mass dimension 3, so the most general renormalizable expression for W
is

W =
1

2
m2

ijΦiΦj +
1

3
λijkΦiΦjΦk. (2.18)
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Interactions of the component fields can be derived from W by noting that [85]

ΦiΦj |θθ = ϕiFj + ϕjFi − ψiψj (2.19)

ΦiΦjΦk|θθ = Fiϕjϕk − ψiψjϕk + permutations, (2.20)

where the fields on the right hand side are functions of y only.
Finally, the canonically normalized kinetic terms are contained in

S ⊃
∫
d4θΦ†Φ = ∂µϕ∂

µϕ+ iψ̄σ̄µ∂µψ + F †F. (2.21)

Note that F does not have a kinetic term. In fact, its equation of motion is an algebraic (as
opposed to a differential) equation that can be used to eliminate F from the Lagrangian:

F †
i = −δW

δΦi

∣∣∣∣
Φi=ϕi

. (2.22)

Thus F is said to be an auxiliary field.
To implement gauge symmetries we require invariance of the action under local phase rota-

tions of the (matter) chiral superfields

Φ → eiqΩΦ, (2.23)

where q is the charge of Φ under an Abelian gauge symmetry. In order for the transformed field
to remain a chiral superfield, the transformation parameter, Ω, must also be a chiral superfield,
which follows from the definition in Eq. (2.12). Since Ω is a complex quantity, we absorb
the factor i into its definition. The kinetic terms of Eq. (2.21) are not invariant under this
transformation since

Φ†Φ → Φ†eq(Ω
†+Ω)Φ. (2.24)

As in non-supersymmetric field theory, we must introduce a compensating gauge field V and
include it into the kinetic terms, which gives rise to gauge interactions. The appropriate form
for the new gauge invariant kinetic energy is∫

d4θΦ†e2qV Φ, (2.25)

where V is real

V = V †, (2.26)
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and transforms as

V → V − 1

2
(Ω + Ω†) (2.27)

under a gauge transformation. The above transformation is much more general than a standard
gauge transformation. This freedom can be exploited to eliminate components of V . When
writing interactions in terms of component fields it is extremely helpful to use the Wess-Zumino
(WZ) gauge [85], in which

V = Aµθ̄σ̄
µθ + θ̄θ̄θλ+ θθθ̄λ̄+

1

2
θθθ̄θ̄D (2.28)

V 2 =
1

2
AµAµθθθ̄θ̄ (2.29)

V 3 = 0. (2.30)

Thus, the physical degrees of freedom of a vector superfield consist of a vector Aµ, Weyl fermion
λ and an auxiliary scalar fieldD. Even after this simplifying gauge choice, there remains freedom
to perform the standard gauge transformations, under which

Aµ → Aµ + ∂µα(x), (2.31)

while λ and D remain unchanged; here α corresponds to the imaginary part of the scalar
component of Ω, which follows from Eq. (2.27) [86]. In the WZ gauge, the gauge invariant
kinetic term of Eq. (2.25) gives∫

d4θΦ†e2qV Φ = (Dµϕ)
†Dµϕ+ iψ̄σ̄µDµψ + F †F −

√
2q(ϕ†ψλ+ h.c.) + qϕ†ϕD, (2.32)

where Dµ = ∂µ − iqAµ is the covariant derivative. Finally, the gauge kinetic terms are con-
structed from

Wα(y, θ) = −1

4
D̄2DαV = λα +Dθα +

i

2
Fµν(σ

µσ̄νθ)α + i(σµ∂µλ)αθθ, (2.33)

which is a chiral superfield. Gauge invariance ofWα is easily proven using commutation relations
of Dα and D̄β̇ in Eq. (2.14). Canonically normalized kinetic terms for the vector A and gaugino
λ come from∫

d2θ

(
1

4
− iθCP

32π2

)
WαWα + h.c. = −1

4
FµνF

µν + iλ̄σ̄µ∂µλ+
θCP
32π2

FµνF̃
µν +

1

2
D2. (2.34)

Note that D is an auxiliary field with no proper kinetic terms. Its equations of motion can be
solved algebraically:

D = −ϕ†iqiϕi (2.35)
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The θCP term for an Abelian theory is a total derivative and can be dropped. The above
discussion can be generalized to non-Abelian gauge symmetries [80, 85, 86].

To summarize, the Lagrangian density of a renormalizable supersymmetric Abelian gauge
theory can be written as

L =

∫
d4θΦ†

ie
2qiV Φi +

∫
d2θ

(
1

4
WαWα +W (Φ) + h.c.

)
. (2.36)

The interactions of the component fields can be read off from Eqs. (2.20), (2.32), and (2.34).
However, this form slightly obfuscates the scalar potential V of the model. A more useful
representation of the scalar potential is obtained by fixing the auxiliary fields Fi and D using
their equations of motion (Eqs. (2.22) and (2.35)), which gives

V = F †
i F

i +
1

2
D2 =

∣∣∣∣δWδΦi

∣∣∣∣2 + 1

2
g2

∣∣∣∣∣∑
i

ϕ†iqiϕ
i

∣∣∣∣∣
2

(2.37)

where in δW/δΦi is taken to be a function of the scalar components of chiral superfields Φj

only. For a non-Abelian gauge theory, the charge qi is replaced by the group generator T a

appropriate for the representation of Φi.

2.3 The Minimal Supersymmetric Standard Model
It is now easy to specify the simplest realistic supersymmetric theory: the Minimal Supersym-
metric Standard Model (MSSM). All SM matter fields are promoted to chiral superfields, while
gauge bosons become real gauge superfields. The superpotential of the model is

W = ucRYuQHu − dcRYdQHd − ecRYeLHd + µHuHd, (2.38)

and the superfields have the same gauge charges as their analogues in the SM (see Sec. 1.1.1).
One immediate novel feature is that we need two Higgs doublets Hd (hypercharge Y = −1/2)
and Hu (Y = +1/2) to write this superpotential. 4 In the SM, we were able to couple both
up and down type fermions to the same doublet by using the conjugate field H†. Since W is a
holomorphic function, complex conjugates do not appear – another Higgs doublet with opposite
hypercharge is required.5

Unlike the Yukawa interactions of Eq. (1.11), this superpotential is not the most general
renormalizable functional of the chiral superfields consistent with gauge symmetries. For ex-
ample, one can also write down the gauge invariant operators [80]

W∆B=1 =
1

2
λ′′ijkucRid

c
Rjd

c
Rk, W∆L=1 =

1

2
λijkLiLje

c
Rk + λ′ijkLiQjd

c
Rk + µ′iLiHu, (2.39)

4The doublets are sometimes called H1 and H2 instead of Hd and Hu, respectively.
5Another doublet is also needed for anomaly cancellation since they introduce chiral fermions [80].
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Figure 2.1: Renormalization group evolution of the gauge couplings in the SM (dashed
lines) and the MSSM (solid lines). In the MSSM gauge couplings appear to unify
at around µ ≈ 2× 1016 GeV.

which violate baryon and lepton numbers by one unit. For non-zero values of, e.g., λ′′ and λ,
these interactions lead to a large proton decay rate. Such dangerous terms can be forbidden
by R-parity, a new type of discrete Z2 symmetry with SM fields having charge +1 and their
superpartners having charge −1. In the superspace language, each superfield has the charge of
its lowest component. So, for example, the quark and lepton superfields are odd under R-parity,
while the Higgs and gauge multiplets are even. Thus terms in Eq. (2.39) are forbidden.

The physical content of R-parity is that superpartners are always produced in pairs and
that the lightest supersymmetric particle (LSP) is stable. If it is electrically neutral, it can
be a good dark matter candidate [75]. As was alluded to in the previous sections, the MSSM
has several other enticing features. First, in the supersymmetric limit, quadratically-divergent
quantum corrections to the physical Higgs boson mass cancel exactly among superpartners
via the mechanism described in Sec. 1.3.1. Second, the matter content in the MSSM is more
consistent with gauge coupling unification at the scale of ∼ 2× 1016 GeV, the so-called Grand
Unification (GUT) scale. The running of gauge coupling in the SM and MSSM is shown in
Fig. 2.1 by dashed and solid lines, respectively. The common value of the couplings at GUT
scale suggests that the SM gauge group descends from a simple gauge group such as SU(5)

with a single gauge coupling [27].
The spectrum of the MSSM consists of SM particles and their superpartners, along with the

extended Higgs sector. Electroweak symmetry breaking occurs when the two Higgs doublets
Hd and Hu acquire expectation values vd and vu; these are usually specified using the SM vev
v = v2d + v2u = 246.22GeV and tanβ = vu/vd. Symmetry breaking mixes the components of
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gauge-eigenstate superfields; the resulting particle content of the MSSM is shown in Tab. 2.1.
In addition to the SM-like Higgs, there are CP odd neutral and charged scalars. Each SM
fermion (4 degrees of freedom on-shell) has a pair of complex scalar superpartner “sfermions”.
The gluon has a strongly-interacting Majorana fermion partner - the gluino. Electroweak gauge
boson superpartners (gauginos) mix with Higgs superpartners (the Higgsinos) to create spin 1/2
neutralinos and charginos. In this table and below, we use the convention for R-type sfermions
that f̃ cR = f̃ †R. The details of electroweak symmetry breaking and MSSM mass spectrum
computation can be found in, e.g., Refs. [80, 81, 87] and (partially) in the following chapters.

Despite its attractive theoretical features, the exactly-supersymmetric MSSM is already
ruled out since it requires near degeneracy between SM states and their superpartners. This
can be seen through the “supertrace” [80, 88]

Str(m2) =
∑
s

(−1)2s(2s+ 1)Tr(m2
s) = 0, (2.40)

where the sum is over particles of spin s. This relation is valid for renormalizable theories, even
if supersymmetry is broken spontaneously at tree-level. For example, the contribution of first
generation quark superfields decouples, yielding [86]

Str(m2) = m2
ũR

+m2
ũL

+m2
d̃R

+m2
d̃L

− 2(m2
u +m2

d) = 0, (2.41)

which implies that the first generation squarks are at the MeV scale! Since the supertrace
relationship holds for renormalizable interactions, SUSY cannot be broken spontaneously in
the MSSM sector. We conclude that if supersymmetry has anything to do with nature, it must
be broken in a “hidden” sector, such that physics looks explicitly non-supersymmetric in the
MSSM, or “visible” sector. Supersymmetry-breaking effects must be communicated from the
hidden to the visible sector via quantum (loop) effects and non-renormalizable interactions.

Before discussing the possible mechanisms of supersymmetry breaking and its communica-
tion to the visible sector, we note that in the MSSM, renormalizable SUSY breaking effects can
be parametrized by [80]

Lsoft = −
(
M3g̃

ag̃a +M2W̃
aW̃ a +M1B̃B̃ + h.c.

)
−
(
ũ†RAuQ̃Hu − d̃†RAdQ̃Hd − ẽ†RAeL̃Hd + h.c.

)
− Q̃†m2

QQ̃− L̃†m2
LL̃− ũ†Rm

2
ũũR − d̃†Rm

2
d̃
d̃R − ẽ†Rm

2
ẽ ẽR

−m2
Hu

|Hu|2 −m2
Hd

|Hd|2 − (bHuHd + h.c.) , (2.42)

which is the most general SUSY-breaking Lagrangian with only positive mass dimension (soft)
operators. Taking operators with positive dimension ensures that we do not introduce any new
quadratic divergences (which SUSY was designed to cure in the first place). Using dimensional
analysis, it is easy to see that any 2 point function corrections arising from these couplings will
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Name Gauge Eigenstates Mass Eigenstates SU(3)C U(1)em R

Neutral Higgs H0
u, H

0
d h, H, A 1 0 +1

Charged Higgs H±
u , H

±
d H± 1 ±1 +1

up squarks ũL,R, c̃L,R, t̃L,R ũ1,2, c̃1,2, t̃1,2 3 +2/3 -1
down squarks d̃L,R, s̃L,R, b̃L,R d̃1,2, s̃1,2, b̃1,2 3 -1/3 -1

sleptons ẽL,R, µ̃L,R, τ̃L,R ẽ1,2, µ̃1,2, τ̃1,2 1 -1 -1
sneutrinos ν̃e, ν̃µ, ν̃τ same 1 0 -1

gluino g̃ same 8 0 -1
neutralinos H̃0

u, H̃
0
d , W̃

3, B̃ Ñi, i = 1, 2, 3, 4 1 0 -1
charginos H̃±

u , H̃
±
d , W̃

± C̃i, i = 1, 2 1 ±1 -1

Table 2.1: Particle content in the MSSM before and after electroweak symmetry breaking,
along with colour, electromagnetic charge and R-parity assignments.

have magnitude ∼ m2
soft, where msoft is the generic scale of couplings appearing in Eq. (2.42).

With these terms included the SM particles and their superpartners are no longer degenerate.
As a result the cancellation of the leading quadratic divergence is not exact; fortunately, the
remainder is proportional to m2

soft, instead of Λ2 as in Sec. 1.3.1. Thus, the hierarchy between
the EW and gravitational scales is reduced, assuming msoft ≪MPl.

In Eq. (2.42) the couplings m2
i , Ai are real and complex matrices in family space, respec-

tively. In total, there are more than 100 new parameters beyond those found in the SM [80, 89].
Therefore, studying the full parameter of the MSSM with generic soft breaking terms is in-
tractable. Moreover, arbitrary choices for these parameters generally suffer from phenomeno-
logical problems, such as flavour mixing and CP violation, which are severely constrained by,
e.g., bounds on rare decays such as µ → eγ and K − K oscillation measurements [80]. This
is known as the SUSY flavour problem. This motivates the search for a mechanism of super-
symmetry breaking, that can generate Eq. (2.42) and predict the various couplings in terms of
(hopefully) a small number of fundamental parameters. The proliferation of parameters can
also be seen as being advantageous, since there are many new possible CP-violating sources,
which is important for baryogenesis, as discussed in Sec. 1.3.2.

2.4 Supersymmetry Breaking and Supergravity

2.4.1 Global Supersymmetry Breaking
In the previous section we determined that if supersymmetry is realized in nature, it cannot
be an exact symmetry, since we do not observe any superpartners mass-degenerate with known
particles. In this section we discuss how to break supersymmetry spontaneously and how these
effects are communicated to the visible sector in realistic theories.

If supersymmetry is broken spontaneously, the vacuum |0⟩ is not invariant under SUSY
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transformations, that is

Qα|0⟩ ̸= 0, Qα̇|0⟩ ̸= 0. (2.43)

Our first goal is to determine whether a given model breaks SUSY. Using the supersymmetry
algebra, Eq. (2.4), we can express the Hamiltonian as

H =
1

4

(
Q1Q

†
1 +Q†

1Q1 +Q2Q
†
2 +Q†

2Q2

)
, (2.44)

so Eq. (2.43) implies

⟨0|H|0⟩ > 0 (2.45)

when supersymmetry is spontaneously broken. Since kinetic terms cannot have an expectation
value in a homogeneous vacuum, we conclude that the potential alone must have an expectation
value. The SUSY potential (see Eq. (2.37)) is positive definite, so ⟨V ⟩ > 0 implies either

F i ̸= 0 (F -term breaking), (2.46)

for some i or

Da ̸= 0 (D-term breaking). (2.47)

There is an alternative way to see that these are the conditions required for spontaneous SUSY
breaking, that will be useful when discussing supergravity. If the vacuum state is not invariant,
that is Eq. (2.43) is satisfied, we have

⟨0|δϵT |0⟩ ̸= 0, (2.48)

for some superfield T (either chiral or vector), where δϵT is defined in Eq. (2.9). Let us specialize
to the case where T is a chiral superfield. Looking at the transformation of the component fields,
Eq. (2.16), we see that only δϵψ can have a non-zero expectation value without breaking Lorentz
invariance6 when

√
2ϵαF ̸= 0. (2.49)

Thus we recover the condition for F -term SUSY breaking. The same analysis can be repeated
with a vector superfield to re-derive D-term breaking.

A simple renormalizable example of F -term breaking is the O’Raifeartaigh (OR) model [80,
6It is also possible to do this using a non-zero expectation value of a fermion bilinear [90].
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81, 91] with the superpotential

WOR = −k2Φ1 +mΦ2Φ3 +
y

2
Φ1Φ

2
3. (2.50)

The corresponding F -terms are

F1 = −k2 + y

2
(ϕ∗3)

2 (2.51)

F2 = mϕ∗3 (2.52)

F3 = mϕ∗2 + yϕ∗1ϕ
∗
2. (2.53)

In particular, we cannot simultaneously have F1 = 0 and F2 = 0, so ⟨V ⟩ > 0 and SUSY is
spontaneously broken. For example, in the vacuum where all scalar VEVs vanish, V = |F1|2 =
k4 > 0, as required by (2.45). To confirm that SUSY is broken, we can evaluate the spectrum
of the model, which consists of 6 real scalars with squared masses (assuming real m and k2)

0, 0, m2, m2, m2 ± yk2 (2.54)

and 3 Weyl fermions with mass squared

0, m2, m2, (2.55)

which demonstrates the mass splitting among spin 0 and spin 1/2 partners. Note that this
spectrum satisfies the supertrace relationship, Eq. (2.40). While the vanishing scalar masses
are lifted by quantum corrections [81], the massless fermion remains massless at all orders in
perturbation theory. The appearance of a massless fermion, the Goldstino, is a general feature
of spontaneous supersymmetry breaking, and is completely analogous to the appearance of
a Nambu-Goldstone boson in a theory with spontaneously broken continuous symmetry. The
difference in statistics is due to the fermionic nature of the SUSY generators. The existence of a
Goldstino in a general theory can also be seen from the fact that the linear combination [80, 86]

η = F iψi +
1√
2
Daλa (2.56)

is an eigenvector of the fermion mass matrix with eigenvalue 0.
The OR model relies on the existence of an explicit dimensionful parameter in the superpo-

tential, which some find unsatisfying, since the scale of SUSY breaking
√
F1 = k is effectively

put in by hand. This motivated the search for dynamical, non-perturbative mechanisms that
generate this scale from dimensionless parameters. For a recent review of such mechanisms see,
e.g., Refs. [92–94]. Quantitative discussion of non-perturbative processes is only made possi-
ble by the existence of dualities (weakly coupled descriptions of strongly coupled physics) and
holomorphy of the superpotential (which severely restricts the couplings that can appear in the
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action) [95].

2.4.2 Super-Higgs Mechanism and Supergravity
Phenomenological difficulties associated with a massless fermion aside, we will usually think
of SUSY descending from a string theoretic framework, where SUSY is realized as a local
symmetry [96]. In local supersymmetry, or supergravity (SUGRA), the Goldstino is not part
of the physical spectrum, but rather is absorbed as an extra polarization state of a “gauge
fermion” associated with SUGRA, the spin 3/2 gravitino (superpartner of the spin 2 graviton).
In the process, the gravitino becomes massive. This super-Higgs mechanism is analogous to
spontaneous breaking of (bosonic) SM gauge group SU(2)L × U(1)Y when W and Z bosons
acquire masses. Note that the gravitino mass, m3/2, must vanish in the supersymmetric limit,
as well as in the limit where gravity is completely decoupled (MPl → ∞). For F -term breaking,
this suggests that the gravitino mass must scale as [80]

m3/2 ∼
F

MPl
. (2.57)

The above relation can be made more precise. While the construction of the full SUGRA-
invariant action [90] is beyond the scope of this work, we will display some useful results. First,
because gravity is non-renormalizable, we cannot restrict ourselves to renormalizable “kinetic”
and superpotential terms. In the global SUSY limit, this means we must consider Lagrangian
densities of the form

L =

∫
d4θK(Φ†

ie
2qV ,Φj) +

∫
d2θ

(
1

4
fab(Φ)W

aW b +W (Φ) + h.c.
)
, (2.58)

where K, fab are arbitrary functions called the Kähler potential and gauge kinetic function [97];
note that fab must be a chiral superfield for the above to be SUSY invariant; here a and b are
adjoint group indices. The SUGRA potential can be expressed entirely in terms of a Kähler
function G

G =
1

M2
Pl
K + ln

(
|W |2

M6
Pl

)
(2.59)

and the gauge kinetic function fab as [90]

V =M4
Ple

G
(
Giȷ̄GiGȷ̄ − 3

)
+
g2

2
M4

Pl(Ref−1
ab )GiT

a
ijϕjGkT

b
klϕl, (2.60)

where

Gi =
∂G

∂ϕi
, Gı̄ =

∂G

∂ϕ∗i
, Giȷ̄ =

∂G

∂ϕi∂ϕ∗j
, (2.61)
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and Giȷ̄ is the matrix inverse of Giȷ̄. Equation (2.60) is the generalization of Eq. (2.37) to
local supersymmetry; the first and second terms correspond to F and D contributions in global
SUSY. Note that the potential of Eq. (2.60) is no longer positive-indefinite, so the global SUSY-
breaking criterion, Eq. (2.45), is no longer appropriate. We can still employ the alternative
condition, Eq. (2.48), from which it follows that either [90, 98]

Giȷ̄Gȷ̄ ̸= 0, (2.62)

or

Ref−1
ab GiT

b
ijϕj ̸= 0. (2.63)

These conditions generalize F - and D-term breaking, respectively, to supergravity. Both cases
require that there exists an i such that Gi ̸= 0. For example, for the canonical choice of the
Kähler potential

K = Φ†
iΦi, (2.64)

we have Gȷ̄ = ϕj/M
2
Pl + (W †)−1(∂jW )†, Giȷ̄ = δijM

2
Pl, so Eq. (2.62) simplifies to

M2
Pl
δW

δΦi

∣∣∣∣
Φi=ϕj

+ϕ∗iW ̸= 0. (2.65)

Note that in the limit MPl → ∞ we recover the global SUSY F -term breaking condition,
Eq. (2.46) (via the equation of motion, Eq. (2.22)).

We can now describe how the gravitino obtains its mass. After SUSY breaking, the SUGRA
Lagrangian density contains a mixing term between the gravitino Ψµ and the Goldstino Ψ =

(η, η†)T 7

i

2
MPle

G/2ΨLµγ
µΨL + h.c., (2.66)

where G is the expectation of Eq. (2.59) in the SUSY breaking vacuum. Just like in the case
of bosonic local symmetries, there exists a “unitary” gauge (here a local SUSY transformation)
that removes this mixing, leaving behind only the physical propagating state – the massive
gravitino [90]. The gravitino mass parameter can be read off from the remaining mass term

i

2
MPle

G/2Ψµσ
µνΨν , (2.67)

7Here we have momentarily switched to 4 component notation because the Rarita-Schwinger equation, the
equation of motion for a spin 3/2 field, is most easily specified using Dirac spinors [99].
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so

m3/2 = eG/2MPl = eK/2M2
Pl
|W |
M2

Pl
. (2.68)

This result can be simplified, if, in addition to canonical kinetic terms, we also assume a
vanishing cosmological constant [86]

m3/2 ≈
Ftot√
3MPl

, (2.69)

where

|Ftot|2 =

∣∣∣∣∣δWδΦi

∣∣∣∣
Φi=ϕj

+
ϕ∗iW

M2
Pl

∣∣∣∣∣
2

(2.70)

parametrizes the total amount of supersymmetry breaking from non-vanishing F -terms. The
gravitino mass is often used as a proxy for the scale of supersymmetry breaking.

2.4.3 Models of Supersymmetry Breaking
In Sec. 2.3 we determined that phenomenologically viable models of SUSY must be softly
broken. We parametrized this breaking by a generic Lagrangian with many new parameters.
We noted that arbitrary choices of these parameters lead to phenomenological problems. We
now seek to relate these parameters to a fundamental theory of spontaneous SUSY breaking.

Suppose that SUSY is broken in a hidden sector (HS) by a collection of non-MSSM fields
that couple weakly to the MSSM via some messenger fields. There are three well-studied classes
of SUSY breaking mechanisms, which differ in the nature of the messengers.

Even in the absence of any coupling between the SUSY-breaking and visible sectors, gravity
can mediate these effects to the MSSM. We will see that this scenario yields

msoft ∼ m3/2 (gravity mediation). (2.71)

Note that this implies (via Eq. (2.57)) that the scale of SUSY breaking must be

F ∼ msoftMPl ∼ (1011 GeV)2, (2.72)

where we assumed that msoft ∼ 1TeV.
We demonstrate the appearance of soft SUSY breaking terms in the visible sector using a

simple example. Suppose the SUSY-breaking sector has superpotential WH(Zr), a function of
HS fields Zr. Furthermore, assume there is no explicit coupling between Zr and visible sector
fields Φi, so the full superpotential takes the form

W =WV (Φi) +WH(Zr), (2.73)
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where WV is the superpotential in the visible sector. Taking the minimal Kähler function and
using Eq. (2.60) yields the potential

V = eK/M2
Pl

(∣∣∣∣ϕ∗iWM2
Pl

+
∂WV

∂ϕi

∣∣∣∣2 + ∣∣∣∣z∗rWM2
Pl

+
∂WH

∂zr

∣∣∣∣2 − 3
|W |2

M2
Pl

)
. (2.74)

Note that even though we started with no explicit coupling between the visible and hidden
sectors, the supergravity potential automatically generates mixings between the two. When
the HS fields acquire SUSY-breaking expectation values parametrized as [97]

WH = µM2
Pl, zr = arMPl,

∂WH

∂zr
= crµMPl, (2.75)

and one finds the gravitino mass (using Eq. (2.68))

m3/2 = e|ar|
2/2µ. (2.76)

Here µ has dimensions of energy, while ar and cr are dimensionless. These substitutions allow
one to expand Eq. (2.74) in m3/2/MPl ≪ 1:

V ≈

∣∣∣∣∣∂ŴV

∂ϕi

∣∣∣∣∣
2

+m2
3/2|ϕi|

2 +

(
m3/2

[
|ar|2 + cra

∗
r − 3

]
ŴV +m3/2ϕi

∂ŴV

∂ϕi
+ h.c.

)
, (2.77)

where ŴV = exp(|ar|2/2)WV . The first term matches the global SUSY F -term contribution
(see Eq. (2.37)). The following terms are soft SUSY-breaking parameters, including a universal
mass for all visible scalars, bi- and tri-linear interactions, all set by the scale m3/2. These
operators match onto the general soft SUSY-breaking Lagrangian of Eq. (2.42). At this point
we are only missing the gaugino mass terms, which arise from the term

1

4
MPle

G/2∂f
∗
ab

∂z∗ȷ̄
Gȷ̄kGkλ

aλb, (2.78)

in the SUGRA Lagrangian [90]. Note that this requires a non-minimal gauge kinetic function
fab; assuming these effects are generated by SUGRA interactions, this term yields a gaugino
mass m1/2 ∼ m3/2. The scenario just described is called minimal supergravity (mSUGRA) or
constrained MSSM (cMSSM) and has the virtue of having very few parameters. Moreover, the
universal scalar mass suppresses dangerous flavour and CP-violating effects that plague generic
SUSY-breaking parameters. For these reasons, much experimental and phenomenological effort
has been spent on constraining and excluding mSUGRA [80], despite the fact that the extremely
strong assumptions (namely the form of the Kähler potential and the superpotential) are not
well-motivated theoretically. For more general choices of K and W , scalar masses are no longer
universal, and once again flavour observables become a problem.

One way to avoid flavour problems is to ensure that SUSY-breaking is communicated to
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the MSSM in a way that does not mix different generations. This can be achieved using
messengers (new chiral superfields) that are charged under SU(3)C × SU(2)L × U(1)Y . Since
gauge interactions do not violate flavour at tree-level, we expect the resulting soft terms to be
phenomenologically viable. This mechanism is known as gauge mediation. Consider a pair of
chiral superfields Φ and Φ̄ that are charged under SU(3)C × SU(2)L × U(1)Y and that couple
directly to a field X whose vev breaks SUSY:

W ⊃ XΦ̄Φ, (2.79)

where X = M + θ2F . The SUSY breaking vev F splits the masses of the messenger scalars
and fermions, but these effects are communicated to the MSSM only indirectly via loops of
messenger and gauge fields. For example, the gaugino mass arises at one loop, while soft scalar
mass squared parameters appear at two loops from diagrams like those shown in Fig. 2.2. Thus,
we expect the leading contributions to gaugino and scalar masses to be [100]

Mg̃ ∼ g2

16π2
F

M
, m2

f̃
∼
(

g2

16π2
F

M

)2

. (2.80)

In either case, the messengers couple to MSSM through gauge interactions and the resulting
soft parameters are flavour diagonal, alleviating the SUSY flavour problem. Interestingly, in
order to obtain the precise leading order (in F/M2) predictions for the soft parameters, one
does not need to evaluate diagrams like those in Fig. 2.2 explicitly. Instead, these results are
completely determined by the beta functions and anomalous dimensions of the theory [101].
Due to the non-renormalization of the superpotential [81], X dependence may only enter in
the Kähler potential and gauge kinetic function, i.e., via renormalizations of matter and gauge
kinetic terms, respectively. The former is related to anomalous dimensions, while the latter to
beta functions of gauge couplings. One can then use the reality of the Kähler potential and
the holomorphy of the gauge kinetic function to determine their dependence on X and thereby
extract the soft parameters which arise from terms like∫

d4θ

(
X†X

M2

)
Q†Q, (2.81)

and ∫
d2θ

(
X

M

)
W aW a + h.c. (2.82)

in the Lagrangian. For example, for the gaugino masses this procedure gives

Ma =
Ng2a
16π2

F

M
, (2.83)

where N is the number of messenger fields and where a labels the gauge group. The scalar soft
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masses and cubic A-terms are found to depend only on beta function coefficients and group
theoretic invariants [80].

From Eqs. (2.57) and (2.80) it is clear that

msoft ∼
g2

16π2

(
MPl
M

)
m3/2 (gauge mediation), (2.84)

so msoft ≫ m3/2 unless M ∼ MPl. In the latter limit, however, gravitational effects become
important and the flavour problem is reintroduced. Thus, in gauge mediation, the gravitino is
usually the LSP and it is much lighter than the rest of superpartners. This has several interesting
collider (e.g., displaced vertices) and cosmological implications due to its weak (gravitational
strength) interactions [80, 100].

Our last example of theories of SUSY breaking is motivated by extra-dimensional construc-
tions. When discussing gravity mediation we mentioned that, in general, because gravitational
interactions are flavour blind, there is a severe flavour problem due to inter-generational mixing
of SM superpartners. This is because the Kähler potential that gives rise canonical kinetic
terms, Eq. (2.64), is not radiatively stable; 8 in the presence of gravitational interactions at
high scales one expects [81]

K =

(
δij +

cijX
†X

M2
Pl

)
Φ†
iΦj , (2.85)

where X is the chiral superfield with the SUSY-breaking vev. The coefficients cij are not
diagonal and O(1); such terms arise from integrating out heavy string states that do not nec-
essarily respect flavour symmetries [102]. These undesirable terms can be suppressed if the
SUSY-breaking sector is physically sequestered from the visible sector in an extra dimension.

The above scenario is implemented as follows [102]. The MSSM and SUSY-breaking sectors
are embedded into different 3-branes, a distance R apart in an extra dimension. It is then
natural to have a “separable” superpotential of the form given in Eq. (2.73). Moreover, if
supergravity (and heavy string) states are the only degrees of freedom allowed to propagate
in the bulk of the extra dimension, the effects of SUSY-breaking on the MSSM brane will be
suppressed by

e−M5R, (2.86)

where M5 is the higher-dimensional Planck scale. Thus, if the size of the extra dimension is
such that M5R≫ 1, the undesirable flavour violating effects will be suppressed.

In the above limit, the leading order effects arise due to anomalous global symmetries of the
classical SUGRA action [103]. In the derivation of the low-energy effective theory for SUGRA
with canonically normalized gravitational kinetic terms, one is forced to make a certain set field

8The superpotential is not renormalized in perturbation theory, so the special form of Eq. (2.73) is radiatively
stable.
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redefinitions. While the classical action is invariant under these, the path integral measure is
not, and as a result, new terms in the effective action are generated at one loop, similar to the
more familiar chiral anomalies of quantum field theory. The resulting terms in the action depend
on auxiliary fields of the supergravity multiplet. Since the supergravity multiplet couples to the
SUSY-breaking sector, these auxiliary fields can inherit a SUSY-breaking vev and give rise to
soft terms. This scenario is called Anomaly Mediated Supersymmetry Breaking (AMSB) and
the resulting soft terms have magnitude

msoft ∼
g2

16π2
F

MPl
∼ g2

16π2
m3/2 (anomaly mediation). (2.87)

An efficient way to derive these effects is to use the super-conformal compensator formal-
ism [100, 102]. The soft parameters are completely determined in terms of gauge beta functions
and anomalous dimensions. For example, gaugino masses are given by [81]

Ma =
bag

2
a

16π2
F

MPl
, (2.88)

where a labels the gauge group and ba is the corresponding β function coefficient. The sfermion
masses depend on the anomalous dimension matrix γij [80]

(m2
f̃
)ij =

1

2
µ
dγij
dµ

F 2

M2
Pl
. (2.89)

Note that while Eq. (2.89) contains non-flavour diagonal contributions, they are proportional
to MSSM Yukawa couplings and therefore do not introduce significant flavour violation beyond
what is already present in the SM. While AMSB is very predictive (all masses are determined
in terms of a single parameter F/M2

Pl), it is not a complete model, since Eq. (2.89) can give
rise to tachyonic sfermion masses. For example, for the the right-handed selectron we have [80]

m2
ẽR

= − 99g41
3200π2

F 2

M2
Pl
. (2.90)

This is a general problem for matter that is charged under a gauge group that is not asymp-
totically free. Thus, in general AMSB requires additional dynamics to be a viable theory of
supersymmetry breaking and the resulting spectrum of superpartners depends on the nature of
these modifications.

There is additional motivation to consider AMSB contributions to soft masses. In the
absence of extra-dimensional sequestering between the MSSM and the SUSY-breaking sectors,
normal supergravity contributions to the soft scalar masses are important, since there is no
symmetry that can forbid terms like Eq. (2.81), since X†X is invariant under all symmetries.
In contrast, gaugino mass terms of the form of Eq. (2.82) require the SUSY-breaking field X

to be a gauge singlet, which can be difficult to realize, especially in theories with dynamical

44



Figure 2.2: Example contributions to soft SUSY-breaking parameters from heavy mes-
senger loops (bold lines) to MSSM gauginos (left) and sfermions (right) in gauge
mediation.

supersymmetry breaking [102]. Thus, it is natural for these terms to be forbidden, and as a
result, the leading contributions to gaugino masses come from anomaly mediation. This gives
rise to split spectra, with light gauginos (since Eq. (2.88) is loop suppressed relative to F/MPl)
and heavy scalars with mf̃ ∼ F/MPl. This class of models will be the subject of Chapter 3.

The above discussion of SUSY breaking scenarios is far from an exhaustive list. Each case
described above suffers from drawbacks: the flavour problem in gravity mediation, potentially
dangerous gravitino cosmology in gauge mediation and tachyonic slepton masses in anomaly me-
diation. Thus, fully satisfactory mechanisms of SUSY breaking often require further dynamics
beyond the basic scenarios.

2.5 Status of Experimental Searches for Supersymmetry
The most important states in the MSSM spectrum for maintaining naturalness (i.e., small
fine-tuning of the Higgs mass parameter) are the stop and the gluino. The stop cancels the
quadratic divergence in the Higgs self-energy associated with the top, while the gluino has
indirect effects through large radiative corrections to the squark masses [80]. As a result, these
states are two of the primary targets for direct searches for SUSY at colliders. With no signals
reported, the most stringent constraints (as of March 2015) come from the ATLAS and CMS
experiments at the LHC based on 20 fb−1 of data.9 Typical production mechanisms of squarks
and gluinos at the LHC are shown in Fig. 2.3. Note that in R-parity conserving SUSY, the
superpartners are produced in pairs. Once produced, squarks undergo a cascade of decays that
eventually terminates with the LSP, here taken to be the lightest neutralino Ñ1. The neutralino
escapes the detector, resulting in “missing” momentum transverse to the beam direction. The
precise limits on stop masses depend on the spectrum of a given model (especially the mass
of the LSP); for generic values of m

Ñ1
, ATLAS and CMS exclude mt̃ ≲ 700GeV (see, e.g.,

Refs. [104, 105]). 10 The production cross section for gluinos and first generation squarks is
greater than for stops, resulting in bounds that reach mg̃ ∼ 1400GeV and mq̃ ∼ 1500GeV
[105–107]. Dominant production of sleptons and “electroweakinos” (charginos and neutralinos)
occurs through electroweak interactions and has correspondingly smaller rates, compared to
the QCD production of gluinos and squarks [80]. The resulting bounds probe LSP masses of

9The LHC is the culmination of the energy frontier searches for SUSY. For a brief summary of earlier results
from LEP and Tevatron see Ref. [80].

10Near certain degenerate regimes, e.g., mt̃1
= mt +mÑ1

, the bounds can be significantly weaker.
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Figure 2.3: Typical LHC production mechanisms for gluinos and squarks (left) and stops
(right).

∼ 350GeV, lightest chargino masses of ∼ 700GeV and slepton masses of ∼ 300GeV [108, 109].

Supersymmetric particles can also have indirect effects on measurements of processes that
are already present in the SM. For example, various Higgs production and decay rates are
modified in the MSSM. Neither ATLAS nor CMS observe statistically significant deviations
from SM predictions [27]. This can be interpreted as a lower limit on the mass of additional
MSSM states, such that their effects on Higgs rates are suppressed. Alternatively, this result can
be seen as an “alignment” limit of the theory, where MSSM Higgs boson interactions effectively
reduce to those of the SM, without the need for heavy MSSM states [110]. However, even if the
tree-level couplings of the lightest MSSM Higgs are the same as in the SM, the rates for loop
induced processes, namely h ↔ gg, Zγ, γγ can still be modified by O(10%) in the presence
of light stops, staus (≲ 350GeV) and charginos (≲ 250GeV) (see, e.g., Refs. [111, 112]). With
3000 fb−1 of data, the LHC will be able to probe Higgs couplings to gluons, photons and Z

boson with a precision of about ≲ 5% [113]. The complementarity between direct searches
for superpartners and precise measurements of Higgs boson properties is discussed in detail in
Ref. [114].

Flavour physics experiments can also be extremely sensitive indirect probes of supersym-
metric states [115, 116]. For example, the process Bs → µ+µ− has been recently seen at LHCb,
with the observed rate in agreement with the SM prediction [117]. However, the SM rate is so
small (due to loop, CKM and helicity suppressions – see the left graph of Fig. 2.4) that generic,
TeV scale, new physics contributions would give a larger result. Agreement of the measured
rate with SM therefore places strong constraints on the scale of new physics. In particular, in
the MSSM additional contributions to this amplitude arise from the exchange of new scalars
as shown in the right graph of Fig. 2.4. However, within the MSSM with a particular flavour
structure for the soft terms, these constraints are important only in the large tanβ regime,
rendering them very model dependent [116].

A variety of other low energy precision probes of SUSY are available [118]. Some of the most
important tests are measurements of electric dipole moments (EDMs), which are sensitive to
CP violation (crucial for baryogenesis) and flavour structure in the MSSM. One of the strongest
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Figure 2.5: Representative contributions to electron EDM in the MSSM at one (left) and
two (right) loops.

limits to date has been recently obtained by ACME [119] for the electron EDM. The exact limit
on superpartner masses depends on which loop order the EDM contributions occur at; as shown
in Fig. 2.5 there are both one and two loop diagrams contributing to fermion EDMs. In the
absence of cancellations among different phases (i.e., tuning), the ACME result translates into
a lower bound on msoft of 1 to 3 TeV [119].

Finally, models with DM candidates can be probed on the cosmological frontier with direct
and indirect detection. These were described in Sec. 1.3.3 and will be discussed in more detail
in Chapters 3 and 4. Complementarity between direct and indirect detection and LHC searches
is discussed in Ref. [120].
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Chapter 3

Moduli Induced Lightest
Superpartner Problem

3.1 Introduction
String theory is the only known consistent framework that can incorporate both the Standard
Model of particle physics and General Relativity (GR) in a theory that is free of ultraviolet
divergences. Instead of point particles, the fundamental degrees of freedom are strings, whose
finite size regulates UV behaviour. Consistency suggests the existence of extra dimensions (10
or 11 in total), while low energy observations indicate that we live in a 3 + 1 dimensional
world. The extra dimensions must then be small and nearly unobservable. Compactification
leads to a landscape of ∼ 10500 vacua [53], each differing by the shape of the extra dimensions.
Each vacuum corresponds to vastly different physics at low energy, with distinct particle and
symmetry content. The lack of a unique vacuum, or at least an easily identifiable class of
physical vacua, has been a major criticism of string theory. At the same time, this landscape
may provide an anthropic explanation for problems such as the smallness of the cosmological
constant.

While difficult to test at every day energies or even at the LHC, viable string vacua have
generic features that are important at energies far below the Planck scale. First, many string
models enjoy spacetime supersymmetry.1 Nature at low energies is not supersymmetric. How-
ever, if the scale of supersymmetry breaking is not too high, superpartners can be observed
directly at colliders or as cosmological relics from the early Universe.

The second feature is the presence of moduli – light (compared to MPl) scalar fields with only
higher-dimensional couplings to other light species. In string theory, each vacuum is labelled
by a set of continuous parameters which determine the size and shape of the compactified
dimensions [121–124]. These parameters are expectation values of the moduli. While the
couplings of moduli to matter are model dependent, they are always non-renormalizable, i.e.,

1Exceptions exist but these often have tachyons in the spectrum [53].
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they are suppressed by a heavy scale Λ. For moduli originating from compactification, Λ ∼
MPl = 2.435×1018 GeV. Such a coupling is too weak to be probed directly at present, but it can
have significant implications for the cosmological history of the Universe, the mass spectrum of
the supersymmetric partners of the SM, and the density of dark matter today [123, 125, 126].

In Sections 3.1.1 and 3.1.2 we justify two key moduli properties that we will repeatedly
make use of. These properties are

1. Interactions of moduli with matter occur through higher-dimensional operators suppressed
by a heavy scale,

2. The mass of the lightest modulus is typically on the order of m3/2, the supersymmetry
breaking scale.

The latter point is closely connected to supergravity and supersymmetry breaking which is
discussed in detail in Sec. 2.4.

A modulus field can alter the standard cosmology if it is significantly displaced from the
minimum of its potential in the early Universe, as can occur following primordial inflation [127].
The modulus will be trapped by Hubble damping until H ∼ mφ, at which point it will begin
to oscillate. The energy density of these oscillations dilutes in the same way as non-relativistic
matter, and can easily come to dominate the expansion of the Universe.2 This will continue
until the modulus decays at time t ∼ Γ−1

φ , transferring the remaining oscillation energy into
radiation. At this point, called reheating, the radiation temperature is approximately [133]

TRH ∼ (5MeV)

(
MPl
Λ

)( mφ

100 TeV

)3/2
, (3.1)

where Λ is the heavy mass scale characterizing the coupling of the modulus to light matter. To
avoid disrupting primordial nucleosynthesis, the reheating temperature should be greater than
about TRH ≳ 5MeV [134], and this places a lower bound on the modulus mass.

Acceptable reheating from string moduli therefore suggests mφ ∼ m3/2 ≳ 100 TeV. This
has important implications for the masses of the SM superpartner fields. Surveying the most
popular mechanisms of supersymmetry breaking mediation described in Sec. 2.4.3, the typical
size of the superpartner masses is

msoft ∼


m3/2 gravity mediation(

LMPl
M

)
m3/2 gauge mediation

Lm3/2 anomaly mediation
(3.2)

where L ∼ g2/(16π2) is a typical loop factor and M ≪ MPl/L is the mass of the gauge
messengers. Of these mechanisms, only anomaly mediation (AMSB) allows for superpartners
that are light enough to be directly observable at the LHC [102, 135]. Contributions to the

2Such an early matter-dominated phase might also leave an observable signal in gravitational waves at multiple
frequencies [128] or modify cosmological observables [129–132].
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soft terms of similar size can also be generated by the moduli themselves [136, 137], or other
sources [138–141]. However, for these AMSB and AMSB-like contributions to be dominant, the
gravity-mediated contributions must be suppressed [102], which is non-trivial for the scalar soft
masses [142–146]. An interesting intermediate scenario is mini-split supersymmetry where the
dominant scalar soft masses come from direct gravity mediation with msoft ∼ m3/2, while the
gaugino soft masses are AMSB-like [147–152].

Moduli reheating can also modify dark matter production [133, 153–156]. A standard
weakly-interacting massive particle (WIMP) χ will undergo thermal freeze-out at temperatures
near Tfo ∼ mχ/20 as shown in Sec. 1.2.2. If this is larger than the reheating temperature,
the WIMP density will be strongly diluted by the entropy generated from moduli decays. On
the other hand, DM can be created non-thermally as moduli decay products. A compelling
picture of non-thermal dark matter arises very naturally for string-like moduli and an AMSB-
like superpartner mass spectrum [133]. The lightest (viable) superpartner (LSP) in this case
tends to be a wino-like neutralino. These annihilate too efficiently to give the observed relic
density through thermal freeze-out [157–159]. However, with moduli domination and reheating,
the wino LSP can be created non-thermally in moduli decays, and the correct DM density is
obtained for M2 ∼ 200 GeV and mφ ∼ 3000 TeV.

This scenario works precisely because the wino annihilation cross section is larger than what
is needed for thermal freeze-out. Unfortunately, such enhanced annihilation rates are strongly
constrained by gamma-ray observations of the galactic centre by Fermi and HESS, and the
non-thermal wino is ruled out even for very conservative assumptions about the DM profile in
the inner galaxy (e.g., cored isothermal) [158, 159]. A wino-like LSP can be consistent with
these bounds if it is only a subleading component of the total DM density. Using the AMSB
relation for M2 in terms of m3/2, this forces mφ/m3/2 ≳ 100, significantly greater than the
generic expectation [159]. The problem is even worse for other neutralino LSP species, since
these annihilate less efficiently and an even larger value of mφ ≫ m3/2 is needed to obtain
an acceptable relic density. Furthermore, mφ > 2m3/2 also allows the modulus field to decay
to pairs of gravitinos. The width for this decay is typically similar to the total width to SM
superpartners [160–163]. For mφ ≫ m3/2 > 30 TeV, the gravitinos produced this way will
decay to particle-superpartner pairs before nucleosynthesis but after the modulus decays, and
recreate the same LSP density problem that forced mφ ≫ m3/2 in the first place.

These results suggest a degree of tension between reheating by string-motivated moduli
(with mφ ∼ m3/2 and Λ ∼ MPl) and the existence of a stable TeV-scale LSP in the minimal
supersymmetric standard model (MSSM). This tension can be resolved if all relevant moduli
have properties that are slightly different from the naïve expectation; for example mφ ≫ m3/2

and BR(φ → ψ3/2ψ3/2) ≪ 1 [163, 164], an enhanced modulus decay rate with mφ ∼ m3/2 and
Λ < MPl [165], or a suppressed modulus branching fraction into superpartners [166]. Given the
challenges and uncertainties associated with moduli stabilization in string theory, we focus on
what seem to be more generic moduli and we investigate a second approach: extensions of the
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MSSM that contain new LSP candidates with smaller relic densities or that are more difficult
to detect than their MSSM counterparts.

In this chapter we investigate extensions of the MSSM containing additional hidden gauge
sectors as a way to avoid the moduli-induced LSP problem of the MSSM. Such gauge extensions
arise frequently in grand-unified theories [167] and string compactifications [168, 169]. We
assume that the dominant mediation of supersymmetry breaking to gauginos is proportional
to the corresponding gauge coupling, as in anomaly or gauge mediation, allowing the hidden
sector gauginos to be lighter than those of the MSSM if the former have a smaller coupling
constant [170–172]. We also focus on the case of a single light modulus field with mφ ∼ m3/2

and Λ ∼MPl, although similar results are expected to hold for multiple moduli or for reheating
by gravitino decays.

This chapter is organized as follows. In Sec. 3.1.1 we review the origin of moduli from
compactification and highlight their properties. We discuss moduli masses in Sec. 3.1.2. In
Sec. 3.1.3 we review moduli cosmology and the resulting non-thermal production of LSPs. Next,
in Sec. 3.2 we examine in more detail the tension between moduli reheating and a stable MSSM
LSP. In the subsequent three sections we present three extensions of the MSSM containing new
LSP candidates and examine their abundances and signals following moduli reheating. The
first extension, discussed in Sec. 3.3, comprises a minimal supersymmetric U(1)x hidden sector.
We find that this setup allows for a hidden sector LSP with a relic density lower than that of
the wino and which is small enough to evade the current bounds from indirect detection. In
Sec. 3.4 we extend the U(1)x hidden sector to include an asymmetric dark matter candidate and
find that it is able to saturate the entire observed DM relic density while avoiding constraints
from indirect detection. In Sec. 3.5 we investigate a pure non-Abelian hidden sector, and
show that the corresponding gaugino LSP can provide an acceptable relic density and avoid
constraints from indirect detection, although it is also very strongly constrained by its effect on
structure formation and the cosmic microwave background. Finally, Sec. 3.6 is reserved for our
conclusions. This chapter is based on work published in Ref. [1] in collaboration with Jonathan
Kozaczuk, Arjun Menon and David Morrissey.

3.1.1 Moduli from Compactification
As a toy example of a modulus field associated with compactification, consider (non-supersymmetric)
5D gravity - the Kaluza-Klein model, which attempted to unify GR with electromagnetism [173,
174]. The Einstein-Hilbert action in 5D is

S5 = −1

2
M3

5

∫
S1×R1,3

d5x
√
−GR5[G], (3.3)
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where we parametrize the 5D metric as [51, 96]

GMN =

(
φ−1/3(gµν − φAµAν) −φ2/3Aν

−φ2/3Aµ −φ2/3

)
. (3.4)

Here M5 is the 5D Planck mass, G is the determinant of the metric, R5 is the 5D Ricci scalar
and M,N = 1, . . . 5, and µ, ν = 1, . . . , 4. The fields in Eq. (3.4) are functions of xµ only, and
are constant over the fifth dimension x5. This means we are considering only the zero modes in
the Kaluza-Klein expansion; higher modes receive masses on the order of the compactification
scale and can be integrated out of the low-energy dynamics. Using this metric parametrization
we can rewrite S5 as an effective 4D action

S5 = −1

2
(2πRM3

5 )

∫
d4x

√
−g
(
R4[g] +

1

4
φFµνF

µν − 1

6
φ−2∂µφ∂

µφ,

)
(3.5)

where R is the radius of the compactified extra dimension, R4 is the 4D Ricci scalar (a functional
of gµν only), Fµν = ∂µAν − ∂νAµ. We can now identify 2πRM3

5 =M2
Pl. Finally, using the field

redefinitions φ → exp(−
√
6φ/MPl) and F → MPlF/

√
2, we get canonical kinetic terms for φ

and F

S5 = −1

2
M2

Pl

∫
d4x

√
−gR4[g] +

∫
d4x

√
−g
(
−1

4
FµνF

µνe−
√
6φ/MPl +

1

2
∂µφ∂

µφ

)
. (3.6)

The scalar φ is the desired modulus. Note that its interactions with the vector field F are
non-renormalizable and are suppressed by the heavy scale MPl.

The compactified action of Eq. (3.6) illustrates the second important property of moduli:
there is no tree-level potential for φ. Without additional dynamics these fields remain massless.
Because different values of the fields correspond to physically distinct vacua, in a quantum
theory one wants to stabilize moduli at particular values. Moreover, at low energies these
new massless degrees of freedom can be inconsistent with precise tests of gravitational inter-
actions (see Ref. [58] and references therein). Moduli stabilization is therefore necessary. It
is usually achieved through the inclusion of background fluxes (gauge fields) and/or gaugino
condensation [175, 176]. In the next section, we argue that the lightest modulus mass is often
on the order of supersymmetry breaking scale, independently of the stabilization mechanism.

The above example is a simple illustration of a much more complicated process. In realistic
string theory compactifications, there are six (or seven) compact dimensions curled up into a
(possibly) complex manifold. As a result, there can be O(100) moduli, all of which must be
stabilized [175].

3.1.2 Moduli Masses
Moduli stabilization can be divided into two categories. In supersymmetric stabilization, the
modulus φ acquires a mass without relying on SUSY breaking, such that mφ ≫ m3/2 is possible.
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However, once the potential is tuned to reproduce the small cosmological constant, one finds
that the mass of the lightest modulus is parametrically related to m3/2 [177], as we argue
below. Even if this is not true and mφ ≫ m3/2, moduli decay to gravitinos which generally
cause similar cosmological problems. This point is discussed in more detail in Sec. 3.1.6. The
second case corresponds to the modulus acquiring a mass mφ ∼ m3/2 from SUSY breaking
effects.

Moduli masses can be easily related to m3/2 for the simple (i.e., somewhat unrealistic) case
of the canonical Kähler potential of Eq. (2.64). Assuming the moduli superfields Φi have no
superpotential, the SUGRA potential, Eq. (2.60), for these fields reads [154]

V ⊃M2
Ple

G|φi|2 = m2
3/2|φi|2, (3.7)

where G the expectation value of the Kähler function defined in Eq. (2.59); we have used
Eq. (2.68) in the last step to rewrite this term after SUSY breaking. This shows that the mod-
ulus mass is on the order of the SUSY-breaking scale. Note that the precise relationship depends
on the form of the Kähler potential and the possible existence of non-perturbative contributions
to the superpotential (see, e.g., Ref. [178] for examples). Alternative, more rigorous derivations
of the mφ ∼ m3/2 relationship for more general models can be found in Refs. [123, 124].

The above result relied on the absence of a modulus potential at the supersymmetric level
and a canonical Kähler function. Non-perturbative effects from instantons and fermion con-
densation can give rise to a modulus superpotential of the form [179]

W =W0 − Λ3e−bΦ/MPl , (3.8)

where the parameters W0, Λ and b can be determined in string theory [177]. It is usually as-
sumed that |W0| ≪ Λ3 ∼M3

Pl, while b ≤ 2π and depends on the nature of the non-perturbative
effects. Moreover, moduli generally have logarithmic Kähler functions like

K = −3 ln(Φ + Φ†), (3.9)

with the functional form related to the volume of the compact dimensions parametrized by
Φ [177]. The resulting scalar potential gives rise to a supersymmetric anti-de Sitter (AdS)
vacuum with a negative cosmological constant and the modulus stabilized with an expectation
value ⟨φ⟩ ∼ b−1MPl ln(Λ3/W0). The energy density of this vacuum is VAdS ∼ −W 2

0 /M
2
Pl,

while the mass of the fluctuations is mφ ∼ exp(G/2)⟨φ⟩. Our vacuum is observed to be
de Sitter (dS), with a small positive cosmological constant, so a realistic theory must uplift
the AdS minimum to yield a positive vacuum energy density. This can be achieved through
supersymmetry breaking, which gives a positive contribution to the energy density, as was shown
explicitly for the O’Raifeartaigh model in Sec. 2.4; the contribution of the SUSY breaking
sector to the vacuum energy was found to be VOR ∼ κ4, where κ2 determines the scale of
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the F -term vev. The requirement of a tiny positive cosmological constant then forces κ ∼
(W0/MPl)

1/2. This relates the scales of SUSY breaking and moduli stabilization, such that
the modulus mass is now given by mφ ∼ m3/2 ln(Λ3/W0). Note that the modulus mass is
enhanced only logarithmically relative to m3/2. More complicated superpotentials can give rise
to a larger hierarchy between mφ and m3/2, but this typically requires additional tuning of
parameters [177].

Once the modulus develops a non-trivial potential, it can significantly modify the cosmo-
logical evolution of the Universe, as we discuss in the following sections.

3.1.3 Moduli Reheating
A modulus field φ is very likely to develop a large initial displacement from the minimum of its
potential before or during the course of primordial inflation [127, 180]. Hubble damping will
trap the modulus until H ∼ mφ, at which point it will start to oscillate coherently. This is shown
in the left plot of Fig. 3.1, where we take an initial displacement of O(MPl) and mφ = 100TeV.
For even moderate initial displacements, the energy density in these oscillations will eventually
dominate over radiation, as shown in the right plot of Fig. 3.1. The time evolution of the
average modulus oscillation energy density for H < mφ is given by [40]

ρ̇φ + 3Hρφ + Γφρφ = 0, (3.10)

where Γφ is the modulus decay rate. For a modulus field with MPl-suppressed couplings

Γφ =
c

4π

m3
φ

M2
Pl
, (3.11)

where c is a model-dependent number with a typical range of 10−3 < c < 100 [159].3 As the
modulus oscillates, it decays to radiation with the radiation density becoming dominant once
more when H ∼ Γφ.

Thermodynamics in the early Universe was described in Sec. 1.2.2. Moduli decays inject
energy into the plasma, which can be accounted for by straightforward modifications of the
equations in that section. For example, the evolution of the radiation density ρR follows from
the First Law of thermodynamics as in Eq. (1.65):

dρR
dt

+ 3H(ρR + pR) = Γφρφ, (3.12)

where pR is the radiation pressure. The right hand side is the rate of energy injection into
the bath, of which moduli decays are assumed to be the dominant source. Contributions from
DM annihilation can also be included, but these do not make much difference when the DM is

3 Values of c much larger than this can be interpreted as corresponding to a suppression scale Λ < MPl.
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Figure 3.1: (Left) Solution of the modulus equation of motion for an initial displacement
of MPl and modulus mass mφ = 100TeV. (Right) Evolution of the energy density
in the modulus oscillations (solid) and radiation (dashed). Because the oscillation
energy density dilutes slower with the expansion of the Universe, it will eventually
dominate the energy density in radiation.

lighter than the modulus field. The radiation density is used to define the temperature through

ρR =
π2

30
g∗(T )T

4, (3.13)

where g∗(T ) is the effective number of relativistic degrees of freedom [181]. Reheating is said to
occur when radiation becomes the dominant energy component of the Universe, corresponding
to H(TRH) ≃ Γφ. Following Ref. [133], we define the reheating temperature TRH to be:

TRH =

(
90

π2g∗(TRH)

)1/4√
ΓφMPl (3.14)

≃ (5.6 MeV) c1/2
(
10.75

g∗

)1/4 ( mφ

100 TeV

)3/2
.

Here MPl ≃ 2.4×1018 GeV is the reduced Planck mass. The reheating temperature TRH should
exceed 5MeV to preserve the predictions of primordial nucleosynthesis [134].4 For c = 1 this
implies that mφ ≳ 100 TeV.

4 We have adjusted for our slightly different definition of TRH relative to Ref. [134] in the quoted bound.
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3.1.4 Non-Thermal Dark Matter
Moduli decays can also produce stable massive particles, such as a self-conjugate dark matter
candidate χ [133]. This is described by

dnχ
dt

+ 3Hnχ =
NχΓφ

mφ
ρφ − ⟨σv⟩(n2χ − n2eq), (3.15)

where ⟨σv⟩ is the thermally averaged annihilation cross-section, neq = gTm2
χK2(mχ/T )/2π

2 is
the equilibrium number density, with g being the number of internal degrees of freedom and Nχ

is the average number of χ particles produced per modulus decay.5 Values of Nχ ∼ 1 are usually
expected when χ is the LSP [178, 183]. Together, Eqs. (3.10, 3.12, 3.15) and the Friedmann
equation form a closed set of equations for the system.

The general solution of these equations interpolates between three distinct limits [133, 153,
155]. For reheating temperatures above the thermal freeze out temperature Tfo of χ, the final
χ density approaches the thermal value. When TRH < Tfo, annihilation may or may not be
significant depending on ⟨σv⟩ and Nχ. Smaller values imply negligible χ annihilation after
reheating and a final relic density of about [155]

Ωχh
2 ≃ 3

4
Nχ

(
mχ

mφ

)
TRH

(
s0

ρc/h2

)
(3.16)

≃ (1100)Nχ

( mχ

100 GeV

)( TRH
5 MeV

)(
100TeV
mφ

)
,

where s0 is the entropy density today and ρc/h
2 is the critical density. Larger values of Nχ or

⟨σv⟩ lead to significant annihilation among the χ during the reheating process, giving a relic
density of [154, 155]

Ωχh
2 ≃ mχΓφ

⟨σv⟩sRH

(
s0

ρc/h2

)
(3.17)

≃ (0.2)

(
mχ/20

TRH

)(
3× 10−26cm3/s

⟨σv⟩

)(
10.75

g∗

)1/2

≃ (200) c−1/2
( mχ

100 GeV

)(3× 10−26cm3/s
⟨σv⟩

)(
100 TeV
mφ

)3/2(10.75

g∗

)1/4

.

We emphasize that the expressions of Eqs. (3.16,3.17) are only approximations valid to within
a factor of order unity. In what follows we solve this system numerically using the methods of
Refs. [184, 185]. For TRH < Tfo and Nχ not too small, the reannihilation scenario is usually the
relevant one [155].

5This includes χ produced in direct decays, as well as rescattering [182] and decay cascades.
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3.1.5 Scaling Relations
It is instructive to look at how the relation of Eq. (3.17) scales with the relevant couplings and
masses [170]. Motivated by the MSSM wino in anomaly mediation, we will assume that the
dark matter mass scales with a coupling gχ according to

mχ = rχ
g2χ

(4π)2
m3/2, (3.18)

for some parameter rχ. We will assume further that the dark matter annihilation cross section
scales with the coupling as well,

⟨σv⟩ = kχ
4π

g4χ
m2

χ

, (3.19)

for some parameter kχ. For an AMSB-like wino, the r and k parameters are [133]

r2 ≃ 1, (3.20)

k2 ≃ 2
[1− (mW /M2)

2]3/2

[2− (mW /M2)2]2
→ 1/2, (3.21)

with gχ = g2 ≃ 0.65, and the last expression neglects coannihilation with charginos, which can
be suppressed at low reheating temperatures [155].

With these assumptions, the thermal χ abundance is

Ωth
χ h

2 ≃ (5.5× 10−3)
r2χ
kχ

(
mχ/Tfo

20

)( m3/2

100 TeV

)2(106.75

g∗

)1/2

(3.22)

independent of the specific mass or coupling. This is no longer true of non-thermal DM produced
by moduli decays, where the mass dependence is different. Rewriting Eq. (3.17) subject to the
assumptions of Eqs. (3.18,3.19), we obtain

Ωχh
2 ≃ 15 c−1/2

(
r3χ/kχ

r32/k2

) (
gχ
g2

)2(m3/2

mφ

)3 ( mφ

100 TeV

)3/2(10.75

g∗

)1/4

. (3.23)

This result shows that reducing the coupling or the modulus mass suppresses the non-thermal
relic density. It also makes clear that mφ > m3/2 is needed to obtain an acceptable wino
abundance within the reannihilation regime.

3.1.6 Gravitino Production and Decay
Our previous discussion of moduli reheating did not take gravitinos into account. Moduli
can also decay to gravitinos if mφ > 2m3/2, and the corresponding branching ratio BR3/2 is
expected to be on the order of unity unless some additional structure is present [160–163]. For
mφ ∼ 2m3/2, the gravitinos will decay at about the same time as the moduli and our previous
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results for the moduli-only case are expected to apply here as well. On the other hand, if
mφ ≫ m3/2 and BR3/2 is not too small, the gravitinos produced by decaying moduli are likely
to come to dominate the energy density of the Universe before they themselves decay. We
examine this possibility here, and show that our results for moduli decay can be applied to this
scenario as well after a simple reinterpretation of parameters.

If the gravitino is not the LSP, it will decay to lighter particle-superpartner pairs with

Γ3/2 =
d

4π

m3
3/2

M2
Pl
, (3.24)

where d = 193/96 if all MSSM final states are open and d = (1+3+8)/8 = 3/2 if only gaugino
modes are available [186]. These decays will not appreciably disrupt BBN for m3/2 ≳ 30 TeV,
but they can produce a significant amount of LSP dark matter.

For mφ ≫ m3/2, the modulus will decay much earlier than the gravitino (unless c ≪ d).
The gravitinos produced by moduli decays at time ti ≃ Γ−1

φ will be initially relativistic with
p/m3/2 = mφ/2m3/2. Their momentum will redshift with the expansion of the Universe, and
they will become non-relativistic at time

tnr ≃
d

4c

(
m3/2

mφ

)
Γ−1
3/2, (3.25)

where we have assumed that the Universe is radiation-dominated after moduli reheating. Thus,
the gravitinos produced in moduli decays become non-relativistic long before they decay for
m3/2/mφ ≪ 1 (and c ∼ d). While tnr < t < Γ−1

3/2, the gravitinos will behave like matter. The
quantity m3/2n3/2 begins to exceed the (non-gravitino) radiation density at time

t ≃ d

c

(
1− BR3/2

BR3/2

)2(m3/2

mφ

)3

Γ−1
3/2 (3.26)

Again, this is much earlier than the gravitino decay time for m3/2/mφ ≪ 1 unless BR3/2 or c/d
is suppressed.6

The scenario that emerges for m3/2 ≪ mφ, c ∼ d, and BR3/2 ∼ 1 is very similar to a second
stage of moduli reheating: the gravitinos produced in moduli decays become non-relativistic
and come to dominate the energy density of the Universe until they decay at time t ≃ Γ−1

3/2, at
which point they reheat the Universe again. Dark matter will also be created by the gravitino
decays, with at least one LSP produced per decay (assuming R-parity conservation). The large
gravitino density from moduli decays can interfere with nucleosynthesis or produce too much
dark matter, and is sometimes called the moduli-induced gravitino problem [160–163].

We will not discuss gravitinos much for the remainder of this chapter. Instead, we will focus
mainly on the case of mφ ∼ m3/2, where the presence of gravitinos does not appreciably change
our results [155]. However, our findings can also be applied to scenarios with mφ ≫ m3/2, c ∼ d,

6We have assumed radiation domination here, but a similar result holds for matter domination.
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and BR3/2 ∼ 1 with the moduli decays reinterpreted as gravitino decays (i.e., mφ → m3/2,
c→ d, Nχ → 1).

3.2 Moduli Reheating and the MSSM
The discussion of Sec. 3.1.3 shows that the LSP relic density is enhanced in the moduli-decay
scenario relative to thermal freeze out unless the fraction of decays producing LSPs Nχ is
very small. In Ref. [159], this observation was used to put a very strong constraint on wino-
like LSPs produced by moduli decays. In this section we apply these results to more general
MSSM neutralino LSPs, and we argue that the MSSM has a moduli-induced LSP problem for
mφ ∼ m3/2, c ∼ 1, and Nχ not too small. See also Refs. [187, 188] for related analyses.

Consider first a wino-like LSP with an AMSB-like mass. Direct searches at the LHC imply
that the mass must lie above mχ0

1
≳ 270 GeV if it is nearly pure wino [189], although smaller

masses down to the LEP limit mχ±
1
≳ 104 GeV are possible if it has moderate mixing with a

Higgsino [190]. Examining Eq. (3.23), the moduli-induced wino relic density (in the reannihila-
tion regime) tends to be larger than the observed DM density, and indirect detection places an
even stronger bound of Ωχh

2 ≲ 0.05 [159]. Fixing mχ = 270 GeV, a relic density of this size can
be obtained with the very optimistic combination of parameter values c = 100, mφ = 2m3/2,
and rχ/r2 ≲ 0.3. Such a reduction in rχ/r2 can arise from supersymmetry-breaking threshold
corrections [191, 192] or moduli-induced effects [136, 137], but requires a significant accidental
cancellation relative to the already-small AMSB value of r2 [159].

A small effective value of rχ < r2 could also arise from |µ| ≪ |M2| and a corresponding
Higgsino-like LSP. The reduction in the relic density in this case is countered by a smaller
annihilation cross section: for µ ≫ mW , heavy scalars, and neglecting coannihilation we have
gχ ≃ g2, rχ = (µ/M2), and kχ ≃ (3+2t2W + t4W )/128 ≃ 0.03 [157] (where tW ≡ tan θW , with θW
the Weinberg angle). To investigate this possibility in more detail, we set mφ/m3/2 = 1, 10, 100

and c = 1, and compute the moduli-induced LSP relic density for various values of µ/M2 and
m3/2. In doing so, we fix M2 to its AMSB value with c = 1 and mφ = m3/2, and we compute
the annihilation cross section in DarkSUSY [193, 194]. For the other MSSM parameters, we
set tanβ = 10, mA = 1000 GeV, m̃ = 2000 GeV for all scalars, and we fix At such that
mh = 126± 1 GeV.

Fixing mφ/m3/2 = 1, 10 we find no Higgsino-like points with Ωχh
2 ≤ 0.12, i.e., for values

which would appear to be generically expected from string theory.7 Smaller relic densities are
found for mφ/m3/2 = 100, and the results of our scan for this ratio are shown in Fig. 3.2. The
LSP relic density is smaller than the total DM density to the left and below the solid black line,
while the grey dashed contours show the LSP mass. To the right of the red line, the reheating
temperature lies above the freeze-out temperature and the resulting density is thermal. The
coloured dashed contours correspond to bounds from indirect detection for different DM density

7 We also fail to find any such points for c = 100 and mφ = 2m3/2.
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Figure 3.2: Relic density and constraints from indirect detection (ID) for a mixed
Higgsino-wino LSP produced by moduli reheating as a function of µ/M2 and m3/2.
The modulus parameters are taken to be mφ/m3/2 = 100, c = 1, and Nχ = 1.
Contours of the LSP mass in GeV are given by the dashed grey lines. The solid
black contours show where Ωχ0

1
= Ωcdm. The solid red line shows where TRH = Tfo:

to the left of it we have TRH > Tfo; to the right TRH < Tfo and the production
is non-thermal. The remaining lines correspond to bounds from ID for different
galactic DM distributions, and the area below and to the right of these lines is
excluded.

profiles, excluding everything below and to the right of them.8 This figure also shows a funnel
region with very low relic density along the mχ0

1
= 500GeV contour corresponding to an s-

channel A0 pseudoscalar resonance.
In general, for mφ ∼ m3/2, we find that a Higgsino-like LSP also tends to produce too much

dark matter when it is created in moduli reheating. As for the wino, this can be avoided for
larger values of mφ/m3/2, as demonstrated by Fig. 3.2, although one must still ensure that the
very heavy modulus does not decay significantly to gravitinos.

These results can be extended to an arbitrary MSSM neutralino LSP. In general, mixing
with a bino will further suppress the annihilation cross section, leading to an overproduction of
dark matter for mφ ∼ m3/2. The only loophole we can see is a very strong enhancement of the
annihilation from a resonance or coannihilation [43]. This requires a very close mass degeneracy
either between 2mχ and the mass of the resonant state, or between mχ and the coannihilating
state, with coannihilation further suppressed at low reheating temperatures. The only other
viable LSP candidates in the MSSM are the sneutrinos. These annihilate about as efficiently as
a Higgsino-like LSP [195], and therefore also tend to be overproduced. The MSSM sneutrinos
also have a very large scattering cross section with nuclei, and bounds from direct detection

8The details of our indirect detection analysis will be presented in the next section.
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permit them to be only a small fraction of the total DM density [196].
Having expanded slightly on the findings of Ref. [159], we conclude that a neutral MSSM LSP

is typically overproduced in moduli reheating unless mφ ≫ m3/2 (with tiny BR3/2), Nχ ≪ 1,
or the decay coefficient c ≫ 100 is very large. None of these features appears to be generic in
string compactifications. We call this the moduli-induced MSSM LSP problem. For this reason,
we turn next to extensions of the MSSM with more general LSP candidates that can potentially
avoid this problem.

3.3 Variation #1: Hidden U(1)

The first extension of the MSSM that we consider consists of a hidden U(1)x vector multiplet
X and a pair of hidden chiral multiplets H and H ′ with charges xH,H′ = ±1. Motivated by
the scaling relation of Eq. (3.23), we take the characteristic gauge coupling and mass scale of
the hidden sector to be significantly less than electroweak, along the lines of Refs. [197–199].
The LSP of the extended theory will therefore be the lightest hidden neutralino. We also
assume that the only low-energy interaction between the hidden and visible sectors is gauge
kinetic mixing. Among other things, this allows the lightest MSSM superpartner to decay to
the hidden sector. In this section we the investigate the contribution of the hidden LSP to
the dark matter density following moduli reheating as well as the corresponding bounds from
indirect and direct detection.

3.3.1 Setup and Spectrum
The hidden superpotential is taken to be

WHS = −µ′HH ′, (3.27)

and the soft supersymmetry breaking terms are

−Lsoft ⊃ m2
H |H|2 +m2

H′ |H ′|2 +
(
−b′HH ′ +

1

2
MxX̃X̃ + h.c.

)
. (3.28)

The only interaction with the MSSM comes from supersymmetric gauge kinetic mixing in the
form

L ⊃
∫
d2θ

ϵ

2
XαBα, (3.29)

where X and B are the U(1)x and U(1)Y field strength superfields, respectively.
We assume that the gaugino mass is given by its AMSB value [198]

Mx = bx
g2x

(4π)2
m3/2, (3.30)
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where bx = 2 and gx is the U(1)x gauge coupling. Since pure AMSB does not provide a viable
scalar spectrum in the MSSM, we do not impose AMSB values on the scalar soft terms in the
hidden sector. However, we do assume that they (and µ′) are of similar magnitude to their
AMSB values, on the order of (g2x/16π2)m3/2. This could arise if the dynamics that leads to a
viable MSSM spectrum also operates in the hidden sector and that its effects are proportional
to the corresponding gauge coupling.

For a range of values of µ′ and the soft terms, the scalar components of H and H ′ will
develop vacuum expectation values,

⟨H⟩ = η sin ζ, ⟨H ′⟩ = η cos ζ. (3.31)

Correspondingly, the hidden vector boson Xµ receives a mass

mx =
√
2gxη. (3.32)

The scalar mass eigenstates after U(1)x breaking consist of two CP-even states hx1,2 (with hx1
the lighter of the two) and the CP-odd state Ax. The fermionic mass eigenstates are mixtures
of the hidden Higgsinos and the U(1)x gaugino, and we label them in order of increasing mass
as χx

1,2,3. Full mass matrices for all these states can be found in Refs. [200, 201].

3.3.2 Decays to and from the Hidden Sector
Kinetic mixing allows the lightest MSSM neutralino to decay to the hidden sector. It can also
induce some of the hidden states to decay back to the SM. We discuss the relevant decay modes
here.

The MSSM neutralinos connect to the hidden sector through the bino. For AMSB gaugino
masses, the bino soft mass is significantly heavier than that of the wino, and the lightest
neutralino χ0

1 tends to be nearly pure wino. Even so, it will have a small bino admixture given
by the mass mixing matrix element N11. In the wino limit, it can be approximated by [157]

|N11| =
cW sWm

2
Z(M2 + sin 2βµ)

(M1 −M2)(µ2 −M2
2 )

. (3.33)

With this mixing, the lightest MSSM neutralino will decay to the hidden sector through the
channels χ0

1 → χx
k + Sx, where χx

k are the hidden neutralinos and Sx = hx1,2, A
x, Xµ are the

hidden bosons, with total width [200]

Γχ0
1
=
ϵ2g2x|N11|2

4π
mχ0

1
(3.34)

= (1.3× 10−16 sec)−1|N11|2
( ϵ

10−4

)2 ( gx
0.1

)2( mχ0
1

100 GeV

)
.

The corresponding χ0
1 lifetime should be less than about τ ≲ 0.1 s to avoid disrupting nucle-
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osynthesis. This occurs readily for MSSM gaugino masses below the TeV scale and ϵ not too
small.

In the hidden sector, the χx
1 neutralino will be stable while the other states will ultimately

decay to it or to the SM. To ensure that χx
1 is able to annihilate efficiently, it should also be

heavier than the vector Xµ. This implies that the hidden vector will decay to the SM through
kinetic mixing, or via X → hx1A

x. For mx > 2me, the vector decay width to the SM is

Γ(X → SM + SM) = R′αϵ
2mx

3
, (3.35)

where R′ is a constant on the order of unity that depends on the number of available final
states. This decay is much faster than τ = 0.1 s for ϵ ≳ 4× 10−10 and mx ≳ 2mµ.

Of the remaining hidden states, the longest-lived is typically the lightest CP-even scalar hx1 .
The structure of the hidden sector mirrors that of the MSSM, and this scalar is always lighter
than the vector at tree level. Loop corrections are not expected to change this at weak coupling.
As a result, the hx1 decays exclusively to the SM through mixing with the MSSM Higgs scalars
(via a Higgs portal coupling induced by gauge kinetic mixing) or through a vector loop [200].
This decay is typically faster than τ = 0.1 s for ϵ ≳ 2× 10−4 and mhx

1
≳ 2mµ [201].

Light hidden sectors of this variety are strongly constrained by fixed-target and precision
experiments [202, 203]. For dominant vector decays to the SM, the strongest limits for mx >

2mµ come from the recent BaBar dark photon search [204], and limit ϵ ≲ 5 × 10−4. As the
vector mass approaches mx = 20 MeV, fixed-target searches become relevant and constrain
the mixing ϵ to extremely small values [202, 203]. In this analysis, we will typically choose
mx > 20 MeV and ϵ ∼ 10−4 so that the hidden sector is consistent with existing searches.

3.3.3 Hidden Dark Matter from Moduli
Moduli decays are expected to produce both visible and hidden particles and reheat both
sectors. The superpartners created by moduli decays will all eventually cascade down to the
hidden neutralino LSP. Kinetic mixing can allow the hidden LSP to thermalize by scattering
elastically with the SM background through the exchange of X vector bosons. The rate of
kinetic equilibration depends on the typical energy at which the LSP is created, the reheating
temperature, and the mass and couplings in the hidden sector [155]. For optimistic parameter
values we find that it is faster than the Hubble rate for TRH ≳ 5 MeV, and we will assume here
that such thermalization occurs.

If the net rate of superpartner production in moduli decays is unsuppressed and the χx
1

annihilation cross section is moderate, the χx
1 LSPs will undergo additional annihilation to

produce a final relic density as described in Eq. (3.17). The relevant annihilation modes of the
LSP are χx

1χ
x
1 → hx1h

x
1 , Xh

x
1 , XX. Computing the corresponding annihilation rates using the

method of Ref. [42] near T ∼ TRH, we find that the XX final state typically dominates provided
it is open, as we will assume here. Using these rates, we compute the relic abundance of χx

1 by
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Figure 3.3: Contours of the hidden neutralino χx
1 mass in GeV (dashed grey) and moduli-

generated relic abundance Ωχh
2 (solid red) as a function of of µ′/Mx and m3/2.

The moduli parameters are taken to be mφ = m3/2, c = 1, and Nχ = 1, with the
hidden-sector parameters as described in the text.

numerically solving the system of equations presented in Sec. 3.1.3. In doing so, the decays of
the MSSM LSP and all hidden states are treated as being prompt.

Before presenting our numerical results, it is instructive to examine the parametric depen-
dence of the approximate solution of Eq. (3.17). Writing

µ′ = ξ Mx, (3.36)

and focusing on a hidden Higgsino-like LSP with ξ ≤ 1, we obtain gχ = gx and rχ = 2ξ

in Eq. (3.23). Thus, smaller values of ξ and gx are expected to produce decreased χx
1 relic

abundances.
The results of a full numerical analysis are illustrated in Fig. 3.3, where we show the contours

of the final χx
1 abundance (solid red) and DM mass (dashed grey) in the ξ−m3/2 plane for mφ =

m3/2, c = 1, and Nχ = 1. The range of m3/2 considered corresponds to M2 ∈ [100, 1000] GeV,
and the hidden sector parameters are taken to be gx = 0.1, tan ζ = 10, and mx = 0.2 GeV,
mAx = 10 GeV. The shape of the abundance contours in Fig. 3.3 is in agreement with the
scaling predicted by Eq. (3.23). We also see that ξ = µ′/Mx < 1 is typically needed to avoid
creating too much dark matter, and this implies some degree of fine tuning for hidden-sector
symmetry breaking. Larger values of ξ are allowed when the moduli decay parameter c is greater
than unity, since this leads to a higher reheating temperature and more efficient reannihilation.
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3.3.4 Constraints from Indirect Detection
While this extension of the MSSM can yield an acceptable hidden neutralino relic density
from moduli reheating, it is also constrained by indirect detection (ID) searches for DM.9 The
pair annihilation of hidden neutralinos can produce continuum photons at tree level from cas-
cades induced by χx

1χ
x
1 → XX with X → ff̄ , as well as photon lines at loop level through

kinetic mixing with the photon and the Z. These signals have been searched for by a num-
ber of gamma-ray telescopes, and limits have been placed on the corresponding gamma-ray
fluxes. We examine here the constraints on the χx

1 state from observations of the galactic cen-
tre (GC) gamma ray continuum by the Fermi Large Area Telescope (Fermi-LAT) [205], as well
as from observations of the diffuse photon flux by the INTEGRAL [206], COMPTEL [207],
EGRET [208, 209], and Fermi [210] experiments. For the GeV-scale dark matter masses we
are considering, these observations are expected to give the strongest constraints [211, 212].10

We also study bounds from the effects of DM annihilation during recombination on the cosmic
microwave background (CMB) [213, 214].

The continuum photon flux from χx
1 pair annihilation into hidden vectors is given by

dΦγ

dEγ
=

⟨σv⟩χχ→XX

8πm2
χ

dN tot
γ

dEγ
×
∫
dl ρ2(l), (3.37)

where ⟨σv⟩χχ→XX is the thermally averaged annihilation rate at present, ρ(l) is the dark mat-
ter density along the line of sight l, and dN tot

γ /dEγ is the total differential photon yield per
annihilation, defined as

dN tot
γ

dEγ
≡
∑
f

BRf
dNf

γ

dEγ
(3.38)

where BRf is the branching fraction of the XX state into the final state f .
In our calculations, we use the results of Refs. [215, 216] to estimate the partial yields

dNf
γ /dEγ by interpolating between the results for the values of mχ and mχ/mx listed in these

studies. For the dark matter density profile, we consider four distributions that span the
range of reasonable possibilities: Navarro-Frenk-White (NFW) [217], Einasto [218, 219], con-

9 Constraints from direct detection are not relevant; the χx
1 LSP is a Majorana fermion, and scatters off nuclei

mainly through a suppressed Higgs mixing coupling [201].
10We have also examined constraints from monochromatic photon line searches and found the continuum

constraints significantly more stringent for the small values of ϵ allowed by fixed target experiments.
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tracted [211], and cored NFW [211]. These take the forms

ρ(r) ∝



[
r
Rs

(
1 + r

Rs

)2]−1

(NFW)

e
−2/α

[(
r
Rs

)α
−1

]
(Einasto)[(

r
Rs

)γ (
1 + r

Rs

)3−γ
]−1

(contracted)[
rc+(r−rc) Θ(r−rc)

Rs

(
1 + rc+(r−rc) Θ(r−rc)

Rs

)2]−1

(cored)

. (3.39)

Here, r is the radial distance from the GC and Θ is a step function. Following Refs. [159, 211], we
fix the scale radius to be Rs = 20 kpc and the Einasto parameter α = 0.17. For the contracted
profile we set γ = 1.4 and for the cored profile we set the core radius to be rc = 1 kpc, as
in Ref. [211]. In all four cases, we fix the overall normalization such that ρ(r = 8.5 kpc) =

0.3 GeV/cm3.
Using these halo profiles, we are able to compute the gamma-ray fluxes from hidden dark

matter created in moduli decays and compare them to limits derived from observations of
the GC and the diffuse gamma-ray background. For the GC signal, we use the limits on
⟨σv⟩/m2

χ

∫ Emax
Emin

dEγ dN
tot
γ /dEγ computed in Ref. [211] in several energy bins [Emin,i, Emax,i] and

each of the four DM profiles described above. For the diffuse gamma ray background, we use
the flux limits compiled and computed in Ref. [212].

In addition to measurements of cosmic gamma rays, observations of the CMB also provide a
significant limit on DM annihilation [213, 214]. The energy released by dark matter annihilation
around the time of recombination will distort the last scattering surface, and hence affect the
CMB anisotropies. The limit derived from this effect is [220–222]

f
Ω2
χ

Ω2
cdm

⟨σv⟩CMB ≤ (2.42× 10−27 cm3/s)
( mχ

GeV

)
, (3.40)

where ⟨σv⟩CMB is the thermally averaged cross section during recombination and f is a constant
efficiency factor parametrizing the fraction of energy transferred to the photon-baryon fluid,
which can typically range from f ≈ 0.2−1.0 [222]. We will vary f across this range to illustrate
its effect on the resulting constraint.

These observations put very strong constraints on hidden dark matter when it is produced
in moduli decays. The corresponding ID and CMB bounds are shown in Fig. 3.4 in the m3/2−gx
plane. We fix the moduli parameters to mφ = m3/2 and c = 1 in the left panel and mφ = 2m3/2

and c = 10 in the right. The relevant hidden-sector parameters are taken to be ξ = 0.1 and
mx = mχ/2. The solid red line shows where Ωχ = Ωcdm, with the region above and to the right
of the line producing too much dark matter. The green shaded regions show the exclusion from
Fermi observations of the GC assuming the Einasto DM profile of Eq. (3.39) rescaled by the
expected dark matter fraction (Ωχ/Ωcdm)2, while the blue shaded regions show the exclusion
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Figure 3.4: Constraints from indirect detection on hidden U(1)x neutralino DM produced
by moduli decays for mx = mχ/2, ξ = 0.1, as well as (c=1, mφ=m3/2) (left), and
(c = 10, mφ = 2m3/2) (right). The green shaded region is excluded by Fermi GC
observations and the blue shaded region is excluded by COMPTEL. Both exclusions
assume an Einasto galactic DM profile. The thick solid and thin dotted contours
correspond to the exclusions assuming the NFW and cored profiles, respectively.
The green and blue dashed lines show the boundaries of the stronger exclusion
obtained assuming a contracted profile with γ = 1.4. Above and to the right of the
solid red line, the hidden LSP density is larger than the observed DM density. The
solid and dash-dotted orange lines shows the exclusion from deviations in the CMB
for f = 0.2 and f = 1, respectively, with the excluded areas above and to the right
of the lines. Note that the entire c = 1 parameter space is excluded by the CMB
constraint for f = 1. The gray shaded region at the bottom has a hidden vector
mass mx < 20 MeV that is excluded by fixed-target experiments.

from COMPTEL under the same conditions. Exclusions for other profiles are also shown by the
parallel contours.11 We have also considered the corresponding constraints from INTEGRAL,
EGRET, and Fermi diffuse gamma ray observations, but these do not exclude any additional
parameter space and so are not included in Fig. 3.4 for clarity. Limits from CMB distortions
are shown by the solid and dash-dotted orange lines, for f = 0.2 and 1 respectively, with the
excluded region above and to the right of the contours. The dashed black lines are contours
of the hidden LSP χ mass in GeV, with the region where mx = mχ/2 < 20 MeV excluded by
fixed target experiments [202].

For generic moduli parameters, c = 1 and mφ = m3/2, we find that constraints from indirect
detection and CMB observations nearly completely rule out this scenario even with optimistic
choices for the DM halo properties and CMB energy injection efficiency. However, for c = 10

11The thick green and blue dashed lines show the boundaries of the regions excluded for a more aggressive
contracted profile with γ = 1.4. For clarity, we do not shade the interior of these. The thick solid and thin dotted
contours correspond to the NFW and cored profiles, respectively.
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and mφ = 2m3/2, the hidden neutralino relic density can become sufficiently small to evade the
strong limits from ID and the CMB, despite the relatively large χx

1 annihilation cross section.
In this case, a second more abundant contribution to the total dark matter abundance would be
needed. Note as well that the remaining allowed region corresponds to sub-GeV hidden sector
masses that could potentially be probed in current and planned precision searches [203].

3.3.5 Summary
With optimistic but reasonable choices for the moduli parameters, a light hidden sector neu-
tralino LSP produced in moduli reheating can be consistent with current DM searches. Even
so, the scenario is tightly constrained by indirect detection and CMB measurements. The chal-
lenge here is precisely the same as in the MSSM: to avoid overproducing the neutralino LSP
during moduli reheating, the annihilation rate must be large relative to the standard thermal
value ⟨σv⟩ ∼ 3 × 10−26 cm3/s, and such an enhanced rate is strongly constrained by indirect
DM searches. To avoid these bounds while not creating too much dark matter, the annihilation
rate must be large enough that the LSP relic abundance is only a small fraction of the total
DM density.

The U(1)x hidden sector does slightly better than the MSSM in this regard for two reasons.
First, the hidden gauge coupling can be taken small (as can ξ = µ′/Mx), which helps to reduce
the LSP relic abundance as suggested by Eq. (3.23). And second, the hidden LSP can be
much lighter than an MSSM wino or Higgsino, leading to smaller photon yields below the
primary sensitivity of Fermi-LAT. The strongest constraints for such light masses come from
COMPTEL, which are less stringent than those from Fermi. Since the large late-time hidden
neutralino annihilation rate is the primary hindrance to realizing this set-up, one might consider
analogous scenarios in which the CMB and indirect detection signatures are suppressed; we
address this possibility in the following section.

Before moving on, let us also comment on the spectrum in the hidden sector. To avoid
a large fine tuning, the hidden scalar soft terms must be relatively small, on the same order
or less than the hidden gaugino mass. Given the large values of m3/2 considered, the scalar
soft masses must be sequestered from supersymmetry breaking. They must also receive new
contributions beyond minimal AMSB, and the b′ bilinear soft term must not be too much
larger than (µ′)2. All three features require non-trivial additional structure in the underlying
mechanisms of supersymmetry breaking or mediation [223, 224].

3.4 Variation #2: Asymmetric Hidden U(1)

As a second extension of the MSSM, we investigate a theory of hidden asymmetric dark matter
(ADM) [225–228]. In the ADM framework, the DM particle has a distinct antiparticle, and its
abundance is set mainly by a particle-antiparticle asymmetry in analogy to baryons, and this
tends to suppress indirect detection signals from late-time annihilation if very little anti-DM
is present [5, 229–231]. The ADM theory we consider is nearly identical to the hidden U(1)x
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theory studied in Sec. 3.3, but with an additional pair of vector-like hidden chiral superfields Y
and Y c with U(1)x charges xY = ±1. We assume that a small asymmetry in the Y density is
generated during moduli reheating, in addition to the much larger symmetric density, and we
compute the resulting relic densities and experimental signals.

3.4.1 Mass Spectrum and Decays
The superpotential in the hidden sector is the same as that considered in Sec. 3.3 up to a new
mass term for the Y and Y c multiplets,

W ⊃ −µY Y Y c. (3.41)

We also include the new soft supersymmetry breaking terms

−Lsoft ⊃ m2
Ỹ
|Ỹ |2 +m2

Ỹ c |Ỹ c|2 − (bY Ỹ Ỹ
c + h.c.). (3.42)

As in Sec. 3.3, we fix the hidden gaugino mass to its AMSB value with bx = 2(1+1), accounting
for the new superfields. We also do not impose minimal AMSB values for the scalar soft
terms, but take them (as well as µ′ and µY ) to be of similar size to the gaugino soft mass.
Finally, we arrange parameters so that the hidden Higgs scalars develop expectation values and
spontaneously break the U(1)x.

The mass spectrum of the hidden sector follows the minimal model considered in Sec. 3.3,
but now a new Dirac fermion Ψ of mass mΨ = µY and two complex scalars Φ1,2. The scalar
mass matrix in the (Ỹ , Ỹ c∗) basis is

M2
Ỹ
=

(
|µY |2 +m2

Ỹ
− δ̃D b∗Y

bY |µY |2 +m2
Ỹ c

+ δ̃D,

)
, (3.43)

where δ̃D = g2xη
2 cos 2ζ + xY ϵgxg

′v2 cos 2β/2. Taking m2
Ỹ

= m2
Ỹ c

for convenience, the mass
eigenvalues are

m2
1,2 = |µY |2 +m2

Ỹ
∓
√
δ̃2D + |bY |2. (3.44)

In what follows we will refer to the lighter scalar Φ1 as Φ.
This theory preserves both the usual R-parity as well as a non-anomalous global U(1) flavour

symmetry among the Y and Y c multiplets, and can support multiple stable states. The number
of stable particles depends on the mass spectrum. To allow for dominantly asymmetric dark
matter, we will focus on spectra with mχx

1
> mΨ +mΦ such that the decay χx

1 → Ψ + Φ∗ is
possible, and the only stable hidden states are Ψ and Φ. If this channel is not kinematically
allowed, the χx

1 neutralino will also be stable and can induce overly large gamma ray signals
as in the previous section. We also choose soft masses such that mx < mΦ, mΨ to allow both
states to annihilate efficiently into hidden vectors. With this mass ordering, the lightest hidden
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states will be the vector Xµ and the hidden Higgs hx1 . Both will decay to the SM in the same
way as in the minimal model of Sec. 3.3. The lightest MSSM neutralino will also continue to
decay to the hidden sector through gauge kinetic mixing, now with additional decay modes
χ0
1 → ΨΦ1,2. As before, the net χ0

1 lifetime is expected to be short relative to the cosmological
timescales of interest.

3.4.2 Moduli Reheating and Asymmetric Dark Matter
The Ψ and Φ states will both act as ADM if they are created in the moduli reheating pro-
cess slightly more often than their antiparticles. The production of the asymmetry can be
accommodated within a set of Boltzmann equations similar to Eq. (3.15) as follows:

dnΨ
dt

+ 3HnΨ = (1 + κ/2)
NΨΓφ

mφ
ρφ − ⟨σv⟩Ψ

(
nΨnΨ − (neq

Ψ )2
)

(3.45)

− ⟨σv⟩trans(n
2
Ψ − ν2n2Φ)

dnΦ
dt

+ 3HnΦ = (1 + κ/2)
NΦΓφ

mφ
ρφ − ⟨σv⟩Φ

(
nΦnΦ∗ − (neq

Φ )2
)

(3.46)

− ⟨σv⟩trans(ν
2n2Φ − n2Ψ),

with a similar set of equations for the anti-DM Ψ and Φ∗, but with κ → −κ. Here, NΨ and
NΦ are the mean number of Ψ and Φ produced per modulus decay. This includes particles
created directly in moduli decays, rescattering, and from the cascade decays of other states.
The thermally-averaged cross sections ⟨σv⟩Ψ,Φ describe the ΨΨ and ΦΦ∗ annihilation, while
⟨σv⟩trans in each equation corresponds to the transfer reaction ΨΨ ↔ ΦΦ mediated by U(1)x

gaugino exchange with ν = 2 (mΨ/mΦ)
2K2(mΨ/T )/K2(mΦ/T ).

Asymmetry generation in this scenario is parametrized by the constant κ. It could arise
directly from moduli decays or from the interactions of intermediate moduli decay products
along the lines of one of the mechanisms of Refs. [232–238]. Indeed, this theory can be viewed
as a simplified realization of the supersymmetric hylogenesis model studied in Ref. [2]. Relative
to that work, we undertake a more detailed investigation of the relic density resulting from
different choices for the moduli parameters, and we do not attempt to link the DM asymmetry
to the baryon asymmetry.

The annihilation cross section ⟨σv⟩Ψ is dominated by the ΨΨ → XX channel to hidden
vector bosons and is given by

⟨σv⟩Ψ =
1

16π

g4x
m2

Ψ

(
1− m2

x

m2
Ψ

)3/2(
1− m2

x

2m2
Ψ

)−2

(3.47)

≃ (1.5× 10−24 cm2/s)
( gx
0.05

)4(1GeV
mΨ

)2

. (3.48)
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Figure 3.5: Abundance of Ψ and Φ in the κ−m3/2 plane. The right y axis shows the Ψ
mass mΨ = µY . Solid red contours show the fraction of the measured abundance
made up by Ψ and Φ and their anti-particles. The dashed grey lines show the
fractional asymmetry between DM and anti-DM. The blue region is excluded by
the CMB bound and the green by direct detection.

The scalar annihilation rate is similar. For the transfer reaction, we have

⟨σv⟩trans ≈
g4x
8π

√
1−

m2
Φ

m2
Ψ

∣∣∣∣∣
3∑

k=1

(A∗2
k −B2

k)mχx
k

m2
χx
k
+m2

Ψ −m2
Φ

∣∣∣∣∣
2

, (3.49)

where Ak = Z∗
11Pk3 and Bk = Z12Pk3 with Pk3 the HS gaugino content of χx

k and Zij is a
unitary matrix that diagonalizes the scalar mass matrix of Eq. (3.43). Note that the transfer
reaction can be suppressed relative to annihilation for mχx

1
> mΨ +mΦ.

3.4.3 Relic Densities and Constraints
To investigate the relic densities of Ψ and Φ in this theory following moduli reheating and the
corresponding constraints upon them, we set all the dimensionful hidden parameters to be fixed
ratios of the U(1)x gaugino soft mass Mx = 4g2xm3/2/(4π)

2:

mAx = 10µ′ = 50µY = 100mx = 250b
1/2
Y = 250m

Ỹ
=Mx. (3.50)

With these choices, the mass spectrum for gx = 0.1 and m3/2 = 200 TeV is

mΨ = 1GeV, mΦ = 0.97GeV, mχx
1
= 5.1GeV, mx = 0.51GeV, mhx

1
= 0.5GeV.

This mass ordering coincides with the spectrum described in in Sec. 3.4.1.
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The dashed grey lines show the Ψ mass in GeV. The green region is excluded by
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In Fig. 3.5 we show the dark matter abundance Ωadm = ρadm/ρc of Ψ and Φ (and their
antiparticles) relative to the observed abundance Ωcdm in the κ−m3/2 plane for gx = 0.1,
ϵ = 10−4, mφ = m3/2, and c = 1. Contours of Ωadm/Ωcdm = 0.1, 1, 10 are given by solid red
lines. The grey dashed lines in this figure correspond to the net residual anti-DM abundance
RΨ + RΦ, where RΨ = ΩΨ/ΩΨ and similarly for Φ. Not surprisingly, larger values of the
production asymmetry parameter κ lead to smaller residual anti-DM abundances. In this
figure we also show in blue the region of parameters that is excluded by CMB observations, as
well as the region excluded by direct detection in green. These constraints will be discussed in
more detail below.

The ADM abundance in the gx−m3/2 plane is shown in Fig. 3.6 for κ = 5× 10−3, ϵ = 10−4,
mφ = m3/2, and c = 1. Again, contours of Ωadm/Ωcdm = 0.1, 1, 10 are given by solid red lines.
We also plot contours of the Ψ mass with dashed grey lines. As before, the shaded green region
is excluded by direct detection searches.

The region excluded by CMB observations in Fig. 3.5 (shaded blue) coincides with larger
values of the residual anti-DM abundances RΨ + RΦ. These residual abundances provide an
annihilation mode that injects energy into the cosmological plasma during the CMB era [5], as
discussed in Sec. 3.3.4. Accounting for exclusively asymmetric annihilation and the multiple
DM species, the result of Eq. (3.40) translates into

2f
∑

i=Ψ,Φ

(
Ωi +Ωī

Ωcdm

)2 Ri

(1 +Ri)2
⟨σv⟩i
mi

<
2.42× 10−27 cm3/s

GeV . (3.51)
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The CMB exclusion shown in Fig. 3.5 uses f = 1, but other values in the range f = 0.2−1.0 yield
similar results. The boundary of the excluded region is also nearly vertical and independent of
m3/2. This can be understood in terms of an approximate cancellation of factors of m3/2 = mφ

in the combination Ω2
adm⟨σv⟩/m, while Ri is determined primarily by κ. In addition to the

limits from the CMB, we have also computed the bounds from indirect detection as described
in Sec. 3.3. These searches yield exclusions very similar to that from the CMB and are omitted
from Fig. 3.5.

Direct detection searches also place a significant constraint on this ADM scenario. Kinetic
mixing of the hidden U(1)x with hypercharge links the hidden vector to charged matter with
an effective coupling proportional to −eϵ cW . In the present case, the dark matter consists of
Dirac fermions and complex scalars charged under U(1)x, and this allows a vectorial coupling
of these states to the X gauge boson. Together, these two features induce a vector-vector
effective operator (for mx ≳ 20 MeV) connecting the DM states to the proton that gives rise
to spin-independent (SI) scattering on nuclei. The Ψ-proton scattering cross section is

σp =
ϵ2c2W e

2g2xµ
2
n

πm4
x

. (3.52)

A similar expression applies to the scalar Φ. This gives rise to an effective SI cross section per
nucleon (in terms of which experimental limits are typically quoted) of

σ̃n = (Z2/A2)σp (3.53)

≃ 2× 10−38 cm2
(
2Z

A

)2 ( ϵ

10−3

)2 ( gx
0.1

)2 ( µn
1 GeV

)2(1 GeV
mx

)4

.

Comparing this result to the exclusions of low-mass DM from LUX [8], XENON10 S2 only
analysis [9], CDMSLite [10] and CRESST-Si [11], we obtain the green exclusion regions shown
in Figures 3.5 and 3.6.

3.4.4 Summary
This hidden U(1)x extension of the MSSM can account for the entire relic dark matter abun-
dance in the aftermath of moduli reheating while being consistent with existing constraints from
direct and indirect detection. Even though the DM annihilation cross section is much larger
than the standard thermal value, a strong DM-anti-DM asymmetry allows for a significant total
density while suppressing DM annihilation signals at late times. Limits from direct detection
searches can also be evaded for light DM masses below the sensitivity of current experiments.

To achieve a strong DM asymmetry, a relatively large asymmetry parameter κ ≳ 10−3

is needed. We have not specified the dynamics that gives rise to the asymmetry in moduli
reheating, but more complete theories of asymmetry generation suggest that values this large
can be challenging to obtain [2, 233–235]. Furthermore, as in the symmetric hidden sector
theory considered previously, the spectrum required for this mechanism to work requires scalar
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sequestering and scalar soft masses of the right size.

3.5 Variation #3: Hidden SU(N)

The third extension of the MSSM that we consider consists of a pure supersymmetric SU(N)x

gauge theory together with heavy connector matter multiplets charged under both SU(N)x and
the MSSM gauge groups.12 In contrast to the two previous extensions, we do not have to make
any strong assumptions about the scalar soft mass parameters for the theory to produce an
acceptable LSP relic density. In particular, this extension can work in the context of a mini-split
spectrum where the scalar superpartners are much heavier than the gauginos [147–152].

3.5.1 SU(N)x Mass Spectrum and Confinement
The hidden states below the TeV scale consist of the SU(N)x gluon and gluino. The hidden
gluino soft mass is

Mx = rx
g2x

(4π)2
m3/2, (3.54)

where rx = 3N if it is generated mainly by AMSB effects. In the discussion to follow, we will
consider additional heavy matter charged under SU(N)x with large supersymmetric mass µF .
For µF ≫ m3/2, the coefficient rx will be unchanged [135]. However, when µF ≲ m3/2, the
value of rx can be modified by an amount of order unity that depends on the soft masses of
these states [139, 192]. We consider deviations in rx away from the AMSB value but still of the
same general size.

Below the hidden gluino mass, the hidden sector is a pure SU(N)x gauge theory. It is
therefore guaranteed to be asymptotically free, and the low-energy theory of hidden gluons
should undergo a confining transition at some energy scale Λx to a theory of massive glueball
(and glueballino) bound states. The one-loop estimate of the confinement scale gives

Λx =Mx exp
(
− 3rx
22N

m3/2

Mx

)
. (3.55)

Demanding that the SU(N)x gluino be lighter than the lightest MSSM neutralino typically
forces Λx to be very small. For example, setting Mx < 1000 GeV, rx = 3N , and requiring
that Mx < M2 (with its value as in AMSB, M2 ≃ m3/2/360), one obtains Λx < 10−61 GeV.
Thus, we will neglect SU(N)x confinement in our analysis and treat the hidden gauge theory
as weakly interacting.

12See also Refs. [239, 240] for previous studies of this scenario in a slightly different context.
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3.5.2 Connectors to the MSSM
The lightest MSSM superpartner must be able to decay to the hidden sector for this extension to
solve the MSSM moduli relic problem. Such decays can be induced by heavy matter multiplets
charged under both the MSSM gauge groups and SU(N)x. Following Ref. [239], we examine
two type of connectors.

The first set of connectors consists of NF pairs of chiral superfields F and F c with charges
(1, 2,∓1/2;N) under SU(3)C×SU(2)L×U(1)Y ×SU(N)x with a supersymmetric mass term [239]

W ⊃ µFFF
c. (3.56)

For µF ≳ m3/2, the heavy multiplets can be integrated out supersymmetrically to give [239]

−∆L ⊃
∫
d4θ

g2xg
2
2

(4π)2
2NF

µ4F
W †

x α̇W
† α̇Wα

xWα (3.57)

⊃ αxα2
2NF

µ4F

[
G̃†

x(σ̄ ·∂)W̃ Gµν
x Wµν + (Gµν

x Wµν)
2
]
. (3.58)

Similar operators involving the U(1)Y vector multiplet will also be generated, and additional
operators will also arise with the inclusion of supersymmetry breaking. The wino operator of
Eq. 3.58 allows the decay W̃ 0 →W 0Gx G̃x, whose rate we estimate to be

Γ ∼
4(N2−1)N2

F

8π(4π)2
α2
xα

2
2 |N12|2

m9
χ0
1

µ8F
(3.59)

≃ (7× 105 s)−1(N2−1)N2
F |N12|2

( αx

10−3

)2( mχ0
1

270 GeV

)9(100 TeV
µF

)8

,

where mχ0
1

is the mass of the lightest MSSM neutralino, |N12| is its wino content, and the
fiducial value of mχ0

1
corresponds to the AMSB value of M2 for m3/2 ≃ 100 TeV. Note that

these sample parameter values lead to decays after the onset of primordial nucleosynthesis.
The second set of connectors that we consider consists of the same NF heavy multiplets

F and F c together with P and P c multiplets with charges (1, 1, 0, N̄) [239]. This allows the
couplings

W ⊃ λuHuFP + λdHdF
cP c + µFFF

c + µPPP
c. (3.60)

Neglecting supersymmetry breaking, integrating out the heavy F and P multiplets at one-loop
order generates operators such as [239]

−∆L ⊃
∫
d2θ

g2xλ
2
u

(4π)2
2NF

µ2F
W xαWx α̇ Hu ·Hd (3.61)

⊃ αx

(
λ2u
4π

)
2NF

µ2F

[
G̃xσµσ̄νH̃dHuG

µν
x +Gµν

x Gxµν Hu ·Hd

]
. (3.62)
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where we have set µP = µF and λd = λu for simplicity. Additional related operators arise when
supersymmetry breaking is included. The first term in Eq. 3.62 induces the decay χ0

1 → GxG̃x,
whose rate we estimate to be

Γ ∼
4(N2−1)N2

F

8π
α2
x

(
λ2u
4π

)2

|N13|2
v2um

3
χ0
1

µ4F
(3.63)

≃ (1× 10−6 s)−1(N2− 1)N2
F |N13|2

( αx

10−3

)2( λu
0.75

)4( mχ0
1

200 GeV

)3(100 TeV
µF

)4

,

where |N13| describes the H̃d content of the MSSM LSP. This decay can occur before primordial
nucleosynthesis, even for very large values of µF ≳ 100 TeV.

Finally, let us mention that the exotic doublets F and F c will disrupt standard gauge
unification. This can be restored by embedding these multiplets in 5 and �5 representations of
SU(5) and limiting the amount of new matter to maintain perturbativity up to the unification
scale [239]. The latter requirement corresponds to N ×NF ≤ 5 for µF ∼ 100 TeV.

3.5.3 Moduli Reheating and Hidden Dark Matter
The treatment of dark matter production by moduli reheating in this scenario is slightly differ-
ent from the situations studied previously. The key change is that the visible and hidden sectors
are unlikely to reach kinetic equilibrium with one another after reheating for µF,P ≳ m3/2. As
a result, it is necessary to keep track of the effective visible and hidden temperatures indepen-
dently.

To estimate kinetic equilibration, let us focus on the wino operator of Eq. 3.58. This gives
rise to Gxγ → Gxγ scattering with a net rate of Γ ∼ T 9/µ8F . Comparing to the Hubble
rate, kinetic equilibration requires Teq ≳ (µ8F /MPl)

1/7. On the other hand, the reheating
temperature after moduli decay is on the order TRH ∼ (m3

3/2/MPl)
1/2. Thus, we see that TRH

is parametrically smaller than Teq for µF ≳ m3/2. A similar argument applies to the Higgs
interaction in the second term in Eq. 3.62.

The total modulus decay rate is the sum of partial rates into the visible and hidden sectors,

Γφ =
c

4π

m3
φ

M2
Pl

= Γv + Γx =
cx + cv
4π

m3
φ

M2
Pl
, (3.64)

where cx and cv describe the relative hidden and visible decay fractions. Moduli decays will
reheat both sectors independently, and self-interactions within each sector will lead to self-
thermalization. The total radiation density is the sum of the two sectors, ρR = ρv + ρx. We
will also define effective temperatures within each sector by

ρv =
π2

30
g∗T

4, (3.65)

ρx =
π2

30
g∗xT

4
x , (3.66)
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where g∗ and T refer to the visible sector, and g∗x and Tx to the hidden. Since the hidden
and visible sectors do not equilibrate with each other after reheating, entropy will be conserved
independently in both sectors.

Just after reheating, we also have

ρv =
(cv
c

)
ρR, ρx =

(cx
c

)
ρR. (3.67)

Given the first equality, we now define the reheating temperature to be

TRH =
(cv
c

)1/4 [ 90

π2g∗(TRH)

]1/4√
ΓφMPl, (3.68)

corresponding approximately to the visible radiation temperature when H = Γφ. In the same
way, we also define the reheating temperature in the hidden sector to be

T x
RH = (cx/cv)

1/4(g∗/g∗x)
1/4TRH. (3.69)

The number density of SU(N)x gaugino dark matter evolves according to Eq. (3.15) but
with two important modifications. First, the quantity Nχ now corresponds to the mean number
of hidden gauginos produced per modulus decay. This includes production from direct decays,
decay cascades (including decays of the lightest MSSM neutralino), and re-scattering. The
second key change is that the thermal average in ⟨σv⟩ is now taken over the hidden-sector
distribution with effective temperature Tx ≃ T x

RH.
The thermally-averaged SU(N)x gaugino cross section can receive a non-perturbative Som-

merfeld enhancement from multiple hidden gluon exchange if the hidden confinement scale is
very low, as we expect here [241, 242]. This enhancement can be written as a rescaling of the
perturbative cross section,

⟨σv⟩ = Sx⟨σv⟩pert. (3.70)

The perturbative cross section can be obtained by modifying the SU(3)C gluino result [243] by
the appropriate colour factor:

⟨σv⟩pert =
3N2

16(N2 − 1)

1

4π

(
g4x
M2

x

)
. (3.71)

The Sommerfeld enhancement factor is [241–243]

Sx = A/(1− e−A), (3.72)

with A = παx/v, for v =
√

1− 4M2
x/s. In the perturbative cross section, the characteristic

momentum transfer is
√
s ≃ 2Mx, and αx should be evaluated at this scale. However, the

typical momentum transfer leading to the non-perturbative enhancement is
√
s ∼ 2vMx [243].
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Figure 3.7: Relic abundance of the hidden gluino G̃x (solid black) after moduli reheating
as a function of the hidden gauge coupling gx for N = 2, mφ = m3/2 = 100 TeV,
c = 1, Nx = 1, and cx/cv = 1/9. The lifetime of the lightest MSSM superpartner,
assumed to be a Higgsino-like neutralino, is shown in light blue for µ = 150 GeV,
NF = 3, and λu = 0.75. The vertical solid grey line corresponds to T x
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while the dashed horizontal line shows τχ0

1
= 1 s.

In our calculation, we estimate v ≃
√

3T x
RH/2Mx and take A to be

A ≃ π

2v
αx

[
1 +

11N

6π
αx ln(v)

]−1

, (3.73)

where αx in this expression is evaluated at 2Mx.
In Fig. 3.7 we show the relic density of hidden gluinos produced by moduli reheating as a

function of gx for mφ = m3/2 = 100 TeV, c = 1, Nx ∼ 1, and cx/cv = 1/9. We also show
in this figure the lifetime of the lightest MSSM superpartner in seconds, which we take to be
a Higgsino-like neutralino with µ = 150 GeV, along with N = 2, µF = m3/2, NF = 3, and
λu = 0.75. As expected from the estimate of Eq. (3.23), smaller values of the gauge coupling
gx ≪ g2 are needed to obtain an acceptable relic density.

For very small gx, the hidden gluino mass becomes small enough that the reheating tem-
perature exceeds the freeze-out temperature, and the final density is given by the thermal
value. This corresponds to the plateau, where the abundance is only weakly dependent on the
gauge coupling. At intermediate gx, freeze-out happens in the matter dominated phase, where
Ω
G̃x

∝M−3
x ∝ g−6

x [185], resulting in the turn-over. The abundance continues to decrease until
non-thermal production takes over, corresponding to the straight section for gx ≳ 4 × 10−3.
Note as well that very small values of gx also increase the lifetime of the lightest MSSM state
to τ > 1 s. This can be problematic for nucleosynthesis, and will be discussed in more detail
below.
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3.5.4 Hidden Gluino Bounds
We found previously that for Mx < M2 and AMSB-like masses, the SU(N)x confinement scale
is negligibly small relative to the Hubble scale today. This implies that the hidden gluon will
be a new relativistic degree of freedom in the early Universe. A nearly massless hidden gluon
will also interact significantly with the relic hidden gluinos, which has significant implications
for dark matter clustering and its imprint on the CMB.

New relativistic particles are constrained by primordial nucleosynthesis and the CMB. The
number of corresponding degrees of freedom is often written in terms of an effective number of
additional neutrino species, ∆Neff. If the hidden gluon is the only new light state below the
reheating temperature and 5 MeV < TRH < mµ, we have [199]

∆Neff ≃
(
4

7

)
(N2 − 1)

(
cx
cv

)
, (3.74)

where cx and cv correspond to the hidden and visible branching fractions of the moduli. The
current upper bound (95% c.l.) on ∆Neff from primordial nucleosynthesis is [244, 245]

∆Neff ≲ 1.0 at T ∼ TBBN. (3.75)

This bound can be satisfied for smaller N provided (cx/cv) < 1. If we reinterpret our moduli
results in terms of heavy gravitino decay, the corresponding ratio is cx/cv = (N2−1)/12 if only
gaugino modes are open and cx/cv = 12(N2 − 1)/193 if all MSSM channels are available [186].
A similar limit on Neff can be derived from the CMB [246]. However, the net effect of the
hidden gluon and gluino on the CMB is more complicated than just a change in ∆Neff, as we
will discuss below.

A more significant challenge to this scenario comes from the relatively unsuppressed inter-
actions among the hidden gluons and gluinos. Self-interactions among dark matter particles are
strongly constrained by observations of elliptical galaxies and the Bullet Cluster [247–249].13

Furthermore, we find that the relic hidden gluinos remain kinetically coupled to the hidden
gluon bath until very late times. This generates a pressure in the dark gluino fluid that inter-
feres with its gravitational collapse into bound structures. A study of this effect lies beyond
the scope of this chapter, and we only attempt to describe some of the general features here.

In this scenario, moduli reheating generates a bath of thermal gluons with temperature
Tx ∼ (cx/cv)

1/4T . Arising from a non-Abelian gauge group, the gluons will interact with
themselves at the rate

Γ ∼ α2
xTx ∼ (10−12eV)

(
cx
cv

)1/4 ( αx

10−4

)2 ( T

2.7K

)
. (3.76)

13 Dark matter interactions close to these upper bounds can help to resolve some of the puzzles of large-scale
structure [240, 250–253].

80



This is easily larger than the Hubble rate today, H ∼ 10−33 eV, and we expect the hidden gluon
to remain in self-equilibrium at the present time. One of the key features of such non-Abelian
plasmas at temperatures well above the confinement scale is that the gluon field is screened by
its self-interactions [254, 255]. Correspondingly, the electric and magnetic components of the
gluon develop Debye masses on the order of [256],

mE ∼
√
αx Tx (3.77)

mB ∼ αxTx. (3.78)

Relic hidden gluinos will interact with the hidden gluon bath through Compton-like scat-
tering. This can proceed through a t-channel gluon with no suppression by the hidden gluino
mass. Modifying the calculation of Refs. [257], we find that the corresponding rate of momen-
tum transfer between a relic gluino and the gluon bath is much larger than the Hubble rate
even at the present time. We also estimate that for moderate αx and mφ ∼ 100 TeV the rate
of formation of gluino-gluino bound states, which are expected to be hidden-colour singlets in
the ground state [258–260], is much smaller than the Hubble rate at temperatures below the
binding energy.

Together, these two results imply that the relic gluinos remain kinetically coupled to the
gluon bath. The pressure induced by the gluons will drive gluinos out of overdense regions
and interfere with structure formation, analogous to the photon pressure felt by baryons before
recombination. This is very different from the behaviour of standard collisionless cold dark
matter, and implies the hidden gluinos can only be a small fraction of the total dark matter
density. This fraction, can be constrained using observations of the CMB and by galaxy surveys.
A study along these lines was performed in Ref. [261], and their results suggest that the fraction
fx = Ω

G̃x
/Ωcdm must be less than a few percent, depending on the temperature ratio Tx/T ≃

(cx/cv)
1/4.14 Hidden gluino interactions may also modify the distribution of dark matter on

galactic scales [264].

3.5.5 Summary
This supersymmetric hidden SU(N)x extension can produce a much smaller non-thermal LSP
relic density than the MSSM, and has only invisible annihilation modes that are not constrained
by indirect detection. However, the hidden gluino LSP remains in thermal contact with a bath
of hidden gluons, and thus can only make up at most a few percent of the total dark matter
density. Obtaining such small relic densities is non-trivial and leads to new challenges, as we
will discuss here.

From Fig. 3.7 we see that reducing the gauge coupling gx lowers the non-thermal hidden
gluino density until TRH ∼ Tfo, at which point the relic abundance becomes approximately

14 A relic population of millicharged particles will have a similar effect. This was considered in Refs. [262, 263],
and a limit of fx ≲ 1% was obtained.
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constant in gx. At the same time, Eq. (3.63) shows that smaller values of gx also suppress
the decay rate of the lightest MSSM superpartner. If such decays happen after the onset on
primordial nucleosynthesis, they can disrupt the abundances of light elements [265, 266]. The
direct two-body decays χ0

1 → G̃xGx are invisible. However, the operator of Eq. 3.62 also gives
rise to the semi-visible three-body mode χ0

1 → h0G̃xGx if it is kinematically allowed. The
decay products of the Higgs boson will be significantly hadronic, and can modify light-element
abundances. The branching fraction of this three-body mode depends on the available phase
space. Taking it to be Bh ∼ 10−3 and estimating the Higgsino yield as in Sec. 3.2, we find that
Higgsino lifetimes below τχ0

1
≲ 1−100 s are allowed [265]. This can occur for larger values of

N , NF , or λu, or smaller values of µ or µF . Note that reducing µF below mφ/2 is dangerous
because it would lead to the production of stable massive F and P states which would tend to
overclose the Universe.

An acceptable hidden gluino relic density with a sufficiently rapid MSSM decay can be
obtained in this scenario, but only in a very restricted and optimistic region of parameters.
For example, with rx = 3N/5, gx = 0.01, N = 2, NF = 3, λu = 0.75, cx/cv = 1/9, and
mφ = 2m3/2 = 2µF = 100 TeV, we obtain Ω

G̃x
/Ωcdm = 0.023 and τχ0

1
= 0.01 s. Compared to

the parameters used in Fig. 3.7, the greatest effect comes from the small value of rx relative to
the minimal AMSB value (rx = 3N). Such a reduction could arise from threshold corrections
due to the heavy multiplets [192].

3.6 Conclusions
In this work we have investigated the production of LSP dark matter in the wake of moduli
oscillation and reheating. For seemingly generic string-motivated moduli parameters mφ =

m3/2, c = 1, Nχ ∼ 1, we have argued that the MSSM LSP is typically created with an
abundance that is larger than the observed dark matter density. The exception to this is a
wino-like LSP, which has been shown to be inconsistent with current bounds from indirect
detection. We call this the MSSM moduli-induced LSP problem.

To address this problem, we have studied three gauge extensions of the MSSM. In the first,
the MSSM is expanded to include a lighter hidden U(1)x vector multiplet with kinetic mixing
with hypercharge that is spontaneously broken by a pair of chiral hidden Higgs multiplets. The
kinetic mixing interaction allows the lightest MSSM superpartner to decay to the lighter hidden
sector LSP. If this LSP consists primarily of the hidden Higgsinos and is sufficiently light, it will
annihilate very efficiently. The resulting hidden LSP relic abundance after moduli reheating can
be small enough to be consistent with current bounds from indirect detection and the CMB. In
this case, a second more abundant component of the DM density is needed. The spectrum of
scalar soft terms required in this theory can also be challenging to obtain for the large values
of m3/2 ≳ 100 TeV considered.

The second extension of the MSSM that we studied has an asymmetric dark matter candi-
date. The underlying theory in this case was again a kinetically-mixed U(1)x vector multiplet
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spontaneously broken by a pair of chiral hidden Higgs, but now with an additional pair of chiral
multiplets Y and Y c. For a range of parameters, the two stable states in this theory are the
Dirac fermion Ψ and the lighter complex scalar Φ derived from Y and Y c. If Ψ or Φ obtain
a significant particle anti-particle asymmetry in the course of moduli reheating, they can ac-
count for the entire DM density. A large production asymmetry leads to a very small residual
anti-DM component, which allows the asymmetric abundances of Ψ and Φ to be consistent
with limits from indirect (and direct) detection. However, the production asymmetry required
for this to work is relatively large, and may be difficult to obtain in a more complete theory
of asymmetry generation. This theory also faces the same scalar soft term requirement as the
symmetric hidden U(1)x extension.

The third extension of the MSSM consists of a pure non-Abelian SU(N)x vector multiplet
at low energies. This sector can connect to the MSSM through additional heavy multiplets
charged under both the visible and hidden gauge groups, allowing for decays of the lightest
MSSM superpartner to the SU(N)x gluino. Acceptable hidden gluino relic densities can be
obtained for smaller values of the SU(N)x gauge coupling. This implies a potential tension
with primordial nucleosynthesis from late MSSM decays, and leads to a negligibly small hidden
confinement scale. In contrast to the two previous extensions, light scalar superpartners are not
required and this mechanism can work in the context of mini-split supersymmetry [147–152].
While this theory is not constrained by standard indirect detection searches, the coupling of
the hidden gluino to a bath of hidden gluons leads to non-standard DM dynamics that require
the hidden gluino density to be only a few percent of the total DM density. It is very difficult
to obtain relic densities this small in this scenario.

Our main conclusion is that it is challenging to avoid producing too much LSP dark matter
in the course of string-motivated moduli reheating. For seemingly generic modulus parameters,
the relic density in the MSSM is either too large or at odds with limits from indirect detection.
This may be a hint that the properties of moduli (in our vacuum at least) differ from the general
expectations discussed above [124, 178]. Alternatively, this could be an indication of new light
physics beyond the MSSM. We have considered three examples of the latter possibility in this
chapter and have shown that they can produce a stable LSP abundance that is consistent
with current observations and limits. Even so, these three extensions all lead to a significant
complication of the MSSM and require a somewhat fortuitous conspiracy of parameters for
them to succeed. A more direct solution might be the absence of a stable LSP through R-
parity violation, or simply the absence of light superpartners and very large mφ ∼ m3/2.
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Chapter 4

Dark Matter Antibaryons from a
Supersymmetric Hidden Sector

4.1 Introduction
The apparent coincidence between the densities of dark and baryonic matter, given by ΩDM/Ωb ≈
5, may be a clue that both originated through a unified mechanism. A wide variety of models
have been proposed along these lines within the framework of asymmetric DM [225, 232, 267–
277]; see Ref. [278] for a review. In these scenarios, DM carries a conserved global charge, and
its relic abundance is determined by its initial chemical potential. Moreover, if the DM charge
is related to baryon number (B), then the cosmic matter coincidence is naturally explained for
O(5 GeV) DM mass.

In this chapter, we explore model-building, cosmological, and phenomenological aspects of
hylogenesis (“matter-genesis”), a unified mechanism for generating dark and baryonic matter
simultaneously [232, 279]. This model is an extension of the scenario that was presented in
Sec. 3.4. Hylogenesis requires new hidden sector states that are neutral under SM gauge in-
teractions but carry non-zero B. CP-violating1 out-of-equilibrium decays in the early Universe
generate a net B asymmetry among the SM quarks and an equal-and-opposite B asymmetry
among the new hidden states. The Universe has zero total baryon number, but for appropri-
ate interaction strengths and particle masses, the respective B charges in the two sectors will
never equilibrate, providing an explanation for the observed asymmetry of (visible) baryons.
The stable exotic particles carrying the compensating hidden antibaryon number produce the
correct abundance of dark matter. Put another way, DM consists of the missing antibaryons.

The minimal hylogenesis scenario, described in Refs. [232, 279], has the following three
ingredients:

1. DM consists of two states, a complex scalar Φ and Dirac fermion Ψ, each carrying B =

−1/2.
1C is charge conjugation and P is parity.
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2. A Dirac fermion X, carrying B = 1, that transfers B between quarks and DM through
the gauge invariant operators [280]

X ucRi d
c
Rj d

c
Rk , XΨΦ (4.1)

where i, j, k label generation (colour indices and spinor contractions are suppressed).

3. An additional U(1)′ gauge symmetry that is kinetically mixed with hypercharge and
spontaneously broken near the GeV scale, producing a massive Z ′.2

With these ingredients, hylogenesis proceeds in three stages, which we illustrate schematically
in Fig. 4.1:

1. Equal (CP-symmetric) densities of X and X̄ are created non-thermally, e.g., at the end
of a moduli-dominated epoch when the Universe is reheated through moduli decay to a
temperature TRH in the range of 5 MeV ≲ TRH ≲ 100 GeV ≪ mX [133].

2. The interactions of Eq. (4.1) allow X to decay to uRi dRj dRk or Ψ̄Φ∗, and similarly for X̄.
With at least two flavours of X, these decays can violate CP leading to slightly different
partial widths for X relative to X̄, and equal-and-opposite asymmetries for visible and
hidden baryons.

3. Assuming Φ and Ψ are charged under U(1)′, the symmetric densities of hidden particles
annihilate away almost completely, with ΨΨ̄ → Z ′Z ′ and ΦΦ∗ → Z ′Z ′ occurring very effi-
ciently in the hidden sector, followed by Z ′ decaying to SM states via kinetic mixing. The
residual antibaryonic asymmetry of Φ and Ψ is asymmetric DM. Likewise, the symmetric
density of visible baryons and antibaryons annihilates efficiently into SM radiation.

Both Ψ and Φ are stable provided |mΨ −mΦ| < mp +me, and they account for the observed
DM density for mΨ +mΦ ≈ 5mp, implying an allowed mass range 1.7 ≲ mΨ,Φ ≲ 2.9 GeV.

On the phenomenological side, hylogenesis models possess a unique experimental signature:
induced nucleon decay (IND), where antibaryonic DM particles scatter inelastically on visible
baryons, destroying them and producing energetic mesons. If X couples through the “neutron
portal” uRdRdR, IND produces π and η final states, while if X couples through the “hyperon
portal” uRdRsR, IND produces K final states. These signatures mimic regular nucleon decay,
with effective nucleon lifetimes comparable to or shorter than existing limits; however, present
nucleon decay constraints do not apply in general due to the different final state kinematics
of IND. Searching for IND in nucleon decay searches, such as the Super-Kamiokande experi-
ment [281] and future experiments [282–284], therefore offers a novel and unexplored means for
discovering DM.

2We use different notation for hidden sector states and parameters in this chapter compared to Ch. 3, in order
to more closely match with the original literature of Refs. [232, 279].
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Figure 4.1: The three steps of hylogenesis.

Although the minimal hylogenesis model described above successfully generates the cosmo-
logical baryon and DM densities, two puzzles remain. Is there a natural framework to consider
DM as a quasi-degenerate scalar/fermion pair? Is there a mechanism to ensure the quantum
stability of the GeV-scale masses for hidden sector scalars? Supersymmetry (SUSY) can provide
answers to both questions; the DM pair (Φ,Ψ) forms a supermultiplet with B = −1/2, and
the stability of the GeV-scale hidden sector and the (Φ,Ψ) mass splitting is ensured naturally,
provided SUSY breaking is suppressed in the hidden sector compared to the visible sector.

The goal of this chapter is to embed hylogenesis in a supersymmetric framework of natural
electroweak and hidden symmetry breaking, and to study in detail the cosmological and phe-
nomenological consequences. In Sec. 4.2, we present a minimal supersymmetric extension of
the hylogenesis theory described above. We also address the origin of the nonrenormalizable
nucleon portal operator X ucRi d

c
Rj d

c
Rk. In Sec. 4.3, we investigate the cosmological dynamics

of supersymmetric hylogenesis, showing explicitly the range of masses and parameters that can
explain the correct matter densities. Section 4.4 contains a discussion of how such parameter
values can arise in a natural way from various mechanisms for supersymmetry breaking. In
Sec. 4.5 we investigate the phenomenology of our model, including IND signatures, collider
probes, and DM direct detection. Our results are summarized in Sec. 4.6. This chapter is
based on Ref. [2], completed in collaboration with David Morrissey, Kris Sigurdson and Sean
Tulin; an alternative supersymmetric model based on Higgs portal mixing is also presented in
the Appendix of that work.

4.2 Supersymmetric Hylogenesis Model
In this section, we present an extension of the Minimal Supersymmetric Standard Model (MSSM)
that can account for the dark matter and baryon densities through a unified mechanism of hy-
logenesis. In order to organize our discussion, it is useful to divide our model into three sectors,
given by the superpotential terms

W =WMSSM +WHS +Wtrans . (4.2)
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superfield U(1)′ B R

hidden baryons X1,2 0 +1 −1
Y1 0 −1/2 i
Y2 +1 −1/2 i

hidden U(1)′ H +1 0 +1
Z ′ 0 0 0

Table 4.1: New superfields in the hidden sector, with quantum numbers under U(1)′,
B, and R-parity. Chiral supermultiplets X1,2, Y1,2,H also include vector partners
Xc

1,2, Y
c
1,2,H

c with opposite charge assignments (not listed).

First, WMSSM corresponds to the superpotential of the usual MSSM with weak-scale super-
partners; this is the visible sector. Second, we introduce a hidden sector comprised of new
states which carry B, but are uncharged under the SM gauge group, and whose interactions
are described by the superpotential WHS. The third term Wtrans corresponds to operators
responsible for B transfer between the visible and hidden sectors. Baryon transfer operators
generate equal-and-opposite B asymmetries within the two sectors, and lead to IND signatures
in nucleon decay searches.

4.2.1 Hidden Sector
The hidden sector of our model consists of (i) four vector-like chiral superfields carrying nonzero
B, denoted X1,2 and Y1,2, with charge-conjugate partners Xc

1,2 and Y c
1,2,3 and (ii) a U(1)′

gauge sector, with gauge boson Z ′ and gauge coupling e′, spontaneously broken by a vector
pair of hidden Higgs supermultiplets H,Hc. Table 4.1 summarizes these exotic fields. The
superpotential is given by

WHS =
∑
a=1,2

ζaXaY
2
1 + ζ̄aX

c
a(Y

c
1 )

2 + γY1Y
c
2H + γ̄Y c

1 Y2H
c

+ µXaXaX
c
a + µYaYaY

c
a + µHHH

c , (4.3)

which includes Yukawa-type interactions with couplings ζ1,2, ζ̄1,2, γ, γ̄, and vector masses µX1,2 ,
µY1,2 , µH . We also assume a canonical Kähler potential for these multiplets. Note as well that
we have extended R-parity to a ZR

4 for the Y (c)
i multiplets. Aside from allowing the couplings

listed above, this extension does not lead to any novel features in the present case, beyond those
imposed by the standard R-parity.

After symmetry breaking in the hidden sector, the superfields Y1,2 and Y c
1,2 mix to form

two Dirac fermions Ψa (a = 1, 2) and four complex scalars Φb (b = 1, 2, 3, 4) with B = −1/2.
Among these, the lightest states Ψ1 and Φ1 are stable DM. The fermionic mass terms for Y1,2

3Two species X1,2 are required for CP-violating decays (see Sec. 4.3), while two species Y1,2 are needed to
couple them to the gauge-singlet X fields.
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are (in two-component notation)

Lferm = −
(
Y c
1 , Y

c
2

)
MY

(
Y1

Y2

)
+ h.c. , MY ≡

(
µY1 γ̄ηc

γη µY2

)
. (4.4)

where η ≡ ⟨H⟩, ηc ≡ ⟨Hc⟩ are the hidden Higgs vacuum expectation values (vevs). This mass
matrix can be diagonalized by a biunitary transformation V TMY U

† = diag(mΨ1 ,mΨ2). The
scalar mass terms in the basis Ỹ ≡ (Ỹ1, Ỹ2, Ỹ

c∗
1 , Ỹ c∗

2 )T are

Lscalar = −Ỹ †M2
Ỹ
Ỹ . (4.5)

The 4× 4 mass matrix M2
Ỹ

receives contributions from F terms from Eq. (4.3), D terms, and
soft SUSY-breaking terms

−Lsoft ⊃ m2
Y1
|Ỹ1|2 +m2

Y2
|Ỹ2|2 +m2

Y c
1
|Ỹ c

1 |2 +m2
Y c
2
|Ỹ c

2 |2 (4.6)

+
(
b1Ỹ1Ỹ

c
1 + b2Ỹ2Ỹ

c
2 + γAγ Ỹ1Ỹ

c
2H + γ̄Aγ̄ Ỹ

c
1 Ỹ2H

c + h.c.
)
, (4.7)

We have

M2
Ỹ
≡

(
M†

Y MY − δ + m2
Ỹ

∆†

∆ MY M†
Y + δ + m2

Ỹ c

)
, ∆ ≡

(
b1 γAγη

γ̄Aγ̄ηc b2

)
, (4.8)

also defining m2
Ỹ
≡ diag(m2

Y1
,m2

Y2
), m2

Ỹ c
≡ diag(m2

Y c
1
,m2

Y c
2
), δ ≡ e′2(η2c − η2)× diag(0, 1). The

scalar mass matrix can be diagonalized by a unitary transformation ZM2
Ỹ
Z† = diag(m2

Φ1
,m2

Φ2
,m2

Φ3
,m2

Φ4
).

Similar mass matrices arise for the X supermultiplets; for simplicity we assume that the fermion
states X1,2 and scalar states X̃1,2, X̃c

1,2 are all mass eigenstates.
The U(1)′ gauge sector consists of the Z ′ gauge boson, with mass m2

Z′ = 2e′2(η2 + η2c ), the
Z̃ ′ gaugino, and the hidden Higgsinos H̃, H̃c. The three neutralinos have the mass matrix

M =

 M ′ −
√
2e′η

√
2e′ηc

−
√
2e′η 0 µH√

2e′ηc µH 0

 , (4.9)

which can be brought into a diagonal form using a unitary transformation P , such that
P †MP = diag(mχ1 ,mχ2 ,mχ3). The U(1)′ gauge superfield mixes kinetically with the MSSM
hypercharge,4

−L ⊃ κ

2

∫
d2θBαZ ′

α + h.c. , (4.10)

where Z ′
α and Bα are the U(1)′ and U(1)Y supersymmetric gauge field strengths, respectively,

4The kinetic mixing parameter in Ch. 3 was called ϵ.
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with the mixing parameter κ≪ 1.
The full particle content of the hidden sector after the spontaneous breaking of U(1)′ consists

of the following mass eigenstates: three neutralinos χi; three hidden Higgs scalars h, H, A; two
Dirac fermions Ψi; four complex scalars Φi; and a massive gauge boson Z ′. The lightest Dirac
fermion Ψ1 and complex scalar Φ1 are stable due to their masses and B charge assignments —
they make up the dark matter. All other states either annihilate or decay into Standard Model
particles as described in Sec. 4.3.

Now that we have presented the ingredients for the hidden sector states, we make some
remarks:

• We assume that the mass scales of the hidden sector parameters lie at the GeV scale
(with the exception of the X states). For the soft terms, this can be accomplished by
assuming that SUSY-breaking is suppressed in the hidden sector (see Sec. 4.4). However,
the SUSY-preserving vector mass terms present a hidden µ-problem; we ignore this issue,
but in principle this can be solved by introducing an additional hidden singlet analogous
to the NMSSM.

• Since X1,2 mediates baryon transfer between the visible and hidden sectors (described be-
low), IND signatures are more favourable if the DM states (Φ1,Ψ1) are mostly aligned with
the Y1 supermultiplet. However, nonzero mixing with Y2 is induced by SUSY-breaking
and hidden Higgs vevs resulting in a DM-Z ′ coupling that is essential for annihilation of
the symmetric DM density.

• We have imposed B as a global symmetry. Since gravitational effects are expected to vio-
late global symmetries, B violation could arise through Planck-suppressed operators, po-
tentially leading to DM particle-antiparticle oscillations that can erase the hidden baryon
asymmetry [285–288]. In our SUSY framework, these effects are forbidden by the ZR

4 ex-
tension of R-parity. For example, the B = −1 operators W ∼MY 2

1 , Y1Y2H
c are allowed

by U(1)′ and can lead to DM oscillations, but they are not invariant under R-parity. If ZR
4

descends from an anomaly-free gauge symmetry, such as U(1)B−L spontaneously broken
by two units, it cannot be violated by gravity [289, 290] and these operators are forbidden.
Thus there exists a consistent embedding of ZR

4 in a gauge symmetry that excludes the
Majorana mass terms for Y1,2 that could erase the hidden asymmetry by oscillations.

4.2.2 Baryon Transfer
Baryon number is transferred between the hidden and visible sectors through superpotential
terms Wtrans. The hidden baryon states X1,2 are coupled to the operator U c

iD
c
jD

c
k, where

U c
i , D

c
j are the usual SU(2)L-singlet quark superfields (i, j, k label generation). We focus on

the case involving light quarks (U c ≡ U c
1 , Dc ≡ Dc

1, Sc ≡ Dc
2), corresponding to the “hyperon
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portal” [280]:

Wtrans =
∑
a=1,2

λa
M
ϵαβγXaU

c
αD

c
βS

c
γ , (4.11)

with SU(3)C indices α, β, γ and nonrenormalizable couplings λ1,2/M . Although hylogenesis
is viable for any generational structure, Eq. (4.11) is the most interesting case for IND signa-
tures. In contrast to non-SUSY hylogenesis models, the “neutron portal” coupling X1,2U

cDcDc

vanishes by antisymmetry. SUSY hylogenesis therefore favours IND involving K final states,
rather than π, η final states allowed in generic non-SUSY models.

The simplest possibility to generate the nonrenormalizable coupling in Eq. (4.11) is to
introduce a vector-like colour triplet supermultiplet P with global charges B = −2/3 and
R = 1. There are three cases to consider:5

Wtrans =


λ′1,2X1,2PαU

c
α + λ′′ ϵαβγP

c
αS

c
βD

c
γ + µPPαP

c
α (case I)

λ′1,2X1,2PαD
c
α + λ′′ ϵαβγP

c
αU

c
βS

c
γ + µPPαP

c
α (case II)

λ′1,2X1,2PαS
c
α + λ′′ ϵαβγP

c
αD

c
βU

c
γ + µPPαP

c
α (case III)

(4.12)

The SU(3)C × SU(2)L × U(1)Y quantum numbers for P are (3, 1, 2/3) for case I (up-type),
and (3, 1,−1/3) for cases II and III (down-type). In all cases P c carries the opposite charges.
The choice between the cases in Eq. (4.12) makes little difference for hylogenesis cosmology.
However, the different cases affect the IND signals, manifested in the ratio of the rates of
p→ K+ to n→ K0 channels, discussed in Sec. 4.5.

Integrating out P and P c at the supersymmetric level generates the superpotential operator
of Eq. (4.11) with λa/M ≡ λ′aλ

′′/µP together with the (higher-order) Kähler potential term
(for case I, with similar operators for cases II and III)

K ⊃ |λ′′|2

|µP |2
[
(Dc†Dc)(Sc†Sc)− (Sc†Dc)(Dc†Sc)

]
. (4.13)

Including supersymmetry breaking leads to additional operators. In particular, the holomorphic
soft scalar coupling bP P̃ P̃ c (or a squark-gaugino loop with a gaugino mass insertion) gives rise
to the four-fermion operator XucRdcRscR that plays a central role in IND.

4.3 Hylogenesis Cosmology
We turn next to a study of the early Universe dynamics of our supersymmetric model of
hylogenesis. To summarize the main ingredients:

• We assume that the Universe is dominated at early times by a long-lived non-relativistic
state φ (e.g., an oscillating modulus field), which decays and reheats the Universe before

5We consider the interactions of cases II and III separately, although in general both may arise simultaneously.
The simultaneous presence of both sets of couplings leads to strangeness-violating interactions that may be
constrained by flavour violation constraints that we do not consider here.
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the onset of Big Bang nucleosynthesis (BBN) [133].

• Nonthermal CP-symmetric densities of X1 and X̃1 states are populated through φ decays.
Depending on their specific origin, the scalar or the fermion can be created preferen-
tially [127]. CP-violating decays of X1 and X̃1 generate equal-and-opposite asymmetries
in quarks and hidden sector baryons (Ψ,Φ), while the total baryon number is conserved.6

• A hidden U(1)′ gauge sector allows for cascade decays of heavier B = −1/2 states (Φ2,Ψ2,
etc.) into the lightest states Φ ≡ Φ1 and Ψ ≡ Ψ1 that are DM. Both states can be stable
provided the condition |mΨ −mΦ| < mp +me is met. Also, the symmetric DM densities
annihilate efficiently through the light Z ′, which decays to SM states via kinetic mixing
with hypercharge.

Below, we first compute the CP asymmetries for X1 and X̃1 decays. Second, we ensure that
the successful predictions of BBN are not modified by hidden sector decays into SM particles.
Third, we solve the system of Boltzmann equations for hylogenesis, incorporating all of the
aforementioned ingredients, to compute the baryon asymmetries. There are significant differ-
ences compared to nonsupersymmetric hylogenesis [232]; in particular, the DM masses mΦ, mΨ

and the ratio of Φ to Ψ states can be different, with implications for IND phenomenology.

4.3.1 CP-violating Asymmetries
Visible and hidden B asymmetries are produced by CP violation in the partial decay widths of
X1

X1 → uRd̃Rs̃R + dRs̃RũR + sRũRd̃R , X1 → Ψ̄iΦ
∗
j , (4.14)

due to interference between tree-level and one-loop amplitudes, shown in Fig. 4.2. The corre-
sponding CP asymmetry is

ϵX ≡ 1

ΓX1

[
Γ(X1 → uRd̃Rs̃R)− Γ(X̄1 → ūRd̃

∗
Rs̃

∗
R) + perms.

]
(4.15a)

=
3
[
Im(λ∗1ζ1ζ

∗
2λ2)mX1 + Im(λ∗1ζ̄

∗
1 ζ̄2λ2)mX2

]
m3

X1

64π3M2(m2
X2

−m2
X1

)(|ζ1|2 + |ζ̄1|2)
. (4.15b)

We assume that ΓX1 is dominated by the two-body decay to Ψ̄iΦ
∗
j final states.7 For ϵX > 0, a

positive net B asymmetry is generated in the visible sector. By CPT invariance, the decay rates
for X1 and X̄1 are equal, and so an equal-and-opposite (negative) B asymmetry is generated
in the hidden sector. Additional contributions to ϵX from X1 → uRdRsR, arising through
SUSY-breaking or at one-loop, may be subleading provided squark decays are kinematically
available.

6We neglect CP-violating decays of X2 and X̃2, which in principle can also contribute to B asymmetries.
7In what follows, flavour indices i, j for hidden sector states are implicitly summed over in final states.
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Figure 4.2: Representative diagrams contributing to X1 → qiq̃Rj q̃Rk decays which are
responsible for the generation of the baryon asymmetry.

The baryon asymmetry can also be generated through the decays of the scalar component
of the X1 superfield, X̃1, via interference of supersymmetrizations of the diagrams in Fig. 4.2.
In the supersymmetric limit, the CP-asymmetry due to X̃1 is equal to Eq. (4.15). However, X̃1

decay can populate preferentially Ψ or Φ, due to the different hidden sector decay rates

Γ(X̃1 → Φ∗
iΦ

∗
j ) =

|ζ̄1|2

16π
mX1 , Γ(X̃1 → Ψ̄iΨ̄j) =

|ζ1|2

16π
mX1 . (4.16)

For X1 decays, the primordial ratio

r ≡ nΨ/nΦ (4.17)

of charge densities nΨ,Φ is equal to unity. However, X̃1 decays can deviate from r = 1 for
|ζ1| ̸= |ζ̄1|. As we discuss below, IND signals can be significantly enhanced if the heavier state
is overpopulated compared to the lighter state (e.g., r ≫ 1 for mΨ > mΦ).

The dark matter abundance is given by

ΩDM
Ωb

=
2(mΨr +mΦ)

mp(1 + r)
, (4.18)

where we have neglected the contributions from the DM anti-particles. This is appropriate in
the limit of completely asymmetric DM populations. The allowed DM mass window, including
the uncertainty in ΩDM/Ωb ≈ 5, is then

1.3 GeV ≤ mΨ, mΦ ≤ 3.4 GeV. (4.19)

More specifically, Fig. 4.3 shows the allowed mass range for mΨ (blue) and mΦ (red), for a
given value of r. In the r → 0 (∞) limit, only Φ (Ψ) is populated and its mass is required to be
approximately 5mp/2 to explain the DM density; the underpopulated Ψ (Φ) state is constrained
within the range of Eq. (4.19) by the stability condition |mΨ −mΦ| < mp +me.
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Figure 4.3: Allowed masses for the scalar Φ and fermion Ψ components of dark matter.
For a fixed value of nΨ/nΦ, the shaded region shows the entire mass range of Ψ
(blue) and Φ (red) that reproduces ΩDM/Ωb ≈ 5 and satisfies the stability require-
ment |mΨ − mΦ| < me + mp. Shifting ΩDM/Ωb by +(−)6% moves the allowed
region right (left), as indicated by the dashed contours.

4.3.2 Decays and Annihilations of SUSY States
Aside from the stable DM states Φ1 and Ψ1, the hidden sector contains numerous states that
decay, producing additional SM radiation. These decays, listed below, must occur with a
lifetime shorter than about one second to avoid conflicts with BBN predictions.

• The Z ′ gauge boson decays to SM states via kinetic mixing with the photon, requiring
κ ≳ 10−11 (mZ′/GeV)−1 [291], while κ ≲ 10−3 is consistent with existing limits for
mZ′ ∼ GeV [202, 292].8

• For the hidden Higgs states, the heavy CP-even state decays H → Z ′Z ′, while the CP-odd
state decays A→ Z ′h, through U(1)′ gauge interactions. Since the lighter CP-even state
h is necessarily lighter than the Z ′, it must decay to Standard Model fermions either via
loop-suppressed processes [293] or via D-term mixing with the MSSM Higgs [200]. For h
masses above the two-muon threshold, the mixing process dominates requiring κ ≳ 10−5.

• The heavy dark states Φi (i > 1) and Ψ2 cascade down to Φ1 and Ψ1 by emitting Z ′ and
h bosons.

8We assume a stronger condition κ ≳ 10−8g∗(mZ′/GeV)−1(TRH/GeV)3/2 such that the hidden and visible
sectors are in kinetic equilibrium at T < TRH. [291]
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• The hidden neutralinos can decay χi → Φ1Ψ̄1,Φ
∗
1Ψ1 provided this channel is open (as-

sumed below). If this channel is closed, then the lightest state χ1 is stable, providing
an additional DM component, and must annihilate efficiently via the t-channel process
χ1χ1 → Z ′Z ′.

In addition, the lightest supersymmetric particle within the MSSM decays to hidden states
through mixing of the hidden and MSSM neutralinos induced by κ. This mixing generally has
a negligible effect on the mass eigenvalues [200].

The symmetric DM densities of Ψ1Ψ̄1 and Φ1Φ
∗
1 annihilate to Z ′ gauge bosons. In the case

where DM is nearly aligned with the Y2 multiplet, the cross sections are given by [291]

⟨σv⟩ΨΨ̄→Z′Z′ =
e′4

16πm2
Ψ

√
1−m2

Z′/m2
Ψ, ⟨σv⟩ΦΦ∗→Z′Z′ =

e′4

16πm2
Φ

√
1−m2

Z′/m2
Φ . (4.20)

To have ⟨σv⟩ ≳ 3× 10−26 cm3/s for efficient annihilation, we require e′ ≳ 0.03 [229].
The presence of light hidden neutralinos allows for the chemical equilibration of baryon

number between Φ and Ψ. The most important process is Φ1Φ1 ↔ Ψ1Ψ1 which transfers the
B asymmetry from the heavier DM state to the lighter state. This effect is phenomenologically
important for IND, potentially quenching the more energetic down-scattering IND processes.
The transfer arises from the supersymmetrization of the hidden gauge and Yukawa interactions,
which, in the mass basis, takes the form

L ⊃ΦiΨj

[(
−
√
2e′Z∗

i4Vj2P1k − γZ∗
i1Vj2P2k − γ̄Z∗

i2Vj1P3k

)
PL

+
(√

2e′Z∗
i2Uj2P

∗
1k − γ∗Z∗

i4Uj1P
∗
2k − γ̄∗Z∗

i3U
∗
j2P

∗
3k

)
PR

]
χk + h.c. (4.21)

In the limit where the dark matter is mostly aligned with the Y2 supermultiplet, the interaction
simplifies to

L ⊃
√
2e′Φ1Ψ1 (aPL + bPR)χ1 + h.c., (4.22)

where a = −
√
2e′Z∗

14, b =
√
2e′Z∗

12, and χ1 is the U(1)′ gaugino. Note that even if the mixing
due to U(1)′ breaking can be neglected, the scalars Ỹ2 and Ỹ c∗

2 will still mix via the soft b-term.
For mΦ ≥ mΨ the s-wave contribution to the thermalized Φ1Φ1 → Ψ1Ψ1 cross section for this
interaction takes the form

⟨σv⟩ΦΦ→ΨΨ =
1

8π(M2 +m2
Φ −m2

Ψ)
2

√
1−

m2
Ψ

m2
Φ

×

×
(
2m2

Φ

[
(|a|4 + |b|4)m2

χ + (|a|2 + |b|2)(ab∗ + a∗b)mχmΨ + 2|a|2|b|2m2
Ψ ]

−m2
Ψ|(a2 + b2)mχ + 2abmΨ|2

)
. (4.23)
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In our numerical calculations we use a = b = e′ for simplicity. In this case the transfer cross
section reduces to

⟨σv⟩ΦΦ→ΨΨ = e′
4 (mχ +mΨ)

2

2π(m2
χ +m2

Φ −m2
Ψ)

2

(
1−

m2
Ψ

m2
Φ

)3/2

. (4.24)

The cross section for the reverse process Ψ1Ψ1 → Φ1Φ1 is related to Φ1Φ1 → Ψ1Ψ1 by the
detailed balance condition

⟨σv⟩ΦΦ→ΨΨ =
(
neq
Ψ /neq

Φ

)2 ⟨σv⟩ΨΨ→ΦΦ, (4.25)

where the equilibrium distributions neq
i are given in Eq. (4.34). We discuss depletion of the

heavier DM state in more detail below. Before doing so, however, let us mention that the
transfer process is not generic, and may be absent in other constructions. In particular, this is
true of the alternate Higgs portal model presented in the Appendix of Ref. [2].

4.3.3 Boltzmann Equations
The generation of the visible and hidden B asymmetries during reheating is described by a
system of Boltzmann equations:

ρ̇φ =− 3Hρφ − Γφρφ (4.26a)

ṡ =− 3Hs+
Γφ

T
ρφ (4.26b)

ṅB =− 3HnB + (ϵXNX + ϵ
X̃
N

X̃
)
Γφρφ
mφ

. (4.26c)

Here, ρφ is the energy density of the modulus field φ, s is the entropy density, and nB is the
visible B charge density (the hidden B asymmetry is −nB). Also, N

X, X̃
is the average number

of X1 or its superpartner produced per modulus decay, while ϵ
X, X̃

is the CP-asymmetry from
X1, X̃1 decay. In the supersymmetric limit ϵX = ϵ

X̃
. The modulus decay rate Γφ determines

the reheat temperature

TRH =

[
45

4π3g∗(TRH)

]1/4√
ΓφMPl. (4.27)

The total modulus decay rate is given by [133, 294, 295]

Γφ =
m3

φ

4πΛ2
, (4.28)

where we take Λ = 2.43 × 1018 GeV to be the reduced Planck constant. Along with the
Friedmann equation H2 = (8πG/3)(ρφ + ρr), where ρr = (π2/30)g∗T

4, Eqs. (4.26) form a
closed set and can be solved using the method of Refs. [184, 185]. Here g∗ is the energy density
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Figure 4.4: Solutions to the reheating Eqs. (4.26a, 4.26b, 4.26c) and DM production, de-
scribed by Eq. (4.29). Here Nφ = ρφa

3/mφ and Ni = nia
3 for i = B, Ψ, Φ, Ψ̄, Φ∗.

number of relativistic degrees of freedom. Instead of entropy, one can also solve for radiation
density. We take mφ = 2000 TeV (corresponding to TRH ≈ 270 MeV), NX = N

X̃
= 1 and

ϵX = ϵ
X̃

= 3.68×10−4. This decay asymmetry can be generated for example by taking |λa| ≈ 1,
|ζa| ≈ 0.1,9 maximal CP-violating phase and M ≈ mX1 ≈ mX2/3 ≈ 1 TeV. These parameters
reproduce the observed baryon asymmetry ηB = nB/s ≈ 8.9 × 10−11. Numerical solutions to
the reheating equations for these parameters are shown in Fig. 4.4. The modulus field φ decays
into radiation and the heavy states X, which immediately decay asymmetrically in the visible
and hidden sectors, generating the baryon asymmetry and the dark matter abundance.

The production of dark matter and its dynamics are described by a system of four Boltzmann
equations for Ψ1, Φ1 and their antiparticles10 which take the form

ṅi = −3Hni + Ci + (Ni,XNX +N
i,X̃

N
X̃
)
Γφρφ
mφ

, (4.29)

for i = Ψ1, Ψ̄1, Φ1,Φ
∗
1. Here Ni,X is the average number of species i produced per X decay.

For i = Ψ (we drop the subscript 1 from hereon) we have

NΨ ≡ NΨ,X +N
Ψ,X̃

=
Γ(X̄ → ΨΦ) + 2Γ(X̃∗ → ΨΨ)

ΓX
. (4.30)

9The magnitude of the coupling constants is chosen to be consistent with hidden sector SUSY-breaking as
discussed in Sec. 4.4.

10We assume that the heavier dark states Ψ2 and Φi, i > 1, decay to Ψ1 and Φ1 sufficiently fast.
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Similar definitions hold for Ψ̄, Φ and Φ∗, so that

NΨ +NΦ −NΨ̄ −NΦ∗ = 2ϵX + 2ϵ
X̃
. (4.31)

The last term on the right hand side of Eq. (4.29) describes the production of the species i
through modulus decay into X which promptly decays into i. The quadratic collision terms
Ci describe the particle-antiparticle annihilations as well as the transfer reaction ΨΨ ↔ ΦΦ,
required by supersymmetry. The collision terms for i = Ψ, Φ are

CΨ =− ⟨σv⟩ΨΨ̄→Z′Z′
[
nΨnΨ̄ − (neq

Ψ )2
]
− ⟨σv⟩ΨΨ→ΦΦ

[
n2Ψ −

(
neq
Ψ /neq

Φ

)2
n2Φ
]

(4.32)

CΦ =− ⟨σv⟩ΦΦ∗→Z′Z′
[
nΦnΦ∗ − (neq

Φ )2
]
− ⟨σv⟩ΦΦ→ΨΨ

[
n2Φ −

(
neq
Φ /neq

Ψ

)2
n2Ψ
]
, (4.33)

where

neq
i =

gi
2π2

Tm2
iK2(mi/T ) (4.34)

is the Maxwell-Boltzmann equilibrium number density for a particle of mass mi with gi internal
degrees of freedom. The collision terms for the antiparticles are identical, with the replacements
Ψ → Ψ̄ and Φ → Φ∗.

The solutions to the Boltzmann equations for the yields Yi = ni/s are shown in Fig. 4.5 for
mΨ = 1.9 GeV, mΦ = 2.2 GeV, mχ = 5 GeV, e′ = 0.05. We consider two cases. In the plot
on the left, we show the limit where ⟨σv⟩ΦΦ↔ΨΨ = 0; this can occur when the rate is mixing-
suppressed, for a heavy gaugino, or within models with alternative symmetric annihilation
mechanisms (see Appendix of Ref. [2]). With the transfer turned off, the scalar and fermion
DM sectors are decoupled. The resulting DM abundances are determined by the X and X̃

decay asymmetries. In this limit, the dark sector reduces to two independent copies of the
standard asymmetric DM scenario. We show the case where Ψ and Φ are populated equally by
the X̃ decays, but, in general, the asymmetries can be different for the scalar and fermion DM,
as discussed in Sec. 4.3.1.

In the plot on the right we show the result when the transfer is efficient, driving the dark
matter population into the lighter state Ψ. Since the asymmetry is also transferred into the
lighter state, the ΨΨ̄ annihilation rate is enhanced, resulting in a highly asymmetric final
abundance. The heavier state, on the other hand, freezes out with nearly equal abundances
of particle and anti-particle, which are about an order of magnitude smaller than that of Ψ.
The transfer reaction does not affect the production of the net hidden sector baryon number
nΨ + nΦ − nΨ̄ − nΦ∗ . Its evolution is shown in Fig. 4.4. Note that

nΨ + nΦ − nΨ̄ − nΦ∗ = 2nB (4.35)

as required by B conservation in hylogenesis.
The ratio of the abundances of Ψ to Φ is important for IND. We study the effect of varying
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Figure 4.5: Solution to the Boltzmann equations for the yields Yi = ni/s as a function
of the scale factor a. The plot on the left shows the evolution for the case when
the transfer reaction ΦΦ ↔ ΨΨ is turned off, while the plot on the right shows
the outcome when it is active. The transfer drives the dark matter population into
lighter state, Ψ in this case. The DM (anti-DM) abundance is indicated by solid
(dashed) lines, with dark (light) lines referring to the fermion (scalar) component.
The parameters used are described in the text.

the mass splitting ∆m = mΦ − mΨ and the gaugino mass on nΨ/nΦ in Fig. 4.6. For each
point in the parameter space, we solve the reheating and DM production equations and plot
the final value of nΨ/nΦ. The reheat temperature, asymmetry and gauge coupling strength
are the same as for Fig. 4.5. Setting the DM abundance to the observed value fixes mΨ.
Light gauginos and large DM mass splittings make the transfer more efficient, increasing the
abundance of the lighter state relative to the heavier one. For small ∆m or heavy mχ the
transfer rate is suppressed.

If the symmetric density does not annihilate efficiently, residual annihilations during the
CMB era can inject enough energy to alter the power spectrum. The WMAP7 constraint on
the annihilation rate for Dirac fermions or complex scalars is given by [5]

2
ΩiΩī

Ω2
DM

f⟨σv⟩
mi

<
2.42× 10−27 cm3/s

GeV , (4.36)

where i = Ψ, Φ and Ωi/ΩDM is the fraction of total DM abundance in species i. This constraint
is shown in Fig. 4.6 by the gray line (parameter space to the right is excluded). For the
parameters we have chosen, symmetric annihilation is only marginally efficient, and transfer
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Figure 4.6: The ratio nΨ/nΦ for the allowed range of mass splittings ∆m = mΦ − mΨ

and relevant values of the hidden gaugino mass mχ. At each point in the plane the
DM abundance is fixed to be ΩDM/Ωb = 5.0. Contours of constant mΨ (in GeV)
are also shown. The gray contour shows the CMB constraint for DM annihilations
from Ref. [5]. Points to the right of this line are excluded.

processes through the light gaugino help achieve efficient annihilation (hence, the large mχ

region is excluded). For larger gauge coupling e′ = 0.1, symmetric annihilation is much more
efficient, and CMB constraints are evaded in the entire parameter region in Fig. 4.6.

Finally, let us mention that we have not included any baryon washout processes in our
Boltzmann equations. For TRH ≪ mX1 , mq̃, the only such processes that are allowed kine-
matically are ΨΦ ↔ 3q̄ and the corresponding crossed diagrams. These transitions require the
exchanges of massive intermediate P and X states to occur. These processes are therefore well
described by effective operators of the kind

L ∼ 1

Λ3
IND

udsΨΦ, (4.37)

where the scale ΛIND is defined in Section 4.5 (see Eq. (4.52)) and the order of fermion con-
tractions depends on which UV completion is used in Eq. (4.12). We find that the corre-
sponding cross sections are safely smaller than the stringent limits found in Ref. [296] provided
mX , mP ≳ 300 GeV. For example, we can estimate the cross section for ΨΦ ↔ 3q̄ as

⟨σv⟩ ∼
(

1

4π

)3 m4
Ψ1

Λ6
IND

=
(
4× 10−21 GeV−2

)(1 TeV
ΛIND

)6 ( mΨ1

3 GeV

)4
. (4.38)
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The authors of Ref. [296] found that washout is negligible for

mDM⟨σv⟩ ≲ 10−18 GeV−1, (4.39)

which is easily satisfied by Eq. (4.38). Even if these processes were important, the X1 decay
asymmetry can be adjusted to compensate, as long as the couplings satisfy the conditions
imposed by SUSY breaking discussed in the next section. Thus, our omission of baryon washout
effects is justified.

4.4 Supersymmetry Breaking
Our model for asymmetric antibaryonic dark matter typically requires light hidden scalars with
masses of a few GeV to obtain an acceptable dark matter abundance. For such masses to be
technically natural, the size of soft supersymmetry breaking felt by the light states should also
be near the GeV scale. This is much smaller than the minimal scale of supersymmetry breaking
felt in the MSSM sector, which must be close to or above the TeV scale to be consistent with
current experimental bounds.

Such a hierarchy between visible and hidden sector soft terms can arise if the hidden sector
feels supersymmetry breaking more weakly than the visible. We examine here the necessary
conditions for this to be the case based on the interactions required for hylogenesis. We also
discuss a few specific mechanisms of supersymmetry breaking that can give rise to the required
spectrum. Motivated by the desire for large moduli masses, which are frequently on the same
order as the gravitino mass, we pay particular attention to anomaly mediation.

4.4.1 Minimal Transmission of Supersymmetry Breaking
The interactions we have put forward in Section 4.2 will transmit supersymmetry breaking
from the MSSM to the hidden sector. Thus, a minimal requirement for small hidden-sector soft
terms is that these interactions do not themselves create overly large hidden soft masses. We
begin by studying these effects.

The states that we wish to remain light derive from the Y (c)
1,2 and H(c) chiral multiplets.

These multiplets do not couple directly to the MSSM, but they are connected indirectly by
their interactions with the X(c) states and U(1)′−U(1)Y gauge kinetic mixing. Thus, the X(c)

multiplets and the gauge kinetic mixing will act as mediators to the hidden states.
Beginning with the X multiplets, they will feel supersymmetry breaking from their direct

couplings to the quarks and the triplet P (c) given in Eq. (4.12). The transmission of super-
symmetry breaking can be seen in the renormalization group (RG) equations of the soft scalar
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squared masses of X(c)
a and P (c) (assuming interactions as in case I):

(4π)2
dm2

Xa

dt
= 6|λ′a|2(m2

Xa
+m2

Uc +m2
P + |Aλ′

a |2) + 4|ζa|2(m2
Xa

+ 2m2
Y + |Aζa |2)

(4π)2
dm2

Xc
a

dt
= 4|ζ̄a|2(m2

Xc
a
+ 2m2

Y c + |Aζ̄a |
2) (4.40)

(4π)2
dm2

P

dt
=

∑
a

2|λ′a|2(m2
Xa

+m2
Uc +m2

P )−
32

3
g23|M3|2 + . . .

(4π)2
dm2

P c

dt
= 4|λ′′|2(m2

Sc +m2
Dc +m2

P c)−
32

3
g23|M3|2 + . . .

where the Ai are trilinear soft terms corresponding to superpotential operators, and we have
dropped subleading hypercharge contributions for P (c). We see that P and P c will typically
obtain full-strength (TeV) soft masses from their direct coupling to the gluon multiplet, and
these will be passed on to X in the course of RG evolution. Recall as well that λ′1,2 and λ′′

must both be reasonably large for hylogenesis to work.
Turning next to the Y multiplets, we find for the Y1

(4π)2
dm2

Y1

dt
=

∑
a

8|ζa|2
(
m2

Xa
+m2

Y1
+ |Aζa |2

)
+ 2|γ|2

(
m2

H +m2
Y1

+m2
Y c
2
+ |Aγ |2

)
(4.41)

(4π)2
dm2

Y c
1

dt
=

∑
a

8|ζ̄a|2
(
m2

Xc
a
+m2

Y c
1
+ |Aζ̄a |

2
)
+ 2|γ̄|2

(
m2

Hc +m2
Y c
1
+m2

Y2
+ |Aγ̄ |2

)
.

The Y2 multiplets are also charged under the U(1)′ hidden gauge symmetry, which mixes
kinetically with hypercharge with strength κ. This leads to additional contributions to the
running [197, 297, 298]. At leading non-trivial order in κ, we have

(4π)2
dm2

Y2

dt
= 2|γ̄|2

(
m2

Hc +m2
Y c
1
+m2

Y2
+ |Aγ̄ |2

)
−8e′

2
(|M ′|2 + κ2|M1|2) + 2e′

2
SZ′ − 2κ

√
3

5
g1e

′SY

(4.42)

(4π)2
dm2

Y c
2

dt
= 2|γ|2

(
m2

H +m2
Y1

+m2
Y c
2
+ |Aγ |2

)
−8e′

2
(|M ′|2 + κ2|M1|2)− 2e′

2
SZ′ + 2κ

√
3

5
g1e

′SY ,

where SZ′ = tr(Q′m2), SY = tr(Y m2), g1 =
√

5/3 gY , and M1 is the hypercharge gaugino
(Bino) mass. The RG equations for the soft mass of H (Hc) has the same form as for Y c

2 (Y2)
but with signs of the last two “S” terms reversed.

In addition to these RG contributions, there is D-term mixing between hypercharge and
U(1)′. After electroweak symmetry breaking in the MSSM sector, this generates an effective
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Fayet-Iliopoulos [197, 297] term in the hidden sector of the form

V ⊃ e′2

2

(
|H|2 + |Y2|2 − |Hc|2 − |Y c

2 |2 − ξFI

)2
, (4.43)

with ξFI = −κ(gY /2e′)v2 cos(2β), where v ≈ 174 GeV and tanβ is the ratio of MSSM Higgs
vevs. This term can be absorbed by shifting the hidden-sector soft masses by m2

i → (m2
i −

Q′
iξFI).

The RG equations we have presented here are valid down to the scale msoft where the MSSM
(and X and P (c) if their supersymmetric masses are near msoft) states should be integrated out.
This will generate additional threshold corrections to the hidden-sector soft masses. However,
these lack the logarithmic enhancement of the RG contributions and are typically subleading.
Thus, putting these pieces together we can make estimates for the minimal natural values of
the soft terms in the hidden sector. In terms of msoft ∼ M3 ∼ TeV and ∆t = ln(Λ∗/msoft)

(where Λ∗ is the scale of supersymmetry-breaking mediation), we find

mP (c) ≳ msoft (4.44)

mX(c) ≳ |λ′|msoft

(√
∆t

6

)
(4.45)

m
Y

(c)
1

≳ |ζ λ′|msoft

(√
∆t

6

)2

(4.46)

m
Y

(c)
2

,mH(c) ≳ max

|γ ζλ′|msoft

(√
∆t

6

)3/2

, κM1

(√
∆t

6

)
,

√
κgY
2e′

v

 . (4.47)

Note that
√
∆t ≈ 6 for Λ∗ = MPl. We see that the soft masses of the Y2 and H multiplets

can be naturally suppressed relative to the MSSM for relatively small couplings. For example,
choosing γ = e′ = 0.05, λ′1 = 1, κ ∼ 10−4 and ζ = 0.1 yields soft masses for the Y (c)

2 and H(c)

multiplets below a few GeV. Therefore the direct coupling of the MSSM to the hidden sector
need not induce overly large supersymmetry breaking in the hidden sector.

4.4.2 Mediation Mechanisms
We consider next a few specific mechanisms to mediate supersymmetry breaking to the MSSM
and the hidden sector that will produce a mass hierarchy between the two sectors. Motivated
by our desire for large moduli masses, which in supergravity constructions are frequently re-
lated closely to the gravitino mass [177, 179], the mechanism we will focus on primarily is
anomaly mediation. However, we will also describe a second example using gauge mediation
with mediators charged only under the SM gauge groups.

With anomaly mediated supersymmetry breaking (AMSB) [102, 135], the leading-order
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gaugino mass in the hidden sector is

M ′ =
b′e′2

(4π)2
m3/2 , (4.48)

where b′ = −4 is the one-loop U(1)′ beta function coefficient. A similar expression applies to
the MSSM gaugino soft masses, but with e′2b′ replaced by the corresponding factor. Based on
this comparison, we see that a much lighter hidden gaugino will arise for small values of the
hidden gauge coupling [198]. For example, with MSSM gaugino masses in the range of a few
hundred GeV, the hidden gaugino mass will be a few GeV for e′/gSM ∼ 0.1, corresponding to
e′ ∼ 0.05.

The hidden-sector scalar soft masses will also be parametrically smaller than those of the
MSSM if the corresponding Yukawa couplings are smaller as well. The explicit AMSB expres-
sions for Y1 and Y c

2 are

m2
Y1

=
m2

3/2

(4π)4

γ2(3γ2 − 4e′
2
) + 6γ2

∑
a

ζ2a + 6
∑
a

ζ2aλ
′2
a + 4

∑
a,b

ζ2aζ
2
b (2 + δab)

 ,

(4.49)

m2
Y c
2

=
m2

3/2

(4π)4

[
γ2(3γ2 − 4e′

2
) + 2γ2

∑
a

ζ2a − 16e′
2

]
.

We also have m2
H = m2

Y c
2

, while m2
Hc = m2

Y2
are given by the same expressions with γ → γ̄ and

ζa → ζ̄a. The latter point also applies to m2
Y c
1

relative to m2
Y1

but with λ′a → 0 as well. Thus,
we find GeV-scale soft masses for Y (c)

2 and H(c) (and TeV-scale MSSM soft masses) for the
fiducial values ζa ∼ 0.1, γ ∼ e′ ∼ 0.05, and m3/2 ∼ 100 TeV. Note that in these expressions we
have neglected kinetic mixing effects which are negligible for κ < 10−3 ≪ e′/g1, as we assume
here.

The result of Eq. (4.49) shows that the AMSB scalar squared masses can be positive or
negative, depending on the relative sizes of the gauge and Yukawa couplings. This feature
creates a severe problem in the MSSM where minimal AMSB produces tachyonic sleptons.
We assume that one of the many proposed solutions to this problem corrects the MSSM soft
masses without significantly altering the soft masses in the hidden sector [223, 299]. In contrast
to the MSSM, negative scalar soft squared masses need not be a problem in the hidden sector
due to the presence of supersymmetric mass terms for all the multiplets. In particular, the
supersymmetric mass terms we have included in Eqs. (4.3, 4.12) for the vector-like hidden
multiplets can generally be chosen so that only the H and Hc multiplets develop vevs.

Let us mention, however, that supersymmetric mass terms are problematic in AMSB. In
particular, a fundamental supersymmetric mass term Mi will give rise to a corresponding holo-
morphic bilinear soft “bi” term of size bi ∼ Mim3/2. If bi ≫ m2

soft, |Mi|2, such a term will
destabilize the scalar potential. To avoid this, we must assume that the supersymmetric mass
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terms we have written in Eqs. (4.3, 4.12) are generated in some other way, such as from the vev
of a singlet field.11 A full construction of such a remedy lies beyond the scope of the present
chapter, but we expect that it can be achieved in analogy to the many similar constructions
addressing the corresponding µ−Bµ problem within the MSSM [223, 299] or beyond [198].

A second option for the mediation of supersymmetry breaking that preserves the MSSM-
hidden mass hierarchy is gauge mediation by messengers charged only under the SM gauge
groups [197, 297]. The soft masses generated in the hidden sector in this case can be deduced
from the RG equations, up to boundary terms at the messenger scale on the order of κmsoft,
which are safely small. Unfortunately, the U(1)′ gaugino mass generated in this scenario only
appears at very high loop order, and tends to be unacceptably small [197]. This can be resolved
if there are additional gravity-mediated contributions to all the soft masses on the order of a
few GeV. The gravitino mass in this case will be on the same order as the hidden states. If it
is slightly lighter, it may permit the decay Ψ1 → ψ3/2 +Φ1 (for mΨ1 > m3/2 +mΦ1).

4.5 Phenomenology

4.5.1 Induced Nucleon Decay
Dark matter provides a hidden reservoir of antibaryons. Although baryon transfer interactions
are weak enough that visible baryons and hidden antibaryons are kept out of chemical equilib-
rium today, they are strong enough to give experimentally detectable signatures of DM-induced
nucleon destruction. In these events, a DM particle scatters inelastically on a nucleon N = p, n,
producing a DM antiparticle and mesons. For SUSY models, the simplest IND events are those
involving a single kaon,

ΨN → Φ∗K , ΦN → Ψ̄K . (4.50)

We consider only the lightest DM states Ψ ≡ Ψ1 and Φ ≡ Φ1; the heavier states are not
kinematically accessible provided their mass gap is larger than (mN −mK) ≈ 400 MeV. Both
down-scattering and up-scattering can occur (defined as whether the heavier DM state is in the
initial or final state, respectively), but up-scattering is kinematically forbidden for |mΨ−mΦ| <
mN −mK .

Assuming the hidden states are not observed, IND events mimic standard nucleon decay
events N → Kν, with an unobserved neutrino ν (or antineutrino ν̄). Nucleon decay searches
by the Super-Kamiokande experiment have placed strong limits on the N lifetime τ for these
modes [281]:

τ(p→ K+ν) > 2.3× 1033 years , τ(n→ K0
Sν) > 2.6× 1032 years. (4.51)

11 Note that we could have |µP |, |µX | ≫ m3/2 without any problems. In this case, the threshold corrections to
the light soft masses from integrating out the heavy multiplets precisely cancel their leading contributions from
RG, leading to a zero net one-loop AMSB contribution.
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Figure 4.7: IND processes at leading order in chiral effective theory (left, center). Gray
dot shows effective B transfer operator, generated by P̃ , X exchange in our model
(right).

However, these bounds do not in general apply to IND, due to the different kinematics. For
N → Kν, the K has momentum pK ≈ 340 MeV. IND events are typically more energetic:
680 ≲ pK ≲ 1400 MeV for down-scattering, and pK ≲ 680 MeV for up-scattering (if allowed).12

The Super-Kamiokande analysis assumes: for p→ K+, K+ is emitted below C̆erenkov threshold
in water, corresponding to pK ≲ 550 MeV; for n→ K0

S , the K0
S is emitted with 200 < pK < 500

MeV. Therefore, IND is largely unconstrained by standard nucleon decay searches. The limits
in Eq. (4.51) only constrain up-scattering IND in a subset of parameter space, whereas down-
scattering provides typically the dominant contribution to the total IND rate [279].

Next, we compute the IND rates within our supersymmetric model, starting from the baryon
transfer superpotential in Eq. (4.12). The vector-like squarks P̃ , P̃ c mix through the SUSY-
breaking term Lsoft ⊃ bP P̃ P̃

c to generate the mass eigenstates P̃1,2, with masses m
P̃1,2

. The
leading contribution to IND arises from tree-level P̃1,2 exchange, shown in Fig. 4.7, giving (in
two-component notation)

Leff =
1

Λ3
IND

×


ϵαβγ(d

α
Rs

β
R)(u

γ
RΨR)Φ (case I)

ϵαβγ(s
α
Ru

β
R)(d

γ
RΨR)Φ (case II)

ϵαβγ(u
α
Rd

β
R)(s

γ
RΨR)Φ (case III)

,
1

Λ3
IND

≡
∑
a=1,2

2ζ̄∗aZ31V
∗
11bPλ

′
aλ

′

m2
P̃1
m2

P̃2
mXa

.(4.52)

Here, we have neglected higher derivative terms, and ΛIND characterizes the IND mass scale.
The different cases, corresponding to different baryon transfer interactions in Eq. (4.12), lead
to different fermion contractions.

The effective IND rate for nucleon N = p, n is

Γ(N → K) = nΨ(σv)
NΨ→KΦ†
IND + nΦ(σv)

NΦ→KΨ̄
IND (4.53)

where nΨ,Φ are the local DM number densities and (σv)IND is the IND cross section. The IND
12For fixed DM masses, IND is either bichromatic or monochromatic, depending on whether up-scattering is

allowed or not; the range in pK corresponds to the allowed mass range 1.4 ≲ mΦ,Ψ ≲ 3.3 GeV. If other hidden
states Ψa≥2 and Φb≥2 are kinematically accessible, the IND spectrum can have additional spectral lines.
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Figure 4.8: Total IND cross section (σv)IND = (σv)NΨ→KΦ∗
IND + (σv)NΦ→KΨ̄

IND over allowed
range for mΨ, with mΦ = (ΩDM/Ωb)mp −mΨ ≈ 5mp −mΨ. The effective baryon
transfer mass scale is ΛIND = 1 TeV. Cases I, II, III correspond to different baryon
transfer models considered in Eqs. (4.12,4.52).

lifetime can be expressed as

τ(N → K) =
1

Γ(N → K)
=

(1 + r)(ΩDM/Ωb)mp

2ρDM
[
r(σv)NΨ→KΦ†

IND + (σv)NΦ→KΨ̄
IND

] (4.54)

with local DM mass density ρDM = mΨnΨ +mΦnΦ, and assuming the local ratio r ≡ nΨ/nΦ is
the same as over cosmological scales. The IND cross section is estimated as

(σv)IND ≈
m4

QCD
16πΛ6

IND
≈ 10−39 cm3/s ×

(
ΛIND
1TeV

)−6

, (4.55)

with QCD scale mQCD ≈ 1 GeV.13 For r ∼ O(1), the IND lifetime is

τ(N → K) ≈ 1032 yrs ×
(

(σv)IND
10−39 cm/s

)−1( ρDM

0.3GeV/cm3

)−1

, (4.56)

which is exactly in the potential discovery range of existing nucleon decay searches, provided
the baryon transfer scale ΛIND is set by the weak scale.

More quantitatively, we compute (σv)IND using chiral perturbation theory, which provides
an effective theory of baryons and mesons (and DM) from the underlying quark-level interaction
in Eq. (4.52), following the same methods applied to standard nucleon decay [300] and with
additional input from lattice calculations of hadronic matrix elements [301]. We refer the
reader to Ref. [279] for further details. Fig. 4.8 shows numerical results for the total cross
section (σv)IND, over the allowed mass range mΨ for r = 1, for the three types of interactions

13The cross section (σv)IND also depends on the DM masses mΨ,Φ, which for the purposes of dimensional
analysis are comparable to mQCD.
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Figure 4.9: Proton and neutron lifetimes for different baryon transfer models (cases I,
II, III) considered in Eqs. (4.12) and (4.52). Black line/gray regions show lifetime
range for any r, while blue curves correspond to particular r values.

in Eq. (4.52).14 This calculation agrees well with our previous estimate in Eq. (4.55). However,
since the typical IND momentum is comparable to the chiral symmetry breaking scale ≈ 1GeV
(i.e., where the effective theory breaks down), we regard these results as approximate at best.
The different rates for different cases (for fixed ΛIND) satisfy

(σv)p→K+

IND,III = (σv)n→K0

IND,III , (σv)p→K+

IND,I = (σv)n→K0

IND,II , (σv)p→K+

IND,II = (σv)n→K0

IND,I (4.57)

as a consequence of strong isospin symmetry [279]. The kinks correspond to up-scatting kine-
matic thresholds; to the left and right, only down-scatting is allowed, while in the center both
up- and down-scattering occur.

More generally, we show in Fig. 4.9 the allowed range for p → K+ and n → K0 IND
lifetimes. We consider masses mΨ,Φ consistent with ΩDM/Ωb ≈ 5, for arbitrary r in the range
0 < r < ∞, and we take ΛIND = 1 TeV. For case I (II), the allowed region is shown in gray,
with a smaller (larger) lifetime for n→ K0 than p→ K+. For case III, shown by the black line,
the p and n IND lifetimes are equal, modulo SUSY radiative corrections and isospin-breaking
that we neglect. Specific values for r are shown by blue curves. The solid blue curves show the
IND lifetimes for r = 1, corresponding to the calculation in Fig. 4.8. For r ̸= 1, the IND rate
can be enhanced if the heavier state is overpopulated (e.g., r > 1 for mΨ > mΦ or r < 1 for
mΨ < mΦ); on the other hand, the IND rate can be highly suppressed if the heavier state is

14The total rate n → K0 includes both K0
S and K0

L final states, and the individual channels n → K0
S and

n → K0
L are (approximately) half the total rate.

107



depleted and up-scattering is kinematically forbidden. The dashed (dotted) blue curves show
the IND lifetimes for r = 5 (r = 1/5).

We make a number of comments:

• The IND lifetimes scale as τ(N → K) ∝ Λ6
IND. Taking ΛIND in the range 500GeV−5TeV

corresponds to lifetimes of 1030 − 1036 years. Lifetimes that can be probed in nucleon
decay searches correspond to energy scales accessible in colliders (see below).

• Both channels p→ K+ and n→ K0 provide complementary information, and which one
dominates depends on the underlying heavy states mediating baryon transfer.

• The largest IND rates in Fig. 4.9 correspond to Φ-dominated DM (r ≪ 1) with mΦ > mΨ,
and IND is dominated by ΦN → Ψ̄K down-scattering.

Lastly, we note that while the observation of IND would be a smoking gun signal for hylogenesis,
a nonobservation does not rule out hylogenesis as a baryogenesis mechanism. The IND rate can
be suppressed if (i) the effective scale ΛIND lies beyond the TeV-scale (due to small couplings
or large mass parameters), (ii) baryon transfer in the early Universe involves heavier quark
flavours, and/or (iii) the heavier DM state is depleted while up-scattering IND is kinematically
blocked.

4.5.2 Precision Probes
At energies well below the weak scale, the light states in the hidden sector interact with the
SM primarily through the gauge kinetic mixing interaction. The most important effect of this
mixing is an induced coupling of the Z ′ vector boson to the SM fermions f given by

−L ⊃ −κcWQem
f f̄γµZ ′

µf , (4.58)

where Qem
f is the electric charge of the fermion and cW is the cosine of the weak mixing angle.

Direct searches for a light Z ′ limit κcW ≲ 10−3 for mZ′ ≲ 1GeV [202, 292, 302] with significant
improvements expected in the coming years [303–305].

The dark matter states in our scenario consist of a Dirac fermion or a complex scalar with a
direct coupling to the Z ′ vector. With the mixing interaction connecting the Z ′ to SM fermions,
this state will efficiently mediate spin-independent elastic scattering of the DM states off nuclei.
We estimate the cross section per target nucleon to be [232]

σSI
0 = (5× 10−39 cm2)

(
2Z

A

)2 ( µn
GeV

)2( e′

0.05

)2 ( κ

10−4

)2(0.3 GeV
mZ′

)4

, (4.59)

where µn is the DM-nucleon reduced mass. While this cross section is quite large, the masses
of the DM particles in this scenario lie below the region of sensitivity of most current di-
rect detection DM searches, including the specific low-threshold analyses by COGENT [306],
CDMS [307], XENON10 [9], and XENON100 [308]. For a DM mass below 3 GeV, this cross
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section lies slightly below the current best limit from CRESST [11]. Proposed low-threshold
searches for DM scattering with nuclei or electrons are expected to improve these limits [309].

4.5.3 High-Energy Colliders
The new heavy states required for hylogenesis couple directly to the SM and can potentially be
probed in high-energy colliders such as the Tevatron and the LHC. In particular, the effective
interactions induced by the vector-like quark multiplets (P, P c) can generate monojets and
modify the kinematic distributions of dijets. We discuss here the approximate limits that
existing collider data places on the masses of these multiplets, although we defer a detailed
analysis to the future.

Monojet signals arising from the effective four-fermion interaction (XucRd
c
Rs

c
R)/M

2 present
in the minimal hylogenesis model were considered previously in Ref. [279]. More recent searches
for monojets by the ATLAS [310] and CMS [311] collaborations limit the corresponding mass
scale M to lie above 0.5 − 3 TeV. Note, however, that in our supersymmetric formulation the
corresponding four-fermion operator is only generated once supersymmetry-breaking effects are
included. This weakens the correlation between the monojet signal and the operator responsible
for hylogenesis, although the limit does typically force the P (c) multiplets to be at least as
heavy as a few hundred GeV. On the other hand, this operator is directly related to the IND
interaction. An alternative signal that can arise directly from the superpotential interaction
is a “monosquark” q̃∗X̃ final state, with the squark decaying to a jet and missing energy. In
both cases, collider limits may be weakened through cascade decays in the hidden sector, which
could produce additional hidden photons or Higgs bosons that decay to SM states.

A second way to probe our supersymmetric UV completion of hylogenesis is through the
kinematic distributions of dijets, which can be modified by the direct production of the triplet
P scalars (which are R-even). On-shell production of scalar P̃ states via the interactions of
Eq. (4.12) can produce a dijet resonance. For heavier masses, the primary effect is described
by the non-minimal Kähler potential operator of Eq. (4.13), which gives rise to a four-quark
contact operator. Studies of dijet distributions by ATLAS [312] and CMS [313, 314] put limits
on the masses of the P (c) scalars of 1-10 TeV, although the specific limits depend on the flavour
structure of the quark coupling in Eq. (4.12) present in the underlying theory.

4.6 Conclusions
Through the mechanism of hylogenesis, the cosmological densities of visible and dark matter
may share a unified origin. Out-of-equilibrium decays during a low-temperature reheating epoch
generate the visible baryon asymmetry, and an equal antibaryon asymmetry among GeV-scale
hidden sector states. The hidden antibaryons are weakly coupled to the SM and are the dark
matter in the Universe.

We have embedded hylogenesis in a supersymmetric framework. By virtue of its weak
couplings to the SM, SUSY-breaking is sequestered from the hidden sector, thereby stabilizing
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its GeV mass scale. The DM consists of two states, a quasi-degenerate scalar-fermion pair of
superpartners. We studied in detail one particular realization of supersymmetric hylogenesis,
considering several aspects:

• We constructed a minimal supersymmetric model for hylogenesis. Hidden sector baryons
are chiral superfields X and Y , with B = 1 and −1/2, respectively. The lightest Y states
are DM, while X decays in the early Universe generate the B asymmetries.

• In addition, we introduced a vector-like SU(3)C triplet to mediate B transfer between
visible and hidden sectors, and a hidden Z ′ gauge boson (with kinetic mixing) to deplete
efficiently the symmetric DM densities.

• We showed that hylogenesis can successfully generate the observed B asymmetry dur-
ing reheating. We computed the CP asymmetry from X decay and solved the coupled
Boltzmann equations describing the cosmological dynamics of hylogenesis.

• We studied how SUSY breaking is communicated between the visible and hidden sectors
through RG effects. We also examined predictions within an AMSB framework. While
anomaly mediation explains the late-time reheating epoch from moduli decay, we have
not explicitly addressed the issues of tachyonic slepton masses in the visible sector and
the origin of SUSY mass terms in the hidden sector.

• Antibaryonic DM annihilates visible nucleons, causing induced nucleon decay to kaon
final states, with effective nucleon lifetime in the range 1030 − 1036 years. DM can be
discovered in current nucleon decay searches, and this signal remains unexplored.

• Collider searches for monojets and dijet resonances provide the strongest direct constraints
on our model, and these signals are correlated with IND. Lifetimes of 1030 − 1036 years
correspond to energy scales ΛIND ∼ 0.5− 5 TeV that can be probed at the LHC.

• DM direct detection experiments and precision searches for hidden photons constrain the
Z ′ kinetic mixing, although our model remains consistent with current bounds.

We emphasize that our specific model was constructed to illustrate general features of hy-
logenesis, and certainly there are many other model-building possibilities along these lines.
Nevertheless, it is clear that supersymmetric hylogenesis provides a technically natural and vi-
able scenario for the genesis of matter, explaining the cosmic coincidence between the dark and
visible matter densities and predicting new experimental signatures to be explored in colliders
and nucleon decay searches.
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Part III

Tunnelling and First Order Phase
Transitions

111



Chapter 5

Quantum Tunnelling in Field Theory

5.1 Introduction
The present part of the thesis explores two different applications of first-order phase transitions,
that is, transitions where an order parameter changes discontinuously. This order parameter is
the set of expectation values of some scalar fields. At zero temperature these transitions proceed
via quantum tunnelling through a potential barrier. At finite temperature, thermal fluctuations
of fields can overcome a free energy barrier in process called “thermal tunnelling”. As we will
see, these two types of tunnelling are conveniently described using the same formalism.

We will be interested in evaluating the rate of tunnelling events either at zero or at fi-
nite temperature. This computation is the field theory analogue of Wentzel-Kramers-Brillouin
(WKB) method for evaluating barrier penetration probabilities in ordinary quantum mechan-
ics. In Sec. 5.2 we evaluate the tunnelling rate at zero temperature. Section 5.3 describes the
equivalent computation for a thermodynamic system at finite temperature, which is relevant
to phase transitions in the early Universe. In Sec. 5.4 we outline the numerical methods useful
for the study of such transitions and show examples. These methods are used in the following
chapters.

5.2 Tunnelling at Zero Temperature
Quantum tunnelling occurs when a system can minimize its energy by transitioning to a lower
energy state through a classically forbidden region in configuration space. The problem of
tunnelling in field theory was originally addressed in the seminal papers of Coleman and
Callan [315, 316]. In general, the energy of the ground state field configuration |ϕ⟩ can be
determined from the matrix element

⟨ϕ| exp(−Hτ/ℏ)|ϕ⟩ =
∑
n

exp(−Enτ/ℏ)⟨ϕ|n⟩⟨n|ϕ⟩, (5.1)
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where τ = it is the Euclidean time and {|n⟩} is a complete set of eigenstates of the Hamiltonian
H. We make ℏ explicit in this section to make use of the semi-classical expansion of the path
integral. The eigenvalues of physical Hamiltonians are bounded from below, that is there exists
a lowest energy E0. By considering the large Euclidean time limit τ → ∞ we can solve for E0:

E0 = −ℏ lim
τ→∞

1

τ
ln⟨ϕ| exp(−Hτ/ℏ)|ϕ⟩. (5.2)

For a stable state, E0 is real. Now consider the case shown in the left plot of Fig. 5.1: the
vacuum at ϕ+ is not the lowest energy configuration and therefore cannot be the ground state.
If the system is found in this configuration, it must somehow evolve into the true vacuum at
ϕ−. This means that |ϕ+⟩ is not an eigenstate of the Hamiltonian, but its energy E+ can be
defined through analytic continuation [317], such that Eq. (5.2) is still valid. E+ then acquires
a non-zero imaginary part, related to the decay rate of the state |ϕ+⟩ through

Γ = −2

ℏ
ImE+. (5.3)

Our goal is then to compute the leading contribution to this decay rate. The imaginary part of
the energy arises due to quantum tunnelling from the false vacuum into the true ground state.
Perturbation theory can capture only small deviations from a vacuum state, so this computation
is done in the semi-classical limit (ℏ → 0) in the path integral formalism.1 In ordinary quantum
mechanics this reduces to the WKB approximation for tunnelling amplitudes.

First, let us consider the case of a single scalar field ϕ with the Euclidean action

SE =

∫
d4x

[
1

2
(∂ϕ)2 + U(ϕ)

]
, (5.4)

where U is a potential function with a false vacuum, such as the one shown in the left plot of
Fig. 5.1. The required matrix element can be computed using

⟨ϕ+| exp(−Hτ/ℏ)|ϕ+⟩ =
∫

[Dϕ] exp(−SE [ϕ]/ℏ), (5.5)

where the path integral on the right hand side is over field configurations such that ϕ(±τ/2) =
ϕ+. In the semi-classical limit ℏ → 0, the dominant contributions to the path integral come
from the vicinity of stationary points of the action (via the method of steepest descent - see,
e.g., Ref. [318]). In our case, there is a minimum of the action that corresponds to the trivial
field configuration that just sits at ϕ+. It is easy to see that such “motion” does not contribute
to the decay rate, since the matrix element is real. Thus, we should look for the leading
imaginary contribution to the path integral. There is another solution to the classical equation
of motion (EOM), called the bounce, that is a saddle point of the of the action, which, as we will

1The more correct statement of the semi-classical regime is the limit of the dimensionless quantity S/ℏ → ∞,
where S is the action.
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show, gives the desired imaginary part. The idea is to compute the path integral in Eq. (5.5)
by expanding the action around this saddle point solution to quadratic order and performing
the Gaussian integral. The fact that ϕ̄ is a saddle configuration means that the operator

δ2SE
δϕ(x)δϕ(y)

= δ4(x− y)

(
−∂2 + δ2U

δϕ2
(ϕ̄)

)
. (5.6)

has a negative eigenvalue, i.e., it is not positive definite. As we will emphasize, this is the key
feature that generates an imaginary part in E+.

The bounce ϕ̄ satisfies the equation of motion

δSE
δϕ

= 0 ⇒ ∂2ϕ = U ′(ϕ). (5.7)

Note the “wrong” sign of the potential gradient, which is due to the fact that we work in
Euclidean space. The boundary conditions are

lim
τ→±∞

ϕ(τ,x) = ϕ+. (5.8)

Moreover, for the action to remain finite, the spacial derivatives of ϕ must also vanish at infinity,
so, by continuity, we must have

lim
|x|→∞

ϕ(τ,x) = ϕ+. (5.9)

A theorem due to Coleman, Glaser and Martin [317, 319] states that solutions that are O(4)-
symmetric have smaller actions than non-symmetric solutions. Here O(4) is just the Euclidean
version of the Lorentz group, O(1, 3). This means that we can look for solutions that are only a
function of the O(4) invariant variable ρ = (xµx

µ)1/2 = (τ2 + x2)1/2. Using the hyperspherical
coordinate expression for the four-dimensional Laplacian (and neglecting the angular part), the
EOM reduces to

d2ϕ

dρ2
+

3

ρ

dϕ

dρ
= U ′(ϕ). (5.10)

This has the form of the equation of motion for a particle moving in the inverted potential
−U , subject to a friction force with a time-dependent coefficient 3/ρ. This observation is useful
for understanding the qualitative behaviour of the solutions. Using the definition of ρ, the
boundary conditions for an O(4)-symmetric solution collapse into a single requirement

lim
ρ→∞

ϕ(ρ) = ϕ+. (5.11)

Using the particle picture we can discuss the possible solutions. First, we have the trivial
solution where the particle just sits at ϕ+. As mentioned above, this does not contribute to the
decay rate. We also have the bounce solution, where the particle starts at ϕ+ at early times
τ → −∞ (corresponding to ρ→ ∞) rolls off the maximum at ϕ+, bounces off the potential wall
at some finite time, say ρ = 0 and position ϕ∗ and then returns and comes to rest back at ϕ+ at
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τ → +∞ (also corresponding to ρ → ∞).2 This motion and the inverted potential are shown
schematically in the right plot of Fig. 5.1. Therefore to solve for the bounce, we need to find
ϕ(ρ = 0) = ϕ∗ such that limρ→∞ ϕ(ρ) = ϕ+. This makes the solution of Eq. (5.10) non-trivial,
since one of the boundary conditions is unknown. Numerical approaches to this problem are
discussed in Sec. 5.4.

With the classical solution in hand, we can expand the action in the path integral of Eq. (5.5)
around ϕ̄:

SE [ϕ] = SE [ϕ̄] +
1

2

∫
d4xd4yϕ(x)

δ2SE
δϕ(x)δϕ(y)

(ϕ̄)ϕ(y) + . . . , (5.12)

where ϕ represents quantum fluctuations around ϕ̄ and the ellipsis stands for higher order
terms in the expansion of SE . Using this expansion and Eqs. (5.2, 5.3, 5.5) we can see that the
resulting decay rate per unit volume has the form

Γ/V = A exp(−B/ℏ), (5.13)

where B = SE [ϕ̄] is the Euclidean action evaluated on the classical bounce solution ϕ̄ and
the factor of volume arises from integrating over possible bounce locations [317]. The pre-
exponential factor is obtained from the functional Gaussian integral using the second term in
Eq. (5.12). It is very difficult to compute because it involves determinants of the differential
operator of Eq. (5.6) [320, 321]. Therefore, it is usually estimated on dimensional grounds [322].
For example, for electroweak scale parameters, we will take

[A] =M4 ⇒ A = (100 GeV)4 . (5.14)

In any case, the controlling exponential factor depends on B only. Note that the determinants
that appear in A are precisely where the aforementioned imaginary part of the matrix element
enters the calculation. Here an analogy with a matrix integral is useful:∫ +∞

−∞
exp

(
−1

2
xiSijxj

)
dnx =

(2π)n/2√
detS

. (5.15)

If the quadratic form Sij is not positive definite, it has a negative eigenvalue, which means
that the right hand side can be imaginary. In this case the integral must be defined through
analytic continuation. Translating this to field theory, if the operator of Eq. (5.6) has a negative
eigenmode, the Gaussian integral will have an imaginary part.3

Above we have outlined the computation of the false vacuum decay rate at zero temperature.
2The time at the turn-around is a free parameter - this just means that we can translate the solution in space

and time to obtain another solution with the same action. This has important consequences for the computation
of the path integral.

3This depends on how many negative modes there are. It is assumed that there is only one. This has been
shown to be the case in a wide range of physical theories [323].
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Figure 5.1: (Left) A typical potential with a false vacuum at ϕ+. (Right) The particle
motion interpretation of the bounce equation of motion.

We have ignored many technical details, namely the treatment of the zero mode associated
with the translation of the center of the bounce (which we took to be at ρ = 0) as well as the
computation of the pre-exponential factor. More careful considerations can be found in the
original literature (e.g., Refs. [315, 316]), as well as in pedagogical reviews, Refs. [317, 324–326].
Computation of the determinantal prefactors is discussed in Ref. [320, 321]. The O(4)/Lorentz
invariance of bubbles is considered in [327].

5.3 Tunnelling at Finite Temperature
The early Universe at finite temperature can be described as a closed system in approximate
local thermodynamic equilibrium [40]. Thermodynamic properties of this system are then
described by the canonical ensemble with the partition function Z

Z = Tre−βH =
∑
a

⟨ϕa|e−βH |ϕa⟩, (5.16)

where β = 1/T , H is the Hamiltonian and the trace is over a complete set of states {|ϕa⟩} [328].
This is reminiscent of the amplitude in Eq. (5.5). In fact, the partition function can be written
as a path integral:

Z =

∫
Dϕ exp

(
−
∫ β

0
dτ

∫
d3xLE

)
, (5.17)

where LE is the Euclidean (i.e., imaginary time) Lagrangian corresponding toH. The boundary
conditions on the fields ϕ follow from Eq. (5.16): we must have ϕ(0,x) = ϕ(β,x), i.e., the
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path integral is over field configurations periodic in β.4 This is completely analogous to the
T = 0 case, but with a compact Euclidean time interval τ ∈ [0, β] and periodic (anti-periodic)
boundary conditions for the bosonic (fermionic) fields in the theory.

The various phases of the theory at a given temperature T are determined by the minima
of the free energy F

F = −T lnZ = E − TS, (5.18)

where E and S are the average energy and entropy of the system, respectively. If a phase of
lower free energy exists, the system will undergo a transition to that state. In the presence
of a barrier between the two phases, this will occur through thermal tunnelling, which was
first treated by Affleck and Linde [329, 330]. As before, the false vacuum decay rate can be
extracted from the the imaginary part of F via Eq. (5.3) (with E+ → F ).5 As in the T = 0

case, the leading contribution to ImF can be obtained using the semi-classical approximation.
It is typically assumed that finite-T bounce solution does not depend on τ and is therefore only
O(3) symmetric, that is ϕ̄ = ϕ̄(r = |x|) [330, 332]. See Ref. [330] for exceptions to this latter
assumption. With these caveats in mind, the finite temperature bounce action can be written
as

SE [ϕ] = S3/T =
1

T

∫
d3x

(
1

2
(∂ϕ)2 + U(ϕ)

)
, (5.19)

from which the bounce EOM is found to be

d2ϕ

dr2
+

2

r

dϕ

dr
= U ′(ϕ), (5.20)

with boundary conditions given by Eq. (5.11) (with the replacement ρ → r). Formally the
only difference between Eq. (5.20) and the T = 0 result, Eq. (5.10), is the coefficient of the
ϕ̇ “friction” term. The resulting tunnelling probability per unit volume again has exponential
form [332]

Γ/V = A(T ) exp(−S3[ϕ̄]/T ), (5.21)

where, as beforeA(T ), is usually estimated using dimensional analysis to be of order O(T 4) [332].
4The corresponding integral for fermionic fields is anti-periodic in β.
5There are important subtleties related to the convexity of F and the equivalent quantity at T = 0, the

effective action. See Ref. [331] for a pedagogical description of these issues.
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5.4 Numerical Methods
In Sections 5.2 and 5.3 we saw that the evaluation of tunnelling rates requires the solution of
the system of ordinary differential equations

d2ϕ

dρ2
+
α− 1

ρ

dϕ

dρ
= ∇U(ϕ), (5.22)

subject to the boundary conditions

lim
ρ→∞

ϕ(ρ) = ϕ+,
dϕ

dρ
(ρ = 0) = 0 (5.23)

where α is the dimension (α = 3, 4 for finite and zero temperature tunnelling, respectively).
In writing Eqs. (5.22) and (5.23) we have extended the single scalar case to multiple field
directions, where ϕ is a vector of all relevant scalar fields and ϕ+ is the location of the false
vacuum. The second boundary condition (BC) ensures that the solution is finite when ρ → 0.
This BC is very weak, since it does not fully determine the behaviour at ρ = 0. In particular,
the bounce point ϕ(ρ = 0) ≡ ϕ∗ must be found. When there is only one field, this can be done
using the shooting method used in one-dimensional eigenvalue problems: one simply solves for
a ϕ∗ such that the first of Eq. (5.23) is satisfied to desired numerical precision, using standard
one dimensional root finding algorithms (such as bisection). This becomes intractable with
more than one field, since guessing just the right ϕ∗ in many dimensions is virtually impossible.
Several methods of solving the multi-field bounce equation, Eq. (5.22), have been proposed,
including Refs. [333–335]. Below we briefly describe two different classes of algorithms.

The algorithm of Ref. [334] (and Ref. [333] on which it is based) exploits the fact the
Eq. (5.22) simplifies when α = 1. In this limit, there is no damping term in the equation and
it takes the form of a Newtonian EOM for a particle moving in an inverted potential −U (see
Sec. 5.2). The resulting motion can be obtained by minimizing6 the discretized action

Sα[ϕ(ρ)] = Ωα

N−1∑
n=0

dρ(ndρ)α−1

[
1

2

(
ϕn+1 − ϕn

dρ

)2

+ U(ϕn)

]
(5.24)

subject to the constraints

U(ϕ0) = U(ϕ+), U(ϕn) ≥ U(ϕ+) ∀ n < N, (5.25)

and

ϕN−1 = ϕ+. (5.26)

In the above equations Ωα = 2πα/2/Γ(α/2), N is the number of lattice sites and dρ is the
6Note that this would not work for the true (α > 1) bounce motion since it is a saddle point, not a minimum,

of the action.
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lattice spacing. The optimization is computationally costly with multiple field directions since
one often needs N ∼ O(100) per field direction.

The above procedure yields the α = 1 solution that serves as an estimate ϕe of the true
bounce point ϕ∗. In the second part of the algorithm, deformation from α = 1 to a different α
is performed in small steps. If the solution does not change much from α to α + dα, then the
right hand side of Eq. (5.22) can be linearized and the resulting equation discretized and solved
using standard numerical linear algebra methods.

The alternative method used in Ref. [335] does not rely on discretization. Instead, the
strategy is to make a guess for the tunnelling path ϕ(s) parametrized by a arbitrary “time”
s. For fixed ϕ(s) this reduces the problem to a single differential equation for s(ρ), which can
be solved using the shooting method. The initial path ϕ(s) is iteratively refined to find the
true bounce ϕ(s(ρ)); the optimal choice of ϕ(s) minimizes the action (see Appendix A). More
quantitatively, we can rewrite Eq. (5.22) as

d2ϕ

ds2

(
ds

dρ

)2

+

[
d2s

dρ2
+
α− 1

ρ

ds

dρ

]
dϕ

ds
= ∇U(ϕ), (5.27)

by applying the chain rule. Since the path parametrization is arbitrary, let us demand that it
has unit speed: ∣∣∣∣dϕds

∣∣∣∣ = 1. (5.28)

We can then use this to show that

d2ϕ

ds2
· dϕ
ds

= 0. (5.29)

Taking the inner products of the EOM with dϕ/ds we get

d2s

dρ2
+
α− 1

ρ

ds

dρ
=
dU

ds
. (5.30)

This is the equation of motion along the parametric path. It has the same form as the equation
of a bounce for a single field variable and can be easily solved using the shooting method.
There is another equation contained in the EOM associated with deformations of ϕ(s), which
is obtained by subtracting Eq. (5.30) from Eq. (5.27):

d2ϕ

ds2

(
ds

dρ

)2

=

(
∇− dϕ

ds

∂

∂s

)
U. (5.31)

This equation is used to deform the path ϕ(s) toward the true bounce. This algorithm has
been implemented in the public code CosmoTransitions (CT) [335].

In Ch. 6 we make extensive use of CT, so we validated its results by implementing in C++

119



0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 2.0 4.0 6.0 8.0 10.0 12.0

φ̄
(ρ

)

ρ

φ1 C++

φ2 C++

φ1 CT

φ2 CT

-0.5

0.0

0.5

1.0

1.5

2.0

-0.5 0.0 0.5 1.0 1.5

φ
2

φ1

φ̄ C++

φ̄ CT

-1.5

-1

-0.5

0

0.5

1

1.5

U
(φ

)

Figure 5.2: The bounce solution for a two dimensional potential evaluated using two dif-
ferent methods. The left plot shows the field profiles as a function of the coordinate
ρ, while the right plot shows the tunnelling path in the ϕ1 − ϕ2 plane.

the algorithm of Ref. [334] described above. In Fig. 5.2 we show a sample bounce configuration
(computed using these different methods) for a toy two dimensional potential

U(ϕ) =
(
ϕ21 + ϕ22

) (
1.8(ϕ1 − 1)2 + 0.2(ϕ2 − 1)2 − δ

)
, (5.32)

with δ = 0.4. This potential is used as a test case in Ref. [335]. With this value of δ the true
and false minima are at ϕ = (1.04637, 1.66349) and (0, 0), respectively. The left plot shows the
evolution of each field component with the parameter ρ. The right plot shows the trajectory
in field space, which interpolates between the two vacua. We found that the resulting bounce
actions differ by less than 10% between the two methods.
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Chapter 6

Charge and Colour Breaking in the
MSSM

6.1 Introduction
Supersymmetry predicts a scalar superpartner for every fermion in the Standard Model (SM) [80].
While these scalar fields help to protect the scale of electroweak symmetry breaking from large
quantum corrections (see Sections 1.3.1 and 2.3), they can also come into conflict with ex-
isting experimental bounds. This tension is greatest for the scalar top quarks (stops). On
the one hand, the stops must be heavy enough to have avoided detection in collider searches.
On the other hand, smaller stop masses maximize the quantum protection of the electroweak
scale [336, 337].

In the minimal supersymmetric extension of the Standard Model (MSSM), there is an
additional constraint on the stops implied by the discovery of a Higgs boson with mass near
mh = 125 GeV [12, 13]. Specifically, the stops must be heavy enough to push the (SM-like)
Higgs mass up to the observed value [338, 339]. After electroweak symmetry breaking, the two
gauge-eigenstate stops t̃L and t̃R mix to form two mass eigenstates, t̃1 and t̃2 (mt̃1

≤ mt̃2
). The

corresponding mass-squared matrix in the (t̃L t̃R)
T basis is [80]

M2
t̃
=

(
m2

Q3
+m2

t +DL mtXt

mtX
∗
t m2

U3
+m2

t +DR

)
, (6.1)

where Xt = (A∗
t −µ cotβ) is the stop mixing parameter, m2

Q3,U3
and At are soft supersymmetry-

breaking parameters, µ is the Higgsino mass parameter, tanβ = vu/vd is the ratio of the two
Higgs expectation values, and DL,R = (t3 −Qs2W )m2

Z cos 2β are the D-term contributions. The
stops generate the most important quantum corrections to the mass of the SM-like Higgs state
h0 in the MSSM. Decoupling the heavier Higgs bosons (mA ≫ mZ), the h0 mass at one-loop
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order is [340–342]

m2
h ≃ m2

Z cos2 2β +
3

4π2
m4

t

v2

[
ln
(
M2

S

m2
t

)
+
X2

t

M2
S

(
1− X2

t

12M2
S

)]
, (6.2)

where MS = (mQ3mU3)
1/2. The first term is the tree-level contribution and is bounded above

by m2
Z . The second term in Eq. (6.2) is the sum of one-loop top and stop contributions. This

correction is essential to raising the mass of the SM-like MSSM Higgs mass to the observed
value.

The contribution of the stops to the h0 mass depends on both the mass eigenvalues and
the mixing angle. Without left-right stop mixing, at least one of the stops must be very heavy,
mt̃ ≳ 5 TeV, to obtain mh ≃ 125 GeV [343]. This leads to a significant tension with the
naturalness of the weak scale [336, 337]. This tension can be reduced by stop mixing, with the
largest effect seen in the vicinity of the maximal mixing scenario of Xt ≃ ±

√
6MS [344]. This

is shown in Fig. 6.1, where the maximal mixing scenario corresponds to the maxima of mh as a
function of Xt/MS . However, such large values of Xt/MS require a large value of At (small µ
is needed for naturalness [345]) which can induce new vacua in the scalar field space where the
stops develop vacuum expectation values (vevs). The lifetime for tunnelling to these charge-
and colour-breaking (CCB) vacua must be longer than the age of the Universe to be consistent
with our existence.

The existence of CCB stop vacua in the MSSM has been studied extensively [7, 346–
354]. Under the assumption of SU(3)C ×SU(2)L ×U(1)Y D-flatness, an approximate analytic
condition for the non-existence of a CCB stop vacuum is [348, 349]

A2
t < 3(m2

Q3
+m2

U3
+m2

2) , (6.3)

where m2
2 = m2

Hu
+ |µ|2 and m2

Hu
is the Hu soft mass squared parameter. Generalizations to

less restrictive field configurations [349, 352–354] and studies of the thermal evolution of such
vacua [355–357] have been performed as well. Relaxing the requirement of absolute stability
of our electroweak vacuum and demanding only that the tunnelling rate to the CCB vacua is
sufficiently slow provides a weaker bound. The tunnelling rate was computed in Ref. [7], where
the net requirement for metastability was expressed in terms of the empirical relation

A2
t + 3µ2 ≲ 7.5(m2

Q3
+m2

U3
) . (6.4)

In this chapter we attempt to update and clarify the stability and metastability bounds on the
parameters in the stop sector of the MSSM. We expand upon the previous body of work by
investigating the detailed dependence of the limits on the underlying set of stop parameters.
Furthermore, we relate our revised limits to recent Higgs and stop search results at the LHC.

The outline of this chapter is as follows. In Sec. 6.2 we specify the ranges of MSSM param-
eters and field configurations to be considered. Next, in Sec. 6.3 we investigate the necessary
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Figure 6.1: The two loop SM-like MSSM Higgs mass as a function of Xt/mQ3 computed
using FeynHiggs as described in Sec. 6.4. The shaded teal region corresponds to
123 GeV < mh < 127 GeV, a range that encompasses the approximate theoretical
uncertainty inmh around the measured valuemh ≈ 125GeV [6]. Here we have taken
mA = 1000GeV, mQ3 = mU3 = 750GeV and µ = 250GeV. These parameters are
discussed in Sec. 6.2.

conditions on the underlying stop and Higgs parameters for the scalar potential to be stable
or safely metastable. We then compare the constraints from metastability to existing limits on
the MSSM stop parameters from the Higgs mass in Sec. 6.4, as well as to direct and indirect
stop searches in Sec. 6.5. Finally, we conclude in Sec. 6.6. Some technical details related to
our tunnelling calculation are expanded upon in Appendices A and B. This chapter and the
aforementioned Appendices are based on work published in Ref. [3] in collaboration with David
Morrissey.

6.2 Parameters and Potentials
In our study, we consider only variations in the scalar fields derived from the superfields Q3 →
(t̃L, b̃L)

T , U c
3 → t̃∗R, Hu → (H+

u ,H
0
u), and Hd → (H0

d , H
−
d ). To make this multi-dimensional

space more tractable, we further restrict ourselves to configurations where b̃L = H+
u = H−

d = 0

and the remaining fields (and MSSM parameters) are real-valued. Previous studies of CCB
vacua in the stop direction suggest that this condition is not overly restrictive [349].
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6.2.1 Scalar Potential
Under these assumptions, the tree-level scalar potential becomes

Vtree = V2 + V3 + V4 (6.5)

where

V2 = (m2
Hu

+ |µ|2)(H0
u)

2 + (m2
Hd

+ |µ|2)(H0
d)

2 − 2bH0
uH

0
d +m2

Q3
t̃2L +m2

U3
t̃2R (6.6)

V3 = 2yt(AtH
0
u − µH0

d) t̃Lt̃R (6.7)

V4 = y2t
[
t̃2Lt̃

2
R + t̃2L(H

0
u)

2 + t̃2R(H
0
u)

2
]
+ VD , (6.8)

with

VD =
g′2

8

[
(H0

u)
2 − (H0

d)
2 +

1

3
t̃2L − 4

3
t̃2R

]2
+
g2

8

[
−(H0

u)
2 + (H0

d)
2 + t̃2L

]2
+
g23
6

(
t̃2L − t̃2R

)2
.(6.9)

In writing this form, we have implicitly assumed that the stops are aligned (or anti-aligned) in
SU(3)C space, so that t̃L and t̃R may be regarded as the magnitudes of these colour vectors
(up to a possible sign). It is not hard to show that such an alignment maximizes the likelihood
of forming a CCB minimum.

In our analysis of metastability, we use the tree-level potential of Eq. (6.5) with the pa-
rameters in it taken to be their DR running values defined at the scale MS . However, we also
compare our metastability results to a full two-loop calculation of the Higgs boson mass. While
this is a mismatch of orders, we do not expect that including higher order corrections will
drastically change our metastability results for two reasons. First and most importantly, the
formation of CCB vacua is driven by the trilinear stop coupling At, which is already present in
the tree-level potential. Second, when a CCB vacuum exists, the large stop Yukawa coupling
yt ∼ 1 implies that it typically occurs at field values on the order of MS [349]. Thus we do not
expect large logarithmic corrections from higher orders.

Including higher-order corrections in the tunnelling analysis is also challenging for a num-
ber of technical reasons. Turning on multiple scalar fields, the mass matrices entering the
Coleman-Weinberg corrections to the effective potential become very complicated and multi-
dimensional [356]. These corrections can be absorbed into running couplings by an appropriate
field-dependent choice of the renormalization scale [347]. In doing so, however, the otherwise
field-independent corrections to the vacuum energy (which are not included in the Coleman-
Weinberg potential) develop a field dependence. These vacuum energy corrections must be
included to ensure the net scale independence of the effective potential [358, 359]. Beyond the
effective potential, kinetic corrections (i.e., derivative terms in the effective action) will also be
relevant for the non-static tunnelling configurations to be studied. Furthermore, the effective
potential and the kinetic corrections are both gauge dependent [360, 361]. The gauge depen-
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Parameter Values
|mQ3 | [300, 3000] GeV

m2
Q3

/m2
U3

0.3 , 1, 3

Xt [−10, 10]× |mQ3 |
µ 150, 300, 500 GeV
mA 1000 GeV

tanβ 5, 10, 30

Table 6.1: MSSM scalar potential parameter scan ranges. The values of other parameters
to be considered are described in the text.

dence of the effective potential can be shown to cancel on its own for static points [362, 363].
However, to ensure the gauge invariance of the non-static tunnelling configuration and thus the
decay rate, kinetic corrections must be included as well [364, 365]. For these various reasons,
we defer an investigation of higher-order corrections to metastability to a future work.

6.2.2 Parameter Ranges
Without loss of generality, we may redefine H0

u and H0
d such that b and H0

u are both positive.
This ensures that the unique SM-like vacuum (with t̃L = t̃R = 0) has tanβ = ⟨H0

u⟩/⟨H0
d⟩ > 0,

and thus ⟨H0
d⟩ > 0 as well. By demanding that a local SM-like vacuum exists, b, m2

Hu
, and m2

Hd

can be exchanged in favour of v =
√

⟨H0
u⟩2 + ⟨H0

u⟩2, tanβ, and the pseudoscalar mass mA:

b =
1

2
m2

A sin(2β) (6.10)

m2
Hu

= −µ2 +m2
A cos2β +

1

2
m2

Z cos(2β) (6.11)

m2
Hd

= −µ2 +m2
A sin2β − 1

2
m2

Z cos(2β) . (6.12)

Moving out in the stop directions, we may also redefine t̃L and t̃R such that t̃L is positive.
The parameter ranges we investigate are motivated by existing bounds on the MSSM and

naturalness. We typically scan over (m2
Q3
, Xt) while holding other potential parameters fixed.

We also consider discrete variations in m2
U3
/m2

Q3
, tanβ, µ, and mA. The corresponding ranges

are specified in Table 6.1. For the remaining supersymmetry breaking parameters, we choose
mf̃ = 2 TeV and Af = 0 for all sfermions other than the stops, as well as M1 = 300 GeV,
M2 = 600 GeV, and M3 = 2 TeV. To interface with the Higgs mass calculation, we take these
to be running DR values defined at the input scale MS = (mQ3mU3)

1/2. We also use running
DR values of yt, g′, g, and g3 at scale MS when evaluating the potential.

6.3 Limits from Vacuum Stability
A necessary condition on the viability of any realization of the MSSM is that the lifetime of the
SM-like electroweak vacuum at zero temperature be longer than the age of the Universe. This
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will certainly be the case if the electroweak vacuum is a global minimum, and it can also be true
in the presence of a deeper CCB minimum provided the tunnelling rate is sufficiently small.
More stringent conditions can be derived for specific cosmological histories [356]. While colour-
broken phases in the early Universe can have interesting cosmological implications, such as for
baryogenesis [355–357], we focus exclusively on the history-independent T = 0 metastability
condition.

6.3.1 Existence of a CCB Vacuum
The first step in a metastability analysis is to determine whether a CCB minimum exists.
Such minima are induced by a competition between the trilinear A and quartic couplings λ
in the potential, and one generally expects ⟨ϕ⟩CCB ∼ A/λ [349]. We use this expectation
as a starting point for a numerical minimization of the potential, Eq. (6.5), employing the
minimization routine Minuit2 [366]. For every MSSM model, we choose the starting point to
be ⟨ϕi⟩CCB = ξiAt, where ξi ∈ [−1, 1] is chosen randomly. The global CCB vacua we find are
generally unique, up to our restrictions of H0

u, t̃L ≥ 0. If no global CCB minimum is found, the
minimization is repeated several times with new ξi values. If the global minimum turns out to
be the EW vacuum, the model is considered to be Standard Model-like (SML).

6.3.2 Computing the Tunnelling Rate
When a deeper CCB vacuum is found, the decay rate of the SML vacuum is computed using the
Callan-Coleman formalism [315, 316], where the path integral is evaluated in the semi-classical
approximation as described in Ch. 5. The decay rate per unit volume is given by

Γ/V = C exp(−B/ℏ) , (6.13)

where B = SE [ϕ̄] is the Euclidean action evaluated on the bounce solution ϕ̄. The bounce
is O(4)-symmetric, depending only on ρ =

√
t2 + x2, and satisfies the classical equations of

motion subject to the boundary conditions ∂ρϕ̄|ρ=0 = 0 and limρ→∞ ϕ̄ = ϕ+, where ϕ+ is the
false-vacuum field configuration. The pre-exponential factor C is obtained from fluctuations
around the classical bounce solution. It is notoriously difficult to compute [320, 321], and is
therefore usually estimated on dimensional grounds [322]. We use

[C] =M4 ⇒ C = (100 GeV)4 . (6.14)

The metastability of the SM-like vacuum then requires

Γ−1 ≳ t0 ⇒ B/ℏ ≳ 400, (6.15)

where t0 = 13.8 Gyr is the age of the Universe. Our choice of scale for C corresponds to
the SM-like vacuum, and provides a reasonable lower bound on C. Larger values of C would
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increase the decay rate, implying that the limits we derive are conservative.
Finding the bounce ϕ̄ is straightforward in one field dimension, since the equation of motion

can be solved by the shooting method. This method reduces the problem to a root-finding task
for the correct boundary conditions and relies on the unique topology of the one-dimensional
field space. Unfortunately, this strategy becomes intractable with more than one field di-
mension. Several methods of solving the multi-field bounce equation of motion have been
proposed [333, 334, 356, 367]. Some of these are described in Sec. 5.4. In the present analysis
we use the public code CosmoTransitions [335].1

CosmoTransitions (CT) implements a path deformation method similar to the that sug-
gested in Ref. [356]. Once a pair of local minima are specified, CT fixes a one-dimensional path
between them in the field space. Along this path, the one-dimensional bounce solution can
be computed using the shooting method. In Appendix A, we show that the action computed
from the bounce solution for any such fixed path is necessarily greater than or equal to the
unconstrained bounce action. The fixed path in field space is then deformed by minimizing a
set of perpendicular gradient terms to be closer to the true bounce path through the field space.
This procedure is iterated until convergence is reached. We exclude any points where CT fails
to converge.

This path deformation approach has several advantages over other methods. Here, the
bounce equation of motion is solved directly, while many other approaches involve minimization
of a discretized action as part of the procedure. This is numerically costly, since one needs both
a fine lattice spacing to evaluate derivatives accurately, and a large ρ domain to accommodate
the boundary condition at infinity. Path deformation involves no discretization or large-scale
minimization. As a result CosmoTransitions is quite fast for our four-field tunnelling problem.

We also cross check the CT results in two ways. First, we have compared CT to the
discretized action methods of Refs. [333, 334] for a set of special cases, and we generally find
agreement between these approaches as shown in Sec. 5.4. Second, we also compute the bounce
action independently along the optimal path determined by CT, allowing us to estimate the
numerical uncertainty on the bounce. Finally, let us emphasize once more that even if the path
determined by CT is not the true tunnelling trajectory, our result in Appendix A implies that
it still provides an upper bound on the bounce action, and thus a lower bound on the tunnelling
rate.

We note that recently a new program, Vevacious [369], has been released that can also
be used to study metastability in field theories with many scalar fields. While we do not use
this code, we share some similarities with their approach in that we both employ Minuit for
potential minimization and CT for tunnelling rates. Moreover, as mentioned above, we also
carried out extensive independent checks of the tunnelling calculation.

1We modify the code slightly, replacing an instance of scipy.optimize.fmin by scipy.optimize.fminbound
in the class pathDeformation.fullTunneling. This allows CosmoTransitions to better deal with very shallow
vacua. The same modification has been used in Ref. [368] (see Footnote 1).
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6.3.3 Results and Comparison
We begin by presenting our limits from metastability alone, without imposing any other con-
straints such as the Higgs mass requirement. This allows for a direct comparison with the results
of Ref. [7]. In Fig. 6.2 we show a scan over Xt and m2

Q3
while keeping fixed mA = 1000 GeV,

tanβ = 10, µ = 300 GeV, and m2
U3
/m2

Q3
= 1. Every point shown is a model with a global CCB

vacuum. The red points have a tunnelling action B/ℏ < 400, and are therefore unstable on
cosmological time scales. The blue points have a metastable SM-like vacuum with B/ℏ > 400.
Also shown in the figure is the analytic bound (green dashed line) of Eq. (6.3), and the empirical
result (black dotted line) from Ref. [7] given in Eq. (6.4).

The shape of the regions shown in Fig. 6.2 can be understood simply. As expected, the
existence of a CCB vacuum requires a large value of At/MS . The cutoff at the upper-left
diagonal edge corresponds to the absence of a CCB vacuum. Above and to the left of this
boundary, the SML minimum is a global one and the EW vacuum can be absolutely stable.
There is also a lack of points below a lower-right diagonal edge. Here, one of the physical stops
becomes tachyonic, and the SML vacuum disappears altogether. At low values of A2

t , we see
that the CCB region is squeezed between the SML region (on the left) and the tachyonic stop
region (on the right), giving rise to the cutoff seen in the lower left corner.

It is apparent from Fig. 6.2 that we find much more restrictive metastability bounds on the
MSSM than the empirical relation of Eq. (6.4) from Ref. [7]. We also see that the analytic bound
of Eq. (6.3) tends to underestimate the existence of CCB vacua, and that it accidentally lines
up fairly well with the lower boundary of metastability. It is not clear why our results should
be so much more restrictive than those found in Ref. [7], but we are confident that the path
deformation method of CT (and our several cross-checks) gives a robust upper bound on the
bounce action. We find qualitatively similar results for the other parameters ranges described
in Table 6.1. The quantitative results for these ranges will be presented in more detail below
in the context of the Higgs mass.

6.4 Implications for the MSSM Higgs Boson
As discussed in the Introduction, there is a significant tension in the MSSM between obtaining
the observed Higgs boson mass and keeping the stops relatively light. This tension is reduced
when the stops are strongly mixed. To obtain such mixing, large values of Xt are needed. We
have just seen that large values of Xt can lead to dangerous CCB minima. In this section we
compare the relative conditions imposed by each of these requirements.

To calculate the physical h0 Higgs boson mass, we use FeynHiggs 2.9.5 [370]. We also use
this program together with SuSpect 2.43 [371] to compute the mass spectrum of the MSSM
superpartners. As inputs, we take mpole

t = 173.1 GeV and αs(mZ) = 0.118 [58]. Our results are
exhibited in terms of variations on the fiducial MSSM parameters tanβ = 10, µ = 300 GeV,
mA = 1000 GeV, and m2

U3
= m2

Q3
. The other MSSM parameters are taken as in Section 6.2.2.

In Fig. 6.3 we show points in the Xt-MS plane (where MS = (mQ3mU3)
1/2) that produce
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Figure 6.2: Limits from metastability and the existence of a local SM-like (SML) vacuum
alone for tanβ = 10, µ = 300 GeV, mA = 1000 GeV, and m2

U3
= m2

Q3
. All points

shown have a global CCB minimum and a local SML minimum. The red points
are dangerously unstable, while the blue points are consistent with metastability.
The green dashed line is the analytic bound of Eq. (6.3) and the black dotted line
corresponds to Eq. (6.4), the empirical bound from Ref. [7]. The values of the other
MSSM parameters used here are described in the text.

a Higgs mass in the range 123 GeV < mh < 127 GeV. All other parameters are set to
their fiducial values described above. The pink (blue) region are models with a global SML
(CCB) vacuum. The red points are excluded by metastability. The dashed lines show the
approximate CCB condition of Eq. (6.3), the empirical limit of Eq. (6.4), and our own attempt
at an empirical limit on metastability to be discussed below. The requirement of metastability
cuts off a significant portion of the allowed range at very large |Xt|. Also shown are contours
of constant mt̃1

, the lightest stop mass (grey dot-dashed lines).
In Fig. 6.4 we show the additional dependence of the Higgs mass and the metastability

bounds on other relevant MSSM parameters. All parameters are set to their fiducial values
except for those we vary one at a time. In the top row we show results for tanβ = 5 (30) on
the left (right). Reducing tanβ decreases the tree-level contribution to the MSSM Higgs mass,
and so larger values of MS are needed to raise mh to the observed range. These larger values
also lead to shallower CCB minima and lower tunnelling rates. Larger values of tanβ do not
appear to differ much from tanβ = 10.

In the middle row of Fig. 6.4 we show results for µ = 150 (500) , GeV on the left (right).
We do not see a large amount of variation in the exclusions from metastability, which is not
surprising given that generally have Xt ≃ At ≫ µ. Setting µ = −300 GeV also produces very
similar results.
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Figure 6.3: Metastability bounds relative to the MSSM Higgs mass. The coloured bands
contain models for which 123 GeV < mh < 127 GeV. Pink models have an
absolutely stable SML vacuum, blue points have a global CCB minimum, while
red points are unstable on cosmological time scales. The green dashed line is the
analytic bound of Eq. (6.3) and the black dotted line is Eq. (6.4). The orange dashed
line is an approximate empirical bound discussed in Appendix B. The grey dot-
dashed contours are lines of constant lightest stop mass (in GeV). MSSM parameters
used here are described in the text.

In the bottom row of Fig. 6.4 we show the same metastability limits for m2
U3
/m2

Q3
= 0.3 (3.0)

on the left (right). For these unequal values, there is a tension between minimizing the quadratic
terms in the potential and reducing the quartic terms through SU(3)C D-flatness. Unequal
squark vevs also tend to reduce the effective trilinear term. Together, these effects reduce the
metastability constraint somewhat, but do not eliminate it.

In summary, the constraint imposed by CCB metastability rules out a significant portion of
the MSSM stop parameter space that can produce a Higgs mass near the observed value. The
limits are strongest on the outer branches at large |Xt|. Varying other MSSM parameters within
the restricted ranges we have considered does not drastically alter this result. By comparison,
the empirical bound from Ref. [7] does not rule out any of the stop parameter space consistent
with the Higgs mass.

As a synthesis of these results, we have attempted to obtain an improved empirical bound
on stop-induced metastability. We find the approximate limit

A2
t ≲

(
3.4 + 0.5

|1− r|
1 + r

)
m2

T + 60m2
2 , (6.16)

where m2
T = (m2

Q3
+m2

U3
), m2

2 = (m2
Hu

+ µ2), and r = m2
U3
/m2

Q3
. Let us emphasize that this
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Figure 6.4: Metastability with the correct Higgs mass, 123 < mh < 127 GeV. The la-
belling is the same as in Fig. 6.3, and the relevant MSSM parameter parameters
are varied one at a time as summarized in Table 6.1.

limit is very approximate and only applies to smaller values of µ, larger values of mA, moderate
tanβ, and r not too different from unity. Details on the derivation of this bound are given in
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Appendix B.

6.5 Comparison to Other Stop Constraints
The metastability conditions we find exclude parameter regions with large stop mixing. This
mixing can produce one relatively light stop mass eigenstate as well as a significant mass splitting
between the members of the Q̃3 sfermion doublet. These features are constrained indirectly by
electroweak and flavour measurements, as well as by direct searches for a light stop. In this
section we compare these additional limits to the bounds from metastability.

6.5.1 Precision Electroweak and Flavour
The most important electroweak constraint on light stops comes from ∆ρ, corresponding to
the shift in the W mass relative to the Z. In the context of highly mixed stops motivated by
the Higgs mass, this effect has been studied in Refs. [372, 373]. We have computed the shift
∆ρ due to stops and sbottoms using SuSpect 2.43 [371], which applies the one-loop results
contained in Refs. [374, 375]. With a Higgs mass of mh ≃ 125 GeV, the preferred range is
∆ρ = (4.2± 2.7)× 10−4 [372].

Supersymmetry can also contribute to flavour-mixing. Assuming only super-CKM squark
mixing (or even minimal flavour violation [376]), the most constraining flavour observable is
frequently the branching ratio BR(B → Xsγ). It receives contributions in the MSSM from
stop-chargino and top-H+ loops. These contributions tend to cancel each other such that the
cancellation would be exact in the supersymmetric limit [377]. With supersymmetry breaking,
the result depends on the stop masses and mixings, tanβ, µ, and the pseudoscalar mass mA.
Constraints on light stops from BR(B → Xsγ) were considered recently in Refs. [373, 378]. The
SM prediction is BR(B → Xsγ) = (3.15 ± 0.23) × 10−4 [379], while a recent Heavy Flavour
Averaging Group compilation of experimental results finds BR(B → Xsγ) = (3.55 ± 0.24 ±
0.09) × 10−4 [380]. We have investigated the limit from BR(B → Xsγ) and other flavour
observables using SuperIso 3.3 [381] assuming only super-CKM flavour mixing.

In Fig. 6.5, we show the exclusions from flavour and electroweak bounds for model points
with 123 GeV < mh < 127 GeV for tanβ = 10, and mA = 1000 GeV, µ = 300 GeV, and
m2

Q3
= m2

U3
in the Xt−mQ3 plane. We impose the generous 2σ constraints ∆ρ ∈ [−1.2, 9.4]×

10−4 and BR(B → Xsγ) ∈ [2.86, 4.24] × 10−4 and show them together with the metastability
constraint from the previous Section. The green points show the regions excluded by ∆ρ while
the orange points show those excluded by BR(B → Xsγ).

The exclusion due to ∆ρ can be understood in terms of the large stop mixing induced
by Xt, which generates a significant splitting between the mass eigenstates derived from the
Q̃3 = (t̃L, b̃L)

T SU(2)L doublet. This constraint depends primarily on the stop parameters, and
is mostly insensitive to variations in µ, mA, and tanβ. While this bound overlaps significantly
with the limit from metastability, there are regions where only one of the two constraints applies.
The limits from ∆ρ are also weaker for m2

Q3
> m2

U3
.
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Figure 6.5: Points in the Xt−mQ3 plane with 123 GeV < mh < 127 GeV as well as
exclusions from metastability (red points) from precision electroweak ∆ρ (green
points) and flavour BR(B → Xsγ) (orange points). The MSSM parameters used
are the same as in Fig. 6.3.

Limits from BR(B → Xsγ) are less significant for this set of fiducial parameters with a
moderate value of tanβ. However, this branching fraction depends significantly on µ, mA, and
tanβ, and the limit can be much stronger or much weaker depending on the specific values
of these parameters. We do not attempt to delineate the acceptable parameter regions, but
we do note that the constraint from metastability can rule out an independent region of the
parameter space.

6.5.2 Direct Stop Searches
Stops have been searched for at the LHC in a diverse range of final states, and these studies rule
out stop masses up to 200-600 GeV, depending on how the stop decays (see, e.g., Refs. [382–
385]). While the large stop mixing that occurs in the region excluded by metastability consid-
erations can produce lighter stops, the stop masses in this dangerously metastable region are
not necessarily light, as can be seen in Fig. 6.3. Thus, metastability excludes parameter ranges
beyond existing direct searches.

Note as well that metastability does not place a lower bound on the mass of the lightest
stop. For example, a very light state can be obtained for m2

U3
≪ m2

Q3
and Xt = 0. This scenario

is not constrained by metastability, and can generate a SM-like Higgs boson mass consistent
with observations for sufficiently large values of m2

Q3
[386].2

2 A lower limit on the light stop mass in this scenario can be obtained from its effect on Higgs production
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Our results also have implications for future stop searches and measurements. Should a
pair of stops be discovered, a variety of methods can be used to determine the underlying
parameters in the stop mass matrix through precision measurements at the LHC [388–391] or a
future e+e− collider [391–393]. If these stop parameters turn out to lie within the dangerously
unstable region, corresponding to larger values of |Xt|, we can conclude that new physics beyond
the MSSM must be present.

6.5.3 Stop Bound States
An additional phenomenon that can potentially occur in the MSSM when At is very large is the
formation of a t̃Lt̃∗R bound state through the exchange of light Higgs bosons [394, 395]. Such
a state could have the quantum numbers of a Higgs field and mix with the MSSM Higgs fields
to participate in electroweak symmetry breaking [394–397]. If this occurs, our results on the
metastability of the MSSM may no longer apply. Calculating the critical value of At for when a
bound state arises is very challenging, but under a set of reasonable approximations Ref. [396]
finds that it requires At/MS ≳ 15. While this lies beyond the region considered in the present
chapter, it is conceivable that a full numerical analysis would yield a lower critical value for
this ratio.

6.6 Conclusions
In this chapter we have investigated the limits on the stop parameter space imposed by vacuum
stability considerations. A SM-like Higgs boson with a mass of ∼ 125 GeV in the MSSM points
to a particular region of the parameter space if naturalness of the EW scale is desired. In this
regime, the two stop gauge eigenstates are highly mixed, and this can induce the appearance
of charge- and colour-breaking minima in the scalar potential. Quantum tunnelling to these
vacua can destabilize the electroweak ground-state.

We have studied the conditions under which stop mixing can induce CCB vacua and we
have computed the corresponding tunnelling rates. We find that metastability provides an
important constraint on highly-mixed stops. We have also considered constraints from flavour
and precision electroweak observables and direct stop searches, which are sensitive to a similar
region of the MSSM parameter space. Metastability provides new and complimentary limits,
with a different dependence on the underlying parameter values.

The metastability limits we have derived provide a necessary condition on the MSSM. They
apply for both standard and non-standard cosmological histories. Let us emphasize, however,
that the MSSM parameter points that we have found to be consistent with stop-induced CCB
limits may still be ruled out by more general stability considerations, such as configurations
with more non-zero scalar fields. Fortunately, our own SML vacuum appears to be at least
safely metastable.

and decay rates [387].
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Chapter 7

The Electroweak Phase Transition in
the Inert Doublet Model

7.1 Electroweak Baryogenesis in the Standard Model and
Beyond

The Universe appears to be made entirely of matter, with all observed antimatter consistent
with secondary production from, e.g., cosmic ray collisions. It was argued in Sec. 1.3.2 that
a dynamical explanation of this baryon asymmetry of the Universe (BAU) necessarily invokes
new physics. We also mentioned that SM alone can, in principle, generate a small asymme-
try. This occurs through the mechanism of electroweak baryogenesis (EWBG) which operates
during the electroweak phase transition (EWPT). This transition occurs when the Higgs field
spontaneously acquires an expectation value, thereby breaking the electroweak symmetry down
to electromagnetism. This mechanism is illustrated in Fig. 7.1, which conveniently captures
how each of Sakharov’s requirements from Sec. 1.3.2 is satisfied. If the EWPT is first order, it
proceeds via the nucleation and subsequent expansion of bubbles of the broken v ̸= 0 phase.
This constitutes a departure from thermal equilibrium. In the symmetric phase baryon (B)
and lepton numbers (L) are violated by non-perturbative SU(2)L processes [326, 398]

9qL ↔ 3ℓ̄L (7.1)

called sphaleron transitions. Note that in these processes ∆B = ∆L, so (B − L) number is
conserved, while (B + L) is violated. The resulting rate of baryon density production can be
estimated as [399]

dnB
dt

= −3
Γsph(T )

T
∆F, (7.2)

where Γsph is the sphaleron rate and ∆F is the difference in free energy between states
with ∆B = +1. The sphaleron rate Γsph can be found using semi-classical methods sim-
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ilar to those presented in Ch. 5 and depends exponentially on the energy scale Esph(T ) ∼
(8πmW /g2)(v(T )/v0) as Γsph ∝ exp(−Esph/T ), where v(T ) is the Higgs vev at temperature T
and v0 = v(0) = 246GeV [56]. Note that in the symmetric phase v = 0 and Esph ≈ 0 and
there is no exponential suppression for the sphaleron rate. In this phase the sphaleron rate
can be estimated from scaling arguments to be Γsph/V ∼ α5

WT
4 [400] and the coefficient of

proportionality can be extracted from lattice simulations [401].
Ordinarily, increasing the B charge costs energy so ∆F > 0, meaning that the sphaleron

transitions tend to wash out any existing baryon number. However, these processes can be biased
to produce slightly more baryons than anti-baryons if there is another asymmetry generated
by C and CP violating interactions of the plasma particles with the Higgs field [56, 402]. Note
that these charge asymmetries can be only created in the vicinity of the bubble wall, where the
sphaleron rate is suppressed as discussed below. Thus this asymmetry must diffuse farther into
the symmetric phase before it can be “re-processed” by the sphalerons. This scattering and
diffusion process is described by a complicated network of quantum transport equations [56].
In the last step, the baryon asymmetry is captured by the expanding bubble.

Electroweak baryogenesis in the SM fails for two reasons. The first problem is that the
amount of CP violation available in the SM is insufficient. The second issue is related to the
dynamics of the phase transition itself. If the sphaleron transitions are active near the boundary
and inside the bubble of true phase, any baryon number that is captured by the bubble will
be washed out. The amount of wash out depends on the sphaleron rate in a given phase;
integrating Eq. 7.2 over the timescales of the EWPT, ∆tEW ∼ H−1, one finds the wash out
factor [361]

nB(∆tEW)

nB(0)
∼ exp (−Esph(Tc)/Tc) , (7.3)

where Esph is defined above and we assumed that the transition occurs at around a temperature
Tc (defined below). Requiring that the argument of the exponential is not much bigger than 1

(such that wash out is not so severe) requires [56, 361]

vc
Tc

≳ 1, (7.4)

where vc is the Higgs expectation value at T = Tc. The quantity vc/Tc is often referred to as the
“strength” of the transition. The phase transition occurs after the symmetric and EW-breaking
phases become degenerate, so Tc is defined as the temperature at which this happens. In Fig. 7.2
we show the evolution of the effective potential with temperature for the SM. Above Tc the
symmetric phase is energetically favourable; the two phases become degenerate at T = Tc.
As the Universe cools further, it transitions into the symmetry breaking phase via thermal
tunnelling described in Sec. 5.3. The computation of the effective potential is described in
detail in Sec. 7.3. For the SM, we find that in this (perturbative) approximation vc/Tc ∼ 0.17,
so the wash out rate is too great – the transition is not strong enough. This inadequacy of the
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Figure 7.1: Schematic representation of electroweak baryogenesis.

EWPT in the SM is confirmed by non-perturbative lattice simulations, which suggest that the
transition is not even first-order, but rather a smooth cross-over for mh ≳ 75GeV [56]. In the
following sections we will focus on improving the strength of the transition by considering a
particular extension of the SM.

Among the many proposed mechanisms of baryogenesis, EWBG is particularly attractive.
Because EWBG is driven by the Higgs field, any new particles that seek to resolve the afore-
mentioned problems in the SM implementation of EWBG must couple strongly to the Higgs;
moreover, they must also be abundant in the primordial plasma at the time of the EW phase
transition, so they cannot be too heavy.1 The most salient feature of EWBG is therefore a
requirement of new physics close to the EW scale. This aspect of EWBG makes it very predic-
tive and falsifiable. Many simple models of EWBG have already been excluded either by lack
of direct discovery of the new light states, or by limits from electric dipole moment searches,
which are extremely sensitive to CP violation. However, many well-motivated possibilities still
remain. Below we consider an extension of the SM known as the inert doublet model, which in
addition to improving the phase transition strength, can also account for the dark matter relic
density.

7.2 The Inert Higgs Doublet
The simplest extension of the Standard Model (SM) that includes two SU(2)L Higgs doublets
is known as the Inert Higgs Doublet Model (IDM). In the IDM, the extra doublet has no
coupling to SM fermions and is odd under a postulated new Z2 discrete symmetry, whereas all
SM fields are Z2-even. Such symmetry makes the lightest Z2-odd particle (LOP) from the extra
doublet stable and, thus, a potential weakly interacting massive particle (WIMP) dark matter
candidate. The symmetry also eliminates numerous terms in the interaction Lagrangian of the
model containing an odd number of extra “inert” scalars.

The IDM was introduced originally as one possible, generic scenario for electroweak symme-
1This requirement can be relaxed - see the discussion at the end of Sec. 7.5.
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Figure 7.2: Evolution of the temperature-dependent effective potential (free energy) in
the Standard Model around the critical temperature Tc.

try breaking (EWSB) [403]. Only subsequently was it realized that the IDM naturally features
a WIMP DM candidate [404, 405], possibly providing a thermal relic density compatible with
the inferred universal DM abundance. Numerous studies have subsequently investigated the
DM and collider phenomenology of the model (see, e.g., Ref. [406–412]).

An additional early motivation to consider the IDM as an appealing augmentation of the SM
scalar structure was to allow for a relatively heavy SM-like Higgs while remaining compatible
with constraints from electroweak precision observables, and without severe fine tuning [405,
412]. Although this motivation has somewhat faded after the discovery of a SM-like Higgs
boson at the LHC with a mass of ∼ 125 GeV [12, 13], this important discovery decreases the
number of free parameters in the theory by one, and places interesting and stringent constraints
on the IDM phenomenology [413].

In the present study we are concerned with the nature of the electroweak phase transi-
tion (EWPT) in the IDM, and, specifically, with determining which physical parameters drive
the strength of the phase transition, making it more or less strongly first-order, or second-
order. This question is intimately related with the possibility to produce the observed baryon-
antibaryon asymmetry in the Universe at the electroweak phase transition as discussed in the
previous section. A strongly first-order phase transition (in a quantitative sense we shall make
clear below) is a necessary ingredient to (i) achieve the necessary out-of-equilibrium conditions,
occurring on the boundary of broken and unbroken electroweak phase, and to (ii) shield a
baryon asymmetry captured in the broken electroweak phase region from sphaleron wash-out.

While necessary, a strongly first-order phase transition is not a sufficient condition. The CP
violating sources of the SM are known to be insufficient to generate the necessary asymmetry in
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the number density of baryons compared to antibaryons during the electroweak phase transition.
The unbroken Z2 symmetry in the IDM precludes any new source of CP violation, and thus
this model per se cannot accommodate successful electroweak baryogenesis (EWBG). However,
the IDM might be in effect a good approximation at low energy of a broader construction
that includes such additional CP violating sources at higher energies. Several suggestions of
plausible effective higher-dimensional operators have been made in the literature [414, 415]. We
will not discuss this aspect any more, as it falls outside the scope of this study.

The nature and strength of the electroweak phase transition in the IDM has been subject
of several studies, with increasingly refined treatment of the effective potential [416–420]. For
example, Ref. [416] utilized only the high-temperature form of the effective potential with-
out including the zero-temperature Coleman-Weinberg terms. These were then shown to be
quantitatively important for the phase transition strength in Ref. [418], where the full one-loop
effective potential was used. Alternative SU(2)L representations of the inert scalar were consid-
ered in Ref. [419], where it was argued that in general, higher representations are less successful
in satisfying experimental and theoretical constraints, thereby further motivating the study of
the doublet case.

With the exception of Ref. [420], the primary focus has been on the Higgs funnel regime
(described in more detail in Sec. 7.4). Indeed, we will confirm the findings of Refs. [417, 418]
that this is the only region of parameter space that can successfully saturate the DM abundance
and provide a strong-enough first-order EWPT. In Ref. [420] it was emphasized that the IDM
can be useful for the EWPT even if the LOP provides only a subleading component of DM.

In this work we go beyond previous studies by utilizing a state-of-the-art treatment of the
finite-temperature and zero-temperature effective potential including renormalization group,
daisy resummation improvements and one-loop model parameter determination. As we discuss
in great detail, strongly first-order EWPT in the IDM requires sizable quartic couplings that
enhance quantum corrections to masses. This is important in the context of DM phenomenology
since DM particle production in the early Universe often relies on resonance and threshold
effects [413]. In addition, we also ensure that the phase transition completes by evaluating
bubble nucleation rates.

Unlike previous studies which primarily utilized large numerical scans of the parameter
space, here we take an orthogonal approach: we restrict our attention to a few, key benchmark
models, motivated by the requirement of having a viable dark matter particle candidate and
representing different features in the DM phenomenology. Based on these benchmarks, we
then discuss how the EWPT depends on the physical model parameters. We identify the key
physical inputs that drive the phase transition to the interesting regime where it is strongly
enough first-order to accommodate successful electroweak baryogenesis. We will see that in all
but one case the demand for a strongly first-order EWPT is in tension with either the relic
abundance requirement or with experimental probes.

Our central finding is that the main driver of the strength of the phase transition is the
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mass difference between the lightest inert scalar and the heavier scalars. Thus, we extend the
results of Refs. [416, 418] to other regions of IDM parameter space. For large enough mass
splittings, but for light enough heavy scalars, we find a phase transition strength (as measured
by the ratio vc/Tc, as we discuss in detail below) which increases with the mass splitting.

The remainder of this chapter is organized as follows. In Sec. 7.3 we give a brief introduction
to the IDM, thereby clarifying our conventions, discuss quantum and finite-temperature correc-
tions to the effective potential, and outline the computation of the phase transition strength.
The essential features of DM phenomenology are reviewed in Sec. 7.4. In Sec. 7.5 we study
the electroweak phase transition in several benchmark models motivated by the various DM
scenarios available in the IDM. We conclude in Sec. 7.6. This chapter is based on unpublished
work in collaboration with Stefano Profumo and Tim Stefaniak [4].

7.3 Phase Transitions in the Inert Doublet Model

7.3.1 IDM at Tree-Level
The IDM is a particular realization of the general type I Two Higgs Doublet Model (2HDM)
(see, e.g., Ref. [421] for a review) which features an additional Z2 symmetry. The SM doublet
H is even under Z2, while the new (inert) doublet Φ is odd. If we take Φ to have hypercharge
+1/2, the most general renormalizable potential consistent with these symmetries is then given
by [413]:

V0 = µ21|H|2 + µ22|Φ|2 + λ1|H|4 + λ2|Φ|4 + λ3|H|2|Φ|2 + λ4|H†Φ|2 + λ5
2

[
(H†Φ)2 + h.c.

]
. (7.5)

Conventionally, within CP-conserving Higgs sectors, the physical states are decomposed
into CP-even and CP-odd scalars. One should keep in mind, however, that in the IDM there
is no observable that can actually distinguish between the CP-even or CP-odd character of the
inert Higgs bosons. In the absence of a vacuum expectation value (vev) for Φ, the doublets
decompose as

H =

(
G+

1√
2

(
v + h+ iG0

) ) , Φ =

(
H+

1√
2
(H + iA)

)
. (7.6)

Below we will consider the thermal evolution of the effective scalar potential in the early Uni-
verse. In general, spontaneous breaking of Z2 can occur, in which case we must also include a
vev for the neutral component of Φ which we will indicate with ϕ.

The lightest Z2-odd particle is stable, and potentially provides a viable particle dark matter
candidate. The Z2 symmetry also forbids Yukawa couplings of Φ to SM fermions (assumed to
be even under Z2), which eliminates tree-level flavor-changing neutral currents. Either H or
A can be the LOP, and since gauge interactions with SM states do not distinguish between
the two, they are effectively equivalent from the standpoint of phenomenology. Below we will
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indicate the LOP as H, but all statements made with respect to DM phenomenology and the
electroweak phase transition remain true after the replacements H → A and λL → λS (the
latter determines the coupling of the LOP to the SM Higgs) [417].

In the electroweak vacuum, the tree-level masses of the new states are given by

m2
h = µ21 + 3λ1v

2,

m2
H = µ22 + λLv

2,

m2
A = µ22 + λSv

2,

m2
H± = µ22 +

1

2
λ3v

2, (7.7)

where λL = (λ3 + λ4 + λ5)/2 and λS = (λ3 + λ4 − λ5)/2. In what follows we employ the
one-loop effective potential defined in the next section to fix µ21 and λ1 from the physical values
v = 246.22 GeV and mh ≈ 125 GeV. The remaining parameters of the model are specified
using the three physical masses mH , mA and mH± , along with λL and λ2. The masses are
related to potential parameters using the one-loop relations from Ref. [413], while λL and λ2

are given at scale MZ .

7.3.2 Finite-Temperature Corrections
The effective potential at finite temperature T can be written as

Veff = V0 + V1 + VT , (7.8)

where V0, V1 and VT are tree-level, one-loop temperature-independent and -dependent pieces,
respectively. The tree-level potential V0 has been given in Eq. (7.5). The temperature-
independent one-loop correction has the Coleman-Weinberg form [317, 331, 332]:

V1 =
∑
i

ni
64π2

m4
i (v, ϕ)

(
ln m

2
i (v, ϕ)

Q2
− Ci

)
. (7.9)

The sum is over all particle species coupling to the doublets; ni is the number of degrees
of freedom (positive for bosons and negative for fermions), Ci are renormalization-scheme-
dependent constants (Ci = 1/2 for transverse gauge bosons and 3/2 for everything else in the
MS scheme); m2

i (v, ϕ) is the field-dependent squared mass for each species. In writing the
above, we have implicitly absorbed the counterterms into V1; the temperature-dependent part
is ultraviolet finite.

The field dependent masses in the IDM for the SM vector bosons and fermions are, respec-
tively,

m2
W =

1

4
g2(v2 + ϕ2), m2

Z =
1

4
(g2 + g′2)(v2 + ϕ2), m2

γ = 0 (7.10)
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and

m2
f =

1

2
y2fv

2, (7.11)

with the corresponding bosonic degrees of freedom ni = 6, 3, 2 for i =W, Z, A, and fermionic
degrees of freedom ni = −12, −12, −4 for i = t, b, τ .

The field-dependent neutral CP-even, CP-odd and charged scalar mass eigenstates are ob-
tained by diagonalizing

M2
h =

(
µ21 + 3λ1v

2 + λLϕ
2 2λLϕv

2λLϕv µ22 + 3λ2ϕ
2 + λLv

2

)
(7.12)

M2
A =

(
µ21 + λ1v

2 + λSϕ
2 λ5ϕv

λ5ϕv µ22 + λ2ϕ
2 + λSv

2

)
(7.13)

M2
± =

(
µ21 + λ1v

2 + 1
2λ3ϕ

2 1
2(λ5 + λ4)ϕv

1
2(λ5 + λ4)ϕv µ22 + λ2ϕ

2 + 1
2λ3v

2

)
. (7.14)

Notice that for ϕ = 0 the (22) components reduce to the expressions in Eq. (7.7).
The leading order quantum corrections give rise to a renormalization scale-dependent po-

tential. One can choose the renormalization scale Q to minimize the size of higher order k-loop
corrections which scale with (lnm2/Q2)k. The scale choice can be important when a parameter
in the potential is very different from the electroweak vev ∼ 246 GeV. We thus choose to use
the renormalization group (RG) improved effective potential to minimize the scale dependence.
The potential parameters are replaced by their running values, evaluated at the scale Q. The
relevant one-loop β functions are given in Appendix C.

The leading order temperature-dependent corrections to the effective potential take the
form [332]

VT =
T 4

2π2

( ∑
i=bosons

niJB
[
m2

i (v, ϕ)/T
2
]
+

∑
i=fermions

niJF
[
m2

i (v, ϕ)/T
2
])

, (7.15)

where the J functions are defined as

JB(x) =

∫ ∞

0
dt t2 ln

[
1− exp

(
−
√
t2 + x

)]
, (7.16)

JF (x) =

∫ ∞

0
dt t2 ln

[
1 + exp

(
−
√
t2 + x

)]
. (7.17)

These functions admit useful high-temperature expansions which allow us to study the phase
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structure as a function of T analytically (as long as the expansion is justified):

T 4JB
[
m2/T 2

]
= −π

4T 4

45
+
π2

12
T 2m2 − π

6
T
(
m2
)3/2 − 1

32
m4 ln m2

abT 2
+O

(
m2/T 2

)
(7.18)

T 4JF
[
m2/T 2

]
=

7π4T 4

360
− π2

24
T 2m2 − 1

32
m4 ln m2

afT 2
+O

(
m2/T 2

)
, (7.19)

where ab = 16af = 16π2 exp(3/2 − 2γE). The T 2 terms in the expressions above illustrate
symmetry restoration at high temperatures. The non-analytic m3 term in Eq. (7.18) can be
responsible for the barrier between the high T phase (at the field origin) and low T phase that
breaks SU(2)L × U(1)Y .

Note that symmetry restoration signals the breakdown of perturbation theory — higher
order diagrams become important. This can be accounted for by performing a resummation of
daisy diagrams [422–424]. The resummation is performed by adding finite-temperature correc-
tions to the boson masses in Eq. (7.16):

m2 → m2 + cT 2, (7.20)

where c is computed from the infrared limit of the corresponding two-point function. For the
SM Higgs doublet we find

c1 =
1

8
g2 +

1

16
(g2 + g′2) +

1

2
λ1 +

1

12
λL +

1

12
λS +

1

12
λ3 +

1

4
y2t +

1

4
y2b +

1

12
y2τ . (7.21)

The various components of the inert doublet receive similar contributions (but without contri-
butions from the fermions):

c2 =
1

8
g2 +

1

16
(g2 + g′2) +

1

2
λ2 +

1

12
λL +

1

12
λS +

1

12
λ3. (7.22)

These expressions are in agreement with those in Refs. [418, 425, 426]. We implement these
corrections by replacing µ2i → µ2i + ciT

2 in the scalar mass matrices, Eqs. (7.12, 7.13, 7.14).2

The thermal masses of the gauge bosons are more complicated. Only the longitudinal
components receive corrections. The expressions for these in the SM can be found in Ref. [425],
but it is easy to modify them to include the contribution of an extra Higgs doublet. For the
longitudinally polarized W boson, the result is

m2
WL

= m2
W + 2g2T 2. (7.23)

This includes contributions from gauge boson self-interactions, two Higgs doublets and all three
fermion families. The masses of the longitudinal Z and A are determined by diagonalizing the

2There are subleading thermal corrections to off-diagonal self-energies suppressed by additional powers of
coupling constants and vevs which are usually neglected.
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matrix

1

4
(v2 + ϕ2)

(
g2 −gg′

−gg′ g′2

)
+

(
2g2T 2 0

0 2g′2T 2

)
. (7.24)

The eigenvalues can be written as

m2
ZL,AL

=
1

2
m2

Z + (g2 + g′2)T 2 ±∆, (7.25)

where

∆2 =

(
1

2
m2

Z + (g2 + g′2)T 2

)2

− g2g′2T 2(v2 + ϕ2 + 4T 2). (7.26)

7.3.3 Electroweak Phase Transition
Armed with the finite-temperature effective potential, we can now study the structure of the
EWPT. The key property we intend to investigate is the transition strength, which sets the
baryon number wash-out rate inside a bubble of broken phase (for a recent review of electroweak
baryogenesis, see, e.g., Ref. [56]). In order to suppress sphaleron wash-out in the regions of
broken electroweak phase, the relevant condition is typically quantified by requiring that [398]

vc
Tc

≳ 1, (7.27)

where vc is the Higgs vev at the critical temperature Tc, defined as the temperature at which
the origin is degenerate with the electroweak-breaking vacuum.

Note that it has been shown that this baryon number preservation condition (BNPC) is a
quantity which is manifestly not gauge-invariant [361]. A gauge invariant BNPC can be however
derived from the high-T expansion of the dimensionally reduced effective action and the critical
temperature Tc must be obtained using the gauge invariant prescription of Ref. [361], which
employs expansions in powers of ℏ of the potential and vev. Near the critical temperature,
O(ℏ) contributions to the potential are as important as the tree-level terms, so the ℏ expansion
fails. This is also why an all-orders ring diagram resummation discussed in Sec. 7.3.2 is needed.
A consistent gauge-invariant method for implementing the ring resummation for the effective
potential evaluated at the minimum was also demonstrated in Ref. [361]. We will be interested in
studying tunnelling and nucleation temperatures, which require the evaluation of the potential
away from the minima. For this reason, below we employ the standard BNPC of Eq. (7.27) and
use the full one-loop effective potential to study IDM phases. We will argue that our results
do not depend strongly on the issues of gauge invariance. We leave the full gauge-invariant
treatment of the IDM to future work.

Finally let us note that the physical phase transition does not begin at Tc, but rather at
a lower nucleation temperature Tn, at which the bubble formation rate exceeds the Hubble
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expansion rate. Equivalently, the probability of nucleating a bubble of broken phase within one
Hubble volume is close to 1 [332]. The nucleation rate per unit volume is evaluated in Sec. 5.3.
If this rate is too slow, the false vacuum is metastable and the transition does not complete. The
above conditions translate into a requirement on the bounce action S3(Tn)/Tn ≲ 140, which
defines Tn [332]. We evaluate the nucleation temperature for a given model with a first-order
phase transition using the CosmoTransitions package [335].

7.4 Dark Matter
The requirement of a thermal relic abundance for the LOP matching the observed DM density
in the Universe of Ωcdmh

2 = 0.1199± 0.0022 [17], or at least of not over-producing such density
via thermal production (“subdominant IDM”, see, e.g., Ref. [420]) naturally selects four distinct
sectors of the model’s parameter space:

1. a low mass regime, with a LOP mass, mH , well below half the observed SM-like Higgs
mass, mH ≲ mh/2;

2. a resonant or funnel region, mH ∼ mh/2, i.e., a mass range where LOP annihilation
proceeds predominantly through quasi on-shell Higgs s-channel exchange;

3. an intermediate mass regime, with a LOP mass of mh/2 ≪ mH ≲ 500GeV;

4. a heavy mass regime, with a LOP mass between 500GeV a few TeV.

In the first case, the low mass regime, the DM pair-annihilation predominantly proceeds
via the pair production of the heaviest kinematically accessible fermion (τ leptons, b quarks)
through h exchange. The lower the LOP mass, the larger the λL,S couplings need to be in order
to produce a large enough pair-annihilation cross section. The allowed mass values range down
to values close to the classical Lee-Weinberg lower mass limit for WIMPs [427], for this class of
models somewhere in between 3 and 4 GeV. Direct detection limits from XENON10 [9] probe
such combinations of masses and couplings quite tightly, such that only a small mass window
below 5− 7GeV remains.3

As the mass of the LOP approaches the resonant condition mH ∼ mh/2, the resonant Higgs
exchange allows for much smaller values of the λL,S couplings, and direct detection constraints
can be readily evaded. The relevant mass window left unconstrained by XENON100 [429] and
LUX [8] has a width of approximately 10− 15GeV centered around mh/2 [430].

The mass regions above and below the resonance mH = mh/2 are actually slightly different
from each other: Above the resonance, the pair production of WW ∗ in the final state of DM pair
annihilation processes becomes increasingly important, even if λL,S = 0, because the four-point
interaction through gauge couplings, independent of λL,S , starts contributing significantly. As

3The exact limit depends on the different possible choices of nucleon matrix elements, especially those con-
nected with the strange quark content of nucleons [428].
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MH MA MH± λL λ2 Tc Tn vc/Tc µγγ
BM1 66 300 300 1.07× 10−2 0.01 113.3 110.3 1.5 0.90
BM2 200 400 400 0.01 0.01 116.1 113.7 1.5 0.93
BM3 5 265 265 -6× 10−3 0.01 118.2 116.3 1.3 0.90

Table 7.1: Input parameters for the three benchmark scenarios discussed in the text along
with critical and nucleation temperatures, the transition strength and the signal
strength for h → γγ. The masses, given in GeV, are pole masses and the couplings
λi are specified at Q =MZ . Temperatures are also given in GeV.

a result the values of λL,S giving the “correct” relic density are pushed to increasingly (with
LOP mass) large, negative values.

For larger and larger LOP masses, the cross section for LOP pair annihilation to gauge
bosons becomes very large, such that the thermal relic density is systematically below the
universal dark matter density for any combination of model parameters. Barring non-thermal
production mechanisms, in this intermediate mass region the LOP cannot be the dominant
dark matter constituent [413, 420].

Finally, at about mH ≃ 500 GeV, for λL,S ≃ 0 cancellations between scalar t- and u-channel
exchange diagrams and the four-point interaction diagram alluded to above allow, again, for a
sufficiently large thermal relic density. Such cancellations are suppressed by driving λL,S away
from zero. Thus, tuning λL,S for increasing values of mH generally allows one to achieve the
correct relic density for mass values from mH ≳ 500GeV up into the multi-TeV range.

7.5 Benchmark Models
The benchmark models specified in Ref. [413] demonstrated various aspects of DM phenomenol-
ogy and the possibility for the IDM to influence the h → γγ rate. Unfortunately, none
of the suggested scenarios exhibits a strongly first-order EW phase transition. In this Sec-
tion, we identify alternate benchmark models which can potentially yield a strongly first-order
EW phase transition, while having disparate properties for the lightest Z2-odd particle. All
our benchmark models are compatible with constraints from Higgs collider bounds and rate
measurements, which has been explicitly checked using the tools HiggsBounds [431–433] and
HiggsSignals [434], where the model predictions have been calculated using a SARAH-generated
SPheno version [435–438]. In the following discussion we mostly focus on the interplay between
the dark matter phenomenology and the strengths of the EWPT.

Our key finding is that the requirement of a strongly first-order phase transition generally
leads to a large mass splitting between the LOP and the other scalars in the IDM. Our bench-
mark models are summarized in Tab. 7.1, along with the corresponding critical and nucleation
temperatures, as well as phase transition strengths, as parametrized by the ratio vc/Tc. In each
case the masses of the A and H± are chosen to ensure a strongly first-order phase transition.
In Fig. 7.3 we show the dependence of the transition strength on these parameters. The lines
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corresponding to BM1 and BM3 terminate where the potential develops a non-inert (ϕ ̸= 0)
vacuum first during thermal evolution. This vacuum can then either continuously evolve into
the SM/inert (ϕ = 0) vacuum at T = 0 or it can persist to low temperatures. In the latter case,
the EWPT can occur in two steps. Such models are viable if the inert vacuum is deeper than
the new one at T = 0 and both transitions complete (i.e., nucleation rate(s) are large enough).
Two step electroweak phase transitions have been investigated in detail in Refs. [439, 440]. In
this work we consider only simple one step transitions, hence the truncation. Notice that in
Ref. [418] the strength of the EW phase transition in models with multiple phase transition
steps was always weaker, see Fig. 3 and 4 in Ref. [418].

First, let us consider model BM1, where LOP production in the early Universe is predomi-
nantly set by near-resonant s-channel Higgs exchange. This scenario has been recently examined
in the context of phase transitions in Ref. [418]. Even more recently, it has also been suggested
as a possible explanation [441] of the Fermi-LAT gamma-ray excess (see Ref. [442] and references
therein). As discussed above, the on-resonance requirement forces mH ∼ mh/2, but allows λL
to be small enough to be consistent with direct detection constraints. Here DM production does
not rely on interactions with A or H±, so their masses can be essentially chosen freely, as long
as the resulting quartic couplings λi (through Eq. (7.7)) satisfy perturbativity and constraints
from electroweak precision observables (EWPO), which we check with 2HDMC [443]. In order
to satisfy the BNPC of Eq. (7.27), one needs to increase the coupling of the new scalars to h,
which, in turn increases the splitting of A and H± relative to H. For this and the following
models we choose mA = mH± to minimize the impact of splitting these states from H on the
Peskin-Takeuchi T function [405] and to reduce the number of parameters. This assumption
can be somewhat relaxed, but the results are qualitatively similar. This benchmark represents
the only class of scenarios where the thermal LOP relic density (which we calculated with the
micrOMEGAs code [444]) matches the observed DM universal density, and where the EW phase
transition is strong enough.

When mA, mH± ≳ 340 GeV, the corresponding loop corrections to mH are large and require
µ22 < 0. This causes a second minimum to appear in the potential at T = 0. As mA = mH± is
increased further, this minimum quickly becomes deeper than the SM one, corresponding to the
termination of the blue curve in Fig. 7.3 at mA ∼ 350GeV. This behaviour was also observed
in Ref. [418].

In this scenario, the LOP mass mH has been chosen slightly above the kinematic threshold
of the decay h → HH in order to evade constraints from direct searches for invisible Higgs
decays and Higgs rate measurements. These however become important for our benchmark
scenario BM3 (see below).

The second benchmark BM2 in Tab. 7.1 represents the intermediate mass regime. Here
annihilation into gauge bosons is efficient and DM is generally underabundant, unless there is
a cancellation among different amplitudes [413]. The cancellation depends, as indicated above,
on how close λL,S → 0, i.e., on how degenerate the IDM Higgs sector is. In our benchmark,
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Figure 7.3: Phase transition strength as a function of the heavier IDM scalar masses,
taking mA = mH± . The remaining parameters are chosen as in the benchmark
models of Table 7.1, which are shown by black dots. The lines for BM1 and BM3
terminate where the inert doublet develops a non-zero vev, ϕ ̸= 0, as described in
the text.

such a cancellation requires mH ≈ mA ≈ mH± with a maximum splitting of ∼ 10 GeV. These
small splittings lead to small couplings of the new states to h and therefore an insufficiently
strong phase transition. Thus the phase transition requirement forces thermal relic DM to be
underabundant. The observed DM density can be explained here, however, by invoking non-
thermal production mechanisms (e.g., the decay of a heavy particle) or with the existence of
additional DM particles (e.g., axions). The multitude of “non-standard” production mechanisms
has been recently reviewed in Ref. [74].

The final benchmark model, BM3, belongs to the light-mass regime, and is another example
that requires further ingredients to be fully consistent with the phenomenology of the DM sector.
For mH < mh/2, decays of the SM Higgs to invisible final states become possible, with a decay
rate [405]

Γ(h→ HH) =
v2λ2L
8πmh

(
1−

4m2
H

m2
h

)1/2

. (7.28)

Requiring consistency with the observed 95% C.L. upper limit on the branching fraction,
BR(h → HH) ≤ 17% [445], provides a strong constraint on the coupling λL of |λL| ≲ 0.007,
while a large value |λL| ≳ 0.4 is required to sufficiently deplete the DM abundance [413]. These
problems can be remedied by softly breaking the Z2, which would allow H to decay [446, 447].

148



As in the previous example, another explanation for DM is then needed. An alternative possi-
bility is to provide the LOP with new annihilation modes, e.g., to new light vector bosons [448],
or a mechanism to dilute the thermal relic density, such as an episode of late entropy injec-
tion [449, 450].

DM phenomenology aside, it is again easy to get a strongly first-order phase transition with
a large mass splitting between H and A, H±. We note that this scenario requires a significant
tuning of parameters, because a small LOP mass requires near cancellation of tree-level and
loop contributions. For λL > 0, this leads to negative values of µ22 which can result in the
appearance of a new ϕ ̸= 0 minimum.

In all three cases, the first-order transition is driven by the non-analytic (m2)3/2 terms (see
Eq. 7.18) due to A and H±, while the gauge boson contributions are not as important. This
explains the common feature of large splittings between H and A, H± among the benchmark
scenarios. These lead to large couplings between h and the new states, enhancing the size of
thermal corrections. This appears to be a generic requirement for increasing the strength of
the phase transition in the IDM. It is also important to emphasize that thermal corrections to
the crucial (m2)3/2 terms from A and H± are not subject to gauge invariance issues that affect
the gauge sector contributions. As a result, we expect these arguments to remain valid in the
context of a fully gauge invariant treatment. This can be further tested in a toy model with
all gauge coupling constants set to 0, thereby completely eliminating gauge dependence from
the effective potential.4 We checked that such a simplified analysis gives quantitatively similar
results for critical temperatures and transition strengths when the scalar couplings are large.

The high T expansion of the effective potential also provides a simple explanation for the
shape of the curves in Fig. 7.3. In this limit the transition strength is proportional to the
coefficient of the v3 term [332]. For the IDM scalars such terms arise from the non-analytic
contributions proportional to (µ22+λSv

2
c )

3/2 (assuming mA = mH± , as above, and ignoring daisy
contributions for simplicity), which behaves as v3 only when λSv2c ≫ µ22. Thus when λSv2c ≪ µ22,
the transition strength is independent of IDM parameters, corresponding to the plateau of the
green curve in Fig. 7.3. In the opposite limit, the IDM gives an additional contribution to
the cubic coefficient, so the transition strength scales as λ3/2S ∼ m3

A, as illustrated by the
monotonically increasing sections of the curves in Fig. 7.3.5

For heavy masses m2/T 2 ≫ 1 (with T ∼ 100 GeV), the IDM states thermally decouple, but
this does not mean that they have no impact on the phase transition. When µ22 ≫ |µ1|2, the
heavy doublet can be integrated out to yield a SM effective theory with the potential

V0 = µ2|H|2 + λ|H|4 + κ|H|6 + . . . (7.29)

where the dots stand for higher mass dimension operators. The parameters µ2, λ and κ can be
4We thank Michael Ramsey-Musolf for pointing this out to us.
5The precise scaling is modified by Daisy corrections, O(µ2

2/λSv
2
c ) terms, finite-T and renormalization group

effects.
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related to those in the fundamental IDM by equating the effective potentials for the two models
at a matching scale Q ∼ µ2. For example, one-loop matching yields

κ =
1

24π2µ22
(λ3L + λ3S + λ33/4), (7.30)

while µ2 and λ are determined below the matching scale by fixing the vev and the Higgs mass.
With the presence of a dimension-six term in the potential, the barrier required for a strongly
first-order transition can be generated if λ ≲ 0 and µ2 + cT 2 > 0 for T ∼ Tc, where c encodes
thermal corrections from SM states only [425]. Scenarios of this type have been considered, e.g.,
in Refs. [451–454]. One immediate difficulty is that in the IDM κ is generated only at one-loop,
so in order for this operator to be significant for field values of around the electroweak vev, one
must overcome the loop suppression, suggesting that the combination λ3L+λ3S+λ33/4 cannot be
too small. This again forces a large splitting between the IDM states, meaning that the heavy
DM scenario described in Section 7.4 cannot be realized together with a strongly first-order
phase transition. Such large couplings can run into perturbativity problems and invalidate the
expansion used to generate the effective field theory.

We briefly comment on the discovery prospects of the new IDM states at the LHC. Due to
the Z2 symmetry, the IDM states can only be produced pairwise at colliders. Successive decays
of the heavier IDM states A and H± into the LOP and a Z or W boson, respectively, can give
rise to multilepton signatures [412, 455, 456]. In a recent analysis [456] of LHC searches for
supersymmetric particles with two leptons plus missing transverse energy in the final state in
the context of the IDM, mass limits of up to mA ≲ 140 GeV for LOP masses mH ≲ 55 GeV and
charged Higgs masses around 85−150 GeV have been derived. While these limits partly exceed
previous limits from the LEP collider, they are not yet sensitive to the parameter regions that
yield a strongly first-order phase transition as required for successful electroweak baryogenesis,
see Fig. 7.3.

The new IDM states can also have an indirect effect on precision Higgs measurements. In
particular, the new charged state H± provides an additional contribution to the loop-induced
h → γγ and γZ rates. These effects have been recently studied in Refs. [457, 458] in the
context of the 125 GeV Higgs boson. Modifications of these branching fractions by O(10%)

are a generic feature of our benchmark scenarios, as we show below. The h→ γγ rate has the
form [421, 457–461]

Γ(h→ γγ) =
α2GFm

3
h

128
√
2π3

∣∣∣∣ASM +
λ3v

2

2m2
H±

A0

(
m2

h

4m2
H±

)∣∣∣∣2 , (7.31)

where the leading contributions to the SM amplitude ASM ≈ −6.56 + 0.08i come from W

bosons and top quarks. The second term is the new contribution from H±, where A0 is a loop
function with the property limx→0A0(x) = 1/3 [461]. For our benchmarks we have λ3 > 0, so
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one expects a suppression of h→ γγ relative to the SM.6 Note that for fixed µ22, the amplitude
for the H± contribution tends to a constant value 1/3 as λ3 is increased. This means that in
the limit of a large mass splitting between H and H±, which is required for a strongly first
order phase transition, the branching fraction is reduced by ∼ 10%. This effect was also noticed
in Refs. [417, 420] for models similar to our BM1 and BM2, respectively. The deviations to
BR(h→ γγ) induced by H± are shown in Tab. 7.1 in terms of the SM normalized signal strength
µγγ = (σ BR)/(σ BR)SM. While they are still consistent with the present measurements from
ATLAS [462] and CMS [463], the LHC should reach a precision of 4–8% for µγγ [113, 445],
thereby definitively testing the benchmark scenarios in Tab. 7.1.

While our benchmarks feature sizable deviations of BR(h→ γγ) from the SM expectation,
we note that it is possible to avoid this by taking H± to be nearly degenerate with H, and
using A alone to drive the phase transition to be strongly first order. However, in this case,
efficient coannihilation of H with H± during freeze-out generally results in a very small relic
abundance [464]. The near degeneracy is also required by constraints on the oblique T parameter
when mA ≫ mH± [405]. For example, taking mH± = 70GeV, mA = 370GeV and other
parameters as in BM1 results in a strongly first order phase transition, an order of magnitude
smaller relic abundance and only a ∼ 3% depression of µγγ relative to the SM.

7.6 Discussion and Conclusions
We studied the structure of the electroweak phase transition in the inert Higgs doublet model,
utilizing a set of three benchmark scenarios that feature a potentially viable dark matter par-
ticle. Our choices for the three benchmark models essentially exhaust all possible prototypical
setups for particle dark matter in the inert doublet model. While only one of the benchmarks
has a dark matter particle with a thermal relic density matching the observed dark matter
density, the other two (under- and over-abundant) can be made viable by invoking additional
production mechanisms or a scenario where the thermal relic density is diluted away, respec-
tively.

The key finding of our study is that in all cases where the model possesses a reasonable
particle dark matter candidate, the inert scalar spectrum can be arranged in such a way so as to
produce a strongly first-order electroweak phase transition. Central to achieving such a phase
transition is to postulate a large enough splitting between the dark matter candidate and the
heavier inert scalars. The physics driving this result is simple: Large mass splittings generically
correspond to large couplings between the inert scalars and the Standard Model Higgs; These,
in turn, increase the magnitude of non-analytic ∼ (m2)3/2 terms in the temperature-dependent
effective potential and thus the potential barrier between the field origin and the SU(2)L ×
U(1)Y -breaking phase.

6Various limits on LOP-Higgs coupling discussed above force |λL| to be small, such that the H mass is
primarily determined by µ2

2 (at tree level, see Eq. (7.7)). If the charged Higgs H± is heavier than H then this
forces λ3 > 0.
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The mass splitting under consideration cannot be arbitrarily large. For large enough values,
for example, the phase structure of the model becomes more complicated, with possible non-zero
vacuum expectation values for the inert doublet and multiple-step phase transitions. While,
based upon the results of Ref. [418] the latter possibility is not expected to yield stronger
electroweak phase transitions than in the single-step case, this is an interesting possibility
which we leave for future studies.

The question of how to embed large-enough CP violating sources in detail was also left unan-
swered here. It will be interesting to study whether such a source (for example an additional
gauge-singlet complex scalar, see Ref. [465]) significantly impacts the electroweak phase tran-
sition and dark matter phenomenology, and, with this, the conclusions reached in the present
study.
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Part IV

Conclusions
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Chapter 8

Conclusion and Outlook

In this thesis we have investigated extensions of the Standard Model of particle physics that
seek to address one or more of the problems outlined in Ch. 1. These included theoretical
issues, such as the hierarchy problem, as well as observational questions of dark matter and the
baryon asymmetry of the Universe. We classified our discussion in terms of phase transitions
– events in the history of the Universe, when an order parameter, such as an energy density
of a cosmological species (Part II) or the expectation value of a scalar field (Part III), changes
abruptly, modifying subsequent evolution. To conclude, below we summarize the main results
and outline prospects for experimental tests of these ideas.

In Chapters 3 and 4 we considered string theory motivated cosmological scenarios with late-
time reheating. In many realistic string compactifications long lived scalar fields called moduli
dominate the energy density of the Universe until their decay just before the onset of primordial
nucleosynthesis. This relatively late phase transition from matter to radiation domination can
be responsible for dark matter and baryon asymmetry genesis.

Chapter 3 was dedicated to the production of massive supersymmetric particles during the
era of moduli reheating. Such states can account for the observed dark matter relic abundance.
However, due to the low reheating temperature, TRH ≳ 5MeV, DM generation is non-thermal
and the lightest supersymmetric particle (LSP) must rely on large annihilation cross sections
to deplete its number density to acceptable levels. In the Minimal Supersymmetric Standard
Model (MSSM) with a sub-TeV wino LSP, this generally leads to a conflict with gamma ray
observations of the Galactic Center. In an attempt to preserve the string-motivated moduli
cosmology, we considered three extensions of the MSSM gauge structure. These share the
common feature that the additional gauge sector contains the true LSP of the theory, allowing
the wino to decay. The first two models discussed were based on an additional U(1)x, kinetically
mixed with the MSSM hypercharge. We explored the possibility of (symmetric) self-conjugate
and (asymmetric) U(1)x-charged DM, finding that the former case still suffers from a large
indirect detection rate, generally inconsistent with observations (except for extreme choices
of parameters). The asymmetric DM model is compatible with experiment. However, both
cases require light scalar particles, which is puzzling in the context of the MSSM itself, where
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LHC bounds suggest that the scalar superpartners are heavy. This issue was addressed in
the third example, which relied on a pure SU(N)x gauge theory and therefore did not require
any unnaturally light scalars. While this case provided a solution to the moduli-induced LSP
problem in the MSSM, we found that this model can only account for a small fraction of DM
in order to be consistent with structure formation in our Universe. Thus, none of the three
models discussed provided a fully satisfactory (theoretically and/or experimentally) solution
to the moduli problem. These conclusions hold for generic moduli parameters, relatively low
scale of SUSY breaking and R-parity conserving supersymmetry. The results of our study can
therefore be interpreted in two ways. First, they may be taken as hint that moduli properties,
such as the relation of the modulus mass to the SUSY breaking scale and its coupling to
ordinary matter, are not generic in our string vacuum. The second interpretation suggests
that R-parity is violated, such that supersymmetry does not give rise to a stable dark matter
candidate. Alternatively, the scale of SUSY breaking (and therefore the modulus mass) can be
much larger than expected, leading to a higher reheating temperature.

The late-time moduli decays discussed above occur far out of equilibrium and therefore
provide a viable setting for generating the baryon asymmetry of the Universe. This idea was
developed in Ch. 4, where we considered a unified origin for the matter-antimatter asymmetry
and dark matter, through the mechanism of hylogenesis. In this scenario the moduli decay
products give rise to an excess of visible baryons over antibaryons, and an equal asymmetry in
hidden antibaryons (such that total baryon number is conserved) that populate a “dark sector”.
The hidden antibaryons are the dark matter. The structure of the dark sector is very similar
to the asymmetric U(1)x extension used in Ch. 3. The operator that mediates baryon transfer
between the visible and hidden sectors also gives rise to a novel direct detection signature –
induced nucleon decay (IND). This arises when a DM particle (which carries antibaryon number)
scatters inelastically off a nucleon, destroying it and producing another hidden state and a
meson. In a nucleon decay detector, this looks like a standard nucleon decay event (spontaneous
emission of a meson, together with missing momentum), but with different kinematics for the
outgoing meson. The resulting effective nucleon lifetime is accessible by present and future
nucleon decay searches. The strongest limits at present come from the Super-Kamiokande
experiment [466]. However, these limits are not directly applicable due different kinematics of
standard and induced nucleon decay. Because the experiments optimize their event selection
for standard nucleon decay, the resulting efficiency for IND events can be as small as 5% [467]
– the effective constraints on IND rates and the underlying parameters in the model are weak.
These limits can be improved by relaxing event selection (so that more IND events pass the
cuts), tailoring analyses specifically for IND and by the next generation of experiments, such
as Hyper-Kamiokande [468].

The operators needed for hylogenesis can also be probed at colliders. For example, the
effective baryon transfer operator (XucRd

c
Rd

c
R)/M

2 contributes to the LHC production of jets
and missing energy (via the decay X → ΨΦ∗). The resulting limits from the 8 TeV run constrain
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M ≳ 2.6−3.5TeV, depending on the flavour structure [469]. An ultraviolet-complete model that
generates the above operator also gives rise to dijet resonances, which modify QCD predictions
of dijet mass and angular distributions. The latest results from ATLAS [470, 471] and CMS [472,
473] are consistent with SM predictions and set lower limits on the scale suppressing contact
operators (roughly corresponding to the mass of the P scalars discussed in Sec. 4.2.2) that in
some cases reach ∼ 12TeV.1 These limits depend on the flavour structure of the complete
theory. However, note that the effective scale enters the CP asymmetry parameter defined in
Sec. 4.3.1 and for large enough values the baryon asymmetry produced during hylogenesis will
be insufficient to explain the observed value. As this thesis is being completed, the LHC is
preparing to begin Run 2 at near design energy of 13 TeV. Stronger limits from this new energy
frontier will be instrumental in testing hylogenesis.

The baryon transfer operator is only one of two portals between the visible and dark sectors.
The implementation of hylogenesis presented in Ch. 4, as well as two models in Ch. 3 also feature
a kinetic mixing interaction that can be probed from multiple directions. First, irrespective of
whether or not the hidden sector contains a DM candidate that saturates the relic abundance,
the hidden vector can be produced in fixed target/beam dump experiments and at the flavour
factories (see Ref. [203] for a review). This search strategy has the advantage of being relatively
model independent. Indeed, if the vector decays back to SM particles, the signal is a function
only of the vector mass and the kinetic mixing parameter. As discussed in Sections 3.3.2 and
4.3.2, there exist certain minimal values of this mixing parameter in the range 10−5−10−4 from
the requirement of sufficiently fast decays of certain hidden sector states. While this parameter
range is not probed by current measurements for hidden photons (for GeV-scale vector masses),
the next generation of experiments such as HPS and Belle II will be sensitive to the interesting
parameter region [203, 474]. If no signal is found, our implementation of hylogenesis and the
related models of Ch. 3 will be in tension with bounds on energy injection during primordial
nucleosynthesis.

A complementary set of probes of the U(1)x hidden sector paradigm is available when
the hidden sector contains a viable dark matter candidate. For example, the kinetic mixing
interaction gives a direct detection rate that is very sensitive to the hidden photon mass –
see Eqs. (3.53) and (4.59). These rates also depend on the kinetic mixing parameter and
the hidden gauge coupling. However, these quantities are bounded from below as discussed
above, suggesting that there is a also a minimum rate for scattering on nucleons. This roughly
corresponds to the lower dashed line in Fig. 8.1, where we also demonstrate the best constraints
in the low mass regime from various experiments. Models with scattering rates far below
the lower dashed line will generally overclose the Universe or have problematic late-decaying
particles in the hidden sector. We note, however, that predictions of direct detection signals are
subject to astrophysical uncertainties such as the local DM density and velocity distributions.
Another disadvantage is that these searches are very model dependent. For example, when the

1The numbers cited in Sec. 4.5.3 hold for older LHC results with a partial Run 1 data set.
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Figure 8.1: Constraints on the spin-independent scattering cross section as a function of
DM mass (for the model of Sec. 3.4) from LUX [8], XENON10 S2 only analysis [9],
CDMSLite [10] and CRESST-Si [11]. The dashed lines show the expected cross
section for various combinations of gxϵ (see Eq. (3.53)).

DM candidate is a Majorana fermion, as in Sec. 3.3, the resulting interactions only allow for
spin-dependent scattering for which experimental limits are much weaker than for the spin-
dependent case. With these caveats in mind, the next 5–10 years should bring improvements in
experimental sensitivity of an order of magnitude or better in the light mass regime [76]. From
Fig. 8.1 it is clear that this will probe a significant portion of viable parameter space.

A second important probe of cosmological dark matter, indirect detection, was discussed in
detail in Ch. 3. It was shown, despite significant astrophysical uncertainties, that continuum
gamma ray observations provide a sensitive test of models with non-thermal dark matter. This
is because the large annihilation rates needed to produce the correct relic density also lead to
significant annihilation at late times. These limits, in particular those coming from Fermi-LAT
will continue to improve, as more data is collected. With an expected mission lifetime of 10
years, it is plausible that the Fermi-LAT sensitivity will improve by an order of magnitude,
translating to more stringent constraints of models of light non-thermal DM, even if it is a
subdominant component [475].

In the above discussion we emphasized the fact that the models considered in Part II are
testable at readily available energies, despite the fact that some of the core dynamics originates
from speculative high scale physics. In contrast, Part III studies phase transitions associated
with electroweak scales. In Ch. 6 we studied the implications of naturalness of the Higgs mass,
mh, and its observed value on the vacuum structure of the MSSM. Supersymmetry introduces
many new field directions in the scalar potential. Minima of the potential in these directions
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generally break charge and colour symmetries. If such a minimum is deeper than the one we live
in, our vacuum can be destabilized by quantum tunnelling, corresponding to a phase transition
from colour preserving to a colour broken phase. Interestingly, the appearance of these minima
is correlated with mh through quantum corrections due to stops, superpartners of the top quark.
We computed the tunnelling rates to various charge and colour-breaking minima and placed new
constraints on the MSSM parameter space. These limits are complementary to experimental
results described in Sec. 2.5, since they reach a different region of the stop parameter space
and are independent of the nature of the LSP. The experimental limits on stops, on the other
hand, are quite sensitive to the mass of the LSP. If stops are discovered, our results will useful
in determining whether the electroweak vacuum is stable, as discussed in Sec. 6.5.2.

The transitions studied above occur late in the evolution of the Universe, when the temper-
ature is effectively zero. At finite temperature, however, a similar phase transition occurs even
in the Standard Model, when the electroweak symmetry is broken down to electromagnetism
when the Higgs field acquires an expectation value. If this transition proceeds through bubble
nucleation and is sufficiently strong, it can potentially explain the production of the observed
baryon asymmetry in the Universe. In the SM, this process produces too little baryon number
for reasons explained in Sec. 7.1. This can be remedied by including additional matter that
couples strongly to the Higgs field. In Ch. 7 we investigated this possibility within one of the
simplest possible extensions of the SM: the inert doublet model (IDM). Despite its simplicity,
the IDM is able to produce an electroweak phase transition appropriate for baryogenesis, and
even account for DM for certain choices of parameters. Motivated by different classes of DM
phenomenology, we presented three benchmark scenarios that generated a strongly first order
phase transition. In all but one case, we found that the requirement of a good DM candidate
and a strong electroweak transition are mutually exclusive. This is because appropriate levels
of DM annihilation often rely on precise relationships among the IDM particle masses or values
of parameters that are inconsistent with precision SM Higgs measurements. In contrast, a suf-
ficiently strong electroweak transition requires large couplings of the Higgs to the new states,
which in turn translates into large mass splittings in the IDM sector. This has important im-
plications for collider limits on IDM, which are typically obtained by recasting SUSY searches
for neutralinos and charginos for the IDM H, A, and H± states (see, e.g., Ref. [456] for recent
results). For example, in dilepton searches, larger splittings between the IDM states give rise
to highly boosted lepton pairs. Interestingly, this can actually reduce the sensitivity of current
searches due to a veto on leptons from on-shell Z decays [456]. As a result, at present the limits
on the interesting region of IDM parameter space are weak. In particular, the Higgs funnel
regime, which accounts for both DM and a strongly first order electroweak phase transition (see
Sec. 7.5), is completely unconstrained at the moment. Fortunately, Run 2 should begin to probe
this regime [456]. Note that the above comments apply only to recasting of existing searches;
dedicated IDM analyses should yield more stringent results. The existence of a charged scalar
also alters loop-induced Higgs decay rates. In particular, the h→ γγ signal strength is modified
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by O(10%) for our benchmark scenarios. While this is consistent within error bars with current
measurements [462, 463], the LHC is expected to reach a precision of 4–8% for this branching
ratio, thereby definitively testing our benchmark models [113].

The inert doublet model addresses only one of Sakharov’s conditions for successful baryoge-
nesis. The IDM does not introduce any new sources of CP violation. A more complete theory
of EWBG will also address this shortcoming of the SM as well. In this case, new sources of
CP violation can be probed by measurements of electric dipole moments of electrons, neutrons,
atoms and molecules as described in Sec. 2.5.

The imminent restart of the LHC promises to resolve several fundamental issues in particle
physics. As discussed above, the new collider data will be crucial for testing theories of dark
matter and baryogenesis; direct and indirect detection, along with precision measurements
will provide complementary probes of these models. Perhaps even more importantly, Run 2
will determine the ultimate fate of naturalness, which has been a major motivator for physics
beyond the Standard Model not far from the electroweak scale. The hierarchy and the closely
related naturalness issues are problems of low scale phenomena being extremely sensitive to high
scale, ultraviolet physics. A century ago theoretical physics was also afflicted by an ultraviolet
catastrophe in the classical black body radiation spectrum. The solution to that small problem
initiated the quantum revolution. The hierarchy problem may be the UV catastrophe of the
twenty first century. Its resolution will either lead to another revolution (supersymmetry, little
Higgs or something completely unexpected!) or to a fundamental realization that nature is
fine-tuned, perhaps hinting at modification of naturalness or even environmental selection.
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Appendix A

Minimality of the Action Under
Path Deformations

In this appendix we show that fixing a path in field space connecting two vacua and com-
puting the one-dimensional bounce action along that path provides on upper bound on the
bounce action for tunnelling between those vacua. Equivalently, the bounce solution of the Eu-
clidean action is a minimum of the action with respect to deformations of fixed, one-dimensional
paths in the field space. The implication of this result is that the path deformation method
of CosmoTransitions (CT) [335] is guaranteed to provide at least an upper bound on the
tunnelling lifetime.

Recall that the multi-field bounce solution ϕ̄(ρ), ρ =
√
t2 + x2, of the Euclidean action is an

O(4)-symmetric solution of the classical equations of motion subject to the boundary conditions

∂ρϕ̄(ρ = 0) = 0 , lim
ρ→∞

ϕ̄ = ϕ+ , (A.1)

where ϕ+ is the metastable vacuum configuration. The bounce action is just the Euclidean
action evaluated on the bounce solution.

Let us now restate our claim more precisely. The bounce solution is an element of the set
of parametric curves on RF , where F is the number of scalar fields. Any path ϕ(ρ) in this set
can be written in terms of a unit speed curve γ(s):

ϕ(ρ) = γ(s(ρ)) , where |γ̇(s)| = 1 . (A.2)

The function s(ρ) is the solution of

ds

dρ
=

∣∣∣∣dϕdρ
∣∣∣∣ , (A.3)
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and γ(s) = ϕ(ρ(s)). The Euclidean action in α spacetime dimensions becomes

SE [γ, s] = Ωα

∫
dρρα−1

[
1

2

(
ds

dρ

)2

+ V (γ(s(ρ)))

]
, (A.4)

where Ωα = 2πα/2/Γ(α2 ) is the surface area of a unit (α− 1)-sphere. Suppose we fix a path in
field space γ connecting two vacua and extremize the action with respect to s(ρ) subject to the
boundary conditions of the bounce along this one-dimensional trajectory. The corresponding
solution can then be used to obtain a restricted bounce action along the fixed trajectory. This
is the procedure used by CT at each intermediate step of its deformation procedure. We claim
that the action obtained for any such fixed path is greater than or equal to the unconstrained
bounce action.

To prove this claim, we use the fact that the bounce is a stationary point of the action. For
tunnelling configurations, however, it is not an extremum of the action. This coincides with the
fact that the second variation of the action with respect to the fields has a negative eigenvalue.
The corresponding operator is

−δij∂2 +
δV

δϕiδϕj
(ϕ̄) . (A.5)

We assume that this operator has only a single negative mode [316, 348]. This has been
proved for a single field in the thin wall limit [316, 323]. If this assumption is false, the entire
Callan-Coleman formalism does not apply. We show that this negative eigenvalue is associated
exclusively with the variation of s(ρ) using the argument of Ref. [348]. As a result, the bounce
action is an extremum with respect to variations in the orthogonal parameter γ, and can easily
be shown to be a minimum by explicit construction.

Consider the scaling transformation

s(ρ) → s(ρ/λ). (A.6)

The action of Eq. (A.4) transforms as

S[γ, s] → λα−2ST [γ, s] + λαSV [γ, s], (A.7)

where

ST [γ, s] = Ωα

∫
dρρα−1 1

2

(
ds

dρ

)2

(A.8)

and

SV [γ, s] = Ωα

∫
dρρα−1V (γ(s(ρ))). (A.9)
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Requiring that S is stationary with respect to these scale variations yields

δS

δλ
= 0 ⇒ ST = − α

α− 2
SV > 0. (A.10)

We can also evaluate the second variation of S

δ2S

δλ2
=

−ST α = 3

−2(α− 2)ST α > 3
< 0. (A.11)

This means that the bounce is a maximum of the action with respect to the scaling transfor-
mation of Eq. (A.6). Thus the crucial negative eigenmode is due to scaling, and, since this
transformation does not involve the normalized path γ, it is due entirely to the functional vari-
ation of s(ρ). The tunnelling action obtained by computing the bounce solution along a fixed
one-dimensional path is therefore an upper bound on the true bounce action. This justifies
the procedure of using a fixed normalized field path and computing s(ρ) as a way to check the
CosmoTransitions results.
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Appendix B

An Approximate Empirical Bound
for Charge and Colour-Breaking
Vacua in the MSSM

In this second appendix we describe an approximate empirical bound on metastability valid in
the parameter region r ≡ m2

U3
/m2

Q3
∼ 1, moderate tanβ, smaller µ, and larger mA. We begin

by deriving a condition on absolute stability to motivate the functional form of the empirical
formula. Let us emphasize that our empirical bound is only an approximation, and is not
guaranteed to work outside the limited regime we consider.

To derive an improved bound on absolute stability of the SM-like (SML) vacuum, we impose
only SU(3)C D-flatness and H0

d = 0. Similar existing formulae typically also assume SU(2)L

and U(1)Y flatness, which precludes the existence of a SML vacuum. For m2
U3
/m2

Q3
∼ 1,

SU(3)C D-flatness should be a good approximation since the strong gauge coupling is larger
than the others [353]. Setting H0

d = 0 is also well-justified for large tanβ near the SML vacuum;
at the CCB minimum one typically finds |H0

d | < |H0
u| as well.

Applying the SU(3)C D-flatness condition, we have

T ≡ t̃L = |t̃R| , (B.1)

and the potential becomes

V = m2
TT

2 +m2
2(H

0
u)

2 ± 2ytAtH
0
uT

2 + y2t
[
T 4 + 2T 2(H0

u)
2
]
+
ḡ2

8

[
(H0

u)
2 − T 2

]2
,

where m2
T = m2

Q3
+m2

U3
, ḡ =

√
g2 + g′2 and m2

2 = m2
Hu

+ |µ|2.
Minimizing, we have

0 =
∂V

∂T
= T

[
2m2

T ± 4ytAtHu + 4y2tH
2
u − ḡ2

2
((H0

u)
2 − T 2) + 4y2t T

2

]
. (B.2)

192



The solutions are evidently T = 0 and

T 2 =
[
∓2ytAtH

0
u −m2

T − 2(y2t − ḡ2/8)(H0
u)

2
]/

2(y2t + ḡ2/8) . (B.3)

Since we are restricting ourselves to H0
u ≥ 0, the relative orientation of the stops in any potential

CCB minimum must be such that ∓ytAt = |ytAt|. Note as well that the A-term must overpower
the others to make T 2 > 0. Under our given assumptions, this already provides a necessary
condition on the existence of a CCB vacuum,

A2
t > 2m2

T (1− ḡ2/8y2t ) . (B.4)

This is a somewhat weaker requirement than the analytical formula Eq. (6.3).
Minimizing with respect to Hu (and choosing the relative stop alignment as above) gives

0 =
∂V

∂Hu
= 2m2

2H
0
u + 4(ḡ2/8)(H0

u)
3 +

[
(2(y2t − ḡ2/8)H0

u − ytAt

]
(2T 2) . (B.5)

For T 2 = 0, this reproduces the SM-like minimum. On the other hand, we can also plug in
our non-zero solution for T 2, which is quadratic in H0

u. This generates a cubic equation for H0
u

that can be solved analytically. A cubic equation has three roots, with at least one of them
real. The other two roots are either real, or complex conjugates of each other. We need at least
three real roots to have both a SML vacuum and a CCB vacuum since there must also be at
least a saddle point between them.

In this approximation, we can check for CCB vacua by simply scanning over stop parameters
and computing cube roots, for which there exist analytical formulae. The EW vacuum is trivial
to find, and corresponds to T = 0. The T 2 ̸= 0 solutions may correspond to CCB vacua.
A necessary condition for this is that all the roots are real, and that at least two of them
are positive. With the roots in hand, it is then straightforward to use them in the potential
to compare the relative depths of the minima. Fixing m2

2 = −m2
Z/2 to get the correct SML

vacuum expectation value, we find numerically that A2
t ≳ (2.4)(m2

T + m2
2) gives a very good

estimate of the condition for a CCB vacuum to be deeper than the SML vacuum for this
simplified potential.

In our analysis of metastability, we find that the boundary between metastable and danger-
ously unstable regions tends to track the boundary between SML and CCB regions. Motivated
by this and our previous result for CCB vacua, we will attempt to fit the boundary between
metastable and unstable regions by an expression of the form

A2
t = αm2

T + β|m2
Q3

−m2
U3
|+ γm2

2 =

(
α+ β

|1− r|
1 + r

)
m2

T + γm2
2 (B.6)

The second term in the above expression is included to model the effect of small deviations
from SU(3)C D-flatness.
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Figure B.1: The deterioration of the empirical bound of Eq. (B.6) for m2
U3
/m2

Q3
≫ 1 or

m2
U3
/m2

Q3
≪ 1. For these parameter ranges the assumption of SU(3)C D-flatness

that motivated Eq. (B.6) breaks down and it cannot be used to reliably model the
boundary between the metastable and unstable parameter regions.

We estimate the parameters α and γ by using a least-squares fit to the lower boundary
of the metastable region in Fig. 6.2, without imposing the Higgs mass constraint. This is an
arbitrary choice to fit to; different choices in Tab. 6.1 lead to variations in α on the order of
15% and 100% in γ. The large variation in γ is not a big problem since it is multiplied by
|m2

2| ∼ m2
Z ≪ m2

T . We obtain α ≃ 3.4 and γ ≃ 60. With α and γ fixed, we fit β to models
with r ̸= 1. We again see that there is a significant variation O(20%) depending on what r is,
indicating that the functional form of Eq. (B.6) is an oversimplification. With this in mind, we
find an average value of β ≃ −0.5 for r ∈ [0.3, 3]. We show the resulting bound in the results
of Section 6.3.3. For r ≃ 1, Eq. (B.6) approximates the true boundary between metastable and
unstable models well. However, we expect this constraint to deteriorate as one moves away
from the assumption of SU(3)C D-flatness by choosing soft masses with r ≫ 1 or r ≪ 1. We
show an explicit example of this in Fig. B.1.

We emphasize that this bound is a very rough guideline for metastability in the MSSM in a
specific corner of the parameter space and should only be used as a first order approximation.
A full numerical analysis is required when any of the above assumptions are violated or better
precision is required.
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Appendix C

Renormalization Group Equations in
the Inert Doublet Model

Here we list the beta functions for the inert 2HDM at one-loop order. The general form of the
RG equations is

dλ

dt
=

1

16π2
βλ, (C.1)

where t = lnQ/Q0 and Q0 is a reference scale. We take Q0 =MZ . The U(1)Y gauge coupling
has the GUT normalization: g1 =

√
5/3g′. The beta functions below have been checked with

SARAH [438]. Partial one loop results can be found in Refs. [413, 421, 476] for dimensionless
parameters only. These agree with the formulae below.

The gauge coupling evolution is determined by

βg1 =
21

5
g31 (C.2)

βg2 = −3g32 (C.3)

βg3 = −7g33. (C.4)

For the third generation Yukawas we have

βyt = −17

20
g21yt −

9

4
g22yt − 8g23yt +

9

2
y3t +

3

2
y2byt + yty

2
τ (C.5)

βyb = −1

4
g21yb −

9

4
g22yb − 8g23yb +

3

2
yby

2
t + yby

2
τ +

9

2
y3b (C.6)

βyτ = −9

4
g21yτ −

9

4
g22yτ + 3y2t yτ + 3y2byτ +

5

2
y3τ . (C.7)

Next we consider the scalar potential parameters. The evolution of the dimensionless quartic
couplings λi is governed by
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βλ1 = −9

5
g21λ1 − 9g22λ1 +

27

200
g41 +

9

20
g22g

2
1 (C.8)

+
9

8
g42 + 24λ21 + 2λ23 + λ24 + λ25 + 2λ3λ4

+ 12λ1y
2
t − 6y4t + 12λ1y

2
b − 6y4b + 4λ1y

2
τ − 2y4τ

βλ2 = −9

5
g21λ2 − 9g22λ2 +

27

200
g41 +

9

20
g22g

2
1 +

9

8
g42 + 24λ22 (C.9)

+ 2λ23 + λ24 + λ25 + 2λ3λ4

βλ3 = −9

5
g21λ3 − 9g22λ3 +

27

100
g41 −

9

10
g22g

2
1 +

9

4
g42 (C.10)

+ 4λ23 + 2λ24 + 2λ25 + 12λ1λ3 + 12λ2λ3 + 4λ1λ4

+ 4λ2λ4 + 6λ3y
2
t + 6λ3y

2
b + 2λ3y

2
τ

βλ4 = −9

5
g21λ4 − 9g22λ4 +

9

5
g22g

2
1 + 4λ24 + 8λ25 (C.11)

+ 4λ1λ4 + 4λ2λ4 + 8λ3λ4 + 6λ4y
2
t + 6λ4y

2
b + 2λ4y

2
τ

βλ5 = −9

5
g21λ5 − 9g22λ5 + 4λ1λ5 + 4λ2λ5 + 8λ3λ5 (C.12)

+ 12λ4λ5 + 6λ5y
2
t + 6λ5y

2
b + 2λ5y

2
τ

The beta functions for the mass parameters are given by

βµ2
1
= − 9

10
g21µ

2
1 −

9

2
g22µ

2
1 + 12λ1µ

2
1 + 4λ3µ

2
2 + 2λ4µ

2
2 (C.13)

+ 6µ21y
2
t + 6µ21y

2
b + 2µ21y

2
τ

βµ2
2
= − 9

10
g21µ

2
2 −

9

2
g22µ

2
2 + 12λ2µ

2
2 + 4λ3µ

2
1 + 2λ4µ

2
1. (C.14)

Finally, the anomalous dimensions for the Higgs and the inert scalar are

γh = − 9

20
g21 −

9

4
g22 + 3y2t + 3y2b + y2τ (C.15)

γϕ = − 9

20
g21 −

9

4
g22. (C.16)
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