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Abstract

The purpose of the present work is to derive a classification for topologically
stable Fermi surfaces for translationally invariant systems with no electron-
electron interactions. To derive such a classification we introduce the nec-
essary concepts in condensed matter and electronic band theory as well as
those in mathematics such as topological spaces, building up to topological
K -theory and its connections with Fredholm operators. We further com-
pute such classes when there is only translational invariance for dimensions
d = 1, 2, 3 and discuss the inclusion of other symmetries.
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Preface

Chapter 1 is an introduction to the subject of topological phases matter
and topological Fermi surfaces. Chapter 2 is an introduction to Analysis,
topological spaces, homotopy and K -theory. Chapter 3 describes the type
of physical systems we wish to describe and introduces the basics if elec-
tronic band theory in condensed matter. Chapter 4 derives a classification
of topologically stable Fermi surfaces from the material introduced in pre-
vious chapters. Finally, Chapter 5 is a summary of the present work.
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Chapter 1

Introduction

The study and classification of topological phases of matter began in 1980
with the unexpected experimental discovery by von Klitzing, Dorda and Pep-
per [27] of exact quantization of the Hall conductance of a two-dimensional
electron gas in a strong magnetic field, in integer units of e2/~, known as
the Integer Quantum Hall effect. Experimentally, it is the most precise mea-
surement of quantization known to date, such that its used as the standard
calibration for resistivity world wide since 1990. Laughlin [29] related this
effect to gauge invariance but it was not until a couple of years later that
Thouless, Kohomoto, Nightingale and Den Nijs [36] explained the origin of
the exact quantization of the Kubo formula for the Hall conductance (using
Berry’s phase [8]) as a Chern number, a topological invariant discovered by
the Chinese mathematician S.S Chern in 1946. This invariant is also known
to physicists as the TKNN invariant, named after the aforementioned au-
thors.
It was later realized that gapped systems such as the Integer Quantum Hall
effect with different values for their topological invariants, represent different
phases of matter, so-called topological phases of matter, which have very ro-
bust edge-states, that are insensitive to impurities and perturbations. This
means that one can not transit from one state to another without closing the
energy gap. Closing and reopening the energy gap is therefore tantamount
to changing the value of a corresponding topological invariant, such as the
TKNN invariant.
This discovery is a paradigm shifting breakthrough in condensed matter,
for it was thought that phase transitions only occurred through symmetry
breaking, according to the Landau paradigm[28]. Now it is known that there
are different topological phases protected by a given symmetry [11], mean-
ing that one cannot transit from one phase to other without breaking and
restablishing the corresponding symmetry. Examples of such symmetries
are time-reversal, parity and chirality among others.
Much later, in 2004 Kane and Mele [23] discovered a Z2- invariant for the
three dimensional Quantum Spin Hall effect, in which the system is natu-
rally time-reversal invariant due to spin-orbit coupling. In 2006 Bernveg,
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Chapter 1. Introduction

(a) (b)

Figure 1.1: (a) Experimental setup for the Quantum Hall effect. (b) Plateus
observed at integer values of the Hall resistivity

Hughes and Zhang [7] predicted such topological phenomena would be ob-
servable in Mercury Telluride potential wells, which indeed was observed
experimentally.
Soon after this developments, there has been what can only be described as
an explosion of research, both theoretically and experimentally to study sys-
tems in condensed matter which depend in one way or an other on topology,
most notably gapped phases[18] but also topological defects[37], Majorana
wires [13] and Fermi surfaces[21], to name a few. There are other kinds of
Quantum Hall effects known as the Fractional and Anomalous Quantum Hall
efects. The former as the name suggests has fractional Hall conductance.
It is understood that electron-electron interactions play a fundamental role
and distinguish it from the Integer case. The fractional case is much less un-
derstood, but has been studied using very deep mathematical ideas known
as Chern-Simons topological quantum field theory. The anomalous Hall ef-
fect has a long and controversial history, however, recent efforts such as that
of Haldane [17], have reinterpreted part of it in terms of Berry’s curvature
and the same invariants used for the integer case. This work in fact has
surprising connections with the kind of systems we shall classify.
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Chapter 2

Mathematical preamble

In this chapter we will introduce a vast array of mathematical definitions,
objects and a few (but very powerful) theorems, most of which shall be em-
ployed for the construction of our classification of topologically stable Fermi
surfaces. There are several reasons for doing this. On the one hand, it makes
the present work sufficiently self-contained and easier to follow. This chap-
ter is intended particularly for readers with a background in physics, most of
which might not have studied these concepts, which is why we provide them
in such detail. These concepts also play a fundamental role in our remarks
on inconsistencies lurking in the existing literature of classifications, that is,
in order to understand why some constructions are inconsistent it is a good
idea to have the formal definitions at hand, for though some concepts are
similar, the richness of the construction lies in their difference.
First we introduce concepts of analysis since they are more familiar to physi-
cists in general, then we go through the topic of what is known to math-
ematicians as point-set topology and is not as common to encounter in a
physicist’s repertoire and finally to K -theory.
We assume that our readers are familiar with the basics of set-theory as well
as finite-dimensional linear algebra, nevertheless we may reintroduce some
of these notions as we see fit.

2.1 Analysis

The branch of mathematics known as analysis came into being with the work
of Fourier on the now famous heat equation, with the byproduct invention
of his transform and series in the late 18th century but it was not until
the 19th century that it was understood as an independent field through
the work of Weierstrass, Cauchy, Fredholm and others. In the 20th century
it was the work of Hilbert and Von Neumann that connected analysis and
quantum physics.
All of the definitions presented in this section can be found in [34], one of
the standard texts in the literature of mathematical physics. Finally, we
avoid unnecessary over-citation of [34].
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2.1. Analysis

2.1.1 Hilbert space

We begin by introducing the concepts of a Cauchy sequence and a complete
metric space,

Definition 1 A sequence {xn} of points in a metric space M is a Cauchy
sequence if ∀ ε > 0 ∃N ≡ N(ε) ∈ N such that ∀n,m > N, ‖xn − xm‖ < ε,
where ‖ ‖ denotes de norm of M .

Definition 2 A complete metric space M is a metric space for which
every Cauchy sequence converges.

With these at hand we can define a Hilbert space,

Definition 3 A Hilbert space H is a vector space over a field F which is
a also a complete metric space.

We will exclusively focus on the case were the field F = C, the set of complex
numbers, since (as we will later see) this choice is part of the foundation upon
which quantum mechanics was built.
Elements of H will be denoted as |Φ〉 using the Dirac bra-ket notation, |Φ〉
being a ket. The bra 〈Φ| = |Φ〉† is the dual element to |Φ〉, where 〈Φ|Ψ〉 ∈ F
denotes the inner product of H .
We shall also restrict our attention to separable Hilbert spaces

Definition 4 A Hilbert space H is separable iff it has a countable or-
thonormal basis {|Φn〉}∞n=1.

Let us give an example of a complex separable Hilbert space.

Example 1 Let L2([0, 2π]) denote the set of square integrable functions f :

[0, 2π] −→ C ,

∫ 2π

0
|f(x)|2dx <∞. L2([0, 2π]) is a complex separable Hilbert

space with orthonormal basis |Φn〉 = (2π)−1/2einx.

Note that a square integrable function f(x) is viewed as a vector and fol-
lowing our convention, should be denoted as |f〉. Any square integrable
function has a Fourier series

f(x) =

∞∑
n=−∞

(2π)−1/2ane
inx , (2.1)

an = (2π)−1/2
∫ 2π

0
f(x)e−inxdx , (2.2)

which is why L2 (as is commonly abbreviated) has applications across a wide
variety of fields of study.
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2.1. Analysis

2.1.2 Bounded and compact operators

Let us now study operators on our Hilbert space H . The first kind of
operators are bounded operators:

Definition 5 An operator B : H −→H is bounded if ∃ c such that
∀ |Φ〉 ∈H , 〈Φ| B†B |Φ〉 ≤ c 〈Φ|Φ〉.

c is known as the operator norm of B. The set of bounded operators of H
is denoted as B(H ).
We shall also define the set of compact operators:

Definition 6 K is a compact operator iff ∀ {xn} ⊂H bounded sequence,
K({xn}) has a convergent subsequence in H . The set of compact operators
is denoted as K(H ).

Compactness is a topological property, but we seem to have gotten away
with defining a ”compact” thing without defining topology. In reality it is
that we have implicitly used the notion of the norm of a Hilbert space in
our definition and so have used indirectly the topology defined by the norm!
For completion and for later use we should define the Calkin algebra [24],

CAL(H ) ≡ B(H )/K(H ) . (2.3)

where we have used the fact that K(H ) is a two-sided ideal (see [3]) in
B(H ). CAL(H ) is known as a C∗-algebra, which are widely used, especially
in what is known as non-commutative geometry [35] and there is a non-
commutative approach to problems in condensed matter. We will discuss
some of these in later chapters.

2.1.3 Fredholm operators

Fredholm operators will play such an important role in our work that they
should be discussed in greater generality. These operators are named after
Swedish mathematician Erik Ivar Fredholm and arose in his work on inte-
gral equations which derived into what is known in analysis as the Fredholm
alternative, which states the following:

Let K be a compact operator in H and |Φ〉 ∈ H , then only one of the
following possibilities occurs

• K |Φ〉 = λ |Φ〉,

• (K − λI)−1 is bounded.
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2.2. Topology

A generalization to Banach spaces was developed by Alexander Grothendieck
in his doctoral work [16].
We are now in a position to define Fredholm operators, at least for a single
Hilbert space, this will suffice for our purposes.

Definition 7 An operator H : H −→H is Fredholm if

• dimKerH is finite.

• dimKerH† is finite.

Let us denote the set of Fredholm operators of H as it is done in [3],[4]
as F(H ). One of the classical results of Fredholm theory is that if K is
compact then I +K is Fredholm.
We shall study many of the topological properties of the set of Fredholm
operators and various corresponding subspaces. As we will see they play
a prominent role in K -theory through the work of Sir Michael Atiyah and
Isadore Singer [3][4] and their work on the index theorem for elliptic op-
erators, but more on this later. They have become fundamental in many
applications outside analysis such as geometry through Donaldson’s work
and in Conne’s non-commutative geometry as well as having applications
in physics, including condensed matter but we do not discuss their role in
those subjects any further.

2.2 Topology

The subject of topology is one of the most incredible ones in mathematics,
commonly described as the study of an object’s ”shape”, independent of its
geometrical properties but it is much deeper than this claim leads us to be-
lieve and fortunately in many important cases it is inextricably linked with
geometry, algebra and analysis themselves. Developed as an independent
field in mathematics until the early 20th century by Hausdorff, Poincaré
and many others, it has increasingly played an important role in physics,
in relation to statistical mechanics for classical and quantum systems, sym-
metries in quantum field theory and the subjects discussed in this thesis, in
which we shall particularly show its connections with analysis through the
work of Atiyah, Bott and Singer.
Readers can consult all the basic definitions of topology (topological space,
continuous functions, compact spaces, etc) presented here in [31] and those
of algebraic topology in [19] , which is the standard textbook reference on
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2.2. Topology

these subjects. Both of them are excellent references. Once again, we gen-
erally avoid referencing them in the following sections.

Let us start by defining a topological space in a formal way

Definition 8 A topology on a set X is a collection T of subsets of X
having the following properties

1. ∅ and X are in T .

2. The union of elements of any subcollection in T is in T .

3. The intersection of the elements of any finite subcollection of T is in
T .

Thus, providing X with such a T makes it a topological space.
A few comments are in order, first a set X may be provided with different
topologies, something that we will encounter in the classification chapter
for operator sets. However, there are some topologies which arise naturally
(such as the topology induced by the metric of Rn) and in those cases where
there is no confusion we will denote the topological space simply as X, even
though formally, we should write a topological space as a pair (X,T ). Also
note that by its definition T ⊂ P(X), the power set of X.

Elements of T (subsets of X) are called open sets. Alternatively we can
define a closed sets, which are subsets of X (as a set) and give an equivalent
definition of a topology in terms of closed sets, the relation between open
and closed sets is that a set C is closed if Cc = X\C is open. We present
three examples of topological spaces

Example 2 Let X = B(H ), the set of bounded operators on a Hilbert space
H , which we introduced earlier, with open sets U ∈ TB(H ), which are ar-
bitrary unions and finite intersections of sets of the form Br(H) = {A ∈
B(H )| ‖A − H‖ < r}. Br(H) is called an open ball of radius r centered at
the operator H.

This topology is known as the metric topology and can be generalized to any
metric space, such as our well known acquaintance Rn.

Example 3 Let X = Rn and let T = {U ⊂ Rn |Rn\U is finite}. Then
(Rn,T ) is a topology in Rn, known as the cofinite topology Tcofinite.
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2.2. Topology

(a) (b)

Figure 2.1: (a) How to construct an n-dimensional sphere from a an n-disk
by quotienting the boundary of the disk to a point (b) Constructing an n-
dimensional torus from an n-dimensional cube by identifying opposite edges.
Figures taken from [31].

The only purpose of our last example is to show that a given set X can have
different topologies. The last example we present will be very useful later
on to define operations on topological spaces

Example 4 Given a topological space (X,TX), we denote X∗ a set of equiv-
alence classes of elements of X, that is a partition of X into disjoint subsets
whose union is X. Let P : X −→ X∗ be the function which takes an element
x ∈ X to the corresponding subset which contains it. We can endow X∗,
with the quotient topology Tqby asking a set U to be open in (X∗,Tq) iff
p−1(U) is open in (X,TX). X∗ is known as a quotient space.

Constructions of such quotient spaces are shown in 2.1a,2.1b.

Let us include the definition of Hausdorff topological space, which is the
type of spaces we are used to

Definition 9 A topological space (X,T ) is Hausdorff if ∀x1, x2 pair of
distinct points in X, there exists open sets U1, U2 ∈ T , such that x1 ∈
U1, x2 ∈ U2 and U1 ∩ U2 = ∅.

This condition is necessary for sequence of points in a topological space to
converge at a unique point, hence this condition is necessary for the concept
of limit, fundamental to analysis. Indeed most spaces of interest, which
arise from other areas in mathematics (and physics) satisfy this condition.
A slightly weaker condition known as T1 axiom, of the separability axioms,
is the following

Definition 10 A topological space (X,T ) is T1 if ∀x1, x2 ∈ X, ∃U ∈ T
such that x1 ∈ U but x2 ∈ U c.

8



2.2. Topology

This definition will only be necessary to us later, when we introduce the
concept of a topological group. Note that the Hausdorff condition is also a
separability axiom, known as T2.

2.2.1 Continuity, homeomorphisms

We are now in a position to introduce the notion of a continuous function

Definition 11 A function f : (X,TX) −→ (X′,T X′) is said to be contin-
uous if ∀U ∈ TX′ , f

−1(U) ∈ TX, where f−1 denotes the inverse image of
f .

In other words, the inverse image of an open set under f is open in X. The
distinction between inverse image and inverse function is very important in
this case. All functions have an inverse image (maybe empty) but not all
functions have an inverse, let us give a simple example:

Example 5 Let f : X −→ {x0}, then f is continuous for any topological
space X since f−1(x0) = X, which is open by definition. If X is different
from a point, then @ f−1 as a function, only as a relation.

Also we can notice that the definition we have presented here is independent
of whether our topological spaces are Hausdorff or not, since it plays no role
in the definition. We had discussed that to have a notion of limit it was nec-
essary for our topological space to be Hausdorff, making this independent
definition of continuity at odds with the conventional way one is taught in a
calculus or analysis course, were we define continuity in terms of limits but
for more general spaces the notions of limit and continuity are independent!

This definition allows us to present the definition of a topological group

Definition 12 A topological group G is a group that is also a topological
space satisfying the following conditions

1. G is a T1-space.

2. The function (g, h) 7→ gh is continuous.

3. The function g 7→ g−1 is continuous.

Example 6 Let GLn(C) denote the group of nX n invertible matrices un-
der multiplication with entries in C, We can view GLn(C) as subspace of
C2n with the subspace topology under the induced metric topology of C2n.
GLn(C) with this topology is naturally a topological group under matrix mul-
tiplication.
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2.2. Topology

This example is basically the whole reason why we went through the trouble
of introducing the notion of a topological group and it will be fundamental
later on when we study vector bundles and classifying spaces.

We can define homeomorphisms between topological spaces

Definition 13 A bijective continuous function f : (X,TX) −→ (X′,T X′) is
a homeomorphism if f−1 is continuous.

The condition for a bijection f to be a homeomorphism is equivalent to f
being continuous and open (sends open sets in X to open sets in X′).
As far as it concerns topology, two spaces are indistinguishable if they are
homeomorphic. Thus, topological spaces can in principle be completely
classified up to homeomorphism (analogous notions exists for groups, ge-
ometries and other areas of mathematics). We state it as a principle since
it is in general not possible to address whether two topological spaces are
homeomorphic, nevertheless, there are other less general but still elucidating
topological properties we can study.

2.2.2 Compact and connected spaces

To define compact spaces, we first need to introduce the notion of an open
cover of a topological space, then we can immediately proceed to define a
compact space

Definition 14 An open cover {Aα} is a collection of elements in T whose
union

⋃
αAα = X.

Definition 15 A topological space X is said to be compact if every open
cover {Aα} of X, has a finite subcover, which covers X.

A subcover is simply a subset of a given cover. It is usually not simple to
prove a space is compact, however the following theorem, which we state
without proof, is very useful for some cases

Theorem 1 Every closed and bounded subset of Rn is compact.

Thus, the n-dimensional sphere Sn = {(x1, .., xn+1) ∈ Rn+1|
n+1∑
m=1

x2m = 1}

is compact. In particular, the circle S 1 is compact and since the arbitrary
cartesian product of compact spaces is compact (see [31], Tychonoff’s theo-

rem), the n-dimensional torus Tn =

n∏
S 1 is also compact. This examples
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2.2. Topology

are not only extremely common and simple but they will also play a funda-
mental role in what will follow since spheres are fundamental for K -theory
and in general the Brillouin zone of the condensed matter systems we shall
study is an n-dimensional torus.
Let us also introduce the notion of a connected space

Definition 16 A topological space X is connected iff the only sets which
are both open and closed are the total space X and the empty set ∅.

This definition is very intuitive, for it simply means that a space is connected
if we cannot separate it into two pieces which are disjoint. Connectedness
will play a more subtle role but deep role in our further developments, par-
ticularly in homotopy theory.

2.2.3 Homotopy

From here on we will write map instead of continuous function. The notion
of Homotopy has basically driven the field of algebraic topology since the
20th century, yet its definition is remarkably simple

Definition 17 A homotpy is a family of maps ft : X −→ Y, t ∈ I such
that the underlying map F : X × I −→ Y, F (x, t) = ft(x) ∀x ∈ X, t ∈ I is
continuous, which we denote f0 ' f1.

We say that two maps f0, f1 : X −→ Y are homotopic if there is a homotopy
{ft} connecting them. Also there is a notion of two topological spaces being
homotopic

Definition 18 A map f : X −→ Y is called a homotopy equivalence or
the same homotpy type if there exists g : Y −→ X such that fg ' IdX and
gf ' IdY. We denote this as X ' Y.

Spaces which are homotopic to a point x0 is called null-homotopic, examples
of null-homotopic spaces are Rn,Cn, Dn among many others. However, there
are also plenty of spaces which are not homotopic to a point, such as spheres,
tori and higher genus surfaces.
The set of all homotopy classes of maps f : X −→ Y will be denoted as
[X,Y]. It is a pretty big set! If we choose basepoints x0 ∈ X, y0 ∈ Y making
X,Y pointed spaces, then we shall denote the set of all basepoint-preserving-
homotopy classes as [X,Y]∗. If X and Y satisfy a few conditions (See [19])
[X,Y]∗ is a group. If X = Sn, then we write [X,Y]∗ = πn(Y, y0), which
mathematicians call the n-th homotpy group. π1(Y, y0) = [S 1,Y]∗ is known
as the fundamental group and is the only one which may be non-Abelian
(but not necessarily so)

11



2.2. Topology

Example 7 π1(S
1) = Z, in general πn(Sn) = Z and πi(S

n) = 0 for i < n.

Here we have abused of the fact that if the target space is connected then,
then the choice of base-point is irrelevant up to isomorphism of the based
homotopy classes, and since Sn is connected we can exclude the base-point
in our notation for its homotopy groups.
Homotopy theory and its generalizations have driven algebraic topology the
last 100 years or so. Homotopy groups provide more information than coho-
mology or homology groups (which we will only discuss a particular case of,
namely K -theory) but they are in general much harder to compute, in fact
even for simple enough spaces like spheres it is still open how to compute
all their homotopy groups!
Applications of homotopy groups to physics are many. In quantum field
theory they are used in the description of anomalies[32] and approaches to
describe real space topological defects when there is symmetry breaking are
usually classified via homotopy groups[9].

2.2.4 Suspension, loop space, wedge sum and smash
product

There are a number of operations one can perform on one or more topological
spaces, in fact there are many but we will only make use of four distinct ones
in this work. The first one is the suspension of a topological space

Definition 19 Let X be a topological space, the suspension of X, denoted
as SX, is constructed by taking the product X × I and then quotienting
X× {0} to a single point (south pole of SX) as well as quotienting X× {1}
also to a single, different point (north pole of SX).

The archetypal example of the use of suspension is with spheres where
SSm = Sm+1, where the equality is up to homeomorphism.
One can also suspend maps by f × IdI : X × I −→ Y × I by making the
same identification, yielding Sf : SX −→ SY.
There is also the concept of a reduced suspension of a space

Definition 20 The reduced suspension of a space X, denoted ΣX, is
constructed by first suspending, obtaining SX and then further quotienting
the line {x0} × I, with x0 ∈ X canonically identified with X× {12}.

Reduced suspensions are particularly important for homotopy classes of
pointed spaces and so called loop spaces

12
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Definition 21 Let (X, x0) be a pointed space, the set ΩX of loops S −→
(X, x0), which is a subset of XI , the set of maps I −→ X which naturally
posses the compact-open topology.

To see the connection between reduced suspensions and loop spaces, consider
a map f : ΣX −→ Y. We can identify the image of {x} × I/({x} × {0} ∼
{x} × {1}) under f with the image of {x} under a map f̃ : X −→ ΩY,
f({x} × I/ ({x} × {0} ∼ {x} × {1})) = f̃(x). Thus reaching the very im-
portant result

[ΣX,Y]∗ ≈ [X,ΩY]∗. (2.4)

There is a much deeper connection between loop spaces and homotopy
classes with cohomology but we shall only make reference to it in the par-
ticular case of K -theory, so the interested reader can explore this in [19].
We shall now define two more operations on topological spaces, but these
ones are between pairs of such. They are known as the wedge sum and the
smash product

Definition 22 Given two topological spaces X,Y consider their disjoint
union X t Y, and then quotient it by identifying a single point x0 ∈ X
with a single point y0 ∈ Y(X and Y viewed canonically in X t Y). This
space is called the wedge sum of X and Y, denoted X ∨Y.

Definition 23 Given two topological spaces X,Y, the smash product ofX

and Y is the quotient
X×Y

X ∨Y
, denoted as X ∧Y.

The archetypal example for the use of the smash product is the fact that
Sm ∧ Sn = Sm+n, where once again, the equality is up to homeomorphism.
Notice that both the smash product and the wedge sum are symmetric un-
der the ordering of the pair of topological spaces upon which they are being
employed. These operations are widely use in many of the fundamental con-
structions in algebraic topology, that is many spaces are at least homotopic
to a mix of wedge sums and smash products of simpler ones. In our case,
they are particularly necessary in connection with a reduced suspension for
the following homotopy relation

Let X,Y be CW-complexes, then

Σ(X×Y) ' ΣX ∨ ΣY ∨ Σ(X ∧Y). (2.5)

The definition of CW-complexes and the proof of this proposition can be
found in [19]. Just to remove the possible sensation of being cheated by this
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2.3. K-theory

strange name (CW-complex), we mention that almost all nice spaces one can
think of such as tori, spheres, higher genus surfaces, etc are CW-complexes,
but we avoid giving the proper definition since it will not be necessary for
what will follow.

2.3 K-theory

We finally arrive at what is the area of algebraic topology we will employ the
most to classify our physical systems, K -theory. Topological K -theory was
introduced by Sir Michael Atiyah and Friedrich Hirzebruch in the 1960’s as
an extraordinary cohomology theory, the word extraordinary having a pre-
cise meaning in this case. It was based mainly on a fundamental construc-
tion developed earlier by Alexander Grothendieck, known as Grothendieck’s
completion, obtaining an Abelian group out of a semi-group and it also de-
pended crucially on Raoul Bott’s periodicity theorem on homotopy groups
of classical groups, which he had proved in 1957. Roughly speaking, a coho-
mology theory is a functor (generalization of function) from the category (a
generalization of set) of topological spaces to the category of Abelian groups,
assigning to a topological space X, a chain of groups, denoted H n(X), n ∈ Z
with connecting homomorphisms, usually denoted dn, H n(X)

dn−→ H n+1(X)
and use this functor to study topological properties of X in terms of the alge-
braic properties of the groups H n(X) and sometimes the other way around!
To portray a picture, we could say that Grothendieck’s completion con-
structs the groups K n(X), where as Bott’s periodicity theorem constructs
the connecting homomorphisms, though in reality their roles are intertwined
in a deeper way. K -theory has many mathematical applications, some of
which can be studied in [24]. In our case we are interested in its applications
to condensed matter systems, as first pioneered by Hořava [21] and Kitaev
[25], but that will come later.

From now we start to develop the necessary tools to make such a con-
struction, which can be studied more carefully in [20], which is incomplete
work but it conveys very beautifully the geometric constructions and we
shall employ it repeatedly or [24], which is a more complete reference, at
the expense of developing the necessary ideas through more abstract notions
of Banach categories.
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2.3. K-theory

2.3.1 Vector bundles and isomorphism classes

We will now study vector bundles by giving their precise definition and a
few examples particularly relevant for physics. Let us begin

Definition 24 An n-dimensional vector bundle is map p : E −→ X satisfy-
ing the following conditions

1. p−1(x) ≈ Fn ∀x ∈ X, where Fn is an n-dimensional vector space over
the field F.

2. There is a cover {Uα} of X such that for each Uα, there exists

hα : p−1(Uα) −→ Uα × Fn (2.6)

p−1(x) 7→ {x} × Fn (2.7)

hα homeomerphism and with hα(x) an isomorphism of vector spaces
for each x ∈ Uα.

The last condition is known as the local trivialization condition, in plain
words it states that every vector bundle is locally isomorphic to the trivial
bundle X× Fn. the space X is known as the base space of the bundle, E is
called the total space and p−1(x) are called the fibers of the bundle. We shall
often only write the total space E to denote the whole vector bundle (with
projection map and base space included). Also notice that we are assuming
that Fn is a topological vector space. We will limit our selves to the cases
F = R,Cor H.

Example 8 Let F = R, n = 1 and X = S, a circle in R2. Let us construct
our bundle E by taking I × R and identifying (0, t) ∼ (1,−t). This identifi-
cation gives as base space S 1, where as the total space E is homeomorphic to
a Möbius strip without its boundary circle. This bundle is called a Möbius
bundle.

The Möbius strip and the corresponding Möbius transformations are funda-
mental to holomorphicity conditions in complex analysis, which is applied
to study the properties of propagators and other operators in quantum me-
chanical systems. Let us present another example which is invaluable for
physics.

Example 9 Let X = Sm ⊂ Rm+1, n = m and let E = {(x, v) ∈ Sm ×
Rm+1 | 〈x, v〉 = 0, where 〈, 〉 denotes the inner product in Rm+1 and we are
viewing points x of Sm as unit vectors in Rm+1. This bundle is known as
the Tangent bundle of Sm, denoted TSm.
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2.3. K-theory

The construction of a tangent bundle can be generalized to manifolds, in
classical statistical mechanics, sections of the tangent bundle constitute the
phase space of a system! If we take our space-time to be a more general
manifold M as in general relativity, TM and the exponential map are fun-
damental to study the properties of geodesics!
Let us present an example which is not directly relevant for physics but
relevant for the whole subject of vector bundles, as we shall see it is quite
trivial

Example 10 The n-dimensional trivial bundle over a base space X is sim-
ply the product X× Fn, commonly denoted as ξn

The trivial bundle is indispensable for Grothendieck’s completion and the
whole area of topological K - theory.

We now introduce the notion of vector bundle isomorphism

Definition 25 A homeomorphism F : E1 −→ E2 between vector bundles
over the same base space X is a vector bundle isomorphism if it takes
each fiber p−11 (x) of E1 to the corresponding fiber p−12 (x) of E2 by a linear
isomorphism, for each x ∈ X.

We will usually regard two vector bundles E1 and E2 as the same if they are
in the same isomorphism class, which we denote as E1 ≈ E2. Isomorphism
classes of n-dimensional vector bundles over a base space X will be denoted
as V ecnF(X). We shall also repeatedly make use of the following result

Let p : E −→ X× I be a vector bundle over X× I, where X is compact
Hausdorff, then the restrictions of p to X×{0} and X×{1} are isomorphic.
Thus, vector bundles over compact Hausdorff spaces, which are connected
connected by a homotopy are isomorphic.

This definitions and results will be used throughout the rest of our con-
structions, so one should keep them in mind as we go along.
We shall skip many of the basic constructions and properties of vector bun-
dles such as sections, clutching maps maps, inner products and cocycle con-
ditions, for we will not use them directly in the construction of our classifi-
cation, however readers are encouraged to consult [20] for examples and the
definitions of these constructions, since these provide much of the geometric
richness of the subject.
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2.3.2 Direct sum and tensor product of vector bundles

Given two vector bundles over the same base space X, p1 : E1 −→ X , p2 :
E2 −→ X, we can define their direct sum in the following way

E1 ⊕ E2 = {(v1, v2) ∈ E1 × E2 | p1(v1) = p2(v2)} (2.8)

Thus, the direct sum of two vector bundles is again a vector bundle, one
where each fiber is the direct sum of the corresponding individual fibers
E1,E2 at each point x ∈ X.
Let us present the following fact

V ecnF(X ∨Y) = V ecnF(X)⊕ V ecnF(Y) . (2.9)

where the direct sum of isomorphism classes is understood as isomorphism
classes of direct sums of vector bundles. The most important application we
shall employ for the direct sum of vector bundles is the following:

Let p : E −→ X be an n-dimensional vector bundle with X compact
Hausdorff, then ∃ p′ : E

′ −→ X and m-dimensional vector bundle, for some
m ∈ N, such that E⊕ E

′
is the trivial bundle ξn+m over X.

This result will also be fundamental for Grothendieck’s completion.

Given an n1-dimensonal vector bundle X, p1 : E1 −→ X and an n2-
dimensional vector bundle p2 : E2 −→ X over the same base space , we can
define their tensor product in the following way:

Let E1⊗E2 be as set, the disjoint union of vector spaces p−11 (x)⊗p−12 (x)
for each x ∈ X. We now choose isomorphisms hi : p−1i (U) −→ U × Fn for
each open set U ⊂ X, such that E1 and E2 restricted to U are trivial. Then
a topology Tp−1

1 (U)⊗p−1
2 (U) on the set p−11 (U)⊗ p−12 (U) is defined by making

the fiber-wise tensor product h1⊗h2 : p−11 (U)⊗p−12 (U) −→ U × (Fn1⊗Fn2)
a homeomorphism. the topology TE1⊗E2 is the union of all Tp−1

1 (U)⊗p−1
2 (U)

for each U satisfying the conditions above.

2.3.3 Pullbacks and universal bundle

Given two topological spaces X,Y, a vector bundle over one of them and
a map between them we can construct a vector bundle over the other base
space in terms of the map and the bundle we already had
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Definition 26 Given a map f : X −→ Y and a vector bundle p : E1 −→ Y,
then there exists a vector bundle p

′
: E

′
1 −→ X with a map f

′
: E

′ −→ E
taking the fiber of E

′
over each point x ∈ X by a linear isomorphism onto

the fiber of E over f(x). The bundle E
′

is called the pullback of E by f .

The pullback is unique up to isomorphism of vector bundles, so we can
consider the map f∗ : V ecnF(Y) −→ V ecnF(X), taking the isomorphism class
of E to the isomorphism class of E

′
. We will write the pullback as f∗(E)

instead of E, making our notation clearer.

Example 11 The tangent bundle TSm is the pullback of the tangent bundle
TRPm under the quotient map Sm −→ RPm, identifying antipodal points
in Sm.

We enlist the properties which are satisfied by pullbacks

1. (fg)∗(E) ≈ g∗ (f∗(E)).

2. Id∗(E) ≈ E.

3. f∗(E1 ⊕ E2) ≈ f∗(E1)⊕ f∗(E2).

4. f∗(E1 ⊗ E2) ≈ f∗(E1)⊗ f∗(E2).

Now that we have seen pullbacks and their properties, we can study the
universal bundle, we first introduce some terminology and construct such
classifying spaces

Definition 27 A Grassman manifold Gk(Fn) is the set of k-dimensional
F-planes which pass through the origin of Fn.

We can define an action of the n-dimensional general F-linear group GLn(F)
on Gk(Fn) as

GLn(F)×Gk(Fn) −→ Gk(Fn) (2.10)

(A, {e1, ..., ek}) 7→ span{Ae1, ...Aek}. (2.11)

However, if A ∈ GLk(F) × GLn−k(F ⊂ GLn(F) then span{Ae1, ...Aek} =
span{e1, ..., ek}, leaving any k-plane fixed. Thus GLk(F)×GLn−k(F) is the
isotropy subgroup of the action. Gk(Fn) is an homogeneous space since for
each pair x, y ∈ Gk(Fn) there is an A ∈ GLn(F) such that Ay = x.
Define the partition ofGLn(F) into left cosets GLn(F)/GLk(F)×GLn−k(F) =
{g (GLk(F)×GLn−k(F)) | g ∈ GLn(F)}. We can give a bijection between
Gk(Fn) andGLn(F)/GLk(F)×GLn−k by identifyingGk(Fn) 3 y ⇔ A (GLk(F)×GLn−k(F)) ∈
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GLn(F)/GLk(F)×GLn−k(F) such that (A, y) = x, where x ∈ Gk(Fn) arbi-
trary but fixed.
Thus, viewing GLn(F) as a topological group, we endow Gk(Fn) = GLn(F)/
GLk(F)×GLn−k(F) with the quotient topology.

Since we can view the action of GLn(F) as rotations of the k-planes,
we lose nothing by contracting it to its maximal unitary subgroup U(n) for
F = C, O(n) and Sp(n) for F = R,H respectively. Thus Gk(Fn) is the
quotient subgroup of a compact Hausdorff space by a compact Hausdorff
subspace, hence it is compact Hausdorff.
The inclusions F ⊂ F2 ⊂ F3 ⊂ .......Fn ⊂ .... induce the natural inclu-
sions Gk(FK) ⊂ Gk(Fk+1) ⊂ Gk(Fk+2)........, hence when we take the limit

Gk(F∞) =
⋃
n

Gk(Fn) and give it the direct limit topology

Definition 28 Given a union of topological spaces X∞ =
⋃
n

Xn, a set U is

open in X∞ iff U ∩Xn is open in Xn ∀n.

We are finally in a position to construct a bundle p : Ek −→ Gk(F∞) where
Ek = Gk(F∞)×F∞ and p(x, v) = x ∀ v ∈ x. Then we have the extraordinary
proposition, whose proof we must also omit

For every vector bundle L over a compact Hausdorff space X, there ex-
ists a map f : X −→ Gk(F∞) such that L ≈ f∗(Ek). In other terms,
[X,Gk(F∞)] ≈ V eckF(X).

A similar but more general idea is that of a classifying space, which we
shall use later, for our purposes, a classifying space F is a topological space
which we can use homotopy classes and loop spaces from a space X to F to
construct cohomology groups of X for a given cohomology theory, but we
shall see this later.

2.3.4 Semi-group and its Grothendieck completion

Given [En] ∈ V ecnF(X), [Em] ∈ V ecmF (X) we can define a direct sum of
isomorphism classes as [En] ⊕ [Em] = [En ⊕ Em] ∈ V ecn+mF (X). Thus, we
have a natural inclusion of V ecnF(X) ⊂ V ecn+1

F (X), [E] 7→ [E ⊕ ξ], making

the union
⋃
n

V ecnF(X) denoted V ecF(X) a semi-group, with identity ξ0, given

that it satisfies the the axioms of a group except the inverse axiom.
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We can further define an equivalence relation between n-dimensional vector
bundles known as stable equivalence

E1 ∼s E2 ⇔ E1 ⊕ ξm ≈ E2 ⊕ ξm for some m ∈ Z+. (2.12)

Notice that we loose some information under this equivalence relation, as in
the following example

Example 12 Let our vector bundle be TSn, the tangent bundle of the n-
dimensional sphere, then TSn ∼s ξn, for we can always add the normal
bundle NSn, which is the one-dimensional vector bundle consisting of the
position vector x of each point in Sn. By construction NSn ≈ Sn × ξ and
also TSn ⊕NSn ≈ ξn+1. Thus

TSn ⊕ ξ ≈ ξn+1,

= ξn ⊕ ξ . (2.13)

Thus stable equivalence is not without its consequences as we can see from
this example, general relativity and classical statistical mechanics would be
destroyed by taking this equivalence.
If X is compact Hausdorff, then ∼s satisfies the cancelation property, that is

E1 ⊕ E3 ∼s E2 ⊕ E3 ⇒ E1 ∼s E2, (2.14)

since on a compact Hausdorff base there is always a bundle LE3 such that
E3 ⊕ LE3 ≈ ξn+m.
There is a universal way of constructing an Abelian group G out of a semi-
group (S, ∗) and an equivalence relation ∼ in S. Let (a, b), (c, d) ∈ S × S,
then we construct the equivalence relation

(a, b) ∼Grothendieck (c, d)⇔ a ∗ d ∼ c ∗ b . (2.15)

Example 13 Let (S, ∗) = (N ∪ {0},+) and define the equivalence relation
∼ to be equality, then

(a, b) ∼Grothendieck (c, d)⇐⇒ a+ d = b+ c . (2.16)

We denote the pair (a, b) as a − d, and so the Grothendieck completion of
(N ∪ {0},+) is (Z,+), the integers.
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We can hence construct an Abelian group from V ecF(X), ∼s and the can-
celation property for a compact Hausdorff space as follows:

Let ([E], [E
′
]) ∈ V ecF(X)× V ecF(X), we define an equivalence relation

([E1], [E2]) ∼Grothendieck ([E3], [E4)]⇐⇒ [E1]⊕ [E4] ∼s [E2]⊕ [E3] . (2.17)

We thus, denote elements of the Grothendieck completion of (V ecF(X),⊕)
as [E1]− [E2] and, at long last

Definition 29 the Grothendieck completion of the semi-group of stable iso-
morphism classes of vector bundles over a compact Hausdorff space X is
KF(X), the K -group of X.

Given two elements [E1]− [E2], [E3]− [E4] of KF(X), we have besides the
addition, a multiplicative structure induced by teh tensor product of vector
bundles. The way to realize this operations is as follows

([E1]− [E2]) + ([E3]− [E4]) = ([E1]⊕ [E3])− ([E2]⊕ [E4]) , (2.18)

([E1]− [E2])([E3]− [E4]) = ([E1]⊗ E3])− ([E1]⊗ [E4])− ([E2]⊗ E3])

+ ([E2]⊗ [E4]) . (2.19)

As it can be seen from its definition, for a point {x0} we obtain

KF({x0}) ≈ Z . (2.20)

Thus K -theory can at best be an extraordinary cohomology theory, since it
does not satisfy the dimension axiom [19], in which all cohomology groups
Hn({x0}) = 0 ,∀nn 6= 0.

Definition 30 We can define a homorphism induced by the projection of X
into {x0} [24]

K (X)→ K ({x0}) ≈ Z . (2.21)

The kernel of this homomorphism is called the reduced K -theory of X,
denoted as K̃F(X).

Reduced K -theory plays a central role in our classification of topological
Fermi surfaces, though through a rather indirect route. It is also fundamen-
tal for Bott periodicity, which we will discuss in the next section.
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2.3.5 K-groups and Bott periodicity

As we stated before, a cohomology theory on a space X gives a sequence
of Abelian groups, but so far we have only constructed one such group,
namely K (X). Thus, without introducing properly the motivation for such
a definition we construct the higher K -groups

Definition 31 K n
F (X) ≡ K̃F(SnX+) ∀n ≤ 0, where once again Sn denotes

suspending X+ n times and X+ denotes the union X∪ {+}, where {+} is a
disjoint base-point.

Roughly speaking, this definition is given because we can construct long
exact sequences of these K -groups through a sequence of spaces built out of
unions of cones of both a space X and a closed subspace Y, and then iterating
these as the new X and Y’s, so that the next space in the sequence is built
out of the previous two. We also use quotients of these, which yield SnX+

and SnX/Y+ (The exact sequences induced by the inclusion and quotient
maps). We especially recommend chapter II of [20] for a much more detailed
discussion.
As one can see from our definition, we used the suspensions of X+ and not
simply X, this is obviously because otherwise we would not have the required
long exact sequence. It has important consequences when computing these
K -groups, for example

SX+ ' SX ∨ S 1 . (2.22)

So that using our definition we have

KF
−1(X) ≈ K̃F(SX)⊕ K̃F(S 1) . (2.23)

If F = C then, since (see below for this notation) K̃ (S 1) ≈ 0 this means that
K−1(X) coincides with the reduced K -group K̃−1(X), where as this is very
different for F = R, where

KO−1(X) ≈ K̃O(X)⊕ Z2 . (2.24)

Hence , we have constructed half a cohomology theory, since we are still
missing a definition for n > 0. For this we shall make use of a very deep
result in topology known as Bott periodicity, developed by Raoul Bott in
the end of the 1950’s.
Starting from here it is necessary to differentiate the choice of field F. If
F = C, the K -group. simply as K (X) (In some old references it may be

22



2.3. K-theory

denoted as KU (X) instead) and KO(X) for F = R. We shall ignore the case
F = H since it shall not be directly related to our classification.
We begin by presenting the original statement of Bott periodicity, which
concerns homotopy groups of classical spaces.

Given the inclusions U(1) ⊂ U(2) ⊂ ..... ⊂ U , where again U =
⋃
n

U(n) is

the direct limit, then
πn+2(U) ≈ πn(U) ∀n (2.25)

Analogously, the inclusions O(1) ⊂ O(2) ⊂ ..... ⊂ O, O =
⋃
n

O(n) generates

πn+8(O) ≈ πn(O) ∀n (2.26)

In terms of loop spaces we obtain

Ω2U ' U , (2.27)

Ω8O ' O . (2.28)

Now its connection with K -theory comes about because the homotopy classes
of a compact Hausdorff space X to a classifying space, either BO, BU for
O and U respectively satisfy

K (X) ≈ [X, BU × Z] , (2.29)

KO(X) ≈ [X, BO × Z] . (2.30)

Thus the periodicity in loop spaces induces a periodicity in K -groups

K−2(X) ≈ K (X) , (2.31)

KO−8(X) ≈ KO(X) . (2.32)

Allowing us to define groups for positive n as mod 2 for K (X) and mod 8 for
KO(X).
One can express complex and real K -groups as homotopy classes of classical
symmetric spaces, whose full study was originally by H.Cartan. We present
these spaces in ??

Proving this results is quite a feat, but all details, specially for classifying
spaces can be seen in [24]. We should mention at this point that there is a
connection between Bott periodicity and Clifford algebras, but since we will
not use them directly, we defer them to be studied again in [24], however,
we will review a little about them when we criticize the existing literature
on the classifications.
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n Classifying Space (KO) Classifying Space (K )

0 (O/(O ×O))× Z (U/(U × U))× Z
−1 O U

−2 O/U

−3 U/Sp

−4 (Sp/(Sp× Sp))× Z
−5 Sp

−6 Sp/U

−7 U/O

Table 2.1: Classifying spaces for real and complex K -theory. 8 classify-

ing spaces for KO , where Sp =
⋃
n

Sp(n), is the direct limit of Sp(n)’s,

where Sp(n) is the n-dimensional Symplectic group, the unitary group of
GLn(H). Complex K -theory only has 2 classiying spaces.

This work was mostly done in the late 1950’s and early 1960’s. When we
derive our classification of topologically stable Fermi surfaces, we will present
generalizations of this work due to Atiyah and Singer.
As a reminder, the references we have employed through this chapter are
[34], [31], [19], [20] and [24] and should be consulted for more details.
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Chapter 3

Physical setup

The most general area of physics one can fit to the kind of systems we shall
study is condensed matter physics. It was formerly known as solid state
physics but over the past decades the field has widen its gaze. Condensed
matter can be portrayed as studying thermal, optical and magneto-electric
properties of materials through modeling the behavior of the electrons and
atoms (or ions) which constitute the materials. It was in the 1930’s that
Felix Bloch, Eugene Wigner, Léon Brillouin and others revolutionized the
theory of solids in terms of the periodic structure of crystals and quantum
mechanics. Nowadays it is perhaps the largest field in terms of its work-
ing force and applications. All modern electronic systems which surround
us are in their majority understood by the theoretical developments of the
30’s, 40’s and 50’s. We will use these building blocks to study properties
of exotic states of matter, particularly Fermi surfaces of such states. Such
materials, as of yet, have no general application but perhaps will be of great
applicability in the future, since as it can be deduced from our previous
discussion, topological structures are very robust, stable against continuous
deformations, so we can conceive that topological properties of systems are
inherently robust. Nonetheless we should not get ahead of ourselves, so far
these states arise (as far as experiment goes) in particular crystal structures
and at extremely low temperatures, often with the need of a strong mag-
netic field such as is the case for the quantum hall effect, discussed in the
introduction.
There are many references for condensed matter physics such as[1], [9],[26]
we shall mostly follow [1].

3.1 Free n electrons in a box

Let us study a system of non-interacting N electrons confined to a n-
dimesional box of volume V . Since electrons are non interacting we can
understand this problem by solving a single electron system and copy it N
times. Thus, we begin with a single electron Hilbert space Hs−e, and its
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state vector |ψs−e(~r, t)〉, which satisfies the Schödinger equation

Hs−e(t) |ψs−e(~r, t)〉 = i~
∂

∂t
|ψs−e(~r, t)〉 , (3.1)

where Hs−e(t) is the single electron Hamiltonian operator and ~ is the re-
duced Planck’s constant. We will assume that our Hamiltonian is time-
independent or equivalently that our system lies in a stationary state, thus

|ψs−e(~r, t)〉 = |ψs−e(~r)〉 ei
ε
~ t , (3.2)

Hs−e |ψs−e(~r)〉 = ε |ψs−e(~r)〉 . (3.3)

For a one particle Hamiltonian, Hs−e = P2

2m = − ~2
2m∇

2, so that the solution
to the Schrödinger equation, ignoring boundary conditions is

|ψ
s−e,~k(~r)〉 = V −

1
2 |ei~k·~r〉 , (3.4)

ε ≡ ε(~k) = ~2~k · ~k /2m, (3.5)

~~k = ~p . (3.6)

The solution ei
~k·~r is known as the plane wave solution and ~k is called the

wave vector. The name plane wave comes from the fact that the solution is
constant for all planes orthogonal to ~k and periodic along lines parallel to
it.
Some remarks are in order. First, when writing equations in quantum me-
chanics momentum, position and the wave vector can be referring to op-
erators and/or vectors, so its important to distinguish from context what

mathematical object we are employing. Secondly, the V −
1
2 factor is a nor-

malizing factor, so that the probability of finding an electron with wave
vector ~k always adds up to 1.∫

V
d~r 〈~r, ψ

s−e,~k(~r)〉 〈ψs−e,~k(~r), ~r〉 = 1 . (3.7)

Here we should stop to highlight an obscure mathematical detail which is
not mentioned in most textbooks on quantum mechanics. The single parti-
cle Hilbert space is isomorphic to L2, with basis plane waves |ψ(~k)〉, but we
saw in the previous chapter that L2 is separable, so it has a countable basis.
This is at odds with what is usually taught in introductory textbooks on
quantum mechanics where we are told that our Hilbert space has as basis
{|~r〉 , ~r ∈ R3}, which, by the nature of R, is uncountable. The correct inter-
pretation is that the physical Hilbert space is not a Hilbert space persé as
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3.1. Free n electrons in a box

mathematicians define it but what is called by mathematicians themselves
as a rigged Hilbert space. That is a Hilbert space with additional structure.
One of the motivations for physicists to employ a rigged Hilbert space is so
that experimental setups are better described in terms of ~r for systems of a
small number of particles. For condensed matter systems, the position of a
single particle is in general not relevant observable, thus, we shall continue
to employ a separable Hilbert space and use all the standard mathematical
properties mathematicians have derived for them.

We now have to make a choice of boundary conditions, for our purposes
it suffices to choose periodic boundary conditions, so that

|ψ
s−e,~k(~r)〉 = |ψ

s−e,~k(~r + ni~li)〉 (3.8)

where ~li is L = V
1
3 in the i-th component and zero elsewhere, ni ∈ Z and we

have used Einstein’s summation convention. This conditions are equivalent
to gluing the opposite sides of our box, making it T3 a 3-dimensional torus.
This gluing is not realizable in R3 but as we will see later, this will not be
a bad representation of our systems because of their periodicity.
This choice of boundary conditions has a powerful implication since

ei
~k·ni~li = 1 , (3.9)

~k · ni~li = = 2πm ,m ∈ Z , (3.10)

(3.11)

and so
~k =

2π

L
~m , ~m ∈ Z3 . (3.12)

Momentum and energy are quantized! Or, said differently, we can only have
discrete, whole values for momentum in terms if ~ and L. Given that we
are dealing with electrons, which obey Fermi-Dirac statistics and at its core
Pauli’s exclusion principle

No two fermions may occupy the same one particle state |ψs−e〉. Thus
for every wave vector ~k there are 2 electrons, one with spin ~

2 and one with
−~

2 .

Thus, we can construct an N electron system by filling states corre-
sponding to the lowest energy level (~k = 0), 2 electrons for each ~k until we
have used up our N electrons, filling a region in ~k-space. In our case, since
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3.2. Bravais lattice

ε(~k) ∼ ~k2 and typically N ∼ 1023, our region is indistinguishable from the
closed disk BkF (0), of radius kF centered at 0 ∈ ~k-space. The boundary of
this disk ∂BkF (0) = SF is called the Fermi sphere.

Notice that we have used two facts, one is that ~k is quantized so that kF is
not arbitrarily small, in fact it may be quite large since for our case

kF = (
3π2N

V
)
1
3 . (3.13)

The other fact is that though it is discrete we are approximating it by a
continuum of points. This will be used extensively, particularly to study
topological properties of such continuum approximation. It would perhaps
be interesting to study in a more rigorous manner this continuum limit,
using a tool called persistent homology [38] but we will not discuss this any
further.
For more general systems there is an analogous construction of filling a
region in ~k-space, its boundary known as the Fermi surface. In general it
does not yield a sphere but a surface with a much richer topological nature.
It may not even be a connected surface nor its components posses the same
dimensions. Materials which posses a Fermi surface behave like metals, were
as those where the filled region has no boundary, e.g no Fermi surface are
known as insulators. We shall present later on a more general and useful
definition of a Fermi surface.

3.2 Bravais lattice

To describe the periodic structure of a crystal, it is necessary to define a
Bravais lattice

Definition 32 A Bravais lattice consists or all points with position vec-
tors of the form

~R = ni~ai , {~ai} L.I, ni ∈ Z . (3.14)

L.I stands for linearly independent.

One can see examples of Bravais lattices in 3.1a,3.1b. Real crystals are, of
course, not infinite and there is a very important area of study of surface
effects and edge states, which are in fact particularly important for topolog-
ical phases of matter, such as the IQHE. Nevertheless since we have around
N ∼ 1026 − 1027 ions in a crystal it is a very good first approximation, par-
ticularly to describe what is known as the bulk of the crystal. If we consider
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3.2. Bravais lattice

(a) (b)

Figure 3.1: (a) A 3-dimensional cubic Bravais lattice (b) A two-dimensional
Honeycomb or Hexagonal lattice. Figures taken from [1].

periodic boundary conditions , then there is no necessity for an infinite ar-
ray, restricting the ni’s to be bounded.
We will now define a primitive cell which is the most common way of parti-
tioning a Bravais lattice

Definition 33 The Wigner-Seitz primitve cell is the region in Rd which
is closest to a specific point in the Bravais lattice. Since the array is periodic
all points in the lattice have the same Wigner-Seitz primitive cell.

Hence, Rd can be completely foliated by the Wigner-Seitz cell. We shall not
make much use of the Wigner-Seitz cell of the direct Bravais lattice of our
crystal, but as we will see, a similar construction will be the basis of our
classification.

3.2.1 Reciprocal lattice

The reciprocal lattice is also a fundamental construction underlying the
study of crystals. Even though it is constructed from the direct Bravais
lattice, it is this structure which is employed in the analysis of materials
and ironically not the direct lattice (so in that sense the name is misleading
but there is perhaps no better alternative).

Definition 34 The reciprocal lattice is set of wave vectors { ~K}, such
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3.3. Bloch’s theorem

that

e
~K·~R = 1 , (3.15)

Where ~R = ni~ai is an element of the Bravais lattice, as defined above.

Notice that we have defined the reciprocal lattice { ~K} in terms of a choice
of direct lattice {~R}. Since the only allowed coefficients of the generators
of the direct lattice are integers, each element ~K = kj~bj of the reciprocal
lattice must satisfy

~K · ~R = nisj(~ai ·~bj) = 2πm, m ∈ Z ,∀ ~R. (3.16)

The simplest way to construct such a lattice is to choose ~bj so that

~ai ·~bj = 2πδij , (3.17)

sj ∈ Z . (3.18)

Hence our reciprocal lattice is also a Bravais lattice!

The Wigner-Seitz cell of the reciprocal lattice is called the first Brillouin
zone and we shall denote it by X. We will see in our classification that the
Brillouin zone will play the role of our topological base space! We will see
in Bloch’s theorem that for periodic boundary conditions the Brillouin zone
is always a torus.

3.3 Bloch’s theorem

Consider an electron in a crystal array described by a Bravais lattice {~R}.
Because of the periodicity of the lattice, the potential in the Schrödinger
equation satisfies

U(~r + ~R) = U(~r) , ∀ {~R}. (3.19)

For such systems we have Bloch’s theorem

Bloch 1 Given the one-electron Schrödinger equation with a periodic po-
tential and periodic boundary conditions

H(~r) |ϕ(~r)〉 = ε |ϕ(~r)〉 , (3.20)

For each eigenvector of H(~r) there exists ~k such that

|ϕn(~r + ~R)〉 = ei
~k·~R |ϕn(~r)〉 . (3.21)

where ~k is known as the crystal momentum.
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3.3. Bloch’s theorem

Here we can deduce the fact that our Brillouin zone is topologically a torus,
constructing the reciprocal lattice { ~K} corresponding to the direct lattice

{~R} and multipliying by 1 = e
~K·~R, we have

|ϕn(~r + ~R)〉 = ei
~k·~R |ϕn(~r)〉 ,

= ei
~K·~Rei

~k·~R |ϕn(~r)〉 ,

= ei(
~k+ ~K)·~R |ϕn(~r)〉 . (3.22)

Thus, for each ~k ∈ X , ~k + a ~K labels the same quantum state for a ∈ Z,
Since the Brillouin zone translated by the reciprocal lattice foliates ~k-space,
we can and should restrict ourselves to points in X.
We shall hence forth, restate the problem at hand in manner that exploits
this periodicity to maximum. Define the Bloch Hamiltonian (also known as
the crystal momentum Hamiltonian) as

H(~k) =
∑
~r

e−i
~k·~rH(~r)ei

~k·~r , (3.23)

with corresponding eigenvectors

|Φn(~k)〉 =
∑
~r

e−i
~k·~r |ϕ

n,~k
(~r)〉 , (3.24)

where
∑
~r

should properly be something similar to
1

V

∫
d~r but we avoid

this to simplify notation.
Together, they satisfy

H(~k) |Φn(~k)〉 = εn(~k) |Φn(~k)〉 . (3.25)

Where {εn(~k)} are known as energy bands and are assumed to be continuous
functions of ~k, this assumption will be fundamental for our construction.
Energy bands acquired their name from the tight-binding approximation,
where the potential that the electrons are subject of is assumed to be that
of a single ion and is related to the atomic levels s, p, d and so on. We will
not have much to say about the tight-binding approximation other than that
it is a very successful model and has many applications.
A few but very important remarks are in order. Since X is a torus, which
is compact and εn(~k) is continuous, εn(~k) must be bounded! Nevertheless,
εn(~k) is a countable set for each ~k and bounded operators on a Hilbert
space are locally bounded functions because of the norm of the Hilbert
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3.4. Fermi surface

space. The crystal momentum ~k plays the analogous role of the momentum
operator ~p but they are not equivalent, since in general the eigenstates of
the Hamiltonian are not eigenstates of momentum.

3.4 Fermi surface

When the system under study is in a metallic phase, it means that some of
the energy bands are partially filled. For these partially filled bands, there
will be a surface embedded in X, separating the filled ~k from those which
are not.
The derivations we have employed so far assume zero temperature. Exper-
imentally it is possible to describe systems at very low temperatures to a
good approximation using this schemes. In those cases one can experimen-
tally control the chemical potential of the system, which is the equivalent of
the Fermi energy εF , and so it is equivalent to setting the Fermi energy of
the system.
The Fermi surface are the set of points ~k in X such that at least ∃m ∈ N, so
that εm(~k) = εF . There may be more than one such m for a given ~k, these
different m’s are called the branches of the Fermi surface, the Fermi surface
being the union of all such branches.
In mathematical terms we can define the momentum-space propagator (or
parametrix) of a constant energy ε-manifold as

G(~k, ε) |Φn(~k)〉 =
1

εn(~k)− ε
|Φn(~k)〉 , (3.26)

(H(~k)− εI)G(~k, ε) = I , (3.27)

where the last equation holds except at the poles of G(~k, ε), which corre-
sponds to the kernel of (H(~k)− εI).
Thus, the Fermi surface of system corresponds to the set of points of its
Brilluoin zone such that

(H(~k)− εF I) = 0 , (3.28)

or equivalently the collection of all ~k ∈ X for which G(~k, εF ) has a pole
singularity. Hence our operator of interest is (H(~k) − εF I) and we wish to
study its kernel, which has a physical interpretation. An important remark
we can make at this point is that this is consistent with the freedom of
choosing the zero of the energy scale in quantum mechanics, for εF has
itself a geometric interpretation, since it tells us if a ~k ∈ X are occupied or
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3.4. Fermi surface

not. Any rescaling of the energy can change the numerical value of εF but
cannot change whether a given ~k is occupied or not! Nor the degeneracy
depends on such value. We have the freedom to choose our energy scale
such that εF = 0 and we shall only write H(~k) instead. This definitions
are useful for they generalize in some cases where there is electron-electron
interactions and a ~k- space but not a Brillouin zone. Non the less, we will
restrict our selves to the framework we have elucidated here, where there are
no electron-electron interactions and hence, we have a well defined Brillouin
zone with a topology in the continuum limit approximation.
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Chapter 4

Classification

We are now ready to develop a classification of the different topologically
stable Fermi surfaces which can arise in metallic phases of condensed matter
systems. Let us refrain from discussing results obtained in our construction
until 4.4. First, we need to introduce some more mathematical concepts
which are necessary but the basic tools for their constructions were intro-
duced in 2. We will also employ the conventions of [34], [3], [4] and [33].

Let us remind ourselves of the topology we will be applying to our op-
erators

Definition 35 Let B(H ) be the Banach algebra of bounded operators on a
separable Hilbert space H . The Norm topology of B(H ) is the one induced
by the norm on H , where for T ∈ B(H ), it is given by

‖T ‖B(H ) = supv∈H
‖T v‖H
‖v‖H

, (4.1)

and the norm topology is just as defined in 2.

One of the key properties we shall use of the norm topology for B(H ) is
that the composition of operators

B(H )× B(H ) −→ B(H ) , (A,B) 7→ AB (4.2)

is continuous.
There are other types of topologies for B(H ) such as the so-called weak
and strong operator topologies. We should mention that the norm topology
is the strongest topology for B(H ), it is also more natural than the other
two from a classical picture point of view. We should also mention that in
[15] they employ a different topology which is for more general operators
than bounded operators, called the compact-open topology and it is from
their point of view a more natural topology for operators on the Hilbert
space under study. That being said, in condensed matter systems with no
electron-electron interaction, were we have Bloch’s theorem, the eigenvalues
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4.1. K-theory and Fredholm operators

of our Hamiltonian are assumed to be continuous over the Brillouin zone X,
which is compact. Therefore, the eigenvalues of our Hamiltonian (energy
bands εn(~k)) must be bounded, a fact whose satisfaction is not evidently
clear by the choice of topology in [15].

4.1 K-theory and Fredholm operators

In what follows we shall relate K -theory and Fredholm operators, essentially
following the work of Atiyah [3]. Let us endow the set of Fredholm operators
F(H ), defined as a set in 2 by first defining a topology on the Calkin
algebra CAL(H ) by giving B(H ) the norm topology and quotienting by
set of compact operators K(H ). Then, we restrict to the set of invertible
operators in CAL(H ), denoted as CAL∗(H ) and consider the projection

π : B(H ) −→ CAL(H ) . (4.3)

Then the set of Fredholm operators is π−1 (CAL∗(H )). Since F(H ) is
open in B(H ), the composition of Fredholm operators is Fredholm (induced
by the norm topology on B(H )), that adjoints of Fredholm operators are
Fredholm, since every open set in B(H ) is open in B(H ) and the adjoint
relation is defined in terms of the norm on H and, finally that the addition
of a compact operator and a Fredholm operator is again Fredholm.
Associated to a given Fredholm operator H is its index

IndexF = dim kerF − dim kerF† , (4.4)

The index satisfies the following very useful properties

IndexF ◦ F ′ = IndexF + IndexF ′ , (4.5)

IndexF +K = = IndexF , (4.6)

for F , ′F Fredholm and K compact.
If we now study a family of Fredholm operators F(x), where x ∈ X and
X is compact, it happens that the dimension of the kernel of F(x) is only
semi-continuous with x, jumping in N, however its index is a locally constant
function (may change for different path components of X).
We can generalize the index function in order to describe elements in K (X).
First, given an ONB {e0, e1, ....} of H , we define the following subspaces,
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4.1. K-theory and Fredholm operators

together with their corresponding projection operator as

Hn = {span{ei, ei+1, .....}, i ≥ n} , (4.7)

H ⊥
n = H /Hn , (4.8)

Pn : H −→Hn , (4.9)

IndexPn = 0 . (4.10)

The last equation being true since Pn is self-adjoint. Thus, for any contin-
uous Fredholm family F(x) we can define

Fn(x) = Pn ◦ F , (4.11)

IndexFn(x) = IndexF(x) . (4.12)

Since Fn(x)(H ) = Hn ∀x and dim kerF†n(x) = dimH ⊥
n = n for all x ∈ X

for sufficiently large n by construction (fact proven at the beginning of [3]),
we obtain

IndexF(x) = d− n , (4.13)

where d = dim kerFn(x) and now it is only d which is an unknown.
Consider a family of vector spaces

V (x) = kerFn(x) . (4.14)

and consider the topological space

E =
⋃
x∈X

V (x) ⊂ X×H . (4.15)

E is a locally trivial vector bundle with base space X!
Imagine that we now wish to study homotopy classes of families of Fredholm
operators, parametrized by a compact space, then we have the following
incredible theorem due to Atiyah

Atiyah-Fredholm 1 Let X be a compact space and let [X,F(H )] denote
the set of homotopy classes of continuous maps F : X −→ F(H ). Then the
original index map F(x) 7→ IndexF(x) induces an isomorphism

Index : [X,F(H )] −→ K (X) , (4.16)

IndexF = [kerFn]− [X×H ⊥
n ] . (4.17)

Thus, F(H ) ' BU × Z.
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4.1. K-theory and Fredholm operators

We should clarify that, though the construction seems to depend on a choice
of orthonormal basis for H and a choice of n for the subspaces Hn, however
it can be showed that

kerFn+1 ≈ Fn ⊕ ξ , (4.18)

kerF†n+1 ≈ F
†
n ⊕ ξ , (4.19)

were the trivial line bundle ξ is generated by the extra element in the kernel,
en. Also the former property it was only used as having any ONB, hence it
is independent of the choice of ONB.

Let us now move on to study a particular kind of Fredholm operators,
known as skew-adjoint Fredholm operators, denoted as F̂(H ). The topology
of these operators was first studied by Atiyah and Singer [4]. Skew-adjoint
Fredholm operators are a subset of Fredholm operators F with IndexF = 0
= BU by the preceding theorem.

First we split F̂(H ) into 3 disjoint components

• F̂+(H ) = {iεn ≤ 0 , only for finite number of n’s .}

• F̂−(H ) = {iεn ≥ 0 , only for finite number of n’s .}

• F̂∗(H ) = F̂(H )/
(
F̂+(H ) ∪ F̂−(H )

)
Elements of F̂+(H ) are called essentially positive and elements of F̂−(H )
are called essentially negative. Equivalently we can say that F̂+(H ) and
F̂−(H ) have invariant subspaces of codimension n, where either the eigen-
values are always positive or always negative.
We shall now prove that F̂+(H ) and F̂−(H ) are null-homotopic . Consider
H ∈ F̂+(H ) and the following homotopy

Ht = (1− t)H− itI , (4.20)

H†t = −Ht . (4.21)

(4.22)

Since Ht is skew-adjoint for all t, it has an ONB in H , written in terms of
{|ϕn〉}, ONB associated to H, we can see that

Ht |ϕn〉 = [(1− t)εn − it] |ϕn〉 . (4.23)
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4.1. K-theory and Fredholm operators

Thus,
iεn(t) = (1− t)iεn + t ≥ 0 , (4.24)

and so, for every t, Ht ∈ F̂+(H ), thus there is path from every operatorH ∈
F̂+(H ) to −iI ∈ F̂+(H ), so we can finally conclude that F̂+(H ) is null-
homotopic. Interchanging itI for −itI we obtain an equivalent retraction of
F̂−(H ) to iI.
The remaing non-trivial component of F̂(H ), F̂∗(H ) is of great importance
to us because of the following theorem

Atiyah-Singer-Skew 1 The map

α : F̂∗(H ) −→ Ω (F(H ), I) (4.25)

A 7→ (I cosπt+A sinπt , t ∈ [0, 1]) , (4.26)

Is a homotopy equivalence.

At first sight, the map given above is not even a loop since it starts at I
and ends at −I, however since GL(H ), the set of invertible operators of our
separable Hilbert space is null-homotopic, we can (through a very intricate
way) deform this path into a loop in F(H ). The original proof of this is due
to Atiyah and Singer [4]. There is no simple way to summarize this proof
without taking too great a detour of our interest, nevertheless we suggest
our readers to attend to the the lecture notes of Dan. S. Freed [14]. We
will only give a few remarks and examples concerning this proof, which are
employed in these notes.

First, because of the previously sketched theorem of Atiyah, we know
that F(H ) ' U/ (U × U) × Z, then, the above theorem would imply that
F̂∗(H ) ' U , since Ω (F(H ), I) ' Ω (U/ (U × U)× Z) ' U . Notice that
π0 (F(H )) = Z with each component determined by the index, thus Ω (F(H ), I)
are simply loops in the component containing I, that being Fredholm op-
erators of index 0. Hence we only need to proove F̂∗(H ) ' U . Now we
retract F̂∗(H ) to F̂∗(H ), where H ∈ F̂∗(H ) satisfies

• H is Fredholm.

• ‖H‖ = 1.

• IndexH = 0.

• H† = −H.
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• H is neither essentially positive nor essentially negative.

The deformation retraction is given by

Ht = H
[
(1− t) +

t

‖H‖

]
, (4.27)

which is well defined since ‖H‖ 6= 0 because H is Fredholm. Now let us
consider a new subset of B(H ), namely

GLK(H ) := {P ∈ GL(H ) | P − I compact}

We then retract GLK(H ) to UK(H ) using the same homotopy we used for
F̂∗(H ) and F̂∗(H ). One can prove (using methods for infinite dimensional
manifolds developed by Pais) that UK(H ) is homotopic to U , the classifying
space for K−1( ). This is our connection to Ω

(
F(H ), I

)
' U and so, we

only need to prove F̂∗(H ) ' UK(H ) via

β : F̂∗(H ) −→ −UK(H )

J 7→ eπJ . (4.28)

and we can conclude. We will do no such thing except give an example.
Let T = P + I (P ∈ UK(H )) compact, furthermore assume T has finite
rank, (a special subset), meaning dim H /T (H ) = ∞, then naming L =
kerT we have

H = L ⊕L ⊥ . (4.29)

Suppose Q ∈ β−1(P), so that P = eπQ. Note that the exponential for infi-
nite dimensional operators is not injective. At L ⊥, which is by construction
finite dimensional, the restriction Q|L⊥ is in one to one correspondence with
P|L⊥ , since ‖Q‖ = 1 and Q = −Q†, then the eigenvalues of Q must lie in
[−i, i], which maps almost homeomorphically to S 1 ⊂ C, except at the end
points, both of which go to −i. With this in mind one can prove that Q
splits L = L+⊕L−, where Q(L+) = iL+ and Q(L−) = −iL−. Thus, β−1(P)
is homeomorphic to U(L)/ (U(L+)× U(L−)), however, due to Kuiper’s the-
orem all three spaces at hand are infinite dimensional Hilbert spaces, so all
of them are contractible. and thus we can retract β−1(P) to P, viewing
UK(H ) as ”base space” for F̂∗(H ) and β as a projection. This is the gen-
eral strategy employed, where it is shown that an inverse image of β retracts
to an element of UK(H ), however, we must be careful for the inverse image
β−1 is not always homeomorphic to U(L)/ (U(L+)× U(L−)) (This was only
true for P finite rank).

39



4.2. K-theory and Fermi surfaces

With this we have portrayed the path to proving both the theorem of
Atiyah and the theorem of Atiyah-Singer for skew-adjoint Fredholm op-
erators. We will now proceed to show the connection between Fredholm
operators and Fermi surfaces.

4.2 K-theory and Fermi surfaces

Up to now, we have introduced, independently, many mathematical con-
cepts leading up to K -theory and the basic condensed matter concepts of
electronic transport theory in systems with discrete translational invariance,
that is the Brillouin zone X and Bloch’s theorem. Furthermore, with a few
exceptions, we have not made any connections between K -theory and Fermi
surfaces, though we have claimed that we would classify topologically stable
Fermi surfaces. We will immediately amend this. We will reintroduce many
of the necessary physical and mathematical concepts in a summary leading
up to the classification. This will be useful for readers who already knew
the concepts presented in the previous sections and chapters and are only
interested in the connections and results.

Let X be the Brillouin zone of a non-interacting fermionic system. For
each crystal momentum ~k ∈ X there is a Bloch Hamiltonian operator H(~k)
acting on a complex separable Hilbert space H . H(~k) is hermitian [5],
furthermore, there exists a complete orthonormal basis {|Φn(~k)〉}∞n=1 of H ,
such that

H(~k) |Φn(~k)〉 = εn(~k) |Φn(~k)〉 , (4.30)

where the ~k-dependent eigenvalues εn(~k) are known as energy bands.
Define the momentum-space propagator (or parametrix) of a constant energy
ε-manifold as

G(~k, ε) |Φn(~k)〉 =
1

εn(~k)− ε
|Φn(~k)〉 , (4.31)

(H(~k)− εI)G(~k, ε) = I , (4.32)

where the last equation holds except at the poles of G(~k, ε), which corre-
sponds to the kernel of (H(~k)− εI) (see chapter 3).
The Fermi surface [1] of a non-interacting fermionic system corresponds to
the set of points of its Brilluoin zone for which one or more energy bands
are equal to the Fermi energy εF

(H(~k)− εF I) = 0 , (4.33)
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or equivalently the collection of all ~k ∈ X for which G(~k, εF ) has a pole
singularity. Hence our operator of interest is (H(~k) − εF I) and we wish
to study its kernel, which has a physical interpretation 1. We have the
freedom to choose our energy scale such that εF = 0 and we shall only
write H(~k) instead. If we restrict ourselves to the n-th energy band εn(~k),
the corresponding surface embedded in the Brillouin zone is called the n-th
branch of the Fermi surface, the Fermi surface being the union of all such
branches.
We shall only consider Fermi surfaces which consist of a finite number of
branches, implaying

dim Ker H(~k) <∞ . (4.34)

As in [25], we shall also make the physical assumption that a Hamiltonian
describing this type of system is bounded. This is a generalization of models
with a finite number of energy bands, which are inherently bounded opera-
tors. Thus, we allow an infinite number of bands and as we shall see, this
infinity will be of utmost importance for the physical interpretation of our
results.Enlisting the assumed physical properties of our Bloch Hamiltonian
in mathematical terms,

• H(~k) is bounded,

• dim Ker H(~k) <∞ ,

• H(~k) is self-adjoint.

Operators satisfying these conditions are known in the mathematical lit-
erature as self-adjoint Fredholm operators [4],[33], where the set of Fredholm
operators [3] are bounded operators in H with finite kernel and cokernel
2. We shall denote the space of all complex Fredholm operators F(H ) and
self-adjoint Fredholm operators as Fsa(H ). Let us endow F(H ) with the
norm topology 2, as we did in 4.1.
This choice of topology comes at a price, for we proved in 4.1 that op-
erators which are essentially negative (finite number of conduction bands,
εn(~k) > 0) or essentially positive (finite number of valence bands, εn(~k) < 0)
are topologically trivial in the norm topology, so we must assume

• H(~k) is neither essentially positive nor essentially negative.

The former assumption adds an infinite number of trivial core bands and is
common to all references we have cited here, that attempt at a classification.

1No rescaling of the energy will change this kernel
2In [15] they employ instead the compact-open topology for gapped systems
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Assuming an infinite number of valence bands is new, however, the behavior
of bands below (or above) the Fermi energy is physically relevant for the
behavior of our Fermi surface only when they cross, adding a branch to it,
making them irrelevant otherwise. Let us denote the subset of operators
that satisfy all our assumptions Fsa∗ (H ).
H(~k) is a continuous function of ~k and we wish to put in the same equivalence
relation all systems which can be adiabatically evolved 3 into one another
[6] or equivalently, ∀ H0,H1 : X→ Fsa∗ (H ) we have

H0 ∼ H1 ⇐⇒ ∃ g : X× I → Fsa∗ (H ) continuous,

g(~k, 0) = H0(~k), g(~k, 1) = H1(~k) ∀ ~k ∈ X . (4.35)

Thus, all types of Fermi surfaces separated by this equivalence relation are
given by the set of homotopies [X,Fsa∗ (H )].
The set of skew-adjoint Fredholm operators F̂(H ) ≡ iFsa(H ) is trivially
homeomorphic to Fsa(H ) in the norm topology, and so are Fsa∗ (H ) and
F̂∗(H ), the corresponding non-trivial component of F̂(H ). As we por-
trayed in ??, Atiyah and Singer proved in [4] that F̂∗(H ) ' ΩF(H ), the
loop space of the set of Fredholm operators F(H ). Combining this with
Atiyah’s proof [3] that F(H ) is a classifying space for complex K -theory
and the suspension isomorphism [19] we get

[X,Fsa∗ (H )] ≈ [X, F̂∗(H )] ,

≈ [X,ΩF(H )] ,

≈ [SX ,F(H )]∗ ,

≈ K−1(X) , (4.36)

where (2)K−1(X) ≈ K̃ (SX) denotes the Grothendieck completion [20], of
the semi-group VectsC(SX) of stable isomorphism classes of complex vector
bundles over SX, the suspension of our Brillouin zone. It is an abelian group
and its elements are not vector bundles but virtual vector bundles!
Notice that Grothendieck’s completion popped out naturally from our con-
struction!

4.3 Results

We will now compute K−1(X) for X = Td, d = 1, 2 and 3. To do this, we
shall employ the formula seen in 2

Σ(X×Y) ' ΣX ∨ ΣY ∨ Σ(X ∧Y). (4.37)
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Thus for d = 1

K−1(S 1) ≈ K̃ (SS 1) ,

≈ K̃ (S 2) ,

≈ Z. (4.38)

For d = 2

K−1(T2) ≈ K̃ (ST2) ,

≈ K̃
(
S (S 1 × S 1)

)
,

≈ K̃
(
SS 1 ∨ SS 1 ∨ S (S 1 ∧ S 1)

)
,

≈ K̃
(
SS 1

)
⊕ K̃

(
SS 1

)
⊕ K̃

(
S (S 1 ∧ S 1)

)
,

≈ K̃
(
S 2
)
⊕ K̃

(
S 2
)
⊕ K̃

(
S (S 2)

)
,

≈ K̃ (S 2)⊕ K̃ (S 2)⊕ K̃ (S 3) ,

≈ Z⊕ Z . (4.39)

For d = 3, we have a more complicated computation since

K−1(T3) ≈ K̃ (ST3) ,

≈ K̃
(
S (S 1 × S 1 × S 1)

)
,

≈ K̃
(
SS 1 ∨ ST2 ∨ S (S 1 ∧ T2)

)
,

≈ K̃
(
S 2
)
⊕ K̃

(
ST2

)
⊕ K̃

(
S (S 1 ∧ T2)

)
. (4.40)

Now,
S 1 ∧ T2 = T3/

(
S 1 ∧ T2

)
. (4.41)

In [15], theorem 11.8, it is shown that

T3 ' S 1 ∨ S 1 ∨ S 1 ∨ S 2 ∨ S 2 ∨ S 2 ∨ S 3 . (4.42)

Thus,
K̃
(
S (S 1 ∧ T2)

)
≈ Z , (4.43)

which yields

K−1(T3) ≈ K̃
(
S 0
)
⊕ K̃

(
S 2
)
⊕ K̃

(
ST2

)
,

≈ Z⊕ Z⊕ Z⊕ Z. (4.44)

Equations 4.38, 4.39 and 4.44 materialize the fruits of our labor. We will
proceed to discuss part of the physical interpretation of these results in our
final section.
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4.4 Discussion

What is the physical interpretation of 4.38, 4.39 and 4.44 ? For d = 1,
a class in K−1(S 1) ≈ π1(Fsa(H ) is determined by the spectral flow [33].
This invariant has been used to study the so called chiral anomaly in quan-
tum field theory [32] but to our knowledge, had not been used previously
to study Fermi surfaces. Quantum anomalies are, in short, the breaking of
symmetries of the classical system by its mere quantization, never the less,
they are independent of the choice of quantization procedure and play a fun-
damental role in the standard model of particle physics. For an accessible
introduction to anomalies, we refer to [22]. We will defer to discuss further
interpretation of the spectral flow for higher dimensions but will comment
that it is very likely to be related to a chiral current, which is an effect that
in principle, could have already been detected in experiments.
Our results differ from those obtained in [30] and those presented in [12].
We believe that this is because they restrict themselves to lower dimensional
sphere surrounding a single path-component of the Fermi surface. The rea-
sons why they employ such a restriction is due to so called nesting insta-
bilities. This instabilities are related to the Fermion doubling theorem [10].
However, this types of argument do not seem to apply precisely when there
is chiral symmetry-breaking, which is exactly the result we obtained with
the spectral flow invariant! Also, such arguments apply to lattice models
where the field equations are discretized and their is a problem when taking
the continuum limit. This lattice argument applies to tight-binding models
where the number of energy bands is finite but in our case we have no dis-
cretization and the number of energy bands is infinite as expected of the full
single particle Hilbert space.Our work is thus in the same rationale as [17],
where we allow for all possible topologies for the Fermi surface and where
chirality plays an important role. This is also what [21] seems to have had
in mind as a generalization of his work. At the level of the derivation of the
classification, in which we obtained K−1(X) as the group, we could general-
ize this approach in the spirit of [25], [15] and [35] by including symmetries,
such as time reversal or reflection symmetry, which are both operators act-
ing on H . As it is very well explained in [15], care must be taken for there
is an ambiguity in the choice of representation for these symmetries, and to
take it into account it is necessary to modify the isomorphism classes of our
vector bundles, yielding a different kind of K -theory for each symmetry and
each choice of its representation! Thus, for the case of time reversal symme-
try where the representation θ is anti-unitary, we would expect to modify
our isomorphism classes of vector bundles to isomorphism classes of Real
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vector bundles, in the sense of [2], were as for reflection symmetry, where R
is unitary, we would expect what is known as Z2-vector bundles (also see [2].
The corresponding K -theory is known as KR- theory or Real K -theory and
for Z2-vector bundles is called KZ2- theory or Z2-equivariant K -theory. It
is of great importance to developed a framework to encompass all possible
symmetries and their representations as the one employed in [15] for gapped
systems, however, our classification does not readily admit such a general-
ization, for the topology employed in [15] is the Compact-Open topology and
Fredholm operators are trivial in this topology! Non the less, there is no
immediate contradiction between our classification and that of [15], as their
framework was developed to study gapped systems, where there is no Fermi
surface. This generalization is of great interest but will be deferred to future
work.
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Conclusions

In this thesis, we made a great effort to introduce a vast array of physical
and mathematical concepts from the ground up, in order to later employ in
an integral manner for the development of a classification of topologically
stable Fermi surfaces.
We first introduced our readers to the subject with a brief recount of the
history of topological phases of matter, starting with the discovery of Von Kl-
itzing and his collaborators of the exact quantization in the integer quantum
Hall effect in the early 80’s, up to its interpretation as the Chern number
of a line bundle over the Brillouin zone due to the TKNN group, the Z2

topological invariant of Kane and Mele in the spin quantum Hall effect and
the explosion of research that developed there after. We later restricted to
the literature of topological properties of Fermi surfaces, where the earliest
work is due to Hořava and generalizations developed there after, together
with some of the criticisms on the general use of K -theory in condensed
matter systems due to Thiang.
We plunged in deeply into the mathematical aspects, starting at the root of
the matter with the introduction of analysis and the different kinds of oper-
ators such as bounded, compact and Fredholm operators, then proceeding
to topological spaces, moving through what is denoted as point-set topol-
ogy (continuity, compactness, connected, quotient and Hausdorff spaces,
together with topological groups), then to algebraic topology (homotopy,
loop-spaces, suspensions, homotopy groups, cohomology) and all the way
up to vector bundles,isomorphism classes of vector bundles Grothendieck’s
completion, K -theory and Bott periodicity, as well as the powerful connec-
tion it has with Fredholm operators and its self-adjoint subset, discovered
and developed by Atiyah and Singer.
Thereafter, we introduced the basic concepts of condensed matter systems
for N electrons in a box, arriving at the Fermi sphere, and then studying sys-
tems with discrete translational invariance due to a periodic array of ions (or
possibly something else) called lattices, then the reciprocal lattice in crystal
momentum space and the first Brillouin zone. We later introduced Bloch’s
theorem and used it to describe the notions of band theory of electrons, and
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Fermi surfaces, which are the generalization of the Fermi sphere for discrete
translational invariant systems with no electron-electron interactions. We
also discussed adiabatic evolution and its interpretation for gapless systems.
We then proceeded to make the connection between the physical subjects
we introduced and the mathematics, by showing that the Hamiltonian of a
discrete translational invariant system with no electron-electron interactions
(also called Bloch Hamiltonian) and taking out of it the Fermi energy yields
a self-adjoint Fredholm operator, whose kernel has a precise physical inter-
pretation concerning the Fermi surface of our system. Using the fact that
the Bloch Hamiltonian is parametrized by the Brillouin zone of the system
and the connection shown by Atiyah and Singer between self-adjoint Fred-
holm operators, Loop spaces and K -theory, we arrive at our classification
where it is the elements of K−1(X), which constitute the distinct kinds of
topologically stable Fermi surfaces, such distinct classes cannot be connected
by adiabatic evolution or small perturbations, in the appropriate sense.
Once we had our classification for the case with no symmetries, we computed
some K -groups of systems with dimension d = 1, 2 and 3, and we presented
the results in ??. After surveying the literature, we discussed the d = 1 case,
were the topological invariant which determines the class of a Fermi surface
is known as the spectral flow. The spectral flow had been used previously by
Semenoff and Niemi and also by Haldane to describe what is known as chiral
anomaly. Anomalies are of fundamental importance in quantum field theory
and our work shows connections between anomalies and Fermi surfaces.
We also discussed briefly why our results differ from those presented by
Ching-Kai and other sources, were the arguments presented there seem to
be more restricted in the topological nature allowed for their surfaces and
their arguments do not seem to apply as it was precisely the connection
with chiral symmetry breaking which renders them inadequate on physical
grounds.
We further discussed how to incorporate symmetries into our classification,
we believe they should yield different kinds of vector bundle isomorphisms,
such as those of Real vector bundles or Z2- vector bundles, yielding for ev-
ery choice of representation of a symmetry a different kind of K -theory, in
the spirit of the framework developed by Freed and Moore for topological
phases of gapped systems. It is however, not possible to directly extend our
framework to the one employed there, and we have pointed out were the
troubles lie.
Thus, we have developed a classification of these strange phases of matter,
employing the sophisticated mathematical framework of K -theory, arriving
at unexpected connections with the profound concepts of quantum anoma-
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lies. We have also pointed out what future work would have to surmount
in order to have a classification which is fully consistent with the different
symmetries and their representations. We should keep in mind however that
we have specified our limitations and assumptions in our derivation, such
as ignoring electron-electron interactions which may be relevant for many
systems, as well as working in the zero temperature approximation. None
the less, for many systems these approximations are shown by experiments
to be good.
We hope to develop elsewhere a classification consistent with the one devel-
oped by Freed and Moore, and to have a better connection with experimental
efforts, a fact which every physicist must always keep in mind, our classifi-
cation yields results of the physical kind that have already been observed in
experiments and so, such a connections seem a reasonable expectation for
the near future.
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