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Abstract

We present several tests to detect whether a simple reparameterization

of the contour is possible for the Riemann-Hilbert Boundary Value Problem

associated with the stationary distribution of a two dimensional queueing

system. We cover several special cases, some of which have been previously

covered using different methods, and present an expansion on the existing

theory to the case of elliptical contours. Two fast heuristic tests are also

presented. Additionally, we construct a formal BVP solution for queueing

systems with homogeneous fundamental equations.
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Chapter 1

Introduction

1.1 Overview

In this thesis we develop several original tests for finding special cases

for the contours employed in the Boundary Value Problem (BVP) approach

to Queueing Systems, and extract a formal BVP solution for the stationary

probability distribution on the state space of a queueing system that presents

the case of a homogeneous equation.

Some of the special contours in this text have appeared in queueing BVPs

before, including Fayolle and Iasnogorodski’s 1979 paper [3], Cohen and

Boxma’s 1983 book [2], and Avrachenkov, Nain, and Yechali’s 2014 paper

[1]. Our goal in creating tests for other elegantly parametrizable contours is

to allow further work to be done in this line, create easy tests to see what

can be connected to the methods applied in similar problems, and hopefully

to allow for analytic solutions of certain BVPs rather than the formal ones

which are most commonly seen. We will address these new results for special

contours in chapter 3. Chapter 4 details a formal solution for a broad class of

queueing BVPs, those with homogeneous fundamental equations. The rest

of chapter 1 provides a timeline for historically important texts in this field

and a few recent queueing papers. Chapter 2 provides the mathematical

background for the work contained in this thesis, and the BVP methods

used in our approach.

1.2 Previous Work in the Field

The genesis of the BVP approach to queueing systems can be found

in the 1979 paper authored by G. Fayolle and R. Iasnogorodski [3], who
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1.2. Previous Work in the Field

pioneered the method, and dealt with one case. Of particular interest here

is that this paper involved a circular contour.

A text was published in 1988 by J. Cohen and O. Boxma [2], which dealt

with several cases of queueing systems and explained the required back-

ground information for the Riemann-Hilbert BVPs in detail. Several cases

were also treated in detail here, including the very important ‘Join Shortest

Queue’ model, which covers one of the most common arrival disciplines.

In 1999, G. Fayolle, R. Iasnogorodski, and V. Malyshev published in

their own book [4] a broad class of random walks and the associated queue-

ing systems were dealt with via BVP methods, by transforming the initial

problem into a Riemann-Hilbert-Carelman BVP with a shift, the ‘shift’ re-

ferring to an automorphism of the independent variable appearing in some

of the terms of the boundary condition. These authors also developed an-

other approach, using covering spaces for the algebraic curve defined by the

kernel equation. Said kernel equation (in this thesis, equation (2.43)) is de-

termined by the fundamental equation for the random walk, so this algebraic

approach starts in the same way as the BVP approach. However, this alge-

braic approach has a disadvantage compared to BVP methods, because it

only works for certain fundamental equations, depending on the properties

of what they declare to be the group of the random walk, which is defined

using Galois automorphisms related to the algebraic curve associated with

the kernel equation.

More recent papers in BVP queueing include [12], by J. Resing and

L. Örmeci, published in 2003, [8], by F. Guillemin, C. Knessl, and S. van

Leeuwaarden, published in 2013, and [1], by K. Avrachenkov, P. Nain, and

U. Yechiali, published in 2014. Avrachenkov et al. study a system where

the state of the server is unknown to the queues and vice versa, so an empty

server could take a job from either one of the orbiting queues, which retry

jobs that were sent to wait, or from a new incoming job. Guillemin et

al. model a chain of wireless transceivers whose transmissions can interfere

with one another. The paper [8] posits a slightly different approach to

queueing BVPs, but the paper [1], while having a very interesting setup for

the fundamental equation, follows the BVP setup found in [3] quite closely.

2



Chapter 2

Background

2.1 Notation

In the interest of being unambiguous we will define our notations for

several common operations:

− For vectors v and w ∈ Cn we define the exponentiation of vectors:

vw =

n∏
i=1

vwi
i .

− For a boolean statement V , we denote the indicator function 1 as

1V =

{
1 if V

0 if not V
,

− For sets A and B, where A is a subset of an additive group G, and for

an element b ∈ G, we denote cosets and set difference operation:

A+ b = {a+ b : a ∈ A},

A− b = {a− b : a ∈ A},

A\B = {e : e ∈ A, e 6∈ B}.

− We define a neighborhood of a point z in C as a bounded simply

connected open subset of C containing that point.

− We also denote for a set A ⊆ C the closure of A as A, the interior of

3



2.2. Queueing Systems

A as int A, and the boundary of A as bdy A. Specifically:

A = A ∪ {l : ∃(zn)∞n=1 ⊆ A, lim
n→∞

zn = l}.

int A = {z ∈ A : z is in a neighborhood that is a subset of A}.

bdy A = A \ int A.

− For a closed simple contour B ⊂ C, we will denote the interior of the

contour under a positive (counter-clockwise) traversal as GB.

− For a complex number z = a + ib, a, b ∈ R, we denote the complex

conjugate z = a− ib.

2.2 Queueing Systems

2.2.1 Two Dimensional Queuing Systems

The application at hand is a queueing system wherein jobs arrive into

various queues where they wait for service by a processor. A processor may

send a job into a different queue, changing the job type, or remove it from

the system. Each processor may only handle one type of job. The processors

don’t have all the information about the system; they can only tell if there

is a job waiting in queue or not.

We assume that the arrival rate of jobs and the service rate of the pro-

cessor are independent of the number of jobs waiting in the system, of one

another, and of the current time. Specifically, we can treat the lengths of

the queues as the state space of a time-independent Markov chain, with a

discrete time variable, so that if we write down the length of queue i at time

n as the random variable Xi
n, the following equations in the expected values

of these variables represent the stated independence, given that n > m+ t,

and that m, t ≥ 0, and that v, vi are some nonnegative integers:

E
[
Xi
n|Xi

m+t = vm+t

]
= E

[
Xi
n|Xi

m = vm, . . . , X
i
m+t = vm+t

]
, (2.1)

E
[
Xi
n|Xi

m+t = v
]

= E
[
Xi
n+s|Xi

m+t+s = v
]
. (2.2)

4



2.2. Queueing Systems

where E[A|B] is the expected value of a function A given that B.

Equation (2.1) states that the information of how one got to the current

state is unimportant for predicting the future behavior of the system, and

equation (2.2) states that the amount of time that the system took to arrive

at its current state is similarly unimportant. These conditions are necessary

for the approaches to analyzing this system that appear in the next three

subsections, as they rely heavily on the theory of Markov chains.

Since a negative queue length is not meaningful in most applications, we

restrict Xi
n to be non-negative. The focus of our approach will be on systems

that either start as or reduce to two coupled queues, and so in all the work

that follows we will have Z+ × Z+, all pairs of nonnegative integers, as our

state space, and denote the Markov chain for the state of the random walk

at time n as the vector of random variables Xn =
〈
X1
n, X

2
n

〉
.

2.2.2 Jump Probability Representation for a Random Walk

Up to this point, our time variable could have taken any real value, but

we want to work with a discrete time Markov chain, so we note that even

in a continuous time Markov chain, two events happening at exactly the

same time is analogous to randomly picking two real numbers and having

them come out identical, a probabilistic impossibility which can be safely

neglected. We subdivide the real line that is the domain of our time variable

into intervals of equal size small enough that it is safe to say only one event

will happen in each. In this way we will claim the random walk has bounded

jumps, so the position in the state space for queue length will only ever

increase or decrease by one at a time. This formulation of the problem

allows us to work with a discrete space, discrete time, time independent

Markov chain that tracks both queues, both of which are bounded to have

non-negative queue lengths, which corresponds to a random walk in the

quarter plane.

All the processors in our queueing system can only tell if their queue

is empty or nonempty, which implies a condition referred to as spatial ho-

mogeneity. The state space can be divided up into regions where the jump

5



2.2. Queueing Systems

probabilities at any given point in a given region is the same as any other

point in the same region. These regions for the random walk in the quarter

plane are depicted in figure 2.1, and are defined as follows:

S = {1, 2, 3, . . . }2, (2.3)

S′ = {1, 2, 3, . . . } × {0}, (2.4)

S′′ = {0} × {1, 2, 3, . . . }, (2.5)

S0 = {(0, 0)}. (2.6)

It follows that we can define prij as the probability of transitioning from

state (a, b) to state (a+ i, b+ j) first, for (a, b) in a given region r:

pri,j = P
(
X1
t+1 −X1

t = i ∧X2
t+1 −X2

t = j|(X1
t , X

2
t ) ∈ r

)
. (2.7)

Rather than write pSi,j or pS
′′

i,j , we will sometimes write pi,j or p′′i,j , and so on.

Spatial homogeneity is equivalent to saying that we could instead condi-

tion equation (2.7) on (X1
t , X

2
t ) being any specific element of a given region

r, and it wouldn’t change the result, which means that knowing the proba-

bility of being in any specific state is not needed to calculate pri,j .

It is common in the literature to create a diagram that represents the

transition probabilities from one state to another for the associated Markov

chain for the queueing system. Since we have spatial homogeneity here, it is

common to represent these transition probabilities with diagrams similar to

figure 2.2, omitting those arrows that are associated with a jump probability

of zero. Probabilities of zero commonly occur in this application, as queueing

theorists tend to study special cases.

2.2.3 Stationary Distribution

Now that the rudiments are available, we can state the problem around

which this thesis is focused. We want to find the long-run or stationary

distribution over the state space, that is, the spatial distribution of the

probability of the system being in a specific state after the queue has run

6



2.2. Queueing Systems

Figure 2.1: The regions Sr of the state space.

for an arbitrarily long period of time. We define the stationary probability

for a point (i, j) in the state space as

πij = lim
n→∞

P (Xn = (i, j)). (2.8)

The stationary distribution encoded in equation (2.8) is the most important

definition in this section. It does not depend on the time variable n, and

satisfies the property that for an arbitrary time t0, if P (Xt0 = (i, j)) =

πij , ∀(i, j) ∈ Z2
+ then P (Xt0+1 = (i, j)) = πij ,∀(i, j) ∈ Z2

+.

From the theory of discrete space discrete time Markov chains [13] it is

known that for stable stationary distribution to exist, a Markov chain must

have all of the following properties:

− Irreducible: There is a nonzero probability of eventually getting from

any one state to any other state.

Irreducibility dictates that the Markov chain cannot get ‘stuck’ in a

proper subset of the state space.

7



2.2. Queueing Systems

Figure 2.2: A common representation scheme for the jump probabilities for
a random walk in the quarter plane.

− Aperiodic: The greatest common divisor of the set of the number of

steps taken to go from any one specific state to itself with nonzero

probability is one.

Aperiodicity dictates that the state space cannot be divided into proper

subsets such that the Markov chain always arrives in a specific subset

given time arguments in arithmetic progression.

− Ergodic: The mean number of steps taken to return to any given state

from itself is finite. 1

We will primarily assume irreducibilty and aperiodicity for our pur-

poses, although in the application of two-dimensional random walks, these

1In [4], Fayolle et al. characterize ergodicity with stochastic matrices: If P is the
stochastic transition matrix for an irreducible aperiodic Markov chain, then the said
Markov chain is ergodic if and only if there exists a row vector π with non-negative
entries that sum to 1 such that πP = π. This is in fact how stationary distributions are
characterized later in this chapter. We feel that this alternate definition offers no positive
characterization of what ergodicity actually means.

8



2.2. Queueing Systems

are easily characterized. For example, for there to be no chance of get-

ting from any specific state to another, the queueing system would have

to have at least one nonfunctioning queue, (a queue with no arrivals or no

service,) or both queues would behave like one queue, with linked arrivals

and service. An example case of a periodic Markov chain would be when

p0
1,0 = 1, p′−1,1 = 1, p′′0,−1 = 1, resulting in an endless cycle, where jobs are

instantly served after arrival. In short, if our type of analysis is required,

then the Markov chain is almost certainly irreducible and aperiodic.

Ergodicity is dealt with in [4, page 3] by looking at the mean jump sizes

in the x and y directions: if we write

Mx =
∑

ipij , My =
∑

jpij ,

M ′x =
∑

ip′ij , M ′y =
∑

jp′ij ,

M ′′x =
∑

ip′′ij , M ′′y =
∑

jp′′ij ,

(2.9)

then, given that Mx and My are both not identically zero, the random walk

is ergodic if and only if one of the following three sets of conditions holds:

Condition 1:

Mx < 0,My < 0,

MxM
′
y −MyM

′
x < 0,

M ′′xMy −M ′′yMx < 0.

(2.10)

Condition 2:

Mx < 0,My ≥ 0,

M ′′xMy −M ′′yMx < 0.
(2.11)

9



2.3. Generating Function Approach for Queueing Systems

Condition 3:

Mx ≥ 0,My < 0,

MxM
′
y −MyM

′
x < 0.

(2.12)

These conditions essentially embody the idea that if a random walk tends

to move away from the origin, it will grow past any bound, and will likely

never return to any given finite state.

One needs to verify that the queueing system that one wants to model

is representable with a irreducible, aperiodic, ergodic Markov chain before

using the work that appears in the rest of the thesis. These conditions imply

the existence of a unique stationary probability distribution for the Markov

chain, and the existence of this distribution underpins most of the work that

follows in this thesis.

Calculation of the stationary distribution is desirable as it allows the

calculation of valuable statistics for the queueing system, and on its own

gives how one should expect the queueing system to behave in the case

where you have no information about the system’s exact behavior at or

before the current time, relying instead and solely on the jump probabilities

to inform your expectations.

2.3 Generating Function Approach for Queueing

Systems

2.3.1 Generating Functions

A generating function is a means of encoding a data set into a function,

specifically, by making its Taylor coefficients store the data set. If we have f

in the polynomial ring R(x, y) with x, y ∈ C, and f(x, y) =
∑∞

i,j=0,0 ai,jx
iyj ,

then f ’s derivatives contain the information to recover ai,j , as

∂m+nf

∂mx∂ny
(0, 0) = m!n!am,n. (2.13)

10



2.3. Generating Function Approach for Queueing Systems

Thus, by solving for the function f(x, y), either analytically or by numer-

ically computing it and its derivatives, one can recover the data set the

function encodes.

We can use our knowledge of how the stationary probability distribution

must behave in different regions of the state space to define a functional

equation in the generating functions for these distributions. The study of

this functional equation will govern the rest of this thesis. Our approach

here comes from the introduction of [4].

We denote the complex variables that our generating functions will

take as arguments as x, y ∈ C, defining for brevity u = 〈x, y〉, and R =

{S, S′, S′′, S0}.
First, we define the jump probability generating function over region r

as

Pr(u) = E
[
u(Xn+1−Xn)

1Xn∈r

]
. (2.14)

We may read equation (2.14) with the information that we have about

our application, giving

Pr(u) = E

x
Change in X1 at n︷ ︸︸ ︷
(X1

n+1 −X1
n)y

Change in X2 at n︷ ︸︸ ︷
(X2

n+1 −X2
n)

∣∣∣∣∣∣∣∣Xn ∈ r


which, by the definition of expected value, and the definition in equation

(2.7), implies that

Pr(u) =
∑
i,j

prijx
iyj . (2.15)

The generating function for the stationary probability distribution in the

region r is defined as follows:

πr(u) = lim
n→∞

E
[
uXn1{Xn∈r}

]
=
∑

(i,j)∈r

πijx
iyj (2.16)

We now start fresh and begin to construct our desired result, a rela-

tionship tying all of the relevant generating functions for the stationary

11



2.3. Generating Function Approach for Queueing Systems

distributions together through generating functions for the jump probabil-

ities. Note that since {Xn}∞n=1 is a Markov chain, the variables Xn+1 and

Xn+1 −Xn are independent, allowing us to factor E
[
uXn+1

]
as follows:

E
[
uXn+1

]
= E

[
uXn+1−XnuXn

]
= E

[
uXn+1−Xn

]
E
[
uXn

]
, (2.17)

Since the expected value is just a summation over the state space, and (Xn)

is a Markov chain with each step forward only dependent on the current

state, we can split up equation (2.17) over the different regions and into

independent parts:

E
[
uXn+1

]
=
∑
r∈R

E
[
u(Xn+1−Xn)

1{Xn∈r}

]
E
[
uXn1{Xn∈r}

]
, (2.18)

and by equation (2.14), we can simply identify Pr(u), giving

E
[
uXn+1

]
=
∑
r∈R

E
[
uXn1{Xn∈r}

]
Pr(u) (2.19)

Now, all we need to do is note that

E
[
uXn+1

]
=
∑
r∈R

E
[
uXn+11{Xn+1∈r}

]
, (2.20)

and take the limit as n → ∞ of both sides of equation (2.18) to get our

desired relationship in the generating functions, applying equations (2.20)

and (2.16) as needed:

lim
n→∞

[∑
r∈R

E
[
uXn+11{Xn+1∈r}

]]
= lim

n→∞

[∑
r∈R

E
[
uXn1{Xn+1∈r}

]]
Pr(u)

=
∑
r∈R

πr(u) =
∑
r∈R

πr(u)Pr(u),

(2.21)

12



2.3. Generating Function Approach for Queueing Systems

which simplifies to ∑
r∈R

[1− Pr(u)]πr(u) = 0. (2.22)

This equation (2.22) characterizes how the stationary distribution be-

haves for random walks in the quarter plane explicitly, and independently of

the division the quarter plane into regions with distinct jump probabilities.

However, equation (2.22) is rather abstract, and we will want to use the

information that we have for our queueing system to make it more concrete,

using the regions and jump probabilities as defined above. After specifying

these, equation (2.22) is almost always factored as in the following equation

(2.23), referred to as the fundamental equation (F.E.) for the random walk.

Q(x, y)π(x, y) = q1(x, y)π1(x) + q2(x, y)π2(y) + q0(x, y)π0. (2.23)

We define the all of the functions present in equation 2.23 (with references

to equation (2.22)) as follows:

Q(x, y) = xy

−1 +
∑

1≥i≥−1
1≥j≥−1

pijx
iyj

 = −(1− PS(u)), (2.24)

q1(x, y) = x

1−
∑

1≥i≥−1
1≥j≥0

p′ijx
iyj

 = 1− PS′(u), (2.25)

q2(x, y) = y

1−
∑

1≥i≥0
1≥j≥−1

p′′ijx
iyj

 = 1− PS′′(u), (2.26)

q0(x, y) = 1−
∑

1≥i≥0
1≥j≥0

p0
ijx

iyj = 1− PS0(u), (2.27)

π(x, y) =

∞∑
i,j=1

πijx
i−1yj−1 = πS(u), (2.28)

13



2.3. Generating Function Approach for Queueing Systems

π1(x) =
∞∑
i=1

πi0x
i−1 = πS′(u), (2.29)

π2(y) =
∞∑
j=1

π0jy
j−1 = πS′′(u), (2.30)

π0 = π0,0 = πS0(u). (2.31)

This fundamental equation is so named because solving for all of the

unknown functions (π(x, y), π1(x), π2(y), π0,) in it allows recovery of the

stationary distribution encoded in the generating functions. Chapter 4 is

primarily focused on a formal integral solution to this equation, which is

useful in numerical work.

In order to solve for the unknown functions in this equation, we will

be using the theory of Riemann Hilbert boundary value problems, which

require the following:

2.3.2 Indexes of Functions

If we have a complex function G defined over a simple closed piecewise

smooth positively oriented contour L, the index χ of the function over the

contour is a quantity we will define as

χ =
1

2π
argLG =

1

2πi

∫
L
d(Log(G(t)) =

1

2πi

∫
L

G′(t)

G(t)
dt, (2.32)

assuming without loss of generality that 0 is in the interior of L. [4]

Interpreting the second formula above, this index counts the total num-

ber of times the function G goes over the branch cut of the logarithm under

arguments coming from a positively oriented traversal of L, with a negative

index corresponding to a net clockwise traversal in the image, and a positive

index corresponding to a net counterclockwise traversal in the image.

Cauchy’s argument principle [11] also grants another interpretation of

the index, as the third formula in equation (2.32) gives the difference between

the number of roots and poles of G inside L, with roots increasing the

index and poles reducing it, with the multiplicity of both contributors being

14



2.3. Generating Function Approach for Queueing Systems

accounted for.

2.3.3 Riemann Hilbert BVPs

The Riemann Hilbert boundary value problem was used by Cohen and

Boxma to analyze queueing systems in their book [2]. This particular BVP

was also employed in the papers [1, 3, 8] to find formal solutions. The

formulation given here was provided in [2].

The Riemann Hilbert boundary value problem is as follows: We wish to

find a function Φ defined over the complex plane holomorphic on the interior

and exterior of a given closed simple contour L excepting perhaps a pole of

finite order at infinity. Additionally, Φ has limiting values coming from the

inside and outside of L, labeled Φ+ and Φ− respectively.

Defining the notation GA as the interior of a given closed simple contour

A without including the contour itself, we can define these explicitly as

Φ+ : L→ C, Φ+(x) = lim
t→x
t∈GL

Φ(t), (2.33)

Φ− : L→ C, Φ−(x) = lim
t→x

t6∈GL∪L
Φ(t). (2.34)

The values of Φ are unknown at the start, but if we have a relation

between the limiting values Φ+ and Φ− given by

G(x)Φ−(x) + g(x) = Φ+(x), x ∈ L, (2.35)

the Riemann Hilbert boundary value problem is solvable given the fol-

lowing conditions:

1. G is continuous on L,

2. G is nonzero on L,

3. g satisfies the Hölder condition |g(t1) − g(t2)| ≤ C|t1 − t2|µ on L, for

real constants C and 0 ≤ µ < 1.
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2.3. Generating Function Approach for Queueing Systems

If we define

χ = the index of G over L,

Γ(x) =
1

2πi

∫
L

Log(t−χG(t))dt

t− x
,

(2.36)

S+(x) = eΓ(x), x ∈ GL,

S−(x) = x−χeΓ(x), x 6∈ GL ∪ L,
(2.37)

the solution to the homogeneous case of equation 2.35, where in the equation

g ≡ 0, is given by

Φ(x) =

{
S+(x) if x ∈ GL,
S−(x) if x 6∈ GL ∪ L.

(2.38)

For the nonhomogeneous case, we have two types of solutions, both using

the following definition:

γ(x) =
1

2πi

∫
L

g(s)ds

S+(s)(s− x)
. (2.39)

Which type of solution we use depends on the index:

− When χ ≥ 0:

Φ(x) =

{
S+(x)(γ(x) + Pχ(x)) if x ∈ GL,
S−(x)(γ(x) + Pχ(x)) if x 6∈ GL ∪ L.

(2.40)

where Pχ is an arbitrary polynomial of degree χ over C.

− When χ < 0:

Φ(x) =

{
S+(x)γ(x) if x ∈ GL,
S−(x)γ(x) if x 6∈ GL ∪ L.

(2.41)

but note that when χ ≤ −2, there are −χ − 1 additional conditions
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2.4. The Beginning of the BVP Approach

that must be satisfied for the BVP to have a solution, given by∫
L

g(t)tk−1dt

S+(t)
= 0, for k ∈ {1, 2, . . . ,−χ− 1}. (2.42)

The Riemann Hilbert BVP turns out to be just the right tool for the last

step in solving for one of the unknown functions in fundamental equation

(2.23) in our application. We will use Φ to recover π1 and π2 individually

and independently, by finding a G which satisfies the properties required by

the BVP setup for each case, the construction of which will leave g = 0.

For more details on the construction of the solution to this boundary value

problem, see [2] or [4].

2.4 The Beginning of the BVP Approach

2.4.1 The Kernel Method and Contours

Now equipped with information on the tool we will later use, we can

begin work on the problem proper. The typical starting point that a great

number of papers (for example, [1, 3, 5, 8]) use to tackle related problems

is here referred to as the kernel method, wherein we restrict the values of x

and y to the algebraic curve

Q(x, y) = 0. (2.43)

This restriction does two jobs: First, the complexity of the fundamental

equation (2.23) is reduced by eliminating one unknown function, leaving

us with only two unknown functions, which is consistent with the BVP

approach, as long as those functions satisfy the required properties. Second,

it allows the construction of a contour for the BVP. If we factor Q as

Q(x, y) = a(x)y2 + b(x)y + c(x), (2.44)
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2.4. The Beginning of the BVP Approach

we can apply the quadratic formula on the coefficients a(x), b(x), and c(x).

We label the resulting two-branched function as

Y (x) =
−b(x)±

√
b2(x)− 4a(x)c(x)

2a(x)
, (2.45)

and label the individual branches Y + and Y − corresponding to the choice

of sign for the ± sign in the right hand side of equation (2.45) as

Y +(x) =
−b(x) +

√
b2(x)− 4a(x)c(x)

2a(x)
, (2.46)

Y −(x) =
−b(x)−

√
b2(x)− 4a(x)c(x)

2a(x)
. (2.47)

Often newcomers to this discipline wonder whether restricting the vari-

ables x and y by the relationship Q(x, y) = 0 implies that we have a re-

stricted solution, and that perhaps what we have generated by the BVP is

only valid on this algebraic curve. The proper way of thinking of this re-

striction is to recognize that the BVP only requires its boundary condition

(equation (2.35)) to be met on the boundary, and that setting Q(x, y) = 0

gives us this boundary. Using Q(x, y) = 0 to meet the condition on the

boundary is fine, since the BVP solution allows us to use the information

on the boundary to move past the boundary by design. As long as the

conditions are met the BVP gives us an unrestricted analytic solution.

In order to get a contour in the complex plane we investigate the branch

points of the function Y , that is to say, the points where both branches are

equal, or, equivalently where the discriminant D(x) = b2(x)−4a(x)c(x) = 0.

The degree of D(x) is either three or four 2 , and so there are at most four

of these branch points, call them xi, i = 1..4. If the degree of D(x) is only

three, we write x4 = ∞. We know from the literature [4] that these xi

2The degree of D is derived directly from the degrees of a(x), b(x), and c(x), which in
turn are defined by the boundedness of the jumps in the queueing system’s state space to
one away in any given direction, which in turn is derived from our queueing system only
having one job entering the system, switching queue, or leaving the system at any given
time.
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2.4. The Beginning of the BVP Approach

have to be real, with the exception of x4 which is possibly∞, and that they

admit the ordering 0 ≤ x1 < x2 ≤ 1 ≤ x3 < x4, with x2 6= x3. Restricted to

the real line, D(x) changes sign at each of its branch points, being negative

between x1 and x2, and also between x3 and x4.

From here, there are two equivalent ways of proceeding. For a definition

that allows easy numerical computation and parameterization we can define

the contour L as the image of the line segment x1x2 under Y +(x), joined

with the image of the line segment x2x1 under Y −(x):

L = {Y +(x) : x ∈ [x1, x2]} ∪ {Y −(x) : x ∈ [x1, x2]} (2.48)

Alternatively, we can define L as the limiting contour of the image under

a branch of Y of a family of contours in the x-plane cut between x1 and x2,

i.e. C\x1x2, that goes around the cut. This gives the same result as the

above procedure, with the advantage that we can treat that branch of Y

as analytic in that cut plane, and state L in concrete terms with respect to

that branch of Y . This is mainly of use in proofs and analysis rather than

numerical work. Looking ahead, and using a specific branch of Y given in

the future equation (4.1.1), we can give the alternate characterization:

L = lim
ε↓0
{Y0(x) : x ∈ {[x1, x2] + ε} ∪ {[x1, x2]− ε}} (2.49)

Additionally, we define Lext identically, except using x3 and x4 instead

of x1 and x2.

While we remain on L, we know that Q(x, y) is 0, allowing us to use

the modified F.E. as a relation on that boundary. From this point, BVP

approaches diverge in how they attack the problem, but most follow this

contour and fundamental equation setup very closely.

2.4.2 Counterparts

We note that there is more than one way to factor Q(x, y): the alternate

factorization Q(x, y) = ã(y)x2 + b̃(y)x+ c̃(y) allows us to proceed in exactly

the same way as before, and define a new contour, a new discriminant, and
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so on. Rather than double the length of this thesis, we will introduce a table

of counterparts (table 2.4.2) giving names for the constructions implied by

the work we do following our admittedly arbitrary choice of factorization.

Table 2.1: Legend and Table of Counterparts

a(x) path Counterpart c.f.

a(x) ã(y) (2.44)

b(x) b̃(y) (2.44)

c(x) c̃(y) (2.44)

Y (x) X(y) (2.45)

Y +(x) X+(y) (2.46)

Y −(x) X−(y) (2.47)

D(x) D̃(y) §2.4.1

xi yi §2.4.1

L M (2.45)

y0 x0 (3.4)

mr m̃r (3.11)

ymax xmax (3.11)

mi m̃i (3.11)

f f̃ (3.11)

h h̃ (3.11)

t, u t̃, ũ (3.16)

Y0(x) X0(y) §4.1.1

Y1(x) X1(y) §4.1.1

Object c.f.

πri,j , πi,j , π
′
0,j , etc. (2.15)

π(x, y) (2.31)

Q(x, y) (2.31)

π1(x) (2.31)

q1(x, y) (2.31)

π2(y) (2.31)

q2(x, y) (2.31)

π0 (2.31)

q0(x, y) (2.31)

From here, the path forward forks. Both chapters 3 and 4 use the setup

that appears here, but they proceed independently of one another. A small

discussion of the overlap (or the current triviality thereof) will appear in the

conclusion, after the work has been discussed.
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Chapter 3

Special Contours

In this section we will examine special cases of contours as used in the

BVP analysis of queueing systems, wherein a simple reparameterization of

the contour may be created. We analyze these special cases in the hopes

that they may be leveraged to find explicit solutions for the BVP integral.

3.1 Circles

3.1.1 The Case for a Circle with a Center on the Origin

This case has shown up in at least two papers [1, 6], where the contour

for the BVP is a circle. Also of interest is the characterization appearing in

([4], 111), wherein it is shown that the contour is a circle when∣∣∣∣∣∣∣
p1,−1 p1,0 p1,1

p0,−1 p0,0 p0,1

p−1,−1 p−1,0 p−1,1

∣∣∣∣∣∣∣ = 0. (3.1)

In this chapter, we will focus on techniques that are extensible into other

contours.

One characterization of a circle in the complex plane is {z : |z| = r},
where r is a positive constant. We will try to find queueing BVP contours

that are circles by setting

|Y (x)| = r (3.2)

for either branch.

2Parts of this chapter were presented as a part of the 2014 CORS Annual General
Conference, under the talk title ‘Special contours in queueing BVPs’.
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3.1. Circles

Developing this, we recall that the discriminant has negative value over

the line segment in question, so the branches of Y (x) are complex conju-

gates of one another, seeing as a(x), b(x), and c(x) are polynomials with real

coefficients. This result allows the following computation for either branch,

(with the notation Y ± being either branch of Y (x), it doesn’t matter which,)

|Y ±(x)| =
√
Y +(x)Y −(x)

=

√
−b(x) +

√
b2(x)− 4a(x)c(x)

2a(x)
·
−b(x)−

√
b2(x)− 4a(x)c(x)

2a(x)

=

√
b2(x)− b2(x) + 4a(x)c(x)

4a2(x)
=

√
c(x)

a(x)
.

(3.3)

Since equation (3.3) is just an identity coming from the form of Y , it

holds regardless of whether or not the contour is a circle. So c(x)/a(x) is a

constant iff L is a circle with a center at the origin.

3.1.2 The Case for a Circle with a Center on the Real axis

Our first generalization is to account for circles that do not have a center

at the origin. In our application, the only restriction on where the contour

must lie comes from the fact that the branches of Y (x) are conjugates of one

another- as the top part and the bottom part of the contour are the same

distance away from the real axis, if the contour is a circle, the center must

lie on the real axis.

Moreover in this case, this center can easily be determined by taking

Y (x1) and Y (x2) to find the ends of the contour and setting

y0 =
Y (x2) + Y (x1)

2
. (3.4)

To characterize a contour that is a circle with center y0 in the complex

plane, we can set

|Y ±(x)− y0| = r. (3.5)
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Lemma. Independent of the shape of the contour,

∣∣Y ±(x)− y0

∣∣2 =
c(x) + y0b(x)

a(x)
+ y2

0

for real y0.

We may expand |Y ±(x)− y0|:∣∣Y ±(x)− y0

∣∣2 = (Y +(x)− y0)(Y −(x)− y0)

= Y +(x)Y −(x)− y0Y
−(x)− y0Y

+(x) + y2
0,

(3.6)

since y0 = y0. Now, we can rewrite the right hand side of equation (3.6) as

follows:

Y +(x)Y −(x)︸ ︷︷ ︸
See ((3.3))

−y0(Y −(x) + Y +(x)︸ ︷︷ ︸
Real part of 2Y

) + y2
0, (3.7)

so equation (3.7) is equal to

∣∣Y ±(x)− y0

∣∣2 =
c(x)

a(x)
− 2y0

−b(x)

2a(x)
+ y2

0, (3.8)

which simplifies to the statement of the lemma.

In summary, if the contour is a circle with center y0 and radius r, then

y0b(x) + c(x)

a(x)
= r2 − y0

2. (3.9)

If the contour is a circle, equation (3.9) will hold as designed. In the interest

of establishing equivalence, say we start with equation (3.9) assigning arbi-

trary real y0 and r. That would imply that the circle characterization would

hold for that y0 and |r|, the squaring step being reversible because we know

what sign a modulus has to take. So equation (3.9) holds for any y0 and r

iff the contour is a circle with those parameters.
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3.2 Ellipses

The characterization of a circle in the previous section (equation (3.5))

generalizes to a very similar characterization with ellipses, so we will extend

our work to include this case. The locus characterization of an ellipse is that

for any point y on the ellipse, the sum of the lengths of the lines from y to the

foci f1 and f2 is a constant, h. In the complex plane, this characterization

is written as

|y − f1|+ |y − f2| = h.

As before, the symmetry along the real axis strongly restricts which ellipses

might appear in our application. There are two cases:

− The major axis of the ellipse is on the real line, and we write the center

of the ellipse as y0, and the foci as y0 + f and y0− f , for a real y0 and

a real f .

− The minor axis of the ellipse is on the real line, and we write the center

of the ellipse as y0, and the foci as y0 + f and y0− f , for a real y0 and

a strictly imaginary f .

In both of these cases we can write the equation corresponding to the ellipse

as follows:

|y − y0 − f |+ |y − y0 + f | = h. (3.10)

3.2.1 Determining Parameters

In order for the tests we develop to be a usable tool, we need to be

able to determine what y0, f , and h should be before we start applying

the equations in the next sections 3.2.2 and 3.2.3. Fortunately, this is easy

enough, after computing the length of the axes of the ellipse, noting here

that mr is the length of the axis of the ellipse parallel to the real axis, and
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mi is the length of the axis of the ellipse parallel to the imaginary axis:

y0 =
Y +(x2) + Y +(x1)

2
,

mr = Y +(x2)− Y +(x1),

ymax = Y +(z) where

[
d

dx

√
4a(x)c(x)− b2(x)

2a(x)

]
x=z∈R

= 0,

mi = 2|Im(ymax)|,

f =

√
m2
r −m2

i

2
,

h = max(mr,mi).

(3.11)

Note that the case where mr = mi is in fact the degenerate case where the

‘ellipse’ is a circle. The constant h defined here is twice what r would be

in section 3.1, but otherwise what follows is identical to the stated result,

allowing the results of the following sections to be applied freely without

testing for the cases from section 3.1.

Parameterizations

If we have a contour L that is an ellipse of one of the forms admissible

to our application, with y0, f and h as defined as in equation (3.11), it can

be endowed with the parameterization

L =

{
mr

2
cos(t) +

imi

2
sin(t) + y0 | t ∈ [0, 2π]

}
. (3.12)

The choice of notation for mr and mi allows equation (3.12) to work for

both cases. Sines and cosines behave extremely well in symbolic integration

and will hopefully allow non-formal, non-numerical solutions to be derived

for specific queueing BVPs in future work.
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Figure 3.1: The two cases for an elliptical contour.
On the left, the major axis is on the real axis. On the right the minor axis

is on the real axis.

3.2.2 The Case for an Ellipse with a Major Axis on the

Real Axis

In the first case, the case for an ellipse with a major axis on the real

axis, we can expand the focus equations as follows:

|Y (x)− y0 − f |︸ ︷︷ ︸
t

+ |Y (x)− y0 + f |︸ ︷︷ ︸
u

= h
(3.13)

which expands to

4t2u2 =
(
h2 − t2 − u2

)2
. (3.14)

Using the substitution coming from the lemma above, we replace t2 and u2

with

t2 = |Y (x)− (y0 + f)|2 =
(y0 + f)b(x) + c(x)

a(x)
+ (y0 + f)2 (3.15)
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and

u2 = |Y (x)− (y0 − f)|2 =
(y0 − f)b(x) + c(x)

a(x)
+ (y0 − f)2. (3.16)

At this point, we can simply substitute equations (3.15) and (3.16) into

equation (3.14), and have a usable test for computationally determining

whether a given contour is an ellipse. In the interest of having a final result

of a similar form to (3.9), we can simplify the result of said substitution to

−h2a(x)b(x)y0 + 4 f2a(x)b(x)y0 − h2a(x)c(x) + f2b2(x)

a2(x)

= −1/4
(
h2 − 4 y0

2
) (
h2 − 4 f2

)
.

(3.17)

This final formula allows for easy checking whether this case of the ellipse

holds, as all the contents of the equation can be quickly determined using

the definitions in equation (3.11).

3.2.3 The Case for an Ellipse with a Minor Axis on the

Real Axis

For this case, we proceed mostly as in the other, but without the luxury

of having real foci. Instead of being able to reuse our previous work directly,

we have, for a general case of a complex z,

|Y ±(x)− z|2 = (Y ±(x)− z)(Y ±(x)− z)

= Y ±(x)Y ±(x)− Y ±(x)z − Y ±(x)z + zz.
(3.18)

What equation (3.18) means for this problem, is that there are two cases

that need to be treated, depending on the choice of branch we use, as the

choice of branch determines whether we are on the top half of the ellipse

or the bottom. This division into cases makes sense, as the foci are not on

the real line, so for each individual focus, the modulus may vary based on

choice of branch, but as we have two conjugate foci in our equation and two

conjugate branches, this division into cases should cancel out in the end.

The necessary arithmetic in these cases is analogous to the derivation of

27



3.2. Ellipses

equation (3.8). We obtain, for z = w + iv, (w, v ∈ R, )

|Y +(x)− (w + iv)|2 = −
v
√

4 a(x)c(x)− b2(x)

a(x)
+ w2 +

wb(x)

a(x)
+ v2 +

c(x)

a(x)
,

|Y −(x)− (w + iv)|2 =
v
√

4 a(x)c(x)− b2(x)

a(x)
+ w2 +

wb(x)

a(x)
+ v2 +

c(x)

a(x)
.

(3.19)

Finally, we can substitute w = y0, iv = f into the above equations (3.19)

and substitute each one in turn into equation (3.14), noting that the branch-

dependent terms containing
v
√

4 a(x)c(x)− b2(x)

a(x)
cancel as expected. Fi-

nally, we isolate constants as in section 3.2.2 to get our analogous result to

equations (3.9) and (3.17):

h2y0a(x)b(x) + h2a(x)c(x) + 4f2a(x)c(x)− f2b2(x)

a2(x)

=
h2

4

(
h2 + 4 f2 − 4y0

2
)
.

(3.20)

Combined with our work in the previous section, the two formulae (3.17)

and (3.20) exhaust all possible cases in our application for an elliptical con-

tour.

Important Note

All of the work in this chapter so far has been operating from the path

starting from the factorization Q(x, y) = a(x)y2 + b(x)y + c(x), and all of

the tests give information on the contour L. If we want information on the

contour M associated with the alternate factorization, we simply replace all

of the terms that appear here with their counterparts that appear in table

2.4.2.
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3.3 A Fast Informal Test for Circular Contours

The degenerate cases corresponding to our work in section 3.1, where the

contour associated with the BVP approach to a random walk is a circle, have

an interesting characteristic for the jump probabilities for that random walk.

The arrow representation for the jump probabilities in a random walk in the

quarter plane (similar to figure 2.2, but with arrows corresponding to jump

probabilities of zero not drawn,) is often used in discussion and informal

work on the random walk. In this section we will present two weak, fast,

informal tests that can be used on these diagrams.

Observing closely the definitions for a(x), b(x), and c(x),

Q(x, y) = xy
∑
i,j

(pijx
iyj)− 1

= p−1,−1 + xp0,−1 + yp−1,0 + xy(p0,0 − 1) + x2p1,−1

+ y2p−1,1 + x2yp1,0 + xy2p0,1 + x2y2p1,1,

which is factorable to be

= (x2p1,1 + xp0,1 + p−1,1)y2 + (x2p1,0 + x(p0,0 − 1) + p−1,0)y

+ (x2p1,−1 + xp0,−1 + p−1,−1),

wherein we name the coefficients

= a(x)y2 + b(x)y + c(x),

(3.21)

we may note that the condition given in equation (3.3) is equivalent, by

matching like terms, to the vector equation, for k = r2:

k

 p1,1

p0,1

p−1,1

 =

 p1,−1

p0,−1

p−1,−1

 . (3.22)
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Equation (3.22) means that we can automatically disqualify a subset of

random walks from having a circular contour centered at the origin. The

value of k is unimportant for this weak informal test, the only relevant

information is what is available from the diagram, that is, whether the jump

probabilities are zero or nonzero. The test is described in figure 3.2.

Figure 3.2: The test for a circle with a center at the origin.
If for each j, p1,j = 0 and p−1,j = 0, or p1,j 6= 0 and p−1,j 6= 0, then it is
possible that the contour is a circle with a center at the origin. Otherwise
it is impossible.
What this means for usage is that arrows must come in pairs reflected across
the horizontal axis for L to be a circle. A similar result holds for the vertical
axis and M . If one test fails, then actually computing that vector equation
is unnecessary.

Equation (3.22) and the related test in figure 3.2 have results that co-

incide with the determinant characterization in equation (3.1), as matrices

with linearly dependent rows or columns have a determinant of 0. This trick

can be extended somewhat to the circles with moved centers case. We have

k

 p1,1 + y0p1,0

p0,1 + y0(p0,0 − 1)

p−1,1 + y0p−1,0

 =

 p1,−1

p0,−1

p−1,−1

 , (3.23)

which has the equivalent test depicted in figure 3.3.

The tests presented in figures 3.2 and 3.3 are only fast visual checks

one can make to quickly obtain negative results, that is to say, to quickly
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3.3. A Fast Informal Test for Circular Contours

Figure 3.3: The test for a general circular contour.
Formally, the test states ∀j ∈ {1,−1}, (p1,j = 0 ∧ p0,j = 0 ∧ p−1,j 6=
0) =⇒ the contour is not a circle. A similar implication is derived by di-
viding through by k.
What this means for usage is to look for adjacent pairs of arrows not drawn
(probability zero) along the edge. If such a pair exists without the third one
in the line also not being drawn, then one of the contours cannot be a circle,
so actual computation of the related vector equation is unnecessary.

determine that a given random walk can not have a circular contour when

one approaches it using BVP methods.

Please also note that the reflection of these tests along the diagonal

also gives a valid test: the tests pictured in figures 3.2 and 3.3 are based

on the equations (3.3) and (3.9), which have counterparts r =
√

c̃(y)
ã(y) and

r2−x0
2 = c̃(y)+x0b̃(y)

ã(y) , which correspond to vector equations that correspond

to the transposed tests.

The cases where one wishes to determine if a contour is an ellipse are

complicated enough that one is better off seeing if formulae (3.17) and (3.20)

hold than attempting to use a test analogous to those that appear in this

section.
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Chapter 4

Homogeneous Queueing

BVPs

In this chapter, we extend a known approach for obtaining the generat-

ing function for the stationary probability to be compatible with a broad

class of F.E.s known as the homogeneous case, which is described shortly.

The approach we take follows Avrachenkov’s in [1], wherein we attack the

problem with a Riemann-Hilbert BVP. Our extension to the mathematics

of the existing literature consists of an algorithmic method for determining

the special branches of Y and a proof extending a required result in [1] to

cover the arbitrary contours that may appear in the homogeneous case. We

also hope to make it clear and explicit exactly what has to be done to fit

this approach to a given fundamental equation.

The class of problems that this approach is designed to address is the

class of random walks in the quarter plane which satisfies the conditions

of section 2.2. From this class, we will take a representative with a F.E.

constructed arbitrarily. Additionally, this approach also requires that in

equation (2.23), q0(x, y) ≡ 0; This generating function being zero is why we

call this class of F.E.s the homogeneous case.

Important note

The construction of section 2.3 is effectively incompatible with the ho-

mogeneous case that appears here. Other constructions, (like [1],) can result

in a homogeneous F.E., but observing closely the definitions applied in sec-

tion 2.3, setting q0(x, y) ≡ 0 in the setup above implies that the Markov

chain can never leave the empty state, which, as one would imagine, does
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4.1. General Theory for Homogeneous Fundamental Equations

not require much labor for one to determine a stationary distribution.

We will proceed under the assumption that the starting point of our

analysis is the homogeneous F.E. itself, composed of generating functions

analytic over the unit disc, that fits the form of equation (2.23), and proceed

to make definitions as appear as in section 2.4.

Chapter overview

Our goal is to manipulate the F.E. into a form amenable to treatment

by a Riemann-Hilbert BVP. We take measures to satisfy the requirements

on the boundary condition, but this requires some setup. First, we will

detail the construction and provide an example construction of additional

branches of Y (x) and X(y) labeled X0(y) and Y0(x). These are created first

to allow easy manipulation of the F.E., and second to have useful proper-

ties that allow us to make analytic continuations up to the boundary, as

required by the BVP setup. The details of these necessary properties are

treated immediately after the construction of the branches. Second, we do

the actual manipulation into the form of a Riemann-Hilbert BVP. After

the aforementioned analytic continuation, and modification to create the

boundary condition, we eliminate one of the unknown πis and and coerce

the F.E. into the BVP form in one step. Third, we meet the rest of the

BVP requirements by verifying analyticity, and moving around roots, and

use the BVP as intended. Finally, we recover π1 and π2, then make a brief

argument allowing us to recover π(x, y), and we are done.

4.1 General Theory for Homogeneous

Fundamental Equations

4.1.1 Construction of New Branches

In table 2.4.2, we documented how the existence of a different factoriza-

tion at the beginning induced counterpart definitions, mirroring our work.

These bodies of work are more than similarly constructed, in fact they are

closely linked through a relationship between the branches ofX(y) and Y (x).
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4.1. General Theory for Homogeneous Fundamental Equations

According to [4], there exists a choice of branches of these functions, call

them X0(y) and Y0(x) such that X0 ◦ Y0 is the identity map on GM\x1x2,

and Y0◦X0 is the identity map on GL\y1y2. These functions are also analytic

everywhere except the cut between the first and second branch points, and

the cut between the third and fourth branch points. Additionally, recall

equation (2.49), which says we can construct L and M using these branches.

Constructing these new branches allows us to easily move from the x-plane

to the y-plane and vice versa, as they also have several useful properties that

will make our analysis easier later on.

Constructing these branches explicitly has mainly been glossed over in

the literature, as their existence is well proven, but we will discuss it for

the sake of completeness here. We are primarily interested in the curve

Im(D(x)) = 0, as this is where the choice of the branch of the square root

matters. As long as we make changes of branch only here, we do not risk

breaking analyticity anywhere else, changes of branch here cannot worsen

things.

We consider the partitions generated by looking at the signs of Re(D(x))

and Im(D(x)) to construct possible branches for Y0(x). Once all of these

cases are enumerated, we can thin them out by looking at which ones are

analytic on the real line minus the cuts, e.g. (−∞, y1) ∪ (y2, y3) ∪ (y4,∞).

We do the same with their image under D̃(y), and test to see which pairing

results in a pair of inverse functions, which will result in our choice of branch

for X0 and Y0. The ‘opposite’ choice of branch on each partition in each

case will be meromorphic except on the cuts as well, and will be declared as

X1 and Y1 respectively. (See [4].)

Example Construction of Analytic Branches

The explicit formulation of these branches comes directly from [8]. The

authors also state that all of these branches are analytic in the cut plane,

except X1, which has a pole at 0, and is thus meromorphic over the cut

plane. These branches off of the branches Y +, Y −, X+, and X− as follows:
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4.1. General Theory for Homogeneous Fundamental Equations

X0(y) =


X+(y) if y ∈

{
z

∣∣∣∣∣ Re(z) ≤ y2,

Im(D̃(Re(z) + i|Im(z)|)) < 0

}
,

X+(y) if y ∈ (−∞, y1),

X−(y) otherwise.

(4.1)

X1(y) =


X−(y) if y ∈

{
z

∣∣∣∣∣ Re(z) ≤ y2,

Im(D̃(Re(z) + i|Im(z)|)) < 0

}
,

X−(y) if y ∈ (−∞, y1),

X+(y) otherwise.

(4.2)

Y0(x) =



Y +(x) if x ∈

{
z

∣∣∣∣∣ Re(z) ≤ x2

Im(D(Re(z) + i|Im(z)|)) < 0

}
,

Y +(x) if x ∈

{
z

∣∣∣∣∣ Re(z) ≥ x3,

Im(D(Re(z) + i|Im(z)|)) > 0

}
,

Y +(x) if x ∈ (−∞, x1) ∪ (x4,∞),

Y −(x) otherwise.

(4.3)

Y1(x) =



Y −(x) if x ∈

{
z

∣∣∣∣∣ Re(z) ≤ x2

Im(D(Re(z) + i|Im(z)|)) < 0

}
,

Y −(x) if x ∈

{
z

∣∣∣∣∣ Re(z) ≥ x3,

Im(D(Re(z) + i|Im(z)|)) > 0

}
,

Y −(x) if x ∈ (−∞, x1) ∪ (x4,∞),

Y +(x) otherwise.

(4.4)

4.1.2 Bounds for X0(y) and Y0(x)

We will also require several facts about the behavior of these branches

for our future use, bounds to help prove analyticity when the functions are

composed. Here we introduce the notation Γ to represent the unit circle,

and hence GΓ to represent the unit disc, abusing notation so that Γ and GΓ
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4.1. General Theory for Homogeneous Fundamental Equations

are part of the x-plane or y-plane as needed.

We state our bounds-related results here:

1. |X0(y)| ≤ 1 if |y| = 1, with equality only possible at 1.

2. X0(y) ∈ GM ∪GMext ,∀y ∈ C\y1y2.

3. GL\x1x2 and GM\y1y2 are homotopically equivalent via X0 and Y0.

4. |X0(y)| ≤ 1 for y ∈ GL\GΓ.

Although the first three points here have backing in the literature3 [4,

pp 109, 118, 119], the general case of point number four that we need today

has only been treated in specific examples [1, 3]. We present a proof of point

number four for our general case here.

Proof. We want to show that |X0(y)| ≤ 1 for y ∈ GL\GΓ. The overarch-

ing proof structure is as follows: We show that the desired property holds

over the image Y0(GΓ ∩ GM\x1x2), and then demonstrate that that image

contains GL\GΓ. Effectively, we are illustrating how X0 and Y0 map some

regions to others.

− Lemma 1

We demonstrate that |X0(s)| < 1,∀s ∈ Y0(GΓ ∩ GM\x1x2). First,

we know that X0 ◦ Y0(t) = t,∀t ∈ GM\x1x2. Second, we take an

element e ∈ GΓ ∩ GM\x1x2. Then X0(Y0(e)) = e ∈ GΓ ∩ GM\x1x2.

Note that since e ∈ GΓ, |X0(Y0(e))| ≤ 1. Finally, we identify s =

Y0(e) ∈ Y0(GΓ ∩GM\x1x2). This results the range of possible s being

identically Y0(GΓ ∩GM\x1x2) and so the lemma holds.

− Lemma 2

We show that the image Y0(GΓ ∩ GM ) contains GL\GΓ. First some

background facts: Since we know that |Y0(x)| ≤ 1 if |x| = 1, with

equality only possible at 1, the contour Y0(Γ) ⊂ GΓ. Also, according

3Point three is not explicitly declared as it appears here, but it meets the definition.
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4.1. General Theory for Homogeneous Fundamental Equations

to the definition of L in equation (2.49), it is the contour coming from

the limit of contours approaching the line segment x1x2 under Y0.

Now we proceed by a topological argument. Our definitions for ho-

mology groups and homotopic equivalences come from [14]. Denote

A = GΓ ∩ GM\y1y2, and B = GL\GY0(bdy GΓ∩GM ). Our immediately

preceding points indicate that B contains GL\GΓ.

The boundaries of A map to the boundaries of B, we show that the

image of A under Y0 must be exactly B:

We need to work with closed sets for the time being, so we create either

an open annulus or the open unit disk to be homotopically equivalent

to A, and take the closure of whichever was needed to be A. We also

denote the closures of Y0(A) and B as A′ and B respectively. Finally,

we extend the homotopic equivalence of A and Y0(A) through Y0 to

these new sets, denoting the extended map Y, which maps boundaries

to boundaries by taking limit points to limit points. A commutative

diagram appears below depicting this construction, with the arrows

between Y0(A) and A′, and also between B and B denoting inclusion.

Our current goal is to show that A′ = B.

A oo Y
Y−1

// A′ ? B

A

OO

oo Y0

X0

// Y0(A)

OO

B

OO

For the case where A is an annulus, consider a path p from one bound-

ary of A to the other entirely within the interior of A except at the

endpoints. Y(p) leaving and returning to A′ would imply that the

image of a non-boundary point was the same as the image of a point

on the boundary, contradicting the fact that Y is injective. The case

where A is a disc admits a similar argument and result for images of

paths inside the disc mapping to paths entering and leaving the disc.

So B ⊇ A′.
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4.1. General Theory for Homogeneous Fundamental Equations

The homology groups of A are the same as those of A′ due to the

homotopic equivalence. Further, the boundaries B are part of A′.
Therefore, it is impossible for any point in B to not be part of A′

as this would put in holes different from the ones that come from the

boundaries of A and change the first homology group. So B ⊇ A′ ⊇ B.

Hence, int A′ = int B, and therefore Y0(A) = B ⊇ GL\GΓ.

The combination of these two lemmas gives the proof as desired.

4.1.3 Solution via BVP

Boundary Value Problem Setup

Our goal at this point is to manipulate our F.E. into a BVP, using

Q(x, y) = 0 (equivalently, y = Y (x), either branch,) to reduce the complex-

ity and set the values of y on L simultaneously. This gives us our starting

point, with restrictions based on the intersections of the regions of analyt-

icity of the functions:

q1(x, Y0(x))π1(x) + q2(x, Y0(x))π2(Y0(x)) = 0, x ∈ GΓ\x1x2. (4.5)

If we rewrite equation (4.5) as

q1(x, Y0(x))π1(x) = −q2(x, Y0(x))π2(Y0(x)), x ∈ GΓ\x1x2, (4.6)

we find that we can analytically continue the left hand side out to M . The

reason that the RHS is analytic is that problems can only occur when the

arguments of the functions πi leave the unit circle, as we defined them to

be generating functions (2.31), which only have guaranteed convergence on

the unit circle. To extend this, we note that Y0’s range is the unit disc given

that we take arguments in GM\GΓ, by our work in section (4.1.1). The

term that appears on the RHS is the composition π2 ◦ Y0, and so π1 can be

analytically continued out to M , leaving it with a region of analyticity of

GM .

The interval [x1, x2], and its relevance to the definition of L is all that is
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4.1. General Theory for Homogeneous Fundamental Equations

of interest for our BVP setup, so we ignore most of the region of analyticity

in favor of the following:

q1(x, Y0(x))π1(x) = −q2(x, Y0(x))π2(Y0(x)), as x approaches [x1, x2].

(4.7)

We now apply our next bit of information from (4.1.1), that Y0 ◦X0 is

the identity function. This allows us to switch to the other way of tracking

that Q(x, y) = 0, by setting x = X0(y). This change of variable applied to

equation (4.7) results in a condition over L:

q1(X0(y), y)π1(X0(y)) = −q2(X0(y), y)π2(y), y ∈ L. (4.8)

The next thing we do is observe the zeroes of q1(X0(y), y). We want to

isolate π1(X0(y)) via dividing through by the coefficient. π1(X0(y)) doesn’t

have any zeroes on L, so we are free to divide as we like, resulting in our

next step:

q2(X0(y), y)

q1(X0(y), y)
π2(y) = −π1(X0(y)), y ∈ L. (4.9)

When y ∈ L,X0(y) ∈ [x1, x2], so −π1(X0(y)) ∈ R. π1 here is a generating

function for a real data set, so putting real values into π1 returns real values.

We may now proceed to our next step by exploiting this fact, eliminating

π1(X0(y)):

Im

(
q2(X0(y), y)

q1(X0(y), y)
π2(y)

)
=

1

2

[
q2(X0(y), y)

q1(X0(y), y)
π2(y)− q2(X0(y), y)

q1(X0(y), y)
π2(y)

]
= 0, y ∈ L.

(4.10)

A small amount of algebraic manipulation of (4.10) results in

−
q2(X0(y),y)
q1(X0(y),y)(
q2(X0(y),y)
q1(X0(y),y)

)π2(y) = π2(y), y ∈ L. (4.11)

Now, equation (4.11) would fit a BVP perfectly, if the coefficient of π2(y)

39



4.1. General Theory for Homogeneous Fundamental Equations

were nonvanishing and π2 itself were analytic inside, and continuous up to

the boundary of GL. We will show that this is in fact the case.

We handle the analyticity first. We make the argument via analytic

continuation on equation (4.9), specifically the right hand side. We know

that π1 is analytic on the unit disc, and that X0 is analytic inside GL\x1x2,

and continuous up to the boundary, and maps the same to the unit disc.

Hence the composition is analytic inside GL\x1x2, as desired.

The nonvanishing part takes a bit more work: Beginning with equation

(4.9), we note that if q2(X0(y), y) had any zeroes, say wi, in GL, i ∈ I, (I =

{1, 2, . . . , n}, ) wherein multiple roots correspond to multiple wi, then we

could define the following functions to move the roots into π2.

U∗(y) =
q2(X0(y), y)

q1(X0(y), y)
∏
i∈I(y − wi)

P (y) = π2(y)
∏
i∈I

(y − wi). (4.12)

We can now claim that

U∗(y)P (y) =
q2(X0(y), y)

q1(X0(y), y)
π2(y), (4.13)

allowing us to claim that the BVP setup is now complete for the boundary

condition

U(y)P (y) = π2(y), y ∈ L (4.14)

where we define

U(y) = − U∗(y)(
U∗(y)

) . (4.15)

Boundary Value Problem Solution

Now that we have a BVP, we can begin to specify a solution. First,

however, we need to calculate the index of the BVP. Attentive readers may

have wondered why we took all the zeroes in GL rather than just on L, as

required for the BVP setup. Doing it the way we did allows us to greatly

simplify our index calculation. Moving all of the zeroes elsewhere, and

therefore not having any roots in GL ensured that the index is zero, by the
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Cauchy argument principle.

Thus the BVP solution, using the Riemann-Hilbert BVP setup, is as

follows:

P (y) = exp

(
1

2πi

∫
L

log(U(t))dt

t− y

)
(4.16)

Equation (4.16) is a formal solution, it is rare that this integral can be

evaluated analytically.

We may now use this to solve for the generating functions that remain

unknown. From the BVP solution in equation (4.16) we can easily extract

π2(y), as

π2(y) =
1∏

i∈I(y − yi)
exp

(
1

2πi

∫
L

log(U(t))dt

t− y

)
, (4.17)

and by a quick reference to table 2.4.2, we can determine π1(x) by the same

approach. Equation (4.17), with a quick reference to equation (2.23), allows

us to determine π(x, y), as

π(x, y) =
q1(x, y)π1(x) + q2(x, y)π2(y)

Q(x, y)
. (4.18)

At this point the πi,j may be extracted by taking derivatives, as is usual for

generating functions.
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Chapter 5

Conclusion

It is our hope that our work in developing tests for identifying elegantly

reparameterizable contours will be useful in working towards analytic solu-

tions of the associated Riemann-Hilbert BVPs for this subset of problems,

and that our efforts in creating a formal general solution that extends ex-

isting methods for approaching homogeneous F.E.s associated with random

walks in the quarter plane will be of use for students and queueing theo-

rists addressing those F.E.s in the future. Non-homogeneous BVPs are still

best attacked with the methods found in chapters 4, 5, and 6 of the text by

Fayolle et al. on the subject [4].

The bodies of our work in chapters 3 and 4 are developed independently.

Worse yet, they are fundamentally incompatible, as chapter 3 relies on a

construction that renders the work in chapter 4 trivial. Even if a solution

to the incompatibility were found, there would be a poor return on the

investment of going through the work in chapter 3 in addition to that of

chapter 4, as the results of chapter 4 stop at the formal solution. The

aforementioned analytic solutions that we hope to use the results of chapter

3 to find remain a goal rather than a reality at the time being. In any case,

we would still be restricting the general class of F.E.s that chapter 4 treats

to a limited subset.

There are several avenues that future work may take to extend what

appears here. Our approach for identifying special contours could be ex-

tended to any locus-characterizable contour, but it is certain that more work

needs to be done before our approach is a usable tool for queueing theorists.

Integration over these simpler contours should be easier than the natural

parameterization resulting from drawing values from [x1, x2] in equation

(2.48), but a general solution for the integrals that occur in the solution of
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Chapter 5. Conclusion

Riemann-Hilbert BVPs is yet to be found. It has been suggested that look-

ing at the non-BVP solution found in [5] alongside the formal BVP solution

found here could give hints on how to compute this integral analytically,

and others like it.
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