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Abstract

The project deals with the analysis of a general dynamical model for the spread of

HIV/AIDS and tuberculosis Co-infection. We capture in the model the dynamics

of HIV/AIDS infected individuals and investigate their impacts in the progression

of tuberculosis with and without TB treatment. It is shown that TB-only model and

HIV-only model have locally asymptotically stable disease-free equilibrium when

the basic reproduction number is less than unity and a unique endemic equilibrium

exists when the basic reproduction number is greater than unity. We analyze the

full HIV/AIDS-TB coinfection model and incorporate treatment strategy for the

exposed and active forms of TB. The stability of equilibria is derived through the

use of Van den Driessche method of generational matrix and Routh Harwitz sta-

bility criterion. Numerical simulations are provided to justify the analytical results

and to investigate the effect of change of certain parameters on the co-infection.

Sensitivity analysis shows that reducing the most sensitive parameters β1 and β2

could help to lower the basic reproduction number and thereby reducing the rate of

infection. From the study, we conclude that treating latent and active forms of TB

reduce the rate of infection, reduce the rate of progression of individuals to AIDS

stage and lowers co-infection.
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Chapter 1

Introduction

The advent of AIDS made the relationship between HIV and Tuberculosis (TB) a

public health concern and the co-infection of TB and HIV exist when individuals

are HIV positive and are either exposed or active to TB. Getting infected with TB

bacteria is not automatic for HIV infected individuals unless in contact with infec-

tious TB individuals. Similarly, individuals infectious to TB do not automatically

get infected with HIV unless in contact with HIV positive individuals.

1.1 HIV
HIV, the Human Immunodeficiency Virus is the agent responsible for the acquired

immunodeficiency syndrome (AIDS) [11, 19]. HIV is a retrovirus that destroys the

human immune system by infecting the CD4+T cells. HIV virus attacks the normal

functioning of the immune system to produce more HIV viruses [9]. Population

of viruses increase as a result of decrease in the CD4+T cells count in the body.

Individuals infected with HIV can stay with this infection for years and therefore

may not be ill or show symptoms of HIV infection [11].

HIV is not known to be transmitted casually but through sexual intercourse

[19]. HIV is secreted in the body fluid and therefore can be transmitted in a larger

amount from semen, pre-seminal fluid, vaginal secretion, and breast feeding [25].

The modes of transmitting HIV includes but not limited to unprotected sexual con-

tacts and non-sexual contacts (injection needles for drug use, direct blood contact,
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vertical transmission) [9]. HIV is capable of suppressing the immune system when

not treated, it makes individuals to be more susceptible to other infections and will

at the end be diagnosed of AIDS [1, 9].

1.1.1 Stages of HIV infection

Research shows that HIV transmission rate is not consistent and therefore the trans-

mission rate differs from different stages of infection. Progression of individuals

from one stage of infection to another changes the degree of infectiousness, and

therefore the transmission rate of viruses is grouped according to the stages of pro-

gression of the infection in an infected individuals [4].

HIV infection is classified into four different stages: primary infection, clini-

cally asymptomatic stage, symptomatic HIV infection, and progression from HIV

to AIDS.

• Primary HIV infection: This stage carries on for a few weeks and it of-

ten occur with a short flu-like illness. The immune system in the primary

stage begins to react to the virus and therefore produce HIV antibodies and

cytotoxic lymphocytes as a result of a large volume of HIV in the peripheral

blood. This process of developing detectable antibodies due to HIV infec-

tion is called seroconversion and an incomplete seroconversion may lead to

a negative HIV antibody test [4].

• Clinically asymptomatic stage: The stage carries on typically for up to

ten years, when infected individual shows no symptoms but there may be

swollen glands. HIV level in the peripheral blood reduces to very low levels

and HIV antibody test becomes positive since people remain infectious. Re-

search had shown that when a viral load test (normally use to measure HIV

RNA) is carried out, HIV is found to be active, but very active in the lymph

nodes [4].

• Symptomatic HIV infection: At this stage, HIV mutates and becomes more

stronger which leads to the destruction of the CD4+T cells. Immune system

becomes damaged and the body fails to keep replacing the lost CD4+T cells.

We can also refer to this stage as the pre-AIDS stage where individuals begin
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to show symptoms of the infection. HIV-infected individuals on treatment

may remain clinically asymptomatic as a result of treatment, and untreated

individuals may continue to experience a deteriorating immune system with

HIV symptoms getting worse.

• Progression from HIV to AIDS: At this stage, individuals develop other

opportunistic infections (for example; Tuberculosis) and they are eventually

diagnosed of AIDS as a result of the critical damage caused to the immune

system [4]. Individuals with AIDS or other infections will have a reduced

CD4+T cell usually from around 1000mm−3 to 200mm−3 or below [15].

Symptoms of full-blown AIDS appears due to an increased viral load and

this stage can be classified as the progression from HIV to AIDS stage. The

movement from HIV stage to AIDS stage usually lasts for 8−10 years dur-

ing which some individuals may progress much more rapidly while others

progress slowly [4, 15].

1.2 Tuberculosis
Tuberculosis (TB), one of the leading cause of death from a single infectious agent,

is an airborne transmitted disease caused by the releasing of Mycobacterium tuber-

culosis (M. tuberculosis) droplets in the air when an infectious individual coughs,

sneezes [6, 12, 18] or talks [16]. TB as known to be one of the most wide spread

infectious diseases caused by M. tuberculosis is one of the world’s leading causes

of loss of life [14, 18]. Larger number of TB cases in the United states are caused

by M.tuberculosis also called tubercle bacilli [8].

M.tuberculosis can be found in airborne particles called droplet nuclei and

these particles can be suspended in the air for several hours depending on the envi-

ronment. M.tuberculosis is of 1−5 microns in diameter [8].

Individuals exposed to infectious people at all time for long period of time stand

a chance of being infected. According to World Health Organization (WHO), it is

estimated that one third of the population of people in the world is infected with

TB and as a result leads to 2−3millions death each year [6, 13], with about 8−9

millions developing active TB [13]. Although, 90%− 95% percent of TB cases

occur in developing countries and about 1.8 million new cases of tuberculosis occur
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per year in India [20].

TB disease is a disease with slow dynamics and therefore the epidemics must

be studied over a long window in time [6, 13, 17]. Understanding the difference

between TB infection and the disease itself will be very important because an in-

fected individual may not be infectious [9]. Infected individuals may remain in the

asymptomatic stage throughout their entire lives (Exposed or Latent TB) [3, 24]

since exposed periods range from months to decades depending on individuals in-

fected and their immune system [6]. Exposed stage is a stage where individuals

show no symptoms of the infection and are not infectious. Individuals progress

from exposed stage to infectious or active stage and TB disease is as a result of this

progression [9].

Although, the probability of progression towards active TB usually depends on

age of infection [2]. Individuals in this active stage show symptoms of the infection

and are infectious [9].

We can group Active TB (TB disease) as pulmonary and extra-pulmonary

kinds. Pulmonary TB is often seen in adults and transmitted by M.tuberculosis,

while extra-pulmonary is more frequent among women, children and in HIV in-

fected individuals [16]. We can classified tuberculosis within the period of five

years after infection as primary TB, while tuberculosis after the period of five years

from initial infection can be classified as secondary TB. Only about 5% of infected

individuals develop primary TB within the period of five years if there are no other

conditions to accelerate the infection. Exogenous reinfection (exogenous reactiva-

tion) which is classified under secondary TB is the aggravation of an old infection

[24].

Some of the factors that can affect the transmission of M.tuberculosis are the

number, vitality, and exacerbation of organisms within sputum droplet nuclei, and

most significantly, time spent near an infectious individual. Transmission is also

affected by Socio-economic status, family size, crowding, malnutrition, and bad

health care. Mathematical model for tuberculosis have been a useful tool in as-

sessing the spread of the infection, the epidemiological results and control of the

infection [6].
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1.3 HIV and TB
HIV and TB accentuate the progression of each other [21]. Immunity deteriorates

as HIV infection progresses and this makes infected individuals more susceptible

to any opportunistic infection. Treatments of both HIV and TB in many societies

have altered the co-infection of HIV and TB. One third of 39.5 million of people

infected with HIV are co-infected with TB and individuals infected with HIV are

expected to develop TB with probability of 0.5. Many TB and HIV co-infected

individuals are at higher risk of developing active TB (30 to 50 times more) than

only TB infected individuals [19]. There is always increase in the recurrence rate

of TB in HIV infected individuals due to endogenous reactivation and exogenous

re-infection [21].

1.3.1 Impact of HIV on TB

The HIV epidemic has significantly impacted TB dynamic. Over the last 5 years,

one third of the detected increases in active TB cases can be related to the HIV

epidemic [19]. How HIV increases the incidence of new M.tuberculosis infections

had been described by several reports. It aggravates the degree of infectiousness of

TB and re-activates latent M.tuberculosis[10].

1.3.2 Impact of TB on HIV

Immunocompromised HIV infected individuals are at higher risk of opportunistic

infections like TB, TB tends to increase the HIV replication rate. Replication of

HIV may lead to fast progression to AIDS [7, 19].

1.3.3 Treatment of HIV and TB

Although HIV-related TB can both be treated and prevented, co-infection is in-

creasing in developing nations where resources are limited [16]. The combined

used of highly active antiretroviral therapy (HAART) and antituberculosis treat-

ment is the present drug regimen to treat HIV-TB co-infection [9]. Interaction be-

tween both drug regimens can sometimes cause complications, especially between

protease inhibitors (antituberculosis drug) and non-nucleotide reverse transcriptase

inhibitors (antiretroviral drug). Due to these complications, some protocols have
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been made to treat HIV-TB co-infection: Treatment of TB comes before HIV in-

fection treatment, HAART if already in use must be adjusted to implement the use

of TB drug treatment, and treatment timing is important if an infected individual

has not started HAART treatment. Drug treatment for adverse drug reactions need

to be tracked. Carrying out TB test on HIV infected individuals to know a good

time to start prophylactic treatment is also a preventive measure [9]. Starting pro-

phylactic treatment can reduce the risk of progression to active TB in HIV infected

and TB exposed individuals. Some developing countries still have no access to

these drugs and treatments. However, mathematical modelling of the transmission

dynamics of the coinfection has been in place due to public health concern [21].

In this project, we look at the possible future effect of treating TB on the co-

infection of HIV and TB using a mathematical model. Chapter 1 summarizes the

basic background information on HIV and TB, the rest of the thesis is therefore

organized as follows:

In chapter 2, we present our motivation and review some studies done on

HIV/AIDS and TB and these will be used as a basis for the formulation of our

model. In chapter 3, a model for HIV/AIDS and TB co-infection is developed and

allows the incorporation of both infections and TB treatment. Two sub-models of

the full model are analysed and the full model is also analysed. Computation of

their reproduction numbers and analysis are done. Chapter 4 highlights analytical

results using selected numerical simulations. Sensitivity is conducted to identify

the most sensitive parameter(s).
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Chapter 2

Literature Review

Three selected studies done either on TB, HIV, and HIV/TB would be reviewed in

this chapter and use them as basis for our study on HIV/AIDS-TB co-infection.

Roeger et al. [19] formulated a mathematical model and considered a simple

deterministic model that includes the co-infection of HIV/TB and TB treatment.

The basic reproduction numbers of each of the diseases R1 (TB), R2 (HIV) and

both diseases R = max{R1,R2} were found and the model was qualitatively anal-

ysed. They obtained limited analytical results where they found the disease free

equilibrium for the full model to be locally asymptotically stable when R < 1

and the disease free equilibrium point for TB-only model to be locally asymptoti-

cally stable when R1 > 1 and R2 < 1. Analytical results showed that R1 < 1 and

R2 > 1 may not give a stable HIV-only equilibrium and there is possibility of TB

coexisting with HIV when R2 > 1. Results of their numerical simulation show

that the increase in the rate at which TB progresses from latent to active form of

TB in individuals that are co-infected with both diseases contributed greatly to the

prevalence of TB. Similarly, they were also able to show that increase in the rate

at which HIV progresses from HIV to AIDS in co-infected individuals contributed

to the prevalence of HIV and cause damped oscillations in the system. From their

simulation, they found that it is possible to have co-infection of HIV and TB when

R1 < 1 and R2 > 1. Their model provided general insights into the effects of HIV

infection on TB and vice versa. Their numerical results suggested that investing

more in reducing the prevalence of HIV could be an effective way to reduce or
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control the impact of TB. Results of their model were only based on local mathe-

matical analysis, and their deterministic model needs to be adjusted to incorporate

the mode of HIV transmission and the treatment of latent and active forms of TB.

We can therefore say that, the dynamics of the co-infection still need to be well

studied mathematically and theoretically.

Chowell-Puente et al. [9] developed an epidemiological model to analyse the

dynamical interaction of HIV/AIDS and TB epidemic in South Africa among adults

between the age of 15 to 49. Their model was analysed to determine the level to

which the HIV epidemic aggravates the TB epidemic. They conducted sensitivity

and uncertainty analysis to determine the effect of changing the parameter values

on the model and to know the parameter value(s) that is most sensitive to the basic

reproduction (R0). Numerical simulations were also done to know the long term

effect of both epidemics. The exponential curve fit to the population data from

1970 to 2005 was done and they numerically estimated the annual growth rate of

South Africa from curve fitting. The TB-free model was shown to have a globally

stable disease free equilibrium when RHIV
0 < 1 and a locally asymptotically stable

endemic equilibrium when RHIV
0 > 1 while the HIV-free model was shown to have

a locally stable disease free equilibrium when RT B
0 < 1. The basic reproduction

number R0 for the full model was determined by the max{RT B
0 ,RHIV

0 }. Their

results showed that HIV-TB co-infection will eventually shift the declining trend

of total TB cases in South Africa. Therefore, they suggested that treatment should

be focussed on HIV-positive individuals who are latently infected with TB because

they are at a higher risk of progressing to active TB. Results of their model were

only based on a particular geographical area (South Africa) and this estimation

may not be true in general.

Hussaini [15] formulated a deterministic model which incorporates public health

education campaign as an intervention strategy for the prevention of HIV/AIDS.

The model was analysed to know more about the epidemiological dynamics of

HIV/AIDS. The study investigated when the public health education program was

100% effective. The global stability of the disease-free equilibrium of the model

was done. The threshold analysis of the effective reproduction number showed

that we could have a positive, no, or harmful impact when public health education

campaign is used depending on the value of impact factor (ϒ). Results of the nu-
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merical simulations suggested that the universal strategy is more effective than any

other strategy in reducing new HIV cases and that the prospect of effective control

of HIV increases with increasing efficacy and coverage rate of the public health

education campaign.

Ideas from these studies are used to formulate a general mathematical model to

investigate implications of HIV/AIDS-TB co-infection and to show that increase in

the spread of TB infections have been associated with the spread of HIV infection

and that there would be a significant decrease in the co-infection cases if TB is

treated.
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Chapter 3

Mathematical Analysis of the
Model

3.1 Model formulation
Mathematical model to study the dynamics of HIV/AIDS-TB co-infection is pre-

sented in this chapter. The schematic diagram of the model is shown in figure 3.1.
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Figure 3.1: The model diagram shows how susceptible individuals are in-
fected with TB and HIV. We see from the diagram the transmission
dynamics of the two infections. The population is divided into nine
epidemiological classes: Susceptible (yS), Exposed TB (yE), Infectious
TB (yI), HIV-positive (ySI), HIV infectious and TB Exposed (yEI), In-
fectious with both TB and HIV (yII), AIDS individuals (yA), treated
individuals exposed or infected with TB (yT ), dually infected individ-
uals with TB treatment only (yT I). Classes (yEI), (yII), (yT I) and (yA)
represent the co-infection of HIV/AIDS and TB.

From figure 3.1, we have the susceptible class (yS) to be individuals with no

infection (no TB and no HIV infection). The model is structured such that sus-

ceptible individuals can either be infected with TB by individuals in the epidemi-

ological classes yI or yII and with HIV by individuals in the classes ySI , yEI , yII or

yT I . Note that individuals with HIV can easily progress to yII or yA through TB

infection and reactivation of the exposed TB infection and we can say that HIV

increases the rate of progression of TB infection.

The Exposed class (yE) are individuals with TB infection but not infectious
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and they can be infected with HIV by individuals in the classes ySI , yEI , yII or yT I .

The infectious TB class (yI) are individuals with TB disease and are infectious.

They can also be infected with HIV by individuals in the classes ySI , yEI , yII or

yT I . The HIV-positive class ySI are HIV-positive individuals and can be infected

with TB infection by individuals in the classes yI and yII . The yEI class are HIV-

positive and exposed TB individuals. The class yII are HIV-positive and infectious

TB individuals. The class yT are treated infected TB individuals. The class (yT I)

are treated dually infected individuals. Finally, the class yA are AIDS individuals

with either AIDS or TB and AIDS.

Parameters π denote the rate at which individuals are recruited into the suscep-

tible class and µ denote the rate at which they can die naturally. Since TB can be

spread by individuals in the classes yI and yII to susceptible individuals and HIV

can be transmitted by individuals in the classes ySI , yEI , yII or yT I to susceptible

individuals. Thus susceptible individuals infected with TB enter the class yE at

the rate β1
(yI +ρ1yII)

N
while susceptible individuals infected with HIV enter the

class ySI at the rate β2
(ySI +η1yEI +η2yII +η3yT I)

N
where β1 and β2 are transmis-

sion rates per year for TB and HIV respectively, the quantity
(yI +ρ1yII)

N
is the

probability of having contact with an individual infected with TB out of the to-

tal population and
(ySI +η1yEI +η2yII +η3yT I)

N
is the risk measure involved with

HIV levels in the population.

Parameter ρ1 > 1 indicates that individuals with HIV and infectious TB are

more infectious to pass TB disease compared with individuals with only infectious

TB. The rates 1 ≤ η1 ≤ η2 ≤ η3 indicate that becoming infected with HIV from

individuals with HIV-positive and TB disease or HIV-positive and exposed TB or

HIV-positive and treated TB is easier than from just HIV-positive individuals.

Exposed TB individuals can also move to HIV-positive class (yEI) at the rate

β2
(ySI +η1yEI +η2yII +η3yT I)

N
or progress to TB infectious class (yI) at the rate k,

where β2 is the HIV transmission rate. Infectious TB individuals (yI) and exposed

TB individuals (yE) can be treated and move to TB treated class (yT ) at the rate γ2

and γ1 respectively. Infectious TB individuals can die from TB at the rate α , or

enter the class (yII ) at the rate β2
(ySI +η1yEI +η2yII +η3yT I)

N
. Individuals who
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are HIV-positive in the class ySI can be infected with TB and they will enter the

HIV-positive and exposed TB class (yEI ) at the rate β1
(yI +ρ1yII)

N
and die due to

HIV at the rate ν . Otherwise, they progress to the AIDS class (yA) at the rate δ1.

Individuals in the class (yEI) progress to the class (yII) at the rate kH or die due

to HIV at the rate ν . Figure 3.1 shows that Individuals in the class (yEI) can also

progress to AIDS class (yA) or treated class (yT I) at the rate δ2 and γ1 respectively.

Individuals in the class (yII) progress to the treated class (yT I) and AIDS class (yA)

at the rate γ2 and δ3 respectively. Individuals in the class (yII) die from both HIV

and TB disease at the rate ν and α respectively. Individuals in the class (yA) die due

to both infections at the rate τ . Individuals in the class (yT ) can be reinfected by

both HIV and TB and enter the class (yE) and (yT I) at the rate β1
(yI +ρ1yII)

N
and

β2
(ySI +η1yEI +η2yII +η3yT I)

N
respectively. Individuals in the class (yT I) can die

due to HIV at the rate ν or progress to the AIDS class (yA) at the rate δ4. Individuals

in all the nine classes can die naturally at the rate µ .

3.2 Model assumptions
• We can have a model with a constant or varying population, so we assume

susceptible individuals are recruited into the population at a constant rate π .

• Since it is difficult to identify any symptoms clinically at the exposed level

of TB, we then assume that TB exposed individuals are not infectious and

can not transmit TB infection.

• TB could be spread through different means as discussed in the first chap-

ter. We therefore assume in the model that TB infection is spread between

infectious and susceptible individuals by airborne spread only.

• We have different means through which HIV could be transmitted, but the

model assumes HIV is transmitted between infectious and susceptible indi-

viduals neglecting the mode of transmission.

• Since it is possible for dually infectious individuals to develop or not develop

AIDS in reality and in the presence of TB treatment. Hence, we assume that

Individual infectious with both diseases may or may not develop AIDS.
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• Since we know that individuals infected with TB can not fully recover, then

we assume that individuals would not completely recover from TB but would

be exposed.

• We ignore the treatment of HIV/AIDS since it is difficult to cure or eradicate

it.

• Since HIV treatment is not considered in this model, we then assume that it

is possible for HIV-positive individuals to die due to HIV,

• We know that most people infected with HIV at the initial stage may or may

not show any symptoms of it, we therefore assume that individuals can die

due to HIV but at a very low probability when not co-infected with TB.

• Susceptible individuals get infected with HIV following contact with HIV

infected individuals at a rate λH and they acquire TB infection from individ-

uals with active TB only at a rate λT .

• Individuals in the class (yA) die due to either AIDS or TB and AIDS at the

same rate τ and assume it is difficult to identify the cause of deaths in this

class.

• Since the mode of transmission is neglected and it is possible for individuals

in the class yA to spread TB or HIV. We therefore assume that individuals in

the class (yA) are too weak to transmit any disease or infect others outside

the class.

• We assume that individuals in the class yA can either remain in this class or

die. We assume they will not recover from this class because the immune

system will not be strong enough to fight against infections.

• Since it is possible for infectious TB individuals to transmit infection, we

therefore assume that treated TB individuals (yT ) may not transmit infection

since they are on treatment, but could be reinfected since they would not

fully recover.

• Co-infected individuals on TB treatment may also not transmit TB infection,

but can transmit HIV infection since they are not on HIV treatment.
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• We assume that κH ≥ κ since it is easier to be TB infectious when one is

co-infected with HIV, i.e. we assume it is faster to move from class yEI to

class yII than from the class yE to class yI .

Based on the assumptions above and the model diagram, the model representing

the dynamics of HIV/AIDS and tuberculosis is given by a system of non-linear or-

dinary differential equation 3.1, and table 3.1 gives the description of the variables

and parameters in the model.

ẏS = π−λT yS−λHyS−µyS,

ẏE = λT yS−λHyE +λT yT − (µ + k+ γ1)yE ,

ẏI = kyE −λHyI− (µ +α + γ2)yI,

ẏSI = λHyS−λT ySI− (µ +ν +δ1)ySI,

ẏEI = λHyE +λT ySI− (µ +ν + kH +δ2 + γ1)yEI, (3.1)

ẏII = kHyEI +λHyI− (µ + γ2 +δ3 +α +ν)yII,

ẏA = δ1ySI +δ2yEI +δ3yII− (µ + τ)yA +δ4yT I,

ẏT = γ1yE + γ2yI−λT yT −λHyT −µyT ,

ẏT I = γ1yEI + γ2yII +λHyT − (µ +ν +δ4)yT I.

where

λT =
β1

N
(yI +ρ1yII)

and

λH =
β2

N
(ySI +η1yEI +η2yII +η3yT I)

The total population N(t) is given by

N(t) = yS(t)+ yE(t)+ yI(t)+ ySI(t)+ yEI(t)+ yII(t)+ yA(t)+ yT (t)+ yT I(t)

and it satisfies

dN
dt

= π−µN−α(yI + yII)−ν(ySI + yEI + yII + yT I)− τyA
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where π is the recruitment rate, βi, i = 1,2 is the transmission rate, µ is the natural

death rate, γi, i = 1,2 is the progression rate from infected stage to treated stage,

δi, i = 1,2,3,4 is the progression rate from HIV infected stage to AIDS stage, α

and ν are disease induced death rates for TB and HIV respectively. Table 3.1 gives

the detailed definitions.

Table 3.1: Model variables, parameters and their descriptions

Variable Description
yS(t) Susceptible individuals
yE(t) Latent TB individuals
yI(t) Infectious(Active) TB individuals
ySI(t) HIV-positive individuals
yEI(t) HIV infectious and TB latent individuals
yII(t) Individuals Infectious with both TB and HIV
yA(t) Individuals with AIDS
yT (t) Treated individuals with TB
yT I(t) Dually infected individuals treated of TB
Parameter Description
π Recruitment rate of susceptible individuals
β1 probability of TB transmission to a susceptible per contact with an infectious TB

individual
β2 probability of HIV transmission to a susceptible per contact with an HIV individual
µ natural death rate
τ death rate due to AIDS
ν death rate due to HIV
α death rate due to TB
k rate of progression of yE to yI

kH rate of progression of yEI to yII

δ1 rate of progression of ySI to yA

δ2 rate of progression of yEI to yA

δ3 rate of progression of yII to yA

δ4 rate of progression of yT I to yA

γ1 Treatment rate of latent TB individuals
γ2 Treatment rate of infectious TB individuals
ρ1 coefficient of infectiousness of yII to transmit TB disease
η1 coefficient of infectiousness of yEI to transmit HIV-positive disease
η2 coefficient of infectiousness of yII to transmit HIV-positive disease
η3 coefficient of infectiousness of yT I to transmit HIV-positive disease
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We will study the dynamics of the system 3.1 based on biological consideration

in the region

Θ =

{
(yS + yE + yI + ySI + yEI + yII + yA + yT + yT I) ∈R9

+ : N ≤ π

µ

}
, (3.2)

which is positively invariant with respect to the model system 3.1. We need to

show that all variables and parameters of model system 3.1 are all positive for all

time since the model is for human populations.

Lemma 3.2.1. The region R9
+ is positive everywhere for model 3.1 which estab-

lishes that our model does not predict negative values for the state variables at any

future time.

Proof.

Let t1 = sup{t > 0 : yS≥ 0,yE ≥ 0,yI ≥ 0,ySI ≥ 0,yEI ≥ 0,yII ≥ 0,yA≥ 0,yT ≥ 0,yT I ≥ 0∈ [0, t]}.

From the first equation in the model 3.1, we have

ẏS = π−λT yS−λHyS−µyS

where λT =
β1

N
(yI +ρ1yII) and λH =

β2

N
(ySI +η1yEI +η2yII +η3yT I).

⇒ ẏS +(λT +λH)yS +µyS = π

⇒ d
dt

(
yS(t)exp

{
µt +

∫ t

0
(λT (ξ )+λH(ξ ))dξ

})
= πexp

{
µt +

∫ t

0
(λT (ξ )+λH(ξ ))dξ

}
.

Then we have,

yS(t1)exp
{

µt1 +
∫ t1

0
(λT (ξ )+λH(ξ ))dξ

}
−yS(0)=

∫ t1

0
πexp

{
µϕ +

∫
ϕ

0
(λT (ρ)+λH(ρ))dρ

}
dϕ.

Hence,

yS(t1) = yS(0)exp
{
−
(

µt1 +
∫ t1

0
(λT (ξ )+λH(ξ ))dξ

)}
+exp

{
−
(

µt1 +
∫ t1

0
(λT (ξ )+λH(ξ ))dξ

)}
×
∫ t1

0
πexp

{
µϕ +

∫
ϕ

0
(λT (ρ)+λH(ρ))dρ

}
dϕ ≥ 0.
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This can also be shown for other compartments.

Lemma 3.2.2. Every solutions in Θ remain in Θ for all time.

Proof. We know that the rate of change of the total population N(t) gotten by

adding equations in 3.1 is given by

dN
dt

= π−µN−α(yI + yII)−ν(ySI + yEI + yII + yT I)− τyA.

Considering initial conditions in R9
+ and t ≥ 0, we have

dN
dt
≤ π−µN⇒ d

dt
(Neµt)≤ πeµt

⇒ N(t)eµt −N(0)≤ π

µ
(eµt −1)≤ π

µ
eµt .

And for t ≥ 0,

N(t)≤ N(0)e−µt +
π

µ
. (3.3)

If (y∗S,y
∗
E ,y
∗
I ,y
∗
SI,y

∗
EI,y

∗
II,y
∗
A,y
∗
T ,y
∗
T I) is an Θ limit point of a region in R9

+, such that

there exist a subsequence ti→ ∞ and

lim
t→∞

(yS(ti),yE(ti),yI(ti),ySI(ti),yEI(ti),yII(ti),yA(ti),yT (ti),yT I(ti))= (y∗S,y
∗
E ,y
∗
I ,y
∗
SI,y

∗
EI,y

∗
II,y
∗
A,y
∗
T ,y
∗
T I).

Therefore, lim
t→∞

N(ti) = N∗ = y∗S,y
∗
E ,y
∗
I ,y
∗
SI,y

∗
EI,y

∗
II,y
∗
A,y
∗
T ,y
∗
T I.

If we evaluate t = ti at i→∞, we have N∗≤ π

µ
and we can say that (y∗S,y

∗
E ,y
∗
I ,y
∗
SI,y

∗
EI,y

∗
II,y
∗
A,y
∗
T ,y
∗
T I)∈

Θ.

Thus, for initial values (yS(0),yE(0),yI(0),ySI(0),yEI(0),yII(0),yA(0),yT (0),yT I(0))∈
R9

+, the trajectory lies within Θ and we consider the model to be well posed math-

ematically and epidemiologically.

3.3 Model analysis
Gaining insights into the dynamics of the models for HIV sub-model(HIV-only

model) and TB sub-model(TB-only model) will be a first step to understanding

more about the co-infection.
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3.3.1 HIV sub-model

We have the model with HIV only by setting yE = yI = yEI = yII = yT = yT I = 0

in 3.1 and it is given by

ẏS = π−λHyS−µyS,

ẏSI = λHyS− (µ +ν +δ1)ySI, (3.4)

ẏA = δ1ySI− (µ + τ)yA,

where λH =
β2

N
(ySI) and now we have N = yS + ySI + yA.

We can show for this model that the region

Θ1 =

{
(yS,ySI,yA) ∈R3

+ : N ≤ π

µ

}
,

is positively invariant and solutions starting in Θ1 approach, enter or stay in Θ1

Disease free equilibrium point

Disease-free equilibrium point is a steady state solution where there is no HIV

infection and AIDS disease in the population.

When there are no diseases in the population, the non-negative population val-

ues are

ySI = yA = 0. (3.5)

Set the right hand side of the second and third equation in 3.4 to zero and apply

equation 3.5, then the HIV sub-model has a disease-free equilibrium point (DFE)

of

E0H =

(
π

µ
, 0, 0

)
.

Reproduction number R0

The basic reproduction number R0 is defined as the number of secondary infections

produced by an infectious individual introduced during the period of infectious-

ness into a totally susceptible population [24]. We can distinguish new infections
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from all other changes in population so as to find R0. Let Fi be the vector rates

of appearance of new infections in each compartment i (i = 1,2), V +
i (x) be the

vector rates of transfer of individuals into the particular compartment of i by all

other means, V −i (x) be the vector rates of transfer of individuals out of particular

compartment of i. We can find R0 = ρ(FV−1) [24]. In this case, we have the re-

production number RH as the number of HIV infections produced by HIV positive

cases.

Note that we have two infectious classes ySI,yA, and the matrix showing the

rate of appearance of new infections in compartment i is given by

F =

(
λHyS

0

)
.

The matrix showing the rate of transfer of individuals in and out of compartments

i is

V = V −−V + =

(
(µ +ν +δ1)ySI

(µ + τ)yA−δ1ySI

)

where V + =

(
0

δ1ySI

)
and V − =

(
(µ +ν +δ1)ySI

(µ + τ)yA

)
.

The Jacobian matrix of F evaluated at the disease free equilibrium point, DFE=
(

π

µ
,0,0

)
is given by

F =
∂F (E0H)

∂x j
=

(
β2 0

0 0

)
where x j = ySI,yA for j = 1,2.

The Jacobian matrix of V evaluated at the disease free equilibrium point DFE

is

V =
∂V (E0H)

∂x j
=

(
(µ +ν +δ1) 0

−δ1 (µ + τ)

)
.

The next generation matrix FV−1 is given by(
β2

(µ+ν+δ1)
0

0 0

)
.
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The dominant eigenvalues of FV−1 which is the spectral radius of the matrix FV−1

gives the basic reproduction number for HIV/AIDS from the model (3.4) as;

RH = ρ(FV−1) =
β2

(µ +ν +δ1)
,

where

•RH is the reproduction number for HIV/AIDS dynamics given by the product

of the probability of HIV infection β2 for susceptible per contact with an HIV

individual and the probability that an infective progresses from HIV-positive to

AIDS stage
1

(µ +ν +δ1)
.

Stability analysis of disease-free equilibrium point

The Jacobian matrix of the system of equations 3.4 is given by

J =


−(µ +λH)

−β2
N yS 0

λH −(µ +ν +δ1)+
β2
N yS 0

0 δ1 −(µ + τ)

 .

Theorem 3.3.2. The disease free equilibrium E0H point of HIV-only model is lo-

cally asymptotically stable (LAS) if RH < 1 and unstable, if RH > 1.

Proof. The Jacobian matrix J evaluated at the disease free equilibrium DFE point

is given as

J0H =


−µ −β2 0

0 −(µ +ν +δ1)+β2 0

0 δ1 −(µ + τ)

 .

To determine the stability of disease-free equilibrium point, we use |J0H −λ I|= 0
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to obtain eigenvalues of J0H .∣∣∣∣∣∣∣∣∣∣∣∣

−µ−λ −β2 0

0 −(µ +ν +δ1)+β2−λ 0

0 δ1 −(µ + τ)−λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (3.6)

We can factor out −(µ + τ)−λ from 3.6 to have

λ1 =−(µ + τ)< 0,

which reduces 3.6 to∣∣∣∣∣∣∣
−µ−λ −β2

0 −(µ +ν +δ1)+β2−λ

∣∣∣∣∣∣∣= 0,

whose eigenvalues are the diagonal elements

λ2 =−µ < 0 and λ3 = β2− (µ +ν +δ1).

We can write λ3 = β2− (µ +ν +δ1) in terms of RH as

λ3 = (RH −1)(µ +ν +δ1)

The eigenvalue λ3 is negative or have negative when RH−1< 0 or when 1−RH >

0 i.e. when RH < 1.

Since λ1, λ2, λ3 are all negative or have negative real parts when RH < 1,

we say the disease free equilibrium point is locally asymptotically stable when

RH < 1. This completes the proof.
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We can rewrite model 3.4 as,

dU
dt

= F(U,V ),

dV
dt

= G(U,V ), G(U,0) = 0, (3.7)

where U = yS and V = (ySI,yA), with U ∈R1
+ denoting the number of susceptible

individuals and V ∈R2
+ denoting the number of infected individuals.

We now denote the disease free equilibrium by,

E0H = (U∗,0), where U∗ =
(

π

µ

)
. (3.8)

Conditions S1 and S2 in equation 3.9 must be satisfied to guarantee local asymp-

totic stability.

S1 :
dU
dt

= F(U,0), U∗ is globally asymptotic stable (g.a.s)

S2 : G(U,V ) = AV − Ĝ(U,V ), Ĝ(U,V )≥ 0 for (U,V ) ∈Θ1, (3.9)

where A = DV G(U∗,0) denotes the M-matrix (the off diagonal elements of A are

non-negative) and Θ1 denotes the region where the model makes biological sense.

Theorem 3.3.3 holds if system 3.7 satisfies the conditions in 3.9.

Theorem 3.3.3. The disease free equilibrium point E0H of HIV-only model is glob-

ally asymptotically stable if RH < 1 and conditions in 3.9 are satisfied.

Proof. We have from theorem 3.3.2 that E0H is locally asymptotically stable if

RH < 1. Now consider

F(U,0) = [π−µyS], (3.10)

G(U,V ) = AV − Ĝ(U,V ), A =

β2− (µ +ν +δ1) 0

δ1 −(µ + τ)

 . (3.11)

Ĝ(U,V ) =

Ĝ1(U,V )

Ĝ2(U,V )

=

β2
(
1− 1

N

)
(ySI)

0

 . (3.12)
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We have the conditions in 3.9 satisfied since Ĝ1(U,V ) ≥ 0 and Ĝ2(U,V ) = 0⇒
Ĝ(U,V ) ≥ 0. And therefore we can conclude that E0H is globally asymptotically

stable for RH < 1. This completes the proof.

Endemic equilibrium points

We can solve equations in 3.4 in terms of the force of infection λ
∗
H =

β2

N∗
(y∗SI)

to find the conditions for the existence of an equilibrium for which HIV/AIDS is

endemic in the population.

Equating the right-hand side of equations 3.4 to zero, we have

π−λ
∗
Hy∗S−µyS = 0, (3.13)

λ
∗
Hy∗S− (µ +ν +δ1)y∗SI = 0, (3.14)

δ1y∗SI− (µ + τ)y∗A = 0. (3.15)

From equation 3.13 to 3.15, we have

y∗S =
π

(µ +λ ∗H)
, (3.16)

y∗SI =
λ ∗Hy∗S

(µ +ν +δ1)
, (3.17)

y∗A =
δ1y∗SI
(µ + τ)

. (3.18)

And the endemic equilibrium is given by

E∗H = (y∗S, y∗SI, y∗A) ,

where λ
∗
H =

β2y∗SI
N∗

.
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From equation 3.17, we have

y∗SI
y∗S

=
λ ∗H

(µ +ν +δ1)
,

y∗SI
y∗S

=
1

(µ +ν +δ1)

(
β2y∗SI
N∗

)
,

N∗

y∗S
=

1
(µ +ν +δ1)

(
β2y∗SI
y∗SI

)
,

N∗

y∗S
=

β2

(µ +ν +δ1)
,

N∗

y∗S
= RH ,

RH =
N∗

y∗S
,

=
y∗S + y∗SI + y∗A

y∗S
,

= 1+
y∗SI
y∗S

+
y∗A
y∗S

,

RH = 1+
λ ∗H

(µ +ν +δ1)
+

λ ∗Hδ1

(µ + τ)(µ +ν +δ1)
,

RH −1 =
λ ∗H

(µ +ν +δ1)

(
1+

δ1

(µ + τ)

)
,

RH −1 = λ
∗
HΠ,

λ
∗
H =

(RH −1)
Π

,

where Π is denoted as the mean infective period which is given by

Π =
1

(µ +ν +δ1)

(
1+

δ1

(µ + τ)

)
.

When λ ∗H is substituted into the endemic equilibrium point in 3.16 to 3.18, we will
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obtain the endemic equilibrium point in terms of RH as

y∗S =
πΠ

µΠ+(RH −1)
,

y∗SI =
(RH −1)y∗S

Π(µ +ν +δ1)
, (3.19)

y∗A =
δ1(RH −1)y∗S

Π(µ + τ)(µ +ν +δ1)
.

Theorem 3.3.4. The endemic equilibrium E∗H point of HIV-only model is locally

asymptotically stable (LAS) if RH > 1.

Proof. The Jacobian matrix J evaluated at the endemic equilibrium E∗H point is

given as

J∗H =


−(µ +λ ∗H)

−β2
RH

0

λ ∗H
β2
RH
− (µ +ν +δ1) 0

0 δ1 −(µ + τ)

 ,

where RH =
N∗

y∗S
and λ

∗
H =

(RH −1)
Π

.

To determine the stability of endemic equilibrium point, we use |J∗H −λ I|= 0

to obtain eigenvalues of J∗H .

|J∗H −λ I|=

∣∣∣∣∣∣∣∣∣∣∣∣

−(µ +λ ∗H)−λ
−β2
RH

0

λ ∗H
β2
RH
− (µ +ν +δ1)−λ 0

0 δ1 −(µ + τ)−λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

λ1 =−(µ + τ) and
(
−(µ +λ

∗
H)−λ

)(
β2

RH
− (µ +ν +δ1)−λ

)
+

β2λ ∗H
RH

,

whose characteristic equation is given by

Aλ
2 +Bλ +C = 0.
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Coefficients A B and C can be written in form of RH as

A = 1,

B = (µ +λ
∗
H),

C =
β2λ ∗H
RH

.

We use the Routh-Hurwitz stability criterion for second order polynomial so as to

be sure that all eigenvalues of J∗H are either negative or have negative real parts.

The following conditions must hold for stability:

A > 0, B > 0 and C > 0.

Clearly, A > 0, B > 0 and C > 0 when λ ∗H > 0, i.e when RH > 1.

All the Routh-Hurwitz criterion conditions are satisfied when RH > 1. Hence

E∗H is asymptotically stable when RH > 1.

3.3.5 TB sub-model

We have the model with TB only by setting ySI = yEI = yII = yA = yT I = 0 in

equation 3.1 and it is given by

ẏS = π−λT yS−µyS,

ẏE = λT yS +λT yT − (µ +κ + γ1)yE , (3.20)

ẏI = κyE − (µ +α + γ2)yI,

ẏT = γ1yE + γ2yI−λT yT −µyT ,

where λT =
β1yI

N
and now we have N = yS + yE + yI + yT .

We can show for this model that the region

Θ2 =

{
(yS,yE ,yI,yT ) ∈R4

+ : N ≤ π

µ

}
,

is positively invariant and solutions starting in Θ2 approach, enter or stay in Θ2
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Disease free equilibrium point

When there is no TB disease in the population, the non-negative population values

are

yE = yI = yT = 0. (3.21)

Set the right hand side of equation 3.20 to zero and apply 3.21, then our model has

a disease-free equilibrium point (DFE) of

E0T =

(
π

µ
, 0, 0, 0

)
.

Reproduction number R0

In this case, we have the reproduction number RT as the number of TB infections

produced by infectious TB cases.

Note that we have three infectious classes yE ,yI,yT , and the matrix showing

the rate of appearance of new infections in compartment i is given by

F =

 λT yS +λT yT

0

0

 .

The matrix showing the rate of transfer of individuals in and out of compartments

i is

V = V −−V + =

 (µ +κ + γ1)yE

(µ +α + γ2)yI−κyE

λT yT +µyT − γ1yE − γ2yI


The jacobian matrix of F evaluated at the disease free equilibrium point, DFE=

(
π

µ
,0,0,0

)
is given by

F =
∂F (E0T )

∂x j
=

0 β1 0

0 0 0

0 0 0

 where x j = yE ,yI,yT for j = 1,2,3.
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The jacobian matrix of V evaluated at the disease free equilibrium point DFE

is

V =
∂V (E0T )

∂x j
=

(µ +κ + γ1) 0 0

−κ (µ +α + γ2) 0

−γ1 −γ2 µ


The dominant eigenvalues of FV−1 which is the spectral of the matrix FV−1

gives the basic reproduction number for TB from the model 3.20 as;

RT = ρ(FV−1)=
β1κ

(µ +κ + γ1)(µ +α + γ2)
=

(
β1

(µ +α + γ2)

)(
κ

(µ +κ + γ1)

)
,

where

• RT is the reproduction number for TB dynamics given by the product of

the probability of TB infection β1 for susceptible per contact with an infectious

TB individual and the average time
(

1
(µ +α + γ2)

)
an individual spends in an

infectious class times the product of the rate κ at which a latent TB individual

becomes infectious and the average time
(

1
(µ +κ + γ1)

)
an individual spends in

the latent class.

Stability analysis of disease-free equilibrium point

The Jacobian matrix of the system of equations 3.20 is given by

J =



−(µ +λT ) 0 −β1
N yS 0

λT −(µ +κ + γ1)
β1
N (yS + yT ) λT

0 κ −(µ +α + γ2) 0

0 γ1 γ2− β1
N yT −(µ +λT )


.

Theorem 3.3.6. The disease free equilibrium E0T point of TB-only model is locally

asymptotically stable (LAS) if RT < 1 and unstable, if RT > 1.

Proof. The Jacobian matrix J evaluated at the disease free equilibrium DFE E0T
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point is given as

J0T =



−µ 0 −β1 0

0 −(µ +κ + γ1) β1 0

0 κ −(µ +α + γ2) 0

0 γ1 γ2 −µ


.

To determine the stability of disease-free equilibrium point, we use |J0T −λ I|= 0

to obtain eigenvalues of J0T .

|J0T −λ I|=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ−λ 0 −β1 0

0 −(µ +κ + γ1)−λ β1 0

0 κ −(µ +α + γ2)−λ 0

0 γ1 γ2 −µ−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

λ1 =−µ < 0, λ2 =−µ < 0

and ∣∣∣∣∣∣∣
−(µ +κ + γ1)−λ β1

κ −(µ +α + γ2)−λ

∣∣∣∣∣∣∣= 0,

which gives(
−(µ +κ + γ1)−λ

)(
−(µ +α + γ2)−λ

)
−
(

β1κ

)
= 0. (3.22)

From equation 3.22 we have;

λ
2 +
(
(µ +κ + γ1)+(µ +α + γ2)

)
λ +

(
(µ +κ + γ1)(µ +α + γ2)−β1κ

)
= 0,
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which can be written in terms of RT as

λ
2 +
(
(µ +κ + γ1)+(µ +α + γ2)

)
λ +(1−RT )(µ +κ + γ1)(µ +α + γ2) = 0

(3.23)

The eigenvalues λ3,4 of 3.23 are negative or have negative real parts when 1−RT >

0 i.e. when RT < 1.

Since λ1, λ2, λ3, λ4 are all negative or have negative real parts when RT < 1,

we say the disease free equilibrium point is locally asymptotically stable when

RT < 1. This completes the proof.

We can rewrite model 3.20 as,

dU
dt

= F(U,V ),

dV
dt

= G(U,V ), G(U,0) = 0, (3.24)

where U = (yS,yT ) and V = (yE ,yI), with U ∈R2
+ denoting the number of unin-

fected individuals and V ∈R2
+ denoting the number of infected individuals.

We now denote the disease free equilibrium by,

E0T = (U∗,0), where U∗ =
(

π

µ
,0
)
. (3.25)

Conditions S1 and S2 in equation 3.26 must be satisfied to guarantee local asymp-

totic stability.

S1 :
dU
dt

= F(U,0), U∗ is globally asymptotic stable (g.a.s)

S2 : G(U,V ) = BV − Ĝ(U,V ), Ĝ(U,V )≥ 0 for (U,V ) ∈Θ2, (3.26)

where B = DV G(U∗,0) denotes the M-matrix (the off diagonal elements of B are

non-negative) and Θ denotes the region where the model makes biological sense.

Theorem 3.3.7 holds if system 3.24 satisfies the conditions in 3.26.

Theorem 3.3.7. The disease free equilibrium point E0T of HIV-only model is glob-

ally asymptotically stable if RT < 1 and conditions in 3.26 are satisfied.
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Proof. We have from theorem 3.3.6 that E0T is locally asymptotically stable if

RT < 1. Now consider

F(U,0) =

π−µyS

0

 , (3.27)

G(U,V ) = BV − Ĝ(U,V ), B =

−(µ +κ + γ1) β1

κ −(µ +α + γ2)

 . (3.28)

Ĝ(U,V ) =

Ĝ1(U,V )

Ĝ2(U,V )

=

β1yI
(
1− yS+yT

N

)
0

 . (3.29)

We have the conditions in 3.26 satisfied since Ĝ1(U,V ) ≥ 0 and Ĝ2(U,V ) = 0⇒
Ĝ(U,V ) ≥ 0. And therefore we can conclude that E0T is globally asymptotically

stable for RT < 1. This completes the proof.

Endemic equilibrium points

We can solve equations in 3.20 in terms of the force of infection λ
∗
T =

β1

N∗
(y∗I ) to

find the conditions for the existence of an equilibrium for which TB is endemic in

the population.

Equating the right-hand side of equations 3.20 to zero, we have

π−λT yS−µyS = 0,

λT yS +λT yT − (µ +κ + γ1)yE = 0, (3.30)

κyE − (µ +α + γ2)yI = 0,

γ1yE + γ2yI−λT yT −µyT = 0.
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From (3.30), we have

y∗S =
π

(µ +λ ∗T )
, (3.31)

y∗E =
(µ +α + γ2)y∗I

κ
, (3.32)

y∗T =
(µ +κ + γ1)y∗E

λ ∗T
− y∗S, (3.33)

y∗I =
λ ∗T κ(µ +λ ∗T )y

∗
S

(µ +α + γ2){(µ +λ ∗T )(µ +κ + γ1)− γ1λ ∗T}− γ2κλ ∗T
. (3.34)

And the endemic equilibrium is given by

E∗T = (y∗S,y
∗
E ,y
∗
T ,y
∗
I ) ,

where λ
∗
T =

β1y∗I
N∗
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From equation 3.33 we have

y∗T + y∗S =
(µ +κ + γ1)y∗E

λ ∗T
,

y∗T + y∗S
y∗E

=
(µ +κ + γ1)

λ ∗T
,

y∗E
y∗T + y∗S

=
λ ∗T

(µ +κ + γ1)
,

y∗E
y∗T + y∗S

=
1

(µ +κ + γ1)

(
β1y∗I
N∗

)
, (3.35)

N∗

y∗T + y∗S
=

1
(µ +κ + γ1)

(
β1y∗I
y∗E

)
,

N∗

y∗T + y∗S
=

1
(µ +κ + γ1)

(
β1κ

(µ +α + γ2)

)
,

N∗

y∗T + y∗S
=

(
β1κ

(µ +κ + γ1)(µ +α + γ2)

)
,

N∗

y∗T + y∗S
= RT ,

RT =
N∗

y∗T + y∗S
,

=
y∗S + y∗E + y∗T + y∗I

y∗T + y∗S
,

= 1+
y∗E

y∗T + y∗S
+

y∗I
y∗T + y∗S

,

RT = 1+
λ ∗T

(µ +κ + γ1)
+

λ ∗T κ

(µ +κ + γ1)(µ +α + γ2)
,

RT −1 =
λ ∗T

(µ +κ + γ1)

(
1+

κ

(µ +α + γ2)

)
,

RT −1 = λ
∗
T Ω,

λ
∗
T =

(RT −1)
Ω

,

where Ω is denoted as the mean infective period for TB which is given by

Ω =
1

(µ +κ + γ1)

(
1+

κ

(µ +α + γ2)

)
.
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When λ ∗T is substituted into the endemic equilibrium point in 3.31 to 3.34, we will

obtain the endemic equilibrium point in terms of RT as

y∗S =
πΩ

µΩ+(RT −1)
,

y∗E =
(µ +α + γ2)y∗I

κ
,

y∗T =
(µ +κ + γ1)(µ +α + γ2)Ωy∗I

κ(RT −1)
− y∗S, (3.36)

y∗I =
(πκ(RT −1)

(µΩ+(RT −1))(µ +κ + γ1)(µ +α + γ2)− (RT −1)(γ1 +κγ2(µ +α + γ2))
.

Theorem 3.3.8. The endemic equilibrium E∗T point of TB-only model is locally

asymptotically stable (LAS) if RT > 1.

Proof. The Jacobian matrix J evaluated at the endemic equilibrium E∗T point is

given as

J∗T =



−(µ +λ ∗T ) 0 −β1
N∗ y∗S 0

λ ∗T −(µ +κ + γ1)
β1
RT

λ ∗T

0 κ −(µ +α + γ2) 0

0 γ1 γ2− β1
N∗ y
∗
T −(µ +λ ∗T )


.

where RT =
N∗

y∗S + y∗T
and λ

∗
T =

(RT −1)
Ω

.

To determine the stability of endemic equilibrium point, we use |J∗T −λ I| = 0
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to obtain eigenvalues of J∗T .

|J∗T−λ I|=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(µ +λ ∗T )−λ 0 −β1
N∗ y∗S 0

λ ∗T −(µ +κ + γ1)−λ
β1
RT

λ ∗T

0 κ −(µ +α + γ2)−λ 0

0 γ1 γ2− β1
N∗ y
∗
T −(µ +λ ∗T )−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

We have that λ1 =−(µ +λ ∗T )< 0 and the characteristic equation is given by

λ
3 +Dλ

2 +Eλ +F = 0.

Coefficients D,E and F can be written in form of RT as

D = (µ +κ + γ1)+(µ +α + γ2)+(µ +λ
∗
T ),

E = (µ +λ
∗
T )((µ +κ + γ1)+(µ +α + γ2))−λ

∗
T γ1,

= (µ +λ
∗
T )((µ +κ)+(µ +α + γ2))+µγ1,

F = λ
∗
T

(
β1κ

RT
− γ1(µ +α + γ2)−κγ2

)
,

= λ
∗
T ((µ +κ)(µ +α)+µγ2) .

We use the Routh-Hurwitz stability criterion for third order polynomial so as to be

sure that all eigenvalues of J∗T are either negative or have negative real parts. The

following conditions must hold for stability:

D > 0, F > 0 and DE−F > 0.

Clearly, D > 0 and F > 0 when RT > 1.

Now

DE−F = {(µ +κ + γ1)+(µ +λ
∗
T )}{(µ +λ

∗
T )[(µ +κ)+(µ +α + γ2)]+µγ1}

+(µ+α+γ2){(µ +λ
∗
T )(µ +α + γ2)+µγ1 +µ(µ +κ)}+λ

∗
T γ2κ > 0, when λ

∗
T > 0 i.e when RT > 1.

36



All the Routh-Hurwitz criterion conditions are satisfied when RT > 1. Hence E∗T
is asymptotically stable when RT > 1.

3.3.9 Analysis of the full model

In this section, we will analyse the full model 3.1.

Disease free equilibrium point

Disease-free equilibrium point is a steady state solution where there is no disease

in the whole population.

When there are no diseases in the population, the non-negative population val-

ues are

yE = yI = ySI = yEI = yII = yA = yT = yT I = 0. (3.37)

Set the right hand side of (3.1) to zero and apply 3.37, then our full model has a

disease-free equilibrium point (DFE) of

E0 =

(
π

µ
, 0, 0, 0, 0, 0, 0, 0, 0

)
. (3.38)

Reproduction number R0

In this case, we have the reproduction number R0 as the number of HIV/AIDS

or TB infections produced by a single TB infective or single HIV/AIDS positive

individual.

Note that we have eight infectious classes yE ,yI,ySI,yEI,yII,yA,yT ,yT I , and the

matrix showing the rate of appearance of new infections in compartment i is given
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by

F =



λT (yS + yT )

0

λHyS

λHyE +λT ySI

λHyI

0

0

λHyT


.

The matrix showing the rate of transfer of individuals in and out of compartments

i is

V = V −−V + =



λHyE +(µ +κ + γ1)yE

(µ +α + γ2)yI +λHyI−κyE

λT ySI +(µ +ν +δ1)ySI

(µ +ν +κH +δ2 + γ1)yEI

(µ + γ2 +δ3 +α +ν)yII− kHyEI

(µ + τ)yA−δ4yT I−δ1ySI−δ2yEI−δ3yII

(µ +λT +λH)yT − γ1yE − γ2yI

(µ +ν +δ4)yT I− γ1yEI− γ2yII


where

λT =
β1

N
(yI +ρ1yII) and λH =

β2

N
(ySI +η1yEI +η2yII +η3yT I)

The Jacobian matrix of F evaluated at the disease free equilibrium E0 point, is
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given by

F =
∂F (E0)

∂x j
=



0 β1 0 0 β1ρ1 0 0 0

0 0 0 0 0 0 0 0

0 0 β2 β2η1 β2η2 0 0 β2η3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


,

where x j = yE ,yI,ySI,yEI,yII,yA,yT ,yT I for j = 1, . . . ,8. Let

a1 = µ +κ + γ1,

a2 = µ +α + γ2,

a3 = µ +ν +δ1,

a4 = µ +ν +κH +δ2 + γ1,

a5 = µ + γ2 +δ3 +α +ν ,

a6 = µ + τ,

a7 = µ +ν +δ4,

so that the Jacobian matrix of V evaluated at the disease free equilibrium E0 point

is

V =
∂V (E0)

∂x j
=



a1 0 0 0 0 0 0 0

−κ a2 0 0 0 0 0 0

0 0 a3 0 0 0 0 0

0 0 0 a4 0 0 0 0

0 0 0 −κH a5 0 0 0

0 0 −δ1 −δ2 −δ3 a6 0 −δ4

−γ1 −γ2 0 0 0 0 µ 0

0 0 0 −γ1 −γ2 0 0 a7


.

The dominant eigenvalues of FV−1 which is the spectral of the matrix FV−1 gives
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the basic reproduction number for TB and HIV/AIDS from the model 3.1 as;

R0 = ρ(FV−1) = max{RH ,RT},

where RH =
β2

(µ +ν +δ1)
,

RT =

(
β1

(µ +α + γ2)

)(
κ

(µ +κ + γ1)

)
,

and these correspond to the reproduction number for HIV sub-model and TB sub-

model respectively.

Stability analysis of disease-free equilibrium point

Theorem 3.3.10. The disease free equilibrium E0 point of the full model is locally

asymptotically stable (LAS) if R0 < 1 and unstable, if R0 > 1.

Proof. The Jacobian matrix of the system of equations (3.1) evaluated at E0 is

given by

J =



−µ 0 −β1 −β2 −β2η1 −β1ρ1−β2η2 0 0 −β2η3

0 −a1 β1 0 0 β1ρ1 0 0 0

0 κ −a2 0 0 0 0 0 0

0 0 0 β2−a3 β2η1 β2η2 0 0 β2η3

0 0 0 0 −a4 0 0 0 0

0 0 0 0 κH −a5 0 0 0

0 0 0 δ1 δ2 δ3 −a6 0 δ4

0 γ1 γ2 0 0 0 0 −µ 0

0 0 0 0 γ1 γ2 0 0 −a7


.

To determine the stability of disease-free equilibrium point, we use |J0−λ I| = 0
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to obtain eigenvalues of J0.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ−λ 0 −β1 −β2 −β2η1 −β1ρ1−β2η2 0 0 −β2η3

0 −a1−λ β1 0 0 β1ρ1 0 0 0

0 κ −a2−λ 0 0 0 0 0 0

0 0 0 β2−a3−λ β2η1 β2η2 0 0 β2η3

0 0 0 0 −a4−λ 0 0 0 0

0 0 0 0 κH −a5−λ 0 0 0

0 0 0 δ1 δ2 δ3 −a6−λ 0 δ4

0 γ1 γ2 0 0 0 0 −µ−λ 0

0 0 0 0 γ1 γ2 0 0 −a7−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

λ1,2 =−µ < 0,

and the matrix reduces to∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a1−λ β1 0 0 β1ρ1 0 0

κ −a2−λ 0 0 0 0 0

0 0 β2−a3−λ β2η1 β2η2 0 0

0 0 0 −a4−λ 0 0 0

0 0 0 κH −a5−λ 0 0

0 0 δ1 δ2 δ3 −a6−λ 0

γ1 γ2 0 0 0 0 −µ−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

We have λ3 =−(µ +ν +κH +δ2 + γ1)< 0, λ4 =−(µ + γ2 +δ3 +α +ν)< 0 and

λ5 =−(µ +ν +δ4)< 0,

so that either (
β2− (µ +ν +δ1)−λ

)(
−(µ + τ)−λ

)
= 0. (3.39)

or (
−(µ +κ + γ1)−λ

)(
−(µ +α + γ2)−λ

)
−β1κ = 0. (3.40)

From equation (3.39) we have;

λ
2 +
(
(µ +ν +δ1)+(µ + τ)−β2

)
λ +

(
(µ +ν +δ1)(µ + τ)−β2(µ + τ)

)
= 0,
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which can be written in terms of RH as

λ
2 +
(
(µ + τ)+(µ +ν +δ1)(1−RH)

)
λ +(1−RH)(µ + τ)(µ +ν +δ1) = 0

(3.41)

The eigenvalues of 3.41 are negative or have negative real parts when 1−RH > 0

i.e. when RH < 1. Equation 3.40 can also be written in terms of RT as;

λ
2+
(
(µ+κ+γ1)+(µ+α+γ2)

)
λ +(1−RT )(µ+κ+γ1)(µ+α+γ2), (3.42)

The eigenvalues of (3.42) are negative or have negative real parts when 1−RT > 0

i.e. when RT < 1 Since all eigenvalues are negative or have negative real parts

when RH < 1 and when RT < 1 , we say the disease free equilibrium point is

locally asymptotically stable when RH < 1 and when RT < 1. And the disease

dies out. The basic reproduction number R0 = max{RH ,RT}< 1. Hence, we say

that the disease free equilibrium point E0 is locally asymptotically stable whenever

R0 < 1. This completes the proof.

We can rewrite model 3.1 as,

dU
dt

= F(U,V ),

dV
dt

= G(U,V ), G(U,0) = 0, (3.43)

where U = (yS,yT ) and V = (yE ,yI,ySI,yEI,yII,yA,yT I), with U ∈R2
+ denoting the

number of uninfected individuals and V ∈ R7
+ denoting the number of infected

individuals.

We now denote the disease free equilibrium by,

E0 = (U∗,0), where U∗ =
(

π

µ
,0
)
. (3.44)

Conditions S1 and S2 in equation 3.45 must be satisfied to guarantee local asymp-
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totic stability.

S1 :
dU
dt

= F(U,0), U∗ is globally asymptotic stable (g.a.s)

S2 : G(U,V ) = CV − Ĝ(U,V ), Ĝ(U,V )≥ 0 for (U,V ) ∈Θ, (3.45)

where C = DV G(U∗,0) denotes the M-matrix (the off diagonal elements of C are

non-negative) and Θ denotes the region where the model makes biological sense.

Theorem 3.3.11 holds if system 3.43 satisfies the conditions in 3.45.

Theorem 3.3.11. The disease free equilibrium point E0 of the full model is globally

asymptotically stable if R0 < 1 and conditions in 3.45 are satisfied.

Proof. We have from theorem 3.3.10 that E0 is locally asymptotically stable if

R0 < 1. Now consider

F(U,0) =

π−µyS

−µyT

 , (3.46)

G(U,V ) =CV − Ĝ(U,V ), (3.47)

C =



−a1 β1 0 0 β1ρ1 0 0

κ −a2 0 0 0 0 0

0 0 β2−a3 β2η1 β2η2 0 β2η3

0 0 0 −a4 0 0 0

0 0 0 κH −a5 0 0

0 0 δ1 δ2 δ3 −a6 δ4

0 0 0 γ1 γ2 0 −a7


. (3.48)
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Ĝ(U,V )=



Ĝ1(U,V )

Ĝ2(U,V )

Ĝ3(U,V )

Ĝ4(U,V )

Ĝ5(U,V )

Ĝ6(U,V )

Ĝ7(U,V )



=



β1
(
1− yS+yT

N

)
(yI +ρ1yII +ρ2yA)+λHyE

λHyI

β2
(
1− 1

N

)
(ySI +η1yEI +η2yII +η3yT I +η4yA)+λT ySI

−λHyE −λT ySI

−λHyI

0

−λHyT



.

(3.49)

We have the condition (S2) in 3.45 not satisfied since Ĝ4(U,V )< 0, Ĝ5(U,V )< 0

and Ĝ7(U,V ) < 0. And therefore we can conclude that E0 may not be globally

asymptotically stable for R0 < 1. This completes the proof.

Endemic equilibrium points

The computation of the endemic equilibrium of the full model (co-infection model)

is difficult analytically, and therefore the model 3.1 endemic equilibria corresponds

to,

1. E1 = (yS1,0,0,ySI1,0,0,yA1,0,0)

(yS1,0,0,ySI1,0,0,yA1,0,0)=
(

πΠ

µΠ+(RH −1)
,0,0,

(RH −1)yS1

Π(µ +ν +δ1)
,0,0,

δ1(RH −1)yS1

Π(µ + τ)(µ +ν +δ1)

)
,

(3.50)

the TB free equilibrium. This exists when RH > 1. The analysis of the

equilibria E1 is similar to the endemic equilibria E∗H in equation 3.19.
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2. E2 = (yS2,yE2,yI2,0,0,0,0,yT 2,0), the HIV free equilibrium, where

yS2 =
πΩ

µΩ+(RT −1)
,

yE2 =
(µ +α + γ2)yI2

κ
,

yT 2 =
(µ +κ + γ1)(µ +α + γ2)ΩyI2

κ(RT −1)
− yS2, (3.51)

yI2 =
πκ(RT −1)

(µΩ+(RT −1))(µ +κ + γ1)(µ +α + γ2)− (RT −1)(γ1 +κγ2(µ +α + γ2))
.

This exists when RT > 1. The analysis of the equilibria E2 is similar to the

endemic equilibria E∗T in equation 3.36.

3. E3 =(yS3,yE3,yI3,ySI3,yEI3,yII3,yA3,yT 3,yT I3), the HIV-TB co-infection equi-

librium. This exists when each component of E3 is positive.

We summarize the existence of the disease free equilibrium points in the following

theorem:

Theorem 3.3.12. The system of equations 3.1 has the following disease free equi-

librium points:

1. E0H which exist when RH < 1.

2. E0T which exist when RT < 1.

3. E0 which exists when RH < 1 and RT < 1, i.e. R0 < 1.

And summarize the existence of the endemic equilibrium points in the follow-

ing theorem:

Theorem 3.3.13. The system of equations in 3.1 has the following endemic equi-

librium points:

1. E∗H or E1 which exist when RH > 1.

2. E∗T or E2 which exist when RT > 1.
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3. E3 which exists when RH > 1 and RT > 1, i.e. R0 > 1. We will give a

detailed explanation of E3 in our numerical simulations.

Remarks:

The model revealed the following scenarios regarding the effects of HIV/AIDS

and Tuberculosis in an endemic section:

1. A scenario where we have population of individuals infected with only TB

(TB sub-model).

2. A scenario where we have population of individuals infected with only HIV

(HIV sub-model).

3. A scenario where there are individuals with both infection (co-infection model).

We shall also explore the impact of these scenarios on the progression of HIV and

TB infection using numerical simulations.

In summary, we have been able to show the mathematical analysis for TB sub-

model, HIV sub-model and the full co-infection model. We show that the basic

reproduction number R0 determines the dynamics of the model. Disease free equi-

librium point E0 is also shown to be locally asymptotically stable when R0 < 1 and

unstable if R0 > 1, we therefore have that solutions converge to E0 and diseases

die out. We show that the Endemic equilibrium point E∗ is locally asymptotically

stable if R0 > 1 and unstable if R0 < 1, we then have that solutions converge to

E∗ and any initial epidemics of TB and HIV/AIDS will become endemic in the

population. Our analytical results will be justified by our numerical simulations.
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Chapter 4

Numerical Simulations and
Sensitivity Analysis

Results of the numerical simulation are given in this section and the set of parame-

ters used are given in table 4.1. Initial values used for different values of β1 and β2

is also given in table 4.2.

Table 4.1: Parameter values and their sources

Symbol Value References Symbol Value References
N(0) 500,000 δ1 0.1 yr−1 [22, 23]
π 7142 δ2 0.102 yr−1 [5]
µ 1/70 yr−1 [9, 22, 23] δ3 0.25 yr−1 [5]
β1 Variable δ4 0.125 yr−1 [21]
β2 Variable γ1 1 yr−1 [22]
τ 0.33 yr−1 [5, 23] γ2 2 yr−1 [22]
ν 0.01 yr−1 [21] ρ1 100 [20]
α 0.02 yr−1 [21] η1 1
κ 1 yr−1 [22] η2 1
κH 1.3κ [22] η3 1
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Table 4.2: Initial values for different values of β1 and β2.

β1 β2 yS(0) yE(0) yI(0) ySI(0) yEI(0) yII(0) yA(0) yT (0) yT I(0)
2.5 0.03 60N

100
15N
100

2N
100

4N
100

14N
100

4N
100

N
100 0 0

5.2 0.3 60N
100

15N
100

2N
100

4N
100

14N
100

4N
100

N
100 0 0

5.2 0.03 60N
100

15N
100

2N
100

4N
100

14N
100

4N
100

N
100 0 0

0.4 0.8 60N
100

15N
100

2N
100

4N
100

14N
100

4N
100

N
100 0 0

7 0.6 60N
100

15N
100

2N
100

4N
100

14N
100

4N
100

N
100 0 0

5.2 0.03 99N
100

N
100 0 0 0 0 0 0 0

2.5 0.03 0 N 0 0 0 0 0 0 0
0.4 0.8 99N

100 0 0 N
100 0 0 0 0 0

2.5 0.03 0 0 0 N 0 0 0 0 0

4.1 Sensitivity analysis
We are able to know how important each parameter is to the spread of the disease

through sensitivity indices of R0 to all different parameters. This is helpful in

assigning the correct and appropriate parameter for making an endemic scenario

[20].

Sensitivity analysis in this section describes the effect of changes in the param-

eter values on the model. Now we will let ε be any of the non-negative parameters

that make up R0 in the model. A small perturbation in ε by ∆ε will also cause a

perturbation in R0 by ∆R0. We define the normalized sensitivity index by ϒε (the

ratio of the corresponding normalized changes[9]). Therefore, the sensitivity index

ϒε is computed by using the normalized forward sensitivity index method:

ϒε =
∆R0

R0
/

∆ε

ε
=

ε

R0
· ∂R0

∂ε
. (4.1)

We can calculate the sensitivity index in terms of RH and RT since R0 = max{RH ,RT}.

The sensitivity indices in terms of RH =
β2

(µ +ν +δ1)
is given as

ϒβ2 = 1, ϒµ =
−µ

(µ +ν +δ1)
, ϒν =

−ν

(µ +ν +δ1)
, ϒδ1 =

−δ1

(µ +ν +δ1)
.

The sensitivity indices of RT =

(
β1

(µ +α + γ2)

)(
κ

(µ +κ + γ1)

)
is given as

ϒβ1 = 1, ϒγ2 =
−γ2

(µ +α + γ2)
, ϒα =

−α

(µ +α + γ2)
, ϒγ1 =

−γ1

(µ +κ + γ1)
, ϒκ =

µ + γ1

(µ +κ + γ1)
,
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ϒµ =− µ

(µ +α + γ2)
− µ

(µ +κ + γ1)
Most parameter values used were gotten from previous HIV-TB model manuscripts

[5, 9, 20–23]. Using the parameter values in table 4.1, the sensitivity indexes are

computed in table 4.3 and 4.4 as

Table 4.3: Sensitivity analysis of RH .

Sensitivity index Value
ϒβ2 1
ϒµ −0.0141
ϒν −0.0805
ϒδ1 −0.8046

Table 4.4: Sensitivity analysis of RT .

Sensitivity index Value
ϒβ1 1
ϒγ2 −0.9831
ϒα −0.0098
ϒγ1 −0.4965
ϒκ 0.5035
ϒµ −0.0141

The sign in front of each of the values in tables 4.3 and 4.4 shows what will

happen to R0 if the parameter is increased or decreased. R0(RH or RT ) increases

when sensitivity indeces with positive signs increase, while R0(RH or RT ) de-

creases when sensitivity indeces with negative signs increase and vice versa.

The most sensitive parameters to RH and RT are found to be β2 and β1 respec-

tively. Sensitivity indeces ϒβ1 = 1 and ϒβ2 = 1 mean that RH or RT approximately

decreases by 1% when either β1 or β2 is decreased by 1%.

Since decrease in β1 and β2 is the possible intervention strategy for the reduc-

tion of R0. We will consider changes of parameters β1 and β2 and see their effects

on RT and RH .
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4.2 Numerical simulations for different values of β1,β2
and discussion of results

All parameter values used in the simulations are given in table 4.1. Table 4.2 shows

different initial conditions for different values of β1 and β2. It shows the effect of

β1 on RT and the effect of β2 on RH .

In general, 500 years from our figures may not be a reasonable timescale from

the model to be predictive, but we have decided to use it as an illustration to show

that TB infection persists for decades.

Figure 4.1: The left panel shows the plot of the stability analysis of the dis-
ease free equilibrium at β1 = 2.5 and β2 = 0.03 while the right panel
shows the plot of the stability analysis of the endemic equilibrium at
β1 = 5.2 and β2 = 0.3

From the left panel figure of figure 4.1, we considered initial conditions from

table 4.2 and R0 < 1 (RT < 1 and RH < 1) to establish the stability of the disease

free equilibrium E0 given by 3.38. It is shown numerically that yS converges to N

as t → ∞, and every other disease in the population dies out. From the right panel

figure of figure 4.1, we considered initial conditions from table 4.2 and R0 > 1

(RT > 1 or RH > 1) to establish the stability of the endemic equilibrium E∗. We

have shown numerically that for R0 > 1 and as t→ ∞, the state variables converge

to E∗ and the endemic equilibrium exist.
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Figure 4.2: Graphs showing the susceptibles yS, exposed to TB yE , infectious
to TB yI , the HIV positive ySI , HIV positive exposed to TB yEI , HIV
positive suffering from TB yII , those suffering from AIDS yA, singly
infected treated of TB yT and dually infected treated of TB yT I . These
are simulations in different compartments with β1 = 5.2 and β2 = 0.3

Figure 4.2 represents the behaviour of individuals in various stages of the co-

infection of HIV/AIDS and TB over a period of 500 years in which treatment of

latent and active TB treatment is incorporated.

Left panel figure on the first row shows that treatment of TB reduces the suscep-

tible population to a stable state and remains constant. It shows that when t → ∞,

susceptible does not go to zero due to TB treatment.

Middle panel figure on the third row shows the behaviour of individuals in-

fected with TB and on TB. Individuals on TB treatment increase with respect to

decrease in all other TB infected individuals and we can see from middle panel
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figure on the first row that untreated TB infection leads to increase in the number

of infected individuals.

Middle and right panel figures on the first row, and, left and right panel figures

on the third row show that treatment of TB result in their decrease to low levels.

These imply that the population of TB individuals decrease up to a certain stage and

become constant as t→ ∞ and does not go to zero due to TB treatment. Left panel

figure on the second row shows that the population drops and starts increasing due

to some AIDS individuals recovering from TB for the dually infected individuals.

Middle and right panel figures on the second row show a decrease in the number

of dually infected individuals to almost zero where they remain constant due to the

number of those entering the AIDS class, those on TB treatment and due to deaths

(natural and disease deaths).

Figure 4.3: The left panel shows the plot of the stability of TB free equilib-
rium E∗H at β1 = 0.4 and β2 = 0.8 while the right panel shows the plot
of the stability of HIV free equilibrium E∗T at β1 = 5.2 and β2 = 0.03

The left panel figure of figure 4.3 shows the stability of TB free equilibrium

E∗H . It shows that HIV/AIDS persist in the society while other disease dies out. The

population has a higher number of susceptible individuals exposing the population

to a slower progression towards AIDS due to TB treatment. The model responds

to changing β1 and β2 to 0.4 and 0.8 respectively. It means TB free equilibrium

occurs when β1 is very low and β2 is very high i.e when RT < 1 and RH > 1

and this represents TB-only model. The right panel figure of figure 4.3 shows the
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stability of HIV free equilibrium E∗T . This shows that TB persists in the society

while the other disease dies out. The model responds to changing β1 and β2 to

5.2 and 0.03 respectively. It means HIV free equilibrium occurs when β1 is very

high and β2 is very low i.e when RT > 1 and RH < 1 and this represents HIV-only

model.

Figure 4.4 shows the effect and impact of treating and not treating TB on the

model. Comparing figure on the right and left panel where TB is treated and not

treated respectively, we see that latent TB yE decreases faster in the right panel

making TB infectious yI and HIV positive with TB disease yII increase and expos-

ing the population to a faster progression towards the AIDS class within the period

of 15 years. While this is the other way in left panel due to TB treatment. TB

treatment lowers the rate of progression of the exposed individuals and this leads

to increase in dually infected individuals on TB treatment. We can say that TB

treatment at the exposed and infectious stage may prevent or reduce co-infection.

From the right panel of figure 4.4, we observe that after 3 years, individuals in-

fected with TB disease and HIV reduce than in the left panel. This happens because

TB is treated in the left panel and untreated in the right panel. The decrease in the

population of yII in the right panel is because co-infection triggers the symptoms

of AIDS and therefore decrease in yII would lead to increase in yA.

Figure 4.4: The behaviour of the model for the period of 15 years with and
without TB treatment γ1 and γ2 at β1 = 7,β2 = 0.6 and with disease
induced death. The left panel shows the impact of TB treatment (γ1 = 1
and γ2 = 2) on the model, while the right panel shows the behaviour of
the model without TB treatment (γ1 = 0 and γ2 = 0).
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Figure 4.5: Graphs showing the behaviour of the model to changes in initial
conditions. The plot of the stability of equilibria E0T , E0H , E∗T and E∗H

Figure 4.5 shows the behaviour and response of the model to different initial

conditions. The left panel figure on the first row is the disease free E0T for TB-sub

model and it shows that TB infection dies out while susceptible goes to N as t→∞.

The left panel figure on the second row is the disease free E0H for HIV-sub model

and it shows that HIV infection dies out while susceptible goes to N as t → ∞.

Figures on the right panel of the first and second row are respectively similar to

figure 4.3 and their descriptions follow from figure 4.3.
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Figure 4.6: Graphs showing different values of the basic reproduction num-
bers RT and RH at different values of β1 and β2 respectively, with and
without TB treatment

Figure 4.6 can be explained from the analytical solution that R0 from the in-

teraction of two diseases (HIV/AIDS and TB) is illustrated as max{RH ,RT} and

this is shown in figure 4.6. We have the left panel figure in 4.6 by varying β1 and

β2 from 0 to 6 with no TB treatment while we have the right panel figure in 4.6 by

varying β1 and β2 from 0 to 6 with TB treatment . The disease threshold is deter-

mined by the value of our parameters. Varying β1 and β2 with TB treatment and

using the parameter values from table 4.1, we find from the right panel of figure

4.6 that RH is greater than RT and therefore RH is the epidemic threshold value

when TB is treated. Also,varying β1 and β2 without TB treatment and using the

parameter values from table 4.1, we find from the left panel of figure 4.6 that RT

is greater than RH and therefore RT is the epidemic threshold value when TB is

not treated. These mean that it is possible for the disease threshold to change if we

increase or decrease β1 or β2 and with or without TB treatment, e.g. γ1 = 0,γ2 = 0

as in the left panel changes R0 to RT while γ1 = 1,γ2 = 2 as in the right panel

changes R0 to RH .

4.3 Conclusion
We considered a general mathematical model of nine nonlinear differential equa-

tions on HIV/AIDS and TB co-infection. We denoted the population of susceptible

individuals by yS, the population of latent TB individuals by yE , the population of

infectious (active) TB individuals by yI , the population of HIV-positive individ-

uals by ySI , the population of HIV-positive and latent TB individuals by yEI , the
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population of HIV-positive and infectious TB individuals by yII , the population of

AIDS individuals by yA, the population of treated individuals with TB by yT and

the population of dually infected individuals treated of TB by yT I .

The threshold parameter R0 was calculated and used to determine the con-

ditions under which the HIV/AIDS and TB could be transmitted and remained

endemic in the population. We analyzed the model to know the level at which the

HIV/AIDS epidemic aggravates the spread of Tuberculosis (TB) and vice versa.

We thus showed that three disease-free equilibrium points E0H ,E0T ,E0 respectively

for HIV-sub model, TB-sub model and the full model are locally asymptotically

stable when R0 < 1 i.e. RT < 1 and RH < 1. We also showed that the population

with both HIV and TB infection have three endemic equilibrium points E∗H ,E
∗
T ,E

∗

respectively for HIV-sub model, TB-sub model and the full model which were lo-

cally asymptotically stable when R0 > 1 i.e. RT > 1 or RH > 1. Global stability

analysis of the three disease-free equilibrium points was established. We found

the most sensitive parameters to be β1 and β2 and showed how changes to these

parameters with or without TB treatment affect the basic reproduction number.

Numerical simulations were used to compare the endemic scenarios revealed

by analytical results. Simulations were purely hypothetical since the data used are

not for a particular community but the qualitative features that revealed the impact

of each of the scenarios on HIV/AIDS and TB transmission were shown. Figure 4.6

gave a linear relationship between the two reproduction number, and this showed

that RT gave the epidemic threshold value when TB was not treated, while RH

gave the epidemic threshold value with TB treatment. Our results suggested that

the better scenarios were where some of the individuals (the right panel of figure

??) have lower infection levels i.e. when TB was treated, and the worst scenarios

were where there are co-infection of both HIV/AIDS and TB (the left panel of

figure ??) without TB treatment.

Thus, we can interpret the situation in an epidemiological manner that a society

with some individuals infected with TB and without TB treatment is at the worst

risk of being co-infected with HIV which in turn creates socio-economic effects if

no intervention is implemented in time for either or both HIV/AIDS and TB infec-

tion. We conclude that TB treatment for individuals with TB infections results in a

significant reduction (as in the left panel of figure 4.4) of the number of individuals
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progressing to active TB, reduction of the co-infected individuals and reduction of

the disease induced death. Also, effective treatment of TB for the co-infected indi-

viduals also reduced the number of individuals that progress to AIDS class. Thus

in a situation where treatment of HIV is not readily available, we can therefore

advise public health authorities that treating both the exposed and active form of

TB in both singly and dually TB infected individuals could be a good public health

measure to improve life for HIV-positive individuals.

As part of future work to improve the model in question, restructuring of the

model to include HIV/AIDS treatment for only HIV/AIDS individuals (HIV-sub

model) and co-infected individuals could be a better approach to studying the dy-

namics of HIV/AIDS and TB, and could be the best measure to reduce R0 and

co-infection. We also wish to find the global stability of the endemic equilibrium

points in the future work and a nonlinear relationship between RT and RH . De-

spite all its limitations, the model provided useful information and insights into the

potential impact of treating Tuberculosis on the dynamics of HIV/AIDS and TB

co-infection.
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