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Abstract

This thesis studies two topics in Econometric models, multiple equilibria
and weak instruments. Chapter 1 is an introduction.

Chapter 2 considers nonparametric structural equations which may have
multiple solutions for the endogenous variables. The main finding is that
multiple equilibria would reveal itself in the form of jump(s) in the density
function of the endogenous variables. When there is a unique equilibrium,
the density function of endogenous variables will be continuous, while when
there are multiple equilibria, the density will have a jump at some point,
under reasonable conditions. Our test statistic is based on maximizing local
jumps over the support of endogenous variables and the critical value is
computed via a Gaussian multiplier bootstrap.

Chapter 3 shows that in games with incomplete information, even
when the payoff functions and the latent distributions are all smooth, the
observed conditional choice probabilities may have a jump with respect to
continuous covariates. This chapter provides a theoretical analysis on the
relationship between the equilibrium behaviour of the game and the
presence of a jump in the conditional choice probabilities. Such jump(s)
matters in empirical research for two reasons. Statistically, it affects the
estimation of the conditional choice probabilities. Economically, whether
the conditional choice probabilities have a jump or not reveals information
about the equilibrium behaviour of the game. Our findings are robust to
correlated private information and unobserved heterogeneity independent
of covariates.

Chapter 4 considers efficient inference for the coefficient of the
endogenous variable in linear regression models with weak instrumental
variables (Weak-IV). We focus on the power of tests for the alternative
hypotheses that are determined by arbitrarily large deviations from the
null. We derive the power envelope for such alternatives in the Weak-IV
scenario. Then we compare the power properties of popular Weak-IV
robust tests, focusing on the Anderson-Rubin (AR) and Conditional
Likelihood Ratio (CLR) tests. We find that their relative performance
depends on the degree of endogeniety in the model. In addition, we
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propose a Conditional Lagrange Multiplier (CLM) test. We also extend
our analysis to heteroskedastic models.
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Preface

Chapter 4 is co-authored with Prof. Vadim Marmer. I have been actively
participating in all stages of this project, including reviewing the literature,
deriving and proving propositions, conducting numerical computation, and
writing the manuscript.
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Chapter 1

Introduction

This thesis studies two topics in econometric models: multiple equilibria and
weak instruments.

The presence of multiple equilibria poses challenges for comparative
static and conterfactual experiments (see Berry, Levinsohn and Pakes
(1999), Echenique and Komunjer (2009) and Borkovsky et al. (2014)), and
it may also effect the identification and estimation approaches (see
Aradillas-Lopez (2010), Paula (2012), Aguirregabiria and Mira (2013),
Wan and Xu (2014) and Berry and Haile (2014), among others). Chapter 2
considers nonparametric structural equations which may admit multiple
solutions for the dependent variables. The main finding is that uniqueness
or multiplicity of equilibria produces testable implications on the
continuity or discontinuity of the density function of dependent variables.
Then we propose a test for multiple equilibria based on checking the
existence of jump(s) in the density function of dependent variables.
Chapter 3 considers incomplete information games with possibly correlated
private information. We show that even when the payoff functions and the
latent distributions are all smooth, the observed conditional choice
probabilities may have jump(s) with respect to the continuous covariates.
Statistically, the possibility of such a jump affects estimation of the
conditional choice probabilities. Economically, the presence of such jumps
reveals information about equilibrium behaviour of the game.

Weak instrumental variables have received a lot of attention in
econometrics (see Staiger and Stock (1997), Kleibergen (2002, 2007),
Moreira (2001, 2003) and Andrews, Moreira and Stock (2006)). Chapter 4
studies efficient inference of the structural parameter in linear instrumental
variables regression models when the instruments may be weak, with a
focus on the alternatives that are determined by arbitrarily large
deviations from the null.

1



1.1. Dissertation Outline

1.1 Dissertation Outline

Chapter 2, Testing for Multiple Equilibria in Continuous Dependent
Variables, proposes a test for the presence of multiple equilibria when the
structural equations are nonparametric and the dependent variables are
continuous. Multiple equilibria may arise when the structural equations
admit multiple solutions. Such multiplicity can happen in economic
models of price competitions, social interactions, macroeconomics and
many other fields. This chapter finds that multiple equilibria would reveal
itself in the form of discontinuities in the (conditional) density function of
the dependent variables. Under some regularity assumptions, a model with
a unique equilibrium necessarily makes the conditional density continuous
with respect to the endogenous variables. On the other hand, under
reasonable conditions, a model with multiple equilibria produces jump(s)
in the conditional density with respect to the endogenous variables. Such
jump(s) is typically caused by changes in the number of solutions to the
structural equations. With an additional assumption, uniqueness or
multiplicity of equilibrium leads to continuity or discontinuity in the
unconditional density function of endogenous variables. This way we
transform the problem of testing for multiple equilibria into testing for the
presence of a jump in the density of dependent variables. Our testing
procedure consists of three steps. Firstly, for a given point, we compute
the local jump of the density function. Secondly, we obtain the test
statistic by computing the maximal local jump. Lastly, we simulate the
critical value via the Gaussian multiplier bootstrap proposed by
Chernozhukov, Chetverikov and Kato (2013).

In Chapter 3 titled Jumps of the Conditional Choice Probabilities in
Incomplete Information Games, we show that in static incomplete
information games, the conditional choice probabilities may have a jump
with respect to the continuous covariates, even when the payoff functions
and latent distributions are all smooth. The possibility of such jump(s)
would affect the estimation strategy of the conditional choice probabilities.
We further establish the relationship between the equilibrium behaviour
and jump(s) in the conditional choice probabilities. In particular, when the
equilibrium characterizing equations always admit a unique solution, the
conditional choice probabilities will be continuous. On the other hand,
when there are multiple equilibria, or the single equilibrium present in the
data varies in types, the conditional choice probabilities will have a jump,
except for some special equilibrium selection rules. Such a relationship is
robust to correlated private information across players and to unobserved

2



1.1. Dissertation Outline

heterogeneity independent of covariates. Hence testing for the presence of
a jump in the conditional choice probabilities also provides information
about the equilibrium behaviour of the game.

The last chapter, Efficient Inference in Econometric Models When
Identification Can Be Weak, considers efficient inference for the coefficient
of the endogenous variable in instrumental variables regression models
with weak instrumental variables (Weak-IV). We focus on the power of
tests for alternatives that are determined by arbitrarily large deviations
from the null. We derive the power envelope for such alternatives in the
Weak-IV scenario. Then we compare the power properties of popular
Weak-IV robust tests, focusing on the Anderson-Rubin (AR) and
Conditional Likelihood Ratio (CLR) tests. We find that their relative
performance depends on the degree of endogeniety in the model. This is
different from Andrews, Moreira and Stock (2006), which found that the
CLR test numerically dominates the AR test when the weighted average
power is concerned. In addition, we propose the Conditional Lagrange
Multiplier (CLM) test, which is asymptotically efficient when the
instruments are strong, robust to Weak-IV, and exhibits the same power as
the AR test for arbitrarily large deviations from the null. We also study
the heteroskedastic case, and find that the generalized likelihood ratio
statistic under heteroskedasticity reduces to the AR statistic in the
Weak-IV scenario and when the alternatives are determined by arbitrarily
large deviations from the null.

3



Chapter 2

Testing for Multiple
Equilibria in Continuous
Dependent Variables

2.1 Introduction

Multiple equilibria are commonly generated by economic models in
industrial organization, social interactions, macroeconomics, and many
other fields. From an econometric perspective, multiple equilibria can be
regarded as situations in which the exogenous variables cannot uniquely
determine the endogenous variables1. Jovanovic (1989) described three
cases where multiple equilibria may arise: optimization problems, linear
simultaneous equations and non-linear simultaneous equations.

Detecting the presence of multiple equilibria matters for several
reasons. Firstly, multiplicity of equilibria poses challenges for comparative
statics and counterfactual analysis. Empirical researchers usually assume
the uniqueness of equilibrium when conducting counterfactual experiments
(see for example, Berry, Levinsohn and Pakes (1999).2). When multiple
equilibria arise, the predicted outcome from a policy change becomes
indeterminate. Secondly, uniqueness or multiplicity of equilibria is closely
related to identification of nonparametric simultaneous equations. While
nonparametric simultaneous equations can be identified under an abstract
completeness conditions, an alternative identification approach requires
uniqueness of equilibrium as a maintained assumption for identification
(see Berry and Haile (2013, 2014), Mazkin (2008), among others for
identification of nonparametric simultaneous equations, and Horowitz
(1996) for the transformation model). Thirdly, we will show that

1We use dependent variables, endogenous variables and outcome variables interchange-
ably in this chapter.

2They wrote: “This assumes both that the equilibrium without the VER is also Nash
in prices and that the equilibrium is unique (or at least that we solve for the relevant
one).”

4



2.1. Introduction

multiplicity of equilibria is associated with jump(s) in the density function
of the dependent variables, under regularity conditions. This will affect the
estimation approach for the density. Lastly, knowing the presence of
multiple equilibria helps understanding whether the variation in the
outcomes can be better explained by fundamentals or a self-fulling
mechanism.3

While tests for multiple equilibria in discrete games have been
developed by Paula and Tang (2012) and Aguirregabiria and Mira (2013),
among others, research for continuous dependent variables (for example,
prices) with multiple equilibria has been rare. To the best of my
knowledge, this chapter makes the first attempt to propose a test for
uniqueness against multiplicity of equilibria when the dependent variables
are continuous and the model is nonparametric. Our framework is a
system of equations r(Y ) = g(X) + U , where r(·) and g(·) are not
parametrically specified. The observed data is an i.i.d. sample {Xi, Yi}ni=1.
Here we do not make the assumption that the unknown function r(·) : Y
→ RJ is one to one, where Y ⊂ RJ . Therefore, the dependent variables Y
may not be uniquely determined by exogenous variables (X,U). An
equilibrium selection rule is introduced to complete the model. Such a
framework is general enough to include applications varying from price
competitions to social interactions.

For structural equations r(y) = g(x) + u and an equilibrium selection
rule, we say there is a unique equilibrium if the structural equations
r(y) = g(x) + u admit a unique solution for y given any value (x, u), or
they may admit multiple solutions, but the equilibrium to be present in
the data is uniquely determined by the value (x, u). In contrast, we say
there are multiple equilibria if the structural equations admit multiple
solutions at some (x, u), and more than one of the solutions can be realized
in the data with positive probabilities, after fixing (x, u). Assuming that
the functions r and g are twice continuously differentiable, unobservable U
has a continuous density function, and U is independent of X, this chapter
finds that when there is a unique equilibrium, the conditional density
fY |X(y|x) is continuous4 in y within its support, for all x. On the other
hand, when there are multiple equilibria, under reasonable conditions, the
conditional density fY |X(y|x) will have a jump in y, such that the limits

3For example, Dagsvik and Javanovic (1994) considered the question “was the Great
Depression the outcome of a massive coordination failure? Or was it a unique equilibrium
respond to adverse shocks?”

4Throughout this chapter, continuity at a point means that the limits from all direction
coincide. It does not place any condition on the value of the function at the limit point.
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2.1. Introduction

Figure 2.1: Illustration of jumps in density
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from different directions are not all equal.5 With an additional assumption,
uniqueness or multiplicity of equilibria leads to continuous or discontinuous
unconditional density function fY (y). The source of such jump(s) can be
described as follows. The value of dependent variables are determined in
equilibrium. Thus the (conditional) density of dependent variables depends
on an equilibrium selection rule, which picks one from multiple solutions
with a selection probability. When there are multiple equilibria, one would
typically see that the number of solutions to the structural equations varies
as explained below. Suppose that there is a region where each y is realized
as the unique solution to the structural equations, while there is another
region where each y is realized as one of multiple solutions. At one side of
the boundary between above two regions, the selection probability is
always 1, while on the other side of the boundary, the selection probability
tends to be below 1 because now the selection rule has to pick one
equilibrium from multiple candidates. Thus the selection probability has a
jump between regions with distinct numbers of solutions. This would
create a jump in the density of dependent variables.

Figure 2.1 shows such jumps in the density function of data (P1, P2)
generated by a simplified Berry, Levinsohn and Pakes (BLP) model but with
heteroskedasticity in the idiosyncratic term of the consumers’ preference.
The details of the model setup and parameter choices are given in Section
2.5. Here the dependent variables are prices P1 and P2. We can clearly see
that the thickness of the points has an abrupt change on a line: this is the

5Throughout this chapter, a discontinuity or a jump refers to a jump discontinuity
where the directional limits are not all equal.
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2.1. Introduction

jump location curve of the joint density of prices, fP1,P2(p1, p2).
This way we translate the problem of testing for multiple equilibria to

testing for the presence of a jump in the density function. Our testing
procedure consists of three steps. Firstly, we compute the local jump of the
density at a fixed y. In doing this, we check directions along all
coordinates of y. Secondly, we maximize those local jumps over the
support of Y . This gives our test statistic. Lastly, we compute the critical
value via the Gaussian multiplier bootstrap proposed by Chernozhukov,
Chetverikov and Kato (2013).

2.1.1 Related Literature

In a discrete game with incomplete information and independent types of
players, tests for multiple equilibria have been developed by Paula and
Tang (2012) and Aguirregabiria and Mira (2013). Their tests were based
on dependence among players’ choices. We use a different testing criterion,
which fits our framework of continuous dependent variables. Besides, our
framework is nonparametric in both structural equations and the
equilibrium selection rule. This is different from Dagsvik and Jovanovic
(1994), which formulated a parametric model and a parametric equilibrium
selection rule to study whether depression can be explained as a low level
equilibrium. Our problem also differs from Kasy (2012) which provided
confidence sets for the number of solutions to the equation g(y) = 0,
assuming that the function g can be identified from some moment
restrictions. To the best of my knowledge, Echenique and Komunjer (2009)
is the only paper that considered nonparametric models with multiple
equilibria and a continuous dependent variable. Instead of testing for
multiple equilibria, they developed a test for complementarity between the
dependent variable (at extremal values) and covariates. As a matter of
dimension, Echenique and Komunjer (2009) focused on one dimensional
equilibrium, (i.e., the dependent variable is a scalar). When the dependent
variables in an economic model are multidimensional, (this happens in
many empirical applications), they reduced the number of equilibrium
characterizing equations by substitution. The difficulty with substitution is
that it usually breaks the separable form of unobservables and observables
in the resulting structural equation.6 To avoid this problem, Echenique

6For example, if an equilibrium (y1, y2) is characterized by r1(y1, y2) = u1 and
r2(y1,y2) = u2, suppose the second equation yields the best response function of y2 as
y2 = φ2(y1,u2). By substitution, we get an equation r1(y1, φ2(y1,u2)) = u1, where the
unobservable u2 does not appear as a separable form.

7



2.1. Introduction

and Komunjer (2009) first assumed no unobservables in the structural
equations, used substitution to reduce the dimension of equations, and
then added a disturbance term back to the one-dimensional structural
equation.7 In this chapter, we consider the multidimensional dependent
variables directly and keep unobservables in the original structural
equations.

The form of the econometric model in this chapter resembles
nonparametric simultaneous equation models (or the transformation
model, when the dependent variable is a scalar) studied by Horowitz
(1996), Ekeland, Heckman and Nesheim (2004), Matzkin (2008) and Berry
and Halie (2013), among others. The crucial difference is that we do not
impose the assumption that the unknown function r(·) is one to one. In
this sense, this chapter proposes a test for one of the key assumptions
maintained in the standard nonparametric simultaneous equations models.

Our test is also related to statistics literature on testing the presence of
a jump in a density or a regression function. Such a test differs from the
better known approach to detect the location of the jump given its
existence. (For the latter, see Hall and Titterington (1992), Müller (1992)
and Delgado and Hidalgo (2000), among others.) Chu and Cheng (1996)
proposed a test for the presence of a jump in univariate densities. Their
critical values were computed from a Gumbel distribution under the null
hypothesis of continuity. A similar test for a univariate regression function
has been developed by Hamrouni (1999). Müller and Stadtmüller (1999)
showed that in univariate equidistant regression models, the sum of
squared jump sizes can be represented as the coefficient of an asymptotic
linear model, with the squared difference of y as the dependent variable
and twice the standard deviation of the error term as the intercept. Hence
they developed a test by checking whether the sum of the squared jump
sizes equals zero. Gijbels and Goderniaux (2004) proposed a two-step
bootstrap test for discontinuities in univariate regression functions, which
identified a discontinuity as a point with the largest derivative. Bowman,
Pope and Ismail (2006) developed a test based on the sum of squared
pointwise jumps for univariate and bivariate regression functions. Our test
is based on maximized local jumps, which resembles Chu and Cheng
(1996) and Qiu (2002). To compute the critical value, instead of using
Gumbel distribution as an asymptotic approximation, we apply the

7For the aforementioned example, this means that they began with r1(y1, y2) = 0
and r2(y1, y2) = 0 in the first place, reduced it to r1(y1, φ2(y1)) = 0, and then added a
disturbance term u to yield r1(y1, φ2(y1)) = u.

8



2.2. The Framework and Examples

Gaussian multiplier bootstrap proposed by Chernozhukov, Chetverikov
and Kato (2013).

2.1.2 Organization of Chapter 2

This chapter is organized as follows. Section 2.2 presents the basic setup
and provides examples. Section 2.3 establishes a link between uniqueness or
multiplicity of equilibrium and the continuity or discontinuity in the density
function of the dependent variables. Section 2.4 constructs a test and derives
its asymptotic properties. Section 2.5 conducts Monte Carlo simulations.
Section 2.6 concludes. All technical conditions and proofs are presented in
Appendix A.

2.2 The Framework and Examples

2.2.1 The Econometric Model

Consider the following system of structural equations

r(Y ) = g(X) + U, (2.1)

where the dependent (endogenous) vector Y has dimension J and support
Y ⊂ RJ . The vector-valued function r(·) : Y → RJ is twice continuously
differentiable. The exogenous vector X has dimension L and support X ⊂
RL. The vector g(X) = [g1(X), g2(X), ..., gJ(X)]′, where the real-valued
function gj : X → RJ is twice continuously differentiable for each j. The
functions r and g are nonparametric. In addition, we denote the support of
U as U and assume it to be connected. A generalization of model (2.1) is

r(Y,W ) = g(X,W ) + U, (2.2)

where (W,X) are observable exogenous variables. In the following, we
focus on (2.1), since (2.2) can be reduced to (2.1) once we condition on W .
The essential difference between (2.1) and the standard nonparametric
simultaneous equations model is that we do not impose the assumption
that function r : Y → RJ is one to one. This allows for the possibility of
multiple y satisfying (2.1) given exogenous (x, u). When such multiplicity
happens for some (x, u), model (2.1) is incomplete. One can introduce a
probability measure to account for the randomness of Y given (X,U). For
that purpose, we first introduce some notations and impose Assumption
D1. Let

E(v) ≡
{
y ∈ RJ : r(y) = v

}
, for any v ∈ V,

9
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where V ≡ {g(x) + u : (x, u) ∈ X × U}. E(v) is the set of solutions to the
equation r(y) = v. In this chapter, we assume that E(v) is non-empty and
has a finite cardinality for any v ∈ V. This is Assumption D1.

Assumption D1. (i) V ⊂ {v ∈ RJ : r(y) = v, for some y ∈ RJ}.
(ii) Pr (# (E (g(X) + U)) <∞) = 1, where #(G) is the cardinality of a

generic set G.

If the range of r function is RJ , Assumption D1(i) always holds.
Assumption D1(ii) rules out functions r having a constant part such that
#(E(v)) is uncountable for some v.

Now we describe the aforementioned probability that accounts for the
randomness of Y given (X,U). For any (x, u) ∈ X × U , let π(x, u) be a
probability on the power set of E(g(x) + u) specified by

Pr (Y ∈ A|X = x, U = u) = π(x, u)(A), (2.3)

for all subsets A of E(g(x) + u).
Under Assumption D1, we classify the model (i.e., the structural equa-

tions (2.1) and the probability π(x, u)) into one of the following three cate-
gories based on equilibrium behaviour.

(C1) # (E (g(x) + u)) = 1 for all (x, u) ∈ X × U .
(C2) Pr (# (E (g(X) + U)) > 1) > 0 and Pr (# (supp (π(X,U))) = 1) =

1, where supp(π(x, u)) denotes the support of the probability π(x, u).
(C3) Pr (# (E (g(X) + U)) > 1) > 0 and Pr (# (supp (π(X,U))) > 1) >

0.

Category (C1) means that structural equations (2.1) admit a unique so-
lution in y for all (x, u) ∈ X × U . Category (C2) means that structural e-
quations (2.1) have more than one solutions in y for (x, u) with a positive
probability, however, given (x, u) there is only one element in the equilibria
set E(g(x) +u) that Y can take with a positive probability, and that proba-
bility is 1. Category (C3) means that structural equations (2.1) have more
than one solutions in y for some (x, u) with a positive probability, and at
those (x, u) there are strictly more than one elements in E(g(x) + u) that
Y can take with positive probabilities. Throughout this chapter, a unique
equilibrium refers to (C1) or (C2), whereas multiplicity of equilibria refers
to (C3). In addition, we do not consider an exceptional case in which struc-
tural equations (2.1) admit multiple solutions for some (x, u) ∈ X × U , but
Pr (# (E (g(X) + U)) > 1) = 0.

10
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2.2.2 Examples

We present three examples:

[Example 1] A Nonparametric BLP Model. The model is based
on Berry and Haile (2014). There are T markets, J firms and each firm
produces a product. For the tth market, pt = (p1t, ..., pJt)

′ denotes product
prices, xt = (x1t, ..., xJt)

′ denotes covariates in consumers’ preferences,
wt = (w1t, ..., wJt)

′ denotes covariates in cost functions, st = (s1t, ..., sJt)
′

denotes market shares, ζt = (ζ1t, ..., ζJt)
′ and ωt = (ω1t, ..., ωJt)

′ denote
product level unobservables in the preference and cost functions
respectively. Conditional on (xt, ζt), the utility for consumer i
vit = (vit0, ...vit1, ..., vitJ)′ from consuming each product, (where vi0t
denotes the utility of consumer i from consuming nothing), is i.i.d. across
consumers i = 1, ..., I and markets t = 1, ..., T . The market share of
product j in market t is the choice probability

sjt = σj(pt, ζt, xt) = Pr

(
arg max

k=0,1,...,J
vitk = j

)
.

According to Berry and Haile (2014), under assumptions including demand
index restrictions8 and connected substitutes9, the nonparametric BLP
model can be characterized by a system of 2J equations.

σ−1
j (st, pt) = xjt + ζjt (2.4)

π−1
j (st, pt) = wjt + ωjt, (2.5)

for j = 1, 2, .., J . This system of equations corresponds to (2.1). Berry and
Haile (2014) show that σ−1

j (·) and π−1
j (·) can be identified under “a

unique equilibrium” assumption (Assumption 13 in Berry and Haile
(2014)): “There is a unique vector of equilibrium prices associated with any
(δjt, κjt), (where δjt = xjt + ζjt and κjt = wjt + ωjt).”

10 While imposing

8“Demand index” is Assumption 1 of Berry and Haile (2014), which leads to sjt =

σj(pt, δt, x
(2)
t ), where δjt = x

(1)
jt + ζjt, x

(1)
jt is one element of xjt and x

(2)
jt are the remaining

elements. As in their paper, x
(2)
jt is suppressed because we can conditional on an arbitrary

value of x
(2)
jt . For notational simplicity, write δjt = xjt + ζjt.

9Connected substitutes (Assumption 2 of Berry and Haile (2014)) leads to δjt =
σ−1
j (pt, st) for all j = 1, ..., J and for any (pt, st).

10The model with “a unique equilibrium” in Berry and Haile (2014) corresponds to
the union of Category (C1) and a subset of Category (C2). We include in the unique
equilibrium (more precisely, category (C2)) the case where the equilibrium selection rule
depends on (xt, ζt).(Similarly, (C2) allows equilibrium selection rule depends on (wt, ωt).)

11
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that assumption, they noted that “it is not hard to construct examples
admitting multiple equilibria” and the unique equilibrium assumption
“rules out random equilibrium selection or equilibrium selection based on
xjt or ζjt instead of their sum δjt (and similarly for κjt).”

[Example 2] A Semiparametric Social Interaction Model. This
is an extension of the standard linear-in-means model in social interaction
(Manski (1993), Brock and Durlauf (2001b)). Here, the endogenous effect is
captured by ϕ(mg), where the function ϕ(·) is not parametrically specified.
The behavioural equation is

wgi = c′xgi + d′x̄g + e′yg + ϕ(mg) + αg + ugi, (2.6)

where wgi denotes individual outcome, xgi individual characteristics, yg
group level characteristics, x̄g = E(xgi|Yg, αg, ug) group level expected
individual characteristics, mg = E(wgi|yg, αg, ug) expected group outcome,
ϕ(·) the effect of expected group outcome on individual outcome, αg
unobservable group characteristics and ugi unobservable individual
characteristics. The exogenous assumption is

E (ugi|xgi, yg, αg) = 0. (2.7)

By a self-consistency condition, we have

mg − ϕ(mg) =
(
c′ + d′

)
x̄g + e′Yg + αg. (2.8)

Equation (2.8) corresponds to (2.1). If we impose an ex-ante assumption
that ϕ

′
(m) < 1, there is a unique solution in mg given the observable and

unobservable. Thus ϕ(·) is identified by the standard transformation model.
Otherwise, there may be multiple equilibria in mg.

[Example 3] A macro model of employment
Dagsvik and Javanovic (1994) set up a simple macro model which

allows for multiple equilibria in employment rate. The structural equation
characterizing an equilibrium employment rate y is:

z − β log φ

(
1

1 + exp(−z)

)
= βδ log x+ β log u− log v,

The unique equilibrium assumption in in Berry and Haile (2014) corresponds to our
Assumption D10 in Section 2.3. Thus by Proposition 3 of this chapter, we can use
the continuity of the unconditional density to test the validity of the unique equilibrium
assumption in Berry and Haile (2014).
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where z = log(y/(1− y)), x denotes monetary supply, u denotes a shock to
aggregate demand or productivity, v denotes aggregate shock to the supply
of labour. Dagsvik and Javanovic (1994) assumed a cubic form of φ(·) and
a parametric form of equilibrium selection rule. In our framework, φ(·) is
not parametrically specified.

2.3 Testing the Presence of Multiple Equilibria
via Discontinuity

This section analyses the relations between the uniqueness or multiplicity
of equilibria and the continuity or discontinuity of the density function
fY |X(y|x) in y. In particular, under regularity conditions, a model with a
unique equilibrium ((C1) or (C2)) necessarily makes the conditional
density fY |X(y|x) continuous over y ∈ int(Y(x)), for all x ∈ X , where
(Y(x)) is the support of Y conditional on X = x. On the other hand, a
model with multiple equilibria ((C3)), under reasonable conditions, gives
rise to a discontinuity of fY |X(y|x) in y. Here a discontinuity refers to a
jump of fY |X(y|x) between two non-zero values as we perturb y. Under an
additional condition, a model with a unique equilibrium leads to
continuous unconditional density fY (y), while a model with multiple
equilibria gives rise to a jump in the unconditional density fY (y). Proofs
in this section are collected in Appendix A.1.

2.3.1 An Equilibrium Selection Rule

The possibility of #(E(g(x) + u)) > 1 makes the model given by structural
equations (2.1) incomplete in the sense that the realization of exogenous
variables (x, u) cannot uniquely determine the value of endogenous variables.
We address this issue by introducing an equilibrium selection rule, which
specifies the probability with which each “type” of equilibrium is selected11.
Let us first give an index system to indicate types of equilibria. Towards
this end, we begin with some notations and assumptions. Let

Ȳ ≡ {y ∈ RJ : r(y) ∈ V}.
11It is possible to use π(x, u) in (2.3) as an equilibrium selection rule, see Echenique and

Komunjer (2009). However, we try a different approach here, which is more convenient
for our analysis. Our equilibrium selection rule will be defined on “types” (or indices) of
equilibria.

13
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The set Ȳ collects all possible values of equilibria, and it is a superset of
Y since some equilibria may not be realized. We impose a smoothness
condition on functions r and g.

Assumption D2. Functions r : Ȳ → RJ and g : X → RJ are twice
continuously differentiable over int(Ȳ). The Jacobian of r(y), denoted as
J(y), is bounded and twice continuously differentiable over int(Ȳ).

A large class of functions with an enough degree of smoothness satisfies
Assumption D2.

If the structural equations (2.1) are in (C1), there is a unique reduced-
form function which maps the exogenous term v = g(x)+u to y. Otherwise,
the relation from v to y turns to be a correspondence. Each branch of
the correspondence can be viewed as a reduced-form function from v to y.
Definition 1 below formalizes it. The family {q1(·), ..., qM (·)} can be viewed
as a collection of reduced-from functions mapping an exogenous term g(x)+u
to a value of endogenous Y .

Definition 1. Let M be the smallest number such that there exists a
family of twice continuously differentiable functions

{q1(·), q2(·), ..., qM (·)} ,

where qm : Bm → RJ , Bm is an open and connected subset of V, and the
following conditions are satisfied :

(i) For any (y, v) ∈ Ȳ × Bm satisfying r(y) = v, we have y = qm(v).
Furthermore, r(qm(v)) = v for all v ∈ Bm.

(ii) ∪Mm=1B̄m = V. (Here B̄m denotes the closure of Bm.)
(iii) For any v ∈ Bm ∩Bk and m 6= k, qm(v) 6= qk(v).

Definition 1(i) implies that qm : Bm → Am is one to one in each Bm.
(Suppose there are v1 6= v2 in Bm satisfying y = qm(v1) = qm(v2). Thus we
have r(y) = v1 6= v2 = r(y), which cannot hold.) Definition 1(ii) means that
for almost all v ∈ V, there is a function qm (m may vary with v) defined on
it. Definition 1(iii) says that each qm is distinct, otherwise we can exclude
such a v from either Bm or Bk. The sets B1, ..., BM are not all disjoint if the
structural equations (2.1) admit multiple solutions at some (x, u). Figure
2.2 illustrates the collection of reduced-form functions {q1(·), ..., qM (·)} using
a simple example. That is, the structural equation is r(y) = u, where
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Figure 2.2: Reduced-form functions
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r(y) = −y3 + 15y2 − 59y + 45. By Definition 1, the example has three
reduced-form functions q1, q2, q3 and their domains are B1, B2 and B3.

We impose the following assumption on the structural equations (2.1).

Assumption D3. (i) The constant M in Definition 1 is finite. (ii) If
structural equations (2.1) admit a unique solution in y for all (x, u) ∈ X ×U ,
the Jacobian J(y) > 0 for all y ∈ Ȳ.

Assumption D3 (i) requires that the collection of reduced-form function
mapping from g(x) = u to y has finite elements. Assumption D3 (ii) guar-
antees that for any model in (C1), the Jacobian J(y) is bounded away from
zero.

Let Am = qm(Bm), the family of the reduced-form functions
{q1, q2, ..., qM} in Definition 1 produces a collection of subsets of Ȳ with
the properties in Lemma 1 below.

Lemma 1. Let A = {Am,m = 1, 2, ...,M}, where Am = qm(Bm). Then
under Assumptions D1-D3, the collection A has the following properties:

(i) Function r is one to one on each Am.
(ii) Ȳ = ∪Mm=1Ām.
(iii) For any m 6= k, Am ∩Ak = ∅.
(iv) If a model is in (C1), the constant M = 1 in Definition 1.
(v) If a model is in (C2) or (C3), the constant M > 1 in Definition 1.

Lemma 1 is a direct consequence of Assumptions D1-D3 and Definition
1. The key role of Lemma 1 is to generate an index system of equilibria
types. If y ∈ Am, we call it the type m equilibrium and index it by m.
Define an equilibria indices set (given the exogenous value v = g(x) + u) as
a collection of m’s such that (2.1) is satisfied for some y ∈ Am. That is, for
any fixed v ∈ V,

M(v) ≡ {m : v ∈ r(Am)}. (2.9)

Note that the function M : V → the power set of {1, 2, ...,M} specified in
(2.9) is fully determined by the structual equations (2.1). Let

W = {(x, u) : g(x) + u ∈ ∪Mm=1Bm},

we introduce the equilibrium selection rule.

Definition 2. Let an equilibrium selection rule λ be a measurable func-
tion W → [0, 1]M defined as
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λ(x, u) = [λ1(x, u), ..., λM (x, u)],

where

λm(x, u) = Pr (Y ∈ Am|X = x, U = u) .

Clearly, λh(x, u) = 0 if h /∈M(g(x)+u), and
∑M

m=1 λm(x, u) = 1. Given
a function M, the collection of all equilibrium selection rules are

C(M) =

{
λ :W → [0, 1]M :

∑M
m=1 λm(x, u) = 1,

λh(x, u) = 0 if h /∈M(g(x) + u), for all (x, u) ∈ W

}
.

In some situations, the econometrician may impose restrictions on the equi-
librium selection rule. For example, later we will consider a class C0(M) of
equilibrium selection rules that no longer depends on unobservables, condi-
tional on the equilibria indices set and the observable characteristics. That
is, let

M = {M(v) : v ∈ ∪Mm=1Bm}, (2.10)

we have

C0(M) =

{
λ ∈ C(M) : there is a φ : M×X → [0, 1]M

such that λ(x, u) = φ(M(g(x) + u), x), for all (x, u) ∈ W

}
.

(2.11)
We say an equilibrium selection rule λ is degenerate at (x, u) if

λm(x, u) = 1 for an m. Now by Lemma 1 and Definition 2, we obtain
equivalent statements of (C1) to (C3) about the equilibrium behaviour of
the model (the structural equations (2.1) and the equilibrium selection rule
λ).

(C1) M = 1.
(C2) M > 1, and Pr (λm(X,U) = 1 for some m) = 1.
(C3) M > 1, and Pr (λm(X,U) < 1 for all m) > 0.
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2.3.2 A Testing Criterion

We assume that the unobservable U has a smooth density function.

Assumption D4. (i) The unobservable U is independent of X. (ii)
The distribution of U is absolutely continuous with respect to the
Lebesgue measure and its density fU (u) = dFU (u)/du is bounded and
twice continuously differentiable. (iii) The support U is connected.

Assumption D4 means that the unobservable vector U is independent of
the observable characteristics and its density is smooth enough. Therefore,
any jump in the density of dependent variables is not due to the unobservable
U . In the next subsection, we will relax this assumption to allow for jumps
in fU (u).

When the structural equations (2.1) have more than one solutions, a
typical situation is that the equilibria indices set M(v) defined in (2.9)
changes with v. This is the main source for a jump in the conditional
density functions. Suppose there are y1, y2 ∈ Am associated with distinct
equilibria indices sets. (i.e., M(r(y1)) 6= M(r(y2)).) Based on that, we
can further divide Am into disjoint subsets. To formalize this idea, recall
that M in (2.10) is the collection of all equilibria indices sets generated by
the structural equation (2.1). Let Mm be the subset of M such that each
equilibria indices set in Mm equal to M(r(y)) for some y ∈ Am:

Mm = {G ∈M : G =M(r(y)), for some y ∈ Am}.

Let Lm = {1, ...,#(Mm)} so that we can list the elements in Mm:

Mm = {Gml : l ∈ Lm}.

Using this notation, for each m = 1, ...,M , we can produce a collection of
subsets of Am based on equilibria indices sets in Mm,

Aml = {y ∈ Am :M(r(y)) = Gml } , for l ∈ Lm. (2.12)

By construction, we have (i) Ām = ∪l∈LmĀml, (ii) Aml ∩ Aml′ = ∅, (iii)
M(r(Aml)) is defined, and (iv) M(r(Aml)) 6= M(r(Aml′)) for all m and
l 6= l′. Note that (iii) and (iv) uses the following notation: for any V ⊂ V,
define M(V ) =M(v) if M(v) is the same over v ∈ V .

Consider the previous simple example without covariates X: r(y) = u,
where r(y) = −y3 + 15y2 − 59y + 45. In Figure 2.3, r(y) is plotted against
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Figure 2.3: Multiple equilibria and jump(s)
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y. There can be one or three equilibria (with positive probabilities). In
this example, the three reduced-form functions illustrated in Figure 2.2
divides Ȳ into A1, A2 and A3. Each of them is labelled with a different
colour on the horizontal axis. Function r(y) is one to one within each Am.
An equilibrium is indexed as type m if it is within Am, m = 1, 2, 3.
Furthermore, we have M = {{1}, {3}, {1, 2, 3}}, and M1 = {{1}, {1, 2, 3}},
M2 = {{1, 2, 3}}, M3 = {{3}, {1, 2, 3}}. Based on distinct equilibria
indices sets (corresponding to (2.12)), we have Ā1 = Ā11 ∪ Ā12 and
Ā3 = Ā31 ∪ Ā32, where the equilibrium indices sets associated with
A11, A12, A2, A31 and A32 are:

M(r(A11)) = {1},M(r(A32)) = {3},
M(r(A12)) =M(r(A2)) =M(r(A31)) = {1, 2, 3}.

Now we begin to analyse the conditional density function fY |X(y|x) and
its relation to the uniqueness/multiplicity of equilibria. Lemma 2 gives a
formula of the conditional density function.

Lemma 2. Suppose that Assumptions D1-D4 hold. Then for any y ∈
∪Mm=1 ∪l∈Lm Aml and x ∈ X ,

fY |X(y|x) = fU (r(y)− g(x))|J(y)|λs(x, r(y)− g(x)),

where s ∈ {1, 2, ...,M} and h ∈ Ls such that y ∈ Ash.

Lemma 2 shows that under some regularity conditions, the conditional
density fY |X(y|x) can be written as a product of the density of unobserved
U , the Jacobian of r(y), and a selection probability (a component of the
equilibrium selection rule). Since Aml’s are mutually exclusive across m
and l, for any y ∈ ∪Mm=1 ∪l∈Lm Aml, there is a unique pair (s, h) where
s ∈ {1, 2, ...,M} and h ∈ Lm, such that y ∈ Ash. Also, note that ∪Mm=1∪l∈Lm
Āml = Ȳ. From Assumption D2, D4 and Lemma 2, we can see that a jump
in fY |X(y|x), if it exists, must come from the selection probability specified
by the equilibrium selection rule. The following proposition establishes a
testable implication of a unique equilibrium.

Proposition 1. Suppose Assumptions D1-D4 hold, and the model (i.e.,
the structural equations (2.1) and the equilibrium selection rule λ) generates
a unique equilibrium (i.e., the model falls into Category (C1) or (C2)). Then

(i) The conditional density fY |X(y|x) is continuous in y on int(Y(x))
given any x ∈ X . (Y(x) is the support of Y given x.) That is, for any x ∈ X ,
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y ∈ int(Y(x)) and any two sequences {y1n}, {y2n} such that y1n, y2n ∈
Y(x), y1n → y and y2n → y, we have

lim
y1n→y

fY |X(y1n|x) = lim
y2n→y

fY |X(y2n|x).

(ii) If X is a continuous random vector, fY |X(y|x) is continuous in
(x, y) over x ∈ int(X ), y ∈ int(Y(x)). That is, for any x ∈ int(X ), y ∈
int(Y(x)) and any two sequences {(y1n, x1n)}, {(y2n, x2n)} such that y1n ∈
Y(x1n), y2n ∈ Y(x2n), (y1n, x1n)→ (y, x) and (y2n, x2n)→ (y, x), we have

lim
(y1n,x1n)→(y,x)

fY |X(y1n|x1n) = lim
(y2n,x2n)→(y,x)

fY |X(y2n|x2n).

Remark 1. (i) Here continuity at y means that the limits to y from all
directions in the support coincide. It does not impose any restriction on the
value of the density function at y. Throughout this chapter, “continuity”
refers to “lack of a jump discontinuity”.

(ii) Conditional density fY |X(y|x) may have jumps in y from some pos-
itive number to zero at the boundary of Y(x). Therefore Proposition 1 is
stated for y ∈ int(Y(x)). Later, when constructing the test statistic, we ex-
clude data points near the boundary of its support.

(iii) Though the main testing criterion of this chapter is a jump of the
density function in y, Proposition 1(ii) tells us that a jump in x actually
provides additional evidence for multiple equilibria.

(iv) If the model is in (C1), it will produce another restriction on the
observable data (Y,X). That is, the support Y(x) is connected for all x.
In particular, when the model is in (C1), function r is one to one, hence
Y = r−1(g(X) + U). Note that U is connected, U is independent of X
(Assumption D4) and r is continuous (Assumption D2). Therefore, for any
x, Y(x) is connected by Theorem 23.5 of Munkres (1999). (That is, the
image of a connected space under a continuous map is connected.) For
example, if assuming U = RJ , we can further distinguish a model in (C1)
from another model in (C2), because (C1) leads to Y = RJ whereas (C2)
produces hole(s) in Y.

Proposition 1 states that a model with a unique equilibrium necessarily
leads to continuous conditional density fY |X(y|x). The next questions are
whether and when a model with multiple equilibria would produce a jump
of fY |X(y|x) in y. The intuition is that if a model has multiple equilibria,
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Table 2.1: Conditions for multiple equilibria to produce jump(s) in density

Results Assumptions on

Structural equations (2.1) Equilibrium selection rule

Proposition 2 D5(i), D6(i) D6(ii)

Corollary 2 D5, D7(i) D7(ii), D8

Corollary 3 D5, D7(i), D9(i) D7(ii), D9(ii)

one would typically see that the equilibria indices set M(r(y)) changes
with y. Then at a fixed x, consider what would happen at the boundary
between regions of y associated with different equilibria indices sets.
Suppose there is a region with a unique equilibrium and another region
with multiple equilibria. At one side of the boundary, the selection
probability is one, while on the other side of the boundary, the selection
probability tends to be below one because the equilibrium selection rule
has to pick one from multiple candidates. As a result, the selection
probability tends to have a jump at the boundary between subsets of Ȳ
with distinct equilibria indices sets. This leads to a jump of fY |X(y|x) in y.

In the following, each of Proposition 2, Corollary 2 and Corollary 3
establishes the relation between multiple equilibria and jump(s) of fY |X(y|x)
in y, under different sets of assumptions. As an easier reference, Table 2.1
lists three sets of assumptions sufficient for multiple equilibria to produce
such jump(s) in the conditional density. Keep in mind that Assumptions
D1-D4 are maintained for all three results in Table 2.1.

The following Assumption D5 is a technical assumption. Assumption
D5(i) will be used in Proposition 2, while Assumption D5(ii) and (iii) will
be used later to give a sufficient condition for the equilibria indices set to
vary on some r(Am).

Assumption D5. (i) For any ε > 0, there exists a ς > 0 such that
J(y) > ς for all y ∈ Åm ⊂ Am and all m, where Åm satisfies µL(Am\Åm) < ε
and µL denotes the Lebesgue measure on Ȳ.

(ii) For any v ∈ int(V), if for any ε > 0 there exists a v0 such that
|v − v0| < ε and r(y) = v0 has a unique solution in y, then the Jacobian
J(y) > 0 for all y satisfying r(y) = v.

(iii) For any m ∈ {1, ...,M}, let v0 be an arbitrary point v0 ∈ B̄m\Bm,
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2.3. Testing the Presence of Multiple Equilibria via Discontinuity

and y∗ satisfy r(y∗) = v0, y∗ 6= limv→v0,v∈Bm qm(v) ≡ ym. If y∗ exists and
there is no such y′ that every component of y′ − ym has the same sign as
y∗ − ym and |y′ − ym| < |y∗ − ym|, then J(y∗) > 0.

Assumption D5(i) means that the Jacobian of function r is bounded
away from zero over a large enough subset of Am, for all m. Assumption
D5(ii) and (iii) bound the Jacobian J(y) away from zero at some particular
points.

Suppose Assumptions D1-D4 and D5(i) hold, the following Assumption
D6 is sufficient for multiple equilibria to produce jump(s) in the conditional
density of dependent variables.

Assumption D6. If the model generates multiple equilibria (i.e., the
model falls in Category (C3)), there exists an s ∈ {1, 2, ...,M} satisfying the
following conditions:

(i) The set As has disjoint subsets Ash and Ash′ satisfying Āsh∩Āsh′ 6= ∅
and M(r(Ash)) 6=M(r(Ash′)).

(ii) For some y ∈ Āsh ∩ Āsh′ , where Ash and Ash′ satisfy Assumption
D6(i), there is a set XD ⊂ X with Pr(X ∈ XD) > 0 such that the following
conditions hold for any x ∈ XD,

lim
y′∈Ash,y′→y

λs
(
x, r(y′)− g(x)

)
6= lim

y′∈Ash′ ,y′→y
λs
(
x, r(y′)− g(x)

)
,

and

lim
y′∈Ash,y′→y

λs
(
x, r(y′)− g(x)

)
· lim
y′∈Ash′ ,y′→y

λs
(
x, r(y′)− g(x)

)
6= 0.

Remark 2. (i) If the equilibrium selection rule belongs to C0(M) in
(2.11), (That is, it does not depend on u, given M(g(x) + u) and x.)
Assumption D6(ii) becomes: for some y ∈ Āsh ∩ Āsh′ , where Ash and Ash′

satisfy Assumption D6 (i), there is a set XD ⊂ X with Pr(X ∈ XD) > 0
such that the following conditions hold:

φs (M(r(Ash)), x) 6= φs (M(r(Ash′)), x) ,

φs (M(r(Ash)), x) · φs (M(r(Ash′)), x) 6= 0,

for all x ∈ XD.
(ii) Assumption D6 outlines the direct source for a jump (between

non-zero values) of fY |X(y|x) as we perturb y. Note that Ash and Ash′ are
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associated with distinct equilibria indices sets, M(r(Ash)) 6= M(r(Ash′)).
Assumption D6 assumes two properties for a model with multiple
equilibria: (i) The equilibria indices set M(r(y)) varies over Ȳ. (ii) A
component of the equilibrium selection rule has a jump (between non-zero
values) at the boundary between some neighbouring subsets of Ȳ with
distinct equilibria indices sets. Assumption D6 reasonably holds in many
interesting cases with multiple equilibria. For example, Corollary 1 below
states that if Assumption D5(ii), (iii) hold, and the structural equations
admit a unique solution for some values of exogenous variables while admit
multiple solutions for other values, Assumption D6(i) is necessarily
satisfied. For our example in Figure 2, the equilibria indices set changes at
the boundary between A11 and A12 as well as at the boundary between
A31 and A32. Imposing Assumption D6(ii) in that example includes the
case where the equilibrium selection rule assigns to equilibrium 1 a
probability strictly between zero and one when the equilibria indices set
contains equilibrium 1, 2 and 3.

(iii) Suppose that Assumption 6(i) hold. Then the equilibrium selection
rules that do not satisfy Assumption D6(ii) can only take values of a zero
measure “around” (x, r(y)−g(x)) for all x ∈ X and y ∈ Āsh∩Āsh′ . Precisely,
let the equilibrium selection rules that do not satisfy Assumption D6(ii) form
a collection CE(M). It must have the following property:{(

limy′∈Ash,y′→y λs (x, r(y′)− g(x))
limy′∈Ash′ ,y′→y λs (x, r(y′)− g(x))

)
: λ ∈ CE(M)

}
has a zero measure in{(

limy′∈Ash,y′→y λs (x, r(y′)− g(x))
limy′∈Ash′ ,y′→y λs (x, r(y′)− g(x))

)
: λ ∈ C(M)

}
,

for all x ∈ X , y ∈ Āsh ∩ Āsh′ and all s, h, h′ satisfying Āsh ∩ Āsh′ 6= ∅ and
M(r(Ash)) 6=M(r(Ash′)). (See Assumption D6(i).)

The following Proposition 2 establishes a testable implication for models
that have multiple equilibria and satisfy Assumption D6.

Proposition 2. Suppose Assumptions D1-D4, D5(i) and D6 hold and
the model generates multiple equilibria (i.e., the model falls into Category
(C3)). Then for all x ∈ XD,

(i) The conditional density fY |X(y|x) has a jump at some y ∈ int(Y(x)).
That is, there are disjoint open subsets C1, C2 ⊂ int(Y(x)) with C̄1∩C̄2 6= ∅
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and yd = C̄1 ∩ C̄2 satisfying∣∣∣∣ lim
y∈C1,y→yd

fY |X(y|x)− lim
y∈C2,y→yd

fY |X(y|x)

∣∣∣∣ = δ > 0.

(ii) If X is a continuous random vector, fY |X(y|x) has a jump at (x, y)
for some x ∈int(X ), y ∈ int(Y(x)).

In the following, we consider a typical case of multiple equilibria (to
be specified in Assumption D7). That is, (i) the structural equations (2.1)
admit a unique solution for some values of the exogenous variables, and have
multiple solutions for other values, and (ii) the equilibrium selection rule
λ ∈ C0(M) in (2.11)(random selection, for example). We state the relations
from multiple equilibria to the presence of a jump of density fY |X(y|x) in y
for models with such structural equations and equilibrium selection rules.

Assumption D7. If the model generates multiple equilibria, the
following conditions are satisfied.

(i) Pr(g(X) + U ∈ S) > 0, where S = {v ∈ V : #(M(v)) = 1}.
(ii) The equilibrium selection rule λ ∈ C0(M) as defined in (2.11).

Assumption D7(i) means that the structural equations admit a unique
solution for some values of exogenous variables, while they generate
multiple solutions for other values. Assumption D7(ii) means that the only
way the unobservable u affects the equilibrium selection rule is through the
equilibrium index setM(g(x) + u). In other words, givenM(g(x) + u), the
selection rule is purely random or it only depends on the observable
covariates x. Assumption D7(i) is satisfied in several models with multiple
equilibria, see Dagsvik and Jovanovic (1994) and Echenique and Komunjer
(2007). It is reasonable that when the exogenous term g(x) + u takes a
very large (or small) value, its effect dominates the self-fulling mechanism
that may lead to multiple equilibria, so that the exogenous variables
uniquely determine the dependent variables. In contrast, when the
exogenous term g(x) + u takes a moderate value, the self-fulling
mechanism tends to dominate and may produce (for example) three
equilibria: a large one, a medium one and a small one.

Assumption D7(ii) says that the equilibrium selection rule λ ∈ C0(M) as
defined in (2.11). Echenique and Komunjer (2009) made an assumption very
similar to Assumption D7(ii) when introducing their equilibrium selection
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rule.12 Under Assumption D7(ii), for all (x, u) ∈ W, we have λ(x, u) =
φ(M(g(x) + u), x) = φ(M(r(y)), x) = φ(M(r(C)), x), where y ∈ C, r(y) =
g(x) + u, and M(r(C)) is defined. In the following, whenever Assumption
7(ii) holds, we will use φm(M(r(C)), x) to denote the mth component of the
equilibrium selection rule.

In addition, let CE0(M) be the collection of equilibrium selection rules
that satisfy Assumption D7(ii) but do not satisfy Assumption D6(ii) (i.e.,
may not produce a jump in the conditional density when there are multiple
equilibria). By Assumption D6, D7(i) and Remark 2, we must have

{φs (M(r(Ash)), x) , φs (M(r(Ash′)), x)) : φ ∈ CE0(M)}

has a zero measure in

{φs (M(r(Ash)), x) , φs (M(r(Ash′)), x)) : φ ∈ C0(M)},

for all x ∈ X , and all s, h, h′ such that Āsh ∩ Āsh′ 6= ∅ and M(r(Ash)) 6=
M(r(Ash′)). The existence of such s, h, h′ is ensured by Assumption D6(i),
or by the following Corollary 1, which states that Assumption D7(i) is suf-
ficient for Assumption D6(i), under technical conditions Assumption D5(ii)
and (iii).

Corollary 1. Suppose Assumptions D1, D2, D5(ii) and (iii) hold. If
the model (2.1) generates multiple equilibria, Assumption D7(i) is sufficient
for Assumption D6(i).

Now we give sufficient conditions for Assumption D6(ii).

Assumption D8. Suppose the model generates multiple equilibria,
and Assumption D7 holds. Then there exists an m ∈ {1, 2, ...,M}
satisfying r(Am) ∩ S 6= ∅ (S is defined in Assumption D7), and an
XD ⊂ X , Pr (X ∈ XD) > 0, such that the following two conditions hold.

(i) For all C ⊂ Am such that M(r(C)) is defined, the mth component
of the equilibrium selection rule satisfies

φm(M(r(C)), x) > 0.

(ii) For some C0 ⊂ Am such that M(r(C0)) is defined, we have

φm(M(r(C0)), x) < 1.

12They wrote: “For a given x, different realizations of u can affect the support of Pxu,
but not the probabilities assigned to different outcomes in the support.”
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Assumption D8 assumes that there is an Am ⊂ Ȳ such that a subset
of Am is associated with the singleton equilibrium indices set {m}, while
another subset of Am is associated with a larger equilibria indices set (which
also contains the element m). Furthermore, within Am, the probability of
choosing equilibrium m is always positive, and sometimes is strictly less than
one. Corollary 2 gives another version of Proposition 2 when Assumption
D6 is replaced by Assumption D7 and D8.

Corollary 2. Suppose the model generates multiple equilibria, and
Assumptions D1-D5, D7 and D8 hold. Then there is a set XD1 ⊂ X with
Pr(X ∈ XD1) > 0, such that for all x ∈ XD1 the conclusions of Proposition
2 hold.

The example in Figure 2 satisfies Assumption D7(i). Recall that there
is no X. Thus the structural equations are r(y) = u and the equilibrium
selection rule λ is a function of u. As a result, it will satisfy Assumption
D7(ii) if its equilibrium selection rule satisfies that

λ (r(y)) = φ (M(r(Amh))) ,

for all y ∈ Amh, all m and h ∈ Lm. Furthermore, it is not hard to see
that Assumption D8 also holds in that example. Indeed, the m’s satisfying
r(Am)∩S 6= ∅ are m = 1 and 3. Suppose Assumption D8 is violated, that is,
φ1 (M(r(A12))) and φ3 (M(r(A31))) are either 0 or 1. Then there are three
cases, (recall φ1 (M(r(A12))) + φ3 (M(r(A31))) ≤ 1, which means the two
terms cannot all equal 1), however, all of them fall into Category (C2), which
corresponds to a unique equilibrium. As a result, when there are multiple
equilibria, at least one of φ1 (M(r(A12))) and φ1 (M(r(A31))) must be in
the open interval (0, 1). Suppose 0 < φ1 (M(r(A12))) < 1, density fY (y)
will have a jump at yd1 = Ā11 ∩ Ā12 (i.e, the boundary between A11 and
A12).

The following Assumption D9 spells out an alternative set of sufficient
conditions for Assumption D6. This time we do not assume that a compo-
nent in the equilibrium selection rule is strictly less than 1.

Assumption D9. Suppose that the model generates multiple equilibria
and Assumption D7 holds. Then,

(i) For any v ∈ V, there exists an m ∈ {1, 2, ...,M} such that v ∈ r(Am)
and r(Am) ∩ S 6= ∅. (S is defined in Assumption D7.)
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(ii) For any m satisfying r(Am) ∩ S 6= ∅, we have φm(M(r(C)), x) > 0
for all C ⊂ Am with M(r(C)) defined, and for all x ∈ X .

Assumption D9(i) is imposed on the structural equations (2.1). It
automatically holds when Y is a scalar and the structural equations have
one solution for some values of exogenous variables, while have three
solutions for other values of exogenous variables (like the example in
Figure 2.3). Such examples can be found in Dagsvik and Jovanovic (1994)
and Echenique and Komunjer (2007). Assumption D9(ii) is a stronger
version of Assumption D8(i), as the former requires Assumption D8(i) to
hold for all m such that r(Am) ∩ S 6= ∅, and for all x. The following
Corollary 3 states another version of Proposition 2 when Assumption D6 is
replaced by Assumption D7 and D9.

Corollary 3. Suppose the model generates multiple equilibria, and
Assumptions D1-D5, D7 and D9 hold. Then there is a set XD2 ⊂ X with
Pr(X ∈ XD2) > 0, such that for all x ∈ XD2 the conclusions of Proposition
2 hold.

The example in Figure 2.3 satisfies Assumption D9(i). Due to the
simplicity of the structural equation, Assumption D9(ii) is sufficient but
not necessary for that example to produce a jump in the density when
there are multiple equilibria.

Up to now, Proposition 1 and 2 (and Corollaries 2 and 3) all focus on the
conditional density fY |X(y|x). However, a jump in the unconditional density
fY (y) is usually easier to detect. The next proposition shows that with the
additional Assumption D10 below, the relation from uniqueness/multiplicity
of equilibria to continuity/discontinuity of the conditional density fY |X(y|x)
can be transferred to the unconditional density fY (y).

Assumption D10. If the model generates a unique equilibrium, there
exists a function ψ : ∪Mm=1Bm → [0, 1]M such that the equilibrium selection
rule satisfies λ(x, u) = ψ(g(x) + u) for all (x, u) ∈ W.

When a model is in Category (C1), Assumption D10 holds trivially.
Assumption D10 becomes a restriction for a model in (C2) by requiring
that the equilibrium selection rule only depends on g(x) + u. Using the
structural equations (2.1), we can re-write the restriction in Assumption D10
as λ(x, u) = ψ(r(y)). Assumption D10 is useful in its own right. Recall the
example of nonparametric BLP model in Section 2.2, the unique equilibrium
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assumption imposed by Berry and Haile (2014) corresponded to models with
a unique equilibrium satisfying Assumption D10.

Proposition 3 below establishes the relations from the equilibrium
behaviour of the model to continuity or discontinuity of the unconditional
density of dependent variables.

Proposition 3. Suppose Assumptions D1-D4 hold.

(i) Under the additional Assumption D10, if the model generates a unique
equilibrium, the unconditional density fY (y) is continuous over y ∈ int(Y).

(ii) Under additional Assumptions D5, D7 and D8, (D8 can be replaced
by D9), if the model generates multiple equilibria, the unconditional density
fY (y) has a jump at some y ∈ int(Y). That is, there exist disjoint open
subsets C1, C2 ⊂ int(Y) with C̄1 ∩ C̄2 6= ∅, and yd = C̄1 ∩ C̄2 satisfying∣∣∣∣ lim

y∈C1,y→yd
fY (y)− lim

y∈C2,y→yd
fY (y)

∣∣∣∣ = δ > 0.

Remark 3. (i) Assumption D10 is required for part (i) of Proposition
3 but not for part (ii).

(ii) An intuition for part (ii) of Proposition 3 is that under Assumption
D7(i), a jump occurs at the boundary of two subsets of Ȳ such that one of
them is associated with a singleton equilibria indices set, while the other is
associated with an equilibria indices set containing more than one element.
As a result, the signs of the jumps are the same over all x’s at which the
conditional density fY |X(y|x) has a jump in y. Hence the jump remains in
the unconditional density after integrating out x (weighted with its proba-
bility).

(iii) Without Assumption D10 (but with other assumptions of
Proposition 3 kept), if fY (y) is continuous, the underlying model must
have a unique equilibrium. On the other hand, if fY (y) has a jump, we can
further check if fY |X(y|x) has a jump in y for some x to determine whether
the model is in (C2) or (C3).

(iv) Proposition 3 greatly facilitates the implementation of our test when
the density jump is estimated nonparametrically. Dimension is reduced
substantially by excluding observable characteristics X.

In conclusion, we have established a testing criterion that translates
testing for multiple equilibria to testing for the presence of a jump in the
(conditional) density of the dependent variables.
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2.3.3 An Extension: Jumps in the Latent Distribution

In this subsection, we consider an extension for our discontinuity criterion
discussed so far. Recall that Assumption D4(ii) requires that the the density
function of unobservable U is twice continuously differentiable. As a result,
if the conditional density fY |X(y|x) exhibits a jump in y, it is due to a jump
in the equilibrium selection rule λ(x, u), which in turn indicates multiple
equilibria. Here we relax Assumption D4(ii) to allow for jumps in the density
function fU (u).

Assumption D4’. (i) The unobservable U is independent of X. (ii)
The distribution of U is absolute continuous with respect to the Lebesgue
measure and its density fU (u) = dFU (u)/du is bounded and twice
continuously differentiable for almost all u ∈ U .

Assumption D4’ allows for jump(s) in the density fU (u), such that the
collection of jump locations has a zero measure in U .

Although a jump in fU (u) will produce a jump in fY |X(y|x), the following
proposition ensures that the jump in fY |X(y|x) due to jump(s) in fU (u)
will vanish after one integrates out x with its weighted probability, if the
distribution of g(X) does not have a mass point.

Assumption D11. Pr(g(X) ∈ F0) = 0, for any F0 ⊂ RJ with µ(F0) =
0 (where µ denotes the Lebesgue measure on RJ).

Proposition 4. Suppose Assumptions D1-D3, D4’, D10 and D11 hold.
If the model has a unique equilibrium, the unconditional density fY (y) is
continuous on y ∈ int(Y).

The intuition of Proposition 4 as follows. For an arbitrary y0, the jumps
in the latent density fU (u) can produce a jump in the conditional density
fY |X(y|x) at y0, only for x ∈ XJL = {x : fU (u) has a jump at u = r(y0) −
g(x)}. Since fU has jump(s) at a zero measure set and Assumption D11
holds, we have Pr(X ∈ XJL) = 0. Therefore, the jump of conditional density
at y0 will disappear in the unconditional density of Y , after we integrate out
x with its weighted probability. Proposition 3 and 4 together imply that the
presence of a jump in the unconditional density fY (y) is able to distinguish
a jump due to multiple equilibria from that due to jump(s) in the latent
density fU (u).
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2.4 A Test Statistic

This section proposes a nonparametric test for multiple equilibria via testing
for the presence of a jump in the density function of dependent variables. To
focus on the main problem, we assume that the assumptions for Proposition
3 hold so that it suffices to consider the unconditional density function fY (y).
Thus in this section, we can suppress the subscript Y in fY (y) without
causing confusion. Our testing procedure consists of three steps. Firstly, at
a fixed y, we compute the local jump of the density. Secondly, we maximize
those local jumps over an appropriate set of y. This gives our test statistic.
Lastly, we compute the critical value by a Gaussian multiplier boostrap.
The way to compute the local jump at a fixed y resembles that in Qiu
(2002), which focused on estimating the locations of discontinuities in a
bivariate regression. The method to compute the critical value is adapted
from Chernozhukov, Chetverikov and Kato (2013). We establish asymptotic
properties of our test in Proposition 5 and 6. The technical conditions SL1-
SL5 for Proposition 5 and 6 are stated in Appendix A.2. The proofs for
Proposition 5 and 6 are collected in Appendix A.3.

2.4.1 Construction of the Test

Assumption S1. {Yi : i = 1, 2, ..., n} is an i.i.d. sample generated by the
structural equations (2.1) and an equilibrium selection rule.

Let J = {1, 2, ..., J}, by Proposition 3, our testing problem is

H0 : f(y) is continuous over y ∈ int(Y).

H1 : f(y) has at least a jump within y ∈ int(Y).

Recall Remark 1, continuity at y means that the limits from all directions
coincide. By Assumptions D2, D4 and Lemma 2, the density f(y) is twice
continuously differentiable for y ∈ int(Y) except the jump(s), if they exist.
Let yj denote the jth component of y and y−j denote the components of
y other than the jth, f(y+

j , y−j) = limε↓0(yj + ε, y−j) and f(y−j , y−j) =
limε↓0(yj − ε, y−j). Using this notation, at a fixed y, the local density jump
along the direction of the jth coordinate is

∆(j)(y) = f(y+
j , y−j)− f(y−j , y−j).

By Proposition 3, if the model has a unique equilibrium, ∆(j)(y) = 0 for
all j ∈ J and y ∈ int(Y). On the other hand, if the model has multiple
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equilibria, supj∈J ,y∈int(Y) ∆(j)(y) = δ > 0. We construct a kernel estimator
13 of ∆(j)(y),

∆(j)
n (y) = f̂(y+

j , y−j)− f̂(y−j , y−j),

where f̂(y+
j , y−j) and f̂(y−j , y−j) are constructed using one-sided kernels

defined as follows.
For j = 1, ..., J , let K+

j (vj , v−j) and K−j (vj , v−j) be two non-negative
functions which satisfy the following conditions:

(i) The support of K+
j (vj , v−j) is [0, 1]× [−1/2, 1/2]J−1 and the support

of K−j (vj , v−j) is [−1, 0]× [−1/2, 1/2]J−1.

(ii)
∫ 1
−1

∫ 1
−1 ...

∫ 1
−1K

+
j (vj , v−j)dv = 1 and

∫ 1
−1

∫ 1
−1 ...

∫ 1
−1K

−
j (vj , vj)dv =

1.
A typical example is a product kernel. That is, for j = 1, ..., J ,

K+
j (vj , v−j) = K+(vj)×

∏
k 6=j

K(vk),

K−j (vj , v−j) = K−(vj)×
∏
k 6=j

K(vk), (2.13)

where K+ : [0, 1] → R+ ∪ {0} and K− : [−1, 0] → R+ ∪ {0} are one-sided
kernels functions while K : [−1/2, 1/2] → R+ ∪ {0} is a usual two-sided
kernel function.

Using one-sided kernel functions, we construct estimators of the limits
of the density at y and along the jth coordinate as

f̂(y+
j , y−j) =

1

npnh
J−1
n

n∑
i=1

K+
j

(
Yi,j − yj
pn

,
Yi,−j − y−j

hn

)
,

f̂(y−j , y−j) =
1

npnh
J−1
n

n∑
i=1

K−j

(
Yi,j − yj
pn

,
Yi,−j − y−j

hn

)
. (2.14)

where Yi,j is the jth component of Yi and Yi,−j is the components of Yi
other than the jth. pn and hn are bandwidths of the kernel estimator. In

13Under H0, f(y) is twice continuously differentiable, hence the kernel estimator of
∆(j)(y) is consistent for any y and j, under standard conditions. Under H1, f(y) is
not continuous at some y. However, for those y, as long as f(y) is twice continuously
differentiable over a neighbourhood of (yj + ε, y−j) and (yj − ε, y−j) for sufficiently small
ε, the one-sided kernel estimator of ∆(j)(y) remains consistent. Otherwise, the estimator
may not be consistent. (for example, if a bivariate density function f(y1, y2) has a jump
at y1 = c, f(c, y2) is not continuous for all y2). However, this does not affect the level of
our test. Moreover, the power of our test will not be reduced if supj∈J ,y∈int(Y) ∆(j)(y) is
not underestimated.
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addition, define a function ϕ
(j)
n : Y × Y → R as follows

ϕ(j)
n (t, y) =

1

pnh
J−1
n

[
K+
j

(
tj−yj
pn

,
t−j−y−j

hn

)
−K−j

(
tj−yj
pn

,
t−j−y−j

hn

) ]
,

(2.15)
where tj denotes the jth component of t and t−j denotes the components of
t other than the jth. The same subscript is used for y. Therefore, we have

∆(j)
n (y) =

1

n

n∑
i=1

ϕ(j)
n (Yi, y).

The variance of

√
npnh

J−1
n ∆

(j)
n (y) is

σ2
j,n(y) = pnh

J−1
n E

[
ϕ(j)
n (Yi, y)−E

[
ϕ(j)
n (Yi, y)

]]2
. (2.16)

and an estimator of the variance above is

σ̂2
j,n(y) =

pnh
J−1
n

n

n∑
i=1

(
ϕ(j)
n (Yi, y)−∆(j)

n (y)
)2
. (2.17)

Therefore, the normalized local jump at the fixed point y and along the fixed
direction parallel to the jth coordinate can be computed by∣∣∣∣√npnhJ−1

n ∆(j)
n (y)/σ̂j,n(y)

∣∣∣∣ .
Then we consider maximizing local jumps across J coordinates and over

an appropriate subset of the support of Y . We have to exclude points near
the boundary of the support Y because they tend to distort our test. The
local jump may appear large at a point near the boundary of support Y
simply because few sample points are available at one side. In the following,
we construct two maximizing sets Ŷn,κ1 and Ŷn,κ2 . Firstly for each y, we
fix a coordinate j, and compute the proportion of data points with its jth
component lying between yj − ŵj and yj , conditional on the value of the
components other than the jth. We denote this proportion as P̂−j (y). Here
the distance ŵj is given as 1/H of the distance between the largest and
the smallest jth component of Yi. Similarly, we compute P̂+

j (y) as the
proportion of data points which have the jth component lying between yj
and yj+ŵj , conditional on the value of components other than the jth. Then
we construct Ŷn,κ1 as the collection of such y’s that the ratio of P̂−j (y) and

P̂+
j (y) is neither very large nor very small for all coordinates. The cutoff
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2.4. A Test Statistic

is specified by a constant κ1. Analogously, we construct Ŷn,κ2 using the
cutoff κ2. The data dependent set Ŷn,κ1 serves as a maximizing set for the
test statistic while the set Ŷn,κ2 is for the critical value. We set κ2 slightly
smaller than κ1 to facilitate the investigation of asymptotic properties. If the
difference between κ1 and κ2 is small, the power loss due to the discrepancy
between κ1 and κ2 will also be small. In the simulation studies below, we
try (κ1, κ2) = (0.20, 0.19) and (0.25, 0.24). Note that our construction of
P̂−j (y) and P̂+

j (y) is conditional on the value of components other than the
jth. This conditioning is necessary when the support of Y is not a rectangle,
which is common in the models we consider. Ideally, the choice of H should
depend on the shape of the support of Y . For example, when the support
has a hole (zero density) in the middle, it is better to choose bigger H so
that the data points near the boundary of such a hole will be excluded.
In our simulation studies below, we set H = 3. As described so far, the
maximizing sets are constructed as follows.

Ŷn,κ1 = {y ∈ Y : P̂−j (y)/P̂j(y) > κ1, P̂
+
j (y)/P̂j(y) > κ1 all j},

Ŷn,κ2 = {y ∈ Y : P̂−j (y)/P̂j(y) > κ2, P̂
+
j (y)/P̂j(y) > κ2 all j},

where κ2 < κ1 are two constants, and

P̂−j (y) =
1

n

n∑
i=1

1{yj − ŵj ≤ Yi,j < yj , |Yi,k − yk| ≤ hn/2, all k 6= j},

P̂+
j (y) =

1

n

n∑
i=1

1{yj ≤ Yi,j ≤ yj + ŵj , |Yi,k − yk| ≤ hn/2, all k 6= j},

P̂j(y) = P̂−j (y) + P̂+
j (y), ŵj = (max

i
Yi,j −min

i
Yi,j)/H, (2.18)

for all j ∈ J .

The next step is to take the supremum of

∣∣∣∣√npnhJ−1
n ∆

(j)
n (y)/σ̂j,n(y)

∣∣∣∣
across coordinates and over y ∈ Ŷj,κ1 . This gives our test statistic test
statistic ∆n.

∆n = sup
j∈J ,y∈Ŷn,κ1

∣∣∣∣∣∣
√
npnh

J−1
n ∆

(j)
n (y)

σ̂j,n(y)

∣∣∣∣∣∣ . (2.19)

The rejection rule is

Reject H0 when ∆n ≥ critical value c̃S1,n.
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2.4. A Test Statistic

The process {
√
npnh

J−1
n (∆

(j)
n (y)−E(∆

(j)
n (y))

σ̂j,n(y) , y ∈ Y} does not converge weakly

to a Gaussian process, therefore the calculation of critical value is not
standard.14 Here we use the supremum of the Gaussian multiplier
bootstrap proposed by Chernozhukov, Chetverikov and Kato (2013) to
simulate critical values. The method consists of three steps:

First draw a sequence of standard normal random variables {ξ1, ξ2, ..., ξn}
independent of {Yi}ni=1 and calculate

Ĝn,j(y) =
1√
n

n∑
i=1

ξi

√
pnh

J−1
n

[
ϕ

(j)
n (Yi, y)−∆

(j)
n (y)

]
σ̂j,n(y)

. (2.20)

Then, repeat the first step R times and compute ĉS1,n(α) as the condi-

tional (1− α)th empirical quantile of supj∈J ,y∈Ŷn,κ2

∣∣∣Ĝn,j(y)
∣∣∣.

Lastly, set the critical value as

c̃S1,n = ĉS1,n(α) + Cĉ1,n(γn), (2.21)

where 1 ≥ γn → 0 and ĉ1,n(γn) is the (1− γn)th empirical quantile of

sup
j∈J ,y∈Ŷn,κ2

∣∣∣Ĝn,j(y)
∣∣∣ .

The constant C satisfies that C ≥ M̄C4/((1 − ε3n)c2). Details of the
parameter (γn, M̄ , C4 ε3n, c2) will be specified in Conditions SL2-SL4 (in
Appendix A.2), Proposition 5 and Condition SH3 (in Appendix A.3).
However, under Conditions SL2, SL4, and SL5 (in Appendix A.2), any
positive value C (however small) will give a correct level for our test under
the null hypothesis of continuity. Therefore one can set C = 0 in practice.
The validity of the Gaussian multiplier bootstrap does not depend on the
weak convergence of the underlying empirical process, instead it comes
from two coupling inequalities (see Theorem 3.1 and 3.2 of Chernozhukov,
Chetverikov and Kato (2013)).

14In this occasion, the problem of computing the critical value is related to constructing
confidence bands of kernel density estimators, which has been studied by Bickel and
Rosenblatt (1973), Giné and Nickl (2010), Chernozhukov, Chetverikov and Kato (2013),
among others. When J = 1, Chu and Cheng (1996) applied the result of Bickel and
Rosenblatt (1973) to derive the limit of Pr (sup |∆n(y)| < an + bnz) as exp(−2 exp(−z))
for carefully chosen an (diverging) and bn (converging to 0).
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2.4. A Test Statistic

2.4.2 Asymptotic Properties of the Test

In the section, we describe the asymptotic performance of our test where the
statistic is constructed as (2.19) and critical value computed by (2.21). The
main results are stated in Proposition 5 and Proposition 6. To obtain those
results, we will impose five technical conditions, namely Conditions SL1 to
SL5, among which Conditions SL1 to SL4 are adapted from Chernozhukov,
Chetverikov and Kato (2013), and Condition SL5 is an under-smoothing
condition imposed on the bandwidths pn and hn in (2.14). All those technical
conditions are stated in Appendix A.2. Here we briefly describe them. Recall

the function ϕ
(j)
n defined in (2.15), Condition SL1 requires that the following

class of functions

∆Kn,j =


√
pnh

J−1
n ϕ

(j)
n (·, y)

σn,j(y)
: y ∈ Yκ2


is bounded, and its L2 covering number has a specified bound (i.e., is a VC
(Vapnik-Cervonenkis) class in the sense of Chernozhukov, Chetverikov and
Kato (2013), or is an Euclidean class in the sense of Pakes and Pollard
(1989)). Note that here the set Yκ2 is the population version of the
maximizing set Ŷn,κ2 . The set Yκ2 is specified at the beginning of Appendix
A.2. Condition SL2 imposes bounds for the variance given by (2.16). If
one uses the product kernel in (2.13), Conditions SL1 and SL2 are satisfied
if the kernel functions K(·), K+(·) and K−(·) have a compact support and
a bounded variation. Condition SL3 bounds the bias of ∆j

n(y). Conditions
SL4 and SL5 impose conditions on bandwidths pn, hn. In this chapter, we
let bandwidth pn = p0 × n−γp and hn = h0 × n−γh . Condition SL5 requires
the rate γp and γh to satisfy γp + (J − 1)γh < 1, γp + (J + 1)γh > 1,
3γp + (J − 1)γh > 1, which is an under-smoothing condition.

The validity of the critical value can be described heuristically as
follows. After controlling the difference between σj,n(y) and σ̂j,n(y), the
desired critical value is approximately the (1 − α)th quantile of the
distribution of supj,y∈Ŷn,κ1

|Zj,n(y)| where

Zj,n(y) =

√
npnh

J−1
n

(
∆

(j)
n −E

[
∆

(j)
n (y)

])
σj,n(y)

.

Because κ2 < κ1, the (1 − α)th quantile of the distribution of
supj∈J ,y∈Ŷn,κ1

|Zj,n(y)| will be asymptotically bounded by the (1 − α)th
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2.4. A Test Statistic

quantile of the distribution of supj∈J ,y∈Yκ2 |Zj,n(y)|. The random variable

supj∈J ,y∈Yκ2 |Zj,n(y)|, which is the supremum of an empirical process
indexed by a VC class, can be approximated by a random variable with
the same distribution as supj∈J ,y∈Yκ2 |Gj,n(y)| , where

{Gj,n(y) : j ∈ J , y ∈ Yκ2} is a Gaussian process with mean zero and
variance one (Theorem 3.1 of Chernozhukov et al. (2013)). On the other
hand, the supremum of the Gaussian multiplier process in (2.20) can be
approximated by a random variable with the same distribution as the
random variable supj∈J ,y∈Yκ2 |Gj,n(y)| (Theorem 3.2 of Chernozhukov et

al. (2013)). Combining both approximations, the (1− α)th quantile of the
distribution of supj∈J ,y∈Yκ2 |Zj,n(y)| can be approximated by the (1− α)th
quantile of the supremum of the Gaussian multiplier process.

Proposition 5 and 6 below establish the asymptotic behaviour of our
test.

Proposition 5. Let the test statistic ∆n be constructed as in (2.19) and
the critical value c̃S1,n be computed as in (2.21). Suppose Assumption S1 and
Conditions SL1-SL5 hold. Then, under H0,

lim inf
n→∞

Pr
(
∆n ≤ c̃S1,n

)
≥ 1− α.

The next proposition shows that our test has a power converging to
one for any fixed alternative in which a jump occurs not too close to the
boundary of the support. Formally, we assume that a jump occurs within
the set Yn,L,c defined as follows.

Yn,L,c =

{
y ∈ Y : P−j (y)/Pj(y) > κ1 + cn−d,

P+
j (y)/Pj(y) > κ1 + cn−d, all j ∈ J

}
,

where P+
j (y), P−j (y) and Pj(y) are population versions of P̂+

j (y), P̂−j (y)

and P̂j(y) in (2.18), and are specified at the beginning of Appendix A.2, c
is some positive constant and the restriction on the rate d will be specified
in Proposition 6.

Proposition 6. Let the test statistic ∆n be constructed as in (2.19) and
the critical value c̃S1,n be computed as in (2.21). Suppose Assumption S1 and
Conditions SL1-SL5 hold, and the following conditions are satisfied.

(i) The maximal jump in Yn,L,c is positive, that is,

sup
j∈J ,y∈Yn,L,c

∣∣∣∆(j)(y)
∣∣∣ = δ > 0.
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2.5. Monte Carlo Simulations

(ii) npnh
J−1
n γn/ log n → ∞ or C = 0, npnh

J−1
n / log n → ∞. (γn is in

(2.21).)
(iii) The rate d in Yn,L,c satisfies

0 < d < min (γh, γp, (1− γp − (J − 1)γh)/2) .

Then
lim inf
n→∞

Pr
(
∆n > c̃S1,n

)
= 1.

In this section, we compute the local jump of the density function by
checking the jump along each coordinate. A generalization will be to
compute the jump along all directions. This can be achieved by using the
rotational kernel functions introduced by Qiu (1997). The rotational kernel
functions for multi-dimension can be constructed from the spherical
coordinate systems15. A test based on local jumps that take into account
all directions tends to have greater power, however, it is computationally
more intensive. We do not go into those details in this chapter.

2.5 Monte Carlo Simulations

2.5.1 Data Generating Processes (DGP)

The DGPs used in the Monte Carlo simulation are based on Echenique
and Komunjer (2007). It is a simplified BLP model but the consumer’s
preference has an heteroskedastic idiosyncratic term depending on prices.
Assume there are two products j = 1, 2 produced by two firms. The utility
of a consumer is

vijt = −αpjt + g(pjtp−jt)εjit. (2.22)

Note that there is no product-specific unobservable. The component εjit in
the idiosyncratic term is i.i.d. across consumers and markets, and has a
Gumbel distribution with density f(t) = exp(−t + exp(−t)). The variance
of the idiosyncratic term, however, depends on p through g(pjp−j). Let
g(x) = ρ+ exp(−τ/x). The marginal cost is assumed to be

cjt = eγωjt, (2.23)

15The spherical coordinate system for dimensions larger than two can be found in
Blumenson (1960).
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2.5. Monte Carlo Simulations

where ωj is product-level unobservable for the cost. The first-order condi-
tions yield the following structural equations in the form of (2.1):

ln

(
p1t −

F (δ1t)g(p1tp2t)

f(δ1t)α

[
1 +

p1tp2tg
′(p1tp2t)(p2t − p1t)

g(p1tp2t)p1t

]−1
)

= γ + lnω1t,

ln

(
p2t −

F (δ2t)g(p1tp2t)

f(δ2t)α

[
1 +

p1tp2tg
′(p1tp2t)(p1t − p2t)

g(p1tp2t)p2t

]−1
)

= γ + lnω2t, (2.24)

where δjt = α(p−jt − pjt)/g(pjtp−jt) for j = 1, 2, and an equilibrium in
market t is (p1t, p2t). Function F (t) = 1/(1 + exp(−t)) is the CDF of the
Logistic distribution. The number of solutions to equations (2.24) depends
on values of parameter (α, γ, ρ, τ) and (ω1, ω2). Table 2.2 and Figure 2.4
show the cases of a unique and three solutions when fixing (ω1, ω2) at (1, 1).
The value of parameters (α, γ, ρ, τ) follows that in Echenique and Komunjer
(2007). In Table 2.2 , the left column computes the three equilibrium prices
for the structural equations (2.24), with parameters as specified in the table
and (ω1, ω2) = (1, 1). The right column, on the other hand, computes
the unique equilibrium price for the the structural equations (2.24), with
parameters as specified in the table and (ω1, ω2) = (1, 1). In Figure 2.4, the
upper graph plots the case of multiple solutions while the lower graph plots
the case of a unique solution. In each graph, the blue line is the equilibria
characterizing function derived as follows: we first solve the best response
function for p2 in terms of p1 from the second equation of (2.24), and then
plug the best response function into the first equation of (2.24). This way
we obtain an equation charactering the equilibrium p1, and then write it
as a function equal zero. Such a function is the equilibria characterizing
function plotted in Figure 2.4. The red line is the zero horizontal line.
The intersection of the red and blue line gives the equilibrium p1. Since
equations (2.24) are symmetric when (ω1, ω2) = (1, 1), we have p2 = p1 in
every equilibrium.

In the Monte Carlo study, we consider the following four DGPs:

DGP0 : α = 0.3841, γ = 0.0923, ρ = 0.1755, τ = 11.0009

ω1 ∼ U [0.8, 1], ω2 ∼ U [0.6, 2.5]

DGP1, 2, 3 : α = 0.2464, γ = 0.0776, ρ = 0.1074, τ = 12.9913
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2.5. Monte Carlo Simulations

Figure 2.4: Characterization of equilibria
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2.5. Monte Carlo Simulations

Table 2.2: Equilibrium prices

α = 0.2464, γ = 0.0776 α = 0.3841, γ = 0.0923

ρ = 0.1074, τ = 12.9913 ρ = 0.1755, τ = 11.0009

(p1, p2) (p1, p2)

(1.753, 1.753) (1.853, 1.853)

(3.098, 3.098) This is the unique

(4.843, 4.843) equilibrium

ω1 ∼ U [0.8, 1], ω2 ∼ U [0.6, 1.5]

The support of ω2 is larger in DGP0 so that the generated data (P1, P2)
has a comparable range with the other three. For DGP0, equations (2.24)
always admit a unique solution. On the other hand, DGP1, DGP2 and
DGP3 generate three solutions with a probability around 0.46 and a
unique solution with a probability around 0.54. The difference among
DGP1, DGP2 and DGP3 lies in the equilibrium selection rule. We assume
that an equilibrium is randomly selected given the equilibria indices set.
When the equilibria indices set contains equilibrium 1, 2 and 3, the
equilibrium selection rule of DGP1 always chooses equilibrium 3, that is,
DGP1 falls into category (C2) and the model has a unique equilibrium.
The equilibrium selection rule of DGP2 chooses equilibrium 1 and 3 with
probability 1/4 and 3/4 respectively. The equilibrium selection rule of
DGP3 assigns equal probabilities to equilibrium 1, 2 and 3. As a result,
DGP2 and DGP3 fall into category (C3) and produce multiple equilibria.
The following table summarizes the equilibrium selection rules.

DGP 0 1 2 3

# of solutions to (2.24) 1 1 or 3 1 or 3 1 or 3
Equilibrium selection rule [1] [0, 0, 1] [1/4, 0, 3/4] [1/3, 1/3, 1/3]
# of realized equilibria 1 1 1 or 2 1 or 3

In each time of simulation, the data is an i.i.d. sample (P1, P2). Figure 2.5
plots four samples generated by DGP0 to DGP3. Note that the data with a
unique equilibrium may have a connected support (like DGP0), however, it
may not (like DGP1). Similarly, the data with multiple equilibria may (like
DGP3) or may not (like DGP2) have a connected support.
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2.5. Monte Carlo Simulations

Figure 2.5: Data generated by DGP0,1,2,3

DGP0 (upper left),DGP1 (upper right),

DGP2 (lower left) and DGP3 (lower right)
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2.5. Monte Carlo Simulations

Figure 2.6 magnifies the data generated by DGP2 and DGP3 near the
locations of jump. We clearly see that there is a line separating the graph
into a dense part and a sparse part. Such a line is the jump location curve,
which is the collection of loci where jumps in the density occur.

2.5.2 Performance of the Test

The data is the prices {P1, P2}. We compute the test statistic ∆n as in (2.19)
and the critical value c̃S1,n as in (2.21), with C = 0. The number of simulation
is R = 500. The number of simulation used to compute the critical value is
B = 199. Condition SL5 implies that the bandwidths pn = p0 × n−γp and
hn = h0 × n−γh must satisfy

γp + γh < 1, 3γp + γh > 1, γp + 3γh > 1.

Here we use γp = γh = 0.3. In the construction of ∆
(j)
n (y), j = 1, 2, we allow

p0 and h0 to be data dependent by letting p0 = pc× σ̂j and h0 = hc × σ̂−j ,
where σ̂j and σ̂−j are the standard deviation of Pj and P−j respectively,
j = 1, 2. We use the following one-sided Epanechnikov kernels16,

K+
1 (u1, u2) =

12

11
(1− u2

2)1{|u2| ≤ 0.5} · 12

11
(1− (u1 − 0.5)2)1{0 ≤ u1 ≤ 1},

K−1 (u1, u2) =
12

11
(1− u2

2)1{|u2| ≤ 0.5} · 12

11
(1− (u1 + 0.5)2)1{−1 ≤ u1 ≤ 0},

K+
2 (u1, u2) =

12

11
(1− u2

1)1{|u1| ≤ 0.5} · 12

11
(1− (u2 − 0.5)2)1{0 ≤ u2 ≤ 1},

K−2 (u1, u2) =
12

11
(1− u2

1)1{|u1| ≤ 0.5} · 12

11
(1− (u2 + 0.5)2)1{−1 ≤ u2 ≤ 0}.

Table 2.3 reports the rejection frequencies of our test under different DGPs
with parameter (pc, hc) = (0.25, 0.25), (κ1, κ2) = (0.20, 0.19) and H = 3.
The first two rows show the level of our test under DGP0 and DGP1. The
last two rows show the power of the test under DGP2 and DGP3. The
reported rejection frequencies suggest that the test has a desirable level
when there is a unique equilibrium (DGP0 and DGP1) and it also exhibits
a reasonable power to detect multiple equilibria in models generated by
DGP2 and DGP3. Table 2.4 shows the rejection frequencies for different
choices of (pc, hc), when (κ1, κ2) = (0.20, 0.19) and sample size N = 2000.
Table 2.5 uses a different (κ1, κ2) = (0.25, 0.24). Overall, our test performs
reasonably well under the specified set of tuning parameters.

16Qiu (2002) uses them for a local discontinuity test.
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Figure 2.6: Jump location curves
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2.5. Monte Carlo Simulations

Table 2.3: Rejection frequencies of the test

sample size 1500 2000

Unique equilibrium

nominal α DGP0 DGP1 DGP0 DGP1

0.05 0 0.016 0 0.032

0.10 0.002 0.084 0.008 0.072

Multiple equilibria

DGP2 DGP3 DGP2 DGP3

0.05 0.502 0.366 0.602 0.414

0.10 0.632 0.492 0.732 0.552
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Table 2.4: Rejection frequencies under different bandwidths

(pc, hc) 0.15, 0.6 0.2, 0.45 0.3, 0.15 0.35, 0.1 0.5, 0.06

Unique equilibrium

nominal α DGP0 DGP1 DGP0 DGP1 DGP0 DGP1 DGP0 DGP1 DGP0 DGP1
0.05 0 0.056 0.006 0.062 0 0.068 0 0.044 0 0.064
0.10 0.08 0.092 0.013 0.126 0 0.136 0 0.102 0 0.142

Multiple equilibria

DGP2 DGP3 DGP2 DGP3 DGP2 DGP3 DGP2 DGP3 DGP2 DGP3
0.05 0.236 0.194 0.598 0.402 0.428 0.344 0.292 0.248 0.354 0.226
0.10 0.344 0.296 0.704 0.548 0.578 0.456 0.460 0.396 0.582 0.406
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Table 2.5: Rejection frequencies under different maximizing sets

κ1= 0.25, κ2= 0.24

(pc, hc) (0.25, 0.25) (0.2, 0.45)

Unique equilibrium

nominal α DGP0 DGP1 DGP0 DGP1

0.05 0.004 0.018 0.012 0.005

0.10 0.004 0.046 0.012 0.044

Multiple equilibria

DGP2 DGP3 DGP2 DGP3

0.05 0.228 0.280 0.396 0.304

0.10 0.304 0.364 0.492 0.442

Our test involves calculating the maximal local jump over values of
dependent variables and across the coordinates. Computation of the
maximizer may take some time when implementing this test. In our
simulation study, the average CPU time (per simulation) for results in the
first two rows of Table 2.3 (sample size is 1500) is about 10 to 11 seconds.
(In particular, DGP0 10.4 seconds, DGP1 10.3 seconds, DGP2 10.5
seconds and DGP3 10.7 seconds). In our simulations, the dependent
variables (the prices for products 1 and 2) are of two dimensions. We
expect the computation time for implementing our test to increase when
the dimension of the dependent variables becomes higher.

2.6 Conclusions and Remarks

This chapter makes the first attempt to propose a test for multiple
equilibria when the dependent variables are continuous and the structural
equations are nonparametric. We show that uniqueness or multiplicity of
equilibria produces testable implications on the continuity or discontinuity
of the (conditional) density function of the dependent variables. Based on
that, we develop a test for multiple equilibria by testing for the presence of
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jumps in a multivariate density function. The test statistic is constructed
as the supremum of the local density jumps, and the critical value is
computed via the Gaussian multiplier bootstrap. Monte Carlo studies
show that the test performs reasonably well under different DGPs.
Focusing on continuous dependent variables, our test complements the
recent literature of testing multiple equilibria in discrete games.

We are aware of other potential testing criteria for multiple equilibria
in continuous dependent variables. For example, Berry and Haile (2013)
showed that the derivative ∇r(y) in (2.1) is over-identified if the model is
in Category (C1). If we are agnostic about the equilibria behaviour, the
over-identification restrictions can potentially serve as a testing criterion
for ∇xλ(x, u) = 0 for almost all x, which is closely related to the
equilibrium behaviour of the model (2.1). A detailed analysis of a test
using over-identification restrictions is beyond the scope of this chapter. It
is worth noticing that a potential test for multiple equilibria based on
over-identification restriction is a complement rather than a substitute for
the test via jump(s) in the density proposed in this chapter. The main
reason is that the over-identification restrictions will be functions of
conditional density fY |X(y|x), whose estimation is much easier if we know
the presence and location of jump(s).
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Chapter 3

Jumps of the Conditional
Choice Probabilities in
Incomplete Information
Games

3.1 Introduction

Research on identification and estimation of simultaneous games with
incomplete information has been growing in the past two decades. Related
literature includes Sweeting (2009), Bajari, Hong, Krainer and Nekipelov
(2010), Aradillas-Lopez (2010), Wan and Xu (2014), Aguirregabiria and
Mira (2013), among others. In most of the literature, the conditional
choice probabilities are the main object the econometrician can observe. 17

Furthermore, these conditional choice probabilities are usually the starting
point for parameter identification and estimation (see for example, Bajari,
Hong, Krainer and Nekipelov (2010), Paula and Tang (2012), Wan and Xu
(2014), Aguirregabiria and Mira (2013), among others). If all covariates
are discrete, the conditional choice probabilities can be nonparametrically
estimated using sub-sample means. However, this chapter shows that the
conditional choice probabilities may have jump(s) with respect to the
continuous covariates (if they exist), even when the payoff functions and
distribution of latent variables are all smooth. The source of such jumps
lies in the equilibrium behaviour of the game. As a result, it may be too
strong to impose the standard smoothness condition on the conditional
choice probabilities and the standard nonparametric techniques (kernel

17To be precise, in this chapter, when the private information can be correlated across
players, a conditional choice probability means the probability of a particular player’s
choice, conditional on the choices of other players as well as the value of covariates. As a
special case, when the private information is independent across players, the conditioning
set contains only covariates.
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type estimators or series estimators) may not apply immediately. If the
econometrician knows that there must be at least a jump in the
conditional probability, she/he can first estimate the jump location by the
method of Müller (1992) and Delgado and Hidalgo (2000). However, for
incomplete information games, the econometrician typically knows neither
the presence nor the location of the jump in the conditional choice
probabilities. Therefore, a test for the presence of a jump in the
conditional choice probabilities would help the econometrician in choosing
appropriate estimation approaches.

Apart from the statistical concern due to the possibility of a jump, the
presence of a jump in the conditional choice probabilities provides
information about the equilibrium behaviour of the game. As this chapter
will show, when the equilibrium characterizing equations always admit a
unique solution, the conditional choice probabilities will be continuous on
the support of continuous covariates. On the other hand, if there are
multiple equilibria, or the single equilibrium present in the data varies in
type over the support of covariates, the conditional choice probabilities
have a jump, under some reasonable conditions. Such a relationship
between the equilibrium behaviour and the presence of a jump in the
conditional choice probabilities is robust to correlated private information
and unobserved heterogeneity independent of covariates.

Uniqueness or multiplicity of equilibria is important in game-theoretic
econometric models. For games with incomplete information, the presence
of multiple equilibria affects various stages of the empirical research, such
as identification, estimation, comparative static and conterfactual
experiments. Aradillas-Lopez (2010) and Wan and Xu (2014) maintained
the unique equilibrium assumption for their identification and estimation
strategies in incomplete information games with correlated private
information.

3.1.1 Related Literature

Aguirregabiria and Mira (2013) noticed that the conditional choice
probability may have a jump with respect to covariates in incomplete
information games with independent private information. This chapter
elaborates on the theoretical foundation of the jumps in the conditional
choice probabilities. Firstly, the game set-up in this chapter allows for the
correlated private information among players. Secondly, we explicitly state
the conditions under which the conditional choice probabilities have a
jump, and we also relate the presence of jump(s) to the equilibrium
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behaviour of the game. As a result, the jump is more than a complication
for estimation of the conditional choice probabilities, it also reveals
information about the equilibrium behaviour of the game. Thirdly, we
emphasize that the econometrician is typically agnostic about the presence
of a jump. Aguirregabiria and Mira (2013) suggested using the jump
location estimator developed by Müller (1992) and Delgado and Hidalgo
(2000) when there are jumps. However, the validity of that method relies
on the existence of a jump. When there is actually no jump, the
aforementioned method no longer applies. Hence we recommend a test for
the presence of a jump at the first stage.

When the private information is independent among players within the
game, a test for multiple equilibria has been proposed by Paula and Tang
(2012). They exploited the equivalence between the uniqueness of
equilibrium and the conditional independence among players’ actions.
Unfortunately, such an equivalence breaks down for correlated private
information. In this case, even a unique equilibrium can yield correlation
among players’ actions. Our result, which relates the equilibrium
behaviour to the presence of a jump, is robust to correlated private
information across players, although it is weaker than that of Paula and
Tang (2012) when players’ private information is indeed independent.

This chapter is also related to the literature on the identification and
estimation of incomplete information games, because the equilibrium
behaviour may affect the identification and estimation approaches. When
the private information is independent across players, identification and
estimation of incomplete information games have been studied by Bajari,
Hong, Krainer and Nekipelov (2010), Aguirregabiria and Mira (2013), Xiao
(2014) and many others. Not much research has been conducted for games
with correlated private information. Aradillas-Lopez (2010), Wan and Xu
(2014) are such examples, and both of them assumed the uniqueness of
equilibrium.

A test for the presence of a jump in the conditional choice probabilities
(or generally, for a regression function) usually involves a supremum of an
empirical process which does not weakly converge. This problem, especially
for a univariate regression function (or a density function) has been treated
by Bickel and Rosenblatt (1973), Johnston (1982), Chu and Wu (1994),
Hamrouni (1999), among others. These papers all established a Gumbel
type limiting distribution. A recent development on this issue can be found
in Chernozhukov, Chetverikov and Kato (2012, 2013) and Chernozhukov,
Lee and Rosen (2013). Qiu (1997, 2002) provided practical methods to
detect the jump of a bivariate regression function at a fixed point.
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3.1.2 Organization of Chapter 3

The organization of this chapter is as follows, Section 3.2 sets up the
framework of games with incomplete information; Section 3.3 investigates
the implications of the equilibrium behaviour of the game for continuity or
discontinuity of the conditional choice probabilities. A numerical example
illustrates such relations. We also allow for heterogeneity in the payoff
functions unobserved by the econometrician (but independent of the
covariates). Section 3.4 points out an econometric consequence of not
knowing the presence of a jump in the conditional choice probabilities.
Section 3.5 briefly discusses possible methods for testing the presence of a
jump in the conditional choice probabilities. The last section concludes.
All proofs are collected in Appendix B.2.

3.2 The Set-up of the Game

We consider a simultaneous game with incomplete information. To illustrate
the main idea, let us focus on games with two players. Let k = 1, 2 denotes
the identity of the players. Each player chooses an action Yk ∈ {0, 1}. For
k = 1, 2, the payoff function for player k can be written as

πk(Yk, Y−k, Xk)− Uk(Yk), (3.1)

where Y−k represents the choice of the player other than k, Xk is a vector
of exogenous covariates for player k’s payoff function, and Uk(Yk) is the
random shock to player k’s payoff when she chooses action Yk. Without
loss of generality, we normalize Uk(0) = 0 for all k and simplify the
notation of Uk(1) to Uk. We summarize the payoff of the game in Table
3.1. The information structure is as follows. The shock Uk to player k’s
payoff is private information only observed by the player k. The joint CDF
of (U1, U2), denoted as F1,2(u1, u2), the functional form {π1(·), π2(·)}, and
the exogenous covariates X = (X1, X2) are common knowledge for both
players. Denote the support of X as X . The game is played n times and
the econometrician observes a random sample {(Y1i, Y2i, X

′
1i, X

′
2i)}ni=1.

We impose two assumptions on the payoff functions and the information
structure of the game.

Assumption 1. (i) The distribution of covariates X = (X1, X2) is
absolutely continuous with respect to the Lebesgue measure and its density
fX is bounded and twice continuously differentiable.
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Table 3.1: Normal-form of the game

y2 = 0 y2 = 1

y1 = 0 0, 0 0, π2(1, 0, x2)− u2

y1 = 1 π1(1, 0, x1)− u1, 0 π1(1, 1, x1)− u1, π2(1, 1, x2)− u2

(ii) The function πk(yk, y−k, xk) is twice continuously differentiable with
respect to xk, for k = 1, 2.

(iii) The covariates X are observed by players and the econometrician.

Assumption 2. (i) The random vector U = (U1, U2) ∈ R2 is continu-
ously distributed with a joint CDF F1,2(·), which is twice continuously dif-
ferentiable.

(ii) U is independent of X.
(iii) The support of (U1, U2) satisfies

inf U1 < inf
x∈X

min (π1(1, 0, x1), π1(1, 0, x1) + ∆1(x1)) ,

inf U2 < inf
x∈X

min (π2(1, 0, x2), π2(1, 0, x2) + ∆2(x2)) .

where ∆k(xk) = πk(1, 1, xk)− πk(1, 0, xk) for k = 1, 2.

Assumption 2 (iii) is sufficient for the structural functions ϕ(σ, x) in
equations (3.7) defined below to be twice continuously differentiable.

In the following, we will characterize the equilibrium of the game under
Assumptions 1 and 2. Wan and Xu (2014) pointed out that two notions of
equilibrium have been utilized in game-theoretic econometric models with
correlated private information. In the first notion, an equilibrium is a pair
of self-consistent beliefs (σ1(1|1, x), σ2(1|1, x))′ satisfying equations (3.2),
where σk (1|1, x) is the player −k’s belief of player k choosing action 1,
conditional on player −k herself choosing action 1 and the covariate value
x. The players’ optimal actions are determined by

Y1i = 1 {v1(1, Xi)− U1i > 0} ,
Y2i = 1 {v2(1, Xi)− U2i > 0} , (3.2)

where

v1(1, x) = π1(1, 0, x1) + σ2(1|1, x)∆1(x1),
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v2(1, x) = π2(1, 0, x2) + σ1(1|1, x)∆2(x2), (3.3)

are the expected payoffs of player k conditional on herself choosing action
1 and the realization of covariates X, for k = 1, 2. Aradillas-Lopez (2010)
used this notion of equilibrium.

In the second notion, an equilibrium is defined as a pair of cut-offs in
the value of private information (u∗1(x), u∗2(x)), such that the following
conditions hold:

Yk,i = 1 {Uki ≤ u∗k(Xi)} , for k = 1, 2,

and

π1(1, 0, x1) + ∆1(x1)σ̃2(x) = u∗1(x),

π2(1, 0, x2) + ∆2(x2)σ̃1(x) = u∗2(x), (3.4)

where
σ̃k(x) = Pr

(
Uki ≤ u∗k(x)|Xi = x, U−ki = u∗−k(x)

)
.

Note that the existence of a monotone pure Nash equilibrium is assumed.
The differences between two notions are as follows. (i) In the first notion, the
belief of the other player’s action is conditional on the player’s own action,
whereas in the second one, it is conditional on the player’s own private
information. (ii) In the second notion, there is an additional assumption of
the monotonicity of the equilibrium. In the main text of this chapter, we
will follow Aradillas-Lopez (2010) and use the first notion of equilibrium.
In Appendix B.1, we investigate the outcomes under the second notion of
equilibrium. We will see that all the results obtained under the first notion
remain valid under the second notion, with a slight modification.

Now we characterize the equilibrium of the first notion, following
Aradillas-Lopez (2010). Given a realization of X, an equilibrium is a vector

(σ1(1|1, x), σ2(1|1, x))′

satisfying the following system of equations.

σk(1|1, x) =
Pr (v1(1, x) > U1i, v2(1, x) > U2i|X = x)

Pr (v−k(1, x) > U−ki|X = x)

=
F1,2 (v1(1, x), v2(1, x))

F−k (v−k(1, x))
, (3.5)

for k = 1, 2, where F1(·), F2(·) are the marginal distribution functions of
U1, U2. Note that the first equality in (3.5) comes from (3.2) and the
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second uses Assumption 2 (ii). In other words, the system of equations
characterizing equilibrium beliefs (σ1(1|1, x), σ2(1|1, x))′ can be written as[

σ1(1|1, x)
σ2(1|1, x)

]
=

[
F1,2(v1(1,x),v2(1,x))

F2(v2(1,x))
F1,2(v1(1,x),v2(1,x))

F1(v1(1,x))

]
. (3.6)

To save on notation, define

ϕ(σ, x) ≡
[
ϕ1(σ, x)
ϕ2(σ, x)

]
≡

[
σ1 − F1,2(π1(1,0,x1)+σ2∆1(x1),π2(1,0,x2)+σ1∆2(x2))

F2(π2(1,0,x2)+σ1∆2(x2))

σ2 − F1,2(π1(1,0,x1)+σ2∆1(x1),π2(1,0,x2)+σ1∆2(x2))
F1(π1(1,0,x1)+σ2∆1(x1))

]
.

The system of structural equations can be stated as

ϕ(σ, x) = 0. (3.7)

Note that it follows from Assumptions 1 and 2 that the function ϕ :
[0, 1]2 ×X → R2 is twice continuously differentiable.

3.3 An Implication of Equilibrium Behaviour on
Data

The observed data for the econometrician can be summarized by the condi-
tional choice probabilities defined as

Qk (yk|y−k, x) ≡ Pr (Yk = yk|Y−k = y−k, X = x) ,

for k = 1, 2, and (y1, y2) ∈ {0, 1}2.

Let Q (1|1, x) = (Q1 (1|1, x) , Q2 (1|1, x))′. In this section, we analyse the
implications of the equilibrium behaviour of the game for continuity or
discontinuity of the conditional choice probabilities Q (1|1, x). We begin
with studying the relation from x to the equilibrium belief σ. When (3.7)
admits multiple solutions, the relation from the x to σ can be a
correspondence. Each function qm in the following definition can be viewed
as a branch of this correspondence.

Definition 1. Let M be the smallest number such that there exists a
family of twice continuously differentiable functions

{q1(·), q2(·), ..., qM (·)} ,

where qm : Bm → [0, 1]2, Bm is an open and connected subset of X ,and the
following conditions are satisfied :
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(i) For any (σ, x) ∈ [0, 1]2 × Bm satisfying ϕ (σ, x) = 0, we have σ =
qm(x). Furthermore, ϕ(qm(x), x) = 0 for all x ∈ Bm.

(ii) ∪Mm=1B̄m = X . (Here B̄m denotes the closure of Bm.)

Remark 1. Without loss of generality, we can further assume that for
any x ∈ Bm ∩ Bk and m 6= k, we have qm(x) 6= qk(x). Otherwise we can
exclude x from either Bm or Bk.

For the numerical example in Section 3.3.2, Figure 3.2 plots the family
of functions {q1, q2, q3}.

The following assumption is imposed on the constant M and the struc-
tural equations ϕ(σ, x).

Assumption 3. (i) The system of structural equations (3.7) has at
least one solution for any x ∈ X .

(ii) The constant M in Definition 1 is finite.
(iii) If the system of structural equations (3.7) admits a unique solution

in σ for all x ∈ X , the partial derivative 5σϕ(σ, x) is invertible for all
(σ, x) ∈ (0, 1)2× int(X ).

Assumption 3 (i) and (ii) require that a solution to (3.7) must exist, and
the number of solutions is finite. Assumption 3 (iii) is a technical condition
that ensures the partial derivative of ϕ(σ, x) with respect to σ be invertible in
the case of unique solution. Definition 1 yields an index system with regard
to the “types” of equilibrium. For each x, if a solution σ(x) to (3.7)belongs
to qm(Bm), we call it type m equilibrium and denote it as σ(m)(1|1, x) =

(σ
(m)
1 (1|1, x), σ

(m)
2 (1|1, x))′. If σ ∈ q(Bm) for multiple m’s, then we take

the smallest one as its index. Thus, we have σ(m)(1|1, x) = qm(x) for all
x ∈ ∪Mm=1Bm. We define Υ(x) as the equilibria indices set for a generic
value x ∈ X ,

Υ(x) ≡ {m : ϕ (qm(x), x) = 0}. (3.8)

By definition, σ(m)(1|1, x) exists if and only if m ∈ Υ(x). Furthermore, we
define an equilibrium selection rule π as follows.

Definition 2. Let an equilibrium selection rule π be a measurable func-
tion ∪Mm=1Bm → [0, 1]M defined as

π(x) = (π1(x), π2(x), ..., πM (x)),

where πm(x) = Pr (Y ∈ qm(Bm)|X = x) .
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The component πm(x) is the probability of selecting equilibrium m con-
ditional on X = x. Clearly, πm(x) = 0 if m /∈ Υ(x). Also,

∑M
m=1 πm(x) =

1.
The following equation describes the relationship between the observed

conditional choice probabilities Q (1|1, x) and the equilibrium beliefs
(σ1(1|1, x), σ2(1|1, x))′ at a given x:

Q (1|1, x) =
∑

h∈Υ(x)

πh(x)σ(h)(1|1, x), (3.9)

where σ(h)(1|1, x) = (σ
(h)
1 (1|1, x), σ

(h)
2 (1|1, x))′ = qh(x). Equation (3.9) says

that a conditional choice probability is a mixture of the equilibrium beliefs
that are solutions to (3.7). The mixing probabilities are the corresponding
components of π(x).

3.3.1 The Equilibrium Behaviour and Presence of A Jump
in Conditional Choice Probabilities

Multiplicity of equilibria in games with incomplete information has drawn
increasing attention in the literature. Theoretically, multiple equilibria may
arise when the system of equations (3.7) admits more than one solution.
The main result of this section is the relationship between the equilibrium
behaviour and the presence of a jump in the conditional choice probabilities
Q (1|1, x). In particular, we show that if the system of equations (3.7) admits
a unique solution for all x ∈ X , then the conditional choice probabilities
Q (1|1, x) must be continuous in x on int(X ). On the other hand, if the
system of equations (3.7) admits multiple solutions and the index of the
realized equilibrium varies over x, then Q (1|1, x) will have a jump at some
x, under reasonable conditions. Note that Q (1|1, x) is said to be continuous
when both Q1 (1|1, x) and Q2 (1|1, x) are continuous. On the other hand,
Q (1|1, x) has a jump at some xmeans that at least one of the two conditional
choice probabilities has a jump at x.

We first make clear the meaning of uniqueness and multiplicity of equi-
libria. We classify the game into one of the following three categories.

(C1) The system of equations (3.7) admits a unique solution in σ for all
x ∈ X .

(C2) There exists a set XA ⊂ X with Pr(X ∈ XA) > 0, such that the
system of equations (3.7) admits multiple solutions in σ for all x ∈ XA.

57



3.3. An Implication of Equilibrium Behaviour on Data

Moreover, for any x ∈ XA, there exists an m∗, which may depend on x, such
that πm∗(x) = 1.

(C3) There exists a set XA ⊂ X with Pr(X ∈ XA) > 0, such that the
system of equations (3.7) admits multiple solutions in σ for all x ∈ XA.
Moreover, there exists a set XB ⊂ XA with Pr(X ∈ XB) > 0, satisfying
the following conditions: for any x ∈ XB, there are m1 6= m2 such that
πm1(x) > 0 and πm2(x) > 0.

Note that this classification does not include an exceptional case in which
structural equations (3.7) admit multiple solutions on a non-empty but zero-
measure set of x. Also, it does not include another exceptional case in
which the set {x ∈ X : πm1(x) > 0, πm2(x) > 0, for some m1,m2} is non-
empty but has a zero measure. We do not consider those cases in this
chapter. In the literature of games with incomplete information, usually
games fitting into Category (C1) or (C2) are viewed as having a unique
equilibrium, whereas games in Category (C3) are viewed as having multiple
equilibria.

We further classify (C2) into two sub-categories:

(C2-1) There is an m∗, which does not depend on x, such that πm∗(x) =
1 for all x ∈ X .

(C2-2) Two disjoint subsets of X , C1 and C2, satisfying C̄1 ∩ C̄2 6=
∅,Pr(X ∈ C1) > 0,Pr(X ∈ C2) > 0, have the following property:

πm∗1(x) = 1 for x ∈ C1, πm∗2(x) = 1, for x ∈ C2,

for some m∗1 6= m∗2.

Similarly, we do not consider an exceptional case where the set {x ∈ X :
πm∗(x) = 1} is non-empty but has a zero measure. Sub-category (C2-1) can
be viewed as in Category (C1). Indeed, the system of structural equations
(3.7) coupled with the equilibrium rule πm∗(x) = 1 and for an m∗ and for all
x ∈ X , is observationally equivalent to the structural equations σ = qm∗(x)
and X = Bm∗ . Clearly, the latter fits into Category (C1). Therefore, in the
rest of this chapter, we treat Category (C1) and Sub-category (C2-1) as a
whole.

The following proposition associates the uniqueness of solution with
continuity of the conditional choice probabilities.

Proposition 1. Under Assumptions 1-3, if the game fits into Category
(C1) or Subcategory (C2-1), the conditional choice probabilities Q (1|1, x)
will be twice continuously differentiable in x on int(X ).
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As a result, when we are testing the null hypothesis that Q (1|1, x) is
continuous in x on int(X ), we are actually testing a sufficient condition for
uniqueness of equilibrium.

Now let us investigate what happens when the game has multiple
equilibria, (i.e., the game fits into Category (C3)). We will show that
under some reasonable conditions on the structural equations (3.7), when
there are multiple equilibria, the conditional choice probabilities Q (1|1, x)
will have a jump at certain x, except for some special equilibrium selection
rules. Here a jump at point xd (we use the word jump and discontinuity
interchangeably throughout this chapter) means that the limit of Q (1|1, x)
towards xd does not equal in every direction. That is, there are disjoint
subsets C1 and C2 of X with Pr(X ∈ C1) > 0,Pr(X ∈ C2) > 0, and some
xd ∈ C̄1 ∩ C̄2 such that for k = 1 or 2,∣∣∣∣ lim

x→xd,x∈C1

Qk (1|1, x)− lim
x→xd,x∈C2

Qk (1|1, x)

∣∣∣∣ = δ > 0.

The main source for such a jump lies in the equilibrium behaviour18. When
the structural equations (3.7) admit multiple solutions, an important and
economic-relevant scenario is that the set of equilibrium indices Υ(x) varies
over X . (A typical case is that the number of solutions to (3.7) changes
over X ). Consider what happens at the boundary between regions of x
with different equilibria indices sets. Suppose that there is a region of x
where (3.7) has a unique solution and another region where (3.7) has more
than one solution. Equation (3.9) implies that at one side of the boundary,
Q (1|1, x) equals the unique solution, whereas on the other side of the
boundary, Q (1|1, x) is a mixture of more than one solution. As a result,
except for some special equilibrium selection rules, Q (1|1, x) will have a
jump at that boundary. This idea will be formalized in Proposition 2.

Let us give conditions for a jump to happen when the game has multiple
equilibria. Recall the equilibria indices set is defined in (3.8), if there is a
set C ∈ X such that Υ(x) is the same for all x ∈ C, we say that Υ(C) is the
equilibria indices set on the given set C. Clearly, the value of Υ(C) is given
by Υ(C) = Υ(x) for an arbitrary x ∈ C. The following assumption requires
that Υ(C) changes over subsets of X .

Assumption 4H. If the game fits into Category (C2-2) or (C3), there is

18There is another possible source of jump which is related to the form of equilibrium
selection rule. We will discuss it later. As the latter source needs stronger conditions on
the equilibrium selection rules, we view it as a secondary source of a jump and will discuss
it later.
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an l ∈ {1, ...,M} such that for some disjoint C1, C2 ⊂ Bl satisfying Pr(X ∈
C1) > 0, Pr(X ∈ C2) > 0 and C̄1 ∩ C̄2 6= ∅, we have Υ(C1) 6= Υ(C2).

Assumption 4H says that equilibrium indices set changes within some
Bl. It includes a typical case specified in Assumption 4L, provided that
Assumption 5 below holds. Assumption 4L is easier to interpret than
Assumption 4H.

Assumption 4L. If the game fits into Category (C2-2) or (C3), there
is a subset C of X with Pr(X ∈ C) > 0, such that equations (3.7) admit a
unique solution in σ for all x ∈ C.

Assumption 4L says that the structural equations (3.7) admit a unique
solution for some values of x while admit multiple solutions for other values
of x (by the definition of (C3)). This often happens in games with multiple
equilibria. Multiple equilibria in players’ beliefs can be viewed as a result of
a coordination mechanism. When the covariates take a very large (or small)
value, the effect of covariates dominates the coordination mechanism, and it
uniquely determines the equilibrium beliefs (i.e., there is only one solution
to (3.7) given such an extremal x). In contrast, when the values of the
covariates are moderate, the self-fulling mechanism tends to dominate, and
produces (for example) three equilibria: a large one, a medium one and a
small one. The following Assumption 5 is a technical condition under which
Assumption 4L is sufficient for Assumption 4H.

Assumption 5. (i) For an arbitrary x ∈ int(X ), if for any ε > 0 there
exists an x0 such that |x− x0| < ε and ϕ(σ, x0) has a unique solution in σ,
then 5σϕ(σ, x) is invertible for any σ satisfying ϕ(σ, x) = 0.

(ii) For any m ∈ {1, ...,M}, let x0 be an arbitrary point x0 ∈ B̄m\Bm,
and σ∗ satisfy ϕ(σ∗, x0) = 0, σ∗ 6= limx→x0,x∈Bm qm(x) ≡ σm. If σ∗ exists
and there is no such σ′ that every component of σ′−σm has the same sign as
σ∗ − σm and |σ′ − σm| < |σ∗ − σm|, then the partial derivative 5σϕ(σ∗, x0)
is invertible.

Assumption 5 assumes that the partial derivative 5σϕ(σ, x) is invertible
at some particular (σ, x). Lemma 1 below establishes the relation between
Assumption 4L and Assumption 4H.

Lemma 1. Under Assumption 5, Assumption 4L is sufficient for As-
sumption 4H.
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In the following, whenever we state a result under Assumption 4H, it
also holds if Assumption 4H is replaced by Assumption 4L and Assumption
5.

Note that the function Υ : X → the power set of {1, ...,M}, which
maps an x to an equilibria indices set, is fully determined by the structural
equations (3.7). Given a function Υ, we can view an equilibrium selection
rule π as an element in a class

C(Υ) =

 g : ∪Mm=1Bm → [0, 1]M :

M∑
h=1

gh(x) = 1,

and gj(x) = 0 if j /∈ Υ(x), for all x ∈ ∪Mm=1Bm.

 ,

where gj(x) is the jth component of g(x) ∈ [0, 1]M . Proposition 2 below
states that under Assumptions 1-3 and 4H, multiplicity of equilibria in the
incomplete information game leads to a jump in the conditional choice
probabilities Q (1|1, x) at some x, except for equilibrium selection rules
that take values of a zero measure “around” x’s at the boundary between
regions with different equilibria indices sets.

Proposition 2. Under Assumptions 1-3 and 4H, if the game fits into
Category (C3), the conditional choice probabilities Q (1|1, x) will have a
jump at some x ∈ int(X ), except for a class of equilibrium selection rules
CE1(Υ), and the set

{( lim
x′∈C1,x′→x

π(x′), lim
x′∈C2,x′→x

π(x′)) : π ∈ CE1(Υ)}

has a zero measure in

{( lim
x′∈C1,x′→x

π(x′), lim
x′∈C2,x′→x

π(x′)) : π ∈ C(Υ)},

for all x ∈ C̄1 ∩ C̄2, and all disjoint C1, C2 ⊂ Bl, for some l ∈ {1, ...,M}
such that Pr(X ∈ C1) > 0, Pr(X ∈ C2) > 0, C̄1 ∩ C̄2 6= ∅, Υ(C1) 6= Υ(C2).

The existence of such x’s in Proposition 2 is guaranteed by Assumption
4H (or Assumption 4L and Assumption 5). Consider the numerical example
in the Section 3.3.2. Its normal-form is in Table 3.2. For some values of
parameters, the structural equations (3.11) has either one or three solutions
depending on the x value. It satisfies Assumption 4L, and there are C1, C2

satisfying Assumption 4H with l = 1, Υ(C1) = {1} and Υ(C2) = {1, 2, 3}.
For an arbitrary xd ∈ C̄1 ∩ C̄2, equation (3.9) implies that
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lim
x→xd,x∈C1

Q (1|1, x) = σ(1)(1|1, xd),

lim
x→xd,x∈C2

Q (1|1, x) = lim
x→xd,x∈C2

π1(x)σ(1)(1|1, xd)

+ lim
x→xd,x∈C2

π2(x) lim
x→xd,x∈C2

σ(2)(1|1, x)

+ lim
x→xd,x∈C2

π3(x) lim
x→xd,x∈C2

σ(3)(1|1, x).

Hence

lim
x→xd,x∈C1

Q (1|1, x)− lim
x→xd,x∈C2

Q (1|1, x)

=

(
1− lim

x→xd,x∈C2

π1(x)

)
σ(1)(1|1, xd)

− lim
x→xd,x∈C2

π2(x) lim
x→xd,x∈C2

σ(2)(1|1, x)

− lim
x→xd,x∈C2

π3(x) lim
x→xd,x∈C2

σ(3)(1|1, x).

Consider a class of equilibrium selection rules in which (π1, π2, 1− π1 − π2)
are the probabilities of picking up each equilibrium when the structural
equations have three solutions. Now, a desired jump will arise at xd as long
as

(1− π1)σ(1)(1|1, xd)− π2 lim
x→xd,x∈C2

σ(2)(1|1, x)

− (1− π1 − π2) lim
x→xd,x∈C2

σ(3)(1|1, x)

6= 0.

Rearranging the terms leads to

(
lim

x→xd,x∈C2

σ(3)(1|1, x)− σ(1)(1|1, xd)
)
π1

+

(
lim

x→xd,x∈C2

σ(3)(1|1, x)− lim
x→xd,x∈C2

σ(2)(1|1, x)

)
π2

+σ(1)(1|1, xd)− lim
x→xd,x∈C2

σ(3)(1|1, x) 6= 0,

Note that σ(1)(1|1, xd) 6= limx→xd,x∈C2 σ
(3)(1|1, x) for all xd ∈ C̄1 ∩ C̄2. 19

As a result, the conditional choice probabilities Q (1|1, x) will have a jump,

19Suppose to the contrary, σ(1)(1|1, xd) = limx→xd,x∈C2 σ
(3)(1|1, x) for some xd ∈ C̄1 ∩
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except for some artificially chosen (π1, π2) ∈ {(π1, π2) ∈ [0, 1]2 : π1 +π2 ≤ 1}
satisfying the following restriction:

απ1 + βπ2 = γ, (3.10)

where α = lim
x→xd,x∈C2

σ(3)(1|1, x)− σ(1)(1|1, xd) 6= 0,

β = lim
x→xd,x∈C2

σ(3)(1|1, x)− lim
x→xd,x∈C2

σ(2)(1|1, x),

γ = σ(1)(1|1, xd)− lim
x→xd,x∈C2

σ(3)(1|1, x),

for all xd ∈ C̄1 ∩ C̄2, and all C1, C2 satisfying 4H with l = 1,

Clearly the set {(π1, π2) ∈ [0, 1]2 : π1 + π2 ≤ 1, and (3.10) holds} has a zero
measure in {(π1, π2) ∈ [0, 1]2 : π1 + π2 ≤ 1}. Note that here the equilibrium
selection rule does not depend on x within the regions where structural
equations (3.7) have three solutions. As a result, the above “zero measure”
argument for the equilibrium selection rule holds for any x that leads to
three solutions.

The main idea of Proposition 2 is that the conditional choice
probabilities Q (1|1, x) will have a jump at the boundary between regions
of x with distinct equilibrium indices sets (especially at the boundary
between regions have different numbers of solutions to the structural
equations (3.7)), except for some special equilibrium selection rules.
However, such boundaries are not the only type of locations jumps may
happen. A jump can also occur in the interior of a region with the same
equilibria indices set, if the equilibrium selection rule itself has a jump in
x. Definition 3 characterizes such equilibrium selection rules.

Definition 3. We say an equilibrium selection rule π has a jump within
an equilibrium indices set Υ(D) if there is a subset D ⊂ int(X ) with Υ(D)
defined, and the following condition is satisfied: there are two disjoint subsets
D1, D2 ⊂ D, Pr(X ∈ D1) > 0,Pr(X ∈ D2) > 0, D̄1 ∩ D̄2 6= ∅, such that for
all x ∈ D̄1 ∩ D̄2, we have∣∣∣∣ lim

x′→x,x′∈D1

πh∗(x
′)− lim

x′→x,x′∈D2

πh∗(x
′)

∣∣∣∣ = δ > 0, for some h∗ ∈ Υ(D).

C̄2. This means limx→xd,x∈C1 q1(x) = limx→xd,x∈C2 q3(x) for some xd ∈ C̄1 ∩ C̄2. Note
that xd ∈ B1 and xd ∈ B̄3, we have q1(x′) = q3(x′) for some x′ ∈ B(xd, r) ∩ B1 ∩ B3,
where B(xd, r) is a ball centred in xd and with radius r. B(xd, r) ∩B1 ∩B3 6= ∅ because
xd ∈ C̄1 ∩ C̄2, C1, C2 ⊂ B1 (since l = 1 in Assumption 4L) and C2 ⊂ B3. This contradicts
with Remark 1 below Definition 1.
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Denote as CF (Υ) the class of equilibrium selection rules that have a jump
within an equilibria indices set.

The next result states that if the game has multiple equilibria and the
equilibrium selection rule has the property specified in Definition 3, the
conditional choice probabilities Q (1|1, x) will have a jump at some x, except
for some special equilibria selection rules.

Corollary 1. Under Assumptions 1-3, if the game fits into Category
(C3) and the equilibrium selection rule λ ∈ CF (Υ) (i.e., the equilibrium
selection rule has the property in Definition 3), the conditional choice
probabilities Q (1|1, x) will have a jump at some x ∈ int(X ), except for a
class of equilibrium selection rules CE2(Υ), and the set

{( lim
x′∈D1,x′→x

π(x′), lim
x′∈D2,x′→x

π(x′)) : π ∈ CE2(Υ)}

has a zero measure in

{( lim
x′∈D1,x′→x

π(x′), lim
x′∈D2,x′→x

π(x′)) : π ∈ CF (Υ)},

for all x ∈ D̄1 ∩ D̄2 in Definition 3.

So far we have studied the game fitting into Category (C1),
Sub-category (C2-1) or Category (C3). What remains is Sub-category
(C2-2). Unfortunately, the game in (C2-2) exhibits undesirable properties
in the conditional choice probabilities. The following Corollary 2 shows
that the game in (C2-2), which is usually regarded as having a unique
equilibrium, leads to jump(s) in the conditional choice probabilities. This
is because the single equilibrium present in the data jumps from one index
to the other at some x. This is the main limitation of the discontinuity
criterion in testing for multiple equilibria in discrete games with
incomplete information.

Corollary 2. Under Assumptions 1-3, if the game fits into Sub-category
(C2-2), the conditional choice probabilities Q (1|1, x) will have a jump at
some x ∈ int(X ).

In sum, we have shown that under Assumptions 1-3 and 4H, the
equilibrium behaviour of incomplete information games produces testable
implications on continuity or discontinuity of the conditional choice
probabilities Q (1|1, x). Such relations are robust to correlated private
information between players.
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Table 3.2: Normal-form of the numerical example

y2 = 0 y2 = 1

y1 = 0 0, 0 0, α+ βx− u2

y1 = 1 α+ βx− u1, 0 α+ (β + γ)x− u1, α+ (β + γ)x− u2

3.3.2 A Numerical Example

We present a numerical example to illustrate the relationship between the
equilibrium behaviour and the presence of a jump in the conditional choice
probabilities. Suppose that the game has a normal-form in Table 3.2.

In this example, scalar X is the only covariate. Assume the joint distri-
bution of (U1, U2)′ is(

U1

U2

)
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
.

The resulting equilibrium characterizing equations are:

[
σ1

σ2

]
=

[
G1,2(α+ βx+ γσ2, α+ βx+ γσ1)/G2(α+ βx+ γσ1)
G1,2(α+ βx+ γσ2, α+ βx+ γσ1)/G1(α+ βx+ γσ2)

]
,

(3.11)
where G1,2 is the bivariate CDF of (U1, U2)′, Gk is the marginal CDF of Uk,
and σk is player −k’s belief that player k chooses action 1, conditional on
player −k choosing action 1.

Consider two games with different values of parameters (α, β, γ, ρ)′

specified in Table 3.3. Game 1 fits into Category (C1) while Game 2 fits
into Category (C3). Their parameters only differ in γ. When γ > 0, the
game with normal-form in (3.2) is a coordination game in which γ
determines the strength of interaction. For Game 1, the structural
equations (3.11) always have a unique solution, while for Game 2, the
structural equations (3.11) have one or three solutions depending on the
value of x. Figure 3.1 plots the equilibrium behaviour of Game 2 at
x = 0.4 (upper) and x = 0.5 (lower). In Figure 3.1, the solid line is the
best response function of belief σ1 in terms of σ2 at a fixed x. Because of
the symmetry of the game, the equilibrium belief σ1 (and σ2) is the
intersection of the best response function and the 45 degree line (the
dashed line). At x = 0.4, the only equilibrium belief is σ1 = σ2 = 0.456,
while at x = 0.5, there are three equilibrium beliefs: 0.460, 0.698 and 0.916.
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3.3. An Implication of Equilibrium Behaviour on Data

Figure 3.1: The equilibrium belief(s) σ1

α = 0.25, β = −3.5, γ = 7, ρ = 0.2
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Table 3.3: Parameters for the games

Game 1 Game 2

(α, β, γ, ρ)′ (0.25,−3.5, 3.5, 0.2)′ (0.25,−3.5, 7, 0.2)′

Support of X [0.35, 0.55] [0.35, 0.55]

# of solutions20 1 1 or 3

Figure 3.2 plots the equilibria correspondence from the covariate value
x to the equilibrium belief(s) σ1, for Game 2. When x is smaller than 0.464,
the structural equations (3.11) admit a unique solution (the solid line). On
the other hand, when x is larger than 0.464, the structural equations (3.11)
admit three solutions (the solid, dash and dot-dash line). The functions q1,
q2 and q3 are three branches of the correspondence.

We examine the observed conditional choice probability Q1(1|1, x) =
Pr(Y1 = 1|Y2 = 1, X = x). Figure 3.3 plots Q1(1|1, x) as a function of x, for
Game 1 (upper) and Game 2 (lower).

For Game 1, the conditional choice probability Q1(1|1, x) is continuous
on the support of X. For Game 2, if the equilibrium selection rule assigns
equal probabilities to three solutions whenever they are available, Q1(1|1, x)
has a jump at x = 0.464.

3.3.3 An Extension: Unobserved Heterogeneity

In this section, we allow for heterogeneity in the payoff functions. Here the
heterogeneity refers to various types of game environments determined by
a random variable T , before the players make choices. The payoff function
for player k can be written as

πk(Yk, Y−k, Xk, T )− Uk(Yk). (3.12)

As in (3.1), we make normalizations Uk(0) = 0 and Uk(1) = Uk. The
departure from (3.1) is that the function πk now is t-dependent. The normal-
form of the game is in Table 3.12, given t ∈ {1, ..., t̄}. In each observation
i, (Y1i, Y2i, X

′
1i, X

′
2i) are observed by the econometrician, Ti is observed by

players but not by the econometrician. Uki is the private information to
the player k, k = 1, 2. We assume that Ti can take values in {1, ..., t̄} and
with probability Pr(Ti = t) = λt, for t = 1, ..., t̄. However, the discrete
support of T is not essential. T can be generalized to a continuous random
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Figure 3.2: Equilibria correspondence from covariate x to belief σ1

α = 0.25, β = −3.5, γ = 7, ρ = 0.2
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Table 3.4: Normal-form of the game with T = t

y2 = 0 y2 = 1

y1 = 0 0, 0 0, π2(0, 1, x2, t)− u2

y1 = 1 π1(1, 0, x1, t)− u1, 0 π1(1, 1, x2, t)− u1, π2(1, 1, x2, t)− u2
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Figure 3.3: Observed conditional choice probability
α = 0.25, β = −3.5, γ = 3.5, ρ = 0.2
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variable, though we do not cover it in this chapter. The real restriction on
the heterogeneity T is the part (iv) of the following Assumption 2’.

Assumption 2’. (i) For each realization t of T , the random vector
U = (U1, U2) ∈ R2 is continuously distributed with a conditional CDF
F t1,2(·), which is twice continuously differentiable.

(ii) The unobservable U is independent of X conditional on T .
(iii) Conditional on T = t ∈ {1, ..., t̄}, the support of (U1, U2) satisfies

inf U1 < inf
x∈X

min (π1(1, 0, x1, t), π1(1, 0, x1, t) + ∆1(x1, t)) ,

inf U2 < inf
x∈X

min
(
π2(1, 0, x2, t), π

t
2(1, 0, x2, t) + ∆2(x2, t)

)
,

where ∆k(xk, t) = πtk(1, 1, xk, t)− πtk(1, 0, xk, t) for k = 1, 2.
(iv) T is independent of X.

Assumption 2’(i)-(iii) are modified versions of Assumption 2.
Assumption 2’ (iv) says that the unobserved heterogeneity is independent
of covariates X. An implication is that the support X is the same for all t.
Otherwise, the heterogeneity depending on covariates by itself may create
jump(s) in the conditional choice probabilities, which contaminates the
relationship between the equilibrium behaviour and the presence of jump.

Fixing T = t, the corresponding game is the same as the one we have
analysed before. The equilibrium characterizing equations become

[
σt1(1|1, x)
σt2(1|1, x)

]
=

 F t1,2(π1(1,0,x1,t)+σt2(1|1,x)∆1(x1,t),π2(1,0,x2,t)+σt1(1|1,x)∆2(x2,t))
F t2(π2(1,0,x2,t)+σt1(1|1,x)∆2(x2,t))

F t1,2(π1(1,0,x1,t)+σt2(1|1,x)∆1(1,1,x1),π2(1,0,x2,t)+σt1(1|1,x)∆2(x2,t))
F t1(π1(1,0,x1,t)+σt2(1|1,x)∆1(x1,t))

 ,
(3.13)

for t ∈ {1, ..., t̄}, where (σt1(1|1, x), σt2(1|1, x))′ is the pair of equilibrium
beliefs for the game with T = t. For each t, denote equation (3.13) as

ϕt(σ, x) = 0. (3.14)

The following Definition 1’, 2’ and Assumption 3’, 4H’ are modified
versions of their counterparts in the previous subsection. Thus we state
them without further discussions.

Definition 1’. For each t ∈ {1, ..., t̄}, let M t be the smallest number
such that there exists a family of twice continuously differentiable functions{

qt1(·), qt2(·), ..., qtMt(·)
}
,
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where qtm : Bt
m → [0, 1]2, Bt

m is an open and connected subset of X , and the
following conditions are satisfied :

(i) For any (σ, x) ∈ [0, 1]2 × Bt
m satisfying ϕt (σ, x) = 0, we have σ =

qtm(x). Furthermore, ϕt(qtm(x), x) = 0 for all x ∈ Bt
m.

(ii) ∪Mm=1B̄
t
m = X . (Here B̄t

m denotes the closure of Bt
m.)

Like Remark 1, without loss of generality, we can further assume that
for any x ∈ Bt

m ∩Bt
k and m 6= k, qtm(x) 6= qtk(x).

Assumption 3’. For each t ∈ {1, ..., t̄},
(i) the system of equations (3.14) has at least one solution in σ;
(ii) the constant M t in Definition 1 is finite;
(iii) if the system of equations (3.14) admits a unique solution in σ for all

x ∈ X , the partial derivative 5σϕ
t(σ, x) is invertible for all (σ, x) ∈ (0, 1)2×

int(X ).

If σ ∈ qtm(Bt
m), call it equilibrium m under T = t and denote it as

σt(m)(1|1, x). If σ ∈ qtm(Bt
m) for multiple m’s, we take the smallest one as

the index. Similar to (3.8), we define Υt(x) as the equilibria indices set for
a generic value x, conditional on T = t,

Υt(x) ≡ {m : ϕt
(
qtm(x), x

)
= 0}.

For T = t, we define the equilibrium selection rule πt.

Definition 2’. For every t ∈ {1, ..., t}, let an equilibrium selection rule
πt be a measurable function ∪Mm=1B

t
m → [0, 1]M defined as

πt(x) = (πt1(x), πt2(x), ..., πtM (x)),

where πtm(x) = Pr
(
Y ∈ qtm(Bt

m)|X = x
)
.

In the presence of unobserved heterogeneity T , the observed conditional
choice probabilities can be written as follows

Q (1|1, x) =
t̄∑
t=1

λtQ
t (1|1, x) =

t̄∑
t=1

λt
∑

h∈Υt(x)

πth(x)σt(h)(1|1, x), (3.15)

where σt(h)(1|1, x) = qth(x), as defined in Definition 1’. We can see that the
heterogeneity adds another layer of mixture to the expression of conditional
choice probabilities. Then we state a modified version of Assumption 4H.
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Assumption 4H’. For any t ∈ {1, ..., t̄}, if the game fits into Category
(C2-2) or (C3), there is an lt ∈ {1, ...,M t} such that for some disjoint
Ct1, C

t
2 ⊂ Bl satisfying Pr(X ∈ Ct1) > 0, Pr(X ∈ Ct2) > 0 and C̄t1 ∩ C̄t2 6= ∅,

we have Υt(Ct1) 6= Υt(Ct2).

The following proposition establishes the relation from the equilibrium
behaviour to the presence of jump(s) in the conditional choice probabilities,
for incomplete information games with unobserved heterogeneity T . The
main idea is that for any fixed t, the relation is the same as the previous
subsection. In addition, such a relation remains after the linear combination
of t-specific components, if the jumps in

Qt(1|1, x) =
∑

h∈Υt(x)

πth(x)σt(h)(1|1, x)

do not cancel out across t at some x.

Proposition 3. (i) Suppose Assumptions 1’-3’ hold, if for all
t ∈ {1, ..., t̄}, the game fits into Category (C1) or Sub-category (C2-1), the
conditional choice probabilities Q (1|1, x) will be twice continuously
differentiable in x for all x ∈ int(X ).

(ii) Suppose Assumptions 1’-3’ hold, and there exists a nonempty set
TD ⊂ {1, ..., t̄} such that for all t ∈ TD the game fits into Category (C3).
For each t ∈ {1, ..., t̄}, let X tD = {x ∈ int(X ) : Qt (1|1, x) has a jump at x}.
If for some t ∈ {1, ..., t̄}, X tD 6= ∅, and the following condition COND is
satisfied, the conditional choice probabilities Q (1|1, x) will have a jump at
some x ∈ int(X ).

COND. There is a t and some xd ∈ X tD such that∑
t∈{t′:xd∈X t

′
D}

λtQ
t (1|1, x)

has a jump at x = xd.

(iii) Suppose Assumptions 1’-3’ hold, and there exists a nonempty set
TD ⊂ {1, ..., t̄} such that for all t ∈ TD the game fits into Sub-category
(C2-2). Define TD and X tD as in part (ii). Then the conditional choice
predictabilities Q (1|1, x) will have a jump at some x ∈ int(X ), if the
condition COND in (ii) is satisfied.

Consider Proposition 3(ii), for any t ∈ TD, if Assumption 4H’ holds, we
can use Proposition 2 to obtain X tD 6= ∅, except for some special equilibrium
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selection rules. This can also be achieved by Corollary 1, provided that the
equilibrium selection rule πt satisfies the property in Definition 3.

In sum, we have established the relationship between the equilibrium
behaviour and the presence of jump(s) in the conditional choice
probabilities when the payoff functions of the game contain heterogeneity
unobserved by the econometrician and the heterogeneity is independent of
the covariates. The observed conditional choice probabilities are mixtures
of the choice probabilities given a fixed value of the heterogeneity. Hence,
the relation from equilibrium behaviour to the jump(s) remains in the
presence of unobserved heterogeneity.

3.3.4 Testing for Multiple Equilibria via Discontinuity

Proposition 1 to 3 show that in incomplete information games, the equilib-
rium behaviour of the game produces testable implications on continuity or
discontinuity of the conditional choice probabilities. As a result, continuity
or discontinuity of the conditional probabilities provides information about
the equilibrium behaviour. Under Assumptions 1-3 and 4H, we can trans-
form the problem of testing

H0 : The game fits into Category (C1) or Subcategory (C2-1)

H1 : The game fits into Category (C3) or Subcategory (C2-2).

into testing

H ′0 : Qk (1|1, x) is continuous in x for all x ∈ int(X ) for all k = 1, 2.

H ′1 : Qk (1|1, x) has jump(s) at some x ∈ int(X ) and some k ∈ {1, 2}.

Under Assumptions 1-3 and 4H, if H ′0 is not rejected, the data provides
no evidence against the null hypothesis that the system of structural
equations has an unique solution for all x. The union of Category (C1)
and (C2-1) is usually regarded as a subset of games with a unique
equilibrium. However, sometimes the econometrician did impose an
assumption that the game fits into (C1) or (C2-1). For instance,
Aradillas-Lopez (2010) proposed a semi-parametric estimation strategies
for incomplete information games with parametric payoff functions, under
a “unique equilibrium” assumption that corresponds to the union of (C1)
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3.3. An Implication of Equilibrium Behaviour on Data

and (C2-1).21 In this scenario, testing for the presence of a jump in
Q (1|1, x) is checking the maintained assumption in Aradillas-Lopez (2010).

Note that none of propositions and corollaries in this chapter requires
the independence between players’ private information. In other words, the
implications of the equilibrium behaviour for continuity or discontinuity of
the conditional choice probability are robust to correlated private
information. As a comparison, tests for multiple equilibria based on
conditional dependence of players’ actions (see Paula and Tang (2012),
Aguirregabiria and Mira (2013), among others) required the private
information to be independent across players (see Assumption 2S below).
This is an advantage of the discontinuity criterion.

Assumption 2S (Independent private information) The private infor-
mation U1 is independent of the private information U2.

We are aware that under Assumptions 1-3 and 4H, information provided
by continuity or discontinuity of the conditional choice probabilities does
not fully separate the games with a unique equilibrium from those with
multiple equilibria. However, it at least offers partial information about
the equilibrium behaviour. The uniqueness or multiplicity of equilibria in
incomplete information games is important for identification and estimation,
especially when the private information is correlated among players. To the
best of my knowledge, related literature such as Aradillas-Lopez (2010),
Wan and Xu (2014) and Liu, Vuong, and Xu (2013) all maintained that the
game has a unique equilibrium.

Moreover, knowing the presence of jump(s) in the conditional choice
probabilities is useful if the econometrician wants to implement Paula and
Tang (2012)’s test for multiple equilibria. Under Assumption 2S, they
proposed to test the following independence restriction:

Pr (Y1 = 1, Y2 = 1|X = x) = Pr (Y1 = 1|X = x) Pr (Y2 = 1|X = x) .

Implementation of such a test requires the estimation of three conditional
choice probabilities. If any of them has a jump at some x, which is possible
as we have shown, the econometrician cannot directly apply the standard
nonparametric estimation technique such as kernel or series estimators.

21Aradillas-Lopez (2010) treated “a unique equilibrium” as “a unique solution” to the
(3.7) (he considered a linear payoff function). See Proposition 2, 3 and Assumption A3 (ii)
in his chapter. Recall that a DGP in (C2-1) can be viewed as in (C1), if we let σ = qm∗(x)
be the equilibrium characterizing equilibrium, where m∗ is the index of the equilibrium
that always appears in the data, by the definition of (C2-1).
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3.4 An Estimation Problem Due to Jumps

From the last section, we know that even when the payoff functions and
the latent distribution are all smooth, the conditional choice probabilities
may have a jump. It raises a problem for estimating the conditional choice
probabilities, when the econometrician in priori does not know the
presence of such jump(s). The estimation of the conditional choice
probabilities is usually the first stage for parameter estimation and
inference in games with incomplete information (see for example, Bajari,
Hong, Krainer and Nekipelov (2010), Paula and Tang (2012), Wan and Xu
(2014), Aguirregabiria and Mira (2013), among others). If the conditional
choice probabilities have a jump, the standard nonparametric estimation
technique such as kernel or series estimators do not apply directly. On the
other hand, because the conditional probability may not have a jump, the
usual jump location estimator does not apply either (to be discussed in
this section).

This section reviews a jump location estimator and explains why it does
not apply immediately when the presence of a jump in the conditional choice
probabilities is unknown. To simplify arguments, we assume Assumption 2S
to hold in this section. The conclusion can be generalized to cases without
Assumption 2S, as we can use the sub-sample with Y−k = 1.

Under Assumption 2S, the choice of the player −k does not appear in
the conditioning set of the choice probability of the player k, that is,

Qk (1|1, x) = Qk (1|x) ≡ Pr (Yk = 1|X = x) , for k = 1, 2.

Under Assumption 2S, Aguirregabiria and Mira (2013) noticed that the
conditional probabilities Pr (Yi = (1, 1)′|Xi = x) may be discontinuous at
some x and “the econometrician does not know, ex-ante, the number and
the location of these discontinuity points, and this complicates the
application of smooth nonparametric estimators...”. The solution they
proposed is to first use the method developed by Müller (1992) and
Delgado and Hidalgo (2000) to estimate the location(s) of the jump(s).
However, their jump location estimator relies on the existence of a jump in
the regression function, or in other words, the largest possible jump size
must be strictly positive. To see this, note that the jump size appears
multiplicatively in the asymptotic covariance of the jump location
estimator (see equation (3.8) in Müller (1992) and Theorem 2 in Delgado
and Hidalgo (2000)). Here we briefly review the jump location estimator
proposed by Müller (1992). Müller (1992) considered the following
nonparametric regression model for a univariate X.
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Y = g(X) + U,

where Y ∈ R, X ∈ R, U ∈ R,E[U |X] = 0,E[U2|X] = σ2. The departure
from the standard univariate regression model is that g(x) has a jump at
x = τ. In particular,

g(x) = f(x) + ∆{x > τ},

where function f(x) is twice continuously differentiable. The unknown
location of jump τ is the object of interest and ∆ measures the jump size.
Müller (1992) assumed that ∆ > 0 and introduce the local jump as

∆(x) = g+(x)− g−(x),

where
g+(x) = lim gt↓0(x+ t), g−(x) = lim gt↓0(x− t).

In Müller (1992), τ is estimated by

τ̂ = arg max
x

∆̂(x),

∆̂(x) = ĝ+(x)− ĝ−(x),

where ĝ+(x) and ĝ−(x) are constructed using one-sided kernels. The
asymptotic distribution of τ̂ is obtained from the weak convergence of a
local deviation process. Let δ̂(y) = ∆̂(τ + yh) and define a process as the
(nh)−1/2zh deviation of ∆̂(τ) (n denotes the sample size and h denotes the
bandwidth),

ξn(z) = nh
[
δ̂((nh)−1/2z)− δ̂(0)

]
.

Theorem 3.1 of Müller (1992) showed that ξn(z) weakly converges to ξ(z),
where

ξ(z) = −∆z2K−(0)/2 +Wz,

W ∼ N

(
0, 2σ2

∫
K2
−(v)dv

)
,

and K−(·) is the one-sided kernel function. By the construction of τ̂ and
ξ(z), we have

τ̂ = τ + (nh)−1/2hZn,

Zn = arg max
z
ξn(z).
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Let Z∗ = arg maxz ξ(z), we can compute Z∗ = W/(∆K−(0)), which gives
the identification of Z∗, if ∆ > 0. Corollary 3.1 of Müller (1992) established
the asymptotic distribution of estimator τ̂ as follows,

(nh)1/2 (τ̂ − τ)→d N

(
0,

2σ2

(∆K−(0))2

∫
K2
−(v)dv

)
. (3.16)

Given that, the asymptotic distribution of the estimated jump size, ∆̂(τ̂),
can be derived as (see Corollary 3.2 of Müller (1992))

(nh)1/2
(

∆̂(τ̂)−∆
)
→d N

(
0, 2σ2

∫
K2
−(v)dv

)
.

We can see that when E[Y |X = x] = g(x) is continuous in x, (i.e.
∆(x) = 0 for all x), the estimator τ̂ will diverge. Therefore, the jump
location estimator developed by Müller (1992) and Delgado and Hidalgo
(2000) does not immediately apply when the presence of jump(s) in the
regression function is unknown. In incomplete information games, the
conditional choice probabilities may or may not have a jump in x,
depending on the equilibrium behaviour. As a result, the econometrician
cannot utilize the jump location estimator before knowing the presence of
jump(s). This calls for a test for the presence of jump(s) in the conditional
choice probabilities in the first place.

3.5 Testing for the Presence of Jump(s)

In nonparametric estimation, the regression function is usually assumed to
be twice continuously differentiable. However, we have shown that even
when the payoff functions and the latent distribution are all smooth, the
equilibrium behaviour may give rise to jump(s) in the conditional choice
probabilities. Hence the standard smoothness conditions imposed on
regression functions are too restrictive for the conditional choices
probabilities. There are generally two approaches to treat this problem,
the first one is to conduct a testing procedure for the presence of jump(s)
in the conditional choice probabilities. If the conditional probabilities are
continuous in covariates, the standard smooth nonparametric estimators
apply. Otherwise, the econometrician may estimate the locations of jumps
(for example, use the method by Müller (1992) and Delgado and Hidalgo
(2000)). An alternative approach is to estimate the conditional probability
without the smoothness conditions (for example, use wavelet methods). In
this section, we discuss the first approach, that is, to test for the presence
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of a jump in conditional choice probabilities. Since the presence of a jump
is related to the equilibrium behaviour of the game, such a test not only
helps the econometrician choose appropriate estimation approaches, but
also reveals information about the equilibrium behaviour of the game.
Suppose we are interested in testing

H ′0 : Qk (1|1, x) is continuous in x on int(X ) , for all k = 1, 2.

H ′1 : Qk (1|1, x) has jump(s) at some x ∈ int(X ), for some k ∈ {1, 2}.

Since there are two players, the null hypothesis contains two sub-hypotheses.
Taking this into account, if we focus on the conditional probability for each of
the players, the critical value is to be adjusted (using Bonferroni correction,
for example). In the following, we focus on testing the presence of a jump
in the conditional choice probability for player 1.

The observed data is an i.i.d. sample {(Y1i, Y2i, X
′
i}Ni=1. Let J = dim (X ).

When J = 1, for a fixed x, let ĝ+
1 (x) and ĝ−1 (x) be two kernel type estimators

of Q1 (1|1, x) using one-sided kernel functions22, an estimator for the local
jump at x can be written as

∆n(x) = ĝ+
1 (x)− ĝ−1 (x),

where

ĝ+(x) =

∑N
i=1 Y1iY2iK+

(
Xi−x
hn

)
∑N

i=1 Y2iK+

(
Xi−x
hn

) and ĝ−(x) =

∑N
i=1 Y1iY2iK−

(
Xi−x
hn

)
∑N

i=1 Y2iK−

(
Xi−x
hn

) ,

where K+(·) and K−(·) are one-sided kernel functions and hn is the
bandwidth. The next step is to construct a test statistic by aggregating
the local jumps over the support. The most straightforward way is to use
supremum. To find the critical value 23, one can use the result from
Hamrouni (1999)24. There are other ways to aggregate the local jumps.
For instance, Bowman, Pope and Ismail (2006) developed a test based on
the sum of squared pointwise jumps for the univariate and bivariate

22Properties of the one sided-kernel functions for J = 1 can be found in Definition 1.1
of Hamrouni (1999).

23Here one cannot directly apply the Continuous Mapping Theorem to deal with the
supremum, because the underlying empirical process of kernel estimators does not have
weak convergence.

24See Theorem 2.8 of Hamrouni (1999) for a complete statement of the limiting
distribution.
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regression functions. Alternatively, Müller and Stadtmüller (1999) showed
that in univariate regression models, the sum of squared jump sizes can be
represented as a coefficient of an asymptotic linear model, with the
squared difference in Y as the dependent variable and twice the standard
deviation of the error term as the intercept. Hence they developed a test
by checking whether the sum of the squared jump sizes equals zero.
Gijbels and Goderniaux (2004) identified a discontinuity as a point with
the largest derivative. When J > 1, the local jump at a given x shall be
checked along different directions, see Qiu (1997, 2002). A recent
development in the literature related to this testing problem lies in
Chernozhukov, Chetverikov and Kato (2012, 2013). They show that the
supremum of an empirical process of kernel type estimators can be
approximated by the supremum of a Gaussian multiplier bootstrap. This
technique can be applied to our set-up. The details of constructing a test
for the presence of jump(s) in the conditional choice probabilities in
incomplete information games is left for future work.

3.6 Conclusions and Remarks

In this chapter, we show that in binary games with incomplete information,
the conditional choice probabilities may have a jump with respect to the
continuous covariates, even when the payoff functions and the distribution
of the latent variables are all smooth. The source of such jumps lies in the
equilibrium behaviour of the game. We further analyse the conditions under
which the conditional choice probabilities exhibit a jump. The relationship
between the equilibrium behaviour and the the presence of jump(s) in the
conditional choice probabilities is robust to correlated private information
and unobserved heterogeneity. As a result, continuity or discontinuity in the
conditional choice probabilities reveals information about the equilibrium
behaviour.

Testing for the presence of a jump in the conditional choice probabilities
also matters if the econometrician wants to estimate that conditional choice
probability, which is usually the starting point for parameter estimation
and inference in incomplete information games. This chapter points out
that when the econometrician is unknown about the presence of jump(s) in
the conditional choice probability, the jump location estimator (by Müller
(1992) and Delgado and Hidalgo (2000)) may not be consistent.

Lastly, we briefly discuss the construction of a test for the presence of
a jump in the conditional choice probabilities. The test statistic can be
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constructed as the supremum of the local jumps, where the local jump can
be computed as the difference between two kernel type estimators (using
one-sided kernels). We leave the detailed construction of the test statistic
and critical values for future work.
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Chapter 4

Efficient Inference in
Econometric Models When
Identification Can Be Weak

4.1 Introduction

Weak instrumental variables (Weak-IV) have received a lot of attention in
econometrics in particular following Staiger and Stock (1997), who
developed an analytical framework for analysing the effect of weak
instruments and constructing weak-identification-robust methods of
inference, and Dufour (1997), who showed that usual bounded confidence
sets cannot be valid in the case of weak identification. This paper
considers testing the coefficient of an endogenous variable in instrumental
variables regression models (linear IV models) when the instruments may
be weak. A standard approach to the construction of Weak-IV robust tests
is to use null-restricted residuals, which are obtained by imposing the value
specified under a null hypothesis for the coefficients of endogenous
regressors. The hypothesis can be tested by considering the sample
covariance between null-restricted residuals and instrumental variables.
The approach is robust to weak identification problems because, under a
null hypothesis, the distribution of the covariance term does not depend
asymptotically on the strength of the correlation between endogenous
regressors and instruments. This idea is behind the Anderson-Rubin (AR)
statistic, see Anderson and Rubin (1949) and Staiger and Stock (1997).

Tests based on the AR statistic are efficient if models are just
identified. However, the power of AR-type tests is inferior to that of usual
t- and Wald-tests when models are overidentified and instruments are
strong. This is because, when models are overidentified, the AR approach
tests more restrictions than the dimension of the parameter of interest. To
address that issue, several papers suggested alternatives to the AR
statistic. Kleibergen (2002, 2007) and Moreira (2001, 2003) proposed
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Lagrange Multiplier (LM) and Conditional Likelihood Ratio (CLR) -type
statistics. Kleibergen’s LM (KLM) tests can be used with usual χ2 critical
values. CLR tests requires simulations to generate critical values, however,
they have been demonstrated to have better power properties in Monte
Carlo simulations than KLM or AR tests. Andrews, Moreira and Stock
(2006) showed that, for normal linear instrumental variables regression
models with homoskedastic errors, KLM and CLR tests are efficient among
Weak-IV robust tests when instrumental variables are strong (Strong-IV).
When instrumental variables are weak, there is no uniformly most powerful
(UMP) test except for the just identified case, hence the efficiency depends
on optimizing criteria considered by the econometrician. Andrews, Moreira
and Stock (2006) considered a weighted average power (WAP) at two
values of parameters, and derived the optimal average power test. They
also numerically demonstrated that in the Weak-IV scenario, CLR test
dominates AR and KLM tests, and attains the power envelope given by
the optimal average power test. As a result, they recommended CLR test
for empirical researchers when the instruments may be weak and model is
over-identified. Cattaneo, Crump and Jansson (2012) extended the results
of Andrews, Moreira and Stock (2006) to non-normal errors by using an
asymptotic framework of Gaussian experiments. Chernozhukov, Hansen
and Jansson (2009) showed that all members of the weighted average
power likelihood ratio tests are admissible, including the AR test.

This chapter is concerned with a different optimizing criterion, that is,
the power for alternative hypotheses that are determined by arbitrarily large
deviations from the null hypothesis. In the Weak-IV scenario, the power of
any robust test may be far below 1 even for arbitrarily large deviations. The
power of a test for such alternatives is also related to the length of confidence
intervals constructed using test inversion.

In this chapter, we focus on an asymptotic experiment following
Cattaneo, Crump and Jansson (2012) and Choi and Schick (1996). This
asymptotic experiment framework substantially simplifies the analysis by
reducing a complex inference problem to that based on a normally
distributed vector. It allows one to derive an efficiency bound in presence
of nuisance parameters. In this chapter, we first derive the optimal test for
alternatives that are arbitrarily far away from the null, among all
rotational invariant and asymptotically similar tests. To do this, we follow
the method of Andrews, Moreira and Stock (2006) and Mills, Moreira and
Vilela (2013), with a focus on alternatives determined by arbitrarily large
deviations from the null. Then we use the notion of efficiency in Choi and
Schick (1996) to obtain a power envelope under Weak-IV, in the worst
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scenario with respect to a perturbation to the nuisance parameter. After
that, we compare the power of popular Weak-IV robust tests (AR, KLM
and CLR tests) when alternatives are determined by arbitrarily large
deviations from the null. In particular, we find that the relative
performance of the AR test versus the CLR test depends on the degree of
endogeneity in the model. For a relatively low degree of endogeniety, the
AR test outperforms the CLR test, while for a relatively large degree of
endogeniety, the order is reversed. This result suggests that the CLR test is
not dominating the AR test under a different (but reasonable) optimizing
criterion from the WAP considered by Andrews, Moreira and Stock (2006).
In addition, we propose a new Weak-IV robust test, the Conditional
Lagrange Multiplier (CLM) test, which is asymptotically efficient in the
Strong-IV case, robust to weak instruments, and exhibits the same power
as the AR test for arbitrarily large deviations from the null. Lastly, we
extend the investigation to heteroskedastic models. In particular, we find
that the generalized likelihood ratio statistic in heteroskedastic models
reduces to the AR statistic in the Weak-IV scenario and when alternatives
are determined by arbitrarily large deviations from the null.

4.1.1 Organization of Chapter 4

The plan of the chapter is as follows: Section 4.2 sets up the asymptotic
experiment framework, Section 4.3 describes the optimal rotational
invariant and asymptotically similar test when alternatives are determined
by arbitrarily deviations from the null; Section 4.4 characterizes the power
envelope in the worst scenario with respect to a perturbation to the
nuisance parameter. Section 4.5 compares the power properties of the AR,
CLR and KLM tests under Weak-IV and when alternatives are determined
by arbitrarily large deviations from the null. This section also proposes a
new Weak-IV robust test, the CLM test. Section 4.6 extends the
framework to heteroskedastic models. The last section concludes.

4.2 An Asymptotic Experiment for Linear IV
Models

Consider linear IV models with a single endogenous regressor. The struc-
tural equation is

y1 = y2γ + Z2β + u, (4.1)

83



4.2. An Asymptotic Experiment for Linear IV Models

and the first stage regression is

y2 = Z1π1,n + Z2π2 + v, (4.2)

where y1, y2 ∈ Rn, Z2 ∈ Rn×l1 , and Z2 ∈ Rn×l2 are observed variables;
u, v ∈ Rn are unobserved error terms; coefficients γ ∈ R, β, π2 ∈ Rl2 , and
π1,n ∈ Rl1 are unknown parameters, among which the coefficient γ is the
structural parameter of interest. Assumption 1 characterizes the Weak-IV
scenario.

Assumption 1. (Weak-IV) π1,n = n−1/2C, where C ∈ Rl1 is fixed.

We assume that the data is an i.i.d. sample, the instrumental variables
are uncorrelated with the unobserved error terms, the errors in the model
are homoskedastic, and the instrumental variables have finite second order
moments.

Assumption 2. (a) {(y1i, y2i, Z1i, Z2i), i = 1, ..., n} are i.i.d.

(b) E

[
Z1i

Z2i

]
[ ui vi ] = 0.

(c) E

[
u2
i uivi

uivi v2
i
|Zi1, Zi2

]
=

[
σ2
u σuv

σuv σ2
v

]
, is a finite and positive

definite matrix.

(d) E

[
Z1iZ

′
1i Z1iZ

′
2i

Z2iZ
′
1i Z2iZ

′
2i

]
=

[
Q11 Q12

Q′12 Q22

]
= Q, is a finite and positive

definite matrix.

By Assumption 2(c) and the fact that
Z′1M2Z1

n →p Q1·2, we have

1√
n

[
Z ′1M2u
Z ′1M2v

]
→d N

(
0,

[
σ2
u σuv

σuv σ2
v

]
⊗Q1·2

)
, (4.3)

where Q1·2 = Q11 − Q12Q
−1
22 Q

′
12. Note that (4.3) is a characterization of

homoskedasticity.
The null hypothesis is H0 : γ = γ0. Let ∆ = γ − γ0. The following

two statistics Sn and Tn (and their normalized versions S∗n and T ∗n) will be
used repeatedly in this chapter. We construct the statistic Sn ∈ Rl1 as the
sample covariance between the null restricted residuals and the instrumental
variables.

Sn = Z ′1M2(y1 − y2γ0)/n
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=
Z ′1M2Z1

n
∆
C√
n

+
Z ′1M2(u+ ∆v)

n
, (4.4)

where M2 = In − Z2(Z ′2Z2)−1Z ′2 is an orthogonal projection matrix. Note
that the second equality is implied by Assumption 1. Let π̂1,n be the OLS
estimator of π1,n in the first stage regression, that is

π̂1,n = (Z ′1M2Z1)−1Z ′1M2y2 =

(
Z ′1M2Z1

n

)−1 Z ′1M2v

n
+

C√
n
, (4.5)

where the second equality comes from Assumption 1. Define

σ2(∆) = σ2
u + ∆2σ2

v + 2∆σuv.

Expressions in (4.4) and (4.5) give rise to the asymptotic distribution of√
n[S′n, π̂

′
1,n]′ in the Weak-IV scenario:

N

([
∆Q1·2C

C

]
,

[
σ2(∆)Q1·2

(
σuv + ∆σ2

v

)
Il1(

σuv + ∆σ2
v

)
Il1 σ2

vQ
−1
1·2

])
.

Next we decompose π̂1,n into two parts, one is the population projection
of π̂1,n onto the space of Sn and the other is orthogonal in population to
Sn. We take the second part and construct the statistic Tn ∈ Rl1 to be
asymptotically uncorrelated with Sn:

Tn = π̂1,n − σuv+∆σ2
v

σ2(∆)
Q−1

1·2Sn.

The asymptotic distribution of
√
n [S′n, T

′
n]′ is

N

([
∆Q1·2C
σ2
u+∆σuv
σ2(∆)

C

]
,

[ (
σ2
u + 2∆σuv + ∆2σvv

)
Q1·2 0l1

0l1
σ2
uσ

2
v−σ2

uv
σ2(∆)

Q−1
1·2

])
.

We normalize Sn and Tn by letting

S∗n = Q
−1/2
1·2
√
nSn/σ(∆),

and
T ∗n = σ(∆)Q

1/2
1·2
√
nTn/(σ

2
uσ

2
v − σ2

uv)
1/2.

Since the covariance matrix of the reduced-form errors [ui + ∆vi, vi]
′ can

be consistently estimated, in this chapter we assume that Q1·2, σ(∆) and
σ2
uσ

2
v − σ2

uv are known. Note that Q1·2 can be consistently estimated by
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Z′1M2Z1

n . Let Ω denote the 2 by 2 covariance matrix of the reduced form 25

errors [ui + ∆vi, vi]
′. Then σ(∆) is the upper left element of Ω, σuv + ∆σ2

v

is the upper right element of Ω, and σ2
uσ

2
v − σ2

uv is the determinant of Ω.
Furthermore, we obtain the following asymptotic experiment

[
S∗n
T ∗n

]
∼a N

 ∆
σ(∆)Q

1/2
1·2 C

(σ2
u+∆σuv)

σ(∆)(σ2
uσ

2
v−σ2

uv)1/2
Q

1/2
1·2 C

 , I2l1

 . (4.6)

Define N to be a 2l1 × 1 normal random vector with a zero mean and the
identity covariance matrix, and let

[
S∗

T ∗

]
= N +

 ∆
σ(∆)Q

1/2
1·2 C

(σ2
u+∆σuv)

σ(∆)(σ2
uσ

2
v−σ2

uv)1/2
Q

1/2
1·2 C

 .
Clearly,

[
S∗

T ∗

]
is distributed as the right hand side of (4.6), and we have

[
S∗n
T ∗n

]
→d

[
S∗

T ∗

]
.

We are particularly interested in alternatives that are determined by
arbitrarily large deviations from the null, that is, ∆→∞. In the following
investigation, we first analyse the case ∆ → +∞, and the case ∆ → −∞
can be treated analogously. Consider the asymptotic experiments under the
null and alternatives, under H0 : ∆ = 0,[

S∗

T ∗

]
∼ N

([
0

1√
1−ρ2

λ

]
, I2l1

)
, (4.7)

where λ = 1
σv
Q

1/2
1·2 C and ρ = σuv

σuσv
.

Under H1 : ∆→ +∞,[
S∗

T ∗

]
∼ N

([
λ
ρ√

1−ρ2
λ

]
, I2l1

)
, (4.8)

25Here the reduced form equations are[
y1 − γ0y2

y2

]
= Z1

[
∆π1,n

π1,n

]
+ Z2

[
∆π2 + β

π2

]
+

[
u+ ∆v

v

]
.
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Similarly, under H1 : ∆→ −∞,[
S∗

T ∗

]
∼ N

(
−

[
λ
ρ√

1−ρ2
λ

]
, I2l1

)
. (4.9)

Asymptotic experiments (4.7), (4.8) and (4.9) are the building blocks of this
chapter. We can see that the means of those limiting Gaussian distributions
are determined by three parameters: l1, λ and ρ. The parameter l1 is
the number of instruments; the norm of λ determines the strength of the
instruments; and the parameter ρ measures the degree of endogeneity of this
linear IV model.

4.3 The Optimal Rotational Invariant and
Asymptotically Similar Test

In this section, we derive the asymptotically optimal test against ∆ → ∞
among all rotational invariant and asymptotically similar tests. Here
rotational invariance means that a test is not affected by any orthonormal
transformation of the instruments. Asymptotic similarity means that the
asymptotic null rejection rate of a test is not affected by π1,n. Similar tests
are robust to weak instruments, as the norm of π1,n determines the
strength of the instruments. Define the test statistics

Qn =

[
Qsn Qstn
Q′stn Qtn

]
= [S∗n, T

∗
n ]′[S∗n, T

∗
n ],

Q =

[
Qs Qst
Q′st Qt

]
= [S∗, T ∗]′[S∗, T ∗].

In this following, we consider test statistics that are functions of Qn. This
is because Andrews, Moreira and Stock (2006) showed that every rotational
invariant test can be written as a function of Qn. In addition, they showed
that an invariant test is asymptotically similar with significance level α if and
only if the asymptotic null rejection rate of such a test equals α, conditional
on the value of Qtn. Therefore, we can restrict our attention to tests as
functions of Qn. Popular Weak-IV robust tests, such as the AR, KLM and
CLR tests, can be written as functions of Qn.

From the asymptotic experiment (4.6), the l1×2 random matrix [S∗, T ∗]
is a multivariate normal with the mean matrix given by

M =
[

∆
σ(∆) ,

(σ2
u+∆σuv)

σ(∆)(σ2
uσ

2
v−σ2

uv)1/2

]
Q

1/2
1·2 C,
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4.3. The Optimal Rotational Invariant and Asymptotically Similar Test

and the identity covariance matrix. The 2 × 2 random matrix Q has a
non-central Wishart distribution with the mean matrix of rank 1 and the
identity covariance matrix. Therefore we can calculate the density of
[Qs, Qst] conditional on Qt, and then use the Neyman-Pearson Lemma to
construct the optimal test against H1 : ∆ → +∞ or ∆ → −∞. This
method has been used by Andrews, Moreira and Stock (2006) and Mills,
Moreira and Vilela (2013). Here we particularly focus on alternatives
corresponding to arbitrarily large deviations from the null. The following
proposition describes the optimal rotational invariant and asymptotically
similar test in the Weak-IV scenario and for alternatives corresponding to
arbitrarily large deviations from the null.

Proposition 1. In the linear IV model (4.1) and (4.2), suppose that As-
sumption 1 and 2 hold. Consider a testing problem

H0 : ∆ = 0, H1 : ∆→∞.

Then the test that rejects H0 when

POIS∞(Qsn, Qstn) = Qsn +
2ρ√

1− ρ2
Qstn > κ∞(Qtn)

maximizes the asymptotic power over all tests as functions of Qn and with
asymptotic size α, where κ∞(Qtn) is the (1−α)th quantile of the distribution
of POIS∞(Qsn, Qstn) conditional on Qtn and under H0.

Proof. We first characterize the optimal invariant and similar test based on
the asymptotic statistic Q. If the optimal test statistic and the critical value
are continuous in Q, then by the Continuous Mapping Theorem, replacing
Q with Qn yields a test that attains the asymptotic power envelope among
all invariant and asymptotically similar tests.

The density of (Qs, Qst, Qt) is

fQ(qs, qst, qt) = K1 exp
(
−tr

(
M ′M

)
/2
)

det(q)(l1−3)/2 exp (−tr (q) /2)

×tr
(
M ′Mq

)−(l1−2)/4
I(l1−2)/2

√
tr (M ′Mq),

where

Iv(x) =
(x

2

)v ∞∑
j=0

(x2/4)j

j!Γ(v + j + 1)
,

and K1 is a constant only depending on l1. Calculate the mean matrices
under H0 and H1, respectively.

Under H0 : ∆ = 0, M = [0,
1√

1− ρ2
λ]′,
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4.3. The Optimal Rotational Invariant and Asymptotically Similar Test

Under H1 : ∆→ +∞, M = [λ,
ρ√

1− ρ2
λ].

Therefore, under H0, the density of (Qs, Qst, Qt) is

f0
Q(qs, qst, qt) = K1 exp

(
− ‖λ‖2

2(1− ρ2)

)
det(q)

l1−3
2 exp

(
−qs + qt

2

)

×
(
‖λ‖2 qt

(1− ρ2)

)− l1−2
4

I l1−2
2

(√
‖λ‖2 qt

(1− ρ2)

)
.

Under H1 : ∆→ +∞, the density of (Qs, Qst, Qt) becomes

f1
Q(qs, qst, qt) = K1 exp

(
− ‖λ‖2

2(1− ρ2)

)
det(q)

l1−3
2 exp

(
−qs + qt

2

)
×
(
‖λ‖2 ζ(q)

)− l1−2
4
I l1−2

2

(√
‖λ‖2 ζ(q)

)
,

where

ζ(q) = qs +
2ρ√

1− ρ2
qst +

ρ2

1− ρ2
qt.

The random variable Qt has a non-central chi-square distribution, and the
densities of Qt under H0 and H1 can be written as

f0
Qt(qt) =

1

2
exp

(
− ‖λ‖2

2(1− ρ2)

)
qt
l1−2

2 exp
(
−qt

2

)
×
(
‖λ‖2 qt

(1− ρ2)

)− l1−2
4

I l1−2
2

(√
‖λ‖2 qt

(1− ρ2)

)
,

and

f1
Qt(qt) =

1

2
exp

(
− ρ2 ‖λ‖2

2(1− ρ2)

)
qt
l1−2

2 exp
(
−qt

2

)

×
(
‖λ‖2 ρ2qt

(1− ρ2)

)− l1−2
4

I l1−2
2

(√
‖λ‖2 ρ2qt

(1− ρ2)

)
.

Therefore, we can compute the densities of (Qs, Qst) conditional on Qt,
underH0 andH1 respectively. As a result, the likelihood ratio can be written
as

89



4.3. The Optimal Rotational Invariant and Asymptotically Similar Test

LR(q) =
f1
Q(qs, qst, qt)/f

1
Qt

(qt)

f0
Q(qs, qst, qt)/f0

Qt
(qt)

=

exp
(
−‖λ‖

2

2

)(
‖λ‖2 ζ(q)

)− l1−2
4
I l1−2

2

(√
‖λ‖2 ζ(q)

)
(
‖λ‖2 qt

(1−ρ2)

)− l1−2
4
I l1−2

2

(√
‖λ‖2 ρ2qt

(1−ρ2)

)
=

2−
l1−2

2 exp
(
−‖λ‖

2

2

)∑∞
j=0

(‖λ‖2ζ(q)/4)j

j!Γ(l1/2+j)(
‖λ‖2 qt

(1−ρ2)

)− l1−2
4
I l1−2

2

(√
‖λ‖2 ρ2qt

(1−ρ2)

) . (4.10)

Note that the denominator of (4.10) is a function of qt and the numerator is
an increasing function of ζ(q). Therefore, by the Neyman-Pearson Lemma,
the optimal test for H1 : ∆→ +∞ is to reject H0 when

POIS∞(Qs, Qst) = Qs +
2ρ√

1− ρ2
Qst > κ∞(Qt),

where the critical value κ∞(Qt) is the (1−α)th quantile of the distribution
of POIS∞(Qs, Qst) conditional on Qt and under H0.

Since both POIS∞(·) and κ∞(·) are continuous functions of Q, by the
Continuous Mapping Theorem, the test that rejects H0 when

POIS∞(Qsn, Qstn) = Qsn +
2ρ√

1− ρ2
Qstn > κ∞(Qtn),

maximizes the asymptotic power over all tests as functions of Qn and with
asymptotic size α, where κ∞(Qtn) is the (1−α)th quantile of the distribution
of POIS∞(Qsn, Qstn), conditional on Qtn and under H0.

Exactly the same result can be obtained for H1 : ∆→ −∞.

The optimal test given by Proposition 1 does not depend on the
nuisance parameter C, which cannot be consistently estimated in the
Weak-IV scenario. However, the optimal test is still infeasible because ρ is
unknown and cannot be consistently estimated in linear IV models. The
parameter ρ measures the degree of endogeneity in the model.

Mills, Moreira and Vilela (2013) proposed a feasible test for arbitrarily
large ∆. Their test is to reject H0 when

Qsn + 2(det(Ω))−1/2(γ0ω22 − ω12)Qstn > κ∞(Qtn),
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4.4. The Power Envelope Under an Unknown Nuisance Parameter

where the κ∞(Qtn) is the (1 − α)th quantile of null distribution of the left

hand side conditional on Qtn, and Ω =

[
ω11 ω12

ω12 ω22

]
is the covariance matrix

of the reduced-form errors

[
u+ γv
v

]
. However, when γ → ∞, γ0ω22 −

ω12 = −∆σ2
v − σuv, which goes to infinity. Therefore, the behaviour of

the test statistic is determined by the second term Qstn. A test based on
Qstn will exhibit some undesirable power properties similar to Kleibergen’s
K (KLM) test.26 The power performance of KLM will be illustrated in
Section 4.5.

4.4 The Power Envelope Under an Unknown
Nuisance Parameter

In this section, we derive a power envelope in the worst scenario with respect
to a perturbation to the nuisance parameter C, in the Weak-IV scenario.
Consider a perturbation to the nuisance parameter C, i.e., C = C0 + τ . We
will be focusing on the asymptotic power envelope for a joint test of

H0 : ∆ = 0 and τ = 0,

against
H1 : ∆→∞ and τ 6= 0.

The following proposition characterizes the power envelope in that case.

Proposition 2. In the linear IV model (4.1),(4.2), suppose that Assumption
1 and 2 hold. Consider the testing problem

H0 : ∆ = 0 and τ = 0,

against
H1 : ∆→∞ and τ 6= 0.

Then the asymptotic power envelope in the worst scenario with respect to τ
for tests with an asymptotic size α is

Pr
(
G∗ > χ2

1,1−α
)
, where G∗ ∼ χ2

1

(
C ′0Q1·2C0

σ2
v

)
.

26Mills, Moreira and Vilela (2013) first computed the optimal test for a fixed γ, and
then sent γ to infinity. However, ω12 is a function of γ and will also go to ∞. This is not
taken into account in their test statistic.
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4.4. The Power Envelope Under an Unknown Nuisance Parameter

That is, the optimal test statistic in the worst scenario with respect to τ
has a non-central chi-square limiting distribution with degree of freedom 1
and the non-centrality parameter equal to C ′0Q1·2C0/σ

2
v. The critical value

χ2
1,1−α is the (1− α)th quantile of a centred chi-square distribution.

Proof. For a fixed (∆, τ), the asymptotic experiment in (4.6) becomes

[
S∗

T ∗

]
∼ N

 ∆
σ(∆)Q

1/2
1·2 (C0 + τ)

(σ2
u+∆σuv)

σ(∆)(σ2
uσ

2
v−σ2

uv)1/2
Q

1/2
1·2 (C0 + τ)

 , I2l1

 .

The likelihood ratio statistic for H1 : ∆ 6= 0, C = C0 + τ is

LR = −
(
S∗ − ∆

σ(∆)Q
1/2
1·2 (C0 + τ)

)′ (
S∗ − ∆

σ(∆)Q
1/2
1·2 (C0 + τ)

)
+ S∗

′
S∗

−

(
T ∗ − (σ2

u + ∆σuv)Q
1/2
1·2 (C0 + τ)

σ(∆)(σ2
uσ

2
v − σ2

uv)
1/2

)′(
T ∗ − (σ2

u + ∆σuv)Q
1/2
1·2 (C0 + τ)

σ(∆)(σ2
uσ

2
v − σ2

uv)
1/2

)

+

(
T ∗ − σuQ

1/2
1·2 C0

(σ2
uσ

2
v − σ2

uv)
1/2

)′(
T ∗ − σuQ

1/2
1·2 C0

(σ2
uσ

2
v − σ2

uv)
1/2

)
. (4.11)

When ∆→ +∞, the expression in (4.11) becomes

LR+∞ = 2W+∞ +K,

where K is a constant and

W+∞ =
S∗
′
Q

1/2
1·2 (C0 + τ)

σv

+

(
T ∗ − σuQ

1/2
1·2 C0

(σ2
uσ

2
v − σ2

uv)
1/2

)′(
Q

1/2
1·2 (σuv(C0 + τ)− σuσvC0)

σv(σ2
uσ

2
v − σ2

uv)
1/2

)
.

We compute

E [W+∞] =
(C0 + τ)′Q1·2(C0 + τ)

σ2
v

+
((C0 + τ)σuv − σuσvC0)′Q1·2 ((C0 + τ)σuv − σuσvC0)

σ2
v(σ

2
uσ

2
v − σ2

uv)
,

(4.12)

and Var [W+∞] = E [W+∞] . Thus we have

G+∞ = W 2
+∞/Var [W+∞] ∼ χ2

1(E [W+∞]).
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The asymptotically optimal level α test against H1 : ∆ → +∞ is to reject
H0 when

Gn,+∞ = W 2
n,+∞/Var [W+∞] > χ2

1,1−α,

where

Wn,+∞ =
S∗
′
n Q

1/2
1·2 (C0 + τ)

σv

+

(
T ∗n −

σuQ
1/2
1·2 C0

(σ2
uσ

2
v − σ2

uv)
1/2

)′(
Q

1/2
1·2 (σuv(C0 + τ)− σuσvC0)

σv(σ2
uσ

2
v − σ2

uv)
1/2

)
.

(4.13)

The asymptotic distribution of the statistic Gn,+∞ is a non-central
chi-square with degree of freedom 1 and the non-centrality parameter
equal to E [W+∞] in (4.12). To consider the worst case, we minimize the
non-centrality parameter in (4.12) with respect to τ . The resulting power
minimizing direction in terms of the disturbance to C0 is

τ =
σuv − σuσv

σuσv
C0.

Plugging the worst τ back into (4.12) yields the non-centrality parameter
associated with the optimal test in the worst scenario. The resulting non-

centrality parameter is
C′0Q1·2C0

σ2
v

. Therefore, the power envelope for ∆ →
+∞ in the worst scenario with respect to τ is

Pr
(
G∗ > χ2

1,1−α
)
, where G∗ ∼ χ2

1

(
C ′0Q1·2C0

σ2
v

)
.

When ∆→ −∞, the likelihood ratio statistic can be reduced to

W−∞ = −S
∗′Q

1/2
1·2 (C0 + τ)

σv

−

(
T ∗ − σuQ

1/2
1·2 C0

(σ2
uσ

2
v − σ2

uv)
1/2

)′(
Q

1/2
1·2 (σuv(C0 + τ) + σuσvC0)

σv(σ2
uσ

2
v − σ2

uv)
1/2

)
.

This yields

E [W−∞] =
(C0 + τ)′Q1·2(C0 + τ)

σ2
v

+
(σuv(C0 + τ) + σuσvC0)′Q1·2 (σuv(C0 + τ) + σuσvC0)

σ2
v(σ

2
uσ

2
v − σ2

uv)
,
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and Var [W−∞] = E [W−∞] . Consequently, the power minimizing direction
is τ = −σuv+σuσv

σuσv
C0 and the resulting non-centrality parameter associated

with the optimal test for ∆→ −∞ remains
C′0Q1·2C0

σ2
v

.

By plugging the minimizer τ = σuv−σuσv
σuσv

C0 into Wn,+∞ given by (4.13),
we obtain a statistic

W ∗n,+∞ =
σuv
σuσ2

v

S∗
′
n Q

1/2
1·2 C0−

(σ2
uσ

2
v − σ2

uv)
1/2

σuσ2
v

T ∗
′

n Q
1/2
1·2 C0 +

C0Q1·2C0

σ2
v

. (4.14)

The asymptotically optimal test for ∆ → +∞, in the worst scenario with
respect to τ is to reject H0 when

G∗n,+∞ =
σ2
v(W

∗
n,+∞)2

C0Q1·2C0
> χ2

1,1−α. (4.15)

For the alternative H1 : ∆ → −∞, we obtain exactly the same
asymptotically optimal test in the worst scenario with respect to τ . Note
that the asymptotically optimal test is C0-specific. However, C0 cannot be
consistently estimated. Hence the above asymptotically optimal test is
infeasible.

4.5 Power Comparisons of Robust Tests

In this section, we evaluate the power of several popular Weak-IV robust
tests, when alternatives are determined by arbitrarily large deviations from
the null. In particular, we numerically compare the power of the AR and
the CLR tests in that scenario. Our numerical results suggest that the AR
test outperforms CLR test when the degree of endogeneity is low, however,
the order of power performance is reversed when the degree of endogeneity
is high. In addition, we propose a new robust test, the Conditional
Lagrange Multiplier (CLM) test, which is asymptotically efficient under
Strong-IV and exhibits the same power as the AR test under Weak-IV and
when alternatives are determined by arbitrarily large deviations from the
null.

4.5.1 Popular Weak-IV Robust Tests

Anderson-Rubin (AR) test

The rejection rule of the AR test is

Reject H0 when ARn = S∗
′
n S
∗
n > χ2

l1,1−α.
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By (4.8) and (4.9), under H1 : ∆ → ∞, ARn ∼a χ2
l1

(‖λ‖2), where ‖λ‖2 =
C′Q1·2C

σ2
v

, χ2
l1,1−α is (1 − α)th quantile of a centred chi-square distribution

with the degree of freedom l1, and χ2
l1

(‖λ‖2) is a non-central chi-square

distribution with the non-centrality parameter equal to ‖λ‖2 and the degree
of freedom l1.

Kleibergen’s K (KLM) test

Though sometimes refereed to as an LM test , this test statistic is different
from the usual LM test in that it uses T ∗n (which is asymptotically indepen-
dent of S∗n) instead of the usual π̂1,n to estimate π1,n. The rejection rule of
the KLM test is

Reject H0 when KLMn = (T ∗
′

n S
∗
n)2/T ∗

′
n T
∗
n > χ2

1,1−α.

Note that the denominator and numerator of KLM are asymptotically
independent. Under H1 : ∆ → +∞, KLMn ∼a χ2

1(CKLM ). The non-
centrality parameter CKLM can be described as

CKLM =

((
N + ρ√

1−ρ2
λ

)′
λ

)2

(
N + ρ√

1−ρ2
λ

)′(
N + ρ√

1−ρ2
λ

) ,
where N ∼ N(0l1×1, Il1). Under H1 : ∆→ −∞, the non-centrality parame-
ter becomes

CKLM =

((
N − ρ√

1−ρ2
λ

)′
λ

)2

(
N − ρ√

1−ρ2
λ

)′(
N − ρ√

1−ρ2
λ

) .
We will numerically evaluate the performance of KLM test in Section 4.5.3.

Conditional Likelihood Ratio (CLR) test

The CLR test was proposed by Moreira (2003), and was recommended by
Andrews, Moreira and Stock (2006) because it numerically attains the power
envelope obtained by the approach of weighted average power. The test
statistic can be written as
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LRn = S∗
′
n S
∗
n − λmin,

where λmin is the smallest eigenvalue of Qn. Since we focus on the model
with a single endogenous regressor, LRn can be re-written as

LRn =
1

2

{
S∗
′
n S
∗
n − T ∗

′
n T
∗
n +

√
(S∗′n S

∗
n − T ∗

′
n T
∗
n)

2
+ 4 (S∗′n T

∗
n)

2
}
.

The critical value is the (1−α)th quantile of the conditional null distribution
of LRn given T ∗n , which can be easily computed by the Monte Carlo method.
Denote such a critical value as κLR,α(t), for given T ∗n = t. The rejection rule
of the CLR test is

Reject H0 when LRn > κLR,α(t).

The analytical form of the asymptotic power of CLR test is difficult to
obtain, we will numerically evaluate the performance of CLR test in Section
4.5.3.

4.5.2 A New Test: Conditional Lagrange Multiplier (CLM)
Test

The classical Lagrange Multiplier (LM) test has a distorted size in the Weak-
IV scenario. Such a distortion is due to the OLS estimator π̂1,n. This
problem can be solved by computing critical values conditional on T ∗n . In
this section, we construct the LM test statistic using the OLS estimator
π̂1,n, and compute the critical value conditional on T ∗n . This gives rise to our
Conditional Lagrange Multiplier (CLM) test. Such a construction ensures
that the CLM test is Weak-IV robust. Here we further analyse the power
property of CLM test in both Weak-IV and Strong-IV scenarios.

Let us first construct the LM statistic. Note that the asymptotic variance

of
√
n
(
Z′1M2Z1

n π1,n

)′
(AsyVar(

√
nSn))

−1
Sn is

π′1,nQ1·2
(
AsyVar(

√
nSn)

)−1
Q1·2π1,n,

where AsyVar(
√
nSn) is the asymptotic variance of

√
nSn, which can be

consistently estimated. Taking this into account, we construct the LM
statistic as

LMn =

(
√
n
(
Z′1M2Z1

n π̂1,n

)′
(AsyVar(

√
nSn))

−1
Sn

)2

π̂′1,nQ1·2 (AsyVar(
√
nSn))

−1
Q1·2π̂1,n
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=

((
Z′1M2Z1

n π̂1,n

)′
(AsyVar(

√
nSn))

−1/2
S∗n

)2

π̂′1,nQ1·2 (AsyVar(
√
nSn))

−1
Q1·2π̂1,n

, (4.16)

where the second line comes from the normalization

S∗n =
(
AsyVar(

√
nSn)

)−1/2√
nSn.

By Assumption 2 and using
Z′1M2Z1

n →p Q1·2, we have

LMn − LM →p 0, (4.17)

where

LM =

(
π̂′1,nQ

1/2
1·2 S

∗
n

)2

π̂′1,nQ1·2π̂1,n
.

Recall that the relation between π̂1,n and T ∗n is

√
nπ̂1,n = AsyCov(

√
nπ̂1,n,

√
nSn)

(
AsyVar(

√
nSn)

)−1/2
S∗n

+
(
AsyVar(

√
nTn)

)1/2
T ∗n , (4.18)

where AsyCov(
√
nπ̂1,n,

√
nSn) is the asymptotic covariance between

√
nπ̂1,n

and
√
nSn.

The critical values of the CLM test can be simulated conditional on T ∗n
and under H0, similar to those of the CLR test. To simulate critical values,
let R be the number of simulation. First we generate S∗0r ∼ N(0, Il2) for
r = 1, . . . , R. Next, given T ∗n = t, we construct π̂1,n according to (4.18) with
S∗n replaced by S∗0r, and denote the result as π̂1,n,r(t) for each r = 1, . . . , R.
Then we further compute

LM∗r =

((
Z′1M2Z1

n π̂′1,n,r(t)
)′

(AsyVar(
√
nSn))

−1/2
S∗0r

)2

π̂′1,n,r(t)Q1·2 (AsyVar(
√
nSn))

−1
Q1·2π̂1,n,r(t)

,

for each r = 1, . . . , R. The critical value for the CLM test, κLM,α(t), is given
by the (1− α)th empirical quantile of {LM∗r : r = 1, . . . , R}. The rejection
rule of the CLM test is

Reject H0 when LMn > κLM,α(t). (4.19)
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Now we examine the power of the CLM test under Weak-IV for the
alternative H1 : ∆→ +∞. Under Weak-IV, (4.18) becomes

√
nπ̂1,n =

σuv + σ2
v∆

σ(∆)
Q
−1/2
1·2 S∗n +

σ2
uσ

2
v − σ2

uv

σ(∆)
Q
−1/2
1·2 T ∗n .

Consequently, when ∆→ +∞, we obtain

√
nπ̂1,n − σvQ−1/2

1·2 S∗n →p 0,

and √
nπ̂1,n,r(t)− σvQ−1/2

1·2 S∗0r →p 0.

Hence,
LMn − S∗

′
n S
∗
n →p 0,

and
LM∗r − S∗

′
0rS
∗
0r →p 0.

The same result can be obtained H1 : ∆ → −∞. Therefore, the power
of CLM test is the same as that of AR test for arbitrarily large deviations
from H0. However, CLM test is more efficient than AR test in the Strong-IV
scenario, as we show below.

Assumption 3. (Strong-IV) π1,n = π1, where π1 ∈ Rl1 , and π1 6= 0 is
fixed.

Proposition 3. In the linear IV model (4.1) and (4.2), suppose that As-
sumption 1 and 5 hold. Then the CLM test given by (4.19) is asymptotical-
ly efficient against the local alternative γ = γ0 + ∆/

√
n.

Proof. We first compute an effective power upper bound for level α test in
the Strong-IV scenario, following the approach of Choi and Schick (2006).
Consider a local perturbation π1,n = π1 + τ/

√
n and a joint test of

H0 : τ = 0 and γ = 0,

against
H0 : τ 6= 0 and γ 6= 0.

The asymptotic experiment in the Strong-IV scenario becomes

√
n

[
Sn

Tn − π1

]
∼a N

([
∆Q1·2π1

τ − ∆σuvπ1
σ2
u

]
,

[
σ2
uQ1·2 0l1×l1

0l1×l1
σ2
uσ

2
v−σ2

uv
σ2
u

Q−1
1·2

])
.
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Then the asymptotically most powerful unbiased (AMPU) test must be
based on the likelihood ratio LRn,

LRn =
∆2π′1 (

√
nSn)

σ2
u

+

(
τ − ∆σuvπ1

σ2
u

)′(σ2
uσ

2
v − σ2

uv

σ2
u

Q−1
1·2

)−1√
n (Tn − π1)

∼a N (AsyVar(LRn),AsyVar(LRn)) , where

AsyVar(LRn) =
∆2π′1Q1·2π1

σ2
u

+

(
τ − ∆σuvπ1

σ2
u

)′(σ2
uσ

2
v − σ2

uv

σ2
u

Q−1
1·2

)−1(
τ − ∆σuvπ1

σ2
u

)
.

Thus, for given ∆ and τ , the AMPU level α test is

Reject H0 when LR2
n/AsyVar(LRn) > χ2

1,1−α.

The power of the AMPU test is characterized by the non-centrality param-
eter AsyVar(LRn), since

LR2
n/AsyVar(LRn) ∼a χ2

1 (AsyVar(LRn)) .

The power minimizing direction (in terms of distribution to π1) is τ =
∆σuvπ1
σ2
u

, which leads to the non-centrality parameter equal to
∆2π′1Q1·2π1

σ2
u

, for

the effective power upper bound in the worst scenario with respect to τ .
Now to consider the power of the CLM test under Strong-IV, note that

in the Strong-IV scenario, π̂1,n →p π1. Hence by (4.17),

LMn →p

(
π′1Q

1/2
1·2 S

∗
n

)2

π′1Q1·2π1
∼a χ2

1(
∆2π′1Q1·2π1

σ2
u

),

and
LM∗r ∼a χ2

1(0).

Therefore, the local power of the CLM test in the Strong-IV scenario is
Pr
(
V > χ2

1,1−α
)
, where V has a non-central chi-square distribution with

the degree of freedom 1 and the non-centrality parameter
∆2π′1Q1·2π1

σ2
u

. Thus,

CLM test attains the effective power bound for a level α test under Strong-
IV.
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4.5.3 Power Calculations

In this section, we numerically compare the asymptotic power of the AR,
KLM, CLR and CLM tests under Weak-IV and when the alternatives are
determined by arbitrarily large deviations from the null. Previously we have
shown that in this scenario the CLM test has the same asymptotic power as
the AR test. From asymptotic experiments (4.8) and (4.9), the distribution
of [S∗

′
, T ∗

′
]′ is summarized by three parameters: the number of instruments

l1, the norm of the nuisance parameter λ that determines the strength of
instruments, and the parameter ρ that measures the degree of endogeneity.

The following Figure 4.1 and Figure 4.2 depict the power of AR (CLM),
KLM, CLR tests as well as the power envelope derived in Section 4.3 (de-
noted as PO) and the power envelope derived in Section 4.4 (denoted as B-
B), for testing H0 : ∆ = 0 against H1 : ∆→ +∞. Figure 4.1 is for the mod-
el with 2 instruments and Figure 4.2 is for the model with 5 instruments.
In each graph, the horizontal axis is the magnitude of ||λ|| and the vertical
axis is the rejection rate.

Figure 4.1 and Figure 4.2 suggest that (i) in the Weak-IV scenario and
for arbitrarily large deviations, none of the AR, KLM, CLR and CLM tests
attains the power envelopes (either PO or BB). (ii) The KLM test is dom-
inated by CLR test in those numerical comparisons. (iii) The relative per-
formance of the AR and CLR tests depends on the degree of endogeniety as
measured by |ρ|. Both (i) and (iii) are quite different from the findings of
Andrews, Moreira and Stock (2006), which used a weighted average power
as the optimizing criterion and found that CLR test not only numerically
dominates KLM and AR tests, but also attains the power envelope given by
the optimal invariant and similar test.

Figure 4.3 to Figure 4.6 provide a closer look at the relative power prop-
erties of the AR and CLR tests. The horizontal axis is again the magnitude
of ||λ|| while the vertical axis is the rejection rate of the AR test minus that
of the CLR test. We clearly see that when the degree of endogeneity |ρ| is
relatively low, the AR test has a larger power than the CLR test. Howev-
er, when the degree of endogeneity |ρ| is relatively high, the CLR test has a
larger power than the AR test. Moreover, the power of the AR test is more
likely to be larger than that of the CLR test as the number of instruments
increases.
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Figure 4.1: Power comparisons among robust tests, 2 IVs
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Figure 4.2: Power comparisons among robust tests, 5 IVs
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Figure 4.3: Relative power of the AR versus CLR tests, 2 IVs
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Figure 4.4: Relative power of the AR versus CLR tests, 5 IVs
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Figure 4.5: Relative power of the AR versus CLR tests, 10 IVs
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Figure 4.6: Relative power of the AR versus CLR tests, 20 IVs
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4.6 Heteroskedastic Models

In the previous sections, Assumption 2(c) assumes homoskedasticity for
the error terms in model (4.1) and (4.2). This implies the limiting
distribution in (4.3). In this section, we allow for heteroskedasticity. We
derive the corresponding asymptotic experiments in heteroskedastic
models, and then describe the optimal invariant and asymptotically similar
test. Also, we analyse the generalized likelihood ratio statistic in
heteroskedastic models when alternatives are arbitrarily far away from the
null. To facilitate analysis, we apply the following normalization on
instruments Z and the nuisance parameters C. For i = 1, ..., n,

Z̄i = Q
−1/2
1·2 Z̃i, and C̄ = Q

1/2
1·2 C,

where Z̃ = M2Z1 =
(
Z̃1, Z̃2, ..., Z̃n

)′
and Z̄ =

(
Z̄1, Z̄2, ..., Z̄n

)′
. Thus we

have
1√
n

[
Z̄ ′u
Z̄ ′v

]
→d N

(
0,

[
Ωuu Ωuv

Ωuv Ωvv

])
, (4.20)

where

Ωuu = E[u2
i Z̄iZ̄

′
i] = Q

−1/2
1·2 E

[
u2
i Z̃iZ̃

′
i

]
Q
−1/2
1·2 ,

Ωvv = E[v2
i Z̄iZ̄

′
i] = Q

−1/2
1·2 E

[
v2
i Z̃iZ̃

′
i

]
Q
−1/2
1·2 ,

Ωuv = E[uiviZ̄iZ̄
′
i] = Q

−1/2
1·2 E

[
uiviZ̃iZ̃

′
i

]
Q
−1/2
1·2 .

Note that the limiting distribution in (4.20) is a characterization of
heteroskedasticity.

Similar to the homoskedastic case, we construct S̄n and π̄1,n as

S̄n = Q
−1/2
1·2 Sn =

Z̄ ′(y1 − y2γ0)

n
=
Z̄ ′Z̄

n
∆
C̄√
n

+
Z̄ ′(u+ ∆v)

n
,

π̄1,n = Q
1/2
1·2 π̂1,n =

(
Z̄ ′Z̄

)−1
Z̄ ′y2 =

(
Z̄ ′Z̄

n

)−1
Z̄ ′v

n
+

C̄√
n
,

where the third equality in each line comes from Assumption 1.
Note that E[Z̄iZ̄

′
i] = Il1 , and using (4.20), we derive the asymptotic

distribution of S̄n and π̄1,n as follows,

√
n

[
S̄n
π̄1,n

]
∼a N

([
∆C̄
C̄

]
,

[
Ωuu + 2∆Ωuv + ∆2Ωvv Ωuv + ∆Ωvv

Ωuv + ∆Ωvv Ωvv

])
.
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Let T̄n =
√
nπ̄1,n − (Ωuv + ∆Ωvv)

(
Ωuu + 2∆Ωuv + ∆2Ωvv

)−1√
nS̄n. We

obtain

√
n

[
S̄n
T̄n

]
∼a N

([
∆C̄
A

]
,

[
Ωuu + 2∆Ωuv + ∆2Ωvv 0l1×l1

0l1×l1 B

])
,

where
A = (Ωuu + ∆Ωuv)

(
Ωuu + 2∆Ωuv + ∆2Ωvv

)−1
C̄,

and

B = Ωvv − (Ωuv + ∆Ωvv)
(
Ωuu + 2∆Ωuv + ∆2Ωvv

)−1
(Ωuv + ∆Ωvv) .

By letting S∗n =
(
Ωuu + 2∆Ωuv + ∆2Ωvv

)−1/2√
nS̄n and T ∗n = B−1/2√nT̄n,

we have[
S∗n
T ∗n

]
∼a N

([ (
Ωuu + 2∆Ωuv + ∆2Ωvv

)−1/2
∆C̄

B−1/2A

]
, I2l1×2l1

)
.

Define a random vector N ∼ N(02l1×1, I2l1), and[
S∗

T ∗

]
= N +

[ (
Ωuu + 2∆Ωuv + ∆2Ωvv

)−1/2
∆C̄

B−1/2A

]
.

Since

[
S∗n
T ∗n

]
→d

[
S∗

T ∗

]
, the asymptotic experiment for the heteroskedastic

model is as follows.
Under H0 : ∆ = 0,[

S∗

T ∗

]
∼ N

([
0(

Ωvv − ΩuvΩ
−1
uuΩuv

)−1/2
C̄

]
, I2l1

)
.

Under H1 : ∆→ +∞, the asymptotic experiment becomes[
S∗

T ∗

]
∼ N

([
Ω
−1/2
vv C̄(

Ωuu − ΩuvΩ
−1
vv Ωuv

)−1/2
ΩuvΩ

−1
vv C̄

]
, I2l1

)
.

Similarly, under H1 : ∆→ −∞,[
S∗

T ∗

]
∼ N

(
−

[
Ω
−1/2
vv C̄(

Ωuu − ΩuvΩ
−1
vv Ωuv

)−1/2
ΩuvΩ

−1
vv C̄

]
, I2l1

)
.

108



4.6. Heteroskedastic Models

The form of the asymptotic experiment for arbitrarily large deviations is
determined by the fact that when ∆→ +∞,

B−1/2A = P 1/2(∆)

(
Ωuu

∆
+ Ωuv

)(
Ωuu + 2∆Ωuv + ∆2Ωvv

∆2

)−1

C̄

→
(
Ωuu − ΩuvΩ

−1
vv Ωuv

)−1/2
ΩuvΩ

−1
vv C̄,

where

P (∆) =

(
Ωuv

∆
+ Ωvv

)−1(Ωuu + 2∆Ωuv + ∆2Ωvv

∆2

)
×
(
Ωuu − ΩuvΩ

−1
vv Ωuv

)−1
(

Ωuv

∆
+ Ωvv

)
Ω−1
vv .

Analogous results can be obtained for ∆→ −∞.
Now let us re-write the mean of the asymptotic statistics S∗ and T ∗. Let

D =
(
Ωuu − ΩuvΩ

−1
vv Ωuv

)−1/2
ΩuvΩ

−1
vv , (4.21)

and note that

D′D = Ω−1
vv Ωuv

(
Ωuu − ΩuvΩ

−1
vv Ωuv

)−1
ΩuvΩ

−1
vv .

Define[
Ωvv Ωuv

Ωuv Ωuu

]
=

[
Ωvv Ωuv

Ωuv Ωuu

]−1

=

[
Ω−1
vv + Ω−1

vv ΩuvFuΩuvΩ
−1
vv −Ω−1

vv ΩuvFu
−FuΩuvΩ

−1
vv Fu

]
=

[
Fv −Ω−1

vv ΩuvFu
−FuΩuvΩ

−1
vv Fu

]
,

where

Fu =
(
Ωuu − ΩuvΩ

−1
vv Ωuv

)−1
,

Fv =
(
Ωvv − ΩuvΩ

−1
uuΩuv

)−1
. (4.22)

Using this notation, the asymptotic experiment can be re-written as

Under H0: ∆=0,

[
S∗

T ∗

]
∼ N

([
0

F
1/2
v C̄

]
, I2l1

)
, (4.23)
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Under H1: ∆→+∞,

[
S∗

T ∗

]
∼ N

([
Ω
−1/2
vv C̄
DC̄

]
, I2l1

)
, (4.24)

Under H1: ∆→-∞,

[
S∗

T ∗

]
∼ N

([
−Ω
−1/2
vv C̄
−DC̄

]
, I2l1

)
, (4.25)

where D′D = Fv − Ω−1
vv .

4.6.1 The Optimal Rotational Invariant and Asymptotically
Similar Test In Heteroskedastic Models

Similar to the Section 4.3, we can describe the power envelope for rotational
invariant and asymptotically similar tests in the heteroskedastic case, when
alternatives are determined by arbitrarily large deviations. Let

Qn =

[
Qsn Qstn
Q′stn Qtn

]
= [S∗n, T

∗
n ]′[S∗n, T

∗
n ],

Q =

[
Qs Qst
Q′st Qt

]
= [S∗, T ∗]′[S∗, T ∗].

The (infeasible) optimal rotational invariant and asymptotically similar test
in this scenario can be established by the following proposition.

Proposition 4. In the linear IV model (4.1) and (4.2), suppose that As-
sumption 1 and Assumption 2(a),(b),(d) hold, and the heteroskedasticity is
characterized by (4.20). Consider a testing problem:

H0 : ∆ = 0, H1 : ∆→∞.

Then the test that rejects H0 when

POISH∞(Qsn, Qstn) = C̄ ′Ω−1
vv C̄Qsn + 2C̄ ′Ω−1/2

vv DC̄Qstn > κH∞(Qtn),

maximizes asymptotic power over all asymptotic size α tests as functions
of Qn, where κH∞(Qtn) is the (1 − α)th quantile of the null distribution of
POISH∞(Qsn, Qstn) conditional on Qtn.

Proof. Note that since Qn →d Q, we can first restrict our attention on the
asymptotic statistic Q and then use the Continuous Mapping Theorem to
argue the result for Qn. The random matrix Q has a non-central Wishart
distribution. Let f0

Q(qs, qst, qt) and f1
Q(qs, qst, qt) be the densities of Q under

H0 and H1 respectively:

f0
Q(qs, qst, qt) = K1exp

(
−C̄ ′FvC̄

2

)
det(q)

l1−3
2 exp

(
−qs + qt

2

)
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×(C̄ ′FvC̄)−
l1−2

4 I l1−2
2

(√
C̄ ′FvC̄

)
,

f1
Q(qs, qst, qt) = K1exp

(
−C̄ ′FvC̄

2

)
det(q)

l1−3
2 exp

(
−qs + qt

2

)
×ζ(q)−

l1−2
4 I l1−2

2

(√
ζ(q)

)
,

where

ζ(q) = C̄ ′Ω−1
vv C̄qs + 2C̄ ′Ω−1/2

vv DC̄qst + C̄ ′
(
Fv − Ω−1

vv

)
C̄qt.

Under H0, the random variable Qt has a non-central chi-square
distribution with the degree of freedom l1 and the non-centrality
parameter C̄ ′FvC̄. Under H1, the random variable Qt has a non-central
chi-square distribution with the degree of freedom l1 and the non-centrality
parameter C̄ ′

(
Fv − Ω−1

vv

)
C̄. Let f0

Qt
(qt) and f1

Qt
(qt) be the densities of Qt

under H0 and H1, respectively.

f0
Qt(qt) = K2exp

(
−C̄ ′FvC̄

2

)
q
l1−2

2
t exp

(qt
2

)
×
(
C̄ ′FvC̄qt

)− l1−2
4 I l1−2

2

(√
C̄ ′FvC̄qt

)
,

f1
Qt(qt) = K2exp

(
−C̄ ′

(
Fv − Ω−1

vv

)
C̄

2

)
q
l1−2

2
t exp

(qt
2

)
×
(
C̄ ′
(
Fv − Ω−1

vv

)
C̄qt
)− l1−2

4 I l1−2
2

(√
C̄ ′
(
Fv − Ω−1

vv

)
C̄qt

)
.

Therefore, the likelihood ratio is

LRH(q) =
f1
Q(qs, qst, qt)/f

1
Qt

(qt)

f0
Q(qs, qst, qt)/f0

Qt
(qt)

=
exp

(
− C̄′Ω−1

vv C̄
2

)
ζ(q)−

l1−2
4 I l1−2

2

(√
ζ(q)

)
(
C̄ ′
(
Fv − Ω−1

vv

)
C̄qt
)− l1−2

4 I l1−2
2

(√
C̄ ′
(
Fv − Ω−1

vv

)
C̄qt

)

=
2−

l1−2
2 exp

(
− C̄′Ω−1

vv C̄
2

)∑∞
j=0

(ζ(q)/4)j

j!Γ(l1/2+j)(
C̄ ′
(
Fv − Ω−1

vv

)
C̄qt
)− l1−2

4 I l1−2
2

(√
C̄ ′
(
Fv − Ω−1

vv

)
C̄qt

) .
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For a given qt, the denominator of LRH(q) is fixed and the numerator is
an increasing function of ζ(q). Therefore we can construct the conditional
test based on ζ(q) (we can further drop the term C̄ ′

(
Fv − Ω−1

vv

)
C̄qt, which

is constant after fixing qt). The resulting test statistic is

POISH∞(Qsn, Qstn) = C̄ ′Ω−1
vv C̄Qsn + 2C̄ ′Ω−1/2

vv DC̄Qstn,

and H0 is rejected when POISH∞(Qsn, Qstn) > κH∞(Qt), where κH∞(Qt) is the
(1 − α)th quantile of the distribution of POISH∞(Qsn, Qstn) conditional on
Qt and under H0. Exactly the same result can be obtained for H1 : ∆ →
−∞.

Compared with Proposition 1, we can see that in the homoskedastic case,
the optimal test is a function of Qn and depends only on the parameter ρ
that measures the degree of endogeneity. In the heteroskedastic case, the
function of Qn depends on C̄, Ωvv and Fv. The expressions for Ωvv and Fv
can be found in (4.20) and (4.22). While the matrix Ωvv can be estimated
consistently, Fv and C̄ cannot.

4.6.2 The Generalized Likelihood Ratio (GLR) Statistic In
Heteroskedastic Models

In this section, we consider the generalized likelihood ratio (GLR) statistic
under heteroskedasticity in the Weak-IV scenario and when alternatives are
determined by arbitrarily large deviations from the null. We find that the
GLR statistic degenerates to AR statistic in this case. Consider the testing
problem H0 : ∆ = 0 against H1 : ∆ → +∞, based on the asymptotic
experiments (4.23) and (4.24), the GLR statistic in heteroskedastic models
can be written as

GLRn = S∗′n S
∗
n

− minC̄,Ωuu,Ωuv [(S
∗
n − µS)′(S∗n − µS) + (T ∗n − µT )′(T ∗n − µT )],

s.t. µS = Ω−1/2
vv C̄, µT = DC̄. (4.26)

Recall that Ωvv can be treated as known (since it can be estimated
consistently), and the matrix D defined in (4.21) depends on Ωuu and Ωuv,
which are unknown. The next proposition states that the GLR statistic
under heteroskedasticity reduces to the AR statistic in the Weak-IV
scenario and when alternatives are determined by arbitrarily large
deviations from the null.
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Proposition 5. In the linear IV model (4.1) and (4.2), suppose that As-
sumption 1 and Assumption 2(a),(b),(d) hold, and the heteroskedasticity is
characterized by (4.20). Consider a testing problem

H0 : ∆ = 0, H1 : ∆→ +∞.

Then the GLR statistic defined by (4.26) equals to the AR statistic S∗′n S
∗
n.

Proof. Since for any value s∗ of S∗n, we can always set the minimizer C̄ =

Ω
1/2
vv s∗, it suffices to show that for an arbitrary value27 s∗ of S∗n and t∗ of

T ∗n , there exist some Ω∗uu and Ω∗uv such that t∗ = Rs∗ and

[
Ω∗uu Ω∗uv
Ω∗uv Ωvv

]
is

positive semi-definite (recall that Ωvv is known), where

R = DΩ1/2
vv =

(
Ω∗uu − Ω∗uvΩ

−1
vv Ω∗uv

)−1/2
Ω∗uvΩ

−1/2
vv . (4.27)

Let t∗ =
(
t∗1, ..., t

∗
l1

)′
and R = (R1, ..., Rl1)′. Note that t∗ = Rs∗ is equivalent

to t∗k = R′ks
∗ for k = 1, ..., l1. Therefore, R is determined by

R1 = (t∗1/s
∗
1, 0, ..., 0)′ , R2 = (0, t∗2/s

∗
2, ..., 0)′ , ..., R1 =

(
0, ..., t∗l1/s

∗
l1

)′
,

and
R = diag[t∗1/s

∗
1, t
∗
2/s
∗
2, ..., t

∗
l1/s

∗
l1 ]. (4.28)

The next step is to show that the R satisfying (4.28) can be constructed

using some Ω∗uu and Ω∗uv such that the resulting matrix

[
Ω∗uu Ω∗uv
Ω∗uv Ωvv

]
is

positive semi-definite. By (4.27) and D′D = Fv − Ω−1
vv , we have

R′R = Ω1/2
vv FvΩ

1/2
vv − I

= Ω1/2
vv

(
Ω∗uu − Ω∗uvΩ

−1
vv Ω∗uv

)−1
Ω1/2
vv − I.

Rearranging the terms leads to

Ω∗uu = Ω∗uvΩ
−1
vv Ω∗uv + Ω1/2

vv

(
R′R+ I

)−1
Ω1/2
vv . (4.29)

This means that for an arbitrary Ω∗uv ∈ Rl1 × Rl1 , we can construct an Ω∗uu
as in (4.29). By construction, the resulting Ω∗uv and Ω∗uu satisfy t∗ = Rs∗.

27except for s∗ = 0. Note that we have limn→+∞ Pr(S∗n = 0) = 0.
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To see that

[
Ω∗uu Ω∗uv
Ω∗uv Ωvv

]
is positive semi-definite, take an arbitrary vector

c = (c′1, c
′
2)′, where cj ∈ Rl1 for j = 1, 2, and c 6= 0:

[
c′1 c′2

] [ Ω∗uu Ω∗uv
Ω∗uv Ωvv

] [
c1

c2

]
= c′1Ω∗uvΩ

−1
vv Ω∗uvc1 + 2c′1Ω∗uvc2 + c′2Ωvvc2 + c′1Ω1/2

vv

(
R′R+ I

)−1
Ω1/2
vv c1

=
(

Ω−1/2
vv Ω∗uvc1 + Ω1/2

vv c2

)′ (
Ω−1/2
vv Ω∗uvc1 + Ω1/2

vv c2

)
+ c′1Ω1/2

vv

(
R′R+ I

)−1
Ω1/2
vv c1 ≥ 0.

The first equality comes from (4.29). The last inequality comes from the

facts that the first term on the right hand side is ||Ω−1/2
vv Ω∗uvc1 + Ω

1/2
vv c2||2

and R′R+ I is positive semi-definite.

The GLR statistic is calculated by maximizing the likelihood ratio with
respect to nuisance parameters unrestricted by H0 or H1, subject to the
restrictions imposed by relationships between the means of the asymptotic
experiment. Under the null, relationships between the asymptotic means of
S∗n and T ∗n do not provide any restriction on the nuisance parameters.
Therefore, after the maximization, the likelihood under the null becomes
the AR statistic. Under the alternative hypothesis H1 : ∆ → +∞, the
asymptotic means of S∗n and T ∗n must satisfy certain relationships, which
are very different in homoskedastic and heteroskedastic models. In the
homoskedastic case, under H1 the asymptotic means of S∗n and T ∗n are
proportional (related by a scaling factor ρ√

1−ρ2
, see (4.8)). This

proportional restriction determines the CLR statistic. In the
heteroskedastic case, relationships between the asymptotic means of S∗n
and T ∗n are characterized by the matrix R in (4.27) which depends on the
unknown matrices Ωuu and Ωuv. However, as shown in the proof of
Proposition 5, the structure of R is general enough, so that the unknown
matrices Ωuu and Ωuv can produce any relationship between the
asymptotic means of S∗n and T ∗n . In other words, relationships between the
asymptotic means of S∗n and T ∗n are non-restrictive. As a result, in the
heteroskedastic case, the maximized likelihood ratio only contains the term
obtained from the likelihood under the null, which is the AR statistic.
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4.7 Concluding Remarks

In this chapter, we consider efficient inference for the coefficient on the
endogenous variable in linear regression models with weak instruments.
We focus on the power of tests when alternatives are determined by
arbitrarily large deviations from the null. We derive the power envelope for
such alternatives in the Weak-IV scenario. Then we compare the power
properties of popular Weak-IV robust tests, focusing on the AR and CLR
tests. We find that their relative performance depends on the degree of
endogeniety in the model. This is different from Andrews, Moreira and
Stock (2006), which found that CLR numerically dominates AR when the
weighted average power is concerned. In addition, we propose the CLM
test, which is asymptotically efficient in the Strong-IV scenario, robust to
Weak-IV, and exhibits the same power as the AR test for arbitrarily large
deviations from the null. We also study the heteroskedastic case, and find
that the generalized likelihood ratio statistic under heteroskedasticity
reduces to the AR statistic in the Weak-IV scenario and when alternatives
are determined by arbitrarily large deviations from the null.

Our analysis can also be extended to a more general minimum distance
estimation (MDE) framework (see Newey and McFadden (1994) for a
treatment of classical minimum distance estimation). Econometric models
such as censored regression with endogenous regressors28 and DSGE
models29 fit into the MDE framework. Magnusson (2010) described the
AR, KLM and CLR tests in the context of MDE, however, the question of
efficiency remains open. In the MDE framework, one can derive the
asymptotic experiments analogous to those in this chapter. Based on that,
one can compute the power envelope and compare the power properties of
weak-IV robust tests. Moreover, the CLM test proposed in this chapter
can also be used in the MDE framework.

28See Powell (1984, 1986) for a semi-parametric quantile regression estimator for the
reduced-form parameters. Estimators for the structural parameters can be constructed
following the approach of Amemiya (1978).

29See for example, Hnatkovska, Marmer and Tang (2012).
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Appendix A

Appendix for Chapter 2

A.1 Proofs for Section 2.3

Proof of Lemma 1.
(i) Suppose to the contrary, there are y1, y2 ∈ Am, and r(y1) = r(y2). By

Am = qm(Bm), there are v1, v2 ∈ Bm such that y1 = qm(v1), y2 = qm(v2).
Then by Definition 1(i) and r(y1) = r(y2), we have

v1 = r(qm(v1)) = r(y1) = r(y2) = r(qm(v2)) = v2.

(ii) For an arbitrary y ∈ Ȳ, by Definition 1(ii), we either have y ∈
qm(Bm) = Am or y = qm(ṽ), where ṽ = limn→∞ vn, for some sequence
vn ∈ Bm. If it is the first case, the proof is done. If it is the second case,
then by continuity of qm(·), y = limn→∞ yn for yn = qm(vn) ∈ Am. That is,
y ∈ Ām.

(iii) Suppose to the contrary, there exists certain y0 ∈ A1 ∩ A2 6= ∅.
That is, y0 ∈ q1(B1) and y0 ∈ q2(B2). Also, we have r(y0) = v1 ∈ B1 and
r(y0) = v2 ∈ B2, which implies v1 = v2 ∈ B1 ∩ B2. But this contradicts
Definition 1(iii).

(iv) By (C1), there exists a unique function q(v) such that for any (y, v) ∈
Ȳ× int(V) satisfying r (y) = v, y = q(v). We need to show that q(v)
is twice continuously differentiable on int(V). By Assumptions D1 to D3
and applying Implicit Function Theorem (see, for example, Theorem 9.4 in
Loomis and Sternberg (1968))) on an arbitrary point (y0, v0) ∈ Ȳ× int(V),
there are neighbourhoods A of y0 and B of v0 on which r(y) = v uniquely
defines y as a function of v. That is, there is a function ξ : B → A such
that r(ξ(v)) = v for all v ∈ B; for each v ∈ B, ξ(v) is the unique solution
to r(y) = v lying in A, and ξ(v) is twice continuously differentiable on B.
Because (y0, v0) is arbitrary and q(v) is the only solution to r(y) = v by (C1),
we must have q(v) = ξ(v) for all v ∈ int(V). Thus q(v) is twice continuously
differentiable on a neighbourhood of every v ∈ int(V). This immediately
leads to the desired result.

(v) When the model is in (C2) or (C3), there exists some vM ∈ (V)
such that r(y1) = r(y2) = vM for some y1 6= y2. Suppose M = 1, there is a
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function q : int(V) → Ȳ such that y = q(v) for all (y, v) ∈ Ȳ× int(V)
satisfying r(y) = v. But this means y1 = q(vM ) and y2 = q(vM ), which can
not happen. Q.E.D.

Proof of Lemma 2.
Let ξ ∼ U [0, 1] independent of (X,U). Given X = x. We have

Y =

M∑
m=1

1

{
m−1∑
k=0

λk(x, U) ≤ ξ <
m∑
k=0

λk(x, U)

}
qm(U + g(x)),

where we define λ0(x, u) = 0, and qm(v) = c for some constant, for any v =
g(x) + u /∈ Bm. This does not affect the generation of Y because if v /∈ Bm,
we must have m /∈ M(v) and thus λm(x, u) = 0 for all (x, u). Because Ash
are mutually exclusive across s and h, for any y ∈ ∪Mm=1 ∪l∈Lm Aml, there is
a unique (s, h) such that y ∈ Ash. For any open set Q ⊂ Ash, observe that

Pr (Y ∈ Q|X = x)

= Pr

(
M∑
m=1

1

{
m−1∑
k=0

λk(x, U) ≤ ξ <
m∑
k=0

λk(x, U)

}
qm(U + g(x)) ∈ Q|X = x

)

= Pr

(
{qs(U + g(x)) ∈ Q} ∩

{
s−1∑
k=0

λk(x, u) ≤ ξ <
s∑

k=0

λk(x, u)

})

=

∫ ∫
1 {qs(u+ g(x)) ∈ Q} 1

{
s−1∑
k=0

λk(x, u) ≤ υ <
s∑

k=0

λk(x, u)

}
×fU,ξ(u, υ)dudυ

=

∫
u∈r(Q)−g(x)

[∫
1

{
s−1∑
k=0

λk(x, u) ≤ υ <
s∑

k=0

λk(x, u)

}
fξ|U (υ|u)dυ

]
×fU (u)du

=

∫
u∈r(Q)−g(x)

λs(x, u)fU (u)du

=

∫
y∈Q

λs(x, r(y)− g(x))fU (r(y)− g(x))|J(y)|dy.

The second equality comes from the fact that qm(u+ g(x)) /∈ Q for any
m 6= s as well as the independence between (U, ξ) andX. The fourth equality
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uses the fact that q−1(·) = r(·) is one to one over As (Definition 1(i)), and
thus over Q ⊂ Ash. The fifth equality comes from the independence between
U and ξ as well as the uniform distribution of ξ. The last equality comes
from the fact that r(y)− g(x) is one to one in y within As (and thus within
Q), λs(M(Ash), x, u)fU (u) is non-negative, and Theorem 17.2 of Billingsley
(1986) p229.

Therefore, for any open set O ⊂ ∪Mm=1 ∪l∈Lm Aml,

Pr (Y ∈ O|X = x)

=

M∑
m=1

∑
l∈Lm

∫
y∈O∩Aml

λm(x, r(y)− g(x))fU (r(y)− g(x))|J(y)|dy

=

∫
y∈O

M∑
m=1

∑
l∈Lm

1{y ∈ Aml}λm(x, r(y)− g(x))fU (r(y)− g(x))|J(y)|dy.

The desired result follows. Q.E.D.

Proof of Proposition 1.
If the model is in (C1), that is, r(·) is one to one, then by Assumptions

D2 to D4, we have

fY |X(y|x) = fU (r(y)− g(x))|J(y)| for x ∈ X , y ∈ int(Y(x)),

and thus (i) and (ii) follows from Assumption D2 and D4.
If the model is in (C2), given any (y, x), we have a unique s∗ such that

λs∗(x, r(y)− g(x)) = 1 and λs(x, r(y)− g(x)) = 0 for all s 6= s∗. (Note that
s∗ may depend on y and x.)

(i) For any x ∈ X and y ∈
(
∪l∈Ls∗As∗l)

)
∩ int(Y(x)), we have

λs∗(x, r(y)− g(x)) = 1, (A.1)

where s∗ may depend on (y, x).
Consider any sequence {yn} such that yn ∈ int(Y(x)) and yn → y, we

must have
λs∗(x, r(yn)− g(x)) = 1,

for sufficiently large n, where s∗ is the same as the one in (A.1). Suppose it is
not. Then for any N , there exists an n ≥ N such that λs∗(x, r(yn)−g(x)) =
0. Choose large enough N such that yn ∈ Bε(y) ⊂ As∗ for arbitrarily small
ε, where Bε(y) is an open ball centred in y and with radius ε. Together with
Lemma 2, we have fY |X(yn|x) = 0, which contradicts with yn ∈ int(Y(x)).
Therefore, by Lemma 2, we have
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fY |X(y|x) = fU (r(y)− g(x))|J(y)| and

fY |X(yn|x) = fU (r(yn)− g(x))|J(yn)|.

By Assumptions D2 and D4, the continuity statement in Proposition 1(i)
holds for given x ∈ X and y ∈

(
∪l∈Ls∗As∗l

)
∩ int(Y(x)).

Now suppose y ∈
(
∩k∈KĀs∗lk

)
∩ int(Y(x)), where K ⊂ Ls∗ and #(K) ≥

2. Let O be an open set such that y ∈ O and O ∩ As∗lk 6= ∅ for all k ∈ K.
Then for any y′ ∈ O∩As∗lk∩ int(Y(x)), applying the result of last paragraph
leads to

fY |X(y′|x) = fU (r(y′)− g(x))|J(y′)|.

Consider any sequence {y′n} such that y′n ∈ O∩As∗lk∩ int(Y(x)) and y′n → y,
Assumptions D2 and D4 lead to

lim
O∩As∗lk∩ int(Y(x)), y′n→y′

fY |X(y′n|x) = fU (r(y′)− g(x))|J(y′)|.

Thus the continuity statement in Proposition 1(i) holds for any
y ∈

(
∩k∈KĀs∗lk

)
∩ int(Y(x)) and some K ⊂ Ls∗ with #(K) ≥ 2.

Using similar arguments, we can show that the continuity statement in
Proposition 1(i) holds for any y ∈

(
∩s∈SĀs

)
∩ int(Y(x)) and some S ⊂

{l, ...,M} with #(S) ≥ 2.
Note that any y ∈ int(Y(x)) must belong to one of the three sets:

∪l∈Ls∗As∗l, ∩k∈KĀs∗lk and ∩s∈SĀs. Thus the desired result is proven.
(ii) For any x ∈ X and y ∈

(
∪l∈Ls∗As∗l)

)
∩ int(Y(x)), we have

λs∗(x, r(y)− g(x)) = 1. (A.2)

Consider any sequence {yn, xn} such that yn ∈ int(Y(xn)) and (yn, xn) →
(y, x), we must have

λs∗(xn, r(yn)− g(xn)) = 1,

for sufficiently large n, where s∗ is the same as the one in (A.2). Suppose
it is not. Then for any N , there exists an n ≥ N such that λs∗(xn, r(yn)−
g(xn)) = 0. For (yn, xn) arbitrarily close to (y, x), yn ∈ Bε(y) ⊂ As∗ for
arbitrarily small ε. By Lemma 2, fY |X(yn|xn) = 0, which contradicts with
yn ∈ int(Y(xn)).

Then by Lemma 2, we have
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fY |X(y|x) = fU (r(y)− g(x))|J(y)| and

fY |X(yn|xn) = fU (r(yn)− g(xn))|J(yn)|.

Thus the continuity statement in Proposition 1(ii) follows from Assumptions
D2 and D4.

Arguments similar to part (i) applies for y ∈
(
∩k∈KĀs∗lk

)
∩ int(Y(x)),

K ⊂ Ls∗ with #(K) ≥ 2, and for y ∈
(
∩s∈SĀs

)
∩ int(Y(x)), S ⊂ {l, ...,M}

with #(S) ≥ 2. This completes the proof. Q.E.D.

Proof of Proposition 2. (i) Suppose Ash and Ash′ satisfy Assumption
D6 (i). For any y ∈ Ash and y′ ∈ Ash′ , Lemma 2 gives

fY |X(y|x) = fU (r(y)− g(x))|J(y)|λs(x, r(y)− g(x)) and

fY |X(y′|x) = fU (r(y′)− g(x))|J(y′)|λs(x, r(y′)− g(x)).

Let yd ∈ Āsh ∩ Āsh′ and x ∈ XD. Observe that

lim
y∈Ash,y→yd

fY |X(y|x) = fU (r(yd)− g(x))|J(yd)|

lim
y∈Ash,y→yd

λs(x, r(y)− g(x)),

lim
y∈Ash′ ,y′→yd

fY |X(y′|x) = fU (r(yd)− g(x))|J(yd)|

lim
y∈Ash′ ,y′→yd

λs(x, r(y
′)− g(x)). (A.3)

Since

lim
y∈Ash,y→yd

λs(x, r(y)− g(x)) 6= lim
y∈Ash′ ,y′→yd

λs(x, r(y
′)− g(x)),

and both are non-zero by Assumption D6(ii). Together with fU (r(yd) −
g(x)) > η > 0 by the fact that yd ∈ Ȳ and thus r(yd) − g(x) ∈ U , and
|J(y′d)| > ς by Assumption D5(i), we have limy∈Ash,y→yd fY |X(y|x) 6= 0 and
limy∈Ash′ ,y′→yd fY |X(y′|x) 6= 0 as well as

∣∣∣∣ lim
y∈Ash,y→yd

fY |X(y|x)− lim
y∈Ash′ ,y′→yd

f(y′|x)

∣∣∣∣
= fU (r(yd)− g(x))|J(yd)|

×
∣∣∣∣ lim
y∈Ash,y→yd

λs(x, r(y)− g(x))− lim
y∈Ash′ ,y′→yd

λs(x, r(y
′)− g(x))

∣∣∣∣ > 0.
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Therefore, fY |X(y|x) has a jump at yd for any x ∈ XD.
(ii) immediately follows from (i). Q.E.D.

To prove Corollary 1, let us first state Lemma 3 as follows.

Lemma 3. Suppose that Assumptions D5(ii) and (iii) hold and M > 1.
Then

(i) For any m ∈ {1, ...,M}, there exists a k ∈ {1, ...,M} and k 6= m,
such that Bm ∩Bk 6= ∅.

(ii) For any m, there exists an k 6= m such that r(Am) ∩ r(Ak) 6= ∅.

Proof of Lemma 3.
(i). It suffices to show that for every m ∈ {1, ...,M}, there exists some

v ∈ Bm such that r(y) = v holds for more than one y ∈ Ȳ. Suppose it is
not true. Then we have a Bm such that r(y) = v has a unique solution in y
for all v ∈ Bm. Consider an l ∈ {j 6= m : B̄m ∩ B̄j 6= ∅} and let v0 be an
arbitrary point v0 ∈ B̄m ∩ B̄l. By assumption, Bm ∩ Bl = ∅ for all l 6= m.
Thus v0 ∈ B̄m\Bm. For any such l, we have two cases:

Case 1. limv∈Bm,v→v0 qm(v)− limv∈Bl,v→v0 ql(v) = 0 for all v0 ∈ B̄m∩ B̄l.
In this case, we can combine Bm and Bl to reduce the number M , this

contradicts with the Definition 1.
In particular, let B′m = int

(
Bm ∪Bl ∪

(
B̄m ∩ B̄l

))
and

q′m(v) =


qm(v), v ∈ Bm,
ql(v), v ∈ Bl,
limv∈Bm,v→v0 qm(v), v0 ∈ B̄m ∩ B̄l.

By Assumption D5(ii), we know that 5r(y0) is invertible, where
y0 = limv∈Bm,v→v0 qm(v) = limv∈Bl,v→v0 ql(v). Then we can apply the
Implicit Function Theorem to obtain that there are neighbourhoods A of y0

and B of v0, and a unique function ς : B → A such that ς(v0) = y0 and for
each v ∈ B, ς(v) is the unique solution to r(y) = v lying in A, r(ς(v)) = v
for v ∈ B, and ς(v) is twice continuously differentiable at x0. Therefore,
q′m(v) must coincide with ς(v) for v ∈ B. Since v0 is an arbitrary point in
B̄m ∩ B̄l, q

′
m(v) is twice continuously differentiable on B′m.

Case 2. |limv∈Bm,v→v0 qm(v)− limv∈Bl,v→x0 ql(v)| = δ > 0, for some
v0 ∈ B̄m ∩ B̄l.

In this case, by Assumption D2, r(y) is continuous on Ȳ. Hence
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r(ym) = r(yl) = v0,

where ym = lim
v→v0,v∈Bm

qm(x), yl = lim
v→v0,v∈Bl

ql(x).

There must be an l satisfying the following: there is no l′ such that
every component of yl′ − ym has the same sign as yl − ym and
|yl′ − ym| < |yl − ym|. We focus on such an l. By Assumption D5(iii),
derivative 5r(yl) is invertible. By applying the Implicit Function
Theorem, for any neighbourhood A of yl, there is a neighbourhood B of v0

and a function ξ : B → A such that ξ(v0) = yl, r(ξ(v)) = v for v ∈ B, and
ξ(x) is continuous at v0. Therefore, for any ε, there exists an η such that
|v − v0| < η =⇒ |ξ(v)− yl| < ε. Then for any ε, all v′ ∈ Bm ∩ B(v0, η) ∩ B
satisfy r(ξ(v′)) = v′ and |ξ(v′)− yl| < ε. Thus |ξ(v′)− ym| > δ − ε and
r(ξ(v′)) = v′ for all v′ ∈ Bm ∩ B(v0, η) ∩ B. On the other hand, by
continuity of qm, for any ε′, there exists a η′ such that
|v − v0| < η′ =⇒ |qm(v)− ym| < ε′. Therefore, for any ε′, all
v′′ ∈ Bm ∩ B(v0, η

′) satisfy r(qm(v′′)) = v′′ and |qm(v′′)− ym| < ε′. By
choosing ε and ε′ sufficiently small, we have ξ(v) 6= qm(v) and
r(ξ(v)) = r(qm(v)) = v, for all v ∈ Bm ∩B(v0, η ∧ η′) ∩B. This contradicts
with the assumption that r(y) = v has a unique solution in y for all
v ∈ Bm.

(ii) Immediately follows from (i) by letting Am = qm(Bm). Q.E.D.

Proof of Corollary 1.
By Assumption D7(i), there exists an s ∈ {1, 2, ...,M} such that

Pr (g(X) + U ∈ r(As) ∩ S) > 0.
Let As1 = {y ∈ As : r(y) ∈ S}. We have (M(r(As1))) = {s}. Also By

Lemma 3 (ii), there exists some m 6= s such that r(As) ∩ r(Am) 6= ∅.
Let As2 = {y ∈ As : r(y) ∈ r(Am)}. We have {s,m} ⊂ M(r(As2)). Thus
M(r(As1)) 6= M(r(As2)). Assuming Ās1 ∩ Ās2 6= ∅ does not lose any
generality. Q.E.D.

Proof of Corollary 2.
Under Assumptions D8(i) and D7(ii), there exists some k ∈ Lm and

C0 ⊂ Amk such that for all x ∈ XD,

0 < φm(M(r(C0)), x) = φm(M(r(Amk)), x) < 1.

By Assumption D7(i), there exists some j ∈ Lm such that #(M(r(Amj)))
= 1. Thus φm(M(r(Amj)), x) = 1. There are two cases:
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Case 1. Āmj ∩ Āmk 6= ∅, the rest of proof follows that of Proposition 2,
and XD1 = XD.

Case 2. Āmj ∩ Āmk = ∅, that means for all h such that Āmh∩ Āmk 6= ∅,
#(M(r(Amh))) > 1:

Case 2.1. φm(M(r(Amh)), x) 6= φm(M(r(Amk)), x) for some h such
that Āmh ∩ Āmk 6= ∅, and for a subset XD1 ⊂ XD. Then the rest of proof
follows that of Proposition 2.

Case 2.2. φm(M(r(Amh)), x) = φm(M(r(Amk)), x) for all h such
that Āmh ∩ Āmk 6= ∅, and for almost all x. Then we must have 0 <
φm(M(r(Amh)), x) < 1, for all h such that Āmh ∩ Āmk 6= ∅. Consequently,
we can replace k with an h such that Āmh ∩ Āmk 6= ∅, and repeat the
procedure from the beginning of the proof. Such a procedure continues
until an end in either Case 1 or Case 2.1, because #(Lm) is finite. Q.E.D.

Proof of Corollary 3.
By Assumption D7(i), without loss of generality, assume A1∩S 6= ∅ and

A11 = {y ∈ A1 :M(r(y)) = {1}}. Note that we also have A1 = ∪l∈L1Ā1l.
If the model is in (C3), by Corollary 1, there exists some A12 such that

M(r(A12)) 6= M(r(A11)). Since M(r(A12)) includes equilibrium 1 by
definition, we must have #(M(r(A12))) > 1. Suppose Ā11 ∩ Ā12 6= ∅.
(This does not reduce generality since Category (C3) and Assumption
D7(i) imply that there exist A1j and A1k satisfying Ā1j ∩ Ā1k 6= ∅ and
M(r(A1j)) = 1, M(r(A1k)) > 1). Given an arbitrary x, for any
y ∈ Ā11 ∩ Ā12, by Lemma 2 we have

lim
y′→y,y′∈A11

fY |X(y′|x) = fU (r(y)− g(x))|J(y)|φ1(M(r(A11)), x)

= fU (r(y)− g(x))|J(y)| and

lim
y′→y,y′∈A12

fY |X(y′|x) = fU (r(y)− g(x))|J(y)|φ1(M(r(A12)), x),

where φ1(M(r(A11)), x) = 1 since M(r(A11)) = {1}. By Assumption D9,
we have the following cases:

Case 1. There is an XD2 ⊂ X with Pr(X ∈ XD2) > 0 such that 0 <
φ1(M(r(A12)), x) < 1 for all x ∈ XD2 .

By Assumption D5(i) we have∣∣∣∣ lim
y′→y,y′∈A11

fY |X(y′|x)− lim
y′→y,y′∈A21

fY (y′|x)

∣∣∣∣
= fU (r(y)− g(x))|J(y)|(1− φ1(M(r(A12)), x))
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≥ ηδς > 0.

That is, fY |X(y|x) has a jump at any y ∈ Ā11 ∩ Ā12 for some x ∈ XD2 .
Furthermore, D5(i) and D9(ii) makes sure that limy′→y,y′∈A11 fY |X(y′|x) 6= 0
and limy′→y,y′∈A12 fY |X(y′|x) 6= 0. The desired result is obtained.

Case 2.1. If φ1(M(r(A12)), x) = 1 for almost all x.
Consider another A1j such that Ā11∩ Ā1j 6= ∅, by the same argument as

in Case 1, fY |X(y|x) has a jump at y ∈ Ā11∩Ā1j , if there exists an XD2 such
that 0 < φ1(M(r(A1j)), x) < 1 for x ∈ XD2 . Repeating this step yields the
desired result if there exists some l ∈ L1 such that 0 < φ1(M(r(A1l)), x) < 1
for x ∈ XD2 .

Case 2.2. If φ1(M(r(A1l)), x) = 1 for almost all x and all l ∈ L1.
Consider some other m 6= 1 with r(Am)∩S 6= ∅. By repeating the steps

in Case 1 and Case 2.1, the desired result is obtained if there exists some
m such that 0 < φm(M(r(Aml)), x) < 1, and for some l ∈ Lm and for all
x ∈ XD2 .

Case 2.3. If φm(M(r(Aml)), x) = 1 for almost all x, all l ∈ Lm and all
m with r(Am) ∩ S 6= ∅.

Let T = {t : r(At)∩S 6= ∅}. Case 2.3 means that for almost all x, there
exists a unique t ∈ T (t may depend on x) such that φt(M(r(Atl)), x) = 1,
all l ∈ Lt and φv(M(r(Avk)), x) = 0 for any v /∈ T and any k ∈ Lv. By
Assumption D9(i), for any (x, u), g(x) + u ∈ r(At) for some t ∈ T . Thus
by Assumotion D7(ii), the equilibrium selection rule is degenerate (always
choose equilibrium t with probability 1) and definition of (C3) is violated.
Hence Case 2.3 cannot happen when there are multiple equilibria. Q.E.D.

Proof of Proposition 3.
(i) By Assumption D10, given any m,

λm(x, u) = ψm(g(x) + u) = ψm(r(y)) = 1 or 0.

For any y ∈ ∪Mm=1 ∪l∈Lm Aml, by Lemma 2 and Proposition 1(i), we have
for all x ∈ X ,

fY |X(y|x) = fU (r(y)− g(x)) |J(y)|ψm(r(y)),

where m and l satisfy y ∈ Aml. Observe that

fY (y) =

∫
X
fU (r(y)− g(x)) |J(y)|ψm(r(y))dFX(x)

= ψm(r(y))|J(y)|
∫
X
fU (r(y)− g(x)) dFX(x)
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=

{
|J(y)|

∫
X fU (r(y)− g(x)) dFX(x) if ψm(r(y)) = 1

0 if ψm(r(y)) = 0
,

which is continuous as long as y ∈ int(Y(x)) by Assumptions D2 and D4.
Moreover, the density is

|J(y)|
∫
X
fU (r(y)− g(x)) dFX(x).

Since the choice of m is arbitrary and Ȳ = y ∈ ∪Mm=1 ∪l∈Lm Āml, the
desired result is proven.

(ii) Given the assumptions, the conclusion of Proposition 2(i) holds.
From By Assumption D5 and D7, there is a jump yd ∈ Āmh ∩ Āmk for
x ∈ XD, where #(M(r(Amh))) = 1 and #(M(r(Amh))) > 1. Thus the
jump size

lim
y∈Amh,y→yd

fY |X(y|x)− lim
y∈Amk,y→yd

fY |X(y|x)

at an arbitrary x ∈ XD is

fU (r(yd)− g(x)) |J(yd)|
[
1− lim

y∈Amk,y→yd
φm(M(r(Amk)), x)

]
= δ > 0.

Therefore, the difference in the unconditional density can be written as

lim
y∈Amh,y→yd

fY (y)− lim
y∈Amk,y→yd

fY (y)

=

∫
XD

[
lim

y∈Amh,y→yd
fY |X(y|x)− lim

y∈Amk,y→yd
fY |X(y|x)

]
f(x)dx

> δ Pr (X ∈ XD) > 0.

Also, since limy∈Amh,y→yd fY |X(y|x) 6= 0 for x ∈ XD, we have

lim
y∈Amh,y→yd

fY (y) =

∫
X
fY |X(y|x) ≥

∫
XD

fY |X(y|x) 6= 0.

The same is for limy∈Amk,y→yd fY (y).Q.E.D.

Proof of Proposition 4.
Let UD denote the collection of jump locations of fU (u). If the model

has a unique equilibrium, by Assumption D10, given any m, λm(x, u) =
ψm(g(x) + u) = ψm(r(y)) = 1 or 0.

For an arbitrary y ∈ ∪Mm=1 ∪l∈Lm Aml, by Lemma 2,

fY |X(y|x) = fU (r(y)− g(x)) |J(y)|ψm(r(y)),
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for all x ∈ X\XJL(y), where XJL(y) = {x : r(y) − g(x) ∈ UD}, m and l
satisfy y ∈ Aml. Since Pr(U ∈ U) = 0 and Assumption D11 holds, Pr(X ∈
XJL(y)) = 0, for all y. Hence for any arbitrary y ∈ ∪Mm=1 ∪l∈Lm Aml,

fY (y) =

∫
X\XJL(y)

fU (r(y)− g(x)) |J(y)|ψm(r(y))dFX(x)

+

∫
XJL(y)

fY |X(y|x)dFX(x)

= ψm(r(y))|J(y)|
∫
X\XJL(y)

fU (r(y)− g(x)) dFX(x)

=

{
|J(y)|

∫
X\XJL(y) fU (r(y)− g(x)) dFX(x) if ψm(r(y)) = 1

0 if ψm(r(y)) = 0
,

which is continuous at as long as y ∈ int(Y(x)) by Assumptions D2 and D4.
Moreover, the density is

|J(y)|
∫
X
fU (r(y)− g(x)) dFX(x).

Since the choice of m is arbitrary and Ȳ = y ∈ ∪Mm=1 ∪l∈Lm Āml, the desired
result follows. Q.E.D.

A.2 Conditions in Section 2.4

This section spells out five conditions (SL1 to SL5) sufficient for Proposition
5 and Proposition 6 in Section 2.4. Note that Conditions SL1 to SL4 are
adapted from Chernozhukov et al. (2013).

To state those conditions, let us first define the population version of the
aforementioned maximizing set Ŷκ2 . Let

Yκ2 = {y ∈ Y : P−j (y)/Pj(y) > κ2, P
+
j (y)/Pj(y) > κ2, all j ∈ J },

where for j ∈ J ,

P−j (y) = Pr (yj − wj ≤ Yi,j < yj |Yi,−j = y−j) fY−j (y−j) ,

P+
j (y) = Pr (yj ≤ Yi,j < yj + wj |Yi,−j = y−j) fY−j (y−j) ,

Pj(y) = P+
j (y) + P−j (y), wj = (sup

y
Yj − inf

y
Yj)/H.
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Conditions SL1 and SL2 are imposed on the kernel function. For j ∈ J ,
recall that ∆Kn,j be a class of measurable functions,

∆Kn,j =


√
pnh

J−1
n ϕ

(j)
n (·, y)

σj,n(y)
: y ∈ Yκ2

 , (A.4)

where

ϕ(j)
n (t, y) =

1

pnh
J−1
n

[
K+
j

(
tj−yj
pn

,
t−j−y−j

hn

)
−K−j

(
tj−yj
pn

,
t−j−y−j

hn

) ]
.

(A.5)

Recall that the covering number N (∆Kn,j , L2(Q), bn,jε) is defined as the
minimum number of closed L2 balls of radius bn,jε to cover ∆Kn,j .

Condition SL1. (i) ∆Kn,j is uniformly bounded from above by a
number bn,j , and the covering number of ∆Kn,j satisfies

sup
Q
N (∆Kn,j , L2(Q), bn,jε) ≤ (aj/ε)

vj , for all 0 < ε < 1, (A.6)

for some aj > e and vj ≥ 1, where the supermum is taken over all finitely
discrete probability measures Q.

(ii) For any g ∈ ∆Kn,j , there exists a constant σn,j such that
E
[
g(Y1)2

]
≤ σ2

n,j ≤ b2n,j .

Condition SL2. There exist positive constants c2 and C2 such that for
all j ∈ J ,

c2 ≤ inf
y∈Yκ2

σj,n(y) ≤ sup
y∈Yκ2

σj,n(y) ≤ C2,

c2 ≤ σ2
n,j ≤ C2.

Condition SL3. Suppose that H0 is true, or H1 is true and for any
y ∈ Yκ2 , there exists ε such that f(·) is twice continuously differentiable
over a neighbourhood of (yj + ε, y−j) and (yj − ε, y−j) for all j ∈ J . Then
there are integer n0 and positive constants c3, C3, c4 and C4 such that for
all n ≥ n0, there is some t satisfying c3 ≤ t ≤ C3 and

sup
y∈Yκ2

(
E
[
∆(j)
n (y)

]
−∆(j)(y)

)
≤ C4h

t
n,
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sup
y∈Yκ2

(
E
[
∆(j)
n (y)

]
−∆(j)(y)

)
≤ C4p

t
n.

Condition SL4. Let Kn = Av(log n ∨ log(abn/σn)), where
bn = maxj∈J bn,j , σn = maxj∈J σn,j , v = maxj∈J vj and a = J maxj∈J aj ,
A is a constant. Then there are constants C5 and c5 such that
bnK

4
n/n ≤ C5n

−c5 , and a constant M̄ > 0 such that√
npnh

J−1
n ptn ≤ M̄cS1,n(γn) sup

j∈J ,y∈Yκ2
σj,n(y),√

npnh
J−1
n htn ≤ M̄cS1,n(γn) sup

j∈J ,y∈Yκ2
σj,n(y).

Condition SL5. Let bandwidths be pn = p0×n−γp and hn = h0×n−γh .
Assume that the bandwidths satisfy γp + (J − 1)γh < 1, γp + (J + 1)γh > 1
and 3γp + (J − 1)γh > 1.

The constant t in Condition SL3 differs under H0 and H1. Conditions
SL4 and SL5 place restrictions on the bandwidths pn and hn. Note that

under Condition SL5,

√
npnh

J−1
n ptn and

√
npnh

J−1
n htn on the left hand side

of Condition SL4 converge to zero. The requirement of C in computing the
critical value is C ≥ M̄C4/((1 − ε3n)c2) (see Appendix A.3). Then under
Condition SL5, the constant C can be chosen arbitrarily close to zero. In
practice, we can set C = 0.

A.3 Proofs for Section 2.4

The organization of this Appendix A.3 is as follows. We first introduce
some notations. Then we spell out four high level conditions in the spirit
of Chernozhukov et al. (2013), and verify them under Conditions SL1-SL5
in Appendix A.2. Next we state and prove three lemmas. Lastly, we prove
Propositions 5 and 6 using high level conditions as well as the lemmas.

Notations

Let cS1,n(α) be the (1 − α)th quantile of the distribution of

supj∈J ,y∈Yκ2

∣∣∣Ĝn,j(y)
∣∣∣ given {Yi}ni=1. Also let cS1,n = cS1,n(α) + c′1,n, where
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c′1,n = Cc1,n(γn), and c1,n(γn) is the (1− γn)th quantile of the distribution

of supj∈J ,y∈Yκ2

∣∣∣Ĝn,j(y)
∣∣∣.

Let Zj,n be an empirical process

Zj,n = {Zj,n(y) : j ∈ J , y ∈ Yκ2} ,

where Zj,n(y) =

√
npnh

J−1
n

(
∆

(j)
n −E

[
∆

(j)
n (y)

])
σj,n(y)

.

Zj,n can also be written as

Zn(g) =
1√
n

n∑
i=1

(g(Yi)−E [g(Yi)]) , g ∈ ∆Kn,

where ∆Kn ≡ ∪Jj=1∆Kn,j defined in (A.4).
Let G = {G(g) : g ∈ ∆Kn} be a zero mean Gaussian process with the

same covariance function as that of Zn = {Zn(g) : g ∈ ∆Kn}. That is,

E [G(g1)G(g2)]

= E [Zn(g1)Zn(g2)]−E [Zn(g1)] E [Zn(g2)]

= pnh
J−1
n [E [g1(Yi)g2(Yi)]−E [g1(Yi)] E [g2(Yi)]] . (A.7)

for any g1, g2 ∈ ∆Kn.

High level conditions

We state following four high level conditions analogous to Chernozhukov
et al. (2013). These conditions will be used in the proof of Propositions 5
and 6.

Condition SH1. One can construct a sequence of random variables
W 0
n satisfying the following conditions.

(i) W 0
n =d supg∈∆Kn |G(g)|, where G(g) is a centred Gaussian process

with E
[
G2(g)

]
= 1 for any g ∈ ∆Kn, and E

[
supg∈∆Kn |G(g)|

]
≤ C1

√
log n.

(ii) For some positive sequences ε1n and δ1n bounded by C1n
−c1 (for

some constants C1, c1). We have

Pr

(∣∣∣∣∣ sup
g∈∆Kn

|Zn(g)| −W 0
n

∣∣∣∣∣ > ε1n

)
≤ δ1n. (A.8)
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Condition SH2. Let cn be the (1 − α)th quantile of the distribution
of supg∈∆Kn |G(g)|, for some positive sequences τn, ε2n and δ2n bounded by
C1n

−c1 , we have

Pr
(
cS1,n(α) < cn(α+ τn)− ε2n

)
≤ δ2n,

Pr
(
cS1,n(α) > cn(α− τn) + ε2n

)
≤ δ2n.

Condition SH3. For some positive sequences ε3n and δ3n bounded by
C1n

−c1 , we have

Pr

(
sup

j∈J ,y∈Yκ2

∣∣∣∣ σ̂j,n(y)

σj,n(y)
− 1

∣∣∣∣ > ε3n

)
≤ δ3n.

For future reference, we state Condition A1 as follows,

Condition A1. The alternative hypothesis H1 is true, and for any
y ∈ Yκ2 , there is an ε such that the density function f(·) is twice continuously
differentiable over a neighbourhood of (yj+ε, y−j) and (yj−ε, y−j) for every
j ∈ J .

Condition SH4. Let

Bn = sup
j∈J ,y∈Yκ2

√
npnh

J−1
n E

[
∆

(j)
n (y)−∆(j)(y)

]
σ̂j,n(y)

.

If H0 is true, or Condition A1 holds, then for some positive sequence δ4n

bounded by C1n
−c1 , we have

Pr
(
Bn > c′1,n

)
≤ δ4n.

where c′1,n = CcS1,n(γn).

Note that under H0, ∆(j)(y) is zero for all j.

Verify Conditions SH1-SH4 using Conditions SL1-SL5

Proposition A1 below states that Conditions SH1-SH4 hold under Con-
ditions SL1-SL5.
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Proposition A1. Suppose that Conditions SL1-SL4 hold. Then Con-
ditions SH1-SH4 hold.

Proof of Proposition A1

(i) Verify SH1: By Condition SL1, ∆Kn,j is a class of measurable
functions uniformly bounded by bn,j and its covering number satisfies

sup
Q
N (∆Kn,j , L2(Q), bn,jε) ≤ (aj/ε)

vj , for all 0 < ε < 1, (A.9)

for some vj ≥ 1 and aj ≥ e. Then ∆Kn ≡ ∪Jj=1∆Kn,j is a class of measurable
functions uniformly bounded by bn = maxj∈J bn,j and its covering number
satisfies

sup
Q
N (∆Kn,, L2(Q), bnε) ≤ (a/ε)v , 0 < ε < 1, (A.10)

for some number v ≥ 1, a ≥ e. This is because

sup
Q
N (∆Kn,, L2(Q), bnε) ≤

J∑
j=1

sup
Q
N (∆Kn,j , L2(Q), bnε)

≤
J∑
j=1

sup
Q
N (∆Kn,j , L2(Q), bn,jε)

≤ J max
j

(aj/ε)
vj , 0 < ε < 1.

Inequality (A.10) holds by letting v = maxj∈J vj and a = J maxj∈J aj . In
the following, We will need Theorem 3.1 of Chernozhukov et al.(2013).

[Restatement of Theorem 3.1 in Chernozhukov et al.(2013)]
Suppose G is a class of functions uniformly bounded by a constant b such

that there exist constants a ≥ e and v > 1 with supQN(G, L2(Q), bε) ≤
(a/ε)v for all 0 < ε ≤ 1 . Let σ2 be a constant such that supg∈GVar(g) ≤
σ2 ≤ b2. Denote Kn = Av(log n ∨ log(ab/σ)). Define an empirical process

Gn(g) ≡ 1√
n

n∑
i=1

(g(Xi)−E [g(Xi)]) , g ∈ G.

Let Wn = ‖Gn‖G = supg∈G |Gn(g)|, and B = {B(g) : g ∈ G} be a centred
tight Gaussian process with a covariance function

E [B(g1)B(g2)] = E [g1(Xi)g2(Xi)]−E [g1(Xi)] E [g2(Xi)] .
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Then for any γ ∈ (0, 1), one can construct a random variable such that
(i) W0 =d ‖B‖G .
(ii)

Pr

(
|Wn −W0| >

bKn

γ1/2n1/2
+
σ1/2K

3/4
n

γ1/2n1/2
+
b1/3σ2/3K

2/3
n

γ1/2n1/2

)
≤ A

(
γ +

log n

n

)
,

for some absolute constant A.

Apply the above theorem with G = ∆Kn, Gn(g) = Z(g) and B(g) =
G(g). We can check

E
[
G2(g)

]
= E

[
Z2(g)

]
= E

[
npnh

J−1
n

(
∆(j)
n (y)−E

[
∆(j)
n (y)

])2
/σ2

j,n(y)

]
= 1.

Also, we obtain

Pr

(∣∣∣∣∣ sup
g∈∆Kn

|Z(g)| −W 0
n

∣∣∣∣∣ > ε1n

)
≤ δ1n,

where ε1n = bnKn
γ1/2n1/2 + σ

1/2
n K

3/4
n

γ1/2n1/2 + b
1/3
n σ

2/3
n K

2/3
n

γ1/2n1/2 and δ1n = A
(
γ + logn

n

)
. By

letting γ = Cn−c for some C and 0 < c < 1/2, we have ε1n and δ1n bounded
above by C1n

−c1 for some C1 and c1.
To show E

[
supg∈∆Kn |G(g)|

]
≤ C1

√
log n, we need Corollary 2.2.8 of

Van der Vart and Wellner (2000).

[Restatement of Corollary 2.2.8 of Van der Vart and Wellner (2000)]
Let {Xt : t ∈ T} be a separable sub-Gaussian process with respect to the

semimetric d. Then
(i) for every δ > 0

E

[
sup

d(s,t)≤δ
|Xs −Xt|

]
≤ K

∫ δ

0

√
logD(ε, d)dε,

for a university constant K, where D(ε, d)is the packing number for T . (The
packing number is the maximum number of ε-separated elements in T .)
(ii) In particular, for any t0,

E sup
t
|Xt| ≤ E |Xt0 |+K

∫ ∞
0

√
logD(ε, d)dε.
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Applying (ii) of Corollary 2.2.8 to the Gaussian process {G(g) : g ∈
∆Kn} with respect to standard deviation semimetric d, we obtain

E

[
sup

g∈∆Kn
G(g)

]
≤ E |G(g0)|+K

∫ ∞
0

√
logD(ε, d)dε.

By Condition SL1,
∫∞

0

√
logD(ε, d) is finite and thus bounded by C log n

for sufficiently large n.

(ii) Verify SH2: This follows Chernozhukov (2013) et al.
Define

G̃n,j(y) =
1√
n

n∑
i=1

ξi

√
pnh

J−1
n

[
ϕ

(j)
n (Yi, y)−∆

(j)
n (y)

]
σj,n(y)

,

and
∆Gn,j(y) = Ĝn,j(y)− G̃n,j(y).

Given any yn1 ∈ RnJ , define

Ŵ (yn1 ) = sup
j∈J ,y∈Yκ2

Ĝn,j(y),

W̃ (yn1 ) = sup
j∈J ,y∈Yκ2

G̃n,j(y).

Let Sn,1 ⊂ RnJ such that
∣∣∣ σ̂j,n(y)
σj,n(y) − 1

∣∣∣ < ε3n for all j and y ∈ Yκ2 and for all

yn1 ∈ Sn,1, the “verify SH3” part below will show that Pr(Sn,1) > 1− δ3n =
1− 2/n.

Fix any yn1 ∈ Sn,1. Note that

∆Gn,j(y) =
1√
n

n∑
i=1

ξi

√
pnh

J−1
n

[
ϕ

(j)
n (yn1 , y)−∆

(j)
n (y)

]
σj,n(y)

(
σj,n(y)

σ̂j,n(y)
− 1

)
is a zero mean Gaussian process with variance

Var (∆Gn,j(y)) =
1

n

n∑
i=1

pnh
J−1
n

[
ϕ

(j)
n (yn1 , y)−∆

(j)
n (y)

]2

σ2
j,n(y)

(
σj,n(y)

σ̂j,n(y)
− 1

)2

=
σ̂2
j,n(y)

σ2
j,n(y)

(
σj,n(y)

σ̂j,n(y)
− 1

)2

≤ 4ε23n,
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where the last inequality comes from Condition SH3 and by using ε3n ≤ 1/2,
which holds for sufficiently large n.

In the following, we will need Proposition A.2.7 of Van der Vart and
Wellner (2000).

[Restatement of Proposition A.2.7 of Van der Vart and Wellner (2000)]
Let Xt, t ∈ T be a separable zero-mean Gaussian process such that for

some K > σ(X), some v > 0 and some 0 < ε0 ≤ σ(X),

N (ε, T, ρ) ≤ (K/ε)v for 0 < ε < ε0.

Then there exists a universal constant D such that for all λ ≥ σ2(X)(1 +√
V )/ε0,

Pr

(
sup
t∈T

Xt ≥ λ
)
≤
(

DKλ√
V σ2(X)

)v σ(X)

λ
exp(−λ2/2σ2(X)).

Now let ε3n < 1/2 and define

∆K̃n = ∪Jj=1∆K̃n,j and ∆K̃n,j = {ag : a ∈ (0, 1], g ∈ ∆Kn,j} .

By Condition SL1, the covering number of class ∆K̃n satisfies the polynomial
bound condition of Proposition A.2.7 with v > 1, ρ = L2(Q), T = ∆K̃n,
and ε0 = 1. Also, the uniform covering number of the Gaussian process
∆Gn,j(y) with respect to the standard deviation semimetric is bounded by
the uniform covering number of function ∆K̃n. So the Gaussian process

∆Gn,j(y) meets the conditions of Proposition A.2.7. Let λ = K
1/2
n ε3n (where

Kn in specified in Condition SL4). Since σ2(X) = Var (∆Gn,j(y)) ≤ 4ε23n,
we have λ ≥ σ2(X)(1 +

√
V ). Applying Proposition A.2.7 to the process

∆Gn,j(y), we obtain

Pr
(∣∣∣Ŵ (yn1 )− W̃ (yn1 )

∣∣∣ ≥ λ)
≤ Pr

(
sup

j∈J ,y∈Yn,κ2
∆Gn,j(y) ≥ λ

)

≤ exp

(
v log(K

3/2
n /Var (∆Gn,j(y)))− 1/2 logKn

−Knε
2
3n/2Var (∆Gn,j(y))

)
.

Since Var (∆Gn,j(y)) ≤ 4ε23n, the leading term in the bracket is

−Knε
2
3n/2Var (∆Gn,j(y)) ≤ −Kn/8.
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Recall thatKn ≥ log n and λ = K
1/2
n ε3n (can be bounded above by Cn−c, for

sufficiently large n, because ε3n = 2
√
b2nσ

2
nKn/n∨

√
σ2
nKn/n and Condition

SL4). Therefore, there exist constants C1 and c1 such that λ ≤ C1n
−c1 and

Pr
(∣∣∣Ŵ (yn1 )− W̃ (yn1 )

∣∣∣ ≥ λ) < C1n
−c1 , (A.11)

uniformly over yn1 ∈ Sn,1.
We need Theorem 3.2 of Chernozhukov et al. (2013).

[Restatement of Theorem 3.2 in Chernozhukov et al. (2013).
Suppose G is a class of measurable functions uniformly bounded by a

constant b such that there exist constants a ≥ e and v > 1 with
supQN(G, L2(Q), bε) ≤ (a/ε)v for all 0 < ε ≤ 1. Let σ2 be a constant such
that supg∈GVar(g) ≤ σ2 ≤ b2. Assume that b2Kn ≤ nσ2, where Kn

specified in Theorem 3.1 cited before. Then for any δ > 0, there exists a set
Sn,0 such that Pr(Sn,0) ≥ 1− 3/n and for any xn1 ∈ Sn,0 one can construct
a random variable W0 satisfying the following conditions.

(i) W0 =d ‖B‖G , where B has the same property with that in Theorem
3.1 restated before.

(ii)

Pr
(∣∣∣W̃ (xn1 )−W0

∣∣∣ > ψn + δ
)
≤ Aγn(δ),

where A is an absolute constant and

ψn =
(
σ2Kn/n

)1/2
+
(
b2σ2K3

n/n
)1/4

,

γn(δ) =
(
b2σ2K3

n/n
)1/4

/δ + 1/n.

Applying Theorem 3.2 to W̃ (yn1 ) and B = G(g), we can construct a
random variable W 0 = supg∈∆Kn |G(g)| which satisfies the inequality in
Theorem 3.2 (ii). Since b2nK

4
n/n ≤ C1n

−c1 in Condition SL4, there exists a
λ such that λ ≤ C1n

−c1 and

Pr
(∣∣∣W̃ (yn1 )−W0

∣∣∣ ≥ λ) < C1n
−c, (A.12)

uniformly over yn1 ∈ Sn,2 and Pr(Sn,2) ≥ 1 − 3/n. Combining (A.11) and
(A.12) leads to

Pr
(∣∣∣Ŵ (yn1 )−W0

∣∣∣ ≥ λ) < C1n
−c, (A.13)

uniformly over yn1 ∈ Sn = Sn,1 ∩ Sn,2, Pr(Sn) ≥ 1− 5/n and λ ≤ C1n
−c1 .
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Let cS1,n(α) be the conditional (1 − α)th quantile of the distribution of

supj∈J ,y∈Yκ2

∣∣∣Ĝn,j(y)
∣∣∣ given {Yi}ni=1 = yn1 . We obtain

Pr

(
sup

g∈∆Kn
|G(g)| ≤ cS1,n(α) + λ

)
= Pr

(
W 0 ≤ cS1,n(α) + λ

)
= Pr

(
Ŵ (yn1 ) +

(
W 0 − Ŵ (yn1 )

)
≤ cS1,n(α) + λ

)
≥ Pr

(
Ŵ (yn1 ) ≤ cS1,n(α)

)
− Pr

(∣∣∣W 0 − Ŵ (yn1 )
∣∣∣ > λ

)
≥ 1− α− C1n

−c1 ,

where the first equality comes from W 0 =d supg∈∆Kn |G(g)|, the third
inequality comes from the fact that

Pr(X + Y ≤ c+ c′) ≥ Pr(X ≤ c)− Pr(Y > c′),

and the last inequality comes from the definition of cS1,n(α) and (A.13).
Recall that cn be the (1−α)th quantile of the distribution of supg∈∆Kn |G(g)|.
We have

Pr

(
sup

g∈∆Kn
|G(g)| < cn(α+ C1n

−c1)

)
= 1− α− C1n

−c1 .

Therefore,
cS1n(α) + λ ≥ cn(α+ C1n

−c1),

uniformly over yn1 ∈ Sn such that Pr(Sn) ≥ 1− 5/n and λ ≤ C1n
−c1 . Thus

Condition SH2 (i) holds with τn = C1n
−c1 , ε2n = λ ≤ C1n

−c1 and δ2n = 5/n.
Condition SH2 (ii) can be proven analogously.

(iii) Verify SH3: This follows Chernozhukov et al. (2013)
Observe that ∣∣∣∣ σ̂j,n(y)

σj,n(y)
− 1

∣∣∣∣ ≤
∣∣∣∣∣ σ̂2
j,n(y)

σ2
j,n(y)

− 1

∣∣∣∣∣ . (A.14)

By the expressions of σ̂2
j,n(y) and σ2

j,n(y) in Chapter 2,

σ̂2
j,n(y)− σ2

j,n(y)

σ2
j,n(y)

= En

(ϕ(j)
n (Yi, y)

σj,n(y)

)2
−E

(ϕ(j)
n (Yi, y)

σj,n(y)

)2
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+

(
En

[
ϕ

(j)
n (Yi, y)

σj,n(y)

])2

−

(
E

[
ϕ

(j)
n (Yi, y)

σj,n(y)

])2

,

where En denotes the sample mean. Therefore,∣∣∣∣∣ σ̂2
j,n(y)

σ2
j,n(y)

− 1

∣∣∣∣∣ ≤ sup
g∈∆K2

n

∣∣En

[
g(Yi)

2
]
−E

[
g(Y1)2

]∣∣
+ sup
g∈∆Kn

∣∣∣(En [g(Y1)])2 − (E [g(Y1)])2
∣∣∣ , (A.15)

where ∆K2
n = ∪Jj=1∆K2

n,j and ∆K2
n =

{
g2 : g ∈ ∆Kn,j

}
. By the definition

of σ2
n in Condition SL4, g ≤ b2n. Thus for all g ∈ ∆K2

n,

E
[
g(Y1)2

]
≤ b2nE [g(Y1)] ≤ b2nσ2

n,

where the last inequality comes from that E [g(Yi)] ≤ σ2
n for g ∈ ∆K2

n, by
Condition SL1(ii) and the definition of σ2

n in Condition SL4. In addition,
the covering number of K2

n also satisfies the polynomial bound (A.10). In
the following, we will use a form of Talagrand’s Inequality stated and proven
by Chernozhukov et al. (2013).

[Restatement of Theorem A.4 in Chernozhukov et al. (2013)]
Let ξ1,...,ξn be i.i.d. random variables taking values in a measurable

space (S,S). Suppose that G is a non-empty, pointwise measurable class
of functions on S uniformly bounded by a constant b such that there exist
constants a ≥ e and v > 1 with supQN(G, L2(Q), bε) ≤ (a/ε)v for all
0 < ε ≤ 1. Let σ2 be a constant such that supg∈G var(g) ≤ σ2 ≤ b2.If
b2v log(ab/σ) ≤ nσ2, then for all t ≤ nσ2/b2,

Pr

[
sup
g∈G

∣∣∣∣∣
n∑
i=1

(g(ξi)−E [g(ξ1)])

∣∣∣∣∣ > A
√
nσ2 {t ∨ v log(ab/σ)}

]
≤ e−t,

where A > 0 is an absolute constant.

Let t = log n, b = bn and σ = σn. (Note that t ≤ nσ2
n/b

2
n for large n.)

Recall that Kn = Av(log n ∨ log(abn/σn)). We have

b2nKn/n ≤ b2nK4
n/n ≤ C5n

−c5 ≤ c2 ≤ σ2
n,

where the first and third inequality hold for sufficiently large n, the second
inequality follows from Condition SL4 and the last inequality follows from
Condition SL2. Since Kn ≥ Av log(abn/σn), b2nv log(abn/σn) ≤ σ2

n and
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Condition SL1 holds, conditions of Theorem A.4 are satisfied. Applying
Theorem A.4 to supg∈∆K2

n

∣∣En

[
g(Yi)

2
]
−E

[
g(Y1)2

]∣∣, we have

Pr

[
supg∈∆K2

n

∣∣En

[
g(Yi)

2
]
−E

[
g(Y1)2

]∣∣
> A

√
nσ2

n {log n ∨ v log(abn/σn)}/n

]
≤ 1/n.

Notice that log n∨v log(abn/σn) ≤ v {log n ∨ log(abn/σn)} ≤ Kn, where the
first inequality comes from v > 1 and the second from any A ≥ 1. We obtain

Pr

[
sup

g∈∆K2
n

∣∣En

[
g(Yi)

2
]
−E

[
g(Y1)2

]∣∣ >√σ2
nKn/n

]
≤ 1/n. (A.16)

The second term on the right hand side of (A.15) is bounded above by

sup
g∈∆Kn

∣∣∣(En [g(Yi)])
2 − (E [g(Y1)])2

∣∣∣
≤ 2bn sup

g∈∆Kn

∣∣En

[
g(Yi)

2
]
−E

[
g(Y1)2

]∣∣ ,
where the inequality comes from Condition SL1(ii).

Again applying Theorem A.4 to supg∈∆Kn |En [g(Yi)]−E [g(Y1)]|, we
have

Pr

[
sup

g∈∆Kn
|En [g(Yi)]−E [g(Y1)]| >

√
σ2
nKn/n

]
≤ 1/n.

Thus

Pr

[
sup

g∈∆Kn

∣∣∣(En [g(Y1)])2 − (E [g(Y1)])2
∣∣∣ > 2

√
b2nσ

2
nKn/n

]
≤ 1/n. (A.17)

Let ε3n = 2
√
b2nσ

2
nKn/n∨

√
σ2
nKn/n. Then there exist constants C1 and c1

such that ε3n ≤ C1n
−c1 . By letting δ3n = 2/n, Condition SH3 follows.

(iv) Verify SH4: By Condition SH3 and SL2, we know that with
probability 1− δ3n. Thus we have

cS1,n(γn) sup
j∈J ,y∈Yκ2

σ̂j,n(y) ≤ cS1,n(γn)(1 + ε3n) sup
j∈J ,y∈Yκ2

σ̂j,n,s(y)

≤ CcS1,n(γn),

where C ≥ (1 + ε3n)C2. Combining this with Condition SL4, we have
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√
npnh

J−1
n ptn ≤ M̄CcS1,n(γn). (A.18)

Observe that

Bn ≤

√
npnh

J−1
n C4p

t
n

infj∈J ,y∈Yκ2 σ̂j,n(y)

≤

√
npnh

J−1
n C4p

t
n

(1− ε3n) infj∈J ,y∈Yκ2 σj,n(y)

≤

√
npnh

J−1
n C4p

t
n

(1− ε3n)c2
≤ C6

√
npnh

J−1
n ptn

≤ C6M̄CcS1,n(γn),

where the first inequality comes from Condition SL3, the second inequality
comes from Condition SH3, the third follows from Condition SL2, the fourth
holds for any constant C6 satisfying C6 ≥ C4/((1 − ε3n)c2), the last comes
from (A.18). Q.E.D.

Lemmas

The following three lemmas will be used in the proof of Proposition 5
and 6. Lemma A1(i) and Lemma A3 will be used in the proof of Proposition
5. Lemma A1(ii) will be used in the proof of Proposition 6. Lemma 2 will
be used in the proof of Lemma 3.

Lemma A1. (i) Suppose that H0 is true, or Condition A1 holds. If
Condition SL5 holds,

Pr
(
Ŷn,κ1 ⊆ Yκ2

)
≥ 1−O(n−c0),

for some c0 > 0.
(ii) Suppose H0 is true, or Condition A1 holds. If Condition SL5 holds

and
0 < dn < min (γh, γp, (1− γp − (J − 1)γh)/2) ,

then
Pr
(
Yn,L,c ⊆ Ŷn,κ1

)
≥ 1−O(n−c

′
0),
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for some c′0 > 0.

Proof of Lemma A1.
(i) Define

P̃−j (y) ≡ 1

n

n∑
i=1

1{yj − wj ≤ Yi,j < yj , |Yi,k − yk| ≤ hn/2, all k 6= j},

P̃+
j (y) ≡ 1

n

n∑
i=1

1{yj ≤ Yi,j ≤ yj + wj , |Yi,k − yk| ≤ hn/2, all k 6= j},

P̃j(y) = P̃−j (y) + P̃+
j (y), wj = (sup

y
Yj − inf

y
Yj)/H,

and

Ỹκ1 = {y ∈ Y : P̃−j (y)/P̃j(y) > κ1, P̃
+
j (y)/P̃j(y) > κ1, all j}.

We know that Ŷn,κ1 ⊆ Ỹκ1 for all n since wj ≥ ŵj . It suffices to show that

Pr
(
Ỹκ1 ⊆ Yκ2

)
≥ 1−O(n−c0).

By definitions of Ỹκ1 , Yκ2 and Markov’s inequality,

Pr
(
Ỹκ1 ⊆ Yκ2

)
≥ 1−

J∑
j=1

Pr
(∣∣∣P̃−j (y)/P̃j(y)− P−j (y)/Pj(y)

∣∣∣ > (κ1 − κ2)
)

−
J∑
j=1

Pr
(∣∣∣P̃+

j (y)/P̃j(y)− P+
j (y)/Pj(y)

∣∣∣ > (κ1 − κ2)
)

≥ 1−
J∑
j=1

E

[(
P̃−j (y)/P̃j(y)− P−j (y)/Pj(y)

)2
]
/(κ1 − κ2)2

−
J∑
j=1

E

[(
P̃+
j (y)/P̃j(y)− P+

j (y)/Pj(y)
)2
]
/(κ1 − κ2)2

=

 1−O
(
p4
n + h4

n + 1
npnh

J−1
n

)
under H0,

1−O
(
p2
n + h2

n + 1
npnh

J−1
n

)
under Condition A1,

= 1−O(n−c0).

The last equality is from Condition SL5, for a properly chosen c0 depending
on the rates γh and γp.
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Part (ii) can be proven in the same way. We have

Pr
(
Yn,L,c ⊆ Ŷn,κ1

)
≥

 1−O
(

(p4
n + h4

n + 1
npnh

J−1
n

)n2d
)

under H0,

1−O
(

(p2
n + h2

n + 1
npnh

J−1
n

)n2d
)

under Condition A1,

The desired result follows from the restriction imposed on d by Condition
(ii) of Lemma A1. Q.E.D.

The following Condition A2 will be used in Lemma A2.

Condition A2. The alternative hypothesis H1 is true, and the density
fY (y) > 0 for all y ∈ Yκ1 , where

Yκ1 = {y ∈ Y : P−j (y)/Pj(y) > κ1, P
+
j (y)/Pj(y) > κ2, all j ∈ J }.

Lemma A2. Suppose H0 is true or Conditions A1 and A2 hold. If
Conditions SL2-SL5 hold, given any yn1 ∈ Sn, where Sn is defined when
verifying Condition SH2 and Pr(Sn) > 1− 5/n, we have

Pr

(∣∣∣∣∣ sup
j∈J ,y∈Ŷn,κ2

Ĝn,j(y)− sup
j∈J ,y∈Yκ2

Ĝn,j(y)

∣∣∣∣∣ > rn

)
≤ νn,

for sufficiently large n, where rn and νn are bounded above by some Cn−c.

Proof of Lemma A2.
Let

YL,n,κ2 = {y ∈ Y :
P−j (y)

Pj(y)
> κ2 + n−d,

P+
j (y)

Pj(y)
> κ2 + n−d, all j},

YU,n,κ2 = {y ∈ Y :
P−j (y)

Pj(y)
> κ2 − n−d,

P+
j (y)

Pj(y)
> κ2 − n−d, all j},

where d < min (γp, γh, (1− γp − (J − 1)γh)/2). By similar arguments as in
the proof of Lemma A1, we have

Pr
(
YL,n,κ2 ⊂ Ŷn,κ2 ⊂ YU,n,κ2

)
≥ 1−O(n−k),

where k = min (γp, γh, (1− γp − (J − 1)γh)/2)− d. By definition, YL,n,κ2 ⊂
Yκ2 ⊂ YU,n,κ2 . Therefore, for some rn → 0 (rn will be specified later),
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Pr

(∣∣∣∣∣ sup
j∈J ,y∈Ŷn,κ2

Ĝn,j(y)− sup
j∈J ,y∈Yκ2

Ĝn,j(y)

∣∣∣∣∣ > rn

)

≤ Pr

(∣∣∣∣∣ sup
j∈J ,y∈YL,n,κ2

Ĝn,j(y)− sup
j∈J ,y∈YU,n,κ2

Ĝn,j(y)

∣∣∣∣∣ > rn

)
+O(n−k). (A.19)

By (A.11) (with a slight modification of the index set), we have

Pr

(∣∣∣∣∣ sup
j∈J ,y∈YL,n,κ2

Ĝn,j(y)− sup
j∈J ,y∈YL,n,κ2

G̃n,j(y)

∣∣∣∣∣ ≥ rn/3
)

< C1n
−c1 , and

Pr

(∣∣∣∣∣ sup
j∈J ,y∈YU,n,κ2

Ĝn,j(y)− sup
j∈J ,y∈YU,n,κ2

G̃n,j(y)

∣∣∣∣∣ ≥ rn/3
)

< C1n
−c1 ,

uniformly over yn1 ∈ Sn and rn/3 ≤ C1n
−c1 . Given yn1 ∈ Sn, we have

Pr

(∣∣∣∣∣ sup
j∈J ,y∈YL,n,κ2

Ĝn,j(y)− sup
j∈J ,y∈YU,n,κ2

Ĝn,j(y)

∣∣∣∣∣ > rn

)

≤ Pr

(∣∣∣∣ max
j,y∈y∈YL,n,κ2

G̃n,j(y)− max
j,y∈YU,n,κ2

G̃n,j(y)

∣∣∣∣ ≥ rn/3)
+ Pr

(∣∣∣∣∣ sup
j∈J ,y∈YU,n,κ2

Ĝn,j(y)− sup
j∈J ,y∈YU,n,κ2

G̃n,j(y)

∣∣∣∣∣ ≥ rn/3
)

+ Pr

(∣∣∣∣∣ sup
j∈J ,y∈YL,n,κ2

Ĝn,j(y)− sup
j∈J ,y∈YL,n,κ2

G̃n,j(y)

∣∣∣∣∣ ≥ rn/3
)

≤ Pr

(∣∣∣∣∣ sup
j∈J ,y∈YL,n,κ2

G̃n,j(y)− sup
j∈J ,y∈YU,n,κ2

G̃n,j(y)

∣∣∣∣∣ ≥ rn/3
)

+C1n
−c1 . (A.20)

By Condition A2, for any y′ ∈ YU,n,κ2\YL,n,κ2 , there exists some y′′ ∈ YL,n,κ2
such that |y′ − y′′| < ε, for any ε, when n is sufficiently large. Hence

Pr

(∣∣∣∣∣ sup
j∈J ,y∈YU,n,κ2

G̃n,j(y)− sup
j∈J ,y∈YL,n,κ2

G̃n,j(y)

∣∣∣∣∣ ≥ rn/3
)

≤ Pr

 sup
j∈J ,|y1−y0|<ε,y1,y0∈YU,n,κ2

∣∣∣G̃n,j(y0)− G̃n,j(y1)
∣∣∣ ≥ rn/3

 .
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We can write the process {G̃n,j(y) : y ∈ YU,n,κ2 , j ∈ J } as G̃ = {G̃(g) : g ∈
∆KU,n}, where

G̃(g) =
1√
n

n∑
i=1

ξi

[
g(Yi)−

1

n

n∑
i=1

g(Yi)

]
, g ∈ ∆KU,n,

and KU,n = ∪Jj=1KU,n,j , where

∆KU,n,j =


√
pnh

J−1
n ϕ

(j)
n (·, y)

σn,j(y)
: y ∈ YU,n,κ2

 .

For fixed yn1 , G̃ is a centred Gaussian process and is sub-Gaussian with
respect to standard deviation semimetric σ such that σ(g1, g0) = (E[G̃(g1)−
G̃(g2)]2)1/2 . In addition, by the mean square continuous sample path of
G̃, it must have σ(g1, g0) → 0 as |y1 − y0| → 0, where g1, g0 ∈ ∆KU,n,j ,
y1, y0 ∈ YU,n,κ2, and

gλ : t 7−→

√
pnh

J−1
n ϕ

(j)
n (t, yλ)

σn,j(yλ)
, λ = 0, 1.

Therefore, for every δ > 0, we obtain

Pr

(
sup

j∈J ,|y1−y0|<ε,y1,y0∈YU,n,κ2

∣∣∣G̃n,j(y0)− G̃n,j(y1)
∣∣∣ ≥ rn/3)

≤ Pr

(
sup

σ(g1,g0)<δ,g0,g1∈∆KU,n

∣∣∣G̃(g1)− G̃(g0)
∣∣∣ ≥ rn/3)

≤ 3E

[
sup

σ(g1,g0)<δ,g0,g1∈∆KU,n

∣∣∣G̃(g1)− G̃(g0)
∣∣∣] /rn

≤ 3K

rn

∫ δ

0

√
logD(ε, σ)dε. (A.21)

The second inequality comes from Markov’s inequality and the last from
Corollary 2.2.8 of Van der Vart and Wellner (2000). D(ε, σ) is the packing
number of the class ∆Kn with radius ε and standard deviation semimetric.
By Condition SL1 and the fact that D(ε, σ) < N(ε/2, σ), we have
logD(ε, σ) < K1 log(1/ε) for some constant K1. For sufficiently small δ, we
obtain∫ δ

0

√
logD(ε, σ)dε ≤ K2

∫ δ

0
log(1/ε)dε ≤ K2(δ(log(1/δ + 1))),
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for some constant K2. Now let δ = 1/n and rn = n−r. We have

nc1

rn

∫ δ

0

√
logD(ε, σ)dε ≤ log(n+ 1)

n1−c1−r1 .

The right hand side of the above inequality goes to zero when n → ∞,
as long as c1 + r < 1. As a result, 3K

rn

∫ δ
0

√
logD(ε, σ)dε < C1n

−c1 for
sufficiently large n.
Lemma A2 follows by combining (A.19), (A.20) and (A.21) and by letting
νn equal some some constant times n−(c1∧k). Q.E.D.

Lemma A3. Suppose Conditions SL1-SL5 hold, there exist numbers c
and C satisfying

Pr
(
ĉS1,n(α) ≤ cS1,n(α+ νn)− rn

)
≤ δ5n,

for some positive sequence rn, vn and δ5n bounded above by Cn−c.

Proof of Lemma A3.
For any yn1 ∈ Sn (recall Pr(Sn) > 1− 5/n),

Pr

(
sup

j∈J ,y∈Yκ2

∣∣∣Ĝn,j(y)
∣∣∣ ≤ ĉS1,n(α) + rn

)

≥ Pr

 ∣∣∣supj∈J ,y∈Yκ2

∣∣∣Ĝn,j(y)
∣∣∣− supj∈J ,y∈Ŷn,κ2

∣∣∣Ĝn,j(y)
∣∣∣∣∣∣

+ supj∈J ,y∈Ŷn,κ2

∣∣∣Ĝn,j(y)
∣∣∣ ≤ ĉS1,n(α) + rn


≥ Pr

(
sup

j∈J ,y∈Ŷn,κ2

∣∣∣Ĝn,j(y)
∣∣∣ ≤ ĉS1,n(α)

)

−Pr

(∣∣∣∣∣ sup
j∈J ,y∈Yκ2

∣∣∣Ĝn,j(y)
∣∣∣− sup

j∈J ,y∈Ŷn,κ2

∣∣∣Ĝn,j(y)
∣∣∣∣∣∣∣∣ > rn

)
≥ 1− α− νn,

where the last inequality comes from the definition of ĉS1,n(α) and Lemma

A2. Meanwhile, by definition of cS1,n(·),

Pr

(
sup

j∈J ,y∈Yκ2

∣∣∣Ĝn,j(y)
∣∣∣ ≤ cS1,n(α+ νn)

)
= 1− α− νn.

Thus we obtain
ĉS1,n(α) + rn ≥ cS1,n(α+ νn),
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for any yn1 ∈ Sn. Lemma A3 follows by letting δ5n = 5/n. Q.E.D.

Proofs of Proposition 5 and 6
We prove Proposition 5 and 6 using Conditions SL1-SL4 and Lemmas

A1 and A3.

Proof of Proposition 5.
Observe that

Pr
(
∆n < c̃S1,n

)
≥ (1) Pr

 sup
j∈J ,y∈Yκ2

∣∣∣∣∣∣
√
npnh

J−1
n ∆

(j)
n (y)

σ̂j,n(y)

∣∣∣∣∣∣ < c̃S1,n

− µn
≥ (2) Pr

(
sup

j∈J ,y∈Yκ2
|Zj,n(y)| σj,n(y)

σ̂j,n(y)
+Bn < c̃S1,n

)
− µn

≥ (3) Pr

(
sup

j∈J ,y∈Yκ2
|Zj,n(y)| σj,n(y)

σ̂j,n(y)
+Bn < cS1,n(νn)− rn

)
− µn − δ5n

≥ (4) Pr

(
sup

j∈J ,y∈Yκ2
|Zj,n(y)| σj,n(y)

σ̂j,n(y)
< cS1,n(α+ νn)− rn

)
−µn − δ5n − δ4n

≥ (5) Pr

(
supg∈∆Kn |Zn(g)| < (1− ε3n)cn(α+ τn + νn)

−(1− ε3n)rn − (1− ε3n)ε2n − (1− ε3n)rn

)
−µn − δ5n − δ4n − δ2n − δ3n

≥ (6) Pr

(
supg∈∆Kn |G(g)| < (1− ε3n)cn(α+ τn + νn)

−(1− ε3n)rn − ε1n − (1− ε3n)ε2n

)
−µn − δn

≥ (7) Pr

(
sup

g∈∆Kn
|G(g)| < cn(α+ τn + νn)

)

− sup
w∈R

Pr

(∣∣∣∣∣ sup
g∈∆Kn

|G(g)| − w

∣∣∣∣∣ < εn

)
− µn − δn

≥ (8)1− α− τn − νn −AεnE

∣∣∣∣∣ sup
g∈∆Kn

|G(g)|

∣∣∣∣∣− µn − δn
≥ (9)1− α− Cn−c,

where δn = δ1n + δ2n + δ3n + δ4n + δ5n, and εn = cn(α+ τn + νn)ε3n + ε1n +
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(1− ε3n)ε2n + (1− ε3n)rn. Inequality (1) comes from Lemma A1. Inequality
(2) comes from

sup
j∈J ,y∈Yκ2

∣∣∣∣∣∣
√
npnh

J−1
n ∆

(j)
n (y)

σ̂j,n(y)

∣∣∣∣∣∣ ≤ sup
j∈J ,y∈Yκ2

|Zj,n(y)| σj,n(y)

σ̂j,n(y)
+Bn,

under H0. (This is because ∆n(y) = 0 for all j under H0.) Inequality
(3) comes from Lemma A3. Inequality (4) follows c1,n ≡ c1,n(α) + c′1,n,
Pr(X+Y ≤ c+c′) ≥ Pr(X ≤ c)−Pr(Y > c′) and Condition SH4. Inequality
(5) comes from Condition SH2, SH3 and the fact that Pr(X < Y ) ≥ Pr(X <
a) − Pr(Y < a). Inequality (6) comes from Condition SH1(ii). Inequality
(7) uses the fact that

Pr(X < a)−Pr(X < a−b) ≤ Pr(|X−x| < b) for a−b < x < a, a > 0, b > 0.

Inequality (8) follows by applying Corollary 2.1 of Chernozhukov et al.(2013)
to the second term on the right hand side of inequality (7). Inequality (9)
uses Condition SH1(i) together with Markov’s inequality to bound c1,n(α)
and supg∈∆Kn |G(g)|. The argument from inequality (4) to the end are
adapted from the proof of Proposition 4.1 in Chernozhukov et al.(2013).
Q.E.D.

Proof of Proposition 6. Recall the (2.19) and let

Bj,n(y) =

√
npnh

J−1
n

(
E
[
∆

(j)
n (y)

]
−∆(j)(y)

)
σ̂j,n(y)

.

Notice that

sup
j∈J ,y∈Yκ2

∣∣∣∣∣∣
√
npnh

J−1
n ∆

(j)
n (y)

σ̂j,n(y)

∣∣∣∣∣∣
= sup

j∈J ,y∈Yκ2

∣∣∣∣∣∣|Zj,n(y)| σj,n(y)

σ̂j,n(y)
+Bj,n(y) +

√
npnh

J−1
n ∆(j)(y)

σ̂j,n(y)

∣∣∣∣∣∣ .
Therefore,

Pr
(
∆n > c̃S1,n

)
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≥ Pr

 sup
j∈J ,y∈Yn,L,c

∣∣∣∣∣∣
√
npnh

J−1
n ∆

(j)
n (y)

σ̂j,n(y)

∣∣∣∣∣∣ > c̃S1,n

− o(1)

= Pr

 sup
j∈J ,y∈Yn,L,c

∣∣∣∣∣∣|Zj,n(y)| σj,n(y)

σ̂j,n(y)
+Bj,n(y) +

√
npnh

J−1
n ∆(j)(y)

σ̂j,n(y)

∣∣∣∣∣∣ > c̃S1,n


−o(1)

≥ Pr

|Zj∗,n(y∗)| σj
∗,n(y∗)

σ̂j∗,n(y∗)
+Bj∗,n(y∗) +

√
npnh

J−1
n δ

σ̂j∗,n(y∗)
> c̃S1,n

− o(1)

≥ Pr

(
|Zj∗,n(y∗)| σj∗,n(y∗)

σ̂j∗,n(y∗) +Bj∗,n(y∗) +

√
npnh

J−1
n δ

σ̂j∗,n(y∗)

> cn(α+ τn) + Ccn(γn + τn)− ε6n

)
− o(1),

where (j∗, y∗) ∈ arg supj∈J ,y∈Yn,L,c ∆(j)(y). The first inequality comes from
Lemma A1(ii) and the Condition (iii) of Proposition 6. The last inequality
comes from Condition SH2. By Condition (i) of Proposition 6, ∆(j∗)(y∗) =

δ > 0. Then

√
npnh

J−1
n δ

σ̂j∗,n(y∗) = Op

(√
npnh

J−1
n

)
. Meanwhile cn(α+τn) ≤ C1 logn

α+τn

and cn(γn + τn) ≤ C1 logn
γn+τn

by Markov’s inequality and Condition SH1(i).

Proposition 6 follows if npnh
J−1
n γn/ log n→∞. In particular, when C = 0,

Proposition 6 follows if npnh
J−1
n / log n→∞. Q.E.D.
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Appendix B

Appendix for Chapter 3

B.1 A Discussion of the Alternative Equilibrium
Notion

To analyze the equilibrium characterizing equations given by the second
notion of equilibrium. We reproduce (3.4) as follows. An equilibrium is a
pair of cutoffs in the value of private information (u∗1(x), u∗2(x)) such that
the following holds

π1(1, 0, x1) + ∆1(x1) Pr (U2i ≤ u∗2(x)|Xi = x, U1i = u∗1(x)) = u∗1(x),

π2(1, 0, x2) + ∆2(x2) Pr (U1i ≤ u∗1(x)|Xi = x, U2i = u∗2(x)) = u∗2(x).

Moreover, let

G2(u∗2, x, u
∗
1) = Pr (U2i ≤ u∗2|Xi = x, U1i = u∗1) ,

G1(u∗1, x, u
∗
2) = Pr (U1i ≤ u∗1|Xi = x, U2i = u∗2) ,

and

ψ(u∗, x) =

[
u∗1 − π1(1, 0, x1)−∆1(x1)G2(u∗2, x, u

∗
1)

u∗2 − π2(1, 0, x1)−∆2(x1)G1(u∗1, x, u
∗
2)

]
.

The system of equilibrium characterizing equations is

ψ(u∗, x) = 0.

This system of equations corresponds to (3.7). Definitions 1, 2 and
Assumption 3 can be modified by replacing ϕ and vector σ with ψ and u∗

respectively. The observed conditional choice probabilities can be
expressed as

Qk (1|1, x) =
∑

m∈Υ(x)

πm(x) Pr
(
Ui ≤ u∗(m)

k (x)|Xi = x, U−ki ≤ u
∗(m)
−k (x)

)
,
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for k = 1, 2. This corresponds to (3.9) if the following Assumption 6 holds.
Hence the results of this paper follows under this notion of equilibrium.

Assumption 6. For any (a, b) 6= (a′, b′) satisfying

Pr (Uki ≤ a|Xi = x, U−ki ≤ b) ∈ (0, 1), and

Pr
(
Uki ≤ a′|Xi = x, U−ki ≤ b′

)
∈ (0, 1),

for k = 1, 2, we have

Pr (Uki ≤ a|Xi = x, U−ki ≤ b) 6= Pr
(
Uki ≤ a′|Xi = x, U−ki ≤ b′

)
.

Assumption 6 implies that a jump in the equilibrium cut-off (u∗1, u
∗
2) must

lead to a jump in the conditional belief Pr
(
Uki ≤ u∗k|Xi = x, U−ki ≤ u∗−k

)
for

k = 1, 2, as long as the latent conditional belief takes a value strictly between
0 and 1.

B.2 Mathematical Proofs

In this section, we present proofs for Propositions 1 to 3, Lemma 1 and
Corollaries 1 and 2. The proof of Lemma 1 needs Lemma 2, which is also
stated below.

Proof of Proposition 1.
We only need to consider Category (C1) because Sub-category (C2-1) can

be viewed as a case in Category (C1). By (3.9), it suffices to show that the
M in Definition 1 equals 1. By (C1), there exists a unique function q(x) such
that for any (σ, x) ∈ (0, 1)2× int(X ) satisfying ϕ (σ, x) = 0, σ = q(x). We
need to show that q(x) is twice continuously differentiable on int(X ). Under
Assumptions 1-3 and applying Implicit function theorem on an arbitrary
point (σ0, x0) ∈ (0, 1)2× int(X ), there are neighbourhoods A of σ0 and B
of x0 on which (3.7) uniquely defines σ as a function of x. That is, there
is a function ξ : B → A such that ϕ (ξ(x), x) = 0 for all x ∈ B; for each
x ∈ B, ξ(x) is the unique solution to (3.7) lying in A, and ξ(x) is twice
continuously differentiable on B. Because (σ0, x0) is arbitrary and q(x) is
the only solution to (3.7) by (C1), we must have q(x) = ξ(x) for all x ∈
int(X ). Thus q(x) is twice continuously differentiable on a neighbourhood
of every x ∈ intX . This immediately leads to the desired result.Q.E.D.

Proof of Lemma 1.
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Let S = {x ∈ X : (3.7) admits a unique solution in σ}. Without loss of
generality, assume that S ∩B1 6= ∅. Denote S ∩B1 = S1. By construction,
Υ(S1) = {1}. By Lemma 2 (stated and proven below), there exists some
h ∈ {1, ...,M}, such that B1 ∩Bh 6= ∅. Denote Ch = B1 ∩Bh. Without loss
of generality, S̄1 ∩ C̄h 6= ∅. (Otherwise, there will be another k ∈ {1, ...,M}
such that B1∩Bh 6= ∅ and S̄1∩ C̄k 6= ∅, where Ck = B1∩Bk, all we need is
B1\S1 is not empty, which holds by the conclusion of Lemma 2(ii).) Form a
subset Dh of Ch such that S̄1 ∩ D̄h 6= ∅ and Υ(Dh) is well defined. In this
case, {1, h} ⊂ Υ(D1). Therefore, S1 and Dh corresponds to C1 and C2 in
Assumption 4H with Υ(S1) = {1} while Υ(Dh) ⊃ {1, h}. Q.E.D.

The proof of Lemma 1 needs the following Lemma 2.

Lemma 2. If the game is in Category (C2) or (C3), then the following
holds. (i) The constant M in Definition 1 is larger or equal than 2. (ii)
Suppose that Assumption 5 holds, then for any m ∈ {1, ...,M}, there exists
a k ∈ {1, ...,M} and k 6= m, such that Bm ∩Bk 6= ∅.

Proof of Lemma 2
(i). When the game is in (C2-2) or (C3), there exists some xM ∈ X

such that ϕ(σ1, xM ) = ϕ(σ2, xM ) = 0 for some σ1 6= σ2. If M = 1, there
is a function q : X → (0, 1)2 such that σ = q(x) for all (σ, x) ∈ X ×
(0, 1)2 satisfying ϕ(σ, x) = 0. But this means σ1 = q(xM ) and σ2 = q(xM ),
which can not happen.

(ii). It suffices to show that for every m ∈ {1, ...,M}, there exists some
x ∈ Bm such that ϕ(σ, x) = 0 for more than one σ ∈ (0, 1)2 . Suppose it is
not true, we have a Bm such that ϕ(σ, x) = 0 has a unique solution in σ for
all x ∈ Bm. Consider an arbitrary l ∈ {j 6= m : B̄m ∩ B̄j 6= ∅} and let x0

be an arbitrary point x0 ∈ B̄m ∩ B̄l. By assumption, Bm ∩ Bl = ∅ for all
l 6= m. Thus x0 ∈ B̄m\Bm. For an such l, we have two cases:

Case 1. limx∈Bm,x→x0 qm(x)−limx∈Bl,x→x0 ql(x) = 0 for all x0 ∈ B̄m∩B̄l.
Thus we can combine Bm and Bl to reduce the number M , this contra-

dicts with the Definition 1 in which M is the smallest number. In particu-
lar, let B′m = int

(
Bm ∪Bl ∪

(
B̄m ∩ B̄l

))
and

q′m(x) =


qm(x), x ∈ Bm,
ql(x), x ∈ Bl,
limx∈Bm,x→x0 qm(x), x0 ∈ B̄m ∩ B̄l.
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Also, by Assumption 5, we know that 5σ(σ0, x0) is invertible, where σ0 =
limx∈Bm,x→x0 qm(x) = limx∈Bl,x→x0 ql(x), then we can apply the Implicit
Function Theorem to obtain that there are neighbourhoods A of σ0 and
B of x0, and a unique function ς : B → A such that ς(x0) = σ0 and for
each x ∈ B, ς(x0) is the unique solution to (3.7) lying in A, ϕ(ξ(x), x) = 0
for x ∈ B, and ς(x) is twice continuously differentiable at x0. Therefore,
q′m(x) must coincide with ς(x) for x ∈ B, and q′m(x) is twice continuously
differentiable.

Case 2. |limx∈Bm,x→x0 qm(x)− limx∈Bl,x→x0 ql(x)| = δ > 0, for some
x0 ∈ B̄m ∩ B̄l.

By continuity of ϕ : (0, 1)2 ×X → R2, we have

ϕ(σm, x0) = ϕ(σl, x0) = 0,

where σm = lim
x→x0,x∈Bm

qm(x), σl = lim
x→x0,x∈Bl

ql(x).

There must be an l satisfying the following: there is no l′ such that every
component of σl′ − σm has the same sign as σl − σm and
|σl′ − σm| < |σl − σm|. We focus on such an l. By Assumption 5(ii), the
derivative 5σ(σl, x0) is invertible. By the Implicit Function Theorem, for
any neighbourhood A of σl, there is a neighbourhood B of x0 and a
function ξ : B → A such that ξ(x0) = σl, ϕ(ξ(x), x) = 0 for x ∈ B, and
ξ(x) is continuous at x0. Therefore, for any ε, there exists an η satisfying

|x− x0| < η′ =⇒ |ξ(x)− σl| < ε.

Then, for any ε, all x′ ∈ Bm ∩ B(x0, η) ∩ B satisfy ϕ(ξ(x′), x′) = 0 and
|ξ(x′)− σl| < ε. Thus |ξ(x′)− σm| > δ − ε.

On the other hand, by continuity of qm, for any ε′, there exists an η′

satisfying
|x− x0| < η′ =⇒ |qm(x)− σm| < ε′.

By choosing ε and ε′ sufficiently small, we have ξ(x′) 6= qm(x′) for all x′ ∈
Bm ∩ B(x0, η ∧ η′) ∩ B. This contradicts the assumption that ϕ(σ, x) = 0
has a unique solution in σ for all x ∈ Bm. Q.E.D.

Proof of Proposition 2.
By Assumption 4H, there exists an l ∈ {1, ...,M} such that for some

C1, C2 ⊂ Bl, and C1 ∩ C2 = ∅, C̄1 ∩ C̄2 6= ∅, we have Υ(C1) 6= Υ(C2).
Since C1, C2 ⊂ Bl, l ∈ Υ(C1) and l ∈ Υ(C2). Then consider an arbitrary
xd ∈ C̄1 ∩ C̄2, by (3.9),
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lim
x→xd,x∈C1

Q (1|1, x) =
∑

h∈Υ(C1)

lim
x→xd,x∈C1

πh(x) lim
x→xd,x∈C1

σ(h)(1|1, x),

lim
x→xd,x∈C2

Q (1|1, x) =
∑

j∈Υ(C2)

lim
x→xd,x∈C2

πj(x) lim
x→xd,x∈C2

σ(j)(1|1, x).

Therefore,

lim
x→xd,x∈C1

Q (1|1, x)− lim
x→xd,x∈C2

Q (1|1, x)

=
∑

l∈Υ(C1)∩Υ(C2)

(
lim

x→xd,x∈C1

πl(x)− lim
x→xd,x∈C2

πl(x)

)
σ

(l)
k (1|1, xd)

+
∑

h∈Υ(C1)\Υ(C2)

lim
x→xd,x∈C1

πh(x) lim
x→xd,x∈C1

σ
(h)
k (1|1, x)

−
∑

j∈Υ(C2)\Υ(C1)

lim
x→xd,x∈C2

πj(x) lim
x→xd,x∈C2

σ
(j)
k (1|1, x), (B.1)

where

σ(l)(1|1, xd) 6= lim
x→xd,x∈C1

σ(h)(1|1, x),

σ(l)(1|1, xd) 6= lim
x→xd,x∈C2

σ(j)(1|1, x),

for any l ∈ Υ(C1) ∩ Υ(C2), h ∈ Υ(C1)\Υ(C2), j ∈ Υ(C2)\Υ(C1), and for
any xd ∈ C̄1 ∩ C̄2. Suppose to the contrary, for example,
σ(l)(1|1, xd) = limx→xd,x∈C2 σ

(h)(1|1, x) for some xd ∈ C̄1 ∩ C̄2, this means
limx→xd,x∈C1 ql(x) = limx→xd,x∈C2 qh(x) for some xd ∈ C̄1 ∩ C̄2. Note that
xd ∈ Bl and xd ∈ B̄h, thus we have ql(x

′) = qh(x′) for some
x′ ∈ B(xd, r) ∩ Bl ∩ Bh, where B(xd, r) is a ball centred in xd and with
radius r. B(xd, r) ∩ Bl ∩ Bh 6= ∅ because xd ∈ C̄1 ∩ C̄2, C1, C2 ⊂ Bl and
C2 ⊂ Bh. This contradicts with Remark 1 below Definition 1.

Furthermore, observe that the set

{( lim
x∈C1,x→xd

π(x), lim
x∈C2,x→xd

π(x)) : π ∈ CE1(Υ)}

is
{( lim
x∈C1,x→xd

π(x), lim
x∈C2,x→xd

π(x)) : π ∈ C(Υ) and (B.1) = 0},
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which has zero measure in

{( lim
x∈C1,x→xd

π(x), lim
x∈C2,x→xd

π(x)) : π ∈ C(Υ)},

for every xd ∈ C̄1 ∩ C̄2 and for all C1, C2, l satisfying Assumption 4H. The
desired result follows. Q.E.D.

Proof of Corollary 1.
Consider a subset D satisfying the property in Definition 3 and let xd be

an arbitrary point in D̄1 ∩ D̄2. Since Υ(D) is defined, i.e. the equilibrium
indices set is the same within D, we have xd ∈ Bh for all h ∈ Υ(D). By
(3.9),

lim
x→xd,x∈D1

Q (1|1, x) =
∑

h∈Υ(D)

lim
x→xd,x∈D1

πh(x) lim
x→xd,x∈D1

σ(h)(1|1, x),

lim
x→xd,x∈D2

Q (1|1, x) =
∑

h∈Υ(D)

lim
x→xd,x∈D2

πh(x) lim
x→xd,x∈D2

σ(h)(1|1, x),

where limx→xd,x∈D1 σ
(h)(1|1, x) = limx→xd,x∈D2 σ

(h)(1|1, x) = σ(h)(1|1, xd)
for all h ∈ Υ(D). Thus

∣∣∣∣ lim
x→xd,x∈D1

Q (1|1, x)− lim
x→xd,x∈C2

Q (1|1, x)

∣∣∣∣
=

∑
h∈Υ(D)

(
lim

x→xd,x∈D1

πh(x)− lim
x→xd,x∈D2

πh(x)

)
σ(h)(1|1, xd)

=
∑

h∈Υ1(D)

(
lim

x→xd,x∈D1

πh(x)− lim
x→xd,x∈D2

πh(x)

)
σ(h)(1|1, xd),(B.2)

where

Υ1(D) =
{
h ∈ Υ(D) :

∣∣limx→xd,x∈D1 πh(x)− limx′→xd,x′∈D2 πh(x′)
∣∣ > 0

}
.

Let CF (Υ) be the subset of C(Υ) that satisfies the property in Definition 3.
Furthermore, observe that the set

{( lim
x∈D1,x→xd

π(x), lim
x∈D2,x→xd

π(x)) : π ∈ CE2(Υ)}

is
{( lim
x∈D1,x→xd

π(x), lim
x∈D2,x→xd

π(x)) : π ∈ CF (Υ) and (B.2) = 0},
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which has a zero measure in

{( lim
x∈D1,x→xd

π(x), lim
x∈D2,x→xd

π(x)) : π ∈ CF (Υ)},

for every xd ∈ D̄1 ∩ D̄2 in Definition 3. The desired result follows. Q.E.D.

Proof of Corollary 2.
When the game is in sub-category (C2-2), there exists two subsets of X ,

C1 and C2, C̄1 ∩ C̄2 6= ∅, and m∗1 6= m∗2 such that πm∗1(x) = 1 for x ∈ C1

and πm∗2(x) = 1 for x ∈ C2. For any xd ∈ C̄1 ∩ C̄2, there are two cases:
Case 1. There is an r > 0 such that Υ(B(xd, r)) is defined, whereB(xd, r)

is an open ball centred in xd and with radius r. As the equilibrium indices
set does not change on B(xd, r), the ball B(xd, r) ⊂ Bm if m ∈ Υ(B(xd, r)).
Therefore,

lim
x→xd,x∈C1∩Υ(B(xd,r))

Q (1|1, x)

= lim
x→xd,x∈C1∩Υ(B(xd,r))

σ(m∗1)(1|1, x) = σ(m∗1)(1|1, xd),

where the second equality comes from B(xd, r) ⊂ Bm if m ∈ Υ(B(xd, r)).
Similarly,

lim
x→xd,x∈C2∩Υ(B(xd,r))

Q (1|1, x)

= lim
x→xd,x∈C2∩Υ(B(xd,r))

σ(m∗2)(1|1, x) = σ(m∗2)(1|1, xd).

Since σ(m∗1)(1|1, xd) 6= σ(m∗2)(1|1, xd) (Otherwise, Remark 1 of Definition 1 is
violated), Q (1|1, x) has a jump at xd.

Case 2. There is no such r > 0 that Υ(B(xd, r)) is defined. That is,
the equilibrium indices set changes at xd. Then there exist disjoint subsets
D1, D2 such that xd ∈ D̄1 ∩ D̄2, D1 ⊂ C1, D2 ⊂ C2, Υ(D1) and Υ(D2) are
defined, and Υ(D1) 6= Υ(D2). We have

lim
x→xd,x∈D1

Q (1|1, x) = lim
x→xd,x∈D1

σ(m∗1)(1|1, x),

lim
x→xd,x∈D2

Q (1|1, x) = lim
x→xd,x∈D2

σ(m∗2)(1|1, x).

Since the choice of xd ∈ C̄1 ∩ C̄2 is arbitrary, we must have

lim
x→xd,x∈D1

σ
(m∗1)

k (1|1, x) 6= lim
x→xd,x∈D2

σ
(m∗2)

k (1|1, x),
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for some xd. Otherwise Bm∗1 and Bm∗2 can be combined together so that
M is not the smallest constant in Definition 1. Therefore, Qk (1|1, x) has a
jump at xd. Q.E.D.

Proof of Proposition 3.
(i) By (3.15), we have

Q (1|1, x) =
t̄∑
t=1

λtQ
t (1|1, x) .

By Proposition 1, Qt (1|1, x) is twice continuously differentiable in x for
all t ∈ {1, ..., t̄}. Thus Qk (1|1, x) is twice continuously differentiable in x.

(ii) For an xd satisfying the condition COND in Proposition 3 (ii), by
(3.15)

Q (1|1, x) =
∑

t1∈{t′:xd∈X t
′
D}

λt1Q
t1 (1|1, x)+

∑
t2∈{t′:xd /∈X t

′
D}

λt2Q
t2 (1|1, x) . (B.3)

By construction, Qt2 (1|1, x) does not have a jump at x = xd, for all t2 ∈
{t′ : xd /∈ X t

′
D}. As a result, the second summation on the right hand side

of (B.3) does not have a jump at x = xd. By COND, the first summation
on the right hand side of (B.3) has a jump at x = xd. Putting the two
summations together, Q (1|1, x) must have a jump at x = xd.

(iii) can be shown in the same way as (ii). Q.E.D.
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