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Abstract

The project focuses on the estimation of the probability distribution of a

bivariate random vector given that one of the components takes on a large

value. These conditional probabilities can be used to quantify the effect of

financial contagion when the random vector represents losses on financial

assets and as a stress-testing tool in financial risk management. However, it

is tricky to quantify these conditional probabilities when the main interest

lies in the tails of the underlying distribution. Specifically, empirical prob-

abilities fail to provide adequate estimates while fully parametric methods

are subject to large model uncertainty as there is too little data to assess

the model fit in the tails.

We propose a semi-parametric framework using asymptotic results in the

spirit of extreme values theory. The main contributions include an exten-

sion of the limit theorem in Abdous et al. [Canad. J. Statist. 33 (2005)]

to allow for asymmetry, frequently encountered in financial and insurance

applications, and a new approach for inference. The results are illustrated

using simulations and two applications in finance.
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t follows the skew-t distri-

bution, and CoVaR
s|bj
q1,t is estimated by assuming that {Ẑt} follows
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Chapter 1

Introduction

In a wide range of applications, it is of interest to quantify how large move-

ments in one variable affect another variable. Particularly, in finance and

insurance, one is often concerned with the impact of a stock market crash

on individual stocks, or with the impact of a large loss on one financial

asset on other assets. One common approach to assess such influences is

by considering conditional probabilities in which the conditioning event is

extreme. Let (X,Y ) be a bivariate random vector, which can be interpreted

as representing losses on two financial assets. The conditional probability

η(x, y) := P(Y ≤ y|X > x), (1.1)

when x is large, can be seen as a measure of the effect the occurrence of

a large loss on X exerts on the distribution of losses Y . When x and y in

(1.1) are chosen as p-marginal quantiles, the limit of 1− η(x, y), if it exists,

as the quantile level p goes to one, is known as the (upper) tail dependence

coefficient (Joe [1997]). It is a widely used way to quantify extremal depen-

dence in the presence of tail dependence, i.e., when the coefficient is strictly

positive (McNeil et al. [2005]). In finance, the tail dependence coefficient

is often interpreted as a measure of financial contagion and plays a role

in a variety of applications including risk management, derivative pricing

and portfolio selection; see, e.g., Poon et al. [2004], Burtschell et al. [2009],

Chan-Lau et al. [2004], Aloui et al. [2011] and DiTraglia and Gerlach [2013].

Figure 1.1 shows the scatter plot of the daily log losses (negative returns)

on the stock of Bank of America Corp (BAC) and JP Morgan Chase & Co

(JPM) over a period of 500 days from June 1, 2005 to May 31, 2007 and a

period of 501 days from June 1, 2007 to May 31, 2009. It is obvious that

these two stocks exhibit weaker dependence in the extreme movements over

1



Chapter 1. Introduction

Figure 1.1: Scatter plot of the daily log losses (negative returns) on the stock of

Bank of America Corp (BAC) and JP Morgan Chase & Co (JPM) over a period of

500 days from June 1, 2005 to May 31, 2007 (left panel) and a period of 501 days

from June 1, 2007 to May 31, 2009 (right panel).

-

the second period, which is wildly recognized as financial crisis period. The

difficulty to quantify this extreme dependence precisely via statistical esti-

mation is various. Firstly, it is noted that for x large it becomes exceedingly

difficult to estimate η(x, y) empirically as there are too few, if any, data

points falling in the associated extremal region. On the other hand, para-

metric models fitted using the entire dataset are subject to undue influence

of the central observations possibly compromising the fit in the tail regions.

Such a fully parametric approach naturally gives rise to a significant model

risk. An effective approach in situations dealing with extreme events is to

rely on asymptotic models in the spirit of extreme value theory (EVT). The

study of conditional extreme value models was initiated by Heffernan and

Tawn [2004], followed by Heffernan and Resnick [2007] and Das and Resnick

[2011], among others.

Similar to Abdous et al. [2005a], we focus on the estimation of η(x, y) for

x large but extend their methodology from the class of elliptical distributions

to a more general framework of asymmetric models describing the stochastic

2



Chapter 1. Introduction

behaviour of underlying tail risks.

Elliptical distributions are frequently used to model the stationary dis-

tribution of financial losses and returns; see, e.g., McNeil et al. [2005] for

an overview. They are a natural generalization of the multivariate normal

distribution by giving flexibility in modelling the tail behaviour. Typically,

financial data exhibit slower decay in the tails that can be captured by the

student-t distribution. However, elliptical distributions fail to address the

likely tail asymmetry in the distribution of financial returns, both for the

marginals and the (tail) dependence. Empirical evidence of skewness of fi-

nancial returns has been documented by Longin and Solnik [2001], Rockinger

and Jondeau [2002] and Chang et al. [2013], among others. Applications of

skewed distributions in finance and insurance along with implications of

asymmetry for asset pricing and risk management are reviewed in Adcock

et al. [2012]. One example is that a stock’s co-skewness with market could

shed light on investor’s behaviour, especially in a downside market (see e.g.,

Harvey and Siddique [2000], Alles and Murray [2013], Conrad et al. [2013]).

Our aim here is to relax the assumption of elliptical symmetry while

still retaining a certain parametric structure which can be used to develop

asymptotic approximations as well as subsequent inference procedures using

EVT. First, assuming that (X,Y ) comes from a sub-family of skew-elliptical

distributions of Azzalini and Capitanio [2003], we derive a limit expression

for η(x, y) as x → ∞ and y is chosen to grow at a suitable rate to ensure

existence of a non-degenerate limit. The limit expression is then used as an

approximation for large but finite values of x. Estimation of unknown pa-

rameters is carried out using a semi-parametric procedure, consisting of two

main components. The tail behaviour is modelled under the assumption

of regular variation and standard EVT techniques are employed to esti-

mate the tail index parameter. Dependence in the joint tail region is rep-

resented by the spectral density for which we assume a specific parametric

form based on the multivariate skew-t distribution. There exist other more

general (semi-)parametric modelling approaches for spectral densities as, for

instance, proposed in Peiro [1999], Boldi and Davison [2007] and Beran and

Mainik [2014]. However, they tend to come at a significant computational

or model-formulation costs, and will not be explored here.

3



Chapter 1. Introduction

The report is organized as follows. Chapter 2 gives basic overview of

extreme value theory and regular variation to be used in the sequel. It also

includes some inference methodologies. In Chapter 3 we review a general

class of skew-symmetric distributions with a special attention to its skew-

elliptical sub-family. These skewed distributions will form the basis for mod-

elling asymmetry in the extremal behaviour of multivariate random vectors.

Chapter 4.1 summarizes a number of limit results, which will be used to

approximate the condition probability η(x, y) in (1.1) as well as to justify

subsequent inference procedures. In Chapter 5, we give details on model

fitting and estimation of η(x, y), and illustrate performance of the proposed

methods in several simulation studies. Chapter 6 gives an application of the

developed methodology to financial data. Finally, Chapter 7 presents some

concluding remarks and outlines directions for future research. Proofs and

additional tables are delegated to the Appendix.

4



Chapter 2

Preliminary Theory

2.1 Extreme Value Theory

This section briefly reviews classical EVT, which mainly deals with the

asymptotic distribution of sample maxima. The presentation is given for

upside gains but the same results holds for downside losses.

2.1.1 Univariate Case

The classical univariate EVT dates back to the work of Fisher and Tippett

[1928] and Gnedenko [1943]. Let Z1, ..., Zn be a sequence of independent and

identically distributed (i.i.d.) random variables with population cumulative

distribution function F , and Mn be the maximum of the sequence. Then

the distribution for Mn is

P(Mn < x) = P(Z1 ≤ x, ..., Zn ≤ x) = (F (x))n.

If the distribution F is known, then the distribution of Mn can be deter-

mined; otherwise, it can be approximated by modelling though asymptotic

theory of Mn. When n → ∞, the distribution of Mn will degenerate to a

point mass, but this problem, in most cases, can be eliminated by allowing

some linear normalization of Mn.

Theorem 2.1.1. (Fisher-Tippett Theorem) If there exist normalization con-

stants an > 0 and bn ∈ R, such that as n→∞

P
(
Mn − bn

an
≤ x

)
→ H(x),

where H(x) is some non-degenerate distribution function, then H(x) belongs

to one of the following three families of distributions:

5



2.1. Extreme Value Theory

• Gumbel: H(x) = exp{− exp(−x)}, x ∈ R;

• Fréchet: H(x) =

0, x ≤ 0

exp{−x−ν}, x > 0, ν > 0
,

• Weibull: H(x) =

exp{−(−x)−ν}, x ≤ 0, ν < 0

1, x > 0
,

where ν is the shape parameter which describes the fatness of the tail.

A rigorous proof of the theorem can be found in Gnedenko [1943]. Von Mises

[1936] and Jenkinson [1955] derive a one-parameter representation of the

three limit distributions above, which is known as the standard generalized

extreme value (GEV) distribution.

Definition 2.1.1. The distribution function of the standard GEV distribu-

tion is given by

H(x) =

exp{−(−(1 + ξx))
− 1
ξ }, ξ 6= 0

exp{− exp(−x)}, ξ = 0
,

where 1 + ξx > 0.

The Gumbel (ξ = 0) distribution is related to light-tailed distributions

such as normal, log-normal or exponential; the Fréchet distribution (ξ > 0)

is related to heavy-tailed distributions such as Pareto, Cauchy, or Student

distribution; the Weibull (ξ < 0) is associated to finite support distributions

such as the uniform distribution. In practice, there are various ways to

adopt the EVT to perform inference for the tail index ν = 1
ξ . For details,

please refer to Section 2.3.1.

In practice, above results can be applied to perform inference for block

(e.g., annual) maxima data using the maximum-likelihood method. How-

ever, this method can be wasteful of data due to the trade-off between the

size of the blocks and the number of blocks to be constructed from a given

dataset. In contrast, the peaks over threshold (POT) method, which em-

ploys the data of exceedances over a high threshold to estimate the tail of

distribution, is a more efficient approach.

6



2.1. Extreme Value Theory

The generalized Pareto distribution (GPD) is the pivotal distribution for

modelling the data of exceedances over a high threshold, see Embrechts et al.

[1997] and McNeil et al. [2005], among others.

Definition 2.1.2. (Generalized Pareto Distribution). The distribution func-

tion of the GPD is given by

Hξ,β(x) =

1− (1 + ξ xβ )
− 1
ξ , ξ 6= 0

1− exp{−x
β}, ξ = 0

,

where ξ is the shape parameter and β is an additional scale parameter.

When ξ > 0, Hξ,β(x) is a re-parameterized version of a heavy-tailed, ordi-

nary Pareto distribution; when ξ = 0, we have a light-tailed, exponential

distribution; when ξ < 0, Hξ,β(x) corresponds to a bounded (i.e. short-

tailed), Pareto type II distribution.

For a random variables Z with the cumulative probability function F ,

the conditional excess distribution of Z over a certain threshold u is given

by

Fu(x) = P(Z − u ≤ x|Z > u) =
F (u+ x)− F (u)

1− F (u)
.

A famous limit result by Balkema and De Haan [1974] and Pickands [1975]

shows that the GPD is the limiting distribution for the data of exceedances

over a high threshold. This results allows us to perform inference for the

data of exceedances over a high threshold (the tail observations).

2.1.2 Multivariate Case

Multivariate EVT studies the limiting distribution of a vector of appropri-

ately normalized coordinate-wise maxima. Assuming Z1, ...,Zn are a se-

quence of i.i.d. d-dimensional random vectors, and

Mn = (
n

max
i=1

(Zi,1), ...
n

max
i=1

(Zi,d))
T ,

then Mn can be modelled by the multivariate extreme value distribution

(MVEVD).
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2.2. Regular Variation

Theorem 2.1.2. If there exist vectors of normalizing constants an > 0 and

bn ∈ Rd, such that as n→∞

P
(

Mn − bn
an

≤ x

)
→ H(x), (2.1)

where H(x) is some non-degenerate distribution function, then H(x) is

called the multivariate extreme value distribution with univariate GEV marginals.

The details of above proposition can be found in de Haan and Resnick

[1977]) and Resnick [1987]. A typical procedure to model multivariate ex-

tremes typically involves two steps: marginal estimation and dependence

estimation. Marginal block maximum are first modelled using the GEV dis-

tribution and then transformed based on the fitted distribution to have a

unit Fréchet distribution. The dependence structure can then be modelled

via an existing parametric distribution or non-parametric distribution, see,

e.g., Coles and Tawn [1994].

The POT method can also be applied to do inference for the multivariate

data; however, the definition of a threshold exceedance is not as obvious as in

the univariate case. One approach is to employ a multivariate GPD (Rootzén

and Tajvidi [2006]), which leads to the study of data exceeding marginal

thresholds. Another one is to define a multivariate threshold exceedance in

terms of the norm of a random vector.

2.2 Regular Variation

It is widely accepted that high frequency financial return data comes from

a distribution with heavy tails. We make this assumption throughout the

project. Mathematically, heavy tails are often formalized by imposing the

condition of regular variation on the tail of the underlying distribution. Mul-

tivariate regular variation provides a probability framework for modelling

the joint tail of a random vector with threshold-exceedance data. Generally

speaking, it decomposes data into polar coordinates, and then characterizes

tail dependence by a limiting angular measure on the unit sphere under a

fixed norm.
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2.2. Regular Variation

In this section we review some results on regular variation, which will be

used in the later parts of the project. For more details, see, e.g., Resnick

[2006].

2.2.1 Definition

Definition 2.2.1. A positive measurable function h on (0,∞) is said to

be regularly varying at infinity with index ν > 0 (written h ∈ RV−ν) if

limt→∞ h(tx)/h(t) = x−ν for all x > 0.

Definition 2.2.2. A non-negative random variable Z is said to be regularly

varying with index ν > 0 if for every x > 0,

lim
t→∞

P(Z > tx)

P(Z > t)
= x−ν .

Definition 2.2.3. A random vector Z on Rd and its distribution are said

to be multivariate regularly varying with index ν > 0 if

lim
t→∞

P(||Z|| ≥ tx,Z/||Z|| ∈ D)

P(||Z|| ≥ t)
= x−νΨ(D), (2.2)

for every x > 0 and Borel set D in Sd−1 = {z ∈ Rd : ||z|| = 1} with

Ψ(∂D) = 0, where Ψ is a spectral probability measure on Sd−1, and || · ||
denotes the L2-norm.

Condition (2.2) is equivalent to having

lim
t→∞

P(‖Z‖ ≥ tx)

P(‖Z‖ ≥ t)
= x−ν , x > 0, (2.3)

and there must exist a measure µ such that

lim
t→∞

P(Z ∈ tE)

P(‖Z‖ ≥ t)
= µ(E) <∞ (2.4)

for every Borel set E on Rd, bounded away from the origin and satisfying

µ(∂E) = 0. Measures Ψ in (2.2) and µ in (2.4) are related via

Ψ(D) = µ(E1,D) for D ⊂ Sd−1 and E1,D = {z ∈ Rd : ‖z‖ ≥ 1, z/‖z‖ ∈ D}.
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2.2. Regular Variation

Definition 2.2.3 suggests a possibility to model multivariate tails by sep-

arating the (radial) tail behaviour and the extremal dependence structure

expressed in the form of measure Ψ in (2.2). However, condition (2.2) may

be cumbersome to work with as often multivariate distributions are specified

in terms of their densities. The following result, due to de Haan and Resnick

[1987], gives sufficient conditions on the density for (2.2) to hold; see also

Cai et al. [2011].

Theorem 2.2.1. Let f denote the density of random vector Z on Rd. Sup-

pose f is positive and continuous, and for some regularly varying function

V with index ν > 0 the following two limit conditions hold:

lim
t→∞

f(tz)

t−dV (t)
= q(z) > 0 for every z 6= 0, (2.5)

and

lim
t→∞

sup
z∈Sd−1

∣∣∣ f(tz)

t−dV (t)
− q(z)

∣∣∣ = 0. (2.6)

Then Z is multivariate regularly varying with index ν. Necessarily, q is

homogeneous: q(tz) = t−ν−d q(z) for z 6= 0. Moreover, if V (t) = P(‖Z‖ > t)

then µ(E) =
∫
E q(z)dz, where µ(·) is the measure in (2.4).

Remark 2.2.1. Condition (2.5) says that the density f is a multivariate reg-

ularly varying function with index (ν+d) and limit function q (Stam [1977]).

However, this condition alone is not sufficient to ensure multivariate regu-

lar variation of the tail of the distribution as it only controls the behaviour

along rays. The uniformity condition in (2.6) then guarantees (2.2).

Existence of density q of µ implies the existence of density ψ of Ψ. In

particular, one can show that

q(z) = q(rw) = ν r−ν−d ψ(w), w = z/‖z‖ ∈ Sd−1, r = ‖z‖. (2.7)

Proposition 2.2.2. (Karamata’s Theorem)

If ν > 1 (or if ν = 1 and
∫∞
t h(u)du < ∞), then h ∈ RV−ν implies that∫∞

t h(u)du is finite,
∫∞
t h(u)du ∈ RV−ν+1, and

lim
t→∞

th(t)∫∞
t h(u)du

= ν − 1.
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2.3. Inference

2.2.2 Link to MVEVD

The multivariate regular variation can be linked to MVEVD discussed in

Section 2.1.2 in the following way.

Proposition 2.2.3. (Resnick [1987], Corollary 5.18) Suppose that Z, a se-

quence of i.i.d. d-dimensional random vector, is regularly varying with index

ν > 0, and that Mn = (maxni=1(Zi,1), ...maxni=1(Zi,d))
T is the coordinate-

wise maxima of Z, then there exist normalizing sequences of vectors an > 0

and bn ∈ Rd such that Formula 2.1 holds with

H(x) = exp{−µ([0,x]c)},

where the marginal distributions of H(x) are GEV with tail index ν.

The above Corollary basically claims that if Z is multivariate regularly

varying, then its coordinate-wise maximum has a MVEVD with Fréchet

marginal distributions and dependence structure described by the measure

µ.

2.3 Inference

Two important components in modelling multivariate tail behaviour of reg-

ularly varying random vectors are tail index ν of the radial component and

tail dependence structure, which can be modelled by the spectral measure

Ψ. In this section, we review several existing methods to perform inference.

2.3.1 Tail Index Estimators

As we assume a heavy-tailed behaviour for the financial return data, we

need to estimate the tail index ν. Under the assumption that each variable

of a random vector Z has the same tail index ν, its L2-norm ‖Z‖ has a

regularly varying tail with index ν. This reduces the multivariate problem

to a univariate problem. In this section, we briefly review a few methods that

can be applied to estimate the tail index ν. This review is strongly influenced

by the master’s thesis of Trudel [2008], and I rephrased and reordered several

parts to fit in this project.
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2.3. Inference

Hill Estimator For a random variable Z, Hill [1975] derived the maximum-

likelihood estimator for the tail index ν given by

ν̂ =
[1

k

k∑
i=1

log
Z(i)

Z(k)

]−1
, (2.8)

where k is the threshold that defines the tail of the distribution, and Z(1) ≥
Z(2) ≥ ... ≥ Z(n) are the order statistics for the sample of i.i.d. copies of

random variable Z, and n is the number of observations. This estimator

is asymptotically unbiased and easy to implement, but is biased for small

samples.

CSN Estimator Clauset et al. [2009] proposed another way to estimate

the tail index, which relaxes the assumption that observations should be i.i.d.

in the maximum-likelihood method. This method relies on the minimization

of the Kolmogorov-Smirnov statistic between the empirical distribution of

the data and the assumed heavy-tailed distribution. Intuitively, the CSN

estimator intends to find the point where the change between the empirical

distribution and the assumed distribution will most likely happen. The

estimator is given by

ν̂ = arg min
ν
Dν ,

where Dν = max
x
|Pemp(x)− Pν(x)|;

Pemp(x) and Pν(x) denote the empirical (cumulative) distribution function

and the assumed heavy-tailed distribution function with tail index ν, re-

spectively.

HKKP Estimator The drawback of Hill estimator is the difficulty to

choose a suitable tail threshold number k such that the MSE is minimized.

Practically, the selection of k normally depends on experience. Huisman

et al. [2001] developed an ordinary linear regression (OLS) tail estimator to

correct the bias generated by Hill estimator for small samples. This method

does not simply rely on one single threshold k to estimate the tail index,

but exploits the information contained in a series of Hill estimators, each

estimated using different tail thresholds.
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2.3. Inference

The HKKP Estimator utilizes an important characteristic of the bias

term; that is, when the threshold k is small enough, the bias term can be

approximated by a linear function. This suggests that a linear regression or

OLS can help estimate the tail index. The linear model adopted by Huisman

et al. [2001] is stated as follows:

1

ν(k)
= β0 + β1k + ε(k), k = 1, 2, ..., κ, (2.9)

where κ is chosen such that the inverse of function ν(k) for k = 1, 2, ..., κ is

approximately linear, and Huisman et al. [2001] showed that the estimation

for tail index is robust to the choice of κ.

Furthermore, to correct for the heteroscedasticity of the error term ε(k),

a weighted least square (WLS) regression can be adopted here. Since the

variance of Hill estimator is inversely related to k, a (κ×κ) weighting matrix

that has {
√

1,
√

2, ...,
√
κ} as diagonal elements and zeros elsewhere can be

chosen. Since an unbiased estimator of ν can be attained for k approaching

0, Equation 2.9 yields the estimation of ν equal to the inverse of estimated

intercept β0.

BGST Estimator Another popular method to estimate tail index is to

run the following OLS log-log rank regression with γ = 0 (see Beirlant et al.

[2006])

log(k − γ) = β0 − β1 logZ(i), k = 1, 2, ..., n. (2.10)

The estimate of β1 is the approximation for tail index ν. This method is

motivated by the approximate linear relationship of the distribution with a

heavy tail

log(
k

n
) ≈ log(C)− ν logZk, k = 1, 2, ..., n. (2.11)

Gabaix and Ibragimov [2011] provide an improved tail index estimate for

this method, which simply sets γ to be 1
2 instead of 0. In this way, the bias

due to small samples can be reduced substantially.
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2.3. Inference

2.3.2 Spectral Measure

As discussed above, the spectral measure Ψ in (2.2) can be used to describe

the extreme dependence structure of a regularly varying random vector. A

major issue here is the estimation of the spectral measure Ψ. Firstly, it is

hard to tell where the tail begins in a given sample so that the asymptotic

approximation is sufficiently accurate. Secondly, there are simply very few

extreme observations. In this section, we summarize two non-parametric

methods to estimate the spectral measure. To simplify notation, we only

consider a random sample from a bivariate distribution. Note that if the dis-

tribution is known, the spectral measure can be obtained via Definition 2.2.3

or Theorem 2.2.1, at least numerically.

ES Estimator Einmahl and Segers [2009] proposed a non-parametric

maximum empirical likelihood estimator for the spectral measure Ψ. The

estimator is based on moment condition as below:∫
[0,π/2]

f(θ)Ψ(dθ) = 0, (2.12)

where f(θ) =
sin θ − cos θ

|| sin θ − cos θ||
, θ ∈ [0, π/2]. (2.13)

Let {(Zi,1, Zi,2); i = 1, . . . , n} be a bivariate random sample with n ob-

servations. The empirical marginal distribution function can be written as

F̂j(x) =
1

n

n∑
i=1

1(Zi,j ≤ x), x ∈ R, j = 1, 2

and ˆ̄Fi,j = 1 − F̂j(xi,j) is defined as the upper tail empirical probability.

Then the consistent empirical spectral probability measure Ψ̂ is

Ψ̂(·) =
∑
i∈In

p̃i,n1(θi,n ∈ ·),

where θin = arctan
( ˆ̄Fi,2

ˆ̄Fi,1

)
, i = 1, 2, ..., n,

In = {i = 1, 2, ..., n : ||( ˆ̄F−1
i,1 ,

ˆ̄F−1
i,2 )|| ≥ n/k},
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2.3. Inference

and the weight vector (p̃i,n : i ∈ In) solves the following optimization prob-

lem:

maximize
∏
i

pi,n,

constraints pi,n ≥ 0 for all i ∈ In,∑
i

pi,n = 1,∑
i

pi,nf(θi,n) = 0.

To prove asymptotic results of the estimator, the condition that k = k(n) is

an intermediate sequence satisfying the condition that k →∞ and k/n→ 0

as n→∞ is required.

This method makes no assumptions on the marginal distribution func-

tions, and allows for arbitrary norms when defining the actual representation

of the spectral measure. As then moment condition is set to be a constraint,

it succeeds to overcome the shortcomings of the empirical spectral measure

proposed in Einmahl et al. [2001] that is itself not a proper spectral measure

due to violation of moment constraints.

NS Estimator One drawback of the ES estimator is the difficulty to

choose the tail threshold k. Nguyen and Samorodnitsky [2013] proposed a

method that allows for systematic decision on what part of the sample cor-

responds to “tail observations”. This method is based on the rank method,

where the rank statistics are defined as

r
(j)
i =

n∑
m=1

1(Zm,j ≥ Zi,j), 1 ≤ i ≤ n, j = 1, 2.

To estimate the spectral measure, the data are firstly transformed by polar

transformation as

(Ri,k, θi,k) =
(∣∣∣∣∣∣( k

r
(1)
i

,
k

r
(2)
i

)
∣∣∣∣∣∣, ( k

r
(1)
i

, k

r
(2)
i

)∣∣∣∣∣∣( k

r
(1)
i

, k

r
(2)
i

)
∣∣∣∣∣∣
)
, i = 1, 2, ..., n.
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2.3. Inference

Then, the consistent estimator for Ψ based on Equation 2.2 can be written

as

Ψ̂(·) =

∑n
i=1 1(Ri,k > 1, θi,k ∈ ·)∑n

i=1 1(Ri,k > 1, θi,k ∈ [0, π/2])
.

Their choice of k used in tail estimation depends on the test for exponen-

tiality of “tail part” of the data. Specifically, k = min(N
(1)
n , N

(2)
n ), where

N
(j)
n is the smallest k such that the null hypothesis of exponentiality is

rejected for each marginal variable. The statistic used to test for exponen-

tiality is:

Qk,j =

√
k

2

( 1
k

∑k−1
i=0

(
log

Zn−i,j
Zn−k,j

)2(
1
k

∑k−1
i=0 log

Zn−i,j
Zn−k,j

)2 − 2

)
, j = 1, 2,

which converges to the standard normal distribution under the null hypoth-

esis that the variable is exponentially distributed (see Dahiya and Gurland

[1972]). Their choice of the significance level of the test gives

N (j)
n = inf

{
k : 1 ≤ k ≤ n, |Qk,n| ≥ ωj

√
θ

(j)
n

k

}
, j = 1, 2,

where ωj > 0 and θ
(j)
n is an increasing sequence such that θ

(j)
n = o

(
n

2ν
1+2ν

)
.

Their estimate is conservative about deciding on where the “tail” starts.

Other choices are possible catering to different needs, for example, k =

max(N
(1)
n , N

(2)
n ). This method is easily extended to higher dimension of

random vector Z, and is fast and simple to automate.

Other methods to estimate spectral measure include Guillotte et al.

[2011], Eastoe et al. [2014], among others. All these non-parametric meth-

ods are flexible to capture the behaviour of tail observations. However,

these methods suffer from a common disadvantage of non-parametric meth-

ods, that is, there is no parameter to make quantitative statements about

populations. In this project, the objective is to derive a semi-parametric

estimator for spectral measure, which is flexible enough to describe different

tail behaviour.
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Chapter 3

Review of Skewed

Distributions

3.1 Elliptical Distributions

Elliptical distributions are often used as a starting point for further gener-

alizations beyond elliptical symmetry. Here we give a definition, establish

notation and some useful facts for future reference. A complete treatment

of the topic may be found in Fang et al. [1990].

Definition 3.1.1. A continuous random vector Z on Rd is said to have an

elliptical distribution if its density is of the form

f(z; ξ,Ω) =
cd
|Ω|1/2

f̃{(z− ξ)TΩ−1(z− ξ)}, z ∈ Rd, (3.1)

where ξ ∈ Rd is a location parameter, Ω ∈ Rd×d is a positive-definite scale

matrix, f̃ : [0,∞) → [0,∞) is a continuous and integrable decreasing func-

tion, known as the density generator, and cd is a normalizing constant. We

write Z ∼ Elld(ξ,Ω, f̃).

The following stochastic representation for elliptically distributed random

vectors is often useful. If Z ∼ Elld(ξ,Ω, f̃), then Z can be written as

Z = ξ +RLTS, (3.2)

where LTL = Ω, S is a uniformly distributed random vector on Sd−1 = {z ∈
Rd : ‖z‖ = 1}, the unit sphere in Rd, and R is a positive scalar random

variable independent of S.
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3.2. Skew-symmetric Distributions

It will sometimes be convenient to work with a standardized form of the

scale matrix. Given a scale matrix Ω = (ωij) ∈ Rd×d, define the associated

standardized scale matrix Ω̄ as Ω̄ = ω−1 Ω ω−1, where

ω = diag(ω1, . . . , ωd) = diag(
√
ω11, . . . ,

√
ωdd). (3.3)

3.2 Skew-symmetric Distributions

In this section we describe a very general class of skewed distributions. The

construction is simple and is summarized in Proposition 3.2.1 below. Let

Z be a d-dimensional random vector which is centrally symmetric around a

point ξ ∈ Rd; i.e. Z−ξ d
= ξ−Z. Assuming that Z is continuous with density

f , the condition of central symmetry implies that f(z − ξ) = f(ξ − z) for

all z ∈ Rd, up to a set of measure zero. Note that the property of central

symmetry is satisfied by a wide variety of densities including for example the

class of elliptical densities. Skew-symmetric distributions as introduced in

Wang et al. [2004] are then constructed by perturbing the symmetry of the

density f of Z by a so-called skewing function. A function π : Rd → [0, 1] is

a skewing function if π(−z) = 1− π(z) for z ∈ Rd.

Proposition 3.2.1. Suppose f is the density of a continuous random vector

on Rd which is centrally symmetric around 0, and π : Rd → [0, 1] is a

skewing function. Let G denote a scalar distribution function of a random

variable that is symmetric about 0 such that G(−s) = 1−G(s) for all s ∈ R
and let w : Rd → R be an odd function with w(−x) = −w(x) for all x ∈ Rd.
Then the function from Rd → R+

2f(z− ξ)π(z− ξ), z, ξ ∈ Rd (3.4)

or equivalently,

2f(z− ξ)G(w(z− ξ)), z, ξ ∈ Rd (3.5)

is a density.

Proof A proof is given in Proposition 1 of Wang et al. [2004] and Azzalini

and Capitanio [2003]. Equivalence of the two formulations (3.4) and (3.5)

is shown in Proposition 2, Wang et al. [2004]. ¶
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3.2. Skew-symmetric Distributions

As remarked in Wang et al. [2004], representation (3.5) of a skewing func-

tion is not unique since for any strictly increasing distribution function G,

one can find a suitable odd function w to obtain a given skewing function π.

Definition 3.2.1. A random vector Z on Rd has a skew-symmetric distri-

bution with location parameter ξ ∈ Rd if its density is of the form (3.4) or

(3.5).

For a skew-symmetric random vector Z with density (3.5) , there exists

a convenient stochastic representation:

Z =

Y + ξ if U < π(Y) or X < w(Y + ξ)

−Y + ξ if U > π(Y) or X > w(Y + ξ)
, (3.6)

where Y has density f , U is uniformly distributed on (0, 1), and X is a

random variable with distribution function G; Y, U and X are mutually

independent. This representation gives a straightforward way to simulate

from skew-symmetric distributions.

An interesting and in fact useful property of skew-symmetric distribu-

tions is their invariance under even functions, which is immediate from the

stochastic representation in (3.6).

Proposition 3.2.2. Consider random vectors Y and Z on Rd with densities

f and of the form (3.4) with ξ = 0, respectively, satisfying the conditions of

Proposition 3.2.1. If τ : Rd → Rp for some p > 0 is an even function, i.e.

τ(−x) = τ(x) for all x ∈ Rd, then

τ(Y)
d
= τ(Z).

The complete generality of the class of skew-symmetric distributions is

shown in Wang et al. [2004] by proving that in fact any density has a skew-

symmetric representation and this representation is unique:

Proposition 3.2.3. For any density g on Rd and any point ξ ∈ Rd, g can

be represented as

g(z) = 2f(z− ξ)π(z− ξ), (3.7)
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3.3. Skew-elliptical Distributions

where f is a density, centrally symmetric around 0 and π is a skewing func-

tion. This representation is unique for any ξ, and

f(z) =
g(ξ + z) + g(ξ − z)

2
and π(z) =

g(ξ + z)

g(ξ + z) + g(ξ − z)
.

Next we would like to take a closer look at several important examples

of this very general family of skewed distributions.

3.3 Skew-elliptical Distributions

Skew-elliptical distributions constitute a fairly large subclass within the fam-

ily of skew-symmetric distributions, and are obtained by replacing the cen-

trally symmetric density f in (3.5) with a density of an elliptical distribution

(see Definition 3.1.1).

Definition 3.3.1. A random vector Z on Rd has a skew-elliptical distribu-

tion if its density is given by

h(z) = 2 f(z; ξ,Ω) G
(
w(z− ξ)

)
, z ∈ Rd, (3.8)

where:

• ξ ∈ Rd is a location parameter and Ω ∈ Rd×d is a positive-definite

scale matrix;

• f is the elliptical density in (3.1) with density generator f̃ ;

• G is a scalar distribution function such that G(−x) = 1−G(x) for all

x ∈ R;

• w : Rd → R is an odd function; i.e., w(−x) = −w(x) for all x ∈ Rd.

We write Z ∼ SEd(ξ,Ω, f̃ , G ◦ w).

Azzalini and Capitanio [2003] have derived a stochastic representation

for skew-elliptical random vectors similar to the one for elliptical vectors

presented in (3.2).
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3.3. Skew-elliptical Distributions

Proposition 3.3.1. If Z ∼ SEd(ξ, Ω̄, f̃ , G ◦w) as in Definition 3.3.1, then

it admits the following stochastic representation

Z = ξ +RLTS′, (3.9)

where Ω = LTL; R > 0 has density

fR(r) =
2πd/2

Γ(d/2)
cdf̃(r2)rd−1, r > 0, (3.10)

and S′ has a non-uniform distribution on the unit sphere in Rd. The density

of S′ in spherical coordinates is given by

Γ(d/2)

πd/2

d−2∏
k=1

(sin θk)
d−k−1P{X ≤ w∗L(θ1, . . . , θd−1, R)},

θ = (θ1, . . . , θd−1) ∈ [0, π)d−2 × [0, 2π),

where w∗L(θ, r) = wL(r cos θ1, r sin θ1 cos θ2, . . . , r sin θ1 · · · sin θd−1), wL(x) =

w(LTx), and X is an independent random variable with distribution func-

tion G.

Lemma 3.3.2 (Linear transformation of SE). Let Z ∼ SEd(ξ,Ω, f̃ , G◦w)),

then CZ ∼ SEd(Cξ, CTΩC, f̃ ,G ◦ω0) for any k× k non-singular matrix C,

where ω0(z− Cξ) = ω(C−1(z− Cξ)).

We next look at the form of this representation for two specific examples

of skew-elliptical distributions.

3.3.1 Skew-normal Distribution

The density of random vector Z on Rd with a skew-normal distribution

(denoted Z ∼ SNd(ξ,Ω,α)) is given by

fSN (z) = 2φd(z− ξ; Ω)Φ(αT (z− ξ)), z ∈ Rd, (3.11)

where α ∈ Rd is the shape parameter controlling the skewness of the distri-

bution; φd(·; Ω) is the density of the centred d-variate normal distribution
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3.3. Skew-elliptical Distributions

with scale matrix Ω and Φ(·) is the distribution function of the standard nor-

mal random variable. Comparing fSN in (3.11) with representation (3.5), we

see that G(·) = Φ(·) and w(y) = αTy, y ∈ Rd. Hence, for Z ∼ SNd(ξ,Ω,α),

Proposition 3.3.1 says that Z = ξ+RLTS′ with R2 ∼ χ2
d and the density of

S′ in spherical coordinates equal to

fΘ(θ) =
Γ(d/2)

πd/2

d−2∏
k=1

(sin θk)
d−k−1P{X ≤ R(α∗)Tβθ}, (3.12)

θ = (θ1, . . . , θd−1) ∈ [0, π)d−2 × [0, 2π),

where α∗ = Lα, βθ = (cos θ1, sin θ1 cos θ2, . . . , sin θ1 · · · sin θd−1)T and X ∼
N(0, 1), independent of R. Using the fact that X/

√
R2/d has a Student t

distribution with ν degrees of freedom and letting T1(·; ν) denote its distri-

bution function, we obtain

fΘ(θ) =
Γ(d/2)

πd/2

d−2∏
k=1

(sin θk)
d−k−1T1(

√
d(α∗)Tβθ; ν). (3.13)

3.3.2 Skew-t Distribution

Following Azzalini and Capitanio [2003], we say that a d-dimensional vector

Z has a skew-t distribution with location parameter ξ, scale matrix Ω, shape

parameter α and ν degrees of freedom (written as Z ∼ Std(ξ,Ω,α, ν)) if its

density is given by

fSt(z) = 2td(z; Ω, ν)T1

(
αTω−1(z− ξ)

( ν + d

Q(z) + ν

)1/2
; ν + d

)
, z ∈ Rd,

(3.14)

where Q(z) = (z − ξ)TΩ−1(z − ξ), and td(z; Ω, ν) is the density of a stan-

dardized d-dimensional t distributed random vector with scale matrix Ω and

ν degrees of freedom.

Application of Proposition 3.3.1 to Z ∼ Std(ξ,Ω,α, ν) gives that in the

stochastic representation (3.9), the density of S′ in spherical coordinates is

equal to

fΘ(θ) =
Γ(d/2)

πd/2

d−2∏
k=1

(sin θk)
d−k−1P

{
X ≤ R

√
ν + d

R2 + ν
(α∗)Tβθ

}
, (3.15)
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3.3. Skew-elliptical Distributions

where α∗ and βθ are as in (3.12), the density of R is given by

fR(r) ∝ (1 + r2/ν)−(ν+d)/2rd−1, r > 0,

and X has a Student t distribution with ν + d degrees of freedom and is

independent of R. Let Y = (X/R)
√

(R2 + ν)/(ν + d). The density of Y

can be computed as follows

fY (y) =

∫ ∞
0

fY |R(y | r)fR(r)dr ∝
∫ ∞

0
rd(ν + r2(1 + y2))−(ν+d+1)/2dr;

making change of variable t = r
√

1 + y2 gives

fY (y) ∝ (1 + y2)−(d+1)/2

∫ ∞
0

td(ν + t2)−(ν+d+1)/2dt ∝ (1 + y2)−(d+1)/2, y ∈ R,

from which one recognizes fY as the density of a t distribution with d degrees

of freedom evaluated at the point
√
dy. So, (X/R)

√
d(R2 + ν)/(ν + d) has

a t distribution with d degrees of freedom, which implies that the density of

S′ in (3.15) for the skew-t distribution is exactly the same as in (3.13) for the

skew-normal distribution. This result reveals similarity between the skew-

normal and skew-t distributions via the stochastic behaviour of the angular

component S′; the differences arise due to the tail behaviour as governed by

the radial component R, and the dependence between S′ and R.

In a similar way, it can be shown that the same result holds for a more

general class of skew-elliptical densities (of which skew-t is a special case)

based on the multivariate Pearson type VII distributions, whose generator

and normalizing constant are

f̃(x) = (1 + x/ν)−M , cd =
Γ(M)

(πν)d/2Γ(M − d/2)
, ν > 0, M > d/2.

Proposition 4 in Azzalini and Capitanio [2003] says that the density of the

above skew-elliptical distributions is of the type (3.5) and is given by

2f(z; Ω)F1(αT z(ν +Q(z))−1/2;M, 1), z ∈ Rd,

where f is the density of PV IId(0,Ω,M−1/2, ν) distribution and F1(·;M, 1)

is the distribution function of a PV II1(0, 1,M, 1) distributed random vari-

able. One recovers the skew-t case by setting M = (v + d+ 1)/2.
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3.3. Skew-elliptical Distributions

An interesting question is whether there are other examples of skew-

elliptical distributions for which the density of S′ in (3.9) is equal to (3.13),

and if so what conditions on the family of skew-elliptical distributions will

ensure this property.
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Chapter 4

Theoretical Results

In this chapter we explore the asymptotic behaviour of skew-elliptical dis-

tributions under certain restrictions on the skewing function. Specifically,

we derived a limit expression for the conditional probability given that one

of the components of a bivariate random vector is extreme, assuming a sub-

family of skew-elliptical distributions with regularly varying tails as the un-

derlying model. This extends results in Abdous et al. [2005a] for elliptically

symmetric vectors. All the proofs can be found in Appendix A.

4.1 Limit Results

The following results on the asymptotic behaviour of random vector Z will be

used to motivate and justify the proposed inference procedure for estimation

of the conditional probability η(x, y) in (1.1).

Proposition 4.1.1. Let Z = (X,Y ) ∼ SE2(ξ, Ω̄, f̃ , G ◦ w), where Ω̄ii = 1

and Ω̄ij = ρ ∈ (−1, 1) for i 6= j, i, j ∈ {1, 2}. Assume the following:

(i) The density generator f̃ of the underlying elliptical distribution varies

regularly: f̃ ∈ RV− ν+2
2

for some ν > 0;

(ii) limt→∞w(tz) =: w∞(z) ∈ R for all z ∈ R2, and limt→∞ supz∈S1 |G(w(tz))−
G(w∞(z))| = 0.

Then Z is a bivariate regularly varying random vector with index ν. The

density of the associated spectral measure Ψ in (2.2) is given by

ψ(w) = 2 |Ω̄|−(1/2)G(w∞(w)) Q∗(w)−(ν+2)/2
[ ∫ 2π

0
A(θ)ν/2dθ

]−1
, w ∈ S1,

(4.1)
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4.1. Limit Results

where A(θ) = 1 + ρ
√

1− ρ2 sin(2θ) + ρ2 cos(2θ), and Q∗(w) = wT Ω̄−1w.

Remark 4.1.1. Assumption (i) above is standard, and assumption (ii) holds

for popular members of the skew-elliptical family of distributions, including

multivariate skew-t distribution and more generally the skew-Pearson type

VII distribution, both mentioned in Chapter 3.3. The first part of assump-

tion (ii) indicates that the function w is bounded in all directions, and the

second part guarantees the uniformity condition (2.6) for density function

of Z.

Lemma 4.1.2. Let Z = ξ + RLTS
′ ∼ SEd(ξ,Ω, f̃ , G). Then the following

statements are equivalent:

(i) f̃ ∈ RV−(ν+d)/2;

(ii) R is regularly varying with index ν;

(iii) ||Z|| is regularly varying with index ν, where || · || is the L2 norm.

The next result gives the limit expression for the conditional probability

in (1.1).

Theorem 4.1.3. Let Z have a bivariate skew-elliptical distribution satisfy-

ing assumptions of Proposition 4.1.1. Suppose the marginal densities of Z

have the form:

hi(z) = 2 fi(z − ξi) G0(wi(z − ξi)), i = 1, 2, (4.2)

where fi(·) is the symmetric density of the ith component of elliptical vector

Z̃ and G0(wi(·)) is a skewing function with existing limit limt→∞wi(tx) =

wi,∞(x) ∈ R for all x ∈ R, i = 1, 2. Then, for y ∼ (z + ρ)x as x → ∞ and

z ∈ R,

lim
x,y→∞

P(Y ≤ y | X > x) = 1−K(ρ+ z) J(z), (4.3)

where:

• K(z) =

∫∫∞
(1,z)Q

∗(u)−(ν+2)/2 G(w∞(u)) du

G0(w1,∞(1))
∫∫∞

(1,z)Q
∗(u)−(ν+2)/2 du

with Q∗(x) = xT Ω̄−1x;
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4.1. Limit Results

•

J(z) = T 1

(z√ν + 1√
1− ρ2

; ν + 1
)

+
sign(ρ+ z)

|ρ+ z|ν
T 1

(
sign(ρ+ z)

√
ν + 1√
1− ρ2

( 1

ρ+ z
− ρ
)

; ν + 1
)

;

• T1(x; ν) is the cdf of a univariate Student t random variable with ν

degrees of freedom;

• T 1(x; ν) = 1− T1(x; ν).

Remark 4.1.2. When the skewing function is identity, the factor K(z) in

(A.9) is equal to one, and one recovers Theorem 1(i) in Abdous et al. [2005a]

for elliptical random vectors.

Remark 4.1.3. The assumption of closure under marginalization is valid for

some restricted generating functions and skewing functions; for example, the

skew-elliptical distributions proposed by Branco and Dey [2001] and by Fang

[2003]1. Skew-normal , skew-t, and skewed Pearson Type II distributions are

all included in this distribution family.

Example 1. Suppose Z has a bivariate skew-t distribution, Z ∼ St2(0,Ω,α, ν).

The marginals satisfy

P(Zi > z) ∼ 2 T 1(z; ν) T1(αi
√
ν + 1, ν + 1), z →∞, i = 1, 2,

with

α1 =
α1 + ρα2√

1 + α2
2(1− ρ2)

and α2 =
α2 + ρα1√

1 + α2
1(1− ρ2)

. (4.4)

For the skewing function we haveG(·) = T1(·; ν+2), w(z) = αT z
( ν + 2

Q(z) + ν

)1/2

and w∞(z) = αT z
( ν + 2

Q∗(z)

)1/2
, and so the factor K(z) in (A.9) is given by

K(z;α, ρ, ν) =

∫∫∞
(1,z)Q

∗(u)−(ν+2)/2 T1

(
αTu

√
ν+2
Q∗(u) ; ν + 2

)
du

T1(α1

√
ν + 1; ν + 1)

∫∫∞
(1,z)Q

∗(u)−(ν+2)/2du
. (4.5)

1When λ = 0, skew-elliptical distribution in Fang [2003] is reduced to the form in

Branco and Dey [2001].
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4.1. Limit Results

In this case, the limit expression in (4.3) below can be evaluated numerically.

Figure 4.1 plots the limiting behaviours described in Theorem 4.1.3 for

a bivariate skew-t distribution with shifted location. To show correctness

of the derived formula, we firstly calculate the limiting value obtained from

Theorem 4.1.3 (see (a)), and then calculate true values by numerical inte-

gration with different thresholds for x (see (b), (c), and (d)). As x increases,

numerical values converge to the limiting value. Therefore, Theorem 4.1.3

works well even if the location parameter is not around 0.

Figure 4.1: Plot of the values of lim
x→∞

P(Y ≤ (z + ρ)x | X > x) in terms of z for a

bivariate skew-t distribution with ξ = (5,−5), α = (1,−3), ρ = 0.5 and ν = 2: a)

limiting value from Thereon 4.1.3, and true value with x being (b) 99% marginal

quantile, (c) 99.99% marginal quantile, and (d) 200.
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Chapter 5

Inference

In practice, one often has to evaluate the probability η(x, y) in (1.1) when x

and y are large but finite. For example, η(x, y) can represent the probability

that a stock or a portfolio experiences a large loss when the market crashes.

However, the empirical estimate of this probability may take a degenerate

value of 0 or 1 whenever the sample contains no observations in the region of

interest. The inference procedure we propose makes use of the asymptotic

result in Theorem 4.1.3 as a finite sample approximation of the conditional

probability η(x, y) for large values of x and y. Evaluation of the limit in (4.3)

requires estimation of the tail index ν, parameter ρ of the standardized scale

matrix, and (parameters of) the asymptotic skewing function G(w∞(·)).
It is henceforth assumed that the bivariate sample {Z1, . . . ,Zn} on which

inference is based comprises independent and identically distributed copies

of random vector Z satisfying assumptions of Theorem 4.1.3.

5.1 Tail Index Estimation

Under the assumptions of Theorem 4.1.3 on random vector Z, its L2-norm

‖Z‖ has a regularly varying tail with index ν; see Lemma 4.1.2. This reduces

the problem of estimation of ν to a univariate setting, which has been wildly

studied in the literature. Similar to Abdous et al. [2005a], we adopt the

method of Huisman et al. [2001], shown to have good performance in small

samples. The estimation procedure is summarized in Program 1.

Table 5.1 re-examines performance of the above tail index estimator for

two skewed distributions, in particular with the purpose to supplement the

symmetric cases considered in the original paper of Huisman et al. [2001].
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5.1. Tail Index Estimation

Algorithm 1 Estimation of tail index ν

(1) Let {z1, z2, ..., zn} represent a bivariate sample with location ξ;

(2) Re-center data z̃j = zj − ξ̂, j = 1, . . . , n, where ξ̂ is a robust estimate

of ξ;

(3) Calculate L2-norm distances ||z̃j ||, j = 1, ..., n;

(4) Compute Hill estimates ν̂H(k) of the tail index for k = 1,. . . ,n2 , where

k is the number of upper order statistics used in estimation (Hill [1975]);

(5) Fit a weighted linear regression 1/ν̂H(k) = β0+β1k+ε(k), k = 1, . . . , n2
with weights {

√
1,
√

2, ...
√

n
2 };

(6) Set ν̂ = 1/β̂0, where β̂0 is the estimate of β0 obtained in Step (5).

The analysis is based on 1000 simulated samples of sizes 5000, 1000, 500 and

200 from a bivariate skew-t distribution with different settings for the loca-

tion parameter. As specified in Program 1, the generated samples are first

re-centered by a robust estimate of location ξ (see Rousseeuw and Driessen

[1999] and Maronna and Zamar [2002]). Re-centering helps reduce the bias

in the tail index estimate caused by a non-zero location. Note that in the

symmetric case, the sample mean is an unbiased estimator of location pa-

rameter ξ; however, when the underlying distribution is skewed, estimation

of ξ using the sample mean is subject to a bias. Based on Table 5.1, the

performance of estimator ν̂ seems to be satisfactory even when the sample

size is relatively small.

Table 5.1: Performance of estimator ν̂ computed using Program 1. The bivariate

skew-t distribution with tail index ν = 2 is used in simulations to generate samples

of four different sample sizes. Each cell presents the average value of estimates of

ν based on 1000 simulated samples of a given size, and the corresponding standard

error (in brackets). Two different parameter settings are considered. Case 1: α =

(1,−3), ρ = 0.5, ξ = (0, 0); Case 2: α = (1,−3), ρ = 0.5, ξ = (3, 1).

Sample Size Case 1 Case 2

5000 2.00 (0.01) 2.00 (0.09)

1000 2.04 (0.22) 2.05 (0.22)

500 2.08 (0.33) 2.08 (0.32)

200 2.25 (0.61) 2.23 (0.59)
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5.2. Parametric EVT Estimation

5.2 Parametric EVT Estimation

Estimation of the remaining terms in the limit expression (4.3) for η(x, y)

constitutes a more complex problem than estimation of the tail index ν, as

the former requires inference about the multivariate tail behaviour. In the

setting of multivariate regular variation, a standard procedure is to make

use of the spectral measure Ψ in (2.2).

Suppose Z1, . . . ,Zn are independent and identically distributed random

vectors from a bivariate regularly varying distribution; see Definition 2.2.3.

Let Ri = ‖Zi‖ and Wi = Zi/‖Zi‖ denote the radius and direction of Zi,

i = 1, . . . , n, respectively. Let Rn−k:n denote the kth largest observation

in the sample of Ri’s; it is used to identify extreme or tail observations in

the original bivariate sample of Zi’s. Then the limit in (2.2) suggests that,

given Zi with Ri > Rn−k:n, the sample of Wi’s can be modelled by measure

Ψ. While various parametric and non-parametric procedures are possible

to make inference about Ψ, here we build upon the class of skew-elliptical

distributions.

Given a particular skewing function π(·) = G(w(·)), which satisfies as-

sumptions of Theorem 4.1.3, spectral density ψ(w) can be written down

explicitly using (4.1). One can then estimate ρ as well as other parameters

in G(w∞(·)) by maximizing the log-likelihood based on ψ(w) for the tail

data projected on the unit sphere S1, namely for Wi’s with Ri > Rn−k:n.

In our implementation, we assume that the limiting skewing function

G(w∞(·)) has the same form as that for the skew-t distribution. The spectral

density in this case is given by

ψst(w) = 2 |Ω̄|−
1
2 T1

(
αTw

√
ν + 2

Q∗(w)
; ν + 2

)
Q∗(w)−

ν+2
2

[ ∫ 2π

0
A(θ)

ν
2 dθ
]−1

,

w ∈ S1; (5.1)

cf. Example 1. The parameters to be estimated include shape parameter

α = (α1, α2) and parameter ρ of the standardized scale matrix Ω̄. The

details of the resulting inference procedure are summarized in Program 2.

31



5.2. Parametric EVT Estimation

Algorithm 2 Estimation using parametric EVT method

(1) Let {z1, z2, ..., zn} represent a bivariate sample with location ξ;

(2) Re-center data z̃j = zj − ξ̂, j = 1, . . . , n, where ξ̂ is a robust estimate

of ξ;

(3) Estimate tail index ν using Program 1;

(4) Calculate L2-norm distances ||z̃j || and set wj = z̃j/||z̃j ||, j = 1, 2, ..., n;

Keep wj if corresponding ||z̃j || exceeds a specified high quantile

threshold;

Estimate parameters ρ and α by fitting ψst in (5.1) to the retained

sample of wj ’s using the maximum-likelihood.

In Step (4) of Program 2, it is necessary to select a threshold to identify

extreme observations based on their L2-norm distances. Such a choice al-

ways entails a bias-variance trade-off due to balancing between the model

validity and estimation efficiency. To assess stability of our parametric EVT

method, we simulated 1000 skew-t samples of size 1000. Absolute differ-

ences between the true value of η(x, y) and estimated probability η̂(x, y)

using (4.3) and Program 2 for parameter estimation with different thresh-

olds were calculated, where x and y were taken as the theoretical 99.99%

marginal quantiles. Figure 5.1 shows the mean and standard deviation of

absolute differences for different thresholds. Based on these plots, in the sub-

sequent analyses, we set the threshold at the 85% quantile of the distance

variates ‖z̃j‖ (j = 1, . . . , n).

Assuming a particular parametric form for the spectral density improves

efficiency of the estimation procedure in comparison to non-parametric ap-

proaches, especially when the sample size is small. While this entails a

certain degree of model risk, the proposed model can well capture asymmet-

ric contour shapes and thus gives a more flexible alternative to elliptically

symmetric models. Figure 5.2 shows several contour plots that can be mod-

elled by ψst in (5.1). As only tail observations are used to do the estimation,

our approach is fundamentally different from modelling data directly using

the skew-t distribution; that is, skew-t distribution fitted using the entire

data are subject to undue influence of the central observations, possibly

compromising the fit in the tail regions.
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5.2. Parametric EVT Estimation

Figure 5.1: Mean (left panel) and standard derivation (right panel) of absolute

differences between exact value of η(x, y) and estimated probability η̂(x, y) using

Theorem 4.1.3 for different thresholds. Samples are drawn from the skew-t distri-

bution with ξ = (0, 0), α = (1,−3), ν = 2, ρ = 0.5. Values of x and y are chosen

as the theoretical marginal quantiles with probability 99.99%.

Figure 5.2: The contour plots {z ∈ R2 | ψst(z) < 1} for spectral density ψst

in (5.1). The parameters are set to ν = 2, ρ = 0.5 and several values of α (left

panel); α = (3,−1) and several values of ρ (right panel).
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5.3. Iterative Parametric EVT Estimation

Our method shares a similar idea as in Cai et al. [2011], where the authors

propose an asymptotically motivated estimator to approximate an extreme

risk region of the form {z ∈ Rd : h(z) ≤ β}, where h is the underlying density

function and β > 0 is a small number. They argue that a (semi)-parametric

method with a pre-specified form of the spectral density does not perform as

well as when the spectral density is estimated non-parametrically. However,

in their comparative analysis an elliptically contoured model is used which

indeed may not be flexible enough for an application at hand. Different non-

parametric consistent estimators for spectral density have been proposed

recently (see Nguyen and Samorodnitsky [2013], Eastoe et al. [2014], among

others); however, these methods do not fit in our framework.

While asymptotically a non-zero location ξ does not affect the results,

in practice when working with finite values the location does have influence

on the performance of the estimation procedure. So far we have been using

a robust estimate of location ξ to re-centre the data. In the next section,

we propose a refinement of Program 2. Based on the subsequent simulation

studies with the location parameter substantially different from zero, the

proposed iterative procedure leads to more accurate estimation results.

5.3 Iterative Parametric EVT Estimation

To estimate conditional probability η(x, y) when the location of the sample is

far from the origin, one needs a good estimator for location parameter ξ. Ma

et al. [2005] propose a locally efficient semi-parametric method specifically

for univariate skew-elliptical data. However, their method becomes tedious

in the multivariate setting. Other methods including robust estimation used

in the previous section cannot handle skewed data very well.

Note that our estimation method relies on the tail data only given an

initial estimate of the location. If the location of the shifted sample is close

to zero, the accuracy of the estimation using the parametric EVT method

of the previous section should not be significantly influenced by the location

parameter. Tail data alone are unlikely to provide an accurate estimate of

the location parameter which determines the center of the entire data cloud.
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5.3. Iterative Parametric EVT Estimation

Based on these considerations, we introduce an iterative procedure to update

the location parameter using the entire sample, followed by re-estimation of

the other model parameters with the parametric EVT method.

In particular, we assume that the angular component S′ in the stochastic

representation (3.9) of skew-elliptical distributions for the bivariate case has

the following density in polar coordinates:

fΘ(θ) =
1

π
T1

(
√

2(Lα)T

(
cos θ

sin θ

)
; 2

)
, θ ∈ [0, 2π). (5.2)

This is precisely the form that was obtained in examples considered in Sec-

tion 3.3. Now, based on (3.9), write

Z̃ = (X̃, Ỹ ) = (L−1)
T

(Z− ξ) = R(cos Θ, sin Θ),

which implies that Θ = tan−1
(
Ỹ /X̃

)
. Hence, given an initial estimate ξ̂ of ξ

such as the robust estimate used previously and the estimate of ρ, the param-

eter of standardized scale matrix Ω̄ = LTL, computed using the parametric

EVT method, we can obtain the initial sample of angles {Θ(0)
i ; i = 1, . . . , n}

from the original data Z1, . . . ,Zn. Then we can update ξ̂ by minimizing a

distance between the theoretical density fΘ(θ; ξ|α̂, ρ̂) in (5.2) and empiri-

cal density of Θi’s, denoted f̂Θ,n(θ; ξ|α̂, ρ̂) over values of ξ with the other

parameters fixed at their estimates, i.e.,

ξ̂ = arg min
ξ
||fΘ(θ; ξ|α̂, ρ̂)− f̂Θ,n(θ; ξ|α̂, ρ̂)||2. (5.3)

To improve stability of estimation of ξ̂, we also control the convergence of

α̂ and ρ̂ by updating their values for the fixed value of ξ̂ from the previous

iteration:

(α̂, ρ̂) = arg min
α,ρ

||fΘ(θ;α, ρ|ξ̂)− f̂Θ,n(θ;α, ρ|ξ̂)||2. (5.4)

Let ||(ξ̂, α̂, ρ̂)j − (ξ̂, α̂, ρ̂)j−1||∞ denote the largest absolute value of differ-

ences between two consecutive estimates. Once ||(ξ̂, α̂, ρ̂)j−(ξ̂, α̂, ρ̂)j−1||∞ <

ε for a chosen tolerance level ε > 0, we stop the above iterative procedure of

updating parameter estimates. As a final step, given the value of ξ̂ from the
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5.4. Estimation of the Scale Matrix

last iteration, the data are re-centred and α and ρ are re-estimated using

the parametric EVT method. The details of this procedure are summarized

in Program 3.

Algorithm 3 Estimation using iterative parametric EVT method

(1) Let {z1, z2, ..., zn} represent a bivariate sample with location ξ;

(2) Re-center data z̃j = zj − ξ̂, j = 1, . . . , n, where ξ̂ is a robust estimate

of ξ;

(3) Estimate parameters ν, α and ρ using Program 1 and 2;

(4) Set Diff = 1

while Diff > ε do

Compute ξ̂ according to (5.3);

Given ξ̂, update α̂ and ρ̂ according to (5.4);

Set Diff = ||(ξ̂, α̂, ρ̂)i − (ξ̂, α̂, ρ̂)i−1||∞
end while

(5) With updated ξ̂ from the last iteration in Step (4), apply Program 2

to re-compute α̂ and ρ̂.

As a final remark, we note that by assuming a particular form of the den-

sity of the angular component in (5.2), we implicitly restrict the behaviour

of the underlying density generator f̃ due to dependence between the radial

and angular components in representation (3.9). However, this restriction

is used only to improve the estimation of the location parameter, while the

other parameters are estimated as before using the parametric EVT method

based on (re-centred) tail data.

5.4 Estimation of the Scale Matrix

So far, in Theorem 4.1.3 and inference methods discussed above, it was as-

sumed that the scale matrix is given in the standardized form as Ω̄. However,

estimation of scale matrix Ω assuming that the underlying distribution is

skewed is not as straightforward as in the case of elliptical symmetry.

To address this problem, first recall Ω = ω Ω̄ ω, where ω is the diagonal

matrix defined in (3.3). Note that if Z ∼ SEd(ξ,Ω, f̃ , G◦w), then from (3.9)
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it follows that ω−1Z ∼ SEd(ω−1ξ, Ω̄, f̃ , G◦w). A simple approach is to first

estimate ω by say a robust method mentioned before (see Rousseeuw and

Driessen [1999] and Maronna and Zamar [2002]), and then directly apply

previous inference results to the transformed vector ω−1Z. However, the

performance of this approach is not satisfactory especially when data is

skewed and ω is far from the identity matrix. Other approaches include:

M1 Estimate ω via MLE with density ψ(w) in (4.1);

M2 Estimate ω together with ξ using the iterative parametric EVT method,

i.e.,

(ξ̂, ω̂) = arg min
ξ,ω

||fΘ(θ; ξ, ω|α̂, ρ̂)− f̂Θ,n(θ; ξ, ω|α̂, ρ̂)||2.

The above two approaches only require slight modifications of Program 2

and 3. It is worth to mentioning that method M1 requires simultaneous

estimation of too many parameters making the optimization process hard

to control. In Section 5.5, we demonstrate that the second approach (M2)

works better than the first one.

5.5 Simulation Studies

In this section we report results of a simulation study to show performance of

the proposed methods. The assessment is based on 1000 samples of size 1000

simulated from two bivariate skew-t distributions, one with a standardized

scale matrix Ω̄ and the other with scale matrix Ω = ω Ω̄ ω, where ω =

diag(2, 3). The other distribution parameters are set as ξ = (3, 1), α =

(1,−3), ρ = 0.5, and ν = 2. In the first case, we do not estimate ω, in

other words, we take Ω̄ as given; in the second case, ω is estimated using

the two approaches discussed in the previous section. For the estimation

of conditional probability η(x, y), the values of x and y are taken as the

theoretical 97.5%, 99.0%, 99.9% and 99.99% marginal quantiles. For each

sample and various values of x and y, we evaluated η̂(x, y) using different

methods:
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5.5. Simulation Studies

• AFG (η̂AFG(x, y)): based on the limit result for elliptical distributions

(see Abdous et al. [2005b]), and ω is estimated using robust method

when necessary;

• Parametric EVT (η̂1(x, y)): based on the limit result in Theorem 4.1.3

and the parametric EVT method (Program 2), and ω is estimated

using M1 when necessary;

• Iterative parametric EVT (η̂2(x, y)): based on the limit result in The-

orem 4.1.3 and the iterative parametric EVT method (Program 3),

and ω is estimated using M2 when necessary;

• Empirical (η̂emp(x, y)): based on the empirical distribution;

• True (η(x, y)): the true value computed by numerical integration using

preset parameters;

• Limiting (ηlim(x, y)): the true value of the limit stated in Theorem

4.1.3 using preset parameters.

The simulation results are presented in Tables 5.2 and 5.3. They show

that, under the considered simulation settings, the AFG method greatly un-

derestimates condition probability η(x, y). The empirical method provides

good estimates of η(x, y) for moderate quantile levels relative to the sam-

ple size, albeit a much larger standard deviation in comparison to the other

methods. For the very extreme quantile levels, no proper empirical estimates

could be obtained. The two methods proposed in this project produce accu-

rate estimates of η(x, y) with reasonable standard errors, and clearly provide

an improvement over the AFG method in terms of accuracy. The iterative

parametric EVT estimator η̂2(x, y) does achieve gains in accuracy over the

parametric EVT estimator η̂1(x, y) due to better estimation of the location

parameter. A similar simulation for elliptically symmetric distributions was

also conducted (see Table B.1), in which our estimator η̂2(x, y) showed a

similar performance to η̂AFG(x, y)2.

2For comparison, we also report simulation results for a bivariate skew-t distribution

with a lighter tail (ν = 20) in Table B.2. We can see that the limiting value ηlim(x, y)

is still close to the true value η(x, y), but estimate η̂2(x, y) is not. This is due to poor
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Figure 5.3 compares the true contour {z ∈ R2 | ψst(z) < 1} with es-

timated contours {z ∈ R2 | ψ̂st(z) < 1} for one of the simulated scenarios

using the iterative parametric EVT method and the method discussed in Ab-

dous et al. [2005b]. It can be easily observed that the proposed method is

more flexible in capturing asymmetric shapes of the data clouds.

Figure 5.3: Comparison of the true level curve {ψst(z) < 1} with the estimated

contours {ψ̂st(z) < 1} using the AFG method and the proposed iterative parametric

EVT method. The data are generated from a bivariate skew-t distribution with

parameters ξ = (3, 1), α = (1,−3), ρ = 0.5, ν = 2, and ω = (1, 1) (left panel) or

ω = (2, 3) (right panel).

-

estimation of tail index when the tail decays fast. Abdous et al. [2005a] also suffers the

same problem.
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Table 5.2: Simulation results based on 1000 samples of size 1000 from a bivariate skew-t distribution with parameters ξ =

(3,1), α = (1,-3), ν =2, ρ = 0.5 and a standardized scale matrix. Each cell provides the average (standard deviation) of the

estimates of η(x, y) under various methods; see Section 5.5 for details. For η̂AFG(x, y), η̂1(x, y), η̂2(x, y) and ηlim(x, y), we

used z = y/x− ρ in the limit results. Values of x and y are chosen as the theoretical marginal quantiles with probability p,

where p labels columns and rows.

Quantile y
Quantile x

97.5% 99.0% 99.9% 99.99%

97.5%

η̂AFG(x, y) 0.239 (0.019) 0.215 (0.019) 0.179 (0.018) 0.165 (0.017)

η̂1(x, y) 0.605 (0.046) 0.562 (0.046) 0.490 (0.044) 0.460 (0.043)

η̂2(x, y) 0.693 (0.048) 0.641 (0.048) 0.553 (0.046) 0.517 (0.045)

η̂emp(x, y) 0.653 (0.098) 0.588 (0.168) * *

η(x, y)/ηlim(x, y) 0.652/0.685 0.587/0.633 0.518/0.544 0.498/0.508

99.0%

η̂AFG(x, y) 0.273 (0.020) 0.238 (0.019) 0.186 (0.018) 0.167 (0.017)

η̂1(x, y) 0.659 (0.045) 0.603 (0.046) 0.506 (0.044) 0.465 (0.043)

η̂2(x, y) 0.755 (0.046) 0.691 (0.048) 0.573 (0.047) 0.523 (0.045)

η̂emp(x, y) 0.761 (0.089) 0.658 (0.165) * *

η(x, y)/ηlim(x, y) 0.761/0.749 0.661/0.683 0.540/0.564 0.505/0.514

99.9%

η̂AFG(x, y) 0.507 (0.024) 0.399 (0.022) 0.234 (0.019) 0.181 (0.018)

η̂1(x, y) 0.863 (0.030) 0.794 (0.038) 0.596 (0.046) 0.495 (0.044)

η̂2(x, y) 0.932 (0.022) 0.884 (0.032) 0.683 (0.048) 0.559 (0.046)

η̂emp(x, y) 0.963 (0.039) 0.911 (0.095) * *

η(x, y)/ηlim(x, y) 0.964/0.930 0.915/0.882 0.666/0.675 0.542/0.550

99.99%

η̂AFG(x, y) 0.880 (0.022) 0.802 (0.026) 0.439 (0.022) 0.231 (0.019)

η̂1(x, y) 0.977 (0.008) 0.961 (0.012) 0.823 (0.035) 0.592 (0.046)

η̂2(x, y) 0.991 (0.004) 0.984 (0.007) 0.905 (0.028) 0.677 (0.048)

η̂emp(x, y) 0.996 (0.012) 0.991 (0.030) * *

η(x, y)/ηlim(x, y) 0.996/0.990 0.991/0.983 0.916/0.903 0.667/0.670
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Table 5.3: Simulation results based on 1000 samples of size 1000 from a bivariate skew-t distribution with parameters ξ =

(3,1), α = (1,-3), ν =2, ρ = 0.5 and ω = diag(2, 3) for the scale matrix. Each cell provides the average (standard deviation) of

the estimates of η(x, y) under various methods; see Section 5.5 for details. For η̂AFG(x, y), η̂1(x, y), η̂2(x, y) and ηlim(x, y) we

used z = ω1y/ω2x−ρ in the limit results. Values of x and y are chosen as the theoretical marginal quantiles with probability

p, where p labels columns and rows.

Quantile y
Quantile x

97.5% 99.0% 99.9% 99.99%

97.5%

η̂AFG(x, y) 0.236 (0.035) 0.210 (0.027) 0.178 (0.018) 0.168 (0.017)

η̂1(x, y) 0.540 (0.049) 0.491 (0.047) 0.425 (0.046) 0.402 (0.045)

η̂2(x, y) 0.627 (0.050) 0.577 (0.050) 0.510 (0.049) 0.485 (0.048)

η̂emp(x, y) 0.653 (0.098) 0.588 (0.168) * *

η(x, y)/ηlim(x, y) 0.652/0.648 0.587/0.597 0.518/0.526 0.498/0.501

99.0%

η̂AFG(x, y) 0.286 (0.0491) 0.241 (0.037) 0.187 (0.020) 0.170 (0.017)

η̂1(x, y) 0.623 (0.048) 0.549 (0.049) 0.444 (0.046) 0.408 (0.045)

η̂2(x, y) 0.708 (0.048) 0.635 (0.049) 0.529 (0.049) 0.492 (0.048)

η̂emp(x, y) 0.761 (0.089) 0.658 (0.165) * *

η(x, y)/ηlim(x, y) 0.761/0.733 0.661/0.657 0.540/0.547 0.505/0.508

99.90%

η̂AFG(x, y) 0.598 (0.100) 0.457 (0.086) 0.245 (0.038) 0.186 (0.020)

η̂1(x, y) 0.891 (0.026) 0.810 (0.037) 0.556 (0.049) 0.442 (0.046)

η̂2(x, y) 0.929 (0.021) 0.870 (0.033) 0.642 (0.050) 0.527 (0.049)

η̂emp(x, y) 0.963 (0.039) 0.911 (0.095) * *

η(x, y)/ηlim(x, y) 0.964/0.945 0.915/0.893 0.666/0.665 0.542/0.544

99.99%

η̂AFG(x, y) 0.915 (0.055) 0.846 (0.078) 0.489 (0.090) 0.246 (0.038)

η̂1(x, y) 0.985 (0.006) 0.970 (0.010) 0.832 (0.034) 0.557 (0.048)

η̂2(x, y) 0.991 (0.004) 0.981 (0.007) 0.887 (0.030) 0.644 (0.049)

η̂emp(x, y) 0.996 (0.012) 0.991 (0.030) * *

η(x, y)/ηlim(x, y) 0.996/0.994 0.991/0.987 0.916/0.908 0.667/0.666
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Chapter 6

Financial Applications

6.1 Financial Contagion

In this section, a practical application is illustrated in the context of finan-

cial contagion at the domestic level, for which estimation of the extreme

conditional excess probability is needed. We investigate the extreme condi-

tional excess probability 1 − η(x, y) = P(Lj > y|Ls > x), where Ls is the

daily loss on a portfolio which is a proxy for the aggregate financial system,

and Lj is the daily loss on a stock or a portfolio. This probability quantifies

the tail risk of a stock when the overall financial market encounters a severe

negative shock. It could also be interpreted as the extreme dependence of

the stock and the aggregate financial system.

We consider a partial panel of financial institutions studied in Acharya

et al. [2010], with complete data between June 1, 2006 and May 31, 2008.

The time period from June 1, 2006 to May 31, 2007 is defined as the pre-

crisis window (same as in Girardi and Tolga [2013]), and the remaining

one-year is the crisis window. The panel contains U.S. financial firms in the

depositories industry with a market capitalization greater than 5 billion USD

as of the end of June 2007. The Dow Jones US Financials Index (DJUSFN)

is used as a proxy for the aggregate financial system. The daily prices and

capitalization information are extracted from Yahoo Finance.

Daily losses are calculated as negative log returns. Due to the presence

of serial dependence and volatility clustering in daily financial returns, it is

common to first filter the data using the AR(1)-GARCH(1,1) model. Then

residuals can be treated as a sequence of independent and identically dis-

tributed random variables.
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6.1. Financial Contagion

Table 6.1 reports estimation results for the filtered data. For each insti-

tution in pre-crisis period, we estimate 1 − η(x, y) using the AFG method

and the iterative parametric EVT method (denoted as before 1− η̂AFG(x, y)

and 1 − η̂2(x, y), respectively), together with the estimated marginal sur-

vival probability P̂(Y > y). The latter is estimated by fitting the General-

ized Pareto distribution to threshold excesses using the maximum-likelihood

method (see, e.g., Coles [2001] for details). The values of x and y are,

respectively, the 99.9% quantile of the losses on DJUSFN and the aver-

age of the 99% quantile of the losses on cross-sectional stocks3. The right

columns in the panel “pre-crisis” present parameter estimates used to eval-

uate 1− η̂2(x, y). The “crisis” column reports the estimated extreme condi-

tional excess probability during the crisis period.

As indicated by the estimates of the tail index ν, the bivariate joint

distributions of losses on stocks and the DJUSFN index exhibit a fairly

slow radial decay, with most of ν̂ in the range from 2.5 to 4.54. Based on

the estimates of the shape parameter α = (α1, α2), there is evidence of

skewness in the joint distribution of the index and stock returns over the

considered one-year estimation window. It can be noted that the estimates

of the skewness parameter α1, corresponding to the DJUSFN index, tend to

fluctuate considerably, contrary to the intuition that these estimates should

be fairly stable and reflect the skewness in the index data. Partly, this can

be explained by the fact that α1 is not the marginal parameter. If the data of

stock and the index losses were to come from a bivariate skew-t distribution,

one could convert the bivariate skewness parameter α = (α1, α2) to the

marginal parameters ᾱ1 and ᾱ2 using Equation 4.4. Indeed, ˆ̄α1 should be

fairly constant as the marginal corresponding to the index is the same for

all pairs of data; α̂1 is determined by α̂2 and the parameters of the scale

matrix. Another reason for a large variation in the values of α̂1 is the

level of sampling variability when estimating the tail of the multivariate

distribution. However, majority of the estimates of α1 do tend to be positive,

3The values of x and y are 3.487% and 2.722% for pre-crisis period, and 4.587% and

5.761% for crisis period.
4The Hill estimators (Hill [1975]) for the linear combinations of losses on stocks and

the DJUSFN index have a similar tail index range; hence, the assumption of multivariate

regular variation is reasonable in this example.

43



6.1. Financial Contagion

thus indicating that the losses on the index are likely to be right-skewed.

This is in line with the skewness estimate calculated using the index data

alone. Finally, it is worth pointing out that a similar issue of large variability

in skewness parameter estimates was present in the simulation studies. At

the same time, the estimates of the conditional probability, the ultimate

quantity of interest here, were fairly stable and close to the true values.

Comparing 1 − η̂AFG and 1 − η̂2, we see that under the assumption of

elliptical symmetry, the estimates of the conditional exceedance probability

are, in most cases, bigger than those obtained when the skewness in the

joint distribution of losses is accounted for. We select Hudson City Ban-

corp which has a small difference between 1− η̂AFG and 1− η̂2 and Peoples

Bank Bridgeport which has a large difference, and plot their fitted contours

{z ∈ R2 | ψ̂st(z) < 1} in Figure 6.1. It can be observed that the ellipti-

cal contour under the AFG method provides a poor fit to the data cloud.

Hence, in this particular example, ignoring the asymmetry leads to inaccu-

rate estimation of η(x, y). We also note that, since conditional exceedance

probabilities are greater than the corresponding marginal exceedance prob-

abilities for Y , the data clearly exhibit contagion from the DJUSFN index

to each institution. Lastly, the results also show that extremal dependence

cannot be modelled by the AR(1)-GARCH(1,1) process. This is in line with

the findings in Bae et al. [2003], where the counts of coincident extreme

daily returns across international equity markets could not be explained by

the AR(1)-GARCH(1,1) filter.

To compare financial contagion between the pre-crisis and crisis periods,

we report the estimated extreme conditional excess probability in the cri-

sis period using the iterative parametric EVT method (the last column of

Table 6.1). It is interesting to observe that the extreme conditional excess

probability drops substantially during the financial crisis, indicating that

extreme dependence between the market and individual stocks decreases in

a downside market. One possible explanation is that firms start to watch

their risk exposures when they realize they are in a dangerous position. This

result is in accordance with the findings in Adrian and Brunnermeier [2011]

that contemporaneous risk measures5 are procyclical.

5They measure systemic risk using CoVaR.
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6.1. Financial Contagion

Figure 6.1: Estimated contours {ψ̂st(z) < 1} for daily losses on DJUSFN versus

Hudson City Bancorp (HCBK, left panel) and Peoples Bank Bridgeport (PBCT,

right panel) between June 1, 2006 and May 31, 2007 using the AFG method and

the proposed iterative parametric EVT method.

-
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Table 6.1: Point estimation of extreme conditional excess probability for 28 financial institutions. Daily losses are computed

using log returns and are filtered by the AR(1)-GARCH(1,1) process. The threshold values of x and y are, respectively, 99.9%

quantile of losses on DJUSFN and average of 99% quantile of losses on cross-sectional stocks. The sample period is from

June 1, 2006 to May 31, 2008. The pre-crisis period is from June 1, 2006 to May 31, 2007, and the crisis period is from June

1, 2007 to May 31, 2008.

-

Company
Pre-crisis Crisis

1-η̂AFG 1-η̂2 P̂(Lj > y) ν̂ α̂1 α̂2 ρ̂ 1-η̂2 (crisis)

1 BANK NEW YORK 0.856 0.722 0.008 2.815 0.177 -0.385 0.790 0.224

2 BANK OF AMERICA CORP 0.675 0.778 0.006 3.444 -0.448 0.346 0.785 0.198

3 B B & T CORP 0.703 0.859 0.003 3.113 -0.524 0.568 0.811 0.291

4 CITIGROUP 0.790 0.515 0.008 4.248 0.648 -0.770 0.604 0.437

5 COMERICA 0.781 0.508 0.012 4.042 0.052 0.056 0.509 0.330

6 COMMERCE BANCORP 0.814 0.583 0.039 2.751 0.623 -0.500 0.564 0.042

7 HUDSON CITY BANCORP 0.522 0.527 0.003 3.319 0.028 0.082 0.555 0.154

8 HUNTINGTON BANCSHARES 0.718 0.678 0.008 2.850 0.136 -0.413 0.829 0.325

9 J P MORGAN CHASE & CO 0.871 0.838 0.011 3.853 0.262 -0.280 0.809 0.096

10 KEYCORP 0.777 0.649 0.010 3.513 0.413 -0.250 0.700 0.512

11 MARSHALL & ILSLEY CORP 0.749 0.737 0.007 2.809 -0.608 0.708 0.676 0.469

12 M & T BANK CORP 0.818 0.630 0.014 3.448 0.125 0.023 0.697 0.518

13 NATIONAL CITY CORP 0.728 0.649 0.018 3.161 0.030 0.049 0.596 0.020

14 NEW YORK COMMUNITY BANCORP 0.521 0.364 0.000 6.051 -0.681 0.344 0.357 0.094

15 NORTHERN TRUST CORP 0.827 0.733 0.014 3.360 0.179 -0.052 0.725 0.300

16 PEOPLES BANK BRIDGEPORT 0.815 0.530 0.028 2.469 0.548 -0.145 0.593 0.043

17 PNC FINANCIAL SERVICES GRP 0.643 0.428 0.010 4.459 0.332 -0.189 0.493 0.122

Continued on next page46



Company
Pre-crisis Crisis

1-η̂AFG 1-η̂2 P̂(Lj > y) ν̂ α̂1 α̂2 ρ̂ 1-η̂2 (crisis)

18 REGIONS FINANCIAL CORP 0.700 0.528 0.006 3.767 -0.294 -0.297 0.693 0.332

19 SOVEREIGN BANCORP 0.650 0.590 0.025 3.596 -0.044 0.300 0.461 0.365

20 STATE STREET CORP 0.846 0.718 0.023 2.827 0.735 -0.737 0.718 0.265

21 SUNTRUST BANKS 0.629 0.448 0.008 3.943 -0.014 -0.000 0.507 0.372

22 SYNOVUS FINANCIAL CORP 0.693 0.583 0.001 3.522 0.009 0.008 0.683 0.324

23 UNIONBANCAL CORP 0.692 0.668 0.021 2.795 0.001 0.003 0.684 0.296

24 U S BANCORP DEL 0.435 0.468 0.000 3.182 -0.145 -0.157 0.735 0.190

25 WACHOVIA CORP 0.720 0.813 0.006 4.373 0.005 0.007 0.773 0.457

26 WASHINGTON MUTUAL 0.830 0.730 0.022 3.380 -0.019 0.264 0.564 0.540

27 WELLS FARGO & CO 0.873 0.593 0.024 2.035 0.806 -1.059 0.734 0.270

28 ZIONS BANCORP 0.652 0.410 0.010 3.859 0.206 -0.086 0.532 0.387
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6.2 CoVaR

Conditional Value-at-Risk (CoVaR), introduced by Adrian and Brunner-

meier [2011], is defined as Value-at-Risk (VaR) of one portfolio conditional

on one institution being in financial distress. Given losses (negative returns)

Lj (or Ls) of an institution (or a portfolio) and the confidence level q1, VaRj
q1

is defined as q1-quantile of loss distribution:

P(Lj ≥ VaRj
q1) = q1,

and CoVaR
s|j
q1 is defined by the q1-quantile of the conditional loss distribution

P(Ls ≥CoVaRs|j
q1 |L

j ≥ VaRj
q2) = q1. (6.1)

Different from VaR, which only considers individual risk faced by an insti-

tution, CoVaR accounts for the possible contribution of each institution to

the overall system risk. Additionally, it provides a way to capture the risk

spillovers among institutions.

Girardi and Tolga [2013] define the systemic risk of an institution using

4CoVaR
s|j
q1 , the change between its CoVaR in benchmark state (defined as

a one-standard deviation event) and its CoVaR under financial distress:

4CoVaRs|j
q1 = 100 ∗ CoVaR

s|j
q1 − CoVaR

s|bj
q1

CoVaR
s|bj
q1

, (6.2)

where bj is the benchmark state, which is one standard deviation about

the mean: Lj ∈ (µj − σj , µj + σj), where µj and σj are, respectively, the

conditional mean and the standard deviation of institution j’s losses6.

In their examples, q1 and q2 are set to be 5%, and the joint dynamic

of losses is estimated using a bivariate GARCH model with Engle [2002]

DCC specification. To take skewness and kurtosis into consideration, they

report results for both Gaussian and skew-t innovations. Despite that, their

approach still suffers from common shortcomings of estimating tail probabil-

ity using parametric models. Specifically, when one is interested in CoVaR

with a very small q2, that is, the impact of one institution’s bankruptcy on

6Specifically, P(Ls ≥ CoVaR
s|bj
q1 |µj − σj ≤ Lj ≤ µj + σj) = q1.
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overall financial networks, their specification could not handle tail estima-

tion well. However, the fact that 2008 financial crisis was partially triggered

by the bankruptcy of Lehman Brothers makes this question essential for

macroprudential supervision and regulation.

Our method could help resolve this problem. We continue considering

financial institutions listed in Table 6.17. The objective is to calculate the

4CoVaR of the DJUSFN index (denoted as Ls) when one of the institutions

(denoted as Lj) is being in financial distress. The sample period is taken

from June 1, 2006 to May 31, 2007.

To fit in with our methodology, we adopt estimation procedure described

below. First, losses Ljt are filtered by the AR(1)-GARCH(1,1) model:

Ljt = µjt + σj,tZ
j
t ,

where Zjt are i.i.d. random variables with a univariate standard Gaussian

distribution, and µt and σt are measurable with respect to sigma algebra

Ft−1, representing the information about the process {Ljt} available up to

time t−1. In order to capture typical time dynamics of financial time series,

one possibility is to assume that the conditional mean µt follows an AR(1)

process

µjt = α0 + α1L
j
t−1,

while the condition variance σ2
t evolves according to a GARCH(1,1) model

specification

σ2
j,t = βj0 + βj1(σj,t−1Z

j
t−1)2 + βj2σ

2
j,t−1.

Since it is generally agreed that loss series exhibit both skewness and

(excess) kurtosis, the (normalized) residuals Ẑjt =
Ljt−µ̂

j
t

σ̂jt
, where µ̂jt and σ̂jt

are estimates of µjt and σjt , do not follow the Gaussian distribution perfectly.

Hence, we compute VaRj
q2,t

of each institution using EVT approach intro-

duced by McNeil and Frey [2000]. This approach is slightly different from

that in Girardi and Tolga [2013], where they directly adopted the skew-t

distribution when filtering the parameters of the AR(1)-GARCH((1,1) fil-

ter and then took the quantile of skew-t as the estimate of VaRj
q2,t

. The

7This group of institutions is the same as “Depositories” group in Girardi and Tolga

[2013].

49



6.2. CoVaR

rationale to separate the estimation process is that the conditional variance

is the feature of the whole distribution, while VaRj
q2,t

is related to tail ob-

servations. A similar two-stage estimation is adopted by McNeil and Frey

[2000] and Diebold et al. [2000].

Next, instead of specifying a bivariate parametric GARCH model, we sim-

ply assume that the joint dynamic of standardized residuals Ẑt = (Ẑst , Ẑ
j
t )

follows a certain skew-elliptical distribution, and then model it using the it-

erative parametric EVT method. Specifically, CoVaR
Zs|Zj
q1,t

can be estimated

by solving equation below, where Theorem 4.1.3 can be applied:

P(Ẑst ≥ CoVaR
Zs|Zj
q1,t

|Ẑjt ≥ VaRZj

q2,t) = q1. (6.3)

Then the forecast of CoVaR
s|j
q1,t

is calculated with predictions of µ̂st+1 and

σ̂st+1 from AR(1)-GARCH(1) model:

CoVaR
s|j
q1,t

= µ̂st+1 + σ̂st+1ĈoV aR
Zs|Zj

q1,t .

For the benchmark case, we adopt empirical approach to compute ĈoV aR
Zs|Zbj
q1,t

and forecast CoVaR
s|bj
q1,t

using above equation.

Table 6.2 reports the summary statistics8 for cross-sectional daily con-

ditional 4CoVaR
s|j
q1,t

over the sample period for q1 = 5% and q2 = 5%, 1%

and 0.01%. “EVT” 9 indicates that bivariate Ẑt is modelled using the iter-

ative parametric EVT method; for comparison, we also report results when

CoVaR
s|j
q1,t

is estimated assuming that Ẑt follows a bivariate skew-t distribu-

tion, as well as the empirical distribution. The numbers in column “Mean”

give the increase, on average across all the institutions, in the CoVaR at level

q1 of the aggregate financial system given that an institution experiences a

loss in excess of its VaR at level q2 in comparison to when the institution is

in its benchmark state. For example, when institutions are subject to large

8The summary statistics are robust to different methods adopted to model VaRj
q2,t

and

the benchmark case. Please find other results in the Appendix B.2.
9 When the tail index ν estimated by the EVT method is greater than 10, we drop the

estimate results of “EVT” method. Totally, there are 40 out of 7000 values dropped. This

is because the performance of the iterative parametric EVT method is not satisfactory

when the tail decays fast.
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losses exceeding their 5% VaR, the 5% CoVaR of the aggregate financial sys-

tem increases on average by 139% over its 5% CoVaR when the institutions

are in their benchmark state, based on the ”EVT” method. “Std.TS”, which

gives the average of the standard deviations of individual 4CoVaR
s|j
q1,t

, is a

proxy for volatility of systemic risk contribution over time. “Std.CS”, which

reports the standard deviation of the mean of each individual 4CoVaR
s|j
q1,t

,

is a proxy for the dispersion of the average systemic risk contribution.

Summary statistics for q2 = 5% in row “skew-t” are quite similar to

those reported in Table 6 of Girardi and Tolga [2013]. Comparing these

with results in row “EVT”, it is clear that 4CoVaR
s|j
q1,t

estimated using

the EVT method exhibits much higher standard derivation and much wider

value range; for instance, Std.TS goes from 31.1 to 41.9. This suggests that

the impact of one financial institution’s distress on the aggregate financial

system is estimated more conservatively by the parametric (skew-t) model

in comparison to the proposed EVT method. When q2 decreases from 0.05

to 0.01, both Std.TS and Std.CS increase. This reveals that the uncertainty

of the risk spillovers among institutions rises when one institution faces a

severe financial distress.

Table 6.2: Summary statistics for cross-sectional 4CoVaR
s|j
q1,t for all institutions

during sample period from June 1, 2006 to May 31, 2007. Level q1 is set to be

5%, and q2 is 5%, 1% or 0.01%. “EVT” and “skew-t”, respectively, refer to the

use of the iterative EVT method and the bivariate skew-t distribution to model

the sequence of standardized residuals {ẑt}. Estimation based on the empirical

distribution is reported under “Empirical”. Column “Std.TS” reports the average

of the standard deviations of individual 4CoVaR
s|j
q1,t and Column “Std.CS” reports

the standard deviations of the mean of each individual 4CoVaR
s|j
q1,t measure.

q2 Mean(%) Std.TS Std.CS Max(%) Min(%)

5%

Skew-t 178.3 31.1 36.5 416.7 70.0

EVT 139.0 41.9 41.8 534.1 -21.4

Empirical 161.4 79.4 40.4 491.5 -17.8

1%
Skew-t 303.3 59.7 70.2 748.5 109.0

EVT 306.9 80.4 96.9 1172.5 48.3

0.01% EVT 1409.1 897.6 1332.6 14333.6 89.4
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Chapter 7

Conclusion

On the theoretical side, we derived a limit expression for the conditional

probability given that one of the components of a bivariate random vec-

tor is extreme, assuming a sub-family of skew-elliptical distributions with

regularly varying tails as the underlying model. This extends results in Ab-

dous et al. [2005a] for elliptically symmetric vectors. We also developed a

semi-parametric EVT method to estimate this conditional probability using

the above-mentioned asymptotic result. The main advantage of EVT-based

estimators is that they preserve useful information in the tail data without

restricting the behaviour of the central part. This methodology allows to

assess extreme risk in asymmetric financial markets. Through two financial

applications, we demonstrated that how our method can be applied flexibly

in different contents.

In this project, we assume that the underlying distribution has a multi-

variate regularly varying tail. It would be of interest to develop a method-

ology to handle light-tailed data with rapidly-varying tails. For financial

time series, this would apply to less frequently sampled data such as weekly

or monthly returns. Additionally, one assumption for Theorem 4.1.3 is clo-

sure under marginalization. However, it is still not clear what conditions on

skew-elliptical distributions could guarantee this assumption.

Regarding financial applications, several more topics can be explored.

Firstly, DiTraglia and Gerlach [2013] claim that the extreme conditional ex-

ceedance probability contains important information for risk-averse investors

which can be a valuable tool to select portfolios. Our method provides a

more accurate estimation of the extreme conditional exceedance probabil-

ity, and hence can be used to further verify their conclusion. Secondly, it

is interesting to investigate the financial contagion problem in international
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Chapter 7. Conclusion

equity markets, similar to Kenourgios et al. [2011]. Instead of adopting all

observations, our method focuses more on the tail data and is more suitable

for analysing extreme events such as financial crises.
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Appendix A

Proofs

A.1 Proof of Lemma 3.3.2

Proof Denoting Z̄ = C−1Z, the density function h̄ of Z̄ can be derived from

transformation of the density function h of Z:

h̄(z) = 2f(C−1z; ξ,Ω)G(ω(C−1z− ξ))|C|−1

= 2
cd

|Ω|1/2|C|
f̃((C−1z− ξ)TΩ−1(C−1z− ξ))G(ω(C−1z− ξ))

= 2
cd

|CTΩC|1/2
f̃((z− Cξ)T (CTΩC)−1(z− Cξ))G(ω0(z− Cξ)),

where ω0(z − Cξ) = ω(C−1(z − Cξ)), and it is obvious that ω0 is also an

odd function. ¶

A.2 Proof of Proposition 4.1.1

Proof We begin by showing that condition (2.5) holds, and then derive the

form of limit function q(z). The validity of uniformity condition (2.6) is

discussed in the end.

It suffices to consider the case ξ = 0 as a shift in location does not

affect the index and spectral measure of regularly varying random vectors;

see Lemma 2.2 in Hult and Lindskog [2002]. Letting Z̃ ∼ Ell2(0, Ω̄, f̃)

with density f , Proposition 3.2.2 says that ||Z̃|| d
= ||Z||. From (3.2), Z̃ =

RLTS, where R has density (3.10), L =

(
1 ρ

0
√

1− ρ2

)
using Cholesky
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decomposition, and S has uniform distribution on S1. We then have

V (t) := P(||Z|| > t) = P(||Z̃|| > t) = P(R(STLLTS)1/2 > t)

= P(R(1 + ρ
√

1− ρ2 sin(2Θ) + ρ2 cos(2Θ))1/2 > t), Θ ∼ Unif(0, 2π)

=

∫ 2π

0

∫ ∞
t√
A(θ)

1

2π
fR(r)drdθ, where A(θ) := 1 + ρ

√
1− ρ2 sin(2θ) + ρ2 cos(2θ)

=

∫ 2π

0

∫ ∞
t√
A(θ)

cdf̃(r2)rdrdθ

=

∫ 2π

0

∫ ∞
( t√

A(θ)
)2

cd
2
f̃(s)dsdθ

=

∫ 2π

0

cd
2
F̃
(
t2/A(θ)

)
dθ, where F̃ (x) :=

∫ ∞
x

f̃(u)du.

With density h of Z in (3.8), the limit in (2.5) can be computed as

q(z) = lim
t→∞

h(tz)

t−2V (t)
= lim

t→∞

2 cd |Ω|−1/2f̃
(
Q(tz)

)
G
(
w(tz)

)
t−2
∫ 2π

0 (cd/2) F̃
(
t2/A(θ)

)
dθ

= 4 |Ω|−1/2 G(w∞(z)) lim
t→∞

t2 f̃(t2Q(z))∫ 2π
0 F̃

(
t2/A(θ)

)
dθ

= 4 |Ω|−1/2 G(w∞(z)) Q∗(z)−(ν+2)/2 lim
t→∞

t2 f̃(t2)/F̃ (t2)∫ 2π
0 F̃

(
t2/A(θ)

)
/F̃ (t2)dθ

= 4 |Ω|−1/2 G(w∞(z)) Q∗(z)−(ν+2)/2 lim
t→∞

t2 f̃(t2)/F̃ (t2)∫ 2π
0 F̃

(
t2/A(θ)

)
/F̃ (t2)dθ

= 2ν |Ω|−1/2 G(w∞(z)) Q∗(z)−(ν+2)/2
[ ∫ 2π

0
A(θ)ν/2dθ

]−1
.

The final line above follows from the assumption f̃ ∈ RV−(ν+2)/2, which im-

plies F̃ ∈ RV−ν/2 and tf̃(t)/F̃ (t)→ ν/2 as t→∞ by Karamata’s Theorem

(see de Haan and Ferreira [2006]).

Based on Potter’s Theorem (see Theorem 1.5.6 in Bingham et al. [1987]),

for any chosen c > 1 and ε > 0, there exist C = C(c, ε) such that F̃
(
t2/A(θ)

)
/F̃ (t2) ≤

c ·max{( 1
A(θ))−ν/2+ε, ( 1

A(θ))−ν/2−ε} when t2/A(θ) > C and t2 > C. The limit

in the denominator holds by the Dominated Convergence Theorem.

62



A.3. Proof of Lemma 4.1.2

Finally, from (2.7) and using homogeneity of function q, we obtain

ψ(w) = ν−1 q(||z||w) ||z||ν+2 = ν−1 q(w), w = z/‖z‖ ∈ S1

= 2 |Ω|−(1/2)G(w∞(z)) Q∗(z)−(ν+2)/2
[ ∫ 2π

0
A(θ)ν/2dθ

]−1
.

It remains to show validity of uniformity condition (2.6) for density h.

Following the arguments in de Haan and Resnick [1987] (Section 3), the

uniformity condition is fulfilled by the elliptical density f of Z̃. In particular,

we have for z 6= 0

lim
t→∞

f(tz)

t−2V (t)
= q0(z) > 0 and lim

t→∞
sup
z∈S1

∣∣∣ f(tz)

t−2V (t)
− q0(z)

∣∣∣ = 0.

(A.1)

It is straightforward to show that q(z) = 2G(ω∞(z)) q0(z). Now write

sup
z∈S1

∣∣∣ h(tz)

t−2V (t)
− q(z)

∣∣∣ = sup
z∈S1

∣∣∣2f(tz) G(ω(tz))

t−2V (t)
− q(z)

∣∣∣
≤ sup

z∈S1

∣∣∣2G(ω(tz))
∣∣∣∣∣∣ f(tz)

t−2V (t)
− q0(z)

∣∣∣
+ sup

z∈S1
2q0(z)

∣∣∣G(ω(tz))−G(ω∞(z))
∣∣∣.

Letting t → ∞, the first term vanishes by (A.1) and since G(·) is bounded

by one; Assumption (ii) gives convergence of the second term. ¶

A.3 Proof of Lemma 4.1.2

Proof (i) =⇒ (ii). For any z > 0, if lim
t→∞

f̃(tz)

f̃(t)
= z−(ν+d)/2, then

lim
t→∞

P(R > tz)

P(R > t)
= lim

t→∞

∫∞
tz f̃(r2)rd−1dr∫∞
t f̃(r2)rd−1dr

L′Hospital′s rule
= lim

t→∞

zf̃(t2z2)

f̃(t2)

(tz)d−1

td−1
= zdz−(ν+d) = z−ν .

63



A.4. Proof of Theorem 4.1.3

(ii) =⇒ (i). Regular variation ofR implies its density function fR ∈ RV−(ν+1)

based on Karamata’s Theorem. For z > 0,

lim
t→∞

f̃(t2z2)

f̃(t2)
= lim

t→∞

fR(tz)(tz)1−d

fR(t)t1−d
= z−ν−1z1−d = z−(ν+d)

=⇒ lim
t→∞

f̃(tz)

f̃(t)
= z

−(ν+d)
2 .

(ii) ⇐⇒ (iii). Let Z̃ = RLTS ∼ Ell2(ξ, Ω̄, f̃), then ||Z|| d
= ||Z̃||. Based on

Theorem 4.3 in Hult and Lindskog [2002], R is regularly varying with index

ν is equivalent to Z̃ being regularly varying with index ν. This directly

implies that

lim
t→∞

P(||Z|| > tz)

P(||Z|| > t)
= lim

t→∞

P(||Z̃|| > tz)

P(||Z̃|| > t)
= z−ν , z > 0.

¶

A.4 Proof of Theorem 4.1.3

Proof

1. (Multivariate regular variation of h) Let h denote the density of

Z; see (3.8). Let 1 = (1, 1) denote a bivariate vector of ones. We have

lim
t→∞

h(tz)

h(t1)
= lim

t→∞

f̃(Q(tz)) G(w(tz− ξ))

f̃(Q(t1)) G(w(t1− ξ))
(A.2)

=

(
Q∗(z)

Q∗(1)

)−(ν+2)/2G(w∞(z))

G(w∞(1))
=: λ(z), z 6= 0. (A.3)

Note λ(z) > 0 for z 6= 0 and λ(az) = a−(ν+2)λ(z) for a > 0. Hence

density h is bivariate regularly varying with index (ν + 2) > 2 and

limit function λ. The first factor in the expression for λ comes from

the underlying elliptical density, whereas the second factor is due to

the skewing function.

2. (Joint tail behaviour) We next relate the tail behaviour of the skew-

elliptical random vector Z to that of the associated elliptical random
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vector Z̃ = (X̃, Ỹ ) ∼ Ell2(ξ, Ω̄, f̃) with density f . Let V (t) = t2h(t1).

Analogous to the arguments in Proposition 4.1.1, one can show that

h satisfies conditions of Theorem 2.2.1 with limit functions λ. Hence,

Theorem 2.2.1 and (2.4) with B = [z,∞) (cf. de Haan and Omey

[1983], Theorem 1) imply

P(Z > tz) ∼ t2 h(t1)

∫∫ ∞
z

λ(u)du, t→∞, z ≥ 0, z 6= 0

= 2 f(t1) G(w(t1− ξ)) t2
∫∫ ∞

z
λ(u)du. (A.4)

Similarly, for the elliptical random vector, the limit function is given

by λ0(z) =
(
Q∗(z)/Q∗(1)

)−(ν+2)/2
and

P(Z̃ > tz) ∼ t2 f(t1)

∫∫ ∞
z

λ0(u)du, t→∞, z ≥ 0, z 6= 0.

(A.5)

Combining (A.4) and (A.5), and plugging in expressions for the limit

functions λ and λ0 gives

P(Z > tz)

P(Z̃ > tz)
∼

2 G(w(t1− ξ))
∫∫∞

z λ(u)du∫∫∞
z λ0(u)du

, t→∞, z ≥ 0, z 6= 0

→
2
∫∫∞

z Q∗(u)−(ν+2)/2 G(w∞(u)) du∫∫∞
z Q∗(u)−(ν+2)/2 du

. (A.6)

3. (Marginals)

Since Z is multivariate regularly varying in the sense of Definition 2.2.3,

it follows from Theorem 1.1(i) in Basrak et al. [2002] that the marginal

tails are regularly varying with index ν. Under the assumption that the

marginals of Z are also skew-elliptical with densities of the form (4.2),

we have

lim
x→∞

P(X > x)

P(X̃ > x)

L′Hospital′s rule
= lim

x→∞

h1(x)

f1(x− ξ1)

(4.2)
= lim

x→∞
2 G0(w1(x− ξ1)) = 2 G0(w1,∞(1)),

and hence

P(X > x) ∼ 2 P(X̃ > x) G0(w1,∞(1)), x→∞. (A.7)
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4. (Conditional probability) Consider P(Y > y | X > x) for y ∼ zx

as x→∞ and z > 0. Setting z = (1, z) in (A.6), and putting the joint

and marginal tail behaviour together gives

lim
x,y→∞

P(Y > y | X > x) = K(z) lim
x,y→∞

P(Ỹ > y | X̃ > x), (A.8)

where

K(z) =

∫∫∞
(1,z)Q

∗(u)−(ν+2)/2 G(w∞(u)) du

G0(w1,∞(1))
∫∫∞

(1,z)Q
∗(u)−(ν+2)/2 du

, (A.9)

and (X̃, Ỹ ) follows a bivariate elliptical distribution with density f .

The proof is completed by using Theorem 1(i) in Abdous et al. [2005b]

for the limit of P(Ỹ > y | X̃ > x). ¶
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Appendix B

Tables

B.1 Simulation Studies

In this section, we further report two simulation results for different bivariate

skew-t distributions as in Section 5. The objective is to show that 1) our

method could produce similar result as in Abdous et al. [2005a] for the

elliptical distribution, and 2) our estimation method may not work well

when the tail decays fast due to poor estimation of the tail index, the same

problem as in Abdous et al. [2005a].
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Table B.1: Simulation results based on 1000 samples of size 1000 from a bivariate skew-t distribution with parameters ξ =

(0,0), α = (0,0), ν =2, ρ = 0.5 and ω = diag(1, 1) for the scale matrix. Each cell provides the average (standard deviation) of

the estimates of η(x, y) under various methods; see Section 5.5 for details. For η̂AFG(x, y), η̂1(x, y), η̂2(x, y) and ηlim(x, y) we

used z = ω1y/ω2x−ρ in the limit results. Values of x and y are chosen as the theoretical marginal quantiles with probability

p, where p labels columns and rows.

Quantile y
Quantile x

97.5% 99.0% 99.9% 99.99%

97.5%

η̂AFG(x, y) 0.617 (0.089) 0.448 (0.072) 0.254 (0.028) 0.207 (0.021)

η̂1(x, y) 0.641 (0.052) 0.472 (0.051) 0.278 (0.037) 0.231 (0.032)

η̂2(x, y) 0.640 (0.057) 0.472 (0.057) 0.279 (0.043) 0.232 (0.038)

ηemp(x, y) 0.599 (0.102) 0.437 (0.168) * *

η(x, y)/ηlim(x, y) 0.598/0.609 0.438/0.440 0.257/0.257 0.213/0.213

99.0%

η̂AFG(x, y) 0.790 (0.0801) 0.617 (0.089) 0.303 (0.040) 0.220 (0.022)

η̂1(x, y) 0.810 (0.041) 0.641 (0.052) 0.328 (0.041) 0.243 (0.034)

η̂2(x, y) 0.808 (0.044) 0.640 (0.057) 0.329 (0.048) 0.244 (0.040)

ηemp(x, y) 0.774 (0.088) 0.602 (0.171) * *

η(x, y)/ηlim(x, y) 0.775/0.786 0.605/0.609 0.302/0.302 0.225/0.225

99.9%

η̂AFG(x, y) 0.973 (0.027) 0.933 (0.045) 0.617 (0.089) 0.304 (0.041)

η̂1(x, y) 0.977 (0.010) 0.942 (0.019) 0.641 (0.052) 0.330 (0.042)

η̂2(x, y) 0.977 (0.010) 0.942 (0.020) 0.640 (0.057) 0.330 (0.048)

ηemp(x, y) 0.972 (0.034) 0.934 (0.082) * *

η(x, y)/ηlim(x, y) 0.970/0.972 0.930/0.932 0.609/0.609 0.304/0.304

99.99%

η̂AFG(x, y) 0.997 (0.007) 0.993 (0.013) 0.932 (0.045) 0.617 (0.089)

η̂1(x, y) 0.998 (0.002) 0.994 (0.003) 0.941 (0.020) 0.641 (0.052)

η̂2(x, y) 0.998 (0.002) 0.994 (0.004) 0.940 (0.020) 0.640 (0.057)

ηemp(x, y) 0.997 (0.011) 0.993 (0.028) * *

η(x, y)/ηlim(x, y) 0.997/0.997 0.992/0.992 0.930/0.931 0.609/0.609
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Table B.2: Simulation results based on 1000 samples of size 1000 from a bivariate skew-t distribution with parameters ξ =

(3,1), α = (1,-3), ν =20, ρ = 0.5 and ω = diag(2, 3) for the scale matrix. Each cell provides the average (standard deviation)

of the estimates of η(x, y) under various methods; see Section 5.5 for details. For η̂AFG(x, y), η̂1(x, y), η̂2(x, y) and ηlim(x, y)

we used z = ω1y/ω2x − ρ in the limit results. Values of x and y are chosen as the theoretical marginal quantiles with

probability p, where p labels columns and rows.

Quantile y
Quantile x

97.5% 99.0% 99.9% 99.99%

97.5%

η̂AFG(x, y) 0.206 (0.027) 0.178 (0.025) 0.139 (0.023) 0.119 (0.021)

η̂1(x, y) 0.475 (0.056) 0.434 (0.054) 0.370 (0.049) 0.332 (0.045)

η̂2(x, y) 0.568 (0.057) 0.527 (0.056) 0.460 (0.054) 0.419 (0.052)

ηemp(x, y) 0.692 (0.094) 0.604 (0.162) * *

η(x, y)/ηlim(x, y) 0.691/0.457 0.598/0.363 0.408/0.243 0.286/0.182

99.0%

η̂AFG(x, y) 0.276 (0.029) 0.234 (0.028) 0.176 (0.025) 0.145 (0.023)

η̂1(x, y) 0.563 (0.060) 0.513 (0.058) 0.431 (0.054) 0.380 (0.050)

η̂2(x, y) 0.655 (0.057) 0.606 (0.058) 0.524 (0.056) 0.471 (0.054)

ηemp(x, y) 0.821 (0.079) 0.741 (0.153) * *

η(x, y)/ηlim(x, y) 0.821/0.684 0.739/0.553 0.535/0.355 0.381/0.260

99.9%

η̂AFG(x, y) 0.469 (0.036) 0.394 (0.033) 0.281 (0.030) 0.220 (0.027)

η̂1(x, y) 0.739 (0.056) 0.679 (0.059) 0.569 (0.060) 0.494 (0.057)

η̂2(x, y) 0.812 (0.048) 0.761 (0.053) 0.660 (0.057) 0.587 (0.058)

ηemp(x, y) 0.971 (0.036) 0.943 (0.080) * *

η(x, y)/ηlim(x, y) 0.970/0.974 0.942/0.919 0.815/0.698 0.641/0.504

99.99%

η̂AFG(x, y) 0.650 (0.039) 0.560 (0.038) 0.404 (0.034) 0.309 (0.031)

η̂1(x, y) 0.852 (0.043) 0.800 (0.050) 0.687 (0.059) 0.600 (0.060)

η̂2(x, y) 0.903 (0.034) 0.862 (0.041) 0.768 (0.052) 0.689 (0.056)

ηemp(x, y) 0.997 (0.012) 0.993 (0.027) * *

η(x, y)/ηlim(x, y) 0.996/0.999 0.992/0.995 0.955/0.929 0.857/0.772
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B.2. CoVaR

B.2 CoVaR

In this section, we check robustness of the summary statistics for cross-

sectional 4CoVaR
s|j
q1,t

. Firstly, instead adopting EVT method to calculate

VaRj
q2,t

of each institution, we directly model Ẑjt using the skew-t distribu-

tion and take the quantile of skew-t as the estimate of VaRj
q2,t

. Secondly,

we assume that {Ẑt} follows a bivariate skew-t distribution for the bench-

mark case, and then apply the same procedure to compute CoVaR for the

innovations {Ẑt} using the fitted model.

Generally speaking, the summary statistics are similar under different

measurement approaches. A more detailed look reveals that VaRj
q2,t

esti-

mated by EVT methods leads to, on average, a higher 4CoVaR
s|j
q1,t

, indi-

cating that the parametric model (skew-t) is conservative in modelling tail

events when quantile q2 is small.

Table B.3: Summary statistics for cross-sectional 4CoVaR
s|j
q1,t for all institutions

during sample period from June 1, 2006 to May 31, 2007. VaRj
q2,t is estimated by

assuming that Ẑj
t follows the skew-t distribution, and CoVaR

s|bj
q1,t is estimated by

assuming that {Ẑt} follows a bivariate skew-t distribution.

q2 Mean(%) Std.TS Std.CS Max(%) Min(%)

5%

Skew-t 172.8 29.8 25.9 366.2 85.7

EVT 133.0 39.5 39.9 510.1 -14.2

Empirical 164.3 74.1 30.3 370.6 18.0

1%
Skew-t 285.6 61.7 55.5 717.2 126.8

EVT 285.2 80.4 81.3 1182.3 26.4

0.01% EVT 1110.3 457.8 573.9 8557.5 153.2
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Table B.4: Summary statistics for cross-sectiona 4CoVaR
s|j
q1,t for all institutions

during sample period from June 1, 2006 to May 31, 2007. VaRj
q2,t is estimated using

EVT method decribed in McNeil and Frey [2000], and CoVaR
s|bj
q1,t is estimated by

assuming that {Ẑt} follows a bivariate skew-t distribution.

q2 Mean(%) Std.TS Std.CS Max(%) Min(%)

5%

Skew-t 178.7 25.6 28.9 360.0 87.5

EVT 140.5 38.4 40.9 487.1 -9.9

Empirical 161.1 76.1 32.0 370.6 -15.6

1%
Skew-t 304.1 54.6 63.7 681.8 120.2

EVT 308.8 77.0 96.6 1278.3 53.8

0.01% EVT 1437.0 918.7 1368.2 14297.4 91.7

Table B.5: Summary statistics for cross-sectional 4CoVaR
s|j
q1,t for all institutions

during sample period from June 1, 2006 to May 31, 2007. VaRj
q2,t is estimated

by assuming that Ẑj
t follows the skew-t distribution, and CoVaR

s|bj
q1,t is estimated

empirically.

q2 Mean(%) Std.TS Std.CS Max(%) Min(%)

5%

Skew-t 172.2 34.3 31.8 383.0 79.1

EVT 131.9 42.3 39.4 559.0 -9.2

Empirical 164.5 77.9 38.8 491.5 14.3

1%
Skew-t 284.5 66.4 60.1 709.6 120.3

EVT 283.0 83.9 79.3 1285.0 33.9

0.01% EVT 1099.5 458.5 558.4 9251.0 168.1
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