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Abstract 

Rts is a risk-based structural optimization, multiplatform computer program that incorporates 

uncertainty into structural analysis with the utilization of random variable parameters.  The 

major contribution to this thesis is that Rts now has the capability to perform reliability-based 

design optimization using Finite Element Method (FEM) analytical sensitivities.  Analytical 

gradients are exact, more efficient, and convergence is achieved more rapidly in gradient- 

based optimization methods when compared to finite difference sensitivity methods.  

 

For this thesis, I have derived and implemented both nodal and material analytical gradients 

throughout the Rts framework starting at the finite element level up through to the 

optimization level.  The Reliability-Based Design Optimization (RBDO) model stream 

includes an FEM model, a COST model, a RISK model with built-in First-Order Reliability 

Model (FORM), and the orchestrating RBDO model.  A program wide Direct Differentiation 

Method (DDM) framework was additionally established that provides efficient analytical 

gradient calculations throughout the model stream.  

 

The FEM elements implemented consist of the Bilinear-Mindlin four node and nine node 

plate elements.  An academic COST model was created to showcase the multi-model 

capabilities of Rts and the ability to calculate DDM dependencies of downstream models.  

Additionally, a RISK model was implemented that incorporated a built-in FORM model with 

gradient-history capabilities and in-model DDM dependency calculations; the RISK measure 

used is the mean cost. The RBDO model was also built upon to include DDM capabilities 

and downstream model integration.   
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Finally, two reliability-based design optimization examples were implemented using both 

nodal and material sensitivities.  The thickness and width of a timber cantilever beam was 

optimized with respect to mean cost taking into account deflection damage and construction 

cost.   
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Preface 

Components of this thesis were implemented in the Rts computer program created at the 

University of British Columbia.  Rts is a merger of St and Rt.  Rt was developed during the 

PhD studies of Dr. Mojtaba Mahsuli at UBC Vancouver while St was developed by Dr. Terje 

Haukaas.  My contributions to the program were implementation of: 

 plate finite elements with analytical gradients  

 analytical gradients throughout the model framework 

 a cost model template with analytical gradients 

 a RISK model with integrated FORM analysis; extended original risk framework 

created by Alfred Larsen to include analytical gradients and integrated FORM 

optimization algorithms 

 reliability-based optimization examples incorporating finite element analysis, cost 

models, and reliability models; all utilizing analytical derivatives from the 

downstream models 
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Chapter  1: INTRODUCTION 

Traditional engineering problems often reduce and simplify a system so that it could be 

solved deterministically.  Using this approach, engineers often introduce safety factors, or 

scale the solutions, so that they take into account some degree of uncertainty.  Uncertainty is 

inherent in every methodology and it exists due to material variability, unpredictable loading, 

imperfect knowledge, and through errors involved in empirical understanding of physical 

systems to name a few.  An example of a system where there is insufficient knowledge is in 

nuclear energy where the frequency of failures is so low that the probabilities and 

uncertainties may be difficult to estimate.  Though the failures are rare, the consequences of 

failure are extremely severe.  

 

As modeling processes become more sophisticated and new technologies emerge, the 

conventional deterministic approach is less efficient at providing solutions for making the 

best decisions.  Complex problems involve varying degrees of uncertainty that need to be 

considered and quantified so that the best decisions are made with the knowledge that is 

available.  A practical definition of uncertainty is: the knowledge gap between what is known 

and what needs to be known for making optimal decisions with minimal risk (Singhal, 

Ghiocel, & Nikolaidis, 2004).  Methods that incorporate risk and uncertainty are termed 

Nondeterministic Approaches or NDA.   

 

Nondeterministic methods quantify and manage uncertainty, reducing and mitigating its 

effects.  The method of NDA that is used in this thesis is the Probabilistic Analysis 

Approach.  In this approach, the system parameters are assumed to be random variables, with 
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the analysis incorporating their respective joint Probability Density Functions (PDFs).   The 

primary objective of the Probabilistic Analysis Approach is to determine the reliability of the 

system.   The reliability of a system is considered the ability of the system, or subsystem, to 

function under certain conditions for a specified period of time; in other words the 

probability of successful operation.   

 

Successful operation consists of the structural system performing its function throughout its 

lifecycle.  The ability of a system to successfully perform a certain function can be quantified 

using performance measures.  Some examples of performance measures are cost, 

displacement, and stress responses.  Examples of cost measures include cost of repairs, cost 

of degradation over time, and future cost of replacement. All of the above measures 

potentially involve large variations in uncertainty.  When combined with inadequate 

knowledge of the problem, it is apparent why conventional deterministic methods fail to 

include all components involved in making sound decisions.   

 

Reliability assessment addresses these issues with the selection of a suitable reliability 

model, analysis of the model, calculation of the reliability performance indices, and 

evaluation of the results with decisions on improvements (Singhal, Ghiocel, & Nikolaidis, 

2004).  The end result of a reliability assessment is a risk measure.  Risk is defined as a 

measure of uncertainty; the quantitative and qualitative likelihood that a negative outcome 

may be realized.  The final goal is to minimize risk using optimization techniques after the 

risk is quantified using a probabilistic approach.  A typical optimization procedure uses 

algorithms to find the best possible combination of parameter properties to satisfy a set of 
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performance requirements and design constraints.  

 

The optimization model requires the input of a risk model that incorporates a reliability 

model. In this thesis, the First-Order Reliability Method (FORM) is used to calculate the 

failure probabilities.  A reliability model requires the input of a response model.  Typically, 

the response input involves a cost function or structural response; in the examples presented 

in this thesis, the COST model is implicitly related to the structural response of the system 

and construction cost.  The structural response is evaluated analytically using Finite Element 

Methods (FEM).  Propagation of the uncertainty throughout the system starts at the FEM 

level where the input parameters can be random variables that carry on through to the final 

orchestrating Reliability-Based Design Optimization (RBDO) model. The governing models 

responsible for each subsection of the optimization analysis are termed orchestrating models.  

The order of orchestrating models in Rts from lowest to highest is: FEM, COST, FORM, 

RISK, and RBDO. 

 

The RBDO model employs algorithms that quantify which parameters have the largest 

influence on minimizing the risk.  This is termed sensitivity analysis.  Parameter sensitivities 

involve gradient calculations that start at the FEM level and propagate throughout the model 

stream.  To calculate the various gradients used throughout the model stream, exact 

analytical Direct Differentiation Methods (DDM) are used.  Unlike approximate numerical 

methods, such as the Finite Difference Method, analytical methods are exact.  Having 

accurate gradients greatly increases the efficiency and accuracy of the RBDO and FORM 

procedures.  
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This thesis will go over the orchestrating models implemented throughout Rts used to 

perform a reliability-based optimization.  In addition, it will highlight the theory, derivations, 

and progression of analytical gradients starting at the FEM level up to the final RBDO 

model.  After the background theory is established, this thesis will provide an overview of 

the Rts implementation and will conclude with working examples involving the optimization 

of a timber cantilever beam.  The examples will include both nodal and material sensitivities 

that involve optimizing the beam’s width and thickness.   
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Chapter  2: ORCHESTRATING MODELS 

A typical structural optimization problem uses geometric state or response variables such as 

displacement, stress, or strain as constraints on the objective function.  The objective function 

is a constrained mathematical function that is the target of the RBDO optimization. 

Responses are calculated from structural equilibrium formulations such as analytically 

solving a partial differential equation or numerically from FEM techniques.  Since analytical 

solutions are feasible for only the simplest of cases, FEM is predominantly used to calculate 

the response.   

 

Rts goes beyond geometric responses by optimizing a risk expectance that is derived from a 

reliability analysis that incorporates the results from a FEM model which has random 

variable parameters.  A graphical representation of the Rts model structure is given below: 

 

Figure 1. Graphical outline of orchestrating model stream in Rts 

The FEM model is the starting point of every optimization iteration �.  The output of the 

FEM model is used by the COST model which assigns a cost based on the response from 
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FEM.  The COST model can assign additional costs based on construction or damage to 

name a few.  The final cost measure is then utilized by the FORM reliability model which is 

in turn governed by the RISK model; the RISK model specifies thresholds and calculates the 

mean cost using the probability of exceedance from the reliability model.  Finally, the all-

encompassing RBDO model minimizes the risk measure, or mean cost, by adjusting the 

values of decision variables.  Sections 2.1 to 2.5 will explain the functions of each 

orchestrating model starting from governing RBDO model down to the low-level FEM 

model.   

 

2.1 RBDO Optimization Model 

A structure is an assemblage of components and elements that can vary in material, spatial, 

and cross-sectional properties to name a few.  The assemblage must satisfy certain 

performance and design requirements based on its intended function.  A design requirement 

could be to minimize cost, as in a commercial building, or weight, as in an aerospace 

component.  It can also be a combination of design requirements such as to maximize the 

stiffness, strength, or stability while minimizing the cost or weight.  A performance 

requirement could be a maximum allowable deformation or stress.  Regardless of a structures 

prescriptive requirements, it must practically satisfy a set of constraints or bounds while 

being efficient.  Finding the optimum structural layout involves employing a suitable 

optimization methodology.  The procedure for solving reliability-based structural 

optimization problems in Rts is given by the following algorithm: 

1. Select an initial design ��. 

2. The displacement of the system �(��) is calculated using FEM for the current design 
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iteration ��. 

3. If applicable, using a COST model, estimate the cost of repair or damage �(�(��)) 

given the FEM response.  Include other cost measures such as construction and 

degradation over lifecycle if appropriate. 

4. Calculate the probability of failure ��(��) for the current design iteration using 

FORM.  Failure can be exceedance of a cost �(�(��)) or displacement �(��), for 

example.   

5. Calculate the RISK measure �(��) using the FORM output; the mean value of the 

aggregate cost for the current design. 

6. For the current design, formulate the objective function ��(��) and calculate its 

gradient ∇��(��).  

7. Utilizing a numerical optimization technique, calculate a suitable step size and 

direction to give a new design ����. 

8. Repeat steps 2-7 until a convergence criterion is satisfied.    

Note: At each iteration � of the optimization, the design state (the current values of decision 

variables) is represented by ��.  

 

The objective function (��) is a function that is either maximized or minimized while using 

specified design criterion as constraints.  It is composed of decision variables and state 

variables.  Decision variables (�) include those variables which are adjusted or iterated-over 

during the optimization procedure.  A decision variable can be the thickness of a plate, the 

length of a beam, or the area of a cross-section.  State variables (� || �) represent the 

response of the system; examples include cost, displacement, stress, or strain.    
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Therefore, to summarize, an optimization problem can be represented as: 

min ��(�,�||�)  subject to �

                     response constraints on �||�
                   design constraints on �
                    equilibrium constraints

 1 

Response constraints are typically written as the inequality �(�||�) ≤ 0 where � is termed 

the constraint function.  In structural optimization, the response �||� is dependent on the 

design variable �.  Therefore, the two constraints can be combined to define a “nested” 

formulation in which all response and design constraints are written as the 

inequality �(�,�||�) ≤ 0.   The structural optimization (��) problem is repeated 

mathematically for completeness as: 

(��) �

min
�

��(�,�||�)

�. �.
�(�,�||�) ≤ 0

 2 

The solution of the �� problem involves gradient-based numerical techniques that employ 

the derivatives of ��.  At both the FORM and RBDO levels of the procedure numerical 

algorithms are used that employ gradients.  Finding the gradients of the objective and 

constraint functions is a non-trivial task since �(�) is implicitly carried through the model 

framework starting at the FEM level.  

 

2.1.1 Optimization Search Algorithms 

In iterative optimization problems, an important step is selecting a suitable step size and 

direction when updating decision variables.  The sections below describe the two main search 

algorithms implemented in Rts that are used by the RBDO model; they are the Steepest 

Descent method and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.  Both 

algorithms employ so called hill-climbing techniques that are used to find a local minimum.  
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The minimum is called a stationary point; a point where the gradient is zero.   

 

2.1.1.1 Steepest Descent Method 

The steepest descent method is a simple approach in where the search direction is equal to 

the gradient of the objective function.  The step size is given by the user and remains fixed 

during the optimization procedure.  Using this approach, the function will always make a step 

towards the design point.  It can be described mathematically as: 

�� = � ∙∇�(��) 3 

where 

�� is the search direction vector, 

� is a fixed step size, and  

∇�(��) is the gradient of the objective function evaluated at ��. 

 

Care must be taken when selecting a step size, for if the step size is too small, the search can 

be very inefficient.  If the step size is too large, then the search may step over the design 

point thereby oscillating around the design point without converging; especially if the 

function exhibits large curvature around the design point.  Further issues arise when 

conducting multi-parameter optimization as some parameters require a smaller step size for 

convergence while others can converge faster with a larger step size.  This requirement can 

prove to be inefficient since multiple optimization iterations are required. 
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2.1.1.2 BFGS Method 

Another method for selecting the step size and direction is known as the BFGS algorithm.  

BFGS attempts to solve the step size and convergence issues encountered with the steepest 

descent method by utilizing second-order approximations of the objective function.  The 

BFGS method is considered a quasi-newton method since the Hessian is approximated using 

first derivative values rather than being evaluated directly.  The BFGS analogue to Newton’s 

formulation is given as: 

���� = − ∇�(��) 4 

where  

�� is the approximation to the Hessian matrix, 

 �� is the search direction vector, and 

∇�(��) is the gradient of the objective function evaluated at ��. 

The BFGS algorithm is summarized as follows: 

1. Make an initial guess �� and ��. 

2. Obtain a search direction ��where   

�� = − ��
��∇�(��) 5 

 
3. Perform a line-search to find the step size �� (or use a fixed step size).  

4. Find ���� = �� + ����. 

5. Set S� = ����. 

6. Set �� = ∇�(����) − ∇�(��). 

7. Find ���� = �� +
����

�

��
� ��

−
������

� ��

��
� �� ��

. 

8. Repeat steps 2-6 until �� converges to a solution.   
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2.2 RISK Model 

The RISK model takes the exceedance probability output from the FORM and sampling 

models to produce an expectance or risk measure.  The risk measure, in this instance, is the 

area under the Complementary Cumulative Distribution Function (CCDF) which represents 

the mean value of a total cost.  The total cost can be the output from a collection of models 

consisting of any number of random variables or decision variables.  Examples can include 

repair cost, construction cost, or replacement cost models to name a few.  Inherently, the total 

cost is uncertain as it depends on the values of the random and design-decision variables.  

Hence, the risk measure is given as a mean value that is then used as an input into the RBDO 

model.   

 

The procedure for calculating the risk measure is summarized as: 

1. The sampling model does an initial sampling analysis of a specified number of samples to 

get a rough estimate of the mean and standard deviation.    

2. A specified number of thresholds is then distributed equally on either side of the 

estimated mean.  A larger number of thresholds gives greater resolution in the CCDF 

curve but it comes with a higher computational cost.   

3. An integrated FORM analysis is then run for each threshold value with the corresponding 

exceedance probability as its output.   

4. If the probability exceedance values are not above or below 0.005 or 0.995 at the extreme 

thresholds, then new thresholds are added in either direction until the exceedance 

probability falls within the bracket.  This ensures that the summation of the risk measure 

does not exclude large portions of the area in the “tail ends” of the CCDF.   
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5. The resulting exceedance values are the points on the CCDF curve; with each point being 

the probability that the cost value will exceed a certain cost threshold.   

 

For the examples used in Chapter 5 of this thesis, 10 initial samples were sufficient to 

estimate the mean.  The number of cost thresholds used was 23.  Using a higher number of 

sampling points or thresholds greatly increases computational cost.  At every sample point 

the FEM model is run while the FORM model is run at every threshold value.  FORM 

typically runs multiple instances of the FEM model.  Therefore, if the structure is 

complicated, using an unnecessarily high number of initial samples or thresholds can be 

computationally detrimental.  Every optimization requires sound judgment when selecting 

the number of sampling points or thresholds. 

 

The integral, or area under the CCDF, gives the risk measure which in this case is the mean 

cost.  Using the Trapezoidal Rule, the area under the CCDF curve is calculated numerically.  

The mean cost � is given as: 

where ���
 is the exceedance probability from FORM and �� is the cost threshold. It is worth 

reiterating that incorporating a higher number of thresholds results in a more precise measure 

of the mean, but it comes with a high computation cost due to FORM calling repeated COST 

and FEM models downstream.   

 

 

� =
1

2
����1 + ���

 � + �������
+ ���

� ∙(���� − ��)

�

���

� 

 

6 
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2.3 FORM Reliability Model 

The main goal of a structural reliability analysis is to evaluate the probability of a failure 

event occurring within a specified time period.  A failure event could be defined as cost 

overrun, excessive deformation, damage to the environment, or loss of life.  Mathematically, 

failure events can be described by a relation called the limit-state function: 

� = �� =  {�(�) ≤ 0} 7 

The failure event � is realized when �(�) is equal to or less than zero.  The components of 

the original-space vector � consist of all of the random variables, or parameters, �� that 

influence the probability of the failure event occurring.  � is given as: 

� =  {�� �� …  ��}� 8 

The limit-state function can be either linear or non-linear.  In the first case, the limit-state 

function �(�) is a linear function of continuous random variables �.  The probability of the 

failure event F can be described by the function: 

��(�) = �(�(�) ≤ 0) = �(− �)  9 

where � can be described as the structural reliability index, given as: 

� =
��

��
 

 

10 

In this context, � represents the number of standard deviations, or the spatial “distance,”  

from the failure plane.  A larger � corresponds with an increase in safety and conversley a 

smaller value implies a greater failure probability.  Taking into account all of the random 

variables, the total probability of failure can be determined by integrating a joint probability 

distribution function ��(�) in original space as: 

��(�) = �(�(�) ≤ 0) = � ��(�)��

�(�)��

 11 
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Analytically solving this integral is non-trivial, therefore numerical approximation techniques 

are used to evaluate the probability of failure.  Numerical integration methods are highly 

inefficient for increasing dimension of the vector �.  Consequently, a first-order 

approximation approach is adopted.  Reliability analysis using FORM involves a 

transformation, or normalizing, of the limit-state function from the original space function 

�(�) to the standard-normal space function �(�).  This transformation is accomplished by 

normalizing the components of the standard-normal vector � from the original-space vector 

� where each component y� is given by: 

y� =
�� − ���

���
 

 

12 

By normalizing the limit-state function into standard-normal space, the normalized random 

variables y� now have zero means and unit standard deviations.  In standard-normal space the 

structural reliability index � is the shortest distance from the hyper-plane (or line in two 

dimensions) that forms the boundary between the safe domain and the failure domain to the 

standard-normal space origin.  The point on the plane or line that is closest to the origin is 

denoted the design point, or the point where failure is most likely.  This is also the point in 

the failure domain with the highest probability-density.  In standard-normal space, the joint 

probability distribution function of uncorrelated standard-normal random variables is given 

by: 

��(�) =
1

� (2�)�
��

�
�

��� 

 

13 

where � is the standard-normal vector of the normalized random variables �.   
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2.3.1 FORM Limit-State Function  

A cornerstone of FORM involves the process of linearizing the limit-state function described 

in equation 9 at the design point.  The design point �∗ is the point on the failure hyper-plane 

that is located at the closest distance to the standard-normal space origin.  As described 

above, the shortest distance spatially between the safe and failure domain is called the 

reliability index and it is defined as: 

� = ‖�∗‖ 
14 

In FORM, the limit-state function is linearized by a first-order Taylor approximation to 

produce: 

�(�) ≅ �(�∗) + ∇��∗� ∙(� − �∗) 
 

15 

The term �(�∗) is equal to zero since we are evaluating the limit state function at its design 

point.  It is common to normalize the gradient and negate it; this negative unit vector is 

referred to as the alpha-vector and is given as: 

� = −
∇��(�∗)

‖∇�(�∗)‖
 

 

16 

where each component is: 

�� = −

∂G
∂��

(�∗)

� ∇��(�∗) ∙∇�(�∗)
 

 

17 

�(�) can now be expressed as: 

�(�) ≅ − ‖∇�(�∗)‖ ∙��(� − �∗) = ‖∇�(�∗)‖ ∙(���∗ − ���) 
 

18 

Beta is now redefined as: 

� = ���∗ = −
∇��(�∗)

‖∇�(�∗)‖
�∗ 

 

19 
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which brings us to the final form of the linearized limit-state expression: 

�(�) ≅ ‖∇�(�∗)‖ ∙(� − ���) 
 

20 

To find the design point �∗, we must find the minimum �which can be accomplished using 

an optimization routine.   

 

2.3.2 FORM Design Point Optimization  

The design point is found by iteratively solving the following optimization problem: 

� = min
� ∈{��(�)��}

� � ��
�

�

���

= ‖�∗‖ 

 

21 

where �∗ is the design point or the distance closest to the failure surface.  The above 

expression infers that the design point is located at the minimum distance from the failure 

surface linearized on the point ��  by the line tangent to the surface �′(�) = 0.  For FORM to 

function, �(�) must be continuously differentiable.  The search algorithm for finding the 

FORM design point can be described as the following optimization problem:  

�∗ = argmin�
1

2
‖�‖� | �(�) ≤ 0� 

 
22 

The iterative algorithm to find �∗ is formulated as:  

���� =  �� + �� ∙��  
23 

where �� is the step size and �� is equal to a search direction.  The FORM Model 

incorporates both fixed and Armijo step sizes.  If the fixed step size fails to converge, then 

Armijo will take over.  The search direction is given using the state-of-the-art iHLRF 

algorithm: 

�� = ���� −  �� = �
�(��)

‖∇�(��)‖
+ ��

� ∙��� �� −  ��  24 
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The iHLRF algorithm requires the normalized gradient 
�(��)

‖∇�(��)‖
 which we will solve for 

analytically.   

 

2.3.3 FORM Convergence Criterion 

The design point is attained when the Karush-Kuhn-Tucker (KKT) optimality conditions 

have been satisfied.  The two optimality conditions are: 

�
�(��)

��
�≤ �� 

 

25 

and  

1 −
��

���

‖��‖
≤ �� 

 

26 

The first condition ensures that the trial point �� is close to the limit state surface while the 

second condition is an angle-based criterion that requires the trial point on the limit-state 

surface to be the minimum distance to the origin. The values of �� and �� are in the 

magnitude of 10-3.   To summarize, the FORM algorithm involves the following procedures: 

1. Select a starting point in standard normal space ��. 

2. Transform the parameters from original space �� using equation 31. 

3. Evaluate the limit-state function �(��) =  �(��). 

4. Calculate the gradient of the limit-state function ∇�(��). 

5. Set the scaling factor for the first convergence criterion �� =  �(��). 

6. Check convergence using equations 25 and 26. 

7. If convergence is not satisfied, iterate to find ���� using equation 24 and a suitable 

step size. 
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8. Repeat steps 2-7 while skipping 5 until convergence. 

The reliability index is only then computed at convergence, followed by the respective 

failure probability.  

 

2.3.4 FORM Probability Transformations 

As previously mentioned, in FORM reliability analysis, we seek to transform each random 

variable parameter from original to standard-normal space.  The goal of probability 

transformations is to redefine a vector of random variables �, with known probability 

distributions, to a vector �, also with known probability distributions.  This process involves 

determining the functional relation between the random variables; the random variables can 

be correlated or independent.  In the optimization examples, the probability distributions used 

are normal and log-normal.  The examples use independence probability transformations.  

For independent or uncorrelated random variables, the probability transformation is given as: 

y� =  Φ �����(��)� 
27 

from 

��(��) = Φ (y�) 
28 

and  

�� = ��
��(Φ (y�)) 

29 

 

To find Φ ��, we need the inverse of the Jacobian which we can derive by differentiation of 

equation 28: 

�

���
���(��) = Φ (y�)� = ��(��) =

�

���
Φ (y�) =

�y�

���

�

�y�
Φ (y�) =

�y�

���
�(y�) 

 
30 
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Finally, we get the diagonal Jacobian matrix necessary to complete the transformation with 

the components: 

�y�

���
=

��(��)

�(y�)
 

 

31 

 

2.4 COST Model 

The COST model is where the responses and geometry parameters from the FEM model are 

converted to a present-value cost.  The COST model may include construction cost, future 

repair cost, degradation cost, financing cost, and environmental cost to name a few.  The 

COST model can be extremely complex and is outside the scope of this thesis, only the 

model framework for DDM gradients was implemented along with simple examples for 

academic purposes.  For this thesis, the cost model formulation is: 

�(�) = �(�(�)) + �(�) 32 

Where �(�(�)) is a function that assigns a monetary value to a given displacement �(�) and 

�(�) is a construction cost that can be considered a function of a component’s material and 

geometric properties.  �(�(�)) can be considered a damage model while �(�) could be a 

construction model that depends on material used and component geometry such as thickness 

of a plate or volume of a beam.  

 

2.5 FEM Model 

There are multiple approaches and derivations for implementing finite element solutions.  

The main idea behind FEM involves solving a boundary value problem that satisfies all 

equilibrium, kinematics, and material law requirements.  The FEM model, as the name 

implies, involves discretizing a solid continuum into multiple ‘finite’ elements.  In other 
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words, it involves meshing a continuous global domain into a collection of sub-domains.   In 

the continuous domain, the responses are described by differential equations on an infinite 

number of points.  In the discrete domain, the responses are described by a finite number of 

points and with a set of algebraic equations. 

 

In most practical cases, the governing partial differential equations are extremely difficult to 

solve for point-wise or exact solutions due to the complexity of the solids and domains 

involved.   As a result, the governing equations need to be numerically approximated, or 

averaged, over each discrete element within a discretized local domain.  As more elements 

are used, and as the mesh spacing becomes infinitesimal, the solution approaches the exact 

value.  

 

In structural analysis solutions, FEM involves approximating either or both of the 

displacement and force fields.  The equilibrium, or compatibility approach, consists of 

approximating the displacement unknowns while the kinematics approach subjects the force 

unknowns to approximation.  There are also hybrid approaches that combine both force and 

displacement approximations to arrive at a solution.   

 

In Rts, the displacements are approximated to satisfy equilibrium.  Hence, the remainder of 

this thesis will focus on the displacement-based FEM approach.  Regardless of the governing 

equation formulations used to derive the force or displacement approximations; they can both 

be linked with virtual work or energy principles.    
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2.5.1 Energy Formulation 

The energy quantity defined as work satisfies both the compatibility and kinematics 

conditions.  More generally, work or ��  can be defined as the energy required for the 

differential displacement �� of a point p along the direction of an applied force component �.  

Mathematically, work can be expressed as: 

 �� = ���  or as   � =  ∫ ��� 33 

This integral conveniently represents both the equilibrium and kinematics quantities in a 

single expression.  Since both forces and displacements appear in the definition of work, 

virtual work can be expressed as either the principle of virtual displacements or virtual 

forces.  The conditions of equilibrium are derived from virtual displacements while 

compatibility is defined through virtual forces.  In the case of a deformable body, such as a 

structural system, both the external and internal forces can do virtual work.  This thesis will 

employ the principle of virtual displacements since it is the method predominantly used in 

solving structural mechanics problems.   

 

2.5.2 Principle of Virtual Displacements 

Using extremum formulations, structural problems can be solved by virtual displacements 

utilizing a variational calculus approach.  Variational calculus involves minimizing an 

integral, in this case the potential function: 

 Π = U − H  34 

The potential function states that the strain energy of a system U is equal to the total potential 

of the loads H  plus a constant Π.  The values of  U and H  are obtained by summing 

(integrating) the energy contributions from each of the elements.  The internal strain energy 
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of a deformable system is given by:   

 U =
1

2
 �� 35 

The potential energy due to an external load is given by the area under the force-

displacement relationship as: 

 H =
1

2
F ∙� 36 

Integrating over the entire volume of a solid gives the following general expression: 

 � {�}�{�} �� −
�

� {�}�{�} �� = Π
�

 37 

The core concepts of the virtual displacement principle can be summarized in the following 

theorems: 

I. If a particle is in equilibrium, the total virtual work done during any arbitrary virtual 

displacement of the particle is zero. 

II. A system of particles is in equilibrium if the total virtual work done is zero for every 

independent virtual displacement.   

III. A deformable system is in equilibrium if and only if the total external virtual work is 

equal to the total internal virtual work for every virtual displacement consistent with 

the constraints. 

IV. Of all of the possible displacements which satisfy the boundary conditions of a 

structural system, those corresponding to equilibrium configurations make the total 

potential energy assume a stationary value.   

V. The displacements corresponding to stable equilibrium configurations make the total 

potential energy a relative minimum (Eisley, 1989).                                                                   
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The equilibrium equations are therefore obtained by minimizing the potential function: 

 �Π = 0 38 

To accomplish this, we impose a virtual displacement or strain relative to equilibrium and set 

the potential function to zero.  Integration by parts is then performed on equation 37 and 38 

where the derivative is transferred from the minimizing function to the so-called 

variational �.  The symbol � in this instance has the same meaning as the differential 

operator.  The final outcome is equation 39 below.  

� {��}�{�} �� −
�

� {��}�{�} �� = 0
�

 39 

This FEM formulation is considered a ‘weak’ formulation since we neglect the twice-

differentiability condition.  Now the kinematic relationship between stress and strain can be 

formulated as: 

{�}= [�]{�} 40 

where [�] is a material properties matrix that depends on the element type.  For example, 

various elements and their corresponding material matrices are given in Table 1 below. 

Table 1.  Element material properties matrices 

Element Material Matrix  [�] 

Bar � 

Beam �� 

Plane Element 
�

1 − ��
�

1 � 0
� 1 0

0 0
1 − �

2

� 
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Substituting equation 40 into 39 yields: 

� {��}[�]{�} �� −
�

� {��}{�} �� = 0
�

 41 

One of the cornerstones of the FEM is the ability to interpolate the displacements using shape 

functions.  Let the displacements � be interpolated over an element using linear shape 

functions [�] such as: 

{�}= [�]{�} 42 

where {�} is the vector of the nodal displacement at each Degree of Freedom (dof) of each 

element.  We also define [�] as the strain displacement matrix: 

[�]= ∇[�] 43 

By definition of the strain-displacement relationship, strains are determined from 

displacements as:  

{�}= ∇{�} 44 

Hence, combining equations 42, 43, and 44 we define the strain as: 

{�}= ∇[�]{�}= [�]{�} 45 

Substituting equations 42 and 45 into equation 41, we arrive at the final form of the FEM 

integral: 

{δ�}� � [�]�[�][�]�������
[�]

 �� {�}−  {δ�}� � [�]�{�} �� = 0
��

 46 

Where the element stiffness matrix is: 

[�]= � [�]�[�][�] ��  47 

Equation 47 can be extended to any element, in any dimension. Rts uses this approach for 

line elements, bar elements, plane elements, and as of this thesis, plate elements.  The 
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following sections will focus on the numerical solution techniques employed on plate 

elements since that was the element implemented in Rts for this thesis.  

 

2.5.3 Plate Finite Elements 

In general, plate elements are based on either Kirchhoff or Mindlin plate theories.  Kirchhoff 

plate theory excludes transverse shear deformation while Mindlin plate theory accounts for it.  

This is analogous to beam bending where Euler-Bernoulli beam theory neglects shear 

deformation while Timoshenko theory includes it.  Also, much like beam theory, as a beam 

gets deeper (or a plate becomes thicker) transverse shear plays a greater role in the accuracy 

and reliability of the computed results.  The stresses and stress resultants are highlighted on a 

plate element in Figure 2 below.   

 

Figure 2. Stresses on a plate element  

Plates develop bending moments in the two principle directions along with a twisting 

moment.  Positioned with the x-y plane at its midsurface, both rotations at the midsurface and 

surface slopes are used to describe plate elements.  The midsurface rotations �� and �� are 

positive when pointing in the x and y directions.  The rotation or slope on the surface of the 

plate element is given as w,x and w,y; where the comma represents differentiation with 
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respect to the following subscript.  In Kirchhoff plate theory, a straight line normal to the 

midsurface is assumed to remain straight and normal to the deformed midsurface; transverse 

shear deformation is zero.  This requirement is relaxed in Mindlin theory.  In Rts, Mindlin 

plates were implemented because they provide more options such as the ability to analyze 

layered plates where transverse shear deformation is often important.  Additionally, they can 

be easily extended to become shell elements.  The drawback of using Mindlin plates is that 

they are susceptible to shear locking and require more expertise to implement (Cook, 

Malkus, Plesha, & Witt, 2002).   

 

The plane-stress expression for plate elements is as follows: 

[��]= �

���

���

���

� =
�

1 − ��
�

1 � 0
� 1 0

0 0
1 − �

2

��

���

���

���

� 

 

48 

and for shear as: 

[��]= �
���

���
� = �

� 0
0 �

� �
���

���
� 

 

49 
 

where � is the Young’s modulus and the shear modulus is: 

� =
�

2 + 2��
 

 

50 
 

The b and s subscripts in equations 48 and 49 denote bending and shear respectively.   

Kirchhoff plates utilize only  �� while Mindlin plates incorporate both �� and ��.  The full 

plane-stress expression for Mindlin plates is: 

⎩
⎪
⎨

⎪
⎧

���

���

���

���

���⎭
⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎡

0 0
[��] 0 0

0 0
0 0 0 � 0
0 0 0 0 �⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧

���

���

���

���

���⎭
⎪
⎬

⎪
⎫

 51 
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Since we are dealing with plane stress, ��  and �� are considered negligible.   

Kirchhoff plates need only be represented by a single field w(x,y); the lateral deflection of 

the midsurface.  The stress and deformation throughout a Mindlin plate is expressed as three 

fields; w(x,y), ψx, and ψy.  The variables ψx and ψy being the rotations of the midsurface 

normal along x and y respectively.  With Kirchhoff elements, w,x = ψx and w,y = ψy  since the 

slope at the midsurface is assumed to equal the slope at the surface; hence only the field 

w(x,y) is sufficient to represent the total state of deformation.   

 

The moment-curvature relationship for a homogenous, isotropic, and linearly elastic Mindlin 

plate is: 

⎩
⎪
⎨

⎪
⎧

� ��

� ��

� ��

��

�� ⎭
⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎡

� �� 0 0 0
�� � 0 0 0

0 0
� (���)

�
0 0

0 0 0 �ℎ� 0
0 0 0 0 �ℎ�⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧

��,�

��,�

��,� + ��,�

�� − �,�

�� − �,� ⎭
⎪
⎬

⎪
⎫

     or     {�}= [�]{��} 
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where 

� =  the material property matrix  
���

��(����)
, 

� =  is the shear modulus  
�

�����
, 

� =  effective thickness 5 6� , 

ℎ = plate thickness, and 

� = material Poisson’s Ratio 

 

D  is analogous to flexural rigidity EI  in beam theory while G denotes the shear modulus.  �ℎ 

can be regarded as the “effective thickness” for transverse shear deformation.  Note that the 
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lateral deflection field in Mindlin theory is coupled to the rotation fields only by transverse 

shear deformation.  The curvature deformations {��}, the far-right vector of equation 52, are 

approximated through shape functions.  The following sections will provide an overview of 

the shape functions used for the Mindlin plate element implementation.  

 

2.5.4 FEM Mindlin Plate Shape Functions 

In mathematics, any continuous function can be represented as a linear combination of 

discrete basis functions.  To discretize the continuum domain, an appropriate ‘basis’ function 

must be selected.  A shape function is considered a restriction of a basis function to an 

individual element.  These unique basis functions are related to the geometry of the meshed 

element; either through a vertex, edge, face or the whole element in simple geometries.   

Constructing a basis function in terms of a shape function eliminates the need to know 

specific geometric information about overall element layout and connectivity.  Basis 

functions are constructed by combining the shape functions of the neighboring elements; this 

ensures connectivity and continuity through the system.  2D elements preserve edge 

continuity while 3D elements require face continuity as well.   

 

Placing a node at the element’s vertices ensures a continuous basis.  The neighboring edges 

share the same nodal values; the edges are not collinear and by definition the shape functions 

from both edges are determined by the same two nodal values at their shared vertex; hence, 

the basis is continuous.  When constructing shape functions, the objective is to construct a p-

th degree polynomial approximation.  The resulting polynomial must be linear, unique, and 

complete.  In two-dimensions, Pascal’s triangle is used to construct shape functions.  These 
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piecewise, linear polynomials are referred to as Langrangian Shape Functions.  Including all 

of the terms in the polynomial ensures isotropy in that the degree of the shape function is 

retained under coordinate translation and rotation.  The shape functions described above take 

the form: 

��(�,�) = � ����(�,�) = ���(�,�)

��

���
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where �� are unique coefficients and where 

��(�,�) = [1,�,�,��,��,��,… ,��] 
 

54 

Quadratic shape functions have the form: 

�� = �� + ��� + ��� + ���� + ���� + ���� 
 

55 

where the six coefficients �� … � = 1. . .6 are determined uniquely by the values of the shape 

functions of the three nodes on a given edge.  The values of the shape functions on shared 

edges are determined by the same nodal values in neighboring elements. 

 

Constructing Langrangian approximations, though straight forward to implement, can be 

algebraically complicated.  To reduce the complexity, an element can be transformed into a 

canonical or parametric element.  This coordinate transformation is achieved by mapping an 

arbitrary element from the (x,y) plane to a canonical element in the (�,�) plane.  The ability 

to solve any problem using arbitrary coordinate transformations facilitates the 

straightforward formulation and solution of differential equations using these parametric 

elements. 
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2.5.5 Parametric Finite Elements 

Isoparametric mapping permits quadrilateral elements to have non-rectangular shapes.  This 

technique uses reference coordinates to map an arbitrary physical element into a “reference 

element.”  The mapping of a 2-dimensional four node quadrilateral element to a canonical 

element is shown below in Figure 3. 

 

Figure 3.  Coordinate mapping from x,y to ξ,ɳ  (Flaherty E, 2014) 

This is accomplished with coordinate transformation using shape functions that interpolate 

both the displacement field and the element’s geometry.  The displacement of a point within 

the element can be expressed in terms of the nodal dof and the shape functions [�] which are 

also functions of the reference coordinates.  The global coordinates of a point within the 

element can be expressed as shape functions ����; these are also functions of the reference 

coordinates.   

 

An element is called isoparametric if ���� is identical to [�].  If ���� is of lower degree 

than[�], then the element is called subparametric.  If ���� is a higher degree than [�], then the 
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element is superparametric.  Isoparametric elements were incorporated in Rts for this thesis.  

When using any form of parametric elements, the strain-displacement matrix [�] is not 

straightforward to assemble.  In this case, it involves gradients and 
�

��
 is not simply a constant 

multiplied with a differential.  To accomplish this, a function � = �(�,�) is defined and we 

use the chain rule to differentiate this with respect to x and y as follows: 

��

��
=

��

��

��

��
+

��

��

��

��
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��

��
=

��

��

��

��
+

��

��

��

��
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or as: 

�
�,�
�,�

� = [�]�
�,�
�,�

� 
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where [�] is defined as the Jacobian such that: 

[�]= �
�,� �,�
�,� �,�

� =

⎣
⎢
⎢
⎢
⎢
⎡�

���

��
��

�

���

�
���

��
��

�

���

�
���

��
��

�

���

�
���

��
��

�

��� ⎦
⎥
⎥
⎥
⎥
⎤
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and where n is equal to the number of nodes on the element.  The Jacobian contains all first-

order partial derivatives of the shape functions of an element.  Equation 58 is reformulated 

to:   

�
�,�
�,�

� = �
Г�� Г��

Г�� Г��
� �

�,�
�,�

�  60 

where [Г] equals the Jacobian inverse: 

[Г]= [�]�� =
�

���⋅�������⋅���
�

��� − ���

− ��� ���
� 61 
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The above transformation equations apply to plane elements that have any number of nodes. 

By definition, we define the displacement over a Mindlin element by shape function 

interpolation.  As previously noted, there are three fields necessary to completely describe 

the deformation.  The lateral displacements and rotation fields are given by: 

�

�
��

��

� = ∑ �

�� 0 0
0 �� 0
0 0 ��

� �

��

���

���

�   or   {u} = [N]{d} 62 

The shape functions Ni = N i (ξ,ɳ)  depend on the number of nodes in the element, they are 

given in Table 2 below for a quadrilateral element of up to nine nodes.   

Table 2.  Shape functions of a plane quadrilateral from 4 to 9 nodes (Cook, Malkus, Plesha, & Witt, 2002) 

Ni = N i (�,�) Include only if node i is present in the element 

i=5 i=6 i=7 i=8 i=9 

�� =
1

4
(1 − �)(1 − �) −

1

2
�� 

  
−

1

2
�� −

1

4
�� 

�� =
1

4
(1 + �)(1 − �) −

1

2
�� −

1

2
�� 

  
−

1

4
�� 

�� =
1

4
(1 + �)(1 + �) 

 
−

1

2
�� −

1

2
�� 

 
−

1

4
�� 

�� =
1

4
(1 − �)(1 + �) 

  
−

1

2
�� −

1

2
�� −

1

4
�� 

�� =
1

2
(1 − ��)(1 − �) 

    
−

1

4
�� 

�� =
1

2
(1 + �)(1 − ��) 

    
−

1

2
�� 

�� =
1

2
(1 − ��)(1 + �) 

    
−

1

2
�� 

�� =
1

2
(1 − �)(1 − ��) 

    
−

1

2
�� 

�� = (1 − ��)(1 − ��)      
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Nodes are placed at an elements vertices and along the midpoints.  If present, node 9 is 

located at � =  � = 0.  The two plate quadrilateral elements implemented in Rts are shown in 

Figure 4 Below. 

 
Figure 4.  Four node and nine node quadrilateral elements.   

The bilinear 4 node Mindlin (Mind4) is shown on the left while the 9 node (Mind9) Lagrange 

element is shown on the right. As introduced above in equation 43, the stiffness matrix is 

assembled using the strain-displacement interpolation matrix [�].  Every element type has a 

unique strain-displacement interpolation matrix.  To assemble the strain-displacement matrix 

for a Mindlin plate element, we must account for all three displacement fields: w(x,y), ψx, 

and ψy.  Again, these are the out-of-plane displacements and the rotations at the plate’s 

midsurface and surface respectively.   
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Here we define the displacement {�}= [� �� ��]� and curvature {��} as: 

{��}=

⎩
⎪
⎨

⎪
⎧

��,�

��,�

��,� + ��,�

�� − �,�

�� − �,� ⎭
⎪
⎬

⎪
⎫

 = [�]{�}= [�] 63 

In equation 63, the displacement vector {�}  is approximated by the Mindlin shape functions  

[�] to give: 

[�]= [�][�]= ∇[�]  64 

where � is the derivative operator matrix known as the “nabla” operator ∇. 

[�]=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 �

��� 0

0 0 �
���

0 �
��� �

���

− �
��� 1 0

− �
��� 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 65 

For an element having n nodes, we obtain [�] as: 

[�]���� =

⎣
⎢
⎢
⎢
⎢
⎡

0 ��,� 0 ⋯ 0 ��,� 0

0 0 ��,� ⋯ 0 0 ��,�

0 ��,� ��,� ⋯ 0 ��,� ��,�

− ��,� �� 0 ⋯ − ��,� �� 0

− ��,� 0 �� ⋯ − ��,� 0 �� ⎦
⎥
⎥
⎥
⎥
⎤

 66 

We can now rewrite the element stiffness matrix in terms of the isoparametric coordinates as: 

[�]=  �[�]�[�][�]

��

��

�� 
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Using the definition of the Jacobian [�] from equation 59, its determinant |�| is used to 

formulate the change in volume of an element: 

�� = |�|���� 68 

Now the integral in equation 67 can be restated as: 

[�]=  �[�]�[�][�]

��

��

|�|���� 
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Using gauss quadrature numerical integration techniques, we calculate the local element 

stiffness matrix by summing the values at each integration point �,�: 

[�]=  ∑ ∑ ���[���]�[�][���]|�|����  70 

where 

���  is the gauss integration weight coefficient, 

[�] is the strain-displacement matrix, 

[�] is the material properties matrix, and 

|�| is the Jacobian determinant   

 

Using the direct-stiffness method, the local element stiffness matrices are compiled into the 

global stiffness matrix.  Incorporating the forces acting on the system, we are left with the 

final form of the global element stiffness relation: 

{�}= [�]{�} 71 

Finally, the system of equations is solved for the displacements: 

{�} = [�]��{�} 72 
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The quadrilateral four node plate element used in Rts is shown below in Figure 5 with its 12 

dof. 

 
Figure 5.  Four node quadrilateral plate element 

In Rts, every node has 6 dof though plate elements only make use of 3 dofs in their stiffness 

assembly as shown above. 
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Chapter  3: ANALYTICAL GRADIENTS 

Gradients are important throughout the model stream since almost all optimization 

algorithms throughout the orchestrating models involve the gradients in one form or another.  

In addition, the gradients provide us with sensitivity measures of the design parameters.  This 

information is helpful in deciding which design variables to vary to achieve the lowest 

overall cost with all things considered.  The gradient flow chart throughout the models is 

given as: 

��

��
 

→ 

��

��
 

→ 

���

��
 

→ 

��

���
 

→ 

��

��
 

FEM COST FORM RISK RBDO 

Figure 6.  The gradient flowchart within Rts 

The overall intent is to calculate the sensitivity of the mean cost in relation to a change in the 

design parameters �.  In other words, how much will the mean cost change when we vary the 

values of the design parameters.  This information is directly used by the optimization 

algorithm since the minimums occur at stationary points where the gradient of the objective 

function is equal to zero (∇(��) = 0).  Note that for constrained problems, the local 

minimum may not be located at a stationary point if it does not fall within the constraint 

boundaries; the local minimums could potentially be located on the boundary itself.  For this 

thesis I will focus on unconstrained optimization.   
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Before this thesis, Rts had an initial framework in place for calculating the sensitivities as 

shown in the graphic below. 

 

Figure 7.  Direct Differentiation Method (DDM) in Rts (Mahsuli & Haukaas, 2013) 

Figure 7 outlines the gradient computational stream for a response �� with respect to 

parameters �� ⋯ ��.  In this case, the response depends explicitly on parameters �� and  �� 

and implicitly on parameters �� and ��.  The sensitivities for upstream models are calculated 

previously and stored in each model’s RResponse class.  In the current orchestrating model, 

the analytical expressions for the derivatives are required for all parameters.  For this 

example, analytical expressions for 
���

���
� ,

���
���

� ,
���

���
� ,

���
���

�  are computed within 

the orchestrating model’s class whose input responses are �� and �� and whose output 

response is ��.  The result is then inserted into the RModel DDM Map; RModel is the parent 
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class for all orchestrating models and the variable DDMMap is one of its members. After the 

orchestrating model is evaluated, the gradient ‘dependency’ calculations are performed 

within the RModel class.  Here the implicit and explicit dependencies between DDMMap of 

the current orchestrating model �
���

���
� ,

���
���

� ,
���

���
� ,

���
���

� � and the gradient maps 

of the input models �
���

���
� ,

���
���

� � and �
���

���
� ,

���
���

� � are evaluated.  The 

calculation performed is: 

���

���
=

���

���
∙

���

���
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∙
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+

���

���
∙

���

���
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���
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���

���
∙
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���
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���

���
=

���

���
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The final results are then saved as a gradient map to the RResponse class of the orchestrating 

model, for use in models downstream.  

 

Gradients can be calculated both numerically and analytically.  The finite difference method 

is a numerical method used for approximating the solutions to differential equations by 

employing finite difference equations.  Finite difference equations are used to replace, or 

more generally approximate, the derivatives of a differential equation by central, forward or 

backward difference(s).  By definition, the finite difference method is not exact; it is only an 

approximation.  Therefore, there will always be an error which is the difference between the 
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approximation and the exact analytical solution.  The two main sources of error are round-off 

and discretization error.  Round-off errors are the loss of precision due to computer rounding 

of decimals while discretization errors, or truncation errors, inherently come from the 

discretization of the problem’s domain and the continuous applications of the finite 

difference method.   

 

A drawback of the finite difference method is that it requires additional simulations and 

computations each time a design parameter is perturbed.  Also, selecting the optimal 

perturbation size of a set of parameters with the sensitivity of the numerical solution in 

context can be very difficult and important (Anderson, 2000).  Additionally, when 

performing nodal optimization, every perturbation requires re-meshing of the FEM domain. 

Therefore, the disadvantage of the finite difference method is that it can computationally 

expensive while still incorporating errors.   

 

Conversely, analytical gradients are exact. They are calculated from the direct differentiation 

of the functions used throughout the various models.  Exact gradients are useful because they 

ensure consistent convergence; especially when the analysis is near the stationary point of the 

optimization where accurate gradients are required.  Implementation of DDM comes with the 

initial cost of calculating the analytical derivatives and implementing them in the code 

alongside the orchestrating models.  This is not a trivial task due to the complexity of the 

models and their interconnectivity.  The sections below will go over the DDM gradient 

theory, calculations, and their logistics throughout each model. 
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3.1 FEM Gradients 

The FEM analysis is the starting point of the model analysis stream.  The inputs into the 

FEM models are the design parameters �.  The design parameters could be decision 

variables, random variables, responses for nodal coordinates, and/or constants.  The outputs 

of the FEM are the displacement responses {�}. Recall from equation 72 that the final 

formulation of the FEM system of equations is: 

{�} = [�]��{�} 77 

We start with the derivation of  
��

��
 where it is required to find the gradient of the stiffness 

matrix  
��

��
, and 

��

��
 as shown in the following equation: 

��

��
= ��� �

��

��
−

��

��
∙��

���������
������ ����
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where 
��

��
 is the gradient of the displacements � with respect to the parameters �.  The 

expression within the brackets is termed the “pseudo-load.”  Recall that the stiffness matrix 

from equation 70 is:  

� = ∑ ∑ � ���� 79 

where � = ���� = |�|����.  � can be considered a constant for material sensitivity (E,ν,h 

etc.) though it is NOT a constant for nodal or shape sensitivity; this is because � contains the 

Jacobian which is a function of the nodal coordinates.  Therefore, without shape sensitivity 

(when not considering nodal coordinate variations) only material sensitivity is considered.  

This simplifies the sensitivity expression to:  

��

��
= �

�{����}

��
 

 
80 
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Let  

�

��
{��} =  

��

��
� + �

��

��
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and let 

�

��
{��}= �

��

��
�

�
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now  

��

��
= � ��

��

��
�

�

�� +  �� �
��

��
 � +  � 

��

��
� � 
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which gives 

��

��
= � ��

��

��
�

�

�� +  ��
��

��
 � +  ��� 

��

��
 � 
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For material sensitivities, the derivative of  
��

��
 equals zero since the strain displacement 

matrix is not a function of any material properties.  This simplifies to the final expression for 

material sensitivities: 

��

��
= � � ��

��

��
 � � 
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Therefore, for material sensitivity, the gradient of the stiffness matrix is derived solely from 

the strain displacement and material matrices for material sensitivity.  For shape sensitivity, 

equation 84 is extended to: 

��

��
= ����|�|�Tr����

��

��
� ���� +  �

��

��
�

�

�� +  ��� 
��

��
� 
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where 

�|�|

��
= |�|Tr����

��

��
� 
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The derivative of the Jacobian is incorporated as well as the derivative of the strain-
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displacement matrix �.  Recall that the strain-displacement matrix from equation 66 is: 

����� =

⎣
⎢
⎢
⎢
⎢
⎡

0 ��,� 0 ⋯ 0 ��,� 0

0 0 ��,� ⋯ 0 0 ��,�

0 ��,� ��,� ⋯ 0 ��,� ��,�

− ��,� �� 0 ⋯ − ��,� �� 0

− ��,� 0 �� ⋯ − ��,� 0 �� ⎦
⎥
⎥
⎥
⎥
⎤

 

The � matrix already involves the derivatives of the shape functions.  For nodal sensitivities, 

we require the second derivatives, which depend on the parameter that we are taking the 

derivative with respect to.  The formula for the derivative of the strain-displacement matrix 

is: 

��

��
=

∂∇�

∂θ
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In the case of nodal sensitivities, for the 2-D plane element, the parameters � can either be � 

or �.  That is, when nodal coordinates depend on a geometric parameter that we need 

sensitivities for, such as plate width or length, for example.  Recall that the Jacobian is given 

as: 

[�]= �
�,� �,�
�,� �,�

� =

⎣
⎢
⎢
⎢
⎢
⎡�

���

��
��

�

���

�
���

��
��

�

���

�
���

��
��

�

���

�
���

��
��

�

��� ⎦
⎥
⎥
⎥
⎥
⎤
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The derivative of the Jacobian is therefore: 

�[�]

��
=

⎣
⎢
⎢
⎢
⎢
⎡�

���

��

���

��

�

���

�
���

��

���

��

�

���

�
���

��

���

��

�

���

�
���

��

���

��

�

��� ⎦
⎥
⎥
⎥
⎥
⎤
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From theorems of matrix calculus, it can be shown that the inverse is: 

�
�[�]

��
�

��

= [�]�� ∙
�[�]

��
∙[�]�� 
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The derivative of � is made up of the components of the differentiated inverse Jacobian to 

yield: 

������

��
=

⎣
⎢
⎢
⎢
⎢
⎡

0 ��,�,� 0 ⋯ 0 ��,�,� 0

0 0 ��,�,� ⋯ 0 0 ��,�,�

0 ��,�,� ��,�,� ⋯ 0 ��,�,� ��,�,�

− ��,�,� 0 0 ⋯ − ��,�,� 0 0

− ��,�,� 0 0 ⋯ − ��,�,� 0 0 ⎦
⎥
⎥
⎥
⎥
⎤
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where  

�
�,�,�

�,�,�
� = �

�[�]

��
�

��

∙ �
�,�

�,�
� 
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3.2 COST Model Gradients 

The next step in the model stream is the calculation of the cost model gradients.  The cost 

models may consist of construction, damage, and degradation models.  The input to the cost 

model consists of the displacement response output from FEM along with other random 

variables that represent cost measures.  The cost model can be a simple algebraic expression 

or a complex relationship that is a function of the displacement, design variables, and/or 

time.  In any case, the output of the cost model is related to the displacement output from the 

FEM model, which is in turn related to the design variables.  In this instance, the cost is 

given by: 

� = �(�(�)) + �(�) 94 

where �(�(�)) is a function that assigns a monetary value to a given displacement �(�) and 
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�(�) is a function of a design variable (density or beam geometry, for example).  The 

gradient of the cost model is hence given by: 

��

��
=

��

��
∙

��

��
+  

��

��
∙

��

��
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The gradients for 
��

��
 must be analytically solved within the cost model.  Cost and damage 

models can be highly complex; as such, care must be taken so that the gradients are smooth-

continuous e.g. there are no large jumps in the costs that cause “kinks” or discontinuities 

within the gradient curve. 

 

3.3 FORM Reliability Model Gradients  

The gradient of the limit state function is necessary for the gradient-based optimization 

methods used in FORM.  The gradient of the limit-state function is given by: 

∇�(�) =
��(�)

��
=

��

��

��

��

��

��
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where 

��

��
 is the derivative of the limit state algebraic expression which is in terms of the response 

�(�), 

��

��
 is the response gradient vector calculated from the FEM model, and 

��

��
 is the inverse of the Jacobian matrix from the probability transformation composed of the 

components 

�y�

�x�
=

��(x�)

�(y�)
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where � and � are the CDF and PDF corresponding to F and Φ.  � is the vector of random 
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variables in original space while � is its transformation in standard-normal space.  The input 

into the reliability model is the cost response.  The output is the probability of exceedance of 

a failure, or in this case the total cost threshold ��.  The derivatives of  �� and �  with respect 

to the parameters � are valuable because they are used in the gradient-based optimization 

algorithms; analytical derivatives are particularly useful since they are exact and offer faster 

and more reliable convergence.  In addition, the gradients are useful in themselves as 

“importance measures.”  In FORM, the alpha vector serves as an indicator or importance 

vector in where the absolute value of each individual component serves as a relative indicator 

of its contribution to the total variance.   Recall that the limit-state function in original space 

is given by: 

�(�) = �� − �(�) 
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and in standard-normal space by: 

�(�) = �� − �(�) 
 

99 

In FORM, the limit-state function is linearized by a first-order Taylor approximation to 

produce: 

�(�) ≈ �(�∗) + ∇��∗� ∙(� − �∗) 
 

100 

where � is the random variable vector in standard-normal space and �∗ contains the 

coordinates of the design point.  At the design point, the gradient of the limit-state function is 

found by using the chain rule: 

∇�(�∗) =
��

��∗
=

��

��
∙

��

��∗
∙

��∗

��∗
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Also, recall from equation 9 that the probability �� is: 

��(�) = �(�(�) ≤ 0) = Φ (− �)  102 
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In other words, �� is the probability that the cost �(�) equals or exceeds a threshold ��; 

where the limit-state function is less than or equal to zero.  The vector � consists of the 

random variables from the design parameters � in original space.  It follows that the 

derivative of the exceedance probability with respect to the cost threshold is: 

���

���
=

�Φ (− �)

���
=

��

���

�Φ (− �)

��
= −

��

���
∙�(�) 
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��

���
 can be calculated by realizing that the reliability index � is directly related to the design 

point values at �∗, such as: 

��

���
=

���

��∗

��∗

���
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The reliability index can be stated as � = ���∗, the derivative of which is: 

��

��∗
= � = −

∇��(�∗)

‖∇�(�∗)‖
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Hence, 
��

���
 is given with the following expression: 

��

���
= −

∇��(�∗)

‖∇�(�∗)‖

��∗

���
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We must now differentiate the limit-state function at the design point �∗, where � = �. 

��

���
=

��

��∗

��∗

���
+

��

���
�

�∗

= ∇��(�∗)
��∗

���
+

��

���
�

�∗

= 0 
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Solving for 
��

���
 at the design point gives the conditional derivative: 

��

���
�

�∗

= − ∇��(�∗)
��∗

���
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Substituting the conditional derivative into equation 106 gives: 

��

���
= ‖∇�(�∗)‖��

��

���
�

�∗
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It can be proven that the derivatives of the reliability index at the design point in standard-

normal and in original space are related as follows: 

��

���
= ‖∇�(�∗)‖��

��

���
�

�∗

= ‖∇�(�∗)‖��
��

���
�

�∗
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��

���
 is the derivative of the original limit state function (�(�) = �� − �(�)), which is equal 

to 1.  Substituting equation 110 into 103 gives the reliability gradient 
���

���
 as: 

���

���
=  

− �(�)

‖∇�(�∗)‖
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If we want the derivative of the reliability index with respect to parameters �, the following 

expression is derived: 

��

��
= −

∇��(�∗)

‖∇�(�∗)‖

��∗

��
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In other words, this relates to how much the distance from failure plane to origin changes in 

relation to changes in the design variables.  

 

3.4 RISK Model Gradients 

The risk model takes the FORM model probability of exceedance �� as an input and outputs 

the RISK measure � to the optimization model.  The FORM output ����(�(�) ≥

��)� yields a single point on the Complementary Cumulative Density Function (CCDF) 

curve for the response �(�).  A method of acquiring the mean of cost �(�) is by calculating 

the area under the curve.  In this case, the mean is calculated by numerically integrating the 
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CCDF values using the trapezoidal rule, formulated as: 

� =
1

2
��� �1 + ���

� + � �(���� −  ��) ∙(�����
+ ���

) � 

�

���

� 
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The gradient required for optimization is the sensitivity of the mean with regards to any 

changes in the parameters.  Since � is a function of both �� and ��, the chain rule is used to 

derive the expression for the risk sensitivities:  

��

��
=

1

2
�
���

��
�1 + ���

� + �� ∙
����

��
+ � ��

�����

��
−  

���

��
� ∙������

+  ���
� + (���� −  ��) ∙�

������

��
+  

����

��
�� 

�

���

� 
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where 

���

��
 equals the gradients from the COST model evaluated at the design point, and 

���

��
=

���

���
∙

���

��
  where 

���

���
 is equal to the FORM gradient at the design point derived above in 

equation 111.  The final expression for the RISK gradient is equal to: 

��

��
=

1

2
�
���

��
�1 + ���

� + �� ∙
���

���

���

��

+ � ��
�����

��
−  

���

��
� ∙������

+  ���
� + (���� −  ��) ∙�

������

������

�����

��
+  

����

���

���

��
�� 

�

���

� 
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3.5 RBDO Gradients  

The analytical gradients used in the optimization analysis can be calculated using the Direct 

and Adjoint Differentiation Methods; DDM and ADM respectively.  Currently, only the 

DDM method is employed in Rts but the related ADM is given for completeness.  The DDM 

and ADM methods are explained in the sections below.  
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3.5.1 Direct Differentiation Method – DDM  

The sensitivity of the objective function �� =  ���,�� is given as: 

���(��)

���
=

��(��)�

���
�(��) + �(��) ∙�(��)�� ∙�

��(��)

���
−

��(��)

���
∙�(��)�

�������������������
�����������
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Therefore at each design iteration point, to find the gradient of the objective function, we 

need to solve the “pseudo-load” for each parameter �, which is then inserted into each 

constraint function �� (� = 1 … �).  Thus, the total number of calculations is then � × �. 

 

3.5.2 Adjoint Method – ADM 

Using the adjoint method, we begin with:  

�(��) ∙� = �
���

��
�

�

 117 

Solving for � gives: 

� = �(��)�� �
���

��
�

�
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The sensitivity is then given as: 

���(��)

���
=

���

���
+ ��  �

��(��)

���
−

��(��)

���
∙�(��)� 
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Using this approach, � is solved for each constraint function �� (� = 1 … �), and then it is 

inserted into the final sensitivity equation � times. In this case, the total number of 

calculations performed is � × �.  To conclude, the adjoint method is more efficient if the 

number of constraints is more than the number of design variables.  Conversely, if the design 

variables outnumber the constraints, the direct differentiation method is more effective 

(Christensen & Klarbring, 2009). 
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Chapter  4: IMPLEMENTATION AND EXAMPLES IN RTS 

This chapter outlines the implementation of the orchestrating models and their respective 

DDM gradient calculations in Rts for performing reliability-based optimization.  The model 

architecture for a typical analysis is given in Figure 8: 

 

Figure 8.  Optimization software architecture in Rts 

The RBDO is the high-level orchestrating model that calls the run analysis method in 

RFunction starting with the down-stream FEM model first.   
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4.1 FEM Implementation 

At the FEM level, parameters consist of material properties, section properties, coordinate 

properties, or loads and hazards.  Table 3 below provides typical parameters used in Rts. 

Table 3. Examples of typical FEM parameters used in Rts 

Material Properties Young’s Modulus, Poisson’s Ratio, Density 

Section Properties 
Member Thickness, Member Length/Width, 

Moment of Inertia 

Points or Coordinates Any point or node on the structure 

Force Components 
Parameters or force components that 

contribute to the response 

 

Any parameter that contributes to the response can be analytically differentiated.   The 

response from the FEM model is always a displacement which can be translated into a stress, 

force, or strain.  The software architecture is setup so that the analytical derivative equations 

are programmed in on the element level.  The stiffness matrix assembly routine then 

compiles the differentiated global sensitivity-stiffness matrix corresponding to each 

parameter.  The sensitivity values for all parameters are solved and then saved in the RNode 

class for each node.  When the user selects a response, the gradient values from that 

response’s node are then utilized for calculating gradients downstream of FEM.  For the 

thesis examples, the parameters used in FEM were: 

��

��
= � 

��

��

��

�ℎ

��

��

��

��
�

�

 

where �,ℎ,�,� are the young’s modulus, thickness, width, and a point load respectively.  
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4.2 COST Implementation 

In this example implementation, the cost model involves only a simple algebraic expression: 

�(�) =  �� ∙� ∙ℎ ∙� +  �� ∙� 120 

where  

��= a random variable that represents the cost of purchasing material and constructing a 

timber panel $/m3, 

�=the width of the panel in meters,  

ℎ=the thickness of the panel in meters, 

�=the length of the panel in meters, 

��= a random variable that represents the cost of damage due to the maximum deflection of 

the beam under a point load at its tip $/m, and 

�(�)= the deflection of the tip of the beam. 

 

The gradients inserted in RCostModel DDMMap are: 

��

���
= � ∙ℎ ∙� 
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��

��
= �� ∙ℎ ∙� 
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��

�ℎ
= �� ∙� ∙� 
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��

��
= �� ∙� ∙ℎ 
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��

���
= � 
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��

��
= �� 

 

126 
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The COST DDMMap dependencies are then evaluated in RModel.  From FEM, the gradients 

were: 

��

��
= � 

��

��

��

�ℎ

��

��

��

��
�

�
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Since the only parameters shared by the input and cost models are the thickness and beam 

width, the dependency calculations are: 
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Giving the final cost gradient vector as: 
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4.3 RISK Implementation 

The RISK model incorporates the FORM and sampling models.  For gradient calculations, 

the DDM Map of each iteration of FORM at each cost threshold calculation is saved at 

convergence and utilized in calculating the final RISK gradient.  Unlike the previous 

dependency calculations, the RISK model gradient calculations are done within the model 

itself. They are then directly saved into the RResponse class from within RISK.  The 

dependency calculation within RModel is avoided in this step since RModel would only see 

the final COST response gradients from RResponse that are leftover from the last FORM 

iteration at the final threshold.   
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4.3.1 FORM and COST Gradients  

Within RISK, at each cost threshold FORM convergence, the COST model gradients are 

saved along with the FORM gradient as described below.  The FORM gradients utilized are 

described in section 3.3, equation 111 as: 

���

���
=  

− �(�)

‖∇�‖
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The COST gradients are saved at the FORM design point, or when FORM converges.  At 

this instance the realization of the cost function equals the cost threshold. Mathematically, 

this is simply: 
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��
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since � = ��.  These gradients are used in RISK to calculate the sensitivity of the mean.   

 

4.3.2 RISK Sensitivity Calculations 

The RISK gradients involve the derivatives of the Trapezoidal Rule at each exceedance 

probability/cost threshold pair.  Since we are performing a summation to calculate the mean, 

our gradients must equally be accounted for.  For example, we cannot solely use the 

gradients of the last value of the sum as RModel would, all of them must be represented 

equally.  To accomplish this, we sum the products of the gradients within RISK to achieve 

the final RISK sensitivity.  For each parameter, the DDM map 
���

��
 from every COST 

threshold is multiplied through with the FORM gradient and summed up.  The final RISK 

gradients are then saved to the global DDM Map.  
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This calculation is given as:  
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4.3.3 SAMPLING Gradients 

The sampling model is only used as a tool to establish the approximate thresholds on either 

side of the estimated mean.  Therefore, the sampling gradients are of no use.   

 

4.4 RBDO Implementation 

For this thesis, the optimization algorithm was implemented using the steepest descent 

method and a fixed step size utilizing the RISK gradients mentioned above.  Note that for 

optimization routines involving nodal coordinates, the FEM model needs to be re-meshed at 

every perturbation of the decision variable.   
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Chapter  5: RBDO EXAMPLES IN RTS 

The three examples implemented in Rts involve the optimization of the thickness and width 

of a cantilever timber beam.  The first example uses material-based sensitivity 

implementations while the second example incorporates nodal sensitivity.  Finally, a third 

example involves an unconstrained optimization on both thickness and width parameters. 

The analytical gradients were verified with finite difference approximations at the FORM 

level.  Additionally, an analytical model of a cantilever beam was optimized in Excel using 

Solver and compared to the values from Rts.  For each Rts example, the optimization was run 

twice; once with a starting point above the design value and once with the starting point 

below.  The values of the various parameters are given in Table 4.  

Table 4.  Rts model list of parameters and values 

Parameter 
Type of 

Parameter 

Distribution 

Type 

Coefficient of 

Variation 

Initial 

Value 

Modulus of Elasticity (GPa) 
Random 

Variable 
Lognormal 0.15 13 

Beam Width (m) 
Decision 

Variable 
- - 3 

Beam Length (m) Constant - - 9 

Poisson’s Ratio Constant - - 0.25 

Beam Thickness (m) 
Decision 

Variable 
- - 0.3 

Cost of Beam Construction 

($/m3) 

Random 

Variable 
Normal 0.20 200 

Damage Cost Due to 

Deflection ($/mm) 

Random 

Variable 
Normal 0.20 1000 

Mass Density (kg/m3) 
Random 

Variable 
Lognormal 0.05 500 

Point Load (kN) 
Random 

Variable 
Normal 0.30 17 
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The model consists of random variables, constants, and decision variable parameters.  The 

un-deformed cantilever beam FEM Model is shown in Figure 9. 

 
Figure 9.  Cantilever beam model in Rts 
 

The loading on the model includes self-weight and a point load.  It can easily be extended to 

support distributed loading over an area as this is similar to the body-loading (or self-weight) 

already accounted for.  The model consists of 36 elements; six in either direction.  In this 

optimization, the four node bilinear Mindlin plate element was used.  The deformed beam is 

shown below in Figure 10. 
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Figure 10.  Deflected beam Rts model 

The original un-deformed beam is shown as a light grey line.  The Rts input files are given in 

Appendix A.1: Rts Input File Thickness Optimization and Appendix A.2:  Rts Input File 

Width Optimization. 

 

Table 5 below summarizes the FEM parameters used in the structural analysis.  

Table 5. Optimization analysis parameters 

Parameter Value 

Number of  FEM Integration Points 1 

Element Type Bilinear Mindlin 4-Node 

Integration Type Gaussian 

Optimization Type Unconstrained 

Search Direction Steepest Descent 

Step Size Fixed 

 

The results of the Rts examples and Excel model are summarized in Table 6.  

Table 6.  Rts and Excel optimization example results comparison 

Example 

Initial 

Value 

(m) 

Final Design  

Value (m) 

Iteration 

Number at 

Convergence 

Time to 

Complete 

(min) 

Mean 

Cost ($) 

Beam Thickess  0.3 0.1769 10 20 1311 

Beam Thickess 0.05 0.1769 10 25.4 1311 

Beam Width 0.7 1.1587 6 14.4 929 
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Example 

Initial 

Value 

(m) 

Final Design  

Value (m) 

Iteration 

Number at 

Convergence 

Time to 

Complete 

(min) 

Mean 

Cost ($) 

Beam Width 3 1.1627 8 25.3 929 

Excel Beam Thickness 0.3 0.1754 - - 1303 

Excel Beam Width  3 1.1507 - - 921 

 

The analytical Excel values match closely to those from Rts.  The number of iterations to 

convergence depends on step size.  All examples used a fixed step size.  If the step size is too 

small, it will take longer to converge.  In both optimization examples, the material and 

geometric properties are equivalent with the exception of the thickness being the decision 

variable in the first and the beam width in the other.  The following sections showcase the 

Rts examples along with their respective GUI output.  The input file for each optimization is 

given in the Appendices.   

 

5.1 Optimization of Beam Thickness Using Material DDM Sensitivities  

This section outlines an RBDO example using material sensitivities.  In this case, the 

decision variable is the beam thickness.  In the RBDO class, the steepest descent method is 

used with a step size of 0.0005.  The optimization was started at higher and lower than design 

thickness values to illustrate convergence capabilities.   The first optimization was started 

with an initial thickness of 0.05 m.  
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The GUI Rts output of the optimization is shown below.  

 
Figure 11.  Thickness optimization Rts GUI Ouput 

The Rts output to the user consists of both graphical and text components.  The text 

component is given in Appendix A.  Figure 11 illustrates the GUI output of the thickness 

optimization. The optimization iteration number and objective function value are plotted on 

the left.  The RISK CCDF is plotted in the upper right hand corner while the FORM 

evolution plot is given in the bottom right.   

 
Figure 12.  Optimization plot; iteration number vs. objective function value 
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 Figure 12 shows the decreasing objective function value as the optimization progresses.  At 

around the sixth iteration the thickness approaches the optimum cost.  The beam is initially 

very thin therefore deflection governs and the high cost is due to a large deflection value.   

Figure 13 below shows the evolution of the CCDF curve with each optimization iteration.  

 
Figure 13.  Thickness optimization CCDF 

As the thickness approaches the optimum, the spacing between the curves decreases while 

the slope increases.  The area under the leftmost curve represents the lowest mean cost; the 

optimization proceeds from right to left.  The plot shown is the mean probabilistic cost of the 

beam vs. the probability of exceedance.   

 

The second optimization started with a beam that was 0.3 m thick.  In this case, the deflection 

was smaller while the material cost of manufacturing the beam governed.  The GUI output is 

shown below while the text output can be seen in Appendix B.1: Material Optimization 

Output.   
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Figure 14.  Thickness optimization full GUI 

In this case the optimization approaches the design thickness within four iterations as can be 

seen in Figure 14 and Figure 15. 

 
Figure 15.  Thickness optimization plot  

The CCDF evolution plot is additionally given below for reference.  
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Figure 16.  Thickness optimization CCDF Evolution 

As can be seen in Figure 16, as the decision variable value approaches the design point, the 

CCDF curve spacing diminishes as it shifts leftward.   In the thickness case, the final mean 

cost was $1311. 

 

5.2 Optimization of Beam Width Using Nodal DDM Sensitivities  

In this section, the width of a timber beam is optimized.  The parameters and their respective 

values are given in Table 4.  In this optimization, the decision variable involves nodal 

coordinates; the beam width.  As in the beam thickness example, two values were chosen 

above and below the design point.  The first analysis starts with a width value of 0.7 m.   
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The Rts GUI output of the optimization is given below in Figure 17. 

 
Figure 17.  Width optimization full Rts GUI output 

As can be seen in the optimization plot shown in Figure 18, the optimization approaches the 

design point after the third iteration.   

 
Figure 18.  Width optimization plot; iteration number vs. objective function value 

The CCDF evolution plot is also given below.  
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Figure 19.  Width optimization RISK CCDF evolution plot 

As in the thickness optimization, the RISK CCDF curve spacing becomes smaller as the 

curves proceed to the left. The optimization was repeated with an initial value of 3 m; well 

above the design value.  The GUI output is presented below.  

 
Figure 20.  Width optimization Rts GUI Output 

The optimization completed within eight steps with the decision variable approaching the 

optimum value at around the sixth step.  



 67

 
Figure 21.  Width optimization; iteration number vs. objective function value 

The final decision variable value at convergence was 1.1627 m after 8 steps.  

 
Figure 22.  Width optimization CCDF curve 

The mean cost was $929 at the final iteration.  The console output is given in Appendix B.2: 

Nodal Optimization Output. 
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5.3 Simultaneous Optimization of a Beam Width and Thickness  

Since this is an example of unconstrained optimization, as expected, the thickness of the 

beam keeps increasing while the width keeps decreasing.  This is consistent with the fact that 

tall and slender beams are more efficient in bending.  Figure 23 and Figure 24 highlight the 

50 first steps of such an optimization.   

 
Figure 23.  Iteration number vs. objective function value of simultaneous optimization 

The initial parameter values were 0.1 and 5 for the beam thickness and width respectively.  

 
Figure 24.  CCDF curve of of simultaneous optimization 
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After 50 iterations, the final values for the thickness and width were 2.756 m and 0.00728 m.  

Eventually the optimization would break down since, unconstrained, the beam thickness 

would theoretically approach infinity while the width would approach zero.  The mean cost 

after 50 iterations was $64.    
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Chapter  6: CONCLUSION 

The major contribution of this thesis is the implementation of nodal and material analytical 

gradients throughout the Rts framework staring at the element level up through to the 

optimization level.  The elements implemented consist of the Bilinear-Mindlin four node and 

nine node plate elements.  A framework was also put into place in where adding DDM 

capabilities is possible with any element; with analytical gradients hardcoded in at the 

element level.   

 

An academic cost model was created to showcase the multi-model capabilities of Rts and the 

ability to calculate DDM dependencies of downstream models.  A RISK model was 

implemented that incorporated a built-in FORM model with gradient-history capabilities and 

in-model DDM dependency calculations.  Additionally, an RBDO optimization model was 

built upon to include DDM capabilities and downstream model control.  Finally, two 

reliability-based design optimization examples were implemented that used both nodal and 

material sensitivities.   

 

Future research should entail “piece-wise” optimization where the objective function is not 

smooth throughout the entire optimization stream; this would result in a discontinuity of the 

gradients.  Such discontinuities would likely be an issue at the cost model level since cost 

models have the potential to be very complex, incorporating subjective decision making 

aspects.  Additionally, more components and elements should be added at the FEM level to 

increase the capabilities of Rts along with implementation of the adjoint method and 

extending the analytical sensitivities implementation to incorporate inelastic and dynamic 
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analysis.  

 

Using the Rts optimization framework involves engineering judgment such as selecting the 

optimum number of FEM elements, the number of FEM integration points, the number of 

RISK thresholds, the initial sampling number, and various step sizes throughout the models.  

Application of this research provides the means for computer-aided reliability-based 

structural optimization.  In summary, engineers and researchers could use Rts to find the 

optimum values of structural components to make the best decisions under uncertainty. 
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Appendix A    

Rts Input File  

A.1 Rts Input File Thickness Optimization 

// By Stevan Gavrilovic 
// Developed  February 2015 
// 
// Description: A thickness optimization of a cantilever with a point load using 
cost as a function of the cantilever's volume  
 
 
// -1)**************TOOLS USED BY THE VARIOUS METHODS******************************* 
 
//LINEAR SOLVER  
RInHouseLinearSolver |ObjectName: myLinearSolver |OutputLevel: Minimum   
 
//PROBABILITY DISTRIBUTIONS 
RInHouseProbabilityDistributions |ObjectName: theProbabilityDistributions 
|OutputLevel: Minimum   
 
//PROBABILITY TRANSFORMATIONS 
RIndependenceProbabilityTransformation |ObjectName: myProbabilityTransformations 
|OutputLevel: Minimum |ProbabilityDistributions: theProbabilityDistributions 
 
//RANDOM NUMBER GENERATOR 
RInHouseRandomNumberGenerator |ObjectName: myInHouseRandomNumberGenerator 
|OutputLevel: Minimum |Seed: 0 
 
//MATRIX ASSEMBLER 
RConnectivityTableAssembler |ObjectName: myAssembler |OutputLevel: Minimum  
 
// -2)**************DEFINE THE LOADING ******************************* 
 
//CONCENTRATED POINT LOAD 
RContinuousRandomVariable |ObjectName: pointLoad |ProbabilityDistributions: 
theProbabilityDistributions |DistributionType: Normal (mean, stdv) |Mean: -17000  
|StandardDeviation: 500   |CurrentValue: -17000 
 
// -3)**************DEFINE THE MODEL'S RANDOM VARIABLES***************************** 
 
// MATERIAL PROPERTIES RANDOM VARIABLES ARE SET IN THE COMPONENT CODE 
 
// COST RANDOM VARIABLES 
// Cost to supply and install materials at current rate - based on volume in this case 
RContinuousRandomVariable |ObjectName: thetaCLT |ProbabilityDistributions: 
theProbabilityDistributions |DistributionType: Normal (mean, stdv) |Mean: 200 
|CoefficientOfVariation: 0.2           |CurrentValue: 200 
 
//Cost of repair from damage models  
RContinuousRandomVariable |ObjectName: thetaDeflection |ProbabilityDistributions: 
theProbabilityDistributions |DistributionType: Normal (mean, stdv) |Mean: -1000 
|CoefficientOfVariation: 0.2  |CurrentValue: -1000 
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// -4)**************DEFINE THE OPTIMIZATION DECISION VARIABLES******************* 
 
// Beam thickness 
RContinuousDecisionVariable |ObjectName: beamThickness |CurrentValue: 0.05 
|InitialValue: 0.05 |UpperBound: 0 |LowerBound: 0 |IncrementalCost: 1 
 
// -5)**************DEFINE THE COMPONENT CONSTANTS******************************* 
 
RConstant |ObjectName: beamLength |CurrentValue: 9 
RConstant |ObjectName: beamWidth  |CurrentValue: 3 
 
// -6)**************DEFINE THE COMPONENTS'S GEOMETRY******************************* 
 
//FIXED WALL GEOMETRY  
RPoint |ObjectName: pointA  |XCoordinate: 0   |YCoordinate: -1     |ZCoordinate: 2  
RPoint |ObjectName: pointB  |XCoordinate: 0   |YCoordinate: 5     |ZCoordinate: 2  
RPoint |ObjectName: pointC  |XCoordinate: 0   |YCoordinate: 5     |ZCoordinate: 4  
RPoint |ObjectName: pointD  |XCoordinate: 0   |YCoordinate: -1     |ZCoordinate: 4  
 
 
//CANTILEVER BEAM GEOMETRY  
RPoint |ObjectName: horzPoint1   |XCoordinate: 0    |YCoordinate: 0   
   |ZCoordinate: 3  
RPoint |ObjectName: horzPoint2   |XCoordinate: beamLength     |YCoordinate: 0    
   |ZCoordinate: 3    
RPoint |ObjectName: horzPoint3   |XCoordinate: beamLength       |YCoordinate: 
beamWidth  |ZCoordinate: 3  |ZForce: pointLoad 
RPoint |ObjectName: horzPoint4   |XCoordinate: 0    |YCoordinate: 
beamWidth  |ZCoordinate: 3  
 
// -7)**************DEFINE THE SYSTEM COMPONENTS******************************* 
 
//CLT BEAM COMPONENT (HORIZONTAL PLATE BILINEAR MINDLIN 4-NODE) 
RPlateComponent  |ObjectName: cantileverBeam |Point1: horzPoint1 |Point2: horzPoint2 
|Point3: horzPoint3 |Point4: horzPoint4  |MeshOption: 106 |Thickness: beamThickness 
 
//FIXED WALL COMPONENT  
RFixedPLaneComponent |ObjectName: ground |Point1: pointA |Point2: pointB  |Point3: 
pointC |Point4: pointD 
 
 
// -8)**************DEFINE THE STRUCTURAL ANALYSIS TYPE******************************* 
 
// LINEAR STRUCTURAL ANALYSIS 
RLinearStaticStructuralAnalysis |ObjectName: myStaticAnalysis |OutputLevel: Minimum 
|Assembler: myAssembler |LinearSolver: myLinearSolver 
 
 
// -9)**************DEFINE THE ORCHESTRATING MODEL TOOLS AND INPUTS***************** 
 
// OPTIMIZATION TOOLS 
RGradientNormConvergenceCheck |ObjectName: myOptimizationConvergenceCheck 
|OutputLevel: Maximum |Tolerance: 10 
 
// Steepest Descent 
RFixedStepSize |ObjectName: myOptimizationFixedStepSize |OutputLevel: Minimum 
|StepSize: 0.000005 
//|StepSize: 0.0001 
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RSteepestDescentSearchDirection |ObjectName: myOptimizationSearchDirection 
|OutputLevel: Minimum 
 
// BFGS 
//RFixedStepSize |ObjectName: myOptimizationFixedStepSize |OutputLevel: Minimum 
|StepSize: 0.00001 
//RBFGSSearchDirection |ObjectName: myOptimizationSearchDirection |OutputLevel: 
Minimum  
 
 
// -10)**************DEFINE THE ORCHESTRATING MODELS******************************* 
 
// RESPONSE MODEL 
RComponentResponseModel |ObjectName: myStaticBuilding |OutputLevel: Minimum  
|StructuralAnalysis: myStaticAnalysis |Responses: horzPoint3.ZDisplacement  
 
//**********COSTS********** 
 
// COSTS - TOTAL 
RSteveTestCostModel |ObjectName: costTotal |OutputLevel: Maximum |Expression: 
thetaCLT*beamWidth*beamThickness*beamLength  + 
thetaDeflection*myStaticBuildinghorzPoint3ZDisplacement | GradientMethod:  Direct 
Differentiation 
 
//************************* 
 
// SAMPLING MODEL 
RSamplingModel |ObjectName: mySamplingCostModel |OutputLevel: Minimum |InputParameter: 
costTotalResponse |Threshold: 1300 |MaxSamples: 1 |TargetCov: 0.005 |SamplingCentre: 
Origin |RandomNumberGenerator: myInHouseRandomNumberGenerator 
|ProbabilityTransformation: myProbabilityTransformations 
 
 
 
// RISK MODEL 
RRiskModel |ObjectName: myRiskCostModel |OutputLevel: Maximum |RiskMeasure: 1 
|InputFromCost: costTotalResponse 
 
// OPTIMIZATION MODEL 
ROptimizationModel |ObjectName: myRiskOptimizationCostModel |OutputLevel: Maximum 
|Objective: myRiskCostModelResponse |MaxSteps: 20 |SearchDirection: 
myOptimizationSearchDirection |StepSize: myOptimizationFixedStepSize 
|ConvergenceCheck: myOptimizationConvergenceCheck |GradientMethod: Direct 
Differentiation 
 
 
 
 
 
 
 
 
 
 
 
 
 



 77

 

A.2 Rts Input File Width Optimization 

// By Stevan Gavrilovic 
// Developed February 2015 
// 
// Description: A width optimization of a cantilever with a point load using cost 
as a function of the cantilever's volume  
 
 
// -1)**************TOOLS USED BY THE VARIOUS METHODS******************************* 
 
//LINEAR SOLVER  
RInHouseLinearSolver |ObjectName: myLinearSolver |OutputLevel: Minimum   
 
//PROBABILITY DISTRIBUTIONS 
RInHouseProbabilityDistributions |ObjectName: theProbabilityDistributions 
|OutputLevel: Minimum   
 
//PROBABILITY TRANSFORMATIONS 
RIndependenceProbabilityTransformation |ObjectName: myProbabilityTransformations 
|OutputLevel: Minimum |ProbabilityDistributions: theProbabilityDistributions 
 
//RANDOM NUMBER GENERATOR 
RInHouseRandomNumberGenerator |ObjectName: myInHouseRandomNumberGenerator 
|OutputLevel: Minimum |Seed: 0 
 
//MATRIX ASSEMBLER 
RConnectivityTableAssembler |ObjectName: myAssembler |OutputLevel: Minimum  
 
 
// -2)**************DEFINE THE LOADING ******************************* 
 
//CONCENTRATED POINT LOAD 
RContinuousRandomVariable |ObjectName: pointLoad |ProbabilityDistributions: 
theProbabilityDistributions |DistributionType: Normal (mean, stdv) |Mean: -17000  
|StandardDeviation: 500   |CurrentValue: -17000 
 
 
// -3)**************DEFINE THE MODEL'S RANDOM VARIABLES******************************* 
 
// MATERIAL PROPERTIES RANDOM VARIABLES ARE SET IN THE COMPONENT CODE 
 
// COST RANDOM VARIABLES 
// Cost to supply and install materials at current rate - based on volume in this case 
RContinuousRandomVariable |ObjectName: thetaCLT |ProbabilityDistributions: 
theProbabilityDistributions |DistributionType: Normal (mean, stdv) |Mean: 200 
|CoefficientOfVariation: 0.1           |CurrentValue: 200 
//Cost of repair from damage models  
RContinuousRandomVariable |ObjectName: thetaDeflection |ProbabilityDistributions: 
theProbabilityDistributions |DistributionType: Normal (mean, stdv) |Mean: -1000 
|CoefficientOfVariation: 0.1  |CurrentValue: -1000 
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// -4)**************DEFINE THE OPTIMIZATION DECISION VARIABLES********************** 
 
 
// Beam width 
RContinuousDecisionVariable |ObjectName: beamWidth  |CurrentValue: 3 |InitialValue: 3 
|UpperBound: 0 |LowerBound: 0 |IncrementalCost: 1 
 
 
 
// -5)**************DEFINE THE COMPONENT CONSTANTS******************************* 
 
RConstant |ObjectName: beamLength |CurrentValue: 9 
RConstant |ObjectName: beamThickness |CurrentValue: 0.2 
 
// -6)**************DEFINE THE COMPONENTS'S GEOMETRY******************************* 
 
 
//FIXED WALL GEOMETRY  
RPoint |ObjectName: pointA  |XCoordinate: 0   |YCoordinate: -1     |ZCoordinate: 2  
RPoint |ObjectName: pointB  |XCoordinate: 0   |YCoordinate: 5     |ZCoordinate: 2  
RPoint |ObjectName: pointC  |XCoordinate: 0   |YCoordinate: 5     |ZCoordinate: 4  
RPoint |ObjectName: pointD  |XCoordinate: 0   |YCoordinate: -1     |ZCoordinate: 4  
 
 
 
//CANTILEVER BEAM GEOMETRY  
RPoint |ObjectName: horzPoint1   |XCoordinate: 0    |YCoordinate: 0   
   |ZCoordinate: 3  
RPoint |ObjectName: horzPoint2   |XCoordinate: beamLength     |YCoordinate: 0    
   |ZCoordinate: 3    
RPoint |ObjectName: horzPoint3   |XCoordinate: beamLength       |YCoordinate: 
beamWidth  |ZCoordinate: 3  |ZForce: pointLoad 
RPoint |ObjectName: horzPoint4   |XCoordinate: 0    |YCoordinate: 
beamWidth  |ZCoordinate: 3  
 
 
// -7)**************DEFINE THE SYSTEM COMPONENTS******************************* 
 
//CLT BEAM COMPONENT (HORIZONTAL PLATE BILINEAR MINDLIN 4-NODE) 
RPlateComponent  |ObjectName: cantileverBeam |Point1: horzPoint1 |Point2: horzPoint2 
|Point3: horzPoint3 |Point4: horzPoint4  |MeshOption: 106 |Thickness: beamThickness 
 
//FIXED WALL COMPONENT  
RFixedPLaneComponent |ObjectName: ground |Point1: pointA |Point2: pointB  |Point3: 
pointC |Point4: pointD 
 
 
// -8)**************DEFINE THE STRUCTURAL ANALYSIS TYPE******************************* 
 
// LINEAR STRUCTURAL ANALYSIS 
RLinearStaticStructuralAnalysis |ObjectName: myStaticAnalysis |OutputLevel: Minimum 
|Assembler: myAssembler |LinearSolver: myLinearSolver 
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// -9)**************DEFINE THE ORCHESTRATING MODEL TOOLS AND INPUTS************* 
 
// OPTIMIZATION TOOLS 
RGradientNormConvergenceCheck |ObjectName: myOptimizationConvergenceCheck 
|OutputLevel: Maximum |Tolerance: 10 
 
// Steepest Descent 
RFixedStepSize |ObjectName: myOptimizationFixedStepSize |OutputLevel: Minimum 
|StepSize:  0.0008 
RSteepestDescentSearchDirection |ObjectName: myOptimizationSearchDirection 
|OutputLevel: Minimum 
 
 
// BFGS 
//RFixedStepSize |ObjectName: myOptimizationFixedStepSize |OutputLevel: Minimum 
|StepSize: 1 
//RBFGSSearchDirection |ObjectName: myOptimizationSearchDirection |OutputLevel: 
Minimum  
 
 
// -10)**************DEFINE THE ORCHESTRATING MODELS******************************* 
 
// RESPONSE MODEL 
RComponentResponseModel |ObjectName: myStaticBuilding |OutputLevel: Minimum  
|StructuralAnalysis: myStaticAnalysis |Responses: horzPoint3.ZDisplacement  
 
//**********COSTS********** 
 
// COSTS - TOTAL 
RSteveTestCostModel |ObjectName: costTotal |OutputLevel: Maximum |Expression: 
thetaCLT*beamWidth*beamThickness*beamLength  + 
thetaDeflection*myStaticBuildinghorzPoint3ZDisplacement | GradientMethod:  Direct 
Differentiation 
 
 
//************************* 
 
 
// SAMPLING MODEL 
RSamplingModel |ObjectName: mySamplingCostModel |OutputLevel: Minimum |InputParameter: 
costTotalResponse |Threshold: 1300 |MaxSamples: 1 |TargetCov: 0.005 |SamplingCentre: 
Origin |RandomNumberGenerator: myInHouseRandomNumberGenerator 
|ProbabilityTransformation: myProbabilityTransformations 
 
// RISK MODEL 
RRiskModel |ObjectName: myRiskCostModel |OutputLevel: Maximum |RiskMeasure: 1 
|InputFromCost: costTotalResponse 
 
 
// OPTIMIZATION MODEL 
ROptimizationModel |ObjectName: myRiskOptimizationCostModel |OutputLevel: Maximum 
|Objective: myRiskCostModelResponse |MaxSteps: 20 |SearchDirection: 
myOptimizationSearchDirection |StepSize: myOptimizationFixedStepSize 
|ConvergenceCheck: myOptimizationConvergenceCheck |GradientMethod: Direct 
Differentiation 
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Appendix B    

Rts Console Output 

B.1 Material Optimization Output 

The OPTIMIZATION analysis in "myRiskOptimizationCostModel" started...  
  
The decision variable values initially are:  
|        0.05 |  
The RISK analysis in "myRiskCostModel" started...  
  
Now running the intial sampling to determine thresholds... 
  
The random variable named "cantileverBeamPlateDensity" is missing the probability 
distributions tool,  
hence, it is creating a tool called "defaultInHouseProbabilityDistributions"  
The random variable named "cantileverBeamPlateYoungsModulus" is missing the 
probability distributions tool,  
hence, it is picking up the "defaultInHouseProbabilityDistributions" that is already 
available.  
The sampling mean-value is:  
 13377.7  
Reducing the std. dev. to mean to 4.75  
Reducing the std. dev. to mean to 4.5  
Reducing the std. dev. to mean to 4.25  
 
Determining thresholds using points within 4.25 standard deviations from the mean.  
The threshold 1 is 4426.55  
The threshold 2 is 5240.3  
The threshold 3 is 6054.04  
The threshold 4 is 6867.79  
The threshold 5 is 7681.53  
The threshold 6 is 8495.27  
The threshold 7 is 9309.02  
The threshold 8 is 10122.8  
The threshold 9 is 10936.5  
The threshold 10 is 11750.2  
The threshold 11 is 12564  
The threshold 12 is 13377.7  
The threshold 13 is 14191.5  
The threshold 14 is 15005.2  
The threshold 15 is 15819  
The threshold 16 is 16632.7  
The threshold 17 is 17446.5  
The threshold 18 is 18260.2  
The threshold 19 is 19073.9  
The threshold 20 is 19887.7  
The threshold 21 is 20701.4  
The threshold 22 is 21515.2  
The threshold 23 is 22328.9  
The FORM analysis in RISK at threshold "4426.55" has started..  
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For exceedence probability curve (threshold number, threshold, probability):  
1 , 4426.55 , 0.999156  
2 , 5240.3 , 0.997142  
3 , 6054.04 , 0.991911  
4 , 6867.79 , 0.97968  
5 , 7681.53 , 0.955488  
6 , 8495.27 , 0.914106  
7 , 9309.02 , 0.852095  
8 , 10122.8 , 0.769566  
9 , 10936.5 , 0.670758  
10 , 11750.2 , 0.56303  
11 , 12564 , 0.4549  
12 , 13377.7 , 0.354049  
13 , 14191.5 , 0.26585  
14 , 15005.2 , 0.193012  
15 , 15819 , 0.135802  
16 , 16632.7 , 0.0928361  
17 , 17446.5 , 0.0618074  
18 , 18260.2 , 0.0401754  
19 , 19073.9 , 0.025554  
20 , 19887.7 , 0.015936  
21 , 20701.4 , 0.00976417  
22 , 21515.2 , 0.00588768  
23 , 22328.9 , 0.00350003  
The risk measure is: 12440.6  
The analysis in "myRiskCostModel" completed in 126.855 seconds.  
  
At optimization step 1 the objective function in "myRiskOptimizationCostModel" is 
12440.6  
The decision variable values (before updating) are:  
|        0.05 |  
The optimization gradient is currently:  
|-1.38693e+06 |  
The norm in "myOptimizationConvergenceCheck" is 1.38693e+06  
Now running the intial sampling to determine thresholds... 
  
The sampling mean-value is:  
 8115.12  
The FORM analysis in RISK at threshold "1167.02" has started..  
 
  
For exceedence probability curve (threshold number, threshold, probability):  
1 , 1167.02 , 0.999994  
2 , 1798.67 , 0.999952  
3 , 2430.31 , 0.999699  
4 , 3061.96 , 0.998346  
5 , 3693.61 , 0.992898  
6 , 4325.25 , 0.976226  
7 , 4956.9 , 0.937162  
8 , 5588.54 , 0.865241  
9 , 6220.19 , 0.757978  
10 , 6851.83 , 0.62449  
11 , 7483.48 , 0.482125  
12 , 8115.12 , 0.348988  
13 , 8746.77 , 0.237641  
14 , 9378.41 , 0.152967  
15 , 10010.1 , 0.0935804  
16 , 10641.7 , 0.0547176  
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17 , 11273.4 , 0.0307372  
18 , 11905 , 0.0166718  
19 , 12536.6 , 0.00876941  
20 , 13168.3 , 0.00449065  
21 , 13799.9 , 0.00224713  
22 , 14431.6 , 0.00110201  
23 , 15063.2 , 0.000531233  
The risk measure is: 7537.98  
The analysis in "myRiskCostModel" completed in 134.855 seconds.  
  
At optimization step 2 the objective function in "myRiskOptimizationCostModel" is 
7537.98  
The decision variable values (before updating) are:  
|        0.06 |  
The optimization gradient is currently:  
|     -676328 |  
The norm in "myOptimizationConvergenceCheck" is 676328  
Now running the intial sampling to determine thresholds... 
  
The sampling mean-value is:  
 4363.81  
The FORM analysis in RISK at threshold "1986.6" has started..  
 
  
For exceedence probability curve (threshold number, threshold, probability):  
1 , 1986.6 , 0.998448  
2 , 2202.71 , 0.996291  
3 , 2418.82 , 0.991987  
4 , 2634.93 , 0.983834  
5 , 2851.04 , 0.969812  
6 , 3067.15 , 0.947636  
7 , 3283.26 , 0.915221  
8 , 3499.37 , 0.871189  
9 , 3715.48 , 0.815294  
10 , 3931.59 , 0.748619  
11 , 4147.7 , 0.673506  
12 , 4363.81 , 0.593189  
13 , 4579.92 , 0.511304  
14 , 4796.03 , 0.431371  
15 , 5012.14 , 0.356372  
16 , 5228.25 , 0.288496  
17 , 5444.36 , 0.229054  
18 , 5660.47 , 0.178532  
19 , 5876.58 , 0.13675  
20 , 6092.69 , 0.103045  
21 , 6308.8 , 0.0764659  
22 , 6524.91 , 0.0559376  
23 , 6741.02 , 0.0403797  
24 , 6957.13 , 0.028791  
25 , 7173.24 , 0.0202945  
26 , 7389.35 , 0.0141546  
27 , 7605.46 , 0.00977601  
28 , 7821.57 , 0.00669111  
29 , 8037.67 , 0.00454171  
The risk measure is: 4685.46  
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The analysis in "myRiskCostModel" completed in 160.809 seconds.  
  
At optimization step 3 the objective function in "myRiskOptimizationCostModel" is 
4685.46  
The decision variable values (before updating) are:  
|       0.072 |  
The optimization gradient is currently:  
|     -326423 |  
The norm in "myOptimizationConvergenceCheck" is 326423  
Now running the intial sampling to determine thresholds... 
  
The sampling mean-value is:  
 3201.2  
The FORM analysis in RISK at threshold "583.445" has started..  
 
  
For exceedence probability curve (threshold number, threshold, probability):  
1 , 583.445 , 0.999999  
2 , 821.423 , 0.999986  
3 , 1059.4 , 0.999894  
4 , 1297.38 , 0.999295  
5 , 1535.36 , 0.996365  
6 , 1773.33 , 0.985669  
7 , 2011.31 , 0.956515  
8 , 2249.29 , 0.895825  
9 , 2487.27 , 0.796305  
10 , 2725.25 , 0.663538  
11 , 2963.22 , 0.51507  
12 , 3201.2 , 0.37217  
13 , 3439.18 , 0.251086  
14 , 3677.16 , 0.15899  
15 , 3915.13 , 0.0950777  
16 , 4153.11 , 0.054036  
17 , 4391.09 , 0.0293678  
18 , 4629.07 , 0.0153495  
19 , 4867.05 , 0.00775516  
20 , 5105.02 , 0.00380511  
21 , 5343 , 0.00182038  
22 , 5580.98 , 0.000852197  
23 , 5818.96 , 0.000391622  
The risk measure is: 3034.37  
The analysis in "myRiskCostModel" completed in 151.07 seconds.  
  
At optimization step 4 the objective function in "myRiskOptimizationCostModel" is 
3034.37  
The decision variable values (before updating) are:  
|      0.0864 |  
The optimization gradient is currently:  
|     -156205 |  
The norm in "myOptimizationConvergenceCheck" is 156205  
Now running the intial sampling to determine thresholds... 
  
The sampling mean-value is:  
 2180.97  
The FORM analysis in RISK at threshold "1241.83" has started..  
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For exceedence probability curve (threshold number, threshold, probability):  
1 , 1156.45 , 0.996412  
2 , 1241.83 , 0.992054  
3 , 1327.2 , 0.983251  
4 , 1412.58 , 0.969421  
5 , 1497.96 , 0.946143  
6 , 1583.33 , 0.911998  
7 , 1668.71 , 0.86522  
8 , 1754.09 , 0.805533  
9 , 1839.46 , 0.73421  
10 , 1924.84 , 0.653985  
11 , 2010.22 , 0.568674  
12 , 2095.6 , 0.48251  
13 , 2180.97 , 0.399518  
14 , 2266.35 , 0.322951  
15 , 2351.73 , 0.255069  
16 , 2437.1 , 0.197035  
17 , 2522.48 , 0.149025  
18 , 2607.86 , 0.110496  
19 , 2693.23 , 0.0804189  
20 , 2778.61 , 0.0575161  
21 , 2863.99 , 0.0404777  
22 , 2949.37 , 0.0280638  
23 , 3034.74 , 0.0191895  
24 , 3120.12 , 0.0129541  
25 , 3205.5 , 0.00864244  
26 , 3290.87 , 0.00570406  
27 , 3376.25 , 0.00372727  
The risk measure is: 2102.07  
The analysis in "myRiskCostModel" completed in 170.443 seconds.  
  
At optimization step 5 the objective function in "myRiskOptimizationCostModel" is 
2102.07  
The decision variable values (before updating) are:  
|     0.10368 |  
The optimization gradient is currently:  
|    -72471.3 |  
The norm in "myOptimizationConvergenceCheck" is 72471.3  
Now running the intial sampling to determine thresholds... 
  
The sampling mean-value is:  
 1642.72  
The FORM analysis in RISK at threshold "958.301" has started..  
] 
  
For exceedence probability curve (threshold number, threshold, probability):  
1 , 958.301 , 0.995644  
2 , 1020.52 , 0.990432  
3 , 1082.74 , 0.980777  
4 , 1144.96 , 0.964031  
5 , 1207.18 , 0.937402  
6 , 1269.4 , 0.898241  
7 , 1331.62 , 0.844844  
8 , 1393.84 , 0.777098  
9 , 1456.06 , 0.696833  
10 , 1518.28 , 0.607699  
11 , 1580.5 , 0.514576  
12 , 1642.72 , 0.422701  
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13 , 1704.94 , 0.336783  
14 , 1767.16 , 0.260348  
15 , 1829.38 , 0.195427  
16 , 1891.6 , 0.142601  
17 , 1953.82 , 0.101288  
18 , 2016.04 , 0.0701341  
19 , 2078.26 , 0.0474155  
20 , 2140.48 , 0.0313502  
21 , 2202.7 , 0.0203044  
22 , 2264.91 , 0.0129024  
23 , 2327.13 , 0.00805538  
24 , 2389.35 , 0.0049488  
The risk measure is: 1600.91  
The analysis in "myRiskCostModel" completed in 149.305 seconds.  
  
At optimization step 6 the objective function in "myRiskOptimizationCostModel" is 
1600.91  
The decision variable values (before updating) are:  
|    0.124416 |  
The optimization gradient is currently:  
|    -30620.5 |  
The norm in "myOptimizationConvergenceCheck" is 30620.5  
Now running the intial sampling to determine thresholds... 
  
The sampling mean-value is:  
 1395.66  
The FORM analysis in RISK at threshold "835.815" has started..  
  
For exceedence probability curve (threshold number, threshold, probability):  
1 , 835.815 , 0.995175  
2 , 886.71 , 0.990117  
3 , 937.605 , 0.981052  
4 , 988.499 , 0.965794  
5 , 1039.39 , 0.941821  
6 , 1090.29 , 0.906558  
7 , 1141.18 , 0.857983  
8 , 1192.08 , 0.795202  
9 , 1242.97 , 0.719032  
10 , 1293.87 , 0.632093  
11 , 1344.76 , 0.538682  
12 , 1395.66 , 0.443984  
13 , 1446.55 , 0.353325  
14 , 1497.45 , 0.271159  
15 , 1548.34 , 0.200587  
16 , 1599.24 , 0.14299  
17 , 1650.13 , 0.0982695  
18 , 1701.03 , 0.0651413  
19 , 1751.92 , 0.0416967  
20 , 1802.82 , 0.0257984  
21 , 1853.71 , 0.0154531  
22 , 1904.61 , 0.00897344  
23 , 1955.5 , 0.00506102  
24 , 2006.39 , 0.00277696  
The risk measure is: 1368.18  
The analysis in "myRiskCostModel" completed in 152.31 seconds.  
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At optimization step 7 the objective function in "myRiskOptimizationCostModel" is 
1368.18  
The decision variable values (before updating) are:  
|    0.149299 |  
The optimization gradient is currently:  
|    -9924.72 |  
The norm in "myOptimizationConvergenceCheck" is 9924.72  
Now running the intial sampling to determine thresholds... 
  
The sampling mean-value is:  
 1272.44  
The FORM analysis in RISK at threshold "799.887" has started..  
 
  
For exceedence probability curve (threshold number, threshold, probability):  
1 , 756.928 , 0.995887  
2 , 799.887 , 0.99257  
3 , 842.846 , 0.987083  
4 , 885.805 , 0.978456  
5 , 928.764 , 0.965373  
6 , 971.723 , 0.94641  
7 , 1014.68 , 0.920067  
8 , 1057.64 , 0.884998  
9 , 1100.6 , 0.840251  
10 , 1143.56 , 0.785517  
11 , 1186.52 , 0.721325  
12 , 1229.48 , 0.649128  
13 , 1272.44 , 0.571239  
14 , 1315.4 , 0.49062  
15 , 1358.35 , 0.410564  
16 , 1401.31 , 0.33422  
17 , 1444.27 , 0.264337  
18 , 1487.23 , 0.202902  
19 , 1530.19 , 0.15102  
20 , 1573.15 , 0.108915  
21 , 1616.11 , 0.0760691  
22 , 1659.07 , 0.0514298  
23 , 1702.03 , 0.0336498  
24 , 1744.99 , 0.0213028  
25 , 1787.95 , 0.0130482  
26 , 1830.9 , 0.00773371  
27 , 1873.86 , 0.00443503  
The risk measure is: 1309.9  
The analysis in "myRiskCostModel" completed in 165.379 seconds.  
  
At optimization step 8 the objective function in "myRiskOptimizationCostModel" is 
1309.9  
The decision variable values (before updating) are:  
|    0.179159 |  
The optimization gradient is currently:  
|     463.061 |  
The norm in "myOptimizationConvergenceCheck" is 463.061  
Now running the intial sampling to determine thresholds... 
  
The sampling mean-value is:  
 1201.57  
The FORM analysis in RISK at threshold "436.831" has started..  
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For exceedence probability curve (threshold number, threshold, probability):  
1 , 436.831 , 0.999988  
2 , 506.353 , 0.999947  
3 , 575.874 , 0.999798  
4 , 645.396 , 0.99931  
5 , 714.918 , 0.997887  
6 , 784.439 , 0.994188  
7 , 853.961 , 0.985616  
8 , 923.483 , 0.967894  
9 , 993.004 , 0.935187  
10 , 1062.53 , 0.881261  
11 , 1132.05 , 0.801788  
12 , 1201.57 , 0.696986  
13 , 1271.09 , 0.573216  
14 , 1340.61 , 0.442181  
15 , 1410.13 , 0.317682  
16 , 1479.66 , 0.211386  
17 , 1549.18 , 0.129758  
18 , 1618.7 , 0.0732669  
19 , 1688.22 , 0.0379927  
20 , 1757.74 , 0.0180762  
21 , 1827.26 , 0.0078909  
22 , 1896.79 , 0.00316212  
23 , 1966.31 , 0.00116498  
The risk measure is: 1311.07  
The analysis in "myRiskCostModel" completed in 147.4 seconds.  
  
At optimization step 9 the objective function in "myRiskOptimizationCostModel" is 
1311.07  
The decision variable values (before updating) are:  
|    0.176844 |  
The optimization gradient is currently:  
|    -23.6451 |  
The norm in "myOptimizationConvergenceCheck" is 23.6451  
Now running the intial sampling to determine thresholds... 
  
The sampling mean-value is:  
 1302.9  
The FORM analysis in RISK at threshold "491.8" has started..  
 
  
For exceedence probability curve (threshold number, threshold, probability):  
1 , 491.8 , 0.99996  
2 , 565.536 , 0.999833  
3 , 639.272 , 0.999376  
4 , 713.008 , 0.997942  
5 , 786.744 , 0.993988  
6 , 860.48 , 0.984399  
7 , 934.216 , 0.963942  
8 , 1007.95 , 0.925523  
9 , 1081.69 , 0.861935  
10 , 1155.42 , 0.769137  
11 , 1229.16 , 0.649533  
12 , 1302.9 , 0.513312  
13 , 1376.63 , 0.376037  
14 , 1450.37 , 0.253419  
15 , 1524.1 , 0.156248  
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16 , 1597.84 , 0.0877811  
17 , 1671.58 , 0.0448277  
18 , 1745.31 , 0.0207849  
19 , 1819.05 , 0.00874595  
20 , 1892.78 , 0.00334271  
21 , 1966.52 , 0.00116177  
22 , 2040.26 , 0.000368003  
23 , 2113.99 , 0.000106563  
The risk measure is: 1311.12  
The analysis in "myRiskCostModel" completed in 142.001 seconds.  
  
At optimization step 10 the objective function in "myRiskOptimizationCostModel" is 
1311.12  
The decision variable values (before updating) are:  
|    0.176962 |  
The optimization gradient is currently:  
|     4.40024 |  
The norm in "myOptimizationConvergenceCheck" is 4.40024  
The analysis in "myRiskOptimizationCostModel" completed in 1521.39 seconds after 10 
iterations.  
  
The decision variable values are:  
|    0.176962 | 
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B.2 Nodal Optimization Output 

The OPTIMIZATION analysis in "myRiskOptimizationCostModel" started...  
  
The decision variable values initially are:  
|         0.7 |  
Remeshing...  
The RISK analysis in "myRiskCostModel" started...  
  
Now running the intial sampling to determine thresholds... 
  
The random variable named "cantileverBeamPlateDensity" is missing the probability 
distributions tool,  
hence, it is creating a tool called "defaultInHouseProbabilityDistributions"  
The random variable named "cantileverBeamPlateYoungsModulus" is missing the 
probability distributions tool,  
hence, it is picking up the "defaultInHouseProbabilityDistributions" that is already 
available.  
The sampling mean-value is:  
 1004.92  
Determining thresholds using points within 5 standard deviations from the mean.  
The threshold 1 is 634.338  
The threshold 2 is 668.028  
The threshold 3 is 701.717  
The threshold 4 is 735.406  
The threshold 5 is 769.096  
The threshold 6 is 802.785  
The threshold 7 is 836.474  
The threshold 8 is 870.163  
The threshold 9 is 903.853  
The threshold 10 is 937.542  
The threshold 11 is 971.231  
The threshold 12 is 1004.92  
The threshold 13 is 1038.61  
The threshold 14 is 1072.3  
The threshold 15 is 1105.99  
The threshold 16 is 1139.68  
The threshold 17 is 1173.37  
The threshold 18 is 1207.06  
The threshold 19 is 1240.75  
The threshold 20 is 1274.44  
The threshold 21 is 1308.12  
The threshold 22 is 1341.81  
The threshold 23 is 1375.5  
The FORM analysis in RISK at threshold "634.338" has started..  
 
  
For exceedence probability curve (threshold number, threshold, probability):  
1 , 634.338 , 0.999818  
2 , 668.028 , 0.999231  
3 , 701.717 , 0.997472  
4 , 735.406 , 0.992944  
5 , 769.096 , 0.983086  
6 , 802.785 , 0.964475  
7 , 836.474 , 0.933504  
8 , 870.163 , 0.887399  
9 , 903.853 , 0.825207  
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10 , 937.542 , 0.748344  
11 , 971.231 , 0.660449  
12 , 1004.92 , 0.566655  
13 , 1038.61 , 0.472551  
14 , 1072.3 , 0.383202  
15 , 1105.99 , 0.302454  
16 , 1139.68 , 0.232637  
17 , 1173.37 , 0.174626  
18 , 1207.06 , 0.128117  
19 , 1240.75 , 0.0920114  
20 , 1274.44 , 0.0647866  
21 , 1308.12 , 0.0447947  
22 , 1341.81 , 0.0304497  
23 , 1375.5 , 0.0203791  
24 , 1409.19 , 0.0134457  
25 , 1442.88 , 0.00875553  
26 , 1476.57 , 0.00563327  
27 , 1510.26 , 0.00358474  
The risk measure is: 1039.71  
The analysis in "myRiskCostModel" completed in 150.531 seconds.  
  
At optimization step 1 the objective function in "myRiskOptimizationCostModel" is 
1039.71  
The decision variable values (before updating) are:  
|         0.7 |  
The optimization gradient is currently:  
|     -1262.8 |  
The norm in "myOptimizationConvergenceCheck" is 1262.8  
Remeshing...  
Now running the intial sampling to determine thresholds... 
  
The sampling mean-value is:  
 1092.86  
The FORM analysis in RISK at threshold "622.284" has started..  
 
  
For exceedence probability curve (threshold number, threshold, probability):  
1 , 622.284 , 0.999784  
2 , 665.064 , 0.998504  
3 , 707.843 , 0.993338  
4 , 750.622 , 0.977566  
5 , 793.401 , 0.941252  
6 , 836.181 , 0.874994  
7 , 878.96 , 0.775951  
8 , 921.739 , 0.651027  
9 , 964.519 , 0.514741  
10 , 1007.3 , 0.383419  
11 , 1050.08 , 0.269669  
12 , 1092.86 , 0.179752  
13 , 1135.64 , 0.114059  
14 , 1178.42 , 0.0692195  
15 , 1221.19 , 0.040368  
16 , 1263.97 , 0.022715  
17 , 1306.75 , 0.0123839  
18 , 1349.53 , 0.00656609  
19 , 1392.31 , 0.00339668  
20 , 1435.09 , 0.00171954  
21 , 1477.87 , 0.00085415  
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22 , 1520.65 , 0.000417306  
23 , 1563.43 , 0.000200952  
The risk measure is: 978.65  
The analysis in "myRiskCostModel" completed in 132.532 seconds.  
  
At optimization step 2 the objective function in "myRiskOptimizationCostModel" is 
978.65  
The decision variable values (before updating) are:  
|     0.82628 |  
The optimization gradient is currently:  
|    -707.401 |  
The norm in "myOptimizationConvergenceCheck" is 707.401  
Remeshing...  
Now running the intial sampling to determine thresholds... 
  
The sampling mean-value is:  
 884.863  
The FORM analysis in RISK at threshold "543.2" has started..  
 
  
For exceedence probability curve (threshold number, threshold, probability):  
1 , 543.2 , 0.999998  
2 , 574.261 , 0.999983  
3 , 605.321 , 0.999896  
4 , 636.381 , 0.999487  
5 , 667.441 , 0.997976  
6 , 698.501 , 0.993469  
7 , 729.562 , 0.982399  
8 , 760.622 , 0.959557  
9 , 791.682 , 0.919249  
10 , 822.742 , 0.857407  
11 , 853.802 , 0.773656  
12 , 884.863 , 0.672181  
13 , 915.923 , 0.560819  
14 , 946.983 , 0.448896  
15 , 978.043 , 0.344871  
16 , 1009.1 , 0.254682  
17 , 1040.16 , 0.181158  
18 , 1071.22 , 0.124426  
19 , 1102.28 , 0.0827362  
20 , 1133.34 , 0.0534026  
21 , 1164.4 , 0.0335452  
22 , 1195.46 , 0.0205575  
23 , 1226.52 , 0.0123191  
24 , 1257.58 , 0.00723492  
25 , 1288.65 , 0.00417135  
The risk measure is: 940.211  
The analysis in "myRiskCostModel" completed in 140.086 seconds.  
  
At optimization step 3 the objective function in "myRiskOptimizationCostModel" is 
940.211  
The decision variable values (before updating) are:  
|    0.991536 |  
The optimization gradient is currently:  
|    -269.989 |  
The norm in "myOptimizationConvergenceCheck" is 269.989  
Remeshing...  
Now running the intial sampling to determine thresholds... 
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The sampling mean-value is:  
 952.356  
The FORM analysis in RISK at threshold "474.981" has started..  
 
  
For exceedence probability curve (threshold number, threshold, probability):  
1 , 474.981 , 1  
2 , 518.379 , 1  
3 , 561.777 , 0.999996  
4 , 605.174 , 0.999929  
5 , 648.572 , 0.999305  
6 , 691.97 , 0.995564  
7 , 735.367 , 0.980605  
8 , 778.765 , 0.938733  
9 , 822.163 , 0.853051  
10 , 865.56 , 0.719508  
11 , 908.958 , 0.554938  
12 , 952.356 , 0.38913  
13 , 995.753 , 0.24845  
14 , 1039.15 , 0.145306  
15 , 1082.55 , 0.0784869  
16 , 1125.95 , 0.0395102  
17 , 1169.34 , 0.018705  
18 , 1212.74 , 0.008394  
19 , 1256.14 , 0.00359881  
20 , 1299.54 , 0.00148379  
21 , 1342.93 , 0.000591961  
22 , 1386.33 , 0.000229596  
23 , 1429.73 , 8.69831e-05  
The risk measure is: 929.596  
The analysis in "myRiskCostModel" completed in 136.315 seconds.  
  
At optimization step 4 the objective function in "myRiskOptimizationCostModel" is 
929.596  
The decision variable values (before updating) are:  
|     1.12653 |  
The optimization gradient is currently:  
|    -49.2708 |  
The norm in "myOptimizationConvergenceCheck" is 49.2708  
Remeshing...  
Now running the intial sampling to determine thresholds... 
  
The sampling mean-value is:  
 950.429  
The FORM analysis in RISK at threshold "645.637" has started..  
 
  
For exceedence probability curve (threshold number, threshold, probability):  
1 , 645.637 , 0.999466  
2 , 673.345 , 0.998071  
3 , 701.053 , 0.994249  
4 , 728.762 , 0.98513  
5 , 756.47 , 0.966506  
6 , 784.179 , 0.933334  
7 , 811.887 , 0.881292  
8 , 839.595 , 0.808548  
9 , 867.304 , 0.71705  
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10 , 895.012 , 0.612473  
11 , 922.72 , 0.502873  
12 , 950.429 , 0.396665  
13 , 978.137 , 0.300778  
14 , 1005.85 , 0.219533  
15 , 1033.55 , 0.154572  
16 , 1061.26 , 0.105192  
17 , 1088.97 , 0.0693675  
18 , 1116.68 , 0.0444355  
19 , 1144.39 , 0.0277164  
20 , 1172.1 , 0.0168729  
21 , 1199.8 , 0.0100493  
22 , 1227.51 , 0.00586534  
23 , 1255.22 , 0.00336194  
The risk measure is: 929.53  
The analysis in "myRiskCostModel" completed in 132.779 seconds.  
  
At optimization step 5 the objective function in "myRiskOptimizationCostModel" is 
929.53  
The decision variable values (before updating) are:  
|     1.15117 |  
The optimization gradient is currently:  
|    -15.0959 |  
The norm in "myOptimizationConvergenceCheck" is 15.0959  
Remeshing...  
Now running the intial sampling to determine thresholds... 
  
The sampling mean-value is:  
 977.628  
The FORM analysis in RISK at threshold "655.419" has started..  
 
  
For exceedence probability curve (threshold number, threshold, probability):  
1 , 655.419 , 0.999172  
2 , 684.711 , 0.996975  
3 , 714.002 , 0.991025  
4 , 743.294 , 0.97715  
5 , 772.586 , 0.949763  
6 , 801.878 , 0.90307  
7 , 831.169 , 0.833486  
8 , 860.461 , 0.74169  
9 , 889.753 , 0.633254  
10 , 919.045 , 0.517304  
11 , 948.336 , 0.403949  
12 , 977.628 , 0.301682  
13 , 1006.92 , 0.215835  
14 , 1036.21 , 0.148271  
15 , 1065.5 , 0.0980654  
16 , 1094.8 , 0.0626141  
17 , 1124.09 , 0.038723  
18 , 1153.38 , 0.0232563  
19 , 1182.67 , 0.0136014  
20 , 1211.96 , 0.00776656  
21 , 1241.25 , 0.00434014  
22 , 1270.55 , 0.00237838  
23 , 1299.84 , 0.00128124  
The risk measure is: 929.448  
The analysis in "myRiskCostModel" completed in 132.997 seconds.  
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At optimization step 6 the objective function in "myRiskOptimizationCostModel" is 
929.448  
The decision variable values (before updating) are:  
|     1.15871 |  
The optimization gradient is currently:  
|    -5.76984 |  
The norm in "myOptimizationConvergenceCheck" is 5.76984  
The analysis in "myRiskOptimizationCostModel" completed in 866.808 seconds after 6 
iterations.  
  
The decision variable values are:  
|     1.15871 | 

 

 


