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Abstract

Studying the orbital dynamics of small body populations in the Solar System

allows us to understand both their current population and past orbital structure.

Planet-crossing populations can also provide impact speeds and probabilities, and

when coupled to cratering histories of solid bodies can provide planetary surface

ages.

TheWide-field Infrared Survey ExplorerNear-Earth Object (NEOWISE) de-

tections of the near-Earth object (NEO) orbital distributions (Mainzer et al., 2012)

are used to illustrate that a pure-gravity NEO orbital model(Greenstreet et al.,

2012a) is not rejectable (at> 99% confidence). Thus, no non-gravitational

physics is required to model the NEO orbital distribution.

We discovered in the NEO model numerical integrations the unexpected pro-

duction of retrograde orbits from main asteroid belt sources, estimating that

∼ 0.1% of the steady-state NEO population is on retrograde orbits. These ret-

rograde near-Earth asteroids (NEAs) may answer two outstanding questions in

the literature: the origin of two known MPC NEOs with asteroidal designations

on retrograde orbits and the origin of high-strength, high-velocity meteoroids on

retrograde orbits.

Moving to the outer Solar System, we constructed a Centaur (aJupiter < a <

aNeptune) model, supplied from the transneptunian region, to estimate temporary

co-orbital capture frequency and duration with the giant planets, finding that at any

time 0.4% and 2.8% of the population will be Uranian and Neptunian co-orbitals,

respectively. This is in agreement with the known fraction of temporary Ura-
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nian and Neptunian co-orbitals, respectively. Thus, the scattering transneptunian

population provides a self-consistent external source forthe unstable giant-planet

co-orbitals.

In addition to studying the orbital dynamics of small body populations in the

Solar System, impact and cratering rates onto planetary surfaces can be deter-

mined. The upcoming New Horizons spacecraft fly-through of the Pluto system

in July 2015 will provide humanity’s first data for the craterpopulations on Pluto

and its moons. In principle, absolute ages for these surfaces could be determined

using the observed surface crater density. However, due to the uncertainty in how

the Kuiper belt size distribution extends to small (d < 100 km) projectiles, abso-

lute ages are entirely model-dependent and thus fraught with uncertainty.
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Preface

The text of this dissertation includes modified reprints of previously published

material as listed below.

Chapter 3 (published):

• S. Greenstreet and B. GladmanHigh-inclination Atens are Indeed Rare, ApJ

767, L18 (2013).

This paper compares the detected orbital element distributions detected by the

NEOWISE space telescope and the Bottke et al. (2002) NEO orbital distribution

model as published by Mainzer et al. (2012) to the newer NEO model from

Greenstreet et al. (2012a). I contributed to this project bytaking the published

biases for the orbital element distributions from Mainzer et al. (2012) for the

NEOWISE detections and applying them to the one-dimensional orbital element

distributions from the NEO model from Greenstreet et al. (2012a) to compare

to the biased distributions from the Bottke et al. (2002) model as published by

Mainzer et al. (2012). I also executed the Kolmogorov-Smirnov tests to determine

the probability of getting the NEOWISE detected distributions from each model.

I wrote the majority of the manuscript, with editing by BrettGladman, and

produced all the figures and tables.

Chapter 4 (published):

• S. Greenstreet, B. Gladman, H. Ngo, M. Granvik, and S. Larson, Production

of Near-Earth Asteroids on Retrograde Orbits, ApJ749, L39 (2012).
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This paper discusses the unexpected production of near-Earth asteroids

(NEAs) onto retrograde (backwards around the Sun) orbits from accepted

main belt asteroidal sources in the numerical integrationsused to produce the

Greenstreet et al. (2012a) NEO orbital distribution model.I discovered these

NEAs on retrograde orbits when searching through the numerical integrations.

The surprising nature of these objects was pointed out to me by Brett Gladman,

which prompted the closer look into their production mechanism and typical

orbital evolutions. I wrote the code used to sift through theintegration outputs to

find retrograde behavior as well as extract examples of typical retrograde orbital

evolutions. I also ran one of the two sets of numerical integrations for the best-fit

orbits for the two known retrograde NEAs, while Mikael Granvik ran the other

set, and ran the additional integrations for both objects. Iproduced all the figures

and wrote the majority of the manuscript, with edits done by Brett Gladman,

Henry Ngo, Mikael Granvik, and Steve Larson.

Chapter 6 (published):

• M. Alexandersen, B. Gladman, S. Greenstreet, J. J. Kavelaars, J. M. Petit,

S. Gwyn,A Uranian Trojan and the Frequency of Temporary Giant-Planet

Co-Orbitals, Science341, 994 (2013).

This paper examined the frequency of co-orbitals temporarily trapped in

the 1:1 mean-motion resonance with the giant planets in order to explain the

discovery of the first known Uranian Trojan. This was a joint project with

PhD student Mike Alexandersen who brought me into the project. Mike’s

observational survey detected the object, tracked it to determine a high-precision

orbit, and then recognized the Trojan character. I set-up and performed the

numerical integrations of the four giant planets and scattering objects as they

entered the Centaur region. I then wrote the code to search through the numerical

output for co-orbital behavior and computed the fraction ofthe steady-state

population in co-orbital resonance with Uranus and Neptuneas well as the mean,

median, and maximum durations of the temporary captures. I wrote the following
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sections of the published supplementary material for the manuscript: details on

dynamical integrations, co-orbital detection, resonant island classification, and

quasi-satellites, since I performed all of the analysis presented in these sections. I

also provided editing for the manuscript.

Chapter 7 (published):

• S. Greenstreet, B. Gladman, and W. B. McKinnon,Impact and Cratering

Rates onto Pluto, Icarus258, 267 (2015).

This paper discusses the impact and cratering rates onto Pluto and its binary

companion Charon from the various Kuiper belt sub-populations as well as the

catastrophic disruption rate of the four smaller satellites: Styx, Nix, Kerberos, and

Hydra. The idea for this project came from Brett Gladman and he helped provide

me with the background knowledge I needed. Understanding and interpreting

the outcome was a joint effort by the two of us with help from co-author Bill

McKinnon. I modified and wrote all the code used in this project. I modified

an existing piece of collision probability code to produce the impact velocity

distributions and impact probabilities for each Kuiper belt sub-population. I

set-up and ran the numerical integrations used to correct for Pluto’s dynamical

effects that were not accounted for in the collision probability code. I also wrote

the code to convert the impact rates for each sub-populationto cratering rates as

well as the integrated number of craters over the past 4 Gyr. In addition, I wrote

the code to compute the crater density plots and R plots as well as the code to

compute the catastrophic disruption rates for Pluto’s foursmaller satellites. The

writing of the manuscript was divided up as follows: Bill McKinnon wrote the

sections on Triton and Secondary craters, Brett Gladman wrote the first three

sub-sections of the Discussion section, and I wrote the restof the manuscript with

editing by both Brett and Bill. I also produced all the tablesand figures, except

figure 2, which was made by Brett.

vi



Appendix A:

This appendix discusses a set of integrations that were performed to determine

whether the numerical integrations used to create the Greenstreet et al. (2012a)

NEO orbital distribution model had reached convergence at the 4 hour base in-

tegration time step used by running the same set of initial conditions with five

different time steps: 2 hours, 4 hours, 8 hours, 16 hours, and84 hours (3.5 days,

used in the Bottke et al. (2002) model integrations). The initial conditions and

time steps chosen for these integrations were decided upon by both myself and

Brett Gladman. I performed the integrations and analyzed the orbital distribution

of the particles at the end of the 1 Myr integrations to determine if convergence

had reached for the 4 hour time step. I wrote the appendix withthe exception of

Section A.4, which was written by Brett. I also produced all the figures.
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µ - Gravitational parameter. For objects withmobject

M⊙
< 10−11, µ = GM⊙ =

1.32712440018x1020 m3 s−2. Above this threshold,µ should by calculated as

µ = G(M⊙ +mobject) to maintain the given precision.

RH - Hill sphere. ForMplanet/M⊙ ≪ 1, the sphere around a planet where

the gravitational dominance of the planet exceeds that of the sun. RH =

a
(

Mplanet

3M⊙

)1/3

AU.

TJ - Tisserand parameter. This quantity is conserved during planetary close en-

counters (in this case with Jupiter) in the circular restricted three-body problem.

TJ = aJ
a
+ 2

√

(1− e2) a
aJ
cos(i).

φ11 - The 1:1 mean-motion resonant argument is the difference between theλ

of a small body of negligible mass andλ of a planet. Libration around0◦ in-

dicates quasi-satellite behaviour, libration around180◦ indicates horseshoe be-

haviour, and libration around60◦ or 300◦ indicates leading and trailing Trojan

behaviour, respectively.

φ31 - The 3:1 mean-motion resonant argument indicates whether an object is in

the 3:1 resonance when the resonant argument librates around 180◦. φ31 = 3λJ −
λ− 2̟

φ41 - The 4:1 mean-motion resonant argument indicates whether an object is in

the 4:1 resonance when the resonant argument librates around 180◦. φ41 = 4λJ −
λ− 3̟

L1 - First Lagrange point. Located directly between the Sun anda planet marking

a stable gravitational location for a third body of negligible mass.

L2 - Second Lagrange point. Located directly opposite the Sun from a planet

marking a stable gravitational location for a third body of negligible mass.
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L3 - Third Lagrange point. Located directly opposite a planet from the Sun mark-

ing a stable gravitational location for a third body of negligible mass.

L4 - Leading triangular Lagrange point. Located60◦ ahead of a planet along its

orbit around the Sun marking a stable gravitational location for a third body of

negligible mass.

L5 - Trailing triangular Lagrange point. Located60◦ behind a planet along its

orbit around the Sun marking a stable gravitational location for a third body of

negligible mass.

R(a, e, i) - Residence time probability distribution. Represents thepercentage of

the steady-state population contained in each bin of a grid of a, e, i cells placed

throughout the Solar System.

H-magnitude - Absolute magnitude. The apparent magnitude anobject would

have if it were located in an equilateral triangle 1 AU from the Sun and the Earth

and at zero phase angleφ. m = H + 2.5log10
r2
helio

r2geo
P (φ)

.

φ - Phase angle. Measured between the incident and reflected light directions of

an observed object with values ranging from0◦ to 180◦, where a0◦ phase angle

refers to a fully illuminated object.

p - Albedo. An object’s reflectivity. Defined as the fraction ofincident light

reflected from the surface, where a value of 0 means an object reflects no light

and a value of 1 means an object reflects all light incident upon it.

α - Logarithmic “slope” of the power-law differential distribution in number.

qslope - Logarithmic “slope” of the power-law differential distribution in diameter.

qslope = 5α + 1.

d - Impactor or small body diameter in km.

D - Crater diameter in km.
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U - Impact velocity in km/s.

δ - Volume mass density of an impactor.

ρ - Volume mass density of a target at the surface.

Q∗
RD - Specific energy required for dispersal of a catastrophically disrupted

body, whereµ is the reduced mass,MprojectileMtarget/Mtotal. Q∗

RD =

0.5µU2/Mtotal.
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Chapter 1

Introduction

1.1 Motivation
The Solar System has three large reservoirs of small bodies:the main asteroid

belt, the Kuiper belt, and the Oort cloud. The Oort cloud is only indirectly related

to this thesis via its relation to the scattering object population in the Kuiper belt.

Each of the populations in the main asteroid belt and the Kuiper belt are divided

into several sub-populations according to their orbital parameters and dynamical

properties. The main asteroid belt sits between the orbits of Mars and Jupiter from

roughly 1.8 AU to 4.5 AU and the Kuiper belt is located beyond to the orbit of

Neptune, extending from 30 AU to several hundred AU with the majority of the

classical and resonant populations lying between roughly 30 AU and 85 AU. Ob-

jects from these two belts can leave these reservoirs via slow diffusive dynamical

processes that can put them onto planet-crossing orbits. The near-Earth object

(NEO) population, which have periheliaq < 1.3 AU is an example of one such

population which has its sources in the main asteroid belt. The processes by which

the orbits of small bodies in the Solar System are perturbed can help us understand

the current orbital parameters of today’s small body populations. Impact proba-

bilities and speeds can be computed for planet-crossing populations and cratering
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histories can tell us something about the age of planetary surfaces under today’s

population of potential impactors.

1.1.1 Small Body Populations

Small body populations in the Solar System are scientifically interesting, because

they were formed during the formation of the Solar System roughly 4.5 Gyr ago

and thus can provide valuable information about the formation process. Dy-

namically speaking, their current orbital structure can provide clues about the

orbital structure in the early stages of the Solar System. Because these popula-

tions are not static, but can move around the Solar System viagravitational and

non-gravitational forces, studying the dynamics of these processes helps us un-

derstand the current orbital distribution of today’s populations. The interest in

future manned and unmanned space probe missions to study these small bodies

has fuelled the desire to complete a census of the current population of near-Earth

objects, especially those on Earth-like orbits (Abell et al., 2009; Binzel et al.,

2004; Hildebrand et al., 2004). Recent missions to have landed on NEOs include

NASA’s Near-Earth Asteroid Rendezvous (NEAR) to 433 Eros (Veverka et al.,

2001) and JAXA’s Hayabusa to 25143 Itokawa (Yano et al., 2006). ESA’s Rosetta

mission recently achieved the first comet-landing with its Philae probe touching

down on comet 67P/Churyumov-Gerasimenko. A census of the current small

body populations can also provide an understanding of the impact and cratering

history of planetary surfaces and, in particular, can provide the impact threat of po-

tentially hazardous asteroids (PHAs) that could impact theEarth (Morrison et al.,

1994).

1.1.2 Impact Rates & Cratering in the Solar System

In addition to understanding the impact threat to Earth, studying impact and cra-

tering rates onto planetary surfaces can allow us to date such surfaces either abso-

lutely, as in the case of the Moon for which we have samples from the surface, or

in a relative sense. The absolute dating of cratered surfaces on the Moon has al-
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lowed us to assign a specific time (≈ 3.9 Gyr ago) to the period known as the lunar

cataclysm (Tera et al., 1974) when the Moon experienced a spike in its impacting

history during a violent time in the early stages of the SolarSystem. Studying

cratered surfaces can also tell us about past resurfacing events and processes such

as geological activity on planetary surfaces. Very few craters on a surface implies,

as in the case of Neptune’s moon Triton, that the “planetary”body has had recent

geologic activity that has erased or eroded many of its craters. In addition, the

size distribution of craters on planetary surfaces can be used to infer the size dis-

tribution of the impacting populations. For example, Stromet al. (2005) show that

the crater size frequency distribution on the lunar mare andthe size distribution

of the near-Earth asteroid population confirms that NEOs arethe source of lunar

craters. In the outer Solar System, cratered surfaces can provide insights into the

size distribution of small body populations for which we have less knowledge than

the main asteroid belt due to their farther distances from the Earth. Particularly

in the case of Pluto, which is the target of the upcoming New Horizons fly-by in

July 2015, the crater size frequency distribution on its (and its binary compan-

ion Charon’s) surface can provide insights into the size distribution of the Kuiper

belt sub-populations. Unfortunately, without knowing thesize distribution of the

Kuiper belt sub-populations down to the smallest sizes (sub-km diameters), little

can be said about the inferred age of Pluto’s (or Charon’s) surface other than to

make model-dependent predictions (Greenstreet et al., 2015). However, perhaps

the New Horizons fly-through of the Pluto system will providesome clues to the

inferred shape of the Kuiper belt size distribution at smalldiameters.

1.2 Thesis Outline
Chapter 2 is an introduction to the near-Earth object and main asteroid belt pop-

ulations, including their orbital structure, dynamics, and size distributions. Previ-

ous work related to the production of a near-Earth asteroid (NEA) orbital model

(Greenstreet et al., 2012a) was the subject of my Master’s thesis and is not part of
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this PhD thesis. The details of the NEA orbital distributionproduced in the model

is discussed, but the production of the model is not.

Chapter 3 is based on Greenstreet and Gladman (2013) and compares NEO

orbital distribution models to the detected orbital element distributions of Aten-

class NEOs detected by the NEOWISE spacecraft (Mainzer et al., 2012).

Chapter 4 discusses (based on Greenstreet et al. (2012b)) the production of

retrograde NEAs from main belt asteroidal sources and theirconnection to high-

strength, high-velocity meteoroids on retrograde orbits.

At this point, the focus shifts from small body orbital dynamics in the inner

Solar System to small body dynamics and cratering in the outer Solar System.

Chapter 5 is an introduction to the current and past orbital structure of the

Kuiper belt as well as its sub-population size distributions and cratering in the

outer Solar System.

Chapter 6 discusses the capture of scattering Kuiper belt objects into co-orbital

resonance with the icy giant planets, motivated by the discovery of the first Ura-

nian Trojan by Alexandersen et al. (2013).

Chapter 7 (based on Greenstreet et al. (2015)) focuses on thecurrent impact

rate from the Kuiper belt sub-populations onto Pluto and itsbinary companion

Charon as well as their cratering rates over the past 4 Gyr. Model-dependent ages

are computed based on assumed extrapolations of the impactor size distribution at

small sizes (diameterd < 100 km).
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Chapter 2

An Introduction to Near-Earth

Objects and the Main Asteroid Belt

2.1 Near-Earth Objects
The orbital elements that describe the motions of bodies around the Sun in the

Solar System include the semimajor axisa (half the distance of the longest diam-

eter of the orbit), the eccentricitye (deviation of the orbit from a perfect circle),

and the inclinationi (tilt of the body’s orbital plane with respect to the Earth-Sun

orbital plane). The pericenterq measures an object’s closest distance to the Sun

and is calculated viaq = a(1 − e). Similarly, the apocenterQ = a(1 + e) mea-

sures an object’s farthest distance from the Sun. Near-Earth objects have perihelia

q < 1.3 AUa and are divided into dynamical sub-groups according to their orbital

elements.
aThere is no standard upper limit on semimajor axis for the NEOpopulation, although we use

a < 4.20 AU from Bottke et al. (2002).
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Figure 2.1: Sample schematic orbits of objects in the four traditional NEO
classes. Apollos and Atens cross the orbit of the Earth whileAmors lie
entirely exterior to the Earth’s orbit and Atiras lie completely interior
to the Earth’s orbit.

2.1.1 NEO Dynamical Classification

Near-Earth objects are traditionally divided into dynamical classes as follows:

Amors (1.017 < q < 1.3 AU), Apollos (a > 1.0 AU, q < 1.017 AU), Atens

(a < 1.0 AU, Q > 0.983 AU), and Atiras (0.718 < Q < 0.983 AU). In recent

literature, Atira-class asteroids form part of what has been called interior-Earth

objects (IEOs) (Michel et al., 2000), because their orbits lie completely interior to

Earth’s orbit (Q < 0.983 AU). Following historical precedent, we adopt the name

Atira for this class of NEO, after its first named member, 163693 Atira.

Apollos and Atens are on Earth-crossing orbits, and thus make up the potential

Earth impacting populations. Apollos have orbits larger than the Earth’s orbit and

thus spend more time at farther distances from the Sun than the Earth, while Atens
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are on orbits smaller than that of the Earth, spending much oftheir time interior

to Earth’s orbit. Amors have orbits which lie entirely exterior to the orbit of the

Earth with perihelia greater than the aphelion of Earth (q > 1.017 AU). Atiras, on

the other hand, lie on orbits completely interior to the Earth’s orbit with aphelia

less than the perihelion of Earth (Q < 0.983 AU). Figure 2.1 shows a schematic of

objects in the four traditional NEO classes. We further expand these into six NEO

classes. As mentioned above, Atira-class NEOs have been referred to as interior-

Earth objects (IEOs), which include all objects with orbitsinterior to that of the

Earth (Q < 0.983 AU). We subdivide this region into three orbital classes: Atiras

(0.718 < Q < 0.983 AU) are objects decoupled from (interior to the orbit of)

Earth but can cross the orbits of Venus and Mercury, Vatiras (0.307 < Q < 0.718

AU) are objects decoupled from Venus but can be on Mercury-crossing orbits, and

Vulcanoids have orbits withQ < 0.307 AU and are decoupled from Mercury. No

Vulcanoid or Vatira NEOs are currently known, which is unsurprising due to their

tiny solar elongations (angle from the Sun as viewed from Earth).

2.1.2 NEO Orbital Distribution

Table 2.1 lists the best estimates for the fractions of NEOs in each orbital class

from the Greenstreet et al. (2012a) NEO orbital distribution model. Apollos make

up the majority (≈ 63%) of NEOs, however, as is shown in Figure 2.2 of the NEO

boundaries in semimajor axis/eccentricity space, the Apollos cover the largest area

of the NEO region. The population of NEOs drops off with decreasing semimajor

axis from the Aten to the Vulcanoid populations, with no objects predicted to exist

on orbits scattered down to the innermost portions of the Solar System interior to

the orbit of Mercury (see Table 2.1). Objects are gravitationally scattered by a

planet when they pass within a few Hill radii from a planet. The Hill sphere

indicates the region around a planet where the planet has gravitational dominance
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NEO Best
Class Estimate

(%)
Amor 30.1± 0.8
Apollo 63.3± 0.4
Aten 5.0± 0.3
Atira 1.38± 0.04
Vatira 0.22± 0.03

Vulcanoid 0.0

Table 2.1: NEO class percentages from the Greenstreet et al. (2012a) NEO
orbital distribution model. An Atira has0.718 < Q < 0.983 AU while
a Vatira is a Venus-decoupled object with0.307 < Q < 0.718 AU. We
define Vulcanoids as objects withQ < 0.307 AU. The dynamical model
does not produce any NEOs that get scattered down to the innermost
portions of the Solar System onto orbits that are completelyinterior to
the orbit of Mercury (the population we call Vulcanoids).

over the Sun, and forMplanet/M⊙ ≪ 1, can be computed for a given planet via:

RH = a

(

Mplanet

3M⊙

)1/3

(2.1)

In order for a main belt asteroid to reach an orbit in the innermost portion of the

Solar System (especially near Mercury), an object must experience a sequence of

fortuitous close encounters that “hand it down” to planets closer to the Sun, which

becomes increasingly unlikely as an object gets to smaller heliocentric distances.

The NEO population estimates, including the dropping trendat smaller semima-

jor axes can also be seen in Figure 2.3. This figure shows the residence time

probability distribution (i.e. the fraction of time NEOs are predicted to spend at

any given semimajor axis, eccentricity, and inclination) from the Greenstreet et al.

(2012a) NEO orbital distribution model, where the population at low-a drops off

as expected.
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Figure 2.2: NEO class distinctions and source regions ina, e space. The
NEO population is restricted to orbits withq < 1.3 AU and a <
4.2 AU. Amors (1.017 < q < 1.3 AU), Apollos (a > 1.0 AU,
q < 1.017 AU), Atens (a < 1.0 AU, Q > 0.983 AU), Atiras
(0.718 < Q < 0.983 AU), Vatiras (0.307 < Q < 0.718 AU),
and Vulcanoids (Q < 0.307 AU) are the six NEO classes (blue) we
adopt. Theν6 secular resonance (red), 3:1 mean-motion resonance
(red), intermediate Mars crossers (IMC) (green), and the outer main
belt (OMB) (green) population constitute the asteroidal source regions
and the Jupiter family comets (JFCs) (green) are the cometary source
region for the NEO population.
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Figure 2.3: Residence time probability distribution,RNEO(a, e, i), for the
Greenstreet et al. (2012a) NEO orbital model. The space is divided
into a grid ofa, e, i cells froma < 4.2 AU, e < 1.0, andi < 90◦ with
volume 0.05 AU x 0.02 x2.00◦. To create thea, e plot thei bins are
summed and thee bins are summed to create thea, i plot. The color
scheme represents the percentage of the steady-state NEO population
contained in each bin. Red colors represent cells where there is a high
probability of particles spending their time. The curved lines divide
the NEO region into Amor, Apollo, Aten, and Atira populations as
well as indicating Venus- and Mercury-crossing orbits.
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Figure 2.3 shows a high concentration of NEOs between roughly 2 AU and

3 AU. This reflects the entry point of most objects into the NEOregion from

sources in the main asteroid belt. As shown in Figure 2.2, theasteroidal source

regions for the NEO population are located just outside theq < 1.3 AU NEO

boundary. These NEO source regions are discussed in the nextsection.

2.2 Main Belt Dynamics and Near-Earth Object
Source Regions

The main asteroid belt spans semimajor axes between Mars andJupiter from

roughly 2 AU to 3.5 AU. As can be seen in Figure 2.4 of the main belt (a, e) and

(a, i) projections, the majority of the asteroids in the main belthave orbits of mod-

erate eccentricity (e < 0.35) and inclination (i < 20◦), with a few high-inclination

groups. The structure visible in Figure 2.4 is important forthe near-Earth object

population, because it marks the source regions that feed the NEO population.

2.2.1 Resonances in the Main Belt

Resonances located in the main asteroid belt also have the ability to mod-

ify asteroidal orbits and are often much more powerful than planetary grav-

itational scattering. Historically, people began lookingat resonances in the

main belt as a means to transport meteorites from the asteroid belt to the Earth

(Greenberg and Chapman, 1983; Wetherill, 1979). The steadyflux of meteorites

arriving at Earth prompted researchers to look at the nearbylarge reservoir of

small bodies, the main asteroid belt, as their source. Because planetary close en-

counters are unable to remove objects from the main belt, resonances located in

the main belt began to be explored as the transportation mechanism for getting

meteorites to the Earth. Further discussion of past work with numerical integra-

tions of NEO source regions can be found in Section 2.2.3.
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Figure 2.4: Main asteroid belt orbital distribution ina, e anda, i projections
for the 422,910 numbered asteroids in the Minor Planet Center Orbit
(MPCORB) database on February 5, 2015.
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Secular Resonances

In addition to the orbital semimajor axis, eccentricity, and inclination, the longi-

tude of the ascending nodeΩ (angle projected onto the Earth-Sun orbital plane

from the reference direction of the vernal equinox to the location of the ascending

node where the orbit plane intersects the Earth-Sun plane),the argument of peri-

centerω (angle in the orbital plane from the ascending node to the pericenter), and

the true anomalyθ (angle in the orbital plane from the pericenter to the location

of the body along its orbit) are also used to describe an object’s orbit.

The existence of more than two bodies in the Solar System causes the angular

orientation of the orbits of all bodies to change over time ata secular precession

rate. This secular precession rate of the longitude of pericenter̟ (sum of the

longitude of the ascending node and the argument of pericenter̟ = Ω + ω) for

each planet is made up of a linear combination of the secular precession frequen-

cies, or eigenfrequenciesgj (j = 1 − 8), of all the planets. Likewise, the secular

precession rate of the longitude of the ascending nodeΩ for each planet is made

up of a linear combination of the eigenfrequenciessj (j = 1 − 8). An equally

common naming convention isν1 − ν8 for g1 − g8 andν11 − ν18 for s1 − s8.

In addition to exciting secular precession in each other’s orbits, the plan-

ets induce secular precession in the orbits of small bodies in the Solar System.

Eccentricity-type (or inclination-type) secular resonances occur when the preces-

sion rate of a body’s longitude of pericenter (or longitude of ascending node)

is commensurable with an eigenfrequency, or combination ofeigenfrequencies,

of the Solar System, i.e.˙̟ = gj (or Ω̇ = sj). (Michel and Froeschlé, 1997;

Wetherill and Faulkner, 1981). Eccentricity-type secularresonances excite the ec-

centricities of objects located in the resonance, increasing the object’s chances of

having planetary close encounters due to intersecting moreplanetary orbits ase

increases. On the other hand, inclination-type secular resonances that excite the

inclination of objects in the resonance can protect objectsfrom planetary close

encounters as objects are tilted farther out of the eclipticplane. Theν6 secular

resonance, which occurs when˙̟ ≃ g6, is among the strongest of the eccentricity-
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exciting secular resonances in the Solar System. It is located at the inner edge of

the main belt neara ≈ 2 AU and i < 20◦ (see Figure 2.5). It’s presence can be

seen in the top panel of Figure 2.4 where it has sculpted the curved edge of the

inner main belt population ina, i space.

Objects enter theν6 resonance from the adjacent main belt as objects random

walk in a at roughly constant inclination. This random walk is due to the chaotic

nature of many overlapping resonances (see Section 2.2.1) located within the main

asteroid belt. Once objects enter the resonance their eccentricities can quickly

be increased to values large enough to put them on Mars-crossing orbits where

subsequent Martian close encounters can remove them from the resonance and put

them onto a near-Earth orbit (Greenberg and Chapman, 1983; Wetherill, 1979). If

planetary close encounters do not kick an object out of the secular resonance, the

body can have its eccentricity increased to unitye = 1, pushing it into the Sun, in

only a few hundred thousand years (Farinella et al., 1994; Gladman et al., 1997).

However, if an object leaves the resonance, it can live for tens to hundreds of

millions of years random walking ina as it experiences a sequence of planetary

close encounters.

Kozai Resonance & Kozai Effect

The Kozai secular resonance (Kozai, 1962) offers an additional protection mech-

anism from planetary close encounters. This secular resonance does not relate to

the precession rate of the planets, but that of the asteroid alone. It occurs for a

small body when the precession rate of its longitude of pericenter ˙̟ matches that

of its nodal longitudėΩ. When these two precession rates are equal, the argument

of pericenter stops precessing, i.e.ω̇ ≃ 0, and begins librating around90◦ or 270◦

(Kozai, 1962). For orbits witha < 2 AU, Michel and Thomas (1996) showed the

argument of pericenter can also librate around180◦. For near-resonant objects,

the related Kozaieffectresults in the argument of pericenter continuing to precess

(explore all values between0◦ − 360◦), but at a highly-variable rate, coupled to

largee variations.
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Figure 2.5: Approximate (a, i) locations of the 3:1 mean-motion resonance
andν5, ν6, andν16 secular resonances fore = 0 orbits. As an example,
to the right of theν6 curve an object has a longitude of pericenter
precession ratė̟ > g6, while to the left of the curve˙̟ < g6. A
resonant response occurs when an object is located on a pointalong
the ν6 curve where ˙̟ ≃ g6. This resonant response can quickly
increase the eccentricity of an object to a Sun-grazing orbit within 1
Myr (Farinella et al., 1994) unless a planetary close encounter removes
the object from the resonance. A similar resonant response occurs for
objects located along theν5 secular resonance curve as well as the 3:1
mean-motion line, which is discussed in Section 2.2.1. Theν16 secular
resonance induces a resonant response in an object’s inclination when
the longitude of the ascending nodeΩ̇ ≃ s16.
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As the argument of pericenter librates due to Kozai dynamics, the

z-component of angular momentum is conserved, and thus the quantity
√

(1− e2)cos(i) remains constant. This causes the small body’s eccentricity and

inclination to oscillate against each other (i.e., high-e corresponds to low-i and

vice versa). This mechanism offers protection against planetary close encoun-

ters due to the orbital orientations it forces for the asteroid. For objects in the

asteroid belt with orbits well inside Jupiter’s orbit and outside Mars’ orbit, close

encounters can only happen at the asteroid’s aphelion or perihelion, respectively.

However, because the asteroid’s argument of pericenterω librates around90◦ or

270◦ and the inclination remains large, the asteroid’s perihelion and aphelion most

often lie well outside the ecliptic plane, keeping the asteroid from planetary close

encounters (Michel and Thomas, 1996). Thus, objects in Kozai resonance can be

stable for tens to hundreds of Myr (Gladman et al., 2000). However, the stability

of such orbits comes from their high orbital inclinations. Oscillations ine and

i can allow orbital configurations whene is very high andi is very low, putting

the asteroid in a position where fortuitous planetary closeencounters could po-

tentially dislodge it from the Kozai resonance or other simultaneous resonances

such as mean-motion resonances (see below), beforee gets large enough to push

the object into the Sun (Gladman et al., 2000). Planetary close encounters remov-

ing objects from mean-motion resonances while also in the Kozai resonance is

important for NEAs on long-lived retrograde (i > 90◦) orbits and is discussed in

Chapter 4.

Mean-Motion Resonances

Mean-motion resonances divide the main asteroid belt into the inner, middle, and

outer belt. The inner belt is located between≈ 2.1 AU and≈ 2.5 AU, the middle

belt lies between≈ 2.5 AU and≈ 2.8 AU, and the outer belt covers≈ 2.8 AU to

≈ 3.5 AU. Figure 2.6 depicts the main asteroid belt semimajor axisdistribution

where it can clearly be seen that there are severe gaps in the number of aster-

oids located at specific values ofa. These gaps are called the Kirkwood gaps
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Figure 2.6: Main asteroid belt semimajor axis histogram for the 422,910
numbered asteroids in the Minor Planet Center Orbit (MPCORB)
database on February 5, 2015. The gaps at roughly 2.5 AU, 2.8 AU,
2.95 AU, and 3.3 AU are the Kirkwood gaps corresponding to the3:1,
5:2, 7:3, and 2:1 mean-motion resonances with Jupiter, respectively.

(Kirkwood, 1867) and the most obvious ones correspond to the3:1, 5:2, 7:3, and

2:1 mean-motion resonances with Jupiter.

The mean-motion,n, of an object describes the average angular velocity of an

object’s orbit around the Sun, and is calculated by:

n =

√

µ

a3
(2.2)
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whereµ is the gravitational parameter anda is the semimajor axis. For objects

with mobject

M⊙
< 10−11, µ = GM⊙ = 1.32712440018x1020 m3 s−2. Above this

threshold,µ should by calculated asµ = G(M⊙ +mobject) to maintain the given

precision. Mean-motion resonances occur when an asteroid’s orbital period is

commensurable with the orbital period of a planet. For example, the 2:1 mean-

motion resonance with Jupiter occurs when the asteroid orbits the Sun twice for

every single orbit of Jupiter, i.e.2nJ = nast. The repetitious positioning of the

asteroid and planet in a mean-motion resonance causes theirgravitational interac-

tions to be periodic.

In principle, this could protect the asteroid from Jupiter’s gravitational per-

turbations, which can otherwise kick the asteroid out of theinner Solar System,

creating a stable niche in (a, e, i) space. However, when resonances (mean-motion

or secular or a combination of the two) overlap, thata, e, i region no longer re-

mains stable. The main asteroid belt is quite crowded with numerous overlapping

mean-motion resonances with Mars, Jupiter, and Saturn (Nesvorný et al., 2002).

In the inner main belt, the 3:1 mean-motion resonance located neara ≈ 2.5 AU

is one such unstable resonance. Theν6 secular resonance (see Figure 2.5) and

several mean-motion resonances intersect the 3:1, resulting in its unstable nature.

The stronge-pumping mechanism within the unstable 3:1 resonance causes ob-

jects located in the resonance to evolve quickly onto at least Mars-crossing orbits

(Wisdom, 1985), as depicted in Figure 2.2. Martian close encounters can then

cause changes ina and kick the object out of the resonance, leaving it in near-

Earth space. If the object stays in the resonance, it can get to Earth-crossing

without the help of Martian close encounters.

Other Resonances

Asteroids can also escape the main belt through mean-motionresonances

with Mars or three-body mean-motion resonances with the giant planets

(Nesvorný and Morbidelli, 1998) and reach Mars-crossing orbits (Bottke et al.,

2002). Martian close encounters can then scatter these objects onto near-Earth
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orbits (Gladman et al., 2000). The outer main belt region (≈ 2.8 AU to ≈ 3.5 AU)

also has strong mean-motion resonances, such as the 7:3, 5:2, and 2:1 resonances

with Jupiter, and three-body mean-motion resonances with Jupiter and Saturn

(Nesvorný and Morbidelli, 1998) which can supply NEOs (Bottke et al., 2002).

These resonances can push asteroids to high-e orbits and into the NEO region.

2.2.2 Jupiter Family Comets

The last important NEO source region comes from the Jupiter family comets

(JFCs). The JFC population is bounded by the Tisserand parameter. In the cir-

cular restricted three-body problem, the following quantity is conserved during

planetary close encounters (in this case with Jupiter):

TJ =
aJ
a

+ 2

√

(1− e2)
a

aJ
cos(i) (2.3)

whereaJ is Jupiter’s semimajor axis. Jupiter family comets are defined to be

those with2 < TJ < 3, all of whom are on Jupiter-crossing orbits. Jupiter is then

excellent at kicking these objects out of the Solar System, however some JFCs

can be kicked into the inner Solar System and into the NEO region (Bottke et al.,

2002; Levison and Duncan, 1997).

2.2.3 Past Work with Numerical Integrations

The ability to compute n-body numerical integrations has provided enormous ad-

vantages to understanding orbital dynamics and chaotic behavior in the Solar Sys-

tem. Numerical integrations showing the chaotic nature of the main asteroid belt

as a source for near-Earth objects and meteorites began in the 1970s when Wether-

ill developed Monte-Carlo models of injecting collisionally-fragmented objects

into theν6 and 3:1 resonances, which slowly raised their eccentricities until they

became Mars-crossing and Mars could gravitationally remove them from the res-

onance (Wetherill, 1979). Martian close encounters could then remove the object

from the resonance and cause its orbit to evolve along the perihelion curve at
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Mars’ aphelion and eventually the aphelion curve at Mars’ perihelion (similar to

the Earth-crossing curves shown in Figure 2.3), until reaching an Earth-crossing

orbit (Greenberg and Nolan, 1993; Wetherill, 1985). Eventually, it was realized

that resonances alone could move objects from the main asteroid belt to Earth-

crossing orbits. Similar models by Greenberg and Chapman (1983) of material

being injected into main belt resonances from large-body impacts produced ob-

jects being transported onto near-Earth orbits. Both models found≈ 1 Myr to be

the typical timescale to transport objects from the main asteroid belt to near-Earth

space via resonances, with typical lifetimes of tens of Myr (Greenberg and Nolan,

1993). Computational improvements by the 1990s allowed statistically signifi-

cant numbers of objects to be numerically integrated with starting positions in

main belt resonances. The turning point in our modern understanding of the ef-

ficiency of main belt resonances at supplying NEOs came when Farinella et al.

(1994) showed that eccentricities of objects injected intomain belt resonances

could not only reach Earth-crossing orbits, but Sun-grazing orbits (e = 1) on

timescales of only≈ 1 Myr. After this, numerical integrations showed typical dy-

namical lifetimes of particles placed within many main beltresonances to be only

a few million years, most particles being terminated by becoming Sun grazers or

being ejected from the Solar System by Jupiter (Gladman et al., 1997).

Morbidelli and Nesvorný (1999) showed that in addition to theν6 and 3:1 res-

onances, both Mars-crossing asteroids and the outer main belt also efficiently

populate the NEO region. Many of the Mars-crossing objects are located near

several mean-motion resonances with Mars and three-body mean-motion reso-

nances, while outer main belt (OMB) objects sit near severalmean-motion reso-

nances with Jupiter as well as many three-body mean-motion resonances. Chaotic

diffusion of objects migrating ine can both produce and transport Mars-crossing

and outer main belt objects into the near-Earth region on timescales of≈ 25 Myr

(Morbidelli and Nesvorný, 1999).

The higher-than-previously-thought number of Sun grazingcomets found in

numerical integrations by Levison and Duncan (1994) pointed to the short-period
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(P < 200 yr) comet population as a non-negligible NEO source. These numerical

integrations found a median lifetime (from the current time) of ≈ 500, 000 years

until most objects were either ejected from the Solar Systemor became Sun graz-

ers. Levison and Duncan (1997) found that≈ 30% of particles evolving out of the

Kuiper belt reached orbits withq < 2.5 AU at some time during their lives; some

havinga < 4.2 AU and thus could become NEOs. The short amount of time spent

in the JFC region by the known JFCs (≈ 0.1 Myr; (Levison and Duncan, 1994)),

requires a significant population of objects in the Kuiper belt to supply the known

JFC population (Bottke et al., 2002). This allows the JFC population to supply

some NEOs.

The first numerical model of the NEO orbital distribution using these five

main NEO source regions (theν6 and 3:1 resonances, Mars-crossers, OMBs, and

JFCs) was produced by Bottke et al. (2002). Bottke et al. (2002) fit their inte-

grated steady-state orbital distribution for each NEO source to the Spacewatch

observations to determine the contribution of each source region to the overall

a < 4.2 AU NEO orbital distribution. Their best-fit parameters for the source

contributions were37 ± 8% from theν6 resonance,27 ± 3% from an initially

Mars-crossing population,20 ± 8% from the 3:1 resonance,10 ± 1% from the

outer-portion of the main belt, and6± 4% from the JFCs. Their model also broke

down the resulting predicted population into each NEO classb, with Amors con-

stituting31 ± 1%, Apollos61 ± 1%, Atens6 ± 1%, and IEOs2 ± 0.5% of the

NEO population.

Greenstreet et al. 2012 NEO Model

The most recent numerical model of the NEO orbital distribution was pro-

duced by Greenstreet et al. (2012a). The numerical integrations used in the

Greenstreet et al. (2012a) model were similar to those of Bottke et al. (2002) with

several improvements due to recent increases in computational power (see Chap-

bBottke et al. (2002) normalized their population fractionsonly to theQ > 0.983 AU re-
gion. Greenstreet et al. (2012a) have included the near-Sunpopulations and renormalized these
fractions.
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ter 3 for a discussion of these improvements). The updated model was motivated

by the needs of Canada’s microsatellite NEOSSat (Near-Earth Object Surveillance

Satellite).

Canada’s NEOSSat is a joint project between the Canadian Space

Agency (CSA) and Defense Research and Development Canada (DRDC)

(Hildebrand et al., 2004). The science mission via CSA is to search for and track

NEOs, specifically those on orbits witha < 1.0 AU. NEOSSat is designed sim-

ilarly to the Microvariability and Oscillations of Stars (MOST) space telescope

(Walker et al., 2003). NEOSSat features an attached baffle allowing the satellite

to look as close as45◦ to the Sun, and was launched in February 2013. In order to

optimize an efficient pointing strategy for NEOSSat to maximize the number of

detections as well as reach orbits for discoveries that are good enough to no longer

need follow-up observations (fractional uncertainty,δ a/a, is small), a model of

the NEO orbital distribution with good statistics in thea < 1.0 AU region was

needed.

Though the dominant population regions (Amors and Apollos)of the NEO

orbital distribution are well represented in the Bottke et al. (2002) model, it was

obvious that the uncertainty in thea < 1.0 AU region was too large to plan an

optimal pointing strategy for NEOSSat to discover and trackAtens and Atiras.

There was also concern that the exclusion of Mercury from theBottke et al. (2002)

integrations could have caused thea < 1.0 AU populations to inaccurately rep-

resent the intrinsic orbital distribution. These reasons motivated the computation

of the new steady-state NEO orbital distribution model, which have better statis-

tics and greater integrator accuracy than the previous model. Figure 2.3 depicts

the resulting orbital distribution of the NEO population from the Greenstreet et al.

(2012a) model. Table 2.1 lists the best estimates for the fractions of NEOs in each

orbital class from the Greenstreet et al. (2012a) NEO orbital distribution model,

which are in agreement with the previous model’s estimates to within their esti-

mated uncertainties. The better accuracy of this NEO orbital distribution model

for the a < 1.0 AU orbital element distribution and agreement with the NE-
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OWISE detections (Mainzer et al., 2012) is the subject of Chapter 3. In addi-

tion, the surprising discovery of main belt sources producing near-Earth objects

on retrograde orbits within the Greenstreet et al. (2012a) numerical integrations

(Greenstreet et al., 2012b) is discussed in Chapter 4.

2.2.4 Non-Gravitational Forces

The dynamical lifetime of objects inside many main belt resonances is much

shorter than the age of the Solar System, requiring a stable source to resupply

these asteroidal source regions within the main asteroid belt. Possible supply

mechanisms include collisions (Farinella et al., 1993), semimajor axis drift driven

via the Yarkovsky effect (Bottke et al., 2001; Farinella andVokrouhlický, 1999),

and chaotic dissipation (Carruba et al., 2003; Morbidelli and Nesvorný, 1999).

It has long been thought that collisional fragments or the break-up of aster-

oids in the main asteroid belt can push debris into the stronge-pumpingν6 and

3:1 resonances and supply asteroids to near-Earth orbits aswell as meteorites to

the Earth (Farinella et al., 1993; Greenberg and Chapman, 1983; Wetherill, 1985).

Collisions at closer distances to the Sun where the volume issmaller could also

change the orbital distribution of NEAs at low semimajor axes (Grun et al., 1985).

Tidal disruptions due to planetary close encounters could also break apart weak

rubble-pile (non-monolithic structure consisting of coalesced pieces of rock from

gravitational forces) asteroids (Richardson et al., 1998)that could also migrate

into resonances.

The Yarkovsky effect affects small, rotating asteroids, causing them to drift

in semimajor axis due to the anisotropic emission of radiation absorbed by the

asteroid. For a rotating body, the absorbed solar energy it re-radiates will not be

in a direction opposite to incoming solar radiation due to thermal properties of the

body that produce a lag between the absorption of sunlight and the re-radiation of

heat. This causes a net force on the body along the direction of motion. This effect

is known as the diurnal Yarkovsky effect. Prograde rotators(those that rotate

in the counter-clockwise direction from a top-down view of the Solar System)
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have a net force in the direction of motion along their orbit,and so have their

semimajor axis slightly increased, causing the object to drift outward from the

Sun. Retrograde rotators drift inward. The effect of semimajor axis drift due to

Yarkovsky as well as direct radiation pressure effects is very slow compared to

the gravitational forces discussed above. Thus, non-gravitational forces have not

traditionally not been included in models of NEO orbital dynamics.

2.3 Size Distributions of the Main Asteroid Belt
and Near-Earth Objects

Another well-studied aspect of the main asteroid belt and NEO populations is their

size frequency distributions (SFDs) (cumulative number ofobjects as a function

of size). The SFD of asteroids can tell us about their collisional evolution over

the age of the Solar System, the impact strength of asteroids, the “original” mass

in the main asteriod belt, and the cratering rate onto the terrestrial planets, among

other things (Jedicke and Metcalfe, 1998). SFD determination is done through

telescopic surveys of apparent brightness distributions,which are then translated

to absolute magnitudes (directly related to an object’s size).

TheH-magnitude (absolute magnitude) of a Solar System object isdefined to

be the apparent magnitude an object would have if it were located in an equilateral

triangle 1 AU from the Sun and the Earth and at zero phase angleφ. The phase

angle is measured between the incident and reflected light directions of an ob-

served object. Phase angles range from0◦ to 180◦, where a0◦ phase angle refers

to a fully illuminated object. TheH-magnitude of a Solar System body can be

computed from its observed (from Earth) apparent magnitudeby:

m = H + 2.5log10
r2helior

2
geo

P (φ)
(2.4)

whererhelio is the heliocentric distance of the body,rgeo is the body’s geocentric

distance, andP (φ) is the phase function withP (0) = 1. TheH-magnitude relates
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to an object’s diameterD, in km, via:

Dkm =
1329
√
p
10−0.2H (2.5)

where the object’s visual albedop, or reflectivity, is defined as the fraction of

incident light reflected from the surface. An albedo of 0 means an object reflects

no light and a value of 1 means an object reflects all light incident upon it. Typical

NEO albedos range from 0.05-0.25. Using equation 2.5, a NEO with H = 18 has

a diameter range of roughly 0.7 km to 1.5 km for the usual albedo range.

The differential number of objectsN as a function ofH-magnitude can be

modeled as a power-law (equation 2.6), whereα is the logarithmic slope (hereafter

referred to simply as the slope) and allows mapping to the differential distribution

in diameterd given in equation 2.7 byqslope = 5α + 1.

dN

dH
∝ 10(α∗H) (2.6)

dN

dD
∝ D(−qslope) (2.7)

The size distribution of the main asteroid belt has collisioinally evolved over

the past≈ 4.5 Gyr. Dohnanyi (1969) theoretically examined the size frequency

distribution of objects undergoing collisions, assuming the strength of an asteroid

per unit mass is independent of size. He found the SFD of such acollisionally

evolved population should follow a single power-law with slopeα = 0.5 (qslope =

3.5) at all sizes. O’Brien and Greenberg (2003) examined the collisional evolution

of the main belt size distribution analytically and found the same result only for

objects of constant strength independent of their size. As O’Brien and Greenberg

(2003) discuss, this does not hold, however, when an object’s strength depends on

its size (see Section 2.3.3).

Observationally, the main asteroid belt SFD is difficult to determine due to

observational biases of magnitude limited surveys. At opposition, a main belt as-

teroid can be at a large variety of distances from the Earth (0.3 to 4.9 AU) and
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express apparent brightness fluctuations up to∼ 6.5 magnitudes depending on

its location along its orbit (Jedicke and Metcalfe, 1998). Thus, debiasing aster-

oid surveys is key to understanding the intrinsic population. This observational

difficulty is also present for the near-Earth asteroid population.

2.3.1 Surveys of the Main Asteroid Belt

The earliest systematic magnitude survey of main belt asteroids performed on pho-

tographic plates was the Yerkes-McDonald survey (YMS) by Kuiper et al. (1958),

photographing the ecliptic plane to latitudes of20◦ and to a limiting photographic

magnitude of∼ 16.5 (Jedicke and Metcalfe, 1998). They discovered 1,550 aster-

oids, determing magnitudes for roughly two-thirds.

The Palomar-Leiden Survey (LPS) (van Houten et al., 1970) extended the

magnitude frequency distribution to a photographic magnitude of roughly 20,

discovering> 2, 000 main belt asteroids, of which they used∼ 1, 800 to

determine the magnitude frequency distribution (Jedicke and Metcalfe, 1998).

van Houten et al. (1970) were the first to measure a change in slope from the

α = 0.5 slope predicted and observationally confirmed for the largest asteroids

to a shallower slope now measured to beα = 0.3 for d < 30 km (Gladman et al.,

2009).

The advances in both CCD technology and computers in the 1990s greatly

aided the ability to perform automated scanning and searching algorithms for

main belt asteroids at sizes smaller than tens of km. The University of Ari-

zona’s Spacewatch system located on Kitt Peak was the first tosuccessfully use

CCD technology to systematically find main belt asteroids and near-Earth objects.

Jedicke and Metcalfe (1998) used the Spacewatch observational data of 59,226 as-

teroids found between 23 September 1992 and 8 June 1995 to investigate the or-

bital and absolute magnitude distribution of main belt asteroids. They found that

a single power-law slope in the range8 < H < 16 (roughly 2.5 km to 105 km for

an assumed albedo of 10%) did not fit the observed distribution well, finding a dis-

tinctive break in the power-law at roughlyH = 13 (corresponding to a diameter of
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roughly 6.5 to 15 km, depending on the assumed albedo) (Jedicke and Metcalfe,

1998). They foundα ≈ 0.3 ± 0.2 best fit the8 < H < 13 (roughly 10.5 km to

105 km forp = 10%) range,α ≈ 0.5 ± 0.2 for 13 < H < 15 (roughly 4 km to

10.5 km forp = 10%), and a slightly less steep slope (α ≈ 0.22 − 0.26 ± 0.04)

for 15 < H < 17 (roughly 1.5 km to 4 km forp = 10%). Thus, a “wavy”

size distribution with multiple slope changes was beginning to emerge from the

observational data. Figure 2.7 shows the size distributionin H-magnitude of the

known (biased) main belt asteroids and NEOs for objects withdiameterd & 1 km

assumingp = 10%, where the gradual change in slope at smaller diameters can

be seen.

The (S)ub-(K)ilometer (A)steroid (D)iameter (S)urvey, orSKADS, conducted

by Gladman et al. (2009) used observations from the Kitt PeakNational Obser-

vatory, confirming the power-law slopes found by previous surveys (Ivezić et al.,

2001; Jedicke and Metcalfe, 1998; Wiegert et al., 2007; Yoshida and Nakamura,

2007; Yoshida et al., 2003) forH < 15 (corresponding tod & 4 km for p = 10%)

and found a shallower slope for15 < H < 18 (corresponding to roughlyd = 1 km

to d = 4 km for p = 10%) of α = 0.30 ± 0.02, also roughly consistent with pre-

vious surveys. By this point, it became fairly clear that themain asteroid belt size

distribution was “wavy”, however not all surveys agreed on the slope for sub-km-

sized asteroids (H > 18) (Gladman et al., 2009).

The most recent large-scale space-based observational platform for detecting

main belt asteroids and near-Earth objects is NASA’s Wide Field Infrared Explorer

(WISE)/NEOWISE thermal infrared space telescope. Launched in 2009, it per-

formed an all-sky survey from 15 January 2014 to 5 August 2014, when its coolant

depleted (Mainzer et al., 2011). During that time it identified almost 130,000

main belt asteroids. Masiero et al. (2011) used these main belt asteroid obser-

vations to measure its SFD, confirming the13 . H . 18 slope ofα ≈ 0.5 from

Gladman et al. (2009) as well as the kink atH = 13 from Jedicke and Metcalfe

(1998) and the shallower than 0.5 Dohnanyi (1969) slope for10 < H < 13 from

van Houten et al. (1970).
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Figure 2.7: Main asteroid belt size distribution inH-magnitude for the
422,910 numbered asteroids and the 12,132 NEOs in the Minor Planet
Center Orbit (MPCORB) database on February 5, 2015. Observational
biases have not been removed from these size distributions.Note the
gradual change in slope for both distributions at smaller diameters. To
convert H-magnitudes to diameters,∆H = 5 corresponds to a fac-
tor of ten change in diameter. For example,H = 13 corresponds to
d = 10 km andH = 8 corresponds tod = 100 km.
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2.3.2 Surveys of Near-Earth Objects

Surveys of main belt asteroids can also naturally produce observations of near-

Earth asteroids (NEAs). Some of the above asteroid surveys,in addition to sev-

eral NEA focused surveys, were also used to measure the SFD ofNEOs. Be-

cause NEAs originate in the main asteroid belt, one may assume the NEA SFD

should follow the main belt SFD, but shifted by some normalization due to the

smaller number of NEOs than are present in the main belt. However, if some size-

dependent mechanism is important to the supply of NEOs from the main belt, this

shift may be more complicated.

Rabinowitz (1993) used the Spacewatch observations of roughly 25 NEOs to

determine that for NEOs withd > 100 m, α ≈ 0.2, similar to the main asteroid

belt’s SFD. They also found that for10 < d < 100 m, the main belt SFD has

a shallower slope thanα ≈ 0.2 (a slope change agreed upon by Harris (2008)).

Using NEOWISE data of NEOs, Mainzer et al. (2011) foundα = 0.26 for d <

1.5 km, α = 0.42 for 1.5 < d < 5 km, andα = 1.0 for d > 5 km, in rough

agreement with previous surveys depicting a “wavy” size distribution for the NEA

population as well.

2.3.3 Origin of a Wavy Size Distribution

As discussed above, objects smaller than∼ 100 km in diameter in the main aster-

oid belt have been measured to have a shallower slope (α ∼ 0.3) (Gladman et al.,

2009; Ivezić et al., 2001; Jedicke and Metcalfe, 1998; Yoshida and Nakamura,

2007; Yoshida et al., 2003) than that predicted by Dohnanyi (1969) (α = 0.5)

using a scale-independent theory. The observed “wavy” sizedistribution of main

belt asteroids and near-Earth objects thus has implications for size-strength scal-

ing laws and the behavior ofQ∗

D, the energy per unit target mass delivered by the

projectile required for catastrophic disruption of the target (requiring one-half the

mass of the target body to escape).

Benz and Asphaug (1999) simulated impacts into targets of basalt and ice and

found that the energy needed per unit mass of a target to causefragmentation does
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not follow a constant relationship with a target’s size. They found thatQ∗

D has two

regimes: the “strength-scaled” regime at small sizes, where the tensile strength of

a target governs its fragmentation, and the “gravity-scaled” regime at large sizes,

where the target’s self-gravity controls fragmentation. In other words, on the small

target end, a lower value ofQ∗

D is required for fragmentation as targets get larger

until a critical size is reached when the self-gravity of thetarget becomes more

important and an increasingly higher value ofQ∗

D is required for fragmentation.

Benz and Asphaug (1999)’s simulations found the transitionfrom the “strength-

scaled” regime to the “gravity-scaled” regime to occur at100 < d < 200 m.

The “bump” in the main belt size distribution atd ≈ 3 km (H ≈ 16

for p = 10%) is attributed the transition from the “strength-scaled”regime at

small sizes to the “gravity-scaled” regime at large sizes (Bottke et al., 2015).

O’Brien and Greenberg (2003) explored this analytically. Considering the number

of objects present in the population in the two regimes, the two segments will have

differing slopes (the “strength-scaled” regime being the steeper of the two). The

change in slope at the transition diameter (100 < d < 200 m) will cause a wave

to develop in the “gravity-scaled” regime as a discontinuity is created between

the number of targets and impactors (that can catastrophically disrupt the targets)

at the transition diameter and then fluctuates under the collisional evolution of

the population. At the beginning of the collisional evolution, the overabundance

of impactors present at sizes just smaller than the transition diameter compared

to the number of targets at sizes just larger than the transition diameter creates a

system that is not in steady-state. The system will compensate by decreasing the

number of impactors through collisional grinding due to therelative underabun-

dance of targets until a deficit of impactors compared to targets requires another

compensation. The targets would then collisionally grind themselves down un-

til the relative number of targets just larger than the transition to impactors just

smaller than the transition (that can catastrophically disrupt the targets) creates an

underabundance of targets. This fluctuation continues as the system tries to reach

equilibrium.
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The determination that the transition occurs at100 < d < 200 m by

Benz and Asphaug (1999) was used by O’Brien and Greenberg (2003) to estimate

the positions of the “peaks” and “troughs” in the main belt SFD. They found that

the strength-to-gravity scale transition at100 < d < 200 m created a “bump” in

the asteroid SFD atd ≈ 3 km, as is observed. The “waviness” in the main belt

and consequently near-Earth asteroid SFDs is thus creditedto the transition from

the “strength-scaled” regime to the “gravity-scaled” regime that has propogated

from small sizes to larger sizes.

The “bump” atd ≈ 100 km is believed to be primordial, however, which

would indicate a favored size during formation of objects with d ≈ 100 km

(Bottke et al., 2015). Bottke et al. (2005) attempted to recreate the main belt SFD

from assumptions of the primordial main belt and included the transition between

the “strength-scaled” regime and “gravity-scaled” regimeand found evidence to

support the primordial nature of the “peak” atd ≈ 100 km.

The “wavy” nature of the Kuiper belt SFD in the outer Solar System and its

comparison to the main asteroid belt SFD will be discussed inChapter 5.

2.4 Conclusions
The NEO population is fed by chaotic resonant and planetary-scattering mecha-

nisms present in the main asteroid belt. Dynamical modelingof these processes

help us understand the current orbital distribution of today’s near-Earth objects.

The size distribution of the small body populations in the inner Solar System cou-

pled with the dynamical nature of their orbits can help us estimate the abundance

of objects in each sub-population as well as those on dynamically interesting or-

bits, as will be discussed in the following two chapters.
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Chapter 3

High-Inclination Atens are Indeed

Rare

3.1 Introduction
The motivation for this study came from Mainzer et al. (2012), in which the de-

tectedWide-field Infrared Survey ExplorerNear-Earth Object (NEOWISE) orbital

element distributions for the NEA sub-populations were compared to the expected

distribution given the Bottke et al. (2002) NEO orbital model. The largest discrep-

ancy reported for the detected orbital element distributions for the Amor, Apollo,

and Aten NEA sub-populations was a factor of 6.5 times more low-inclination

Atens than is predicted by the Bottke et al. (2002) model, with correspondingly

fewer high-inclination Atens detected (Mainzer et al., 2012). The Bottke et al.

(2002) model is a pure-gravity point-mass model of dynamical transfer of NEAs

from main belt sources to smaller semimajor axes. The observed rarity of high-i

Atens prompts the question of whether there is some physicaleffect which con-

fines or enhances the production of low semimajor axis NEAs tothe ecliptic plane

(other than purely gravitational effects).

This chapter is based on the following published work: S. Greenstreet and B. Gladman,
High-inclination Atens are Indeed Rare, ApJ767, L18 (2013).
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Coincidentally, Greenstreet et al. (2012a) computed a new NEO orbital distri-

bution model explicitly designed to have higher resolutionand lower uncertainty

in thea < 1.0 AU region.a

3.2 Integration Methods
The Greenstreet et al. (2012a) model was constructed using the integration algo-

rithm SWIFT-RMVS4, which is an improvement of the algorithmdescribed in

Levison and Duncan (1994) that prevents test particle encounters from influenc-

ing the planetary orbits. The improvements of the Greenstreet et al. (2012a) model

over the previous model (Bottke et al., 2002) involve the inclusion of the planet

Mercury in the integrations,∼7 times as many particles integrated to provide bet-

ter statistics, and (most importantly to this work) a much smaller integration time

step which provided finer resolution. Due to the computational limitations 10

years ago, Bottke et al. (2002) were forced to use a base time step between 3.5 and

7 days, whereas Greenstreet et al. (2012a) used a base time step of 4 hours for 200

Myr integrations; the integrator adaptively reduces this time step by up to a fac-

tor of 30 upon detecting a planetary close encounter to ensure accurate resolution

of the encounter. Tests with different time steps (B. Gladman, private commu-

nication), when the model integrations were being defined in2008, showed that

the fraction of NEAs was stable under changes of factor of twoin the integration

time step. This provides evidence that the time step is smallenough that results

are not being affected by convergence issues (for further convergence tests, see

Appendix A). Because the RMVS integrator is second-order accurate in the per-

turbations, the Greenstreet et al. (2012a) integration is roughly(3.5/0.17)2 = 425

times as accurate in terms of truncation error than the previous integrations, and

thus is the most accurate long-duration NEA integration yetperformed.

aThe construction of this model was the subject my Master’s thesis, and is not part of this
PhD thesis. The publication by Mainzer et al. (2012) was not available to perform a comparison
between the Bottke et al. (2002) and Greenstreet et al. (2012a) NEO orbital models until after
completion of the Master’s degree.
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To anticipate a planetary close encounter, at each time stepthe integrator per-

forms a linear extrapolation of an object’s position forward by a single base time

step. If the linear extrapolation shows the object will be within 3.5 Hill radii of

a planet, the integrator will reduce the time step by a factorof 10 to continue to

accurately integrate the particle’s position. Further to this time step reduction, if

a linear extrapolation of the object’s position shows it will be within a single Hill

radii of a planet, the integrator will reduce the time step byanother factor of three,

using a patched-conic hyperbolic orbit in the planetocentric reference frame to

continue the integration.

The importance of such a small base time step as is used in the

Greenstreet et al. (2012a) integrations comes from the existence (especially in the

perihelionq < 1.0 AU regime) of NEAs on highly eccentric, highly inclined or-

bits. Such NEAs can encounter Venus and Mercury (in particular) at speeds of up

to 50 or 60 km/s. At this speed, an NEA can travel> 15 Venusian Hill spheres

in a single 3.5 day time step (reduced to< 1 Venusian Hill sphere in a 4 hour

time step). This can result in the linear extrapolation performed by the integrator

failing to predict an upcoming planetary close encounter (Dones et al., 1999) and

thus drop the NEA into the planetary Hill sphere without correctly time-resolving

the approach phase of the encounter. This can cause the NEA tobe incorrectly

scattered to higher post-encounter eccentricity and inclination than it should have.

For further discussion of this effect, see Appendix A.

3.2.1 Comparison ofa, e, i Distributions for the Two Models

The consequences of this time step difference between the two orbital models in

thea < 1.0 AU region can be seen in the residence time probability distributions.

The residence time (Bottke et al., 2002) is the fraction of the steady-state NEO

population distributed throughout a grid ofa, e, i cells encompassing the inner

Solar System coveringa < 4.2 AU, e < 1.0, andi < 90◦ with cell volume 0.1

AU x 0.05 x5.00◦ for the Bottke et al. (2002) model and 0.05 AU x 0.02 x2.00◦

for the Greenstreet et al. (2012a) model. The Greenstreet etal. (2012a) cells are
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smaller due to the finer resolution for this model enabled by the larger number of

particles.

Figure 3.1 shows two different projections of thea < 1.0 AU residence time

probability distributions for the Bottke et al. (2002) (right) and Greenstreet et al.

(2012a) (left) models. The Bottke et al. (2002) residence time portrays a broad

maximum in inclination from20◦ to 60◦ and a very broad eccentricity distribution

extending up to 0.9. This is in contrast to the Greenstreet etal. (2012a) model

which shows the inclination distribution more strongly confined to below40◦ and

the eccentricities mostly below 0.6. We believe the typically highere andi values

shown in the older model are incorrect and were caused by the large time step

issue. However, there was no data set with sufficienta < 1.0 AU detections to

verify if there was indeed a problem.

3.3 Two Models Compared to NEOWISE Aten
Detections

To quantify the difference between the two model NEO orbitaldistributions,

we have used the NEOWISE space telescope’s detection biasespublished in

Mainzer et al. (2012) to compare the orbital element distributions expected for

the Aten population from the Greenstreet et al. (2012a) model as well as the

Bottke et al. (2002) model with the detected NEOWISE Aten distributions. Fig.

7 of Mainzer et al. (2012), provides the NEOWISE detection biases for thea, e,

and sin(i) Aten distributions. We applied the one-dimensional biasesto thea, e,

and sin(i) Aten distributions from the Greenstreet et al. (2012a) model. We note

that although the NEOWISE biases are provided as one-dimensional quantities,

there must be hidden correlations between the biases. For example, the NEO-

WISE survey pattern makes it good at finding Atens with aphelia near 1 AU, so

the NEOWISEa ande biases for the Aten population will be strongly correlated.

Figure 3.2 shows the fractional distribution of the NEOWISEdetections (blue),

biased Bottke et al. (2002) model (black), and biased Greenstreet et al. (2012a)

model (green) for the Atena, e, and sin(i) distributions as histograms, and Fig-
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Figure 3.1: Residence time probability distributions from the Bottke et al.
(2002) model (right) and Greenstreet et al. (2012a) model (left). To
monitor the orbital evolution of each particle, a grid ofa, e, i cells was
placed throughout the inner Solar System froma < 4.2 AU, e < 1.0,
andi < 90◦ with volume 0.1 AU x 0.05 x5.00◦ for the Bottke et al.
(2002) model and 0.05 AU x 0.02 x2.00◦ for the Greenstreet et al.
(2012a) model. These plots show only thea < 1.0 AU region. To
create thea, e plot thei bins are summed and thee bins are summed
to create thea, i plot. The color scheme represents the percentage of
the steady-state NEO population contained in each bin. Red colors
represent cells where there is a high probability of particles spending
their time. The different stretch in color scales between the left and
right panels is to compensate for the 5x larger cells in the Bottke et al.
(2002) model. The curved lines indicate Earth-, Venus-, andMercury-
crossing orbits.
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ure 3.3 shows cumulative versions of the distribution. Although the Atena, e,

and sin(i) NEO distributions for both the biased Greenstreet et al. (2012a) and bi-

ased Bottke et al. (2002) models extend beyond the range shown in Figure 3.2,

the NEOWISE Aten detections and thus the detection biases shown in fig. 7

of Mainzer et al. (2012) do not. Thus, to compare the Greenstreet et al. (2012a)

model (biased by the NEOWISE Aten detection biases) to the NEOWISE detec-

tions, we restrict the comparison to the samea, e, and sin(i) range and binning

boundaries as used by Mainzer et al. (2012).

3.3.1 Semimajor Axis Distributions

Examining first the semimajor axis distributions (top left of Figure 3.2), one can

see only small variations between the expected distributions of the two mod-

els, with the main difference being that the Greenstreet et al. (2012a) model is

shifted to a slightly larger fraction of Atens at high-a than the Bottke et al. (2002)

model. These distributions are converted to the cumulativefraction less than a

givena, e, or sin(i) value in Figure 3.3. The top left panel of Figure 3.3 shows

the cumulative fraction less than a given semimajor axis forthe NEOWISE de-

tections (blue), the biased Bottke et al. (2002) model expectations (black), and

the biased Greenstreet et al. (2012a) model expectations (green). One can see the

Greenstreet et al. (2012a) model more closely matches the NEOWISE detections

than the previous model, but the significance of this difference needs to be estab-

lished. A Kolmogorov-Smirnov (KS) test was used to measure the probability of

drawing the detected NEOWISE Aten semimajor axis distribution from the biased

Bottke et al. (2002) model. The test gave a probability of 30%(Table 3.1), clearly

not rejectable at> 99% confidence, the level we have chosen for strong rejection.

The KS test gives the probability of drawing the NEOWISE detections from the

biased Greenstreet et al. (2012a) model as 80%, also not rejectable at a high-level

of confidence. Although plausibly a better match, this result alone would not lead

one to prefer the newer model.
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Figure 3.2: The fractional distribution of thea (top left), e (top right), and
sin(i) (bottom left) NEOWISE detections (blue), biased Bottke et al.
(2002) model (black), and biased Greenstreet et al. (2012a)model
(green). There is little difference ina between the three distribu-
tions. In contrast, thee and sin(i) distributions expected from the
Greenstreet et al. (2012a) model more closely matches the NEOWISE
detections than do the Bottke et al. (2002) expectations.
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Figure 3.3: The cumulative distributions of thea (top left),e (top right), and
sin(i) (bottom left) NEOWISE detections (blue), biased Bottke et al.
(2002) model (black), and biased Greenstreet et al. (2012a)model
(green). In all distributions, the Greenstreet et al. (2012a) model more
closely matches the NEOWISE detections than do the expectations
from the Bottke et al. (2002) model.
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a < 1.0 AU Orbital Model a e sini
(%) (%) (%)

Bottke et al. (2002) 30 < 0.5 < 0.01
Greenstreet et al. (2012a) 80 6 5

Table 3.1: Results of Kolmogorov-Smirnov tests for the probability ofdraw-
ing each detected NEOWISE Aten distribution from the orbital element
distributions of the Bottke et al. (2002) model and the Greenstreet et al.
(2012a) model. Neither model is rejectable at> 99% confidence
given the detected semimajor axis distribution. The Bottkeet al. (2002)
model is rejectable at> 99% confidence given the detected eccentric-
ity and inclination distributions, whereas the Greenstreet et al. (2012a)
model isnot rejectable at this high level of confidence given the NEO-
WISE e andi detections.

3.3.2 Eccentricity and Inclination Distributions

The eccentricity distributions, using the Mainzer et al. (2012) published bin

boundaries, shown in the top right panel of Figure 3.2 show anoverabundance of

detected NEAs with moderate eccentricities at∼0.3 to∼0.4 and a relative deficit

of high eccentricities (e > 0.674), compared to the predictions of the Bottke et al.

(2002) model. A difference in the Aten eccentricity distributions for the two mod-

els is evident, with the Greenstreet et al. (2012a) model more closely following

the detected distribution. The top right panel of Figure 3.3gives a clearer pic-

ture of this difference, showing that the new model has a smaller fraction with

e > 0.674. The KS probability of drawing the NEOWISE Aten eccentricity de-

tections from the Bottke et al. (2002) model is< 0.5% (rejectable at> 99% con-

fidence), whereas the probability of drawing thee distribution of the NEOWISE

detections from the Greenstreet et al. (2012a) model is 6% (non-rejectable).

More importantly, the inclination distributions shown in the final panel of Fig-

ure 3.2 clearly show the relative deficit of detected high-i Atens that Mainzer et al.

(2012) observed compared to the Bottke et al. (2002) model’sexpectations. This

plot already makes it apparent that the Greenstreet et al. (2012a) model shares
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the lack of large orbital inclinations present in the NEOWISE detections. The

KS probability of drawing the NEOWISE Aten inclination distribution from the

biased Bottke et al. (2002) model is rejectable at the≫ 99% confidence level,

whereas the biased Greenstreet et al. (2012a) model is not rejectable with a prob-

ability of 5%.

3.4 Discussion
It is important to point out that for the heavily populateda > 1.0 AU region, both

the Greenstreet et al. (2012a) and Bottke et al. (2002) models agree with the NE-

OWISE detections. Fig. 8 and 9 from Mainzer et al. (2012) showa comparison

between the detected NEOWISE orbital element distributions and the Bottke et al.

(2002) predictions for the Apollo and Amor populations. This is perhaps unsur-

prising since the Amors and Apollos are the dominant NEA populations and are

well characterized by the Spacewatch observations which were used to compile

the Bottke et al. (2002) model. Although there areq ≪ 1.0 AU Apollos, the close

encounter problems mentioned above, which must be present for the small frac-

tion of objects, are fractionally less and do not cause a detectable problem. The

main difference between the two models is thus in the low-a region as has just

been shown.

For this preliminary study we chose a 99% confidence level before choos-

ing to reject a model expectation. However, oure and sin(i) distributions them-

selves are approaching being rejectable at a 95% confidence level. It is very

likely that some significant part of the remaining discrepancy is that we have

used one-dimensional biases computed for the wrong orbitaldistribution. That

is, Mainzer et al. (2012) computed the inclination bias (forexample) for thea/e

distribution of the Bottke et al. (2002) model, and thus our use of the published

sin(i) bias is not rigorously correct. However, although differences in the two or-

bital distributions are apparent, their gross features aregenerally similar. As was

seen in Figure 3.1, the general trend in botha/e distributions for thea < 1 AU

region is a monotonic decrease in thea population froma near 1 AU to smaller
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semimajor axes and a peak in thee distribution near∼0.4 with a smaller frac-

tion of the population at lower and higher eccentricities. Thea/i distributions for

both models have a peak betweeni ∼ 20◦ andi ∼ 30◦ with less of the popula-

tion at lower and higher inclinations. We believe the recomputed biases using the

Greenstreet et al. (2012a) model would not be hugely different from the current

biases which use the Bottke et al. (2002) model due to these general similarities

between the two orbital models. Because of the correlationsexpected in the bi-

ases, it would be better to compute the 4DB[a, e, i, H ] bias (the fraction of objects

in that cell the survey could detect) for the NEOWISE survey;additional param-

eters related to the thermal model will likely also be necessary. Recomputing

the biases is a major computational effort (Mainzer 2012, private communica-

tion). It is unclear how the complex pointing history of the NEOWISE spacecraft

transforms the 3D orbital element distribution into the three 1D biases, making it

difficult to estimate how different the “corrected” biases would be. Nevertheless,

to improve the analysis presented in this chapter, the NEOWISE detection biases

should be recomputed using the Greenstreet et al. (2012a) model and will be the

subject of future work (see Chapter 8). It is plausible this will further improve the

match of the Greenstreet et al. (2012a) model to the NEOWISE detections.

If both NEO orbital distribution modelshadbeen rejectable given the NEO-

WISE detections, one may have been inclined to invoke non-gravitational physics

into the model. The effects that can cause NEAs to migrate in semimajor

axis could include radiation pressure (Vokrouhlický and Milani, 2000) and the

Yarkovsky effect (Bottke et al., 2000b; Farinella and Vokrouhlický, 1999); once

km-scale NEAs are strongly coupled to the planets these sloweffects may become

negligible in the long-term orbital evolution. Nevertheless, one could imagine that

tidal disruption by planetary encounters (Richardson et al., 1998) or perhaps more

frequent collisions in the reduced volume closer to the Sun (Grun et al., 1985)

could change the relative orbital distribution of low-a objects. Given the non-

rejectable match between the Greenstreet et al. (2012a) NEOorbital model and

the detected NEOWISE Aten orbital element distributions, in particular the rarity
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of large-inclination Atens, a purely gravitational model is non-rejectable, and thus

no additional physics is required.
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Chapter 4

Production of Near-Earth Asteroids

on Retrograde Orbits

4.1 Introduction
Large-scale numerical integrations of particle historiesfor asteroids leaving the

main asteroid belt were used to calculate the steady-state orbital distribution of

NEOs (Greenstreet et al., 2012a). Upon analyzing the numerical integrations, I

discovered the surprising production of retrograde orbitsfrom main belt asteroidal

sources, that is, asteroids which orbit “backwards” aroundthe Sun. The transfer of

asteroids to such orbits has not been previously discussed in the literature. In this

chapter I will first discuss the integration methods used to compute the new NEO

orbital distribution model (Greenstreet et al., 2012a) before investigating the typ-

ical dynamical evolution of these retrograde NEAs along with the completeness

of the retrograde population. The origin of two known retrograde NEAs as well

as the origin of high-strength, high-velocity meteoroids on retrograde orbits will

This chapter is based on the following published work: S. Greenstreet, B. Gladman, H. Ngo,
M. Granvik, and S. Larson,Production of Near-Earth Asteroids on Retrograde Orbits, ApJ 749,
L39 (2012).
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then be connected to the production of retrograde NEAs from main belt asteroidal

sources.

4.2 Integration Methods
The unexpected appearance of these retrograde orbits led usto ensure this was not

a numerical artifact and to attempt to understand why this behavior had not been

reported before.

The improvements of the new model (Greenstreet et al., 2012a) over the pre-

vious model (Bottke et al., 2002) were discussed in the previous chapter, most

important of which is our use of a smaller integration time step. Although we

are unable to easily determine its importance, we remark that the small time step

ensures that close encounters are correctly detected by theintegration and that a

particle’s integration is “slowed down” to correctly resolve the encounter. It is dif-

ficult to ascertain what effect a too large time step would have, but it is plausible

that incorrectly-resolved close encounters would kick high-e and high-i particles

to Jupiter-crossing orbits and remove them from the integration prematurely (as

discussed in Chapter 3).

In any case, it is not clear that our greater short-term accuracy is particularly

important to the retrograde transition, because on the observed time scales (below

illustrated) it takes for particles to transition to retrograde orbits planetary close

encounters seem not to be significant. Nearly all of the transitions to retrograde

occur in a smooth fashion, over thousands to tens of thousands of years, render-

ing the higher accuracy of our integration irrelevant as even a 3.5-day time step

should correctly incorporate distant planetary perturbations (with close encounters

with Earth and Venus being demonstrably unimportant due to the observed lack

of sudden orbital element changes). We tested the independence of our results

by re-integrating a subsample of our simulations with a different planet set (Venus

through Neptune rather than Mercury through Saturn) and theprevious generation

integrator RMVS3 (more heavily tested) and found no statistically-significant dif-

ferences in the retrograde production mechanism or lifetimes.
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The appearance of these retrograde particles in our integrations but not in the

previous Bottke et al. (2002) integrations leads one to the question of why the

previous simulations didn’t report finding any retrograde objects. The reason may

be due to a variety of factors. The previous, larger time stepstudy (Bottke et al.,

2002) may potentially have been removing test particles prematurely via incor-

rectly resolving close encounters as mentioned above, incorrectly moving parti-

cles to Jupiter-crossing orbits and thus cutting off the evolution before the retro-

grade state could be reached. Secondly, we have integrated roughly seven times as

many particles as previous groups, and this is a rare endstate; this is compounded

by the fact that the majority of the retrograde residence time is in a minority of

long-lived retrograde particles. Thirdly, there is a chance Bottke et al. (2002) pro-

duced NEAs on retrograde orbits in their integrations and simply binned them

away by forcing these few, rare objects into their85◦ < i < 90◦ bin. Lastly,

upon further analysis of our recomputation of the Bottke et al. (2002) integrations

(Greenstreet et al., 2012a), we observed two example test particles which each flip

to retrograde orbits roughly 2 Myr into their lifetimes and live for only∼ 300 and

∼ 900 years post flip. These two extremely short-lived, rare test particles may

not have been detected without the higher frequency (300 year) orbital output

used in the Greenstreet et al. (2012a) model. Bill Bottke later confirmed (private

communication 2013) the production of a couple retrograde NEAs in their model,

providing further support that these retrograde particlesare not an artifact of our

integrations.

4.3 Typical Retrograde NEAs
The production of retrograde orbits coming from any one of the initial asteroidal

sources has not been discussed in the literature and was thussurprising. Analysis

showed that the retrograde population accounts for≃ 0.10% (within a factor of

two) of the steady-state NEO population (q < 1.3 AU); this fraction is estimated

by computing the normalized fraction of time particles in the Greenstreet et al.

(2012a) model spend on orbits with inclinationsi > 90◦, similar to determining
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the fraction of NEOs in each NEO-class (shown in Table 2.1). This residence

time probability distribution for the retrograde NEA population (similar to the top

panel of Figure 2.3, but for0◦ < i < 180◦) is shown in Figure 4.1 of the logarithm

of the normalized fraction of time spent by particles in eachcell (R180(a, e, i)) for

the regiona < 4.2 AU, e < 1.0, i < 180◦ (with cell volume 0.05 AU x 0.02 x

2.00◦).

The typical orbital path, after leaving their asteroidal source regions, for ob-

jects which become retrograde is a random walk in semimajor axis a due to plan-

etary close encounters. Some evolve toa < 2 AU and spend many Myr in this

state before returning to larger semimajor axis (Gladman etal., 1997). Often the

orbital inclinationi rises above30◦ during the random walk before the particle

returns toa > 2 AU.

The majority of the asteroids which become retrograde eventually find their

way into the 3:1 mean-motion resonance with Jupiter, after migrating out of any

one of the initial asteroidal source regions. Figure 4.2 shows the logarithm of the

amount of time (in Myr) particles live after they become retrograde versus their

semimajor axis at the instant their orbits tilt pasti = 90◦. As can be seen in

Figure 4.2, the great majority of the asteroids that become retrograde do so while

in the 3:1 resonance (neara = 2.5 AU), although other mean-motion resonances

are evident, such as the 4:1 ata ≈ 2.06 AU, the 2:1 ata ≈ 3.3 AU, the 5:2

at a ≈ 2.8 AU, and the 7:3 ata ≈ 3.0 AU. Because the vast majority of ret-

rograde particles appear to flip while in mean-motion resonances, it is plausible

the mechanism that causes the flip is linked to these resonances. However, it is

not clear thateveryflip occurs inside a mean-motion resonance (i.e., we have not

checked this for every retrograde particle), but because this appears to be the case

for the vast majority of retrograde particles it is likely mean-motion resonances

play some role in the flipping mechanism.

If the retrograde particle stays in the resonance it can terminate almost im-

mediately (as little as hundreds of years later) when the resonance pushes the

high-e particle into the Sun. Roughly 98% of the retrograde NEAs areeliminated
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Figure 4.1: Residence time probability distribution,RNEO(a, e, i), for in-
clinations up to180◦ for the Greenstreet et al. (2012a) NEO orbital
model. The color scheme represents the logarithm of relative density
of residence time spent in any given cell in relation to the amount of
residence time spent in all cells. The dashed line divides retrograde
from direct orbits. The retrograde NEA population makes up≃ 0.10%
of the steady-state NEO population. Two known retrograde NEOs are
shown.
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Figure 4.2: The logarithm of the amount of time (in Myr) particles live af-
ter they become retrograde versus their semimajor axis at the instant
they flip to a retrograde state. Colored symbols indicate thesource
region in which the particle originated at the start of the integration.
‘Other’ refers to particles originating in the outer main belt and Mars-
crossing regions, where resonances can put particles into near-Earth
space. The retrograde particles shown here make up 3% of the parti-
cles integrated in the Greenstreet et al. (2012a) NEO model.Particles
starting in any of the asteroidal source regions can flip to retrograde or-
bits. The vast majority of particles become retrograde while in the 3:1
resonance (neara = 2.5 AU) although other resonant semimajor axes
are obvious, such as the 4:1 neara ≈ 2.06 AU, the 2:1 ata ≈ 3.3 AU,
the 5:2 ata ≈ 2.8 AU, and the 7:3 ata ≈ 3.0 AU.
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from the integrations because they reach perihelia distances lying inside the Sun,

a common fate for resonant asteroids (Farinella et al., 1994). The remaining are

either thrown out of the Solar System, most often by Jupiter,or suffer planetary

collisions. The median lifetime once NEAs become retrograde is only∼ 3, 000

years, but if kicked out of the resonance due to a planetary close encounter, the

integrations show examples of retrograde asteroids livingtens or even hundreds

of millions of years.

Although most of the retrograde objects flip while in the 3:1 resonance, Fig-

ure 4.1 ofR180(a, e, i) shows most of the power for the retrograde objects near

a ≈ 2 AU. This is due to a single particle which flips in the 3:1 resonance early

in its lifetime and then spends≈ 200 Myr near 2 AU (see Section 4.3.3 and Fig-

ure 4.7).

4.3.1 Sample Retrograde Production

Figure 4.3 shows an example of the orbital history of a NEA from our numeri-

cal integrations which emerges from the main belt via theν6 secular resonance,

which is a common mechanism by which asteroids reach planet-crossing space

(Bottke et al., 2002; Gladman et al., 1997). This particle gets kicked out of the

resonance and random walks ina due to planetary close encounters for most of

its lifetime as an Apollo-class NEA. It begins to experienceKozai oscillations

(Kozai, 1962) ine andi starting att ∼ 10 Myr, reaching inclinations up to75◦.

Near 70 Myr, the particle has an Earth close encounter which puts it on an orbit

near the 3:1 resonance and upon being perturbed into the 3:1 it flips to a retro-

grade state att ∼ 72 Myr. It then survives in the retrograde state another 3 Myr

before colliding with the Sun. A more detailed analysis of the epoch around the

flip (Figure 4.4) proves the particle enters the 3:1 resonance. The libration of the

3:1 resonant argument (φ31 = 3λJ−λ−2̟) around180◦ indicates the importance

of the 3:1 resonance at the time of the flip.

It is clear that Kozai alone does not result in the inclination passing through

90◦, because only a tiny fraction of particles (if any) become retrograde outside
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Figure 4.3: Thea, e, i history from our NEO model integrations of an aster-
oid which becomes a retrograde NEA. This particle originates in the
ν6 secular resonance with lowe andi. After a∼ 70 Myr sojourn as a
high-i Apollo, it flips to a retrograde state crossingi = 90◦ = 1.57 rad
(detail in Figure 4.4) and lives for another∼ 3 Myr before colliding
with the Sun.

a mean-motion resonance even if very high-i’s are reached. A dynamical phe-

nomenon in the resonance then causes the particle’s inclination to make a smooth

transition through90◦ (see Figure 4.4); the detailed nature of this mechanism is

still unclear. However, the smooth evolution of all particle orbital elements dur-

ing the transition to a retrograde orbit rules out planetaryclose encounters as the

mechanism causing the flip.
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Figure 4.4: The orbital history of the particle shown in Figure 4.3 around
the time of its flip to a retrograde orbit. Kozai oscillationsin e and
i are evident from their anti-coupled oscillations and the argument of
pericenter librating around270◦ from ∼ 72.1 Myr to ∼ 72.2 Myr.
The 3:1 resonant argument (black points) switches from circulating
to librating around180◦, indicating the particle has entered the 3:1
resonance, at∼ 72.3 Myr just before the particle flips to a retrograde
state.
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e = 1.0

e = 0.5

a = 2.5 AU

Figure 4.5: The a, e, i history from the integrations of a short-lived retro-
grade asteroid. This particle originates in theν6 secular resonance with
low e andi, similar to the particle shown in Figure 4.3. It spends∼ 95
Myr as a high-i Apollo, before flipping to a retrograde state (detail in
Figure 4.6) while near the 4:1 mean-motion resonance with Jupiter.
This particle dies immediately (∼ 6000 years) after flipping when it is
pushed into the Sun (e = 1).

4.3.2 Short-Lived Retrograde Production

Most retrograde objects are eliminated from the integrations immediately (hun-

dreds to thousands of years) after becoming retrograde whentheir eccentricities

increase to unity (e = 1) due to Kozai oscillations. A typical short-lived retro-

grade particle orbital evolution is shown in Figure 4.5. This retrograde particle

originates in theν6 resonance before a planetary close encounter removes it from

the resonance and it lives as a high-i Apollo for ∼ 95 Myr.
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Contrary to the particle shown in Figure 4.3, the retrogradeparticle shown in

Figure 4.5 experiences a very short-lived (∼ 6, 000 year) life as a retrograde NEA

and flips while near the 4:1 mean-motion resonance instead ofin the 3:1 reso-

nance. As depicted in Figure 4.6, this particle also experiences Kozai oscillations

in e andi. Unlike the particle shown in Figure 4.3, which is in the Kozai resonance

(argument of pericenter librating around270◦) before becoming retrograde, the

particle shown in Figure 4.5 experiences the Kozaieffect, where the argument of

pericenter continues to circulate, but at a highly-variable rate. Shortly before the

object flips to a retrograde orbit, it has a planetary close encounter that puts it near

the 4:1 mean-motion resonance. The 4:1 resonant argument (φ41 = 4λJ−λ−3̟)

ceases to circulate just before the flip occurs, indicating the importance of the res-

onance as the particle makes a smooth transition throughi = 90◦ to a retrograde

orbit.

4.3.3 Long-Lived Retrograde Production

The longest-lived retrograde particle found in the integrations spends∼ 98% of

its lifetime in a retrograde state. Figure 4.7 shows itsa, e, i history. Starting in

the 3:1 resonance, the particle’s orbit flips∼ 5 Myr into its ∼ 210 Myr lifetime

having remained in the 3:1 resonance up to that time. About 5 Myr after becoming

retrograde, it gets kicked out of the resonance by a planetary close encounter.

Roughly 10 Myr later, it has another close encounter that moves it even farther

from the 3:1 resonance, beginning a∼ 195 Myr random walk ina near 2 AU. It

collides with the Sun after a total of∼ 210 Myr.

Although the majority of the NEAs that become retrograde do so while in the

3:1 resonance, as is shown in Figure 4.2, the longest-lived retrograde NEAs do

not remain in the resonance. The particle depicted in Figure4.7 is responsible for

the majority of the power in the residence time distributionfor retrograde objects

neara ≈ 2 AU shown in Figure 4.1.
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Figure 4.6: The orbital history of the particle shown in Figure 4.5 around
the time of its flip to a retrograde orbit. Similar to Figure 4.4, Kozai
oscillations ine andi are evident from their anti-coupled oscillations,
however the argument of pericenter continues to circulate indicating
the particle is not in the Kozai resonance, but experiencingthe Kozai
effect. The 4:1 resonant argument (black points) stops circulating at∼
95.1 Myr just before the particle flips to a retrograde state, indicating
the importance of the 4:1 resonance to the flip.
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e = 1.0

e = 0.5

a = 2.5 AU

Figure 4.7: Thea, e, i history of the longest-lived retrograde asteroid from
the integrations. This particle originates in the 3:1 mean-motion reso-
nance with lowe andi. It flips to a retrograde orbit only∼ 5 Myr into
its lifetime while still in the 3:1 resonance. This particlethen lives for
≈ 195 Myr on a retrograde orbit before getting pushed into the Sun
(e = 1).

4.3.4 Completeness of Retrograde Population

Given our estimate that∼ 0.1% (within a factor of two) of the steady-state NEA

population is on retrograde orbits, because there are∼ 1, 000 NEOs withH < 18

(Bottke et al., 2002; Mainzer et al., 2011; Stuart, 2001), oforder one retrograde

NEA of this size (d > 1 km) should exist at any time. Because NEAs reaching

retrograde orbits often visit low perihelion orbits duringtheir evolution then, per-

haps like comets (Reach et al., 2009), thermal driven breakup could decrease (if

catastrophic) or increase (if many new smaller fragments are produced) this num-
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ber estimate. In contrast, given that there are∼ 7, 000 known NEAs withH < 23,

one might expect more retrograde NEOs to be known, but this neglects detection

biases. The high-e, high-i NEOs are the most incomplete portion of the overall

NEO population. The fact that the two known retrogradeH < 18NEAs were only

discovered in the last 5 years (near the end of completing theH < 18 population)

proves that these hard-to-find NEOs constitute the most incomplete portion of the

NEO population. The incompleteness increases even more forsmaller objects.

The Greenstreet et al. (2012a) NEO orbital distribution model can be repre-

sented as three one-dimensional histograms normalized to the NEOWISE estimate

of ∼ 19, 500 NEOs with18 < H < 23 (Mainzer et al., 2011) and compared to the

distributions of already detected NEOs with18 < H < 23 as seen in Figure 4.8.

Figure 4.8 expresses the observational completeness of the18 < H < 23NEO

population as a fraction. Our∼ 0.1% estimate for the retrograde NEO population

indicates there should be≈ twenty 18 < H < 23 NEAs on retrograde orbits.

However, the retrograde population at this size are on orbits which are observa-

tionally difficult to find; Figure 4.8 illustrates that ase and i rise observational

completeness plummets rapidly to zero. We thus expect more retrograde NEAs

will be discovered in the near future as the completeness increases for this part of

the NEO population.

4.4 Two Known Retrograde NEAs
There are currently two known retrograde NEAs: 2007 VA85 (a = 4.23 AU, e =

0.74, i = 131.8◦) and 2009 HC82 (a = 2.53 AU, e = 0.81, i = 154.5◦), which

were found by the LINEAR (Stokes et al., 2000) and the Catalina Sky Survey

(Larson et al., 2003), respectively. These are plotted in Figure 4.1. The Catalina

team has recently carefully examined their available imaging of both objects for

any evidence of a coma and have found none. It is thus possiblethese objects

are asteroids that have become NEAs and found their way toi > 90◦ orbits rather

than retrograde devolatilized comets. We do find examples ofparticles which exit

a resonance after flipping witha > 3 AU (Figure 4.2) and then migrate to larger
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Figure 4.8: The NEO orbital distribution (NEOSSat-1.0 or Greenstreet et al.
(2012a) model) for NEOs with18 < H < 23 normalized to∼ 19, 500
NEOs and compared to the 3,486 known NEOs with18 < H < 23
along with the observational completeness for NEOs with18 < H <
23.
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a; 2007 VA85 hasa = 4.23 AU and could possibly be explained by this process.

However, 2007 VA85’s current orbital nodes are outside of Jupiter’s orbit, so a

past close encounter with Jupiter to put it on its current orbit is also possible and

it may be of cometary origin.

We performed two independent sets of integrations (with thetwo different

integrators SWIFT-RVMS4 and MERCURY) of the best-fit orbit for each of 2007

VA85 and 2009 HC82 for 1 Myr. 2007 VA85 was terminated by beingpushed into

the Sun at 0.74 Myr in one integration and was thrown out of theSolar System

at 0.53 Myr in the other. In both cases, 2007 VA85 quickly migrates to largera

outside Jupiter’s orbit. In addition to the best-fit orbit for 2007 VA85, 2,000 initial

conditions which map the volume in phase space containing 99.9% of the total

probability mass (Granvik et al., 2009) for 2007 VA85 were integrated for 1 Myr.

About 51% of the clones were pushed into the Sun,∼ 37% were thrown out of

the Solar System,∼ 0.5% collided with Jupiter, and∼ 11% were still alive after

1 Myr. About 61% of the remaining clones were no longer NEAs (q > 1.3 AU)

and had migrated out past Jupiter (a > aJupiter).

2009 HC82 on the other hand, is on an orbit very near the 3:1 resonance (where

it most likely flipped) for the entirety of both independent 1Myr integrations of

the best-fit orbit. This behavior is exactly like the typicalsteady-state retrograde

NEA evolution we discovered. Integrations of 2009 HC82’s nominal orbit show

it not to be currently in the 3:1 resonance. Our model shows that the long-lived

(and thus most likely to be observed) NEAs are those which no longer reside in

the resonance and thus this makes sense in this context. In addition to the best-fit

orbit integrations for 2009 HC82, a set of 1,458 clones were integrated for 3 Myr.

At the end of the 3 Myr integration,∼ 51% became Sun grazers,∼ 0.5% were

terminated due to planetary collisions, and∼ 48% were still alive. Of the 2009

HC82 clones still alive,∼ 92% were still near their initial conditions (a ≃ 2.5 AU,

q < 1.3 AU), again similar to our expectation.
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We therefore believe 2009 HC82 is a NEA that has evolved onto aretrograde

orbit and 2007 VA85 is a devolatilized comet nucleus (the plausibility of which

will be examined in the next section).

4.5 Estimated Extinct Comet Population
A possible production mechanism for an activity-free retrograde NEO is to have

a retrograde Halley-type comet (HTC) (defined to have a period of 20 < P <

200 yr) reach aq < 1.3 AU orbit and have its surface volatiles depleted during

numerous perihelion passages. This is expected to be a rare occurrence. To es-

timate the number of devolatilized HTCs which would exist ina steady-state on

orbits witha < 5.2 AU andq < 1.3 AU, we scaled the HTC population model of

Levison et al. (2006). Levison et al. (2006) peg the number ofactive HTCs with

d > 10 km andq < 1 AU to be 4 since this population is believed to be observa-

tionally complete. Their figure 5 shows that≃ 60% of theq < 1.3 AU population

hasq < 1 AU, which leads to4/0.6 ≈ 7 HTCs with d > 10 km andq < 1.3

AU. Also from figure 5 of Levison et al. (2006), only∼ 3% of theq < 1.3 AU

HTCs havea < 5.2 AU. This means the number of HTCsNHTC (d > 10 km,

q < 1.3 AU, a < 5.2 AU) ≈ 0.03×7 ∼ 0.2. In order to obtain the number of even

smallerd > 1 km HTCs on such orbits, the slopeα of the logarithmic absolute

H-magnitude distribution is needed. Kuiper-belt objects ofcomparable sizes have

α ∼ 0.35 (Fraser et al., 2010) (see Chapter 5). Forα = 0.35, because∆ H = 5,

NHTC (d > 1 km) = NHTC (d > 10 km)×101.75 ∼ 10, which is foractiveHTCs.

Figure 11 from Levison and Duncan (1997) shows that for Jupiter-family comets

the favored fade time is∼ 104 years and the ratio of extinct to active comets is

∼ four. This results in an estimate of∼ 10 ∗ 4 ∼ 40 devolatilized HTC nuclei

with a < aJupiter at any time. Cometary splitting (Reach et al., 2009) could alter

this estimate, but the existence of one or mored > 1 km HTCs, like 2007 VA85,

interior to Jupiter is likely. As a final note, the Levison et al. (2006) simulations

show that HTCs do not reacha ≈ 2.5 AU, so such an origin for 2009 HC82 seems

implausible.
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4.6 High-Strength, High-Velocity Meteoroids on
Retrograde Orbits

The production of retrograde orbits from main belt asteroidal sources also re-

solves an outstanding question on the origin of high-strength, high-velocity me-

teoroids on retrograde orbits. The existence of strongly-differentiated material on

very high entry-speed orbits (which must be retrograde) hasbeen known since

the 1970s (Harvey, 1974), and more recent meteor surveys have succeeded in

precisely measuring the pre-atmospheric orbits of high-strength meteoroids from

retrograde heliocentric orbits (Borovička et al., 2005).The uncomfortable expla-

nation to date for the origin of these high-strength, high-velocity retrograde mete-

oroids has been cometary (Borovička et al., 2005), but the puzzle existed as to how

macroscopic solid rocky components could be on “cometary” orbits. It had been

suggested that comets may have internal inhomogeneity which would account for

this population of high-strength retrograde meteoroids (Borovička et al., 2005),

but little discussion of this appears in the literature. We propose the simpler expla-

nation that these meteoroids are derived from main belt asteroidal sources. In this

scenario, larger (0.01 – 1 km) NEAs are transferred to long-lived retrograde orbits

near (but not in) main belt resonances and then serve as targets. The collisional

production of fragments off these retrograde NEAs would produce smaller retro-

grade debris on orbits similar to these parent bodies and this debris would then

produce the observed high-strength retrograde meteoroids. This explains both the

high-velocity, retrograde orbits as well as the high-strength of these meteoroids

better than the ad-hoc cometary source hypothesis.
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Chapter 5

A Brief Introduction to the Kuiper

Belt and Cratering in the Outer

Solar System

5.1 Current Structure of the Kuiper Belt
Similarly to the main asteroid belt, which sits between the orbits of Mars and

Jupiter from roughly 2 AU to 3.5 AU, the Kuiper belt provides areservoir of

small bodies that can potentially interact with the giant planets. The Kuiper belt

is located beyond to the orbit of Neptune, extending from 30 AU to ∼ 1, 000 AU

with the majority of the classical and resonant populationslying between roughly

30 AU and 85 AU. Pluto is the second-largest (136199 Eris is slightly larger)

known Kuiper belt object (KBO), and is located in the 3:2 mean-motion resonance

with Neptune at 39.4 AU.

The Kuiper belt is less well understood than the main asteroid belt, largely

because of its greater distance from the Earth. After the discovery of Pluto in

1930 by Clyde Tombaugh, it was hypothesized by Edgeworth (1943) that a belt

of small bodies should exist beyond the orbit of Neptune. Later, Kuiper (1951)

speculated that a similar disk may have existed in the early Solar System. For this
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reason, the Kuiper belt is sometimes referred to as the Edgeworth-Kuiper belt.

The next discovery (after Pluto) of a Kuiper belt object, 1992 QB1, came in 1992

by Jewitt and Luu (1993). Since then,∼ 4, 500 KBOs have been discovered, but

much of the population remains unseen by telescopic surveys. More historical

background on the theoretical understanding of the Kuiper belt can be found in

Davies et al. (2008).

Figure 5.1 shows thea, e anda, i distributions of the main classical objects

(see definition in Section 5.1.1 below) discovered in the Canada France Eclip-

tic Plane Survey (CFEPS) (Gladman et al., 2012; Petit et al.,2011). Kuiper belt

surveys are biased toward discovering objects with low-i and high-e that are con-

fined to the ecliptic plane and come to small heliocentric distances at perihelion.

Currently, debiased surveys are the only method available to determine the intrin-

sic population of objects in the Kuiper belt. As the number ofknown KBOs has

continued to increase it became clear that the Kuiper belt isdivided into dynamical

sub-groups; these dynamical sub-populations are described in the next section.

5.1.1 Orbital Classification

Gladman et al. (2008) provide a detailed classification scheme for the Kuiper belt

sub-populations; their division is as follows.Resonantobjects are those currently

in a mean-motion resonance with Neptune.Scatteringobjects (SOs) are those

which over 10 Myr numerical integrations experience encounters with Neptune

resulting in a semimajor axisa deviation of more than 1.5 AU. Scattering objects

are thus currently actively scattering off Neptune. The remaining classicaland

detachedbodies are further sub-divided into theinner classical objects(a interior

to the 3:2 mean-motion resonance),main classical objects(a between the 3:2 and

2:1 mean-motion resonances),outer classical objects(a exterior to the 2:1 mean-

motion resonance and eccentricitye < 0.24), and thedetachedobjects (a beyond

the 2:1 mean-motion resonance withe > 0.24). Detached objects are probably

(but not certainly) those that scattered off Neptune in the past, and thus are on

high-eccentricity orbits but no longer actively scatter off Neptune, hence they are
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Figure 5.1: Orbital distribution for the 93 discovered Kuiper belt mainclas-
sical objects in the Canada France Ecliptic Plane Survey (CFEPS)
(Petit et al., 2011).
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detached from Neptune. In Chapter 7, the detached objects are combined with the

outer classical objects, since both sub-populations mostly have semimajor axes

greater than Pluto’s aphelion (a > QP luto). The reader is cautioned that in the

literature, the term “scattered disk” often refers to objects which have either scat-

tered off Neptune in the past and are now decoupled from Neptune (but have peri-

helia near Neptune’s aphelion atq ≈ 30 AU) or are actively scattering off Neptune

currently (i.e., what we define to be the scattering objects (Gladman et al., 2008)).

The detached objects are also sometimes referred to as the “extended scattered

disk” in the literature (Gladman et al., 2008). Figure 5.2 shows a model of the

a, e, i distribution of the debiased Kuiper belt sub-populations from the Canada

France Ecliptic Plane Survey (CFEPS) (Gladman et al., 2012;Kavelaars et al.,

2009; Petit et al., 2011) L7-v09 synthetic model. The CFEPS will be further dis-

cussed in Section 5.3.1. It is best to think of the Kuiper beltsub-populations as

superposed components, similar to the various disk and halocomponents of our

galaxy, where the relationship of the Kuiper belt components to each other is less

clear.

The classical main belt (depicted in Figure 5.3) is further subdivided in the

CFEPS population definitions (Petit et al., 2011) into hot (wide inclination dis-

tribution) and cold (narrow inclination) components, where the cold population

contains stirred and kernel sub-components. The hot classical main objects have

a = 40 − 47 AU, periheliaq = 35 − 40 AU, and an inclination distribution pro-

portional to sin(i) times a Gaussian with a width of16◦. The stirred cold classical

objects havea = 42.4 − 47 AU, a q distribution that is a function of semimajor

axis (Petit et al., 2011), and an inclination distribution proportional to sin(i) times

a Gaussian with a width of2.6◦. Lastly, the kernel sub-component of the cold

classical objects havea = 43.8 − 44.4 AU, e = 0.03 − 0.08, and the same incli-

nation distribution as the stirred cold classical objects.The sub-structure defined

by Petit et al. (2011) and shown in Figure 5.2 can be seen in Figure 5.1, with a

concentration of objects ata ≃ 43.5−44. AU e = 0.03−0.08, and very lowi that
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Figure 5.2: Debiased Kuiper belt orbital distribution from the Canada
France Ecliptic Plane Survey (CFEPS) L7 synthetic model v09data re-
lease (Gladman et al., 2012; Kavelaars et al., 2009; Petit etal., 2011).
The dot color denotes the dynamical class of the object. Although the
sub-classes of the classical belt are not shown here, the concentration
of low-i and low-e points betweena ≃ 42 and 47 AU that is the cold
classical belt can be seen. The classical belt components are shown in
Figure 5.3.
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makes up the kernel sub-component of the cold classicals as well as the stirred

cold classical and hot main classical sub-populations.

The dynamical boundaries of the Kuiper belt sub-populations are important to

determining the impact and cratering rates onto Pluto (and its large moon Charon

and four smaller moons – Styx, Nix, Kerberos, and Hydra) because the Pluto sys-

tem’s heliocentric orbit intersects the Kuiper belt, thus all sub-populations can in

principle contribute to the impact flux onto Pluto. The impact and cratering rates

onto Pluto and Charon from each of the various Kuiper belt sub-populations are

discussed in Chapter 7. Pluto is unique in its impacting populations, because all

other cratered bodies studied to date in the outer Solar System, (i.e., the satellites

of the four giant planets) are dominantly cratered by the scattering objects that get

transferred by Neptune into the giant planet region as Centaurs (5 < a < 30 AU).

Cratering of bodies in the outer Solar System will be discussed in Section 5.4.

Centaurs are accepted to have leaked out of the Kuiper belt and scattering re-

gion into the giant planet region and can get temporarily captured into resonances

with the giant planets as the migrate in semimajor axisa. The efficiency of trans-

ferring escaped main belt asteroids to low-e orbits near Uranus and Neptune is so

low that the asteroid belt cannot possibly be the source of these objects. Those

objects which get captured into the 1:1 mean-motion resonance with a planet are

called co-orbital objects, because they share the same orbital period as a planet.

Objects in the 1:1 mean-motion resonance with Neptune can beseen in Figure 5.2

at roughly 30 AU. The frequency and duration of temporary captures into 1:1

resonance with Uranus and Neptune are discussed in Chapter 6.

5.1.2 Mean-Motion Resonances in the Kuiper Belt

It is evident from Figure 5.2 that many objects in the Kuiper belt are located in

mean-motion resonances with Neptune. In addition to performing numerical inte-

grations of large numbers of test particles located in the main asteroid belt acting

under the gravitational influence of the planets, numericalstudies of the Kuiper

belt were also being performed in the 1990s (Davies et al., 2008). Contrary to
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the main asteroid belt, the Kuiper belt is less chaotic because the planetary per-

turbations in this part of the Solar System are weak, causingthe longitude of

perihelion̟ and longitude of the ascending nodeΩ to precess much more slowly

than the eigenfrequencies of the Solar System (Morbidelli et al., 1995). Thus,

the lack of secular resonances overlapping mean-motion resonances (like in the

main asteroid belt) prevents KBOs from leaking out of the Kuiper belt as effi-

ciently as objects in the main asteroid belt. To study the stability of the Kuiper

belt, Levison and Duncan (1993) ran numerical integrationsof test particles in the

theoretical (at the time) Kuiper belt on billion-year timescales and found a great

deal of complex structure between 35 and 45 AU at the end of their simulation.

At the same time, Holman and Wisdom (1993) ran large-scale numerical integra-

tions of test particles placed between 5 and 50 AU. In addition to finding that

the giant planets are efficient at removing particles from their vicinities due to

close encounters, they also discovered that objects on initially low-e, low-i orbits

out to 42 AU can develop eccentricities large enough to encounter Neptune while

remaining at roughly a constant semimajor axis. Morbidelliet al. (1995) began

exploring the resonant structure of the Kuiper belt as well as the orbits of the first

five known KBOs. Based on preliminary orbits, they found thatfour of these five

objects are currently in mean-motion resonances, three of which are in the 3:2.

Today, it is believed that the most populous Neptunian mean-motion resonance is

the 3:2 (population estimates can be found in Section 5.3). The relatively high

fraction of plutinos among the first discovered KBOs is due tothe fact that sur-

veys are biased toward finding the closest objects, thus plutinos at perihelion are

more easily visible than classical KBOs and spend more time at perihelion than

the large-a scattering objects.

3:2 Resonance

The longest known KBO, Pluto, currently sits in the 3:2 mean-motion resonance

with Neptune. Pluto is currently on an orbit witha ≈ 39.3 AU, e ≈ 0.24, and

i ≈ 17◦. This orbit puts Pluto’s perihelion atq ≈ 29.7 AU (its aphelion isQ ≈
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48.9 AU) closer to the Sun than the semimajor axis of Neptune. In order for Pluto

to be stable on its current orbit, some mechanism is needed toprotect it from

planetary close encounters with Neptune that could scatterPluto away. When

Pluto was discovered to be on a Neptune-crossing orbit in 1930, it was known

that this protection mechanism must exist, but it wasn’t until the 1960s when

numerical integrations of Pluto and the four giant planets allowed the first look at

this protection mechanism (Cohen and Hubbard, 1965).

As discussed in Section 2.2.1, the existence of more than twobodies in the

Solar System causes the angular orientation of the orbits ofall bodies in the Solar

System to change over time at a uniform secular precession rate. If Pluto’s orbit

did uniformly precess, it would very likely have been kickedonto a scattering orbit

by Neptune long ago. However, Pluto is in the 3:2 mean-motionresonance with

Neptune, which protects Pluto from planetary close encounters with Neptune, al-

lowing its current orbit to be stable on Gyr timescales. Pluto is also in the Kozai

resonance, which causes its argument of pericenterω to librate around90◦. This

libration causes Pluto’s orbital nodes (where it intersects the plane of the Solar

System) to stay within a heliocentric distance of≈ 33−42 AU rather than explor-

ing all values between its perihelion atq ≈ 30 AU and its aphelion atQ ≈ 49 AU.

This mechanism further protects Pluto from close encounters with Neptune. As

was mentioned above, the 3:2 mean-motion resonance has manyobjects located

within it. These objects are called plutinos after the largest member of the dynam-

ical class. Some of the plutinos also undergo Kozai oscillations (Gladman et al.,

2012). In the context of impacts onto Pluto, the affect of Pluto’s orbital libra-

tion on its collisional probability with the various Kuiperbelt sub-populations is

discussed in Chapter 7.

1:1 Resonance

As scattering objects interact with Neptune, some can get kicked onto smaller

orbits and into the giant planet region (5 < a < 30 AU). Objects can then get cap-

tured into resonances located in this region as they migratein a due to planetary
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close encounters. That is, after a gravitational encounter, the object may find itself

at ana that is resonant with a planet, and the angular variables likeω andΩ may

be such that one or more resonant oscillations may occur.

Objects in the 1:1 mean-motion resonance with a planet are called co-orbitals,

having the same orbital period and a librating resonant angleφ11 = λ − λP lanet.

Hereλ is the mean longitude (the sum of the longitude of ascending nodeΩ, the

argument of pericenterω, and the mean anomalyM). The resonant angleφ11

measures roughlya how far ahead in its orbit the object is relative to the planet,

librating around one of four values (Mikkola et al., 2006) when objects are in co-

orbital motion.

Figure 5.4 shows the Lagrange points for a system with a planet orbiting the

Sun. In the restricted three-body problem, the Lagrange points mark positions

at which a third body of negligible mass can be placed and maintain its position

relative to the two massive bodies. An object located at L1, directly between

the planet and the Sun would normally have a smaller orbital period than the

planet, but is slowed down due to the gravitational pull of the planet to the same

orbital period as the planet. An object located at L2 (outside the planet’s orbit),

conversely, would typically have a higher orbital period than the planet, but is

sped up due to the gravitational influence of the planet. L1 and L2 are located

at a planet’s Hill radius (discussed in Section 2.1.2). Quasi-satellites haveφ11

librate around0◦ and appear, in the corotational reference frame, to move around

the planet as retrograde satellites even though they are located at several Hill radii

away from the planet. L3 is located180◦ away from the Earth, and L4 and L5

are located60◦ ahead of and behind a planet, respectively, forming an equilateral

triangle with the Sun and the planet. A horseshoe co-orbitalhas a resonant angle

φ11 that librates around L3 with high amplitudes that encompassthe L3, L4, and

L5 Lagrange points. When a horseshoe co-orbital is on the inner edge of its path in

aBecauseφ11 measures the difference in themeanlongitudes of the object and planet, only if
the object’s orbit is a perfect circle would the resonant angle measure exactly how far an object
is on its orbit relative to the planet. However, since most small body orbits are ellipses, this is an
approximation.
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Figure 5.4: Schematic of the Lagrange points of a planet-sun system. Quasi-
satellites have their resonant angleφ11 librate around0◦, leading and
trailing Trojans librate around L4 and L5, and horseshoe orbits librate
around L3 with high amplitudes that encompass the L3, L4, andL5
Lagrange points.

the corotating frame, it is located at a point along its orbitthat is closer to the Sun

than the Earth. As the object moves to a greater distance fromthe Sun than the

Earth, the horseshoe co-orbital appears to turn around in the corotating reference

frame and then moves along the outer edge of its horseshoe path. Trojan objects

haveφ11 librate around either L4 or L5, remaining roughly60◦ or 300◦ ahead of

the planet, respectively, in the corotating frame.

There are objects known to be in co-orbital motion (of all libration varieties)

with several of the planets in the Solar System (Alexandersen et al., 2013), both

as long-term stable, presumably primordial (on∼ 4 Gyr timescales) populations

and also as temporarily captured co-orbitals. The largest population of co-orbitals
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are the roughly 6,000 known Jupiter Trojans, of which the vast majority exhibit

long-term stability. Neptune is also known to have a large stable Trojan popula-

tion. However, the roughly comparable number of stable and unstable Neptunian

co-orbitals requires an external source (Alexandersen et al., 2014) for the unsta-

ble co-orbitals (i.e., other than stable co-orbitals that are currently becoming dis-

lodged from the co-orbital state) with the scattering TNO population being con-

sistent. Secular and mean-motion resonances located in thegiant-planet region

inhibit stable co-orbital motion with Saturn and Uranus (Nesvorný and Dones,

2002), although Dvorak et al. (2010) show a stable niche nearUranus where long-

term co-orbital motion can be sustained. The frequency and duration of objects

temporarily trapped into 1:1 resonance with Uranus and Neptune are discussed in

Chapter 6.

5.2 Giant Planet Migration in our Solar System
The complex nature of the Kuiper belt, which includes many objects located in

mean-motion resonances with Neptune, the excited (moderate-e and moderate-i)

hot component of the main classical belt, and the scatteringand detached popu-

lations on high-e, high-i orbits, has cosmogonic implications for the early stages

of the Solar System. A massive (10–100M⊕) disk of planetesimals located from

the giant planet region to the outer edge of the primordial Kuiper belt would cause

the giant planets to migrate (Saturn, Uranus, and Neptune moving outward and

Jupiter moving inward) as they exchange angular momentum with the planetesi-

mal disk, which gets scattered onto high-e, high-i orbits (Fernandez and Ip, 1984;

Hahn and Malhotra, 1999). This would imply that the giant planets were origi-

nally on more tightly packed, smaller-a orbits than their current orbits. Studies

include initial heliocentric distances that range from between roughly 5.2 AU and

27 AU at varying separations (in some works, Neptune is even located inside

15 AU) (Gomes, 2003; Hahn and Malhotra, 1999; Tsiganis et al., 2005).

The migration of the giant planets is instigated by a very large number of

close encounters with smaller bodies in the massive planetesimal disk, and is only
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halted when Neptune reaches the outer edge of the disk (Gomeset al., 2004).

The scattering disk that remains today is believed to be a remnant of a much

larger population of scattering objects kicked onto high-e, high-i orbits during

the migration of Neptune (Duncan and Levison, 1997). Continued scattering off

Neptune has depleted this population by 99% during the past 4Gyr, after the

migrational period ended (Duncan and Levison, 1997). Underthis scenario, the

detached population are objects that were once scattered off Neptune and then

had their perihelia raised due to secular effects (including Kozai) located in mean-

motion resonances (Gomes et al., 2008), galactic tides, or gravitational interac-

tions with passing stars, decoupling them from Neptune. It is also possible that

Neptune simply had a largere which damped (Levison and Morbidelli, 2003) and

left formerly coupled particles well past the reduced aphelion distance of Nep-

tune; this is constrained by the current orbital distribution (Batygin et al., 2011;

Dawson and Murray-Clay, 2012).

During Neptune’s outward migration, its mean-motion resonances would have

also migrated outward through the massive disk of planetesimals. Malhotra (1993)

considered Pluto’s capture in the 3:2 mean-motion resonance during this process,

and later Malhotra (1995) showed that many pre-existing objects would have been

swept up into Neptune’s mean-motion resonances during its outward migration.

Currently, a heavily explored model of giant planet migration in the early So-

lar System, which aims to reproduce the orbital architecture of the giant planet

system (Tsiganis et al., 2005), the capture of the Jupiter (Morbidelli et al., 2005)

and Neptune (Tsiganis et al., 2005) Trojan populations, andthe triggering of the

late heavy bombardment of the terrestrial planets (Gomes etal., 2005), is the Nice

model. The Nice model assumes the giant planets were initially located between

5.5 AU and 14 AU with a massive (∼ 35 M⊕) planetesimal disk located from

the giant planet region out to∼ 34 AU. Migration of the giant planets is initially

slow as they gravitationally interact with the distant, mostly-decoupled massive

planetesimal disk. Only a small trickle of planetesimals leave the disk and scatter

through the giant planets. Then, Jupiter and Saturn cross their mutual 1:2 mean-

74



motion resonance, exciting their eccentricities and subsequently the eccentricities

of Uranus and Neptune. This triggers chaotic behavior in theice giants as they

rapidly migrate outward into the disk, where eventually their eccentricities are

damped back down due to interactions with the abundant planetesimals. When

most of the disk has been eliminated and Neptune reaches the outer edge of the

disk, the migration stops. The timescale for the initially slow migration of the

giant planets lasts for 350 Myr to 1.1 Gyr before Jupiter and Saturn cross their

mutual 1:2 resonance. The chaotic period then lasts for only∼ 5 Myr before

the planets reach their current orbits, according to the Nice model (Gomes et al.,

2008).

The largest difficulty of the Nice model is getting the massive planetes-

imal disk to last for several hundred Myr without accreting into planets or

collisionally grinding itself down into dust before the planets are able to dis-

perse it into the structure we see today. Other issues include keeping both

the hot and cold classical populations at low eccentricities (Batygin et al., 2011;

Dawson and Murray-Clay, 2012), explaining the color differences between the

hot and cold classical populations (Peixinho et al., 2008),and accounting for the

large number of binaries found to exist in the cold Kuiper belt (Noll et al., 2008).

Thus, a complete picture of the dynamical evolution of the early Solar System has

yet to be developed. How the Kuiper belt arrived at its current state is not very

important for the rest of this thesis, which is more confined to processes in the

current belt. We do, however, assume that the major structures have been in place

since≃ 4 Gyr ago and only slow decay of the existing populations is occurring.

5.2.1 Population Decay

Since the time of giant planet migration, the sub-populations of the Kuiper belt

have dynamically depleted over the past≈ 4 Gyr at differing rates due to their

differing orbital parameters. The scattering objects havedynamically eroded due

to continued gravitational interactions with Neptune. As Neptune scatters them

to larger eccentricities, they can eventually scatter off the other giant planets. As
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Dones et al. (2004) show, the giant planets can deplete the scattering disk, ejecting

them or depositing some into the Oort cloud ata = 10, 000− 100, 000 AU. (Scat-

tering objects that get kicked onto very high-e orbits by the giant planets can then

have their perihelia increased due to galactic tides and gravitational interactions

with passing stars.)

The classical Kuiper belt is slowly depleted due to the presence of theν8 sec-

ular resonance and the overlappingν17 andν18 resonances located in the clas-

sical belt (Hahn and Malhotra, 2005; Kuchner et al., 2002; Lykawka and Mukai,

2005). Objects which enter these resonances can have their eccentricities and

inclinations raised, eventually pulling them out of the classical belt. Objects lo-

cated in or on the borders of the mean-motion resonances within the Kuiper belt

can also chaotically diffuse (Morbidelli, 1997) out of the resonances over time

(Hahn and Malhotra, 2005; Tiscareno and Malhotra, 2009).

These effects are small compared to similar processes in thehighly-chaotic

main asteroid belt, but are not negligible over Gyr timescales. Quantitative mea-

surements from the literature of the decay rates for each of the Kuiper belt sub-

populations can be found in Section 7.2.5.

5.3 Size Distributions of Kuiper Belt
Sub-Populations

In order to quantify the number of objects in the Kuiper belt sub-populations to-

day, the size distribution must be measured. Unfortunately, the size distribution is

not well measured for objects with absolute g-band magnitudeHg > 9.16 (cor-

responding to a diameterd < 100 km for an assumed g-band albedop of 5%),

which obeys the relation:

d ⋍ 100 km

√

0.05

p
100.2(9.16−Hg) (5.1)

Section 2.3, equation (2.6) defines the differential numberof objectsN as a func-

tion of H-magnitude as well as the differential distribution in diameterd given
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in equation (2.7). The Kuiper belt size distribution was recently absolutely cali-

brated down toHg ≈ 8−9 by the CFEPS survey (Gladman et al., 2012; Petit et al.,

2011). TheHg = 4 − 9 range seems well modeled by a single slopeα in a given

population. The only caveat to this would be the hot and cold components of

the main classical Kuiper belt sub-populations appear to have different values of

α. The bright end of the Kuiper belt size distribution has values in the litera-

ture ranging from 0.66–0.90 for the hot classical sub-population and 1.2–1.36 for

the cold component of the classical objects (Adams et al., 2014; Bernstein et al.,

2004; Fraser et al., 2014; Petit et al., 2011).

It is clear in the literature that a single power law extendedpastHg = 9

does not fit the observations and that a break in the differential size distribu-

tion at thisHg-magnitude is required (Bernstein et al., 2004; Fraser et al., 2014;

Fraser and Kavelaars, 2008; Fuentes and Holman, 2008; Shankman et al., 2013).

In any case, a slope withα > 0.6 cannot continue as its mass would di-

verge; a transition to a shallower slope is required (Gladman et al., 2001). The

break is discussed in the literature as either having the form of a knee, which

has a sudden change in the differential number of objects from a steep slope

at the bright end to a shallower slope at the faint end (Fraserand Kavelaars,

2008; Fuentes and Holman, 2008), or in the form of a divot, which has a sud-

den drop in the differential number of objects that recoversto a shallower slope

(Shankman et al., 2013). Values forαfaint vary between 0.2 to 0.6 across various

outer Solar System small body populations (Larsen et al., 2001; Schlichting et al.,

2013; Solontoi et al., 2012; Szabó et al., 2007; Trujillo etal., 2001) as well as the

Kuiper belt size distribution literature (Bernstein et al., 2004; Fraser et al., 2014;

Fraser and Kavelaars, 2008, 2009; Fuentes and Holman, 2008;Shankman et al.,

2013) down to the observational limit ofHg ≈ 8 − 10 for the various sub-

populations.

As in the main asteroid belt (O’Brien and Sykes, 2011), the analysis of satur-

nian craters used to infer the size distribution of the impacting scattering object

population by Minton et al. (2012) and the model for the collision-generated pop-
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ulation of KBOs today from Schlichting et al. (2013) both indicate that several se-

quential slope transitions in the size distribution occur as one drops below roughly

Hg ≈ 8− 10 and continues to the sub-km regime. The observed size distribution

of the Jupiter Family Comets (JFCs), which were likely supplied from the scatter-

ing population (Duncan and Levison, 1997), in Solontoi et al. (2012) was found

to have a break in the size distribution atH ≈ 14.5 from a steepα = 0.73 slope to

a shallowerα = 0.19 slope, in corroboration with the idea that the Kuiper belt’s

size distribution is “wavy” like the main asteroid belt’s.

In Chapter 7, various values ofα and the shape of the Kuiper belt size distri-

bution are used to explore their implications for Pluto’s cratering record in antic-

ipation of the New Horizons fly-through of the Pluto system inJuly 2015. The

difficulties and uncertainties inherent in the surveys and theoretical work of the

size distribution as well as the origin of a knee or divot in the size distribution is

not critical to this thesis. Size distributions from the literature are simply used to

illustrate uncertainties inherent in crater production rates on Pluto.

5.3.1 Population Estimates of Kuiper Belt Objects

Petit et al. (2011) and Gladman et al. (2012) provided > 100 km (Hg = 9.16 for

g-band albedop = 5%) population estimates for the classical and resonant popu-

lation from the CFEPS (see Table 5.1). In Chapter 7, in order to pin the number

of objects in each of the various Kuiper belt sub-populations to theHg-magnitude

corresponding to the break in the size distribution (atHg = 9.0), the CFEPS

Hg < 9.16 classical and resonant population estimates from Petit et al. (2011)

and Gladman et al. (2012) were converted toHg < 9.0 (which corresponds to di-

ameterd > 108 km for p = 5%) population estimates using a minor multiplicative

tuning of

N(< Hg = 9.0)

N(< Hg = 9.16)
= 10(0.8(Hg−9.16)) = 10(0.8(9.0−9.16)) = 0.745 (5.2)
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Population N(d ≥ 100 km)
Scattering Objects 105, 000± 31, 500

Inner Classical 3, 000+3,500
−2,000

Hot Main Classical 35, 000+8,000
−7,000

Cold Main Classical 95, 000+22,000
−20,000

Outer Classical/Detached 80, 000+60,000
−40,000

3:2 Resonance 13, 000+6,000
−5,000

5:2 Resonance 12, 000+15,000
−8,000

4:3 Resonance 800+1,100
−600

5:3 Resonance 5, 000+5,200
−3,000

7:3 Resonance 4, 000+8,000
−3,000

5:4 Resonance 160+700
−140

7:4 Resonance 3, 000+4,000
−2,000

2:1 Resonance 3, 700+4,400
−2,400

3:1 Resonance 4, 000+9,000
−3,000

5:1 Resonance 8, 000+34,000
−7,000

Table 5.1: Kuiper belt classical and resonant sub-population estimates for
d ≥ 100 km from the debiased Canada France Ecliptic Plane Survey
(CFEPS) (Gladman et al., 2012; Petit et al., 2011) and scattering object
estimate ford ≥ 100 km from Shankman et al. (2013).

In Table 5.1, thed > 100 km (Hg = 9.16) population estimates for the clas-

sical and resonant populations from the CFEPS provided by Petit et al. (2011)

and Gladman et al. (2012) are given along with the scatteringobject population

estimate from Shankman et al. (2013) using the Kaib et al. (2011) model of scat-

tering objects, which has been converted fromHg = 9.0 to Hg = 9.16 using

equation 5.2.

The scattering objects observed by the CFEPS only effectively sample the or-

bital distribution of the closest objects, which must then be extrapolated to larger

distances. The Kaib et al. (2011) (KRQ11) model provides a much more accurate

representation of the scattering population as it evolves from the Oort Cloud; it is

thus the current model of choice for the orbital distribution of the scattering ob-
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Figure 5.5: Schematic of the Pluto system. The tidally locked Pluto-Charon
binary has four satellites: Styx, Nix, Kerberos, and Hydra.

jects and was coupled to the CFEPS to produce the absolutely-calibratedHg < 9.0

population estimates of the scattering population (of 80,000) by Shankman et al.

(2013). Estimates from the Deep Ecliptic Survey (Adams et al., 2014) for

some sub-populations were discrepant from the CFEPS estimates (Gladman et al.,

2012; Petit et al., 2011) by factors of 1.5 to 1.7, but the surveys were acquired

in different bandpasses; compiling theg-VR colors of objects seen in both sur-

veys (K. Volk, private communication 2015) showed that colors of 0.4-0.6 (rather

than 0.1) were appropriate and this eliminates virtually all discrepancy in theH-

magnitude range common to both surveys when using the same dynamical-class

definitions.

5.4 Cratering in the Outer Solar System
As mentioned above, the work presented in Chapter 7 uses the population esti-

mates and orbital distributions of the various Kuiper belt sub-populations to com-

pute impact and cratering rates onto Pluto and its moons in anticipation of the

New Horizons fly-through in July 2015.

The Pluto system consists of the tidally locked Pluto-Charon binary as well

as four smaller satellites: Styx, Nix, Kerberos, and Hydra,in order of increasing
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Name Discovery Diameter a P NH resolution
Year (km) (RP luto) (days) (km)

Pluto 1930 ≈ 2400 ≈ 1.7 6.4 0.5
Charon 1978 ≈ 1200 ≈ 17 6.4 0.5
Styx 2012 ≈ 10 ≈ 35 20 3
Nix 2005 ≈ 45 ≈ 40 25 0.5

Kerberos 2011 ≈ 10 ≈ 48 32 3
Hydra 2005 ≈ 45 ≈ 54 38 1

Table 5.2: Pluto system characteristics. Radius estimates for the four smaller
satellites are computed using mass, albedo = 0.4, and density estimates
from Kenyon and Bromley (2014). Semimajor axis estimates relative to
the Pluto-Charon barycenter are from Showalter and Hamilton (2015).
The period for Pluto and Charon is their spin-orbit period and for the
four satellites is their orbital period. All eccentricities aree < 0.01 and
all inclinations (relative to Pluto’s equator) arei < 1◦. Now that the
final New Horizons fly-by geometry has been determined, the resolu-
tion of craters on the four smaller satellites has been calculated and is
provided for the encounter hemispheres of each body.

distance from Pluto (a schematic of the system is shown in Figure 5.5). Table 5.2

provides physical and orbital characteristics for Pluto system. The image resolu-

tions of the New Horizons spacecraft for the encounter hemispheres of each body,

based on the final fly-by geometry, are listed in the final column of the table.

The first images of cratered surfaces in the outer Solar System came from the

Voyager spacecraft in the late 1970s to the late 1980s. Of thefour large moons of

Jupiter, Ganymede and Callisto were observed to have heavily cratered surfaces.

Io and Europa have little to no craters due to tidal heating that erases craters on

their surfaces. Though Callisto is heavily cratered globally, Ganymede shows

some areas of heavy cratering while other areas appear to be wiped clean due to

past tidal heating effects.

Saturn’s large moons (Mimas, Enceladus, Tethys, Dione, Rhea, Titan, and

Iapetus – in order of increasing distance from Saturn) show varying degrees of
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cratering on their surfaces. Mimas and Tethys both exhibit avery large crater

roughly one-third of their diameters as well as many smallercraters covering their

surfaces. Enceladus, which sits between Mimas and Tethys, is currently geologi-

cally active, harboring a system of fractures in its southern region which emit jets

of water vapor and dust. Tethys, Dione, and Rhea (each exhibiting cratered sur-

faces) show a difference in surface brightness between their leading and trailing

hemispheres in images from the Cassini spacecraft, indicating that particles emit-

ted from Enceladus’ surface are coating the leading hemispheres of these satel-

lites. Saturn’s largest moon, Titan shows evidence of volcanic activity that erases

craters on its surface. The farthest large moon from Saturn,Iapetus, exhibits an

ancient surface of craters, and is thus of greatest interest.

Uranus has no major moons upon which to study craters, and Neptune has

only one large moon, Triton, which clearly has had recent geologic activity due

its sparsity of craters.

The outer Solar System satellites are all dominately cratered by scattering ob-

jects that have perihelia in the giant planet region. The current location of Pluto in

the Kuiper belt causes it to be cratered by a wider variety of sub-populations than

all other cratered bodies studied in the outer Solar System to date. This makes

the crater fields in the Pluto system of great interest, especially because at their

smallest end one will be sampling Kuiper belt projectiles probed nowhere else yet

in the Solar System and beyond the reach of direct observation by telescopes.

The crater scaling laws are traditionally written as equations (5.3), (5.4a), and

(5.4b) from Zahnle et al. (2003) and convert an impactor diameterd into a crater

diameterD given an impact velocityU , the gravitational accelerationg of the tar-

get, the densitiesδ andρ of the impactor and target (respectively), and a transition

diameterDtr (in km) from simple to complex craters (where we takeξ = 0.108

from McKinnon and Schenk (1995) as estimated from the craters on the icy satel-

lites of Jupiter).

Ds = 11.9

(

U

km/s

)0.434(
g

cm/s2

)−0.217 (
δ

ρ

)0.333 (
d

km

)0.783

km (5.3)
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and

D =

{

Ds for Ds < Dtr (5.4a)

Ds (Ds/Dtr)
ξ for Ds > Dtr (5.4b)

It is clear from the crater scaling law that assumptions about the surface com-

position of Pluto will affect cratering calculations. Compared to a water-ice sur-

face, craters formed entirely in solid N2 (similar density) or CH4 (lower den-

sity) will result in the simple crater diameterDs corresponding to a given im-

pactor diameterd increasing by up to 24% (for a CH4 density ofρ = 0.52 g/cm3

(Lupo and Lewis, 1980)). In addition, the simple-to-complex transition in these

weak materials may occur at a smaller diameter, increasing the size of a complex

crater over that given in equation (5.4b). The unknown depthof regolith on the

surface of Pluto, which could range from tens of m to several km thick, could

plausibly also affect the transition diameter. Whether craters in volatile N2 and

CH4 ice can survive intact on Pluto’s surface for 4 Gyr or whetherviscous relax-

ation would lead to poor crater retention on Pluto is an open question (Stern et al.,

2015). The effect of atmospheric recondensation could alsoaffect crater retention

on Pluto (Stern et al., 2015).

The scaling law shown above is not the only one used in the literature. The

slightly different crater scaling law from Housen and Holsapple (2011) (and used

by Bierhaus and Dones (2015)) shown in equation (5.5) was developed from lab-

oratory experiments studying the subsonic ejecta (and thussecondaries) produced

during the crater formation process into sand-like material. This crater scaling law

results in approximately 3% smaller simple crater diameters than those computed

from the crater scaling laws (equations (5.3), (5.4a), and (5.4b)) in Zahnle et al.

(2003), developed for solid, non-porous geological materials.

Ds = 9.3

(

U

km/s

)0.374 (
g

cm/s2

)−0.187(
δ

ρ

)0.325 (
d

km

)0.813

km (5.5)
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The lower limit on cratering efficiency is given by porous, “sand-like”

scaling, which gives somewhat smaller craters overall. Thescaling in

Housen and Holsapple (2011) (and used by Bierhaus and Dones (2015)) could

apply to the smallest craters likely to be seen on Pluto, those formed entirely

within Pluto’s regolith, which will slightly affect the slope of the crater produc-

tion function, all other things being equal, unless saturation occurs at the scales in

question, in which case it will not matter. For the broad range of crater sizes dis-

cussed in Chapter 7, the crater scaling laws from Zahnle et al. (2003) that include

the simple-to-complex transition (shown above) are applied in this thesis. In prin-

ciple, however, one could use the observed transition diameter to learn something

about the physical properties of Pluto’s surface.

A caveat to applying these equations to the Pluto system is that the physics

of crater creation and the crater scaling laws have been studied mostly for the

icy galilean and saturnian satellites. For these bodies, typical impact speeds

range from 10–20 km/s (in the hypervelocity regime), because heliocentric or-

bital speeds are higher and impactors get more gravitational focussing from the

giant planets than in the Kuiper belt, where impact speeds are typically 1–2 km/s

(potentially sub-hypervelocity). Hypervelocity is reached when the impact speed

exceeds the speed of sound in the target surface material; the sound speed in

water-ice is approximately 3 km/s and up to roughly 40% higher for a solid CH4
ice surface assuming a density of 0.52 g/cm3. Thus, applying crater scaling laws

developed for the icy satellites of the giant planets to primary craters in the sub-

km-diameter to a-few-hundred-km-diameter range on Pluto may incorrectly con-

vert impact rates into cratering rates. However, given thatthe crater scaling laws

have not been rigorously developed for the subsonic regime,the best way forward

is to apply the above crater scaling laws. In addition, Singer et al. (2013) (their

Appendix A) argue that existing scaling laws may be extrapolated to even lower

speeds (those of secondary crater formation) as long as the Hugonoit elastic limit

is exceeded, which is well satisfied for primary impacts on Pluto and Charon.
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The uncertainties in the crater scaling law and their application to cratering in

the Pluto system will affect the conclusions that can be drawn from estimating im-

pact and cratering rates onto Pluto and its satellites. However, these uncertainties

are dwarfed by the uncertainties in how the Kuiper belt size distribution extends

to diameters below 100 km (outlined above in Section 5.3). This will be discussed

in greater detail in Chapter 7.
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Chapter 6

A Uranian Trojan and the

Frequency of Temporary

Giant-Planet Co-Orbitals

6.1 Discovery of the First Uranian Trojan
The first known Uranian Trojan, 2011 QF99, was discovered in the 32-square-

degree survey of Alexandersen et al. (2014), designed to detect Trans-Neptunian

Objects (TNOs) and objects between the giant planets (aJupiter < a < aNeptune)

known as Centaurs with apparent r-band magnitudemr < 24.6, using the Canada-

France-Hawaii Telescope (Alexandersen et al., 2013). The low eccentricity along

with a semimajor axis similar to that of Uranus (aU ≈ 19.2 AU) indicated that

2011 QF99 might be a Uranian co-orbital. Numerical integrations of the nomi-

nal orbit and all other orbits within the small orbital uncertainties indicated the

object was most likely a Centaur temporarily trapped as a L4 Uranian Trojan

(Alexandersen et al., 2013) (see Figure 6.1; left column).

This chapter is based on the following published work: M., Alexandersen, B. Gladman,
S. Greenstreet, J. J. Kavelaars, J.-M. Petit, S. Gwyn,A Uranian Trojan and the Frequency of
Temporary Giant-Planet Co-Orbitals, Science341,994 (2013).
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Figure 6.1: Left column: Evolution of the nominal semimajor axisa, eccen-
tricity e, and resonant angleφ11 = λ − λU of 2011 QF99 for 1 Myr
into the future. Center and right columns: Evolution for twotem-
porary (∼ 1 Myr duration) Uranian co-orbitals from our dynamical
simulations for intervals in which their evolution is similar to that of
2011 QF99, showing that Centaurs can naturally become temporarily-
trapped Uranian Trojans. Times are from the initial condition for the
a0 > 34 AU scattering orbit.
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In this survey, 2011 QF99 was the only object with a semimajor axis within

the planetary region (defined here asa < 34 AU to include Neptune co-orbitals

but exclude the exterior stable transneptunian populations). The Canada-France

Ecliptic Plane Survey (CFEPS) detected threea < 34 AU objects and the IAU Mi-

nor Planet Center (MPC) database contains 247 objects with 6AU < a < 34 AU

as of 9 July 2013. We seek to estimate the steady-state fraction of Centaurs in tem-

porary co-orbital states with Uranus and Neptune, similar to what has been done

for the Earth (Morais and Morbidelli, 2002) and Venus (Morais and Morbidelli,

2006).

6.2 Numerical Integrations
Using a model of the orbital distribution (Kaib et al., 2011)(KRQ11) of today’s

scattering TNOs, we simulated the interactions of scattering objects with the gi-

ant planets over 1 Gyr, building a relative orbital distribution for thea < 34 AU

region. The simulation outputs the state vector of planets and all a < 34 AU

particles at 300 yr intervals. This output interval was chosen so that the few-kyr

variation of the resonant argumentφ11 would be well sampled (see Section 6.2.1),

allowing detection of short-term co-orbitals of the giant planets. Such a meticu-

lous search for co-orbitals trapped from an armada of incoming scattering objects

is essential in order to accurately estimate the trapping fraction. An earlier analy-

sis (Horner and Evans, 2006) started with a sample of currently known Centaurs,

which was biased towards the lowest-a Centaurs by observational selection, re-

sulting in much lower trapping rates for Uranus and Neptune than we find (see

Section 6.3).

The dynamical integrations computed to model the steady-state distribution of

scattering objects in thea < 34 AU region for this work were set up using a sub-

set of particles from the Kaib et al. (2011) TNO population model. Here, “scat-

tering objects” (Gladman et al., 2008; Petit et al., 2011) are those that experience

∆ a > 1.5 AU in 10 Myr; scattering objects witha < 30 AU are called “Cen-

taurs”, whereas those witha > 30 AU are the “scattering disk”. We use the term
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“steady-state” only to refer to a constant relative distribution of objects (i.e., the

distribution of Centaurs being constant, and thus the co-orbital fraction being con-

stant), not to denote a constant absolute population, as thepopulation of scattering

disk objects is depleting on Gyr time scales (for more discussion of the different

depletion rates for each Kuiper belt sub-population, see Section 7.2.5). This subset

consisted of 17,800 particles with initial semimajor axes 34 AU < a < 200 AU

and that had their semimajor axes deviate by more than 1.5 AU during the last

10 Myr of the KRQ11 model integrations. This population of scattering TNOs

was used as the initial conditions for the orbital integrations in this work. Two

different KRQ11 models were used independently: one generated from a primor-

dial inclination distribution that was dynamically cold when the particles left the

giant planet region 4 Gyr earlier (the “cold” model) (Kaib etal., 2011), the other

using an initially hot distribution (the “hot” model) integrated in the same way as

the KRQ11 model (Shankman et al., 2013).

To perform this computation, we used the N-body code SWIFT-RMVS4 (pro-

vided by Hal Levison, based on the original SWIFT (Levison and Duncan, 1994)).

A base time step of 73 days was used and the orbital elements were output every

300 years for any particle which at that moment hada < 34 AU. The gravitational

influences of the four giant planets were included. Particles were removed from

the simulation when they hit a planet, went outside 2,000 AU or inside 6 AU from

the Sun (resulting in rapid removal from the Solar System by Jupiter), or the final

integration time of 1 Gyr was reached.

The goal of these orbital integrations was twofold: to search for temporary co-

orbital trapping and to construct the steady-state orbitaldistribution of scattering

TNOs that reach the giant planet region, chosen to be thea < 34 AU region. The

steady-state orbital distribution is expressed as a grid with a < 34 AU, e < 1.0,

i < 180◦, with cells of volume0.5 AU ×0.02 × 2.0◦. The cumulative time spent

by all particles in each cell is normalized to the total time spent by all particles

in all cells in thea < 34 AU region. This illustrates the steady-state distribution

of objects in thea < 34 AU region, shown in Figure 6.2, supplied by the scatter-
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ing TNO population. This residence time probability distribution (Bottke et al.,

2000a) can be interpreted as the steady-state fraction of scattering TNOs in each

cell. Figure 6.2 shows two projections of the residence timeprobability distri-

butions of thea < 34 AU region for the two KRQ11 population models. From

these plots it is clear the scattering TNO population entersthe giant planet region

(a < 34 AU) at moderate eccentricities and inclinations. Althoughthe hot model

does produce higher inclinations, it is clear from Figure 6.2, that the choice of

input model does not make a large difference for our results.We therefore only

describe results from the simulations using the KRQ11 “hot”model here (unless

otherwise noted).

6.2.1 Co-Orbital Detection in Numerical Integrations

To diagnose whether particles are co-orbital, the orbital history (at300 year output

intervals) was scanned using a running window30 kyr long. This window-size

was chosen to be several times longer than the typical Trojanlibration period.

While the formal definition of co-orbital is that the resonant angleφ11 = λ −
λP lanet librates, detecting this is difficult to automate. As an automatic process

is necessary to filter the large amounts of output from our dynamical simulations

(110 GB), we used a simpler algorithm which we believe diagnoses co-orbitals

well. A particle was classified as a co-orbital if, within therunning window, both

its average semimajor axis was less than 0.2 AU from the average semimajor axis

of a given planet and no individual semimajor axis value deviated more thanRH

(see equation 2.1) from that of the planet. HereRH is the planet’s Hill-sphere

radius (Murray and Dermott, 1999), whereRH = 0.47 AU for Uranus andRH =

0.77 AU for Neptune. If these criteria were met, the orbital elements and current

integration time for that particle (at the time-center of the window) were output to

indicate co-orbital motion in that window. The window center then advances by

a single 300-year output interval and performs the diagnosis determination again.

In this manner, consecutive identifications of a particle inco-orbital motion with a

planet can be recorded as a single “trap” until the object is scattered away. A minor
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Figure 6.2: Residence time probability distributions. The top and bottom
plots show the distribution resulting from the initially cold and hot
KRQ11 models, respectively; the two different initial populations
clearly produce very similara < 34 AU steady-states. To monitor
the orbital evolution of each particle, a grid ofa, e, i cells was placed
throughout the giant planet region froma < 34 AU, e < 1.0, and
i < 180◦ with volume 0.5 AU×0.02 × 2.0◦. Thea, e plot is summed
over i, and thea, i plot is summed overe. The color scheme repre-
sents the percentage of the steady-state Centaur population contained
in each bin; red colors represent cells where there is a high probability
of particles spending their time. The curves indicate Jupiter, Saturn,
Uranus, and Neptune crossing orbits.
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shortcoming of this method of co-orbital identification is that the beginning and

end of each trap is not diagnosed well due to the ends of the window not falling

entirely within the trap at these times. This method provides us with estimates of

the duration of traps, each of which must be greater than 30 kyr to be diagnosed

by this analysis.

6.2.2 Resonant Island Classification

For each time step a particle has been deemed co-orbital, we wish to determine

in which of the four resonant islands the particle is librating, i.e. whether it is a

horseshoe, L4 Trojan, L5 Trojan, or quasi-satellite. As ourco-orbital detection

algorithm (described above) produces∼ 25, 000 trapping episodes, these cannot

be inspected manually and require another automated process. As for the detection

algorithm, this is also hard to automate, especially because complex variations

and combinations can exist for high inclinations. For our classification algorithm,

we examine the behavior of the resonant angle (φ11 = λ − λp) in each 30 kyr

window. If φ11 remained in the leading or trailing hemisphere during a window,

we assigned the particle to the L4 or L5 state (respectively). If φ11 crosses180◦ at

any time during the interval, then it was labelled a horseshoe orbit. The remaining

objects are assumed to be quasi-satellites, as they must be co-orbitals that cross

between leading and trailing atφ11 = 0◦ and not at180◦. The possibility of

erroneous classification exists, however in a manually inspected subset we find

these errors affect≪ 10% of cases, thus not affecting our co-orbital fraction and

resonant island distribution estimates greatly, sufficient for our goal of better than

factor of two accuracy.

6.3 Frequency and Duration of Temporary
Giant-Planet Co-Orbitals

Simulated scattering objects predominantly entered the giant planet region (a <

34 AU) at intermediate inclinations and eccentricities, as has been previously
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shown (Levison and Duncan, 1997; Tiscareno and Malhotra, 2003). After analyz-

ing the particle histories to find co-orbital trapping, we find that0.4% and2.8%

of the a < 34 AU population is, at any time, in co-orbital motion with Uranus

and Neptune, respectively (with less than a factor of 2 variation). This3.2% frac-

tion is much larger than the≈ 0.1% of near-Earth asteroids temporarily trapped

in Earth and Venus co-orbital motion (Morais and Morbidelli, 2002, 2006), pre-

sumably due to the fractionally larger co-orbital regions of the giant planets. We

find that the simulated Uranian and Neptunian co-orbitals consisted of, respec-

tively, 64% and54% in horseshoe orbits,10% and10% quasi-satellites and26%

and36% Trojans, roughly equally distributed between the L4 and L5 clouds. The

duration of Uranian co-orbital captures in our simulationshad mean, median, and

maximum values of 108 kyr, 56 kyr, and 2.6 Myr, respectively,and 78 kyr, 46 kyr,

and 18.2 Myr, respectively, for Neptune. The median co-orbital capture duration

is roughly only twice the running window size (30 kyr), whichmeans there are

many captures that last between 30 and 60 kyr.

To confirm that our Centaur distribution is in fact in steady-state (fractionally,

not absolutely), we divide our 1 Gyr integrations into< 100 Myr and 100 −
1, 000 Myr intervals. The< 100 Myr interval contains about half (cold model) or

one-third (hot model) of all entries into thea < 34 AU regime. In all four cases

the fraction of temporary co-orbitals is the same (0.31 − 0.62% for Uranus and

2.3− 3.3% for Neptune) to well within a factor of 2 accuracy and the distribution

of Centaurs are all similar to those seen in Figure 6.2. We thus believe this justifies

treating the relative distribution of objects as being timeindependent, despite the

absolute scattering/Centaur population slowly decreasing.

Numerical integrations of known Centaurs have previously been performed

(Horner and Evans, 2006) in order to study the capture of Centaurs as temporary

co-orbitals of the giant planets. That study found that captures are generally short

(10 − 100 kyr, none greater than500 kyr) with 0.29% of 23,328 Centaur clones

experiencing a co-orbital capture during a 3 Myr simulation, of which15%, 80%,

5% and 0% of these captures occur with Jupiter, Saturn, Uranus and Neptune,
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respectively. The previous study used clones of the known Centaurs for initial

conditions, a starting condition heavily biased towards smaller semimajor axes.

This is not the first work of its kind to perform numerical integrations in or-

der to construct the steady-state population of Centaurs with a < 34 AU from a

scattering TNO population. Some works (Dones et al., 1999; Horner and Evans,

2006; Tiscareno and Malhotra, 2003) present numerical integrations of Centaurs

(both known and test populations) initially within the giant planet region. Those

that have modeled the evolution of scattering TNOs into thea < 34 AU Centaur

region (Levison and Duncan, 1997; Volk and Malhotra, 2008) did not search for

temporary (often< 100 kyr) co-orbital captures.

Work similar to that presented here has been performed simulating near-Earth

asteroids captured as temporary co-orbitals of Earth (Morais and Morbidelli,

2002). Those authors found that the Earth’s temporary co-orbitals often expe-

rience several co-orbital phases, each of average duration25 kyr (none longer

than 1 Myr).

In the work presented here, where Centaurs are provided froma bias-free ex-

ternal scattering disk, we find that the average length of captures in co-orbital

motion with Uranus is 108 kyr and with Neptune is 78 kyr. We were surprised to

find that objects that experience at least one episode of co-orbital capture have a

median of 2 captures with Uranus or 6 captures with Neptune. Objects typically

escape with low relative velocities, so multiple temporarycaptures are not surpris-

ing. Some objects experience temporary co-orbital captures with both planets (see

Figure 6.3, right column). Due to thermin = 6 AU distance cut in the integrations,

which removes high-eccentricity Saturn-crossing Centaurs before they potentially

could get trapped into co-orbital motion, we did not reliably measure the Saturnian

trapping fraction, but estimate it at≪ 0.1% of the incoming scattering population.

6.3.1 Quasi-Satellites

Quasi-satellites make up10% of the steady-state Uranian and Nep-

tunian co-orbitals in our numerical integrations. This is thus a rare
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Figure 6.3: Left column: Evolution (for 0.3 Myr into the future) of the
semimajor axisa, eccentricitye, and resonant angleλ − λN of 2004
KV 18 (the certainly-unstable Neptunian Trojan (Gladman et al.,2012;
Horner and Lykawka, 2012)). Center and right columns: Evolution
for two temporary Neptunian co-orbitals from our dynamicalsimula-
tions for intervals in which their evolution is similar to that of 2004
KV 18. Note: The object on the right is the same object as in right
column of Figure 6.1. This object experiences co-orbital motion with
both Uranus and Neptune, with∼ 5 Myr between the two temporary
captures.
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state, but of great dynamical interest (Connors et al., 2002, 2004;

de la Fuente Marcos and de la Fuente Marcos, 2012; Mikkola et al., 2004,

2006; Namouni, 1999; Namouni et al., 1999). There is currently one

known temporary (∼ 100 kyr duration) quasi-satellite of Neptune

(de la Fuente Marcos and de la Fuente Marcos, 2012). The current existence

of one known temporary quasi-satellite, out of a total of∼ 6 known temporary

Uranian and Neptunian co-orbitals, fits into our general picture of temporary

traps in co-orbital states. Figure 6.4 depicts the semimajor axis, eccentricity, and

resonant angle evolution of two temporary quasi-satellitecaptures found in our

numerical integrations. The capture shown on the left is a quasi-satellite with

Neptune for a duration of 694.5 kyr before it scatters away. The capture on the

right in Figure 6.4 remains a quasi-satellite with Uranus for 1.45 Myr before

leaving the co-orbital state.

6.4 Conclusions
The discovery of the first known temporarily-trapped Uranian Trojan led to the

investigation of the fraction of the steady-state Centaur population in temporary

co-orbital states with Uranus and Neptune (Alexandersen etal., 2013). By inte-

grating the population of scattering objects as they enter thea < 34 AU Centaur

region, we found that at any time, 0.4% and 2.8% (with less than a factor of 2

variation) of thea < 34 AU population is in temporary co-orbital motion with

Uranus and Neptune, respectively. Alexandersen et al. (2013) show that when the

a < 34 AU steady-state Centaur distribution is put through a survey simulator, this

is in agreement with the known fraction of Uranian and Neptunian co-orbitals.

Temporary co-orbital traps typically last for tens of thousands of years and up

to several Myr. Objects can be trapped as horseshoes, Trojans, or quasi-satellites.

A single object can be trapped in multiple resonant states, either switching be-

tween classifications in a single trap or in multiple traps (as shown in Figure 6.1

and Figure 6.3). A single object can also be temporarily trapped as a co-orbital

with both Uranus and Neptune (Figure 6.1 and Figure 6.3, right columns). The
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Figure 6.4: Evolution of the semimajor axisa, eccentricitye, and resonant
angleλ − λP lanet for two temporary quasi-satellite captures from our
dynamical simulation, one Uranian (right) and one Neptunian (left).
Note the different scales.
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transient nature of temporarily-trapped co-orbitals makethem an interesting dy-

namical population to study. In addition, the very short dynamical timescale of

the unstable Uranian and Neptunian co-orbitals would require a very large reser-

voir of stable Uranian and Neptunian co-orbitals if the unstable co-orbital source

are the stable co-orbitals that are becoming dislodged fromthe co-orbital state

today. However, the roughly comparable number of stable andunstable Uranian

and Neptunian co-orbitals requires an external source for the unstable co-orbitals

with the scattering TNO population being consistent, as shown in this chapter and

Alexandersen et al. (2014).
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Chapter 7

Impact and Cratering Rates onto

Pluto

7.1 Introduction
The New Horizons space probe will fly through the Pluto systemin July 2015 and

will be capable of taking high-resolution images of cratersdown to≃ 0.5 km in

diameter on the encounter hemispheres of Pluto and Charon (Moore et al., 2015;

Young et al., 2008) (for the image resolution for the four smaller satellites, see

Table 5.2). Using the observed surface crater densities, one would like to com-

pute crater retention ages for the various surfaces of Pluto, its binary companion

Charon, and the small satellites. In order to do this, knowledge of the impact flux

onto the surface is needed, both in terms of the number of projectiles and their

impact speeds. To date, a study of the impact rates broken down into the vari-

ous Kuiper belt sub-populations has never been done. Lacking any crater data,

approximations of the number density of Kuiper belt objectsthat intersect the or-

bit of Pluto at an average impact velocity have sufficed (Durda and Stern, 2000;

Weissman and Stern, 1994; Zahnle et al., 2003), but the observational opportunity

This chapter is based on the following published work: S. Greenstreet, B. Gladman, W. B.
McKinnon,Impact and Cratering Rates onto Pluto, Icarus258, 267 (2015).
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of the New Horizons Pluto-system fly-through requires a moreaccurate under-

standing of the impact rates, impact speed distributions, and thus the collisional

history of the surface of Pluto and its satellites.

7.1.1 Motivation

Pluto likely formed in a different environment from the one in which it currently

resides. Some recent dynamical models (discussed in Section 5.2) postulate a

violent period of instability in the giant planet orbits roughly 3.9 Gyr ago; during

this chaotic time period, an outward migration of Uranus andNeptune causes

their orbits to approach each other, briefly pumping Neptune’s eccentricity which

pushes the ancient population of Kuiper belt objects outward and rearranges the

outer Solar System to roughly its current architecture ((Levison et al., 2008) and

references therein). With or without a dramatic planetary re-arrangement 3.9 Gyr

ago, in any scenario in which Neptune’s mean-motion resonances swept through

a population of small bodies during outward migration, manyobjects, including

Pluto, are swept up into resonance (Malhotra, 1993, 1995). Regardless of exactly

how it arrived there, Pluto currently sits in the 3:2 mean-motion resonance with

Neptune. A hypothetical turbulent time period during the first≈ 500 Myr of Solar

System history we refer to as the “pre-installation phase” of Pluto’s collisional

history, and is not something we can model using estimates oftoday’s Kuiper belt

orbital distribution. We assume the Pluto-Charon binary-forming event occurred

during this “pre-installation phase”. The four smaller satellites in the Pluto system

(Styx, Nix, Kerberos, and Hydra) are also hypothesized to have formed through

post-collision reaccumulation, possibly during the Pluto-Charon binary-forming

event (Stern et al., 2006). Because we do not know the orbitaldistribution of the

Kuiper belt during this period of the Solar System’s history, we prefer to remain

on relatively solid ground by performing an analysis of Pluto’s collisional history

for the past≃ 3.9 Gyr, spanning the time period we think it reasonably certain

Pluto has been on its current orbit,t ≈ 0.6 Gyr to 4.5 Gyr into the age of the

Solar System. We refer to this period as the “post-installation phase” of Pluto’s

100



history. Pluto’s current location in the Kuiper belt causesit to be impacted by a

wider variety of Kuiper belt sub-populations than the satellites of the giant planets,

particularly by the cold classical objects, which do not reach into the giant planet

region. We use current population estimates and orbital distributions of Kuiper

belt sub-populations to determine the current impact flux and primary cratering

rates onto the surface of Pluto in Sections 7.2.3 and 7.2.4. To extrapolate this back

to the installation of Pluto onto its current orbit (not lessthan 3.9 Gyr ago), we

assume each Kuiper belt sub-population has naturally eroded away with time and

we use estimates of these decay rates from the literature to compute the number

of primary craters formed on Pluto’s surface integrated over the past≃ 4 Gyr

in Section 7.2.5 (secondary craters are considered separately in Section 7.3.5).

We also compute the primary cratering rates and integrated number of craters

for the surface of Charon in Section 7.3.7. In addition, we determine if the four

smaller satellites of Pluto (Styx, Nix, Kerberos, and Hydra) have likely ever been

catastrophically disrupted in the past≃ 4 Gyr in Section 7.3.8.

Kuiper Belt Sub-Populations

The various Kuiper belt sub-populations are defined in Gladman et al. (2008) and

discussed in Section 5.1.1. It was unclear at the outset of this project how the var-

ious Kuiper belt sub-populations would contribute to the impact flux onto the sur-

face of Pluto. Each group populates different regions of phase space and thus in-

teracts differently with Pluto, but how their respective impact fluxes compare with

each other is not obvious. In previous work (e.g. Zahnle et al. (2003)), a Kuiper

belt having objects with “typical” semimajor axesa ≈ 40 AU and “typical” im-

pact speedsvimpact ≈ 2 km/s was used to roughly estimate the cratering rate onto

Pluto. This, however, neglects the details of the differingorbital parameters of

each Kuiper belt sub-population. It’s unclear whether Kuiper belt objects (KBOs)

with these estimated orbital parameters contribute most ofthe impact flux onto

Pluto or another type of Kuiper belt population dominates. Perhaps several pop-

ulations contribute roughly equally. Campo Bagatin and Benavidez (2012) com-
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puted the collision probability of the Pluto-Charon binary-forming event using a

collisional evolution model of the transneptunian object (TNO) population taken

from the Canada-France Ecliptic Plane Survey (CFEPS) L7 synthetic model of

classical and resonant Kuiper belt populations (Gladman etal., 2012; Petit et al.,

2011), but did not break this down into the individual Kuiper-belt sub-populations

nor extend their analysis to the current epoch’s impact events.

Pluto shares the 3:2 Neptunian mean-motion resonance with≈ 13, 000 di-

ameterd > 100 km (Gladman et al., 2012) objects known as the plutinos. By

performing numerical integrations of the collisional evolution of known plutinos,

de Elı́a et al. (2010) computed the plutino impact flux onto Pluto assuming “typ-

ical” impact speeds (vimpact = 1.9 km/s) to estimate the cratering rate onto Pluto

from the plutinos alone. Dell’Oro et al. (2013) performed a statistical analysis of

the collisional evolution of TNOs among themselves using the individual Kuiper

belt sub-populations from the CFEPS L7 model, but did not extend their analy-

sis to the cratering rate on Pluto. As we were writing up our work, we became

aware of the recent paper by Bierhaus and Dones (2015) that addresses some of

the issues we are concerned with. We discuss this latter paper in Section 7.2.3.

In addition to being affected by the 3:2 mean-motion resonance with Neptune,

Pluto’s orbit experiences Kozai (Kozai, 1962) librations which cause its eccentric-

ity e and inclinationi to oscillate against each other (high-e corresponds to low-i

and vice versa) on the timescale of several Myr. This libration causes Pluto’s or-

bita to never intersect the Solar System plane outside≃ 42 AU or inside≃ 33 AU

(see Figure 7.1). This results in complex changes in collision probability over

time between Pluto and the inner, main, and outer classical Kuiper belt objects.

For example, the classical inner KBOs havea between roughly 37 and 39 AU with

perihelia35 AU . q . 39 AU (see Figure 5.2). This places the classical inner

KBOs in the region where Kozai librations keep Pluto’s ecliptic nodal distances.

As one may imagine, Pluto’s nodal distances constantly staying near the classi-

cal inner KBOs enhances their collision probability with Pluto compared with a

aFor reference Pluto’s perihelionq = 29.7 AU and aphelionQ = 48.9 AU .
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Figure 7.1: Numerical integration of Pluto’s ecliptic nodal distances.

situation where Pluto’s orbit uniformly precesses and nodal distance explores all

values from perihelionqP luto to aphelionQP luto. In contrast, most main classical

KBOs lie between roughly 40 and 47 AU where the oscillation ofPluto’s ecliptic

nodal distances cause its periodic intersection with the main classical KBOs. If

all classical main KBOs had inclinationsi ≈ 0◦, theq > 42 AU classical main

objects should have zero collision probability with Pluto since Pluto’s orbit never

intersects the plane of the Solar System outside≃ 42 AU. In reality, their non-

zero inclinations cause some of them to have non-zero collision probability with

Pluto. The twoq < 42 AU classical main populations (and their sub-components),

however, are each affected by the repeated intersection of Pluto’s orbit with its
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own. During the period when Pluto’s nodal distance is between 40 and 42 AU,

its collision probability with the main classical KBOs increases. This competes

with the times when Pluto’s orbit intersects the plane of theSolar System outside

42 AU, where its collision probability with the main classical Kuiper belt drops

precipitously. As one may expect, this could cause theq < 42 AU classical main

KBOs to receive a smaller enhancement to their collisional probability with Pluto

than the classical inner KBOs since the assumption of uniform orbital precession

would also cause an orbital intersection oscillation. Lastly, the classical outer

KBOs also experience complex changes in collision probability with Pluto over

time. The classical outer KBOs, which in this study include the detached objects,

have pericenters between≃ 33 AU and≃ 42 AU, the same region where Pluto’s

nodal distances remain. However, the classical outer KBOs have semimajor axes

from roughly 47 AU out to≃ 500 AU causing them to only impact Pluto when

they are near pericenter, dropping their collision probability. How do each of

these competing phenomena affect the impact flux onto Pluto from the classical

KBO sub-populations? Likewise, how do each of the complex interactions be-

tween Pluto and the Kuiper belt sub-populations stack up against each other when

determining Pluto’s cratering history? The answers are notobvious and provided

some of the motivation for this study.

An additional complexity is that gravitational scatteringhas eroded each sub-

population over the past 3.9 Gyr, but affecting each population differently (see

discussion in Section 5.2.1). How this population decay affects the impact flux

at Pluto when integrated over the age of the Solar System is also unclear. For

example, the scattering objects spend a large fraction of their time at large dis-

tances from Pluto making their collisional cross-section with Pluto small. How-

ever, they are also thought to be one of the largest populations in the Kuiper belt

4 Gyr ago (Dones et al., 2004; Duncan and Levison, 1997; Levison and Duncan,

1997), which increases their contribution to Pluto’s cratering history when inte-

grated over the age of the Solar System. This large population decay competes

with the low collisional cross-section of the scattering objects when determining
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their contribution to the cratering history of Pluto, but isthe large number of scat-

tering objects in the past enough to dominate the cratering rate over other Kuiper

belt sub-populations? To best understand the contributionof each Kuiper belt

sub-population to the cratering history of Pluto, a study using the impact flux of

debiased population models and their corresponding impactspeed distributions is

needed and presented here.

Uncertainties in the Kuiper Belt Size Distribution

In addition to the dynamical complexities of the Pluto-crossing populations, there

are major uncertainties about the Kuiper belt size distribution for objects with

absolute g-band magnitudeHg > 9.16 (corresponding to a diameterd < 100 km

for an assumed g-band albedop of 5%) as discussed in Section 5.3. Because we

wish to estimate crater production rates down to km scale, wemust adopt a model

of how the size distribution extrapolates from the break atd ≃ 100 km down to

sub-km impactor sizes. We adopt a break atHg ≈ 9 (for typical TNOg− r colors

of 0.5–1.0, the break atHg ∼ 9 is shifted toHr ∼ 8 − 8.5, which is consistent

with Fraser et al. (2014)’s results for the hot KBO and JovianTrojan populations).

Figure 7.2 shows a schematic of three size distribution extrapolation scenarios for

Hg > 9. The (somewhat strawman) single power-law (SPL) extends the bright

end of the size distribution (Hg < 9) all the way down to the smallest objects.

The model size distribution with a “knee” has a sharp break atHg = 9 (open

circle) from a steep slope at the bright end of thisHg-magnitude to a shallower

slope on the faint end. Lastly, the “divot” model has a discontinuous drop by a

factor c in the differential number of objects atHg = 9 with a different power

law for Hg > 9. All of these models are of course approximations to reality; we

discuss the implications of changingαfaint and using a “wavy” size distribution

in Sections 7.3.4 and 7.3.6, respectively.)

To illustrate the consequences of not understanding how therelatively well-

understood size distribution of large impactors connects to smaller sizes, we

model five differential size distribution scenarios: a single power-law (SPL) with
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Figure 7.2: Schematic of threeHg-magnitude differential size distribution
scenarios: a single power-law (SPL) (green), a knee (blue),and a
“divot” (red). The Kuiper belt and scattering disk observations are
calibrated down toHg ≈ 9 (magenta), but beyond that (open circle)
it is unclear how the size distribution extends to smaller sizes. The
knee model is a simple transition to a shallower slope at the break
diameter. The divot scenario has a rapid drop in the differential num-
ber of objects succeeded by a shallower recovery.Hg-magnitudes are
converted to approximate impactor diametersd using equation (5.1)
for an albedop of 5%. Impactor diametersd are converted to rough
crater diametersD using equations (5.3), (5.4a), and (5.4b), assuming
an impact speed of 2 km/s and a transition from simple to complex
craters at 4 km on Pluto (Moore et al., 2015). The expected range of
“fresh” craters observed by New Horizons extends fromD ≈ 5 km
to D ≈ 50 km (created by impactors ranging fromd = 1 − 10 km),
while the largest “ancient” basins (D ≈ 200 km) are not expected to
have been created in the past 4 Gyr and therefore must date to Pluto’s
pre-installation phase> 4 Gyr ago.

106



logarithmic slopeα = 0.8 (q = 5); a power-law with a sharp knee atHg = 9.0,

slopeαbright = 0.8 on the bright side of the knee, and slopeαfaint = 0.4

(qfaint = 3) on the faint side of the knee; a power-law with a “divot” atHg = 9.0

with the sameαbright andαfaint as the knee scenario, but with a contrast (ratio

of the differential number of objects in the population justbright of the divot to

the number of objects just faint of the divot) value ofc = 6 (Shankman et al.,

2013); and lastly the “wavy” size distributions of both Schlichting et al. (2013)

and Minton et al. (2012) (as described by Schlichting et al. (2013)).

We adopt a value ofαfaint = 0.4 (Bernstein et al., 2004; Fraser et al., 2014)

for this work and discuss the implications of changing this value in Section 7.3.4.

Although we assume a constant power law slope of theHg-magnitude distribu-

tion from d = 100 km down to smaller sizes (Hg = 9 − 25), it is very unlikely

that in reality the faint size distribution follows a singlepower-law all the way

down to sub-km impactor sizes. We use a single extrapolationfor simplicity’s

sake and to illustrate many of the consequences of not understanding the impactor

size distribution down tod < 100 km to the cratering record on Pluto, but we un-

derstand that the size distribution in this regime likely has multiple slope changes

which we refer to as being “wavy”. The main asteroid belt’s size distribution

(O’Brien and Sykes, 2011), the analysis of Saturnian craters from Minton et al.

(2012), and the model for the collision-generated population of KBOs today from

Schlichting et al. (2013) all show that several slopes in thesize distribution begin

as one drops below roughlyd < 60 km and continue to the sub-km regime. We

discuss the implications of such a shape in the size distribution on Pluto’s cratering

record compared with a single-slope extrapolation in Section 7.3.6.

Because New Horizons should be able to observe craters down to 1-2 km in

diameter on the encounter hemispheresb of Pluto and Charon, and down to 500 m

in diameter in a high-resolution swath (Moore et al., 2015; Young et al., 2008), the

uncertainties in the form of the Kuiper belt’s size distribution will be reflected in

bPluto-Charon’s slow 6.39 day rotation combined with the speed of the New Horizons space-
craft mean that the non-encounter hemisphere will not be imaged at sufficient resolution and solar
phase angle for meaningful crater counts.
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the computation of surface ages in the Pluto system. This is well into the small end

of the size distribution (aD = 500 m crater corresponds to roughly ad = 40 m

impactor), but the uncertainties in the Kuiper belt size distribution will be apparent

in larger craters as well. For example, the number of impactors in the differential

size distribution with diameterd near 10 km varies by a factor of 6 (the value of

the contrastc) between the knee and divot scenarios and by a factor of 50 between

the SPL and the knee distributions. Because the number of small impactors varies

so widely between the three extrapolations, ages computed from observed crater

densities based on these distributions naturally will relyheavily upon the intrinsic

assumptions about the projectile size distribution. In addition, extrapolating the

knee power-law size distribution from small diameters to projectiles just larger

than the break (shown as dotted lines in Figure 7.2) overestimates the number

of “largest ancient basins expected”, however, extrapolating the divot scenario

underestimates the number of basins. Implications of theseassumptions on both

the computed crater retention ages and the determination ofthe impactor size

distribution from Pluto’s cratering record are discussed in Section 7.3.

Triton

Triton, Neptune’s major moon, is the closest body to Pluto for which we have

crater counts (from the 1989 Voyager 2 flyby). Triton’s general characteristics

(size, mass, and surface composition) are profoundly Pluto-like. Triton is also

a geologically active body, and thus lightly cratered, and so should record only

recent impacts from the scattering KBO population. Leavingaside the debate over

whether Triton’s craters are predominantly due to heliocentric or planetocentric

bodies (McKinnon and Singer, 2010; Schenk and Zahnle, 2007), the best global

crater counts are from Schenk and Zahnle (2007). They find forcratersbetween

5 and 25 km diameters (25 km being the size of the largest crater identified on

the≈ 25% of the surface imaged decently by Voyager) a differential power-law

index of 3.25. Using simple crater scaling, they calculate adifferentialqslope of 2.8

(α = 0.36) for theprojectilepopulation in the diameter range ofd = 300 m tod =
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2 km. Actually, because the craters span the simple-to-complex morphological

transition, the actualqslope andα are likely slightly steeper. In either case, such

α values are close to theα = 0.4 adopted here for the faint branch of the KBO

distribution down to this diameter. This value ofα is also consistent with the

Minton et al. (2012) and Schlichting et al. (2013) size distribution models for this

impactor diameter range (see Section 7.3.6). It will be of great interest to see, in

2015 New Horizons images, if the crater size-frequency distributions on Pluto and

Charon are similar to Triton’s over comparableprojectilediameter ranges.

7.2 Methods
In this section we present the methods used to compute current impact rates (Sec-

tion 7.2.3), current cratering rates (Section 7.2.4), and the integrated number of

craters on Pluto’s surface over the past≃ 3.9 Gyr (Section 7.2.5) from the various

Kuiper belt sub-populations.

7.2.1 Kuiper Belt Population Models

In order to most accurately determine Pluto’s cratering history from the current

Kuiper belt, we make use of the recent observational data encompassing each

of the sub-populations. The Canada-France Ecliptic Plane Survey (CFEPS) L7

synthetic model (Gladman et al., 2012; Petit et al., 2011) was used to provide

orbital distributions andHg < 9.16 (diameterd > 100 km) population esti-

mates for the resonant and classical Kuiper belt objects andthe Kaib et al. (2011)

(KRQ11) model provided the scattering population orbital distribution, which was

absolutely-calibrated forHg < 9.0 by Shankman et al. (2013).

In order to pin the number of objects in each of the various Kuiper belt sub-

populations to theHg-magnitude corresponding to the break in the size distri-

bution (atHg = 9.0), the CFEPSHg < 9.16 classical and resonant population

estimates from Petit et al. (2011) and Gladman et al. (2012) were converted to

Hg < 9.0 (which corresponds to diameterd > 108 km for a g-band albedo of 5%)
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population estimates using equation 5.2. For example, theHg = 9.16 classical

inner belt population estimate from Petit et al. (2011) of 3,000, implies≈ 2, 200

objects withHg = 9.0.

7.2.2 Öpik Collision Probability Code

To compute the impact probability onto the surface of Pluto we modified a ver-

sion of theÖpik collision probability code based on Dones et al. (1999), which

implements the method described in Wetherill (1967). The code numerically in-

tegrates the collision probability of two bodies by assuming uniform precession

of the nodal longitude and argument of pericenter of both theimpactor and target

over their precession cycles. The program adapts the integration step when the

probability integrand becomes large. Our implementation of this code uses the

relative fraction of each Kuiper belt sub-population (described in Section 7.1.1)

divided into a grid ofa, e, i cells of size 1 AU, 0.05, and2◦, respectively. The

code uses each grid entry as the orbit of a potential Pluto impactor. The collision

probability computed for the orbit is multiplied by the fraction of the population in

that cell. The code gravitationally focuses the collision probability, providing the

impact probability (/yr/object) as well as the impact velocity spectrum (in km/s)

of the modeled population, with Pluto’s escape speed (1.2 km/s) added in quadra-

ture. The motion of Pluto about the Pluto-Charon system barycenter (25 m/s) is

neglected.

TheÖpik collision probability code used in this study was modified to bin the

collision probability for each orbital precession orientation into individual impact

velocity bins (as opposed to computing an average impact velocity from all possi-

ble impact orientations over a full orbital precession of the nodes). This produces

detailed impact velocity distributions for each Kuiper belt sub-population onto

Pluto (Figure 7.3).

As expected, each sub-population has a different impact velocity spectrum

onto Pluto. Due to their large semimajor axes, unsurprisingly the scattering

objects peak at the highest impact velocity of the Kuiper belt sub-populations.
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Figure 7.3: Impact velocity spectrum onto Pluto for KRQ11 and CFEPS L7
Kuiper belt sub-populations. Escape speed from Pluto is 1.2km/s.
Each sub-population’s distribution is separately normalized.

The classical inner objects have a bimodal impact velocity spectrum due to

their bimodal inclination distribution which has a gap between roughly7◦–20◦

(Petit et al., 2011). The remaining populations have unimodal distributions peak-

ing somewhere between 1.6 km/s and 2.0 km/s, with tails out tobeyond 5 km/s.

The impact speed spectrum produced by Dell’Oro et al. (2013)from a model of

collisionally evolving TNOs (extracted from the CFEPS L7 synthetic model) im-

pacting the plutinos independently reproduces these same main trends shown in

Figure 7.3.
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7.2.3 Impact Rates onto Pluto

The Öpik collision probability code produces impact probabilities with Pluto

(/yr/projectile) that turn into impact rates (/yr) after multiplying by the estimated

number of projectiles in each sub-population. Table 7.1 gives sub-population

types (sometimes with orbital element cuts), impact probabilities (/yr/object in

the group), telescopic population estimates forHg < 9.0, and impact rates (/yr)

from Hg < 9.0 projectiles. The 42 AU pericenter cut for the classical mainsub-

populations corresponds to Pluto’s maximum nodal distance(see Section 7.1.1).

There are very few hot classical main objects withq > 42 AU. The scattering

object (S.O.) 200 AU semimajor axis division is a useful boundary due to the fact

that thea > 200 AU S.O.s spend most of their time far from Pluto and so have

a small impact probability, as can be seen by the factor of≈ 50 in impact prob-

ability between thea < 200 AU anda > 200 AU S.O.s in Table 7.1. There are

also essentially no S.O.s witha < 15 AU, and, in any case,a < 15 AU scattering

objects require eccentricitye > 0.98 to intersect Pluto.

The Öpik collision probability code assumes uniform precession of Pluto’s

nodal longitude and argument of pericenter. There are methods that would help

correct this assumption (Pokorný and Vokrouhlický, 2013; Vokrouhlický et al.,

2012), but because Pluto experiences Kozai librations while also in the 3:2 mean-

motion resonance with Neptune, its orbit neither uniformlyprecesses nor is it

easily analytically modeled. In principle, the non-uniform precession could make

important modifications to the impact rate. Our method to estimate the impor-

tance of this effect was to perform full N-body 100 Myr numerical integrations of

the four outer planets and Pluto (resulting in Pluto performing its full dynamics)

along with test-particle models of the CFEPS classical (inner, hot, stirred, kernel,

and outer) and resonant 3:2 Kuiper belt sub-populations. Welogged close encoun-

ters between Pluto and the KBOs and compared the number of close encounters

logged in 100 Myr with the number expected from theÖpik code over this length

of time. The Pluto dynamics correction factor in Table 7.1 accounts for this by

providing the ratio of close encounters logged in these numerical integrations to
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Kuiper belt Öpik Hg < 9.0 Öpik Pluto Corrected % of
Sub-Population Impact Population Impact Dynamics Impact Total

Type Probability Estimate Rate Correction Rate Impact
(/yr/KBO) (/yr) Factor (/yr) Rate

S.O. (15 AU ≤ 7.5e-17 8,000 6.0e-13 6.0e-13 1.3
a ≤ 200 AU)

S.O. (a > 200 AU) 1.4e-18 72,000 1.0e-13 1.0e-13 0.2
Classical Inner 3.9e-16 2,200 8.6e-13 1.3 1.1e-12 2.3

Classical Main H 4.4e-16 2,000 1.1e-11 1.0 1.1e-11 23.0
(q < 42 AU)

Classical Main S 4.0e-16 30,000 1.2e-11 1.0 1.2e-11 25.1
(q < 42 AU)

Classical Main S 4.4e-16 18,000 7.9e-12 0.2 1.6e-12 3.4
(q > 42 AU)

Classical Main K 4.3e-16 8,300 3.6e-12 0.9 3.2e-12 6.7
(q < 42 AU)

Classical Main K 4.0e-16 4,700 1.9e-12 0.4 7.6e-13 1.6
(q > 42 AU)

Classical Outer 1.0e-16 60,000 6.0e-12 1.0 6.0e-12 12.6
Resonant 3:2 5.9e-16 10,000 5.9e-12 1.5 8.9e-12 18.6
Resonant 2:1 3.3e-16 2,700 8.9e-13 ∼ 1 8.9e-13 1.9
Resonant 5:2 1.8e-16 9,000 1.6e-12 ∼ 1 1.6e-12 3.3

Total 4.8e-11 100.0

Table 7.1: Öpik collision probability calculations. “Classical MainH” is the
hot classical sub-population, “Classical Main S” is the stirred com-
ponent of the cold classicals, and “Classical Main K” is the kernel
component of the cold classicals (Petit et al., 2011). Impact probabili-
ties are (/yr/object). Population estimates are forHg < 9.0 (diameter
d > 108 km, for a g-band albedop = 5%). Impact rates are (/yr)
and determined using the number ofHg < 9.0 objects in each sub-
population. Pluto dynamics correction factors (see text) are accounted
for in the corrected impact rates (/yr) as well as the % of total impact
rate values (bold values show the four sub-populations thatdominate
the total impact rate onto Pluto).
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that from theÖpik estimate. To provide enough logged close encounters inthe

integrations to reach
√
n/n = 10% accuracy in the correction factors, both the

numerical integrations and thëOpik estimate used for this purpose had a Pluto

encounter radius ofR = 0.005 AU ∼ 640 Pluto radii (roughly 10% of Pluto’s

Hill radius). The corrected impact rates (/yr) shown in the second-to-last column

of Table 7.1 account for the correction factors and should thus be used in future

work.

As shown in Table 7.1, the effect of Pluto’s Kozai dynamics, which causes

its ecliptic nodal distances to always lie in the range≃ 33 − 42 AU, is most

important for theq > 42 AU stirred and kernel classical main objects, which have

their impact rate drop by a factor of≈ 5 and 2.5, respectively, when corrected.

As a result, the impact rates for theq > 42 AU stirred and kernel classical main

objects are each roughly an order of magnitude lower than theother populations

that end up dominating the impact rate. The collision probability does not drop

to zero due to the non-zero inclinations of some classical main KBOs. A curious

phenomenon (as described in Section 7.1.1) regarding each of the q < 42 AU

classical main sub-populations is the oscillation of Pluto’s ecliptic nodal distance

between≃ 33 AU and ≃ 42 AU which causes its intersection with the main

classical KBOs to also oscillate. When Pluto’s nodal distance is between≃ 38 AU

and≃ 42 AU, roughly in the middle of theq < 42 AU main belt population, its

collision probability with the main classical KBOs increases. However, when

Pluto’s orbit intersects the ecliptic plane inside roughly38 AU, the collision rate

with the main classical KBOs drops due to the relative absence of such low-q

objects. Surprisingly, the intersection oscillation between Pluto’s orbit and the

q < 42 AU classical main sub-populations due to Kozai results in the same impact

rate onto Pluto as for the assumption that Pluto’s orbit uniformly precesses (i.e.,

the correction factor = 1.0, to 10% accuracy). Theq < 42 AU hot and stirred

classical main objects compete with two other populations (see below) for the

dominant impact flux onto Pluto. The classical outer objects(which in this study

include the detached objects) mostly haveq < 42 AU but, because their large
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semimajor axes keep them mostly at large distances from Pluto, they experience

a similar balancing phenomenon (correction factor = 1.0) and we find that Pluto’s

Kozai oscillation contributes no appreciable correction to their impact rate onto

Pluto. In contrast, the classical inner objects gain a non-negligible enhancement

(≈ 30%) in their collision probability with Pluto, because they entirely lie in the

region where Pluto’s ecliptic nodal distances always remain (≃ 33− 42 AU) (see

Section 7.1.1).

Our study shows that the basicÖpik collision probability algorithm (not in-

cluding Pluto’s Kozai effect) also underestimates the impact rate of the plutinos

(other 3:2 resonant KBOs) onto Pluto by≈ 50%. In this case, our numerical in-

tegration had both the plutinos and Pluto in the 3:2 mean-motion resonance and

some plutinos also undergoing Kozai. The net result is a mild(50%) increase of

the impact rate due to the enhanced frequency of low-velocity encounters caused

by a greater frequency of close orbital alignments. Even without the 50% cor-

rection factor, the plutinos are comparable to the impact flux of the other three

dominant populations. The correction factors for the resonant 2:1 and 5:2 pop-

ulations were not measured using numerical integrations, but we do not expect

them to modify theÖpik approximation to> 10% accuracy; in any case they

are comparable to each other but down by roughly an order of magnitude from the

dominant populations. We did not include other resonant populations in our analy-

sis, because their contributions to Pluto’s impact flux willbe small compared with

the nearby and more numerous 2:1 and 5:2 populations (Gladman et al., 2012).

The reader may be surprised that the scattering object impact flux onto Pluto is

currently small, contributing only≈ 2% of the total impact flux. Thus, Pluto is

dominantly hit by a wider variety of Kuiper belt sub-populations than the satel-

lites of Jupiter and Saturn, particularly by the cold classical objects, which do not

reach into the giant planet region.

Examining all the Kuiper belt sub-populations, Table 7.1 shows that one is

faced with the complication that no single population dominates the impact flux

onto Pluto. In fact, theq < 42AU hot and stirred classical main, the classical outer
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(which include the detached objects), and the plutino populations each provide

roughly comparable (15 − 25%) contributions to the total impact flux, together

outweighing the sum of all other sub-populations by roughlya factor of four.

Computing impact rates and thus cratering rates onto the surface of Pluto using

only a model of the cold classical Kuiper belt objects thus underestimates the

age of Pluto’s surface, although this depends of course on the number of KBOs

assumed in the classical belt.

In detail we find that our total impact rate of 4.8x10−11/yr is a factor of≈ 2.5

less than estimated by Durda and Stern (2000) ford > 100 km impactors, who

found an impact rate of≈1.2x10−10/yr assuming 70,000 KBOs greater than this

size (see their fig. 6). Zahnle et al. (2003) found an estimated impact rate onto

Pluto of 2.3x10−11/yr (within a factor of 2) ford > 100 km impactors scaled from

the calculations of (Nesvorný et al., 2000) for plutino impacts on Pluto and from

anÖpik-style estimate from W. Bottke (private communication) and using 38,000

KBOs of this size. Our total impact rate of 4.8x10−11/yr for d > 100 km impactors

agrees within their uncertainty, even with our change in population estimates and

our use of an impact velocity spectrum (which is used to gravitationally focus the

Öpik impact probabilities computed for each target and projectile orbital preces-

sion orientation) rather than an average impact velocity. More important to the

interpretation of the New Horizons crater density observations is that our produc-

tion of an impact speed distribution allows us to examine itsinfluence on Pluto’s

cratering rates, which have velocity dependence in the crater scaling law.

The recent paper by Bierhaus and Dones (2015) found that the cold classical

main objects (with stirred and kernel sub-components) contribute ≈ 70% and

≈ 99% of the projectile flux onto Pluto ford > 10 km andd > 1 km, re-

spectively. This is primarily due to their use of a steeper slope (αfaint = 0.38)

for the cold classical main objects compared with the hot classical main objects

(αfaint = 0.2), citing Fraser et al. (2014). This steeper faint-end slopefor the

cold classicals compared with the hot classicals causes their contribution to in-

creasingly dominate Pluto’s total impact flux for smaller and smaller impactor
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sizes. In this paper, we assume all sub-populations haveαfaint = 0.4 since

theαfaint = 0.38 (+0.05, -0.09) slope for cold classicals is much better deter-

mined than the proposedαfaint = 0.2 (+0.1, -0.6) for hot classicals (uncertain-

ties quoted from Fraser et al. (2014)). For the bright end of the size distribution,

Bierhaus and Dones (2015) use the slopes for the hot and cold classicals from

Fraser et al. (2014) (αbright = 0.87 andαbright = 1.5, respectively). Our use of

αbright = 0.8 instead for all Kuiper belt sub-populations has little effect on conclu-

sions about crater densities because we will show thatD > 400 km craters formed

in the last 4 Gyr are absent, and thus only the total number ofd > 100 km pro-

jectiles is relevant in order to establish the absolute calibration linked to observed

KBOs.

Uncertainties in the Total Impact Rate

The uncertainty in our total impact rate comes from a varietyof factors. TheÖpik

impact rate (/yr) depends on the accuracy of the population estimates used for

each Kuiper belt sub-population. The absolute calibrationfor scattering objects

(Kaib et al., 2011) is based on only 11 known objects (Shankman et al., 2013),

contributing an uncertainty in the population estimate of 1/
√
N=30%; however,

the scattering objects contribute only a small fraction (≈ 2%) to Pluto’s impact

flux. Uncertainties for the CFEPS classical and resonant population estimates are

given in Petit et al. (2011) and Gladman et al. (2012), respectively, and shown in

Table 5.1. As the four dominating sub-populations for the impact flux onto Pluto,

the population estimates for theq < 42 AU hot and stirred classical main objects

have an uncertainty of roughly 25%, the classical outers roughly 75%, and the

plutinos roughly 45%. Lastly, we aimed to have our Pluto dynamics correction

factors good to 10% accuracy. Overall, we estimate a±50% uncertainty in our

total impact rate shown in Table 7.1. To determine the uncertainty in how the

impact rate translates to a cratering rate, one must understand the cratering physics

and the caveats discussed in Chapter 5.
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7.2.4 Cratering Rates onto Pluto

Because our analysis extends to include the impact speed distribution, there is not

a simple one-to-one correspondence between impact rate andcrater formation

rate larger than a given diameter threshold. In order to convert impact rates (/yr)

into primary cratering rates (/yr), we need to know the speeddistribution and the

differential size distribution for the individual populations (Gallant et al., 2009),

which for the CFEPS model was expressed asdN/dH ∝ 10αHg for Hg < 9. There

are several estimates for where a break in theHg-magnitude size distribution oc-

curs and how the distribution is extrapolated to small diameters (Adams et al.,

2014; Bernstein et al., 2004; Fraser and Kavelaars, 2008; Fuentes and Holman,

2008; Gladman et al., 2001; Jewitt et al., 1998; Shankman et al., 2013) . We sim-

ply adjust the CFEPS L7 population estimates fromHg = 9.16 down to a break

atHg = 9.0, and then follow the analysis of Shankman et al. (2013) who placed

a knee or divot atHg = 9.0. We normalize the size distributions to the number of

objects withHg < 9.0 as listed in Table 7.1.

For the first time in the literature, we compute primary cratering rates using

the impact speed distribution for each given Kuiper belt sub-population (see Fig-

ure 7.3), looping over the velocity bins. Starting with the lowest velocity bin, the

needed impactor diameter to create a crater of a desired sizeis computed using the

simple-to-complex crater scaling laws from Zahnle et al. (2003) (equations (5.3),

(5.4a), and (5.4b)), assuming Pluto’s gravitational accelerationg = 64.0 cm/s2,

impactorδ and targetρ (at surface) densitiesδ = ρ = 1.0 g/cm3, the transition di-

ameterDtr ≃ 4 km (Moore et al., 2015), andξ = 0.108 (McKinnon and Schenk,

1995).

Once the needed impactor diameterd to create a crater of a desired threshold

diameterD at the minimum impact speed (Pluto’s escape speed) is computed, this

d is converted to aHg-magnitude using equation (5.1), assuming a g-band albedo

p of 5%. By integrating down the size distribution which is pegged atHg = 9.0

for the population estimates shown in Table 7.1, the number of objects less than

the impactorHg-magnitude (N(< Hg)) is computed. Because we have an im-
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pact speed distribution rather than a single impact velocity, we must then repeat

this process for each subsequently larger velocity bin. By progressing through

the impact speed distribution, slightly higher impact speeds correspond to slightly

smaller impactor diametersd for creating a fixed crater diameterD. This means

that as we computedN(Hg) for progressively smaller impactors we add the num-

ber of additional smaller objects to the total number of objects which can create

the desired crater size. The number of additional objects added for each subse-

quent velocity bin is multiplied by the fraction of the velocity distribution withv

greater than the current velocity bin before it is added to the cumulative number

of objects for the desired crater size.

Once the above process is completed out tovimpact = 6 km/s (the effective

end of the tail of the distribution), the cumulative number of impactors which can

make a crater larger than the desired crater threshold is multiplied by the impact

probability (/yr/object) given in Table 7.1 and corrected by the “Pluto dynamics

correction factor” also given in Table 7.1. The output is thecurrent primary crater-

ing rate (/yr) onto Pluto for the modeled Kuiper belt sub-population and a desired

threshold crater diameterD. Note that this is more-or-less a direct calculation

of the cumulative impact rate, and should be equivalent to the Monte Carlo ap-

proach used by Zahnle et al. (1998) to calculate the differential impact rates on

planetary satellites from assumed cometary orbital distributions. We first repeated

this process three times to study the variation in how the impactor differential

Hg-magnitude size distribution might extend tod < 100 km, using three extrapo-

lation scenarios (Figure 7.2): a single power-law with logarithmic slopeα = 0.8

(qslope = 5); a power-law with a sudden knee atHg = 9.0, slopeαbright = 0.8 on

the bright side of the knee, and slopeαfaint = 0.4 (qfaint = 3) on the faint side of

the knee; and thirdly a power-law with a “divot” atHg = 9.0 with the sameαbright

andαfaint as the knee scenario, but with a contrast (ratio of the numberof objects

in the population just bright of the divot to the number of objects just faint of the

divot) value ofc = 6 (Shankman et al., 2013).
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Kuiper belt Current Current Current Current Current
Sub-Population Cratering Rate Cratering Rate Cratering Rate Cratering Rate Cratering Rate

Type D ≥ 400 km D ≥ 100 km D ≥ 30 km D ≥ 10 km D ≥ 3 km
(/yr) (/yr) (/yr) (/yr) (/yr)

SPL/Knee/Divot SPL/Knee/Divot SPL/Knee/Divot SPL/Knee/Divot SPL/Knee/Divot
S.O. (15 AU ≤ 2e-12 9e-10 2e-7 4e-5 1e-2
a ≤ 200 AU) 1e-12 5e-11 7e-10 9e-9 2e-7

7e-13 8e-12 1e-10 2e-9 3e-8
Classical Inner 2e-12 2e-9 4e-7 6e-5 2e-2

2e-12 7e-11 1e-9 2e-8 3e-7
1e-12 1e-11 2e-10 3e-9 4e-8

Classical Main H 2e-11 1e-8 3e-6 4e-4 1e-1
(q < 42 AU) 1e-11 6e-10 1e-8 1e-7 2e-6

1e-11 1e-10 2e-9 2e-8 4e-7
Classical Main S 1e-11 7e-9 2e-6 3e-4 8e-2

(q < 42 AU) 1e-11 6e-10 9e-9 1e-7 2e-6
1e-11 1e-10 2e-9 2e-8 3e-7

Classical Main S 1e-12 8e-10 2e-7 3e-5 1e-2
(q > 42 AU) 1e-12 7e-11 1e-9 2e-8 3e-7

1e-12 1e-11 2e-10 2e-9 4e-8
Classical Main K 3e-12 2e-9 5e-7 7e-5 2e-2

(q < 42 AU) 3e-12 2e-10 2e-9 3e-8 5e-7
3e-12 3e-11 4e-10 5e-9 9e-8

Classical Main K 7e-13 4e-10 1e-7 2e-5 5e-3
(q > 42 AU) 7e-13 4e-11 6e-10 7e-9 1e-7

7e-13 6e-12 1e-10 1e-9 2e-8
Classical Outer 1e-11 7e-9 2e-6 3e-4 9e-2

1e-11 4e-10 7e-9 8e-8 1e-6
7e-12 7e-11 1e-9 1e-8 2e-7

Resonant 3:2 1e-11 8e-9 2e-6 3e-4 1e-1
1e-11 5e-10 8e-9 1e-7 2e-6
8e-12 9e-11 1e-9 1.7e-8 3e-7

Resonant 2:1 1e-12 7e-10 2e-7 3e-5 8e-3
1e-12 5e-11 8e-10 1e-8 2e-7
8e-13 9e-12 1e-10 2e-9 3e-8

Resonant 5:2 3e-12 2e-9 4e-7 6e-5 2e-2
2e-12 9e-11 2e-9 2e-8 3e-7
2e-12 2e-11 3e-10 3e-9 6e-8

Total 7e-11 4e-8 1e-5 2e-3 5e-1
6e-11 3e-9 4e-8 5e-7 9e-6
5e-11 5e-10 7e-9 9e-8 2e-6

Table 7.2: Currentprimary cratering rates onto Pluto for a single power-law
(SPL) (top), a knee (middle), and a “divot” (bottom) size distribution
extrapolation for 5 sample crater-diameter-thresholds.
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Table 7.2 shows the current cratering rate onto Pluto for 5 different sample

threshold crater diameters and these three impactor size distribution scenarios

(SPL/knee/divot), with the total cratering rates in the last row. The single power-

law is somewhat of a strawman and is used for illustrative purposes of a very steep

size distribution extending down to km-scale. The 400-km-diameter crater case

corresponds roughly to a 100-km-diameter impactor travelling at 2 km/s, thus es-

timating the cratering rate at roughly the break in the impactor differential size

distribution. For each population this crater diameter gives roughly the same cur-

rent cratering rate for all three size distribution scenarios; they are not identical

because some smaller “post-break” KBOs in the high-speed tail intrude into the

D ≥ 400 km regime. The 100-km-diameter crater case is roughly at thelimit

for which we do not expect any craters of this size or larger toexist on Pluto

over 4 Gyr (atcurrent rates). Dropping down in scale toD ≥ 30 km craters,

one begins probing the size distribution beyond the break where the SPL cratering

rates are roughly a factor of 250 higher than for the size distribution with a knee.

The factor of≈ 6 between the knee and divot cratering rates reflects the value

of 6 used for the contrastc. The deviation of the SPL from the knee size distri-

bution of course increases for still-smaller crater diameters. Thirty-km-diameter

and smaller craters should be observed by New Horizons, evenif Pluto is as ge-

ologically active in degrading and erasing craters as Triton (Moore et al., 2015;

Young et al., 2008).

7.2.5 Number of Craters on Pluto’s Surface

The cratering rates (/yr) given in Table 7.2 are for thecurrentcensus of each sub-

population of Kuiper belt objects. It is thought each of these sub-populations have

naturally dynamically eroded with time at differing rates over the last≈ 4 Gyr,

so in order to convert the cratering rates into the cumulative number of craters on

Pluto’s surface, we used theoretically estimated decay rates for each Kuiper belt

population and integrated backwards in time to determine the enhancement. The

time period we feel that can be reliably studied is Pluto’s post-installation phase
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from 3.9 Gyr ago to the present day, where it is reasonable to assume only the

number of projectiles in each population has changed, but the orbital distributions

have remained the same because the Solar System architecture has not changed.

We use the functional form:

N(t)

N0
=

(

4.5 Gyr

t

)b

, 0.5 < t < 4.5 Gyr (7.1)

for the decay rate of each Kuiper belt sub-population, whereN(t) is the num-

ber of objects in the population at some timet measured in Gyr forward

from 4.0 Gyr ago,N0 is the number of objects in the population today at

t ≈ 4.5 Gyr (see Table 7.1). The value ofb is estimated from Kuchner et al.

(2002), Hahn and Malhotra (2005), and Lykawka and Mukai (2005) for the clas-

sical Kuiper belt objects (where we takeb = 0.1), from Morbidelli (1997) and

Tiscareno and Malhotra (2009) for the resonant 3:2 objects (b = 0.52), from

Tiscareno and Malhotra (2009) for the resonant 2:1 objects (b = 0.77), and from

Hahn and Malhotra (2005) for the resonant 5:2 objects (b = 0.05). The scattering

objects are estimated for the time period100 Myr < t < 4 Gyr using the data from

Dones et al. (2004) directly (their figure 8), because a power-law does not repre-

sent the simulations well. A power-law of the formN(t) ∝ t−b with b ∼ 0.7

for the time period 9 Myr< t < 4 Gyr approximately fits the decay (L. Dones,

private communication, 2014), but only fits well at the end-points of the data so

we chose to use the simulation results directly to compute the enhancement.

The enhanced bombardment factor (EBF) shown in Table 7.3 wascomputed

by integrating the above functional form (equation (7.1)) over the past 4 Gyr (t ≈
0.5 Gyr to 4.5 Gyr), comparing the integrated number of objects over the past

4 Gyr to that of a constant population. The EBF is thus a scaling factor needed to

account for the decay of each Kuiper belt sub-population over the past 4 Gyr. It

should be interpreted as the cumulative number of eroding objects in the past being

equivalent to a constant population over the last 4 Gyr that is some multiplicative

factor more than the current population. For example, theb value for the plutinos
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Kuiper belt EBF Crater NumberCrater NumberCrater NumberCrater NumberCrater Number
Sub-Population D ≥ 400 km D ≥ 100 km D ≥ 30 km D ≥ 10 km D ≥ 3 km

Type S/K/D S/K/D S/K/D S/K/D S/K/D
S.O. (15 AU ≤ 4.9 3e-2 18 5000 7e+5 2e+8
a ≤ 200 AU) 3e-2 0.9 10 2e+2 3e+3

1e-2 0.1 2 3e+1 5e+2
Classical Inner 1.08 1e-2 6 2000 3e+5 8e+7

9e-3 0.3 5 7e+1 1e+3
5e-3 0.06 0.8 1e+1 2e+2

Classical Main H 1.08 7e-2 40 10000 2e+6 5e+8
(q < 42 AU) 6e-2 3 40 5e+2 9e+3

4e-2 0.5 7 9e+1 2e+3
Classical Main S 1.08 5e-2 30 8000 1e+6 4e+8

(q < 42 AU) 5e-2 2 40 5e+2 9e+3
5e-2 0.5 7 8e+1 1e+3

Classical Main S 1.08 6e-3 4 900 2e+5 4e+7
(q > 42 AU) 6e-3 0.3 5 6e+1 1e+3

6e-3 0.06 0.8 1e+1 2e+2
Classical Main K 1.08 1e-2 8 2000 3e+5 9e+7

(q < 42 AU) 1e-2 0.6 10 1e+2 2e+3
1e-2 0.1 2 2e+1 4e+2

Classical Main K 1.08 3e-3 2 500 8e+4 2e+7
(q > 42 AU) 3e-3 0.2 3 3e+1 5e+2

3e-3 0.03 0.4 5e+0 9e+1
Classical Outer 1.08 5e-2 30 8000 1e+6 4e+8

5e-2 2 30 4e+2 6e+3
3e-2 0.3 5 6e+1 1e+3

Resonant 3:2 1.53 8e-2 50 10000 2e+6 6e+8
7e-2 3 50 6e+2 1e+4
5e-2 0.5 8 1e+2 2e+3

Resonant 2:1 1.94 9e-3 5 1000 2e+5 6e+7
8e-3 0.4 6 8e+1 1e+3
7e-3 0.07 1 1e+1 2e+2

Resonant 5:2 1.04 1e-2 6 2000 3e+5 8e+7
1e-2 0.4 6 8e+1 1e+3
7e-3 0.07 1 1e+1 2e+2

Total 0.3 200 50000 8e+6 3e+9
0.3 10 200 3e+3 5e+4
0.2 2 40 4e+2 8e+3

Table 7.3: Cumulative number of craters over the past≈ 4 Gyr on the sur-
face of Pluto for 5 sample crater diameters for the three impactor size
distribution scenarios (SPL/knee/divot) given in Table 7.2. EBF stands
for the enhanced bombardment factor that is the scaling needed to ac-
count for the decay of each sub-population over the past 4 Gyr.
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implies that this population was≈ 3.2 times as populous 4 Gyr ago as it is today

(from equation 7.1); its EBF of 1.53 means the integrated number of impacts from

the decaying population over the age of the Solar System is equivalent to that from

a constant population 1.53 times larger than today’s.

Table 7.3 presents the number of craters larger than a given threshold crater

diameterD obtained by multiplying Table 7.2’s cratering rates by 4 Gyrand the

EBF for each sub-population. For example, the number of craters withD ≥ 30 km

generated by the plutinos for a divoted impactor size distribution was found the

following way: (1x10−9) * (4x109) * (1.53) = 8 craters.

Perhaps unsurprisingly, we find that the 3:2 resonant population is the largest

single contributor to the integrated collisional history onto Pluto, accounting for

about a quarter of its impact craters over the last 4 Gyr. Compared with the other

three competing populations that provide major contributions to Pluto’s current

impact flux (theq < 42 AU hot and stirred classical main objects and the classical

outer objects), the 3:2 objects have decayed the most over the past 4 Gyr, mak-

ing them more dominant than these impactor population contributions when inte-

grated over Pluto’s post-installation phase. Even with an EBF of 4.9, the scattering

objects contribute little to Pluto’s collisional history over the last 4 Gyr, only con-

tributing roughly half as much as each of theq < 42 AU hot and stirred classical

main objects and the classical outer objects. Thus, strictly speaking, the popula-

tion of bodies that have cratered Pluto and Charon over the past 4 Gyr are not nec-

essarily the same as the scattering population that impacted the giant-planet satel-

lites. Although the scattering objects and the plutinos mayhave been drawn from

the same parent population long ago and thus show the same size distribution,

the cold classical belt might have a different break point, and is known to have a

steeperHg < 9 slope (e.g., (Adams et al., 2014; Fraser et al., 2014; Petit et al.,

2011)), which together with its ultra-red colors ((Doressoundiram et al., 2008;

Sheppard, 2012)), have been interpreted as possibly indicating an in situ origin,

and thus a separate population from the scattering, resonant, and hot classical

Kuiper belt objects. It is also interesting to note that Table 7.3 indicates there is
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only a≈ 20 − 30% chance that Pluto has even one impact basin (D > 400 km

formed byd & 100 km impactors) formed in the current (i.e. post-installation)

impacting environment.

7.3 Discussion
We anticipate that the interpretation of the cratering record will be fraught with

complications, as we now describe.

7.3.1 Interpretation of Young Surfaces

If New Horizons finds a surface that appears “lightly-cratered” or “young” (es-

pecially if portions of Pluto or Charon appear like Triton),then one would first

compute a crater retention age using the “current day” cratering rates given in Ta-

ble 7.2. With very young regions there is always the difficulty of being sure one

is selecting a region with a single coherent re-surfacing age, but let us assume this

could be done. If the calculated age is small enough that the decay of the impactor

populations is not a concern (roughly a few hundred million years), then the un-

certainty on this derived age will depend essentially entirely on the assumption

of which extrapolation one prefers for projectiles smallerthan the break diame-

ter in the impactor size distribution. Our calculations show that unless the single

power-law impactor size distribution or some other steep size-frequency distri-

bution (SFD) (e.g., cases A and B in Zahnle et al. (2003) and Schlichting et al.

(2013)) actually were the correct model, all cratered surfaces will be unsaturated

over the last 3.9 Gyr forD > 1 km. As an example, Figure 7.4 shows the cumu-

lative number of craters per square km that are larger than several threshold crater

diametersD versus the crater retention age of a surface on Pluto. If the crater

density ofD ≥ 3 km craters on a young surface were to be10−4.5 km−2, then

one would conclude a retention age of≈ 100 Myr if the knee model is the best

representation of the size distribution; in contrast, if the power-law break located

up at impactor diameters of 100 km is a divot, this same surface would require
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Figure 7.4: Logarithm of primary crater density (# craters/km2) on Pluto’s
surface versus age (Gyr) since last surface reset for 5 crater diameters
and three impactor size distribution scenarios. For a givencrater di-
ameter, the inferred crater retention age can vary widely depending on
assumptions of the size distribution. The horizontal line at -7.2 cor-
responds to 1 crater/Pluto surface. Note that theD ≥ 100 km crater
curve for the SPL nearly overlaps theD ≥ 30 km crater curve for
the knee scenario. Some SPL curves cease to rise above the empiri-
cally determined saturation level for the diameter in question (Melosh
(1989); his fig. 10.2).
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nearly≈ 600 Myr of exposure to reach the same crater density. At small crater

diameters the influence of the relatively tiny number of projectiles larger than the

impactor power-law break diameter is irrelevant and this age ratio is essentially

the contrast at the transition diameter. So, how can one knowwhich (if any) as-

sumption/distribution is valid?

7.3.2 The Issue of the Size Distribution Below the Break

At first glance, one might hope that Pluto’s crater record will itself provide infor-

mation that resolves the uncertainty in the behavior of the size distribution near the

power-law break diameter, for without this resolution the factor-of-six is inherent

and dwarfs all other uncertainties in the problem. Unfortunately, our calculations

show that over the last≈ 4 Gyr, Pluto is unlikely to have been struck by even a

single impactor with a diameter larger than the break (d ≈ 100 km,D ≈ 400 km;

see Table 7.3), so onanysurface that post-dates Pluto’s installation onto its current

orbit (if any exist) we expect to see only craters caused by the projectiles smaller

than 100 km in diameter.

However, if any young surfaces are visible upon arrival in the Pluto system,

those young surfaces should record the slope or slopes of thesize distribution over

the range of visible craters. For example, if the entire surface of Pluto appears,

like Triton, to be relatively young, then the existing craters will reflect the size-

frequency distribution (SFD) of the production population(at least, down to the

diameter where pollution by secondaries (Section 7.3.5) begins). In particular it

should be trivial to differentiate between, e.g., the single power-law size distribu-

tion withα ≃ 0.8 (q ≃ 5) and a shallower slope ofαfaint ∼ 0.4 (qfaint ∼ 3), most

likely measured using craters in the 1–100 km diameter range. While finding the

shallower of these two slopes would rule out the steepαbright = 0.8 power-law

continuing uninterrupted from the break diameter down to impactors in the sub-

km-scale range, measuring anαfaint=0.4 does not resolve the question of how

that connects to the well-measured and absolutely-calibrated projectile popula-

tion with d > 100 km. Our estimates (Table 7.3) show that we do not expect
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Figure 7.5: Logarithm of crater density (# craters/km2) larger than a given
crater diameterD on Pluto’s surface versus the logarithm of the crater
diameter for an impactor size distribution with a knee and with a divot
at various surface ages. The solid black line is the crater equilibrium
curve from Melosh (1989). The horizontal line at -7.2 corresponds
to 1 crater/Pluto surface. The subtle change in slope atD = 4 km
corresponds to the transition from simple to complex craters.
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the changing shape caused by the impactor distribution nearthe break (expected

to be recorded only in the 200–500 km crater diameter range) to exist in post-

installation terrains. This is illustrated in Figure 7.5, which shows the cumulative

crater density for craters larger than a threshold diameterD for the knee and divot

impactor size distribution extrapolation scenarios for different surface ages. The

horizontal dashed line at -7.2 corresponds to 1 crater/Pluto surface, meaning any

finite crater density below this line will not be realized on Pluto in the last 4 Gyr.

Thus, one cannot use the size distribution of craters present on “younger” terrains

to differentiate between the knee and divot scenarios.

This being the case, obtaining better than “factor-of-six”crater retention ages

in the Pluto system from our models will require one of two resolutions. First,

future observations of the Kuiper belt that carefully probethed = 10 − 100 km

impactor size range (Hg = 9 − 14) should directly establish the number distribu-

tion of the current projectile population in an absolutely-calibrated way. This is

most likely to be done first for populations whose members come to the smallest

heliocentric distances (allowing detection of the smallerobjects when they are at

perihelion); meaningful improvements are most likely to bemade in the near fu-

ture by continuing to study the scattering objects (for which studies in the range

Hg = 9 − 13 are already possible (Adams et al., 2014; Shankman et al., 2013))

or even more likely in the more plentiful plutino population(for which deeper

surveys can probe down toHg ≈ 11 at the 28 AU perihelion of this population)

(Alexandersen et al., 2014). While there currently are thusfragments of the ob-

served size distributions across the outer Solar System small body populations,

the entire diameter range is needed to make definitive statements about crater re-

tention ages on the surfaces of Pluto and its moons.

Secondly, failing direct study of the current impactor population, it may be

possible to at least detect the presence of the divot in Pluto’s or Charon’s cratering

record itself. Because the current cratering rate is so low,we conclude the divot

could only be visible on surfaces thatpredatethe Pluto-Charon binary installation

in the current Kuiper belt architecture. This could permitD ∼ 200 − 400 km
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craters (which we shall term “basins”) that are caused byd = 50 − 100 km im-

pactors to be present on ancient surfaces.

What would be the signature on the crater distribution as thebombardment

accumulates to the point where the power-law break diameter’s craters become

present? The most obvious manifestation of this will be in the number of basins

present relative to the numberexpectedby extrapolation of theD < 100 km

craters to larger diameters; this produces very different behavior in the knee and

divot scenarios as illustrated in Figure 7.2. This can also be seen in Figure 7.5 of

the cumulative crater density. In Figure 7.5, the sharp power-law break present in

Figure 7.2 has smoothed out to a broader slope change due to both the cumulative

nature of this plot and the width of the impact velocity spectrum. The peak of the

divot, for example, is still atD ≈ 400 km, but the slope change manifests itself

over a broad range of crater diameters (D ≈ 100 km toD ≈ 600 km). Working

from small projectiles up in Figure 7.2, the small craters follow the shallow slope

of theαfaint = 0.4 (qfaint = 3) impactor distribution, but upon reaching a knee,

the slope changes to a much steeperαbright = 0.8 (qfaint = 5) large-impactor dis-

tribution which results in considerablyfewerbasins than the extrapolation of the

shallower power-law would detect. In contrast, in a divot scenario there is a sud-

denexcessof projectiles in thed = 100−200 km range, and so there would be far

more basins present than an extrapolation of the small craters would estimate. The

horizontal line in Figure 7.5 at -7.2 corresponds to 1 crater/Pluto surface. If the

pre-installation bombardment is factors of many larger, and preserved, then this

signal of a knee vs a divot will become accessible on Pluto’s surface. This sud-

den basin excess is represented by a positive slope on a relative crater frequency

(R) plot normalized to a differentialD−3 distribution as is shown in Figure 7.6

(Crater Analysis Techniques Working Group et al., 1979). The horizontal dashed

line in Figure 7.6 refers to the approximate empirically observed level of crater

saturation on various Solar System bodies (see Melosh (1989), chapter 10). The

black squares correspond to 1 crater/Pluto surface on a cumulative plot, so un-

fortunately nothing to the right of those dots is expected tobe visible on Pluto’s
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post-installation terrains. Many times the current integrated bombardment rate

would be needed from Pluto’spre-installation period to move the basin signal to

the visible diameter range on Pluto.

In fact, we postulate that such a basin-excess feature has already been observed

on Saturn’s large moon Iapetus. Iapetus has been geologically inactive for its ob-

servable history; this and its distance from Saturn make Iapetus the best template

to potentially record ancient Kuiper belt (scattering object) impacts. Dones et al.

(2009) demonstrate that craters of thisD > 400 km scale are more than an order

of magnitude more abundant than extrapolation of current impact rates (based on

small impactors (their fig. 19.5 and table 19.4)) suggests. This is also illustrated

in Figure 7.7 using relative crater densities from Kirchoffand Schenk (2010),

where the R-values for basins ofD ≈ 400 km are clearly substantially larger than

those in the 100-to-400 km diameter range, and is statistically consistent with the

Shankman et al. (2013) divot in the scattering object impactor population. Using

the crater scaling law of equations (5.3), (5.4a), and (5.4b), assuming the follow-

ing is true on Iapetus:g = 23 g/cm2, δ = ρ = 1 g/cm3, U = 4.5 km/s,Dtr=15 km

(from Zahnle et al. (2003)), a divot (at impactord = 100 km) corresponds to a

crater diameterD = 600 km on Iapetus (to be compared withD = 400 km on

Pluto). The peak in Figure 7.7 at roughlyD = 400 km could be the signature of

the divot; note the factor of six (value of the contrastc in the “divoted” size dis-

tribution) between the averageR-value of≈ 0.04 for the100 km< D < 300 km

basins andR = 0.25 for theD ≈ 400 km basins in Figure 7.7.

The minor discrepancy between the 600 km predicted crater diameterD cor-

responding to the divot on Iapetus and what appears to be the divot in Figure 7.7

atD = 400 km would be eliminated if one adjusted the assumed impactor albedo

used to compute the impactor diameter corresponding to theHg-magnitude (Equa-

tion 5.1) for which the divot is pegged. Creating a crater with D = 400 km on

Iapetus requires an impactor with diameterd ≃ 60 km, whileD = 600 km cor-

responds tod ≃ 100 km. Because constant flux∝ p ∗ d2, wherep is the albedo,

a decrease in the divot impactor diameterd by a factor of (100 km/60 km) = 1.7
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Figure 7.6: Relative crater frequency plot of the same information in Fig-
ure 7.5. The bump atD ≈ 400 km is due to the divot. The black
squares correspond to 1 crater/Pluto surface on a cumulative plot, so
unfortunately nothing to the right of those dots will likelybe visible
on Pluto’s post-installation terrains, except by statistical fluctuation. It
would require many times the current integrated bombardment rate to
bring this portion of the relative crater frequency to the visible range
on Pluto. The sudden slope change atD = 4 km corresponds to the
transition from simple to complex craters as shown in Figure7.5.

132



Figure 7.7: Relative crater densities as determined by Kirchoff and Schenk
(2010) for Iapetus, the second largest midsized moon of Saturn. Com-
pare with Figure 7.6. Cratered plains (cp) refer to broad counting re-
gions. The horizontal line is empirical saturation. Note the factor of
six (value of the contrastc in the “divoted” impactor size distribution)
between the averageR-value of≈ 0.04 for the100 km< D < 300 km
basins andR = 0.25 for theD ≈ 400 km basins.
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requires an albedo increase by a factor of 2.9 in order to movethe crater diame-

ter corresponding to the divot fromD = 600 km toD = 400 km in Figure 7.7.

This would require modifying our nominalp = 0.05 albedo to≃ 0.15. Obser-

vations estimate TNO albedos range from≃ 2.5% to≃ 25% (Fraser et al., 2014;

Lacerda et al., 2014; Stansberry et al., 2008) so a mean visual albedo ofp = 15%

may be reasonable. It is intriguing that one can use the basinexcess on ancient

cratered surfaces to find the physical impactor diameter corresponding to the divot,

and therefore the albedo, given the uncertainty inherent inthe crater scaling law.

Because the uncertainties in the crater scaling law (equations (5.3), (5.4a), and

(5.4b)) outweigh the uncertainty in TNO albedo measurements, we will not redo

our analysis with the larger albedo.

However, given that the scattering objects are the primary impacting popula-

tion onto Iapetus one wouldn’t expect the “excess basin” feature to have arisen

in the past 4 Gyr, but rather during the first 0.5 Gyr of Solar System evolution

(sometimes referred to as the Late Heavy Bombardment (LHB),at least in regard

to Saturn). Such a feature would be natural if the outer SolarSystem projec-

tile population had a primordial divot at the break diameterof d ∼ 100 km. In

a plausible “born big” accretional scenario (discussed in Shankman et al. (2013)

and Johansen et al. (2014)), the “smaller”d < 100 km projectiles could be ex-

tremely underabundant because they only exist as the collisional fragments of

the d > 100 km bodies that are the result of planetesimal formation; thesmall

bodies slowly rise in number during the subsequent collisional evolution (see

Campo Bagatin and Benavidez (2012) and Benavidez et al. (2012) for an illustra-

tion).

If Pluto, or possibly Charon, preserves its ancient surface, we expect a similar

pattern of a large-basin excess to have been created when Pluto was in its pre-

installation location, where the crater production rate was much higher but typical

impact speeds may have been even lower than in the modern environment. How

visible this basin excess signal will be on Pluto depends on whether crater satu-

ration has been reached and whether even in a saturated statethe signature can
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persist (although the Iapetus case implies it can). Becausethe general form of the

production population can be retained even in the saturatedstate when large im-

pacts dominate, as Chapman and McKinnon (1986) and Richardson (2009) both

conclude, this “basin excess” should still be present in terrains even after specific

chronological utility has been lost. Such a terrain would still indicate a roughly

4 Gyr crater retention age. Note that the crater distribution superposed on the

basin and its ejecta blanket could potentially provide an individual basin’s age.

7.3.3 Returning to Crater Retention Ages for Young Surfaces

Even if a basin excess is observed on Pluto or Charon, it may simply provide evi-

dence for the presence of a divot in the impactor size distribution. This would not

alleviate all uncertainties in the crater retention ages for young surfaces, because

a precise measure of the contrast is needed to tell us how the well-characterized

impactor size distribution connects tod < 100 km impactors that produce the

measurable crater densities on Pluto. If the observedD < 100 km crater produc-

tion function slope has a value ofα ≃ 0.4 or greater, then one is in the regime in

which the small craters will saturate first. Thus, we expect that it will be possible

to assign model-dependent surface ages, either using the most-abundant (small)

craters visible in unsaturated regions, or using the diameters above which the sur-

face is not saturated if the smallest craters have reached saturation (this is standard

for “steep” impactor populations). We remind the reader that what we refer to as

a “shallow” Kuiper belt population (withαfaint = 0.4 andqfaint = 3) is actually

on the steep end insofar as inner Solar System crater populations are concerned

(e.g., Chapman and McKinnon (1986)), thus populations withα ∼ 0.8 (q ∼ 5)

are much steeper than are ever discussed in inner Solar System cratering. To

quantify this, Figure 7.6 shows that an R value of≈ 0.02 at D = 1 km cor-

responds to about 1 Gyr of bombardment for a knee scenario, but ≈ 4 Gyr for a

divot. Because this is not saturated (R value< 0.2), if these impactor distributions

are valid, any surface region reset after Pluto’s installation onto its current orbit

should not be saturated (except possibly at sub-km scales orby secondary craters;
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Logarithmic Current Current Current Current Current
Slope Cratering Cratering Cratering Cratering Cratering
αfaint Rate Rate Rate Rate Rate

D ≥ 400 km D ≥ 100 km D ≥ 30 km D ≥ 10 km D ≥ 3 km
(/yr) (/yr) (/yr) (/yr) (/yr)

Knee/Divot Knee/Divot Knee/Divot Knee/Divot Knee/Divot
0.3 6e-11 1e-9 1e-8 8e-8 7e-7

4e-11 3e-10 2e-9 1e-8 1e-7
0.4 6e-11 3e-9 4e-8 5e-7 9e-6

5e-11 5e-10 7e-9 9e-8 2e-6
0.5 6e-11 5e-9 2e-7 4e-6 1e-4

5e-11 8e-10 3e-8 6e-7 2e-5

Table 7.4: Total currentprimary cratering rates onto Pluto for two impactor
size distribution scenarios: a knee (top) and a “divot” (bottom) for 5
sample crater threshold diameters with three different values of loga-
rithmic slopeαfaint.

see Section 7.3.5) and a model-dependent age could be provided. Conversely, as-

suming the small impactor size distribution extrapolationfollows a single slope of

αfaint = 0.4, any saturated surface inD ≥ 1 km craters necessarily dates to the

pre-installation phase in which there is no absolute calibration of the bombard-

ment rate; we would conclude that little can thus be said about such a region other

than it must date to at least& 4 Gyr ago.

7.3.4 The Effect of Varyingαfaint

To cover a portion of the plausible range of values for the logarithmic slope at the

small end (d < 100 km) of the impactor size distribution, we computed crater-

ing rates for two additional single-slope extrapolationαfaint values:αfaint = 0.3

(qfaint = 2.5) andαfaint = 0.5 (qfaint = 3.5). Table 7.4 shows the total cratering

rates for these two values ofαfaint as well as a repeat of the last line of Table 7.2

whereαfaint = 0.4 (qfaint = 3). The SPL is absent in Table 7.4 because the

SPL cratering rates do not change whenαfaint is varied. D ≥ 400 km craters

correspond to roughly the impactor diameter at the break in the power-law size
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distribution, so the cratering rates at this threshold diameter are also unchanged as

αfaint varies. As one moves to smaller diameters, the cratering rates for different

slopes diverge, while the factor-of-six difference between the knee and divot sce-

narios is maintained for crater diameters corresponding tod < 100 km impactors.

Figure 7.8 shows the 4 Gyr curve from Figure 7.5 whereαfaint = 0.4 along

with the 4 Gyr curves forαfaint = 0.3 andαfaint = 0.5. The crater equilibrium

curve indicates saturation forD . 12 km andD . 2 km for theαfaint = 0.5 knee

and divot scenarios, respectively, in≃ 4 Gyr of bombardment. Thus, a saturated

surface inD ∼ 1 km craters doesnotnecessarily date to the pre-installation phase.

Because New Horizons should be able to observe craters down to 1-2 km

in diameter on the encounter hemisphere, and down to 500 m in diameter in a

high-resolution swath (Moore et al., 2015; Young et al., 2008), saturation in either

D . 12 km craters orD . 2 km craters could be visible on≤ 4 Gyr terrains if

αfaint = 0.5. No saturation inD . 12 km craters would put an upper limit on

the value ofαfaint at≤ 0.5, for a heavily cratered terrain and if the impactor size

distribution has a single-slope extrapolation in either the form of a knee or a divot

at d = 100 km down to sub-km sizes. For10 ≤ D ≤ 100 km, the slope of the

production function may be able to be measured. Again, the slope alone will not

be sufficient to provide an absolute age.

Figure 7.9 compares the 4 Gyr relative crater frequency curves from Figure 7.6

with theαfaint = 0.3 andαfaint = 0.5 cases; clearlyαfaint ≈ 0.35 would produce

a flat distribution on the R-plot (corresponding toqfaint = 2.75). Varyingαfaint

slightly changes the amount of basin excess visible in the divot scenario, but this

will not be discernible. Theαfaint = 0.3 (qfaint = 2.5) curve shows a situa-

tion where a long-term bombardment would eventually saturate at the largest size

craters before the smaller size craters, but in this case, even the smallest primary

craters will be far below saturation in 4 Gyr of bombardment.Forαfaint = 0.5,

craters withD ≤ 3 km orD ≤ 20 km would be saturated for the divot and knee

scenarios, respectively. This would mean a more restrictedvisible crater diameter
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Figure 7.8: Logarithm of crater density (# craters/km2) larger than a given
crater diameterD on Pluto’s surface in 4 Gyr versus the logarithm of
the crater diameter for an impactor size distribution with aknee and
with a divot for three values ofαfaint. The solid black line is the
crater equilibrium curve from Melosh (1989). The horizontal line at
-7.2 corresponds to 1 crater/Pluto surface. The slight change in slope
at D = 4 km corresponds to the transition from simple to complex
craters.
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Figure 7.9: Relative crater frequency plot, similar to Figure 7.6, but for three
values ofαfaint over 4 Gyr of flux. The black squares correspond to 1
crater/Pluto surface on a cumulative plot, so unfortunately nothing to
the right of those dots will likely be visible on Pluto’s post-installation
terrains, except by statistical fluctuation. The sudden slope change at
D = 4 km corresponds to the transition from simple to complex craters
as shown in Figure 7.8.
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range (larger than saturation) would be usable for making inferences about the

production population.

7.3.5 Secondary Craters

The discussion has so far concentrated on primary craters. Secondary craters are

expected on Pluto and Charon as well (Bierhaus and Dones, 2015), although of

course they are generally much smaller than the primary craters that cause them.

A general rule of thumb is that the largest secondaries are 0.05 the size of a given

primary (Melosh, 1989), which is in line with more recent studies of icy satel-

lite secondaries (Bierhaus et al., 2012; Singer et al., 2013). Although the largest,

proximal secondaries on icy satellites can reach 0.1 the size of their generative pri-

mary, the sizes of distant secondaries, which are the ones that can be confused with

the primary population (McEwen and Bierhaus, 2006), are much smaller. Sec-

ondary populations are generally quite “steep”, with differential size-frequency

indices (akin toqslope for the impactor populations)> 3. Thus, steep crater SFDs

on Pluto or Charon at sizes of a few km or less (Bierhaus and Dones, 2015) should

be interpreted cautiously. This will depend on the characteristics of the global

crater population, however; if there are relatively few large craters or basins, then

their influence on the small crater populationthat New Horizons can resolvewill

be negligible. In addition, it is unclear if all characteristics of secondary crater

production hold for the sub-hypervelocity impact regime. New Horizons should

be able to find out, however. The exchange of ejecta between Pluto, Charon,

and the four smaller satellites is possible (Stern, 2009). However, the resulting

sesquinary craters produced by this exchange will be difficult to distinguish from

secondary craters on Pluto.

7.3.6 Implications of a “Wavy” Size Distribution

The above analysis has been performed assuming a single-slope extrapolation

from d > 100 km impactors to smaller sizes. More likely, the break in the size

distribution atd = 100 km is instead the first of several slope changes between
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the d > 100 km impactors and the sub-km regime as the “wavy” size distribu-

tions of the asteroid belt show. Proposals for outer Solar System populations were

made by Minton et al. (2012) (hereafter referred to as M12) and Schlichting et al.

(2013) (hereafter referred to as S13). S13’s model for the collision-generated pop-

ulation of KBOs today (shown in their fig. 7) hasαbright = 0.6 (qbright = 4) for

d > 60 km, αfaint1 = 0.2 (qfaint1 = 2) for 20 km < d < 60 km, αfaint2 = 0.96

(qfaint2 = 5.8) for 2 km < d < 20 km, αfaint3 = 0.32 (qfaint3 = 2.6) for

0.2 km< d < 2 km, andαfaint4 = 0.54 (qfaint4 = 3.7) for 0.02 km< d < 0.2 km.

S13 state the only difference between their small KBO size distribution and the

results of the Saturnian crater analysis of M12 (their fig. 1)is that M12 find a shal-

lower slope ofαfaint2 = 0.64 (qfaint2 = 4.2) for the2 km< d < 20 km range. D.

Minton (private communication, 2014) states M12 was preliminary, so we use his

model as stated in Schlichting et al. (2013) simply as another illustrative example

of a “wavy” size distribution.

Portions of this “waviness” belowd = 100 km may already have been ob-

served in the size distribution observations of the Jupiterfamily comets (JFCs)

by Solontoi et al. (2012). Their fig. 10 shows the cumulative number of JFCs as

a function of radius assuming an albedo ofp = 0.04. They find a break in the

size distribution atd ≈ 6 km fromα = 0.73 for d ≈ 6 − 12 km toα = 0.2 for

d ≈ 2 − 6 km. This break between the shallow and steep slopes does not match

the location of the M12 and S13 models neard = 60 km where they change from

a steep slope (αbright = 0.6) to a shallower slope (αfaint1 = 0.2). This break

between the steep and shallow slopes does not quite match thelocation of the

M12 and S13 models neard = 2 km where the latter models change from a steep

slope (αfaint2 = 0.96 or αfaint2 = 0.64) to a shallower slope (αfaint1 = 0.32).

However, repeating the albedo exercise of Section 7.3.2, analbedop = 0.24 pro-

vides a factor of 3 decrease in break diameter (fromd = 6 km to d = 2 km),

which would shift the Solontoi et al. (2012) size distribution break to align with

the similar diameter break in the M12 and S13 models atd = 2 km.
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To illustrate how multiple slope changes in the KBO size distribution affects

the cratering history of Pluto, we modeled the described size distributions of

M12 and S13 by pegging these two size distributions to the CFEPS KBO sub-

population estimates atHg = 9.0 (corresponding tod = 108 km assuming an

albedo ofp = 0.05). Figure 7.10 shows the cumulative crater density on Pluto

using the M12 and S13 impactor size distributions. Because this is a cumulative

plot, the abrupt slope transitions smooth out over a range ofcrater diameters. The

smoothing effect is enhanced by our use of the realistic impact velocity spectrum.

The two models lie on top of each other forD & 100 km, then diverge due to

their different slopes from10 km . D . 100 km before becoming parallel for

D . 10 km where their slopes once again match. The solid diagonal black line

in Figure 7.10, representing crater equilibrium, indicates the S13 impactor size

distribution saturates for anyD . 20 km in 4 Gyr, while the M12 model does not

saturate forD ≥ 1 km. The S13 model in fact saturates forD . 12 km craters

in only ≈ 1 Gyr. To link this back to the discussion in Section 7.3.4, both the

S13 andαfaint = 0.5 size distribution models saturate forD . 10 km craters,

so observing saturated craters at this diameter range in NewHorizons images will

not determine the preferred size distribution model alone.Theshapeof the pro-

duction function may nonetheless be present in Pluto’s cratering record for craters

with 10 km. D . 100 km, however, as long as saturation of the entire surface in

small craters does not corrupt (i.e., degrade recognition of) theD = 10− 100 km

range.

Figure 7.11 compares the relative crater frequency for the M12 and S13 mod-

els with the single-slope knee and divot scenarios presented earlier, for three

sample bombardment durations. The drop in relative crater frequency from

D ≈ 400 km andD ≈ 100 km in Figure 7.11 for the M12 and S13 models is

due to their shallow slope (αfaint1 = 0.2) in this crater diameter range being less

thanα ≈ 0.35 c. This drop is different from the sudden drop in the relative crater

frequency fromD ≈ 500 km toD ≈ 350 km due to a divot in the impactor size

cFor the crater scaling law in use,α ≃ 0.35 produces an R value that does not depend onD.
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Figure 7.10: Logarithm of crater density (# craters/km2) larger than a given
crater diameterD on Pluto’s surface versus the logarithm of the crater
diameterD for the impactor size distributions from Minton et al.
(2012) and Schlichting et al. (2013), for various exposure durations.
The solid black line is the crater equilibrium curve from Melosh
(1989). The horizontal line at -7.2 corresponds to 1 crater/Pluto sur-
face.
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distribution. As shown in Figure 7.11, the basin excess due to the divot is more

tightly confined to a small crater diameter range than the broad “dip” that would

be present fromD = 50 km toD = 500 km in the M12 and S13 models. Unfortu-

nately, this size range will not be expressed in the Pluto cratering record in 4 Gyr

of bombardment (solid squares in Figure 7.11, although it might be going further

back in time). The very steep slope betweenD = 10 km andD = 100 km in the

S13 model produces rapidly increasing crater densities asD drops and saturates at

evenD ≈ 20 km in 4 Gyr. We also note the upturn (steepening) of the craterSFD

at small (D < 2 km) sizes in Figure 7.11. Nominally, this could be interpreted

as evidence of secondary contamination as discussed above,but given the overall

steepness of the M12 and S13 distributions, this would be physically unlikely.

The crater diameter range most reliable for the interpretation of Pluto’s cra-

tering record provided by the New Horizons spacecraft will likely be theD ≈
30 − 100 km range where one might hope to have the slope of the production

function measured. Because we expect models with multiple slope changes make

a more realistic representation of the impactor size distribution than a single

slope, the “waviness” should be present in the production function. Depending

on the age of the surface, however, it is likely there will be difficulties in say-

ing anything about the shape of the implied impactor size distribution for this

crater diameter range. The range for which the production function would be

measurable obviously increases as a function of surface age(left of the colored

squares in Figure 7.11). While direct observation of the crater distribution in the

30 km≤ D ≤ 100 km range will thus establish relative numbers of impactors as

well as the shape of the production function, it willnot by itself provide a firm

connection to the absolutely calibratedd > 100 km impactors. As a result, only

model-dependent ages can be found for the surfaces of Pluto and Charon. For

example, ifR ≈ 0.003 for D ≈ 30 km craters on Pluto, one would conclude a

crater retention age of≈ 100 Myr if the S13 model is the best representation of

the impactor size distribution,≈ 1 Gyr if the M12 or single-slopeαfaint = 0.4
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Figure 7.11: Relative crater frequency plot for the Minton et al. (2012) and
Schlichting et al. (2013) impactor size distribution models and the
αfaint = 0.4 knee and divot extrapolations. The colored squares
correspond to 1 crater/Pluto surface on a cumulative plot, so noth-
ing to the right of those dots will likely be visible on Pluto’s post-
installation terrains.
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knee size distributions are most accurate, or≈ 4 Gyr if one favors theαfaint = 0.4

divot size distribution.

Even if the surface of Pluto (and especially Charon) is completely saturated,

one would still hope to be able to find the largest “fresh” crater to have formed

on the surface and attempt to measure the production function superposed on this

“fresh” crater and its ejecta blanket. Using any of the size distributions discussed

(S13 model, M12 model, knee withαfaint = 0.4, or divot with αfaint = 0.4),

we compute that to 95% confidence there has been at least oneD & 50 km crater

formed within the past 1 Gyr and this thus sets the scale for the largest “fresh” fea-

ture one might hope to find on Pluto’s surface. Figure 7.12 is similar to Figure 7.10

for up to 1 Gyr of bombardment from the S13 and M12 models. The horizontal

line corresponds to 1 crater/surface area of that largest “fresh”D & 50 km crater

and its ejecta blanket (which we take to be roughly 100 km in diameter). The

superposed production function can thus be measured above this horizontal line.

Because the S13 and M12 models have the same slope for the portion of the

impactor size distribution corresponding to the above crater diameter range, only

model dependent ages can be determined for such a surface. Such ages will differ

by a factor of≈ 30 between the S13 and M12 models, as indicated by the near

overlap of the 1 Gyr M12 curve and the 30 Myr S13 curve in Figure7.12. How-

ever, the two scenarios yield a rather different qualitative picture. TheD & 50 km

crater that formed to 95% confidence≈ 1 Gyr ago will already have saturated if

the S13 model is correct (and, dramatically, due to all craters atall diameter bins

below≈ 15 km). Even at the mean formation intervald for aD & 50 km crater

of 300 Myr, the largest “fresh” crater present on Pluto should have nearly reached

saturation in the S13 model scenario. Therefore, the S13 model would predict

there are most likelyno large unsaturated craters on Pluto; only such a steep size

distribution can cause the surface to saturate so quickly. Observing such a sit-

dThat is, the mean time between formation ofD & 50 km craters on Pluto is 300 Myr, even if
it takes a Gyr to be 95% confident that one will be formed on the surface.
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Figure 7.12: Logarithm of crater density (# craters/km2) larger than a given
crater diameterD on Pluto’s surface versus the logarithm ofD,
for the impactor size distribution from Minton et al. (2012)and
Schlichting et al. (2013), for various exposure durations.The dashed
horizontal line corresponds to one crater superposed on aD & 50 km
crater and its 100 km diameter ejecta blanket (to 95% confidence the
largest “fresh” crater which will have formed in the past 1 Gyr). The
solid diagonal line is the small-crater equilibrium curve.The S13
model indicates it is unlikely anyD & 50 km “fresh” crater on Pluto’s
surface will not appear heavily cratered and near saturation (e.g., see
the crater Penelope on Tethys). In contrast, the M12 model suggests
the “freshest”D & 50 km crater floor will not be near saturation and
a production function should be measurable on the crater floor and
surrounding ejecta blanket. A “freshest”D & 50 km crater which is
lightly cratered would need to be tens of Myr old in the S13 model
scenario.
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uation on Pluto would support the occultation measurement (Schlichting et al.,

2012) motivating the S13 model.

If, however, one or several un-saturated “fresh”D & 50 km craters are present

on Pluto, a superposed crater production function should bemeasurable (depend-

ing on proximity to the terminator at encounter), and a model-dependent age

(varying by a factor of≈ 30) could be assigned to the region. For example,

again examine the overlapping 30 Myr S13 and 1 Gyr M12 model curves in Fig-

ure 7.12. Nominally the production function might look likethe 1 Gyr M12 model

(with a largest superposed crater ofD ≈ 12 km); but the S13 model would im-

ply a 30 Myr crater retention age and that the 50 km crater formed extremely

recently. However, the S13 model suggests a mean formation interval of 300 Myr

for D & 50 km, with thus only a low 30/300 = 10% probability of the crater

having formed recently enough to be so lightly cratered, making this proposed

projectile size distribution less likely. In contrast, theM12 model would expect a

mean formation interval of≈ 1 Gyr for D & 50 km craters. There is thus likely

a way to test the qualitative difference between these two models from the New

Horizons data alone at least in terms of likelihood.

This “largest fresh crater in a Gyr” argument was chosen to illustrate how

quickly the very steep size distribution of the S13 model would predict even the

“freshest” craters saturate. The largest “fresh” crater expected to form (95% con-

fidence) can, however, be computed for any time interval. Foran event in the last

Gyr, neither model would predict the “fresh” crater to be saturated, however the

number of craters expected to be on the crater floor and its ejecta blanket will be

different between the two models as the reasoning above describes. For exam-

ple, the largest “fresh” crater expected to form (to 95% confidence) in 100 Myr

(D & 30 km) is not much smaller than in 1 Gyr (D & 50 km) due to the steep

impactor size distribution in this portion of the crater production function. The

S13 model would predict there should be a measurable production function on

this surface, especially if the crater is close to 100 Myr old. The M12 model, on

the other hand, would predict very few craters should be present on the “fresh-
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est”D & 30 km crater if it formed 100 Myr ago. Qualitatively, the S13 model’s

very steep size distribution would predict that all “fresh”craters should be quickly

recratered and the M12 model would predict recratering to occur less rapidly.

We note this line of argument will be complicated or obviatedif Pluto’s surface

is extremely young due to surface-atmospheric interactions (Stern et al., 2015).

An analogous argument may work for Charon, however, and is discussed in Sec-

tion 7.3.7.

7.3.7 Charon

Zahnle et al. (2003) state that the impact rate onto Charon is16% that on Pluto

accounting for gravitational focusing with an average system encounter veloc-

ity of 1.9 km/s. Using our modified̈Opik collision probability code, we find

the total impact rate onto Charon from the various Kuiper belt sub-populations is

9.2x10−12/yr for Hg < 9 impactors. This is (9.2x10−12/yr) / (4.8x10−11/yr) = 0.19

that of the total impact rate on Pluto, in rough agreement with Zahnle et al. (2003).

This multiplicative factor does not, however, convert total Pluto cratering rates

into total Charon cratering rates. The crater scaling law (shown in equations (5.3),

(5.4a), and (5.4b)) for Charon is influenced by the differentvalue of gravitational

accelerationg on Charon (g = 26 cm/s2) from on Pluto (g = 64 cm/s2) and a dif-

ferent impact velocity range because Charon’s escape speed(vesc = 0.675 km/s)

is smaller than Pluto’s (vesc = 1.2 km/s)e. The difference in the crater scaling law

between Pluto and Charon means each crater diameter corresponds to a different

impactor diameter for Charon than on Pluto, so each size distribution extrapolation

(SPL/knee/divot) produces a different cratering ratelarger than some fixed crater

D on Charon compared with that on Pluto. The outcome is shown inTable 7.5.

The cratering rates for fixed threshold crater diameter on Charon are≈ 40%

that on Pluto for the SPL cases and≈ 25% for the knee and divot scenarios. It is
eFor a typicalv∞, a fixed-diameter impactor is accelerated less by the smaller gravitational

focusing of Charon compared with that of Pluto, but the≈ 2.5 times smaller gravitational accel-
erationg for Charon outweighs this velocity effect, resulting in larger craters on Charon than on
Pluto for a fixed impactor diameter.
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Size Current Current Current Current Current
Distribution Total Total Total Total Total

Extrapolation Cratering Cratering Cratering Cratering Cratering
Rate Rate Rate Rate Rate

D ≥ 400 km D ≥ 100 km D ≥ 30 km D ≥ 10 km D ≥ 3 km
(/yr) (/yr) (/yr) (/yr) (/yr)

SPL 2e-11 1e-8 4e-6 6e-4 2e-1
Knee 2e-11 7e-10 1e-8 1e-7 3e-6
Divot 1e-11 1e-10 2e-9 2e-8 4e-7

Table 7.5: Current total primary cratering rates onto Charon (≈ 25% to
≈ 40% those on Pluto) using our derived impact velocity distribution
for all Kuiper belt sub-populations and three impactor sizedistribution
scenarios: single power-law (SPL) (top), knee (middle), and “divot”
(bottom) for 5 threshold crater diameters.

unsurprising that the knee and divot scenarios give the samemultiplicative factor

for the cratering rate on Charon to that on Pluto, because they have the same slope

for d < 100 km impactors. The SPL slope diverges from the knee/divot slope at

smaller diameters, so because Charon’s cratering rate accesses smaller impactors

than Pluto for the same crater diameter threshold, the Charon SPL cratering rates

should be a larger percentage of the Pluto SPL cratering rates than for the Charon-

to-Pluto knee/divot cratering rates. The integrated number of craters estimated on

Charon’s surface over the last 4 Gyr are shown in Table 7.6. Since there is not a

simple conversion from cratering rates on Pluto to those on Charon, Figure 7.13

provides both the crater density plot and R-plot for Charon using the single-slope

knee/divot size distribution extrapolations withαfaint = 0.4 as well as the M12

and S13 size distributions.

This allows model-dependent ages to be determined for a post-installation

Charon just as is possible for a post-installation Pluto as discussed in Sec-

tions 7.3.1 and 7.3.3 above. As implied earlier, Pluto’s active surface-atmosphere

exchange and volatile surface ices (CH4, N2) may work together to yield either

a young surface, or obscure an older, heavily cratered one (Stern et al., 2015).

Charon, however, has none of these ices on its surface to our knowledge, no de-
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Figure 7.13: Top Left: Similar to Figure 7.5 except for Charon. The hori-
zontal line at -6.6 corresponds to 1 crater/Charon surface.Top Right:
Relative crater frequency plot for Charon. Similar to Figure 7.6 ex-
cept for Charon. Bottom Left: Similar to Figure 7.10 except for
Charon. Bottom Right: Similar to Figure 7.11 except for Charon.
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Size Total Total Total Total Total
Distribution Crater Crater Crater Crater Crater

Extrapolation Number Number Number Number Number
D ≥ 400 km D ≥ 100 km D ≥ 30 km D ≥ 10 km D ≥ 3 km

SPL 0.1 80 20000 3e+6 1e+9
Knee 0.09 3 50 7e+2 1e+4
Divot 0.05 0.6 9 1e+2 2e+3

Table 7.6: Cumulative number of craters over the past 4 Gyr on the surface
of Charon for 5 sample threshold crater diameters for three impactor
size distribution scenarios (SPL/knee/divot) given in Table 7.5.

tectable atmosphere (Sicardy et al., 2006), and as a smallerbody should be inter-

nally cooler and less active (McKinnon et al., 2008). It should possess older if not

ancient surfaces. In principle, a basin excess due to the presence of a divot in the

impactor differential size distribution (discussed in Section 7.3.2) may possibly

be visible on Charon’s most ancient surfaces. Note that the visible crater diameter

range for which the production function (over 4 Gyr) can be measured is shifted

to slightly smaller craters on Charon than on Pluto. The crater SFDs measured

on both bodies for these overlapping crater diameter ranges(D = 20− 60 km on

Charon andD = 30− 100 km on Pluto) should provide the most reliable insights

into the cratering history of the Pluto system and thus the size distributions in the

Kuiper belt. Note that because Charon is tidally locked, a leading/trailing crater

asymmetry is possible; the ratiovorb/v∞ ∼ 0.1 is comparable to that of Earth’s

Moon (Gallant et al., 2009) and so a∼10% enhancement (deficit) of the of the

crater density near Charon’s apex (antapex) of motion relative to the mean crater

density may be visible if the global coverage is sufficient.

To parallel the discussion at the end of Section 7.3.6, the largest “fresh” crater

to have formed on Charon in 3 Gyr (chosen to illustrate the timescale the S13

model predicts rapid resaturation for Charon, compared with 1 Gyr on Pluto) to

95% confidence according to the S13 impactor size distribution model is, coin-

cidentally, also≈ 50 km in diameter. As shown in Figure 7.12, the horizontal

line at -4.5 in the bottom left panel of Figure 7.13 corresponds to 1 crater/surface
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area of that largest “fresh”D & 50 km crater and its 100 km ejecta blanket. Just

as on Pluto, the S13 model would predict thisD & 50 km crater should saturate

quickly, whereas the M12 model would not predict this craterto reach saturation

in 3 Gyr. No matter the size of the “freshest” crater one looksfor on Charon (as

on Pluto), the distinguishing property of the two size distribution models is how

likely the crater is to be recratered after formation.

7.3.8 The Four Smaller Moons

We have not repeated our full analysis for the four smaller satellites of Pluto (Styx,

Nix, Kerberos, and Hydra). Instead, we have estimated the time (to roughly a

factor of three accuracy) it would take for each of these satellites to be catastroph-

ically disrupted using the current Kuiper belt sub-populations. Our estimate is

based on the timescale between collisions for catastrophicdispersal of the tar-

get body, calling this the “disruption timescale”. We compute one disruption

timescale estimate for Nix and Hydra since they are of comparable size and an-

other for Styx and Kerberos. Taking the diameter of Nix and Hydra to be≈ 45 km

(using mass, albedo = 0.4, and density estimates from Kenyonand Bromley

(2014)), we use the catastrophic disruption threshold equation for the dispersal

of half the target mass from Leinhardt and Stewart (2012),

Q∗

RD = 0.5µV ∗2/Mtotal (7.2)

whereQ∗

RD is the specific energy required for dispersal of a catastrophically

disrupted body,µ is the reduced mass (MprojectileMtarget/Mtotal), V ∗ is the crit-

ical impact velocity for catastrophic disruption, andMtotal is the total mass of

the projectile and target. AssumingMtarget ≫ Mprojectile, we solve the above

equation for the mass of the projectile needed to disperse the target, assuming

V ∗ ≈ 1.5 km/s (mostly fromv∞ since the orbital speed around the Pluto-Charon

barycenter and escape velocity are small) and estimatingQ∗

RD from figure 11 of

Leinhardt and Stewart (2009) for an icy target 45 km in diameter (Q∗

RD = 7x103
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J/kg, similar to that from figure 7 of Benz and Asphaug (1999)). We find that for

catastrophic dispersal of either Nix or Hydra an impactor with diameterd ≥ 8 km

is neededf . Scaling the impact probability onto Pluto by the ratio of surface areas

corrected for gravitational focusing gives the impact probability (/yr/projectile)

for each sub-population onto Nix and Hydra. Multiplying each impact proba-

bility by the number of objects withd ≥ 8 km for each sub-population gives

the catastrophic disruption rate (/yr) for each sub-population. The resulting total

current catastrophic disruption rate onto Nix and Hydra is 3.5x10−12/yr for the

αfaint = 0.4 knee size distribution scenario. The disruption time for Nix and

Hydra is therefore≈ 300 Gyr for theαfaint = 0.4 knee size distribution extrapo-

lation for thecurrent impactor population, and six times this,≈ 1800 Gyr, for the

divot. Integrating back to the larger impact rate≃ 4 Gyr ago, the disruption time

decreases to≈ 200 Gyr for the knee scenario and≈ 1200 Gyr for the divot. Com-

paring these estimates to those from the two “wavy” impactorsize distributions,

at this impactor size, the number of objects in the projectile population is simi-

lar to the knee scenario, so these “wavy” size distributionsalso would not result

in catastrophic disruption of Nix and Hydra. Even if the critical impact velocity

is increased to the tail of Pluto’s impact velocity spectrum(6 km/s), where the

speeds are higher but the impact probabilities are lower, the disruption timescale

under the current bombardment is still longer than the age ofthe Solar System.

For comparison, the crater scaling law (equation (5.3)) requires an impactor

of roughlyd ≥ 4 km to produce a crater diameter that exceeds the moon’s. This

translates to a “disruption timescale” a factor of a few smaller than the estimate

given above, but this is because the dispersal of the target is not accounted for in

the crater scaling law. In either case, Nix and Hydra have very likely never been

catastrophically disrupted under the current bombardmentof the past≈ 4 Gyr.

fStrictly speaking, these estimates are for disassembly of the moon against its own gravita-
tional binding. The dispersed fragments would mostly remain in orbit around Pluto-Charon and
reassemble. Even larger impactors would be necessary to disperse a small moon permanently
(eject fragments onto heliocentric orbits).
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A similar argument was followed for Styx and Kerberos with diameters of

roughly 10 km (mass and density estimates from Kenyon and Bromley (2014)),

where we estimateQ∗

RD for an icy target 10 km in diameter (Q∗

RD = 8x102

J/kg). Using the same reasoning as before, the current disruption timescale for

Styx and Kerberos is therefore≈ 70Gyr for theαfaint = 0.4 knee size distribution

extrapolation under the current impactor population estimates, and six times this,

≈ 420 Gyr for the divot.

This begs the question of the smallest satellite that could survive against catas-

trophic disruption in the current bombardment environment. Figure 7.14 shows

the catastrophic disruption timescale (in Gyr) as a function of target radius (in m)

for theQ∗

RD curves from Leinhardt and Stewart (2009) and Benz and Asphaug

(1999). The Benz and Asphaug (1999) curve for impacts at 3 km/s and an inci-

dence angle of45◦ is most typical for impacts in the Kuiper belt, so we will use it

in the discussion to follow, while the Leinhardt and Stewart(2009) curve for low

speed, head-on collisions is shown for comparison. As can beseen in Figure 7.14,

for a knee size distribution withαfaint < 0.5 (down to sub-km sizes) all target

sizes would survive catastrophic disruption over the past 4Gyr. As the target size

decreases, theαfaint = 0.4 knee size distribution corresponds to a situation where

the cumulative number of impactors available to catastrophically disrupt the tar-

get increases at the same rate that the surface area of the target decreases (both

asd2), causing the two effects to cancel. This results in the catastrophic disrup-

tion rate decreasing as large targets get smaller (down tod = 100 m) and then

increasing at smaller sizes as targets enter the strength-scaled regime forQ∗

RD.

As αfaint decreases, the catastrophic disruption timescale moves tohigher values

as the cumulative number of impactors rises less steeply at small sizes, result-

ing in longer timescales between catastrophic disruption events. Conversely, as

αfaint increases and more small impactors are available, the catastrophic disrup-

tion timescale drops. Forαfaint = 0.5 and typical impacts in the Kuiper belt, the

Benz and Asphaug (1999) curve shows that the smallest targetexpected to sur-

vive catastrophic disruption in the last 4 Gyr is≈ 4 km in diameter. Thus, if New
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Figure 7.14: Catastrophic disruption timescale (Gyr) as a function of target
radius (m) for theQ∗

RD curves from Leinhardt and Stewart (2009)
and Benz and Asphaug (1999) and three values ofαfaint (size distri-
bution with a knee). The vertical line atr = 5 km is roughly the
radius of Styx and Kerberos and the vertical line atr = 22.5 km
is roughly the radius of Nix and Hydra. For 3 km/s impacts at an
incidence angle of45◦ andαfaint = 0.4, all size targets are able
to survive against catastrophic disruption in the past 4 Gyr. For
αfaint = 0.4, the catastrophic disruption timescales for Styx and Ker-
beros is≈ 100 Gyr and≈ 400 Gyr for Nix and Hydra.
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Horizons finds satellites in the Pluto system that are smaller than≈ 4 km in di-

ameter, it either means an impactor size distribution withαfaint ≥ 0.5 (down to

sub-km sizes) can be ruled out or that those satellites have catastrophically dis-

rupted and reassembled in the past 4 Gyr. In principle, one could use the slope of

the crater production function (for the sub-km diameter range) on Pluto or Charon

to determine which of these two scenarios is more likely to betrue.

Returning to the Pluto system four small satellites, Figure7.14 shows that for

typical impacts in the Kuiper belt (given by the Benz and Asphaug (1999) curve)

it is unlikely that any of the four small satellites have catastrophically disrupted

and reassembled in the past 4 Gyr.

7.4 Summary and Conclusions
By combining the contributions of each Kuiper belt sub-population from the

well-calibrated CFEPS (Gladman et al., 2012; Petit et al., 2011) model and the

Kaib et al. (2011) KRQ11 scattering object model calibratedby Shankman et al.

(2013), the impact rates and especially impact velocity spectra onto Pluto as pre-

sented here are currently state of the art. Pluto’s environment before its instal-

lation onto its current orbit (which occurred roughly 4 Gyr ago) is unknown, so

primary cratering rates have been presented for “current day” timescales (a few

hundred million years) and the number of craters larger thana threshold diam-

eterD have been provided for Pluto’s post-installation phase covering the past

≃ 4 Gyr of the Solar System’s history accounting for the naturalerosion of each

Kuiper belt sub-population. We find it is unlikely Pluto has been hit by even a

single impactor that would create aD > 400 km crater, eliminating the chance

that Pluto’s post-installation cratering record can be immediately linked to the

absolutely-calibrated impactor size distribution ford > 100 km. As a result, in

order to date the surfaces of Pluto and Charon using observedcrater densities,

assumptions must be made about how the impactor size distribution extrapolates

to small (sub-km) sizes. This is fraught with uncertainty, since we do not know

how to connect thed > 100 km impactors to the smaller impactors. In this study
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we first adopt a single-slopeαfaint = 0.4 (qfaint = 3) power-law for the faint

end (d < 100 km) of the size distribution, which is motivated by direct observa-

tions of small Centaurs, and highlight the factor-of-six variation between the knee

and “divot” size distribution scenarios for this size regime. In addition, we show

the effect of varyingαfaint (to αfaint = 0.3 andαfaint = 0.5) on Pluto’s crater-

ing record. We also study how the “wavy” size distributions of Schlichting et al.

(2013) and Minton et al. (2012) (as presented in Schlichtinget al. (2013)), which

include several slope changes between thed = 100 km impactors and the sub-km

regime, would manifest in Pluto’s cratering record.

Complications and insights into computing and interpreting New Horizons

observations of the cratering record on Pluto and its satellites include:

• No single Kuiper belt sub-population contributes the majority of the im-

pact flux on the surface of Pluto (in fact, four sub-populations dominate the

impact flux, theq < 42 AU hot classical mains, theq < 42 AU stirred clas-

sical mains, the classical outers, and the plutinos, each providing roughly

equal contributions), so multiple Kuiper belt sub-populations must be used

to accurately determine cratering rates.

• Impact velocities onto Pluto range from 1.2 km/s (Pluto’s escape speed) out

to a tail at≈ 6 km/s, so more smaller impactors can be accessed when com-

puting the cratering rates on Pluto than a simple-impact-velocity assump-

tion would give, resulting in slightly higher cratering rates than previously

estimated, which translates into younger surface ages.

• The production function present in Pluto’s cratering record will not link the

absolutely calibrated impactor size distribution ford > 100 km objects to

the size distribution of thed < 100 km impactors, because we do not expect

craters created by thed > 100 km impactor size range to be present on

Pluto’s post-installation terrains.

• The result is that for any surface region reset after Pluto’sinstallation onto

its current orbit that has not reached saturation, absolutesurface ages com-
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puted for Pluto and Charon simply cannot be done to better than the un-

certainties in the impactor size distribution extrapolation. Thus, the best

that can currently be done is to compute model-dependent ages for young

surfaces on Pluto and Charon.

• If a divot is present in the impactor size distribution, a narrow-diameter-

range “basin excess”, similar to what has been observed on Iapetus, could

possibly be visible on Pluto (or Charon) if a> 4 Gyr Pluto (or Charon)

surface can be identified, implying that any basins found on Pluto must date

back to Pluto’s pre-installation phase.

• Because a size distribution model with multiple slope changes is likely a

more accurate representation of the impactor population than an extrapola-

tion of a single slope from impactors withd = 100 km down to sub-km

sizes, the “waviness” may be easily discernible in Pluto’s cratering record,

both in the shape of the crater size distribution as well as inthe crater satu-

ration diameter, if non-saturated regions can be found.

• The “waviness” of the production function will most likely be discernible

in theD ≈ 30 − 100 km craters on Pluto and theD ≈ 20 − 60 km craters

on (smaller) Charon, making these the most reliable crater diameter ranges

to the interpretation of the Pluto system cratering record provided by the

New Horizons spacecraft. (These upper limits reflect likelymaximum sized

craters formed over 4 Gyr.)

• Even if the surface of Pluto appears saturated, one would like to measure

the crater densities present on the largest “fresh” surfaces available. We

estimate in Section 7.3.6 (at 95% confidence) that in 1 Gyr of bombardment

at least oneD & 50 km crater will be created on Pluto (using any of the

impactor size distribution models discussed, except the SPL), providing a

fresh surface upon which the production function should be measurable.

The M12 and S13 “wavy” impactor size distribution models would make
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different predictions about how likely that “fresh”D & 50 km crater would

be at or near saturation. Thus, there is likely a way to test the qualitative

difference between these two models from the New Horizons data alone.

• We find that Charon’s impact rate is 19% that on Pluto, roughlyconsistent

with Zahnle et al. (2003)’s estimate. However, because the cratering rate

depends on the size distribution extrapolation used, Charon’s cratering rate

at fixed crater size is≈ 25− 40% that on Pluto for the knee/divot and SPL

extrapolations, respectively.

• We estimate the timescale between collisions for catastrophic disruption for

Pluto’s four smaller moons (Styx, Nix, Kerberos, and Hydra). We find it

is likely that none of these satellites have been catastrophically disrupted in

the past≈ 4 Gyr.

• For a knee size distribution withαfaint ≤ 0.4 (down to sub-km diameters),

satellites of all sizes can survive catastrophic disruption in the past 4 Gyr.

Forαfaint ≥ 0.5 and typical Kuiper belt impact speeds, the smallest satellite

that should survive catastrophic disruption in the past 4 Gyr is ≈ 4 km in

diameter.

• It will be difficult to accurately interpret Pluto’s cratering record until fu-

ture observations of outer Solar System small bodies carefully probe the

d = 10 − 100 km (Hg = 9 − 14) impactor size range (connecting

the d ≈ 1 − 10 km JFC size distribution (Solontoi et al., 2012) to the

d > 100 km size distribution of the KBO/scattering/plutino populations

from CFEPS (Gladman et al., 2012; Petit et al., 2011)) that could directly

establish the linkage via the number distribution of the current projectile

population. While there currently are thus fragments of theobserved im-

pactor size distributions across the outer Solar System small body popu-

lations, the entire diameter range is needed to make definitive statements

about crater retention ages on the surfaces of Pluto and its moons.
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7.5 Some Predictions for the 2015 New Horizons
Observations of the Cratering Record in the
Pluto System

• Craters large enough to connect Pluto’s visible cratering record (D <

100 km) with the absolutely calibrated impactor size distribution for d >

100 km impactors will not be present on Pluto’s post-installation terrains.

The question will be how to separate Pluto’s post-installation terrains from

its pre-installation surfaces.

• A basin excess on pre-installation terrains due to the presence of a divot in

the impactor size distribution may possibly be visible on Pluto (or Charon),

similar to what has been observed on Iapetus. The extensive presence of

volatile ices on Pluto may very well cause Charon to have an older surface

than Pluto, in which case a basin excess could possibly only be visible on

Charon.

• The impactor size distribution should be easily discernible in Pluto’s crater-

ing record via the shape of the production function in theD ≈ 1 − 100 km

range for craters larger than the saturation diameter (if any).

• Only the very steepest size distribution of Schlichting et al. (2013) would

predict the cumulative crater density measured on Pluto or Charon should

rise ≈ 4.5 orders of magnitude from theD = 100 km craters to the

D = 10 km craters, implying rapid saturation of the surface, unlike the

M12, knee, and divot size distribution models. Thus, we expect at least one

“fresh” D ≈ 50 km crater to exist on Charon that most likely has an unsat-

urated floor and ejecta blanket, which has been formed in the last 3 Gyr.

• If New Horizons finds satellites in the Pluto system smaller than≈ 4 km

in diameter, one could, in principle, use the slope of the crater production

function (for the few-km diameter range) on Pluto or Charon to determine
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whether an impactor size distribution withαfaint ≥ 0.5 (down to sub-km

sizes) can be ruled out or that those satellites have catastrophically disrupted

and reassembled in the past 4 Gyr.
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Chapter 8

Future Work

There are a number of logical extensions to the work presented in this thesis.

1. It would be valuable to recompute the NEOWISE biases usingthe

Greenstreet et al. (2012a) NEO model rather than the biases computed

from the Bottke et al. (2002) model and repeat the analysis presented in

Chapter 3. It is unclear how the detailed pointing strategy of the NEO-

WISE spacecraft would affect the computation of the biases to determine

whether a recomputation of the biases would improve the match between

the Greenstreet et al. (2012a) NEO model and the detected orbital element

distributions of the Aten-class NEOs from NEOWISE. However, to be rig-

orously consistent, the recomputation should be done. Suchan effort is

plausible (Mainzer, private communication 2013).

2. Further investigation into the mechanism which can causeasteroids in main

belt mean-motion resonances to flip onto retrograde (i > 90◦) orbits would

help provide a more detailed understanding of the population of near-Earth

asteroids on retrograde orbits. Currently, the extent of our understanding in-

cludes the importance of mean-motion resonances and the Kozai resonance

located in those mean-motion resonances and the absence of planetary close

encounters during the mechanism. Detailed investigation of the phase space
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inside these resonances and more detailed analysis of particles in the nu-

merical integrations which evolve onto retrograde orbits could help provide

a more detailed picture of the flipping physics.

3. Estimating the intrinsic population of Earth co-orbitals using detections

from the NEOWISE spacecraft is a future project that has beendiscussed

with the NEOWISE team. This would utilize the method described in Chap-

ter 6, based on Alexandersen et al. (2013), for determining the frequency

and duration of temporary co-orbitals with Uranus and Neptune.

4. Subsequent to the New Horizons fly-through of the Pluto system in July

2015, a re-examination of Pluto’s cratering record given images of the sur-

face is anticipated using the conclusions presented in Chapter 7. This would

include attempting to use the observed crater production function to in-

fer, at least in part, the size distribution of the impactingsub-populations.

Though the observed crater production function is not predicted to con-

nect to the absolutely calibrated portion of the impactor size distribution,

model-dependent ages could be inferred for Pluto’s (and Charon’s) surface.

Furthermore, the observed crater production function on Pluto (or Charon)

should imply whether or not the impactor size distribution has a very steep

slope at intermediate diameters as the Schlichting et al. (2013) model would

imply.
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Szabó, G. M., Ivezić,̌Z., Jurić, M., and Lupton, R.: 2007,Monthly Notices of the
Royal Astronomical Society377, 1393→ pages77

Tera, F., Papanastassiou, D. A., and Wasserburg, G. J.: 1974, Lunar and
Planetary Science Conference5, 792→ pages3

Tiscareno, M. and Malhotra, R.: 2009,The Astronomical Journal138, 827→
pages76, 122

Tiscareno, M. S. and Malhotra, R.: 2003,The Astronomical Journal126, 3122
→ pages93, 94

Trujillo, C. A., Luu, J. X., Bosh, A. S., and Elliot, J. L.: 2001, The Astronomical
Journal122, 2740→ pages77

177



Tsiganis, K., Gomes, R., Morbidelli, A., and Levison, H. F.:2005,Nature435,
459 → pages73, 74

van Houten, C. J., van Houten-Groeneveld, I., Herget, P., and Gehrels, T.: 1970,
Astronomy & Astrophysics Supplement Series2, 339→ pages26, 27

Veverka, J., Farquhar, B., Robinson, M., Thomas, P., Murchie, S., Harch, A.,
Antreasian, P. G., Chesley, S. R., Miller, J. K., Owen, W. M.,Williams, B. G.,
Yeomans, D., Dunham, D., Heyler, G., Holdridge, M., Nelson,R. L.,
Whittenburg, K. E., Ray, J. C., Carcich, B., Cheng, A., Chapman, C., Bell,
J. F., Bell, M., Bussey, B., Clark, B., Domingue, D., Gaffey,M. J., Hawkins,
E., Izenberg, N., Joseph, J., Kirk, R., Lucey, P., Malin, M.,McFadden, L.,
Merline, W. J., Peterson, C., Prockter, L., Warren, J., and Wellnitz, D.: 2001,
Nature413, 390→ pages2
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Appendix A

Appendix

A.1 Close Encounter Scheme of SWIFT-RMVS
As discussed in Section 3.2, the most challenging aspect of numerically integrat-

ing massless particles in the Solar System is accurately resolving close encounters

with the planets. To ensure accurate resolution of close encounters, the SWIFT-

RMVS integrator adaptively reduces the time step by up to a factor of 30 upon

detecting an upcoming encounter. To anticipate a planetaryclose encounter, at

each time step the integrator performs a linear extrapolation of an object’s posi-

tion forward by a single base time step. If the linear extrapolation shows the object

will be within 3.5 Hill radii of a planet (where the gravitational influence of the

planet becomes roughly comparable to that of the Sun), the integrator will reduce

the time step by a factor of 10 in order to then accurately integrate the approach

(and then recession) from the planet. On this and future timesteps, if a linear

extrapolation of the object’s position shows it will be within a single Hill radii of

a planet, the integrator will reduce the time step by an additional factor of three,

using a patched-conic hyperbolic orbit in the planetocentric reference frame to

continue the particle integration since at this distance atthis distance the particle’s

motion is better described as a planetocentric Keplerian orbit than a heliocentric

one.
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The danger of using a base time step that is too large comes from the existence

(especially in the perihelionq < 1.0 AU regime) of NEAs on highly eccentric,

highly inclined orbits that can encounter Venus and Mercury(in particular) at

speeds of up to 50 or 60 km/s. At this speed, an NEA can travel> 15Venusian Hill

spheres (> 80 Mercurian Hill spheres) in a single 3.5 day time step (reduced to

< 1 Venusian Hill sphere (≈ 4 Mercurian Hill spheres) in a 4 hour time step). The

linear extrapolation computed using the larger time step isa worse approximation

than the curvature of the actual motion of the object than theextrapolation using

the smaller time step. This can result in the linear extrapolation performed by the

integrator failing to predict an upcoming planetary close encounter (Dones et al.,

1999) and thus drop the NEA into the planetary Hill sphere without correctly time-

resolving the approach phase of the encounter. This can cause the NEA’s post-

encounter orbit to be incorrectly computed by the integrator as will be described

below.

A.2 Convergence Tests for SWIFT-RMVS4
To test the potential break-down of the numerical integrator during the highest

speed planetary close encounters when too large a time step is used, I performed a

set of numerical integrations designed to test the convergence of the integrator at

various time steps. The very highest speed planetary close encounters for NEAs

occur with Mercury, although Mercury’s small size causes itto have a smaller

affect on the post-encounter orbit of an NEA than Venus. Because the goal is

test the scheme used by the integrator for detecting upcoming planetary close en-

counters for various base time steps, only Mercury was included in the numerical

integration tests. A set of 1,000 test particles were uniformly distributed from

0.95 ≤ a ≤ 1.0 AU, 0.2 ≤ q ≤ 0.25 AU (0.75 ≤ e ≤ 0.8), and40◦ ≤ i ≤ 42◦

with random argument of pericenters, longitude of ascending nodes, and mean

anomalies. Another set of 1,000 test particles were uniformly distributed using

the samea andq distributions as above and6◦ ≤ i ≤ 8◦ with random angles. The

set of particles with high-e and high-i were chosen to have high speed close en-
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counters with Mercury, while the set with loweri were chosen to have inclinations

near that of Mercury (i ≈ 7◦) where close encounter probabilities are enhanced.

Each set of test particles were numerically integrated for 1Myr using five base

integration time steps: 2 hours, 4 hours, 8 hours, 16 hours, and 84 hours (3.5

days). The Greenstreet et al. (2012a) NEO orbital distribution model integrations

used a base time step of 4 hours, while the Bottke et al. (2002)NEO model used

3.5 days (84 hours). This thus allows us to test the convergence at the 4 hour time

step used in the newer model. Particles were followed until they hit a planet, hit

the Sun (rhelio < 0.005 AU), migrated out past 19 AU, or the integration ended.

Figure A.1 shows thea, q distribution for the test particle set with6◦ ≤ i ≤ 8◦

at the end of the 1 Myr integrations for the five base integration time steps. The

spread in pericenter distances is due to secular oscillations ine caused by Mercury.

As can be seen in Figure A.1, some particles have close encounters with Mercury,

which change their semimajor axes. The top four panels of Figure A.1 show

similar a, q distributions for the 4 smaller time steps. As expected, a roughly

comparable number of particles are scattered to lowera between each of these

integrations as well as to highera. Comparing the top 4 panels with the bottom

panel, which used a base integration time step of 84 hours (3.5 days), however,

shows a greater number of particles scattered to lowera in the larger time step

integration. The same is true in Figure A.2, which shows the set of test particles

with 40◦ ≤ i ≤ 42◦. Fewer particles are scattered to either lower or highera in

Figure A.2 due to the decreased close encounter probabilitywith Mercury at high-

i, but the same trend is visible. Figure A.3 shows the semimajor axis distribution

as a histogram for each of the test particle initial condition sets. Fora < 0.95 AU,

the 84 hour (3.5 day) time step shows an enhancement of particles scattered to

lowera compared to those for the four smaller time steps.

A.3 Discussion
The similarity in the test particle orbital distributions at the end of the 1 Myr

integrations for the 2, 4, 8, and 16 hour base time steps points to convergence at
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Figure A.1: The semimajor axis, pericenter distribution for the test particle
set with6◦ ≤ i ≤ 8◦ for five base integration time steps: 2 hours
(top left), 4 hours (top right), 8 hours (middle left), 16 hours (middle
right), and 84 hours (3.5 days, bottom left) at the end of the 1Myr
integrations. The red box indicates the particle initial conditions.
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Figure A.2: The semimajor axis, pericenter distribution for the test particle
set with40◦ ≤ i ≤ 42◦ for five base integration time steps: 2 hours
(top left), 4 hours (top right), 8 hours (middle left), 16 hours (middle
right), and 84 hours (3.5 days, bottom left) at the end of the 1Myr
integrations. The red box indicates the particle initial conditions.
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these small time step values. We thus believe the integrations used to create the

Greenstreet et al. (2012a) NEO orbital distribution model,which used a base time

step of 4 hours, have reached convergence and would not benefit from utilizing

a smaller time step. The 84 hour (3.5 day) time step, however,does not produce

the same particle evolution as the four smaller time steps. As discussed above,

the failure of the predictive close encounter scheme in SWIFT-RMVS when too

large a time step is used can artificially drop an NEA into a planetary Hill sphere

without having correctly resolved the trajectory of the NEAas it fell into the

planet’s gravity well. In such a scenario, the integrator would suddenly find a NEA

inside a planet’s Hill sphere, and reduce the integration time step by up to a factor

of 30 in order to accurately resolve the close encounter as the integration moves

forward. However, computing the change in orbital speed forthe NEA as it climbs

out of the planet’s gravity well after failing to monitor theincrease in speed of the

NEA as it fell into the planetary gravity well will cause the integrator to compute

a post-encounter orbit for the NEA that has less heliocentric orbital speed, and

thus less heliocentric orbital energy, than it should have.This results in the NEA

having a smaller post-encounter semimajor axis than it should have, since orbital

energy goes as -1/a. This provides an explanation for the increase in NEAs with

smaller semimajor axes for the integrations using an 84 hour(3.5 day) base time

step. In this case, the integrator is failing to predict and thus resolve upcoming

high speed planetary close encounters during the approach phase, resulting in the

inaccurate scattering of NEAs to small-a.

As discussed in Chapter 3, the Aten-class (a < 1.0 AU, Q > 0.983 AU) NEA

detections by the NEOWISE spacecraft have an orbital distribution that is more

enriched in highera, lowere and loweri objects than the Bottke et al. (2002) NEO

model predicts. This can be explained by the break down of theintegrator’s close

encounter prediction scheme for a too large time step as discussed above. The

a, q distributions shown in Figure A.1 and Figure A.2 show the enhancement of

low-a Atens for the 84 hour (3.5 day) time step at relatively low-q or high-e, but

it is not clear whether the smallera objects for the large time step have a higher
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e distribution than the four smaller time steps. Figures A.4 and A.5 show the

a, i distributions for the two initial condition sets, and it is clear the objects with

smallera for the 84 hour (3.5 day) time step have higheri than for the four smaller

time steps. This is most obvious in Figure A.5.

In Chapter 3, we hypothesized that the too large time step used in the previ-

ous model was responsible for incorrectly scattering Atensto orbits with higher

eccentricities and inclinations than they should have. However, the gravity well

scenario described above does not easily lend itself to explaining artificial pump-

ing of e andi of a NEA. More plausible is an interpretation that incorrectscatter-

ing to lowera would bepreferentiallyoccurring for objects with already high-e

and/or high-i, at times causing high-e, high-i Apollos and Atens to be incorrectly

scattered to lowera; thus producing an enhancement of high-e, high-i Atens in

the Bottke et al. (2002) model. This interpretation better matches Figure 3.1, in

which the extra power at largei and largee in the Bottke et al. (2002) model is

‘intruding from the right’, rather than coming from scattering of low-e and low-i

orbits witha < 1 AU already.

A.4 Recommendations
The above analysis makes it clear that the ‘missed encounters’ problem can be

avoided by using a sufficiently small time step. However, an absolute require-

ment of ‘sufficiently small’ would require that the particlewill move less than a

Hill sphere radius when the relative velocities are those judged using the highest

eccentricities, inclinations, and relative semimajor axis that are expected to arise

in the integration. With no other information, then the ultimate bound would be

the parabolic orbit that is retrograde with respect to the planet’s motion. Under a

circular approximation, this encounter speed could be(
√
2+1)vp, wherevp is the

circular orbital speed of the planet (about 48 km/s for Mercury, giving a maximal

encounter speed of 116 km/s if a test particle were to somehowreach a retrograde

near-parabolic orbit with heliocentricq at Mercury). Given that Mercury’s Hill

sphere is 0.0015 AU (∼ 220, 000 km), during a 4 hour time step, the maximal en-
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Figure A.4: The semimajor axis, inclination distribution for the test particle
set with40◦ ≤ i ≤ 42◦ for five base integration time steps: 2 hours
(top left), 4 hours (top right), 8 hours (middle left), 16 hours (middle
right), and 84 hours (3.5 days, bottom left) at the end of the 1Myr
integrations.
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Figure A.5: The semimajor axis, inclination distribution for the test particle
set with6◦ ≤ i ≤ 8◦ for five base integration time steps: 2 hours
(top left), 4 hours (top right), 8 hours (middle left), 16 hours (middle
right), and 84 hours (3.5 days, bottom left) at the end of the 1Myr
integrations.
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counter speed would have a particle travelling 1.67 millionkm, or about 7.6 Hill

sphere radii. In practice, relative speeds in bound orbits would seldom exceed half

this, and so the 4 hour time step succeeds in travel by about 3.5 Hill sphere radii.

Note that this analysis is somewhat over-cautious, as it is only the non-linear por-

tion of the trajectory that matters for the encounter extrapolation for ‘missing’ an

upcoming encounter. Thus, the 4 hour time step used is likelyOK even for the

most extreme cases. The analysis does show, however, that the 3.5 day time step

used in previous studies would certainly not be sufficient for the highest-speed

NEA encounters with the inner planets.
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