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Abstract

In this thesis, we focus on the bit-error rate (BER) performance improvements for free-space opti-

cal (FSO) communication links operating over atmospheric turbulence channels using on-off key-

ing (OOK). Laser beams employed in these links are subject to scintillation, during their propaga-

tion through atmospheric channels, and this can lead to significant BER performance degradation.

Such systems can suffer from irreducible error floors that result from the use of demodulation

with fixed and unoptimized detection thresholds. The resulting error floors are analyzed for the

general case of low and high state offsets (i.e., nonzero extinction ratios). To improve the BER

performance, there are three techniques developed in this thesis.

The first technique employs electrical signal-to-noise ratio (SNR) optimized detection. The

system uses the electrical SNRs to implement adaptive detection thresholds and eliminate the error

floors. The system can accommodate operation with nonzero extinction ratios, as it uses the method

of moments and maximum likelihood estimation techniques to estimate the low and high state

offsets and electrical SNR.

The second technique employs source information transformation. Using source information

transformation can also eliminate error floors, and it can detect the OOK signal without knowledge

of the instantaneous channel state information and probability density function of the turbulence

model. It is shown that source information transformation can achieve comparable performance to

the idealized adaptive detection system, with greatly reduced implementation complexity.

The third technique employs convolutional code. Using convolutional code can mitigate the

effects of turbulence induced fading. The BER performance is analyzed for FSO systems using

convolutional code and OOK. Through our analysis, it is shown that using convolutional code can

improve the BER performance of an FSO system significantly.
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Chapter 1

Introduction

1.1 Background and Motivation

Optical wireless communication (OWC) links have certain advantages over radio frequency links.

Examples of such advantages include low deployment cost, high link security, and freedom of

spectral license regulations. An outdoor OWC system, in particular, uses free-space as the trans-

mission medium, and is also known as free-space optical (FSO) communication [1]. However,

FSO communication can suffer from fog/cloud coverage and harsh weather conditions. These at-

mospheric effects can degrade the system reliability and performance [2]. Ultimately, rain, snow,

sleet, fog, dust, heat, etc. can affect our viewing of distant objects, and these factors can also affect

the transmission of laser beams through the atmosphere.

Absorption, scattering, and refractive-index fluctuations (i.e., optical turbulence1) are three

primary atmospheric processes that affect optical wave propagation through the atmosphere. Typi-

cally, absorption and scattering are grouped together under the topic of extinction, which is defined

by a reduction or attenuation in the amount of radiation passing through the atmosphere. Both

effects are well characterized and can be effectively modeled and compensated for by software

packages such as LOWTRAN, FASCODE, MODTRAN, HITRAN, and LNPCWIN as a function

of wavelength l [3]. On the other hand, optical turbulence is a random effect, which is generally

considered to be the most serious optical effect on a propagating laser beam through the atmo-

sphere.

It is well known that the performance of FSO systems can be significantly degraded by turbulence-
1Optical turbulence is a subset of atmospheric turbulence. However, we will not distinguish between these two

terms and use them interchangeably in this thesis.

1



1.1. Background and Motivation

induced fading. Turbulence-induced fading can lead to power losses at the photodetector and ran-

dom fluctuations of the received signal. The performance degradation is especially pronounced

for FSO systems using irradiance modulation and direct detection (IM/DD) with on-off keying

(OOK), and it is these systems that are the primary focus of this thesis.

In this thesis, we focus on bit-error rate (BER) performance improvements for FSO commu-

nication links operating with OOK over atmospheric turbulence channels. To improve the BER

performance, there are three techniques developed in this thesis.

The first technique, for improving the BER performance of FSO links using OOK, employs

electrical signal-to-noise ratio (SNR) optimized detection. The electrical-SNR-optimized detec-

tion requires the perfect knowledge of the probability density function (pdf) of the turbulence

and electrical SNR. Such knowledge is often quantified by way of mathematical models for the

turbulence-induced fading [4], [5]. Among the turbulence-induced fading2 models introduced so

far, it has been well accepted that the lognormal distribution characterizes FSO fading channels

under weak turbulence conditions over several hundred meters, or longer, depending on the tem-

perature, wind strength, altitude, humidity, and atmospheric pressure [6], [7]. The K-distribution

characterizes FSO fading channels under strong turbulence conditions over several kilometres [8].

The negative exponential distribution characterizes FSO fading channels in the limiting case of

saturated scintillation [9]. There also exist generalized models for use over a broad range of weak-

to-strong turbulence conditions. The Gamma-Gamma distribution is used, but it can underestimate

effects of small- and large-scale scintillations and can suffer from decreased accuracy [10]. The

lognormal-Rician distribution can be used, and it has been found to offer two advantages. First,

heuristic analyses of wave propagation through turbulence show that the lognormal-Rician fading

distribution accurately characterizes experimental data [11]. Second, the lognormal-Rician fading

distribution is highly adaptable over a wide range of weak-to-strong turbulence conditions through

its parameters [12]. However, the application of the lognormal-Rician fading distribution has been

limited, as it does not have a tractable closed-form pdf.
2In the rest of the thesis, turbulence-induced fading is referred as (atmospheric) turbulence for simplicity unless

stated otherwise.

2



1.1. Background and Motivation

Given the potential of the lognormal-Rician distribution, for accurately characterizing FSO

fading channels, there have been efforts to characterize this distribution with estimated shaping

parameters. In [13], the authors applied a physical model of turbulence-induced scattering to es-

timate the shaping parameters of the lognormal-Rician fading distribution. It should be noted,

however, that this approach depends heavily upon estimated parameters in a physical model of

the turbulence-induced scattering, and such parameters are often either unavailable or lacking in

accuracy. For computational simplicity, the authors applied the Tatarskii model to characterize

refractive index fluctuations and geometrical optics to characterize turbulent eddies, but the un-

derlying assumptions of this approach can lead to notable inaccuracies, as discussed in [11]. In

[14], the authors introduced the generalized method of moments approach to estimate the shaping

parameters of the lognormal-Rician distribution. It should be noted, however, that this approach

demands a large number of data samples, on the order of 106 data samples, and this impedes its

implementation in FSO communications. For a standard FSO link, experiencing quasi-static tur-

bulence fading on a typical millisecond timescale, the system would exhibit latency on the order of

1⇥106 millisecond = 1000 seconds. This duration is unacceptably long for FSO communications,

as typical FSO channels exhibit stationary statistics, i.e., constant channel model parameters, on the

timescale of several minutes. Clearly, FSO systems applying channel estimation with a lognormal-

Rician fading distribution need a more rapid estimation of the shaping parameters.

The above turbulence models can be used to characterize FSO channels, for the implementa-

tion of adaptive detection thresholds in OOK IM/DD systems. FSO systems operating without

such adaptive detection thresholds would simply apply fixed detection thresholds, and such mod-

ulation is often adopted by current commercial FSO products. In [2], [15], the authors studied

the performance of OOK IM/DD systems using fixed detection thresholds through atmosphere

turbulence channels, and it was found that these unoptimized systems suffered from irreducible

error floors. Existing commercial FSO communication systems have employed high transmission

powers to overcome the effects of atmospheric turbulence, but this practice results in high cost.

With this in mind, there have been many recent efforts to implement OOK IM/DD systems with

3



1.1. Background and Motivation

effective adaptive detection. In [2], [16], the authors applied adaptive detection with assumed per-

fect knowledge of the instantaneous channel state information (CSI), as the instantaneous SNR is

used to detect each data symbol. In this case, the receiver merely requires computation of a simple

mathematical expression, and the BER remains at a minimal value. However, perfect knowledge

of CSI is challenging to realize in practice. In [17], the authors investigated blind detection, i.e.,

detection assuming the absence of instantaneous CSI and a statistical channel description at the re-

ceiver, for OOK in a FSO system. This method leads to a decision delay as the receiver is required

to compute the detection threshold using all the received statistics. In [18], [19], the authors con-

sidered sequence detection for OOK in an FSO system, in which block-wise decisions are made

using an observation window of N bit intervals. Unfortunately, such an algorithm had significant

computational requirements. In general, the above methods have obvious practical concerns for

OOK IM/DD operation with nanosecond data symbol durations (i.e., Gbps rates) and millisecond

turbulence coherence times, as rapid detection threshold adjustments are needed on the timescale

of the millisecond turbulence coherence times [2], [17], [19], [20].

To accommodate practical concerns for adaptive detection, the electrical-SNR-optimized de-

tection system was proposed in [21], [22]. Such a system offers a compromise between the practi-

cal advantages of operation with fixed detection threshold, as only slow adaptations are needed to

define the detection thresholds, and the performance advantages of operation with adaptive detec-

tion thresholds, as it avoids irreducible error floors [23]. The electrical-SNR-optimized detection

thresholds only need to change over the especially long timescales, of seconds or minutes, over

which a stationary turbulence channel assumption is applied (as the electrical SNR remains con-

stant over these timescales) [6]. The electrical-SNR-optimized system can, therefore, reduce the

implementation complexity, compared to that of the idealized system using adaptive threshold de-

tection. Unfortunately, existing electrical-SNR-optimized systems make an assumption of perfect

knowledge of the electrical SNR and turbulence pdf.

The second technique, for improving the BER performance of FSO links using OOK, is source

information transformation. In [24], the authors introduced pilot-symbol (PS) assisted modulation
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(PSAM) to mitigate the turbulence fading and improve the system performance. The PS provides

the receiver with explicit turbulence fading references for detection and helps mitigate the fading

effects. However, PSAM causes delays in the receiver as it is necessary to store the whole frame

before decoding. In [25], it was demonstrated that an FSO system can use two laser wavelengths

at the transmitter and two photodetectors at the receiver operating in a differential mode with

excellent BER performance for an OOK IM/DD system with a detection threshold fixed at zero.

Unfortunately, this scheme suffers from low throughput, as two lasers are used to transmit the same

information in each symbol duration.

The third technique, for improving the BER performance of FSO links using OOK, employs

error control coding. In particular, convolutional coding is considered here, as it can be effective in

mitigating fading effects and improving the BER performance [26]. For such convolutional codes,

error bounds are widely used to analyze the error rate performance. In [26], [27], the authors de-

rived approximate upper bounds on pairwise error probability (PEP) as well as approximate upper

bound expressions on the average BER for OOK IM/DD systems over the lognormal turbulence

channels using various coding schemes (include convolutional code). In [28], the authors studied

the PEP of OOK OWC systems within temporally correlated K-distributed turbulence. They de-

rived an upper bound on the PEP for the channel and then applied the union-bound technique in

conjunction with the derived PEP bound to obtain upper bounds on the BER performance. In [29],

the authors extended their work on PEP for coded OOK OWC systems to the Gamma-Gamma

turbulence channels. In [31], the authors also derived an approximate PEP expression for coded

FSO links over the Gamma-Gamma turbulence channels. However, an accurate approximation of

PEP was not obtained, and the computation of the upper bound for the average BER is complex.

1.2 Thesis Organization and Contributions

This thesis consists of seven chapters. A summary of each chapter and its contributions are given

as follows.

In Chapter 1, we present background knowledge of FSO history and its development. The
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motivation of the research in this thesis is justified. We also provide a comprehensive review of

FSO literature related to the research topics of this thesis.

Chapter 2 presents essential technical background for the entire thesis. A brief description of

an OOK IM/DD system is given. The additive noise at the receiver is also discussed. Then, some

background knowledge on atmospheric turbulence channels is presented, and five atmospheric

turbulence channel models are reviewed.

In Chapter 3, we investigate the BER of OOK IM/DD FSO systems employing various detec-

tion thresholds, as OOK IM/DD systems with fixed detection thresholds lead to irreducible error

floors. The expressions of irreducible error loors are derived and expressed as comulative distribu-

tion functions (CDFs) of the channel irradiance. We apply the electrical-SNR-optimized detection

system, as such a system can eliminate irreducible error floors without requiring perfect knowledge

of the instantaneous CSI and turbulence pdf.

In Chapter 4, maximum-likelihood estimation (MLE) is applied to characterize the lognormal-

Rician turbulence model parameters, and the expectation-maximization (EM) algorithm is used to

compute maximum likelihood estimates of the unknown parameters. Electrical SNR estimation is

also investigated for FSO communication systems using IM/DD over lognormal fading channels.

Both method of moments estimation (MoME) and MLE are studied for electrical SNR estimation.

The MSE is used to examine the performance of the estimators.

In Chapter 5, FSO communication using OOK and source information transformation is pro-

posed. This system can detect the OOK signal without knowledge of the instantaneous CSI and

pdf of the turbulence model. The pdf of the detection threshold and an upper bound on the av-

erage BER are derived. Numerical studies ultimately show that the proposed system can achieve

comparable performance to the idealized adaptive detection system, with a greatly reduced level

of implementation complexity and a SNR penalty factor of only 1.85 dB at a BER of 2.17⇥10�7

for a lognormal turbulence channel with a scintillation level of s = 0.25.

In Chapter 6, we investigate IM/DD systems employing OOK and subcarrier intensity modu-

lation (SIM) and binary phase-shift keying (BPSK) with convolutional code. We analyze the error
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rate performance of OOK IM/DD systems operating over weak and strong turbulence conditions

and compare the BER performance of OOK to that of SIM-BPSK systems. A highly accurate

convergent series solution is derived for the PEP of the OOK IM/DD system. The solution es-

tablishes a simplified upper bound on the average BER. For quasi-static fading channels, we also

study the BER performance of a convolutional coded system using block interleaving where each

block experiences independent fading.

Finally, we summarize the thesis in Chapter 7 and suggest some future research topics for

further study.
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Chapter 2

OOK IM/DD System and Turbulence

Channel Models

In this chapter, we present a brief description of the OOK IM/DD system and the additive noise

model at the receiver. Background information on atmospheric turbulence channels is presented

by way of five atmospheric turbulence channel models.

2.1 System Model

Figure 2.1 shows the block diagram of an FSO system operating through the atmosphere. The

transmitter is composed of a source encoder, an optical modulator and a transmitting telescope. At

the transmitter, the source information bits are input into the source encoder, and encoded into an

electrical signal. After being properly biased, the electrical signal modulates a laser beam. At the

end of transmitter, there is a telescope to control the direction and size of the laser beam. At the

receiver, a telescope is used to collect and focus the received optical beam onto the photodetector

for optoelectronic conversion. The electrical signal is then decoded.

For OOK IM/DD operation with the above system, the signal in the baseband to be transmitted

can be written as

s(t) = Â
i

aig(t � iTp) (2.1)

where ai 2 {�1,1} is the data bit, and Tp is the symbol duration. In (2.1), the pulse shaping is

defined as g(t) = 1 for 0 < t < Tp, and g(t) = 0 otherwise. The transmitted intensity has a bias
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Figure 2.1: Block diagram of an FSO system through an atmospheric turbulence channels.
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2.1. System Model

term of unity added to ensure non-negative values and it can be expressed as

ŝ(t) = 1+Â
i

aig(t � iTp). (2.2)

The signal ŝ(t) is transmitted through an atmospheric turbulence channel and is distorted by a mul-

tiplicative irradiance process I(u, t), where u is used to describe the space. The received electrical

signal after photodetection can be written as

r(t) = R[(1+x )I(u, t)+Â
i

I(u, t)aig(t � iTp)]+n(t). (2.3)

The photodetector responsivity, without loss of generality, is assumed to be R = 1. In (2.3), the

positive parameter x is the low and high state offset that quantifies a nonzero extinction ratio [32].

Nonzero extinction ratios are due to practical considerations for semiconductor laser transmitters,

which often operate with finite power levels for the low and high states. Typical values of x are

between 0.1053 and 0.2857 [33]. When x 6= 0, the low and high states of the received electrical

signal are affected by turbulence. When x = 0, the received electrical signal simplifies to the

classical model discussed in [15].

In (2.3), I(u, t) is assumed to be a stationary random process for signal scintillation caused

by atmospheric turbulence, and n(t) is additive white Gaussian noise (AWGN) due to thermal

noise and/or ambient shot noise. Using a p-i-n photodiode and following [21], the shot noise is

assumed to be dominated by the ambient shot noise. (Both ambient shot noise and thermal noise

are statistically independent of the desired signal.) The total noise power is s

2
g = s

2
s +s

2
T , where

s

2
s and s

2
T denote the respective ambient shot noise power and the thermal noise power.

The received signal is sampled at time Tp. The sample I(u, t = Tp) is a random variable (RV)

I, and the sample n(t = Tp) is a RV N having zero mean and variance s

2
g = N0/2, where N0 is the

noise power spectral density. If “0” is transmitted, s0 is true and the laser is in the low state, so

the sample for demodulation is r|s0 = x I+N. If “1” is transmitted, s1 is true and the laser is in the

high state, so the sample for demodulation is r|s1 = (2+ x )I +N. It is important to note that the
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nonzero state offset x leads to turbulence dependence for the received signal when s0 or s1 is true.

2.2 Additive Noise at the Receiver

Optical receivers convert incident power into electric current through a photodetector. Besides

turbulence effects, two major types of additive noise, thermal noise and shot noise can affect the

received signal photocurrent. The additive noise at the receiver is related to the type of photode-

tector that is used, and we will focus on the p-i-n photodiode in this thesis. We will briefly review

the two types of additive noise, and then discuss the resulting SNR for the optical receivers in the

rest of this section.

2.2.1 Thermal Noise

Thermal noise (also known as Johnson noise [34] or Nyquist noise [35]) exists at a finite tem-

perature. It is due to random thermal motion of electrons and atoms in a resistor, which creates

a random voltage signal across its terminals. Mathematically, thermal noise can be modeled as

a stationary Gaussian random process with a spectral density that is frequency independent well

into the terahertz spectrum. Therefore, it is considered to be white noise. The spectral density of

thermal noise is given by [32]

ST ( f ) =
2kBT

RL
(2.4)

where kB is the Boltzmann constant, T is the absolute temperature in Kelvins, and RL is the load

resistance. The spectral density ST ( f ) is two-sided and the photocurrent noise variance can be

obtained as by [32]

s

2
T =

Z •

�•
ST ( f )|H( f )|2d f =

Z 4 f

�4 f
ST ( f )d f =

44 f kBT
RL

(2.5)

where H( f ) is the frequency reponse of the filter at the receiver and we assume |H( f )| = 1, and

the 4 f is the effective noise bandwidth of the receiver. It is worth noting that the thermal noise
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spectral density ST ( f ) and the resulting photocurrent noise variance do not depend on the received

average photocurrent.

2.2.2 Shot Noise

Shot noise is due to photons and electron quantization (because light and electric current consist of

quantized ‘packets’). Contributions from signal photons lead to quantum noise, and contributions

from electrons in the semiconductor lead to dark noise. Shot noise was first introduced in 1918

by Schottky [36] who studied fluctuations of current in vacuum tubes and has been thoroughly

investigated since then [37], [38].

The energy associated with particles comes in discrete steps. A photon with a frequency n

will have an energy of hn where h is the Planck’s constant. It is therefore not possible to have

a continuous flow of energy. Instead, the energy comes as bursts of particles that are witnessed

as quantum noise fluctuations. Mathematically, quantum noise is a stationary random process

following Poisson statistics, which in practice is often approximated by Gaussian statistics. For

our purposes, quantum noise is assumed to be white noise with a constant spectral density due to

the received average photocurrent, i.e., Sq( f ) = qIp, where q is the electronic charge and Ip is the

received average photocurrent. The noise variance can be obtained as [32]

s

2
q =

Z •

�•
Sq( f )|H( f )|2d f =

Z 4 f

�4 f
ST ( f )d f = 24 f qIp. (2.6)

Dark noise is present when no light is incident on the photodetector. This dark noise current

is due to the semiconductor material in the photodetector. Electrons and holes are liberated due

to thermal effects in the semiconductor, as these carriers overcome the bandgap. This results in a

time-averaged dark current Id with spectral density Sd( f ) = qId and variance

s

2
d =

Z •

�•
Sd( f )|H( f )|2d f =

Z 4 f

�4 f
Sd( f )d f = 24 f qId. (2.7)
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Therefore, the total variance of shot noise can be obtained as

s

2
s = s

2
q +s

2
d = 24 f q(Ip + Id). (2.8)

2.2.3 Signal-to-Noise Ratio

The performance of an optical receiver depends on the SNR which is defined as the ratio of signal

power to total noise power. The SNR of a receiver with a p-i-n photodiode is considered here. The

signal power is proportional to the photocurrent squared, while the noise contributions are from

the thermal noise and shot noise, i.e., s

2
n = s

2
T +s

2
s . Therefore, the SNR can be expressed as

SNR =
I2
p

s

2
n
=

I2
p

24 f q(Ip + Id)+44 f KBT/RL
. (2.9)

It is worth noting that in the p-i-n receivers for FSO systems, thermal noise tends to dominate

because the incident signal power and the dark current are relatively low.

2.3 Atmospheric Turbulence Models

In an FSO system, the transmitted signals are typically subject to atmospheric turbulence over the

atmospheric transmission links. The random variation in signal irradiance due to atmospheric tur-

bulence caused by inhomogeneities in both temperature and pressure of the atmosphere is a major

source of degradation of FSO system performances. To predict and mitigate such performance

degradation caused by atmospheric turbulence, researchers have studied FSO channels extensively

and proposed different atmospheric turbulence models [4].

The common statistical models that are used to characterize atmospheric turbulence channels

are the lognormal, K, negative exponential, Gamma-Gamma, and lognormal-Rician models [4].

The lognormal distribution characterizes weak turbulence and is suitable for characterizing FSO

communications in clear sky links over several hundred meters [39]. The K-distribution is suitable

for describing strong turbulence over links that are several kilometres in length [8]. The negative
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exponential distribution describes the limiting case of saturated scintillation [40]. The Gamma-

Gamma distribution and lognormal-Rician are two generalized models that can be applied to a

wide range of turbulence conditions [41], [11].

2.3.1 Lognormal Turbulence

For the lognormal channel model, the optical irradiance I is given by

I = exp(X) (2.10)

where X is a Gaussian RV with mean µ and variance s

2. Consequently, I follows a lognormal

distribution with a pdf given by [39]

fI(I) =
1p

2ps I
exp

✓

�(ln I �µ)2

2s

2

◆

, I > 0. (2.11)

Normalizing the mean, i.e., E[I] = 1, where E[·] is the expectation operation, the pdf of I can be

written as

fI(I) =
1p

2ps I
exp

✓

�(ln I +s

2/2)2

2s

2

◆

, I > 0. (2.12)

The parameter s is the scintillation level, and its value is typically less than 0.75 [15]. Turbulence

effects on the performance are minimal when scintillation levels are below s = 0.1, so the investi-

gated electrical SNR in this thesis is characterized for typical scintillation levels ranging from 0.1

to 0.75 [21], [42].

2.3.2 K-distributed Turbulence

The K-distributed turbulence model is a widely accepted turbulence model, and it can be used to

describe the irradiance fluctuations under strong turbulence conditions. It can be shown that the K-

distributed RV I is a product of two independent RVs Ix and Iy, where Ix and Iy follow exponential
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and Gamma distributions, respectively [43], with pdfs

f (Ix) = exp(�Ix), Ix > 0 (2.13)

and

f (Iy) =
aIa�1

y

G(a)
exp(�aIy), Iy > 0 (2.14)

where G(·) is the Gamma function, and a is the effective number of discrete refractive scatters and

it takes a value in (1,2) [44].

The K-distribution can be derived as follows. Conditioning on Iy and substituting Ix = I/Iy into

(2.13), we can obtain the conditional pdf of I as

fI|Iy(I|Iy) =
1
Iy

exp
✓

� I
Iy

◆

, I > 0. (2.15)

To obtain the pdf of I, we take the expectation of (2.15) with respect to the pdf of Iy. The pdf of I

becomes [45]

fI(I) =
Z •

0
fI(I|Iy) f (Iy)dIy

=
2

G(a)
a

a+1
2 I

a�1
2 K

a�1(2
p

aI)
(2.16)

where K
a�1(·) is the modified Bessel function of the second kind with order a � 1. The mth

moment of I is given by [43]

E[Im] =
m!G(m+a)

a

mG(a)
. (2.17)

The scintillation index of K-distributed turbulence is

s

2
SI ,

E[I2]

(E[I])2 �1 = 1+
2
a

(2.18)

where s

2
SI is within (2,3).
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2.3.3 Negative Exponential Turbulence

In the limiting case of strong irradiance fluctuations (i.e., in the saturation regime and beyond)

where the propagation distances span several kilometres, the number of independent scatterings

becomes large [46], [47]. This saturation regime is also called the fully developed speckle regime.

The amplitude fluctuation of the field traversing the random medium under this condition is exper-

imentally verified to obey the Rayleigh distribution [48], [49]. Thus, the irradiance I follows the

negative exponential distribution whose pdf is given as

fNE(I) =
1
I0

exp
✓

� I
I0

◆

, I > 0 (2.19)

where I0 = E[I] is the mean irradiance. Without loss of generality, we can normalize I by setting

E[I] = 1. In the saturation regime, the value of the scintillation index approaches unity.

2.3.4 Gamma-Gamma Turbulence

The Gamma-Gamma distribution is a useful and flexible turbulence model because it can describe

a wide range of turbulence conditions [41]. The pdf of the Gamma-Gamma distributed optical

irradiance is

fI(I) =
2

G(a)G(b )
(ab )

a+b

2 I
a+b

2 �1

⇥K
a�b

⇣

2
p

ab I
⌘

, I > 0.
(2.20)

Assuming spherical wave propagation, the parameters a and b are related to the atmospheric

conditions according to [29]

a =

"

exp

 

0.49c

2

(1+0.18d2 +0.56c

12
5 )

7
6

!

�1

#�1

(2.21)

and

b =

"

exp

 

0.51c

2(1+0.69c

12
5 )�

5
6

(1+0.9d2 +0.62c

12
5 )

5
6

!

�1

#�1

(2.22)
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where c

2 = 0.5C2
nk

7
6 L

11
6 and d = 0.5k1/2DL�1/2. Here, the parameter C2

n is the altitude-dependent

index of the refractive structure parameter that varies from 10�17m� 2
3 for weak turbulence to

10�13m� 2
3 for strong turbulence, l is the optical wavelength and k = 2p/l is the wavenumber.

The optical link distance is L, and D is the diameter of the receiver aperture.

2.3.5 Lognormal-Rician Turbulence

For the FSO system of interest, there is an assumption of perfect background noise rejection, from

narrowband optical, electronic, and/or spatial filtering [39]. For the resulting lognormal-Rician

channel model, the optical irradiance I can be obtained by I = |UC +UG|2 exp(2c), where UC is

a real deterministic quantity, UG is a circular complex Gaussian RV with zero mean, c is a real

Gaussian RV, |UC +UG| is a Rician RV, |UC +UG|2 is a noncentral chi-square RV with a degree

of freedom of two, and exp(2c) is a lognormal RV. Consequently, I follows a lognormal-Rician

distribution with a pdf given by [13]

fI(I) =
(1+ r)e�r
p

2psz

Z •

0

dz
z2 I0

 

2


(1+ r)r
z

I
�1/2

!

⇥ exp

 

�1+ r
z

I � 1
2s

2
z

✓

lnz+
1
2

s

2
z

◆2
! (2.23)

where z represents exp(2c), r = |UC|2/E[|UG|2] is the coherence parameter, s

2
z is the variance

of the logarithm of the irradiance modulation factor z, and I0(·) is the zero-order modified Bessel

function of the first kind.

As noted in [4], it is not generally known how to directly relate the above two empirical pa-

rameters to the physical characteristics of atmospheric conditions, but it is possible to characterize

trends in the two parameters, with respect to the Rytov variance, s

2
R = 0.5k

7
6 L

11
6 C2

n . The charac-

teristic trends in the two parameters are seen in [13], for variations in the Rytov variance, s

2
R, i.e.,

variations in L and/or C2
n . In the limit of zero inner scale, the parameter r decreases as s

2
R increases,

while the parameter s

2
z is approximately equal to the Rytov variance for small s

2
R, reaches a peak

value of approximately 0.58 for s

2
R ⇡ 8, and decreases slowly to approximately 0.4 for large s

2
R.
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When the coherence parameter r approaches infinity, the lognormal-Rician distribution specializes

to the lognormal distribution with a pdf of [13], [14]

fI(I) =
1p

2pszI
exp

 

� 1
2s

2
z

✓

ln I +
1
2

s

2
z

◆2
!

. (2.24)

When r approaches 0, the lognormal-Rician distribution specializes to the lognormally modulated

exponential distribution, characterizing strong scintillation, with a pdf of [13], [50]

fI(I) =
1p

2psz

Z •

0

dz
z2 exp

 

� I
z
� 1

2s

2
z

✓

lnz+
1
2

s

2
z

◆2
!

. (2.25)

The nth moment of the lognormal-Rician RV I is known to be [13]

E[In] =
(n!)2

(1+ r)n exp
✓

n(n�1)
2

s

2
z

◆ n

Â
k=0

rk

(n� k)!(k!)2 . (2.26)

2.4 Summary

In this chapter, we presented the essential background knowledge needed for technical content

in the remainder of this thesis. A brief description of an OOK IM/DD system was provided.

The additive noise at the receiver was also discussed. Then, some background knowledge on

atmospheric turbulence channels was presented, according to five commonly-used atmospheric

turbulence channel models.
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Chapter 3

OOK IM/DD Systems with Nonzero

Extinction Ratios and

Electrical-SNR-Optimized Detection

Thresholds

In this chapter, we study the error rate performance of OOK IM/DD FSO systems employing

various detection thresholds. Such systems, when implemented with fixed detection thresholds,

lead to irreducible error floors. The expressions for the reducible error floors are derived and

expressed as cumulative distribution functions of the channel irradiance. We then investigate an

electrical-SNR-optimized detection system, as such a system can eliminate irreducible error floors

without requiring perfect knowledge of the instantaneous CSI and the turbulence pdf.

3.1 OOK with Fixed and Unoptimized Detection Thresholds

In the low state, the received signal (r = x I+N) is a sum of two RVs, N and Is, where Is = x I. Since

N and Is are assumed to be independent, the pdf of the received low state signal is the convolution
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of the marginal pdfs of Is and N, according to

f (r|s0) =
1
x

fI

✓

r
x

◆

⇤ fN(r)

=
Z •

0

1p
2psx

exp

0

B

@

�

⇣

ln x
x

+ s

2

2

⌘2

2s

2

1

C

A

1p
2psg

exp

 

�(r� x)2

2s

2
g

!

dx
(3.1)

where ⇤ denotes the convolution operation, and fN(r) = 1p
2psg

exp
⇣

� r2

2s

2
g

⌘

denotes the noise pdf.

In the high state, the pdf of the received signal (r = (2+ x )I +N) can be defined in a similar

manner according to

f (r|s1) =
1

2+x

fI

✓

r
2+x

◆

⇤ fN(r)

=
Z •

0

1p
2psx

exp

0

B

@

�

⇣

ln x
2+x

+ s

2

2

⌘2

2s

2

1

C

A

1p
2psg

exp

 

�(r� x)2

2s

2
g

!

dx.
(3.2)

For a given fixed detection threshold Tth, the probability of false alarm PF and probability of

miss PM can be written as the respective expressions

PF =
Z •

Tth

f (r|s0)dr =
Z •

Tth

1
x

fI

✓

r
x

◆

⇤ fN(r)dr (3.3)

and

PM =
Z Tth

0
f (r|s1)dr =

Z Tth

0

1
2+x

fI

✓

r
2+x

◆

⇤ fN(r)dr. (3.4)

Assuming that p1 represents the a priori probability that “1” is sent, one can write the BER for
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OOK using a fixed detection threshold Tth as

Pe = (1� p1)PF + p1PM

=
(1� p1)exp

⇣

�s

2

8

⌘

p
2ps

Z •

0

p

x

x3/2 exp

 

�
ln2 x

x

2s

2

!

Q
✓

Tth � x
sg

◆

dx

+
p1 exp

⇣

�s

2

8

⌘

p
2ps

Z •

0

p

2+x

x3/2 exp

 

�
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where Q(x) = 1p
2p

R •
x e�

t2
2 dt is the Gaussian Q-function, and we have denoted the electrical SNR

by g = (E[I])2/N0 [21], or simply g = 1/N0 under a normalized mean assumption.

In the large SNR regime, when g approaches infinity or equivalently when s

2
g = N0/2 ap-

proaches zero, the Gaussian distribution approaches a Dirac delta function d (·). Hence, one can

have

lim
g!•

fN(r) = d (r) (3.6)

and

lim
g!•

1
a

fI

⇣ r
a

⌘

⇤ fN(r) =
1
a

fI

⇣ r
a

⌘

(3.7)

where a is a constant taking either x or 2+ x . When the electrical SNR is asymptotically large,

and we assume that limits and integrals are reversible, it follows that

lim
g!•

PF =
Z •

Tth

1
x

fI

✓

r
x

◆

dr = 1�FI

✓

Tth

x

◆

(3.8)

and

lim
g!•

PM =
Z Tth

0

1
2+x

fI

✓

r
2+x

◆

dr = FI

✓

Tth

2+x

◆

(3.9)
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3.1. OOK with Fixed and Unoptimized Detection Thresholds

Table 3.1: Error floor expressions for FSO systems employing fixed detection thresholds of Tth =
(1+x )E[I] over a lognormal fading channel with s = 0.25.

x 0.15 0.18 0.2 0.25
Theoretical error floor 0.0044 0.0049 0.0054 0.0065
Simulated error floor 0.0045 0.0049 0.0054 0.0066

where FI(·) represents the CDF of the irradiance I. Therefore, the false alarm probability and miss

probability in a large SNR regime are determined by the CDF of the irradiance evaluated at Tth/x

and Tth/(2+x ), respectively. Substituting (3.8) and (3.9) into (3.5) gives

lim
g!•

Pe = lim
g!•

(1� p1)PF + p1PM

=(1� p1)Q
✓

lnTth � lnx +s

2/2
s

◆

+ p1Q
✓

ln(2+x )� lnTth �s

2/2
s

◆ (3.10)

which is the error floor for an OOK IM/DD system with a fixed detection threshold through log-

normal turbulence channels. As seen from (3.10), the error floor depends on both Tth and x , and

typically one chooses the fixed detection threshold as Tth = (E[r|s1] +E[r|s0])/2. When x = 0,

Tth = E[I] and the analytical error floor expression in (3.10) is equivalent to [15, eq. (20)], which

was derived under an assumption of a normalized second moment, i.e., E[I2] = 1. When x 6= 0, it

is simple to show that Tth = (1+x )E[I].

It is important to note that the error floor varies with the offset x . For a lognormal turbulence

channel with s = 0.25 and an equal a priori data symbol probability, the predicted error floors are

shown in Table 3.1 for different values of x . It is seen that an increase of x results in a higher error

floor. The theoretical error floors are verified with simulated BER limits with the results shown in

Table 3.1.

Following the same approach, one can predict the error floors for different turbulence channel

models based on the corresponding CDFs. The resulting error floors are summarized in Table 3.2,
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3.2. OOK with Electrical-SNR-Optimized Detection Thresholds

Table 3.2: Error floor expressions for various turbulence channel models.

Turbulence Channel Error Floors
Lognormal (1� p1)Q

⇣

lnTth�lnx+s

2/2
s

⌘

+p1Q
⇣

ln(2+x )�lnTth�s

2/2
s

⌘

K-distribution (1� p1){1� 1
2 [h(1,a,Tth,x )+h(a,1,Tth,x )]}

+p1[h(1,a,Tth,2+x )+h(a,1,Tth,2+x )]/2
Gamma-Gamma (1� p1){1� 1

2 [h(b ,a,Tth,x )+h(a,b ,Tth,x )]}
+p1[h(b ,a,Tth,2+x )+h(a,b ,Tth,2+x )]/2

Negative Exponential (1� p1)exp
⇣

Tth
x µ

⌘

+ p1

h

1� exp
⇣

Tth
(2+x )µ

⌘i

where the function h(x,y,z,w) is defined as

h(x,y,z,w) =
⇣xyz

w

⌘x G(y� x)
G(x+1)G(y)1F2

⇣

x;x+1,x� y+1;
xyz
w

⌘

(3.11)

and where 1F2(·; ·, ·; ·) is the generalized hypergeometric function [51].

3.2 OOK with Electrical-SNR-Optimized Detection

Thresholds

A performance trade-off can be established between operation with fixed detection thresholds

(which can suffer from irreducible error floors) and operation with adaptive detection thresholds

(which requires knowledge of the instantaneous SNR for each data symbol). With this in mind, we

consider a system with electrical-SNR-optimized detection thresholds, as it offers a compromise

between the practical advantages of operation with fixed detection thresholds and the performance

advantages of operation with adaptive detection thresholds. Our approach considers the optimiza-

tion problem

argmin
Tth

Pe = argmin
Tth

[(1� p1)PF + p1PM]. (3.12)
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3.2. OOK with Electrical-SNR-Optimized Detection Thresholds

From (3.5) and (3.12), it is clear that our electrical-SNR-optimized detection requires knowledge

of Tth, x , and the underlying turbulence model. To find the detection threshold that minimizes the

BER at a given electrical SNR, we take the derivative of (3.5) with respect to Tth and set it to zero,

i.e., d
dTth

Pe = 0. This gives

�(1� p1) f (Tth|s0)+ p1 f (Tth|s1) = 0 (3.13)

where f (Tth|s0) and f (Tth|s1) are the likelihood functions evaluated at Tth.

3.2.1 Electrical-SNR-Optimized Detection Based on a Known Turbulence

pdf

Assuming perfect knowledge of the pdf of the lognormal turbulence model, we substitute (3.1) and

(3.2) into (3.13) and have

� (1� p1)
Z •

0

p

x

x3/2 exp

 

�
ln2 x

x

2s

2

!

exp
�

�g(x2 �2xTth)
�

dx

+ p1

Z •

0

p

2+x

x3/2 exp

 

�
ln2 x

2+x

2s

2

!

exp
�

�g(x2 �2xTth)
�

dx = 0.

(3.14)

For a given electrical SNR g , the electrical-SNR-optimized detection threshold can be calculated

numerically from (3.14). The location of the electrical-SNR-optimized detection threshold lies at

the intersection of two scaled likelihood functions: (1� p1) f (r|s0) and p1 f (r|s1). As shown in

Fig. 3.1, when the electrical SNR approaches infinity, the total area underneath the intersected pdfs,

i.e., (1� p1)PF + p1PM, will become infinitely small. The proposed electrical-SNR-optimized de-

tection can therefore be used to eliminate the error floors caused by a receiver using fixed detection

thresholds. Our numerical results in Section 3.3 will be used to support these analytical arguments.
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Figure 3.1: The likelihood functions f (r|s0) and f (r|s1) with s = 0.25 and x = 0.2 when g = 2
dB and g = 8 dB. The likelihood functions are a result of the convolution of the lognormal pdf and
the Gaussian pdf.
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3.2. OOK with Electrical-SNR-Optimized Detection Thresholds

3.2.2 Electrical-SNR-Optimized Detection Based on an Unknown

Turbulence pdf

To accommodate the fact that the FSO receiver may not always know the underlying characteristics

of the turbulence model, the turbulence distribution can be approximated by sample moments.

The approximated turbulence distribution can then be used to derive the electrical-SNR-optimized

detection threshold.

The density functions of numerous statistical models on the positive half-line can be approxi-

mated by a sum of Laguerre polynomials [52], [53]. Using this approach, one can approximate the

pdf of I as [54]

fI(I)⇡
Iv exp(�I/c)
cv+1G(v+1)

•

Â
j=0

d jL j(v, I/c) (3.15)

where L j (v, I/c) is a Laguerre polynomial of order j in I/c and is written as

L j

✓

v,
I
c

◆

=
j

Â
k=0

(�1)kG(v+ j+1)
k!( j� k)!G(v+ j� k+1)

✓

I
c

◆ j�k
(3.16)

and

d j =
j

Â
k=0

(�1)k j!G(v+1)
k!( j� k)!G(v+ j� k+1)

µ I
c
[ j� k] (3.17)

where the jth moment of I is denoted by µI[ j]. In (3.15), the parameters c =
µI [2]�µ

2
I [1]

µI [1]
and v =

µI [1]
c � 1 are chosen to have the mean and variance of the Gamma RV I0, whose pdf, fI0(I) =

Iv exp(�I/c)
cv+1G(v+1) , matches that of the RV I. From (3.15), the corresponding characteristic function (CF)

and moment generating function (MGF) for the RV I can also be obtained. The detailed derivations

are given in Appendix A. These analytical expressions can be used to estimate the performance of

an FSO system over lognormal fading. Substituting (3.15) into the last equalities of (3.1) and (3.2)
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3.2. OOK with Electrical-SNR-Optimized Detection Thresholds

Table 3.3: Comparison of detection thresholds using an exact and approximated lognormal pdf
with s = 0.25.

SNR (dB) Thresholds with Thresholds with Sample
exact pdf approximated pdf variance

0 0.9497 0.9505 3.11⇥10�8

4 0.8633 0.8637 2.27⇥10�8

8 0.7528 0.7496 1.89⇥10�8

12 0.6302 0.6214 2.56⇥10�8

16 0.5087 0.4984 1.08⇥10�7

20 0.3981 0.4697 8.62⇥10�6

24 0.3036 0.5239 1.03⇥10�5

yields the likelihood functions
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and
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Substituting (3.18) and (3.19) into (3.13) yields
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(3.20)

The detection threshold can be obtained numerically with respect to a given offset x and electrical
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3.3. Numerical Results

SNR from (3.20). A comparison of the electrical-SNR-optimized detection thresholds, acquired by

the approximated and exact lognormal pdfs, are presented in Table 3.3. The thresholds are obtained

by averaging 10 calculated detection thresholds. As shown from Table 3.3, the approximated pdf

can be used to calculate the detection threshold with high accuracy when the electrical SNR is less

than 16 dB. For higher values of SNR, the calculated detection thresholds lose accuracy, and the

corresponding BER curve deviates from the BER curve obtained with perfect knowledge of the

lognormal pdf. This discrepancy occurs because the Laguerre-polynomial-based pdf approxima-

tion can not accurately describe the behaviours of the lognormal pdf near the origin. Fortunately,

this inaccuracy does not concern most practical FSO systems, as they typically operate at relatively

low SNR values [55].

3.3 Numerical Results

Figures 3.2 and 3.3 show the BER versus electrical SNR when the OOK modulated system uses

fixed detection thresholds of Tth = 1 and Tth = 1.2. For expository purposes, the parameters are

set as s = 0.25 and x = 0,0.2. It is observed that the BER curves obtained by using Monte Carlo

simulation show excellent agreement with the derived error floors in large SNR regimes and the

error floors decrease for lower fixed detection thresholds.

To eliminate the error floors and improve the performance, the system with electrical-SNR-

optimized detection thresholds is used. The BERs for the system with the electrical-SNR-optimized

detection thresholds are shown in Figs. 3.2 (with no state offset, x = 0) and 3.3 (with a finite state

offset, x = 0.2), along with the BERs for the system with the adaptive detection thresholds. Both

electrical-SNR-optimized detection thresholds are obtained by using the approximated lognormal

pdf with J = 3 sample moments.

It is seen from Figs. 3.2 and 3.3 that the electrical-SNR-optimized and adaptive detection

threshold results exhibit no error floors, for increasing electrical SNR values, and that there exists

an SNR penalty factor between the system with electrical-SNR-optimized detection thresholds and

the optimum OOK system using adaptive detection thresholds. For example, in Fig. 3.2, the OOK
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Figure 3.2: BERs of OOK modulated systems using fixed detection thresholds Tth, electrical-
SNR-optimized detection thresholds and adaptive detection thresholds over a lognormal turbulence
channel with s = 0.25 and x = 0.
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Figure 3.3: BERs of OOK modulated systems using fixed detection thresholds Tth, electrical-
SNR-optimized detection thresholds and adaptive detection thresholds over a lognormal turbulence
channel with s = 0.25 and x = 0.2.
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3.3. Numerical Results

modulated system using adaptive detection thresholds requires an SNR of 13 dB to attain a BER

of 10�5, while the system using electrical-SNR-optimized detection thresholds requires an SNR

of 15.3 dB to achieve the same BER performance. The corresponding SNR penalty factor in Fig.

3.2 for the system using an electrical-SNR-optimized detection threshold, is 2.3 dB at BER of

10�5. The corresponding SNR penalty factor in Fig. 3.3 for the system using an electrical-SNR-

optimized detection threshold, increases to 4.5 dB when x = 0.2. This performance difference can

be factored into the ultimate FSO system design to offset the complexity of implementing systems

with adaptive detection thresholds (and their need for knowledge of the instantaneous SNR).

It is also important to point out that the BER performance achieved by the electrical-SNR-

optimized system does not require rapid adjustment of the detection threshold. Since practical

FSO systems typically operate at constant transmit power, the detection threshold only needs to be

calculated once over durations of seconds or even minutes. The electrical-SNR-optimized system

can therefore reduce the implementation complexity, compared to that of the idealized system

using adaptive threshold detection.

In Fig. 3.4, the approximated lognormal pdf using J = 3 sample moments is compared with

the exact lognormal pdf, for s = 0.25. The absolute errors between these pdfs are shown explicitly

in Fig. 3.5. The approximated lognormal pdf shows good agreement with the exact lognormal pdf

when s = 0.25. However, for higher s values (s > 0.75), the approximation of the lognormal pdf

becomes inaccurate as integer moments can not uniquely determine the lognormal pdf. Fortunately,

such scintillation levels are not encounted in practice [56]. A comparison of absolute errors from

the pdf approximations using different numbers of sample moments is also given in Fig. 3.5.

Clearly, larger numbers of sample moments can reduce the absolute error, but this comes at the cost

of higher computational complexity. In general, a higher scintillation level s will require higher

order sample moments and the resulting approximation can become increasingly inaccurate. The

Laguerre-polynomial-based approximation is accurate for the 0.1 to 0.5 range of s values that is

of interest to FSO applications [21], [42].

In Fig. 3.6, we compare the BER performance between the approximated lognormal pdf, for
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Figure 3.4: Comparison of an approximated pdf using J = 3 sample moments and an exact pdf for
a lognormal fading channel with s = 0.25.
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3.4. Summary

different values of s with J = 3 sample moments, and the exact lognormal pdf. The two simulated

error rate curves show good agreement over a wide range of SNR values. For the large SNR regime,

the BER results from the approximate pdf have reduced accuracy, because the approximated pdf

based on Laguerre polynomials is unable to characterize the behaviours of the lognormal pdf near

the origin.

3.4 Summary

It is known that FSO systems operating with OOK and fixed detection thresholds can suffer from

irreducible error floors and power inefficiency. With this in mind, the resulting error floors were an-

alyzed here (and validated with simulations) for lognormal turbulence channels and quantified for

the general case having low and high state offsets, i.e., for nonzero extinction ratios. It was shown

that the error floors can be eliminated by using electrical-SNR-optimized detection thresholds that

minimize the average BER. The electrical-SNR-optimized system with the Laguerre-polynomials-

based approximate pdf for the turbulence was found to be effective for typical FSO systems, which

operate at relatively low SNR values, as it yields near-optimal BER performance.
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Chapter 4

Channel Parameters and Electrical SNR

Estimation

In this chapter, the on-going challenges are addressed for the application of the lognormal-Rician

turbulence model to FSO communication systems. MLE is applied to characterize the lognormal-

Rician turbulence model parameters, and the EM algorithm is used to compute the MLE of the

unknown parameters. As an FSO system that applies electrical-SNR-optimized detection must

have knowledge of the electrical SNR, electrical SNR estimation is also investigated for FSO

communication systems using IM/DD over the lognormal fading channels. Both MoME and MLE

are studied for this electrical SNR estimation. The MSE is used to examine the performance of the

estimators.

4.1 MLE for the Lognormal-Rician Shaping Parameter

Estimation

The maximum likelihood principle is the most popular approach to obtain practical estimators. Its

performance is optimal for large quantities of data, and it yields an approximation of the minimum-

variance unbiased estimator.

Assuming that we have K independent and identically distributed (i.i.d.) observations of the

lognormal-Rician distribution, III = [I[0] ... I[K �1]]T , with the unknown vectors q

q

q = [
s

2
z r]T ,
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4.1. MLE for the Lognormal-Rician Shaping Parameter Estimation

the distribution of III can be written as

fIII(III;q

q
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The MLE of the unknown vector q

q

q is then obtained by maximizing the log-likelihood function
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(4.2)

It is difficult to obtain closed-form estimates of the lognormal-Rician parameters, due to the

integral form of the density function in (2.23), so the ensuring analysis uses the EM algorithm

to find the MLE of q

q

q [57]. This method, although iterative in nature, is guaranteed under mild

conditions to converge and produce a local maximum [58]. The vector zzz = [z[0] ... z[K �1]]T is

first defined, where each element of the vector follows the lognormal pdf

f (z[l];sz) =
1p

2pszz[l]
exp

 

� 1
2s

2
z

✓

lnz[l]+
1
2

s

2
z

◆2
!

, l = 0,1, . . . ,K �1. (4.3)
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By treating zzz as the unobserved data, we can write the complete-data log-likelihood function as
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The resulting complete-data sufficient statistics are
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The initial value of s

2
z is obtained by fitting the simple lognormal turbulence model, where

ŝ

2
z
(0)

=� 2
K ÂK�1

l=0 ln I[l]. The initial value of the coherence parameter r can be obtained by solving

the following polynomial equation [14, eq. (6)]

[(r̂(0))2 +4r̂(0) +2]3

[1+(r̂(0))3][(r̂(0))3 +9(r̂(0))2 +18r̂(0) +6]

=

� 1
K ÂK�1

l=0 I2[l]
�3

1
K ÂK�1

l=0 I3[l]
.

(4.7)

Iterations are then carried out with the expectation-step (E-step) and maximization-step (M-step)

[58].
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E-step: The E-step is carried out by computing

T1

⇣

zzz; q̂

q

q

( j)⌘
=

1
K

K�1

Â
l=0

Ezzz|III

h

lnz[l]
�

�

�

III; q̂

q

q

( j) i
(4.8)

T2
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zzz; q̂

q

q
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Ezzz|III
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�

III; q̂

q
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( j) i
(4.9)

T3
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zzz; q̂

q

q

( j)⌘
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Â
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(1+ r)Ezzz|III

h
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�

III; q̂

q

q

( j) i
I[l] (4.10)

+
1
K

K�1

Â
l=0

Ezzz|III

"

ln I0

 

2


(1+ r)r
z[l]

I[l]
�1/2

!

�

�

�

�

�

III; q̂

q

q

( j)
#

where q̂

q

q

( j)
= [

ŝ

2
z
( j)

r̂( j)]T is an estimate of q

q

q in the jth iteration. For the computations carried

out as part of the E-step, it is noted that the expectation expressions in (8)-(10) are all functions of

z[l], so the conditional expectations in (8)-(10) can be expressed as

Ezzz|III

h

g(z[l])
�

�

�

III; q̂

q

q

( j) i
=
Z

g(z[l]) f (z[l]
�

�

�

III; q̂

q

q

( j)
)dz[l] (4.11)

where f (z[l]|I[l]; q̂

q

q

( j)
) = f (I[l]|z[l];q̂qq ( j)

) f (z[l];q̂qq
( j)

)

f (I[l];q̂qq
( j)

)
and where

f (I[l]|z[l]; q̂

q

q

( j)
) = exp

 

�r̂( j)� 1+ r̂( j)
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I[l]

!

⇥ 1+ r̂( j)

z[l]
I0

0

@2

"

(1+ r̂( j))r̂( j)
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I[l]

#1/2
1

A

(4.12)

f (z[l]; q̂

q

q

( j)
) =

1
p

2pŝ

( j)
z z[l]

⇥ exp

0

B

@

� 1

2
⇣

ŝ

( j)
z

⌘2



lnz[l]+
1
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⇣

ŝ

( j)
z

⌘2
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A

(4.13)
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and

f (I[l]; q̂

q

q

( j)
) =

(1+ r̂( j))e�r̂( j)

p
2pŝ

( j)
z

Z •

0
I0
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@2

"

(1+ r̂( j))r̂( j)
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ŝ

( j)
z

⌘2



lnz[l]+
1
2

⇣

ŝ
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dz
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(4.14)

M-step: The M-step is carried out by computing

ŝ

2
z
( j+1)

= T2

⇣

zzz; q̂

q

q

( j)⌘�
⇣

T1

⇣

zzz; q̂

q

q

( j)⌘⌘2
(4.15)

and finding r̂( j+1) such that it maximizes

r̂( j+1) = argmax
r

n

T3

⇣

zzz; q̂

q

q

( j)⌘o
(4.16)

where q̂

q

q

( j+1)
= [

ŝ

2
z
( j+1)

r̂( j+1)]T is the new estimate of q

q

q . For the EM algorithm, the conditional

expectation of the complete data is nondecreasing until it reaches a fixed point. This fixed point is

the MLE of q

q

q , i.e., q̂

q

q ML = [
ŝ

2
z,ML r̂ML]

T .

4.2 Electrical SNR Estimation

As the electrical-SNR-optimized detection threshold introduced in Chapter 3 requires knowledge

of the state offset x and electrical SNR g , it is necessary to estimate x and g . MoME and MLE are

used for such estimation in this section.

It is assumed that there are 2L sampled signals during the observation interval. The vectors

R = [r[0] ... r[2L�1]]T , I f = [I[0] ... I[2L�1]]T , and N = [n[0] ... n[2L�1]]T represent

the received signal vector, fading coefficient vector, and noise vector, respectively. Assuming that

a training sequence of length 2L is transmitted with L consecutive 1’s followed by L consecutive
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4.2. Electrical SNR Estimation

0’s, one can write the received signal at the lth bit interval when bit 1 is transmitted as

r[l]|s1 = (2+x )I[l]+n[l], l = 0,1, ...,L�1 (4.17)

where I[l] and n[l] represent the fading coefficient and noise during the lth bit interval, respectively.

Similarly, if L 0’s are transmitted, the received signal at the kth bit interval can be written as

r[k]|s0 = x I[k]+n[k], k = L,L+1, ...,2L�1. (4.18)

4.2.1 Method of Moments Estimation

Using (4.17) and (4.18), one can obtain the estimation of x as

x̂ =
1
L Â2L�1

k=L r[k]|s0
1

2L ÂL�1
l=0 r[l]|s1 � 1

2L Â2L�1
k=L r[k]|s0

. (4.19)

To assess the performance of the moment estimator x̂ , approximate expressions can be de-

rived for the mean and variance of x̂ when the sample size is asymptotically large. Assuming

the statistics T = [T1 T2]
T , where T1 =

1
L ÂL�1

l=0 r[l]|s1 and T2 =
1
L Â2L�1

k=L r[k]|s0, one can obtain the

covariance matrix as

CT =

0

B

@

Var[T1] Cov[T1,T2]

Cov[T2,T1] Var[T2]

1

C

A

=

0

B

@

1
L [s

2
g +(2+x )2Var[I]] 0

0 1
L(s

2
g +x

2Var[I])

1

C

A

.

(4.20)

Here, Var[·] denotes the variance, and Cov[·, ·] denotes covariance of two RVs. The estimator x̂

can be rewritten as

x̂

D
= j(T) = 2T2

T1 �T2
. (4.21)

The estimator in (4.19) is consistent, i.e., x̂

Pr�! x as L �! •, and is asymptotically Gaussian
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4.2. Electrical SNR Estimation

distributed, i.e.,
p

L(x̂ � x )
L�! N (0,s2

x̂

). Performing a first-order Taylor expansion of j(·)

about the point T = E[T] gives [59]

x̂ ⇡ j(T)

�

�

�

�

�

T=E[T] +
2

Â
i=1

∂j

∂Ti

�

�

�

�

�

T=E[T]

(Ti �E[Ti]) (4.22)

where E[T] = [(2+x )E[I] x E[I]]T . Taking the expectation of (4.22) gives

E[x̂ ]⇡ j(T)
�

�

�

�

T=E[T]
= x (4.23)

and the asymptotic variance of x̂ can be expressed as [58]

s

2
x̂

=Var[x̂ ] =
∂j

∂Ti

�

�

�

�

T

T=E[T]
CT

∂j

∂Ti

�

�

�

�

T=E[T]

=
s

2
g [x

2 +(2+x )2]+2x

2(2+x )2Var[I]
4L(E[I])2 .

(4.24)

Using (4.17) and (4.18), one can obtain the estimation of the turbulence mean m = exp(µ +

s

2/2) and N0, respectively, as

m̂ =
1

2L

L�1

Â
l=0

r[l]|s1 �
1

2L

2L�1

Â
k=L

r[k]|s0 (4.25)

and

N̂0 = 2
(m̂|s1)

2
µ̂r[2]|s0 � (m̂|s0)

2
µ̂r[2]|s1

(m̂|s1)
2 � (m̂|s0)

2 (4.26)

where

m̂|s1 =
1
L

L�1

Â
l=0

r[l]|s1 (4.27)

µ̂r[2]|s0 =
1
L

2L�1

Â
k=L

r2[k]|s0 (4.28)
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m̂|s0 =
1
L

2L�1

Â
k=L

r[k]|s0 (4.29)

and

µ̂r[2]|s1 =
1
L

L�1

Â
l=0

r2[l]|s1. (4.30)

Using (4.25) and (4.26), one can obtain the estimation of g as

ĝ =
m̂2

N̂0
=

(m̂|s1 � m̂|s0)
2
h

(m̂|s1)
2 � (m̂|s0)

2
i

8
h

(m̂|s1)
2

µ̂r[2]|s0 � (m̂|s0)
2

µ̂r[2]|s1

i . (4.31)

4.2.2 Maximum Likelihood Estimation

For the MLE, we transmit a training sequence consisting of 2L consecutive 1’s. Assuming the

received signal model is the same as (4.17), one can write the pdf of the received signal as [23]

f (r[k]|s1;q

q

q

g

) = fI (r[k])⇤ fN(r[k])

=
Z •

0

1p
2psx

exp

 

�(lnx� ln(2+x )�µ)2
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2

!

⇥ 1p
pN0

exp
✓

�(r[k]� x)2

N0

◆

dx

(4.32)

where q

q

q

g

= [
µ s

2 N0 x

]T denotes the unknown vector, and fN(r[k]) = 1p
pN0

exp
⇣

� r2[k]
N0

⌘

is

the noise pdf. Assuming that the components of the received signal vector R are independent, we

can write the pdf of the received signal when s1 is true as

f (R;q

q

q

g

) =
2L�1

’
k=0

f (r[k]|s1;q

q

q
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)

=
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Z •
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!

⇥ 1p
pN0

exp
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�(r[k]� x)2
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◆

dx.

(4.33)
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The MLE of the unknown vector q

q

q

g

is obtained by maximizing the log-likelihood function

L(R;q

q

q

g

) = ln f (R;q

q

q

g

)

= ln
2L�1

’
k=0
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�(r[k]� x)2

N0

◆

dx.

(4.34)

Taking the derivative of (4.34) with respect to the unknown parameter and setting it equal to zero,

we can obtain the MLE of the unknown vector q

q

q

g

. As it is difficult to obtain a closed-form

expression for each unknown parameter, the EM algorithm can be implemented numerically to

determine the MLE.

In order to simplify the problem, we decompose the original data sets into the independent data

sets y1[k] = I[k] and y2[k] = n[k], where y1[k] and y2[k] are the complete data, and they are related

to the original data as r[k] = y1[k] + y2[k]. Instead of maximizing ln f (R;q

q

q

g

), we can maximize

ln f (Y;q

q

q

g

), where Y = [yyy1 yyy2]
T , yyy1 = [y1[0] ... y1[2L�1]]T and yyy2 = [y2[0] ... y2[2L�1]]T .

Since y1[k] = I[k], we have

ln f (y1[k];q

q

q
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) = ln
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(4.35)

Similarly, we have

ln f (y2[k];q

q

q

g

) = ln
✓

1p
pN0

exp
✓

�
y2

2[k]
N0

◆◆
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(4.36)

Assuming q̂

q

q

( j)
g

= [
µ̂

( j) (ŝ2)( j) (N̂0)( j) (x )( j)]T is an estimate of q

q

q

g

in the jth iteration, each
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iteration of the EM algorithm can be carried out with the following E- and M-steps.

E-step: This step determines the conditional expectation of the complete data

U(qqq
g

, q̂qq
( j)
g

) = E
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( j)
g
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q

q
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)]
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g
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(4.37)

where we have
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(4.38)

and
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) =
f (R|yyy2; q̂

q

q

( j)
g
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)

f (R; q̂

q

q

( j)
g

)
(4.39)

and where

f (R|yyy1; q̂

q

q

( j)
g

) =
2L�1

’
k=0

1
p

2p(ŝ2)( j)(r[k]� y1[k])
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and
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M-step: This step maximizes (4.37) with respect to q

q

q

g

, by way of

q

q

q

( j+1)
g

= argmax
q

q

q

g

U(qqq
g

, q̂qq
( j)
g

) (4.42)

where q̂

q

q

( j+1)
g

is the new estimate of q

q

q

g

. For the EM algorithm, the conditional expectation of the
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complete data is nondecreasing until it reaches a fixed point. This fixed point is the MLE of q

q

q

g

q̂

q

q

g,ML = [
µ̂ML ŝ

2
ML N̂0,ML x̂ML]

T . (4.43)

Based on the invariance property of the MLE, we obtain the MLE of µI as µ̂I,ML = exp
⇣

µ̂ML +
ŝ

2
ML
2

⌘

.

The MLE of g can be obtained as

ĝML =
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⇣

exp
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. (4.44)

The Cramér-Rao lower bound (CRLB) of ĝ can be calculated using [58]
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∂g

∂ µ

∂g

∂s

2
∂g

∂N0

∂g

∂x

�

I�1(qqq
g

)



∂g

∂ µ

∂g

∂s

2
∂g

∂N0

∂g

∂x

�T
(4.45)

where I(qqq
g

) is the Fisher information matrix that can be found as
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4.3 Numerical Results

To evaluate the estimator performance, the MSE of the estimator q̂

q

q is studied. The MSE is

MSE[q̂qq ] = Var[q̂qq ] + (E[q̂qq ]� q

q

q)2, where Var[q̂qq ] is the variance of the estimator, i.e., Var[q̂qq ] =

1
M�1 ÂM�1

i=0 (q̂qq i � ¯̂
q

q

q)2, ¯̂
q

q

q is the sample mean of the estimator, and E[q̂qq ] = 1
M ÂM�1

i=0 q̂

q

q i is the mean of

the estimator [60]. The simulation uses K = 1,000 data samples to estimate the lognormal-Rician

parameters and M = 100 trials to calculate the MSE of the estimator.

In Fig. 4.1, we present the simulated MSE and NMSE performance of r̂ and ŝ

2
z when s

2
z = 0.25

and r ranges from 1 to 9. The NMSE is defined as the MSE scaled by the true value of the

46



4.3. Numerical Results

estimator. The performance trends at or above r = 2 are especially noteworthy. Increasing the

value of r decreases the NMSE of r̂ but it does not change the NMSE of ŝ

2
z to any great extent.

Thus, changes to the value of r have minimal effects on the estimation performance of s

2
z , and the

MLE is insensitive to the value of r. The same conclusion can be seen for the MSE of r̂ and ŝ

2
z ,

which remain relatively flat as r increases.

In Fig. 4.2, we present the simulated MSE and NMSE performance of r̂ and ŝ

2
z when r = 4

and s

2
z ranges from 0.1 to 0.8. From the figure, we note that the MSE of ŝ

2
z increases with the

value of s

2
z while the MSE performance curve of r̂ stays flat with changing values of s

2
z . It can be

seen that the MLE performance of the lognormal-Rician parameter s

2
z is insensitive to the value of

r but sensitive to the value of s

2
z , while the MLE performance of the lognormal-Rician parameter

r is insensitive to both the values of r and s

2
z .

Overall, the results for the MSE and NMSE in Figs. 4.1 and 4.2 are indicative of accurate

estimation. The MSE and NMSE performance is comparable with that of the prior study [14],

albeit with three orders of magnitude fewer data samples being required for the method proposed

here.

In order to evaluate the estimator performance, the sample variance of the electrical SNR es-

timator is compared with the CRLB. The variance of the electrical SNR estimator is given by

ŝ

2
ĝ

=
1

M�1

M�1

Â
i=0

(ĝi � ¯̂
g)2 (4.47)

where ĝi is the estimation by using MoME or MSE at the ith trials, M represents the total number

of trails, and ¯̂
g is the sample mean of the electrical SNR estimator. In order to assess the estimator,

Monte Carlo simulations are used to obtain ŝ

2
ĝ

. In the simulation, different training sequence

lengths are used to estimate the mean and noise variance, M = 1⇥104 trials are used to calculate the

variance of the electrical SNR estimator, and x is set at 0.2. Figure 4.3 plots the normalized sample

variance of the electrical SNR estimator, which is defined as the sample variance scaled by g , versus

the average electrical SNR. It is shown that the normalized sample variance for MLE attains the

normalized CRLB, which is obtained by scaling the CRLB by g . However, there is a discrepency

47



4.4. Summary

between the normalized sample variance for MoME and the normalized CRLB for SNR values

greater than 12 dB due to the inaccurate estimation of the noise variance. It can be shown that

the discrepency between the normalized sample variance for MoME and the normalized CRLB

will disappear when x = 0. In this case, the received signal is characterized completely by the

noise when 0 is transmitted. Thus, the noise variance can be accurately estimated by transmitting

a training sequence with consecutive 0’s. (When x 6= 0 and 0 is transmitted, the received signal is

the noise as well as the fading coefficient term, and this leads to inaccurate estimation of the noise

variance if a training sequence is transmitted with consecutive 0’s.)

In Fig. 4.4, we compare the BER performance between the estimated electrical SNR, for

different values of s , and the exact electrical SNR. The pdf of the lognormal turbulence model

is approximated by using Laguerre-polynomials with J = 3 sample moments. The two simulated

error rate curves show good agreement over a wide range of SNR values.

4.4 Summary

The challenges were addressed in this chapter for the application of the lognormal-Rician turbu-

lence model to FSO communications. The proposed technique used MLE, to estimate the pa-

rameters of the lognormal-Rician fading channels and the EM algorithm, to compute the MLE of

the unknown parameters. The performance was simulated in terms of MSE. Numerical results

showed that MLE with the EM algorithm can effectively characterize FSO communications over

lognormal-Rician fading channels, given a wide range of turbulence conditions. Accurate estima-

tion was shown with reduced demands on the quantity of data samples.

For FSO communication systems, the reduced demand on the number of data samples for the

proposed method leads to a shortened latency, being on the order of 103⇥10�3 seconds = 1 second,

for turbulence-induced fading on a millisecond timescale. (In contrast, the method introduced in

[14] demands a large number of data samples, on the order of 106, and it becomes necessary

to operate with a latency on the order of 106 ⇥ 10�3 seconds = 103 seconds.) The second-long

latency enabled by the work in this chapter is sufficiently short to support electrical-SNR-optimized
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adaptive detection in FSO channels exhibiting stationary statistics, i.e., constant channel model

parameters, over several seconds or minutes. To the authors’ best knowledge, this is the first

practical implementation capable of electrical-SNR-optimized adaptive detection using the highly-

accurate lognormal-Rician turbulence model.

Electrical SNR estimation was studied for FSO systems using IM/DD over lognormal fading

channels. Training sequences based on MoME and MLE were proposed. It was found that MoME

could produce a closed-form expression for the estimator, while MLE requires numerical compu-

tation to produce the estimator. The estimator performance was examined in terms of MSE. Monte

Carlo simulations were used to assess the performance of the proposed estimators. The proposed

estimators can be effective tools for future FSO systems implementing electrical-SNR-optimized

detection.
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Chapter 5

OOK IM/DD System with Source

Information Transformation

In this chapter, an FSO communication system using OOK and source information transformation

is proposed. This system can detect the OOK signal without knowledge of the instantaneous

CSI and pdf of the turbulence model. The pdf of the detection threshold and an upper bound

on the average BER are derived. Numerical studies show that the proposed system can achieve

comparable performance to the idealized adaptive detection system, with a greatly reduced level of

implementation complexity and an SNR performance loss of only 1.85 dB at a BER of 2.17⇥10�7

for a lognormal turbulence channel with s = 0.25.

5.1 System and Channel Models

We consider an IM/DD system with M laser source transmitters and M photodetectors operating

through atmospheric turbulence channels.

The operation of the proposed scheme is described as follows. At the transmitter, which is

shown in Fig. 5.1, there are M distinct optical wavelengths, l1,l2, . . . ,lM, assigned to the M

laser transmitters. Each wavelength is used to transmit an independent information sequence, with

source information transformation used to ensure that one or more lasers transmit bit “1” during

each symbol duration. When M = 2, the proposed system can almost double the multiplexing gain

achieved in the system of [25] using double-laser differential signaling. For source information

transformation, we first convert a binary information sequence of length L to a (2M � 1)-nary
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Figure 5.1: Block diagram of the transmitter for the system using source information transforma-
tion.
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information sequence of length J as shown in Fig. 5.2. This mapping can be written as

T1 : {0,1}L ! {0, . . . ,2M �1}J. (5.1)

Then we map each element of the (2M �1)-nary sequence into an M-bit binary sequence that does

not contain the all-zero binary sequence. The resulting M-bit binary sequence after the serial-

to-parallel conversion determines, among M transmitted lasers, which link transmits bit “0” and

which link transmits bit “1”. For example, when M = 3, we map the seven elements of the 7-

nary sequence (0,1,2,3,4,5,6) to the binary sequence {001,010,011,100,101,110, 111}. This

mapping can be written as

T2 : {0, . . . ,2M �1}J ! {0,1}JM. (5.2)

The mapping described in (5.1) and (5.2), which we call source information transformation, will

ensure that the M received signals have an explicit turbulence fading reference for detection in

each symbol duration, meaning that at least one laser is on (bit “1” is transmitted). When bit “1”

is transmitted, the signal will suffer turbulence distortion. It is desirable to select values of L and J

that make the mapping of T1 be a one-to-one mapping, i.e.,

2L = (2M �1)J. (5.3)

However, the above equality is difficult to achieve in practice for arbitrary values of L and J. To

approximate the ideal case of (5.3), we consider

min
(L,J)

⇥

(2M �1)J �2L⇤ (5.4)

Subject to 2L  (2M �1)J.

Since there might be more than one pair (L,J) that satisfies (5.4), we will choose the smallest pair
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Figure 5.2: Block diagram of the source information transformation.

(L,J) for our system, i.e., the value of L+ J is the smallest among the pairs which satisfy (5.4), as

it is desirable to minimize the system delay. For example, when M = 3, we select L = 14 and J = 5

by using a computer search.

At the receiver, as shown in Fig. 5.3, diffractive optical elements and/or narrowband optical

filters are used to separate the prescribed wavelengths for the detection of the M transmitted sig-

nals. In Fig. 5.3, we use the acronym PD to represent the photodetector. After the M parallel

photodetectors and the parallel-to-serial conversion, in each symbol duration, a value of one-half

of the largest received signal is used to define the detection threshold for the M received signals. If

all of the M-bit binary sequence are demodulated as bit “0”, which may happen due to the noise,

this is an incorrect decision (since an all-zero binary sequence is not transmitted for our system),

and we will assume the source transmits 00 . . .01. The demodulated JM-bit binary sequence will

be mapped to a (2M �1)-nary sequence of length J, and then this (2M �1)-nary sequence of length

J will ultimately be converted back to a binary information sequence of length L.

At the mth transmitter, the transmitted intensity can be expressed as

sm(t) = 1+Â
i

ai,mgm(t � iTp), m = 1,2, . . . ,M (5.5)

where ai,m 2 {�1,1} is the ith data in the mth transmitter, and Tp is the symbol duration. In

(5.5), pulse shaping in the mth transmitter is defined as gm(t) = 1 for 0 < t < Tp, and gm(t) =

0 otherwise. These M signals are transmitted through atmospheric turbulence channels and are

distorted by a multiplicative process I(u, t). We have assumed that the channel fading is the same

for all the wavelengths in each symbol duration. This assumption can be achieved by ensuring that
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the transmitter wavelengths are sufficiently close to each other (being separated only by tens of

nanometers), which will ensure that the transmitter beams are spatially overlapped and experience

the same atmospheric turbulence distortion [25].

At the mth receiver, the received signal after the photodetection can be written as

rm(t) = R[(1+x )I(u, t)+ I(u, t)Â
i

ai,mgm(t � iTp)]+nm(t), m = 1,2, . . . ,M. (5.6)

Without loss of generality, the photodetector responsivity R is assumed to be unity. In (5.6), the

positive parameter x is the low and high state offset that quantifies a nonzero extinction ratio,

I(u, t) is assumed to be a stationary random process for signal scintillation caused by atmospheric

turbulence, and nm(t) is AWGN due to thermal noise and/or ambient shot noise in mth receiver.

Using a p-i-n photodiode and following [21], the shot noise is assumed to be dominated by ambient

shot noise. (Both ambient shot noise and thermal noise are statistically independent of the desired

signal.) The total noise power is s

2
g = s

2
s +s

2
T , where s

2
s and s

2
T denote the respective ambient

shot noise power and the thermal noise power.

The mth received signal is sampled at time Tp. The sample I(u, t = Tp) is a RV I, and the sample

nm(t = Tp) is a RV nm having zero mean and variance s

2
g . When bit “0” is transmitted, s0 becomes

true and the laser is off. The demodulation sample is rm|s0 = nm. When bit “1” is transmitted, s1

becomes true and the laser is on. The demodulation sample is rm|s1 = I +nm.

5.2 The Probability Density Function of the Detection

Threshold

With perfect knowledge of the instantaneous CSI, the minimum error probability is provided by

the ML based decision threshold expressed by [22]

Tth =
s0(I0 + I1)+s1I0

s0 +s1
(5.7)
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Figure 5.3: Block diagram of the receiver for the system using source information transformation.
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where s1 and s0 are the standard deviations of the noise currents for bits “1” and “0”, respectively;

I1 and I0 are averages of the generated currents at the receiver for bits “1” and “0”. For simplicity,

we assume s0 = s1 = sg, I0 = 0 and I1 = I. The ML-based detection threshold is Tth = I/2, which

is an adaptive detection threshold and varies with the fading coefficient. Note that this is complex

to realize in practice, as it requires perfect knowledge of the instantaneous CSI for each symbol

detection. However, when the average SNR (denoted by g) approaches infinity, or for a noiseless

system, we have

lim
g!•

max{r1,r2, . . . ,rM}= I. (5.8)

Thus, we can intuitively set the detection threshold for the system to be

Tth =
max{r1,r2, . . . ,rM}

2
. (5.9)

The most important feature of the detection threshold proposed in (5.9) is that it only depends on

the received signal, and unlike a coherent OOK detection scheme, an estimate of the CSI is not

required.

We now derive the pdf of the detection threshold Tth in (5.9). In a symbol duration, we first

consider the case for which k branches transmit bit “1”, where k = 1,2, . . . ,M, and the rest of the

M�k branches transmit bit “0”. Without loss of generality, we assume the first k branches transmit

bit “1”, and the rest of the M � k branches transmit bit “0”. The conditional CDF of Tth can be

written as

FTth(tth|I,k) = P
✓

max{I +n1, . . . , I +nk,nk+1, . . . ,nM}
2

< tth

◆

= P
✓

I +n1

2
< tth, . . . ,

I +nk

2
< tth,

nk+1

2
< tth, . . . ,

nM

2
< tth

◆

= P(n1 < 2tth � I, . . . ,nk < 2tth � I,nk+1 < 2tth, . . . ,nM < 2tth).

(5.10)
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Since all the noise components n1,n2, . . . ,nM are assumed to i.i.d., we have

P(n1 < 2tth � I, . . . ,nk < 2tth � I,nk+1 < 2tth, . . . ,nM < 2tth)

= P(n1 < 2tth � I) . . .P(nk < 2tth � I)P(nk+1 < 2tth) . . .P(nM < 2tth)

= [P(n1 < 2tth � I)]k[P(nM < 2tth)]M�k.

(5.11)

It follows that

FTth(tth|I,k) = [P(n1 < 2tth � I)]k[P(nM < 2tth)]M�k

= [F(2tth � I)]k[F(2tth)]M�k
(5.12)

where F(x) =
R x
�•

1p
2p

exp
⇣

� r2

2

⌘

dr is the CDF of a standard Gaussian RV. The pdf of Tth condi-

tioned on k branches transmitting bits “1”s and I can be written as

fTth(tth|I,k) =
d

dtth
FTth(tth|I,k) =2k

✓

F
✓

2tth � I
sg

◆◆k�1✓

F
✓

2tth
sg

◆◆M�k
fN(2tth � I)

+2(M� k)
✓

F
✓

2tth � I
sg

◆◆k✓

F
✓

2tth
sg

◆◆M�k�1
fN(2tth)

(5.13)

where fN(x) = 1p
2psg

exp
⇣

� x2

2s

2
g

⌘

denotes the pdf of the noise term. The pdf of Tth conditioned on

I can be obtained as

fTth(tth|I) =
M

Â
k=1

fTth(tth|I,k)p(k)

=
fN(2Tth � I)

2M�1

(

M


F
✓

2Tth

sg

◆

+F
✓

2Tth � I
sg

◆�M�1

+

✓

F
✓

2Tth

sg

◆◆M�1
)

+
fN(2Tth)

2M�1

(

M
✓

F
✓

2Tth

sg

◆

+F
✓

2Tth

sg

◆◆M�1

+

✓

F
✓

2Tth

sg

◆◆M�2

(M�1)F
✓

2Tth

sg

◆

�MF
✓

2Tth

sg

◆�

)

(5.14)

61



5.3. The Upper Bound on the Average BER

where p(k) = (M
k )

2M is the probability that there are k branches transmitting bit “1”. Averaging (5.14)

with respect to the fading coefficient I, one can obtain the pdf of Tth as

fTth(tth) = EI [ fTth(tth|I)] (5.15)

where EI[·] represents the statistical expectation with respect to I.

5.3 The Upper Bound on the Average BER

As it is challenging to find the exact BER expression for our proposed system, we will find an

upper bound on the average BER. For expository purposes, we first analyze the error caused in the

detection process. The error caused in the detection process, before the (2M � 1)-nary sequence

conversion at the receiver, is the turbulence induced error when the binary sequence is transmitted

through the turbulence channel. We then analyze the average BER of the output binary sequence.

5.3.1 The Error Caused In The Detection At The Receiver

If k branches transmit bit “1”, and the rest of the M � k branches transmit bit “0”. Without loss

of generality, we assume the first k branches transmit bit “1” values and the detection threshold

becomes

T̃th =
max{I +n1, . . . , I +nk,nk+1, . . . ,nM}

2
. (5.16)

We define N =



n[1] ... n[M]

�T
as the noise vector, and Nk� =



n[1] ... n[k�1] n[k+1] ...

n[M]
iT

as the noise vector without the kth noise component nk. The probability of having incorrect

62



5.3. The Upper Bound on the Average BER

detection in one or more links can be written as

P(e|k) = 1
M
�

EN1�

⇥

EI
⇥

P
�

I +n1 < T̃th
�

�N1� , I
�⇤⇤

+ · · ·+ENk�

⇥

EI
⇥

P
�

I +nk < T̃th
�

�Nk� , I
�⇤⇤

+ENk+1�

⇥

EI
⇥

P
�

nk+1 > T̃th
�

�Nk+1� , I
�⇤⇤

+ · · ·+ENM�

⇥

EI
⇥

P
�

nM > T̃th
�

�NM� , I
�⇤⇤ 

.

(5.17)

Since all components of the noise vector N are i.i.d., for k1 6= k2, where k1,k2 2 {1,2, . . . ,M}, we

have

ENk1�

h

EI

h

P
⇣

I +nk1 < T̃th
�

�Nk1
� , I

⌘ii

= ENk2�

h

EI

h

P
⇣

I +nk2 < T̃th
�

�Nk2
� , I

⌘ii

(5.18)

and

ENk1�

h

EI

h

P
⇣

nk1 > T̃th
�

�Nk1
� , I

⌘ii

= ENk2�

h

EI

h

P
⇣

nk2 > T̃th
�

�Nk2
� , I

⌘ii

. (5.19)

Thus, the probability of having incorrect detection in one or more links can be written as

P(e|k) = k
M

EN1�

⇥

EI
⇥

P
�

I +n1 < T̃th
�

�N1� , I
�⇤⇤

+
M� k

M
ENM�

⇥

EI
⇥

P
�

nM > T̃th
�

�NM� , I
�⇤⇤

.
(5.20)
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The first term in (5.20) can be upper-bounded as

P
�

I +n1 < T̃th
�

�N1� , I
�

= P
✓

I +n1 <
max{I +n1, . . . , I +nk,nk+1, · · · ,nM}

2

�

�

�

�

N1� , I
◆

= P
✓⇢

I +n1 <
I +n1

2

�

[ · · ·[
⇢

I +n1 <
I +nk

2

�

[
n
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2

o

[ · · ·[
n

I +n1 <
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2

o

�

�

�

N1� , I
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2

�

�

�

�

I
◆

+P
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2

�

�

�

�

n2, I
◆

+ · · ·

+P
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2

�

�

�

�

nk, I
◆

+P
⇣
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nk+1

2

�

�

�

nk+1, I
⌘

+ · · ·+P
⇣

I +n1 <
nM

2

�

�

�

nM, I
⌘
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2

�

�

�
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�

�
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nM

2
� I

�

�

�
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n1 <
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(5.21)

The second term in (5.20) can be upper-bounded as

P
�

nM > T̃th
�

�NM� , I
�

= P
✓

nM >
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2
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(5.22)

Subtituting (5.21) and (5.22) into (5.20), we have

P(e|k)< k
M

⇢

EI [P(n1 <�I)]+(k�1)En2



EI



P
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n1 <
n2 � I

2

�

�

�
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n2, I
◆��
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P
✓
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2

�

�

�

�
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◆��

.

(5.23)
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The upper bound on the average BER for the binary sequence transmitted through the turbulence

channel with M transmit lasers is obtained as

Pe2 =
M

Â
k=1

P(e|k)p(k)

<
M

Â
k=1
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k
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(5.24)

It is difficult to find a closed-form expression of (5.24) that contains a double integral; however,

this integral can be evaluated numerically with high accuracy.

5.3.2 Average BER of the Output Binary Sequence

At the transmitter, a binary sequence aL . . .a2a1 is converted into a (2M�1)-nary sequence hJhJ�1 . . .

h2h1. This (2M �1)-nary sequence of length J is mapped to a binary sequence of length JM. At the

receiver, after the demodulation, we will map a binary sequence of length JM to a (2M � 1)-nary

sequence ĥJĥJ�1 . . . ĥ2ĥ1. The decimal value of a (2M �1)-nary sequence ĥJĥJ�1 . . . ĥ2ĥ1 of length

J can be calculated as

X = (2M �1)J�1ĥJ + · · ·+(2M �1)ĥ2 + ĥ1 =
J

Â
j=1

(2M �1) j�1ĥ j. (5.25)

To convert the (2M�1)-nary sequence ĥJĥJ�1 . . . ĥ2ĥ1 to a binary sequence, denoted as âL+1âL . . . â2â1,

the lowest element of the binary sequence is

â1 = mod(X ,2) (5.26)
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5.3. The Upper Bound on the Average BER

where mod(·) yields the remainder after division of X by 2. Similarly, the second element of the

binary sequence is

â2 = mod
✓

X � â1

2
,2
◆

. (5.27)

The third element of the binary sequence is

â3 = mod
✓

X �2â2 � â1

22 ,2
◆

. (5.28)

Thus, the lth element of the binary sequence is

âl = mod
✓

X �2l�2âl�1 � · · ·�2â2 � â1

2l�1 ,2
◆

= mod

 

X �Âl�1
i=1 2i�1âi

2l�1 ,2

!

= mod

 

ÂJ
j=1(2

M �1) j�1ĥ j �Âl�1
i=1 2i�1âi

2l�1 ,2

!

(5.29)

or

âl =

$

ÂJ
j=1(2

M �1) j�1ĥ j �Âl�1
i=1 2i�1âi

2l�1

%

(5.30)

where b·c is the floor function that returns the largest integer, and this integer is less than or equal

to the argument. We comment that when a (2M � 1)-nary sequence of length J is converted to

a binary sequence of length L+ 1; however, at the transmitter, we convert a binary information

sequence of length L to a (2M � 1)-nary information sequence of length J. Thus, at the receiver,

we will ignore âL+1 and use âL . . . â2â1 as our binary information sequence.

To calculate the probability of having an incorrect decision in the binary sequence âL . . . â2â1,

for expository purposes, we consider M = 3. When M = 3, we will convert L = 14 binary infor-

mation bits a14 . . .a2a1 to a 7-nary sequence with a length of J = 5 (h5hJ�1 . . .h2h1). Then we map

the 7-nary sequence of length of J = 5 into a binary sequence of length JM = 15. At the receiver,

after the demodulation, we will map each M = 3 binary bits to an element of the 7-nary sequence.
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5.3. The Upper Bound on the Average BER

Table 5.1: The conditional probability of the received (2M �1)-nary number is ĥl given the trans-
mitted (2M �1)-nary number is hl .

ĥl 0 1 2 3 4 5 6
P(ĥl|hl = 0) P(0|0) P(1|0) P(2|0) P(3|0) P(4|0) P(5|0) P(6|0)
P(ĥl|hl = 1) P(0|1) P(1|1) P(2|1) P(3|1) P(4|1) P(5|1) P(6|1)
P(ĥl|hl = 2) P(0|2) P(1|2) P(2|2) P(3|2) P(4|2) P(5|2) P(6|2)
P(ĥl|hl = 3) P(0|3) P(1|3) P(2|3) P(3|3) P(4|3) P(5|3) P(6|3)
P(ĥl|hl = 4) P(0|4) P(1|4) P(2|4) P(3|4) P(4|4) P(5|4) P(6|4)
P(ĥl|hl = 5) P(0|5) P(1|5) P(2|5) P(3|5) P(4|5) P(5|5) P(6|5)
P(ĥl|hl = 6) P(0|6) P(1|6) P(2|6) P(3|6) P(4|6) P(5|6) P(6|6)

The mapping can be seen as follows:

000 ! 0

001 ! 0

010 ! 1

011 ! 2

100 ! 3

101 ! 4

110 ! 5

111 ! 6.

(5.31)

Table 5.1 shows the conditional probability of the received (2M � 1)-nary number is ĥl given the

transmitted (2M �1)-nary number is hl . The conditional probability in Table 5.1 can be calculated

by using the bit error probability for the binary bit transmitted through the turbulence channel, i.e.,

P(0|0) = P(000|001)+P(001|001) = (1�Pe2)
2Pe2 +(1�Pe2)

3. This is shown in Table 5.2. In

Tabel 5.2, Pe2 is the error probability for the binary bit transmitted through the turbulence channel,

and its upper-bound has been derived in accordance with (5.24).

Since each element of ĥ5 . . . ĥ2ĥ1 and h5 . . .h2h1 is independent, the conditional probability for
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the received (2M �1)-nary sequence is ĥ5 . . . ĥ2ĥ1 given the transmitted (2M �1)-nary sequence is

h5 . . .h2h1 is

P(ĥ5 . . . ĥ2ĥ1|h5 . . .h2h1) = P5
j=1P(ĥ j|h5 . . .h2h1) = P5

j=1P(ĥ j|h j). (5.32)

The conditional probability of the received binary sequence is âL . . . â2â1 given the transmitted

binary sequence aL . . .a2a1 can be written as

P(â14 . . . â2â1|aL . . .a2a1) = P(ĥ5 . . . ĥ2ĥ1|h5 . . .h2h1) = P5
j=1P(ĥ j|h j). (5.33)

If the transmitted binary sequence is a14 . . .a2a1, and the received binary sequence is â14 . . . â2â1,

the conditional error probability of this system given a14 . . .a2a1 and â14 . . . â2â1 is

P(e|a14 . . .a2a1, â14 . . . â2â1) =
Â14

l=1 al � âl

14
(5.34)

where � implements an exclusive OR. Thus, the BER of this system with M = 3 can be written as

P(e) = Â
a14...a2a1,â14...â2â1

P(e|a14 . . .a2a1, â14 . . . â2â1)P(a14 . . .a2a1, â14 . . . â2â1)

= Â
a14...a2a1,â14...â2â1

Â14
l=1 al � âl

14
P(a14 . . .a2a1, â14 . . . â2â1)

= Â
a14...a2a1,â14...â2â1

Â14
l=1 al � âl

14
P(â14 . . . â2â1|a14 . . .a2a1)P(a14 . . .a2a1).

(5.35)

In (5.35), the elements of a14 . . .a2a1 are independent, so we have P(a14 . . .a2a1) =
1

214 . Substitut-

ing (5.33) into (5.35), we have

P(e) = Â
a14...a2a1,â14...â2â1

Â14
l=1 al � âl

14
P5

j=1P(ĥ j|h j)P(a14 . . .a2a1)

=
1

214 Â
a14...a2a1,â14...â2â1

Â14
l=1 al � âl

14
P5

j=1P(ĥ j|h j).

(5.36)
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In general, the BER for the proposed system with M transmitted lasers can be written as

P(e) =
1
2L Â

aL...a2a1,âL...â2â1

ÂL
l=1 al � âl

14
PJ

j=1P(ĥ j|h j). (5.37)

5.4 Numerical Results

In this section, the pdf of the detection threshold is first verified, and the BER performance of the

proposed system is numerically studied.

In Fig. 5.4, the derived pdf of the detection threshold Tth is compared with the simulated pdf.

For expository purposes, we let M = 3 and x = 0. The simulated pdf is obtained by using Monte

Carlo computer simulations with 104 trials. The derived pdf shows excellent agreement with the

simulated pdf.

In Fig. 5.5, we plot the BER versus electrical SNR when the OOK IM/DD system uses a fixed

detection threshold of Tth = 0.5. Note that an error floor appears in the large SNR regime. The

system using source information transformantion can eliminate the error floor, although its BER

performace is worse than that of the OOK IM/DD system using fixed detection threshold in low

SNR regimes. This is due to the fact that a value of one-half of the largest received signal is used to

define the detection threshold for the M received signals in each symbol duration. This detection

threshold is only optimum when the electrical SNR approaches infinity and/or there is no noise.

In the low SNR regimes, the detection threshold is not an optimum detection threshold for our

proposed system, due to the noise influence, and the BER of our proposed system becomes worse

than that of the OOK IM/DD system using a fixed detection threshold.

In Fig. 5.5, we also plot the upper bounds on the average BER for the proposed system over

lognormal fading channels with different turbulence conditions. Simulated BER curves are also

used to verify the analytical BER upper bound solutions. The upper bound is tight when M =

3. However, as we have used the union upper bound technique, it can be shown that the upper

bound becomes loose with increased M. It is seen from Fig. 5.5 that the OOK modulated system

using idealized adaptive detection thresholds with a lognormal turbulence model having s = 0.25
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requires an SNR of 22 dB to attain a BER of 2.17⇥10�7, while the proposed system requires an

SNR of 23.85 dB to achieve the same BER performance. Thus, the corresponding SNR penalty

factor for the system using OOK and source information transformation in a lognormal turbulence

channel with s = 0.25 is only 1.85 dB at BER of 2.17⇥ 10�7. This performance difference can

be factored into the ultimate FSO system design to offset the complexity of implementing systems

with adaptive detection thresholds (and their need for knowledge of the instantaneous CSI).

5.5 Summary

An FSO communication system using OOK and source information transformation has been pro-

posed. It was shown that such a system can achieve good BER performance, without the need for

knowledge of the instantaneous CSI and pdf of the turbulence model. We derived an analytical

expression for the pdf of the detection threshold and developed an upper bound on the average

BER. Numerical studies ultimately showed that the proposed system achieves comparable perfor-

mance to the idealized adaptive detection system, with a greatly reduced level of implementation

complexity and a SNR penalty factor of only 1.85 dB at a BER of 2.17⇥ 10�7 for a lognormal

turbulence channel with s = 0.25.
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Figure 5.4: Comparison of the derived and simulated pdfs for the detection threshold Tth over a
lognormal fading channel with s = 0.25 and M = 3.

72



5.5. Summary

0 2 4 6 8 10 12 14 16 18 20 22 24

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Average SNR (dB)

B
it 

E
rr

o
r 

R
a
te

 

 

BER upper bound

Idealized adaptive detection

Simulated BER
Fixed threshold detection, T

th
=0.5

σ=0.5

σ=0.25

Figure 5.5: The simulated BER and BER upper bounds of the system using source information
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73



Chapter 6

OOK IM/DD Systems with Convolutional

Code

In this chapter, we investigate IM/DD systems employing OOK and SIM-BPSK with convolutional

code. We analyze the error rate performance of OOK IM/DD systems operating over weak and

strong turbulence conditions and compare the BER performance of OOK to that of SIM-BPSK

systems. A highly accurate convergent series solution is derived for the PEP of the OOK IM/DD

system. The solution establishes a simplified upper bound on the average BER. For quasi-static

fading channels, we also study the BER performance of a convolutional coded system using block

interleaving where each block experiences independent fading.

6.1 Bit-By-Bit Interleaved Channels

6.1.1 Pairwise Codeword Error Probability Calculation

The PEP for a coded OOK IM/DD system conditioning on a sequence of M fading coefficients

I = [I1, I2, ..., IM] is [29]

P(C, Ĉ|I) = Q

0

@

s

e(C, Ĉ)

2N0

1

A (6.1)

where Ĉ= [ĉ1, ĉ2, ..., ĉM] is the chosen incorrect sequence when the coded sequence C= [c1,c2, ...,cM]

is transmitted. In (6.1), e(C, Ĉ) = Eb Âk2W I2
k is the energy difference of these two coded se-

quences, where the set W contains the indices of bit locations in which the sequences C and Ĉ

differ, and Eb is the transmitted bit energy.
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Using an alternative expression of the Gaussian Q-function, i.e., Q(x)= 1
p

R

p

2
0 exp

⇣

� x2

2sin2
q

⌘

dq ,

one can write the conditional PEP as [29, eq. (7)]

P(C, Ĉ|I) = 1
p

Z p

2

0
exp

 

� Eb

4N0 sin2
q

Â
k2W

I2
k

!

dq

=
1
p

Z p

2

0
’
k2W

exp
✓

� g

4sin2
q

I2
k

◆

dq

(6.2)

where g = Eb/N0 denotes the SNR per bit. Following [29], we assume perfect bit-by-bit interleav-

ing and average (6.2) with respect to the independent fading coefficients. The PEP is

P(C, Ĉ) =
1
p

Z p

2

0
E

"

’
k2W

exp
✓

�
gI2

k

4sin2
q

◆

#

dq

=
1
p

Z p

2

0
’
k2W

E


exp
✓

�
gI2

k

4sin2
q

◆�

dq

=
1
p

Z p

2

0
’
k2W

Z •

0
exp

✓

�
gI2

k

4sin2
q

◆

fI(Ik)dIk dq

=
1
p

Z p

2

0



Z •

0
exp

✓

� gI2

4sin2
q

◆

fI(I)dI
�|W|

dq

(6.3)

where |W| denotes the cardinality of set W and represents the number of error events. Applying an

accurate series representation of the Gamma-Gamma pdf [61]

fI(I) =
G(a �b )G(b �a +1)

G(a)G(b )

⇥
•

Â
p=0

"

(ab )p+b I p+b�1

G(p�a +b +1)p!
� (ab )p+a I p+a�1

G(p+a �b +1)p!

#

to (6.3) yields

P(C, Ĉ) =
(2l (a,b ))|W|

p

⇥
Z p

2

0

(

•

Â
p=0

[ap(a,b )gp(b )+ap(b ,a)gp(a)]

)|W|

dq

(6.4)
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where ap(x,y)=
G(x�y)G(y�x+1)(xy)p+y

G(p�x+y+1)p! , l (a,b )= 1
2G(a)G(b ) , and gp(x)=

R •
0 I p+x�1 exp

⇣

� gI2

sin2
q

⌘

dI =
G( p+x

2 )

2( ḡ

sin2
q

)
p+x

2
[51, eq. 3.326(2)]. Substituting ap(x,y) and gp(x) into (6.4) gives

P(C, Ĉ) =
(l (a,b ))|W|

p

Z p

2

0

(

•

Â
p=0

g

� p+b

2

(2ab sinq)�(p+b )

⇥bp(a,b )+
g

� p+a

2

(2ab sinq)�(p+a)
bp(b ,a)

)|W|

dq

(6.5)

where bp(x,y) =
G( p+y

2 )G(x�y)G(y�x+1)
G(p�x+y+1)p! . Applying two power series identities [51, eqs. (0.314),

(0.316)] gives
 

•

Â
k=0

akxk

!n

=
•

Â
k=0

ckxk (6.6)

where c0 = an
0 and cm = 1

ma0
Âm

k=1(kn�m+ k)akcm�k, and

•

Â
k=0

akxk
•

Â
k=0

bkxk =
•

Â
k=0

ckxk (6.7)

where ck = Âk
n=0 anbk�n, we then obtain

P(C, Ĉ) =
(l (a,b ))|W|

p

|W|

Â
m=0

✓

|W|
m

◆ •

Â
p=0

Cp(|W|�m,m)

⇥
✓ p

g

2ab

◆�p�|W|�(a�1)m Z p

2

0
(sinq)

p+(|W|�m)b+am+1
dq

=
(l (a,b ))|W|

2
p

p

|W|

Â
m=0

✓

|W|
m

◆ •

Â
p=0

Cp(|W|�m,m)

⇥
✓ p

g

2ab

◆�p�(|W|�m)b�am G
⇣

p+(|W|�m)b+am+1
2

⌘

G
⇣

1+ p+(|W|�m)b+am
2

⌘

(6.8)

where Cp(i, j) , b(i)p (a,b ) ⇤ b( j)
p (b ,a), and b(i)p (a,b ) is calculated by convolving bp(a,b ) with

itself i� 1 times, i.e., b(2)p (a,b ) = bp(a,b ) ⇤ bp(a,b ). The last equality of (6.8) is obtained by
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using the integral identity [61, eq. (20)]

Z p

2

0
(sinq)

p+(|W|�m)b+am+1
dq =

p
pG

⇣

p+(|W|�m)b+am+1
2

⌘

2G
⇣

1+ p+(|W|�m)b+am
2

⌘ . (6.9)

6.1.2 Truncation Error Analysis

Truncation error is introduced when we approximate the infinite series in (6.8) with the first P

terms. We define the truncation error as

e(P), (l (a,b ))|W|

2
p

p

|W|

Â
m=0

✓

|W|
m

◆ •

Â
p=P+1

up(m)

✓

2ab

p
g

◆p
(6.10)

where

up(m),Cp(|W|�m,m)
G
⇣

p+(|W|�m)b+am+1
2

⌘

G
⇣

1+ p+(|W|�m)b+am
2

⌘

⇥
✓

2ab

p
g

◆(|W|�m)b+am
.

(6.11)

It can be shown that the infinite series solution in (6.8) is a converging series by verifying that the

truncation error e(P) decreases as P increases. Following [62], we use the Taylor series expansion

of xn/(1� x) = Â•
j=n x j and obtain an upper bound of the truncation error as

e(P) (l (a,b ))
|W|

2
p

p(
p

g/2ab �1)(
p

g/2ab )P

⇥
|W|

Â
m=0

✓

|W|
m

◆

max
p>P

{up(m)}.
(6.12)

If a > b and p approaches •, G(p+b)
G(p+a) approaches zero. After examining the first two terms in (6.11),

we note that up(m) approaches 0 when p approaches •. Therefore, the truncation error e(P) will

diminish when P increases. We also note from (6.12) that the truncation error diminishes rapidly

with increasing g . This suggests that the PEP solution in (6.8) is a convergent series and our series
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solution is accurate with high SNR values.

6.1.3 Asymptotic Analysis of PEP

Without loss of generality, we assume a > b > 0 so that the term in (6.5) with g

� p+a

2 decreases

faster than the term with g

� p+b

2 for increasing g [61]. When p approaches •, G( p+y
2 )

G(p+y�x+1) in (6.5)

approaches 0. The PEP expression in (6.5) can therefore be approximated at asymptotically high

SNR by

P•(C, Ĉ)
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6.1.4 Upper Bound on Average BER

Since the convolutional code is linear, the set of distances of the code sequences with respect to

the all-zero sequence is the same as the set of distances with respect to any other code sequences.

Thus, without loss of generality, we assume an all-zero sequence is transmitted. For a (Kc,kc,nc)

convolutional code where Kc is the constraint length and kc/nc is the code rate, the transfer function

can be written as [63, 64]

T (D,N) =
•

Â
d=d f ree

adDdN f (d) (6.13)

where d represents the number of different bits between the selected path and the all-zero path,

d f ree is the free distance of the convolutional code, ad denotes the number of nonzero paths with

distance d from the all-zero path that merge with the all-zero path for the first time, D denotes the

distance of the particular path from the all-zero path, N indicates the transition caused by the input
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bit “1”, and f (d) determines the number of bit errors for the path corresponding to the term N.

By taking the derivative of T (D,N) with respect to N and setting N = 1, we obtain

∂T (D,N)

∂N

�

�

�

�

N=1
=

•

Â
d=d f ree

BdDd (6.14)

where Bd = ad f (d) is the total number of errors on all paths of distance d.

Accordingly, an upper bound on the average BER based on PEP can be obtained as [65]

Pub 
1
kc

Â
C

p(C)
•

Â
d=d f ree

BdP(C, Ĉ) (6.15)

where P(C) is the probability that the codeword C is transmitted. Using the transfer function tech-

nique for (6.15) and the alternative form for the Q-function, i.e., Q(x) = 1
p

R

p

2
0 exp

⇣

� x2

2sin2
q

⌘

dq ,

one can obtain an upper bound on the average BER as [65]

Pb 
1
p

Z

p/2

0

1
kc

∂T (D(q),N)

∂N

�

�

�

�

N=1
dq (6.16)

where T (D(q),N) is the transfer function of the convolutional code, and D(q) is given by [29]

D(q) =
Z •

0
exp

✓

� g

4sin2
q

I2
◆

fI(I)dI. (6.17)

From (6.3) and (6.17), we note that the PEP equals a single integral of D(q) to the power of |W|.

Substituting (6.4) into (6.17), we obtain D(q) as

D(q) = l (a,b )
•

Â
p=0

"

bp(a,b )

✓ p
g

2ab sinq

◆�(p+b )

+bp(b ,a)

✓ p
g

2ab sinq

◆�(p+a)
#

.

(6.18)

For expository purposes, we set the parameters of the convolutional code to Kc = 3, kc = 1

and nc = 2, with the two function generators being g0 = [1 1 1] and g1 = [1 0 1]. Such a
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nonsystematic convolutional code will not produce catastrophic errors. The corresponding transfer

function becomes

T (D(q),N) =
D5(q)N

1�2ND(q)
. (6.19)

Substituting (6.19) into (6.16) gives

Pb 
1
p

Z p

2

0

D5(q)

(1�2D(q))2 dq . (6.20)

Finally, applying (6.18) to (6.20), we obtain a simplified expression of the upper bound on the

average BER for a (3,1,2) convolutional coded OOK IM/DD system.

6.2 Quasi-static Fading Channels

Since the coherence time of an atmospheric turbulence channel is on the order of milliseconds [26]

and the data rate of a typical FSO system is on the order of Gb/s, the ideal bit-by-bit interleaving

assumed in Section 6.1 is difficult to achieve. Therefore, it is of practical importance to consider

a coded FSO system in a realistic quasi-static fading channel where the same fading coefficient

affects a block of data symbols. Following [66], we consider a convolutional code with rate Rc =

kc/nc for a quasi-static fading channel3 using a block interleaver of depth n. For this system,

which is shown in Fig. 6.1, (B+Kc �1)kc information bits are convolutionally encoded into (B+

Kc �1)nc coded bits. The (B+Kc �1)nc coded bits are denoted by xl j, where l = 1,2, . . . ,nc and

j = 1,2, . . . ,B+ kc �1. Each coded bit is placed on one of n blocks where each block experiences

independent fading, i.e., Il is the fading coefficient for lth block. Using interleaving will result in

latency on a millisecond timescale or longer, but this latency can be reduced. A recent example by

researchers at the MIT Lincoln Lab showed this with interleavers and forward error correction for
3When the codeword is affected by the same fading coefficient, the channel is called quasi-static. However, we can

transform a quasi-static channel into a block fading channel by way of block interleaving [67]. In such a system, we
place each coded bit in different blocks, such that each block experiences independent fading from that of neighbouring
blocks and bits within a block suffer the same fading coefficient.
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Figure 6.1: Block diagram of a coded FSO system through quasi-static atmospheric turbulence
channels.

OTU-1 (2.66 Gb/s) and OTU-2 (10.70 Gb/s) over a 5.4 km optical wireless communication link

[68].

Assuming first that the fading coefficients Ĩ = [Ĩ1, Ĩ2, ..., Ĩn] for nc blocks are fixed, and using

the same technique as discussed in Section 6.1, the conditional union upper bound on the BER can

be obtained as

Pe(Ĩ)
1
kc

•

Â
d=d f

c(d)P2(d|Ĩ) (6.21)

where d = [d1,d2, ...,dn] are the Hamming distances of the n blocks, d f = [d1 f ,d2 f , ...,dn f ] are

the free component distances of the n blocks, P2(d|Ĩ) is the conditional PEP given by P2(d|Ĩ) =

Q
⇣

q

2g Ânc
l=1 dl Ĩ2

l

⌘

, c(d) = Â•
i=1 ia(d, i) are the coefficients obtained from the generalized transfer

function of the code, and a(d, i) is the number of error events with distance vector d [66]. The

average BER over the quasi-static Gamma-Gamma turbulence channel can be upper-bounded by

[66]

Pe 
Z

Ĩ
min

"

1
2
,

1
kc

•

Â
d=d f

c(d)P2(d|Ĩ)
#

fĨ(Ĩ)dĨ (6.22)

where the fading coefficients Ĩ for n blocks are assumed to be independent, i.e., fĨ(Ĩ) =’nc
l=1 fĨl

(Ĩl),

and where fĨl
(Ĩl) is the Gamma-Gamma pdf given by (2.20).
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6.3 Numerical Results

In this section, the PEP and BER performances are numerically studied for IM/DD systems em-

ploying OOK with convolutional code. The PEP performance of OOK is compared with that of

SIM-BPSK. The BER performance is then compared for uncoded and coded OOK systems.

In Fig. 6.2, the PEP results of coded IM/DD systems are shown for OOK and SIM-BPSK

systems operating over Gamma-Gamma turbulence channels with weak (a = 4.62,b = 4.24)

and strong (a = 2.14,b = 1.21) turbulence conditions. For the coded SIM-BPSK system with

e(C, Ĉ) = 4Eb Âk2W I2
k [26], we evaluate the PEP performance numerically for comparison pur-

poses. The length of the error event is chosen to be |W| = 3. Our series approximation of PEP

(with P = 60) shows excellent agreement with the exact PEP for weak and strong turbulence con-

ditions. The PEP of the coded SIM-BPSK has better BER performance compared to that of a

coded OOK system. As expected, the PEP is better in weak turbulence conditions. For example,

at g = 20 dB, the PEP for strong turbulence (a = 2.14,b = 1.21) is 2.18⇥10�4, and the PEP for

weak turbulence (a = 4.62,b = 4.24) is 3.57⇥ 10�8. For comparison, we also plot in Fig. 6.2

the approximate PEP for coded OOK (diamonds) and SIM-BPSK (stars) systems by using [29, eq.

(17)]. The approximate PEP results of [29] show reasonable agreement with the exact PEP results

for large SNRs, but the approximations are less accurate at the lower SNRs. The series representa-

tion of the Gamma-Gamma pdf relies on a series expansion of K
n

(x) where n is non-integer. As a

result, our series PEP expression requires (a �b ) /2 Z. When (a �b ) 2 Z, one can use the small

constant adjustment method to circumvent this minor restriction [69]. In Fig. 6.2, as expected,

asymptotic PEPs approach exact PEPs faster for strong turbulence conditions compared to those

of weak turbulence conditions. A similar asymptotic behaviour for series solutions is seen in [61]

for uncoded SIM-BPSK systems.

In Fig. 6.3, we compare the simulated BER performance of uncoded and coded IM/DD systems

(with perfect interleaving) employing OOK versus average SNR operating over Gamma-Gamma

turbulence channels for weak (a = 4.62,b = 4.24) and strong (a = 2.14,b = 1.21) turbulence

conditions. The simulated BER results of the uncoded system have been numerically verified with
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BER results of the exact analytical expression. It is seen that strong turbulence can significantly

degrade the error rate performance of an uncoded system. However, the convolutional code can

be used to introduce coding gain and improve the BER performance in these strong turbulence

conditions. For example, when g = 20 dB (a = 2.14,b = 1.21), the BER for an uncoded system

can be reduced from 8.48⇥ 10�2 to 1.02⇥ 10�5 with a convolutional coded (Rc = 1/2,Kc = 3)

system. In Fig. 6.3, we also plot the exact upper bounds of BER and the upper bounds obtained by

a series solution. The simplified series solution shows excellent agreement with the exact solution

obtained by using (6.17) and (6.20). Simulated BER curves are also used to verify the analytical

BER upper bound solutions.

In Fig. 6.4, we plot the upper bounds on the average BER for a convolutional coded (Rc =

1/2,Kc = 3,B= 999998) IM/DD system employing OOK over quasi-static Gamma-Gamma fading

channels with weak (a = 4.62,b = 4.24) and strong (a = 2.14,b = 1.21) turbulence conditions.

The block length B is chosen to represent Gb/s transmission with a one millisecond coherence

time. The upper bounds obtained from (6.22) are truncated at dmax = 40, where only the error

events having the total distance d1 + d2  dmax are considered. The simulated BERs in Fig. 6.4,

for quasi-static channels, clearly demonstrate the benefits of block-interleaved convolutional code

over a convolutional coded system without interleaving.

6.4 Summary

In this chapter, we derived an accurate series PEP expression for convolutional coded OOK IM/DD

FSO systems using a series representation of the Gamma-Gamma pdf for ideal bit-by-bit inter-

leaved channels. This novel PEP expression can facilitate rapid calculation of upper bounds on

the average SNR in weak-to-strong Gamma-Gamma distributed turbulence conditions. We also

studied BER performance of a convolutional coded system using a block interleaver over realistic

quasi-static Gamma-Gamma turbulence channels. While our analysis has been presented by way

of an OOK based IM/DD FSO system, the same analysis can be easily extended to an SIM-BPSK

based FSO system. For an SIM-BPSK based FSO system, we only need to change the energy
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difference of these two coded sequence to e(C, Ĉ) = 4Eb Âk2W I2
k .
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Figure 6.2: The PEP of coded IM/DD systems using OOK and SIM-BPSK versus average SNR
operating over Gamma-Gamma turbulence channels. Results are shown for weak (a = 4.62,b =
4.24) and strong (a = 2.14,b = 1.21) turbulence conditions using series, exact, and approximate
solutions.
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average SNR over Gamma-Gamma turbulence channels. Results are for weak (a = 4.62,b =
4.24) and strong (a = 2.14,b = 1.21) turbulence conditions.
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over quasi-static Gamma-Gamma turbulence channels with and without block interleaving. Results
are for weak (a = 4.62,b = 4.24) and strong (a = 2.14,b = 1.21) turbulence conditions.
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Chapter 7

Conclusions

In this chapter, we conclude the thesis by summarizing the accomplished work and suggesting

some potential further research topics.

7.1 Summary of Accomplished Work

In this thesis, we investigated the BER performance of OOK IM/DD systems using different detec-

tion thresholds over atmospheric turbulence channels. Such investigations can be used as guide-

lines for practical FSO system design. Besides the BER performance investigation, turbulence

channel parameter and electrical SNR estimation were investigated. The proposed estimators can

be effective tools for future FSO systems implementing electrical-SNR-optimized detection. We

also introduced coding techniques to mitigate the effects of turbulence induced fading and showed

analytically that the convolutional coded OOK IM/DD systems have greatly improved BER per-

formance.

We will summarize the accomplished work as follows:

• In Chapter 3, we studied the error rate performance of OOK IM/DD systems using fixed,

electrical-SNR-optimized and idealized adaptive detection thresholds. We obtained error

floor expressions for various turbulence channel models for OOK IM/DD systems using

fixed detection thresholds. We approximated the turbulence pdf by a sum of Laguerre poly-

nomials. The electrical-SNR-optimized system with the Laguerre-polynomials-based ap-

proximate pdf for the turbulence was found to be effective for typical FSO systems, which

operate at relatively low SNR values, as it yields comparable BER performance to that of the

electrical-SNR-optimized system with perfect knowledge of turbulence pdf.
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• In Chapter 4, we studied the MoME and MLE method. We used MLE to estimate the param-

eters of the lognormal-Rician fading channels, and used the EM algorithm to compute the

MLE of the unknown parameters. Electrical SNR estimation was also studied for FSO sys-

tems using IM/DD over the lognormal fading channels. Training sequence based MoME and

MLE were investigated. It was found that MoME could produce a closed-form expression

for the estimator, while MLE requires numerical computation to produce the estimator.

• Chapter 5 investigated FSO communication systems using OOK and source information

transformation. It was shown that such a system can achieve good BER performance without

the need for knowledge of the instantaneous CSI and pdf of the turbulence model. We also

derived an analytical expression for the pdf of the detection threshold and developed a tight

upper bound on the average BER.

• In Chapter 6, we derived an accurate series PEP expression for convolutional coded OOK

IM/DD FSO systems for ideal bit-by-bit interleaved channels using a series representation

of the Gamma-Gamma pdf. This novel PEP expression can facilitate rapid calculation of

upper bounds on the average SNR in weak-to-strong Gamma-Gamma distributed turbulence

conditions. We also studied BER performance of a convolutional coded system using a block

interleaver over realistic quasi-static Gamma-Gamma turbulence channels.

7.2 Suggested Future Work

In Chapter 5, we presented FSO communication systems using OOK and source information

transformation. However, we assumed that the largest of the M signals contain the CSI, i.e.,

lim
g!• max{r1,r2, . . . ,rM} ⇡ I, and defined the detection threshold as a value of one-half of the

largest received signal. The BER performance for the system with this detection threshold was

acceptable only when the SNR is sufficiently large. Thus, it would be of future interest to further

optimize the detection threshold for operation in low SNR regimes.

In Chapter 6, we investigated the BER performance of FSO communication systems using
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OOK and convolutional code, but there are other effective coding techniques. Turbo codes are a

family of powerful error-correcting codes. Turbo codes have an impressive near-Shannon-limit for

error correcting performance. Thus, it would be of future interest to investigate the BER perfor-

mance of FSO communication systems using OOK and turbo code.

Overall, in this thesis, we introduced new implementations and thorough performance analyses

for OOK IM/DD systems using various detection schemes operating over atmospheric turbulence

channels. These findings can support future developments and innovations in FSO systems.
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[7] A. Prokeš, “Modeling of atmospheric turbulence effect on terrestrial fso link,” Radioengi-

neering, vol. 18, pp. 42–47, Apr. 2009.

[8] M. Niu, J. Cheng, and J. F. Holzman, “Exact error rate analysis of equal gain and selec-

tion diversity for coherent free-space optical systems on strong turbulence channels,” Optics

Express, vol. 18, pp. 13915–13926, June 2010.

[9] K. P. Peppas, F. Lazarakis, A. Alexandridis, and K. Dangakis, “Simple, accurate formula

for the average bit error probability of multiple-input multiple-output free-space optical links

91



Chapter 7. Bibliography

over negative exponential turbulence channels,” Optics Letter, vol. 37, pp. 3243–3245, Aug.

2012.

[10] L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation With Applications.

Bellingham, WA: SPIE Press, 2001.

[11] R. J. Hill and R. G. Frehlich, “Probability distribution of irradiance for the onset of strong

scintillation,” Journal of the Optical Society of America A, vol. 14, pp. 1530–1540, July 1997.

[12] J. F. Paris, “Advances in the statistical characterization of fading: from 2005 to present,”

International Journal of Antennas and Propagation, vol. 2014, pp. 1–5, Jun. 2014.

[13] J. H. Churnside and S. F. Clifford, “Log-normal rician probability-density function of optical

scintillations in the turbulent atmosphere,” Journal of the Optical Society of America A, vol.

4, pp. 727–733, Oct. 1987.

[14] X. Song and J. Cheng, “Joint estimation of the lognormal-rician atmospheric turbulence

model by the generalized method of moments,” Optical Communication, vol. 285, pp. 4727–

4732, Nov. 2012.

[15] J. Li, J. Q. Liu, and D. P. Tayler, “Optical communication using subcarrier psk intensity mod-

ulation through atmospheric turbulence channels,” IEEE Transactions on Communications,

vol. 55, pp. 1598–1606, Aug. 2007.

[16] H. Moradi, M. Falahpour, H. H. Refai, P. G. LoPresti, and M. Atiquzzaman, “BER analysis

of optical wireless signals through lognormal fading channels with perfect CSI,” in Proc.17th

International Conference on Telecommunications, Doha, Qatar, Apr. 2010, pp. 493–497.

[17] M. L. B. Riediger, R. Schober, and L. Lampe, “Blind detection of on-off keying for free-

space optical communications,” in Proc. Canadian Conference on Electrical and Computer

Engineering, Niagara Falls, Canada, May 2008, pp. 1361–1364.

92



Chapter 7. Bibliography

[18] X. Zhu and J. M. Kahn, “Markov chain model in maximum-likelihood sequence detection for

free-space optical communication through atmospheric turbulence channels,” IEEE Transac-

tions on Communications, vol. 51, pp. 509–516, Mar. 2003.

[19] M. L. B. Riediger, R. Schober, and L. Lampe, “Fast multiple-symbol detection for free-space

optical communications,” IEEE Transactions on Communications, vol. 57, pp. 1119–1128,

Apr. 2009.

[20] H. R. Burris, “Laboratory implementation of an adaptive thresholding system for free-space

optical communication receivers with signal dependent noise,” Proceedings of SPIE, vol.

5892, pp. 1–20, Aug. 2005.

[21] X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence

channels,” IEEE Transactions on Communications, vol. 50, pp. 1293–1300, Oct. 2002.

[22] H. Moradi, H. H. Refai, and P. G. LoPresti, “Thresholding-based optimal detection of wire-

less optical signals,” IEEE/OSA Journal of Optical Communications and Networking, vol. 2,

pp. 689–700, Sept. 2010.

[23] L.Yang, J. Cheng, and J. F. Holzman, “Electrical-snr-optimized detection threshold for ook

im/dd optical wireless communications,” in Proc. Canadian Workshop Information Theory,

Toronto, ON, Canada, June 2013, pp. 186–189.

[24] X. Zhu and J. M. Kahn, “Pilot-symbol assisted modulation for correlated turbulent free-space

optical channels,” Proceedings of SPIE, vol. 4489, pp. 138–145, Jan. 2002.

[25] M. Khalighi, F. Xu, Y. Jaafar, and S. Bourennane, “Double-laser differential signaling for

reducing the effect of background radiation in free-space optical systems,” IEEE/OSA Journal

of Optical Communications and Networking, vol. 3, pp. 145–154, Feb. 2011.

[26] X. Zhu and J. M. Kahn, “Performance bounds for coded free-space optical communications

through atmospheric turbulence channels,” IEEE Transactions on Communications, vol. 51,

pp. 1233–1239, Aug. 2003.

93



Chapter 7. Bibliography

[27] X. Zhu and J. M. Kahn, “Pairwise codeword error probability for coded free-space optical

communication through atmospheric turbulence channels,” in Proc. International Conference

of Commununications, Helsinki, Finland, June 2001, pp. 161–164.

[28] M. Uysal, M. Navidpour, and J. Li, “Error rate performance of coded free-space optical links

over strong turbulence channels,” IEEE Communications Letters, vol. 8, pp. 635–637, Oct.

2004.

[29] M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical

links over gamma-gamma atmospheric turbulence channels,” IEEE Transactions on Wireless

Communications, vol. 5, pp. 1229–1233, June 2006.

[30] M. Uysal and J. Li, “Error performance analysis of coded wireless optical links over atmo-

spheric turbulence channels,” in Proc. IEEE Wireless Communication Networking Confer-

ence, Atlanta, GA, Mar. 2004, pp. 2405–2410.

[31] W. Gappmair and M. Flohberger, “Error performance of coded fso links in turbulent atmo-

sphere modeled by gamma-gamma distributions,” IEEE Transactions on Wireless Communi-

cations, vol. 8, pp. 2209–2213, May 2009.

[32] G. P. Agrawal, Fiber-Optic Communication Systems, fourth ed. New York: Wiley, 2010.

[33] Agilent Technologies. (2001). Measuring extinction ratio of optical transmitters. [online].

Available: http://literature.cdn.keysight.com/litweb/pdf/5966-4316E.pdf

[34] J. B. Johnson, “Thermal agitation of electricity in conductors,” Physical Review, vol. 32, pp.

97–109, July 1928.

[35] H. Nyquist, “Thermal agitation of electric charge in conductors,” Physical Review, vol. 32,

pp. 110–113, July 1928.
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Appendices A

Appendix A: The CF and MGF od

lognormal pdf

The CF of a RV I is the Fourier transform of its pdf, fI(I), and it is defined by

FI(w) =
Z •

�•
fI(I)exp( jwI)dI (A.1)

or

FI(w) = Re[FI(w)]+ jIm[FI(w)] (A.2)

where j2 = �1. In (A.2), Re[·] and Im[·] denote the real and imaginary parts, respectively. Both

can be written, respectively, as

Re[FI(w)] =
Z •

0
fI(I)cos(wI)dI (A.3)

and

Im[FI(w)] =
Z •

0
fI(I)sin(wI)dI. (A.4)

Using (3.15), one can approximate (A.3) as

Re[FI(w)]

⇡
Z •

0

Iv exp(�I/c)
cv+1

•

Â
n=0

dnLn

✓

v,
I
c

◆

cos(wI)dI

=
1

cv+1

•

Â
n=0

dn

Z •

0
Iv exp(�I/c)Ln

✓

v,
I
c

◆

cos(wI)dI.

(A.5)
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Substituting (3.16) into (A.5), one has

Re[FI(w)]⇡ 1
cv+1

•

Â
n=0

dn

n

Â
k=0

(�1)kG(a)

k!(n� k)!G(a � k)

⇥
Z •

0
Iv exp(�I/c)

✓

I
c

◆n�k
cos(wI)dI

=
•

Â
n=0

dn

n

Â
k=0

(�1)kG(a)

k!(n� k)!G(a � k)(1+ c2
w

2)
a�k

2

⇥ cos((a � k)arctan(cw))

(A.6)

where a = v+n+1. In deriving the last equality of (A.6), an integral identity [51, eq. 3.944(6)]

has been used.

Similarly, substituting (3.15) and (3.16) into (A.4) and using an integral identity [51, eq.

3.944(5)], one obtains

Im[FI(w)]⇡
•

Â
n=0

dn

n

Â
k=0

(�1)kG(a)

k!(n� k)!G(a � k)(1+ c2
w

2)
a�k

2

⇥ sin((a � k)arctan(cw)).

(A.7)

The approximate CF is then found to be

FI(w)⇡
•

Â
n=0

dn

n

Â
k=0

(�1)kG(a)

k!(n� k)!G(a � k)(1+ c2
w

2)
a�k

2

⇥ [cos((a � k)arctan(cw))+ j sin((a � k)arctan(cw))].

(A.8)

Using an integral identity [51, eq. 3.326(2)], one can obtain the MGF as

MI(s)⇡
•

Â
n=0

dn

n

Â
k=0

(�1)kG(v+n+1)
k!(n� k)!(1� sc)v+n�k+1 . (A.9)
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