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Abstract

Sleep arousals are sudden awakenings from sleep which can be identified as an abrupt shift

in EEG frequency and can be manually scored from various physiological signals by sleep

experts. Frequent sleep arousals can degrade sleep quality, result in sleep fragmentation

and lead to daytime sleepiness. Visual inspection of arousal events from PSG recordings is

cumbersome, and manual scoring results can vary widely among different expert scorers.

The main goal of this project is to design and evaluate the performance of an effective

and efficient algorithm to automatically detect sleep arousals using a single channel EEG.

In the first part of the thesis, a detection model based on a Curious Extreme Learning

Machine (C-ELM) using a set of 22 features is proposed. The performance was evaluated

using the term Area Under the Receiver Operating Characteristic (ROC) Curve (AUC)

and the Accuracy (ACC). The proposed C-ELM based model achieved an average AUC

and ACC of 0.85 and 0.79 respectively. In comparison, the average AUC and ACC

of a Support Vector Machine (SVM) based model were 0.69 and 0.67 respectively. This

indicates that the proposed C-ELM based model works well for the sleep arousal detection

problem.

In the second part of the thesis, an improved detection model is proposed by adding
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a Minimum Redundancy Maximum Relevance (MRMR) feature selection into the C-

ELM based model proposed in the first part. The efficiency of the model is improved

by reducing dimensionality (reducing the number of features) of the dataset while the

performance is largely unaffected. The achieved average AUC and ACC were 0.85 and

0.80 when a reduced set of 6 features were used, while the AUC and ACC were 0.86

and 0.79 for a full set of 22 features. The result indicates MRMR feature selection step

is important for sleep arousal detection. By using the improved sleep arousal detection

model, the system runs faster and achieves a good performance for the dataset utilized

in our study.
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Chapter 1

Introduction

This chapter begins with an introduction to sleep arousals. In the first section, some

background on sleep arousals including what the sleep arousals are, why detection of sleep

arousals is important and the scoring rules and detection methods are discussed. The

second section is a literature survey of previous works on this problem. The motivation

and contributions of this thesis are then discussed. The organization of the thesis is

outlined in the last part of the chapter.

1.1 Sleep Arousal Detection

Sleep problems are a frequent complaint among many people, especially the elderly, and

have a substantial impact on quality of their lives. Sleep arousal conventionally refers to

a temporary intrusion of wakefulness into sleep or at least a sudden transient elevation

of the vigilance level due to arousal stimuli or to spontaneous vigilance level oscillations

[5, 6]. Sleep arousals can be induced by various sleep disorders. Thus, arousals are a

good marker of sleep disruption representing a detrimental and harmful feature for sleep

[5].
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1.1.1 What Is Sleep Arousal

Spontaneous arousal is a physiological component of normal sleep and is defined as “any

increase in Electromyography (EMG) or any channel which is accompanied by a change

in pattern on any additional channel” in Rechtschaffen & Kales criteria in 1968 [7]. This

conventional assessment of sleep is performed in epochs of 30 seconds [7, 8]. However,

in other clinical conditions, frequent transient arousals of a few seconds duration were

studied [9, 10]. In 1992, the American Sleep Disorders Association (ASDA) developed

scoring rules to determine arousals quantitively based on data collected from EEG and

EMG channels of Polysomnography (PSG) [6]. This scoring rule is independent of R

& K’s 30-second scoring system and standardizes the assessment of arousals. It has

since become the most widely used rule for manually scoring by sleep experts. The

ASDA defined sleep arousals as “an abrupt shift in EEG frequency, which may include

theta,alpha and/or frequencies greater than 16 Hz but not spindles” [6]. A sleep spindle

is a burst of oscillatory brain activity visible on an EEG that occurs during sleep stage

2. It consists of 12–14 Hz waves that occur for at least 0.5 seconds. For definitions of

sleep stages, please refer to Appendix A. An EEG arousal event lasting for 0.56 seconds

is shown in Fig. 1.1.

Other scoring rules or arousal definitions have been proposed. Arousals are defined

as a return of alpha or theta rhythm for at least 1.5 seconds associated with a transient

(however brief) increase in EMG tone in [11]. In [12], movement arousal is defined as an

abrupt appearance of an alpha rhythm in the EEG during a sleep epoch, accompanied
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Figure 1.1: A 10 seconds’ sleep EEG data from 22:42:30 to 22:42:40, collected from

one EEG channel of a PSG recording downloaded from PhysioBank [1].The

selected zone shows an EEG arousal event lasting 5.6 seconds which was

manually scored by a sleep expert.

by an increase in EMG activity lasting at least 2 seconds. Simultaneous EEG and EMG

changes must last at least 2 seconds. A return of theta rhythm and “K-arousals” are

not counted. Some computer arousal detection methods have been developed which

allow identification of arousals that are not visually scorable [13]. These methods make

identification on arousal events which last less than 3 seconds achievable.

1.1.2 Sleep Arousal Identification

To identify sleep arousal events, one is traditionally asked to stay overnight in a hospital

or a sleep laboratory to do a standard PSG test. It is an obtrusive test which requires

the patient to wear a variety of sensors to collect several physiological signals. Arousal
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events can be scored by sleep experts from one or several of the physiological changes

recorded by PSG instrument.

Increases in heart rate, blood pressure during sleep are indicators for arousal identifi-

cation [14]. It has been suggested that during room air breathing, arousals are strongly

associated with periods of arterial oxygen desaturation [9].Thus, oxygen desaturation is

another physiological signals for arousal identification. Changes in EEG and EMG ac-

tivities are two important physiological indicators for arousal scoring which are used in

ASDA standard arousal scoring rules [6].

According to ASDA arousal scoring rules, arousal events can be scored from one cen-

tral EEG channel (two central EEG channels are C4/A1 and C3/A2 placement) obtained

from C4/A1 or C3/A2 placement without accompanied EMG channel during non-REM

(Rapid eye movement) sleep stages since arousals in NREM sleep may occur without

concurrent increases in submental EMG amplitude (For EEG channel placement, please

refer to Appendix C). However, arousal events should be scored only when accompanied

by concurrent increases in submental EMG amplitude in REM sleep stages. “The pres-

ence of bursts of alpha or theata activity in REM sleep EEG are common phenomena.

These events may or may not reflect physiological arousal from REM sleep”. Thus, sleep

arousals must be scored from both EEG and EMG activities during REM sleep. An

arousal event is scored if the EEG frequency shift lasts for 3 seconds or greater in dura-

tion if scored manually since identification of events of shorter durations are difficult to

achieve [6].
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1.1.3 The Significance of Sleep Arousal Detection

Sleep problem is a common complaint even among healthy people, especially the elderly.

Poor sleep quality may be indicated by reduced sleep time, increased sleep stage changes

, and increased arousal frequency [9]. These short arousals are usually ignored in sleep

analyses, but their impact is significant. Too many arousals during sleep can impair sleep

continuity even when sleep efficiency is preserved [5]. Sleep efficiency can be indicated

by the ratio between the number of hours slept and the number of hours spent in bed.

Frequent sleep arousals degrade the quality of sleep and lead to sleep fragmentation.

Sleep fragmentation is reported to influence the impairment of cognitive functions and is

often associated with increased daytime sleepiness.[15]. Thus, sleep arousal frequency is

a very important marker for sleep quality assessment.

The Pittsburgh Sleep Quality Index (PSQI) is a self-rated questionnaire which assesses

sleep quality and disturbances over a 1-month time interval [16]. It is the most widely

used method for sleep quality assessment as far. However, it is a relatively subjective

approach. A more objective way based on detection of sleep arousals and other indicators

such as the length of each sleep stage, etc. is worth developing.

Sleep arousal detection is also a key factor for research in sleep disorders including

sleep apnea, periodic leg movement [5], snoring etc. and sleep of Parkinson’s Disease

(PD) patients [17].
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1.2 Related Works

In this section, previous works on scoring or automatic detection of sleep arousals are

reviewed and discussed. Data recordings, methodologies, and results of experiments are

briefly described.

Currently, sleep arousal events are mostly diagnosed manually. Patients are asked to

take an overnight PSG test which records several physiological signals. These recordings

are then analysed and scored according to some rules by highly skilled sleep experts with

specific domain knowledge. Various scoring rules and their reliabilities and validities have

been developed and discussed in [13, 18, 19].

However, visual scoring of sleep arousals is time-consuming and cumbersome. Several

automatic or semi-automatic detection methods based on computer algorithms have been

proposed [15, 17, 20, 21, 22, 23, 24].

Detection methods in addition to analysing PSG recordings have been studied on. One

of the detection methods is based on heart rate variability of electrocardiogram (ECG)

and two other methods used peripheral arterial information to detect sleep arousals [20,

25, 26]. In [25, 26], patients are asked to take an overnight PSG test and a peripheral

arterial tone (PAT) test simultaneously. The PAT signal and the pulse rate derived from

it are then used to detect arousals from sleep. The total number of arousals scored by the

PAT device is divided by the number of hours of sleep and termed PAT-based autonomic

arousal indices (PAT-AAI). It is reported in [25, 26] that the sensitivity and specificity

are 0.80 and 0.79 (for definitions of sensitivity and specificity, please refer to Appendix



Chapter 1. Introduction 7

B), respectively and area under ROC curve (AUC) is around 0.87. They only reported

the results of patients with at least 20 arousals/hours [25, 26].

Concerning the EEG based detection methods, most of these adopt two or four EEG

channels and one or two EMG channels [15, 17, 20, 21, 22, 23, 24]. Some of them also

add other information such as heartbeat rate, oxygen carried by hemoglobin in the blood

(SaO2%) [24], airflow pressure and airflow temperature [20].

In [24], an approach is developed based on statistical and data mining techniques. It

first defined a set of general rules to detect arousals (termed meta-rules extraction step)

with a training set of 6 adult patients’ PSG recordings. The rules are then dynamically

adjusted depending on the individual patient (called the actual-rules extraction step) and

detected arousals. The correlations between occurrences of arousals and 2 central channel

EEG (For the EEG 10-20 international system, please refer to Appendix C and [4, 27]),

1 channel chin-EMG, pulse (heart beat rate) and SaO2% signals were analysed on a test

set of 20 patients’ PSG recordings. The sensitivity and positive predictive values (PPV)

were found to be 75.2% and 76.5% respectively (for definition of PPV, please refer to

Appendix B ). The sensitivity and PPV were found to be 49.4% and 82.5% when only

EEG channels were used.

An automatic detection method of EEG arousals is described in [22]. The authors

used two EEG channels (F4-C4 and C4-O2) and one EMG channel. In the first step of the

study, a wavelet transform was used to process EEG signals and characterized the signal in

the time-frequency domain. A set of indices were obtained after the first step. The indices
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obtained from the first step was then used to estimate a linear discriminant function. Each

0.125-second epoch was evaluated with the function and arousals were marked when they

last 3 or more seconds. Each possible arousal event was given a score. In the third step,

the PSG recordings were inspected by two sleep experts independently. They then jointly

examined the events scored by themselves and those scored by the computer’s automatic

algorithm for all the recordings. A reference set of arousal events named as definite

arousals and uncertain arousals were obtained according to the two scorers’ opinions.

They defined a correctly detected arousal as an arousal event which overlapped with the

reference set. They reported an overall sensitivity of 88.1% for the automatic method and

72.4% and 78.4% for the two experts with a selectivity of 74.4% for the automatic method

and 83.0% and 82.0% for the experts when only definite arousals were considered. The

sensitivity decreased to 84.5% , 67.9%, 73.2% and selectivity increased to 88.4%, 96.1%,

and 94.6% for the computer, expert 1 and expert 2 respectively when all possible arousals

were included in the reference set.

In [20], a study was conducted on the detection of respiratory-related arousals. In

this work, a method for automatic detection of EEG arousals in sleep apnea syndrome

(SAS) patients was proposed. PSG recordings including four channels of EEG (C3-A2,

C4-A1, O1-A2, O2-A1), two channels of EMG, electroocculography (EOG), ECG, airflow

pressure and temperature etc. were used. First, data were segmented into 2.56 seconds

for EEG and EMG data. For respiratory data (airflow pressure and aiflow temperature),

10.24 s was adopted as the segmentation length according to the definition of the duration
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of SAS [20]. Then, some fundamental parameters of amplitude, relative power and central

frequency of EEG were calculated. Airflow pressure and temperature information were

used for detecting pathological events, such as obstructive sleep apnea (OSA), which were

then utilized for determining threshold values for EEG arousal detection. The authors

reported an overall accuracy defined as the percentage of (TP + TN)/(TP + TN + FP

+ FN) (please see Appendix B) of 86%, a false negative rate (FNR) of 18% and a false

positive rate (FPR) of 12%.

Another automatic detection method based on the idea of segmentation, spectral

feature extraction, statistical methods and decisional rules is described in [21]. Two

EEG channels of 2 patients’ PSG recordings were utilized and three sleep experts were

asked to score the sleep arousal events in this study. An automatic detection is assumed

to be a valid arousal event if there is any overlap with the manually marked events. For

one patient, the sensitivity and specificity were 82.2% and 72.4% when compared to score

A. The sensitivities and specificities were found to be 66.4%, 81.8% and 74.5%, 67.3%

respectively when compared to scorer B and scorer C. For the other patient, the sensitivity

and specificity were 70.1% and 71.1% when compared to score A. The sensitivities and

specificities were found to be 42.7%, 80.3% and 74.1%, 56.6% respectively when compared

to scorer B and scorer C.

An approach to detect sleep EEG arousals based on signal processing and machine

learning paradigm is presented in [23]. Two channels’ EEG signals and one channel’s chin-

EMG signal of each of 10 patients’ PSG sleep recordings were used. In the first phase, raw
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data were segmented into one-second epochs. The energies of different sleep bands were

measured using the Fourier Transform (FT). A set of 40 features of the 3 channels’ signals

were extracted in total to train classifiers. In the second phase, several models based on

the classic Fisher’s linear Discriminant, a quadratic discriminant, several configurations

of Support Vector Machine (SVM) based on different parameters, and configurations of

feed-forward Artificial Neural Networks (ANN) of different neurons in one hidden layer

were tested. The SVM and ANN models achieved better performances than the other

two classifiers and the best overall accuracy was reported to be 0.92 which was achieved

by one model of ANN.

Two studies based on segmentation, feature extraction and machine learning tech-

niques are reported in [15] and [17]. In [17], four channels of EEG (two central (C3-A2,

C4-A1) and two occipital (O1-A2, O2-A1)) and one submental EMG channel of PSG

recordings were used. Patients recruited in this study were patients with Parkinson Dis-

ease (PD). After data preprocessing, a titak if 14 features were extracted including sleep

stages scored by sleep experts. Then, a two-layer feed-forward neural network with 9

neurons in a hidden layer was applied to classify the arousals with features extracted

previously. In the last step, a postprocessing step was added to combine arousals classied

in a certain proximity of each other. Arousals closer than 10 seconds from each other were

combined to one arousal event. Arousals detected but lasting less than 3 seconds were re-

moved. The authors assumed correctly detected arousal events as ones which overlapped

with manually scored arousals. They reported an average sensitivity of 89.8% and PPV
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of 88.8%.

In [15], only a single channel EEG (C3-A2) was used to automatic detect sleep

arousals. Sleep data of non-REM sleep stages (wake stages and REM stages were ex-

cluded) of 9 PSG recordings of patients with sleep apnea, snoring and excessive daytime

sleepiness (EDS) were used. After some preprocessing of the data, time-frequency analysis

was used to extract several features. In the last step, the support vector machine (SVM)

classifier was applied to features extracted based on 1-second epochs. The information

of manually scored sleep stages was also included as one of the features. The authors

reported that the proposed method achieved a sensitivity of 75.26% and specificity of

93.08% compared to the sleep expert’s scores.

1.2.1 Discussion

To our knowledge, none of the works has reported a comparison between its own result

and that of other works. Maybe it is because it’s hard and unfair to do a comparison.

Several possible reasons are listed as follows.

• First, different dataset were used in different works. Most of the studies collaborated

with their own hospitals to recruit patients to collect PSG data. The devices used

and patients participating in the test can vary a lot among different studies. In

addition, various sleep experts involved in annotating the sleep arousal events in

different studies. The results reported in [21] indicated the big difference between

different scorers when doing annotation. The sensitivity can be as high as 70.1%
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when compared with the annotations of scorer A and can be as low as 42.7% when

compared with scorer B for the dataset of the same patient.

• Second, different physiological signals are used in different studies. For example,

several studies used 2 channels of EEG signals and others used 4 channels of EEG

signals. A few works added airflow pressure or temperature information while

others utilized heartbeat rate etc.

• Last but not least, various performance evaluation methods are used in different

works and there is no standard criteria for performance evaluation on this sleep

arousal detection problem. For example, in [15], sensitivity and specificity were used

to report research results. The annotations are segmented into 1-second epochs and

the sensitivity and specificity were computed based on 1-second epochs. In another

study [17], sensitivity and PPV were used and no specificity was calculated. In

addition, they calculated the results based on arousal events lasting more than 3

seconds. And they assumed correctly detected arousal events as ones which over-

lapped with manually scored arousals. Based on their method, a high sensitivity

could be achieved while the duration, start and end of an arousal event may vary

a lot from the sleep expert’s annotations. In study [22], sensitivity and selectivity

were used as evaluation. In addition, they established a jointly reference set based

on two sleep experts’ annotations and the experiment result of the automatic de-

tection algorithm and it was then used as the gold standard to compute sensitivity

and selectivity instead of traditional annotation of one sleep expert. In [20], an
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overall accuracy, false negative rate and false positive rate were used to present the

experiment result.

In addition, most of the studies utilized imbalanced dataset to evaluate performances

and they did not use imbalanced learning algorithms or make a balanced dataset. This

may lead to a good overall accuracy while the real performance is bad.

1.3 Motivations

Sleep arousals are associated with various sleep disorders and can be a good indicator

for sleep quality assessment. So far, sleep EEG arousals are mostly diagnosed by sleep

experts with specific domain knowledge and the patient is required to take an overnight

sleep test in the hospital or a sleep lab. There are several disadvantages for this kind of

traditional sleep test. For example:

• It is very time consuming and cumbersome for a sleep expert to manually score

sleep arousals because the expert needs to visually inspect the different channels of

a PSG recording including EEG, EMG, EOG etc.

• Visual inspection is a relatively subjective way to diagnose sleep arousals. There

can be large differences between individual sleep experts. For instance, in [22],

the sensitivity of sleep expert A was 72.4% and the sensitivity of sleep expert B

was 78.4% compared to the reference set which was jointly scored according to

the computer algorithm’s result, sleep expert A and sleep expert B’s results. And
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the agreement between the two experts was only 68%. In another study[21], the

sensitivities of the automatic method varies from 70.1% to 42.7% when compared

to two different scorers for the same patient. These results indicate less accuracy

of manually scoring.

• It has been suggested that arousals of short durations (less than 3 seconds) may

also be significant [13]. However, identification and agreement on events of such

short durations are difficult to achieve, if scored manually.

• From a patient’s perspective, the cost for a PSG test is high (ranging from $700 to

$6000). The patient need to sleep in a sleep lab or hospital for a full night with a

lot of electrodes attached to the patient’s body. This may disturb the sleep process

of the patient which makes the test less reliable. In addition, a sleep technician

should always be in attendance and is responsible for attaching the electrodes to

the patient and monitoring the patient during the study.

Due to the above–mentioned disadvantages, research on fast, accurate computer-aided

automatic arousal detection approaches and portable, less obtrusive detection devices

which allow patients to take the tests at home are of great significance. Several studies

on automatic or semi-automatic sleep arousal detection are mentioned in Section 1.2.

However, a number of issues still need to be solved.

• Most of the previous studies utilized various physiological information collected

from a number of channels of PSG tests. For example, the method in [24] used 2
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central channels of EEG (C4-A1, C3-A2), 1 channel of chin-EMG, pulse (heartbeat

rate) and SaO2% signals. In [20], 4 channels of EEG (C3-A2,C4-A1, O1-A2, O2-

A1), 2 channels of EMG, airflow pressure and airflow temperature, etc. were used.

A large number of channels of information collected means more inconvenience for

patients since more electrodes need to be placed on patients. In order to manufac-

ture portable, less obtrusive devices, use of fewer electrodes is desirable. However,

fewer channels of information lead to lower accuracy. For instance, the sensitivity

was decreased from 75.2% to 49.4% when only 2 EEG channels were used in [24].

Thus, methods which can achieve relatively high accuracy with less physiological

information collected should be studied.

• In sleep arousal detection, the amount of patient data is quite huge and takes long

time to be processed, even by computer algorithms. In order to analyse data more

effectively and even make real-time display achievable, a relatively fast algorithm

with high accuracy is necessary.

• Several features need to be extracted to train the classifier in machine learning

based algorithms. Features are chosen or added based on previous works or the

researcher’s own view in most of the studies. However, redundant or unimportant

features may be added during the feature extraction process which will lower down

the speed of the algorithm and may even decrease performance. Thus, a reliable

feature selection algorithm is crucial.
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1.4 Contributions

In this thesis, an algorithm to detect non-REM sleep EEG arousals using only 1 channel

EEG(C4-A1/C3-A2) is developed. The main contributions are summarized as follows:

• In chapter 2, an automatic sleep arousal detection algorithm is proposed. Raw

data from [1] is used in our study. A set of 22 features different from previous work

is extracted based on 1-second segmentation from the preprocessed dataset. A

recently proposed classifier named Curious Extreme Learning Machine (C-ELM),

which is fast and easily implemented is adopted to do a binary classification on

the whole feature set. The widely used Support Vector Machine (SVM) classifier

is also used on the feature set. The information of the accuracy and the Area

Under the Receiver Operating Characteristic (ROC) Curve (AUC) are calculated

and compared for both our C-ELM-based and SVM-based detection algorithms.

The speed of the two methods are also compared. During the process, 10-fold cross

validation is used to avoid bias due to luckily/unluckily selected validation set, thus

making the performance estimate less sensitive to the partitioning of the data. The

result shows that our C-ELM based detection model has a better performance than

SVM-based model.

• In Chapter 3, an improved automatic sleep arousal detection model based on Min-

imum Redundancy Maximum Relevance (MRMR) feature selection method and

C-ELM are proposed. MRMR feature selection step is added to reduce the dimen-
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sionality of the feature set and determine the subset of features which gives the best

performance. It is shown that a subset of 17 features achieves the best performance

and a set of 6 features can still have a similar performance to the 17 feature set.

A low dimension feature set can increase the speed of the sleep arousal detection

algorithm. By the result obtained, the improved model is found to achieve a good

performance with a reduced system complexity. This result also indicates that the

MRMR feature selection step plays an important role in designing an sleep arousal

detection algorithm which is fast and accurate.

1.5 Structure of the Thesis

The remainder of the thesis is organized as follows.

In Chapter 2, we present our C-ELM classifier based algorithm and evaluate its clas-

sification performance. The model and process are first described. Then, data prepro-

cessing and segmentation are introduced. Next, feature extraction and C-ELM, SVM

classification are described . Finally, the performance of the algorithm is discussed (cross

validation was utilized since the dataset is limit).

In Chapter 3, we propose an improved algorithm with MRMR feature selection. First,

a few feature selection methods including MRMR feature selection method are described

and compared. Then, binary classifications using C-ELM and SVM are performed on

different feature subsets according to the MRMR feature selection ranking. The per-

formances are also reported in this part. Finally, a brief summary of this chapter is
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given.
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Chapter 2

Automatic Sleep EEG Arousal

Detection based on C-ELM

In this Chapter, we present our C-ELM classifier based algorithm and evaluate its classi-

fication performance. Support Vector Machine (SVM) has good performance on binary

classification problems and it has been reported that it performs well when applied to

sleep arousal detection problems[15, 23]. So, we also apply SVM on our feature set for

comparison with our C-ELM based model. The overall sleep arousal detection model is

described in Section2.1. In Section2.2, data preprocessing including the selection of raw

data and band-pass filter process and segmentation are introduced. In Section2.3, various

features are described and extracted from the preprocessed data. In Section2.4, theory of

Curious Extreme Learning Machine (C-ELM) is studied. In Section2.5, the sleep arousal

detection performances using models based on C-ELM and SVM binary classifications

are compared. Cross validation is used to reduce the variance for different datasets when

we do the performance estimate. The AUCs, ACCs and training times of C-ELM and

SVM based algorithms are compared. In Section2.6, a summary is given.
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Figure 2.1: Sleep arousal detection model.

2.1 Sleep Arousal Detection Model

Our sleep arousal detection algorithm is based on segmentation and classification. First,

raw sleep dataset which contains noise is obtained from Physiobank[1]. A band pass filter

is used to remove artifacts and irrelevant information. Next, the preprocessed dataset is

segmented into 1-second epochs in order to do the classification. Since the input data is

too large to be processed, a feature extraction step is used to transform the raw dataset

into feature vectors which contain the relevant information. Finally, the feature vectors

of the dataset are input into the Curious Extreme Learning Machine (C-ELM) classifier

and SVM classifier. The overall model is illustrated in Fig. 2.1.
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2.2 Data Preprocessing and Segmentation

We now describe the Data acquisition, data preprocessing including band pass filter and

segmentation.

2.2.1 Data Acquisition

One central EEG channel (C4-A1/C3-A2) with a sampling frequency of 250 Hz of a

patient’s single overnight PSG recording is utilized in this thesis. The EEG raw data is

downloaded from Sleep Heat Health Study (SHHS) PSG DataBase of PhysioBank[1]. The

SHHS is a prospective cohort study designed to investigate the relationship between sleep

disordered breathing and cardiovascular disease. The age of the patient used in the study

is over 40, without tracheostomy, without history of treatment of sleep apnea, without

current home oxygen therapy. Other information, such as a sleep expert’s annotations of

arousal events and sleep stages, are downloaded from PhysioBank as well.

According to the ASDA manually scoring rules [6], arousal events during REM sleep

stages must be scored when at least one EMG channel is used since the arousal events

during REM sleep stages must be accompanied by an increase in submental EMG ac-

cording to ASDA rules [6]. So only data of non-REM sleep stages (sleep stage 1, 2, 3)

and wake stage are included in this study. Consequently, we have investigated a total of

1,920,000 samples (7680 seconds) for arousal detection.
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2.2.2 Band Pass Filter and Segmentation

According to [15, 17, 20, 21, 22, 23, 24], sleep related frequencies can be divided into 6

bands: 0-0.5 Hz (gamma or slow delta), 0.5-4 Hz (delta), 4-8 Hz (theta), 8-12 Hz (alpha),

12-16 Hz (sigma), 16-30 Hz (beta). Some of the above-mentioned works define the beta

band as 16-64 Hz [22], 16-40 Hz [21] or >13 Hz [24]. In [6], sleep EEG arousals are related

to the theta, alpha and beta bands. Other sleep bands are related to sleep stages or sleep

spindles. In order to remove noise and frequencies non-related to sleep, we band-pass

filter the raw EEG signal from 0-50 Hz.

Analysis tools, such as Fast Fourier Transform (FFT), are widely used to process

EEG signals. However, in this research, we want to identify sleep arousals based on

1-second epochs. Thus a time-frequency representation is performed which enables us to

obtain time and frequency information simultaneously. It is useful in analyzing complex

physiological signals [15]. In order to do time-frequency analysis and extract feature

vectors from the signal every second, the band-pass filtered signal is segmented into 1-

second epochs. Then, frequency analysis is performed for each epoch. A total of 7680

epochs of sleep data are thus obtained.

2.3 Feature Extraction

In this section, features extracted from the sleep EEG data are listed and described. In

this stage, a total of 22 features are extracted from one single channel EEG to be used
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in the classification stage. Some of the 22 features may be redundant or features with

less predict power; however, in this stage, this is not of immediate concern. This will be

discussed in the feature selection part in Chapter 3.

All the 22 features are now described. In the feature extraction step, Fast Fourier

Transform (FFT) is used for the frequency and power analysis.

• Power Ratio: According to the ASDA scoring rules [6], sleep EEG arousals are

abrupt frequency shifts of theta, alpha and beta sleep bands. The frequency shift

can be represented by the changes of power in time. First, for each one second

epoch, two temporal windows which contain the power information are chosen.

A window of 10 seconds ending in the current epoch is used to represent prior

power information and another window starting from the current epoch is chosen

to provide the current or future power information. The changes of power can be

represented by the power ratio between these two windows. According to [15], we

make the “future” window 1 second in length and we also choose another “future”

window of 3 seconds according to [23]. That is to say, we have 2 different power

ratio frames. One is 1 second/10 second frame and the other one is 3 second/10

second frame. The duration of 10 seconds as the former window length also comes

from the ASDA scoring rules [6]. In [6], the scoring rule suggests a minimum

of 10 seconds of intervening sleep is necessary to score a second arousal once a

previous arousal is detected. So we choose 10 seconds as the length of the former

window. Next, each of the two windows are transformed to the frequency domain
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using FFT, and the power of each window can be calculated. Each of the six sleep

bands’ power ratios including theta ratio (4-8 Hz), alpha ratio (8-12 Hz), beta ratio

(16-30 Hz), gamma ratio (0-0.5 Hz), sigma ratio (12-16 Hz) and delta ratio (0.5-4

Hz). and the whole power ratio (0-50 Hz) are calculated and extracted as features.

A total of 14 features (we have two frames of windows (3-second/10-second and

1-second/10-second)) are extracted based on the power ratios.

• Sleep Spindle: It is stated in the ASDA scoring rules [6] that arousals are abrupt

EEG frequency shifts which are not sleep spindles. Hence, the power ratio between

sigma and (alpha plus beta) using 3-second/10-second window frame is selected to

indicate the presence of sleep spindles [15, 22].

• Mean Frequency: The signal’s mean frequency of each 1-second epoch is extracted

as a feature [15]. The mean frequency is computed as follows [22].

f̄ =

∑
pi × fi∑
pi

, (2.1)

where fi is the center frequency of the band and pi is its power.

• Power and Max Power Frequency: The power of 0-50 Hz band for each 1-second

epoch is selected as a feature. Another feature is max power frequency, which

is defined as the frequency corresponding to the maximum power or maximum

amplitude in the FFT amplitude spectrum.
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• Time Domain Based Features: The mean value and standard deviation of the signal

in the time domain are selected as features for each 1 second. An abrupt shift in

EEG frequency may be indicated by the number of zero-crossing, so the number of

zero-crossing is another feature selected in the time domain. We choose the mean

value of each second as ”Zero” (the baseline). A large number of zero-crossing may

indicate an abrupt shift in EEG frequency occurs, thereby an arousal may have

happened. These three features are added from our own perspective based on the

ASDA rules [6].

• Sleep Stages: Although it is widely accepted that the scoring of sleep arousals is

independent of Rechtschaffen & Kales criteria [7], the selection of sleep stages as

a feature is still necessary. First, an arousal event is easy to be incorrectly scored

during the wake stage. Second, sleep stages are characterized by various sleep waves

(theta wave, alpha wave etc.). In this thesis, the annotations of sleep stages are

downloaded from Physionet [1] which is manually scored by sleep experts.

To have a brief summary of all the features extracted in this study, please see Ta-

ble. 2.1.

2.4 Classification based on C-ELM

In this section, the Curious Extreme Learning Machine (C-ELM) algorithm is briefly

described. A detailed explanation can be found in [28]. Descriptions of Support Vector



Chapter 2. Automatic Sleep EEG Arousal Detection based on C-ELM 26

Table 2.1: The 22 features extracted from the preprocessed data

Feature type # of features Description

Power Ratio (3-sec/10-sec) 7 Power ratio between 3 seconds

starting from the current epoch

and prior 10 seconds of the

0-50 Hz band and six individual

sleep bands (alpha, beta, etc.)

Power Ratio (1-sec/10-sec) 7 Power ratio between the current

epoch and prior 10 seconds of

the 0-50 Hz band and six individual

sleep bands (alpha, beta, etc.)

Sleep spindle 1 Power ratio between sigma and

alpha plus beta using

3-second/10-second windows

Mean frequency 1 The signal’s mean frequency

of each 1-second epoch Eq. (2.1)

Power 1 The power (0-50 Hz) of each epoch

Max Power Frequency 1 The frequency corresponding

to the maximum amplitude

in FFT amplitude spectrum

Time Domain Features 3 The zero-crossing frequency, mean

value and corresponding standard

deviation of the each epoch

sleep stages 1 Annotations of sleep stages
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Machine (SVM) appear in [29, 30, 31, 32].

Extreme Learning Machine (ELM) is a fast, easy-to-implement machine learning

algorithm based on a single hidden layer feedforward neural network (SLFN) without

parameter tuning. It has been reported to have good performance and generalization

ability [33, 34, 35]. Details about ELM and related algorithms based on ELM can be

found in [33, 36, 37, 38, 39, 40]. Curious Extreme Learning Machine (C-ELM) is a psy-

chological curiosity driven algorithm based on ELM. It follows psychological theory of

curiosity and performs curiosity appraisal towards each input data. The algorithm has

four variables (novelty N (xt), uncertainty U(xt), conflict C(xt) and surprise S(xt)) and

three learning strategies (neuron addition, neuron deletion and parameter update). The

four variables are computed for each input vector xt and compared with initialized thresh-

olds. According to the comparison result, one corresponding learning strategy is utilized

to adjust the structure or update the parameters of the neural network automatically.

The conditions for the three learning strategies [28] are briefly summarized below.

• Neuron Addition Strategy: Given an input xt, the neuron addition condition is:

N (xt) > θNadd AND U(xt) > θU AND S(xt) > θS , (2.2)

where xt = [xt1, · · · , xtM ]
T ∈ <M is the tth M-dimensional input vector (or feature

vector) of the training data {(x1, c1) , · · · , (xt, ct) , · · · } (ct ∈ [1, 2, · · · , N ] is the

class label of xt, N represents the total number of distinct classes), θNadd , θU and
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θS are initialized neuron addition thresholds in the range of [0.1, 0.5], [0.1, 0.3],

[0.2, 0.9] for novelty, uncertainty and surprise, respectively.

• Neuron Deletion Strategy: Given an input xt, the neuron deletion condition is:

S(xt) > θS AND C(xt) > θC AND N (xt) < θN del , (2.3)

where xt is the same as in Eq. (2.2), θN del , θC and θS are initialized neuron deletion

thresholds in the range of [0.1, 0.8], [0.1, 0.3], [0.2, 0.9] for novelty, conflict and

surprise, respectively.

• Parameter Update Strategy: When both neuron addition and deletion conditions

not satisfied, it indicates the new input vector is a ’familiar’ data. The number of

hidden neurons will not be changed and the output weights are updated.

A pseudocode description of C-ELM is given in Algorithm1.

Algorithm 1 Pseudocode for Curious Extreme Learning Machine.

1: Step 1: Present an input vector (xt, ct).

2: Step 2: Compute four variables (novelty N (xt), uncertainty U(xt), conflict C(xt)

and surprise S(xt)) according to the input vector.

3: Step 3: Select one learning strategy out of three (Neuron Addition, Neuron Deletion,

Parameters Update) based on the four variables and corresponding thresholds.

4: Step 4: Increment t to t+1, repeat Step 1 to Step 3.
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2.5 Performance Evaluation

In this section, we first apply C-ELM and SVM to the feature vectors of the dataset.

Since our data are limited, a 10-fold cross validation is utilized to gain insight into how

our model will generalize to an independent dataset (i.e., how accurately this model

will perform in practice). Then the Area Under the Curve (AUC) and Accuracy (ACC)

are computed and used as the criteria for our performance evaluation. In addition, the

training speeds of our C-ELM based model and the SVM based model are discussed and

compared.

During a patient’s overnight sleep, the number of arousal events can range from tens

to hundreds. Each event can last from several seconds to more than 15 seconds (currently

no terminal criteria is established according to ASDA scoring rules [6] ). However, the

total duration of all arousals during one night of sleep is quite small, around 20 or 30

minutes out of 8 hours. That is to say, the data can be quite imbalanced when applied

to a classifier. Thus, the accuracy could be overestimated. In this study, there are only

144 epochs among the total of 7680 epochs which are labeled as positive data (arousals)

by sleep experts. To solve the imbalance problem, we perform classifications using the

following procedure.

• First, 144 negative epochs are selected randomly from a total of 7536 non-arousal

epochs. The 144 positive epochs are combined with the selected negative epochs

to form a balanced dataset of 288 epochs in total.
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• Second, randomize the dataset of 288 epochs obtained in the first step and divide it

into 10 folds for cross validation. Then we apply C-ELM and SVM to the random-

ized dataset. Each one of the 10 folds is used as a test set in turn, with the other

9 folds used as training sets. Thus, for each test fold, decision value of each input

epoch (decision value is used to determine the predicting result, such as positive or

negative in binary classification) is obtained.

• Third, a Receiver Operating Characteristic (ROC curve) is plotted according to

decision values obtained from the second step. For details of ROC curve, please

refer to Appendix D. Finally, AUC and ACC are computed from the ROC curve.

• Repeat step 1 through step 3 for 50 times. The 50 AUC and ACC results are

discussed later in this section.

In this thesis, the Library of Support Vector Machine (LIBSVM)[41] is used to train

and test data in the SVM based model. In the training step, Radial Basis Function (RBF)

kernel function is used for the Support Vector Machine because RBF kernel usually has

a better performance for classification problems [29]. A grid search is utilized to tune

parameters in order to optimize the performance of the SVM based model. The C-ELM

based model is trained and tested using the source code from [28]. The parameters used

are the ones that provided the best classification performance in previous experiments

according to [28]. The learning thresholds are set as follows.

• The low threshold of novelty = 0.1;
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Table 2.2: Average AUC comparison of C-ELM based model and SVM based model

Properties C-ELM based model SVM-based model

Average AUC of 50 datasets 0.85 0.69

Standard deviation of 50 datasets 0.0163 0.1573

• The high threshold of novelty = 0.4;

• The uncertainty threshold = 0.1;

• The conflict threshold = 0.3;

• The surprise threshold = 0.4;

2.5.1 AUC and ACC Evaluation

The average AUC and ACC results of the 50 datasets for the C-ELM based model and

the SVM-based model are listed in Table. 2.2 and Table. 2.3, respectively. The standard

deviation of the 50 AUC and ACC results are also listed in Table. 2.2 and Table. 2.3.

The best C-ELM based result and its corresponding SVM result are summarized in

Table. 2.4 and the ROC curves are plotted in Fig. 2.2. The best SVM based result and

its corresponding C-ELM result are summarized in Table. 2.5 and the ROC curves are

plotted in Fig. 2.3.

According to the results shown in two tables, an average AUC of 0.8527 and ACC

of 0.7903 are achieved by our C-ELM based model while an average AUC of 0.6916 and

ACC of 0.6719 are obtained by SVM based model. These results indicates the sleep
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Table 2.3: Average ACC comparison of C-ELM based model and SVM based model

Properties C-ELM based model SVM-based model

Average ACC of 50 datasets 0.79 0.67

Standard deviation of 50 datasets 0.0179 0.1218

arousal detection model based on C-ELM performs very good on our datasets and the

SVM based detection model is relatively poor. This comparison result is consistent with

those of other problems reported in [28]. In [28], both C-ELM and SVM are evaluated

on the benchmark problems from the UCI machine learning repository which contains

three multicategory classification problems and three binary classification problems. It

is reported that C-ELM performs better than SVM on all the six problems. The overall

accuracy of C-ELM is greater than that of SVM by 0.12 for the Vehicle problem.

The standard deviation of AUC of our C-ELM model is only 0.0163 while the SVM

based model reaches 0.1573. We can see that the best AUC achieved by C-ELM based

model is around 0.89 from Table. 2.4 and Fig. 2.2. The similarity between the best

result and the average AUC 0.8527 and a relative small standard deviation of 0.0163

may indicate the input data of most datasets among the 50 datasets are randomized

well and the C-ELM based model is stable on all the 50 datasets. However, the average

AUC of the SVM based model is around 0.7. It is much smaller than the best AUC

which is around 0.89. And we can also find that the standard deviations of 50 AUCs and

ACCS for the SVM based model are much greater than those of C-ELM based model.

Because we apply the same dataset to both C-ELM based model and SVM based model
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simultaneously, and good results of C-ELM based model have suggest the datasets used

are randomized well, The above-mentioned relatively poor results of the SVM based

model probably indicate this model is unstable on our datasets. The possible reasons for

the relatively poor performance of SVM based model compared to the model proposed

by us are discussed below.

• In our study, we used RBF kernel function for SVM based model, then two pa-

rameters of the model and the kernel function need to be tuned to optimize the

performance and avoid overfitting. For each one of 50 datasets, we do grid searches

to choose the best values for the two parameters. When we do cross validation

for each dataset, grid search is applied to determine values of the parameters for

each 1 of 10 folds. The complexity in tuning parameters for SVM results in big

variance of parameter’s values which may cause the unstable performance of SVM

based model. In regarding to this problem, we might choose another parameter

tuning strategy. For example, we apply grid search on each 1 of the 50 datasets

and then use a major vote method to determine one optimal value for each of the 2

parameters. For all the cross validation procedures we can use the fixed parameters

obtained by major vote.

• Choosing the kernel function is probably the most tricky part of using SVM. The

kernel function is important because it creates the kernel matrix which summarizes

all the data [42]. RBF kernel function is used in SVM classifier in our study because

this kernel function is always a good try in various problems [29, 42]. However, what
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could happen is that RBF kernel is not a good choice on our data. For example,

if our data is linear distributed, we used RBF kernel instead of linear kernel with

poor parameters selected, this could cause over fitting problem which leads to a less

effective classifier. Another seperate experiment is done to observe whether SVM

based model has an over fitting problem. It is shown that the average training

accuracy of 50 datasets is greater than the average testing accuracy by around 0.1

which indicates over fitting problem might have occur in some of the 50 datasets.

• Curious Extreme Learning Machine (C-ELM) is based on Extreme Learning Ma-

chine (ELM). Compared to SVM, ELM has some advantages which may lead to a

better performance in our study. The hidden node parameters can be generated

without the knowledge of the training data and no parameter tuning is needed for

ELM [38]. The constraint of the choose of kernel is much smaller on ELM than

SVM. That is to say, ELM may generalize better than SVM regardless of kernel

choosing and the distribution of the data.

• Curious Extreme Learning Machine (C-ELM) is an enhanced ELM. It is reported to

have a better performance than ELM on all the 3 binary classification benchmark

problems studied in [28]. It reduces the randomization effect of ELM mainly by

providing an optimal number of hidden neurons. The hidden neuron addition or

deletion strategy based on curiosity may helps in avoiding over fitting.
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Table 2.4: Best performance of C-ELM based model among 50 datasets and the corre-

sponding performance of SVM based model of the same dataset

Properties Best C-ELM based performance SVM based performance

AUC of one dataset 0.8843 0.8271
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Figure 2.2: ROC curves for C-ELM based and SVM based models for the dataset which

gives the highest AUC for C-ELM. The red line is a random classification,

the blue line is the curve of C-ELM and the green line is the curve of SVM

Table 2.5: Best performance of SVM based model among 50 datasets and the corre-

sponding performance of C-ELM based model of the same dataset

Properties Best SVM based performance C-ELM based performance

AUC of one dataset 0.8850 0.8629
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Figure 2.3: ROC curves for C-ELM based and SVM based models for the dataset which

gives the highest AUC for SVM. The red line is a random classification, the

blue line is the curve of C-ELM and the green line is the curve of SVM
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2.5.2 Speed Evaluation

In order to do a fair comparison between the training times for the C-ELM based model

and the SVM based model, we use the built-in SVM training function of MATLAB

R2012b to do the classification instead of the function from LIBSVM[41] since the LIB-

SVM utilizes c/c++ source code (Matlab is slower than C/C++ which would make the

comparison unfair). The kernel function of the SVM classifier is RBF. A total of 288

observations, each with 22 features (288*22 matrix), containing 144 positive data and

144 negative data were selected randomly from the 7680 observations. The training times

for both models are shown in Table. 2.6. It can be seen that the training speeds for the

two models are similar. This result is consistent with those reported in [28]. In [28],

the training times for C-ELM and SVM are similar for all the three benchmark binary

classification problems. For example, for Brest cancer problem, The training time of

SVM is 0.11 while that of C-ELM is 0.09. A total of 300 training data with dimension

of 9 are used in the Breast cancer problem. In this thesis, it is just a rough comparison

for the specific dataset. The training time depends on the dataset, kernel function used

as well as the coding implementation of the algorithm and so on. In addition, we don’t

tune parameters in our model while a grid search is utilized to optimize the SVM based

model. If considering the total executing time of the sleep arousal detection model, the

SVM based model is slower than the C-ELM based model and the executing time of SVM

based model depends on the complexity of the grid search. A more thorough evaluation

of the training times is required but this is not the main aim of this thesis.
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Table 2.6: Training times for C-ELM based model and SVM based model for a dataset

with dimension of 22

C-ELM based model SVM based model

training time (seconds) 0.079 0.080

2.6 Summary

In this Chapter, a new model based on a new set of 22 features and Curious Extreme

Learning Machine (C-ELM) for sleep arousal detection has been proposed. Data acqui-

sition, preprocessing and segmentation are first described followed by the feature extrac-

tion procedure. Brief descriptions of C-ELM and SVM classification algorithms are also

provided. The performance of the new model is presented and compared to that of a

SVM-based model. It is found that the proposed model of sleep arousal detection has

a good performance even though only one single EEG channel and limited data is used.

The proposed model has a higher AUC and ACC which indicates a better ability to

correctly classifies a random data as a sleep arousal or a non-arousal while its training

speed is similar to that for the SVM based model.
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Chapter 3

Automatic Detection based on

C-ELM and MRMR

In this Chapter, we present an improved sleep arousal detection algorithm. In this

algorithm, the Minimum Redundancy Maximum Relevance (MRMR) feature selection

method is added to the previous mentioned C-ELM classifier based algorithm. In Sec-

tion.3.1, the improved model is illustrated and a brief introduction is provided. In Sec-

tion.3.2, various feature selection methods are described and discussed including the

MRMR approach utilized by our algorithm. In Section.3.3, the improved algorithm is

applied to the sleep dataset. The performance is evaluated including providing the aver-

age AUC and ACC of 50 datasets. For each dataset, the AUCs and ACCs are computed

when different feature subsets are used for C-ELM based algorithm. A brief summary of

this chapter is provided in Section.3.4.
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3.1 Improved Arousal Detection Model

This improved model is based on the model proposed in Chapter2. Most of the methods

proposed for automatic sleep arousal detection do not have a feature selection step.

However, it is reported in [43] has reported that the selection of different feature subsets

have a significant influence on the sleep arousal detection. All of the studies mentioned

in Section 1.2 select features from previous works or add new features from their own

perspectives. The influence of different feature subsets on the performance of arousal

detection methods was not reported in these studies. In our model, a ranking of all the

22 features is obtained using the MRMR feature selection method [44]. We applied the

C-ELM classifier on different feature subsets according to the ranking. It is found that

a subset of the 17 highest ranked features has the best performance and a feature set

of the 6 highest ranked features achieves a similar performance with the 17 feature set.

Dimensionality reduction of the input vectors can reduce the complexity and training

time of model while keeping a reasonable performance. The improved arousal detection

model is shown in Fig. 3.1.

3.2 Feature Selection

In machine learning problems, the experimental performances can be negatively influ-

enced by data dimensionality [43]. In some real problems, a small number of high-

dimensional data may cause over fitting problem. Although the amount of data needed
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Figure 3.1: Improved sleep detection model based on MRMR feature selection.
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to properly train a model may not be obvious, dimensionality reduction of the input data

may be of benefit in our study. First, dimensionality reduction of the input data can re-

duce the complexity of our model and the training time of C-ELM classifier. Second,

although we do not have a huge amount of features, EEG signals obtained from patients

always have big noise which results in noisy features which may mislead the classification

algorithm thereby reduces the accuracy of sleep arousal detection. It is thus important

to add a feature selection step in our sleep arousal detection model. In this section, two

main categories of feature selection methods are introduced and compared. The MRMR

feature selection method which is adopted in our model is briefly described as well.

3.2.1 Filters and Wrappers

Feature selection methods can be roughly grouped into two main categories: filters and

wrappers [43]. Filter methods carry out the selection step based on intrinsic characteris-

tics of the training data to determine their relevance or discriminant power with regards

to the target classes (the true label for each observation, named positive or negative in

binary classifications) [45]. Filter methods are totally independent of classifiers used in

the classification step. Wrappers use induction algorithms, e.t. Multi-Layer Perceptron

(MLP) and Support Vector Machine (SVM) are used as induction algorithms in [43]

to explore each subset of features. During the induction process, wrapper methods are

dependent on classifiers.

Filter methods give a ranking of input features or a subset of significant features
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based on different measures of the input data and corresponding classes. Filters based on

information gain, information entropy, mutual information and statistical tests (such as

t-test, F-test) etc. have been developed [43, 45]. Different filter feature selection methods

are expected to have significantly different rankings of features since various measures

are used. An effective filter method is believed to improve the classification performance

while reducing computing time. Another advantage for filter methods is that filters are

independent of the learning algorithms.

For wrapper methods, feature selection is wrapped around a learning algorithm such

as SVM. The effectiveness of a feature is decided by the estimated accuracy of the learning

algorithm. Two well known strategies utilized in wrapper methods are sequential forward

selection (SFS) and sequential backward selection (SBS) [43]. SFS starts with an empty

feature set and add features one by one while SBS starts with a full feature set and

delete features one by one [43]. Wrapper methods can give high accuracy if the learning

algorithm used in the classification step is the same one as used in the wrapper. However,

wrappers require a long running time when the dataset is big because they need to

train an induction algorithm numerous times. Moreover, wrapper methods have lower

generalization ability than filters as they depend on the learning algorithm.

In our sleep arousal detection problem, time efficiency is quite important since the

dataset obtained from patients is usually quite big. Thus, in our study, a filter fea-

ture selection method named minimum redundancy-maximum relevance (MRMR) [45] is

adopted instead of wrapper methods.
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3.2.2 MRMR Feature Selection

In common filter methods, a simple ranking of features is obtained based on some specific

measures (information gain, mutual information etc.). Then we can select m features out

of the total n features (m<=n). One deficiency of these approaches is that the selected

m features can be correlated among themselves. Thus, redundancy of features can still

exist in the feature set although this set has strong predict power in classification. This

issue can lead to two main problems [45]. (1) If a feature set contains highly mutual

correlated features, then the true unique features are fewer, and some of the features

are wasted.(2) The feature set is “narrow” because it can only represent one or a few

dominant characteristics of the data which limits the generalization ability of the feature

set.

Minimum Redundancy-Maximum Relevance (MRMR) is a filter method which re-

quires features to be maximally dissimilar to each other (minimum redundancy) while

keeping the maximum relevance criteria used in other filter methods such as maximizing

the mutual information between the features and the target classes. With this approach,

a smaller feature set with better representative and generalization properties which re-

duces complexity of the model may be obtained.

A brief description of MRMR feature selection for discrete variables is provided below.

For more details, please refer to [44, 45]. The minimum redundancy condition is

minWI , WI =
1

|S|2
∑
i,j∈S

I(i, j), (3.1)
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where I(i, j) is the mutual information between two different features i and j, S is the

selected feature set, |S| is the number of features in S.

The maximum relevance condition is

maxVI , VI =
1

|S|
∑
i∈S

I(h, i), (3.2)

where I(h, i) is the mutual information between feature i and classes h = {h1, h2, ..., hK}.

Two schemes - Mutual Information Difference (MID) (Eq. (3.3)) and Mutual In-

formation Quotient (MIQ) (Eq. (3.4)) are utilized to optimize Eq. (3.1) and Eq. (3.2)

simultaneously. Optimization of both conditions requires combining them into a single

criterion function. Since the two conditions are equally important, two simplest combi-

nation criteria (Eq. (3.3) and Eq. (3.4)) are considered [45].

max(VI −WI), (3.3)

max(VI/WI), (3.4)

The feature selection step works as follows. The first feature is selected according to

Eq. (3.2), i.e. the feature with the highest I(h, i). Earlier features selected remain in the

set, a new feature is selected and added according to one of the two criteria (Eq. (3.3)

and Eq. (3.4)). That is to say, the last added feature is the one with the lowest rank.

Finally, a ranking of all the features can be obtained.
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3.3 Performance Evaluation

In this section, we first apply MRMR feature selection on the 7680 input epochs men-

tioned in Chapter 2. Then a ranking of the 22 features is obtained using the feature

selection process. The ranking of the data used in our study is listed in Table. 3.1. Ide-

ally, it is a better way to do the feature selection step using a different dataset from the

training and testing datasets. However, in our study, very limit data was used, thus, a

sub-optimal way was utilized (we use the 7680 data to do feature selection, and the 50

datasets used to do performance evaluation are also from the 7680 data). For detailed

explanation of the features, please refer to Sec.2.3. In our study, both Mutual Informa-

tion Quotient (MIQ) and Mutual Information Difference (MID) criteria are tried in the

feature selection step. It is found that MIQ criterion performs much more effective and

thus MIQ criterion is utilized as the MRMR feature selection scheme in our model.

According to the ranking, different feature subsets are used as input feature vectors

to train the C-ELM classifier. 50 datasets are randomly chosen using the same steps in

Chapter 2 to evaluate the performance (the same logic as Chapter 2). AUC and ACC

are used as the criteria for our performance evaluation. The steps for the performance

evaluation are described in Algorithm 2.

For each of the 50 datasets, we have 22 AUCs and ACCs computed for 22 feature

sets. The first feature set only contains the highest ranked feature; the second feature

set contains the top 2 features and so on. The 22nd feature set contains a full set of 22

features. The average performance of the 50 datasets for each feature set is computed.
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Table 3.1: MRMR feature ranking using MIQ scheme

Feature rank Feature name

1 Mean frequency

2 3-sec delta power ratio

3 1-sec alpha power ratio

4 max power frequency

5 1-sec power (0-50 Hz) ratio

6 sleep stage annotation

7 zero-crossing frequency

8 3-sec theta ratio

9 mean value

10 1-sec power

11 3-sec alpha power ratio

12 standard deviation

13 1-sec sigma ratio

14 3-sec power (0-50 Hz) ratio

15 3-sec sigma power ratio

16 3-sec gamma power ratio

17 sleep spindle

18 1-sec beta power ratio

19 3-sec beta power ratio

20 1-sec delta power ratio

21 1-sec theata ratio

22 1-sec gamma ratio
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Algorithm 2 The algorithm for the improved model’s performance evaluation.

for iteration i := 1 to 50 do

select 144 negative epochs (each epoch is a 22-dimension vector) randomly from a

total of 7536 non-arousal epochs. 144 positive epochs are combined with the selected

negative epochs to form a balanced dataset of 288 epochs in total.

for iteration j := 1 to 22 do

choose the top j features according to the MRMR ranking for each input vector.

Thus, the current dataset becomes a 288*j input dataset.

randomize the dataset obtained in the previous step and divide it into 10 folds for

cross validation. Then C-ELM classifier is applied on the dataset. For each test

fold, decision values (probabilities of positive or negative) are obtained.

A ROC curve is plotted according to decision values and AUC, ACC are computed

from the ROC curve.

end for

end for
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Results are shown in Fig. 3.2 and Fig. 3.3.

From Fig. 3.2, it can be seen that the best average AUC achieved is 0.86 when a

set of 17 top-ranking features are selected. We also observe that a set of the 6 top-

ranking features can achieve a reasonable good performance with an average AUC of

0.85. Fig. 3.3 shows that the best average ACC (0.80) is obtained with the 6 top ranked

features. Using the full set of 22 features, the average AUC is 0.85 while the average

ACC is 0.79. Thus, the MRMR feature selection successfully improves the average AUC

from 0.85 to 0.86 while reducing the number of features from 22 to 17. Moreover, we

can reduce the number of features to 6 and thereby reduce the training time of our

model while maintaining a similar performance. In order to find out the training times

of dataset with different number of features. Another experiment is done on a training

data set of 288 observations (each observation is a m-dimensional input vector, here m is

the number of features which is between 1 and 22). It is observed that the training time

is 0.043 seconds for the dataset with 6 features while the training time achieves 0.079

secons for the dataset with 22 features. However, the relationship between the training

time and the number of features is not a simple linear correlation because the training

time depends on the kernel function you used, the convergence time of the method used

to find a separating hyperplane (in SVM) and so on. This may be a good topic to work

on, however, in our study, it is not the main topic to discuss. The average AUC and

ACC of input data with different feature set size are listed in Table. 3.2.

As above-mentioned, we have big noise in EEG signal. Thus, we may have noisy
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2 contains 2 top ranked features and so on.
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Table 3.2: Average performance of different feature sets using C-ELM

Number of features Average AUC Average ACC

1 0.82 0.78

6 0.85 0.80

17 0.86 0.79

22 0.85 0.79

features in the feature set. In our study, we only use one channel of EEG signal, so the

predictive power of a feature is important. It is observed from Table. 3.2 that the AUC

and ACC of the 6th feature set is higher than those of others which indicates that on top

of the 6 top ranked features, the remaining features does not provide as much predict

power as the 6 top ranked features. The 6 top features are mean frequency, 3-sec/10-

sec delta power ratio, 1-sec/10-sec alpha ratio, max power frequency, 1-sec/10-sec power

ratio (0-50 Hz), and sleep stage annotations. From the 6 features we can see that power

ratios have made good contributions to a effective feature set which indicates the power

changes could represent EEG frequency shift to some extent.

As a supplementary, we also applied MRMR feature selection to the SVM based

model. The best average AUC of 0.69 and ACC of 0.67 are achieved by the set of 6 top

ranked features (the feature ranking is the same as above-mentioned), while the average

AUC and ACC for a full set of features are the same as those of the set with 6 features.

part of the AUCs and ACCs for different feature sets are listed in Table. 3.3. This result

indicates a good generalization of the 6 top ranked features regardless of the classifier.
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Table 3.3: Average performance of different feature sets using SVM

Number of features Average AUC Average ACC

1 0.65 0.65

6 0.69 0.67

22 0.69 0.67

3.4 Summary

In this Chapter, an improved non-REM sleep arousal detection model with a Minimum

Redundancy- Maximum Relevance (MRMR) feature selection step is presented. Several

feature selection methods are briefly introduced, followed by an illustration of the MRMR

feature selection. The performance of this proposed model with MRMR is evaluated

using the AUC and ACC criteria. It is found that the sleep arousal detection model

can provide a similar performance with a reduced feature set size. It should be noted

that only one single EEG channel and limited data were used in our simulations. Better

performance may be achieved if the model is trained on a larger dataset or more channels

of physiological signals are utilized.
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Chapter 4

Conclusions and Future Work

In this chapter, we conclude this thesis by summarizing the research results and contri-

butions. Future research topics are suggested as well.

4.1 Conclusions

We studied the problem of automatic detection of sleep arousals. A new detection model

was proposed based on a set of 22 features and Curious Extreme Learning Machine (C-

ELM) in Chapter 2. This model was found to provide a good performance on the dataset

used in our study. A Support Vector Machine (SVM) based model was also evaluated for

comparison with our model. In Chapter 3, an improved detection model was presented,

in which a Minimum Redundancy Maximum Relevance (MRMR) feature selection step

is added to the model proposed in Chapter 2. The improved model allows a reduction of

the size of the feature set, and have a decreased training time while maintaining a similar

detection performance.

• In Chapter.2, we presented a new model for sleep arousal detection. In this model,

data was first preprocessed and segmented. Then, a proposed set of 22 features are
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extracted, followed by the use of a Curious Extreme Learning Machine (C-ELM)

classifier. An average Area Under the ROC Curve (AUC) of 0.85 (an AUC of 1

corresponds to perfect classification, whereas an AUC of 0.5 corresponds to random

classification) and an average accuracy (ACC) of 0.79 was achieved by the proposed

model while an average AUC and ACC of 0.69 and 0.67 respectively was achieved

for the SVM based model. The results indicates that our system for sleep arousal

detection has a high performance on the dataset utilized in this study. In addition,

the training speed of C-ELM is similar to that of SVM and the total executing time

of our model is less than SVM based model since a grid search was done to optimize

the SVM based model which increased the total running time. The detailed running

time of the SVM based model varies a lot based on the complexity of grid search.

• In Chapter.3, we proposed an improved model for sleep arousal detection based

on the model proposed in Chapter.2 by adding a Minimum Redundancy Maximum

Relevance feature selection step to remove redundant features. Using this improved

model, it was found that the size of the feature set could be reduced to 6 from 22

without a significant performance change while reducing the training time of the

classifier. The average AUC and ACC achieved by a 6-feature model are 0.85 and

0.80 respectively while the average AUC and ACC obtained by a model with the full

set of 22 features were 0.85 and 0.79 respectively. The best average AUC achieved

was 0.86 with an average ACC of 0.79 when using a set of 17 features. The results

of this chapter suggests adding an effective feature selection step (such as MRMR
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feature selection) in automatic sleep arousal detection system is significant.

4.2 Future Work

Some possible extensions of the research work on automatic sleep arousal detection are

outlined below based on what have been observed and learnt in this project.

• The data used in our study is limited. A better performance may be expected if

we have a larger dataset to train the classifier. It would be interesting to apply the

proposed model on a big dataset obtained from real patients.

• During one patient’s overnight sleep, arousal events happen frequently. However,

the events usually only last several seconds and the total time of all arousals during

a night is quite short, typically 20 or 30 minutes out of 8 hours. Thus, the imbalance

between positive and negative data is a big issue no matter in training a classifier

or doing a performance evaluation. In our study, we simply choose datasets with

equal number of positive and negative data. Other methods can be explored to

solve the imbalance problem such as using over or under sampling strategies [46].

• In our study, we applied a bandpass filter to the dataset for preprocessing in our

model. EEG signals can have a lot of noise caused by the movement during sleep.

A considerable range of methods have been proposed to remove artifacts if multi-

channel EEG recordings are used. However, few methods have been proposed to
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remove artifacts of a single channel EEG [47]. Thus, studies on artifact removal for

a single channel EEG would be useful for sleep arousal detection.

• In our work, we added a MRMR feature selection step to the model proposed and

have observed a good performance. This result indicates the significance of feature

selection step. Thus, how to choose an effective feature selection method for sleep

arousal detection would be another interesting topic.
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Appendix A

Sleep Stages

Usually sleepers pass through five sleep stages: 1, 2, 3, 4 and REM (rapid eye movement)

sleep. Sleep stage 3 and 4 are always combined into one sleep stage (we use sleep stage

3 to represent sleep stage 3 and 4). Sleep stage 1 to 3 are called non-REM sleep stages.

These stages progress cyclically from 1 through REM stage. An overnight sleep of a

healthy individual usually contains 4 to 5 sleep cycles as shown in Fig. A.1. Sleep stage

1 is known as a transitional stage usually occurs between sleep and wakefulness. In this

stage, the brain produces high amplitude and low frequency theta waves. Brain waves

during Sleep stage 2 are mainly in the theta wave range. This sleep stage is characterized

by two phenomena: sleep spindles and K-Complex. Sleep stage 3 is known as slow wave

sleep or deep sleep characterized by delta wave along with sleep spindles, although much

fewer than sleep stage 2. REM sleep stage is a stage during which EOG shows a rapid

eye movement. Dreams often occur in this stage.



Appendix A. Sleep Stages 68

Figure A.1: Sleep stages [2]
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Appendix B

Basic Concept (sensitivity, etc.)

In a two-class prediction problem (binary classification), in which the outcomes are la-

beled either as positive (p) or negative (n). There are four possible outcomes from a

binary classifier. If the outcome from a prediction is p and the actual value is also p,

then it is called a true positive (TP); however if the actual value is n then it is said

to be a false positive (FP). Conversely, a true negative (TN) has occurred when both

the prediction outcome and the actual value are n, and false negative (FN) is when the

prediction outcome is n while the actual value is p [3]. Please see Fig. B.1.

Please see Table. B.1 for computing sensitivity, specificity, accuracy, selectivity, posi-

tive predictive value (PPV) and so on.

Figure B.1: Binary classification basic concept [3]
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Table B.1: Computing accuracy, sensitivity and so on
The name of the measure Computing formula

Accuracy (ACC) (TP+TN)/Total population
True positive rate (TPR), Sensitivity TP/Condition positive
True negative rate (TNR), Specificity TN/Condition negative

False positive rate (FPR), Fall-out FP/Condition negative
False negative rate (FNR), Miss rate FN/Condition positive

Positive predictive value (PPV), Precision TP/Test outcome positive
Selectivity TP/(TP+FP)
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Appendix C

EEG 10–20 International System

The 10-20 system or International 10-20 system is an internationally recognized method

to describe and apply the location of scalp electrodes in the context of an EEG test or

experiment. This method was developed to ensure standardized reproducibility so that

a subject’s studies could be compared over time and subjects could be compared to each

other. This system is based on the relationship between the location of an electrode and

the underlying area of cerebral cortex. The “10” and “20” refer to the fact that the actual

distances between adjacent electrodes are either 10% or 20% of the total front-back or

right-left distance of the skull [4, 27, 48]. Please see Fig. C.1.
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Figure C.1: EEG 10-20 system [4]
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Appendix D

ROC Curve

A receiver operating characteristic (ROC), or ROC curve, is a graphical plot that il-

lustrates the performance of a binary classifier system as its discrimination threshold is

varied. The curve is created by plotting the True positive rate (Sensitivity) against the

False positive rate (1-Specificity) at various threshold settings [3]. The Area Under the

ROC Curve indicates the ability of a classifier to discriminate a positive data from a

negative data. A value of 1 means a perfect test while 0.5 means random classification.
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