Some new results on the SU(3) Toda
system and Lin-Ni problem
by

Wen Yang

B.Sc., Wuhan University, 2010
M.Phil, The Chinese University of Hong Kong, 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
in
The Faculty of Graduate and Postdoctoral Studies

(Mathematics)

THE UNIVERSITY OF BRITISH COLUMBIA
(Vancouver)
July 2015
(© Wen Yang 2015



Abstract

In this thesis, we mainly consider two problems. First, we study the SU(3)
Toda system. Let (M, g) be a compact Riemann surface with volume 1, h;
and hy be a C! positive function on M and py, p2 € RT. The SU(3) Toda

system is the following one on the compact surface M

Ay + 201 (70— 1) — o122 1) = S (8, — 1),

Jag haett S haet2

hie” hoe
Aug — Pl(fMllfﬁ -1)+ 2p2(f]\/12]5282“2 —1) =dr ZQESQ Bq(dq — 1),

where A is the Beltrami-Laplace operator, oy > 0 for every g € S1, S1 C M,
By > 0 for every q € Sa, So C M and ¢, is the Dirac measure at ¢ € M. We
initiate the program for computing the Leray-Schauder topological degree
of SU(3) Toda system and succeed in obtaining the degree formula for p; €
(0,47) U (47, 87), p2 ¢ 47N when S; = Sy = 0.

Second, we consider the following nonlinear elliptic Neumann problem

Au—pu+u?=0 in

u >0 in €,
Gu—=0 on 0.
where g = z—fg, p > 0 and €2 is a smooth and bounded domain in R™. Lin

and Ni (1986) conjectured that for p small, all solutions are constants. In
the second part of this thesis, we will show that this conjecture is false for

a general domain in n = 4,6 by constructing a nonconstant solution.
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Chapter 1

Introduction

This thesis mainly concerns two problems. First, we consider the SU(3)
Toda system. Let (M, g) be a compact Riemann surface with volume 1, hy
and hy be C! positive functions on M and py,p2 € RT. The SU(3) Toda
system is the following one on the compact surface M,

Auy + 201 (T2 = 1) — po( 725255 — 1) =47 Y g, g0 — 1),

Jar haett Jag hzet2
By — pr (75— 1) 4 22 1) = 4w, B0, — 1),
(1.0.1)
where A is the Beltrami-Laplace operator, o, > 0 for every g € S1, S1 C M,
By > 0 for every q € Sa, So C M and d, is the Dirac measure at ¢ € M. A
partial result for the degree counting formula of is obtained.

The second part of this thesis concerns the following nonlinear elliptic

Neumann problem

Au—pu+u? =0 in (,

u>0 in Q, (1.0.2)
% =0 on 012,

where 1 < g < 400, p > 0 and € is a smooth and bounded domain in R".
In 1986, Lin and Ni proposed the following conjecture

Lin-Ni’s Conjecture [41]. For p small and ¢ = Z—f%, problem 1) ad-
mits only the constant solution.

When n = 4 and 6, we prove the existence of nonconstant solution to (1.0.2)
provided p is sufficiently small. This gives a counterexample of the conjec-

ture in dimensions n = 4 and 6.



1.1. The Degree Counting Formula For SU(3) Toda System

1.1 The Degree Counting Formula For SU(3)
Toda System

1.1.1 Background And Main Results

Let (M, g) be a compact Riemann surface with volume 1, hy and hy be C*
positive functions on M and py,pa € RT. The SU(3) Toda system on the

compact surface M is the following

Aug +2pq (f;;l,f:elul - 1) — P2 IJZQ,f:jug —1)=dm qusl ag(8g — 1),

hiet hoet2
Aus = pr (70 1) 4 20 (13025 1) = 4w S, B0~ 1),
(1.1.1)
where A is the Beltrami-Laplace operator, oy > 0 for every g € S1, S1 C M,

By > 0 for every q € Sa, So C M and ¢, is the Dirac measure at ¢ € M.

When the two equations in are identical, i.e., S1 = S2, oy = By,
uy = uo = u, hy = hg = h and p; = p2 = p, system is reduced to the
following mean field equation

het
Autp(—— —1) =47 Y ag(d, - 1). (1.1.2)
<fM he ) 5,

Equations (1.1.1)) and (1.1.2) arise in many physical and geometric prob-
lems. In physics, (1.1.2) or (1.1.1) is one of the limiting equations of the

abelian gauge field theory or non-abelian Chern-Simons gauge field theory,
one can see [24, 25, 48,59, 60, 73] and references therein. In conformal geom-
etry, equation without singular sources corresponds to the Nirenberg
problem of prescribing Gaussian curvature. In general, equation is
related to the existence of positive constant curvature metric with conic
singularities. As for the Toda system , it is closely related to the clas-
sical Pliicker formula for a holomorphic curve from M to CP?, the vortex
points and «y, B, are exactly the branch points and its ramification index
of this holomorphic curve. See [43] for more precise formulation and also
18,9, 13, 18, 26, 35] for connection with different aspects of geometry. For

the past decade, there are many studies for the SU(3) Toda system, or more
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generally, system of equations with exponential nonlinearity. We refer the
readers to [7, 29, 30, 36, 40, 44-47, 49-51, 54-56, 60, 71, 72| and references
therein.

When S; = 0, equation becomes the following nonlinear elliptic

equation

he"

Jag e
Clearly, (1.1.3) is the Euler-Lagrange equation of the nonlinear functional
Jp

Au+p( —1) —0. (1.1.3)

To0) =5 [ 1962 = prog (| ne?)

for ¢ € {f € H'(M) | [,;¢ = 0}, where H*(M) denotes the Sobolev
space of L? functions with L?—integrable first derivatives. For p < 8,
J,(¢) is bounded from below and the infinimum of J,(¢) can be achieved
by the well-known inequality due to Moser and Trudinger. For p > 8w, the
existence of is more difficult. Struwe and Tarantello [65] were able
to obtain nontrivial solutions of for 87 < p < 47% when h* = 1 and
M is the flat torus with fundamental domain [0, 1] x [0, 1]. Also, by using
a similar approach, Ding, Jost, Li, and Wang [22] proved the existence of
solutions to for 8w < p < 16w when M is a compact Riemann surface
with genus g > 1. For the case M = S? and 87 < p < 16w, Lin [39]
proved the nonvanishing of the Leray-Schauder degree to equation ,
and consequently, the existence of solutions follows for the case of genus 0.
For the convenience of the reader, we provide a short introduction of the
Leray-Schauder degree in Section 7 of Chapter 2. When the value of the
parameter satisfies p > 167, the existence results for (1.1.3) can be deduced
by the degree formula obtained by Chen-Lin in [14, 15] (Malchiodi uses a
different approach to get the same degree counting formula in [53]). More
precisely, Li [37] proposed the problem of studying the existence of solutions
to by the Leray-Schauder topological degree. Obviously, equation
is invariant under adding a constant. Hence, we can seek solutions

in the class of functions that are normalized by [ u v = 0. By the results of
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Brezis and Merle [11] and Li and Shafrir [38], it follows that for any integer
m > 0 and for any compact set I in (87m,8m(m + 1)), the normalized
solutions of are uniformly bounded for any positive C! function h
and p € I. Thus, the Leray-Schauder degree d, at zero of the Fredholm map
I+ T(p) with

7(p) = pA7'( f;el:e“ -1)

is well defined. Moreover, d, is independent of both the function h(z) and
the parameter p whenever p € (87m, 8m(m+1)). Subsequently, Chen-Lin in
[14, 15] were able to complete Li’s analysis and they arrived at the following

formula:

1, if p € (0,87),
g 1.1.4
P { (m*X(M))";(PX(M)), if p € (8mm,8(m + 1)), m >0, ( )

m!

where (M) = 2(1 — g) is the Euler characteristic of M with genus g.
Since the degree counting formula of (1.1.3) is obtained, it is natural to

consider the same problem for equation (1.1.2). For equation (1.1.2), we let
the set ¥ of the critical parameters be defined by

5= {87N + Syea8r(l+ay) | AC S), N e NU{0}}\ {0}
:{Sﬂak | k= 1’2’3,"' -}7

where a; will be defined in . We note that if S; = 0, ¥ = 8mm,
which is indeed the set of the critical parameters for (1.1.3). It was proved
that if p ¢ X, then the a-priori estimate for any solution of holds
in C2.(M \ S1). This a-priori bound was obtained by Li and Shafrir [38]
for the case without singular sources, i.e., S; = (), and by Bartolucci and
Tarantello [6] for the general case with singular sources. After establishing
the a-priori bound for a non-critical parameter p, the Leray Schauder degree
for the equation (1.1.2)) in the general case is well-defined for p € Rt \ 2.
Following the same idea in [14, 15], Chen and Lin in [16, 17] have derived
the topological degree counting formula for (1.1.2) as described below.

We denote the topological degree of (1.1.2) for p ¢ ¥ by d,. By the
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homotopic invariant of the topological degree, d, is a constant for 8raj, <
p < 8may1, k=0,1,2,---, where ap = 0. Set d,,, = d, for 8mwa,, < p <
8ma,+1. To state the result, we introduce the following generating function

EO :
Zo(z) =1+ + 2% + 2 + - ) XODHST o (1 — glFea)
=1+ cx™ 4z + -z 4 (1.1.5)
The degree d,,, can be written in terms of ¢;, as shown in the following

theorem.

Theorem A. ([17]) Let d,, be the Leray-Schauder degree for (1.1.3). Suppose
8ap,m < p < 8aympmy17m. Then

m
dp = Z Cjs
=0
where dyg = 1.

For the application, it often requires that a, € N for all ¢ € S7. In this
case, ¥ = {8mm | m € N} and let d,,, = d, for p € (87m,87(m + 1)). Then

the generating function

oo
Ei@) =Y diat = (Lo a? ) XD, (1 oot
k=0
=(1+a+a®+ ) XM o (1+ 2+ 2%+ +2%). (1.1.6)

Clearly, we have d,, > 1, Ym provided x(M) < 0. Hence we can obtain the
existence of the solution to (1.1.2)) when the genus of M is nonzero.

In the first part of this thesis, we want to initiate the program for com-
puting the Leray-Schauder degree formula for the system (1.1.1). However,
it seems still a very challenging problem in full generality. Hence we shall

consider the simplest (but nontrivial) case, described below. We assume
(1) 517 SQ = 07

(ii) p1 € (0,47) U (47, 87) and py ¢ 31 = {47N | N € N}.
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In order to state our result on the degree formula for SU(3) Toda system
(1.1.1), we first introduce the following generating function

Si@)=Q+a+a>+2% ) XD —po 4 ot 4 boz? 4o 4 bpa™ + -

which is (1.1.6)) provided oy = 0, Vg € Si. It is easy to see that

b = < m = x(M) > , (1.1.7)

m

where

mox(M)\ [ o000 e s g
m ], if m=0.

Under the assumption (i) — (i¢), our result on computing the Leray-
Schauder degree for system (1.1.1)) is as follows.

Theorem 1.1.1. Suppose S = So = (). Let dg),pg denote the topological
degree for when py € (dmm,4mw(m + 1)). Then

(2) o bma P1 S (0747['),
bm - X(M)(bm + bmfl)a p1 € (471—, 877)

1.1.2 Sketch Of The Proof Of Theorem
In the following, we shall sketch the proof for the Theorem [1.1.1]
Step 1. Find the critical parameters of (1.1.1)).

In order to compute the Leray-Schauder degree of the system, we need
to develop a complete understanding of the blow-up phenomena for (1.1.1).
The first main issue for the system is to determine the set of critical param-

eters, i.e., those p = (p1, p2) such that the a-priori bounds for solutions of

(L1.1) fail.
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Based on the assumption S; = Sy = ), we can write as

Aui + 20 fhl,ff;ul - 1) — ol - 1) =0,

- (1.1.8)
Aug = pr (0 1) + 2 (2% —1) = o0,

For equation (1.1.8)), if uy = ua = u, hy = he = h, and p; = p2 = p,
equation (1.1.8) turns to be

Au+ p(% - 1) — 0. (1.1.9)

It is known that for mean field equation (1.1.9), the blow up phenomena is

closely related to the concentration phenomena, i.e. tends to a sum

9 f h uk
of Dirac measures, where uy is a sequence of blow up solutions to (1.1.9).

More precisely, let u; be a sequence of blow-up solutions to (1.1.9). Then,

he%k
— 87 Z Op,
f he peEB

where B is the set containing all the blow up points of wuy.

hek
S ehe“k
8Nm. Therefore, if p # 8Nw, we can get a-priori bound on the solutions of
(1.1.9). While for system (1.1.8]), we can not find the counterpart result in

system. In fact, recently D’Aprile, Pistoia and Ruiz [19] have constructed a

As a consequence, once the blow-up phenomena happens, p = p —

sequence of bubbling solutions (u1g, usx) to (1.1.8) with one of them failing
to have the concentration property. So, finding the critical parameter for
system is more difficult than for the single equation, especially for the
general system (1.1.1). However, for the case without singular source term,
i.e., the equation (1 , we are able to determine all the critical parameters

and the result is stated as follows,

Proposition 1.1.1. Suppose h; in are positive functions and p; #

47N, i = 1,2. Then, there exists a positive constant ¢ such that for any
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solution of equation , there holds:

lui(z)| <e, Ve e M, i=1,2.

Step 2. Find out all the blow up solutions of (1.1.8)).

By Proposition the Leray-Schauder degree d,(fl), po for |D or

equivalently (1.1.8), is well-defined for p; € (0,47) U (47, 87) and pg ¢ 4wN.

Clearly, dg)m = dg;lz) if 0 < p; < 4w, and pa ¢ 47N. Hence, the main result of

the first part of the thesis is to compute the degree dg),m for 4m < p; < 8.
By the homotopic invariant, for any fixed py ¢ 47N, dg),pz is a constant for

p1 € (0,47), and the same holds true for p; € (4m,87). For simplicity, we

might let d® and df) denote dg)m for p; € (0,4m) and py € (4, 87). Since

d(f) is known by Theorem A, computing df) is equivalent to computing
the difference of df) — d(_2), which might be not zero due to the bubbling
phenomena of at (4w, p2). To calculate df) —d(_2), we need to compute
the topological degree of the bubbling solution of when p; crosses 4,

p2 ¢ 47N. For convenience, we rewrite (1.1.8) as

Avl+pl(w_1> =0,

fM h162v17v2
h262v27v1 o
fM h2€21)27v1 1 - O

(1.1.10)
Avg + Pz(

)

where vy = %(2711 + ug), vy = %(m + 2ug). It is known that the Leray-

Schauder degree for (1.1.8) and (1.1.10) are the same. So, our aim is to
compute the degree contribution of the bubbling solution of (1.1.10) when

p1 crosses 47, py ¢ 4wN. We consider (v1g, vox) to be a sequence of solutions

of (1.1.10) with (p1x, por) — (47, p2), and assume maxps(vig, vog) — 00.
Then we have the following theorem

Proposition 1.1.2. Let (vqk,vor) be described as above. Then, the follow-
ings hold:
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(i)
hle%lk*l}%

plkW — 47T6p fOI' some p (S M, (1111)
i) vop — 2w in C2*(M), where (p,w) satisfies
2
V(log(hie™2%)(x) + 47 R(z, )) |a=p= 0, (1.1.12)

and

(1.1.13)

h w—A4nrG(z,p)
2¢ 1) = 0.

Aw + 2p2<fM h26w—47rG(r,p) -

Here R(x,p) refers to the reqular part of the Green function G(x,p).

Step 3. Computing the degree contributed by the blow up solution of

(1.1.10).
We write (1.1.12)) and (1.1.13)) as

_hgerm4mCGle) 4y
Aw + 202(f P hoew—4nG(z,p) 1) 0’ (1114)
V(log(hle_iw)(.f) + 4n R(x, 3’3)) |z=p= 0.

The system ([1.1.14]) is called the shadow system of (1.1.10]). We say (p, w)
is called a non-degenerate solution of ({1.1.14)) if the linearized equation. i.e.,

for (¢,v), where v € R?

w—4n7G(z,p)

Ad +2po %¢

M

hoew—47G(z,p) o
—2p9 2e 3 fM (h2€w 4ﬂG(x’p)¢)
(fM h2€w_47rc(x’p))
haew—47G(@.0) (VG (z,p)1)
fM hoew—4mG(z.p)
hoew—47G(@,p) fM (h2€w74ﬂ'c(z’p> (VG(CC7P)V))

(fM h26w747rG(a:,p))2
V2 (log(h1e™2")(x) + 47 R(2,)) lo=p v = $V6(p) = 0, [1,6 =0,

—8mp3

+8mpa =0,

admits only trivial solution, i.e., (¢,v) = (0,0). For a given solution (p,w)
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of equation (1.1.14]), we say A is an eigenvalue of the linearized equation
(1.1.14) if there exists an nontrivial pair (¢, ) such that

¢ hoew—47G(z,p)
Ag +2p2 T 2;26w—47rG(z,p) ¢

M
h26w747rG(z,p)

w—4nG(z,p
fM hoew—4mG(z,p) 2 fM (h2€ ( )¢)

hae® ~4mG(@:P) (VG (x,p)v)
fM thw—47rG(z,p)
hoew—4mG(z.p) fM (h2€w74ﬁG(z‘p)(VG(xvp)V))
(IM hge“’*“”G(’”’p))Q
1
Vz(log(hle—gw)(x) + 47TR(:L‘, x)) |!L‘=P vV — %vqb(p) + AV = 0; fM ¢ =0.

—2p2 (

—8mp3

+87rp2 + )\(Zﬁ = O,

The Morse index of solution (p,w) to is the total number (counting
multiplicity) of the negative eigenvalues of the linearized system, and the
Leray-Schauder topological degree contributed by (p,w) is given by (—1)V,
where N is the Morse index. From Proposition [I.1.2] it is known that
any blow up solution of is closely related to . Furthermore,
we shall prove that the topological degree contributed by all the blow-up
solutions equals the topological degree of the shadow system up to

some factor, i.e., we have the following result.

Proposition 1.1.3. Let dp denote the topological degree contributed by all
the blow up solutions of (1.1.10) and dg denote the topological degree con-

tributed by (1.1.14). Then
dr = —dg.

Step 4. Computing the degree contributed by the shadow system

(T.1.14).

The equation ([1.1.14)) is a coupled system, and we can not directly com-
pute the topological degree of (1.1.14). In this step, we introduce a defor-
mation to decouple the system ([1.1.14))

w—47G(z,p)

Aw + 2 }mwfﬂx—l =0,
(5>{ P27, ooty — 1)

(1.1.15)
V(log(hle_iw'(l_t)) +47R(z, 1)) |=p= 0.

During the deformation from (S7) to (Sp), we have the following lemma.

10
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Lemma 1.1.1. Let py ¢ 47nN. Then there is uniform constant C,, such
that for all solutions to , we have |w|peo(ary < Cpy-

By using Lemma [1.1.1], computing the topological degree for the coupled
system (Sp) is equivalent to computing the topological degree for the decou-
pled system (S7). For system (S7), we are able to compute its topological
degree. Therefore, we can get the degree formula for and the degree
contributed by all the blow-up solutions. Then, we are able to complete the
proof of Theorem [1.1.1]

Remark: Based on Theorem [1.1.1, a natural question is: what happens
when p; crosses 877 As the case p; crosses 8, we can also get a corre-

sponding shadow system and the equation is as follows,

hoew—47G(z,p1)—47G(z,p2)

Aw + 2'02(fM hoew—47G(z,p1)—4nG(z,p2) ~ 1) =0,
V(log(hie™2)(x) + 4nR(z, z) + 87G(2,p2)) |omp=0,  (1.1.16)
p1)

V(log(hie™2%)(z) + 4mR(z, x) + 87G(2,p1)) |omps= 0.
For the equation (1.1.16), if we treat it by a similar way as we did for
1} i.e., replace —%w by —%w(l —t) for the second and third equation
of , we can get a decoupled system by letting ¢ = 1. However, during
the deformation, we can not provide a uniform estimate for the solution w
until now. Indeed, when ¢ changes form 0 to 1, the points p» and p; may
go to a same point, which may cause blow up phenomena for the solution w
and the degree may change after the deformation, which is the most difficult

point when we consider p; crossing 4mm for m > 2,m € N.

11
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1.2 Lin-Ni Problem

1.2.1 Background

In the second part of my thesis, I consider the following nonlinear Neumann

elliptic problem
Ay —pu+uP =0 in

u>0 in Q, (1.2.1)
% =0 on 012,

where 1 < p < 400, u > 0, v denotes the outward unit normal vector of
092, and € is a smooth and bounded domain in R".

Problem ([1.2.1)) arises in many applied models concerning biological pat-
tern formations. For example, it gives rise to steady states in the Keller-Segel
model of the chemotactic aggregation of the cellular slime molds. Chemo-
taxis is the oriented movement of cells in response to chemicals in their
environment. Cellular slime molds (amoebae) release a certain chemical,
move toward places of its higher concentration, and eventually form aggre-
gates. Keller and Segel [33] proposed a model to describe the chemotactic
aggregation stage of cellular slime molds. Let u(z,t) denote the population
of amoebae at place x and at time t and v(x,t) be the concentration of the

chemical. Then the simplified Keller-Segel system is written as

(KS1) ur = D1Au — xV - (uVe(v)) in 2 x (0, +00),
(KS2) vy = DaAv + k(u,v) in Q x (0, +00),
(1C) u(z,0) =up >0, v(z,0) =v9 >0 in

(BC) Gu—0p=2v on 09,

where D1, Dy and x are positive constants; ¢ is so-called sensitivity function
which is a smooth function such that ¢/(r) > 0 for » > 0; k is a smooth
function with k, > 0 and &, < 0.

We are concerned with stationary solutions to Keller-Segel system in the
case of logarithmic sensitivity ¢(v) = Inv and k(u,v) = —av + bu, where a
and b are positive constants. Since [, u(z,t)dr = [, uo(x,t)dx for all t > 0
by virtue of (KS1) and (BC'), we consider the following problem for positive

12



1.2. Lin-Ni Problem

functions v and v :

DiAu—xV - (uVin(v)) =0 in Q,
DoAv—av+bu=0 in Q,
% =0= % on 01},
Q7 [ u(z)de =7,

(1.2.2)

where || denotes the volume of 2, and w > 0 is a given constant. Obviously,
(u,v) = (w,v) with 7 = a~'b7 is a solution.
It is not difficult to reduce system (1.2.2)) to a single equation. Indeed,

we write the first equation as
V- {DyuV[nu —xD;'Inv|} =0

X
and using boundary condition we see that u = AvP1 for some positive con-
stant A\. Thus (1.2.2) is equivalent to the following system for (v, \):

DyAv —av + b)\vD% =0 in (),
% =0 on 8Q’ (123)
Q7 [ v(z)dz = 7.

Now we set p = D%, d= %, 0= (ailb)\)q%l, and w(z) = Ov(x), we have

dAw —w+ wP =0 in , 31: =0 on OfL. (1.2.4)

1
By abuse of notation, let w(z) = dr-Tu(z) and p = %, then (1.2.4) turns to
be (L21).

Problem (1.2.1)) can be also viewed as the steady-state equation for the

Gierer-Meinhardt system, which is a system of reaction-diffusion equation

of the form

a=dAa—a+ % in  x (0, +00),
Thy = DAh—h+ % in Q x (0,00), (1.2.5)
%:%:O on 99 x (0, 00),

13



1.2. Lin-Ni Problem

where d, D, p, q,r, s are all positive constants, s > 0, and

-1
o<l T
q s+1

This system was motivated by biological experiments on hydra in morpho-
genesis. Hydra, an animal of a few millimeters in length, is made up of
approximately 100,000 cells of about fifteen different types. It consists of
a "head” region located at one end along its length. Typical experiments
on hydra involve removing part of the "head” region and transplanting it
to other parts of the body column. Then, a new "head” will form if and
only if the transplanted area is sufficiently far from the (old) head. These
observations have led to the assumption of the existence of two chemical
substances: a slowly diffusing (short-range) activator and a rapidly diffus-
ing (long-range) inhibitor. Here a(x,t), h(x,t) represent the density of the
activator and inhibitor respectively.

For the full Gierer-Meinhardt system (1.2.5), there are a lot of works
concerning the existence and the stability of the solutions with specific con-
figuration. For example, D. Iron, M. Ward, and J. Wei [28] studied the
stability of the symmetric k-peaked solutions by using matched asymptotic
analysis. For more results in this direction, one can see [28], [64], [69] and
references therein.

In general, the full (GM) system (1.2.5)) is still very difficult to study.
A very useful idea, which goes back to Keener [32] and Nishiura [58], is
to consider the so-called shadow system. Namely, we let D — 400 first.

Suppose that the quantity —h + Z—z remains bounded, then we obtain

oh
Ah — 0, e 0 on 0f. (1.2.6)

Thus h(xz,t) — £(t), a constant. To derive the equation for £(t), we

integrate both sides of the equation for A over (2 and then we obtain the

14
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following so-called shadow system

at:dAa—a—i—Z—Z in §,
& = —E+ oy Jo & (1.2.7)
a>OinQand%:O on 0f).

The advantage of shadow system is that by a simple scaling

_9 1 %
a=¢rTw, €= (!QI/ w?‘) e (1.2.8)
Q

the stationary shadow system can be reduced to a single equation

dAw —w~+ wP =0 in £, 8—w:Oon@Q,
v
which is exactly the same form as (1.2.4). By a same transformation as we
did for (1.2.4), we can obtain (1.2.1).

Equation enjoys at least one solution, namely the constant solu-
tion u = ,uﬁ. In a series of seminal works, Lin, Ni and Takagi [42] and
Ni and Takagi [57] initiated quantitative analysis of non-constant solution
to equation (1.2.1). In particular, it is proved in [42],[57] that for p large,
the least energy solution concentrates at the boundary point of maximum
mean curvature. On the other hand, in the subcritical case 1 < p < 2* — 1,
blow up arguments and the compactness of embedding imply that for small
positive u, the constant solution is the only solution. This uniqueness result
motivated Lin and Ni to raise the following conjecture, the extension of this

result to the critical case p = 2* — 1.

n—2"

Lin-Ni’s Conjecture [41]. For y small and p = 22 problem 1} ad-

mits only the constant solution.

1.2.2 Previous Results On Lin-Ni Problem

In the following, we recall the the main results towards proving or disproving
Lin-Ni’s conjecture. Adimurthi-Yadava [2]-[3] and Budd-Knapp-Peletier [12]

15
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first considered the following problem

n+2

Au—pu+un—2 =0 in Bg(0),
u>0 in Bg(0), (1.2.9)
% =0 on 0Bg(0).

They proved the following result:

Theorem B. ([2-4, 12]) For p sufficiently small
(1) if n =3 orn > 17, problem admits only the constant solution,
(2) if n=4,5,6, problem admits a nonconstant solution.

The proof of Theorem B relies on the radial symmetry of the domain. In
the asymmetric case, the complete answer is not known yet, but there are a

few results. In the general three-dimension domain case, Zhu [74] proved

Theorem C. ([70, 74]) The conjecture is true if n = 3 (p = 5) and Q is

CONvex.

Zhu’s proof relies on a priori estimate. Later, Wei and Xu [70] gave a
direct proof of Theorem C by using a method based only on integration by
parts only. In comparison with the strong convexity condition assumed on
the domain, under the assumption on the bound of the energy and a weaker
convexity condition (mean convex domains), Druet, Robert and Wei [23]

showed the following result:

Theorem D. ([23]) Let Q be a smooth bounded domain of R™, n = 3 or
n > 7. Assume that H(z) > 0 for all x € 09, where H(z) is the mean
curvature of O at x € 9. Then for all p > 0, there exists po(2,A) > 0
such that for all € (0, uo(, A)) and for any u € C?(Q), we have that

—Au+ pu = n(n — 2)u> ! in Q

u=(——— :
Oyu=0 on 09 n(n — 2)
fQuQ*daﬁ <A
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It should be mentioned that the assumption of the bounded energy is
necessary in obtaining Theorem D. Without this technical assumption, it
was proved that the solutions to may accumulate with infinite en-
ergy when the mean curvature is negative somewhere (see Wang-Wei-Yan
[66]). More precisely, Wang, Wei and Yan gave a negative answer to Lin-
Ni’s conjecture in all dimensions (n > 3) for non-convex domain by assuming

that € is a smooth and bounded domain satisfying the following conditions:

Hl) Yy S Q ifand Only if (3/1:2/2793;"' sy —Yiy 7yn) € Qv Vi = 37 y 1.
(Hy) If (r,0,y") € Q, then (rcos,rsinf,y”) € Q, V6 € (0,27), where
y' = (ys, - yn)-

(H3) Let T := 0QN{ys = - - - = yn, = 0}, there exists a connected component
I of T such that H(z) =7 <0, Vz €T.

Theorem E. ([66]) Suppose n > 3, ¢ = “2 and Q is a bounded smooth
domain satisfying (Hi)-(Hs). Let u be any fized positive number. Then
problem has infinitely many positive solutions, whose energy can be

made arbitrarily large.

Wang, Wei and Yan [67] also gave a negative answer to Lin-Ni’s conjec-

ture in some convex domain including the balls for n > 4.

Theorem F. ([67]) Suppose n > 4, q = "2 and Q satisfies (Hy)-(Hs). Let
w be a any fized positive number. Then problem has infinitely many

positive solutions, whose energy can be made arbitrarily large.

Theorem B-F reveal that Lin-Ni’s conjecture depends very sensitively
not only on the dimensions, but also on the shape of the domain. A natural
question is: what about a general domain? Inspired by the result of Theorem
B, we expect to give a negative answer to the case n = 4,5,6. The only
approach in this direction is given by Rey and Wei [63]. They disproved the
conjecture in the five-dimensional case by establishing a nontrivial solution
which blows up at K interior points in  provided g is sufficiently small.
The second part of my thesis is to establish a result similar to (2) of Theorem

B in general four, and six-dimensional domains by establishing a nontrivial
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solution which blows up at a single point in €2 provided p is sufficiently

small. Namely, we consider the problem

nt2 . . ou
Au—pu+un—2=01inQ, u>0in Q, v 0 on 012, (1.2.10)
v

where n = 4,6 and ( is a smooth bounded domain in R™ and p > 0 very

small. Our main result is stated as follows

Theorem 1.2.1. For problem (1.2.10) in n = 4,6, there exists pg > 0 such
that for all 0 < p < pg, equation (1.2.10) possesses a nontrivial solution.

1.2.3 Sketch Of The Proof Of Theorem [1.2.1|

Our proof use the localized energy method, which was introduced in [27] and

[52] in dealing with spikes. This method usually consists of five steps.
Step 1. Find out good approximate solutions.

We set
Q= Qe = {z]ez € Q},

and

o= (1.2.11)

where ¢ is some constant that depends on the domain only, to be determined
later.

For the reason of normalization, we consider the following equation
nt2 . ou
Au— pu+n(n —2)un—2 =0, u>0in Q, Y 0 on 90N2. (1.2.12)
v

Through the transformation u(x) — 57%2u(m/s), (1.2.12) yields the re-
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scaled problem written as

gu _ Oon .. (1.2.13)

Au—,u,ezu—i—n(n—Q)u%g:O, u > 0in Q,, 3
v

For any @ € (2, we use U, ¢ as an approximate solution of (1.2.13),

where
Urg = (>"22 A>0, QeR”
' A% + |z —QJ? ’ ’ '

Because of the appearance of the additional term pe?u, we need to add an
extra term to get a better approximation. To this end, for n = 4, we consider

the following equation
AV +Uig=0 inR* 0(0)=1.
Let

A1 -y —Q
Upo=mt oagd— Yy
AQ = 5 g + AU (T—)

Then
A\I/A’Q + UA7Q =0.

For n = 6, we denote ¥(|y|) as the radial solution of
AV +Ug=0inR® ¥ —0as |y — +oo.
We set ¥(A,Q)(y) = \Il(%), then
AT o(y) +Ung =0 in RE.

In order to match the boundary condition, we need an extra correction

term. For this purpose, we first introduce the Green’s function

1
A/G(.Q) +dg— g =0 FL=00n 09, [ G.Q) =0
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We decompose

1
G, Q) = K(lo = Ql) = H(z,Q), K(r) = 25, en = (n = 2)I8"].
We define
UAg(z) = —\Ing(z) - cnu_15”_4AnT_2H(sz, Q)+ Rep0(2)x(e2),

where R, A ¢ is defined by AR, r g — 62R€,A7Q =0 in €. and

82 8R57A7Q o a

=——|Uqg — pue?¥q — cn5”72An772H(5Z,Q) on 0.

ov ovl =

Here x(z) is a smooth cut-off function in © such that x(z) = 1 for d(z,00Q) <

d/4 and x(z) =0 for d(xz,00) > §/2.

Since in n = 4 and 6, the constructions of the approximate solutions are

different, we shall treat them differently in the following. For n = 4, let

A471 <AL A472, Qe M54 = {l’ € Q| d(x,@ﬂ) > 54}, (1.2.14)

where A4 1 and Ay are constants depend on the domain and d4 is a small

constant, to be determined in Chapter 3. We write
- 1
Q = 7@7
€
and define our approximate solutions as

al g o

Weng = UAQ + ME2UA,Q + WIM

(1.2.15)
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For n =6, let
19 2 1€
A <AL Age
B e~ sy < < [y ngedy,
Q € Mg, :={x € Q| d(z,00) > b},
L et << = fonged, (1.2.16)
g M SIS gt =

where Ag and 7 are some constants that may depend on the domain, Jg
is a small constant, which are also given in Chapter 3. Our approximate

solution for n = 6 is the following

Werom = Upg + 1e’Up g +np et (1.2.17)

Step 2. A-priori estimate for a linear problem.

This is the most important step in reducing an infinite-dimensional prob-
lem to finite dimensional one. The key result we need is the non-degeneracy

of the following solution wu:
n+2 .
Au+ur—2 =0, u>0in R", u(y) — 0 as |y| — oo.

Using this non-degeneracy condition, we can show the solvability of the

following linearized problem in suitable function space for n = 4,

—A¢+ pe?p — 24W?%p = h+ S 0CiZ;  in Qg

g—f =0 on 0.,
where
oW 20W
Zy = —AGx + pe Gy,
Zi:—A@+M52%, 1<i<4.
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and for n = 6,

A+ pe2p — A8Wo = h+ XT_ydiZ;  in Q,

% — 0 on A9,
(Zi,$) =0, 0<i<T,
where
Zy=—AG¥ + 112 9%
Zi=—AG5 +ne’ 55, 1< i <6,
Zy = —A%—VX + u52%—lf]/.

Step 3. The solvability of the nonlinear problem.

Using W:a, as the approximate solution for n = 4, W, A g, as the

approximate solution for n = 6 and the result of Step 2, we can find that

there exists a constant ¢y such that for all ¢ < &g, there is ¢ such that

—A(W + @) + pe2 (W + ¢) = 8(W + ¢)> = 3, ciZ;

o]
o
<sz¢> = 05

for n = 4, and

— AW + ¢) + pe>(W + ¢) — 24(W + ¢)? = 3, di Z;

0

% g

<ZZ7¢> = 07
for n = 6.

Step 4. The reduction lemma.
We define

Ie(Aa Q) = JE[WE,A,Q + (Z)E,A,Q]

in €,
on 0f2,

0<:<4

in Q,,
on 0f2.,

0<:<7
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for n =4 and

IE (A7 nﬂ Q) = Ja [W€7A7Q777 + ¢57A7Q777]

for n = 6.

The reduction lemma says that if (A, Q) and (A,n,Q) are the critical
points of I, for n = 4 and n = 6 respectively, then u = We A @ + ¢, 4 o and
u =W rQn+ ®e ¢ arve solution to problem (1.2.13) for n =4 and n =6

respectively.

Step 5. Finding the critical points of I, for n = 4 and n = 6 respectively.

For n = 4, we find the maximal value of I, in , and for n = 6, we
find the min-max value of I in (1.2.16).

Once we find the critical points of I. for n = 4 and n = 6. Using Step
4, we get a solution to . Furthermore, it is obvious that the solution
we construct is nontrivial. Hence, we get Theorem [1.2.1], thereby disproving

the Lin-Ni’s conjecture in n = 4 and n = 6 for a general domain.

1.3 Organization Of The Thesis

In Chapter 2, we prove Theorem The proof of Proposition )
Proposition m and the existence of smooth positive function h; and ho
such that any solution of the shadow system is non-degenerate are
given in Section 2.1. In Section 2.2, we get the a-priori estimate for solutions
of when p; — 47 and py ¢ 47N. In Section 2.3 and Section 2.4, we
use the solutions of the shadow system to get a good approximation
of some bubbling solutions of and thereby prove Proposition m
except for some important estimates which are shown in Section 2.6. In
Section 2.5, we derive the degree formula for the shadow system
and prove Theorem [1.1.1]

Chapter 3 is devoted to the proof of Theorem [1.2.1l In Section 3.1, we
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construct suitable approximated bubble solution W, and list their properties
and some important estimates with the proof given in Section 3.6. In Section
3.2, we solve the linearized problem at W in a finite-codimensional space.
Then, in Section 3.3, we are able to solve the nonlinear problem in that
space. In Section 3.4, we study the remaining finite-dimensional problem
and solve it in Section 3.5 by finding critical points of the reduced energy

functional.
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Chapter 2

The SU(3) Toda System

2.1 Proof Of Proposition [1.1.1, Proposition [1.1.2
And Shadow System

We shall prove Proposition [1.1.1/ and Proposition |1.1.2| in this section. For

a sequence of bubbling solutions (uyx, us) of (1.1.8), we set
aik = Uk —/ hieuik, 1= 1,2.
M

Then u;;, satisfy

Adigg + 2p1(hre™ — 1) — pa(hge™ — 1) =0, (2.1.1)
Adigy, — p1(h1e®* — 1) + 2pa(hge®2k — 1) = 0. o
We define the blow up set for u;; as follows
S ={pe M| 3Hxr}, v — p, Uir(zr) - +oo} (2.1.2)

and © = 61 U G5. We note that
Uik = Uik + / hieb* > + C’efM Wik > qp. + C,
M

where we used the Jensen’s inequality and h; (here h; = h}) is a positive
function in M. So, if p is a blow up point of g, then p is also a blow up

point of u;;. For any p € &, we define the local mass by

1 -
i = i li — etk 2.1.3
ip 651(1) k—lgloo 2 /35 (p) pilti€ ( )
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Lemma 2.1.1. If 01,09, < %, we have p ¢ &.

Proof. Since o0y, < %, we can choose small rg, such that in B,,(p), the

following holds
/ pihieik < T, (2.1.4)
Bry (p)

which implies | By () Q;Z < C, where C' is some constant independent of k.
70

In the following, C' always denotes some generic constant independent of k,

and may depend on the domain By, (p). For the first equation in (2.1.1), we

decompose 1 = Z?Zl U1y ;, where 1y, ; satisfy the following equation

—Adiy 1 = 2p1hiek — pahge®r in By (p), @11 =0  on 9B, (p),
—Adyy 0 = —2p1 + p2 in Byy(p), tik2=0  on 9B (p),
—Atyz =0 in Byy(p), k3 = t1x on 0By (p).
(2.1.5)
For the first equation in (2.1.5)), since
/ ‘Qplhleﬂ““ — pghgea% < 3m,
Bry(p)
by [11, Theorem 1], we have
| e+ 0 <, (2.1.6)
B (p)
where § € (0, 1). Therefore, we have
/ i | < C. (2.1.7)
By (p
For the second equation in (2.1.5), we can easily get
/ |1~L1k,2| < C, and ‘ﬂle’ < C. (218)
By (p

For the third equation in (2.1.5). By the mean value theorem for harmonic
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function we have

||ﬁ1~_k,3HL°°(B%o(p)) < C”ﬁi_kﬁHLl(Bro(p))

< C[HfLTkHLl(BTO(p)) + @1kl 1(s,, ) + k2l 21 (B, ()

<C. (2.1.9)

From (2.1.8)-(2.1.9), we have

2p1hyettk2 ks < Cin Brg (p). (2.1.10)

o
2

By (2.1.6)), (2.1.10) and Holder inequality, we obtain

et € L'*(By, (p))
with é; > 0 independent of k. Similarly, we have
e € L' (B, (p))

with §2 > 0 independent of k. By using the standard elliptic estimate for the
first equation in (2.1.5), we get ||@1x,1/|L (B, 2(p)) is uniformly bounded.

Combined with (2.1.8) and (2.1.9), we have @y, is uniformly bounded above

in Bro(p). Following a same process, we can also obtain gy is uniformly
2

bounded above in B o (p). Hence, we finish the proof of the lemma. O

From Lemma we get if p € &, either o1, > % or ogp > %, which
implies |S| < oo and & is discrete in M. In fact, in next lemma, we shall

prove that if p € &;, 0, must be positive.
Lemma 2.1.2. Ifp € &;, 04, > 0.

Proof. We prove it by contradiction. Without loss of generality, we may
assume p € Gy and o9, = 0. First, we claim that there is a constant Cx > 0

that depends on the compact set K such that
luk(x)] < Cg, Ve e KCC M\ 6, i=1,2. (2.1.11)
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We only prove for ¢ = 1, the other one can be obtained similarly

uig(z) = /M G(z,z) (Qpl(hleﬂl’“ — 1) — po(hget2k — 1))
= G(z,2) (2/)1(}116&1’“ — 1) — po(hoer — 1))

My

+/ G(z,2) <2p1(h16ﬂ1k — 1) — po(hget2k — 1)),
M\M;

where M = Upes By, (p) and r¢ is small enough to make K CcC M \ M. It

is easy to see that

G(z, z)(2p1(hleﬂ1k — 1) — pa(haeer — 1)) —0(1),
My

because G(z, z) is bounded due to the distance d(z,z) > §y > 0 for z € M,
and x € K. In M \ Mj, we can see that @;; are bounded above by some

constant depends on rg, then it is not difficult to obtain that
/ G(z,2) <2p1(h16a1k -1)— ,02(hgeﬂ2’C — 1)) = O(1).
M\M;

Therefore, we prove the claim.

Since o3, = 0, we can find some 79, such that
/ pahoek < 1 (2.1.12)
Bry(p)

for all k (passing to a subsequence if necessary) and ro < 3d(p, &\ {p}). On

OB, (p), by (2-1.11)

|urk], |uzk] < C on 0By, (p). (2.1.13)

Let wy, satisfy the following equation

{ Awy = p1 (% - 1) in By, (p), (2.1.14)

Wg = U1k on 0By, (p).
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We set wp, = w1 + wie where wyq, wio satisfy

- hieblk : =
{ Awgy = ,01% in B, (p)’ We1 = U1 on aBTO (p)’ (2.1.15)

Awgy = —p1 in By, (p), wi, =0 on 0By, (p).

By maximum principle and (2.1.13)), we have w1 < maxg Bry (p) Utk < C for
x € By, (p). By elliptic estimate, we can easily get |wge| < C. Therefore,

w < C, Yo € By, (p). (2.1.16)

We set uor = fr1 + fro + Wi, where fi; and fio satisfy

{ Afk‘l 72[)2% in BT‘O (p)? fkl =0 on aBTO (p)a
Afro = 2p2 in By (p),  fr2=wuar —wy on 0B, (p).
(2.1.17)

For the second equation in (2.1.17)), we have
| fr2] < lugk| + [wi| = [ugk| + [u1k| < C on 0By, (p).

Thus | fre| < C in B,,(p). We denote gy = e/*2+% and the first equation in
(2.1.17) can be written as

Afp + 2p9—————e =0in B,y (p), fer =0o0n 0B, (p). (2.1.18)

Jur h
By using the Jensen’s inequality, we have fM hoet2t > Celuuze > ¢ > 0.
We set Vi = 2p9 27 hieei%, and have Vi < C, where C' depends on rg. Using

2.1.12), we get [, ®) Vielst <271, By [11, Corollary 3], we have |fi| < C
0

and

Uk < fr1 + fro +wip < C.

This leads to g = ugg — f ap haet?t < C, which contradicts to the assump-

tion wgg blows up at p. Thus we finish the proof of this lemma. O

By these two lemmas, we now begin to prove Proposition |[1.1.1)
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Proof of Proposition|1.1.1. We note that it is enough for us to prove ; is
uniformly bounded above. We shall prove it by contradiction.

First, we claim & # (). If not, @1, is uniformly bounded above and w9y
blows up. We decompose ugj, = gk 1 + Uk 2, Where ugy 1 and ugy o satisfy
the following

Augp,y — p1(hitay — 1) =0, Jas w2k =0,

Auggn + 2p2(% -1)=0, [y u2m2=0,
where ng = hoe"?x1. By the LP estimate, ug, 1 is bounded in W?2P for
any p > 1. Thus ug1 is bounded in C1* for any « € (0,1), after passing
to a subsequence if necessary, we gain ugq converges to ug in C1. As
a consequence, ng — hge' in Cb®. Since @9 blows up, ug, and U2k, 2
both blow up. Then applying the result of Li and Shafrir in [38], we have
p2 € 47N, which contradicts to our assumption. Thus &; # (). Similarly,
we can prove that Gy # ().

We note that our argument above can be applied to the local case, which
yields &1 NSy # (. Suppose &1 NSy = (). For any point p € &4, we consider
the behavior of uyx and wugy in By, (p), where ¢ is small enough such that
By, (p) N (& \ {p}) = 0. We decompose gy, = ug3 + Ugk, 4, where ugy 3 and
Ugy, 4 satisfy

Augp 3 — p1(hie®s —1) =0 in By, (p), ugk,3 =0 on 0By, (p),
Augp 4 + 2p2(hg pe"?** —1) =0 in By (p),  ugks = Ugx on 9B, (p),
(2.1.19)

where izg’k = hge"2k:3. By using ;) uniformly bounded from above in B, (p),
we have iLZk converges in C1%(B,,(p)). Since ugy 4 blows up simply at p, we

have

‘U%A — log ( euzk,a(P*)) ) ‘ <C, (2.1.20)

k))euzk,z;(:v(k))
4

(1+ p2ha g (p |z — pk)|2)2
where ugy 4(p*)) = maxp, (p)Uzka- (2.1.20) is proved in [5] and [37]. From
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(2.1.20), we have
Ugg,g — —00 in By \ {p} and pahae™s — 4w, in By (p), (2.1.21)

which implies

po = lim [ pohoe™ = 47|y, (2.1.22)
k—o00 M

a contradiction to our assumption ps ¢ 47N, so &1 N Sy # ().

Let p € 61 N 62, and 04,7 = 1,2 be the local masses of them at p.
Applying the result of Jost-Lin-Wang (Proposition 2.4 in [29]), we have
(01p, 02p) is one of (2,4), (4,2) and (4,4).

In the following, we claim if o;;, = 4, then 1, concentrate, i.e., ;;, — —00
uniformly in any compact set of By, (p) \ {p}. This implies [}, hje"i* — 400

and u;; — —oo uniformly in any compact set of M \ &;. Then,

pihie"* — oy Z dq + 870, with oy = 47 or 8, (2.1.23)
a€6;\{r}

which implies p; = 47N and again yields a contradiction. This completes
the proof of Proposition The proof of the claim is given in Lemma
2.1.3 below. O

Lemma 2.1.3. Suppose u;,i = 1,2 both blow up at p and let 4 be the local
mass of Ui, as before. Then @, — —oo in By (p) \ {p}.

Proof. If the claim is not true, we have 1, is bounded by some constant C' in
L>*(0By,(p)). Without loss of generality, we assume i = 2. Then o1, =0, 2
or 4. In fact, the proof of these three cases are the same, so, we only give
the proof of the case o1, = 4. Let fi = —p1(hie®k — 1) + 2pa(hoet2k — 1)

and z; be the solution of

{ —Azg = fir, in Byy(p), (2.1.24)

zp =—C on 0By, (p).

Note that fix — f1 uniformly in any compact set of B, (p) \ {p} and the
integration of the right hand side of (2.1.24) over B, (p) is 87 + o(1) as
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ro — 0. By maximum principle, g > 2i in By, (p). In particular

/ ek < / el2k < o0,
Bry(p) B (p)

On the other hand, using Green representation formula for z;, we have

70

1 _ _
an(z) = _/ STl = yl(— pr(hre™ — 1) + 20 (hae™ — 1)) +0(1),
Bro(p) ™
(2.1.25)

where we used the regular part of the Green function is bounded. For any

x € Br,(p) \ {p}, we denote the distance between z and p by 2r. From
(2.1.25)), we have

1 i _
zk(z) = — / s—Infz —y|( = pi(hie™* — 1) + 2pa(hoe™ — 1)) + O(1)
By (p) 27

1 _ -
= _ / —In ‘l’ — y‘( — pl(hleulk — 1) + 2p2(h26u2k — 1))
Bro (p)NBy(x) 2T

1 - _
- / —In|z —y|( — pi(h1e™* — 1) + 2pa(hoe™ — 1)) + O(1).
Bro(p)\Br(a) 27

It is easy to see
‘ / In|z — y|(— p1(hie"* — 1) + 2pa(hoe"2 — 1))’ < C,
Byry (p)NBr(z)

where we used the fact that 4, is uniformly bounded above in B, (z), i = 1,2

and C depends only on z. For y € B,,(p) \ Br(z), we have |z — y| > r and
/ In|z — y|( — p1(h1e™* — 1) + 2po(hoe"? — 1))
Bry (p)\Br(2)
= (87 +o(1))In|z — p| + O(1).

Therefore, we get zx(z) is uniformly bounded below by some constant that

depends on z only. Thus, we have z;, — z in C? (B, (p) \ {p}), where 2
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satisfies

~Az=f1 in B, \{p}
z=-C on aBro (P)

For ¢ € C§°(By,(p)),

~ lim wA%=—/ w@wwmmA%+¢@x/ i1 8m)
k=400 J B, (p) Bry (D) By (p)

=/ (@) o + 8m(p).
B (p)

Thus —Az = fi + 876,. Therefore, we have z(x) > 4logﬁ + O(1) as

& — p, which implies [ (» € = 00, a contradiction. Hence
T0

tg, — —o0 in By, (p) \ {p}- (2.1.26)
Thus, Lemma holds. O

Next, we prove Proposition and derive the shadow system (1.1.14]).

Proof of Proposition|[1.1.2. As p1x — 47, por, — p2 and py ¢ 47N, we con-
sider a sequence of solutions (v, vax) to such that max s (vik, vor) —
+oo. We claim maxps (g, tor) — +00. Otherwise, g, tg are uniformly
bounded above. From Green representation theorem and LP estimate, we
can get uyg, usg are uniformly bounded. This implies vy, vop are uniformly
bounded, which contradicts to our assumption. Let &; denote the blow up
point of 4, i = 1,2 as before.

We claim Gy = () and &; consists of one point only. Suppose first
Sy # (). From the proof of Proposition if 61 NSy = 0, then ag
would concentrate, i.e., ugr — —oo, Vo € M \ G2, which implies ps =
limy 1 o0 fM hoe®k € 47N, a contradiction. Thus &; N Sy # (). Suppose
q € 61 N Gg, from Proposition 2.4 in [29] and the condition pix < 87, we
conclude 014 = 2 and 09, = 4. By Lemma we have g, concentrate,

which implies po € 47N, a contradiction again. Hence G2 = (). By Lemma
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gy is uniformly bounded from above in M. Since maxys(t1x, tor) —
+o0o, we get &1 # (). By the fact py — 4w, we have & contains only one
point.

We write the equation for v, ¢ = 1,2 as

Avlk +p1k( hie2Vik—V2k o 1) _ 07

22U —v
fM hi1e?V1k ~V2k

Avoy + pag (7'1262%%”“ — 1) = 0.

2V —v
thQe 2k ~V1k

(2.1.27)

Since 1oy is uniformly bounded above, the second equation of (2.1.27)) implies

that vy is uniformly bounded in M and converges to some function %w in

C1¥(M). From the first equation of (2.1.27) and p1p — 47, v blows up at
only one point, say p € M.
We write the first equation in (2.1.27)) as

}1 2u1g
Avyy, + plk(liei . 1) —0, (2.1.28)
Jar Tk

where hy, = hie 2. We define 0y), = vy — % log fM hie2'1k. Due to the Ol

convergence of hy, 1), simply blows up at p by a result of Li [37] (one can

also see [5]), i.e., the following inequality holds:

e

(1+ mkﬁk(pj;’“))e“ |z — p®)|2)

201 — log | < cfor o —p®| <70, (2.1.29)

where \; = 2015 (p*)) = max,ep,

o (p) 201k By using this sharp estimate, we
get
~ ) hle%lk—vzk
Vi — —00 1In M \ {p}7 plkW — 471'(51,, (2130)
and
V(log(hle_%“’) +47R(2, x)) |2=p= 0, (2.1.31)

which proves (1.1.11) and (1.1.12)).
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In the following, we claim vg, — 3w in C**(M). From this claim and

(2.1.28)), it is easy to get
v — 87G(x, p) in C**(M \ {p}).

Combined with vy, — w in C?*(M), we have w satisfies the following

equation
h26w—47rG(z,p)

fM h2ew—47rG(a:,p) a 1)

Aw + 2ps ( =0. (2.1.32)

This proves (1.1.13). Therefore, we finish the proof of Proposition m
The proof of the claim is given in the following Lemma [2.1.4 U

Lemma 2.1.4. Let vy, v be a sequence of blow up solutions of ,
which vy blows at p and vey, — %w in CY*(M). Then vo, — %w n

C**(M).
Proof. By (2.1.29)), we have

Ak — log/ hye?U1x| < c. (2.1.33)
M

To prove vop — %w in C%“, we need the following estimate
ek

5 )‘ < cfor |z —p| <rp, (2.1.34)
(1+ pmh&p)e f |z —p|2)2

Pvmk—v(mg

where (2.1.34) comes from the error estimate of [14, Lemma 4.1]. We write

h262v2k_vlk — hze_vlk62v2k'

By (2.1.29)) and (2.1.34)), it is not difficult to show

V (hae %) € L=(M).

Therefore, by classical elliptic regularity theory and Sobolev inequality, we
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can show that
1 : 2,a
vk = Fw in C** for any o € (0,1). (2.1.35)
Then we finished the proof of this lemma. O

After deriving the shadow system (1.1.14), we show the non-degeneracy
of (1.1.14)) by applying the well-known transversality theorem, which can be

found in [1], [61] and references therein. First, we recall that

Theorem 2.1.1. Let F : H x B — £ be a C* map. H, B and £ Ba-
nach manifolds with H and £ separable. If 0 is a regular value of F and
F, = F(-,b) is a Fredholm map of index < k, then the set {b € B :

0 is a regular value of Fy} is residual in B.

We say y € £ is a regular value if every point z € F~!(y) is a regular
point, where z € H x B is a regular point of F'if D, F': T,(H x B) — Tp()€
is onto. We say a set A is a residual set if A is a countable intersection of
open dense sets in B, see [1], which implies A is dense in B (B is a Banach

space), see [31].
Following the notations in Theorem we denote

H =M x WP(M), B=C**(M) x C**(M), & =R?*x WO (M),
where
W)= (f W | [ f=op Worn) = (fe D] [ £=0),
M M

and

C*(M) = {f € C**(M)}.

We consider the map

Aw + 2p (L2 00D )

f h26w74ﬂ'G’(az,p)

T(w,p, hla h?) =
Vlog (he 2" + 4 R(z,z))(p)

(2.1.36)
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Clearly, T is C'. Next, we claim
(i) T'(-,+, h1, h2) is a Fredholm map of index 0,
(ii) 0 is a regular value of 7.

For the first claim, after computation, we get

T’L/U,p(w’pa h17h2)[¢a V] = (2137)

TO(wapa hla h2)[¢7 V]
Ti(w,p, hi,ho)[g,v] |

where

h2€w747rG(x,p)

fM hoew—47G(z,p) ¢
w—A4nG(z,p)
haew—47G(z.p)
fM hzew—47rG’(x,p)
hoew—4mG(z.p)
(Jas haev= )

TO(wapa hla h2)[¢7 V] :Ad) + 2/)2

—2p2

— 87mpa VG(x,p)-v

+ 8mp2 5 / hgew_“G(x’p)VG(x,p) v,
M

1
Ty (w, p, b1, ha) [, v] =V2(log hie™ 2% + 4w R(x, 7)) mp v — 5 Ve(D).
We decompose

To1

oo+

Tz’u’p[qb, V] = [0, ], (2.1.38)

where
Ty =0, Tho =11,

h26w—47rG(w,p)
fM h2ew—47rG(a:,p) (b

h w—47G(z,p)
2€ _ thw—47rG(al:,p)¢7
(fM hoew 47rG(z,p))2 M

Tor(w, p, h1, h2)[@, V] =Ad + 2p2

— 2p2
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and

h26w—47rG(x,p)

fM h26w—47rG($,p)

To2(w,p, h1, ho)[p,v] = — 8mp2 VG(z,p)v

h2€w747rG(m,p)

w—4nG(z,p)
+ 871-/02 (fM h2€w—47rG(x,p))2 /M th VG($,p)V
T T
We define ¥, = 01 and Ty = T02 . We can easily see that T
11 12

is symmetric, it follows from the basic theory of elliptic operators that T
is a Fredholm operator of index 0. Combining the Sobolev inequality and
R? is a finite Euclidean space, we can show that Ty is a compact operator.
Therefore, by the standard linear operator theory [31], we get T1 + %5 is also
a Fredholm linear operator with index 0. Hence, we prove the first claim
that T is a Fredholm map with index 0.

It remains to show that 0 is a regular value. We derive the differentiation

of the operator 1" with respect to hy and hs,

0

T}/L (wapv hla hQ)[Hl] = s
: Vil (p) — o= Hi(p)

and

Ty, (w, p, by, ho)[Ho]

H2€w747rG(w,p) . h2ew*47"G<‘K:P) w—47rG’(x7p)
_ [ 2p2 Ty hae®—37G@p) 2p2 ([ hoew—4mG(=p))2 fM Hje ]

M

0

By choosing v = 0, and H;j such that Vhlfl - (Zf)g H = %qu at p. We get

I (w,p, hi,ha)[é,v] + T} (w, p, hi, he)[Hi]
P 1

ew—47‘rG(:c, ) ew—47‘rG(:c, ) —AnG(z
DG+ 200 12T 6 — 200 0 Dye Jag haet 4G ]

f]\/[ h2€w74ﬂ'G’(az,p o h26w747rG(z,p)

0

Next, we claim that the vector space spanned by Ty, ,(w,p,h1, h2)[®, V],
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f
0

Ty (w,p, b1, ho)[Hi] and Ty (w,p, h1, ha)[Ha] contains | for all f €
0

WOor._ Tt is enough for us to prove that only ¢ = 0 can satisfy

h2€w—47rG(x,p) ha 6w—47rG(:c,p) B
eK {A‘ 2 -9 / hoet 47rG(:Jc,P).}
¢ er T2p2 fM h2€w—47rG(a:,p) P2 (IM hzew—47rG(ac,p))2 M 2€
and
w—A4rG(z,p) w—A4rG(z,p)
<¢’ 25 hae - @—202 hae _ 2/ h €w747rG(x,p)E> —0,
fM hoew—47G(z,p) hy (fM hoew—4nG(z.p))2 [, ha

for all Hy € C*%(M). We set

h26w747rG(:p,p) h26w747rG(z,p)

_ . L w—4nwG(z,p) |
L=A +2p2 fM h2ew747rG(z,p) 2p2 (fM h2€w747rG(:v,p))2 /M hae ’

Using ¢ € Ker(L), we obtain that for any Hy € W9 (M),

/ L(¢) - Hy = 0. (2.1.39)
M

Since C?%(M) is dense in WP(M) and

hgew—47rG(x,p) - h2€w—47rG(a:,p) w—dnG{a.p)

(20 T haev mGan 2P (T i Gy2 /M hae ) =0,
we deduce

/ Ap-Hy=0, VHycE Wo’p(M). (2.1.40)

M
Thus
A¢=0in M, / ¢ =0. (2.1.41)
M

So ¢ = 0. Therefore the claim is proved.
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On the other hand, we choose two functions, Hy; and Hi 2 such that

Vo Vi
T ()2

Hl,l(p) = (17 O)a

and
VHi» B Vhy

Then it is not difficult to see that (by setting ¢ = 0,v = 0)

Hia(p) = (0,1).

C

[ 0 ] C DT(w,p, h1, h2)[p, V]

for all ¢ € R2. Therefore, we have proved that the differential map is onto.

As a consequence, 0 is a regular point of 7. By Theorem [2.1.1,
{(hl,hg) € B : 0 is a regular value of T'(-, -, hy, hg)}

is residual in B. Since T'(w, p, h1, he) is a Fredholm map of index 0 for fixed

h1, ho, we have
{(hl, ho) € B : the solution (w,p) of T(-,-, hi,he) =0 is nondegenerate}

is residual in B. Thus, we can choose hi,hy > 0 such that the solution of
(1.1.14)) is non-degenerate.

2.2 A-priori Estimate

In this section, we shall prove that all the blow up solutions of (1.1.10)) must
be contained in the set S, (p, w) x Sy, (p, w) when py — 47, ps ¢ 47N, where

the definition of Sy, (p,w),i = 1,2 are given in (2.2.14) and (2.2.15) of this

section.
To simplify our description, we may assume M has a flat metric near a

neighborhood of each blow up point. Of course we can modify our arguments
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without any difficulty for the general case, as in [15].

We start to define the set S, (p,w). For any given non-degenerate solu-

tion (p,w) of (1.1.14), we set (by abuse of the notation)
h=hie 2",

By noting that

(2.2.1)

Vo (logh 4+ 47R(2, x)) |s=p= Vi (log h(z) + 87R(z,p)) la=p=10, (2.2.2)

whenever (p,w) is a solution of shadow system (1.1.14). For ¢ such that

lg — p| < 1 and large A > 0, we set

h
U(z) =X —2log (1+ plT@e’\]x —q|2),

and U(x) satisfies the following equation

AU (z) + 2p1h(q)eV =0in R%, U(q) = max U(z) = A

Let

h(z)
h(q)

H(z) = exp { log + 87R(x,q) — 87R(q, q)} -1,

and
AH(g) N

p1h(q) e*’

h
s=A+2log (pl 4(Q)) +87R(q,q) +

Let o¢(t) be a cut-off function:

1 if |t
0’0(75):{ - <,

0, if |t‘ > 27’0.

Set o(z) = oo(|z — ¢|) and

Sy~ | H@=VH@ (=)o, 7€ By, (0)
0 2 ¢ Bory(q)-

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)
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Let n(x) satisfy

(2.2.7)

{An+2p1h() (n+J(x)) =0 onR2
(q) =0, Vn(q) = 0.

The existence of 1 was proved in [15]. Furthermore, we have the following

lemma

Lemma 2.2.1. Let R = plh( L@ X For € C**(M) and large \. there
exists a solution n satisfying (-) and the following

(i) n(z) = = 22D e Allog(Rlz — g| + 2)]2 + O(Ae™) on Bay,(g),

(ii) 1, Van, O, Ox1, Vo0, V2 0nn = O(A2e™) on Bary(q).
The proof of Lemma was given in [15].
We set
() = (U@) +n(a) +8x(R(z,) — R(0,)) + )0 )
+87G(x, q)(l - 0'(35)),

T, — L
Yq = Taq] o 00

/Uq:)Ha = a(vq - 5q)'

(2.2.8)

Next, we define O((Ll/)\ and 051,2;:

((11; _{¢6H1 )’ /MV¢'V”42/MV¢'V&1%I/MWﬁ-V@Avq:O},

(2.2.9)
and
O3 = {vew? ‘ /1/) =0}, p>2 (2.2.10)
For each (g, \), we set
pih(q)  AH(q) o _» _
t=X+87R(q,q) +2lo 4 A\e ™ _ 7. 2911
(.4 S p1h(q) a ( )
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For p; # 4w, we define A\(p;1) such that

Alog h(p) + 8t — 2K (p)
h(p)

where (p,w) is the non-degenerate solution of (1.1.14) and K(p) denotes
the Gaussian curvature of p. By using the equation (1.1.12), we have
e~ 4mG@p) | _,= 0 and Aw(p) = 2p2. Thus

Apr)e APy, (2.2.12)

p1—4m =

Alogh(p) + 87 — 2K (p) =Aloghi(p) — p2 + 87 — 2K (p).  (2.2.13)
Obviously, A(p1) can be well-defined only if
Aloghi(p) — p2 + 87 — 2K (p) # 0.

Let ¢ be a positive constant, which will be chosen later. By using p1,

we set

1 —
S (p0) = {1 = Jogna + | la— vl < Mo 00,

A= A(p)| < ca(p)!, Jla—1] < C1/\(Pl)7%e’)‘(m)a
¢ € O and |||l 11 a1 < Cl>\(p1)6_>\(p1)}, (2.2.14)

and

1
Spa(p,w) = {2 = Jw+v | ¥ € OF and [[yll. < clA(pr)e P}, (22.15)

where [[¢[l = [[¢llw2r a)-

Now suppose (v, vaox ) is a sequence of bubbling solutions of (1.1.10) such
that vy, blows up at p and weakly converges to 4wG(x,p), while v, — %w

in C%%(M). Then we want to prove that
(vlkvv%) S Spl (pa w) X sz(p7w)'

First of all, we prove the following lemma.
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2.2. A-priori Estimate

Lemma 2.2.2. Let (vig,var) be a sequence of blow up solutions of (1.1.10),

which vig blows up at p, weakly converges to 4nG(x,p) and vy, — %w mn
C?*%(M). Suppose (p,w) is a non-degenerate solution of (1.1.14)) and

Aloghi(p) — p2 + 81 — 2K (p) # 0. (2.2.16)

Then there exist qi,, Ay, aj., ¢, ¥y such that

1 X 1 "
Uik = 5 Vg A + o, vk = W + Vs (2.2.17)

and (vlkank) € Spl (p7w) X sz(p7w)'

Remark 1. Because the proof of this lemma is very long, we describe the
process briefly. First of all, we obtain a good approximation of vy. Since
Vo) converges to %w in C%%(M), this fine estimate can be obtained by the
same proof in [14]. Next, we substitute vy into the second equation of voy.
Then we use the non-degeneracy of to get the sharp estimates of
Y and |Gx — p|, where ¥y = v, — %w and g, is the point where v obtains
its maximal value. After that, we get the lemma. In the following proof, we
use the same notation as the proof of Proposition

Proof. Let vy and vy, be a sequence of blow up solutions of ((1.1.10)),

2V —v
Avyg + pik (’“817"_% - 1) =0,
fA;[L:egiklfvlk% (2.2.18)
Avag + pay (7&4 T 1) =0
For convenience, we write the first equation in (2.2.18) as,
iL 2vu1g
Avyg + plk(lfei - ) —0, (2.2.19)
fQ thQUIk
where )
hi = hie V% = he %% and ¥ = vop — —w. (2.2.20)

2

Since hy, — h in C2*(M), all the estimates in [14] can be applied to our
case here, although in [14] the coefficient hy, is independent of k. In the
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followings (up to (2.2.28)) below), we sketch the estimates in [14, 15] which
will be used here. We denote G, to be the maximal point of ¥1; near p,
where 1), = vi), — 3 log I hpeoik. Let
>‘k = 261k((jk) — log/ Bk(jQUlk.
M
In the local coordinate near ¢, we set
- e)‘k

Uk;(x) = 10g F )
(1+ plkhjf((Ik)e)\k‘x — qil?)?

where ¢ is chosen such that
VU(Gr) = V log by (G).
Clearly, |gr — G| = O(e™**). Then the error term inside B, (gx) is set by

ik () = 201, — Up(y) — (87 R(x, qx) — 8w R(gr, ax)), (2.2.21)
and the error term outside By, (qx) is set by
Ek(x) = 2u1k(z) — 887G (x, qi). (2.2.22)
By Green’s representation for vy, it is not difficult to obtain
&(z) = O(\pe ™) for € M\ By (qi). (2.2.23)
By a straightforward computation, the error term 7, satisfies

Ay, + 2p1ehi (i) e H(z, i) = 0, (2.2.24)
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2.2. A-priori Estimate

where

Hy(x,t) =exp { log ;ZZ“((;)) + 87 (R(x, k) — R(qr: qr)) + t} -1

=Hi(z) +t+ O(|t]*),

and

Hy(x) = exp { log ;:((;:) +87R(x.q) — $7R(gr. 0} 1.

We see that except for the higher-order term O(|7|?), equation (2.2.24) is
exactly like (2.2.7). By Lemma 2.2.1, we can prove

fip(z) = —~LAHk(qk)e*’\k log(Rk|z—qr|+2)]2+0(A\pe ™) (2.2.25)
priehi(qr)

for z € Bayy(qx), where Ry, = %’“(%)e’\k.

From [14, Theorem 1.1, Theorem 1.4 and Lemma 5.4], we have

Alog hy,(qr) + 87 — 2K (qi,)
hi(qr)

p1k — 4T = e M 4+ O(e™ M), (2.2.26)

= h AH
i+ Mg+ 2log PP 8mR(qr, ar) + M)\iewc — O0we ™),
4 p1ehr(ar)
(2.2.27)

and
[V Hj(qr)] = O(Ape ™). (2.2.28)

Now we let 7, be defined as in (2.2.7), vg, and vg, A, ¢, be defined as in

(2.2.8)) with ¢ = gk, A = \; and @ = a;, = 1. By Lemma (2.2.25) and
(2.2.28]), we have

ne(z) = Tk + O(Ape ) for € Boy (qr)- (2.2.29)
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2.2. A-priori Estimate

Note that for z € By, (qk),

. h
Vge Ay =Uk(T) + () + (87rR(x, qr) — 87 R(qy, qk)) + A\ + 2log plkz(%)
AH
+ 87 R(qk, qr) + M)\%e_)‘k — Tg,,
p1ehi(qr)

where Ty, denotes the average of vg,. From [15, Lemma 2.2 and Lemma

2.3], we have

vy, — 87G(x,q) = O(Ake ™) in M \ Bary(ar), and v, = O(Are ).

(2.2.30)
By (2.2.21), (2.2.27), (2-2.29) and (2.2.30), we have
2u1 — Vap, Ak yag, =201k + / ilke%lk — Vg, Ak ax
M
=201y, — Uy — (87TR(95, x) — 87 R(x, qk)) — ne(z) + O()\ke_’\’f)
=ie(x) — mr(2) + O(Aee ™) = O(M\pe ™) (2.2.31)

for x € By, (qx). For v € M \ Bay,(qr), by (2.2.22)) and (2.2.30), we get
201 — Vg Apoap = 201k — STG(x, qr) — (vg, — 87G(x, qr)) + Vg, = O()\ke_)"“).

For the intermediate domain Bay,(qr) \ Br,(qr), following a similar way,
we can obtain that 2viy — vg A\, e, = O(Ae™*). Thus, we find a good

. . 1 . .
approximation 5vg, ..a for vyy. For convenience, we write

1 N -
Uik = 5V a + @k, where ||¢g | poo(ar) < EAre Mk (2.2.32)

where ¢ is independent of .
Next, we substitute (2.2.32) and vy, = %w + 1), into the second equation

of (2.2.18), after computation, we obtain

h=h+h+h [ w0 (2.2.33)
M
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2.2. A-priori Estimate

where

hoew—4mG(@.p)
fM hoew—4nG(@,p
w—4nG(z,p)
(f Mh 2Zew—4wG(a:,p))2 /M(hzew—‘le(x,p)wk)
hoet—47G(@,p)
[y hoew—4mG(@p)
hoe?—47G(@:p)
(fyy hoew—4mG(@p))2

Ly, =AYy, + 2pa )lbk

—2p2

— 4mpo (VG(%}?)(% - p))

+ 47 po

/M (hae"=47CED) (VG (z, p) (g — ),

h2€w+2wk*1}1k h2ew+2¢k*4ﬂG(I»Qk)
I =—po fM hoew+2¢r—v1k T P2 fM hoew+2¢k—4mG (2,qx) ’
; h26w747rG(x,p) h2ew+2wk*4ﬂ'G($:p)
2T hpew—inGan) PR ewt 20— inGla )
hZew—élﬂ'G’(x,p)
+ 2/)2 fM h2€w747rG(:r,p) ¢k:
h2€w_47rG($’p) w—4rG(z,p)
and
h26w+2¢k —4rG(z,qk) h26w+2¢k_4ﬂG(mvP)
HS == P2 fM h26w+2¢k—4ﬂ'G(I7Qk) +p2 fM h2€w+2¢k—47"G(xvp)
hzew—47rG(x,p)
— 4mpy T hoeo-iGGD (VG(z,p)(ar —p))
M
h2ew747rG(x,p) w—4nG(z,p)
+ 4mps (., ko= )2 /M (hae (VG(z,p)(ax = p)))-

We shall analyze the right hand side of (2.2.33]) term by term in the following.
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2.2. A-priori Estimate

For Iy, we set

1
el = exp ('UJ + 2¢k‘ - 47TG($7 qk‘)) — €Xp ('UJ + 2¢k - §qu,)\k,ak - ¢k‘)

For x € M\ By,(qr). We see that the difference between 47G(z, q) and
Vg Mgy 15 Of order Are M. As a consequence, & = O(Ake*Ak).
For x € By, (qx),

! h
ArG(z, qr) — 5”%)\1@7% =4nG(x, q) — 47 R(x, q1) — log (,011231((]1:))
()
+ log (1 + M(Zk)e|x _ %!2) Y
1 AH A2
(e DI T | (e
2 prhi(qr) €

4
=log ( = 3 + 1)
prhg(qr)es |z — qi|?

1 AH, A2
(nk L AHilgr) A

“A
_ = plﬁk(qk) eAk) + O(M\ge ™).

2

Since ¢p, = O(Ape ™ *),

1 1 _
exp (w + 2y, — 3 Vak Ao ¢k) = exp (w + 29, — 51)%)%%) + O(M\ke )\k).

Then, we have

1
exp (w + 2¢y, — 47G(x, q1,)) — exp (w + 29 — 2 VA br)
1 _
= exp (w + 2¢ — 4G (x, qk)) — exp (w + 24, — §qu,>\k,ak) + O(\ke ’\’“)

1
= exp (w + 2 — 4G (x, qk)) (1 — exp (471'G(m, qr) — §qu,>\k,ak)) + O()\ke_’\k)

4
= exp (w + 2¢ — 47G(z, Qk)) (1 —eXp [IOg (1 + plﬁke)‘k‘l' - Qk|2)

AHy(qr) Ny -A -A
+ 0+ —————= ) +O(\pe )| ) + O(Ape %)
(e ot o) 0w
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2.2. A-priori Estimate

When |z — qx| = O(e_%k), we have
oxp (w + 24 — 4nG(x, q1)) = O(|z — @i [*),

and

4 AHk(Qk) )\i ) _g
log (14— +O0(nk + ———-—-) = O(log(e” |z — ,
: ( prhges|a — QIJQ) (nk prhu (i) €Ak> (log(e™ |z = axf ™)

hence
- S
¢ = O0(M\ge ) for |z — qp| = O(e” 2).

A
When |z — qi| > e~ 2,

AHy(gx) AF _
4

N <P1f~lk€)"“!w — ql?

1—exp<log 1+ —
( prhyere|z — qi|?

+ )\ke_kk),

which gives
A
& = O(M\pe ™) for 1o > |z — qi| > e

Thus, ||€1|ee(nr) = O(Ape™?*), which implies Iy = O(\e™?*).
For the second term, it is easy to see that Iy = O(||¢%]|?). It remains to

estimate 3. We divide it into three parts. I3 = II31 + I35 + I33, where

hoew+2¢r—4mG(z,ax) hoewt2vr—4nG(zp)
1==p2 Tur hoew+2¢,—47G (x,qr) P2 Tu hyewt2u—4mG (x.p)

I3

hQ@
[y hoew20n—4nG )

(], haew 20— inGla))

— 4mpo (VG(%P)(% - p)),

+dmpy 5 | (raer s 0D (VG o, p) i~ )
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2.2. A-priori Estimate

h2€w747rG(:v,p)

([, hacv—17Gwp) )2 /M (h2€w_4w(x’p)(VG(fU,p)(Qk - p)))
M

h2ew+2¢k*47TG(I7p) 2 dnG
([, haco 201G 2 /M (et 247G 0 (VG a, p) (a5 — 1)),

32 =4mpo

— dmps

and

h26w+2¢k_47rG(x,p)
fM hoew+2¢p—4nG(z,p) (VG(xap)(Qk — p))

33 =4mpo

h2 ew—47rG(:I:,1o)
—4rG(z,
fM hoew—4m (z,p

— 4mpy (VG (,p)(ak = p).

It is not difficult to see
Is1 = O(lgx — pf*), Is2 = O()[[¢llslax — pl. I35 = O(1)[[¢ll<]ax —pl.
Then can be written as
L(r) = o(W)[[grll + O([nll + Ae ™) + O(lp — ax*).  (2.2.34)
By the definition of Hj and (2.2.28), we have

VHi(qr) = Vog h(gr) — Vior(qr) + 8TV R(qk, k) = O(Ake™ ). (2.2.35)

By (2.2.2) and (2.2.35)), we have

V?(log h(p) + 87 R(p,p)) (ar — p) — Vr(p)
=Vlog h(qr) — Vr(qr) + 87V R(qr, qr)
— (V log h(p) + 87TVR(p,p))
+ Vi (ar) — Vir(p)
+O0(p — ail?)
=VHi(qx) — VH(p) + O(lp — ar|"[[¥xl+)
+0(lp — ), (2.2.36)

where « depends on p. We note that VH(p) = 0. From (2.2.34)-(2.2.36)
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2.2. A-priori Estimate

and the non-degeneracy of p,w, we obtain

Ikl + Ip — il < COwe™ + o) [wnlle + l[vkll + | — axl*),  (2.2.37)

where C' is a generic constant, independent of k£ and ;. Therefore, we have

1/Jk = O(Ake_’\k), ’p — qk] = O()\ke_)"“). (2.2.38)

As a conclusion of (2.2.12)), (2.2.26) and (2.2.38), we have

Ae=A(p1) = O(A(p1) 1), i = h+O(A(p1)e ), |gi—p| = O(A(p1)e )
(2.2.39)
and

1
vok — W = O(A(p1)e Py, (2.2.40)

We replace R by h in the definition of vy, we denote the new terms by v,.

By (2.2.38)), we have
Vg, — Vg = O(A(pr)e ).
We set

Vg \a = Vg — Ug- (2.2.41)

By (2.2.32)) and (2.2.41)), we obtain

1
U1k = 5tgra = O (pr)e ). (22.42)

By [15, Lemma 3.2], if we choose ¢; in S, (p, w) big enough, there exists a

triplet (gj, Af,ay) and ¢* € O%)/\z such that

1
Vi = 51)(1}:’)\2,(1;; + ¢Z, (2.2.43)
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2.3. Approximate Blow-up Solution

where ¢, A}, aj satisfy the condition in S,, (p, w). Thus, we have proved

(Vik, v2g) € Sp (p,w) x Spo (p,w).

In conclusion, we have the following result,

Theorem 2.2.1. Suppose hi, ha are two positive C>* function on M such

that any solution (p,w) of (1.1.14) is non-degenerate and Aloghy(p) — p2 +
8m — 2K (p) # 0. Then there exists g > 0 and C > 0 such that for any

solution of (1.1.10) with py € (4w — g, 4w +€9), p2 ¢ 47N, either |v1], |va| <
C\Vx € M or (vi,v2) € Sy, (p,w) x Sp,(p,w) for some solution (p,w) of

)

2.3 Approximate Blow-up Solution

In the following two sections, we shall construct the blow up solutions of
(1.1.10) when p; — 4m. The construction of such bubbling solution is based
on a non-degenerate solution of (1.1.14). Our aim is to compute the degree

of the following nonlinear operator

h1€2v1—u2 _
< N ) = (_A)il pl(fM hie?v1—v2 1)

h262v27v1 _
V2 ,OQ(INI h262v27v1 1)

in the space S, (p, w) x Sy, (p, w).

Set

h 2v] —vg
T]. (/U].a /UQ) . Afl 2p1 (f]\/jlhelerl_UZ - 1)
- h262v27v1 _
202 (72— — 1)

2v9—v
Jag haev271

T(v1,v2) = <

T (v, v2)

Since each solution v1 in S,, (p,w) can be represented by (g, A, a, ¢), and vy
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2.3. Approximate Blow-up Solution

in Sy, (p, w) can be represented by w and 1), therefore the nonlinear operator
2v1 + T (v1, v2) can be divided according to this representation.

Let v1 = $vgxa+® € Sp, (p, ). Recalling that t = s—v,. For z € By, (q),
we have

Vg ral(z) +log ZEE; =U+t+H(x)+n+ (a—1)(U+ s)

+O(la —1(ly[ + [n] +[74])),
where y = x — ¢. Then, we get
p1h1€2v1*v272¢+¢ :plhevq,A,a — plh(q)€U+t |:1 + (a - 1)(U—|— S) +n
+ H(x) + (a = )O(ly]) + O(F)|, (23.1)

where
B=Aa—1|+ In| +|H(z)| + vg.

Therefore in By, (q), we have

plhleZUlfvg :(1 4 Sé))/)lhe’t)%)\,¢z + (690 _ 1 _ S0)p1he’l)q»k,a
—pih(g)el+ [1 +(a— 1)U +s)+n+ H(z)
+(a—)O(y)) +¢| + . (2:3.2)

where

E = (e —1—p)prhe’>e + pih(q)e’ ' O(o* + §7), (2.3.3)

and @ = 2¢ — 1.
Let €3 > 0 be small. E can be written into two parts

E=Et+F,
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2.3. Approximate Blow-up Solution

where
B E if Jp| > e B O~ it |p| > e
0 if |<p‘ < €9, E if ‘go] < €2.
Then
EY = 0(el?F2A) if || > e, (2.3.4)
and
E~ = p1he" 20 (o? + 2). (2.3.5)

Using the expression for p;h1e%U1 =2 above, we obtain the following estimate

for fM p1h1€

2v1—va

Lemma 2.3.1. Letv; = %vq’,\#ﬂrqb €S, (p,w) and vy = %w—H/J € Sy, (p,w).
Then as p1 — 4w, p2 ¢ 47N, we have

47 A
hie?17%2 = dmet(1 — + AH(q) et
/M prha (1—v() oh(d) (@)%
+87A(a — 1)et + O(ja — 1|e* + 1). (2.3.6)

Proof. By (2:3:2)

By the explicit expression of U, we have

/ prh1e2"17%2 = 0(1), (2.3.7)
M\Bro(Q)

/ prh(q)eV Tty = 4re! + O(1), (2.3.8)
Brg(q)
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2.3. Approximate Blow-up Solution

/ p1h(q)e’ T (a — 1)(U + s)dy = 87(a — D)X’ + O(1 + |a — 1]e*),
BTo(‘])

(2.3.9)

where U + 5 = 2\ — 2log (1 + plh /\|y| ) 4+ O(1) is used. By the equation
of n and the fact that VH(q) - y is an odd functions, we have

1 1 on
prh(g)eV ™ (n + H(x))dy = — ¢ / Andy = — Lt / on
/Bm (a) 2 JB,(0) 2 3

To estimate the terms involving ¢ and 1, we use to obtain
Avg = AU + An + 8r for z € By (q),
and
Avg = A(vy — 871G (x,q)) + 87 for « ¢ By, (q).
This together with Lemma implies

/ 2p1h(q / PAv, + / ¢An+87r/ 10)
Brq(q) 0(@) M

/ A (vg — 87G(x, q))
M\By,(q)

/ V¢Vvq+87r/ ¢+/Br0(q

+ [ 98y~ $7G(z,0)
M\Br (q
*A/ 9], (2.3.11)

where |An(y)| = O(e™) and Lemma are used. By the Poincaré in-
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2.3. Approximate Blow-up Solution

equality, we have
[ anaee] < e [ 161 < e ol (2.3.12)
BT[) (q) M
While, for the terms involving v, we have

/ ph@6 = [ pih(g)eV i) + / ph(@)eV (6 — ()
Bry(q) Bro(9)

Bry(q)

—4m1)(q) + O(Ne™ 2%). (2.3.13)

For E*, we have

/ |E+| :O(l)/ e\<p|+2>\
By, (Q) BTQ(Q)Q{l‘P_¢|Z€2}

=0(1) / e\<p—¢|+2/\7
Bro(@){lp—p|>e2}

By (a)# _ . .
% = O(|l¢llgn) = O(Ae™?) for A is large. We write

0

where p =

Bl(1—4rle=z|y 4rlo—7|>
- ~7l(1-
el = PP 5) e

Since || — 2|72 = ||p — @H;ﬁ > 2\, we have

_Am|e—9| ) € 27meg

e|%0—¢|(1 Te—a1?) < e?@‘mj) < e for o — 7| > 652

Hence, by Moser-Trudinger inequality

J

which implies [ [ET| < O(1).
70

_ 4 — 2
ele=?l < 62)‘1/ exp (77r]g0 :,OL ) < 0(1)672)‘,
(@)n{le-71>2} By (q) I — 2l

70
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2.3. Approximate Blow-up Solution

For E~, gives

/ |E7| < O(l)/ (lel* + B%)p1h(q)e” . (2.3.15)
Brq(9) Brq(q)

By (2.6.3) in section 2.6, we can estimate the first term on the right hand

side of (2.3.15)) by

[, @ er < ome( [ vor iz [ )

ro\4d

= O(1)ef\2e™ = 0(1)\%e .
For 32

[ pn@e 5 —ome (o + Ola =10+ [+ Hign)e)
By (q)

B (0)(q)
<ec.
Therefore, we have
/ |E~| = 0(1). (2.3.16)
Bry(q)
By and —, we obtain . Hence we finish the proof
of Lemma O

Now we want to express 2v; + 17 (v1,v2) in a formula similar to (2.3.2]).

By Lemma [2.3.1] and the Taylor expansion of the exponential function,

4
et/ prh1e01V2 =4m — 4ip(q) + 77TAH(q))\e*A + 87\ (a — 1)
M p1h(q)
+0(la — 1)) + O(e™™). (2.3.17)
Hence
e 1 (p1 - M)
fM hie2vi—v2 Tt fM p1hye2vi—v2 P1 ot
=0+ O(ja —1|) + O(e™), (2.3.18)
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2.3. Approximate Blow-up Solution

where 6 is defined by

1 4 a0
=1 [(f’l —dm) — Q) AH(g)he ™ + 4mip(q) — 8mA(a — 1)] (2.3.19)
Let
€t ~
= ‘W—1‘+B, (2.3.20)
and
E = 2(6%0 _1— 90) p1h162v17v2 + 2p1h(Q)6U (O((pQ) + 0(52)) (2.3'21)

fM h162v1—v2

Then in B,,(q), we have by (2.3.2),

2v1—v v
prhiesv1—v2 _ prhevara
f hqe2v1—v2 _(1 + ('O)f hqe2v1—v2
MM MM

—pih(g)e”[1+

plhevqyk,a
Y _ 1 _ e
+ (6 ]. 80) fM hleQUl_UQ

et

fM hl 621)1 —v2

t@—10(y) +n+H+p+ 0(62)} YE. (23.22)

—1)+(a—1)(U—i—s)

Thus, we have

2v1—v2

2p1h1€

A(2v1 + Ti(v1,v2)) =280y + T, e 2

201 —v2

2p1h1€
fM h162’l}1—’l}2

— — 2apih(q)eV [1 g+ H—V,H- y} 8T —2p
2p1h1e?v1 2
fM h1€21)1—v2
=2A¢ + (8™ —2p1) + 8n(a— 1)
+2p1h(g)e” [(a = 1)(U +5 = 1) + (a = )O(lyl)y - VH

=a(AU + An) +2A¢ + 8ma + —2p1

+8m(a—1)+

t

n <fM h;%rvz - 1) i 4 +E. (2.3.23)
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2.3. Approximate Blow-up Solution

Let €2 > 0 be small, which will be chosen later, see in section 6. Write
E=E"+E"
with

B _ E if |p| > e and E- — 0 if |¢| > e
0 if |p| < &2 E if Jp| < e

As A — oo, we have
Et = O(e\cp\Jr/\)

and
E~ = pih(q)e” (O(¢%) + O(58%)).

In By, (q) \ Bro(q), since vy — Uy — 87G(z, q) is small, see [15, Lemma 2.2],
we write A(2v1 + T4 (v, 1)2)) as

A(2v1 + Th(v1,v2)) = 2A¢ + alA(vg — 87G(z, q))
+ 81 —2p; + 8m(a —1)

+ 2p1h ea(vq—Eq—87rG(x,q))+87raG(ac,q)+go‘
fM h1€2v1—v2
(2.3.24)
In M \ Ba,(q), we have
A(21}1 + T (v, vg)) = 2A¢+ 81 —2p; + 8w(a—1)
b2 smeGGate-an(23.95)

fM h’l 621)1 —vV2

From (2.3.23)-(2.3.25)), we have the following

Lemma 2.3.2. Let v1 = %’Uq,)\,a + ¢ €S, (pw), va= %w + ¢ € S, (p,w).
Then as p1 — 4w,
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2.3. Approximate Blow-up Solution

(V(2v1 + T1(v1,v2)), Vebr) = 2B(¢, 61) + OAe™ ) é1ll g ary.
(2.3.26)

where

B(, 1) = /MV¢-V¢1— / 2puh(a)e o1,

By (q)

is a positive symmetric, bilinear form satisfying B (¢, ¢) > co||qb||§{1(M)

for some constant co > 0.

<V(2’01 + T3 (Ul, UQ)), Vﬁqvq)

=—81VH(q) +81V(q)
el Y
+ O()\|a 1+ ‘W 1- ¢(q)‘ + e ) (2.3.27)

(V (201 + T1(v1,v2)), VOx,vg)
=—167w(a — 1) ()\ —1+log Plf;@) + 47 R(q, q)) —8m(0 —(q))

+O0(ja — 1] + A2 2%), (2.3.28)

V(2v1 + T1(v1,v2)), Vg)

h
= (2)\ —2+87R(q,q) + 2log i 4(q)>

X (V(2u1 + T1(v1,v2)), VOrvy) + 167(a — 1)A
+OM) 6l g ary + O ™), (2.3.29)
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We leave the proof of Lemma [2.3.2| in the section 6 because it contains

a lot of computations.

2.4 Deformation And Degree Counting Formula

In this section, we want to deform 2v; + T;(v1,v2) into a simple form which

can be solvable. Obviously, v; = %Uq’,\ya + ¢, vo = %w + 1) is a solution of

2v1 + T1(v1,v2) = 0, if and only if the left hand sides of (2.3.26))-(2.3.29)
vanish. To solve the system (12.3.26))-(2.3.29) and 2vy + To(v1,v2) = 0, we

recall
H' = O((Ll/)\ @ the linear subspace spanned by v,, d\v, and 04v,

and deform 2v; +T;(v1,v2) to a simpler operator 2v; + T} (v1,v2) by defining
the operator 21 + T}, 0 <t <1, i = 1,2 through the following relations:

<V(2U1 + Tf(vl,vg))7 v¢1> :t<V(2U1 + Tl(vl,UQ)), v¢1>
+2(1 - 1)B(¢, 1) for g1 € 0L, (2.4.1)

(V(2u1 + T (v1,v2)), VOyu,) =t(V (201 + T (v1,v2)), VOyvy)
+(1—t)(—8rVH +87Vi(q)), (2.4.2)

(V(2u1 + Ti(v1,v2)), Voyvg) =t(V(2v1 + T (v1,v2)), VOrvg)

— 8m(1—1t) [Z(a — 1A+ (6 - w(q)ﬂ,
(2.4.3)
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2.4. Deformation And Degree Counting Formula

(V(2v1 + T} (v1,v2)), Vog) =t [(2)\ + O(1))(V(2v1 + T (v1,v2)), VOrvp)

+ 0|6l 1 + O(Ae”)} 1 16m(a — DA,
(2.4.4)

2uy + T (v1,v2) = t(209 + Ta(v1, v2))
fM h2€w+2¢*4ﬂ'G(:)§,q) - 1)); (245)

F(1—t) (w + 20 — 2p5(—A)

where those coefficients O(1) are those terms appeared in (2.4.4)) so that

Tt (v1,v2) = Ty (vi,ve). From the construction above, we have
20; + Tj(v1,v2) = 20; + T vy, v2), i =1,2.

When ¢t = 0, the operator TZ-0 is simpler than 7;, ¢ = 1,2. During the

deformation from T} to TP, i = 1,2 we have

Lemma 2.4.1. Assume (p1 —4m) # 0, and p2 ¢ 4wN. Then there is €1 > 0
such that (2v1 + T} (v, ve), 2ve + T4 (v1,v2)) # 0 for (vi,ve) € 8(5,;1 (p, w) x
Sps(p,w)) and 0 <t <1 if |p1 — 4| < e1 and py is fived.

Proof. Assume (v1,v2) € S, (p,w) x Sp,(p,w), where S, (p,w) denotes the
closure of S,,(p,w), and 2v; + T} (v1,v2) = 0, i = 1,2 for some 0 < ¢ < 1.
We will show that (v1,v2) ¢ 9(Sp, (p,w) X Sy, (p, w)).

From (V(2v1 + T}(v1,1v2)), V) = 0, we have by Lemma [2.3.2]

pl130 < ONe™)[|8]] -

This implies
ol = O(xe™) < core™, (2.4.6)

for some constant cs [| independent of c;.
Using (V(2v1 + T} (v1,v2)), VOyv,) = 0 and (V(2v1 + T} (v1, v2)), Vog) =

'Here ¢, is independent of 1, it can be shown in the proof of Lemma m
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2.4. Deformation And Degree Counting Formula

0, 24.4) and (2.4.6) imply
167\ (a — 1) = O(\e™), (2.4.7)
that is, when p; is close to 4,
1

la—1] = 0(e™) < A (p)ze M), (2.4.8)

By (V(2v1+T}(v1,v2)), Vavg) = 0, we conclude from (2.3.28) and (2.4.8)
that

0—1(q) +2Ma—1)=0(la—1|+e) =0(e™), (2.4.9)
and
et(/M e ) 1= Oa—1]+e ) =0 ). (2.4.10)
Together with
(V(2v1 + T} (v1,v2)), VOyug) = 0,

(2.4.8), (2.4.10) and part (2) of Lemma we have

t
VH(G) = V@] = O(Na— 11+ |t =1 = 0@+ 2e7)
M

< O(1)Ae™?,
which implies

ViH(p) - (q—p) — Vi(p)
< O(MAe + O)|[Y[l«lp — ¢ + O(M)|p — gI?, (2.4.11)

where we used V,H(p) =0 and p > 2.
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2.4. Deformation And Degree Counting Formula

For the second component, by (2.4.5)), we have

hoewt2d—4nG(z,q) ))

0=(1-1t) (Aw + 2A% + 2py (f hoew+2Y—4nG(z,q) B
M

e T2V =33 06
+t(Aw + 240 + 205 1) (2412
o haeF20 =R
w+2w71v R ,a7¢ w+2¢Y—47G(z,q) .
We set © = 2P2fh2he ew+2i§,,: b 2p2 fAI;2:2ew+21/)—47rG(;lc,Q)7 and claim
M2 o
1Ol (ar) < c3re™, (2.4.13)

where c3 is a constant that independent of ¢ and p is defined in O((IQ))\. By
(2.4.6), it is not difficult to get

1 1

where [|©1]], < esAe™*. By noting (2.4.6)), it is enough for us to prove the
following one to get (2.4.13))

1
H exp(w + 29 — 511“7,1) — exp (w + 2¢ — 47aG(x, q)) HL o < cshe .
(2.4.14)
We leave the proof it in section 6. By (2.4.13)), (2.4.12) can be written as

h2€w+21/)747rG(x,q)
fM ho ewt2—4nG(z,q

Aw + 289 + 2p2( - 1) 110 =0. (2.4.15)
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2.4. Deformation And Degree Counting Formula

We expand the above equation,

h2€w747rG(z,p)

R =Avy + 2py [y hae—4nGep

ka

h26w747rG(:1:,p)

—2p2 5 / (h2ew—47rG(z,p),¢)
(fM h26w—47rG(ac,p)> M

hzew—47rG(x,p)
~ e [y hoew—47G(@p) (VG(@.p)(a =)

ho ew—4mG(z,p)

+ 47Tp2 5 / (h26w747rG(CE,p) (VG(x’ p) (q — p))) ,
(fM h2€w747rG(:v,p)) M

(2.4.16)

where R = tO + o(1)||%[|« + |¢ — p|?>. By the non-degeneracy of (p,w) to
(1.1.14)), (2.4.11)) and (2.4.16), we can get

9]« < cghe™ and |qg — p| < ezde™ . (2.4.17)

Recall that

1

4
0=~ ((p—4m) -

p1h(q)

AH(g)he ™ + 4mip(q) — 8w (a — 1))

From (2.4.9), we obtain

OMe™ = (py—dm ~ ﬁ:;q) (@), (2.4.18)
which implies
0(c™) = AW - %)
Hence
A= Xi(p)] = es(Mi(p) ™! (2.4.19)

for some constant cg independent of c;.
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2.4. Deformation And Degree Counting Formula

Using (2.4.17) and (2.4.19)), we have

l]lx < corr(p)e ™) and |p — q| < c1oA1(p)e ). (2.4.20)

By choosing ¢; > ¢2, ¢7, cg, ¢g, c19. From (2.4.6), (2.4.8)), (2.4.19) and (2.4.20)),

we obtain

(v1,v2) & O(Sp, (b, ), Spa(p,w) ).

The proof is completed. O

Then, we want to apply Lemma and Lemma to get the degree
of the linear operator in Sy, (p, w) X Sy, (p, w) when p; crosses 4.

To compute the term
deg((2vl + T (v1,v2), 202 4+ To(v1,02)); Sp, (P, w) X Spy(p, w), 0),
we set

1
S0 w) = {(a 0 @) Sogna+6 € S o), 6 € OB

and define the map

Dy = (Pp1, Pp2, Pp3, Ppa) :

@1 = o (1Y 201 + TP (o1,2)), Vaguy) + (V203 + To(01,02),0)),
B0 = (V(2u1 + TP (v1,v2)), VOrvg) + (V (202 + T8 (v1,v2)),0),
@3 = (V(2u1 + T (v1,02)), Vog) + (V(2v2 + T3 (v1, v2)), 0),

B4 = (V(2v1 + TP (v1,02)),0) + (202 + T3 (v1,v2)).

Clearly, by Lemma and Lemma we have

deg<(2U1+T1(U1, v2), 2ug + TQ(’Ul,’Ug)); Sp (P, w) X Sp, (P, w), 0)

= deg(@p; ST(p,w) x S, (p,w),O). (2.4.21)
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2.4. Deformation And Degree Counting Formula

Next, we study the right hand side of (2.4.21) and prove Proposition
113l

Proof of Proposition[1.1.5. To compute the degree, we note that,

AH(q), _x
D0 =—1(2p1 — 87 — 87 Ae . 2.4.22
P [ P p1h(q) ( )

Clearly, we have

Op1 _ OPpy _ 0Ppp _ 0Pp3 0Dz OPps  O0Ppa _

— = - — = =0, (2.4.23
O\ Oa da o 0q da O\ )

It is easy to see ®,1 =0, ®,3 =0 and ®, 4 = 0 if and only if
g=p, a=1,¢9=0, (2.4.24)

and &, 5 = 0 if and only if
p1— 4 M AH(g)re (2.4.25)
1 —4mr = . 4.
p1h(q)

It is not difficult to see that if |p; — 4| is sufficiently small, equation (12.4.25|)
possesses a unique solution A Hence (p, Ai(p),a,0) is the solution of ®,,
where a = 1. The degree of ®, at (p, \1(p),a,0) depends on the number of

negative eigenvalue for the following matrix

0Py 1 0Pp.1 0Pp.1 0Pp.1

dq ox da oY
0, 2 0Pq 2 0Py 2 0Py 2
_ dq oN da 0
M= 082 obns oty 0bs
dq oA ) da o
0Dy 4 0P 4 0Py 4 0Py 4
dq oA ) da o

Here we say jupq is an eigenvalue of M, if there exists v € R?, A € R, a € R,
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2.4. Deformation And Degree Counting Formula

and V¥ such that

14 v
a a
M == )
A Hm A
v (—A)~w

where agfz’;l (U] = VU(p), and

0Py 4
O

3 ho ew747rG(x,p)
U =0 — (—=A)7 (2
O W v o)

thw—47rG(x,p)

_ w—4nG(z,p)
2p2 . hgew_“G(%P)f /M (hae P \1!))

We set N(T') as the number of the negative eigenvalue of matrix 7T,

6?);;,1 8’;’5;1 0Py 2 0Py, 2

_ q _ oA da

Ml = 0P, 4 0P, 4 and M2 = 0%, 3 0%, 3 .
9q 0 oy X ' Oa

By using (2.4.23)),

N(M) = N(M1) + N(Mz) = N(My) + sgn<8§§2) + sgn((ff),

Therefore,
deg (@p;ST(p, w) XSy, (P, w),O) = (=1)NM) — (LN M) o ()N (Mz)

_ (_1)N(M1) X sgn(ag)f\’z) X Sgn(%gg).

We first consider the last two terms on the right hand side of the above

equality. For acgg,g’ it is easy to see that the sign of this value is positive.

Therefore .
D3
—2) =1.
sgn(“522)
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2.4. Deformation And Degree Counting Formula

o
552, we have

To compute

aq)p,Q AH (p)

= —87 Ae ™+ 0(e™).
o2 p1h(p) ™)
Thus
6(1)10,2 _ Y

It remains to compute N(M7). According to the definition, we have

APy, ®pa)1 (v \ _ [ —VPH v+ V¥(p)
9(q,) } ( v ) - ( 1 ) : (2.4.26)

where

ho ew—4mG(z,p)

fM h26w—47rG(x,p) v

hzew_47TG(a;7p) e
(fM h2€w—47rG’(x,p))2 /M (h26 P \I/)
(VG(SL',p) . I/)

ho ew747rG(x,p)
/ {hgew_MG(z’p) (VG(z,p) - 1/)} )
M

To=—V + (—A)fl <2p2

— 2p2

— 41 pg fM hae—A7G(zp)

h2€w747rG(x,p)

4
+ sz(fM hgew—‘l’TG(x’p))Q

According to the definition of the eigenvalue for the linearized equation
of (1.1.14), we can get (—1)N(M1) is exactly the number of the negative
eigenvalue of the linearized equation of (1.1.14) when AH (p) has the same

sign as p; — 4m. Therefore,
P — ()N = d® — (~1) Nz,

where Ny, Ns represent the number of the negative eigenvalue for the lin-
earized equation of when p; — 4w, i.e., AH(p) > 0 and p; — 47w < 0,
i.e., AH(p) < 0 respectively. It is easy to see that the summation of Ny and
N5 is the total negative eigenvalues of the linearized equation of for
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2.5. Proof Of Theorem

a given solution (p,w). Thus, by the definition of the topological degree for
the solution to the shadow system , we have all the topological de-
gree contributed by the bubbling solution of equals to the negative
of the topological degree of the shadow system . Hence, we proved

Proposition ([

2.5 Proof Of Theorem

This section is devoted to prove Theorem We first study the shadow
system and give a proof the Lemma As we mentioned in the first
Chapter, we introduce a deformation to decouple the system (|1.1.14)).

Aw + 2pp (2 T ) — 0,
(S { P2 e — 1) (25.1)

V(log(hle—aw'(l—t)) +47R(x, x)) |a=p= 0.
It is easy to see that the system (2.5.1)) is exactly (1.1.14) when ¢ = 0,

and will be a decoupled system when ¢ = 1. During the deformation from
(S1) to (Sp), we have

Lemma 2.5.1. Let py ¢ 47N. Then there is a uniform constant C,, such
that for all solutions to , we have [w| ooy < Cpy.

Proof. Since ps ¢ 47N, then we can see any solution for the following equa-

tion
ho ew—47rG(r,p)

fM ho ew—4rG(z,p

Aw + 2p2< .- 1) =0 (2.5.2)

is uniformly bounded above. By using the classical elliptic estimate, we have

|w|c1ary < C, where the constant C' depends on pa. O

Proof of Theorem [1.1.1. It is known that the topological degree is inde-
pendent of hy and hy as long as they are positive C! functions. So we can
always choose hi and hs such that the hypothesis of Theorem holds.
Let dg denote the Leray-Schauder degree for (1.1.14). By Lemma [2.5.1]
computing the topological degree for (1.1.14) is reduced to computing the
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2.6. Proof Of Lemma And (2.4.14

topological degree for system (2.5.1) when ¢t =1,

th'w—47rG’(z,p)

{ Aw+2p2(W — 1) :0,

(2.5.3)
V{logh1 + 47 R(z, x)] |z=p= 0.

Since this is a decoupled system, the topological degree of equals the
product of the degree of first equation and degree contributed by the second
equation. By the Poincaré-Hopf Theorem, the degree of the second equation
is x(M). On the other hand, by Theorem A, the topological degree for the
first equation is b, + b,,—1, where by is given . Therefore,

ds = x(M) - (by + bp—1). (2.5.4)

Hence we get the topological degree of the shadow system (|1.1.14)), combined
with Proposition |1.1.3, we can get Theorem O

2.6 Proof Of Lemma And (2.4.14)

This Section is devoted to prove Lemma [2.3.2 Let

e)\
s, mEEE @

A
e
= Tzl W)dy.
Jr2 (1+el=’;|y\2)2 dy T /Bro(o) (1+eAy[*)?

Then we have the following Poincare-type inequality:

6)\ 72
/Bro(O) W¢2(y)dy < c(llolir (5,0 T ) (2.6.1)

for some constant ¢ independent of A. Using (2.6.1) we can prove the fol-

lowing result.

Lemma 2.6.1. Let U(x) be defined as in (2.2.5). Assume ¢ € Ogl))\. Then
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2.6. Proof Of Lemma And (2.4.14

there is a constant ¢ > 0 such that for large A
| oy =00 Alm), (2.6.2)
BTQ(Q)

and

/M V62 = 2p1h(@)e o (2)6?| = c /M Vol (2.6.3)

For a proof, see [15].

Proof of Lemma |2.3.2. We start with part (1). Let ¢ € O((Il/)\ and ¢ € O((JQ,)\'

Recall 201 = vg 4 + 20, ¢ € Oéjl))\ and vy = %w +Y, Y € 01(172/)\. We compute

(V(2v1 + T1(v1,v2)), V1) = —(A(201 + Ti(v1,02)), d1).
Here we will use the decomposition of A(2vl +T11 (v, vg)) in (2.3.23)-(2.3.25).

(V (21}1 + Tl(vl,vg)),qul) :/2V¢) Vo1 — / 4p1h(p)6U¢¢l + remainders

By, (9)

:=2%B(¢, 1) + remainders. (2.6.4)

Clearly, 23 is a symmetric bilinear form in O((Ll/)\ and by Lemma|2.6.1, B (¢, ¢) >

cquﬁH%Il(Q) for some ¢y > 0. For the remainder terms, by ¢; € O((I’l;\ and

(2.6.2), we have

/M (87(a—1) + (87 —2p1)) 1 =0 (2.6.5)

and
[ mho)an] =002 N6l (266
Bry(q)

Since [VH(q)| < CAe™ for vy € S,, (p, w),

/ VIH - (2 - )pih(g)eV é1 =0(e™) / 2 — gleV|61]
By (q)

Bry(q

=0(xe™ M1l (a)- (2.6.7)
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Also, by Lemma we have
[ 2@ @ +s - e
Brg (9)
24)\/ prh(g)e” (a — 1)¢n
Bry(a)

n 2/ pih(q)eV (a — 1) (U — A+ O(1))y
Bry(q)

=(a—1)ON*e ) o1l

s ([ dw-avowp) ([ de)

r0(a)
=0(Ja — 1)ld1ll g ary = O™ M1l 1 (- (2.6.8)

For E™, we obtain

1 1
/Bro(Q) |E+¢1| = </Br0(p) |E+’2) 2 </Bm(Q) %> 2

= O M1l (2.6.9)

where we used (2.3.14).
For E~, we see that E~ = 2p1h(q)eV (O(¢?) + O(3?)), thus

[ iEals [ amb@e 06 + 0
Bry(q) Bry(q)
-0 U 2 % U 2 %
(62)(/37‘0(‘1)6 SO> (LTo(Q)e ¢1)
A3 U 2\
o], 4
A3
=0(e2) (0]l s ary + e )61l 2 (ary + O(QT)\)H@blHHl(M)
:O()‘B_A)H(blHHl(M)’ (2.6.10)

0

provided g3 is small.
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For the term [p @ p1h(q)eY p11), we have
70

s
:\/lﬂmpquwU¢mw—~¢m»\+!j;m@)pﬂK@6U¢HMQH
gc(/B . plh(q)eUab%)Q(/B

)
w@l [ oo s

=0(e M bl (ans (2.6.11)

pih(q)e” (¢ — w(q))2> :

0 ()

where we used 1) € 022))\ and (2.6.2). This finished the estimate in By, (q).
By Lemma [15, Lemma 2.2],

A
/ Afvy—87G(x.0)or = O orlmary (2612)
Bar (Q)\BTO (9) €

For the nonlinear term in ATy (v, v2) in M \ By, (q), by (2.3.14), we have

/' w%nzm/ \W@H/’ €21]) = Ol L1 o).
M\Br(q) lp|>e2 lp|<e2

Because [, h1e?"1 7" ~ e,

20 h 621)1 —v2 B B
[ amnel el =0 [ erlorl = 0 Ml
M M\Brq(q)

\Brg(q) Jay ha€2or 702
(2.6.13)

Combining (2.6.4)-(2.6.13), we reach at

(V(2u1 4+ T1(v1,v2)), Vo) =2(Vo, V1) —/ 4p1h(q)e” por

Bry(q)

+ O™ Mgl 1 (ary-
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Next, we prove part (3). In Ba,(g), by the setting of v,, we have

ﬂlh(Q)€A|$ . q|2 AH(q)
—(9_ 2 9) y2,-2
v ( 1+ 2h@erjy g2 O [77+ p1h(q) ATe DJ
=(1+ U)o+ O0(N\2e™), (2.6.14)

In M \ Bayy(q), Oz\vg = 0. We compute (V(2u1 + T1(v1,v2)), Vorvg) =

—(A@201 + Ty (01, v2)), Drvg) by using (2.3.23)-(2.3.25).

Since ¢ € Oéyl))\, we have

/ V¢ - Vv, = 0. (2.6.15)
M

Direct computation yields,

J

Hence,

vy = / (1+0\U) +0(\2e ) =0(\%e™).  (2:6.16)
(@) By (q)

70

(87(a — 1) + 87 —2p1) / ( )awq = O0(Ne ). (2.6.17)
Bry(q

Again by (2.6.14)), we have

)\2
/ 2p1h(q)e” Drv, —/ 2p1h(q)e” (1+0\U + O(=;))
BTO (q) BTO (Q) €

—/ L(l - 1_—7"2) +0(\%e™)
 Jre (L+12)2 1472

=87 + AZe ™ (2.6.18)
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and

h
/ 2p1h(q)e” [ —2log(1+ @) Mo — Q\Q)}a,\vq
Bry(9) 4

2 2
_ /R (1+8742)2[_210g(1 +r))(1+ 1“2 +0(5) + 0
— 81+ O(§>' (2.6.19)

Combining (2.6.18)) and (2.6.19)), we get

/ 201h(q)e” (U + 5 — 1)0rvg
Bry ()

h
= 167\ — 167 + 167 log /)14@ +647%R(q,q) + O(Ne™). (2.6.20)

By scaling, we compute

| 2@ 0l - dhore,
By (q)

167 A2
d i
|z|<roR (1+T2)3 Z+O(€>‘ ):|

= 0(e"2M)|a — 1] = O(\e™2*). (2.6.21)

—(a—1) [O(Rfl)

Since VH (q) - (x — q) is symmetry with respect to ¢

/ 2010(q)eY VH(q) - (z — q)Ovy
Bro(q)

)\2
=/ 2p1h(q)eVVH(q) - (x — q) (1 + U + O(5))
By (q) €
= O()\2> / eVlz — | = O(\2e™3%), (2.6.22)
e/ JBy (@
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Next, we estimate the term ¢d\v, and ¥0yv,. Since

0—/ qu Vawq / ¢A 8)\’Uq
_ /' SADA) + Ol any)
By (q)

—zpqu>/; 90U+ OO bl an)
0

(2.6.23)

Hence, by Lemma [2.6.1) and ( , we have

U _ U 2 -\
/ %m@w¢m%—/ 201h(g)eVd(1 + 3T + O(\2e ™))
B”"O( ) BT‘o(q)
—ONe )¢l = OO ™), (2.6.24)
and
/ 2p1h(q)eVporvg = / 2p1h(q)eV1(q)0xvq
Bry(q) By (q)
w2l (- v@)one,
By (q)

=8m1(q) + O(Ne™2%), (2.6.25)

where we have used |¢p — ¢(q)| ~ O(Ae )|z — ¢|. By (2.6.14), (2.6.2) and

the Moser-Trudinger inequality,
/ |ETO\v,| < O(e™Y) (2.6.26)
Brg(q)

and

J

|Eﬁwﬂ:/ 2p1h(q)e” (O(¢%) + O(6%))
(@) Bry (@) {lp<e2|}

ro\q

=0(Ne ). (2.6.27)
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In M\ Bry(9),

_ 2p1h1€2v1 —vg B )\2
e = O(6¢), fM hqe2vi—v2 =0O(e /\)€¢, (9,\?][1 = 0(67)
Hence, by the Moser-Trudinger inequality,
20 h 2U1—v2
/ NG Oy = O(Ne ). (2.6.28)
M\By(q) fM hye—e

By [15, Lemma 2.2] and dyv, = O(A\2e™),

/ A(vy — Ty — 87G(x,q)) - Drvg = O(N3e ). (2.6.29)
Bary (@)\Bry ()

Combining (2.6.14) to (2.6.29)), we obtain

<V(21)1 + T1 (Ul, Ug)), Va)\?)q>

h
——(a-1) (167r)\ — 167 + 167 log 2 4@ + 6472 R(q, q))

el i
a SW(thlezm—vQ - 1) +8m(q) + O(he™2%). (2.6.30)
This proves part (3).
For the proof of part (4), we write

(V(2u1 + T1(v1,v2)), Vog) = (V(2v1 + T1(v1,v2)), V(vg — Tg))
= —(A(2v1 + T1(v1,v2)), (vg — Tg))-

First we note that
/ [87(a — 1) 4+ 87 — 2p1 | (vg — Vg) = 0.
M

By ¢ € 0(571))\,
/ Vo -V(vg—74) =0.
M
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In By, (p),

h
Vg — Tg =21 — 2log(1 + ’)14((1)6% —ql*) +8mR(q,9) + O(|yl)

h \2
+210gp14(q) +0(5). (2.6.31)

We use (2.6.31)) to compute [, 2p1heV (U + s — 1)(vq — Uy), after scaling, we
have

h
/ 201h(@)e” log(1 + 2D A gy
Bry(q) 4

_ 8 2 A
_/R2 ESE log(1+r )+O(e>‘)
A

=87+ 0(5), (2.6.32)
h 2
| et [oga + 250 — g
Bry(q) 4
_ /OO S og(1 4 ) P2mrdr 1 OCS)
=), axroples m ”
)\2

=87 +0(55), (2.6.33)

and

h
/ 2p1heV | log(1 + P1 4((]) Mz —qH)|0(jz —q|) = O(e_%)‘). (2.6.34)
BTo(Q)
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Therefore, by (2.6.32)-(2.6.34),
| 20 5= 1)(0, -3
Bry(q)

h
:/ 201 heV [4A2 — 8log(1 + ’)14@@% —q)A
70(a)

p1h(q)
4

+ )\(327TR(q, q) + 8log _ 2)} +0(1)

h
- [256W2R(q, q) + 647 log X 4((1) _ 167@ A

+ 327\% — 647\ + O(1). (2.6.35)

Similarly, we have

/ 201h(q)eY (vy —T,) =167\ — 167 + 6472 R(q, q)
Bro(a)

h
+ 167 log 2 4@ +0(e ),  (2.6.36)

and
/ 2@ Ol gy ~T) = 00, (2.6.37)
o (@

Since VH(q) = O(Ae™) and VH(q) - (x — q) is symmetry with respect to g

in By,(q), by (2.6.31), we have
[ 20l VH@) - @ - (- 5
Bry(q)

:/B w 201h(q)eY VH(q) - (z — )O(|z — q|) + O(N\2e™?*)

=0(\2e ). (2.6.38)
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By (2.6.2)), and Lemma [2.6.1]

/ 2p1h(q)e” p(vg —Ty)
By (q)

h
= [ apn@eo[r+ s 2101+ 2AD e o)+ 01— )]
By (q) 4

h(q)

= [ 2@ v [a+ s - 2log(t+ 2D A~ gP) + Oz - g
BTQ(‘I)

—0(e 3|8l an + ( / 2p1h(q)eV 67)

By (q)

<, 2ohie (g1 + PED e ) 0 —a)] )}

[ 2@ @) A+ s - 210801+ 2ED A — o) +0(fe — )
BTQ(‘I)

[, 2@ @)+ 2og1+ PN ) 1 O(1 )]

4
=OM)[¢llr(ar) + oD |]« — 167X (q). (2.6.39)

By a similar argument as in the proof of part (3),
/ Blv, —T,) = O(Me V). (2.6.40)
Bry(q)
Since vy = O(1) in M \ By, (q), by [15, Lemma 2.2],
/ Ay — 817G, 9)) (vy — ) = OO ). (2.6.41)
Bar (Q)\BT()(Q)

For the integral outside of By,(q), we have (f,, hie?172)71 = O(e™?)

and

2p1h P B
T he2vi—vs € (vg — Tq)
/BQT()(Q)\BrO(q) fM he2vi—v2 q q
y/ 06 = 0(e™), 26.42)
BQTO(‘Z)\BTO((])
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Similarly

2p1h 201 1) B .
T (g =) = 0(e). 5 6.43
/M\BQTO(q) fM h1€2v17v2 ( q q) ( ) ( )

By (2.6.35)-(2.6.43)), we have

(V(2u1 4+ T (v1,v2), V(vg — Tg))

- _ <32m2 — 647\ + 25672 R(g, q)\ + 647 log ’”}EL@A) (a—1)
_ 2 p1h(q) el 1
+ (1671 — 167 + 647° R(g, ) + 167 log ><fM g L ¥(0))
+ OW)[[9]l 2 (ary + (1) [[¢]ls + 167 (a — 1)A + O(Ae™?)
h
—(2\ — 2 + 87R(q, q) + 2log 2 8(’1) WV (01 + Ty (v1,v2)), VOrvg)
+ 167 (a — )A + O(1) |8l gr(ary + o(1)[[¥]|« + O(Ae™). (2.6.44)

Finally, we prove part (2). We note that
(V(2u1 + T1(v1,v2)), Vug) = (V(2v1 + T1(v1, v2)), V(vg — Tg)).
From ¢ € Oé}))\, we have

(V§,V0y(vg —1,)) = 0.

Since [,;(vg — Uq) = 0, we have [, 94(vg — Uq) = 0 and

/ (8m(a—1) 4+ 81 —2p1)0y(vg — 1) = 0.
M

In By,(q), by [14, Lemma 2.1]

9gh(q) AH(q) M )
h(q) p1h(q) e*
+ 870, R(, q) |o=q +O(|lz — q|) + O(N2e™). (2.6.45)

Bgvy = — VU + ONU + 0, (21og hlg) +
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Since VU is symmetry with respect to ¢ in By, (q),

/ 201h(q)eY (U + s — 1)V,U
Bry(q)
= / 2010(q)eV O(|z — | + N\2e ) V,U = 0. (2.6.46)
o (g
Hence by the fact 0\U is bounded,
/ 201h(q)(U 4+ s — 1)04(vg — Ty) = O(N). (2.6.47)
Bry(q)
For the other terms in (2.3.23)), we need to estimate the following quantities:

| 200, (w, - 5) =00, (2.6.18)

Bry(q)

| 2ol — a)oy(u, =) = O, (2.6.49)
ro\q

/ 2p1h(q)e"VH(q) - (v — q)V,U
Bry(q)

=V () /R § +87‘2)2 12:; +0(e™)

=(87 + O(Xe™))VH(q), (2.6.50)

and
/ 2p1h(q)e"VH(q) - (x — q)9q(vg — Dy)
By (q)

= (87 + O(e™))VH(q) +|VH(q)] /B w 201h(q)e” O(|z — q)

= 87V H(q) + O(\e 2), (2.6.51)

where we have used VH(q) = O(Xe™?) for v1 € S,, (p, w).
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For the term p1h(q)eV pd,(vy — V),
/ 201h(q)e¥ $0,4(vy — Ty)
Brg(q)
i [ pihla)eVo0, (v, - v,)
Bro(q)
[ phla)e oo,
By (9)
U A2
+ [ @ s(0C) + Oe - al)
Bry(a) €
Using (V¢, VO, (vq — Tq)) = 0, it holds that

0= /M VoVovy = — /M PA(Dquq)

= [ epn@ous+oloeh) [ 2ph(@es
By (q) Bry(a)

+ONe Ml (any-

By (2.6.2) and the above equality, we have

2 [ 2pihla)V0,U6 = O )0l o
BTQ(Q)

While for the term — 1 and v, we have

et
2v] —v
Jar ez

t
2@’ (— 1), (v, —
/Bro(Q) piita) <fM hpe2vi—v2 ) ACY
t
- 2000(@)e” (g — 1= 0(@) ) Oylvg — @
/Bro(‘l) prhla) (fM hye2vi—v2 ()> (Vg @)

- / 201h()e? (6 — 1(0)) By (v — Ty)
Bry(q)

= — SWVQZJ(Q) + O(fM h1€2v1—v2

—1—1(q)),

(2.6.52)
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where we used

/B 2T @~ )V,U = (874 0 ) V)

and (2.6.48). Since 0,(vqy — Tq) = O(e%)‘), as in the proof of part (3), we

have
/ E0y,(vg —7g) = O()\?’e*%)‘).
By (q)
In M\ By(q), 0q(vg —Uq) = O(1). Hence by [15, Lemma 2.2],

/ A(vy — 87G(,9)) - Oy(v, = Ty) = Ohe™).
Bary (9)\Br( (q)

Since [;, h1e?"t7" = O(e™?), the integral of the products of dyv, and the
nonlinear terms in (2.3.24) and (2.3.25)) are of order

O(e)‘)/ e? = 0(e™).
M
The estimates above imply

<V(2U1 + T (1}1, 1}2)), Vaq(vq — Eq)>

= — 87V H(q) + 87V(q)

+0<A|a—1y+\M—1—w(q)]+;). (2.6.53)

This proves the part (2) and hence the proof of Lemma is completed. O

Next, we give a proof of (2.4.14]).

Proof of (2.4.14): For convenience, we denote

1
¢y = exp(w + 29 — ivq’A’a) —exp (w+ 2¢ — 47aG(z,q)).
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For z € M \ By,(q). By [15, Lemma 2.2], we have
L Sy oA
‘qu)\,a — 4dmaG(z,q)| < éXe
for some ¢ independent of ¢;. Thus |&;| < esAe™ in M \ By, (q).

For x € B,,(q), we note

draG(x,q) — %Uq)\,a =4raG(z,q) — 4maR(z,q) — alog (plz(q))
+ alog (1 + p1hiq)e’\|x - q|2> —a\
~ S+ S 4 00
:abg(pﬂwweix—wﬂ2+l)
2
e TR
where we have used 7, = O(Ae™*). Then, we have

exp (w + 2¢) — 4raG(z, q)) — exp (w + 24 — %qu’Q)

=0(1)|z — q\Q“ (1 — exp (47raG(:v,p) - %Uq,)\,a)>

= O(1)|z — > (1 — exp [alog (1+ plh(q)ei\lh: — q|2)

+ 0(77 + ?j((g)) zj) + O()\e_)‘)} + O()\e_)‘)). (2.6.54)

When |z —¢| = O(efé)‘), we have
exp (w + 2¢ — 4AwaG(z, q)) = O(|z — ¢q**),

and

4
+
prh(q)erz — qf?

1—exp (a log (1 )+ O()\ze_)‘)> =O0(e"a —q|7%%),
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2.7. The Leray-Schauder degree

which implies
€ = O(\e ™) for |z — | = O(e™2?).

When |z — ¢| > e_%A, then

1—exp (a log(1 +

As a result, we have the right hand side of (2.6.54) are of order O(Ae™).
Therefore
€ = O(\e™?) for z € By, (q).

Thus, we get (2.4.14). O

2.7 The Leray-Schauder degree

In this section, we provide a short introduction of the Leray-Schauder degree,
namely the degree for the maps T' € C(B, B), where B is a Banach space
and T is a compact perturbation of the identity I = Ig.

Let D be an open bounded subset of the Banach space B. We shall
deal with compact perturbations of the identity, namely with operators T €
C(D, B) such that T = I — K, where K is a compact.

Let p ¢ T(OD). It is easy to check that T(0D) is closed and hence

r:=dist(p, T(0D)) > 0.

It is known, see [10], that there exists a sequence K,, € C (D, B) such that
K, — K uniformly in D and

K, (D) C E, C B, with dim(E,,) < co. (2.7.1)

We shall define the degree of I — K as the limit of the degrees of I — K,,, which
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2.7. The Leray-Schauder degree

we are going to introduce. Before that, we make the following preparations.
Let us consider a map ¢ € C(Q,R™), where Q C R™ and m; < mo.
We can regard R™! as the subset of R"*2 whose points have the last mo —my

components equal to zero:
R™ ={x € R™ : xp,41 =+ = Ty, = 0}.

The above function ¢ can be considered as a map with values on R™2 by
understanding that the last mgo — m; components are zero: ¢y, 41 =+ =
bmy = 0. Let g(z) = x — ¢(z) and let g, € C(QNR™ R™) denote the
restriction of g to Q NR™!. Let us show that if p € R™ \ g(09Q) then

deg(g, 2, p) = deg(gm,, RN R™, p). (2.7.2)

Let z € Q be such that g(x) = p. This means that z = ¢(z) + p. Thus
z € QNR™ and s0 g, (z) = g(z) = p. This shows that g~ (p) C g;,! (p).
Since the converse is trivially true, it follows that g~'(p) = g;ﬁ (p). We can
suppose that Q NR™ # (), otherwise, g,,,}(p) = 0 and g~*(p) = 0. As usual,
we can suppose that ¢ is of class C'! and, moreover, that p is a regular value

of gpm,. Then according to the definition of degree, we get
deg(g, %p) = Y senl[Jy(x)].
z€g~(p)

Now the Jacobian matrix ¢/(z) is in triangular form

I, (2) -
0 Ipmprm

and hence sgn[Jy(x)] = sgn[J

gm, ()] As a consequence, we have

deg(g, Q,p) = Z Sgn[Jg(J:)] = Z sgn[ngl (l’)] = deg(gmu an leap)v

zeg1(p) zE€gm} (p)

which proves (2.7.2)), provided p is a regular value. In the general case, we
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2.7. The Leray-Schauder degree

use the Sard Lemma to get the same conclusion.

The above discussion allows us to define the degree for a map g such that
g(z) = z — ¢(x), where ¢(D) is contained in a finite dimensional subspace
E of B. Let p € B,p # g(D). Let E1 be a subspace of B containing E and
p. We get g1 = g |5, and define

deg(g, D, p) = deg(g1, D N E1,p). (2.7.3)

Let us show that the definition is independent of Eq. Let Eo be another
subspace of B such that £ C Es and p € Es. Then F N E; N Ey and

p € E1 N Ey. Applying (2.7.2) we obtain
deg(gi, D N Ey,p) = deg(g |5np,np,» PN E1 N E2,p), i =1,2.

This justifies the definition given in (2.7.3)).
Now, let us come back to the map T' = I — K, with K compact. Let
K, — K satisfy (2.7.1) and set T,, = I — K,,. Taking n such that

sup || Kn(z) — K(z)|| <
xeD

: (2.7.4)

| ™

we know that p ¢ T,(D) and hence it makes sense to consider the degree

deg(T,, D, p) defined in (2.7.3).

Definition 2.7.1. Let p ¢ T(0D), where T = I — K with K compact. We

set
deg(Ta Dvp) = deg(I - Kn: D7p)7

for any K, satisfying and .

Once more, we have to verify the definition, by showing that the degree

does not depend on the approximation K,,. To prove this claim, let T;,7 =
1,2, be such (2.7.1)-(2.7.4) hold. Let E; be finite dimensional spaces such

that K;(D) C E;. If E is the space spanned by F; and E2, we use the
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definition to get
deg(T;, D, p) = deg((T3) |prp- DN E,p), i=1,2. (2.7.5)
Consider the homotopy
h(A, ) = A1) [5ap +(1 = N(12)50p-

It is easy to check that h is admissible on D N E, i.e., h(\,:) # p for all
(A\,z) €[0,1] x (D N E). Thus,

deg((Th) Ipnp, D N E,p) = deg((T2) |png D N E, p).

This together with (2.7.5)) proved that Definition is well defined.
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Chapter 3

The Lin-Ni1 Problem

3.1 Approximate Solutions

In this section, we construct suitable approximate solution, in the neigh-
bourhood of which solutions in Theorem [1.2.1] will be found.
Let ¢ be as defined in (1.2.11). For any @ € Q. with d(Q, 012.) large,

n—2

. A 2 . . .
Unq/e = (m) provides an approximate solution of (1.2.12). Be-
cause of the appearance of the additional linear term pe?u, we need to add
an extra term to get a better approximation. To this end, for n = 4, we

consider the following equation

AV +Ug=0 inR*Y 0(0)=1. (3.1.1)
Then
_ 1 1Y\ = 1 In(1 + |y|)
U(ly]) = —sIn|y[+I+0( =), ¥ == (14+0(——75—)) as|y| = oo,
() = =5 b+ 140 () s (FOCT ) sl
(3.1.2)
where [ is a constant. Let
A1 _ oy —
Urg=ghp+ Am(%). (3.1.3)

Then
A\I/A7Q + UA7Q =0.

We note that

1 C
v NER <Olm— |, |00, r0) < — .
‘ A7Q(y)| | A A,Q(y)| 5(14“?/—@‘) | Q AQ(y)‘ 1+’%3_1ci’)
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For n = 6, let U(|y|) be the radial solution of
AV +U;p=0inR", ¥ —0as |yl — +oc. (3.1.5)

Then, it is easy to check that

1 1

U(y) = W(l + O(]y|2)) as |y| = +oo. (3.1.6)

For Q € Q, we set
y—Q
W gqly) = (L),
Then
A\I/A7Q(y) + UA7Q =01in RS,

It is easy to see that

C c

mv 100, ¥2,0(y)] < m
(3.1.7)

In order to obtain approximate solutions which satisfy the boundary

WaQ®)], [0aVaQ(y)| <

condition, we define

~ n—2
Ung/e(2) = =V gje(2) — cap " A2 H(e2,Q) + Rep(2)x(e2),
(3.1.8)
where R, A g is defined by AR,y g — €2R5,A,Q =0 in Q. and
OR- A 0 n—2
2 AQ 2 n—2
pe2 e MU g — 1P gje — et AT H (2, Q) ” 35?3)

where x(z) is a smooth cut-off function in Q such that

1 for d(z,00) <
x(z) =
0 for d(xz,00) >

NI B[S,

)

We note (3.1.2) and (3.1.6), an expansion of U, (/. and the definition of H

imply that the normal derivative of R, ¢ is of order £"3 on the boundary
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of Q., from which we deduce that [

CA, n =4,
|Renol + 7' VaRe gl + e ? V2R gl <
Ce?, n = 6.
(3.1.10)

A similar estimate also holds for the derivatives of R, A o with respect to
A, Q.

Now we are able to define the approximate bubble solutions. Since it is
different in constructing the approximate solution for n = 4 and n = 6, we

shall tact them respectively. For n = 4, let

Mgy <A< Ags, QEMs, = {z€Q|dz,09) > 64}, (3.1.11)

where A1 = exp(—3)e?, Aso = exp(—3)e”, B is a small constant with a

generic constant dy, to be determined later. We write

- 1
Q = 7@7
€
and define our approximate solutions as
27 o
Wen@ = Ungje + 17U /e + ot (3.1.12)
For n =6, let

Q] 1 2 Q1 2
B2 pneedy<n < (B2 4
\/06(96 6e7) A <y 7 (g T Aeet),
Q € My, = {a € Q| d(xz,09) > &},

1 1 1 1
S el <p < — 3 1.1
18 6P SN S o b mees, (3.1.13)

where Ag and 7g are some constants that may depend on the domain, dg is

a small constant, which are determined later. Our approximate solution for

2For n = 4, we set the parameter A in a range that depends on e, we have to take
A into consideration, and we note that each component on the right hand side of (3.1.9)
carry A as a factor.
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n = 6 is the following
Wer@m = Ungje + 12Un qre + i 'e™. (3.1.14)

For convenience, in the following, we write W, U, U , R, and ¥ instead
of Wenqs Usgyes UA,Q/E, R. A and Wy /. Tespectively in the following.
By construction, the normal derivative of W vanishes on the boundary of
., and W satisfies

8U3 + p2e*U — pe?A(R , n =4,
AW 4 pW = 2 I U 0 : (Re,0,0X) ) .
24U% + pe*U — pe” A(Rea0X) +€°(n — fo ), n=~6.
(3.1.15)

We note that W depends smoothly on A, Q. Setting, for z € €.,
_ — 1
(z=Q)=(1+]z—-QP):.

A simple computation shows

C((~ne)z + ( —Q)72), n=4,
W ()] <{ O 4 (2 — Q). 6. (3.1.16)
Cle(~me)2 + (- Q)72), n=4,
| DAW (2) S{ Clz— O). 6. (3.1.17)
[DEW (2)] < { C<Z:g;:§; 2:6 (3.1.18)
and
|D,W (2)| = O(*), n = 6. (3.1.19)

According to the choice of W, we have the following error and energy

estimates, we leave the proof in Section 6 of this Chapter.
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Lemma 3.1.1. We set

nt2
Selu] := —Au + pe*u —n(n — 2)ul?, uy = max(u,0),

and introduce the following functional

1 1 —2)2 2n_
T[] ;:2/Q |Vu]2+2u52/g wt— . ) /Q i e HY(L).

Forn =4, we have

S:W]()] < C((z = Q)72 (-me)? + (2 — Q)2 (— ne)
€ gt 1
* +(—ln€)‘ln(5(1+|z—@))

Tt ) (3.1.20)

IDAS.WI(2)] < C((z = Q7 1eX(~ne)t + (2 — Q)% (~ Ine)

et et 1

N Sl G Iz—QD)D’ (3.1.21)

DGSIW](2)| € C((2 = Q) ()t + (2 - Q) e (~ ne)

— —_— .1.22
e @7 ) (3.1.22)
and
P 7Y G R SR e\ C P B
_ In—— —
Te[W] /R4U1’0+ 1 ° (—lns)2 " Ae 2|Q\E (—lns) i
1 1
+SASARH(Q,Q) + 0(52(%16) 2A2) 4+ O(e4(— Ine)?).

(3.1.23)
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For n =6, we have

S.W](z) = —&5(24n — 1 + Cﬁf) + 0z — Q) (3.1.24)
IDAS:[W](2)| = O(1) ((z — Q) *e* + £°), (3.1.25)

1D, S:[W](2)] = O(1)((z — Q) *e? + £%3), (3.1.26)
|DgS:W(2)| < Clz = Q)" (3.1.27)

and

1 1 1
J W] :4/ U3y + (7772\Q| — cgnA? + —cgA% — 8773|Q|)53 + N H(Q, Q)
RS ’ 2 48 2

A2

1 CGA2 4 5
—(n— ——— +0(). 1.
+2(n 5] )e /Q’x_Q’AtJr (%) (3.1.28)

3.2 Finite Dimensional Reduction

According to the general strategy used in Lyapunov-Schmidt reduction method,
we first consider the linearized problem at W, and solve it in a finite-
codimensional space, i.e., the orthogonal space to the finite-dimensional sub-
space generated by the derivatives of W with respect to the parameters A
and Q; in the case n = 4, and the orthogonal space to the finite-dimensional
subspace generated by the derivatives of W with respect to the parameters

A, Q; and 7 in the case n = 6. Equipping H!(.) with the scalar product

(u,v)e = / (Vu - Vo + peuv). (3.2.1)
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3.2. Finite Dimensional Reduction

For the case n = 4. Orthogonality to the functions

oW oW
Yi=2=,1<i<4
A’ !

Y =
0 0Q;

(3.2.2)

—= - 9

in that space is equivalent to the orthogonality in L?(€).), equipped with
the usual scalar product (-,-), to the functions Z;,0 < i < 4, defined as

Zy = —A%—VX—I—MEQ%—VX, (3.2.3)
Straightforward computations provide us with the estimate:
1Zi(2)] < C(e* + (2 — Q)7°). (3.2.4)

Then, we consider the following problem: given h, finding a solution ¢

which satisfies

—A¢+ pe?p —24W32¢ = h+ X} i Z;  in Q,
% =0 on 99, (3.2.5)
(Zi, ¢) =0, 0<i<d4,

for some numbers c¢;.

While for the case n = 6. Orthogonality to the functions

ow ow . ow
8775/; 771§Z§67Y7:7

Yy = =
0 0Q; on’

(3.2.6)

in that space is equivalent to the orthogonality in L?(€).), equipped with
the usual scalar product (-,-), to the functions Z;,0 < i < 7, defined as

Zy = —A%LAV + M52%LX,
Zi = —ASY + B 1 <i <6, (3.2.7)
Jr = —A%fvg + M&Q%%.
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3.2. Finite Dimensional Reduction

Direct computations provide us the following estimate:
|Zi(2)] SO + (2 —Q)7®), 0<i <6, Z7(2) = O(<9). (3.2.8)

Then, we consider the following problem: given h, finding a solution ¢

which satisfies

—A¢+ pe?p —48Weo = h+X7_d; Z;  in .,
% =0 on O€),, (3.2.9)
(Zi, d) =0, 0<i<T,

for some numbers d;.
Existence and uniqueness of ¢ will follow from an inversion procedure in

suitable weighted function space. To this end, we define

161+ = I1(z = @)6(2)lloos I1fllew = e (=) [F + [I{z = QY*F(2)lows n =4,

[@llxx = [I(z = @)?B(2)[loos [1f s = [z = Q) f(2)llo0s m =6,

(3.2.10)
where || f|lo = max.cq, |f(2)] and f = |Qc| ™1 Jo. f(2)dz denotes the aver-
age of f in Q..

Before stating an existence result for ¢ in and , we need

the following lemma:

Lemma 3.2.1. Let u and f satisfy

NP S
Oov
e )
Y
uz)| <o | I _q, 3.2.11
e e (3:2.11)
Proof. The proof is similar to [63, Lemma 3.1}, we omit it here. O

As a consequence, we have
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3.2. Finite Dimensional Reduction

Corollary 3.2.1. For n =4, suppose u and f satisfy

—Au+ pe?u=f in Q, Ou =0 on 0.
Ov
Then
Julle < Cllf [l (3.2.12)

For n =6, suppose u and f satisfy

0 _
—Au+ cue’u=f in Q, a—u:O on 00, w=f=0,
v
where ¢ is an arbitrary constant. Then
[lles < OIS lsrns- (3.2.13)

Proof. For n = 4, integrating the equation yields f = ue?a, we may rewrite

the original equation as

Au—a) = pe*(u—a) = (f = f).

With the help of Lemma [3.2.1], we get

u(y) — | < Cu62/ ful@) —al g o [ @)= Flg
.=yl o |r—yf?
Since )
(y — Q> /R4 m(x — Q>*3dx < 00,
we obtain

Iy = @u—llloo < Crell(y — @)u —ulllos + Clity = Q)°If = flllo
< Cull{y — Q)u — lllos + Cll{y = Q)°If = fllloo,

which gives

Iy = @)lu — alllss < Cliy = Q)°IF = Fllloo,
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3.2. Finite Dimensional Reduction

whence

Iy = Qullse < Clity = Qllocltl + Ce*If1 + Iy — @)° flloo < CIIf [l

Hence we finish the proof of the case n = 4.
For n = 6, by the help of Lemma |3.2.1

{y — Q)*(|ue*ul +1/1)

Qe |<L" - Z~/|4

g~ Q)ul < C da < C(|plne] [l wus + 1 onse),

where we used some similar estimates appeared in n = 4. From the above

inequality, we obtain ||u||we < ||f]|ssss. Hence we finish the proof. O

‘We now state the main result of this section

Proposition 3.2.1. There exist €9 > 0 and a constant C > 0, independent
of e, A, Q satisfying and independent of ¢, n, A, Q satisfying
, such that for all 0 < & < eg and all h € L>(Q.), problem (3.2.5),
has a unique solution ¢ = L¢(h) and the following estimates hold

1LeB) ]l < Cllhllens lei] < Cllh]n for 0 < i < 4,
IZe(R) s < CllBllwxses |di] < ClJt]|ssss for 0 < i < 6. (3.2.14)

Moreover, the map Lc(h) is C' with respect to A, Q of the L-norm in

n =4 and with respect to A, Q, n of the L, -norm inn = 6, i.e.,

I D0y L= (Wl < Cllblles inn = 4, Dy p @) Lel) e < Ce™ [l wrse in 0 = 6.
(3.2.15)

The argument goes the same as the Proposition 3.1 in [63], and we list

the proof here. First, we need the following lemma

Lemma 3.2.2. For n = 4, assuming that ¢. solves for h = h..
If ||he||«x goes to zero as € goes to zero, so does ||¢e|«. While for n = 6,
assuming that ¢. solves for h = he. If ||he ||l wss goes to zero as e goes

to zero, so does ||de || -
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3.2. Finite Dimensional Reduction

Proof. We prove this lemma by contradiction and first consider n = 4.
Assuming ||¢¢|« = 1. Multiplying the first equation in (3.2.5) by Y; and

integrating in €. we find

S il Y)) = (~AY; + pY; - 24W2Y;6) — (b, Y).

%

We can easily get the following equalities from the definition of Z;,Y

(Z0, Yo) = [[YollZ = 70 + o(1),
(Zi, Vi) = [Yil2 = 71+ 0(1), 1 <i <4, (3.2.16)

where g, 71 are strictly positive constants, and
(2, ;) = o(1), i # J. (3.2.17)

On the other hand, in view of the definition of Y; and W, straightforward

computations yield
(CAY; + Y — 24WY;, 62 = of[6x]l.)

and
(he, Yj) = O([|hellsx)-

Consequently, inverting the quasi diagonal linear system solved by the ¢;’s
we find
¢i = O([lhel«x) 4 o([l@ell+)- (3.2.18)

In particular, ¢; = o(1) as e goes to zero.
Since ||¢e|l« = 1, elliptic theory shows that along some subsequence, the
functions ¢. o = ¢-(y — Q) converge uniformly in any compact subset of R4

to a nontrivial solution of
— Ao = 24U}, ydo.

A bootstrap argument (see e.g. Proposition 2.2 of [68]) implies |¢o(y)| <
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3.2. Finite Dimensional Reduction

C(1+ |y|)~2. As consequence, ¢ can be written as

- OUx o '5UA,0
$o = ag A +§i:az By

(see [62]). On the other hand, equalities (Z;, ¢.) = 0 yield

OUpp , o OUno ,
| 85800 = [ URetn =0,

OUpp / 2 OUA o .
—-A : = U : =0, 1<¢<4.
R4 y; Po re 0 Oy Po=0,1zi=

As we also have

OUA 012 OUA o |2 .
J = J = 1< <4
/R4V6A Yo > 0, /szvf)yi v >0, 1<i<4,
and oU oU oU oU,
A,0 A0 A,0 A0 o,
2 2 p— 2 2 :0
]R4v on Jy; /]R‘lv dyi v dy; Rl

the /s solve a homogeneous quasi diagonal linear system, yielding «; =
(Q). Next, we will show

0,0 <4 <4, and ¢g =0. So ¢-(z — Q) — 0 in C}
l|pe|l« = o(1) by using the equation (3.2.5).
Using (3.2.5) and Corollary we have

I16elle < CUW?dellss + 1Blls + D lel| Zil ) (3.2.19)

(2

Then we estimate the right hand side of (3.2.19)) term by term. By the help
of (3.1.16)), we deduce that

(2 = Q)*W?¢.| < C(e"(—ne)(z — Q)?[ldel« + (= = Q) Hgel).  (3.2.20)

Since ||¢e ||« = 1, the first term on the right hand side of (3.2.20) is dominated
by €2(—Ine€). The last term goes uniformly to zero in any ball Br(Q), and
is dominated by (z — Q) 2||¢¢||+ = (z — Q)~2, which, through the choice of
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3.2. Finite Dimensional Reduction

R, can be made as small as possible in .\ Br(Q). Consequently,
(2 = Q)°’W?¢c| = o(1) (3.2.21)

as € goes to zero, uniformly in .. On the other hand, we can also get

N

—3(—1Ine)2 e —1In z—Q)t+e*(—In e
W < Ce-mept [ (- @7+t o)) o

| (6= @7+ - Q7)o

€

N

< Ce(—Ine)
=o(1).

Finally, we obtain
W2 el = o(1).

In view of the formula (3.2.4)), we have
(= QP1Zil < C((z = Q' + (: - Q)7%) = 0(1).
and

53(—lna)éZi§Ca(—lns)§/ [(z — Q)% +&?|dz = o(1).
Qe

Hence, ||Z;||«« = O(1). Therefore, we have

16ells < C(I1W el + 1ol + !CiHIZz‘H**) =o(1), (3.2.22)

)

which contradicts our assumption that ||¢c|l« = 1.
For n = 6. We still assume that ||¢¢ ||« = 1. Using the similar arguments

in previous case, we obtain the following

di = O([|h|sxsx) + 0([[@]]sxx) for 0 <i <6,
dr = O™ ?|[Allsxss) + O™ ||l ss) (3.2.23)

and ¢.(z — Q) — 0 in CL (). Then, we will show [|¢ ||« = o(1) by using
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3.2. Finite Dimensional Reduction

the equation (3.2.9). At first, we write the equation (3.2.9)) into the following

—A¢e + pe®(1 - 48n)ge = h+ Y _diZ; + 48U ¢ + 48°Ug..  (3.2.24)

(2

Using Corollary again, we have

From the formula of U and U , it is not difficult to show
U+U<Cz—Q)™
Similar to the case n = 4, we could show [|{(z — Q) ™*¢.||xxsx = 0(1),
| Zillewee = O(1), 0 < < 6 and || Z]uuns = O(e2).
Therefore, by the above facts and , we conclude
[[@elsse < 0(1) 4 Cl|R[ssx + 0(1) || e[ ssx = 0(1)

which contradicts the previous assumption that |¢c|l«s = 1. Hence, we
finish the proof. O

Proof of Proposition|3.2.1. Since the proof of the case n =4 and n = 6 are

almost the same, we only give the proof for the former one. We set
H={¢eH(Q)|(Zi,¢) =0, 0<i <4},

equipped with the scalar product (-,-).. Problem (3.2.5)) is equivalent to
finding ¢ € H such that

(6,0). = (24W?¢ + h,0), V0 c H,
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3.3. Finite Dimensional Reduction: A Nonlinear Problem

that is
¢ =T.(¢) + h, (3.2.26)

where h depends on h linearly, and 7T is a compact operator in H. Fredholm’s
alternative ensures the existence of a unique solution, provided that the
kernel of Id—T. is reduced to 0. We notice that any ¢. € Ker(Id—T;) solves
with i = 0. Thus, we deduce from Lemma [3.2.2|that ||¢. |« = o(1) as

e goes to zero. As Ker(Id—1T;) is a vector space and is {0}. The inequalities
follows from Lemma and . This completes the proof
of the first part of Proposition

The smoothness of L. with respect to A and @ is a consequence of the
smoothness of 7. and h, which occur in the implicit definition of
¢ = Lc(h), with respect to these variables. Inequality is obtained
by differentiating , writing the derivatives of ¢ with respect A and Q
as linear combinations of the Z;’s and an orthogonal part, then we estimate
each term by using the first part of the proposition. One can see [20],[34]

for detailed computations. O

3.3 Finite Dimensional Reduction: A Nonlinear
Problem

In this section, we turn our attention to the nonlinear problem, which we

solve in the finite-dimensional subspace orthogonal to the Z;. Let S.[u] be

as defined in Lemma Then (1.2.13) is equivalent to

0
S.ful =0in Q., uy #£0, 6—“ =0 on 99.. (3.3.1)
v
Indeed, if u satisfies (3.3.1), the Maximal Principle ensures that « > 0 in
Qc. Observing that

n+2
n—2

Se[W + ¢] = =AW + ¢) + p®(W + ¢) — n(n — 2)(W + ¢)
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3.3. Finite Dimensional Reduction: A Nonlinear Problem

may be written as

S W + ¢ = —Ad+ b — n(n + 2)Wa2d + B — n(n — 2)No(6) (3.3.2)

with ,
No(6) = (W + )i — Wis — Zt2wﬁ¢ (3.3.3)

and
R = S [W] = —AW + pue®W — n(n — 2)Wa-s, (3.3.4)

From Lemma we get

1
{ [R||lex < CeA+e*(—1ne)2, | Dy gy R e < Ce,  n=4, (3.3.5)

HREH**** S 052%7 HD(A7Q,7])R€H**** S CEQ? n= 6

We now consider the following nonlinear problem: finding ¢ such that,

for some numbers ¢;,

AW + @) + ue?(W + ¢) —8(W + ¢)® =3, ¢iZ;  in (.,

=0 on 99, (3.3.6)
(Z;, ¢) =0, 0<i<4

for n = 4, and finding ¢ such that, for some numbers d;,

~ AW + @) + ue?(W + ¢) —24(W + ¢)2 = >, d;Z;  in Q,
9% — 0 on A9,

(Zi,¢) =0, 0<i<7
(3.3.7)

for n = 6. The first equation in (3.3.6)) and (3.3.7) reads
~A+ pe’p — 24W26 = 8NL() — R+ ) _¢iZ;,
i
—A¢ + pe’ — 48W ¢ = 24N.(¢) — R* + > _ d; Z;. (3.3.8)
i
In order to employ the contraction mapping theorem to prove that (3.3.6)
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3.3. Finite Dimensional Reduction: A Nonlinear Problem

and (3.3.7) are uniquely solvable in the set where ||¢||. and ||¢||..x are small

respectively, we need to estimate N in the following lemma.

Lemma 3.3.1. There exists ¢ > 0, independent of A, Q, and C independent
of e, A, Q such that for e < e1 and

lolle < CeA for n =4, ||}]lswse < C=%5 for n = 6.
Then,

[Ne(@)[|s < CeAl|@]l for n =4, |INe(9)|[ssss < Cel|@|[sss for n = 6.
(3.3.9)
For

fille < CeA for n =4, ||gllser < Ce23 for n="6, i=1,2.
Then,

||N€(¢1) - NE((Z)?)H** S CEAH¢1 - d)QH* for n = 4,
| N-(61) = Ne(2)llars < Cel[ b1 — dllur for n = 6. (3.3.10)

Proof. Since the proof of these two cases are similar, we only consider n = 4

here. From , we see
INe()] < C(W¢? + 6. (3.3.11)
Using , we gain
=0 e VGO = (- lne)} [ (W o+ Jof)

where the integration term on the right hand side of the above equality can
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3.3. Finite Dimensional Reduction: A Nonlinear Problem

be estimated as

We? + |62 <C(((z — Q)72 +2(~Ine)2) |6 + |9]°)
<O((z = Q)" + (= ne)2 (= — Q) ) l2 + (= — Q) 2|
<C((elz = Q7 + (= me)i (= = Q) 72)A) 6]l

As a consequence,
e (~Ine): W 6P < C(~ne) A6, < CeAl]..

On the other hand,

Itz = Q> (W¢* + [6°)l|oc < CeAl|].
and follows. Concerning , we write

Ne(¢1) — Ne(¢2) = Oy Ne(9) (o1 — ¢2)
for some ¥ = x¢ + (1 — x)¢pa, x € [0, 1]. From

OgNe(V) = B[(W +9)* = W7,

we deduce that
Dy N-(9) < C(|[W]|9] + 9?) (3.3.12)
and the proof of (3.3.10) is similar to the previous one. O

Proposition 3.3.1. For the case n = 4, there exists C, independent of €

and A, Q satisfying (3.1.11)), such that for small € problem has a
unique solution ¢ = ¢(A, Q, ) with

]l < CeA. (3.3.13)
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Moreover, (A, Q) — ¢(A,Q,e) is C' with respect to the x-norm, and
[Dr,)2ll« < Ce. (3.3.14)

For the case n = 6, there exists C, independent of € and A, n, Q satisfying

, such that for small € problem has a unique solution ¢ =
¢(A,n, Q) with

”CbH*** < OE%- (3315)

Moreover, (A,n,Q) = ¢(A,n,Q,e) is C* with respect to the * * x-norm, and
5

||D(A,777Q)¢H*** < Ces. (3.3.16)

Proof. We only give the proof of n = 4, the other case can be argued sim-
ilarly. In the same spirit of [20], we consider the map A. from F={¢ €
HY Q) |[|¢]l« < C'eA} to H'(Q.) defined as

Aa(¢) = Le(8Na(¢) + RE)'

Here C' is a large number, to be determined later, and L. is given by Proposi-
tion 3.2.1L. We note that finding a solution ¢ to problem (3.3.6) is equivalent
to finding a fixed point of A.. On the one hand, we have for ¢ € F. Then,

using (3.3.5), Proposition and Lemma [3.3.1]

| Az (@) [|s < 8|[Le(Ne(@)[s + [ Le (BR[|« < CL(IIN () |5 + €)
< 0,0 2 + CheA < C'eA

for ¢’ = 2C, and e small enough, which implies that A. sends F into itself.

On the other hand, A. is a contraction. Indeed, for ¢ and ¢ in F, we write

1A= (¢1) = Ac(@2)ll« < Cl[N=(¢1) = Ne(2)[lex < CeA[[pr1—afl« < l”¢l—¢2”*

for € small enough. The contraction Mapping Theorem implies that A. has
a unique fixed point in F, that is, problem (3.3.6) has a unique solution ¢
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3.3. Finite Dimensional Reduction: A Nonlinear Problem

such that ||¢||l. < C"eA.
In order to prove that (A, Q) — ¢(A, Q) is C', we remark that if we set
for ¢ € F,
B(A,Q,¢) =1 — L-(8N:(¢) + R°),
then ¢ is defined as
B(A,Q,¢) = 0. (3.3.17)

We have
Oy B(A, Q,1)[0] = 0 — 8L=(0(0y N:) ()

Using Proposition and (3.3.12)) we write

1L (0(0y Ne) ()l < CODyNe) (@)l < [z = Q)7 (9pNe) (@) s 0]

< Cll(z = Q7 (Wil + [9*) e ]

Using (3.1.16), (3.2.10) and ¢ € F, we obtain

[1L(0(0y Ne) ()1« < £]10]]-

Consequently, 0y B(A,Q, ¢) is invertible with uniformly bounded inverse.
Then the fact that (A,Q) — ¢(A,Q) is C! follows from the fact that
(A, Q,7) — L.(N-(¢)) is C! and the implicit function theorem.

Finally, we consider (3.3.14)). Differentiating (3.3.17)) with respect to A,
we find

8A¢ = (adiB(Av f, ¢))_1((8ALE)(NE(¢)) + LE((BANE)(¢)) + La(aARE))'
Then by Proposition
10A¢ [« < CUINe(@)l4x + [[(OaN) (@)l + 1AL 4)-

From Lemma|3.3.1/and (3.3.13), we know that | N-(¢)]||«« < Ce2. Concerning

the next term, we notice that according to the definition of N,
|OAN:(¢)| = 3¢*[OAW|.
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Recalling that
IDAW ()] < C((2 = Q)72 + €%(~ Ine)?2),

which gives
[0AN(9)[l+x < Ce.

Finally, using (3.3.5)), we obtain
10a¢]« < Ce.

The derivative of ¢ with respect to Q can be estimated in the same way.

This concludes the proof. ]

3.4 Finite Dimensional Reduction: Reduced

Energy

Let us define the reduced energy functional as

IE(A, Q) = JE[WA,Q + (,2557[\7@] (341)

for n =4 and

I(An, Q) = Je[Wy 5.6 + bean,0)] (3.4.2)

for n = 6. Then, We have

Proposition 3.4.1. The functionu = Wy 5+¢. p g s a solution to problem
for n = 4 if and only if (A, Q) is a critical point of I.. The function
u=Wy 5+ nn0 1S asolution to problem forn =6 if and only
if (A,n,Q) is a critical point of I..

Proof. Here we only give the proof for the case n = 6. We notice that
u = W + ¢ being a solution of (1.2.13)) is equivalent to being a critical point
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of J., which is also equivalent to the vanish of the d;’s in (3.3.7) or, in view
of

(Zo,Yo) = [IYol|2 = 0 + o(1),
(Z:,Y;) = Vil =m +o(1), 1<i <6,
(Z7,Yz) = |1Y7|2 = 72e?, (3.4.3)

where g, 71,72 are strictly positive constants, and

(Z:,Y;) =0(1),i# j,0<i,j <6, (Z,Y;)=0("),i#ji=Torj=T.
(3.4.4)
We have

JUW 4+ ¢][Y;] =0, 0<i<T. (3.4.5)

On the other hand, we deduce from (3.4.2) that IZ(A,7n,Q) = 0 is equivalent
to the cancellation of JL(W + ¢) applied to the derivative of W + ¢ with
respect to A, n and Q. By the definition of Y;’s and Proposition [3.3.1}, we

have

AW + ¢)

oW +0) _y W +0)
) a,r/

——=—=Yi+ty, 1 <i1<6, =Y
A 20; +y ( 7+ Y7

with [|y;][ses = O(€2), 0 < i < 7. We write

]~

~A(W + @) + pe? (W + ¢) — 24(W + ¢)* = > d;Z;

J=0

and denote a;; = (y;, Z;). It turns out that IZ(A,n,Q) = 0 is equivalent,
since JL[W + ¢][0] = 0 for (0, Z;) = (0,Y;). =0, 0<i <7, to

([bij] + laij])[d;] = 0,

where b;; = (Y;, Z;). Using the estimate ||y; [« = O(¢%) and the expression
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of Z;,Y;,0 <i <7, we directly obtain

b00:70+0(1), bii:’yl—l—o(l) for 1 <i <6, b77:’)/2€3,
bij=o(1) for 0 <i#j <6, bj=0(*) fori=T7orj="7i#j,
aij =0(*) for 0 <i<7,0<j <6, a;g=0("for0<i<T.

Then it is easy to see the matrix [b;;+a;;] is invertible by the above estimates

of each components, hence d; = 0. We see that IZ(A, 7, Q) = 0 means exactly

that (3.4.5)) is satisfied. O

By Proposition [3.4.1] it remains to find critical points of I.. First, we

establish an expansion of I..

Proposition 3.4.2. In the case n = 4, for e sufficiently small, we have
LA, Q) = J W]+ %0-4(A, Q) (3.4.6)

where 0.4 = 0(1) and Dp(0:4) = o(1) as e goes to 0, uniformly with respect

to A, Q satisfying (3.1.11).

In the case n = 6, for ¢ sufficiently small, we have
L(A7,Q) = J[W] + el 6(A, 0, Q) (3.4.7)

where 0.6 = 0o(1) and Dpy(o-6) = o(1) as € goes to 0, uniformly with

respect to A, n, Q satisfying .

Proof. We only consider the case n = 4 here, the other case can be argued
similarly with minor changes. In view of (3.4.1)), a Taylor expansion and the
fact that J.[W + ¢][¢] = 0 yield

1
LA, Q) = JL[W] =J.[W + 6] — J.[W] = /0 JUOW + t8)[6, ¢)(1)dt

- K [ 968 + 267~ 2400 +16)6%) .
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whence
I.(A, Q) — J[W]

_ /01 (8/ (Na(qﬁ)qb LW — (W + t¢)2]¢2))tdt - /Q R¢. (3.4.8)
The first term on the right hand side of can be estimated as
|| Ne@ia| <€ [ 1ol 41wt = Ofetme).

Similarly, for the second term on the right hand side of (3.4.8)), we obtain
[ = sone <o [ lolt+ 1w = (et ine).

Concerning the last one, by using

Bl = S W]| =0 (! (~Ine)(z = Q) + eX(~ In)i (= — Q) )

4 4

€ IIn 1 I+ € )
(—Ine)' " e(1+ |z —Q)) (—Ine)/’

+om)(

and [|¢[|« = O(eA), we have

e

This concludes the proof of the first part of Proposition (3.4.6)).

An estimate for the derivatives with respect to A is established exactly
in the same way, differentiating the right side in (3.4.8)) and estimating each

term separately, using (3.3.3), (3.3.5) and Lemma O

= 0(82(— lna)%A2 +&3(— lna)%).
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3.5 Proof Of Theorem [1.2.1]

In this section, we prove the existence of critical points for I.(A, Q) and
I.(A,n,Q), thereby proving Theorem by Proposition According
to the Proposition and Lemma [3.1.1], we set

KA Q) = EQ) 2] U (3.5.1)
(Eie
and
I.(An, Q) —4 | U
Ko(hp,) = Q) Z 4 (35.2)
When n = 4, we have
s, 1 A2 Loy 1
(A Q) 7C4A lnr(_lné_) 2|Q| A H(Q Q)( IHE)
A2
+ 0(_ln(€ +¢), (3.5.3)

and when n = 6, we have
1
Ko(h,m,Q) =(710 — cohn + Jcah? — 89P10)) + S EATH(Q, Q)

1 ce\? A2
RN )E/Q wan .

Next, we consider K.(A,Q), and find its critical point with respect to
A, @, and the critical point of K .(A,n,Q) with respect to the parameters
A, n, Q respectively.

First, we consider K (A, Q) for n = 4. For the setting of the parameters
A, Q, we see that A, Q) are located in a compact set. As a consequence, we

can obtain a maximal value of K.(A, Q). Then, we claim that:

Claim: The maximal point of K. (A, Q) with respect to A, @ can not happen
on the boundary of the parameters.

If we can prove this claim, then we could obtain an interior critical point
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3.5. Proof Of Theorem [1.2.]]

of K.(A, Q). Before proving the claim, we first consider

1 1, c2A?
F.(A) = —c4A%In — B
=(4) T nAs(—lne) 2|9
Note that
0 1 1 c1 1 c1 ciA
—[F.(A)] = =c4yAln — — —c4A - =
8A[ ()] 9 nAg(—lna) 1% (—lns) Q]

Choosing ¢; = %, we could obtain that there exists

AF — exp(-%) c (exp(—%)zSB’eXp(—l)g_ﬂ)

with some proper fixed constant S € (0, %), such that

0
87AF5 |A=A+= 0.

It can be also found that such A* provides the maximal value of F;(A) in
[Ag1, Ay 2], where Ayy = exp(—%)sﬁ, Ayo = exp(—%)sfﬁ. In order to prove
the claim, we need to take A into consideration for the expansion of the

energy, going through the first part of the Appendix, we have

1 1 ¢ A2 1 c1 .1
K.(A Q)= ~cyA?In— S ~N’H
6( aQ) 464 nAg(—lns) 2’9‘ +204 (Q’Q)(—ln€)2
2
+O(_ln6~|—s).

Now, we go back to prove of the claim, choosing A = A* and Q = p.
(Here p refers to the point where H(Q, Q) obtain its maximal value, it is
possible to find such a point. Indeed, we notice a fact H(Q,Q) — —oo
as d(Q,00) — 0 see [63] and references therein for a proof of this fact.
Therefore we could find such p.)

First, we prove that the maximal value can not happen on OM;,. We
choose 04 such that dy < maxgpg 54 H < d; for some proper constant da, d;
sufficiently negative, then we fixed M,. It is easy to see that K. (A, Q) <
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3.5. Proof Of Theorem [1.2.]]

K.(A,p), where @ lies on the boundary of Ms, and A € (Ayg1,A42). For
A = Ay or Ay2, we go to the arguments below. Therefore, we prove that
the maximal point can not lie on the boundary of M, X [A4 1, Aga].

Next, we show K (A*,p) > K.(A42,Q). It is easy to see that

F; [A4,2] < 65_2ﬂa

where ¢ < 0. Then we can find ¢; < 0 such that K. (A42,Q) < c1e2P for any
Q € Ms,, since the other terms compared to £=28 are higher order term.
On the other hand, for the choice of A*,p, we see that K.(A*,p) = O(1).
Therefore, we prove that K.(A*,p) > K.(A4,2,Q) for any Q € Ms,.
It remains to prove that the maximal value can not happen at A = Ay .
We choose A = £8/2, Q = p, direct computation yields.
_ Bciel B3

B/2
Ks(5 ap) - 4|Q| (1+O(1))’ KE(A4,17Q) - 2’Q|

(1+o0(1)).

It is to see Ke(aﬂ/Q,p) > K. (A41,Q) for any QQ € M, when ¢ is sufficiently
small. Hence, we finish the proof of the claim. In other words, we could
obtain an interior maximal point in [Ag 1, Ag2] X Ms,. Therefore, we show
the existence of the critical points of K. (A, @) with respect to A, Q.

For n = 6. We set n = ﬁ%—as%, Cfé\‘g = %—I—bsg, then

Q| + [F(Q) — (8a® + ab)|] = + o(e),
(3.5.5)

1
K€<a7 b7 Q) = KE(Av m, Q) = @

where
Y] 1 / 1
F(z) = 7( OH(z,2)+— | ——d )
—776§a§776 and —AGSbSAG.
We set Cy = F'(po), po refers to the point where F'(z) obtains its maximal
value. Indeed, we have H(Q,Q) — —oo as d(Q,02) — 0 and I(x) =

Jo ﬁdy is uniformly bounded in 2. Hence, we can always find such point
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3.5. Proof Of Theorem [1.2.]]

po- Let us introduce another five constants C;,7 = 1,2,3,4,5, with Cy <
C1 <Cp, 0<C3<Cy<mgand 0 < (3 < C5 < Ag, the value of these five
constants will be determined later.

We set

20:{—C4§a§04, —Cg,gbgCg,,Qe/\/'cz}, (3.5.6)

where N¢, = {q: F(q) > Ci},i = 1,2 and ¢ is chosen such that N, C Ms,.
We also define

B = {(a7b7Q) | (avb) € BC3(0)7 Q Em}’
Bo = {(a,b) | (a,b) € Be,(0)} x ONG,, (3.5.7)

where B,.(0) := {0 < a? + b < r}.

It is trivial to see that By C B C Y, B is compact. Let I' be the class
of continuous functions ¢ : B — ¥y with the property that ¢(y) = y,y =
(a,b,Q) for all y € By. Define the min-max value c as

= mi K .
¢ = min max (¢(y))

We now show that ¢ defines a critical value. To this end, we just have to

verify the following conditions

(T1) maxyep, K:(p(y)) <c, Vo €T,

(T2) For all y € 0% such that K.(y) = ¢, there exists a vector 7, tangent
to 0% at y such that

Or, K:(y) # 0.

Suppose (T1) and (T2) hold. Then standard deformation argument en-
sures that the min-max value ¢ is a (topologically nontrivial) critical value
for Kc(a,b,Q) in Xo. (Similar notion has been introduced in [21] for degen-
erate critical points of mean curvature.)

To check (T1) and (T2), we define ¢(y) = ¢(a,b,Q) = (a,¥b: PQ)
where (@q, ¢p) € [—C4, Ca] x [-C5,C5) and g € Ng,.
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3.5. Proof Of Theorem [1.2.]]

For any ¢ € I" and Q € Ng¢,, the map Q — ¢g(a,b, Q) is a continuous
function from Ng, to Ng, such that ¢g(a,b,Q) = Q for Q € ON¢,. Let
D be the smallest ball which contain N¢,, we extend g to a continuous

function @g from D to D where $(Q) is defined as follows:
oo(z) = ¢(x), z € Ne,, ¢o(x)=1Id, © € D\ Ng,.

Then we claim there exists Q' € D such that ¢go(Q') = po. Otherwise
$Q—Po
[¢Q—Pol
algebraic topology. Hence, there exists ()’ € D such that pg(Q") = po. By

provides a continuous map from D to S°, which is impossible in

the definition of ¢, we can further conclude Q' € N¢,. Whence

max K. (¢(y)) >K:(¢ala,b,Q"), pp(a,b,Q"), po)

1
> _ —_ ..
> =19 + (Co = Csl2)e + ofe), (3.5.8)

where Cg = 8C’ff + C4C5 which stands for the maximal value of 8a® + ab in

[~C4,C4] x [-C5,C5]. As a consequence

1
> — . <D
¢ 2 |00+ (Co = Col)e + o(e) (3.5.9)

For (a,b,Q) € By, we have F(pg(a,b,Q)) = Ci. So,

1
Ke(a,b,Q) < 55 10] + (C1 + CrlQ)e + o), (3.5.10)

where C7 = MAaX (q,b)€ B, (0) 8a3 + ab < 8C3 + C3.

If we choose Cy — Cy > 80};’ + CyC5 + 8C’§ + 032 > Cs + C7, we have
maxyep, K:(¢(y)) < ¢ holds. So (T1) is verified.

To verify (T2), we observe that

0% =:{a,b,Q |a=—-Cyora=Cyorb=—C5o0rb=Csor Q€ ONg,}.
Since Cy, C5 are arbitrary, we choose 0 < 2402 < (5. Then on a = —CYy

or a = (4, we choose 7, = %, on b = —Cj5 or b = Cs5, we choose 7, = %.
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3.5. Proof Of Theorem

By our setting on Cjy, Cs, we could show 0,, Kc(y) # 0. It only remains to
consider the case Q € ONg,. If Q € ON¢,, then

1
K.(a,b,Q) < @\Q] + (Cy + C7|Q)e + o(e), (3.5.11)

which is obviously less than ¢ for Cy < Cy. So (T2) is also verified.
In conclusion, we proved that for € sufficiently small, ¢ is a critical value,
i.e., a critical point (a,b, Q) € 3¢ of K. exists. Which means K. indeed has

critical points respect to A, n, @ in (3.1.13)).

Proof of Theorem completed. For n = 4, we proved that for £ small
enough, I. has a critical point (A%, Q%). Let uc = Wjc ge .. Then u. is a
nontrivial solution to problem for n = 4. The strong maximal
principle shows u. > 0 in .. Let u, = e 'u.(z/¢) and this is a nontrivial
solution of for n = 4. Thus, we get Theorem for n = 4.

For n = 6, we proved that for ¢ small enough, I. has a critical point
(A%, 7%, Q°). Let u. = We e g - Then u, is a nontrivial solution to problem
for n = 6. The strong maximal principle shows u. > 0 in €).. Let
uy, = € 2u.(x/e) and this is a nontrivial solution of (1.2.12)) for n = 6. Thus,
we get Theorem for n = 6. Hence, we finish the proof. [J
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3.6 Proof Of Lemma [3.1.1]

We divide the proof into two parts. First, we study the case n = 4. From
the definition of W, (3.1.10) and (3.1.15)), we know that

S W] =— AW + pe*W — 8W?3

c A C 1
— 8U° + 54(TL€)U - EQ(TLe) 2 A(Repqx) — 8W3

= O<€4(— Ine)(z — Q) 2 +&(— lne)%<2 - Q>74>

gt 1 gt )

+ O(A)((—lne) | e(1+]z—Q)) [+ (—lne)%

The estimates for DAS:[W] and DgS:[W] can be computed in the same

way.

We now turn to the proof of the energy estimate (3.1.23). From (3.1.15))
and (3.1.16)) we deduce that

1 A~
VW2 4 ( 2/ W2 = 8/ USW 4 &4 (—2 )/ ow
lne 1 Qe

—1ine

Qe

=

2/ A(RY)W. (3.6.1)

—lne

Concerning the first term on the right hand side of (3.6.1)), we have

/U3W /U4 (-9 )5/ ous
Qe Ine

C4A Cc1 7% 3
.6.2
e =) / U, (3.6.2)

By noting that

A
| vi=[ vlororh. [ vP=4E o),
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we get

A c _1 c 1
3 _ 4 1 2/ €1
ovtw= [ vl Gt () )

+O(H (=) 2.

—Ine

For the third term on the right hand side of the above equality, we have

~ _1
/ UU3:—/ w3 2/ H(z /(RX)U3
€ € QE

__C4A i_cZAQ 1 -1 9
BT i (—lne) H(Q: Q)+ 04,

Hence, we have

A2 c1 _1 C4A2 1 1 1

U3W U 2 In — 2 2

/QE / 10+8\Q| (s 6 At (T
_ cﬁA2

8

QH(Q’Q)+O(52(_CIL€)%A2+64(%L€)_%)‘

For the second term on the right hand side of (3.6.1])

A:A2015A204A261—;/A
/EUW QEUU+e(_1n€) /QEU+IQ\E(—lns) EU,
by using

/ OU = 0(e2(—5L_)242), / 0% = O(c*(~ ln)A?),
Qe Qe

—Ine

v —4_ A -1 A —4
/QEU—E — 2/9|m_Q|2+0(5 A),

and [, G(z,Q) = 0, we obtain

Ine —Ilne

4 €1 . _C4A 1 9/ €1 \iio
e (—— )/QEUW 5] /QIQ:_Q’QJFO(s (——)2A%).  (3.6.4)
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For the last term on the right hand side of (3.6.1),

/ A(RX)W
= (S [ ARy + o)
—Ine 1 Ja,
= c1 _1% 20 4 Nig 5 9
B (—lng) 1] QEA(U € (_1n€) U — cyAe”H) + O(A?)
1 —1cA 5 2, €1 N1 L1 )
(—lns) || Qg( 8U" +¢ <—lns) U+ cyle ’Q|)+O( )
A _%C4A2 1 ) o
- ) o Jo@nye—qgp oM e (=Ine)),  (3.6.5)

where we used (3.1.8)). Using (3.6.3))-(3.6.5)), we get
1 2 2 C1 12
. (s o)

2
272 272
4 g, €1\ 1ciA e 2
= — H
/R4 U1,0+€ (—11’16) 2 2‘9’ 9 (Q?Q)E
Ceh by L (a2 4 o~
4 —1 Ae —In —Ine
(3.6.6)
Next, we compute the term st w4,
W4—/ Ut 4 4e2(—S )%/ U3E7 4 4e2(—S) 3 Ch [
Qe Qe —Ine Qe —Ine ’Q| Qe
4 C1 -2
LO( (<))
4 C4A2 2 C1 % 1 CZA2 2
= - — In — — H
/R4U1’0 4 ¢ (—lns) nA€ 2 eHQ,Q)
AN (O o< ) 4o (—2) )
2|Q| " ‘—Ine —1Ine —1Ine '
(3.6.7)
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Combining (3.6.6) and (3.6.7)), we obtain

1 2
JE[W]:2/Q |VW12+“;/Q w22 [ wi
2

Qe
B 4, a5 e (1 i_cﬁA22 c1 (-1
=2 [ U+ e - S )
1 1
+ AN EPH(Q.Q) + 0(52(_%6) 2A%) + O(c*(— Ine)?). (3.6.8)

In the following, we prove (3.1.24))-(3.1.28]). By the definition of W, (3.1.10)
and (3.1.15)), we know that

S.[W]=— AW + 3W — 24W?

N A2
= 24U2 + &80 — 3A(Rx) + 5 (n — CFT') — 24U? — 2428

+ 0(83<Z — Q)_4)

We rearrange the right hand side of the above equality and obtain

Se[W]=—e%24n* —n + Cfé\f) + O(s3<z -Q)™

=0((z — Q>_3%63).

The estimates for DAS:[W], DgSe[W] and D,S:[W] can be derived in the
same way. Now we are in the position to compute the energy. From (3.1.15))

and (3.1.16)), we deduce that

VW% + &3 W2=/ (—AW + W)W
Qe Qe €

2
—/ (24U2+€6[7—53A(Rx)+56( —T;;))W

€

(3.6.9)
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Concerning the first term on the right hand side of (3.6.9), we have

/U2W: U3+53/ UU2+7753/ U?
€ QE € €

1
— 3 A2 3 _ A4 4H . A2 3 )
/RGU1,0+246677 (Q,Q) 57606 e+ O(°)
(3.6.10)

For the second, third and fourth term on the right hand side of (3.6.9),

following the similar steps as we did in case n = 4.

R N A 1
56/ UwW = 56/ U(U +&3U +ne’) = —77A254/ Tt Oo(e%),
. - alr—Q
(3.6.11)

€

—53/ A(Rx)W 26377/ AU = 30 — ¢se?\’H) + O(e°) = 8677/ U+ 0(e%)
€ QS
1
= A%“/ —— +0(), 3.6.12
et [ g+ o) (36.12)
and

A2 A A2
56(77— €6 )/Q W = (772|Q|—c677A2)53+(77— C|69| )e /Q+O(e5).

€2 lz — Q|
(3.6.13)
Using (3.6.10)-(3.6.13), we have
1
/ |VW|2+ :
2 Ja.
1 c2A*
:12/ Ufy + (5 \m-fcw)e - TH(Q. Q)¢
C6A /

+ — . 3.6.14

2= S [ g + 00 (3644
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Then,
/ W3:/ U§,0+353/ U20+353/ U2n+356/ Un2+359/ Un?
£ RS £ QE QE Q&
+€9/ 773+O(s5)
Qe
1 1 1
= / U o+ —cenh?e® — ——cgA?e® +°|Qe® — AN H(Q, Q)
ge 08 192 8
+0(%). (3.6.15)

Combining (3.6.14))-(3.6.15)), we obtain the energy
_ 3 1o o 1 19 3 3, 1244 4
JW]l= 4[] Ui+ (=079 — cenA” + —csA” — 8n°|Q| )e” + —ccA"H(Q, Q)e
RS ’ 2 48 2
1 ceA? 4/ A? .
+-n——=)c —— 1+ 0(e”). 3.6.16
2( ‘Q| ) 0 ‘37 _ Q’4 ( ) ( )

Hence, we finish the whole proof of Lemma U

127



Bibliography

1]

2]

[7]

Ralph Abraham. Transversality in manifolds of mappings. Bull. Amer.
Math. Soc, 69:470-474, 1963.

Adimurthi and Shyam Lal Yadava. Existence and nonexistence of pos-
itive radial solutions of neumann problems with critical sobolev expo-
nents. Archive for Rational Mechanics and Analysis, 115(3):275-296,
1991.

Adimurthi and Shyam Lal Yadava. On a conjecture of lin-ni for a semi-
linear neumann problem. Transactions of the American Mathematical
Society, pages 631-637, 1993.

Adimurthi and Shyam Lal Yadava. Nonexistence of positive radial so-
lutions of a quasilinear neumann problem with a critical sobolev ex-
ponent. Archive for Rational Mechanics and Analysis, 139(3):239-253,
1997.

Daniele Bartolucci, Chiunchuan Chen, Changshou Lin, and Gabriella
Tarantello. Profile of blow-up solutions to mean field equations with
singular data. Communications in Partial Differential Equations, 29(7-
8):1241-1265, 2004.

Daniele Bartolucci and Gabriella Tarantello. Liouville type equations
with singular data and their applications to periodic multivortices for
the electroweak theory. Communications in Mathematical Physics,
229(1):3-47, 2002.

Luca Battaglia, Aleks Jevnikar, Andrea Malchiodi, and David Ruiz. A

128



Bibliography

[12]

[13]

[14]

[15]

[16]

general existence result for the toda system on compact surfaces. ArXiv
preprint arXiw:1306.5404, 2013.

John Bolton, Gary R Jensen, Marco Rigoli, and Lyndon M. Woodward.
On conformal minimal immersions of S? into CP". Mathematische An-
nalen, 279(4):599-620, 1988.

John Bolton and Lyndon M. Woodward. Some geometrical aspects
of the 2-dimensional toda equations. Geometry, Topology and Physics
(Campinas, 1996), pages 69-81, 1997.

Haim Brezis. Functional analysis, Sobolev spaces and partial differential

equations. Universitext. Springer, New York, 2011.

Haim Brezis and Frank Merle. Uniform estimates and blow-up behavior
for solutions of —Au = V(x)e" in two dimensions. Communications in
Partial Differential Equations, 16(8-9):1223-1253, 1991.

Chris J. Budd, Mariette C. Knaap, and Lambertus A Peletier. Asymp-
totic behaviour of solutions of elliptic equations with critical exponents

and neumann boundary conditions. Proceedings of the Royal Society of
Edinburgh: Section A Mathematics, 117(3-4):225-250, 1991.

Eugenio Calabi. Isometric imbedding of complex manifolds. Annals of
Mathematics, pages 1-23, 1953.

Chiunchuan Chen and Changshou Lin. Sharp estimates for solutions of
multi-bubbles in compact Riemann surfaces. Communications on Pure
and Applied Mathematics, 55(6):728-771, 2002.

Chiunchuan Chen and Changshou Lin. Topological degree for a mean
field equation on Riemann surfaces. Communications on Pure and Ap-
plied Mathematics, 56(12):1667-1727, 2003.

Chiunchuan Chen and Changshou Lin. Mean field equations of liouville
type with singular data: sharper estimates. Discrete Contin. Dyn. Syst.,
28(3):1237-1272, 2010.

129



Bibliography

[17]

[18]

[21]

[22]

[23]

[24]

[25]

[26]

Chiunchuan Chen and Changshou Lin. Mean field equation of liouville
type with singular data: Topological degree. Communications on Pure
and Applied Mathematics, 68(6):887-947, 2015.

Shiingshen Chern and Jon G Wolfson. Harmonic maps of the two-sphere
into a complex Grassmann manifold. I1. Annals of Mathematics, pages
301-335, 1987.

Teresa D’Aprile, Angela Pistoia, and David Ruiz. Asymmetric blow-up
for the SU(3) toda system. ArXiv preprint arXiv:1411.5482, 2014.

Manuel Del Pino, Patricio Felmer, and Monica Musso. Two-bubble
solutions in the super-critical bahri-coron’s problem. Calculus of Vari-
ations and Partial Differential Equations, 16(2):113-145, 2003.

Manuel del Pino, Patricio L Felmer, and Juncheng Wei. On the role
of mean curvature in some singularly perturbed neumann problems.
SIAM Journal on Mathematical Analysis, 31(1):63-79, 1999.

Weiyue Ding, Jiirgen Jost, Jiayu Li, and Guofang Wang. FExistence
results for mean field equations. Ann. Inst. H. Poincaré Anal. Non
Linéaire, 16(5):653-666, 1999.

Olivier Druet, Frédéric Robert, and Juncheng Wei. The Lin-Ni’s prob-
lem for mean convex domains, volume 218. American Mathematical
Soc., 2012.

Gerald Dunne. Self-Dual Chern-Simons Theories, volume 36. Springer
Science & Business Media, 1995.

Gerald V Dunne, R Jackiw, So-Young Pi, and Carlo A Trugenberger.
Self-dual chern-simons solitons and two-dimensional nonlinear equa-
tions. Physical Review D, 43(4):1332, 1991.

Martin A Guest. Harmonic maps, loop groups, and integrable systems,

volume 38. Cambridge University Press, 1997.

130



Bibliography

[27]

[30]

Changfeng Gui and Juncheng Wei. Multiple interior peak solutions for
some singularly perturbed neumann problems. Journal of Differential
FEquations, 158(1):1-27, 1999.

David Iron, Michael J. Ward, and Juncheng Wei. The stability of spike
solutions to the one-dimensional Gierer-Meinhardt model. Phys. D,
150(1-2):25-62, 2001.

Jirgen Jost, Changshou Lin, and Guofang Wang. Analytic aspects
of the Toda system. II. Bubbling behavior and existence of solutions.
Communications on Pure and Applied Mathematics, 59(4):526-558,
2006.

Jirgen Jost and Guofang Wang. Analytic aspects of the Toda system.
I. A Moser-Trudinger inequality. Communications on Pure and Applied
Mathematics, 54(11):1289-1319, 2001.

Tosio Kato. Perturbation theory for linear operators, volume 132.

Springer Science & Business Media, 1976.

James P. Keener. Activators and inhibitors in pattern formation. Stud.
Appl. Math., 59(1):1-23, 1978.

Evelyn F Keller and Lee A Segel. Initiation of slime mold aggregation
viewed as an instability. Journal of Theoretical Biology, 26(3):399-415,
1970.

Saima Khenissy and Olivier Rey. A criterion for existence of solutions
to the supercritical bahri-coron’s problem. Houston Journal of Mathe-
matics, 30(2):587-613, 2004.

A. N. Leznov and Mikhail Vladimirovich Saveliev. Group theoretical
methods for integration of nonlinear dynamical systems, volume 15.
Birkhauser Verlag, Basel, 1992.

Jiayu Li and Yuxiang Li. Solutions for toda systems on riemann sur-
faces. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze-
Serie V, 4(4):703-728, 2005.

131



Bibliography

[37]

[38]

[42]

[44]

[45]

[46]

Yanyan Li. Harnack type inequality: the method of moving planes.
Communications in Mathematical Physics, 200(2):421-444, 1999.

Yanyan Li and Itai Shafrir. Blow-up analysis for solutions of —Au =
Ve" in dimension two. Indiana University Mathematics Journal,
43(4):1255-1270, 1994.

Changshou Lin. Topological degree for mean field equations on S2.
Duke Math. J., 104(3):501-536, 2000.

Changshou Lin. Liouville systems of Mean field equations. Milan Jour-
nal of Mathematics, 79(1):81-94, 2011.

Changshou Lin and Weiming Ni. On the diffusion coefficient of a semi-
linear neumann problem. In Calculus of variations and partial differ-

ential equations, pages 160-174. Springer, 1988.

Changshou Lin, Weiming Ni, and Izumi Takagi. Large amplitude sta-
tionary solutions to a chemotaxis system. Journal of Differential Equa-
tions, 72(1):1-27, 1988.

Changshou Lin, Juncheng Wei, and Dong Ye. Classification and nonde-
generacy of SU(n + 1) toda system with singular sources. Inventiones
Mathematicae, 190(1):169-207, 2012.

Changshou Lin, Juncheng Wei, and Lei Zhang. Classification of blowup
limits for SU (3) singular toda systems. arXiv preprint arXiv:1303.4167,
2013.

Changshou Lin, Juncheng Wei, and Chunyi Zhao. Asymptotic behavior
of SU(3) toda system in a bounded domain. Manuscripta Mathematica,
137(1-2):1-18, 2012.

Changshou Lin, Juncheng Wei, and Chunyi Zhao. Sharp estimates
for fully bubbling solutions of a SU(3) toda system. Geometric and
Functional Analysis, 22(6):1591-1635, 2012.

132



Bibliography

[47]

[48]

[49]

[50]

[51]

[54]

Changshou Lin and Shusen Yan. Bubbling solutions for the SU(3)
chern-simons model on a torus. Communications on Pure and Applied
Mathematics, 66(7):991-1027, 2013.

Changshou Lin and Shusen Yan. Existence of bubbling solutions for
chern—simons model on a torus. Archive for Rational Mechanics and
Analysis, 207(2):353-392, 2013.

Changshou Lin and Lei Zhang. Profile of bubbling solutions to a liou-
ville system. In Ann. Inst. H. Poincaré Anal. Non Linéaire, volume 27,
pages 117-143. Elsevier, 2010.

Changshou Lin and Lei Zhang. A topological degree counting for some
liouville systems of mean field type. Communications on Pure and
Applied Mathematics, 64(4):556-590, 2011.

Changshou Lin and Lei Zhang. On liouville systems at critical parame-
ters, part 1: One bubble. Journal of Functional Analysis, 264(11):2584—
2636, 2013.

Fanghua Lin, Weiming Ni, and Juncheng Wei. On the number of interior
peak solutions for a singularly perturbed neumann problem. Commu-
nications on Pure and Applied Mathematics, 60(2):252—-281, 2007.

Andrea Malchiodi. Morse theory and a scalar field equation on com-
pact surfaces. Advances in Differential Equations, 13(11-12):1109-1129,
2008.

Andrea Malchiodi and Cheikh Birahim Ndiaye. Some existence results
for the toda system on closed surfaces. Atti Accad. Naz. Lincei Cl. Sci.
Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 18(4):391-412, 2007.

Andrea Malchiodi and David Ruiz. On the leray-schauder degree of
the toda system on compact surfaces. ArXiv preprint arXiv:1311.7375,
2013.

133



Bibliography

[56]

[57]

[60]

[61]

[62]

[63]

[64]

[65]

Andrea Malchiodi and David Ruiz. A variational analysis of the toda
system on compact surfaces. Communications on Pure and Applied
Mathematics, 66(3):332-371, 2013.

Weiming Ni and Izumi Takagi. On the shape of least-energy solutions to
a semilinear neumann problem. Communications on Pure and Applied
Mathematics, 44(7):819-851, 1991.

Y. Nishiura. Global structure of bifurcating solutions of some reaction-
diffusion systems. SIAM J. Math. Anal., 13(4):555-593, 1982.

Margherita Nolasco and Gabriella Tarantello. Double vortex conden-
sates in the chern-simons-higgs theory. Calculus of Variations and Par-
tial Differential Equations, 9(1):31-94, 1999.

Margherita Nolasco and Gabriella Tarantello. Vortex condensates for
the SU(3) chern-simons theory. Communications in Mathematical
Physics, 213(3):599-639, 2000.

Frank Quinn. Transversal approximation on banach manifolds. In Proc.
Sympos. Pure Math.(Global Analysis), volume 15, pages 213-223, 1970.

Olivier Rey. The role of the green’s function in a non-linear elliptic
equation involving the critical sobolev exponent. Journal of Functional
Analysis, 89(1):1-52, 1990.

Olivier Rey and Juncheng Wei. Arbitrary number of positive solutions
for an elliptic problem with critical nonlinearity. Journal of the Euro-
pean Mathematical Society, 7:449-476, 2005.

B. D. Sleeman, Michael J. Ward, and Juncheng Wei. The existence
and stability of spike patterns in a chemotaxis model. SIAM J. Appl.
Math., 65(3):790-817, 2005.

Michael Struwe and Gabriella Tarantello. On multivortex solutions in
Chern-Simons gauge theory. Boll. Unione Mat. Ital. Sez. B Artic. Ric.
Mat. (8), 1(1):109-121, 1998.

134



Bibliography

[66]

[67]

[68]

[70]

[71]

Liping Wang, Juncheng Wei, and Shusen Yan. A Neumann problem
with critical exponent in nonconvex domains and lin-nis conjecture.
Transactions of the American Mathematical Society, 362(9):4581-4615,
2010.

Liping Wang, Juncheng Wei, and Shusen Yan. On Lin-Ni’s conjecture
in convex domain. Proceedings of the London Mathematical Society,
pages 1099-1126, 2011.

Xuefeng Wang and Juncheng Wei. On the equation Au +
K(;zc)u(””)/("*QHE62 =0 in R™. Rend. Circolo Matematico di Palermo
11, pages 365-400, 1995.

Juncheng Wei. Existence and stability of spikes for the gierer-meinhardt
system. Handbook of Differential Equations: stationary partial differ-
ential equations, 5:487-585, 2008.

Juncheng Wei and Xingwang Xu. Uniqueness and a priori estimates
for some nonlinear elliptic neumann equations in R3. Pacific journal of
Mathematics, 221(1):159-165, 2005.

Juncheng Wei, Chunyi Zhao, and Feng Zhou. On nondegeneracy of
solutions to SU(3) Toda system. Comptes Rendus Mathematique,
349(3):185-190, 2011.

Yisong Yang. The relativistic non-abelian chern-simons equations.
Communications in Mathematical Physics, 186(1):199-218, 1997.

Yisong Yang. Solitons in field theory and nonlinear analysis, volume
146. Springer Science & Business Media, 2001.

Meijun Zhu. Uniqueness results through a priori estimates. I. A three-
dimensional Neumann problem. Journal of Differential Equations,
154(2):284-317, 1999.

135



	Abstract
	Preface
	Table of Contents
	Acknowledgements
	Dedication
	Introduction
	The Degree Counting Formula For SU(3) Toda System
	Background And Main Results
	Sketch Of The Proof Of Theorem 1.1.1

	Lin-Ni Problem
	Background
	Previous Results On Lin-Ni Problem
	Sketch Of The Proof Of Theorem 1.2.1

	Organization Of The Thesis

	The SU(3) Toda System
	Proof Of Proposition 1.1.1, Proposition 1.1.2 And Shadow System
	A-priori Estimate
	Approximate Blow-up Solution
	Deformation And Degree Counting Formula
	Proof Of Theorem 1.1.1
	Proof Of Lemma 2.3.2 And (2.4.14)
	The Leray-Schauder degree

	The Lin-Ni Problem
	Approximate Solutions
	Finite Dimensional Reduction
	Finite Dimensional Reduction: A Nonlinear Problem
	Finite Dimensional Reduction: Reduced Energy
	Proof Of Theorem 1.2.1
	Proof Of Lemma 3.1.1

	Bibliography

