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Abstract 

Pediatric asthma and allergies represent global health problems causing substantial disability. 

Epidemiological research has established a link between air pollution and exacerbation of asthma. 

However, the role of air pollutants in relation to atopy and on the development of asthma is unclear. 

This thesis examines the relationship between traffic-related air pollution and the development of atopy 

and asthma using two complementary Canadian birth cohorts where the impact of different exposure 

assessment approaches on observed associations was evaluated. 

Hopanes in house dust, collected in the Canadian Healthy Infant Longitudinal Development (CHILD) 

birth cohort study, were evaluated as markers of indoor infiltrated traffic-related air pollution by 

measuring their correlation with geographic predictors of outdoor concentrations of nitrogen dioxide. This 

correlation was dependent on the inclusion of behavioral characteristics, hindering the utility of 

measuring hopanes in settled dust for exposure assessment.  

As an alternative approach to assess exposures in CHILD, city-specific land use regression models, 

questionnaires and home assessments were used to model personal exposure, including accounting for 

indoor/outdoor infiltration and time-activity patterns, in relation to early atopy. Spatio-temporally 

adjusted exposure in the first year of life was positively associated with sensitization to common food or 

inhalant allergens at age 1 (Odds ratio [95% confidence interval] per interquartile increase in nitrogen 

dioxide = 1.16 [1.00 – 1.41]).  

Because atopy is often a precursor for allergic asthma, 10 years of longitudinal data from the Border Air 

Quality Study population-based birth cohort were used to evaluate the role of air pollution on asthma 

development. An interquartile range increase in nitrogen dioxide, adjusted for temporal and spatial 

variability, increased incident asthma among preschool (age 0-5) children by 9% (95% confidence 
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interval: 4 – 13%). Surrounding residential greenness mitigated this effect. In further analysis, the course 

of asthma was found to follow three trajectories: transient asthma, early-, and late-infancy chronic 

asthma, the latter two being significantly associated with fine particulate matter and nitrogen dioxide. 

This dissertation highlights the importance of integrating temporal and spatial variation in traffic-related 

air pollution exposure assessment and clarifies the role of early exposures on atopy and asthma initiation. 



iv 
 

 

Preface 

This doctoral dissertation summarizes the objectives, methods and results of an overall research plan that 

was developed under the guidance of my thesis committee following the presentation and acceptance of 

an initial research proposal. Four research chapters (Chapters 2-5) were written as separate manuscripts 

intended for publication in peer-reviewed journals. These manuscripts were reviewed by numerous co-

authors given that this research was made possible by a multi-university and government agencies 

collaboration, as well as by my doctoral committee members. For each of the chapters 2 to 5, I developed 

the study design, conducted all analyses, interpreted the results and prepared the manuscript. I revised 

manuscripts according to the feedback provided by the committee members as detailed below.  

This research was approved by the University of British Columbia Behavioural Research Ethics Board 

(certificate number H04-80161 for the Border Air Quality Study (BAQS) cohort; project title: 

Establishment of a childhood respiratory disease cohort using BCLHD/Analysis of birth outcomes in the 

Greater Vancouver Regional District using the BC Perinatal Database; certificate number: H11-03231 for 

the Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort; project title: Canadian 

Healthy Infant Longitudinal Study; as well as by the Clinical Research Ethics Board (certificate number: 

H07-03120 for the hopanes study within ‘CHILD’). 

A version of Chapter 2 has been published [Sbihi H, Brook JR, Allen RW, Curran JH, Dell S, Mandhane 

P, Scott JA, Sears MR, Subbarao P, Takaro TK, Turvey SE, Wheeler AJ, Brauer M. (2013). A new 

exposure metric for traffic-related air in settled indoor house dust. Environmental Health 12(1)]. HS 

formulated the research question, gathered spatial data and extracted questionnaire data, conducted the 

statistical analysis and led the writing of the manuscript. MB guided the study design, provided spatial 

data for Vancouver, gave critical input in data conditioning for the analysis and revised the manuscript for 

its intellectual content. RA provided the spatial data for Edmonton and Winnipeg and guided the data 



v 
 

harmonizing across different spatial databases. JB gathered the ambient air samples from the national air 

monitoring stations and oversaw the chemical analysis of hopanes samples in the Environmental Canada 

Laboratory. JC performed a preliminary analysis examining personal hopanes in dust and air samples. JB, 

JS, TK, RA, and MB were part of the Exposure Working Group for the CHILD study where all 

questionnaires used in this study were designed. This group, along with the site leaders and CHILD PI 

oversaw the collection and initial processing of CHILD dust samples. ST, PM, PS are site leaders for the 

CHILD study, they are responsible for the coordination and training of research technicians and data 

collection. MS is the Principal Investigator of the CHILD study and has revised the manuscript drafts. SD 

is the Principal Investigator of the Toronto Child Health Evaluation Questionnaire (TCHEQ) study and 

revised the manuscript. AW has led the Windsor Ontario Exposure Assessment Study (WOEAS), 

participated in preparing the spatial data for Windsor, and has given critical input to the manuscript drafts. 

A version of Chapter 3 has been published [H.Sbihi,, R. Allen, A Becker, J Brook, J. Scott, P Mandhane, 

M.Sears, P. Subbarao, T. Takaro, S.Turvey, M. Brauer. 2015. Perinatal exposure to traffic-related air 

pollution and development of atopy in a Canadian birth cohort study. Environmental Health Perspectives. 

DOI:10.1289/ehp.1408700]. HS and MS formulated the research question. HS defined the specific 

objectives and analytical approaches to conduct the study. HS gathered environmental researcher-

collected and governmental exposure data, wrote the manuscript and subsequent revisions. AB, ST, PM 

and PJ were site leaders for CHILD cities and oversaw the biological samples collection as well as the 

administration of questionnaires. TT and JB are leaders of the Environmental Working Group and have 

designed and facilitated access to the time-activity patterns questionnaire data. RA has provided the 

infiltration model and insight into using it in the context of a Canadian study. MS is the principal 

investigator of CHILD and has revised the manuscript drafts.  

A version of Chapter 4 has been submitted for publication. HS, MB, MK defined the research theme. LT 

prepared administrative health data linkages provided by Population Data BC. HS and LT designed 

analytical and statistical methods. HS analyzed the data, interpreted the results and wrote the paper. All 



vi 
 

authors discussed analyses, interpretation and presentation. All authors have contributed to and approved 

the manuscript. Perry Hystad is acknowledged for assigning greenness exposures to study participants. 

A version of Chapter 5 has been submitted for publication. HS and MB conceptualized the research 

objectives and formulated the research questions. HS designed the analytical approach, prepared and 

conducted the analysis. HS wrote the manuscript and included edits provided by MB and MK. MK 

provided feedback on revisions of the manuscript. 

Disclaimer for Chapters 4 and 5: “All inferences, opinions, and conclusions drawn in this research are 

those of the authors, and do not reflect the opinions or policies of the Data Steward(s).” 



vii 
 

 

Table of Contents 

Abstract ......................................................................................................................................................... ii 

Preface ......................................................................................................................................................... iv 

Table of Contents ........................................................................................................................................ vii 

List of Tables ................................................................................................................................................ x 

List of Figures ............................................................................................................................................ xiii 

List of Abbreviations .................................................................................................................................. xv 

Acknowledgments ..................................................................................................................................... xvii 

Chapter 1: Introduction ................................................................................................................................. 1 

1.1 Background and significance .................................................................................................... 1 

1.1.1 Asthma and atopy in children ........................................................................................... 1 

1.1.2 Risk factors for asthma and allergy ................................................................................... 6 

1.1.3 Air pollution as a risk factor for asthma and allergy ....................................................... 12 

1.1.4 Greenness, asthma and allergies ..................................................................................... 29 

1.1.5 Summary of major gaps identified .................................................................................. 31 

1.2 Data sources ............................................................................................................................ 31 

1.2.1 Canadian healthy infant longitudinal development (CHILD) study ............................... 32 

1.2.2 Border air quality study (BAQS) .................................................................................... 38 

1.3 Objectives ............................................................................................................................... 43 

1.4 Dissertation structure .............................................................................................................. 45 

Chapter 2: Assessing hopanes as an exposure assessment tool for TRAP exposure .................................. 46 

2.1 Introduction ............................................................................................................................. 46 

2.2 Methods ................................................................................................................................... 49 

2.2.1 Population ....................................................................................................................... 49 

2.2.2 Hopanes ........................................................................................................................... 50 

2.2.3 Geographic predictor variables ....................................................................................... 52 

2.2.4 Questionnaires ................................................................................................................. 54 

2.3 Statistical analysis ................................................................................................................... 56 

2.4 Results ..................................................................................................................................... 58 

2.4.1 Outdoor vs. indoor hopane concentrations comparison .................................................. 58 



viii 
 

2.4.2 Pooled results .................................................................................................................. 59 

2.4.3 City-specific modeling results ........................................................................................ 60 

2.5 Discussion ............................................................................................................................... 64 

Chapter 3: Early-life exposure to traffic-related air pollution and development of atopy in the CHILD 

birth cohort study ........................................................................................................................................ 69 

3.1 Introduction ............................................................................................................................. 69 

3.2 Methods ................................................................................................................................... 71 

3.2.1 Study population ............................................................................................................. 71 

3.2.2 Skin prick tests ................................................................................................................ 71 

3.2.3 Air pollution exposure assessment .................................................................................. 72 

3.3 Questionnaires and home inspections ..................................................................................... 76 

3.4 Statistical analysis ................................................................................................................... 77 

3.5 Results ..................................................................................................................................... 79 

3.5.1 Population characteristics and atopy ............................................................................... 79 

3.5.2 Exposure levels and association with atopy development .............................................. 82 

3.6 Discussion ............................................................................................................................... 88 

Chapter 4: Asthma development in relation to air pollution and greenness in the BAQS birth cohort: a 

follow up from birth to age 10. ................................................................................................................... 92 

4.1 Introduction ............................................................................................................................. 92 

4.2 Methods ................................................................................................................................... 93 

4.2.1 Cohort description ........................................................................................................... 93 

4.2.2 Confounders .................................................................................................................... 94 

4.2.3 Incident asthma case definition ....................................................................................... 94 

4.2.4 Exposure assessment ....................................................................................................... 94 

4.2.5 Analytical methods ......................................................................................................... 96 

4.3 Results ..................................................................................................................................... 97 

4.3.1 Asthma in preschool years ............................................................................................ 102 

4.3.2 Asthma in school age years ........................................................................................... 105 

4.3.3 Joint models .................................................................................................................. 106 

4.3.4 Sensitivity analyses ....................................................................................................... 107 

4.4 Discussion ............................................................................................................................. 111 

Chapter 5: Pediatric asthma patterns and effects of environmental factors. ............................................. 115 

5.1 Introduction ........................................................................................................................... 115 

5.2 Methods ................................................................................................................................. 117 



ix 
 

5.2.1 Cohort description ......................................................................................................... 117 

5.2.2 Asthma case definition .................................................................................................. 118 

5.2.3 Exposure assessment ..................................................................................................... 118 

5.2.4 Analytical methods ....................................................................................................... 119 

5.3 Results ................................................................................................................................... 120 

5.3.1 Cohort and asthma trajectories description ................................................................... 120 

5.3.2 Impact of environmental factors on asthma trajectories ............................................... 127 

5.3.3 Co-exposures models .................................................................................................... 131 

5.4 Discussion ............................................................................................................................. 133 

Chapter 6: Discussion and conclusions ..................................................................................................... 137 

6.1 Summary and contributions .................................................................................................. 138 

6.1.1 Key findings .................................................................................................................. 138 

6.1.2 Synthesis ....................................................................................................................... 143 

6.1.3 Strengths and limitations ............................................................................................... 147 

6.2 Recommendations for future research .................................................................................. 153 

6.2.1 Future directions for exposure assessment research ..................................................... 154 

6.2.2 Future directions for asthma and allergies research ...................................................... 156 

Bibliography ............................................................................................................................................. 159 

Appendices ................................................................................................................................................ 181 

 

 

 



x 
 

 

List of Tables 

Table 1.1: Inclusion and exclusion criteria for participants’ recruitment in the CHILD study .................. 32 

Table 1.2: CHILD study schedule from recruitment to age 5 ..................................................................... 34 

Table 1.3: Principal exposure assessment methods used in the CHILD Study to characterize the physical 

environment during pregnancy and infancy periods ................................................................................... 36 

Table 1.4: LUR models for nitrogen dioxide (variables , estimated annual means for all participants and 

standard deviation (sd)). .............................................................................................................................. 37 

Table 2.1: Harmonized GIS variables across TCHEQ, WOAES, and CHILD cities ................................. 53 

Table 2.2: City-specific GIS variables and buffer sizes extracted from LUR model surfaces. .................. 54 

Table 2.3: Descriptive summary of questions found (as shown with a check mark) in the questionnaires 

delivered during home visits, recoded for analysis in the pooled investigation of hopanes in dust and land 

use determinants of traffic pollution. .......................................................................................................... 55 

Table 2.4: City-specific determinants of hopane concentrations in house-settled dust. ............................. 61 

Table 2.5: Geometric Mean (GM) and Geometric Standard Deviation (GSD) of total hopanes 

concentrations in the study population, by room, by homes and correlation with city-specific modeled 

NO2 ............................................................................................................................................................. 63 

Table 3.1: Particle Infiltration (Finf) variables; mapping questions used in the MESA-Air (Allen et al. 

2012) and CHILD cohorts. ......................................................................................................................... 76 

Table 3.2: Atopic outcomes (inhalant, food and any allergies) by city among 2477 CHILD participants 

with valid skin prick test at age 1 ................................................................................................................ 79 

Table 3.3: Proportion of positive responses to individual allergen skin prick tests by CHILD city (in (%))

 .................................................................................................................................................................... 80 



xi 
 

Table 3.4: Cohort characteristicsb among 2477 children at one year of age with valid skin allergy tests, 

and crude Odds Ratio (OR) for sensitization to any allergens with 95% Confidence Interval (95% CI) ... 81 

Table 3.5: Adjusted Odds Ratios (aOR) for risk of atopy per 10 µg/m3 increase in NO2 exposures during 

pregnancy and the first year of life. ............................................................................................................ 84 

Table 4.1: Case and control characteristics (n (%) for categorical covariates; mean (standard deviation) 

for continuous covariates) for children meeting the case definition, matched controls by time window. .. 98 

Table 4.2 : Cohort characteristics (n (%) for categorical covariates; mean (standard deviation) for 

continuous covariates) for control children and all non-asthmatics by cohort age groups ......................... 99 

Table 4.3: Mean exposure levels, standard deviation (SD), and Interquartile Range (IQR) among cases 

and controls ............................................................................................................................................... 101 

Table 4.4: Adjusted OR for new asthma onset relative to an interquartile (IQR) increase in air pollutants

 .................................................................................................................................................................. 103 

Table 4.5: Exposure levels (N, mean) by quartile in the preschool age analysis among cases and controls

 .................................................................................................................................................................. 104 

Table 4.6: Effects of surrounding greenness on incident asthma risk, adjusted for air pollutants in 

preschool and school children. .................................................................................................................. 107 

Table 5.1: Summary statistics of number of elapsed years of data coverage by birth year ...................... 121 

Table 5.2: Risk factor distribution (frequency counts for categorical variables; mean and standard 

deviation (sd)) by asthma trajectory groups among 68195 children. ........................................................ 122 

Table 5.3: Posterior probability for each trajectory at each year of age (Non-Asthmtics; Transient; LICA: 

Late Infancy Chronic Asthma; EICA: Early Infancy Chronic Asthma) and 95% confidence intervals ... 125 

Table 5.4: Odds Ratio (OR) of adhering to a trajectory group relative to risk factors based on weighted 

multinomial logistic regression ................................................................................................................. 126 

Table 5.5: Exposure levels of greenness, IDW-derived pollutants and LUR-derived PM2.5, by trajectory 

among CHILD study participants ............................................................................................................. 128 



xii 
 

Table 5.6: Multinomial logistic regressions of unadjusted and adjusted  single exposure models:  

greenness (NDVI),nitrogen dioxide (NO2), and fine particulate matter (PM2.5) models by asthma 

trajectories in BAQS children born between 1999 and 2002. ................................................................... 130 

Table 5.7: Co-pollutants multinomial logistic regression of air pollution ................................................ 133 

 



xiii 
 

 

List of Figures 

Figure 1.1: Pathways linking natural spaces to human health (adapted from (Hartig et al. 2014) ). Putative 

causal pathways in blue, effect modifers in brown (personal characteristics (e.g. age, gender) and other 

intrinsic effect modifiers are not depicted for clarity). ............................................................................... 30 

Figure 1.2: Study area of GVRD plus within the Border Air Quality Study .............................................. 39 

Figure 2.1: Association between outdoor air and house dust hopanes major monomer ((17α(H), 21β(H)-

Hopane) relative abundance. ....................................................................................................................... 58 

Figure 3.1: Adjusted Odds Ratio for risk of atopy per 10 µg/m3 increase in NO2 exposures (triangle) 

temporally adjusted at birth address, (circle) temporally adjusted and accounting for residential mobility.

 .................................................................................................................................................................... 85 

Figure 3.2: Adjusted OR of atopy per 10µg/m3 NO2 increase during the first year stratified by: (A) time-

activity patterns (defined by the city-specific median hours per day based on the three questionnaires 

submitted after birth around 3,6, and 12 months) among children spending more time (n=976) and those 

spending less time (n=1026) away from the home; and (B) daycare facilities attendance among daycare 

attendees (n=765) and children never attending daycare (n=1236). ........................................................... 86 

Figure 3.3: Adjusted OR of risk of atopy in CHILD families for a 10 µg/m3 increase in NO2 during the 

first year of life, stratified by presence of siblings in participants families (group with no siblings, n= 

1085; group with sibling, n= 874). All models are adjusted for the same covariates as those used in the 

main analysis ............................................................................................................................................... 87 

Figure 3.4: Adjusted Odds Ratio of risk of atopy for 10 µg/m3 increase in NO2 during the first year of life 

stratified by season (defined using weekly average of 18°C as cutoff to define cold and warm) and by 

home PM infiltration status (defined based on city-specific 80th percentile predicted household PM 

infiltration efficiency; ................................................................................................................................. 88 

Figure 4.1: Adjusted Odds Ratio of incident asthma in children meeting the case definition in the (A) 

preschool and (B) school groups ............................................................................................................... 106 



xiv 
 

Figure 4.2: Effect modification of greenness in 100m buffer and air pollution estimates derived using 

inverse distance weighting (IDW) and/or land use regression (LUR)models on new asthma onset among 

preschool age children by (A) gestational length (<37 weeks) and (B) birth weight (<2500g) ............... 108 

Figure 4.3: Risk of asthma incidence in the preschool group (n=6948), stratified by (A) sex and by (B) 

parity ......................................................................................................................................................... 109 

Figure 4.4: Stratified asthma risk analysis by three indicators of Socio-economic status (A: Household 

Income; B: Maternal Education status; C: Maternal age at birth) ............................................................ 110 

Figure 5.1: Group memberships and confidence intervals for the posterior distributions of probability of 

asthma at each time point between birth and age 10 for each of the trajectories in BAQS cohort ........... 124 

Figure 5.3: Scatter plot matrix of air pollutants and greenness exposure by asthma trajectory and exposure 

distributions among children with one of the three asthma trajectories. ................................................... 132 

 



xv 
 

 

List of Abbreviations 

BAQS: Border Air Quality Study 

CO: Carbon monoxide 

CHILD: Canadian Healthy Infant Longitudinal Development 

Der p : Dermatophagoides pteronyssinus  

Der f: Dermatophagoides farinae 

Finf: Infiltration efficiency 

GIS: Geographic Information System 

GVRD: Greater Vancouver Regional District 

IDW: Inverse-Distance Weighting  

IgE:  Immunoglobulin E 

LUR: Land Use Regression 

NDVI: Normalized Difference Vegetation Index  

NO: Nitrogen monoxide 

NO2: Nitrogen Dioxide 

O3: Ozone 

PM10: Particulate matter with an aerodynamic diameter <10um 

PM2.5: Particulate matter with an aerodynamic diameter <2.5um  



xvi 
 

SO2: Sulfur dioxide 

TRAP: Traffic-Related Air Pollution 

TCHEQ: Toronto Child Health Evaluation Questionnaire 

WOEAS: Windsor Ontario Exposure Assessment Study 



xvii 
 

Acknowledgments 

 

It is with extreme pleasure that I write this section where I have the opportunity to express my gratitude to 

all who have made this journey possible and often enjoyable. 

First and foremost, Dr. Michael Brauer, my supervisor, has not only been a very supportive, challenging, 

and insightful supervisor but also a mentor who taught me by example to teach with respect, collaborate 

with integrity, and conduct research with rigor. Members of my committee, Drs. Mieke Koehoorn and 

Ryan Allen, provided me with great support and a lot of “food for thought” following our one-on-one 

meetings throughout the PhD. I am also grateful for the opportunities that Dr. Allen had offered outside of 

the PhD research work that helped complete my learning experience: reviewing journal manuscripts, 

giving seminars, and discussing ideas that shaped the trajectory of my research. Overall, I believe I have 

had the best supervisory team with immense intellectual generosity, thank you! 

Thank you to the CHILD study team, and especially to the Exposure Working Group: Drs. Malcom Sears, 

Jeffrey Brook, Tim Takaro, James Scott, Stuart Turvey, as well as the many co-authors from this pan-

Canadian collaborative effort who have made this work possible. Your input and suggestions are greatly 

appreciated. Dr. Diana Lefebvre provided me with tremendous support and helped facilitate the work with 

the CHILD team, thank you Diana! 

I would like to thank Lillian Tamburic for always carving time out for my multiple questions related to 

the research related to the BAQS birth cohort. Your expertise, friendship and support made this work 

immensely pleasurable. I have learned a lot from you.  

Big thanks to my friends from the School of Population and Public Health (a special mention to my 2.5 

years office mate and dear friend Dr. Tracy Kirkham, and to Annie Wang and Emily Rugel) and outside 



xviii 
 

the UBC community: through our interactions and social activities you are the support network that 

helped me keep enjoying the graduate school experience. 

I would like to thank the University of British Columbia, Killam Trusts, Canadian Institutes of Health 

Research, and the province of British Columbia BC Clean Air Research for their generous financial 

support.  

To my parents, you are and always will be the “gold standard”, thank you so much for your unwavering 

support.  

To my siblings, thank you for picking up the phone in the middle of the night to catch me in the daytime 

here in Vancouver and to simply make sure that I was all right balancing work, school and family. 

To Ismaël, Amin and Ali: you are my pillars. Without your patience and love, I would not have achieved 

this work. 

 



1 
 

Chapter 1: Introduction 

1.1 Background and significance 

1.1.1 Asthma and atopy in children 

Respiratory and allergic disorders in children are a serious health issue due to their high prevalence 

worldwide and negative impact on the quality of life during childhood and later throughout adulthood 

(Bousquet et al. 2005; McColley and Morty 2012).  

Traditionally, asthma has been viewed as an allergic disease as demonstrated in several studies where 

atopy strongly predicts its development (Custovic et al. 2013; Simpson et al. 2010). However, children 

can also develop asthma without being atopic. Atopy, the condition referring to allergic manifestations 

following exposure to a trigger allergen, is also an important health issue and can share common etiology 

with asthma. In light of the substantial geographic variations, both for prevalence rates and trends (Asher 

et al. 2006; Eder et al. 2006; Pearce et al. 2007), these conditions are likely multifaceted and include not 

only genetic factors but also environmental and lifestyle factors (Nicolaou et al. 2005; Subbarao et al. 

2009). Air pollution constitutes an environmental exposure that has captured particular attention, 

especially given the results of a child-specific health impact analysis showing health and economic 

benefits after a reduction in air pollution levels (Wong et al. 2004). In this chapter, the clinical 

manifestations and characteristics of both asthma and atopy are presented, with an overview of their 

natural history and epidemiology. The role of known and suspected environmental exposures will be 

described with a focus on neighborhood exposures: air pollution, especially traffic-related pollutants, and 

green spaces.  

1.1.1.1 Clinical presentation  

Asthma is a heterogeneous disease that can be described as a chronic inflammatory disorder of the 

airways, characterized by intermittent airflow obstruction, shortness of breath and wheeze (Lemanske Jr. 
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and Busse 2010). The underlying pathophysiological basis of asthma is believed to be inflammatory 

processes involving cells of the innate and adaptive immune systems. Cytokines, T and B lymphocytes, 

mast cells, and histamines act together with epithelial cells to cause bronchial hyper-reactivity, a 

characteristic smooth muscle contraction involving mucous secretion and other changes that lead to 

airway remodeling if these changes remain unresolved (Maddox and Schwartz 2002). Airway remodeling 

is thus the irreversible end result of such pathophysiological mechanisms, also referred to as endotypes1. 

Clinically, children often have allergic asthma which is initiated by allergic sensitization. Following this, 

they may develop allergic rhinitis or other allergic conditions (e.g. eczema) and progress to asthma, a 

trajectory often referred to as the ‘atopic march’. However non-atopic asthma also presents similar 

clinical manifestations and represents a non-negligible 44% of pediatric asthma in the United States (US) 

(Arbes et al. 2007), a proportion that has considerable geographic variation (Ronchetti et al. 2009).  

Atopic diseases constitute a group of allergic disorders (e.g.  allergic asthma, atopic dermatitis, and 

allergic rhino-conjunctivitis) that are subject to hereditary predisposition, called atopy. Thus atopy is a 

personal and/or familial propensity to developspecific immunoglobulin E (IgE) antibodies against 

common allergens. Sensitization is defined as the presence of a specific immune mechanism directed 

towards a particular antigen and is most often shown by a positive skin-prick test and/or by the presence 

of specific IgE (sIgE) antibodies. This definition of sensitization does not necessarily imply the presence 

of allergic symptoms. In fact, the more recent view is that quantification of atopy, either as the level of 

sIgE and/or the size of skin test wheal diameter, can help identify those at risk of persistent allergic 

disorders including allergic asthma (Custovic et al. 2013).  

                                                      

1 Endotype (can also be termed endophenotype): subtype of disease defined by distinct pathophysiological 
mechanism. A phenotype, which does not point to an underlying pathophysiological process,  represents the 
observable manifestations of each individual’s genetics that can change in response to different environmental 
stimuli (Corren 2013)  
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While asthma is traditionally categorized into allergic versus non-allergic asthma, there is an increasing 

recognition that this paradigm has been an oversimplification. Different asthma phenotypes, described by 

clinical features, are now being clustered by one or several endotypes (Corren 2013; Henderson 2014a; 

Lötvall et al. 2011). Conversely, a discrete endotype, such as eosinophilic airway inflammation, can be 

present in several phenotypes including atopic asthma or severe recurrent wheeze whereas neutrophil-

predominant airway inflammation was associated with chronic obstructive pulmonary disease in adults 

and with severe, non-steroid responsive childhood asthma (Henderson 2014a). The identification of all 

endotypes underpinning the various phenotypes of asthma have yet to be uncovered (Belgrave et al. 

2013). Birth cohort studies with long-term follow up can aid in recognizing clinically similar groups of 

phenotypes or sub-types of asthma.  

1.1.1.2 Natural history, epidemiology 

Asthma is the most common chronic disease in childhood and a leading cause of emergency department 

visits, hospitalizations and school absenteeism in children  (Bousquet et al. 2005; Ismaila et al. 2013; 

Masoli et al. 2004). In Canada, based on two national surveys, the prevalence among children aged 0 to 

11 years who had been diagnosed with asthma was estimated to be at 11% in the mid-nineties (Millar and 

Hill 1998); and by 2001 the rate had risen to more than 13%, with a sharper increase among 0- to 5- year 

olds (Garner and Kohen 2008). Current estimates of childhood asthma prevalence in Canada have shown 

a plateau (12% to 13%), following an approximate four-fold increase over the past twenty five years 

(Subbarao et al. 2009). Similar trends have been observed in most developed countries (Eder et al. 2006). 

Developing countries are likely to follow the increasing trends seen in developed countries where the 

observed increases are likely related to environmental changes associated with the adoption of a ‘modern’ 

lifestyle (Nicolaou et al. 2005).  
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In the late nineties, global studies of asthma and atopy have shown increases in the prevalence of 

wheezing,  increased in areas where prevalence was initially low (e.g. Asia) (Asher et al. 2006). 

Prevalence either decreased or remained unchanged in areas where prevalence was already high (Asher et 

al. 2006). After the 1990s, estimates of temporal trends in the prevalence of asthma in several European 

and Asian countries were conflicting, possibly because of the greater variation seen in trends in the 

prevalence of symptoms suggestive of asthma compared to those of diagnosed asthma (Eder et al. 2006). 

The global variations in asthma prevalence may thus be at least partially related to differences in asthma 

symptoms definition. Therefore, the main challenge in pediatric asthma has been and still remains to be 

the characterization of this “heterogeneous condition” (Bisgaard and Bønnelykke 2010). This would in 

turn imply that childhood asthma does not follow a specific trajectory but that there may be several 

natural histories to unveil and understand.  

Given the evolving and complex nature of asthma, long-term studies are necessary to understand the 

development of the disease, to identify associations between exposure and the initiation of the disease in 

order to gain more knowledge about its different phenotypes. One landmark cohort study, the Tucson 

Children’s Respiratory Study (Martinez et al. 1995b) allowed the first segmentation of asthma among 

children:  growing out of symptoms, growing into symptoms, or continuing to have symptoms. Cohort 

studies have shown that the majority of children belong to the first segment with only 10 to 15% of 

children being diagnosed with “true” asthma at the time they are at school when 50% of preschool 

children have wheezing symptoms (Sears et al. 2003). Since the Tucson study, asthma in early infancy 

and childhood have been further characterized and are now commonly described as transient wheezing, 

non-atopic wheezing, late-onset wheezing and persistent wheezing.  

The assessment of asthma in epidemiologic studies is complex in light of the various trajectories and 

phenotypes. To date, there is no single instrument to identify asthma with certainty. The “gold standard” 

is physician-diagnosed asthma, a diagnosis made on the basis of medical history, physical examination, 
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and assessment of airway obstruction. Studies usually rely on questionnaires where participants either 

self-report asthma based on symptoms, or report receiving asthma diagnosis from a physician. Atopy is a 

consistent risk factor for asthma in many epidemiological studies (Custovic et al. 2013). The proportion 

of asthma attributable to atopy in children has been estimated to be 38%, but there is considerable 

variation between studies. The multicenter International Study of Asthma and Allergies in Childhood 

(ISAAC) phase II showed that the population fraction of asthma attributable to atopy differed greatly 

between countries according to their economic development, being 40.7% in study centres from  

economically affluent countries and 20.3% in centres from ‘non-affluent’ countries (Weinmayr et al. 

2007).  

1.1.1.3 Sensitive Periods of Exposure 

Environmental exposures that occur in early-life are the most influential for respiratory and immune 

systems (Selevan et al. 2000). Newborns have an imbalanced immunity at birth with both an immature 

innate immune system and an acquired immune system skewed toward Type 2 helper cell (Th2). 

Adjustments in the T-helper cells and further maturation of immune cells through interaction with 

environmental factors such as microbial agents are needed for the infant to restore balance among Th-

driven responses and to aid in the complete maturation of the innate immune system, which would 

minimize the risk of Th2-mediated allergic disease (Dietert and Zelikoff 2008). Early observations in 

farming cohorts where some aspect of farm living in early life (i.e. microbial stimulation) appeared to 

protect against the development of allergic diseases, and gave support to the role of immune balance 

efficiency in relation to the development of allergic diseases. This “hygiene hypothesis” stipulates that the 

altered patterns of exposure to microorganisms resulting from more western lifestyles leads to immune 

malfunction characterized by the imbalance between Type 1 and Type2 helper T cells [Th1] and [Th2] 

(Strachan 2000). Any early life environment exposures, including air pollutants, hindering these 

adjustments towards the restoration of Th-cells balance could be a risk factor for allergic diseases and 
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asthma. In addition, two main points were summarized in the Workshop to Identify Critical Windows of 

Exposures for Children’s health. The first conclusion was that interference with normal development of 

the respiratory and immune systems during the intrauterine period and infancy may have lasting 

consequences. Second to this, it was suggested that immaturity of metabolic pathways hinders the ability 

of fetuses and young children to clear toxicants effectively (Dietert et al. 2000).  

There are many plausible reasons for the vulnerability of young children: they are exposed to higher doses 

since they breathe more air than adults relative to their body weight and pollutants have more impact on 

the rapidly developing systems of fetuses and children (Dietert et al. 2000).  

The vulnerability of this segment of the population has been consistently reported in the epidemiological 

literature(Aguilera et al. 2013; Jedrychowski et al. 2005; Morales et al. 2015). For example, second-hand 

tobacco smoke exposure during early life affects asthma risk (Rosa et al. 2011), while exposure in later 

life is associated with allergic disorders, asthma exacerbations, but not new asthma onset (Gilliland et al. 

2001). While numerous exposures are known to contribute to childhood asthma exacerbations, including 

ambient air pollution (Tzivian 2011), fewer factors have been well established as risk factors for the 

development of pediatric asthma, resulting in a long list of other putative risk/protective factors.  

1.1.2 Risk factors for asthma and allergy 

Environmental exposures, especially those encountered during pregnancy as well as in infancy appear to 

play an important role in the development of pediatric asthma and allergic diseases given the development 

and continuing maturation of the immune system and the lungs during these periods. Recent studies, 

mostly birth cohort studies conducted in developed countries, have suggested that exposure to traffic-

related outdoor air pollution (TRAP) is related to incident asthma while others have linked common 

allergens of indoor origin and endotoxins with the development of childhood asthma and wheeze.  
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The understanding of the contribution made by environmental exposures to asthma and allergies 

development in children requires the assessment of exposures in all micro-environments where the child 

develops: in utero, indoors and outdoors. Pregnant women, infants and young children are exposed to a 

wide range of environmental factors which include those that can be inhaled (indoor and outdoor air), 

absorbed dermally, ingested, and the microbial milieu (gastro-intestinal flora for example). The main risk 

factors, excluding host factors, which have been known from long-term studies to be associated with 

asthma and allergic disorders, are genetics, behavioral (e.g. diet), and environmental (e.g. second-hand 

tobacco smoke, virus, and bacteria) factors. Following a brief review of these known factors (genetics, 

second-hand tobacco smoke (SHS), microbial agents), the role of TRAP, a suspected environmental 

factor for which the epidemiologic evidence is mounting, will be critically reviewed (see sub-section 

1.1.3).  

1.1.2.1 Genetics  

Family and twin studies indicate that genetics play an important role in the study of asthma etiology (Los 

et al., 2001). Linkage, association studies and genome-wide screening suggest that many genes are 

involved in the pathogenesis of asthma. It is likely that genetics contributes to the different trajectories of 

asthma development. However, the dramatic and rapid increase in asthma prevalence in developed 

countries observed during the second half of the 20th century  (Eder et al. 2006) cannot be explained by 

genetics alone. Short-term changes in the occurrence of asthma are more likely to be influenced by 

changes in the environment, diet, and lifestyle than by changes in the genetic pool. The role of 

environmental influences in asthma expression is further supported by natural epidemiological 

observations within genetically similar populations after the German reunification (Subbarao et al. 2009). 

Similarly, the clear differences in asthma prevalence in populations with the same ethnic background but 

differing environmental exposures are convincing arguments that environmental influences cannot be 

ignored (Wong and Chow 2008). Thus, asthma can be labeled as a genetically complex disease where 
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multiple genetic variants interact with environmental factors to modify both susceptibility and severity of 

the disease.  

The effects of gene-by-environment interactions in asthma are complex because interactions are affected 

not only by multiple gene variants and potential exposures, but also by time windows. For instance, in 

early childhood, genes code for enzymes that detoxify inhaled agents (e.g. glutathione transferase) while 

in utero genes may have a more direct effect via epigenetic mechanisms (e.g. possibility that maternal 

smoking modifies fetal genetic expression). However, gene-environment interaction studies for asthma 

have clearly demonstrated interaction effects for some environmental inhalable exposures including 

endotoxin (Martinez 2007; von Mutius 2009), SHS (Dizier et al. 2007; Wu et al. 2007), and air pollution 

which encompasses ozone exposure (London 2007; MacIntyre et al. 2014), nitrogen dioxide (MacIntyre 

et al. 2014; Melén et al. 2008) and particulate matter exposures (Kerkhof et al. 2010). Therefore genetics 

can be useful to disentangle environmental influences in specific subgroups of the population. Indeed, 

compared with population-based studies in which the effect of an environmental exposure is compared 

between groups (exposed versus unexposed), genotyping allows the identification of susceptible 

individuals that in turn allows for a better estimation of the true magnitude of effect of an environmental 

exposure for the population at risk. In sum, the role of genetics adds more specificity to the causal 

relationship under investigation. However, as long as the assessment of environmental exposures lacks 

accuracy and precision, the ability to understand the effects of gene by environment interactions will be 

limited.  

1.1.2.2 Second Hand Smoke (SHS) 

SHS is likely the most important indoor pollutant and exposure of public health relevance. Tobacco 

smoke contains more than 4000 chemical substances which have known or suspected carcinogenic, 

mutagenic, toxic or inflammatory properties (California, EPA 1997). For infants and children, exposure to 

SHS due to maternal smoking during pregnancy is of particular importance. Carlsen and Carlsen provided 
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a review of the role of SHS and respiratory disorders in infants and young children highlighting the role 

of genetic polymorphisms (Carlsen and Carlsen 2008). Therefore, it appears that asthma and SHS are 

impacted by time of exposure, genetic susceptibility and heritability (i.e. history of atopy). Vork and 

colleagues performed a meta-regression to identify biases and inconsistencies among all the previous 

reviews and found, based on thirty eight recent studies and previous meta-analyses, that the relative risk 

of secondhand smoke and ever, current and incident asthma were 1.48 (95% CI 1.32 – 1.65), 1.25 (1.21 – 

1-30) and 1.21 (1.03 – 1.36), respectively (Vork et al. 2007).  

The weight of evidence is increasingly suggestive of a causal pathway between exposure to SHS mixtures 

and development of asthma under a set of genetic predispositions. 

1.1.2.3   Microbial agents  

The list of inhalable indoor factors, reviewed here, that have been linked to asthma development in 

children includes endotoxins, (1,3)β -D-Glucans (Dales et al. 2006), different indoor aero-allergens such 

as cockroach allergens (Salam et al. 2004), mouse allergens (Matsui et al. 2006), and house dust mites 

(Huss et al. 2001; Loan et al. 2003; Peat et al. 1996; Sidenius et al. 2002). The latter exposure is probably 

the one that has gathered the most attention from researchers in terms of exposure assessment, 

quantification, analysis and prevention (Loo et al. 2010).  

Damp environments, Endotoxin and Beta-Glucans 

The consistent reporting of several epidemiological findings on the adverse health effects of living in 

damp homes or those with visible molds has been recently summarize in a meta-analysis by Fisk and 

colleagues. The associated percent increases in health outcomes (asthma, wheeze, rhinitis) for participants 

residing in damps homes ranged from 30% to 52%   (Fisk et al. 2007). Increased dampness stimulates 

growth of fungi, bacteria, and other biological agents.  
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Endotoxin, a component of gram-negative bacteria cell walls, is commonly used as a surrogate for 

microbial exposure. Other important bio-active components of damp environments are the (1,3)-β-

glucans, which are also cell-wall components, but in this case resulting from fungal growth. Both 

components have inflammatory properties including immune-stimulating characteristics and airways 

irritation.  

In contrast to the findings reported by Fisk and colleagues on visible mold and measured specific mold 

species, cohort and birth cohort studies showed that early-infancy exposure to (1,3)-ß-D-glucan decreases 

the risk of developing wheezing symptoms and parental-reported, doctor-diagnosed asthma in young 

children (Douwes et al. 2006; Iossifova et al. 2007). This finding is in line with the hygiene hypothesis. 

While this hypothesis involves the role of both environmental and host factors (e.g. via the lack of 

exposure to infections such as the respiratory syncytial virus early in life), restricting exposures to 

inhalable factors would postulate that the rise in allergic diseases and asthma is due to increasingly 

hygienic environments that do not provide sufficient microbial stimuli to allow for the normal maturation 

of the immune system and development of appropriate immunologic responses. This hypothesis has been 

extensively debated (Platts-Mills et al. 2001; von Mutius 2001). Since the original theory offered by 

Strachan (Strachan 2000) mainly holds for allergic asthma but does not characterize observations for non-

atopic asthmatics, the hygiene hypothesis has been revisited to include more objective measures of 

bacterial and fungal exposure. For example, endotoxin has two opposing effects: it protects against atopy 

but is a risk factor for non-atopic asthma and wheezing. Recently published data tried to improve on our 

understanding of the impact of microbial exposure on asthma initiation by identifying microorganisms 

involved in the onset of the disease using two cohorts that relied on complementary techniques, namely 

the use of single-strand conformation polymorphism (SSCP) analyses and the culture techniques (Ege et 

al. 2011). These authors found a greater diversity of exposures in farms/rural areas as compared to urban 

settings; this diversity explained a wide proportion of the inverse relationship to asthma in the study 
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subjects. Interestingly the diversity did not show associations with atopy, as the latter was inversely 

associated with the level of gram-negative bacteria exposure. The contrast in findings for asthma and 

atopy likely indicate that there are different mechanisms by which microbial exposures affect asthma and 

atopy. This in turns fits the differences in genetic determinants of these two related conditions as shown in 

the latest Genome-Wide Association Study (GWAS) on asthma and allergies (Moffatt et al. 2010). It has 

been suspected that (1,3)-ß-D-glucan may have a similar impact on the development of an infant's 

immune system as an early endotoxin exposure (Iossifova et al. 2007; Schram-Bijkerk et al. 2006).  

House Dust Mites 

Since Sporik’s landmark paper in 1990, in which increased exposure to house dust mites (HDM) was 

proposed as a risk factor for asthma (Sporik et al. 1990), the role of HDM in the development of 

childhood asthma has been the subject of intensive investigation (see for example (Platts-Mills et al. 

2009; von Hertzen and Haahtela 2009)). Nevertheless, recent reviews demonstrate a consensus that early-

life exposure to mite-related allergens increases the risk of sensitization, thereby leading to asthma and 

allergic disease exacerbations (e.g., eczema, rhinitis) among those sensitized (Arshad 2010; Platts-Mills et 

al. 2007). The question of the role of HDM and/or HDM allergens in the development of asthma remains 

elusive, although there is mounting evidence for a causative pathway among genetically predisposed 

subgroups (Bisgaard et al. 2008). 

Exposure to house dust mites has likely increased, especially in light of the many recent changes in the 

human environment that contribute to the increase of “mite load” indoors: increase use of indoor heating 

and air humidification systems provides optimal environmental condition for mite growth; new “green” 

detergents free from acaricides does not affect mites; and vacuum cleaners have replaced picking up and 

beating carpets outside the home leading to re-suspension of the particles carrying the HDM allergens 

(Heinrich 2010). Despite varying levels across the world, the link between HDM allergens and asthma 
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development in children has been shown among different populations (general population versus “at 

risk”, varying SES, etc.), which would argue in favor of a causal relationship. Of particular interest is the 

finding that suggests that the dose-response relationship may not be linear as previously reported 

(Celedon et al. 2007) but rather bell-shaped. The link between mite allergen and the induction of allergic 

sensitization has been established on the one hand, and the causal relation between specific allergic 

sensitization to mites and asthma onset is unequivocal on the other hand. Yet, the direct relation between 

mite exposure and asthma is still unclear, with both positive association (Celedon et al. 2007; Torrent et 

al. 2006; Tovey et al. 2008) and no effect reported in birth cohorts assessing exposure at birth (Lau et al. 

2005). This would indicate that HDM allergens are associated with certain phenotypes of asthma (e.g. 

allergic asthma). In the most recent review on this topic, Heinrich also proposes that while no direct 

evidence for mite exposure and asthma onset can be drawn, “sufficient evidence” can be concluded from 

an indirect link via the increased risk of sensitization (Heinrich 2010). 

 

1.1.3 Air pollution as a risk factor for asthma and allergy 

1.1.3.1 Effect of ambient air pollution and respiratory diseases in children  

The outdoor environment may impact respiratory health both directly and indirectly by infiltration of 

outdoor-generated pollutants into indoor environments. For the former association, there is sufficient 

evidence to suggest that air pollutants, such as ozone and particulate matter, decrease lung function, 

trigger asthma exacerbation, and increase rates of hospitalization for asthma. This has been observed in 

various locations, including Toronto, Ontario (Thurston et al. 1997) , Seattle, Washington (Schwartz et al. 

1993), and many European cities (Sunyer et al. 1997) .  

While studies have demonstrated that exposure to outdoor air pollutants exacerbates pre-existing asthma, 

the evidence for its effect on the initial development of asthma and allergic disorders remains unclear 
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(Health Effects Institute 2010; Heinrich and Wichmann 2004). The lack of conclusive evidence is 

possibly due to poor or inadequate exposure assessment methods. Indeed, assessing long-term exposure to 

air pollution has always been a significant challenge. The cruder assessment involves estimating pollution 

at the community level based on fixed-location government monitoring data, thereby assigning each 

person in the community the same level of exposure. However, within-community differences in air 

pollution are often as large as or larger than between-community differences. Therefore, people living in 

the same community may have considerably different exposures and assigning them the same exposure 

leads to significant misclassification. This type of error in exposure assessment, called Berkson error 

(Armstrong 1998), reduces the power of a study and implies that a “true” underlying association is less 

likely to be detected. Furthermore the threat of confounding with this approach can further obscure any 

associations. Indeed, community differences other than air pollution levels such as socioeconomic status 

may also confound any potential association between air pollution and childhood asthma and allergic 

disorders development. Research interest has therefore shifted to assessing within-community differences 

in exposure. In particular, this interest was directed towards urban within-community air pollution since 

several studies found that asthma rates are higher in urban areas than in rural areas, suggesting the urban 

environment may contribute to asthma development (Nicolaou et al. 2005). Another motivating aspect for 

this accrued interest is that within-city variability may also reflect different pollution sources and 

pollutant mixtures, often related to traffic. This is somewhat different than the between-city analyses 

where pollution sources encompass industrial and traffic sources, as well as secondary formation of air 

pollutants.  

An example of a simple approach to examine urban within-community air pollution variation is an 

assessment based on proximity to emission sources such as major roads and highways. Indeed, proximity 

to traffic has drawn significant attention. Interest in investigating traffic proximity in relation to asthma 

development was also motivated by studies of natural experiments such as the East-West German 
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comparison. Following the reunification of Germany, it was possible to compare genetically similar 

populations where the main difference of exposure with respect to air pollution was that Western 

Germany had higher NO2 levels compared to high SO2 levels in Eastern Germany driven by coal 

combustion (supposedly the main heating source). Since the rates of asthma and atopy in areas of East 

Germany were found to be much lower than in West Germany, the focus of research has shifted from 

background air pollution toward pollution from motor vehicles (von Mutius et al. 1994). The literature on 

pollution from motor vehicles showed that focusing the exposure assessment to the urban pollution 

portion due to traffic emissions unveiled associations with childhood asthma development that were 

unseen when estimating general urban/background air pollution. At the ecological level, the ISAAC 

analysis phase I assessed the urban background concentration of PM10 in 55 countries in order to evaluate 

the role of ambient particulate matter in explaining geographical variation in the prevalence of asthma 

(Anderson et al. 2010). Anderson and colleagues concluded that urban background PM10 has little or no 

association with childhood asthma. On the other hand, using self-reported truck traffic intensity in the 

same study did show an association with asthma, giving further weight to shifting the focus to TRAP 

(Brunekreef et al. 2009). Since these studies, there is growing evidence that air pollutants that are 

specifically associated with traffic exposure may have a role in incident asthma (Guarnieri and Balmes 

2014). A recent review concluded that living close to busy roads is an independent risk factor for the 

onset of childhood asthma even though it did not reach the level of sufficient evidence (Gowers et al. 

2012). 

1.1.3.2 Traffic-related air pollution, asthma and allergies: mechanisms, exposure 

assessment, and epidemiological evidence  

The emission of air pollution from motor vehicles affects the quality of the air, especially considering the 

rapid growth of the motor-vehicle fleet worldwide and despite substantial improvements in emission 

controls. TRAP is a mixture of particulate matter (PM), volatile organic compounds (VOCs), polycyclic 
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aromatic hydrocarbons (PAHs), and gases such as nitrogen oxides (NO, NO2) and carbon monoxide 

(CO). This mixture’s composition is a function of the type of vehicle, its operating and maintenance 

condition, type and quality of fuel, wear of tires and brakes, and engine lubricants. Nitrogen oxides are 

often used as surrogates for TRAP as data for these air pollutants, associated with a diverse set of health 

effects, is often routinely collected by governments.  

Nitrogen oxides are a group of reactive gases, of which nitrogen dioxide (NO2) and nitric oxide (NO) are 

most commonly monitored. NO and NO2 are both released from combustion. NO is a primary combustion 

pollutant that reacts with ozone in the atmosphere to form NO2. Concentrations of both gases are highest 

near traffic sources. Long-term average NO2 levels in cities worldwide vary from 15-60 µg/m3 (WHO 

2006). In general, traffic-related pollutants impact ambient air quality on a broad spatial scale ranging 

from roadside, to urban, to regional background. Based on synthesizing evidence gathered by the panel of 

Health Effects Institute (HEI) experts, 300 to 500 meters from a major road was identified as the near-

source area most impacted by traffic; variations exist depending on meteorology, background pollution, 

and local factors (Health Effects Institute 2010).  

Particulate Matter (PM) refers to a complex and dynamic mixture that can be characterized by mass or 

number concentrations in specific size categories and/or by chemical composition. Monitoring efforts 

target particles with an aerodynamic diameter less than 10 micrometers (referred to as PM10) because they 

can be inhaled and deposited into the lungs. A subgroup of PM10 is fine particulate matter, or particles 

with an aerodynamic diameter less than 2.5 micrometers (referred to as PM2.5), which are able to 

penetrate deep into the lungs. For this reason, they have become increasingly monitored. PM10 includes 

coarse PM which, while potentially related to TRAP, might arise from non-combustion sources (e.g. 

brake and tire wear, suspended road dust into air by wind and traffic) as well as industrial and mobile 

sources. Primary sources of PM2.5 are mainly from combustion. Particulate matter levels can be higher 
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near emission sources, such as roadways (Health Effects Institute 2010), in particular for black carbon, 

ultrafine particles and PM10 (Karner et al. 2010). 

As traffic is currently, and is likely to remain, a major contributor to air pollution in urban settings, 

understanding its impacts on health is of upmost importance. According to the Health Effects Institute 

review on TRAP, there is sufficient evidence to infer a causal role for TRAP in the exacerbation of 

asthma in children (Health Effects Institute 2010) . However, there is also mounting evidence that TRAP 

may induce asthma onset as discussed below. 

Biological mechanisms and role of TRAP in the incidence of asthma and allergic disorders.  

Experimental studies have identified specific TRAP-induced biological effects. The effect of diesel 

exhaust particles has received the most attention. It has been shown to enhance allergic inflammation by 

skewing the immune response towards Th2 activation, therefore increasing the production of IgE. 

D'Amato and colleagues provide a thorough review of the potential effects of exposure to ozone, NO2, 

SO2, and inhalable particulate matter on respiratory allergic diseases (D’Amato et al. 2002). These 

studies, however, argue for the allergic asthma phenotypes. Other mechanisms involving the oxidative 

stress pathway have also been suggested for the role of TRAP in childhood asthma development. Reactive 

oxygen species (ROS) and free radicals are generated by traffic related pollutants such as NO2 and PM. 

Oxidative stress arises when the neutralizing antioxidant defense in the airways, secreted to counteract the 

effects of ROS, is overwhelmed. In turn, this enhances inflammation, specifically around the respiratory 

epithelium, and further ROS formation (Bråbäck and Forsberg 2009). In the developing lung, air 

pollutants may interact with the airway in a way that modifies its structural functions leading thus to 

asthma (airway remodeling). More recently, epigenetic studies are increasingly supporting the oxidative 

stress pathway in the association between TRAP and asthma. In particular, following short-term exposure 

to diesel, changes in the DNA methylation was seen in gene sites involved with inflammation and 
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oxidative stress responses. This provides a plausibile pathway by which TRAP can impact gene 

expression and subsequently respiratory system function (Jiang et al. 2014).  

The expert panel of the Health Effects Institute found evidence suggesting that TRAP was associated with 

pediatric asthma onset, a finding further corroborated by recent publications (Clark et al. 2010b; Gehring 

et al. 2010a; Gruzieva et al. 2013; McConnell et al. 2010). The most relevant studies to assess pediatric 

asthma onset are birth cohort studies as this design allows the follow up of study participants from birth 

or earlier during pregnancy, and to characterize their exposures prior to the onset of the disease, 

establishing the direction of causality. However, assessing the role of TRAP on childhood asthma in 

epidemiologic studies is fraught with issues related to the case definition. Asthma onset relies on history 

of symptoms that may indicate not only onset but also exacerbation. Additionally, pediatric asthma 

diagnosis is challenging and may often confuse wheezing with “true” asthma, since robust diagnosis is 

often only possible at school age. 

Among the first studies to highlight the role of timing of exposure for asthma onset was a case-control 

study in France in children aged 4 to 14 years. The authors of this study demonstrated an association 

between traffic density (>30.3 (veh/day)/m) before the age of 3 years and asthma (Zmirou et al. 2004) but 

no association with lifelong exposure,  suggesting that early exposure to traffic related air pollution plays 

a role in the initiation of asthma. 

Adding to the weight of evidence are the generally consistent results from birth cohort studies over 

different geographical areas spanning Asia, Europe and North America. In Europe, a Dutch cohort (the 

Prevention and Incidence of Asthma and Mite Allergy [PIAMA]) (Brauer et al. 2002, 2008; Gehring et al. 

2010a) and two German cohorts (GINA and LISA) used a similar modeling-based exposure assessment 

approach to estimate individual estimates at each subject’s home address at birth with rigorous control of 

other covariates related to asthma and allergies. While the German studies suffered from a less robust 
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case definition, using “obstructive/asthmoid bronchitis” that likely related to the mixed results obtained in 

these cohorts (Gehring et al. 2002; Morgenstern et al. 2007), the Dutch study examining the children at 

three time points (2, 4, and 8 years of age) had more consistent results for asthma and allergies. Of 

particular interest is the follow up study on 4000 Dutch children until age 4 where Brauer et al. showed 

that exposure to higher levels of TRAP was associated with increased risks of doctor diagnosed asthma: 

1.3 times increased risk per 0.6 x 10-5/m increase in level of soot, 1.2 times increased risk per 10 µg/m3 

increase in NO2, and 1.2 increased risk per 3.3 µg/m3 increase in PM2.5 (Brauer et al. 2008). The follow 

up study led by Gehring and colleagues confirmed the association of traffic air pollutants in 8 year old 

children (Gehring et al. 2010a). A Canadian birth cohort study, also relying on similar modeling method 

to assess exposure in utero and during the first year of life showed positive associations between early-life 

TRAP exposures and asthma. Here, the researchers determined that exposure to traffic-derived pollutants 

in early years, including NO, NO2, CO, and black carbon (BC), were associated with the highest risk 

estimates compared to other pollutants (SO2, and PMs), although these are not good TRAP proxies  

(Clark et al. 2010b). In the US, different approaches for exposure assessment to TRAP were used to 

assess its impact on pediatric asthma incidence. In the Cincinnati birth cohort, residing close to stop-and-

go traffic (<100 m) had a 3-fold increased risk of  wheeze in the first year of life compared to unexposed 

infants (Ryan et al. 2005), and increasing modeled levels of traffic soot showed a dose-response 

relationship with infant wheezing (Ryan et al. 2007). Both studies did not have robust case ascertainment 

as the identified phenotypes were outcome measures that often resolve subsequently at school age.  

However, the classification of the evidence for the role of TRAP on incidence of asthma by the Health 

Effects Institute expert panel was deemed as suggestive only. Indeed, even when including various 

phenotypes of asthma, some cohort studies did not find any association between TRAP and childhood 

asthma. For instance, a cohort of school children in Oslo, Norway where individual exposures to TRAP 

pollutants (NO2, PM10 and PM2.5) in early life and during lifetime were calculated using an atmospheric 
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dispersion model with contribution from busy roads showed no association with asthma onset (Oftedal et 

al. 2009). Similarly, negative reports from German cohorts showed no relation between exposure to air 

pollutants and new onset of asthma (GINI/LISA) (Gehring et al. 2002). Therefore, results to date are 

diverging. It should be noted that the most consistent evidence of an association of TRAP with childhood 

asthma incidence involved epidemiologic research where the exposure assessment of TRAP included both 

traffic-specific pollutants and traffic density measures. It is also possible that the overall lack of 

agreement relates to the confounding effect of genetics and gene-environment interactions. In fact, a 2009 

review of the impact of TRAP on respiratory health called for genetic association studies to clarify how 

polymorphisms may increase susceptibility to traffic exhaust (Bråbäck and Forsberg 2009). However, for 

such studies to detect an interaction, a rigorous and accurate exposure assessment of TRAP is crucial. 

While qualitative critical reviews have suggested that the weight of evidence may indicate possible causal 

associations between childhood asthma and TRAP (Bråbäck and Forsberg 2009; Health Effects Institute 

2010), meta-analyses have demonstrated diverging results. Anderson et al., recently conducted a meta-

analyses of the epidemiological evidence published up until 2010 and reported an adverse effect of 

outdoor air pollution on asthma incidence but no association with lifetime period prevalence of asthma 

(Anderson et al. 2013a, 2013b). Another meta-analysis showed adverse effects of traffic air pollution on 

pediatric asthma (Gasana et al. 2012). Although the results of these meta-analyses appear contradictory, a 

possible explanation could be that the increased risk in incidence reflects the unveiling of the 

exacerbation of subclinical phenotypes of asthma (Gowers et al. 2012) which highlights the heterogeneity 

of the disease as well as the need to examine asthma incidence over consecutive time spans. Given that 

the early life period seems to be a critical time window in the pathogenesis of asthma and allergic 

diseases, there is a gap for studies following children over time from early life, to preschool and later on 

into childhood. Epidemiologic results were also inconsistent in studies examining asthma onset in school 

age participants. For example, positive associations in relation to TRAP exposure have been reported in 
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the Children’s Health Study in California of incident asthma in school age children (Gauderman et al. 

2005; Jerrett et al. 2008; McConnell et al. 2010), but no evidence of an association between air pollution 

and lifetime asthma prevalence in children followed up until age 10 was reported in meta-analysis of birth 

cohorts from the European Study of Cohorts for Air Pollution Effects initiative (Mölter et al. 2014b). 

Concomitantly, the discrepancies in results between within-community studies that tend to show positive 

associations2 (Gruzieva et al. 2013), and between-communities studies that showed null effects (Anderson 

et al. 2013b; Mölter et al. 2014b) could also be related to a finer-scale exposure assessment that captures 

individuals living in close proximity to heavy traffic (MacIntyre et al. 2014). These gaps need to be 

informed.  

Critical review of exposure assessment methods for TRAP 

In determining the role of TRAP in the incidence of asthma and allergic disorders, various exposure 

assessment approaches have been employed to estimate individual exposures. They vary in terms of 

complexity, spatial, and temporal resolution. The simplest approach to assign TRAP exposure to 

individuals in a study has been either the use of a single piece of information to either derive indicator 

variables (i.e. proximity measures) or to interpolate information. The former approach uses proximity to 

major roads as an exposure surrogate for the assessment of temporal and spatial distributions of ambient 

pollution related to motor vehicles, which has been used extensively in air pollution studies (e.g. distance 

to major roads (Brunekreef et al. 1997)). Similar to the idea of using proximity to roadways as a surrogate 

for TRAP exposure, traffic intensity has also been used for assigning traffic pollutants in population-

based studies (Gauderman et al. 2005; Salam et al. 2004). Proximity and traffic intensity can provide 

reasonable approximation because (a) pollutants decay studies have shown that NO2, benzene and PAHs 

                                                      

2 It should be noted that meta-analyses showing positive association(Anderson et al. 2013a; Gasana et al. 2012) also 
focused on within-community exposures 
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are mostly captured between 300m and 500m from roadways (Beckerman et al. 2008), and (b) people 

tend to live closer to roadways as shown in an  investigation of two large North American cities (Los 

Angeles and Toronto) (Health Effects Institute 2010) and also more recently in a report showing that 10 

million Canadians (32% of the population) live within 100m of a major road or 500 m of a highway 

(Brauer et al. 2012). An important advantage of proximity measures is the ease of interpretation when 

used in epidemiologic analyses, which helps with knowledge translation and research dissemination for 

policy-makers. However, traffic intensity and proximity measures are still crude estimates of exposure as 

they do not account for wind patterns or land topography and do not incorporate measured values of 

pollutants.  

Another approach is to assign exposure by using surrogate measurements such as NO2 from regulatory air 

quality monitoring networks. Such monitoring networks have the advantage of capturing temporal trends 

in pollution concentrations, but do not have good spatial density to capture the smaller scale variations 

(i.e. within city). Moreover, this approach may introduce exposure misclassification in epidemiologic 

analyses for pollutants that are spatially heterogeneous, which is the case for TRAP. Geographic 

Information System-based (GIS) spatial interpolation approaches and statistical techniques have been 

used to obtain a more precise spatial interpolation of ambient monitoring data (e.g. Kriging approaches) 

providing further refinement of the proximity metrics. However, these approaches require dense 

monitoring networks and good input data. Even so, they may still not adequately capture the smaller-scale 

spatial variations such as those occurring near roadways. Since governmental monitoring air quality 

stations routinely collect NO2, a large portion of the studies using spatial interpolation have assessed 

TRAP using NO2 as a preferred marker for TRAP. Other advantages of this marker include its 

inexpensive measurement by passive samplers, and its correlation with other exposure surrogates such as 

distance to major road or other pollutant markers such as “soot” (also referred to as black carbon). In the 

Netherlands, the mean outdoor concentration of NO2 measured at twelve schools was positively 
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correlated with total traffic density on the nearest highway (r = 0.68, p<0.05), and negatively correlated 

with the natural logarithm of the distance from highway (r = -0.83, p<0.01). Black smoke was positively 

correlated with NO2 (r = 0.74, p<0.01), and with truck traffic (r=0.67, p<0.05) but not with cars, total 

traffic, or with the natural logarithm of the distance from highway (Roorda-Knape et al. 1999).  

A limitation of relying on pollutant markers from monitoring networks already in place is that these 

networks are set up for regulatory purposes. They are not designed to capture hotspots or possible within-

city variation for which TRAP is an important source, but rather to reflect ambient levels. Since evidence 

showed that small-scale variability is often as great or even greater than intercity variation for many air 

pollutants (Briggs 2005; Miller et al. 2007), exposure assessment techniques with poor spatial resolution 

increase the potential for misclassification because they provide background levels rather than true 

variability in a given area. Characterizing small area variations in air pollutant concentrations is of utmost 

importance in epidemiological studies, especially for large studies conducted within a single urban area. 

This need prompted the use of models capturing spatial variations in air pollution studies. 

Two general approaches can be distinguished for the air pollution models:  (1) dispersion models, which 

attempt to simulate the physical (and to some extent chemical) processes involved in transport; and (2) 

statistical models, which largely ignore the intervening processes, but represent, by empirically defined 

equations, the relationship between the source and concentrations at the receptor. The latter class of 

models includes GIS-based models and represents a technique with good spatial resolution that has been 

used widely in Europe and North America. GIS-based models are also termed land use regression (LUR) 

because they are based on empirically-derived regression equations linking land use to measured air 

pollutant concentrations at a set of monitoring sites. In contrast, dispersion models have been used for 

many years in air quality management but only recently in applied exposure assessment to provide 

improved spatial exposure estimates (Marshall et al. 2008a). The main limitation of using dispersion 

models is that all the relevant input parameters need to be included in the model without necessarily 
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gaining a significant benefit in terms of spatial resolution. In a comparison of exposure assessment 

approaches, urban-scale variations were captured by interpolated background air pollution data collected 

at monitoring stations and a chemical transport model; whereas neighborhood-scale variations were 

captured by LUR models (Marshall et al. 2008a). In the same vein, European evaluation studies have 

indicated that LUR models generally perform as well as or better than dispersion models for NO2 

estimates (Briggs et al. 2000; Hoek et al. 2008). Another study reported that LUR outperformed 

proximity models, kriging, and dispersion models for predicting PM10 (Gulliver et al. 2011). Hence, for 

environmental epidemiologic studies where effect size is typically small, the ability of LUR models to 

capture high spatial variability of urban air pollution make it a preferred methodological approach for 

TRAP exposure assessment.  

LUR modeling generally requires a minimum of 40 to 80 monitoring sites, depending on the size and 

complexity of the study area (Hoek et al. 2008). Other predictors are usually selected to represent traffic-

related emissions (e.g. road length, traffic flows) in the surrounding area, and the effect of local 

topography (e.g. elevation). The predictor variables included in the model vary widely between studies 

and are usually obtained via geographical information systems (Hoek et al. 2008). In North American 

studies, LUR has typically achieved predictions for NO2 in the range of R2 = 0.56 to 0.79 (Health Effects 

Institute 2010). 

Geographic data collected to build LUR models vary by site, as there is no consensus as to which 

predictor variables must be included. However, numerous studies have demonstrated an association 

between GIS-derived information related to exposure and respiratory health effects where there was at 

least one variable related to road use (either traffic, type or distance) (Hoek et al. 2008; Patel and Miller 

2009; Venn et al. 2001). Study areas where there was variation in elevation tended to include a variable 

related to elevation (Ryan and LeMasters 2007). The variable selection depends therefore on the 
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availability of the data and on the potential sources of pollutant variability in the study area (e.g. shipping 

emissions, waste burning etc.) 

A major limitation of LUR models resides in that they have been mostly used to predict NO2 for logistics 

reasons. As mentioned earlier, passive samplers for NO2 (e.g. Ogawa sampler) are inexpensive compared 

with other methods to collect traffic pollutants tracers. Alternate approaches such as mobile monitoring 

that may be applied to additional pollutants have also been utilized. For example, Larson and colleagues 

conducted mobile monitoring to collect data for a LUR model predicting black carbon. In general, LUR 

models suffer from a lack of specificity for TRAP.  

Given that the relevant timing of exposure for the development of childhood asthma and allergic diseases 

is yet to be identified, the ability to assign exposures for precise time windows needs to be improved. This 

is especially critical as LUR models tend to lack temporal resolution. LUR models are developed based 

on a large number of measurement locations collected in different seasons usually within a year to predict 

exposures for studies that examine the effect of chronic TRAP exposures (> 1year). These models have 

traditionally assumed that there is no change in the relative ranking of the exposure of study participants 

over time. This assumption is only valid if concentrations of pollutants change systematically in all 

sections of the study area, which is not always the case, leading in turn to misclassification of the study 

population, especially in the context of large cohort studies spanning long time periods. Few studies have 

examined how to improve or combine LUR to model temporal variation in air pollution. Su and 

colleagues proposed a method where LUR included a source area component to predict hourly NO2 

concentrations (Su et al. 2008). They showed that this hybrid model is less data demanding than 

dispersion models, as it requires only meteorological data on wind speed, wind direction and 

cloud/insolation. Mölter et al. compared three methods to forecast LUR exposure: (1) apply a temporal 

trend derived from a local background monitor to the concentrations predicted by the LUR model; (2) 

change the values of the predictor variables to reflect different time periods; and (3) recalibrate existing 
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LUR model, which implies that the regression analysis is re-run with updated values of the dependent 

variable to reflect different time periods (Mölter et al. 2010). Their results conclude that LUR can provide 

a relatively good temporal resolution for long-term studies provided that recalibration and adjustment are 

based on current measured data. More recently, the temporal stability (forward and backward) for the 

LUR model for the greater Vancouver geographic region was examined and found to provide reliable 

estimates over a period of seven years measurements (Wang et al. 2013). It was shown that when 

extended in time, the 2003 LUR model explained 60% variation in 2010 measurements, more than it did 

in 2003 measurements (59%). Since concentrations and their variability decreased overtime, this allows 

for a reasonable predictive power in forecasting because it consisted of interpolating within the range of 

measured exposures whereas backcasting involved extrapolating outside the range of measured values. 

Limitations associated with LUR estimates of TRAP include: (1) the fact that no study participant stays at 

a fixed position throughout the study period – although this is true for all methods except measurement –, 

and (2) the issue of transferability of models over large geographical areas. In large long-term cohort 

studies, the possibility to transport a model based on one area to another study area needs to be evaluated 

given the changes in land use characteristics, population densities, and traffic patterns over time. 

According to the review by Hoek et al. (Hoek et al. 2008) LUR methods can benefit from the inclusion of 

both a spatial and temporal component. Recent studies have investigated the transferability of LUR 

models for use in wider geographical areas. However, both Poplawski et al. (Poplawski et al. 2009) and 

Allen et al. (Allen et al. 2011) showed that even for cities with similar characteristics (Seattle, Vancouver, 

Victoria and Winnipeg, Edmonton, respectively) it was better to create individual local area LUR models 

than to have the same LUR model for all areas. At the study area level, people are mobile in the course of 

the day whereas LUR models predict exposures at one location (usually the home of participants), 

resulting in misclassification for more mobile study subjects. Time-activity patterns can affect personal 

exposure. For instance, exposures to pollutants in the transport microenvironment are often highly 
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elevated compared to other microenvironments (Kaur and Nieuwenhuijsen 2009). Data from US travel 

surveys indicate that in 2001 commuters/adults and children spent an average of 81 and 48 minutes per 

day in vehicles respectively (Hu 2005), where their exposure to TRAP is likely high. Relative to ambient 

concentrations measured at monitoring sites, vehicle commuters may receive as much as half the daily 

exposure in this microenvironment (Gulliver and Briggs 2005; Health Effects Institute 2010). There is a 

need to adjust LUR model by incorporating mobility information, otherwise the predicted exposure will 

be inaccurate and may even result in misclassification (Setton et al. 2010). An understanding of factors 

that influence personal exposures is necessary for a better understanding of the health risks posed by air 

pollutants in different microenvironments (Kaur and Nieuwenhuijsen 2009). Various approaches have 

been explored to incorporate mobility into exposure assessments. Through the use of personal sampling, 

Nethery et al. demonstrated that exposure estimates derived from LUR models were improved when 

mobility information was taken into consideration (Nethery et al. 2008b). In the case of birth cohort 

studies, such an approach would be expensive and infeasible. However, questionnaires on time activity 

patterns can shed light on the amount of time infants spend commuting and in daycare/preschool. 

Regression models can be improved by incorporating adjustment factors for the portion not predicted by 

LUR models.  

Most of the reviewed literature on assessing exposure to TRAP is concerned with modeling or measuring 

outdoor pollutants that readily penetrate indoors. Quantifying the PM infiltration efficiency (Finf) in 

residences can help characterize indoor concentrations and reduce exposure misclassification as there are 

differences in infiltration between homes and over time (Allen et al. 2006). Misclassification of exposure 

can affect associations either away or closer to the null because of the different sources of variability 

associated with infiltration: (1) Studies have shown that Finf can vary from 2 to 10-fold between houses 

that have the same ambient exposure levels (Allen et al. 2006; Clark et al. 2010a; Hystad et al. 2009) and; 

(2) Finf can also vary within homes due to seasonal changes. For example, on the Canadian west coast, 
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infiltration varied from 0.49 to 0.72 (Hystad et al. 2009), whereas infiltration in homes in North Carolina 

varied from 0.50 to 0.63 in heating versus non-heating seasons (Wallace and Williams 2005). In an effort 

to circumvent the need to assess infiltration, which is deemed impractical in large studies, Hystad and 

colleagues demonstrated that property assessment data can be useful to model and estimate infiltration 

based on the value of the structure of a house, also known as improved value. They showed that homes 

with structure value below the 50th percentile had 15% higher infiltration than homes above the median. 

Unfortunately, the level of detail on property assessments varies geographically (often by municipality). 

Clark et al. showed in another property assessment database, for example, that you could not separate the 

home value into structure and land value (Clark et al. 2010a; Hystad et al. 2009) even within a relatively 

defined study area.  

Finally, TRAP is not solely composed of PM, as outlined previously. This lack of a specific TRAP tracer 

poses a major challenge for epidemiologic studies of respiratory health effects of air pollution emitted 

from vehicles. 

1.1.3.3 Chemical tracers of traffic-related air pollution in house dust  

Despite the variations that occur in dust sampling, house dust measurements have formed the backbone of 

epidemiological studies of multiple indoor inhalant exposures and asthma. Indeed house dust presents the 

advantage of providing one matrix for the evaluation of multiple agents related to childhood asthma (e.g. 

allergens, endotoxins) which is a reasonable proxy for time-integrated exposure (Lioy et al. 2002). While 

the accumulation of house dust depends on several factors (e.g. infiltration efficiency, pollutant source, 

cleaning practices, sampling surface), dust concentrations and loadings of pollutants show less variation 

over time than do indoor air concentrations. Therefore, dust sampling is a particularly useful tool in 

studies of chronic exposures (Egeghy et al. 2004). The quantification of a TRAP tracer in house dust, as a 

marker for indoors inhalable hazards and infiltrated pollutants from outdoor origins (e.g. PAHs from 

vehicles exhaust), would represent a useful and integrated exposure assessment tool. Particulate matter 
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infiltration is the key determinant of indoor concentrations of ambient particles, yet PM is not a specific 

measure of traffic pollution exposure. A good tracer of TRAP would be a chemical for which the major 

source is vehicle emissions and that can be measured accurately and at low levels for reasonable cost. 

One such group of tracers may be the hopanes, a class of organic compounds with 27 to 35 carbon atoms 

in naphthenic structure (Simoneit 1985). Hopanes are are present in engine oil lubricants, but are not 

found in gasoline and diesel fuel because they are in the higher boiling fraction of petroleum (Pakbin et 

al. 2009). Hopanes are thus tracers of primary vehicular aerosols (Delfino et al. 2010), particularly on 

account of their relative stability and non-volatile nature in the atmosphere (Turlington et al. 2010). 

Hopanes and steranes can be used to distinguish diesel and gasoline engine emissions from other 

combustion sources and track personal exposure (Sheesley et al. 2009). These stable species can serve as 

unique tracers in determining the contribution of diesel and gasoline vehicles to the total concentrations 

measured in ambient air (Rogge et al. 1993), when sources of fuel (e.g. gas station) and coal combustion 

are not in the vicinity. 

In a recent review of organic markers in fine PM,  Lin et al. showed that hopanes are commonly used in 

receptor model source apportionment studies with the three most abundant hopanes being 

17α(H),21β(H),29-norhopane, 17α(H),21β(H)-hopane, and 22,29,30-trisnorneohopane (Lin et al. 2010). 

Still, the potential for indoor dust as a tool for assessing exposure to outdoor-generated pollution has not 

been extensively evaluated. According to Turlington and colleagues, there are concerns regarding quality 

control for hopanes (Turlington et al. 2010). These authors showed that compared to PAHs that have been 

extensively studied in a variety of matrices (e.g. wipes, vacuumed dust, and urine) with numerous 

validated methods, there are few choices for hopanes analytical standards. Future research aimed at 

identifying traffic-pollution constituents likely to have few indoor sources, with the capacity to 

discriminate near-source traffic from background traffic levels, is needed for epidemiologic studies 

attempting to link traffic to adverse health outcomes (HEI, 2010). In addition, the possibility to collect 
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such a tracer in house dust offers the possibility to have a time-integrated measure of exposure while 

capturing the proportion of outdoor TRAP that infiltrates indoors.  

 

1.1.4 Greenness, asthma and allergies 

The field of research around nature and health has experienced considerable expansion over the past few 

decades in light of growing worldwide urbanization and related lifestyle changes (Hartig et al. 2014). 

These factors affect not only air pollution, but also the possibilities of human contact with green spaces, 

predominantly viewed as beneficial for human health and well-being (Hartig et al. 2014; Lee and 

Maheswaran 2011). These benefits may act via different pathways, including physical activity 

(Roemmich et al. 2006), social cohesion, stress reduction and air quality improvement (Figure 1.1). On 

the other hand, despite the benefits of green spaces, they also pose risks related to human allergic 

reactions to the airborne plant pollen released during pollination. This coincides with findings which 

indicate that people living in urban areas are 20% more likely to suffer airborne pollen allergies than 

people living in rural areas (D’Amato et al. 2007). This situation has been explained by the uniformity of 

green spaces and the interaction of pollen with air pollutants that potentiate the sensitization response 

(Cariñanos and Casares-Porcel 2011). In Canada, higher rates of asthma-related hospitalization were 

shown in relation to an increased load of aero-allergens that can be emitted by certain types of trees suited 

for urbanized areas (Dales et al. 2004). 

The risk posed by pollen allergy is amplified in the context of climate change. Climate change has 

important effects on ecosystems, notably on the potential load of aeroallergens present in the 

environment. There is now considerable evidence showing that climate change alters the timing, 

distribution, quality and quantity of allergenic plants and their associated aeroallergens (Beggs 2004; 

D’Amato et al. 2002, 2010; D’Amato and Cecchi 2008; Shea et al. 2008) which consequently increases 

the risk of allergies and asthma severity.  
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Figure 1.1: Pathways linking natural spaces to human health (adapted from (Hartig et al. 2014) ). Putative 

causal pathways in blue, effect modifiers in brown (personal characteristics (e.g. age, gender) and other 

intrinsic effect modifiers are not depicted for clarity). 

 

With respect to pediatric asthma and allergies, the epidemiologic evidence on the effect of surrounding 

greenness remains conflicting. Recent studies have provided support to the negative effect of green space 

exposures via increased allergic load. For instance, in a birth cohort study conducted in New York, 

asthma at age 7 was significantly increased in those residing in streets with higher tree canopy coverage 

(Lovasi et al. 2013). Opposite to these results, a recent review on the role of natural spaces (e.g., parks) in 

children’s health concluded that reduced access to open spaces is related to higher relative prevalence of 

asthma and allergic conditions in children (McCurdy et al. 2010). This review of evidence is consistent 

with studies in which exposure to green spaces reduced the risk of asthma (Sherriff et al. 2009) via 

increased physical activity (Roemmich et al. 2006) or via reduced air pollution exposure (Dadvand et al. 

2014; Lovasi et al. 2008). The biodiversity mechanisms (Haahtela et al. 2013) and the revised version of 

the hygiene hypothesis (Rook 2013) might explain the beneficial role for green spaces with respect to 
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childhood asthma development whereby the reduction in the human-nature interface hinders 

immunoregulatory mechanisms. Overall, longitudinal follow up studies examining the effect of green 

spaces on childhood asthma and allergic diseases development are scarce and needed to verify these 

proposed mechanisms.  

1.1.5 Summary of major gaps identified 

In view of the above critical review of the literature, most studies examining the role of TRAP on 

childhood respiratory health have used measurements from a few central ambient monitors and/or some 

measure of traffic as indicators of exposure, disregarding spatial variability and/or factors influencing 

personal exposure-ambient concentration. There is a need to investigate novel measurement approaches 

that would be specific to TRAP and/or modeling methods that account for spatial and temporal variation 

as well as outdoor/indoor infiltration and time-location patterns. 

On the other hand, asthma and allergic disease development in relation to TRAP research need 

prospective longitudinal follow-up where phenotypes of asthma and allergic diseases are rigorously 

characterized and environmental exposures are estimated as early as conception, throughout pregnancy 

into later childhood. Such follow-up can help clarify critical period of disease incidence both for asthma 

and for atopy, and define whether various trajectories in the disease development occur following 

exposure to environmental exposures that co-vary and may interact such as air pollution and green spaces. 

The latter exposure has been scarcely examined in longitudinal birth cohort. 

1.2 Data sources 

The various investigations reported in this dissertation leveraged two existing Canadian birth cohort 

studies. A description of the study populations, outcome measures and exposure assessment methods are 

described below. 
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1.2.1 Canadian healthy infant longitudinal development (CHILD) study 

1.2.1.1 Study population and outcome data 

The Canadian Health Infant Longitudinal Development (CHILD) study is a large (n=3500 mother/infant 

pairs) prospective birth cohort that was designed to determine the role of environmental factors and their 

interactions with genetic and host factors in the development of allergy and asthma in children. Pregnant 

mothers from four Canadian cities (Vancouver, Edmonton, Winnipeg, and Toronto) were recruited 

between 2008 and 2012. Surveys of environmental exposures using questionnaires and home assessments 

were complemented by extensive environmental and biologic sampling (Moraes et al. 2015; Takaro et al. 

2015).  

Inclusion and exclusion criteria for mothers and infants are shown in Table 1.1. Efforts were made to 

recruit from a representative general population to allow identification of environmental risks and novel 

genes by avoiding the selection of an at-risk population. Infants born prematurely or with respiratory 

distress syndrome were excluded as these conditions can independently increase the development of 

wheeze, asthma and allergic respiratory disorders. Similarly, families who turned to in vitro fertilization 

were excluded since potential environmental effects and epigenetic changes in the embryo developing in 

vitro could not be assessed. Finally, children who spent less than 80% of their time in the principal 

residential address were excluded because of the inability to model their exposures (these do not include 

children spending the equivalent of a work day in daycares). Participation of the father was encouraged 

but not mandatory for recruitment. All participants provided informed consent at the time of enrolment. 

Table 1.1: Inclusion and exclusion criteria for participants’ recruitment in the CHILD study 

Inclusion Criteria Exclusion Criteria 

Pregnant women aged >18 years (>19 years 

in Vancouver). 

Children born with major congenital abnormalities or 

respiratory distress syndrome (RDS). 
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Inclusion Criteria Exclusion Criteria 

Residential proximity (<50 Km) to 

participating delivery hospital. 

Expectation of moving away from a recruitment center 

within 1 year of recruitment. 

Ability to read, write and speak English. Children of multiple births. 

Willing to donate cord blood. Children resulting from in vitro fertilization. 

Planning to deliver at a designated 

recruitment center participating hospital. 

Children who will not spend at least 80% of nights in 

the index home. 

Infants born at or after 35 weeks.  

 

To enable the examination of potential cause-effect relationships relevant to the development of pediatric 

allergy and asthma, the CHILD study is defined by detailed phenotyping, based on clinical data and 

objective measurements of atopy and lung function, together with assessment of a diversity of pre- and 

post-natal environmental exposures and biobanking of multiple biological and environmental samples 

including blood, breast milk, urine, stool, nasal swabs and house dust for subsequent assays of chemical 

and biological agents. 

All CHILD participants followed the same visit schedule (Table 1.2), except for some tests and biological 

samples that were city-specific. In particular, families recruited in Toronto had an extensive set of early 

novel lung development characterization examinations (Pulmonary Function Tests at 3, 12 and 18 months 

of age). Similarly, only Vancouver mothers were administered a particular psychological scale (the Life 

Stress Interview) at 36 weeks of pregnancy and when the child was one year old. Finally, only Winnipeg 

children provided venous blood at the three year clinic visit.  

 

 



34 
 

Table 1.2: CHILD study schedule from recruitment to age 5 
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Mother Profile/Residential 

history √     √   √   √   √ √ √ 

Mother Health  √                     √ 

Mother Nutrition  √                     √ 

Mother Medications  √                       

Mother Psychosocial √ √                   √ 

Parenting stress           √   √   √ √ √ 

Father Health  √                       

Socio-economic Status (SES) √                       

Child Delivery Chart      √                   

Child Health        √                 

Child Nutrition        √                 

Child Medications        √                 

Child Clinical Assessment                          

Home Environment Survey √     √ √ √ √ √ √ √ √ √ 

Home Assessment done by RA       √                 

T
e

st
s 

Mother Skin Prick Test           √             

Mother Spirometry            √             

Father Skin Prick Test  √                       

Father Spirometry  √                       

Child Skin Prick Test            √       √   √ 

Child eNO                       √ 

Child Pulmonary Function Test                        √ 

S
a

m
p

le
s 

Cord Blood     √                   

Mother Breast Milk        √                 

Mother Venous Blood  √         √             

Parent Buccal Swab           √             

Father Venous Blood  √                       

Chid Venous Blood            √             

Child Nasal Swab       √   √           √ 

Chidl Buccal Swab       √   √             

Child Urine        √   √           √ 

Child Meconium/Stool        √   √             

Home Dust Collection        √                 
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The analysis in this dissertation took advantage of the availability of skin prick tests administered to the 

mother/child dyad one year after birth to examine early infancy risk of sensitization with regard to air 

pollution. During the clinical assessment where the skin allergy test was performed, trained pediatric 

nurse or research assistant visited each participant. 

The skin allergy testing (Appendix A), performed on the arm or the back, used standardized ALK 

(Horsholm, Denmark) inhalant aeroallergens (tree, grass and weed pollens, cat, dog, Dermatophagoides 

pteronyssinus, D. farinae, cockroach, Alternaria, Cladosporium, Aspergillus, and Penicillium) and 

common food allergens (cow’s milk, egg white, soybean and peanut). Individual weal sizes for allergens 

or positive (histamine 0.1%) and negative (glycerin) controls were determined by the mean of the longest 

diameter and its perpendicular. After adjusting for any response to the negative control, atopy is 

characterized dichotomously, defined by 1 or more positive skin tests with mean weal diameter ≥2 mm 

above the negative control response.  

1.2.1.2 Environmental factors and covariates 

 

The methodology describing environmental assessments (Table 2) was reported in detail elsewhere 

(Takaro et al. 2015). In brief, indoor environmental exposures were repeatedly assessed by house and 

content questionnaires from pregnancy to age 5 years including details of indoor behaviors. For the 

purpose of this work, tools were administered during pregnancy up to 1-year post partum. When the child 

was around 3 months of age, a detailed walk-through assessment (Appendix B) with dust sampling for 

multiple allergens and chemical pollutants, including hopanes (Chapter 2), was conducted, along with 

global positioning system (GPS) tracking that was aimed to complement the self-reported residential 

history addresses used to identify the index home of each participant. Time activity patterns of the child 

and parents were tracked by means of questionnaires and included time spent in transit, and mode of 
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transport. Second-hand tobacco smoke exposure was assessed by repeated questionnaires after enrollment 

(i.e. during pregnancy, after birth (around 3 months), and when the child was one year of age).  

Along with the assessment of environmental risk factors that were delineated in Section 1.1.2, other 

working groups within CHILD developed questionnaires to assess known asthma risk factors, namely 

diet, psycho-social environment characteristics, and birth characteristics. 

Table 1.3: Principal exposure assessment methods used in the CHILD Study to characterize the physical 

environment during pregnancy and infancy periods 

                  Method 
 
Exposure example 

Questionnaires Physical home 
assessment 

Home dust 
samples 

GIS 
model 

 Common allergens   
 (includes pets and pests) 

√ √ √3  

 Secondhand smoke √ √   

 Dampness √ √   

 Mold  √ √ √3  

Traffic Related Air 
Pollution 

√  √ √ 

 

1.2.1.3 Traffic air pollutants 

LUR models of nitrogen dioxide have been developed for several Canadian cities, including Windsor 

(Wheeler et al. 2008), Montreal (Gilbert et al. 2005), Edmonton and Winnipeg (Allen et al. 2011), 

Vancouver where models were developed for different TRAP tracers  (Henderson et al. 2007; Larson et 

al. 2009), and Toronto (Jerrett et al. 2007). CHILD cities have a specific LUR model for NO2 (Table 1.4) 

which is commonly used as a TRAP marker (Chapter 3) and for which model development methodology 

was virtually identical for Vancouver, Winnipeg and Edmonton.  

                                                      

3 Allergens and Mold in house-settled dust were not examined as part of this dissertation. They are merely indicated 
here to demonstrate the breath of physical exposure assessment methods in CHILD. 
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Table 1.4: LUR models for nitrogen dioxide (variables
4
 , estimated annual means for all participants and 

standard deviation (sd)). 

City  Land Use Regression Model  R2 Mean 5 

(sd) 

(µg/m3) 

LUR 

error 

(sd)6 

Edmonton(Allen et al. 

2011) 

NO2 = 16.60 + 0.02(IND_1500) + 

0.30(RD1_1000) + 12.01(RD2_50) + 

4.66(RD.100) + 0.06(WTR.1000) + 

0.58(Distance City Center) 

0.81 22.2 

(9.1) 

0 (3.0) 

Winnipeg(Allen et al. 

2011) 

NO2= 4.11 +  0.007(IND.2000) +  

0.33(IND_200)+  7.14(HM_50) + 

5.64(RD.75)+ 0.09(POP_2500) + 0.18(Y) 

0.77 8.6 

(5.0) 

0 (2.6) 

Vancouver(Henderson 

et al. 2007) 

NO2= 42.6 + 10.5(RD1_100) + 

0.274(RD1_1000) + 4.24(RD2_200) + 

0.074(POP_2500) + 0.116(COM) – 

0.02(ELEV) – 0.591(X) 

0.76 21.2 

(8.9) 

0 (5.2) 

Toronto(Jerrett et al. 

2007) 

Log(NO2) = 8 + 0.18(RD1_200) + 

0.6(RD2_50) + 0.0016(IND.750) + 8.3*10-5 

(DC2000) - 8*10-6(X) + 

0.13(D_WIND.1500) + 0.001(TRAF.500) 

0.67 27.1 

(8.9) 

1.9 (4) 

0 (0.1) 

1.4 

(3.1) 

 

The second metric that was examined is hopanes in settled house dust. Details on the methodology and 

protocol adopted for the collection and analysis of hopanes are found in Chapter 2, which is dedicated to 

the examination of the utility of this class of chemical as a TRAP tracer. Standard operating procedures 

are annexed in the appendix B. 

                                                      

4 All the buffer zones radii for the derived land use variables are indicated in suffix with the radius length in 
parenthesis. IND: industrial; WTR: Water; RES: Residential; COM: commercial; RD1: Highway; RD2: Major 
Road; RD: all roads; HM: Highway or Major Road; ELEV: Elevation; POP: population density; DC: density of 
dwellings; TRAF: Traffic counts; D_WIND: downwind of major expressways; Y: Latitude; X : longitude. 
5 The temporally adjusted annual concentrations and standard errors in µg/m3are presented for each city.  
6 For all cities except Toronto, we show the leave-out one error estimate with the standard deviation around the 
estimate. For Toronto, we show the results (absolute and relative difference) of three cross-validations using 70% 
randomly selected sites to predict the remaining 30% 
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1.2.2 Border air quality study (BAQS) 

Part of the research described in this thesis leveraged the existing Border Air Quality Study (BAQS). 

BAQS includes a series of research projects aimed at evaluating the health impacts of air pollution in the 

Georgia Basin / Puget Sound Airshed, located in Southwestern British Columbia (BC), Canada. 

1.2.2.1 Study population and area 

The work presented here focuses on the study area encompassing the municipalities of the Greater 

Vancouver Regional District (GVRD) with the addition of the neighbouring municipalities of Abbotsford, 

Chilliwack, and Mission, which are located in the Fraser Valley (Figure 1.2). The addition of the 

neighboring municipalities to the GVRD study area is subsequently referred to as GVRD plus. Recent 

predictions for the GVRD municipalities suggest a population of 4 million inhabitants by 2040 (Greater 

Vancouver Regional District), that is likely to result in urban sprawl, increased transportation and energy 

consumption. This will likely impact the region’s air quality since the industrial and transportation 

emissions (motor vehicles and marine transport) are important sources of air pollution year-round.  

The birth cohort consisting of all children born in the study area during the 1999 to 2002 period 

comprised a total of 68,326 children who were successfully linked to administrative health databases and 

geospatial exposures beginning at conception. The study population is described in more details below 

(sections: 1.2.2.2 to 1.2.2.4). 
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Figure 1.2: Study area of GVRD plus within the Border Air Quality Study 
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1.2.2.2 Defining asthma using administrative databases 

Administered by Population Data BC (https://www.popdata.bc.ca), various population-based and health 

records databases in British Columbia are linked, including Medical Services Plan records (British 

Columbia Ministry of Health 2009b), hospital separations records (British Columbia Ministry of Health 

2009a), births and deaths records through Vital Statistics (British Columbia (BC) Vital Statistics Agency 

2009a, 2009b), as well as the BC Perinatal Data Registry (Perinatal Services BC 2009) and Census data 

(Statistics Canada 2001).  

The Medical Services Plan records include information on every outpatient physician visit and medical 

procedure billed to the provincial medical plan. Enrolment in the provincial plan is mandatory for 

residents of the province (BC Ministry of Health 2007) and therefore it captures data at a population level. 

Physician billing claims to the medical plan require an ICD (International Classification of Diseases) code 

indicating the primary reason for the encounter as well as administrative details, including physician, 

date, location, and patient’s address. Personal Health Numbers that are unique to individuals can be used 

to link this data to other provincial databases, including the BC Perinatal Database Registry. This 

database collects detailed information on every birth in the province, including maternal and birth 

characteristics. These linked data sources were used to identify and follow the study population, create a 

residential history file, assess asthma diagnosis via physician visits and hospitalizations throughout the 

follow up period, and assess risk factors. All data were linked based on personal health number, except 

for census data linked on census dissemination area of residential location.  

Administrative data provide consistently high rates of follow-up that are not always achievable with 

primary data collection. Therefore, this approach for epidemiological research offers not only an efficient 

and economical means to examine disease incidence and trends over long periods but also a population-
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based record of health information that is of a scale virtually unfeasible in birth cohorts and that 

circumvents the inherent selection bias in survey-based research reliant on self-reported health outcomes. 

Several studies in Canada have evaluated the use of administrative records to identify asthma cases for 

health research. The relative accuracy of asthma coding in this context was demonstrated in multiple 

Canadian provinces including Quebec (Blais et al. 2006; Labrèche et al. 2008), Manitoba (Lix et al. 

2008), and Ontario (To T et al. 2007; To et al. 2006) where administrative data used for case 

ascertainment were compared to either physicians’ charts or patients self-reports. In Quebec, the 

investigators verified administrative asthma diagnoses against chart recorded asthma diagnoses in 

individuals aged 16-80 and demonstrated that the provincial databases were a valid measure of asthma via 

physician’s billing. In Manitoba, Lix and colleagues showed that the case definition algorithm affects the 

validity of findings compared with self-reports. For children aged 12-18, specificity remained high for all 

algorithms (92-97%) but sensitivity varied significantly (from 16-87%) depending on the number of years 

of data examined. The sensitivity increased with the number of years of data available for analysis.  To et 

al. examined asthma diagnoses in the Ontario billing databases for children aged 0-18 years. They found 

that the diagnosis entered by the primary care physician in a patient’s chart was very reliably recorded in 

the administrative database, with 99% overall agreement (To et al. 2006). The recorded diagnoses were 

also validated by experts blinded to physician’s recorded diagnosis against chart review. These charts 

agreed well with the administrative data (overall sensitivity was found to be 91% and specificity 83%). 

The sensitivity was found to be lower (75%) for young children (aged 0-2), but rose to 96% for the 3-5 

year old group. Specificity remained consistent at or above 83%. All together, these studies indicate that 

administrative databases, especially if available over several years, are a sensitive and specific measure of 

physician-diagnosed asthma. 
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1.2.2.3 Exposure estimates: air pollution  

Air pollution exposure was estimated using proximity to roadways, interpolated measurements of 

regulatory monitoring data, and LUR modeling, (Brauer et al. 2008; Henderson et al. 2007; Larson et al. 

2007).  

Exposures were assigned at the level of 6-digit postal codes for residential address. This corresponds to 

one edge of a block in urban areas, but is larger where population density is lower.  

The regulatory monitoring network consists of daily measurements at 24 monitors for O3, 22 for NO and 

NO2, 14 for SO2, 19 for CO and PM10. Exposures were assigned according to inverse distance weighting 

(IDW), in which the daily values at the three closest monitors within 50 km were weighted by their 

inverse distance (1/d) to the postal code of interest.  

 Annual average air pollution LUR models were also developed for the region using measurement data 

from targeted intensive sampling campaigns. Modeling was used to develop high-resolution (10 meters) 

maps of NO, NO2, PM2.5 and black carbon using GIS data on road density, population density, elevation, 

and type of land use. 

LUR models have improved spatial resolution as compared with the monitoring network approaches, but 

lower temporal resolution due to sampling data from a single year. For each LUR model, the 

corresponding monitoring network data were used to temporally adjust LUR estimates (Times Series 

Forecasting System, version 9; SAS Institute Inc., Cary, NC, USA). Then, these were adjusted to estimate 

monthly average concentrations (Brauer et al. 2008; Henderson et al. 2007).  

For proximity to roadway measures, residential postal codes were defined as being within 50 m or 150 m 

from highways and major roads (DMTI ArcView street file dataset for BC, Canmap Streetfiles, v2006.3, 

2006).  
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 For all exposure metrics, an average exposure was calculated for gestational life up until birth. These 

exposure estimates were weighted by the time spent at each residence to incorporate individual residential 

histories derived from BC Ministry of Health data.   

1.2.2.4 Exposure estimates: surrounding greenness 

Satellite-derived Normalized Difference Vegetation Index (NDVI), a biomass density indicator, was used 

to assess a continuous measure of greenness across the Metropolitan area of Vancouver, BC. NDVI data 

ranges from -1 (water) to +1 (dense vegetation), with values close to zero indicating barren areas of rock, 

sand or snow based on land surface reflectance of visible (red) and near infrared parts of spectrum(Weier 

and Herring 2000). To assign greenness measures to study postal codes, all cloud free images from 

Landsat Enhanced Thematic Mapper Plus (ETM+) of the Vancouver region were downloaded from 1999-

2002. Average greenness values were extracted for 100 m areas around residential postal codes and yearly 

greenness values calculated. The small 100 m area was used to assign residential greenness exposure as 

these distances have been used in prior studies (Dadvand et al. 2012a, 2012b), and are at a similar spatial 

scale to within-city air pollution variation. 

 

1.3 Objectives  

Fifty-four percent of the world’s population lives in urban areas, a proportion that is projected to rise to 

70% by 2050 (Talukder et al. 2015). Despite technological advances in terms of vehicles emissions and 

the decline in air pollution levels seen in Canadian cities such as Vancouver (Brauer et al. 2012; Brook et 

al. 2014), the health burden caused by the transport demands is likely to pose serious public health 

challenges above and beyond today’s concerns. Given the ubiquitous nature of traffic-related air pollution 

and the fact that a “safe concentration” has yet to be identified, there is a clear need for better risk 

characterization in order to put proper control and mitigation strategies in place. Such risk 
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characterization is dependent upon several aspects including the ability to assess personal exposures, both 

accurately and precisely.  

This work was motivated by the need to extend/improve existing methods of exposure assessment to 

TRAP that would account for modifiable factors (e.g. time-activity patterns, potential indoor sources of 

TRAP markers) in order to reduce exposure misclassification and strengthen the epidemiological 

evidence on the role of outdoor and indoor air pollutants in pediatric allergic diseases and asthma 

development, and in particular the role of TRAP.  

The overall goals of this research were twofold: first to improve exposure assessment of air pollution for 

large birth cohort studies of childhood respiratory disease, and secondly to determine the impact of TRAP 

the development of asthma and allergies both in early years and later in childhood. A specific objective 

related to the first goal was to describe the methodology and provide descriptive information on TRAP 

exposures in the Canadian Health Infant Longitudinal Development study (CHILD).  

The proposed dissertation is articulated around the following research objectives that stem from the 

identified gaps in the literature reviewed above and that help answer this dissertation’s main objectives: 

1- To examine associations between hopanes concentration profiles in outdoor air and hopanes in 

house dust, and between GIS predictors and NO2 ambient exposures at CHILD participating 

homes where dust samples were collected (Chapter 2). 

2- To develop and apply methods for assessing traffic-related air pollution exposure in a multi-

center birth cohort study which account for spatial and temporal variation as well as time-activity 

patterns and home infiltration efficiency (Chapter 3). 

3- To evaluate whether traffic-related air pollution exposure is associated with allergic responses to 

common inhalant and food allergens (Chapter 3) by applying the exposure estimates in Objective 

2 above in the analysis of atopy development in infants at age 1. 
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4- To examine associations between traffic-related air pollution and the development of asthma 

among children followed from birth to ten years of age in a population-based birth cohort study 

and investigate when these associations (if any) with new onset of asthma occur during preschool 

(0-5 years old) and school age years ( ≥ 6 years old)  (Chapter 4).  

5- To evaluate the effect of surrounding residential greenness on new asthma onset in children and 

its potential role in modifying the TRAP-asthma incidence relationship (Chapter 4). 

6- To examine asthma trajectories over ten years of follow up using a data-driven approach to 

clarify time of asthma onset and persistence in relation to neighborhood air pollution and 

greenness exposures (Chapter 5). 

1.4 Dissertation structure  

The layout of this thesis conforms to the manuscript-based thesis guidelines of the University of British 

Columbia. Chapters 2 and 3 have been published in a peer reviewed journal, and Chapters 4 and 5 have 

been submitted for publication.  

Chapter 2 is a cross-sectional between-communities investigation of the utility of hopanes as a traffic-

related air pollution marker that incorporates the infiltration of ambient pollution inside the homes. 

Chapter 3 is a longitudinal study in which the potential effects of traffic-related air pollution exposure on 

allergic health outcomes are explored in the Canadian birth cohort, CHILD. Complementing its previous 

chapter, chapter 4 relies on an unselected population as it longitudinally examines the influence of traffic-

related air pollution in a population-based study (BAQS) where all children are followed up for 10 years. 

Chapter 5 extends the previous one by identifying group memberships in the same population based on 

their disease status and recurrence, then examining the influence of traffic-related air pollution on the 

identified trajectories. Finally, the conclusions and implications of this dissertation, as well as its strengths 

and limitations, are discussed in Chapter 6 where recommendations for future research are provided.  
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Chapter 2: Assessing hopanes as an exposure assessment tool for TRAP exposure
7
 

 

2.1 Introduction 

The burden of air pollution from traffic on morbidity is also well documented with a variety of negative 

respiratory and cardiovascular effects (Brauer et al. 2002; Gan et al. 2010) as well as adverse pregnancy 

outcomes (Brauer et al. 2008) and lung cancer (Beelen et al. 2008; Vineis et al. 2006). According to a 

recent comprehensive review (HEI, 2010), there is sufficient evidence to infer a causal role for TRAP in 

the exacerbation of asthma in children and suggestive evidence that it may play a role in the onset of 

asthma in children (Health Effects Institute 2010).  

A number of pollutants (e.g. CO, NOX, and PM components) that are routinely measured at fixed 

regulatory monitoring sites can be used to represent exposure to TRAP. However, regulatory monitoring 

data cannot capture the fine-scale spatial pollutant gradients associated with vehicle emissions. Most of 

the recent epidemiological studies assessing TRAP have improved on such earlier exposure assessment 

approaches by using more elaborate methods with higher spatial resolution to provide individual-level 

exposure estimates. These methods generally estimate different surrogates of the traffic mixture (e.g. 

NO2, black carbon) derived from dispersion or land use regression (LUR) models (Hoek et al. 2008). 

Despite the advances in TRAP exposure assessment, none of the surrogate pollutants measured or 

modeled are specific to vehicle emissions.  

                                                      

7 A version of this manuscript has been published: Hind Sbihi, Jeffrey R Brook, Ryan W Allen, Jason H 
Curran, Sharon Dell, Piush Mandhane, James A Scott, Malcolm R Sears, Padmaja Subbarao, Timothy K 
Takaro, Stuart E Turvey, Amanda J Wheeler and Michael Brauer. 2013. A new exposure metric for traffic-related 
air pollution? An analysis of determinants of hopanes in settled indoor house dust. Environmental 

Health 2013, 12:48  doi:10.1186/1476-069X-12-48 
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In addition to the lack of specificity, all these methods characterize ambient levels and do not consider 

indoor infiltration. Since individuals in North America spend an average of 87 per cent of their time 

indoors (Klepeis et al. 2001), (Leech et al. 2002) and many outdoor pollutants readily penetrate indoors, a 

significant proportion of total exposure to outdoor-generated pollutants occurs indoors. For example, 

quantifying the PM infiltration efficiency (Finf) in residences can help characterize indoor concentrations 

and reduce exposure misclassification (Allen et al. 2006) since Finf can vary 2 to 10- fold between houses 

that have the same ambient concentration levels (Allen et al. 2006; Clark et al. 2010a; Hystad et al. 2009). 

Unfortunately, methods for estimating Finf in residences require indoor and outdoor pollution sampling, 

which makes estimating Finf in large epidemiological studies virtually impossible. To overcome this 

challenge, prediction models of Finf have been developed (Clark et al. 2010a; Hystad et al. 2009). While 

they have shown promise, these models have generally been developed for individual cities using 

relatively small sample sizes and therefore may not be transferable to other locations. 

Hence, current approaches to assess individual TRAP exposures (LUR, dispersion model, geostatistical 

methods) have two consistent limitations:  (1) TRAP surrogates are based on non-specific pollutant 

measures, (2) modeled estimates are capturing concentrations outside the home while most exposure 

occurs indoors.  

Settled house dust is a sink and repository for particle-bound material and semi-volatile organic 

compounds. Despite the variations that occur in dust sampling, this type of sampling has formed the 

backbone of epidemiological studies of multiple biological agents (Arrandale et al. 2010). Indeed, house 

dust presents the advantage of providing one matrix for the evaluation of multiple agents which is a 

reasonable proxy for time-integrated exposure (Lioy et al. 2002). While the accumulation of house dust 

depends on several factors (e.g. infiltration efficiency, pollutant source, cleaning practices, sampling 

surface), dust concentrations and loadings of pollutants show less variation over time than do indoor air 
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concentrations, therefore, dust sampling is a particularly useful tool in studies of chronic exposures 

(Egeghy et al. 2004). Using house dust as a marker for indoor inhalable hazards and infiltrated pollutants 

of outdoor origin (e.g. polycyclic aromatic hydrocarbons (PAHs) from vehicles exhaust) would represent 

a useful and integrated exposure assessment tool. A good tracer of TRAP in dust would be a chemical: 1) 

for which the major source is vehicle emissions, 2) for which emissions are correlated with other motor 

vehicles constituents, 3) that can be measured at low levels for reasonable cost, and 4) that can be 

measured with accuracy and stability.  

One such group of tracers may be the hopanes, a class of organic compounds with 27 to 35 carbon atoms 

in a naphthenic structure (Simoneit 1985). Hopanes are not found in gasoline and diesel fuel because they 

are in the higher boiling fraction of petroleum, but are present in engine oil lubricants (Pakbin et al. 

2009). Hopanes are tracers of primary vehicular exhaust aerosols (Delfino et al. 2010), particularly on 

account of their relative stability and non-volatile nature in the atmosphere (Turlington et al. 2010). 

Schauer et al. showed that hopanes and steranes could be used to distinguish diesel and gasoline engine 

emissions from other combustion sources (Schauer 2003). These stable species can serve as unique 

tracers in determining the contribution of diesel and gasoline vehicles to the total particulate matter 

concentrations measured in outdoor air (Brauer et al. 2002; Rogge et al. 1993). In a recent review of 

organic markers in fine PM,  Lin et al. showed that hopane monomers  are commonly used in receptor 

model source apportionment studies with the three most abundant species being 17α(H),21β(H),29-

norhopane, 17α(H),21β(H)-hopane, and 22,29,30-trisnorneohopane ( Lin et al. 2010). The potential for 

assessing exposure to outdoor-generated pollution in indoor dust has not been evaluated. Measurement of 

hopanes in house dust offers the possibility to have a time-integrated measure of exposure while capturing 

variability in the infiltration of TRAP, circumventing the need to indirectly account for infiltration. 

Therefore we evaluated the association between hopane concentrations in house dust samples to outdoor 

TRAP surrogates and hopane concentration profiles in outdoor air. 
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2.2 Methods 

Our overall goals were to determine (1) whether the hopane mixture in house dust had similar 

composition as that in outdoor air and (2) the relationship between hopanes in settled house dust with 

predictors of TRAP spatial variability. We utilized indoor dust measurements from five Canadian cities 

(Vancouver, Edmonton, Winnipeg, Toronto and Windsor), in order to ensure sufficient variability in 

hopane levels. Specifically, we conducted a city-level analysis where both city-specific and harmonized 

LUR variables across all cities were examined. These analyses also included covariates identified in 

housing characteristics surveys that were administered in the different studies used for this investigation. 

2.2.1 Population  

Samples were collected in three separate studies, briefly described here, in which house dust was 

collected from inside homes of study participants:  

• (1) the Canadian Healthy Infant Longitudinal Development (CHILD) study is a prospective 

longitudinal, population based birth-cohort study that has enrolled 3650 families from 

Vancouver, Edmonton, Winnipeg, and Toronto between 2009 and 2012. Homes that (i) 

underwent home assessment when the child was at an age of 3-months; (ii) completed the 

questionnaires on environmental factors, and (iii) had dust samples with sufficient dust mass 

for the analysis of several agents (endotoxins, β-glucans, and hopanes) were selected while 

ensuring balanced sample representation from the four CHILD cities. Thus, 120 homes 

analyzed for the suite of hopane monomers by December 2010 were included in this study ;  

• (2) the Toronto Child Health Evaluation Questionnaire (TCHEQ) with 1,500 subjects from a  

nested case-control study were randomly selected from a larger survey of 5,619 students who 

completed a screening survey for respiratory disease (Dell et al. 2010). Within this nested 

study, a sub-sample of 50 homes were inspected in 2006/2007 and underwent measurement of 
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indoor/outdoor concentrations of traffic related pollutants. From these, only 24 homes, included 

in this study, with sufficient dust mass for the analysis of allergens (Der p, Der f, Ergosterol 

and Glucans) were also analyzed for hopanes (Loo et al. 2010);  

• (3) during 2005/2006, Health Canada and the University of Windsor conducted a personal 

exposure study in Windsor (Wheeler et al. 2011) (the Windsor Ontario Exposure Assessment 

Study, WOEAS), in which in which  48 households  were randomly recruited from the larger 

Windsor Children’s Respiratory Health Study (Dales et al. 2009), and where preference was 

given to spatially distributed households across Windsor. From these households, all homes 

with sufficient house dust mass were selected (n=27) to examine the hopanes levels in house 

dust.  

2.2.2 Hopanes 

 

2.2.2.1 Dust Samples: collection and analysis 

 

House dust samples were collected from the living rooms in all the homes included in the study. 

Participants were asked not to vacuum during the week prior to the home visit. Sampling was conducted 

by trained technicians who were instructed to measure the sampling area, note the type of surface and 

collect a pre-determined amount of dust.  

The WOEAS and TCHEQ sampling protocols were similar as technicians vacuumed a 4m2 section of 

floor for a period of 4 minutes or until at least one gram of dust was collected and used high volume 

devices. In WOEAS, settled dust was collected using the High Volume Surface Sampling System (HVS3) 

vacuum (Wheeler et al. 2011), while TCHEQ used the Shop-Vac vacuum (Model: QAM70, 7.0 Amps), 

another high volume device, equipped with Dust Sampling Socks (X-Cell 100, Midwest Filtration, 

Cincinnati, OH, USA). In CHILD, house dust samples were collected using a standardized consumer 

model vacuum cleaner (Sanitaire, model S3686) fitted with a dust collection device designed especially 
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for the CHILD study with the goal of increasing the collection efficiency without having to vacuum the 

entire area. This modified collector included slots for two nylon filter thimbles, thereby doubling the 

filtration surface and was constructed from machined aluminum, and outfitted with Teflon wheels to 

prevent marring of flooring, and to maintain the collection slot at a fixed distance from the test. The 

sample was taken from a 2 m2 area by making seven passes of the nozzle over adjacent swaths of 

flooring. Fresh weights of dust samples were taken, after which they were sieved to 105 µm and this 

fraction reweighed. These sieved fractions were aliquoted and frozen at –80° C pending further analysis. 

Hence, all dust samples were sieved into <150µm size fractions for analysis. The sieved fractions were 

aliquoted and frozen at -80°C pending further analysis at the Environment Canada laboratory. Extraction 

in an isooctane solution was conducted with an ASE 200 (Accelerated Solvent Extractor) followed by 

solvent reduction using a Zymark TurboVap. Recovery standards were added to the dust/solvent matrix 

before extraction and blow down. A suite of organic compounds were quantified by tandem Gas 

Chromatography-Mass Spectrometry, including eleven hopane monomers. The final dust-related metric 

for each of the individual hopanes and the sum of all 11 monomers was expressed as the concentrations 

per gram of sieved dust (ng/mg), thereby correcting for differences in the total amount of dust collected in 

each sample. 

 

2.2.2.2 Outdoor hopane measurements 

 

The composition of hopane mixtures, expressed as the abundance of the highest concentration monomer 

(17α(H), 21β(H)-Hopane) relative to the sum of the concentrations of all 11 measured monomers, was 

compared between available PM2.5  outdoor air samples in Vancouver, Edmonton, Toronto and Windsor 

with house dust samples for the same cities. In all cities, one 24-hr ambient PM2.5 sample was collected at 

Environment Canada national monitoring network sites (Dabek-Zlotorzynska et al. 2011)  within the 
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same week in the months of January, April, July and  October 2010 . The same suite of hopane monomers 

available in the dust samples were quantified at the same Environment Canada Laboratory by thermal 

desorption gas chromatography mass spectrometry (Graham et al. 2010) from punches of archived pre-

fired quartz filters. Dust and air samples were matched by city and season. 

2.2.3 Geographic predictor variables 

 

Harmonized geographic data were derived to allow for pooled analysis of all dust hopane measurements 

from all five cities where samples were collected. We generated 30 variables in 5 categories that are often 

used in development of LUR models for TRAP (Dijkema et al. 2011; Hoek et al. 2008). Subcategories 

were generated to characterize the street network, land use, and population density within circular buffer 

sizes where the radius was set to represent close, medium and large geographical areas around each home 

where the house dust sampling was conducted (Table 2.1). Highways and major roads were defined by 

standard road classification categories (DMTI Spatial Inc., Markham, Ontario), with categories 1 

(expressway), 2 (principal highway), and 3 (secondary highway) all considered highways (RD1), and 

category 4 as major roads (RD2). We also examined land use, elevation relative to sea level and the 

distance to the nearest features within the street network.  

All variables in each category were derived from a single spatial dataset in vector format. Input files for 

the Road Length and Land Use, were taken from the 2006 DMTI Spatial (Markham, Ontario) data files. 

Population Density categories were generated from the 2006 census distributed by Statistics Canada and 

converted into point files at the block level. Digital Elevation Data was obtained from GeoBase in raster 

format at the municipal level.  All input files were manipulated in ArcGIS 10.1 (ESRI, Redlands, CA) to 

produce variable layers in raster format at 10m resolution, except for the digital elevation model where 

the finest available resolution was 30m. From the latter data, relative elevation was defined as the mean 

centered city-specific elevation. 
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Table 2.1: Harmonized GIS variables across TCHEQ, WOAES, and CHILD cities  

 

We also extracted city-specific variables that had previously been extracted and used in the development 

of LUR models for NO2 in each of the cities (Allen et al. 2011; Henderson et al. 2007; Jerrett et al. 2007; 

Wheeler et al. 2008) (Table 2.2). Since these LUR variables had been used to explain variability in 

outdoor NO2 in these cities we therefore expected that they would explain variability in dust hopanes 

concentrations. 

 

 

Category 
(Number of 
variables) 

Description Sub-Category Buffer radii 
(m) 

Source/Type 

Road Length 
(8) 

Total length of two road 
types 

RD1 (Highways) 
RD2 (Major 
Roads) 

50, 100, 500, 
1000 

 DMTI Road 
Network 
(Polyline) 

Land use 
(12) 

Total area of different land 
use types (ha) 

COMM 
(commercial) 
OPEN 

PARK 

INDUS 
(industrial) 

100, 
500,1000 

DMTI spatial data 
 (polygon) 

Distance to 
nearest feature 
(6) 

Distance to nearest road 
type (m)  
 

Dist_RD1 
Dist_RD2 

 DMTI Road 
Network 
(Polyline) 

Distance to nearest land use 
type (m) 

Dist_Comm 
Dist_Open 

Dist_Park 

Dist_Indus 

 DMTI spatial data 
 (polygon) 

Population 
density 
(3) 

Density of the population 
(persons/hectare) 

POPDENS 100, 1000, 
2500 

Block level census 
data (point file) 

Geographic 
position 

Elevation (m) ELEV  Geobase DEM 
(raster) 
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Table 2.2: City-specific GIS variables and buffer sizes extracted from LUR model surfaces. 

City/ Cohort Road metrics (m) Traffic density Other 

Edmonton 
CHILD 

Length of all roads  
(100,250, 500, 1000m) 

 Distance to city center 
(m) 
Water area 

Winnipeg  
CHILD 

  Y coordinate centered 
at city center. 

Vancouver 
CHILD 

 
Length of Truck roads 
(100,250, 750, 1000m) 

Automobile  density  
Truck density 
(100, 250, 750, 
1000m) 

 

Toronto 
TCHEQ 

Distance to nearest 
expressway  
 
Length of expressways  
(100,500, 1000, 2000m) 

  

Windsor 
WOEAS 

Distance to nearest  local road 
Distance to  nearest class 1, 2 
collector  
Distance to nearest class 1, 2  
arterial  
Distance to nearest  highway 
Distance to nearest scenic 
drive 

 Distance to 
Ambassador bridge (m) 
Distance to 
Windsor/Detroit Tunnel 
(m) 

 

 

2.2.4 Questionnaires  

We also included data from questionnaires delivered in each of the indoor measurement studies on 

housing characteristics and lifestyle factors, which may be related to indoor hopane variability and/or 

infiltration (Table 2.3). 
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Table 2.3: Descriptive summary of questions found (as shown with a check mark) in the questionnaires 

delivered during home visits, recoded for analysis in the pooled investigation of hopanes in dust and land use 

determinants of traffic pollution. 

Question type CHILD TCHEQ WOEAS 

Emissions sources within 

100m of the home 
Factory  

Gas Station 
Parking  

Construction Site 

√ 
 

2% 
11.3% 
15.6% 
23.5% 

× × 

Shoe removal  
Yes 
No 

√ 
94% 
6% 

× × 

Type of Floor  
mixed  

smooth  
carpets 

√ 
4% 

21% 
75% 

√ 
 

83% 
17% 

√ 
4% 

36% 
60% 

Cleaning frequency  
Rarely 

Moderately 
Frequently 

√ 
14% 
80% 
6% 

√ 
4% 

71% 
25% 

√ 
 

56% 
44% 

Window usage/type 
Usually open/sheer 

Covered with blinds/curtains 
Sealed 

Opened daytime/ closed night 
Other 

√ 
15% 

42.5% 
34% 

 
2% 

√ 
37.5% 
14.8% 

 
14.8% 
14.8% 

√ 
33.3% 
63% 

 
3.7% 
0% 

Garages  
Yes 
No 

√ 
46% 
54% 

√ 
17% 
83% 

√ 
52% 
48% 

Type of house 
single  

multifamily 

√ 
64% 
36% 

√ 
100% 

√ 
100% 

Air Conditioning 
Yes  
No 

√ 
40% 
60% 

√ 
100% 

√ 
81% 
11% 

Frequency of AC use 
Frequently  
Sometimes 

Don’t know 
Never 

√ 
21% 

19.5% 
59.5% 

0 

√ 
42% 
46% 
12% 

√ 
15% 

 
7% 

78% 
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For homes that were part of the CHILD study, home information was gathered from both a questionnaire 

completed by the parents and the home inspection conducted by research technicians. For homes that 

were  part of TCHEQ, a large amount of  housing characteristics data were  also available from a 

questionnaire that was administered at study baseline (633 questions). Finally, from the WOEAS homes 

for which information on a wide range of housing characteristics and time-activity patterns was collected 

twice, we used the baseline questionnaire. The questionnaires included questions that were unique to each 

cohort as well as other questions common across all studies (see Table 2.3), which were recoded to 

generate a set of harmonized data. Harmonized variables included data related to the season (defined 

using  heating degree day) based on the date when  samples were collected, the type of floor (recoded as 

smooth for hard wood, vinyl and other smooth surfaces, carpets for rugs and carpets, and mixed for 

samples collected from both smooth and carpet surfaces), the type of household (single or multifamily), 

the presence or absence of a garage, the type of garage (attached or detached), the presence of air 

conditioning (central or in a wall or portable unit), the frequency of use of air conditioning (recoded as 

never, sometimes and frequently), the cleaning frequency (recoded as rarely, sometimes and frequently), 

and the usage of windows (recoded and grouped from different questions in the CHILD questionnaire) 

coded into 5 categories: usually open/sheer; covered with blinds or curtains; sealed; open 

daytime/covered nighttime; other.  

2.3 Statistical analysis 

We first analyzed the association between the mixture of hopanes in outdoor air and indoor dust by 

comparing the relative abundance of the most abundant monomer. Specifically, we calculated the ratio of 

the concentration of 17α(H), 21β(H)-Hopane to the total concentration of the eleven monomers. We then 

compared this relative abundance between the outdoor air and indoor dust samples in each city, and 

examined this association after accounting for temperature and evaluating multicollinearity between 

predictors (assessed by the variance inflation factor) in linear regression models . 
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After examining the distribution of hopane concentrations in a pooled analysis of dust samples from all 

cities (hereafter “pooled analysis”) and separately within each city (“city-specific analysis”), we applied a 

log transformation to the total hopane concentration (i.e. sum of the 11 monomers) distribution across all 

cities and within each city. Only hopane concentrations in the family room were considered in the 

analysis since homes from WOEAS and TCHEQ studies did not provide samples from the bedroom and 

the bedroom samples in CHILD included a mixture of floor and bed samples. Prior to examining the 

association between total hopane concentrations and GIS variables in the pooled analysis, we fit a varying 

intercept model to assess the between- and within-city variability. Both in the pooled and city-specific 

analyses, questions on lifestyle factors and housing characteristics were examined in bivariate analysis as 

potential confounders or effect modifiers for the hopane – geographic predictor relationships.  

The same model building approach described  by Henderson et al. (Henderson et al. 2007) to generate 

physically meaningful predictive models was adopted and consisted of the following steps:  (1) Rank all 

variables by the absolute strength of their correlation with the hopane concentration; (2) Within each sub-

category (e.g. all buffer sizes for highway lengths),  keep only the highest-ranking; (3) to avoid 

collinearity examine the correlations between all GIS predictors retained from step 2 as well as 

questionnaire variables using 0.6 as a cut-off value ; (4)enter all remaining variables into a stepwise linear 

regression; (5) remove from the available pool any variables that have insignificant t-statistics and 

variables that show a direction of effect opposite of a priori hypotheses. Steps 4 and 5 were repeated until 

a parsimonious final model was obtained.  

The study methodology was reviewed and approved by both the University of British Columbia 

Behavioral Research Ethics Board (ethics certificate number: H11-03231) and the Clinical Research 

Ethics Board (H07-03120). 
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2.4 Results 

2.4.1 Outdoor vs. indoor hopane concentrations comparison 

All samples were above the GC/MS limit of detection (LOD). In all cities the monomer 17α(H), 21β(H)-

Hopane was consistently detected and showed the highest abundance in the suite of analyzed compounds, 

therefore the comparison of outdoor and indoor hopane ratios was performed using this monomer relative 

to the sum of all monomers. The sampling from the air monitoring stations was conducted in 2010 at 

fixed time points which result in concentrations from air samples with a discrete distribution (Figure 2.1) 

compared with the house dust samples which were collected throughout the year. In air, the range of the 

17α(H), 21β(H)-Hopane relative abundance (0.2 to 0.4) generally corresponded to the same relative 

abundance in house dust. The correlation of the 17α(H), 21β(H)-Hopane relative abundance in outdoor air 

and house dust was moderately strong, yet significant (r=0.48, p<0.05).  

 

Figure 2.1: Association between outdoor air and house dust hopanes major monomer ((17α(H), 21β(H)-

Hopane) relative abundance. 
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After excluding an outlier sample (see in Figure 2.1 data point near zero where the ratio in 17α(H), 

21β(H)-Hopane was depleted due to a very low concentration in all monomers), we also examined the 

relation between the outdoor and the indoor relative abundance  in linear regression accounting for the 

effect of season, and found a stronger statistically significant relationship (slope=0.92, t=6.1) compared to 

the association without adjustment for season (slope=0.72, t=5.9). The correlation was still significant 

when the outlier was included. The effect of season was stronger during the spring and summer (r>0.5) 

than during the fall and winter (r<0.5).  

2.4.2 Pooled results 

Hopane levels in individual homes varied from a low of 0.4 ng/mg of dust in a Toronto home to a high of  

41.8 ng/mg of dust in a Vancouver sample, after excluding an outlier in Toronto from the CHILD study 

where the concentration was 160.3 ng/mg (more than 29 times higher than the median); for this home we 

examined the land use characteristics, the road network, and potential outdoor sources as indicated in the 

questionnaire and did not find any difference that would explain such a high concentration. Analyses were 

thus run with and without this sample (Table 2.4).  

Windsor had the lowest overall indoor hopane levels with a mean level of 5.8 ng/mg (GM= 5.1 ng/mg, 

GSD =1.8) while the sample of homes in Vancouver showed the highest mean concentration of 9.3ng/mg 

(GM= 6 ng/mg, GSD= 2.9) when the high (Toronto) outlier was excluded (if the Toronto outlier was 

retained, then Toronto was ranked first with an AM=9.9ng/mg).  

After fitting a null random effect model, the intraclass correlation of 0.007 indicated that city clustering 

would not contribute to explaining the variability in total hopane concentrations. We therefore built a 

model without using a city-specific random intercept in the regression analysis and all samples were 

treated as independent.  
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From the harmonized questions, only relative elevation and heating degree days at the time of dust 

collection showed a statistically significant relationship with hopane concentrations. Distance to highway 

(DIST_RD1) had a statistically significant association with hopane concentrations, but its direction of 

effect was opposite to what we expected and was therefore excluded from the model. The final model 

with relative elevation and heating degree days as predictors explained only 6% of the total variability in 

the hopanes concentration. Including distance to highway did not appreciably improve the amount of 

explained variability (adjusted R2 =0.08). Excluding the high outlier home in Toronto led to a model with 

the addition of the presence of an AC unit in the home along with the same predictors as above, but with 

less overall variability explained (adjusted R2= 0.04).  

2.4.3 City-specific modeling results 

Given the availability of LUR models for predicting NO2 in each study area, we extracted the NO2 

concentration at the geocoded participants’ home addresses and examined the correlation of hopane 

concentrations in house dust with city-specific LUR NO2 estimates in each city. Results (Table 2.5) 

indicated no statistically significant associations except in Windsor (r=0.44, p<0.05) and Edmonton 

(r=0.58, p<0.05). 

Leveraging the availability of city-specific LUR models, we further examined separately for each city the 

association between hopane concentrations and the variables that were used both in the city-specific LUR 

models describing the NO2 levels (Table 2.2) and those that we generated for the pooled analysis (Table 

2.1). The amount of variability explained in each city varied from 10% in Vancouver to 80% in 

Edmonton (Table 2.4).  
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Table 2.4: City-specific determinants of hopane concentrations in house-settled dust. 

City Final model  with regression coefficients Partial R2 Model Adj.R2 

Edmonton log (hopanes) =  3 – 0.13 cleaning frequency 

 - 1.5 Smooth Flooring 

-0.15 Air Conditioning 

0.78 

0.78 

0.35 
0.80 

Toronto Log (hopanes) = 2.69 -1.03 Smooth Flooring 

-0.008 Elevation 

+ 0.88 Attached Garage -0.66 Detached 

Garage 

0.29 

0.13 

0.13%* 

0.45 

Windsor** log (hopanes) =  5.6 +  0.5 elevation 

+ 0.17 RD1_100 

0.36 

0.13 
0.39 

Winnipeg log (hopanes) = 1.45 – 0.057Heating degree 

days 

 – 1.33 multifamily house 

0.17 

0.16 0.33 

Vancouver log (hopanes) =  1.9 – 0.09 Heating Degree 

Days 

 – 0.07 Shoe removal 

0.09 

0.07 0.10 

* The ‘detached garage’ variable has three categories: No garage; Attached garage; Detached garage. 
** In Windsor, elevation and distance to the Ambassador Bridge were strongly and significantly correlated. An 

alternative model with Distance to Ambassador Bridge yielded similar results, yet with smaller R2 

 

Overall, in each city the determinants of indoor dust hopanes were predominantly related to home-

specific factors (cleaning, use of AC, shoe removal) and meteorology, except for Windsor where the final 

model included the length of major roads in a 100m buffer (Table 2.3). In Toronto, the spatial variability 

provided by the TCHEQ samples was very limited as all homes were within a restricted geographic area 

within the city. Hence, an additional sub-analysis was run for Toronto with only the CHILD homes 
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included. This model (not shown) did retain GIS variables (open area within 1000m buffer and elevation) 

as well as variables related to other possible sources of hopane emissions (garage type, presence of a 

construction site within 100m) and finally home-specific factors (i.e. the type of floor surface) and 

explained 86% of the overall variability in indoor dust hopanes. After excluding the house with the outlier 

concentration value, however, the final model, with an R2 = 0.3, had exactly the same predictors as those 

shown in table 2.3 where samples from both the TCHEQ and CHILD study homes in Toronto were 

included.  

While the association of hopanes indoors in relation to GIS variables typically used as surrogates for 

TRAP was only modeled for samples collected in living rooms, Table 2.5 shows the concentration in each 

city by room type and the number of homes (from the CHILD study) where two rooms were sampled. In 

CHILD participating households dust samples from the living room as well as a second composite sample 

from subject child’s mattress and adjacent flooring. The ranking by decile showed that the hopanes 

concentration in the living rooms was significantly greater than that found in the bedrooms.  
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Table 2.5: Geometric Mean (GM) and Geometric Standard Deviation (GSD) of total hopanes concentrations 

in the study population, by room, by homes and correlation with city-specific modeled NO2 

City 

Homes 

N 

(number 

of 

homes) 

Hopanes concentration (ng/mg) 

Pearson correlation 

  

Bedroom  Family Room Average 
Between NO2 and 

family room  

n GM(GSD)  n GM(GSD)  N GM (GSD) r (p-value) 

Winnipeg 
(CHILD) 

26 23 4.9 (2.1) 
 

21 5.8 (2.1)  40 5.3 (2.3) 0.04  (n.s.) 

Edmonton 
(CHILD) 

15 12 4.7 (2.7) 
 

14 4.1 (2.0)  26 4.5 (2.3) 
 

0.58 (0.03) 

Vancouver 
(CHILD) 

65 56 7.4 (2.2) 
 

54 6 (2.9)  90 6.7 (2.6) -0.12 (n.s.) 

Toronto 
(CHILD) 

14 13 5.9 (1.9) 
 

12 7.7 (2.9)  22 6.6(2.3) 0.02  (n.s.) 

Windsor 
(WOAES) 

27 NA 

 

27 5.1 (1.8)  NA 

 

0.44(0.02) 

 

Toronto 
(TCHEQ) 

24 NA 
 

24 4 (2.5)  NA 
 

0.18  (n.s.) 

 n: total number of samples; n.s.: not statistically significant association.
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2.5 Discussion 

  

Assessing indoor levels of TRAP through the collection and analysis of settled house dust is a new area of 

study and has the potential to reduce exposure misclassification and increase specificity. In this 

investigation, we compared measured dust hopanes with ambient air hopane measurements and with GIS-

derived land use variables for each city. The availability of contemporaneous cohort studies (CHILD, 

TCHEQ and WOEAS) offered a unique opportunity to gather a sample of 171 homes where dust was 

collected using similar protocols in 151 living rooms and where hopanes were analyzed by tandem 

GC/MS at the same laboratory using a standardized protocol. This sample was representative of different 

settings ranging from highly urban locations such as Toronto to smaller and less urban cities such as 

Winnipeg, while also including major transit hubs such as Windsor where an important Canadian-

American truck crossing exists. Furthermore, all the cities had previously developed LUR models which 

reasonably predicted traffic related NO2 spatial variability (from 66% in Vancouver to 81% in 

Edmonton(Allen et al. 2011; Henderson et al. 2007; Wheeler et al. 2008).  

We demonstrated that hopanes can be consistently detected in house dust samples regardless of the type 

of city and the dust collection location. In addition, after controlling for heating degree days and its 

impact on infiltration, the major hopane monomer relative abundance in house dust and outdoor air 

samples were modestly but significantly correlated (r = 0.48), suggesting similar hopane sources in the 

two samples, but there remains substantial unexplained variability in indoor levels. This comparison had 

relatively good external validity given that the ambient monitoring sites were located to capture urban 

background concentrations rather than hot spots and since samples were collected in and matched for all 

seasons. This correlation was stronger in the summer compared to the winter, suggesting an impact of 

infiltration as windows are more likely to be opened on warmer days. Since hopanes in house dust 
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accumulate over relatively longer periods of time compared with hopanes in air samples and may have 

undergone many changes and cycles in temperature, it is likely that the seasonal effect shown in the 

literature (Olson et al. 2008; Olson and McDow 2009; Rutter et al. 2011)  may not hold in this context. In 

addition, dust sampling, which often is a readily available matrix for sampling multiple agents in 

epidemiological studies, including hopanes as demonstrated in this study, does not represent similar 

constraints (e.g. logistics) as those imposed by particle infiltration measurements. 

Examining associations between hopanes concentrations and geographic predictors in a pooled analysis 

indicated that only a small degree of variability in hopanes concentrations in dust was explained by the 

final model. Further, in this analysis, higher levels of road variables were linked to lower levels of 

hopanes. Despite the advantages of pooling data from different cohorts, this effort was hindered by the 

absence of consistency in the supplementary data collected via questionnaires since each study used its 

own set of questions. While we inspected each question and the research technicians’ notes for each 

sample of house dust collected in order to generate harmonized variables that could affect the hopanes 

concentration in house dust, recoding variables may have resulted in a loss of specificity. 

Unlike the pooled analysis, the city-specific analysis provided more insight into the utility of hopanes as 

possible markers for TRAP as a moderate to large amount of variability in the total hopane concentration 

in house dust was explained in each model. This analysis, however, was hindered by the lack of 

consistency between cities in terms of main predictors of indoor hopane concentrations.  

We examined potential modifiers that could alter the relationship between LUR variables and hopanes in 

dust for each city separately. In addition to geographic surrogates of TRAP, all cities had at least one 

predictor of hopanes concentration related to the indoor environment or home construction. Thus, the 

variability in settled dust hopanes concentrations appears to be a function of a mix of parameters that are 

not exclusively related to traffic emissions.   
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For example, indoor hopanes in settled dust may also result from coarse PM being tracked indoors. A 

recent analysis of indoor PAHs indicated the potential importance of this pathway even after adjusting for 

carpeting, frequency of vacuuming and indoor burning (Mahler et al. 2010). We examined the association 

in the city-specific analysis for all CHILD participating homes between shoe removal habits and hopane 

concentrations. We found that only Vancouver samples were correlated with shoe removal habits in the 

expected direction. Collection of supplementary field data remains a crucial component for assessing the 

utility of hopanes in house dust since tracked dust seems to contribute to hopanes concentration in house 

dust. This information was only available in the CHILD homes, and could therefore not be assessed in the 

pooled analysis.  

In our investigation we made a critical assumption that hopanes have few sources beyond engine oil 

lubricants as we were not able to find information on indoor hopanes sources in the literature. Since 

hopanes are widespread in recent and ancient sediments, they are constituents of all mineral oil or 

petroleum-based lubricants and it is therefore possible that unaccounted for indoor sources were present.  

House dust remains an attractive metric for exposure assessment because it offers a matrix for multiple 

indoor contaminants, both biological and chemical and both indoor and outdoor in origin, and can be 

stored for long time periods, thus providing the opportunity to examine additional research questions 

when necessary. The utility of hopanes in house dust as an indicator of infiltrated TRAP is limited in the 

absence of better understanding of its deposition and stability in house dust. House dust is heterogeneous 

matrix with a complex history in each home as it accumulates contributions from multiple sources 

including not only fresh emissions of combustion-related particles but also road dust which also contains 

hopanes. The mode of accumulation also contributes to the variability of vacuum dust. Several factors 

that may vary among study participants can affect the concentrations of hopanes: cleaning practices and 

sampling surfaces (carpeted vs. non-carpeted) play a role in the amount of chemicals that deposit inside 
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the homes as shown in the city-specific analysis. In addition, the metric of exposure for hopanes still lacks 

consensus as hopanes can be measured in terms of loading of chemicals (concentration normalized by 

surface area sampled) or expressed as the more traditional approach of normalized concentration to mass 

of dust collected. Differences in the choice of metric would relate mostly to cleaning practices, which we 

have tried to account for in our investigation. Future investigations of other species, such as PAHs, on 

their own or in combination with hopanes, may offer additional insight into the utility of settled house 

dust as a surrogate for TRAP exposure.  

In our study, we compiled the information about presence and frequency of use of air conditioning as this 

has been shown to be an important predictor of PM infiltration(Allen et al. 2012a), but we found limited 

explanatory power in both pooled and city-specific analysis. 

PM infiltration varies with particle size, with a maximum infiltration efficiency for diameters of 

approximately 0.2-0.3 µm (Sarnat et al. 2006), while the size distribution of hopanes ranges between 0.7 

and 3.3 µm (Huang et al. 2012) which would imply that hopanes infiltration efficiency may be low and 

might therefore explain variability in the outdoor/indoor correlation (Olson et al. 2008). We could expect 

that in presence of higher concentration level of hopanes in ambient air (i.e. better ability to detect hopane 

monomers), the analysis of relative abundance in ambient and indoor hopanes would have shown less 

unexplained variability.  

Overall, the results indicate the indoor dust hopanes concentrations depend on both outdoor TRAP 

concentrations and a variety of home-specific variables such as cleaning, floor type, and presence of AC. 

This conclusion is supported by an additional analysis where we examined the relative variation explained 

by LUR NO2 compared to home-specific factors and also found that in some cities the correlation 

between hopanes and LUR NO2 is only revealed when accounting for variation due to such home-specific 

factors.  
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We examined the utility of measurements of hopanes in house dust as exposure indicators for infiltrated, 

time-integrated, traffic-related pollutants. When combined with behavioral factors retrieved from 

questionnaires, and geographic determinants, hopanes in house dust may have the potential to be used as 

surrogates for infiltrated TRAP. Further characterization of the determinants of hopanes in house dust 

may result in an improved exposure measure for epidemiologic studies to more precisely analyze 

relationships between TRAP and chronic health effects.  
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Chapter 3: Early-life exposure to traffic-related air pollution and development of atopy in 

the CHILD birth cohort study
8
 

 

3.1 Introduction 

The incidence of allergic diseases has increased sharply, especially for people living in urban areas, which 

raises an important public health concern given the trend to urbanization worldwide (D’Amato et al. 

2010). While associations between exposure to air pollution derived from traffic emissions and allergic 

exacerbations have been demonstrated, the potential role of traffic related air pollution (TRAP) in the 

onset of allergic diseases is uncertain (Heinrich and Wichmann 2004).  

Several epidemiological studies have reported associations between atopy or other allergic phenotypes 

and exposure to some TRAP exposure surrogates, including nitrogen dioxide (NO2) (Gruzieva et al. 2012; 

Janssen et al. 2003;  Brauer et al. 2007; Morgenstern et al. 2008). However, a number of other studies 

have not observed these positive associations (Gehring et al. 2010; Oftedal et al. 2007). Differences in 

TRAP exposure assessment approaches are one possible explanation for these divergent findings. 

Despite the importance of early life exposures in the development of allergy, information on the effect of 

air pollution exposure, particularly during pregnancy, on allergic responses early in life has rarely been 

assessed (Aguilera et al. 2013; Esplugues et al. 2011; Mortimer et al. 2008) and birth cohort studies 

addressing this relationship are rare (Bråbäck and Forsberg 2009). Exposure assessment  methods  have 

evolved from self-reported measures (e.g. proximity) (Janssen et al. 2003) to atmospheric dispersion 

(Oftedal et al. 2007) and land use regression (LUR) models capturing within-city air pollution variations 

(Brauer et al. 2007b; Gehring et al. 2010b). Most LUR models consider annual average concentrations 

                                                      

8 A version of this manuscript has been published: Hind Sbihi, Ryan W. Allen, Allan Becker, Jeffrey R. 
Brook, Piush Mandhane, James A. Scott, Malcolm R. Sears, Padmaja Subbarao, Tim K. Takaro, Stuart E. 
Turvey, and Michael Brauer. 2015. Perinatal Exposure to Traffic-Related Air Pollution and Atopy at 1 Year of Age 
in a Multi-Center Canadian Birth Cohort Study. Environmental Health Perspectives 2015, 
DOI:10.1289/ehp.1408700 
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which may over or under-estimate personal exposures as traffic markers such as NO2 are highly variable 

in time and space (Mölter et al. 2010). Recently the temporal specificity of LUR models has been 

improved by applying forward (Morgenstern et al. 2008) or backward (Brauer et al. 2007b; Gehring et al. 

2010b) time trends from fixed site monitoring stations to the LUR predictions. However, given the 

potential importance of specific short-duration periods of development, refined approaches to capture 

fine-scale seasonal variability are needed (Mortimer et al. 2008). Exposure assessment is further 

complicated by the mobility of study participants, a consideration  seldom addressed and rarely measured 

in large cohort studies (Arrandale et al. 2010), yet one with  considerable influence on personal exposures 

(Nethery et al. 2008a). The inclusion of exposure in other locations where children spend a significant 

amount of time, such as daycare facilities, is likely to increase the precision of the exposure estimates. 

Finally, all prior studies have used ambient concentrations at a given location to estimate exposure, 

although most time is usually spent indoors, especially in the early years of life (Leech et al. 2002). 

Considering that indoor infiltration for some pollutants can vary significantly between residences (Clark 

et al. 2010) substantial exposure misclassification may be present in prior studies.  

To address these limitations we examined the association between exposure to TRAP and the 

development of atopy in a population-based multi-center birth cohort, the Canadian Healthy Infant 

Longitudinal Development (CHILD) study. We estimated exposure to NO2 as surrogate for TRAP during 

pregnancy and the first year of life while accounting for both spatial and temporal variability in ambient 

concentrations. In stratified analyses we evaluated the influence of time-location patterns, daycare 

attendance, and modeled estimates of infiltration.   

 



71 
 

3.2 Methods 

3.2.1 Study population  

CHILD is a prospective longitudinal national birth-cohort that recruited over 3,600 families between 2008 

and 2012 in four Canadian cities (Vancouver (2.31 Million inhabitants), Edmonton (1.16 M), Winnipeg 

(0.73 M), and Toronto (5.58 M)) (http://www.canadianchildstudy.ca) (Takaro et al., 2015). Participants 

had to be pregnant, 18 years or older (19 in Vancouver), reside in reasonable proximity to a recruitment 

center (originally set about 50km distance from the study center), communicate in English, provide 

informed consent, intend to give birth at one of the recruitment centers, and able to provide valid personal 

contact information as well as two alternate contact individuals. Eligible infants had to be born at ≥ 35½ 

weeks gestation with weight ≥2500 grams. Infants were excluded under any of the following criteria: 

conception via in-vitro fertilization, product of a multiple gestation pregnancy, major congenital 

abnormalities, spending less than 80% of nights in the principal residential home. Recruitment ideally 

occurred at or soon after the routine 18 week ultrasound examination, but a significant proportion was 

recruited in later pregnancy (34% between 24 and 30 weeks, and 31% after 30 weeks of gestation). Each 

study center (universities and hospitals) obtained ethics approval from their governing health and ethics 

board and the CHILD study was reviewed and approved by the Hamilton Integrated Ethics Board 

(certificate number: 07-2929). 

The start of follow up was defined as the date of conception based on the expected and actual dates of 

delivery. End of follow up was defined as the earliest of October 15th 2013 or when the participating child 

was assessed with skin allergy testing at approximately one year of age.  

3.2.2 Skin prick tests 

To determine individual allergen sensitization, epicutaneous skin tests were administered to each infant at 

approximately 1 year of age for the six inhalant (Alternaria alternata, Cat Hair, Dog Epithelium, House 
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Dust Mites (Dermatophagoides pteronyssinus and D. farinae), German cockroach) and four food (whole 

cow’s milk, egg white, soybean, peanut) allergens. Histamine 1mg/mL and Glycerin were used as positive 

and negative controls. To define maternal atopy, each mother was tested with a panel of allergens:  

Alternaria alternata, Cat Hair, Dog Epithelium, House Dust Mites, German cockroach, Cladosporium sp, 

Penicillium mixed, Aspergillus fumigatus, Midwest trees, grass mix, weeds, mixed ragweed and peanut. 

Atopic status was determined using a positive response to any allergen. We defined two clusters of atopic 

responses in the children – inhalant allergy and food allergy.  

Participants reporting use of antihistamines during the seven days prior to the date of skin prick test were 

excluded. The wheal responses were measured at 10 (histamine) and 15 (allergen) minutes. We averaged 

the maximum diameter and its orthogonal, and defined a positive response as a wheal diameter ≥2mm 

greater than the response to the negative control. We included all participants with a positive response to 

histamine and no response to glycerin, or those with one or more positive responses ( 2mm) to any 

allergen, even if there was a weak or no response to histamine. Participants with a positive response to 

one or more allergens but also a response to the negative control were included with adjustment for the 

negative control (subtraction of the mean wheal diameter of the negative control from each positive test 

wheal diameter). In some cases specific tests were omitted (e.g. some families declined infant peanut 

testing) and these specific allergens responses were recorded as missing but all other data from that 

participant were included. Participants with no response to histamine and no response to any allergen 

were excluded, as were participants with dermatographism, when the response to the negative control was 

as large as any other response.  

3.2.3 Air pollution exposure assessment 

City-specific LUR models were developed to estimate NO2 concentrations and used to assign exposures 

at the residential locations of all participants. The models are described in detail elsewhere and were 
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developed at different time points between 2003 and 2008 (Allen et al. 2011; Henderson et al. 2007; 

Jerrett et al. 2007). Models were developed using road and land use data provided by Desktop Mapping 

Technologies Inc. (DMTI http://www.dmtispatial.com), as well as additional city-specific data sources 

(e.g. traffic counts from the city of Toronto).   

While individual models differed between locations, the variables used for model building had relatively 

similar grouping categories (Table 1.4): (1) land use; (2) road and traffic; (3) population; (4) physical 

geography; and (5) meteorology. All statistical models were consistently developed using the 

methodology adopted in the initial Vancouver model (Henderson et al. 2007). These models allow cost-

effective, relatively precise individual predictions of TRAP at the participants’ residence. 

Individual estimates of exposure were extracted for each geo-referenced residence reported by 

participants from address at conception to the address where the participating child resided at age one. 

Exposure to NO2 was assessed in two case scenarios. In the first scenario, we used the traditional 

approach of using only the address at the time of birth. Secondly, for those reporting multiple addresses 

we considered their exposure at every address during the study period and computed their time weighted 

average exposure. All exposures were subsequently temporally adjusted based on local fixed-site ambient 

monitoring data on a bi-weekly basis (see equation 1 for  one 2-week interval) over the entire pregnancy 

and first year of life  by multiplying the LUR estimate by the ratio of the contemporaneous average 

concentrations measured at all fixed-site governmental monitoring stations (Vancouver: N=12, Toronto: 

N=7,  Edmonton: N=4, and Winnipeg N=2) to the annual average at the same stations for the year the 

model was developed.  

adj9. NO2 = NO2(LUR) (2-week NO2(monitor)/yearly NO2(monitor))  [1];  

                                                      

9 adj.NO2 refers to temporally adjusted individual estimate of nitrogen dioxide. 
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Since the LUR models did not in all cases cover the full areas where participants resided with the 

exception of Vancouver, it was necessary to impute exposures for those outside of the LUR model 

domain. We restricted the locations where exposures were imputed to those residences within 50 km from 

the municipal center, defined as the location of the city hall. Participants with home addresses located 

outside of a 50km buffer from the city hall were not assigned TRAP exposure. To reduce discontinuities 

in exposure estimates on the periphery of the study area, we first defined core city limits within the 

original LUR surface where the models were applied directly to estimate exposures. For all homes outside 

these core city limits and within the 50km buffer, the minimum value of the LUR surface in the core city 

area was assigned to homes within 100m of highway (defined by standard road classification categories 

(DMTI Spatial Inc., Markham, Ontario), with categories 1 (expressway), 2 (principal highway), and 3 

(secondary highway)) and the minimum value of the original LUR surface was assigned to homes located 

farther than 100m away from a highway. Finally, participants with a TRAP concentration estimated for at 

least 75% of the time window of interest (i.e. full pregnancy or first year of life) were assigned the mean 

exposure of the corresponding time window. 

3.2.3.1 Time-activity patterns and daycare attendance 

The CHILD home environmental questionnaires were used to gather information on the micro-

environments within and outside the home of each participating child since birth. From the 3, 6, and 12 

month home questionnaires we derived: (a) the average time spent away from home (i.e. time weighted 

average of hours per day spent outside the house based on typical weekday and weekend time-activity 

patterns) that was divided into two strata by the city-specific median time away from the house, (b) 

whether the participating child ever attended a daycare or other indoor location for at least 7hrs per week 

or 1 hr. per day regularly at any time point during the first year of life. Using these estimates we evaluated 

the association between TRAP exposure and atopy in stratified analyses comparing children ever/never 
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attending daycare and children spending more time or less time than the city-specific median outside the 

home.  

3.2.3.2 Infiltration 

To assess the potential impact of ventilation, we adapted a model previously developed (Allen et al. 

2012a) to predict fine particle (PM2.5) infiltration in 6 US cities as part of the MESA Air study. The model 

included information on residence characteristics and behaviors related to infiltration, including 

presence/use of air conditioning (AC), outdoor air temperature, window opening, and use/type of heating. 

As the CHILD and MESA-Air questionnaires differed, we mapped the MESA-Air variables onto those 

collected in CHILD to predict infiltration (Table 3.1). For behaviors that varied seasonally, participants 

were asked about typical behavior in mid-summer and mid-winter. Season was defined by the 

Environment Canada daily temperature data (http://climate.weather.gc.ca/), collected from the same 

monitors from 2008 to 2013, where the warm season was defined as every two-week period with a 

median temperature above 18°C, similar to the MESA Air study. We predicted home-specific seasonal 

infiltration efficiencies and classified homes based on the city-specific 80th percentile of infiltration 

efficiency for each season, where participating houses above this threshold were classified as “leaky”. As 

our exposure of interest was NO2, we used modeled particle infiltration as a surrogate for home 

ventilation and infiltration of TRAP in general, and assessed effect modification by infiltration in 

stratified analyses.  

 

 

 

 



76 
 

Table 3.1: Particle Infiltration (Finf) variables; mapping questions used in the MESA-Air (Allen et al. 2012) 

and CHILD cohorts. 

Season MESA-Air Variable CHILD Variable  
Partial R

2 in 

the MESA-

Air model 

Warm 

(≥18° C) 

Central AC used > ½ time in 

past July 

Central AC used regularly in the 

summer 
a
 

0.560 

Windows open ≥ ½ time in 

past summer 

Windows open ≥  1hr  more than 2 

times/week in mid-summer 
a
 

0.080 

Central AC used > ½ time in 

past July and 2-week 

avg. outdoor 

temperature > 23
0
C 

Central AC used regularly in the 

summer
 a
 and 2-week government 

monitors average
b
 

0.051 

Central AC used a few days 

in past July 

Central AC use occasionally in the 

summer 
a
 

0.013 

2-week avg. outdoor 

temperature > 23
0
C

 

2-week avg. outdoor temperature   

> 23
0
C 

 b
 

0.000 

Cold 

(<18° C) 

2-week avg. outdoor 

temperature (
0
C) 

2-week avg. outdoor temperature 
b
 0.222 

Home has forced air heat Home has furnace 
c
 0.166 

Windows open ≥ ½ time in 

past summer 

Windows open ≥  1hr  more than 2 

times/week in mid-summer 
c
 

0.069 

a:Home environmental questionnaire; b: Environment Canada (http://climate.weather.gc.ca/), c: Home inspection;  

 

3.3 Questionnaires and home inspections 

Covariates relating to (1) indoor and outdoor environments, (2) socioeconomic and parental risk factors, 

and (3) nutrition were derived from self-reported questionnaires, or from inspections by trained 

technicians (for timetable of assessments, see Table 1.2). Using standardized protocols, technicians 

carried out a home assessment when infants were ~3-4 months old and gathered information about 

residential characteristics and activity patterns of the occupants. Secondhand smoke exposure (SHS), 
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presence of leaks, mold, pets, insects and other pests were assessed by questionnaires at four time points 

(at time of enrollment, and at 3, 6, and 12 months of age).  

Three measures of SES were examined using the father and mother’s education status and the household 

income reported at enrolment.  

Information on maternal history of asthma, smoking (before/during pregnancy), secondhand smoke 

exposure during pregnancy and prior live births was obtained at enrolment by questionnaire. Additionally, 

birth chart data provided information on type of delivery (vaginal vs. Cesarean-section), length of 

gestation, and child’s sex. 

Information on breastfeeding/feeding practices was provided by the mother in postnatal questionnaires 

(approximately at 3, 6 and 12 months). Breastfed participants were defined as having been breastfed when 

the mother answered positively at any time point. Children with formula, soy and cow’s milk intake were 

similarly derived. Variables relating to the introduction of solid foods were derived using any positive 

answer to the same question across all three questionnaires asking mothers to “indicate which foods you 

currently feed your child”. Timing of food introduction was not considered in this investigation. 

3.4 Statistical analysis 

Prior to investigating the association between TRAP and atopy, we assessed bivariate associations 

between sensitization at one year and all covariates mentioned above from the environmental (furry pets, 

SHS, leaks, mold, pests), parental (parity, maternal asthma, maternal atopic status, maternal smoking 

status during pregnancy, type of delivery), socio-economic (income, maternal and paternal education) and 

diet risk factors (breastfeeding, formula, soymilk,  and introduction of different solid foods) for each of 

the three outcomes of interest (sensitization to any allergens, to any inhalant allergens and to any food 

allergens) as well as sex and presence of an attached garage, to test for potential confounding. In these 

analyses, we first examined covariates for each time point separately. Subsequently, never/ever variables 

were generated whereby for any positive response to a risk factor, the participant was categorized as 
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having this risk factor. Further bivariate analyses, evaluating the associations with each outcome 

separately (sensitization to any allergens, to any inhalant allergen, and to any food allergen), were carried 

out with the latter never/ever variables. Covariates that were significant predictors (p<0.05) of each of the 

three outcomes of interest from the bivariate analyses were considered in models of NO2 and atopy for 

each time window. We performed a manual stepwise backward multiple variable logistic regression with 

city as random intercept to obtain a parsimonious model with significantly (p<0.05) associated predictors 

of each outcome.  

In the pregnancy time period, the model for inhalant allergens included presence of an attached garage 

and mold, whereas the food allergens model included maternal atopy, presence of furry pets, and 

household income. In the first year of life, inhalant models controlled for presence of furry pets and any 

consumption of nuts, while the food allergen model controlled for maternal atopy, presence of furry pets, 

and any consumption of eggs, processed cereals, and peanuts. For sensitization to any allergen, the 

significant predictors were similar to those obtained for the food allergen model in the first year analysis. 

During pregnancy, the model for this outcome included maternal atopy and presence of furry pets.  

The main analysis, which included a random study center intercept to adjust for the clustering within city, 

focused on predicted outdoor NO2 exposure at the home address(es) only, while we assessed time spent 

away from home, daycare attendance and infiltration in sensitivity analyses. Additional analyses for effect 

modification by parity, sex and maternal atopy were carried out. Predictors for these analyses were the 

same as those used in the main analysis. Effect estimates are presented for a 10 µg/m3 increase in NO2, 

approximately representing the overall standard deviation.  
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3.5 Results 

3.5.1 Population characteristics and atopy  

Atopy data were examined for 2482 children who had been assessed at age one by October 15th, 2013. 

Five children were excluded from the analysis due to non-interpretable skin prick test results (n=2), 

antihistamine medication taken prior to skin testing (n=1), or test postponement (n=2). Of the 2477 

participants, 400 infants were sensitized to at least one of the 10 tested allergens (Table 3.2). 

Table 3.2: Atopic outcomes (inhalant, food and any allergies) by city among 2477 CHILD participants with 

valid skin prick test at age 1 

City (N, % sensitized) Inhalant sensitization 

n(%)a 

Food sensitization 

n(%)a 

Any sensitization 

n(%)a 

Vancouver (575, 23% ) 55 (42) 92 (30) 132 (33) 

Edmonton (641, 17%) 28 (21) 85 (28) 108 (27) 

Winnipeg (680, 9%) 13 (10) 50 (16) 60 (15) 

Toronto (581, 17%) 36 (27) 82 (27) 100 (25) 

Total (2477, 16%) 132 (5) 309 (12) 400 (16) 

a
Data are shown as n, number of sensitized children and (%)proportion within each atopy outcome examined.  

 

Across all cities, 309 (12.5%) infants were sensitized to any food allergen while 132 (5.3%) had a positive 

response to any inhalant allergens. Vancouver had the largest proportion of atopic children (23.5%) 

followed by Toronto and Edmonton (both 17%), and only 9% in Winnipeg (Table 3.2). As expected for 

infants, prevalence of individual allergens was low (Table 3.3), precluding the investigation of 

associations between NO2 and individual allergens. However, in preliminary bivariate analysis, dog (OR 

= 1.20; 95% CI: 1.01 – 1.21), Der p (OR = 1.14, 95% CI: 1.07 – 1.27) and peanut sensitization (OR = 

1.07; 95% CI: 1.03 – 1.11) were individually associated with temporally adjusted exposure at the birth 

address.  
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Table 3.3: Proportion of positive responses to individual allergen skin prick tests by CHILD city (in (%)) 

City Alt Der 

p 
Der 

f 
Cat Dog Blatt Peanut Milk Eggs Soy 

Vancouver 
(N = 575) 

1.9 1.4 3.0 3.1 1.0 1.2 6.1 8.5 4.0 1.7 

Edmonton 
(N = 641) 

1.1 0.5 0.9 1.4 0.3 0.3 6.2 9.2 2.3 1.1 

Winnipeg 
(N = 680) 

0.1 0.1 0.1 1.2 0.1 0.4 3.2 5.3 0.4 0.1 

Toronto  
(N = 581) 

1.2 1.4 0.7 2.2 2.2 1.0 6.5 9.1 1.7 2.1 

 

Only participants with non-missing exposure and health data (pregnancy: n=2123; first year: n=2173) as 

well as completed questionnaire information about environmental, parental, socio-economic, and 

nutritional risk factors were considered for analysis. Pregnancy and first year of life subsets used for 

analysis and the full cohort with sensitization results (n=2477) were virtually identical in the distribution 

of predictors and disease prevalence (data not shown). We also examined the effect of the exposure 

imputation, which was performed to include participants residing outside of the LUR surfaces. Rates of 

allergic sensitization were not statistically different between children assigned LUR estimates (16%) and 

those who had imputed concentrations (13.5%). Covariates considered for the analysis between TRAP 

and atopy risk were similarly distributed in the sample with imputed concentrations and that with LUR 

derived exposure estimates (data not shown).  

Most mothers were highly educated (93% completed at least some university or college education or 

more), nonsmokers during pregnancy (97%), non-asthmatics (77%) yet with a high prevalence of 

sensitization to at least one of the ten allergens tested (61%) and had a vaginal delivery (65%). About half 

of mothers had previous live births (47%). The majority of participating families (70%) belonged to 

higher SES based on household income ≥ $80,000/year (Table 3.4) 
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Table 3.4: Cohort characteristics
b
 among 2477 children at one year of age with valid skin allergy tests, and 

crude Odds Ratio (OR) for sensitization to any allergens with 95% Confidence Interval (95% CI) 

N (%)  Non-atopic Atopic OR   95% CI 

Personal/Maternal covariates  

Sex  
Male 1282, (52) 1067, (51) 215, (54) 0.94 (0.76,  1.18) 

Female 1195, (48) 1010, (49) 185, (46) 
Maternal atopy statusc  

Yes 1509, (61) 1227, (59) 282, (71) 1.68 (1.33,  2.12) 
No 966, (39) 848, (41) 118, (30) 

Missing 2 0 2 
Maternal asthma status   

Yes 522, (23) 435 (23) 87, (23) 1.09 (0.83,  1.42) 
No 1771, (77) 1485 (77) 286, (77) 

Missing 184 157 27 
Maternal smoking in pregnancy   

Yes 74, (3) 66, (3) 8, (2) 0.74 (0.35, 1.57) 
No 2219, (97) 1854, (97) 365, (98) 

Missing 184 157 27 
Maternal smoking ≥ 1 year  

Yes 617, (27) 527, (27) 90, (24) 0.85 (0.65, 1.10) 
No 1674, (73) 1391, (73) 283, (76) 

Missing 186 159 27 
Parity  

Has previous births 1075, (47) 914, (48) 161, (43) 0.85 (0.68, 1.07) 
No previous births 1219, (53) 1007, (52) 212, (57) 

Missing  183 156 27 
Delivery mode  

Vaginal  1481, (65) 1244, (75) 237, (73) 1.05 (0.79, 1.37) 
C-section 501, (22) 413, (25) 88, (27) 

Missing 495 420 75 

Socio-economic covariates  

Maternal education  
High School 166, (7) 144, (7) 22, (6) ref 

College or University 1686, (74) 1415, (74) 271, (73) 0.99 (0.61, 1.59) 
Postgraduate Education 439, (19) 362, (19) 77, (21) 0.98 (0.58, 1.67) 

missing 186 156 30 
Household income   

< 40K 155, (7) 132, (8) 23, (7) ref 
40-80K 490, (24) 417, (24) 73, (22) 0.96 (0.58, 1.61) 

80 - 150K 928, (45) 777, (44) 151, (46) 0.95 (0.59, 1.55) 

> 150K 511, (25) 431, (25) 80, (24) 0.83 (0.49, 1.40) 
Missing 393 320 73 

Environmental
d
 covariates  

Furry Pets   
Yes 1134, (65) 977, (54) 157, (44) 0.72 (0.58, 0.90) 
No  1048, (22) 846, (46) 202, (56) 

Missing 295 254 41 
Garage 

yes 751, (65) 623, (41) 128, (45) 1.35 (1.03, 1.79) 
no 1070, (22) 912, (59) 158, (55) 

Missing 656 542 114 



82 
 

N (%)  Non-atopic Atopic OR   95% CI 

Personal/Maternal covariates  

Introduced food in first year
e
  

Dairy products   
Yes 1944, (95) 1639, (96) 305, (92) 0.51 (0.32, 0.79) 
No 102, (5) 75, (4) 27, (8) 

Missing 431 363, 68 
Processed cereals  

Yes 1661, (83) 1413, (85) 248, (76) 0.58 (0.44, 0.76) 
No 334, (17) 256, (15) 78, (24) 

Missing 482 408 74 
Eggs 

Yes 1742, (85) 1478, (86) 264, (80) 0.54 (0.40, 0.73) 
No 303, (15) 235, (14) 68, (20) 

Missing 432 364 68 
Nuts 

Yes 625, (31) 1180, (69) 240, (72) 0.72 (0.55, 0.93) 
No 1420, (69) 533, (31) 92, (28) 

Missing 432 364 68 
Peanuts 

Yes 941, (46) 816, (48) 125, (38) 0.63 (0.49, 0.79) 
No 1102, (54) 896, (52) 206, (62) 

Missing 432 365 69 
bData are shown as n (%). The percentages are calculated using the number of observations with known values as 
the denominator. cPositive skin prick test response to any of the allergens tested. 
dEnvironmental covariates are based on any self-reported positive response during pregnancy and at 3, 6, or 12 
months. eInformation on feeding practices are based on any self-reported positive response at 3, 6, or 12 months. 

 

Compared to atopic participants, non-atopic children were more likely in their first year to consume dairy 

products, eggs, nuts, peanuts, grains and processed cereals,  to reside in a home with pets , and less likely 

to have a  garage attached  to their home (Table 3.4). Children of atopic mothers were more likely to be 

atopic than children of non-atopic mothers (crude OR = 1.68; 95% CI: 1.33 – 2.12).  

 

3.5.2 Exposure levels and association with atopy development 

Exposure estimates were unavailable for 12% of the 2477 children with skin prick test data, as 173 

participants had homes located more than 50km from the city centre and 131 did not provide their 

residential history since enrolment.  



83 
 

Among  the 2173 participants with complete residential histories who resided within the 50km buffer, 252 

homes fell outside of each city core limits and were assigned imputed NO2 concentrations. Mean 

exposure levels differed significantly by city; ranging from 28 µg/m3 in Toronto to 9.9 µg/m3 in Winnipeg 

(Table 1.3). After applying the bi-weekly temporal adjustment and accounting for residential mobility 

(83% did not change their address), estimated exposures were lower across all cities due to decreasing 

ambient concentrations between the development of the LUR model and the date of birth (Brook et al. 

2014), with a greater decline for older LUR surfaces. The difference between these estimates is not likely 

due to addresses change, but mostly to the temporal adjustment from original LUR models to the time of 

the present of investigation. When examining the pairwise differences of spatiotemporal biweekly means 

by time window, we found significant differences (p<0.05) between exposure during pregnancy and the 

first year of life, unlike the non-significant differences obtained with estimates not accounting for 

residential mobility (p=0.3). 

Compared to TRAP exposure estimated at the birth address with no temporal adjustment, NO2 estimates 

that incorporated temporal variability in ambient concentrations increased the magnitude of the effect 

estimates for the first year of life analysis (any allergens: aOR = 1.10; 95% CI: 0.96 – 1.34), yet without 

reaching statistical significance (Table 3.5). Further, estimates of effect generally increased when 

temporally adjusted models further accounted for mobility (Figure 3.1B). However the increased spatial 

resolution also led to larger confidence intervals around the atopy risk estimates.  
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Table 3.5: Adjusted
10

 Odds Ratios (aOR) for risk of atopy per 10 µg/m
3
 increase in NO2 exposures during 

pregnancy and the first year of life. 

  All Allergens Food Allergens Inhalant Allergens 

  aOR 95% CI aOR 95% CI aOR 95% CI 

Pregnancy     

Exposure at birth address 1.06 0.95 – 1.28 1.05 0.87 – 1.34 1.05 0.77 – 1.40 

Temporal adjustment(birth address)  1.01 0.81 – 1.16 0.99 0.73 – 1.10 1.16 0.86 – 1.61 

Spatio-temporal adjustment  1.02 0.86 – 1.22 1.00 0.77 – 1.61 1.18 0.77 – 1.61 

First Year    

Exposure at birth address 1.05  0.95 – 1.28 1.08 0.95 – 1.28 1.16  0.91 – 1.40 

Temporal adjustment(birth address)  1.10 0.96 - 1.34 1.15 0.95 – 1.40 1.22 0.92 - 1.62   

Spatio-temporal adjustment  1.16 1.00- 1.41 1.17 0.95 – 1.47 1.28 0.93 - 1.  

 

During the first year of life, NO2 was associated with sensitization to any allergen tested at one year of 

age (aOR = 1.16; 95% CI: 1.00 – 1.41) when considering temporally adjusted exposures that also 

accounted for residential mobility. When examining each group of allergens separately, we also found 

positive, but non-significant associations (aOR = 1.17; 95% CI: 0.95 – 1.47 for inhalant allergies and aOR 

= 1.27; 95% CI: 0.93 – 1.76 for food allergies) (Figure 3.1B).  

                                                      

10 Model covariates for each outcome/time window pair are as follows: 
Any allergies and NO2 during pregnancy: mother’s atopic status, presence of furry pets. 
Any allergies and NO2 during first year: mother’s atopic status, presence of furry pets, consumption of eggs, 
consumption of processed cereals, and consumption of peanuts 
Food allergies and NO2 during pregnancy: mother’s atopic status, presence of furry pets, and household income 
Food allergies and NO2 during first year: mother’s atopic status, presence of furry pets, consumption of eggs, 
consumption of processed cereals, and consumption of peanuts  
Inhalant allergies and NO2 during pregnancy: presence of an attached garage, presence of mold.  
Inhalant allergies and NO2 during first year: presence of furry pets and consumption of nuts. 
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Figure 3.1: Adjusted Odds Ratio for risk of atopy per 10 µg/m3 increase in NO2 exposures (triangle) 

temporally adjusted at birth address, (circle) temporally adjusted and accounting for residential mobility. (A) 

during pregnancy: inhalant allergens model controlled for presence of an attached garage and mold 

(n=1836); food allergens model controlled for mother’s atopic status, presence of furry pets, household 

income (n=1913); any allergens model (n=2123) controlled for mother’s atopic status and presence of furry 

pets and (B) during the first year of life: inhalant model (n=2058) controlled for presence of furry pets and 

any consumption of nuts since birth; food allergen analysis (n=2002)adjusted for mother’s atopic status, 

presence of furry pets, and any consumption of eggs, processed cereals, and peanuts); any allergen analysis 

(n=2173) adjusted for mother’s atopic status, presence of furry pets, consumption of eggs, processed cereals 

and peanuts 

 

In contrast, during pregnancy (Figure 3.1A), effect estimates were null for sensitization to any allergens 

(aOR = 1.02; 95% CI: 0.86 – 1.22) and for sensitization to food allergens (aOR = 1.00; 95% CI: 0.77 – 

1.61). In this time window, the association between exposure and inhalant allergens atopy was non-

significant (aOR = 1.18; 95% CI: 0.77 – 1.61).  

Analyses of the effect of greater or lesser time spent away from the home indicated improved precision in 

estimates among children spending more time at the home, and identified a potential source of exposure 

misclassification (Figure 3.2A). Participants (n= 976) who spent more time away from the home (median: 

3.3 hours per day for all cities) generally had slightly smaller effect estimates with larger confidence 

intervals (any allergens: aOR = 1.16; 95% CI: 0.85 – 1.53) than those spending less time (n=1026) away 

from their home addresses (aOR =1.22; 95%CI: 1.00 – 1.47). This association was likely driven by the 

sensitization to inhalant allergens (children spending ≤ city-specific median time away from home aOR 



86 
 

=1.61; 95% CI: 1.15; 2.19 vs. those spending more than the city-specific median time away from their 

homes aOR =1.10; 95% CI: 0.69, 1.68). 

 

 

Figure 3.2: Adjusted OR of atopy per 10µg/m3 NO2 increase during the first year stratified by: (A) time-

activity patterns (defined by the city-specific median hours per day based on the three questionnaires 

submitted after birth around 3,6, and 12 months) among children spending more time (n=976) and those 

spending less time (n=1026) away from the home; and (B) daycare facilities attendance among daycare 

attendees (n=765) and children never attending daycare (n=1236). 

 

Stratifying the cohort by daycare attendance (35% attended daycare) also suggested a source of exposure 

misclassification, as non-daycare attendees (n= 1236) had 61% increased odds of developing atopy (aOR 

= 1.61; 95% CI: 1.28 – 2.01) whereas the risk was smaller and not significant in children who did attend 

daycare (n=765; aOR = 1.05; 95% CI: 0.81 – 1.28) (Figure 3.2B). The sensitization to inhalant allergens 

showed the largest association with NO2 exposure (aOR = 2.1; 95% CI: 1.40 – 3.17 for children never 

attending daycare vs. aOR = 1.10; 95% CI: 0.77 – 1.54 for daycare attendees). Given these results, we 

investigated whether exposures other than NO2 (e.g. contact with other children) may play a role in the 

sensitization onset. Thus, we ran a stratified analysis by presence of siblings which showed that 

participants who were in households with other siblings had lower odds of developing sensitization to any 
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allergens (n = 874, aOR = 1.16; 95% CI = 0.91 – 1.54) following exposure to TRAP than those with no 

siblings (n= 1085, aOR = 1.28; 95% CI = 1.0 – 1.54) (Figure 3.3). 

 

Figure 3.3: Adjusted OR of risk of atopy in CHILD families for a 10 µg/m
3
 increase in NO2 during the first 

year of life, stratified by presence of siblings in participants families (group with no siblings, n= 1085; group 

with sibling, n= 874). All models are adjusted for the same covariates as those used in the main analysis 

(Figure 1B) 

  

For a 10 µg/m3 increase in NO2 exposure, the odds of sensitization to any allergen for children living in 

homes with greater ventilation (n= 687) was slightly higher (aOR = 1.22; 95% CI: 0.91 – 1.61) than for 

children living in tighter homes (n= 824, aOR = 1.10; 95% CI: 0.82 – 1.47) during the heating season, but 

not in the warm season (Figure 3.4).  
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Figure 3.4: Adjusted Odds Ratio of risk of atopy for 10 µg/m
3
 increase in NO2 during the first year of life 

stratified by season (defined using weekly average of 18°C as cutoff to define cold and warm) and by home 

PM infiltration status (defined based on city-specific 80
th

 percentile predicted household PM infiltration 

efficiency; “leaky” homes: n= 687; “sealed” homes: n=824). All models are adjusted for the same covariates 

as in the main analysis (Figure 3.1B) 

 

3.6 Discussion 

In this prospective multi-centre birth cohort study, exposure to NO2 during the first year of life, but not 

during pregnancy, was positively associated with atopy at age one year. To our knowledge, this is the first 

birth cohort study where atopy in relation to traffic-related air pollution was determined in the first year of 

life (Brauer et al. 2007b; Gruzieva et al. 2012; Nordling et al. 2008). Positive associations between NO2 

and specific sensitization to common food, but not inhalant allergens were observed in a subgroup of 700 

Dutch children from the PIAMA cohort at age 4 (Brauer et al. 2007). In the Swedish BAMSE cohort, 

exposure during the first year of life was associated with an increased risk of only pollen sensitization at 

age 4 (no association with food allergens) (Gruzieva et al. 2012).  
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The ability to refine individual estimates of exposure to TRAP by incorporating temporal changes in air 

pollution concentrations and in participants’ residential mobility led to larger effect estimates; however 

the improvement in precision of these effects was negligible and not consistently improved across all 

three outcomes. It is important to note that the exposure assessment was derived from modeled estimates 

rather than measurements, increasing error propagation in the estimates used for evaluating the 

association with atopy outcomes. However, the correlation between the exposures during the entire 

pregnancy and the first year of life decreased with more specific exposure measures suggesting that 

refined exposure assessment enables improved differentiation between exposure periods. This finding is 

supported by a study showing that temporally updated (based on air dispersion model data)  LUR models 

provide accurate exposure estimates (Mölter et al. 2010).  

In light of the recently published European meta-analysis of air pollution with allergic sensitization 

(Gruzieva et al. 2014),  we explored potential effect modification by sex or maternal atopy. Similar to 

their results, no effect modification by sex was found. However maternal atopy showed borderline 

significant effects for exposure during pregnancy and smaller magnitude of effect compared with the 

main model in the first year (aOR for Maternal atopy ˟NO2 interaction term = 1.04; 95% CI: 0.98 – 1.10 

during pregnancy and aOR = 1.04; 95% CI: 1.00 – 1.10 during the first year).  

We demonstrated stronger associations between TRAP and atopy in our stratified analyses when daycare 

attendance and individual time-activity patterns were considered. In particular for exposures during the 

first year of life, when inhalant allergen sensitization was considered separately, participants for whom 

exposure misclassification was less likely (i.e. those spending more than the city median time at home, 

and those who did not attend daycare) had stronger associations. In a small subsample of participants 

providing daycare addresses (n=235), exposures were not significantly different in homes and in daycares 

(data not shown), making it unlikely that lower exposures outside the homes would explain reduced 

effects amongst those attending daycare. While the observed differences in these sub-analyses could also 



90 
 

be due to more variability suggestive of a classical exposure error, we explored the possibility that the 

differences observed were related to exposure other than TRAP. Odds ratios of sensitization to any 

allergens were lower for participants spending more time in the home or not attending daycare compared 

to daycare attendees or those spending more time away from the home for the same rate of TRAP 

increase, suggesting that this latter group might be exposed to other exogenous protective exposure such 

as presence of other children. The additional stratified analysis by presence of siblings seemed to support 

the argument that exposure to other children is likely to play a protective role in the development of 

atopy.  

Along with refined exposure assessment modeling, major strengths of our study are the prospective 

design from early in pregnancy and the objective definition of sensitization. Comparisons between the 

few birth cohorts examining early life  exposures to traffic pollution are complicated by the various 

definitions of atopy or allergic sensitization, most often assessed by self-reported symptoms (Bråbäck and 

Forsberg 2009) which can lead to misclassification of outcomes. In the present study, atopic status was 

based on objective skin prick tests using a common protocol for all participants. Gathering questionnaire 

and home inspection data enabled us to collect extensive individual data on known and suspected risk 

factors about indoor and outdoor environments, and parental health status, as well as detailed dietary 

information that are seldom acquired in large cohort studies as early as in this investigation. However, the 

number of missing covariates is a limitation as sample sizes for individual analyses were substantially 

reduced. 

Despite the advantage of multiple questionnaires and detailed home assessments, the use of self-reported 

information on environmental risk factors, which may be biased by parental health status, is a concern. 

Although the cohort was unselected and the prevalence of parental allergy and current asthma similar to 

that in the Canadian population, there is a bias towards higher SES compared with the general population, 

as is often the case with birth cohorts. Further, while this is one of few analyses of TRAP to examine the 
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role of  infiltration, our assessment was limited by the use of a model for particle infiltration developed 

for cities in the US (Allen et al. 2012) to classify infiltration of TRAP in Canadian homes. We mapped 

variables in the MESA-Air cohort questionnaires to the most similar questions available in CHILD; 

however it is likely that we introduced some error in recoding the CHILD variables, and thus in 

developing infiltration estimates which are already difficult to model based on actual measurements. In 

addition, the model was developed in US cities spanning a wider north-south geographical area, and 

consequently developed for a hotter climate, which led to a temperature threshold variable (23°C) that 

might differ from the cut-off obtained using Canadian data. In the case of the cold season infiltration 

models, we found the expected differences between homes with participants in the “leaky” homes 

showing stronger associations between TRAP exposure and sensitization to any allergens only. Lack of 

sufficient power precluded the identification of differences in this analysis. Future studies should consider 

an infiltration measurement sub-study to develop a study-specific model. 

Children at one year of age developed more sensitization to food (12.5%) than  inhalant allergens (5.5%) 

similar to findings in the European birth cohorts in which participants were older and showed higher 

prevalence rates of sensitization  (BAMSE with 16% and 15% (Gruzieva et al 2012) and PIAMA with 

23.9% and 8.5% (Gehring et al. 2010b) for food and inhalant allergens respectively). However, we 

observed that exposures during first year of life may contribute differently to the potential load of 

sensitization. In conclusion, this study demonstrates that in cities with low-levels of ambient traffic-

related air pollution,  incorporating different tools (GIS, monitoring data, questionnaires, and home 

environmental assessment) to account for temporal variation, residential history, and time-location 

patterns in the estimation of individual-level exposures can help clarify the association between early life  

exposure to traffic-related air pollution and the development of allergic sensitization to common inhalant 

and food allergens. 
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Chapter 4: Asthma development in relation to air pollution and greenness in the BAQS 

birth cohort: a follow up from birth to age 10. 

 

4.1 Introduction 

Among pediatric respiratory diseases, asthma is the most common pathology and represents a heavy 

burden of illness and costs (Ismaila et al. 2013). It is recognized that both environmental and genetic 

factors play a role in its development (Subbarao et al. 2009). Among the environmental factors, air 

pollution has attracted interest because of its link to asthma severity, its ubiquitous nature and the 

possibility of preventive strategies via exposure reduction (Guarnieri and Balmes 2014).  

Several qualitative critical reviews have suggested causal associations (Bråbäck and Forsberg 2009; 

Health Effects Institute 2010) between air pollution, traffic-related air pollution, and incident childhood 

asthma, although recent meta-analyses of the epidemiological evidence show diverging results. An 

adverse effect of outdoor air pollution on asthma incidence, but no effect with lifetime period prevalence 

of asthma, was reported in meta-analyses of studies published up until 2010 (Anderson et al. 2013a, 

2013b). Examining air pollution from traffic sources, an American meta-analysis showed adverse effects 

on childhood asthma (Gasana et al. 2012) while no evidence of an association was found among children 

followed up to age 10 in a meta-analysis of birth cohorts from the European Study of Cohorts for Air 

Pollution Effects (ESCAPE) initiative (Mölter et al. 2014b). While the results of these meta-analyses 

appear contradictory, a possible explanation could be that the increased risk in incidence reflects the 

unveiling of the presentation of subclinical phenotypes of asthma (Gowers et al. 2012) which highlights 

the need to examine asthma incidence over different age periods. The current study is able to build on the 

previous literature by examining the risk of asthma onset among two different age groups (preschool and 
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school-aged) using data from a 10-year follow-up of over 68,000 children as part of the Border Air 

Quality Study (BAQS) in British Columbia, Canada.  

Traffic not only produces air pollutants, it is also likely to affect urban form via reduced access to green 

spaces. Green spaces have been linked to positive health outcomes (Lee and Maheswaran 2011), to higher 

physical activity (Roemmich et al. 2006) which is itself associated with decreased asthma development 

(Sherriff et al. 2009), and to reduced air pollution provided by trees, thereby protecting respiratory health 

(Lovasi et al. 2008). A recent review on the role of natural spaces in children’s health concluded that 

reduced access to open spaces is related to higher relative prevalence of asthma and allergic conditions 

(McCurdy et al. 2010). However, a birth cohort study conducted in New York, reported that asthma at age 

7 was significantly increased in those residing in streets with higher tree canopy coverage (Lovasi et al. 

2013). Overall, longitudinal follow up studies examining the effect of green spaces on asthma 

development is scarce and inconsistent. The current investigation will also examine the role of greenness 

in the development of this disease.  

4.2 Methods 

4.2.1 Cohort description 

Using linked administrative data sets originating from the British Columbia (BC) Ministry of Health, the 

BC Vital Statistics Agency, and BC Perinatal Data Registry, the birth cohort comprised all 1999 to 2002 

births  in the greater Vancouver metropolitan region (Brauer et al. 2008). The study protocol was 

approved by University of British Columbia Research Ethics Board (#H04-80161). 

Children were followed for 10 years providing they continued to reside in the Metropolitan region of 

Vancouver based on the Ministry of Health registry data and their mothers also had to be registered as 

continually residing in the study region during their complete pregnancy. Members were lost to follow-up 

if they moved outside of the study region or had a gap of over half-a year in residency. From the 73, 387 
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births to mothers with complete information on residential history during pregnancy, children were 

excluded if they died during follow up (n=101) or were a multiple birth (n=988). The analysis cohort 

comprised 68,320 singletons with complete covariate information. . 

4.2.2 Confounders 

Birth date, sex, birth weight and gestational length of each child were accessed via Vital Statistics data; 

and maternal parity, maternal age, intention to breastfeed and maternal smoking during pregnancy were 

obtained from the BC Perinatal Data Registry. Since, no individual-level data were available for other 

socio-economic factors, income (quintiles) and maternal level of education (quartiles) were assigned from 

census data at the Census Dissemination Areas (DA), a resolution which approximates the neighborhood-

level with target populations of 400–700 persons  

4.2.3 Incident asthma case definition  

Records of the utilization of all billed outpatient and inpatient medical services from 1999 to 2009 were 

obtained from the British Columbia Ministry of Health (http://www.popdata.bc.ca/data). Asthma 

diagnoses were identified from physician billing records and hospital discharge records for codes 493 and 

J45 from the 9th and 10th revision of ICD, respectively. Using a validated case definition of asthma 

(Prosser et al. 2008), children with a minimum of two primary care physician diagnoses in a rolling 12-

month period or a minimum of one hospital admission over the study period were identified as asthma 

cases.  

4.2.4 Exposure assessment  

All spatially-derived exposure variables as well as residential greenness exposure were assigned to 

corresponding residential histories throughout pregnancy since all residential postal codes were recorded 

at each contact with the health care system. An average exposure was calculated by the time spent at each 

postal code and successfully assigned to 65,254 study subjects with complete covariate information. 
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4.2.4.1 Air pollution exposure assessment 

Exposure to air pollution for each cohort member was assigned at their six-digit postal code(s), which 

corresponds to one block-face in urban areas, by three different approaches (described in detail in Brauer 

et al., 2008) namely, land use regression models, interpolation metrics of regulatory monitoring stations 

operated by the BC Ministry of Environment and Metro Vancouver, and proximity measures.  

Land use regression models provided high spatial resolution (10 m precision), individual estimates of 

exposures to traffic-related air pollutants, including black carbon (BC), fine particulate matter (< 2.5 µm, 

PM2.5), nitrogen dioxide (NO2), and nitric oxide (NO) (Brauer et al. 2008; Henderson et al. 2007). Since 

the temporal stability of LUR surfaces showed reasonable backward predictions (Wang et al. 2013), each 

LUR model, developed after the 1999 – 2002 cohort inception period, was temporally adjusted based on 

daily air monitoring measurements to estimate monthly average concentrations that were assigned to 

individual subjects’ recorded home address postal code at birth (For detailed description, see (Brauer et 

al. 2008)) .  

Data on NO2, NO, BC, PM10, carbon monoxide (CO) and sulfur dioxide (SO2)  from monitoring stations 

were used to compute an inverse-distance weighted (IDW) average of the three closest monitors within 50 

km providing high temporal resolution (daily) estimates assigned to participants residential postal codes 

(Marshall et al. 2008b). 

Finally, road proximity for home postal codes of all cohort members was calculated using a geographic 

database (DMTI ArcView street file data set for BC, Canmap Streetfiles version 2006.3; DMTI Spatial 

Markham, Ontario, Canada). Home postal codes were categorized as within 50m or 150m of a primary 

highway, within 50 or 150m of a major road, or within 150m of a primary highway and within 50m of a 

major road. 
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4.2.4.2 Greenness 

Satellite-derived Normalized Difference Vegetation Index (NDVI) provided a continuous measure of 

greenness across the study region. NDVI ranges from -1 to 1 (with the minimum value indicating water 

and higher values indicating more greenness) based on land surface reflectance of visible (red: 0.4 – 

0.7µm) and near-infrared (0.7 – 1.1 µm) parts of spectrum(Weier and Herring 2000). Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+) cloud free images downloaded from 1999 to 2002 were used to assign 

greenness measures to study postal codes. Average yearly greenness values were calculated for 100 m 

areas around residential postal codes during pregnancy (Hystad et al. 2014). These buffer areas are at a 

similar spatial scale to within-city air pollution variation.  

4.2.5 Analytical methods 

Nested case-control design using incidence density sampling within the study cohort was adopted for 

analytic efficiency. Each asthma case was randomly matched to five controls by sex and birth month and 

year. Nested conditional logistic regression models included breastfeeding status at the time of discharge, 

parity, maternal education (in area-level quartiles), household income (in area-level quintiles), gestational 

length and birth weight (both as continuous variables). The risk of incident asthma was examined in 

relation to air pollution and greenness in two time windows: between birth and up to the child’s 6th 

birthday (denoted preschool group thereafter) and from age 6 until the end of follow up (school age 

group). The preschool group mirrored the initial analysis of a subsample of this cohort (Clark et al. 

2010b), while the school age group provided new insight into the effect of air pollutants and greenness on 

asthma incidence later in childhood. In addition, greenness and air pollutants were analyzed in joint 

exposure models. 

The effects of low birth weight (<2500g) and gestational duration (>37 weeks; 30 - 37 weeks; < 30 

weeks) on asthma incidence were also examined in stratified analyses. Similarly, a series of stratified 

analysis were conducted to investigate potential effect modification by sex, parity, and socio-economic 
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factors (neighborhood-level household income < 40th percentile), maternal post-secondary education < 

median neighborhood level of maternal education, and tertiles of maternal age at birth). 

 

4.3 Results 

A total of 6,948 and 1,711 children met the case definition of asthma onset in the preschool and school 

age groups respectively. Descriptive statistics by confounder data, stratified by case status are 

summarized in Table 4.1. Mean age at time of diagnosis (sd) was 2.64 (1.41) and 7.00 (1.21) years in the 

preschool and school age groups.  

 

 

 

 

 

 

 

 

 

 

 



98 
 

Table 4.1: Case and control characteristics (n (%) for categorical covariates; mean (standard deviation) for 

continuous covariates) for children meeting the case definition, matched controls by time window. 

 
Preschool age School age 

 Control 

(34621) 
Cases 

(6948) 
Control 

(8577) 
Cases 

(1711) 

Sex                                   Female 13143 (38) 2646 (38) 3480 (41) 690 (40) 

Male 21478 (62) 4302 (62) 5097 (59) 1021 (60) 

Newborn Feeding at discharge     

No breastfeeding 2430 (7) 545 (8) 626 (7) 141 (8) 

Breastfeeding  32028 (93) 6358 (92) 7911 (93) 1561 (92) 

Unknown 163 (0) 45 (0) 40 (0) 9 (1) 

Maternal post-secondary 

education quartiles  
 

7670 (22) 
 

1882 (27) 1959 (22) 459 (27) 1 (lowest) 

2 7973 (23) 1622 (23) 1996 (23) 411 (23) 

3 9407 (27) 1781 (26) 2270 (27) 421 (26) 

4 9571 (28) 1663 (24) 2352 (28) 420 (24) 

Area-based household income 

quintiles   

7468 (22) 1693 (24) 1833 (21) 392 (23) 1 (poorest) 

2 7719 (22) 1697 (24) 1905 (22) 425 (25) 

3 7178 (21) 1460 (21) 1893 (21) 377 (22) 

4 6799 (20) 1185 (17) 1629 (19) 301 (18) 

5 5457 (16) 913 (13) 1317 (16) 216 (13) 

Parity                                       0  15504 (45) 3332(52) 3879 (45) 892 (48) 

1+ 19117 (55) 3616 (48) 4698 (55) 819 (52) 

Gestation length (weeks) 39.4 (1.15) 38.9 (1.94) 39.1 (1.68) 39.0 (1.8) 

Maternal age (years) 31.5 (5.06) 31.2 (5.09) 31.5 (5.12) 30.8 (5.3) 

Birth Weight (g) 3510 (458) 3362 (567) 3437 (527) 3385 (538) 
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Significant differences were observed for all risk factors in Table 4.1 between cases and controls for both 

the preschool and the school age groups. Asthmatic children were more likely to have been born to a 

younger mother, from a lower socio-economic stratum (as indicated by maternal educational attainment 

and household income), and less likely to have been breastfed. Also, the gestation period and birth weight 

were smaller among cases compared with their matched-controls.  

All risk factors except for sex were similar when comparing matched controls from the entire pool of 

children who did not meet the case definition (i.e. all potential non-asthmatic controls), indicating non-

biased selection of control subjects as shown in Table 4.2 

Table 4.2 : Cohort characteristics (n (%) for categorical covariates; mean (standard deviation) for continuous 

covariates) for control children and all non-asthmatics by cohort age groups 

 

Preschool group School group 

Controls 

(34621) 
No asthma 

(58306) 
Controls 

(8577) 
No asthma 

 (63543) 

Sex 

13143(38) 31591(50) 3480(41) 30901(49) Female 

Male 21478(62) 33663(50) 5097(59) 32642(51) 

Newborn Feeding     

No breastfeeding 2430(7) 4632(7) 626(7) 4491(7) 

Breastfeeding  32028(93) 60296(93) 7911(93) 58735(93) 

Unknown 163(0) 326(0) 40(0) 317(0) 

Female post-

secondary education 

quartiles (1=lowest) 
 

7670(22) 14441(23) 1959(22) 13982(22) 1 

2 7973(23) 14776(23) 1996(23) 14365(23) 

3 9407(27) 17792(26) 2270(27) 17371(27) 

4 9571(28) 18245(27) 2352(28) 17825(28) 
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Preschool group School group 

Controls 

(34621) 
No asthma 

(58306) 
Controls 

(8577) 
No asthma 

 (63543) 

Area-based 

household income 

quintiles  (1=poorest)  

7468(22) 13950(21) 1833(21) 13558(21) 1 

2 7719(22) 14446(22) 1905(22) 14021(22) 

3 7178(21) 17792(21) 1893(21) 13344(22) 

4 6799(20) 12654(20) 1629(19) 12353(19) 

5 5457(16) 10413(16) 1317(16) 10267(15) 

Parity 
0 15504(45) 29602(45) 3879(45) 28710(45) 

1 19117(55) 35652(55) 4698(55) 34833(55) 

Gestation (weeks) 39.4 (1.15) 39.1 (1.66) 39.1 (1.68) 39.1 (1.69) 

Maternal age (years) 31.5 (5.06) 31.4 (5.07) 31.5 (5.12) 31.4 (5.06) 

Birth Weight (g) 3510 (458) 3447 (533) 3437 (527) 3431 (533) 

 

 

Table 4.3 summarizes the distribution of all spatially-derived exposure variables and the residential 

greenness metric for each nested case-control cohort. The levels of air pollutants in metropolitan 

Vancouver were relatively low, compared to other major Canadian cities and international urban areas 

with populations of over 1 million (Government of Canada 2007) , while the average greenness was high 

compared to other cities in Europe and the US with similar or larger size (Dzhambov et al. 2014) . 
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Table 4.3: Mean exposure levels, standard deviation (SD), and Interquartile Range (IQR) among cases and 

controls for carbon monoxide (CO), nitrogen monoxide (NO), nitrogen dioxide (NO2), ozone (O3), sulfur 

dioxide (SO2), particulate matter (PM10, PM2.5), and black carbon (BC) derived using inverse-distance 

weighting (IDW) and/or land-use regression (LUR) models and for greenness using Normalized Difference 

Vegetation Index (NDVI). 

 
 Preschool (0-5 years) School (> 6 years) 

 Pollutants_
metric 

Mean IQR SD Mean IQR SD 

Cases CO_IDW 
(µg/m3)

628.7 165.0 119.6 628.2 160.4 120.6 

Controls 626.7 163.9 119.7 636.7 165.7 121.9 

Cases NO2_IDW11 

(µg/m3) 

33.7 9.7 6.8 33.4 9.4 6.8 

Controls 33.3 10.0 7.0 33.7 10.1 7.0 

Cases NO_IDW 
 (µg/m3) 

23.0 15.6 10.9 22.5 15.1 11.0 

Controls 22.7 15.4 10.9 23.0 16.0 11.1 

Cases O3_IDW10 
 (µg/m3) 

27.7 8.6 5.8 27.9 8.7 6.0 

Controls 27.9 8.5 5.8 28.3 8.6 5.9 

Cases PM10_IDW 
 (µg/m3) 

12.5 1.3 1.0 12.5 1.4 1.1 

Controls 12.5 1.3 1.0 12.5 1.3 1.1 

Cases SO2_IDW 
 (µg/m3) 

5.7 3.2 2.4 5.5 2.8 2.4 

Controls 5.6 3.1 2.4 5.7 3.3 2.5 

Cases PM2.5_LUR 
 (µg/m3) 

4.09 1.4 1.6 4.1 1.4 1.6 

Controls 4.06 1.5 1.7 4.0 1.5 1.7 

Cases NO2_LUR 
(µg/m3)  

33.6 9.3 8.8 33.2 9.1 8.6 

Controls 33.6 9.0 9.1 33.5 9.5 8.9 

Cases NO_LUR 
 (µg/m3) 

31.3 14.5 13.4 31.4 13.7 13.2 

Controls 31.3 14.6 13.8 31.4 14.2 13.6 

Cases BC_LUR 
 (10-5/m) 

1.6 1.2 1.2 1.6 1.1 1.2 

Controls 1.6 1.1 1.2 1.6 1.1 1.2 

Cases Greenness_
NDVI10 

0.23 0.12 0.09 0.23 0.11 0.09 

Controls 0.23 0.12 0.09 0.24 0.11 0.09 

Air pollutants were positively correlated (except for ozone which was negatively correlated with other air 

pollutants) as reported previously (Clark et al. 2010b) and greenness was only moderately correlated with 

air pollution (r ≤ 0.4). The land use derived pollutants showed differences compared to the IDW derived 

pollutants both for children with incident asthma captured during preschool and school age periods, in 

particular for NO where the interpolation method was significantly lower (23 µg/m3 vs. 31 µg /m3 for 

                                                      

11 Significant paired t-test comparison (p<0.05) 
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IDW and LUR respectively). The assigned exposure estimates were significantly lower among controls 

compared to their matched cases for NO2, Ozone, and greenness.  

4.3.1 Asthma in preschool years 

For children with a diagnosis of asthma established in preschool years, all interpolation-based exposures 

were positively associated with an increased risk in adjusted models, except for ozone. No elevated odds 

ratios were found when using land use regression estimates (Figure 4.1A). Proximity to highway and 

major roads increased the risk of new asthma onset by 25% and 5% respectively (Table 4.4). Greenness at 

birth was protective as asthma risk decreased by 4% for each 0.11 NDVI increase in a 100m buffer 

around the residential home address at birth (Table 4.4). 

Consistent results for preschool children were seen for exposures categorized in quartiles (See Table 4.5 

for exposure levels by quartiles). An increased risk was associated with increasing quartiles of exposure 

for all IDW exposures but ozone (Figure 4.1A), whereas no consistent trends were seen for quartiles of 

exposure from land use regression derived estimates. The associations with ozone were negatively 

correlated with asthma incidence due to the negative correlation of ozone with traffic-related air 

pollutants.  
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Table 4.4: Adjusted
12

 OR (aOR) for new asthma onset relative to an interquartile (IQR) increase in air 

pollutants (carbon monoxide (CO), nitrogen monoxide (NO), nitrogen dioxide (NO2), ozone (O3), sulfur 

dioxide (SO2), particulate matter (PM10, PM2.5)) derived using LUR and IDW, to road proximity, to 

surrounding greenness, and to joint greenness and air pollutants exposures. 

 Preschool  School 

Single Pollutants Unit IQR aOR (95%CI) IQR aOR (95%CI) 

NO_IDW µg/m3 15.5 1.06 (1.01 - 1.11) 15.5 0.93 (0.85 - 1.02) 

NO_LUR µg/m3 14.4 1.00 (0.97 - 1.03) 14.4 1.00 (0.94 - 1.06) 

NO2_IDW µg/m3 9.9 1.09 (1.04 - 1.13) 9.6 0.95 (0.88 - 1.03) 

NO2_LUR µg/m3 9.5 0.99 (0.96 - 1.02) 9.3 0.95 (0.90 - 1.01) 

CO_IDW µg/m3 163.9 1.05 (1.01 - 1.10) 164.6 0.90 (0.83 - 0.98) 

O3_IDW µg/m3 8.5 0.92 (0.87 - 0.97) 8.5 1.18 (1.07 - 1.31) 

PM10_IDW µg/m3 1.3 1.12 (1.05 - 1.19) 1.36 1.09 (0.96 - 1.24) 

PM2.5_LUR µg/m3 1.45 0.99 (0.97 - 1.01) 1.46 1.01 (0.97 - 1.06) 

Black carbon_LUR 10-5/m 1.13 1.01 (0.99 - 1.04) 1.13 0.99 (0.95 - 1.05) 

SO2_IDW µg/m3 3.1 1.05 (1.01 - 1.09) 3.1 0.89 (0.83 - 0.96) 

hwy5013 m  1.25 (1.04 - 1.49)  0.81 (0.55 - 1.19) 

mjr15012 m  1.03 (0.98 - 1.09)  1.04 (0.92 - 1.16) 

h150m5012 m  1.00 (0.94 - 1.08)  1.06 (0.92 - 1.21) 

Greenness_NDVI 0.11 0.96 (0.93 - 0.99) 0.1 0.99 (0.93 - 1.07) 

Joint Models  Preschool School 

NO_IDW µg/m3 15.5 1.05 (1.00 - 1.10) 15.5 0.92 (0.84 - 1.01) 

NO_LUR µg/m3 14.4 0.99 (0.95 - 1.02) 14.4 1.00 (0.93 - 1.07) 

NO2_IDW µg/m3 9.9 1.08 (1.03 - 1.13) 9.6 0.94 (0.87 - 1.03) 

NO2_LUR µg/m3 9.5 0.97 (0.94 - 1.01) 9.3 0.94 (0.88 - 1.00) 

                                                      

12
 Models were adjusted for newborn breastfeeding status at the time of discharge, parity, maternal education 

(in area-level quartiles), household income (in area-level quintiles), gestational length and birth weight. 
13 Road metrics: hwy50: within 50m of highway; mjr150: within 150m of major road;  h150m50: within 150m of 
highway or 50m of major road 
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 Preschool  School 

CO_IDW µg/m3 163.9 1.04 (0.99 - 1.09) 164.6 0.88 (0.8 - 0.96) 

O3_IDW µg/m3 8.5 0.93 (0.88 - 0.98) 8.5 1.22 (1.09 - 1.36) 

PM10_IDW µg/m3 1.3 0.98 (0.96 - 1.01) 1.36 1.09 (0.96 - 1.25) 

PM2.5_LUR µg/m3 1.45 0.98 (0.96 - 1.01) 1.46 1.01 (0.96 - 1.07) 

Black carbon_LUR 10-5/m 1.13 1.01 (0.98 - 1.03) 1.13 0.99 (0.94 - 1.05) 

SO2_IDW µg/m3 3.1 1.04 (1.00 - 1.08) 3.10 0.88 (0.81 - 0.95) 

hwy50
*
 m  1.21 (1.01 - 1.45)  0.80 (0.54 - 1.19) 

mjr150
*
 m  1.02 (0.96 - 1.08)  1.04 (0.92 - 1.17) 

h150m50
*
 m  0.99 (0.93 - 1.07)  1.06 (0.92 - 1.22) 

 

For both continuous and categorical exposures (see Table 4.5 for exposure levels by quartile range), all 

adjusted analyses were robust to the inclusion of the risk factors that were considered (breastfeeding, 

parity, maternal age, income quintile, maternal education level quartile, birth weight and gestational 

length) with odds ratio showing similar direction and magnitude of effects to that observed in the crude 

analyses. 

 

Table 4.5: Exposure levels (N, mean) by quartile in the preschool age analysis among cases and controls 

  NO_IDW  NO2_IDW CO_IDW PM10_IDW SO2_IDW 

  

 
Rank 

N mean N mean N mean N mean N mean 

Controls 

0 8177 10.7 7254 23.7 7881 479.2 8439 11.1 7007 3.3 

1 8444 16.6 9278 30.3 8904 570.3 9041 12.2 9291 4.2 

2 9151 24.3 9164 35.4 8932 653.1 8730 12.8 9323 5.4 

3 8845 38.1 8924 42.2 8894 787.3 8410 13.8 8999 9.2 

Cases 

0 1578 10.9 1302 23.8 1529 481.3 1680 11.1 1386 3.3 

1 1702 16.6 1845 30.4 1835 569.9 1717 12.2 1843 4.1 

2 1845 24.3 1913 35.3 1762 652.6 1807 12.8 1831 5.4 

3 1821 38.1 1888 42.2 1821 788.8 1744 13.8 1888 9.1 
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  NO_LUR NO2_LUR Black Carbon PM2.5_LUR   

  Rank N mean N mean N mean N mean 
 

Controls 

0 8157 18.2 7573 24.3 8397 0.7 7028 4.6 
 

1 8689 24.9 8925 29.0 8739 0.9 7728 5.1 
 

2 8910 31.6 9193 33.9 8916 1.4 7628 5.6 
 

3 8865 49.3 8930 45.7 8569 3.5 7547 6.4 
 

Cases 

0 1591 18.3 1424 24.4 1654 0.7 1393 4.6 
 

1 1791 24.9 1810 29.0 1743 0.9 1541 5.1 
 

2 1773 31.6 1873 33.9 1761 1.4 1571 5.6 
 

3 1793 49.1 1841 45.0 1790 3.5 1497 6.5 
 

   

4.3.2 Asthma in school age years 

Children where incident asthma was only evident from age 6 onwards showed no consistent risk of 

developing asthma in relation to air pollutants exposures (Figure 4.1B). Most of the associations seen in 

early years were no longer evident, with the exception of exposure to PM10 that exhibited some 

consistency between the two time periods. The effect of ozone switched from having a protective effect 

during preschool to increasing the risk of developing asthma after 6 years of age (1.18 (1.06 – 1.31). No 

associations were found with regard to greenness exposure.  
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Figure 4.1: Adjusted Odds Ratio of incident asthma in children meeting the case definition in the (A) 

preschool and (B) school groups relative to exposure quartiles of  air pollutants (carbon monoxide (CO), 

nitrogen monoxide (NO), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), particulate matter (PM10, 

PM2.5))  derived by interpolation (IDW) and by land use regression (LUR) ; and  relative to measured 

greenness (NDVI). 

 

4.3.3 Joint models  

Given the moderately low correlation between air pollutants and surrounding greenness, joint exposure 

models of air pollutants with the greenness index were examined. Controlling for surrounding greenness 

only impacted the effect of PM10 on asthma risk in preschool children. The association between PM10 and 

asthma incidence disappeared from 1.12 (1.05 - 1.19) to 0.98 (0.96 - 1.01). For all other air pollutants and 

road proximity metrics, the direction and magnitude of effects on new onset asthma in young children as 

well as later in life did not change. On the other hand, the protective effect of surrounding greenness on 

asthma risk was increased after adjustment for air pollutants (Table 4.6).  
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Table 4.6: Effects of surrounding greenness on incident asthma risk, adjusted for air pollutants in preschool 

and school children. 

 Preschool 
14

 

OR  (95% CI) 

School  

OR  (95% CI) 

Greenness only  0.96 (0.93 - 0.99) 0.99 (0.93 – 1.07) 

+ NO_IDW 0.83 (0.60 - 1.16) 0.77 (0.40 - 1.51) 

+ NO_LUR 0.69 (0.49 - 0.97) 0.96 (0.48 - 1.91) 

+ NO2_IDW 0.93 (0.67 - 1.3) 0.81 (0.41 - 1.59) 

+ NO2_LUR 0.66 (0.47 - 0.92) 0.75 (0.38 - 1.48) 

+ CO_IDW 0.82 (0.59 - 1.14) 0.68 (0.35 - 1.33) 

+ O3_IDW 0.88 (0.63 - 1.23) 0.61 (0.31 - 1.19) 

+ PM10_IDW 0.80 (0.59 - 1.1) 1.05 (0.56 - 1.97) 

+ PM2.5_LUR 0.68 (0.49 - 0.94) 1.04 (0.54 - 2) 

+ Black carbon_LUR 0.76 (0.55 - 1.05) 0.95 (0.5 - 1.8) 

+ SO2_IDW 0.83 (0.59 - 1.15) 0.65 (0.33 - 1.27) 

+ h150m50 0.70 (0.5 - 0.97) 1.08 (0.55 - 2.09) 

+ hwy150 0.71 (0.51 - 0.98) 0.99 (0.51 - 1.91) 

+ mjr150 0.72 (0.52 - 1) 1.07 (0.55 - 2.1) 

 

4.3.4 Sensitivity analyses 

Stratified regression analyses were conducted only for the preschool period since this accounted for 70% 

of all identified cases and stratified models for the school age period did not converge. 

Among children who met the case definition during the preschool period, 535 (6.5% of all incident 

asthma cases) had between 30 and 37 weeks of gestational length and only 83 (1%) had less than 30 

                                                      

14All models are adjusted for the following risk factors: maternal age at delivery, birth weight, gestational length, 
neighborhood-level household income, neighborhood-level maternal education, parity, newborn feeding at discharge 
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weeks, while 442 (6%) were below 2500 g at birth. Gestational length categories were grouped into a 

small gestational age category (<37 weeks) to ensure model convergence.  

Suggestive evidence of effect modification by birth weight but not gestational age was demonstrated in 

stratified analyses(Figure 4.2). All the increased risks observed for children with birth weight less than 

2500 g, for IDW-derived air pollutant exposures were near double that seen in children with birth weight 

more than 2500 g. Furthermore, stratifying by birth weight indicated consistent effects using land use 

regressions exposure estimates. NDVI in low birth weight children showed a consistent protective effect 

with near 50% reduction in the odds of new asthma onset. 

 

Figure 4.2: Effect modification of greenness in 100m buffer and air pollution estimates derived using inverse 

distance weighting (IDW) and/or land use regression (LUR)models on new asthma onset among preschool age 

children by (A) gestational length (<37 weeks) and (B) birth weight (<2500g). All models are adjusted for 

maternal age at delivery, neighborhood-level household income, neighborhood-level maternal education, 

parity, and breastfeeding. 
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Stratified regressions by sex revealed that girls were consistently at increased odds of new asthma 

compared with boys for the same air pollutants identified in the main analysis and that they were more 

protected from the odds of new asthma onset with respect to the surrounding greenness compared to boys 

for whom the protective effect disappeared (Figure 4.4). Stratification by parity showed similar but less 

pronounced results: all exposures that had an effect on odds of asthma in the main analysis, except PM10, 

showed a heightened impact for children without siblings compared to those with siblings. 

 

Figure 4.3: Risk of asthma incidence in the preschool group (n=6948), stratified by (A) sex and by (B) parity 

in relation to exposure to inverse distance weighting (IDW)- and land use regression (LUR)-derived air 

pollutants and surrounding greenness (NDVI) in 100m buffer. All models are adjusted for birth weight, 

gestation period, maternal age at delivery, neighborhood-level household income, neighborhood-level 

maternal education, parity, and breastfeeding 

 

Lower socio-economic status (based on neighborhood income and education measures) children 

demonstrated high odds of asthma associated with interpolated air pollutants exposures (Figure 4.5). 

Stratification by maternal age at birth showed less consistent results: relative to interpolated air pollutants, 

both the oldest and youngest mothers were likely to have children at higher odds of new asthma 

development, while LUR estimates showed some trend with age 
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Figure 4.4: Stratified asthma risk analysis by three indicators of Socio-economic status (A: Household 

Income; B: Maternal Education status; C: Maternal age at birth) in relation to air pollutants and 

surrounding greenness in preschool age children 

. 
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4.4 Discussion 

 

With 65,254 children followed up for 10 years, in one of the largest birth cohort studies to 

examine within-community air pollution contrasts, we found 25% increased odds of asthma for 

children living near highways and 5% to 10% increase for an interquartile increase in NOx and 

CO, pointing to traffic pollutant exposure in the etiology of asthma. Similar to an earlier analysis 

of a subset of this cohort (Clark et al. 2010b), we also found positive associations with PM10 and 

SO2 exposure (Clark et al. 2010b). The school age analysis revealed that exposures to air 

pollution generally did not affect asthma onset when the child was older than 6 years. 

Surrounding greenness elicited a robust protective effect in the preschool age analysis. This 

finding may follow a hypothesis that biodiversity loss( Rook 2013) and subsequent reduction in 

exposure to microbial diversity, reflected of less interaction with natural spaces, leads to immune 

dysfunction, inflammation and asthma (Haahtela et al. 2013). Greenness was not protective for 

asthma onset during school age years. This could be related to the mediating effect of physical 

activity. While this pathway is not likely to pertain to children between birth and age 5, it may 

come to play during school age years (Dadvand et al. 2014). Data on time activity patterns were 

not available, preventing exploration of such mechanisms. 

Correlations between air pollution and greenness levels were moderate, allowing the 

investigation of joint effects models on asthma incidence. During preschool years, the air 

pollution effects were largely unchanged after adjustment for greenness, whereas the protective 
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effect of greenness was strengthened after adjustment for air pollutants. This finding provides 

further support to the biodiversity hypothesis in that tolerance mechanisms are less impaired 

when interaction between human and environmental microbiotas are enhanced (Haahtela et al. 

2013).  

The increased risk of asthma incidence in early years was only evident with exposures estimated 

by interpolation methods (IDW). Although effect estimates based on exposures estimated by 

LUR models had smaller confidence intervals than those based on IDW, they showed no 

increased risk. There are several possible explanations for this discrepancy. First, these metrics 

capture different spatial scales (Marshall et al., 2008).  IDW may better represent secondary 

pollutants such as NO2 that display less spatial heterogeneity compared with primary pollutants 

(e.g. black carbon). Second, it is possible that LUR models, developed using 2003 

measurements, may result in an over-smoothed surface for this cohort as exposure estimates 

were extrapolated backwards during a period time where concentration levels were decreasing 

Finally,  these differences between monitor-based and LUR model exposure estimates suggest 

some independence of risks between regional and local traffic-related air pollution (Brauer et al, 

2008), however the positive associations observed with roadway proximity metrics would 

suggest otherwise.. 

The most recent birth cohort studies with similar follow-up periods show mixed results with regard to the 

role of air pollution. They include the Swedish cohort (BAMSE) where positive associations between air 

pollution and asthma after follow up until age 12 years were found (Gruzieva et al. 2013), whereas the 

British birth cohort found no association between NO2 nor PM10 and asthma in children who were 
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followed up until age 11 years (Mölter et al. 2014a). The number of identified asthma cases in BAMSE at 

increasing ages did not follow the decreasing pattern found in our study.    

The Dutch Prevention and Incidence of Asthma and Mite Allergy (PIAMA) cohort study offers an 

interesting comparison (Gehring et al. 2010a). As in our study, positive associations between NO2 and 

asthma at age 2 and 4 (Brauer et al. 2007a; Gehring et al. 2002) were reported and most incident cases 

were apparent earlier in the children’s life. However, unlike our study,   the increased risk of incident 

asthma in relation to NO2 and PM2.5 exposure was still evident for incident asthma at older ages (up to age 

8) in the Dutch study, possibly due to higher air pollution levels (Gehring et al. 2010a). In this 

investigation, the difference observed in the positive association between air pollution and development 

of asthma between birth up until age 6 and the absence of association later in life is likely to reflect that 

childhood asthma develops in early years rather than later in childhood. Additional analyses where the 

association was examined every year from birth to end of follow up confirmed that administrative records 

capture asthma incidence in the first 3 to 4 years of life leaving a very small pool of participants eligible 

for incidence analysis and thereby leading to a lack of power to detect any association between early life 

exposure and late childhood asthma development (data not shown).  

Our asthma case definition, although verified in other population-based administrative data analyses 

(Kozyrskyj et al. 2004; To et al. 2006), relied on billing records for health care encounters and may have 

captured wheezing illnesses that have varying trajectories over time (Stein and Martinez 2004). Transient 

wheezing is common in infants and often resolves in childhood (Martinez et al. 1995a) as shown in a 

population-based Canadian study, where half the children diagnosed with asthma before age 6 went into 

remission by age 12 (To T et al. 2007). It is possible that the preschool analysis has included children 

whose symptoms may resolve later, weakening the ability to detect associations during school years. 

Future studies of asthma trajectories using linked health databases can help elucidate this question. 
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Administrative data are collected for non-research purposes and lack individual level information on 

important confounders (e.g., SES measure) and therefore may be subject to residual confounding. 

However, such linked health records provide unprecedented opportunities to investigate multiple risk 

factors in a large population. Preschool children weighing less than 2500g at birth were consistently, 

across all metrics, at increased risk for new asthma onset in relation to air pollution exposure, supporting 

the idea of greater susceptibility among low birth weight subpopulations (Strickland et al. 2014). 

However, the protective effect of surrounding greenness among this subgroup was 10-fold higher 

compared to children weighing more than 2500g at birth, raising the prospect of preventative public 

health interventions during pregnancy. Similar to the Children’s Health Study results (Salam et al. 2004), 

being born to a nulliparous mother decreased the risk of asthma incidence.  This observation may reflect 

the importance of the in utero environment, given evidence of reduced cord blood mononuclear cells 

proliferative responses with increasing parity (Devereux et al. 2002). We also confirmed previously 

observed effect modification of SES with air pollution's effects on childhood respiratory morbidity 

(Gehring et al. 2006). Further, older mothers were are at higher risk of  giving birth to children who were 

impacted by air pollution exposure, a relevant finding as British Columbia has the highest proportion of 

mothers giving birth over the age of 35 years in Canada (Canadian Institute for Health Information (CIHI) 

2011).  

In conclusion, air pollution was associated with incident cases of asthma in preschool children, but was 

not consistently related to initial asthma onset in school age children. For incident asthma during 

preschool years, surrounding greenness offered some protective effect independent from the observed 

associations with air pollution. 
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Chapter 5: Pediatric asthma patterns and effects of environmental factors. 

 

5.1 Introduction 

Childhood asthma is a heterogeneous disease that encompasses a wide spectrum of presentations based on 

clinical characteristics or symptoms such as wheezing, especially in early childhood (Savenije et al. 

2011). In order to conduct informative population-based studies, it is crucial to extend the current asthma 

cohort research beyond capturing incidence of a condition whose specific diagnosis remains elusive, to 

incorporate more detailed characterization of the different presentations of this disease.  

The Tucson Children’s Respiratory Study (TCRS) was among the first studies to identify phenotypic 

groups for asthma based on clinical observations of wheezing (Martinez et al. 1995b): (1) non-wheezers, 

(2) transient wheezers (at least one wheezing symptom before age 3, no wheezing by age 6), (3) late onset 

wheezers (no wheeze until age 3, but wheezing by age 6) and, (4) persistent wheeze (wheezed in the first 

3 years of life, and persistent wheezing at age 6). Subsequent studies have used latent class analysis to 

classify phenotypes of wheezing, complementing the initial categorization offered by the TCRS and 

contributing to clinical diagnosis of asthma (Henderson et al. 2008; Savenije et al. 2011; Spycher et al. 

2008). The use of data-driven techniques - including but not limited to latent class modeling- to explore 

whether clusters exist within a population has been limited to a few studies of generally small sample size 

(Savenije et al. 2011) with the notable exception of one nationally representative birth cohort study of 

11,652 British children (Panico et al. 2014), which relied on parental report of wheeze and atopic 

symptom (eczema and hayfever) episodes to classify four distinct trajectories. Since the use of self-

reported conditions or symptoms is fraught with threats of bias, and given the logistical and financial 

burden of direct testing of children in large population-based studies, the use of administrative health 

records offers a unique opportunity to identify asthma trajectories, and to distinguish chronic and transient 
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conditions, thus capturing more specificity in relation to asthma phenotypes. Furthermore, with enhanced 

classification of asthma trajectories, we sought to conduct a novel evaluation of the role of environmental 

exposures on the different asthma groupings. 

In a population-based birth cohort study (the Border Air Quality Study (BAQS)) of over 65,000 children 

residing in Metropolitan Vancouver, British Columbia (BC), associations between air pollutants and 

asthma incidence were reported in children between birth and age 5, as well as an independent protective 

effect of surrounding residential green spaces, but not in the small proportion of cases whose disease 

developed between ages 6 and 10 (Chapter 4). It is plausible that the two age groupings that were 

examined represent different phenotypes, as identified in the TCRS groupings, with different risk. To 

further understand the role of air pollution and surrounding green spaces in childhood asthma etiology, 

the current study will examine annual asthma prevalence rates in the BAQS cohort to identify whether 

children follow different asthma trajectories that could not be captured in the prior analysis, and to 

understand how air pollution and greenness may affect the likelihood of belonging to the identified 

trajectories.  

Group-based trajectory modeling is a specialized form of finite mixture modeling. The method is 

designed to identify groups of individuals following similarly developmental trajectories (Nagin 2005; 

Nagin and Odgers 2010). Unlike, hierarchical and latent class modeling, group-based trajectory modeling 

does not require parameters to be continuously distributed throughout the population according to the 

multivariate normal distribution. This approach assumes that there may be clusters of distinct 

developmental trajectories that may reflect unique etiologies. This offers the ability to model distinct 

subgroups of the population, allowing for the classification of children who belong to distinct trajectories 

with group-specific time-related parameters and facilitating the exploration of common risk factors and 

environmental exposures that may be associated with each asthma trajectory. 
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5.2 Methods 

5.2.1 Cohort description 

Linked administrative data, accessible via the pan-provincial data services platform of Population Data 

BC (https:/www.popdata.bc.ca) were used to establish a birth cohort that comprised all single births from 

1999 to 2002 to mothers with verified residential history in the metropolitan area of Vancouver, British 

Columbia, Canada  throughout their pregnancy (Brauer et al. 2008). This cohort included all residents 

with a primary address in BC as registration with the universal health insurance program is mandatory for 

those residing in the province for at least 3 months. Children born to these identified mothers were 

followed for 10 years (1999-2009) or until lost to follow-up, whichever occurred first. Loss to follow up 

occurred if they moved outside of study region, or when a gap in health registry exceeded 183 days. From 

the 73, 387 births to mothers with complete information on residential history during pregnancy, 988 

multiple births were excluded, 101 children died during study follow up, and 4103 had missing covariate 

information leaving 68,195 singletons available for analysis. 

Population Data BC provides access to the Ministry of Health medical services  and hospitalization data  

(British Columbia Ministry of Health 2009b) which inform the asthma definition, as well as vital statistics 

birth and deaths data (British Columbia (BC) Vital Statistics Agency 2009a, 2009b) which include birth 

date, sex, and First Nations status, obtained from the British Columbia Vital Statistics Agency. Population 

Data BC also links the preceding data with data from the BC Perinatal Data Registry (Perinatal Services 

BC 2009) which provides information on intention to breastfeed, maternal age, parity and maternal 

smoking during pregnancy. Since no individual-level data were available for socio-economic factors, 

census data on income and maternal level of education were assigned to children based on their 

neighbourhood of residence at birth at the Census Dissemination Areas (DA) level (Statistics Canada 

2001), a unit representing a target population of 400 to 700 persons. The study protocol was approved by 

the Institutional Review Board of The University of British Columbia (#H04-80161).  
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5.2.2 Asthma case definition 

Asthma diagnoses were identified from physician billing and hospital discharge records (International 

Classification of Diseases [ICD]-9th revision: 493; ICD-10: J45) for the1999-2009 period. Using a 

validated case definition of asthma (Prosser et al. 2008), children with a minimum of two primary care 

physician diagnoses in a rolling 12-month period or a minimum of one hospital admission were identified 

as asthma cases each year from birth until end of follow up, providing an annual asthma prevalence.  

5.2.3 Exposure assessment  

Residential air pollution exposure during pregnancy was assessed using high resolution land use 

regression (LUR) air pollution models developed for the Vancouver metropolitan area for nitrogen 

dioxide (NO2), fine particulate matter (PM2.5), and black carbon (BC). The creation and evaluation of the 

models has been described previously (Brauer et al. 2008; Henderson et al. 2007; Larson et al. 2009) as 

has their application to the epidemiologic analysis of childhood respiratory disease (Clark et al. 2010b; 

Karr et al. 2009; MacIntyre et al. 2011, and Chapter 4) 

Measurements of NO2, NO, BC, PM2.5, PM10, carbon monoxide (CO) and sulfur dioxide (SO2) collected 

from regulatory air quality monitoring network stations were used to compute inverse-distance weighted 

(IDW) averages of the three closest monitors within 50 km. This provided daily estimates assigned to 

participants residential postal codes, then aggregated over the pregnancy period (Marshall et al. 2008b). A 

6-digit residential postal code, in urban setting, refers to an urban  block face with a target population of 

400 to 700 people.  

The Normalized Difference Vegetation Index (NDVI) provided a continuous measure of greenness from -

1 to 1 across the study region. Using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) cloud free 

images downloaded from 1999 to 2002, NDVI derived from land surface reflectance of visible (red: 0.4 – 
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0.7µm) and near-infrared (0.7 – 1.1 µm) parts of spectrum (Weier and Herring 2000), was calculated for 

100m buffers around residential postal codes during pregnancy (Hystad et al. 2014).  

5.2.4 Analytical methods  

The group-based approach utilizes a multinomial modeling strategy. Maximum likelihood is used for the 

estimation of the model parameters. The fundamental concept of interest is the distribution of asthma 

outcomes conditional on age (continuous) over time; that is, the distribution of outcome trajectories 

denoted by  where the random vector Yi represents individual i’s longitudinal sequence of 

outcomes (asthma diagnosis) and the vector Agei represents individual i’s age when each of those 

measurements is recorded. The group-based trajectory model assumes that the population distribution of 

trajectories arises from a finite mixture of unknown order J. The likelihood for each individual i, 

conditional on the number of groups J, may be written as 

 

 where πj is the probability of membership in group j, and the conditional distribution of Yi given 

membership in j is indexed by the unknown parameter vector βj that determines the shape of the group-

specific trajectory. For a given j, conditional independence is assumed for the sequential realizations of 

the elements of Yi , yit, over the T periods of measurement, written as 

  

where p(.) is the distribution of yit conditional on membership in group j and the age of individual  i at 

time t.  

The binary logit distribution was used to to specify p(.) for the analysis of longitudinal data on a 

dichotomous outcome variable, here whether or not the subjects meets the asthma definition at age t.  
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In order to choose the appropriate number of groups, the model was repeatedly fit with a step-wise 

increase in the number of groups, starting with two groups fixing the order (i.e. shape) to quadratic for 

each group, since we assumed that there would be at least one non-asthmatic and one asthmatics group. 

As there is no single statistical test to determine the correct number of trajectory groups (Nagin 2005),  

model fit was assessed using Bayesian Information Criteria (BIC) and log likelihood. A number of 

models with different orders in an interactive two-step process were tested: (1) selection of the number of 

trajectory groups, and (2) selection of the shape (also designated as order) for each trajectory group, using 

both statistical and subjective knowledge on asthma natural history. 

Following model selection, risk factors for the probability of membership in the asthma trajectory groups, 

relative to the non-asthma group, were tested using weighted multinomial logistic regression. Weights 

were calculated as products of trajectory group posterior probabilities. Combining trajectory groups with 

weighted regression methods can provide risk profiles for individuals most likely to follow certain 

trajectories over time. To build an overall prediction model, risk factors were selected in separate models 

using block testing. Block 1 included clinically important factors and known risk factors: sex, parity, First 

Nations status, birth weight, gestational age at birth, intention to breastfeed, household income, maternal 

education and smoking. Block 2 considered each of the environmental exposures separately (i.e. 

unadjusted exposure models). The final model consisted of the selected covariates from Block 1 and only 

significant environmental exposures from Block 2. 

5.3 Results 

5.3.1 Cohort and asthma trajectories description 

As the cohort inception included children born between 1999 and 2002, their contribution to years of 

follow up was examined. Participants were registered for nearly all of the study follow-up, with an 

average of 8.2 years (Table 5.1).  
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Descriptive statistics of the overall cohort (n=68195) with complete covariate and exposure assessment 

data (n= 65254) are summarized and stratified by trajectory group membership in Table 5.2. A total of 

10,275 children (15 % of the sample) met the case definition during the course of the follow-up period. 

The prevalence of asthma cases rose monotonically until children reached age 5 up to 19.8%, at which 

point it steadily decreased until the end of the 10-year follow down to 5.2%. 

Table 5.1: Summary statistics of number of elapsed years of data coverage by birth year 

Cohort Birth year N Mean Min  Max 

16979 9.58 0.00 10.00  Born in 1999 

 Born in 2000 17801 8.63 0.00 9.00 

 Born in 2001 17981 7.70 0.00 8.00 

 Born in 2002 15434 6.73 0.00 7.00 

 

The majority of the cohort’s subjects were born after 37 weeks of pregnancy from non-smoking mothers 

(mean age at birth 31 years) who had initiated breastfeeding at time of discharge. Over half of participants 

(54.2%) were born to mothers with a previous live birth (Table 5.2). Birth weight at delivery was 

available as a continuous variable (mean = 3410g) but dichotomized as term birth weight less than 2500g 

for analysis, previously identified as an important modifier of the association between air pollution and 

asthma development (Sbihi et al, 2015 submitted). Similarly, gestational age at birth (mean: 39.1 weeks) 

was defined as binary variable using 37 weeks cut-off. 
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Table 5.2: Risk factor distribution (frequency counts for categorical variables; mean and standard deviation 

(sd)) by asthma trajectory groups among 68195 children. 

 Risk factors N 

(%) 

Non-

asthmatics 

(n=63166) 

Transient 

asthma cases 

(n=2282) 

Late infancy 

onset chronic 

asthmatics  

(n=1828) 

Early infancy 

onset chronic 

asthmatics    

(n=919) 

Maternal Non-

smoker  
63597 

(93.3%) 
58843 

(93.2%) 
2139 

(93.7%) 
1739 

(95.1%) 
876 

(95.3%) 

Native status  

 
431 

(0.63%) 
402 

(0.6%) 
15 

(0.7%) 
8 

(0.4%) 
6 

(0.7%) 

Female 
 

33052 
(48.5%) 

31265 
(49.5%) 

779 
(34.1%) 

698 
(38.2%) 

310 
(33.7%) 

Nulliparous  

 
31309 

(45.9%) 
28919 

(45.8%) 
946 

(41.5%) 
994 

(54.4%) 
450 

(49%) 

High SES  
 

38335 
(56.2%) 

35778 
(56.6) 

1193 
(52.3) 

915 
(50.1) 

449 
(48.9) 

High maternal 

education  
37591 

(55.1%) 
35121 

(55.6%) 
1127 

(49.4%) 
903 

(49.4%) 
440 

(47.9%) 

Newborn feeding 

at discharge  
63015 

(92.4%) 
58443 

(92.5%) 
2055 

(90.1%) 
1691 

(92.5%) 
826 

(89.9%) 

Birth weight 

≥2500g  
65696 

(96.3%) 
60947 

(92.5%) 
2160 

(90.1%) 
1742 

(92.5%) 
847 

(89.9%) 

Gestation ≥37 

weeks  
64555 

(94.3%) 
59901 

(96.5%) 
2106 

(94.7%) 
1712 

(95.3%) 
836 

(92.2%) 

Maternal age at 

birth (mean (sd)) 
68195 31.3  

(5.11) 
31.2 

(5.09) 
31.0 

(5.21) 
31.1  

(5.02) 

 

 

The model with four different groups and cubic order was chosen as the best fit as it had the lowest BIC 

value. The four trajectory asthma groups that emerged from the group-based modelling (Figure 5.1) can 

be summarized as follow: 

- Non-asthma trajectory (NA):  88.8% of the study population has a quasi-null probability of 

meeting the case definition throughout the study follow up time. 
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- Late-Infancy Chronic Asthmatics (LI CA) trajectory: 4.1% of the study population have a non-

remitting diagnosis throughout the 10 year follow up; in this group children start developing 

asthma around age 2, with a peak prevalence of asthma when they are 6 years old and maintain 

their asthmatic status up until end of follow up. This trajectory is akin to growing in to asthma 

phenotype.  

- Early Infancy Chronic asthmatics (EI CA) trajectory: 1.5% of the population have a similar 

trajectory to that of the LICA trajectory as children maintain their asthmatic status until the end of 

follow up but after having met the asthma case definition in early infancy (before age 2) with a 

peak in prevalence around age 4. This trajectory is akin to continuing to have asthma symptoms. 

- Transient asthma trajectory:  5.6% of the study participants follow a transient pattern (i.e. grow 

out of asthma) where the asthma case definition is met in infancy with peak prevalence around 

age 2. No asthma activity is seen after children turn 6 years of age. 
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Figure 5.1: Group memberships and confidence intervals for the posterior distributions of probability of 

asthma at each time point between birth and age 10 for each of the trajectories in BAQS cohort. Trajectory 1 

(in red) represents the late infancy onset chronic asthmatics (LI CA), trajectory 2 (in green) represents the 

non-asthmatics, trajectory 3 (in blue) represents the transient group, and trajectory 4 (in black) represents 

the early infancy onset chronic asthmatics (EI CA).  

 

 

While only 919 children developed chronic asthma in early infancy, their trajectory was significantly 

different from that of the late infancy onset chronic asthmatics as indicated by the distinct confidence 

intervals around the predicted posterior probabilities (Table 5.3). Among children who met the case 

definition of asthma, transient asthmatics (n=2282) with resolved symptoms by the end of follow up 

represented the same proportion of the study population as those who were chronic asthmatics regardless 

of the period of asthma onset (5.6%).  
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Table 5.3: Posterior probability for each trajectory at each year of age (Non-Asthmtics; Transient; LICA: 

Late Infancy Chronic Asthma; EICA: Early Infancy Chronic Asthma) and 95% confidence intervals 

Year  p(Non asthma) p(Transient) p(LICA)  p(EICA)  

0 0.01 [0.01 ; 0.01] 0.23 [0.21 ; 0.25] 0.00 [0 ; 0] 0.15 [0.13 ; 0.18] 

1 0.01 [0.01 ; 0.01] 0.38 [0.36 ; 0.40] 0.00 [0 ; 0] 0.43 [0.39 ; 0.46] 

2 0.01 [0.01 ; 0.01] 0.41 [0.39 ; 0.43] 0.03 [0.02 ; 0.04] 0.65 [0.62 ; 0.68] 

3 0.01 [0.01 ; 0.01] 0.34 [0.31 ; 0.36] 0.14 [0.12 ; 0.16] 0.75 [0.73 ; 0.78] 

4 0.01 [0.01 ; 0.01] 0.22 [0.21 ; 0.24] 0.31 [0.28 ; 0.33] 0.78 [0.76 ; 0.8] 

5 0.01 [0.01 ; 0.01] 0.12 [0.10 ; 0.13] 0.41 [0.39 ; 0.44] 0.76 [0.73 ; 0.78] 

6 0.01 [0 ; 0.01] 0.06 [0.05 ; 0.06] 0.42 [0.4 ; 0.45] 0.69 [0.66 ; 0.71] 

7 0.00 [0 ; 0.01] 0.03 [0.02 ; 0.03] 0.37 [0.35 ; 0.39] 0.58 [0.55 ; 0.61] 

8 0.00 [0 ; 0] 0.02 [0.01 ; 0.02] 0.29 [0.27 ; 0.31] 0.45 [0.42 ; 0.48] 

9 0.00 [0 ; 0] 0.02 [0.01 ; 0.03] 0.22 [0.2 ; 0.24] 0.33 [0.29 ; 0.36] 

10 0.00 [0 ; 0] 0.02 [0.01 ; 0.03] 0.18 [0.15 ; 0.21] 0.24 [0.19 ; 0.29] 

 

All risk factors except for First Nations status were significantly different by group membership. Early 

infancy chronic asthmatic children were less likely to have been breastfed than non-asthmatics (10.1% vs. 

7.5% respectively). Children in the non-asthma group were born to families with significantly higher 

neighborhood SES (household income and maternal educational attainment) compared to all other 

trajectories (Table 5.2). Both chronic asthma trajectories had more children born to nulliparous mother 

(54% and 49% for late and early infancy onset) than the transient cases and non-asthmatics (41 % and 

46%, respectively). Following ANOVA, term birth weight and gestational period (when examined as 

continuous variables) showed significant differences across trajectories. These differences were driven by 

the contrast between non-asthmatics and children belonging to the three trajectories (i.e. Transient, Early 

Infancy Chronic Asthma (EICA), Late Infancy Chronic Asthma (LICA)). The former group has 

significantly larger weight and gestation length at birth. Further, within those meeting the case definition, 

the two chronic asthma group children had significantly smaller weight and gestation length at delivery 

compared to children belonging to the transient asthma group. Mothers of chronic asthmatics were 

significantly younger (mean (in years) (sd): 31.1 (5.1) and 31.0 (5.2) for early and late infancy onset 

respectively) than those of children who did not meet the asthma case definition (31.3 (5.1)). 
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The weighted multinomial regression relative to the risk factors available for analysis (Table 5.4) shows 

that smoking, sex, parity, household income, maternal education (high educational attainment being 

greater than median of neighborhood level), breastfeeding and birth weight had significant effects on the 

odds of membership in all of the three asthma trajectories.  

Table 5.4: Odds Ratio (OR) of adhering to a trajectory group relative to risk factors based on weighted 

multinomial logistic regression
15

 

Effect Category Group
16

 

 

OR  

(vs NA group) 
95% Wald CI p-value 

Maternal smoking Yes vs No T 0.86 0.71; 1.03 0.10 

Maternal smoking Yes vs No LI CA 0.66 0.53; 0.83 0.00 

Maternal smoking Yes vs No EI CA 0.60 0.42; 0.84 0.00 

Sex F vs M T 0.52 0.47; 0.57 <.0001 

Sex F vs M LI CA 0.63 0.57; 0.70 <.0001 

Sex F vs M EI CA 0.50 0.43; 0.58 <.0001 

Parity 1 vs 0 T 1.21 1.10; 1.33 <.0001 

Parity 1 vs 0 LI CA 0.70 0.63; 0.78 <.0001 

Parity 1 vs 0 EI CA 0.89 0.77; 1.04 0.15 

Maternal age 1st vs 3rd tertile T 1.14 1.02; 1.28 0.05 

Maternal age 1st vs 3rd tertile LI CA 1.06 0.93; 1.20 0.11 

Maternal age 1st vs 3rd tertile EI CA 1.15 0.96; 1.37 0.26 

Maternal age 2nd vs 3rd tertile T 1.08 0.96; 1.20 0.91 

Maternal age 2nd vs 3rd tertile LI CA 0.94 0.82; 1.06 0.09 

Maternal age 2nd  vs 3rd tertiles EI CA 1.1 0.92; 1.32 0.71 

SES H vs L T 0.91 0.83; 1.00 0.05 

SES H vs L LI CA 0.82 0.74; 0.91 0.00 

                                                      

15 χ2(30) <0.001, N= 64264 (3931 observations were deleted due to missing values for the explanatory variables)  
16 T: Transient; LICA: Late Infancy Chronic Asthma; EICA: Early Infancy Chronic Asthma 
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Effect Category Group
16

 

 

OR  
(vs NA group) 

95% Wald CI p-value 

SES H vs L EI CA 0.81 0.70; 0.94 0.01 

Education H vs L T 0.81 0.74; 0.89 <.0001 

Education H vs L LI CA 0.81 0.73; 0.90 0.00 

Education  H vs L EI CA 0.77 0.67; 0.91 0.00 

Breastfeeding No  vs Yes T 1.24 1.06; 1.44 0.00 

Breastfeeding No  vs Yes LI CA 0.95 0.78; 1.16 0.64 

Breastfeeding No  vs Yes EI CA 1.28 1.01; 1.63 0.04 

Birth weight ≥2500 vs <2500 g T 0.75 0.59; 0.96 0.02 

Birth weight ≥2500 vs <2500 g LI CA 0.79 0.59; 1.05 0.10 

Birth weight ≥2500 vs <2500 g EI CA 0.49 0.35; 0.68 <.000 

Gestation  ≥37 vs <37 weeks T 0.75 0.61; 0.92 0.01 

Gestation  ≥37 vs <37 weeks LI CA 0.91 0.71; 1.17 0.48 

Gestation  ≥37 vs <37 weeks EI CA 0.84 0.61; 1.16 0.28 

 

 

5.3.2 Impact of environmental factors on asthma trajectories  

Exposure metrics were successfully assigned to nearly all cohort members (Table 5.5) with complete 

covariate information (99.7%) except for IDW-derived ozone and fine particulate matter PM2.5 (95% and 

85.6%, respectively).  

The study area had low levels of air pollution with median NO2 of 33.3 µg/m3, a median inhalable 

particulate matter (PM10) concentration of 12.5 µg/m3, and a relatively high green space coverage (median 

NDVI =0.24). 
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Table 5.5: Exposure levels of greenness, IDW-derived pollutants and LUR-derived PM2.5, by trajectory 

among CHILD study participants 

Exposure Trajectory N Median Mean SD Min Max 

Greenness No Asthma 63017 0.24 0.23 0.09 -0.08 0.59 

Transient 2271 0.23 0.23 0.09 -0.08 0.56 

LI CA 1822 0.24 0.23 0.09 -0.05 0.56 

EI CA 919 0.24 0.23 0.08 -0.04 0.49 

Carbon 

Monoxide 

 

No Asthma 62997 618.2 629.5 121.4 362.8 1062.3 

Transient 2270 610.6 629.4 123.3 381 1021.6 

LI CA 1820 613.3 626.5 117.8 384.8 1024.3 

EI CA 919 609.0 621.2 113.8 395.9 983.2 

Nitrogen 

Monoxide 

(µg/m3
) 

No Asthma 63000 20.8 23.0 11.1 2.8 65.2 

Transient 2271 20.4 23.0 11.3 2.9 63.2 

LI CA 1821 20.3 22.5 10.6 3.6 61.0 

EI CA 919 19.7 22.3 10.6 4.2 54.8 

Nitrogen 

Dioxide 

(µg/m3
) 

No Asthma 63012 33.3 33.5 7.0 15.0 53.7 

Transient 2271 33.3 33.7 7.0 16.9 51.2 

LI CA 1822 33.5 33.7 6.6 17.3 52.4 

EI CA 919 33.1 33.4 6.5 16.9 51.0 

Ozone 

No Asthma 60451 28.0 27.8 5.9 9.8 48.2 

Transient 2162 28.1 27.9 6.1 10.9 45.2 

LI CA 1758 28.3 27.9 6.0 11.4 46.7 

EI CA 879 28.3 27.9 5.8 11.1 43.3 

SO2 

No Asthma 63012 4.7 5.7 2.5 1.9 17.8 

Transient 2271 4.7 5.7 2.5 2.1 16.1 

LI CA 1822 4.7 5.6 2.4 2.2 16.0 

EI CA 919 4.7 5.5 2.3 2.2 13.8 

PM2.5 

No Asthma 54160 5.4 5.5 0.7 3.2 7.6 

Transient 1952 5.4 5.5 0.7 3.8 7.2 

LI CA 1507 5.4 5.5 0.7 3.5 7.2 

EI CA 781 5.4 5.5 0.7 4.2 7.1 



129 
 

Exposure Trajectory N Median Mean SD Min Max 

PM2.5
17

 

No Asthma 63017 4.03 4.07 1.74 0 11.3 

Transient 2271 4.06 4.07 1.58 0 10.5 

LI CA 1822 4.05 4.11 1.59 0 10.5 

EI CA 919 3.97 4.08 1.68 0 10.4 

 

From all the exposures that were considered, only inverse-distance weighted NO2 and LUR-derived PM2.5 

showed a significant impact on membership in one of the three asthma trajectories relative to the 

asymptomatic group; the effect of greenness was only seen for an interquartile increase in exposure. Table 

5.6 presents the multinomial logistic unadjusted and adjusted regressions for the relative risk of being in a 

given trajectory compared to being in non-asthmatic trajectory for air pollution (NO2 and PM2.5) and 

greenness exposures. 

For a one quartile increase in exposure during pregnancy, NO2 significantly increased the risk of being in 

a chronic asthma group relative to non-asthmatics group by 51% and 25% for early and late infancy onset 

respectively (Adjusted Weighted Relative Risk Ratios (RRR) and 95% Confidence Interval (95% CI): 

1.51 (1.22 – 1.89) and 1.25 (1.07 – 1.46) for early and late infancy onset). Relative to the non-asthmatic 

group, the transient asthma group was affected less by NO2 compared to those with chronic asthma 

trajectories (RRR (95% CI): 1.08(0.94 – 1.23)). The NO2 exposure gradient showed a decreasing effect in 

risk (from 51% to 23% for EICA and from 18% to 4% for LICA), yet it remained significantly positive 

for the early infancy chronic asthma group. In utero exposure to fine particulate matter was significant 

across all asthma phenotype trajectories as a one quartile increase in PM2.5 exposure resulted in a 28%, 

21% and 22% increased risk of membership in the early and late-infancy chronic asthma and transient 

                                                      

17 Since the interpolated fine particulate exposure was assigned to only 85% of the study population, we report the 
land-use regression estimates of PM2.5which covers 98% of the participants with complete covariate information and 
show the overall exposure for the two metrics  
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groups compared to the non-asthmatic group, respectively. The effect of PM2.5 was most prominent 

among the transient asthma group as the relative risk remained significantly associated after adjustment 

for other risk factors.  

Residential greenness in a buffer of 100m surrounding the home location was associated with a decreased 

risk of belonging to a chronic asthma group for the highest exposure category only (RRR (95%CI): 0.88 

(0.72 – 1.09) and 0.92(0.80 – 1.07) for early and late infancy chronic asthma, respectively). The 

likelihood for children to follow a transient asthma trajectory relative to non-asthma group was only 

observed for an interquartile increase in greenness exposure. Unlike PM2.5 and NO2 exposures which were 

robust to risk factors adjustment, the effect of greenness was less consistent (Table 5.6).  

 

Table 5.6: Multinomial logistic regressions of unadjusted and adjusted single exposure models:  greenness 

(NDVI),nitrogen dioxide (NO2), and fine particulate matter (PM2.5) models by asthma trajectories in BAQS 

children born between 1999 and 2002. 

   Unadjusted Models  Adjusted Models 

Exposure Category Group
18

 RRR 95% CI RRR 95% CI 

NDVI 

3 vs 0 T 0.88 0.88 1.00 0.91 0.79 1.04 

  LI CA 0.92 0.79 1.07 1.05 0.90 1.23 

  EI CA 0.88 0.72 1.09 0.99 0.80 1.22 

2 vs 0 T 0.98 0.87 1.11 0.99 0.87 1.13 

  LI CA 1.2 1.04 1.38 1.28 1.11 1.48 

  EI CA 1.08 0.89 1.31 1.12 0.92 1.36 

1 vs 0 T 1.0 0.88 1.13 0.98 0.86 1.12 

  LI CA 1.06 0.92 1.23 1.09 0.94 1.26 

  EI CA 0.96 0.78 1.18 0.94 0.77 1.15 

NO2 

3 vs 0 T 1.13 0.98 1.29 1.11 0.96 1.27 

  LI CA 1.11 0.95 1.3 1.04 0.88 1.22 

  EI CA 1.21 0.96 1.51 1.23 0.98 1.55 

2 vs 0 T 1.08 0.94 1.23 1.02 0.89 1.18 

  LI CA 1.39 1.19 1.62 1.31 1.12 1.53 

  EI CA 1.27 1.02 1.59 1.31 1.04 1.64 

                                                      

18
 T: Transient; LICA: Late Infancy Chronic Asthma ; EICA: Early Infancy Chronic Asthma 
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   Unadjusted Models  Adjusted Models 

Exposure Category Group
18

 RRR 95% CI RRR 95% CI 

1 vs 0 T 1.13 0.98 1.29 1.1 0.96 1.26 

  LI CA 1.25 1.07 1.46 1.18 1.01 1.39 

  EI CA 1.51 1.22 1.89 1.51 1.21 1.88 

PM2.5  

3 vs 0 T 1.10 0.96 1.27 1.07 0.93 1.23 

  LI CA 1.03 0.88 1.21 0.95 0.81 1.12 

  EI CA 0.94 0.76 1.16 0.85 0.69 1.06 

2 vs 0 T 1.32 1.15 1.50 1.24 1.09 1.42 

  LI CA 1.36 1.18 1.58 1.24 1.07 1.45 

  EI CA 1.11 0.90 1.37 0.99 0.80 1.22 

1 vs 0 T 1.22 1.06 1.39 1.16 1.01 1.33 

  LI CA 1.21 1.04 1.40 1.13 0.97 1.32 

  EI CA 1.28 1.04 1.56 1.17 0.95 1.43 

 

Except for parity, all covariates had similar direction of effect as that observed in the risk factors 

multinomial logistic regression with the largest magnitude observed among the early infancy chronic 

asthma group. These children were more likely to not have been breastfed, and to be born to a multiparous 

and non-smoking mother. Most notably, the relative risk to develop chronic asthma in early infancy more 

than doubled if the child’s term birth weight was less than 2500g (RRR (95%CI): 2.22 (1.69 – 2.90)). 

5.3.3 Co-exposures models  

Given the low correlation between greenness and air pollutants (Figure 5.2), we examined two co-

exposures models where NDVI was entered with NO2 and PM2.5 respectively as well as NO2 with PM2.5  

to examine the relative contribution of these environmental exposures.  



132 
 

 

Figure 5.2: Scatter plot matrix of air pollutants and greenness exposure by asthma trajectory and exposure 

distributions among children with one of the three asthma trajectories. 
 

As shown in Table 5.7, PM2.5 and NO2 have independent effects on the likelihood to be in a chronic or 

transient asthma trajectory compared to the non-asthmatic trajectory. Since there were suggestions of 

protective effects of greenness in relation to the three trajectories, we also investigated the effect of 

greenness added to air pollutants in stratified analysis by NO2 and PM2.5 tertiles. Exposure to greenness 

was only borderline protective amongst the two chronic asthmatics groups in high levels of air pollution 

(2nd and 3rd tertiles of NO2 levels and 3rd tertile of PM2.5 levels; data not shown).  
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Table 5.7: Co-pollutants multinomial logistic regression of air pollution (IDW-derived NO2 and LUR-derived 

PM2.5), greenness (NDVI), controlling for  significant risk factors on the likelihood of belonging to transient , 

late infancy chronic asthma (LICA), or early infancy chronic asthma (EICA) in BAQS children. 

Trajectory Exposure  Category OR 95% CI 

EI CA 

NO2 

1 vs 0 1.42 1.1 1.8 

2 vs 0 1.20 1.0 1.5 

3 vs 0 1.17 0.9 1.5 

PM2.5 

1 vs 0 1.14 0.9 1.4 

2 vs 0 0.98 0.8 1.2 

3 vs 0 0.86 0.7 1.1 

LI CA 

NO2 

1 vs 0 1.18 1.0 1.4 

2 vs 0 1.29 1.1 1.5 

3 vs 0 1.00 0.8 1.2 

PM2.5 

1 vs 0 1.12 1.0 1.3 

2 vs 0 1.27 1.1 1.5 

3 vs 0 0.97 0.8 1.1 

Transient 

NO2 

1 vs 0 1.10 1.0 1.3 

2 vs 0 1.04 0.9 1.2 

3 vs 0 1.10 1.0 1.3 

PM2.5 

1 vs 0 1.15 1.0 1.3 

2 vs 0 1.22 1.1 1.4 

3 vs 0 1.05 0.9 1.2 

 

5.4 Discussion 

In this work, we report yearly prevalence of asthma in a population-based birth cohort study of 68,195 

children followed from birth to age 10 in the Greater Vancouver metropolitan region. Three distinct 

trajectories of asthma were identified using Group Based modelling. Our model not only distinguished 

transient from chronic asthmatic children but also allowed for the differentiation within chronic asthmatic 

children of those who develop asthma in early infancy (EI CA) from those who develop asthma after age 

3 years. While most of the previous literature has distinguished between transient and chronic phenotypes 
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of asthma such as wheezing measured via participants’ self-report, the present study offers new and 

objective insight into the development of asthma in early infancy and provides support, in a large 

population-based dataset,  to a similar classification (early versus late infancy asthma onset) reported in 

an American birth cohort of 689 children (Chen et al. 2012).  

This work was motivated by an earlier investigation in the same population where associations between 

air pollution prenatal exposures and asthma incidence were found in preschool children (i.e. between birth 

and 6 years), but not for school age children (between age 6 until end of follow up) (Sbihi et al. 

submitted). One explanation for these previous findings was that most incident cases were captured in 

early years, leaving a small number of incident cases during the school age period. With the approach 

adopted here, we quantitatively confirmed this pattern. In particular, among the 2282 transient asthma 

cases identified in this analysis, only 2% of this group met the case definition after 6 years of age. Given 

the course of asthma development in the late onset asthmatic children (peak between 4-5 years of age and 

decline after age 6), the inability to detect associations between air pollution and asthma incidence during 

school age can be more confidently related to trajectories indicating that development of asthma occurs 

either in the first three years of age or resolves during school age years  

Longitudinal studies have provided evidence for three wheeze phenotypes in childhood (Stein and 

Martinez 2004): (1) transient wheeze that is associated with lower respiratory tract illnesses in early life 

that may resolve by 6 years of age; (2) non-atopic wheezing occurring in the first 3 years of life that is 

associated with lower respiratory tract illnesses, which may persist beyond 6 years into chronic asthma, 

and is not associated with atopy; and (3) atopic wheezing that starts before 6 years, may persist into 

adulthood, is strongly associated with atopy, and has a more severe clinical course. We note a striking 

parallel with the three asthma trajectories unveiled in our objective analysis of administrative health data: 

the transient group mirrors the transient wheeze phenotype, indicating that there is a significant 

proportion of children identified through administrative health databases as asthma cases when they are 
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most likely transient wheezing children. The two chronic asthma trajectories also reflect similarities with 

the non-atopic and atopic wheezing groups. In the absence of doctor’s diagnosis, and without more 

detailed clinical evaluation or medication utilization as has been used in other cohort studies of the 

developmental trajectory of childhood asthma(Wu et al. 2012), we can only speculate that early infancy 

chronic asthma would capture non-atopic asthma while the late infancy chronic asthma would capture the 

atopic asthma subgroup.  

Our study, which encompasses over 65,000 children followed over 10 years, is to the best of our 

knowledge, the first large population-based study to explore both the trajectories of asthma based on 

administrative health records and the impact of environmental predictors on different trajectories of 

childhood asthma. The data-driven approach of Group-Based Trajectory Modeling (GBTM) indicates that 

nearly all asthma-like phenotypes can be captured in early infancy. In addition, transient, early and late 

infancy onset of chronic asthma trajectories closely match those found in studies of asthma and wheezing 

using similar approaches of clustering individuals into distinct class such as latent class analysis (Chen et 

al. 2012; Granell et al. 2012). We note however that one study reported seven patterns for a similar follow 

up period by defining two-year asthma period prevalence(Wu et al. 2012), although the ad-hoc definition 

of period prevalence length which is neither data-driven nor supported by timing of biological 

mechanisms may be open to criticism.  

Another particular strength and novel aspect of this study is in the methodology adopted following 

trajectory modeling. We have extended previous efforts to advance asthma cohort research through 

identification of classes of asthma based on individual patterns over time by quantifying the effect of air 

pollution, greenness and other risk factors on the probability of belonging to the identified classes. 

Despite its strengths, GBTM is not immune to the same model inference pitfalls (estimates error, validity) 

as generalized linear models in the context of an observational study (i.e. non randomized data). In order 

to reduce the possibilities for bias, we used posterior probability as weights in the regression analyses 
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when comparing the “non-disease” to the diseased (Nagin and Odgers 2010). Combining trajectory 

groups with weighted regression methods provided risk profiles where elevated exposures to NO2 and 

PM2.5, two markers of traffic-related air pollution, were shown to independently increase the probability 

of adhering to a chronic pattern of disease, especially for infants (EICA group). Another important gap 

that was informed relates to the modest propensity of early life green spaces exposure to mitigate the 

increased risk for infants to grow into a chronic asthma trajectory following high levels of exposure to 

traffic-related air pollutants such as NO2. Despite the fact that children may grow out of their asthma-like 

symptoms, this work identified that greenness may provide some preventive measure given the decreased 

relative risks that were found.  

Recent advances in group based trajectory modeling include the ability to follow the developmental 

course of two distinct but related outcomes. Future studies can benefit from such a dual trajectory model 

as it provides a rich statistical summary of the developmental linkages between the two outcomes of 

interest such as asthma and other comorbidities that evolve contemporaneously (e.g. bronchiolitis and 

asthma) or that evolve over different time periods that may or may not overlap (e.g., asthma during 

childhood and school achievement in school age year or during adolescence). 

In conclusion, trajectory modeling of physician’s diagnosed asthma during a 10 year since birth identified 

three distinct groups with direct assessment of disease status, that closely resemble asthma phenotypes 

identified in previous studies. This investigation indicated that an equal proportion of children diagnosed 

at least once during follow-up will not remit and develop chronic asthma; this condition (i.e. chronic 

asthma, whether onset is in early or late infancy) which is affected by both intrinsic and behavioral risk 

factors is significantly associated with early life traffic-related air pollution, especially among the group 

who develop chronic asthma in early infancy.  
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Chapter 6: Discussion and conclusions 

 

The work presented in this thesis addresses methodological questions for researchers investigating the 

relationship between early life environmental exposures and the development of asthma and allergies in 

childhood. These questions are mostly centered on exposure assessment challenges. I investigated a novel 

measurement option and modeling methods where I adopted pragmatic approaches for exposure 

assessment in the context of individual-level temporally varying exposure estimates in large cohort 

populations. The contribution of other neighborhood exposures that may co-vary with air pollution was 

also examined by the inclusion of surrounding green spaces, and its impact on asthma was quantified. The 

different contributions summarized here inform questions such as: “What should we measure in air 

pollution health studies to maximize the precision of exposure estimates?,” “How can information 

gathered in the context of observational birth cohort studies help the estimation of personal exposures?,” 

and “What other co-varying environmental exposures may mitigate the adverse effects of air pollution on 

pediatric respiratory health?”.  

A subsequent body of work in this dissertation focused on the complexity of the asthma syndrome that 

potentially covers multiple discrete entities of the disease. This work concluded by demonstrating the 

need to advance epidemiologic cohort studies on pediatric asthma and allergies by the examination of 

incidence of these heterogeneous chronic conditions to the investigation of their patterns and the role of 

risk factors over time.  
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6.1 Summary and contributions 

6.1.1 Key findings 

The overall main conclusions of this dissertation are: 

(1) Early lifel exposure to traffic-related air pollution increases the risk of childhood asthma and 

atopy in the first years of life. The finding for atopy is novel in its analysis of atopy 

development in early infancy. The finding for asthma development is in line with a recent 

pooled analysis of several European and Canadian birth cohorts, the Traffic, Asthma and 

Genetics Study (TAG), where effects of TRAP were associated with the development of 

childhood asthma (MacIntyre et al. 2014) as well as with a meta-analysis that demonstrated a 

significant increased risk for asthma incidence (Anderson et al. 2013a). 

(2) The risk for asthma initiation following early life TRAP exposure is diluted over time, most 

likely due to the heterogeneity of the disease. However, TRAP exposure increases the odds of 

having an early-life onset chronic asthma course.  

(3) Assessing traffic-related air pollution (TRAP) for large birth cohort studies based on modeled 

surrogate measures of TRAP such as NO2  that are spatio-temporally adjusted is warranted, 

while the use of hopanes in house dust was found to be of limited utlity.  

(4) Surrounding residential greenness may offset the adverse effects of traffic-related air 

pollution on asthma incidence in the early years of life. 

In the following subsections, the contributions related to the above conclusions are outlined. 

6.1.1.1 Are hopanes a useful metric for infiltrated traffic-related air pollution?  

As detailed in the background review of the literature (Chapter 1), there is a need to identify air pollution 

exposure metrics that can account for infiltration of air pollutants and integrate over longer time periods 

than are feasible for air sampling. Hopanes, which have been shown to be good tracers of primary vehicle 
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exhaust, can be detected in indoor house dust, suggesting possible use as a surrogate for personal 

exposure to infiltrated traffic-related air pollution. 

After comparing measured dust hopanes with ambient air hopanes measurements and with GIS-derived 

land use variables for each city, the signature profile of ambient hopanes was significantly correlated, 

albeit modestly, with that found in home-settled dust. A key feature of this particular finding was its 

external validity, considering that the data, analyzed rigorously using the same protocol in all cities, was 

gathered in a varied setting ranging from highly urban locations (e.g., Toronto) to smaller cities (e.g., 

Winnipeg). Indoor measurements of hopanes levels in house dust were not correlated with GIS-derived 

land use variables unless behavioral and/or home characteristics were considered. This lack of correlation 

was evident whether the GIS-derived variables were generic land use predictors or variables more 

targeted to the land use specificities of each city. Examining predictors of LUR models rather than 

predicted NO2 estimates of LUR is a more precise approach to assess the utility of hopanes in settled dust 

as indicators of traffic-related air pollution exposure because NO2 estimates have a certain amount of 

error associated with the proportion of variability unexplained by the LUR models.  

Taken together, the use of hopanes as a potential advance over existing traffic-related air pollution 

exposure assessment approaches was found to be limited, as hopanes only appeared to be useful if the 

determinants of house-settled dust variability were also characterized. These findings led to examining 

other approaches, such as modeling (as performed in the subsequent studies of this dissertation) to 

account for the aspects modifying total personal exposure (indoor/outdoor infiltration, time-activity 

patterns) that hopanes would have captured if this initial investigation had proved more successful. The 

subsequent sections highlight key findings when using modeling approaches of personal exposures.  
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6.1.1.2  Sensitization in infants and traffic-related air pollution  

The work undertaken in the context of the CHILD study illustrated the utility of incorporating 

information from different sources to improve exposure assessment as a means to increase understanding 

of vulnerable time windows of exposure during which air pollution may impact the development and 

maturation of the immune system, and thus affect the onset of childhood atopy and, possibly, asthma. 

Typically, LUR models are used to assess individual exposures, and studies often rely on the residential 

birth address for their exposure assessments. Aspects such as the infiltration of outdoor air pollution 

indoors, residential mobility, and personal time-activity patterns may be important modifiers of personal 

exposures. Approaches to account for these factors, as well as temporal trends in outdoor pollution 

concentrations, were developed to estimate TRAP exposures (Chapter 3). These estimates were then 

applied in the analysis of association with sensitization among 2482 infants who were at least one year of 

age. Questionnaires, home inspections, governmental air-monitoring measurements, and geographic 

predictors were used to: account for temporal changes and residential mobility, examine indoor 

infiltration of TRAP based on a season-specific model, and facilitate stratified analyses based on time 

activity patterns. 

TRAP exposure during the first year of life but not during pregnancy increased the risk for development 

of atopy for any of the ten allergens that were administered during skin prick tests. The associations were 

largely driven by sensitization to inhalant allergens rather than food allergens. When residential mobility 

was not considered, a weaker association was found (aOR = 1.10; 95% CI: (0.96 – 1.34) first year) 

compared to the odds of developing atopy after adjustment for all addresses where participants resided 

(1.16 (1.00 – 1.41)). This association was stronger among those for whom the exposure was less 

susceptible to misclassification, i.e., participants spending more time in the home and participants not 

attending daycare. However, there may be an alternative explanation other than misclassification. A 

portion of the difference found in the sensitivity analyses of time-location patterns was likely attributable 
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to exposures other than TRAP. For example, analysis stratified by presence of siblings indicated that 

those with older siblings in the household were less likely to develop an allergic reaction to the skin prick 

tests. This explanation was also likely to hold for the analysis stratified by daycare attendance. Our results 

regarding indoor PM infiltration were inconclusive, showing an increased risk in homes with higher 

ventilation only during periods where the weekly average temperature was below 18°C. In an effort to 

explain the absence of effect modification in the warm season, attention was given to the possibility of an 

infiltration threshold being surpassed. All the homes, except those in Toronto, experienced significantly 

greater Finf in the warm compared to the cold period. This could imply that all homes (even those below 

the city-median infiltration efficiency) are in fact still “leaky”. In addition, as the challenge posed by 

infiltration mostly pertains to its variability over time, the variability in predicted Finf during the warm 

season was found to be much smaller in all CHILD cities, introducing misclassification error that would 

not necessarily affect health estimates, but merely modify the outdoor concentrations by a constant. These 

additional investigations and possible explanations argue in favor of developing Canadian-specific 

infiltration models. 

In this work, temporal adjustment of land use regression estimates at all residential home locations where 

the mother and child lived for at least 15 days captured associations that otherwise would have remained 

veiled. Through the use of a more refined methodology, we added new evidence to the existing TRAP 

and allergies literature. This conclusion is in line with the findings seen in a Dutch birth cohort study, 

where positive associations were demonstrated among a subset of non-movers (Gehring et al. 2010b) , 

suggesting that reducing exposure misclassification can help clarify the adverse role of TRAP on allergic 

diseases. The trajectory of atopy is likely to be heterogeneous (Simpson et al. 2010): longer-term studies 

can help clarify the role of TRAP in the etiology of allergies. With this perspective, the next step of this 

dissertation took advantage of a 10-year follow-up in the BAQS birth cohort to investigate the effects of 

TRAP on the initiation of childhood asthma, as atopy is a known risk factor for IgE-mediated asthma.  
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6.1.1.3 Childhood asthma and traffic-related air pollution 

The follow up over 10 years in BAQS, a population-based birth cohort, extended the initial investigation 

on pediatric asthma in early years (Clark et al. 2010b) by examining the effects of TRAP at different ages 

using the LUR modeling approach, among other exposure metrics, and adjusting for temporal and spatial 

variability (Chapter 3). Starting with the premise that early life exposure is a critical window, issues 

related to the time-course of developing chronic conditions such as asthma were evaluated. In addition, 

the role of potentially co-varying environmental exposures (air pollution and surrounding greenness) in 

asthma initiation was examined.  

The investigation of incident asthma showed that air pollution was associated with the odds of asthma in 

children during the ages between birth and age 5, but not at older ages. These associations with air 

pollution during the preschool period were partially offset by the independent protective effect of the 

level of residential greenness surrounding the home location (Chapter 4). In an effort to better understand 

the course of asthma defined using administrative databases, annual incidence rates were also examined, 

and confirmed that most new asthma cases occurred in the first three years of life. 

To further evaluate the time course of childhood asthma in the BAQS cohort and to assess whether effects 

were focused on specific time periods, trajectories of asthma phenotypes were determined. Chapter 5 

described two trajectories of children with chronic asthma: those who developed the disease starting in 

early infancy and those who started to show healthcare utilization for asthma treatment and/or diagnosis 

around age 5 or 6, coinciding with the cut-off year between preschool and school-age time periods that 

were examined in Chapter 4. The effect of TRAP exposure was most prominent among the chronic 

asthmatics who developed the disease in early infancy.  
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6.1.2 Synthesis 

The results in Chapters 2 and 3 of this dissertation provide different perspectives on the complexity of 

assessing personal air pollution exposures that occur mostly indoors, while the vast majority of the 

assessment tools at our disposal estimate ambient concentrations. These two chapters provided a 

measurement and a modeling approach to address the indoor infiltration of air pollutants.  

Assessing indoor levels of TRAP through the collection and analysis of hopanes in settled house dust is a 

new area of study that has the potential to reduce exposure misclassification and increase specificity of 

personal exposure by capturing the infiltrated portion of the pollutants related to asthma and allergies. 

While the utility of hopanes as markers for infiltrated TRAP exposure were inconclusive, Chapter 3 

tackled the issue of infiltration by examining whether modeled infiltration modified the association 

between air pollution and sensitization. This analysis indicated that modeled infiltration was partially 

useful given the observed modifying effect on the association between TRAP exposure and sensitization 

only during the winter season when ambient temperature was below 18ºC. However, several limitations 

should be described here. First, homes were classified according to the city-level 80th percentile of 

individual homes’ particle infiltration efficiency, aggregating individual-level data and thus introducing 

misclassification error that affects the precision of the estimates. Second, infiltration efficiency was 

determined using a model calibrated among homes included in an air pollution cohort study from the 

USA (Allen et al. 2012b). While this model explained 60% of the variance in infiltration efficiency during 

the summer and winter, the unexplained variability is likely to propagate error in our investigation and, 

more importantly, it was not validated for Canadian homes, possibly introducing measurement error. The 

effect of infiltration remains an open question because we have shown that the contribution of ambient 

TRAP to the indoor mix is likely to modify the total exposure.  

The stratified analyses accounting for locations other than the homes, which indicated potential exposure 

misclassification, corroborated the importance of developing methods for estimating exposure in all 
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microenvironments (Chapter 3). The likelihood of misclassification when other microenvironments are 

not considered is supported by results shown in the cohort study in the UK (Mölter et al. 2013). In this 

study, investigators developed a model to integrate home, school, and journey exposures to assess 

children’s total individual exposure (Mölter et al. 2012a) for an epidemiological analysis of lung function 

among school age children (Mölter et al. 2013) and demonstrated a high correlation with personal 

measurements. The degree of misclassification in the presented sensitization analysis was probably non-

negligible because infants in their first year of life tend to spend the vast majority of time in their homes, 

but accounting for residential histories and temporal trends provided reasonable personal exposure 

estimates. 

Moving from a smaller birth cohort with detailed information to a large population-based birth cohort 

without the same level of detailed individual information, investigations of pediatric asthma outcomes 

were conducted using temporally adjusted ambient air pollution levels at the residential location from 

conception to birth (Chapters 4 and 5). Chapter 3 indicated that early life exposures are critical (Clark et 

al. 2010a) as it demonstrated that with increased temporal and spatial specificity, the impact of exposures 

within narrower time windows (in utero vs. first year post-partum) can be pinpointed and their relative 

contribution in the etiology of allergic sensitizations uncovered.  

Although the same study design was adopted in most of the work undertaken (Chapters 3-5), the birth 

cohort studies that were examined had varying degrees of information regarding potential effect modifiers 

on the health effects of air pollution. In the BAQS study, a notable finding was the effect modification by 

term birth weight. The identification of this susceptible subgroup (children weighing less than 2500g at 

term birth) is of clinical importance and is in line with previous studies reporting the susceptibility of 

premature children to pediatric lung disease development (Jobe and Tibboel 2014; Strickland et al. 2014). 

However, in the BAQS study several individual-level confounders were not accessible, limiting the 

ability to examine in detail other potentially susceptible populations. For instance, children of asthmatic 
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or atopic parents are more susceptible to TRAP effects on the development of allergic diseases 

(Morgenstern et al. 2008). Maternal atopic status was a major predictor in the atopy analysis; a 

confirmation of this finding in a population-based study would have given more weight to this 

identification of a susceptible group. In the same vein, the BAQS study may have been limited in its 

ability to investigate how socio-economic variables may affect the impact of air pollution on asthma 

development in children. Although household income and educational attainment were considered at the 

neighborhood level, residual confounding still remains. However, recent evidence has shown that area-

level SES should also be considered in studies of air pollution and allergies (Gruzieva et al. 2014), which 

alleviates this threat of confounding.  

 

In contrast, the CHILD study provided very detailed individual information. In particular, the physical 

characterization data allowed the examination of an identified gap in the literature on assessing personal 

exposure to air pollution with regard to the development of childhood asthma and allergies. Although the 

stratification by home ventilation level is novel and may help advance the field of air pollution exposure 

assessment, the process of stratification reduced the sample size, which, in turn, reduces the ability to 

detect small-magnitude effects. This limitation also applies to the stratification by daycare attendance and 

time-activity patterns. In these latter analyses, individual time spent away from the house was averaged 

across participants by city to stratify the cohort into two groups, introducing a Berkson-like type of 

misclassification.  

 

Berkson- and classical-type errors constitute the two general classes of measurement error that are 

unavoidable in exposure assessment. Berkson errors generally introduce no bias in linear – and, to some 

extent, generalized linear – health effect models because they measure part of the “true” exposure, 

whereas classical errors measure the true exposure plus varying degrees of noise, thereby introducing 

some bias away or toward the null (Sheppard et al. 2011). In air pollution cohort studies, the impact of 
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measurement error is an active area of research because these two types of error come into play: the use 

of prediction models to estimate exposure will likely reduce variability (smoothing effect, “Berkson-like” 

error) and the spatial correlation of the exposure model parameter estimates may bias the health effect 

parameter estimation (spatial misalignment, “classical-like” error) (Dominici and Cefalu 2015).  

In addition, the analysis of daycare attendance could have been strengthened by geocoding the addresses 

of daycares or similar sites where each child spent time outside the home, assigning exposures at these 

addresses and creating an average total exposure profile. At the time of data acquisition and cleaning, 

however, the number of missing values hindered this approach, leaving stratification as the next-best way 

to examine effect modification by exposure at locations other than the home.  

Given the lack of specific markers, most of the birth cohort studies of pediatric respiratory outcomes 

examine inhalable particles, fine particles, or nitrogen dioxide. This dissertation has mostly focused on 

nitrogen dioxide, for which recent efforts to establish a dose-response formulation were developed based 

on the prolific set of population health studies in which NO2 is the principal exposure of interest (Favarato 

et al. 2014). Our results show that variation in NO2 exposure consistently predicts childhood asthma and 

sensitization, a finding that is aligned with the view that morbidity associated with ambient nitrogen 

dioxide is not only explained by its associated toxicants, but also with NO2 itself (World Health 

Organization Regional Office for Europe 2013). 

Although Chapters 3 and 4 examine the incidence of two different health outcomes, it is important to keep 

in mind that: (a) sensitization and asthma can be interrelated and (b) the two studies both used land use 

regression modeling of NO2 concentrations, a common exposure. These two chapters are complementary 

in the sense that one examines an unselected population-based birth cohort, the BAQS cohort, while the 

second utilizes primary data gathered in a non-random birth cohort of participants recruited by the 

CHILD researchers. In CHILD, considerable efforts were deployed to gather a large amount of data 
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through questionnaires, biological samples, and home inspections. The inclusion of such data is expected 

to enhance the precision of individual exposures estimates, despite the potential introduction of additional 

sources of error. This level of in-depth individual information is not accessible in study designs that rely 

on linked administrative databases. On the other hand, the BAQS studies (Chapters 4 and 5) offered the 

opportunity to investigate childhood asthma in a large sample of over 65,000 children, with objectively 

assessed exposures and diagnoses of asthma based on health care utilization records. Administrative 

databases such as these offer great promise in epidemiological research because they provide a 

comprehensive, longitudinal, and population-based record of health information that eliminates issues of 

self-report, recall, and selection bias inherent in survey-based research.  

Collectively, this work demonstrated the importance of early-infancy exposures, a critical time window, 

and the adverse effects of TRAP on asthma and sensitization incidence, as well as the potential health 

benefits provided by surrounding green spaces. The associations demonstrated in the presented studies 

point to the heterogeneity of the asthma syndrome given the dissolution of effects over time, as well as to 

the complexity of atopy status definition. This heterogeneity begs for a different research framework, 

such as finite mixture models, to advance our understanding of the role of environmental exposures in the 

etiology of these chronic respiratory conditions. Our results also confirm the recently reported increased 

susceptibility of children with parents reporting an allergic disease (Gruzieva et al. 2012; Morgenstern et 

al. 2008). 

 

6.1.3  Strengths and limitations 

Birth cohorts offer multiple advantages in the assessment of chronic disease initiation in relation to 

environmental exposures. In both BAQS and CHILD, participants were prospectively followed from 

conception onward, providing the best setting for the investigation of the temporal sequence of events and 



148 
 

indicating the direction of causality. The present dissertation does not prove causality, but it adds to the 

weight of evidence for a causal relationship between TRAP and incident asthma and allergies in young 

children. 

An additional strength of this body of work is the complementarity between the study populations that 

were leveraged to examine the effect of traffic-related air pollution on asthma and allergies. Each of the 

two cohort studies, which included outcomes that share some common etiology, provides aspects that are 

lacking in the other (e.g. size, individual-level characteristics). As a whole, they strengthen the weight of 

the reported findings.  

BAQS is a population-based cohort, which, in addition to its large sample size, offers a sample with good 

external validity, whereas CHILD may have children with parents of a higher SES than the overall 

Canadian population. It is therefore unclear to what extent the results reported from CHILD study are 

generalizable to a low-SES segment of the Canadian population. In addition, other than moving out of the 

province, the BAQS studies do not suffer from the same threat of selection bias attributable to loss of 

follow-up that is inherent to a birth cohort study such as CHILD. 

 

6.1.3.1 Assessment of environmental neighborhood exposures  

Environmental exposures linked to the development of childhood allergies and asthma occur from 

conception through the prenatal period and into childhood, with the latest evidence pointing at either the 

first or second year of life as the critical time window (Arrandale et al. 2010) due to the immaturity of the 

lungs and immune system. The question of when to measure these exposures is complex, and 

consequently one of this dissertation’s main strengths resides in the utility of the methods that were 

employed to assign exposure for precise time windows.  
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Air pollution exposure assessment in the present dissertation was estimated for the early life period using 

previously developed and validated LUR models. These types of models have been widely used 

throughout the past two decades of air pollution epidemiological studies without assessing whether they 

are valid for study periods that are distinct from the time when the models were developed, thereby 

incorrectly assuming that spatial patterns are stable. In the context of this work, NO2 concentrations have 

decreased over time in all of the cities examined in this dissertation (Brook et al. 2014). In Vancouver, it 

has been demonstrated that when NO2 concentrations decrease over time the spatial concentration 

patterns remain relatively stable (Wang et al. 2013), and thus temporal adjustments using government 

fixed-site monitoring are appropriate.  

LUR models in the present work are a strong tool for generating individual exposure estimates. They 

provide a high spatial resolution that was augmented by tracking the residential histories throughout 

pregnancy and during the first year of life, in comparison to previous studies that solely relied on 

estimates of traffic-related air pollution at the home address at time of birth. Accounting for residential 

mobility over a time period of increased susceptibility helps attenuate the misclassification that would 

have occurred if exposure was estimated solely using the birth address. While exposure levels around the 

early life  period were of primary interest, this work would have benefited from examining the relative 

importance of exposure effects at birth address versus current home address, and confirming earlier 

findings such as those shown in the BAMSE birth cohort studies (Gruzieva et al. 2012, 2013), which 

indicate that the early years are a critical time window for asthma and allergies.  

Another important strength of the present work is the examination of the effect of exposures that occur 

away from the home. The inclusion of all of the places in which a young child spends time during the first 

year of life should reduce exposure misclassification. Among school-age children, McConnell and 

colleagues showed that TRAP exposure at school and home may contribute to the development of asthma 

(McConnell et al. 2010), whereas in younger children, TRAP exposures in different locations have been 
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considered rarely, so the present work fills an important gap. Although exposures were not quantitatively 

assigned, we showed that time-activity patterns are likely to modify the association between TRAP and 

the development of allergies in early-life. 

An additional strength of the environmental exposure assessments is the adjustment of air pollution for 

the presence of green spaces in the BAQS cohort (Chapters 4 and 5). These two exposures were only 

moderately correlated, enabling the examination of co-exposure models and the demonstration that air 

pollution affects respiratory outcomes independently from the effect of green spaces. Therefore, the 

assessment of multiple exposures related to urban form (various air pollutants and NDVI-based 

greenness) is an important contribution of this work. While the Normalized Difference Vegetation Index 

(NDVI) offers an objective assessment of green spaces, it remains a non-specific measure of the type of 

greenness surrounding the homes of study participants. Dadvand et al. showed that different types of 

greenness have differential risk and health benefits (Dadvand et al. 2014). The mechanisms of access to 

green spaces on pediatric respiratory health can be explained by the biodiversity loss hypothesis, 

increased aero-allergic load, or the reduction in air pollution. Small buffer sizes were used around the 

home address, decreasing the likelihood of varying degrees of allergenicity of the surrounding greenness. 

However, the last set of analyses involving greenness at birth, even when measured using NDVI in small 

buffer areas rather than relying on an estimate of plant species by differing degree of allergenicity, is not a 

relevant metric for effects later in childhood. Other environmental exposures that may be relevant to this 

work but were not considered include the effect of climate (e.g., variations in precipitation, temperature, 

and relative humidity). A major potential indirect effect of climate change on public health is predicted to 

arise via climate-induced changes in aeroallergens, the primary risk factors for atopy and allergic asthma 

(D’Amato et al. 2010; Shea et al. 2008). 

The investigations in this dissertation relied on modeled NO2, which is a very good marker of within-city 

variability in TRAP. However, an important limitation arises from the fact that there were no personal 
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exposure measurements in this research. Relying on LUR models is likely to introduce error because 

these models explain between 76% of the variability in Vancouver to 81% in Winnipeg, leaving a non-

negligible amount of unexplained variability and propagating error in the estimates subsequently used in 

further regressions for the epidemiological analyses.  

Another limitation to note in this dissertation is the generally low level of air pollution. Throughout 

Canada, and certainly in the cities that were included in the present work, there has been a documented 

decline in NO2 measured at governmental air monitoring stations (Brook et al. 2014). Such low urban 

concentrations of NO2 are likely to hinder the ability to detect associations of modeled NO2 estimates 

with childhood asthma and allergies. However, studies of low-level exposures can be valuable in 

demonstrating that effects are harmful even at the low levels as shown in the present work, reinforcing the 

notion that “no safe concentration” has been identified.  

 

6.1.3.2 Outcomes case definition 

Throughout the present dissertation, the ascertainment of both outcomes (childhood asthma and atopy) 

relied on an objective assessment and not on self-reported health status, which suffers from the threat of 

recall bias. However, there are different limitations related to each outcome that are best discussed 

separately, as follows. 

The assessment of atopy relied on an objective measure of sensitization by administering skin prick tests 

at each of the CHILD study center clinics. Skin allergy tests avoid the threat of recall bias and provide a 

reliable measure because the outcome is ascertained following a rigorous and consistent protocol across 

study sites. Furthermore, the study reported in this dissertation used a wide array of various allergens that 

capture the two main routes of exposure: ingestion and inhalation. However, criticism around this mode 

of case definition for atopy includes the lack of specificity when using a binary outcome based on an ad-
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hoc cut-off (Custovic et al. 2013). It has been shown that, when defined in this way, such positive allergy 

skin tests may indicate a positive allergic response without confirming clinical reactivity, where such 

defined atopic individuals have no evidence of asthma (Custovic et al. 1994). Instead, a continuous 

measure of wheal size would provide the opportunity to quantify the magnitude of the effect that air 

pollution has on allergic sensitization and to define “true” atopy in young children, which, when 

diagnosed among those with a history of wheezing, indicates a high risk of developing persistent asthma 

(Simpson et al. 2010; Sly et al. 2008). 

The definition of childhood asthma was based on administrative health records, which provides the 

advantage of avoiding recall bias. Asthma is a heterogeneous disease whose diagnosis is complex, even 

more so in the early years where individual wheezing episodes can be diagnosed wrongly as the 

development of asthma. Adding to this complexity is the fact that all asthma-related outcomes reported in 

this dissertation relied on physicians’ billing records for a visit related to asthma symptoms or diagnosis, 

rather than on a clinical record or an asthma-related medication prescription. Other issues include the 

validity of asthma case definitions using administrative data. A physician visit may be coded as asthma 

for suspected asthma in the absence of further testing for unusual symptoms that appear asthma-like, or in 

the absence of clear diagnostic criteria. However, these limitations are alleviated by the positive reports of 

multiple studies examining the ability of administrative data to identify asthma in Canada using visit or 

billing data collected as part of provincial universal healthcare system databases (Kozyrskyj et al. 2004; 

Prosser et al. 2008; To T et al. 2007). Furthermore, Chapter 5 confirms that linked administrative 

databases from mandatory healthcare insurance programs are suited for moving from incidence analyses 

to longer-term investigations of chronic episodic conditions. The limitation of defining asthma at one 

point in time, as performed in Chapter 4, is further confirmed by other Canadian studies of asthma 

recurrence in childhood. In Ontario, a similar administrative database was used to identify children who 

were diagnosed with asthma prior to the age of six and to track their asthma diagnoses until the age of 11. 
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In this study, asthma diagnosis was based on the same criteria as those used in the current dissertation. 

Children who continued to have asthma diagnoses past the age of six were considered to be persistent 

asthma cases. By age 12, half of the children were in remission. This finding highlights the advantage of 

using longitudinal and linked health databases to identify distinct long-term asthma groups for 

population-based studies.  

6.2 Recommendations for future research  

Given the asthma “epidemic” and the fact that the impact of exposure to many indoor and outdoor 

pollutants remains unresolved, the issue of an integrated assessment of environmental influences is of 

high importance because it may identify at-risk subpopulations (Gowers et al. 2012) as well as modifiable 

factors for which policy-makers can take appropriate measures.  

The findings of this dissertation point to sources of exposure misclassification that may be present when 

relying on outdoor pollutant concentrations. These include infiltration and other exposures encountered in 

diverse microenvironments. Personal monitoring studies have shown relatively poor agreement with 

outdoor concentrations (Mölter et al. 2012a) and, more importantly, epidemiological studies using 

personal monitors have been unable to replicate associations (Mölter et al. 2013) found with outdoor 

pollutant estimates (Krämer et al. 2000; Pattenden et al. 2006). Could the associations between air 

pollution and pediatric respiratory outcomes found in previous studies based on outdoor concentrations be 

type I errors? Or were these outdoor concentrations a proxy for other environmental effects (e.g., moving 

from single to co-exposures related to built environment models)? 

Conflicting findings in past studies of air pollution epidemiology may have been due not only to exposure 

misclassification but also to poor outcome definitions and the lack of identification of susceptible 

subgroups. Were associations found in large population-based studies capturing a heterogeneous 

population encompassing several susceptible subgroups? A possible means of addressing this point in the 
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era of “big data” is by complementing incidence studies with the examination of the trajectory of this 

chronic heterogeneous outcome to encompass several endotypes of asthma. Two lines of research, 

detailed in the following sections, can be envisioned arising from these questions: 1) an exposure 

assessment research agenda and 2) cohort research with a focus on asthma endotype characterization. 

6.2.1 Future directions for exposure assessment research 

Modeling indoor NO2 across micro-environments where a child typically spends known amounts of time 

has been shown to correlate well with personal measurements and to be implementable without 

prohibitive financial costs and overburdening participants in birth cohort studies (Mölter et al. 2012b). 

The next feasible step could be reconstructing a total exposure profile by time-averaging exposures in 

each micro-environment (Gulliver and Briggs 2005), especially because children do not display great 

variability in their time-activity patterns (Adgate et al. 2004). This approach holds promise to reduce 

exposure misclassification for cohort studies such as CHILD, especially in the presence of low levels of 

air pollution that require additional precision. 

With regard to exposure modeling, capturing infiltrated exposure can either be modeled based on 

particulate matter, or modeled using simplified chemical mass balance models, such as the INDAIR 

model used in the MAAS cohort study (Mölter et al. 2013). There are ongoing efforts to model infiltration 

efficiencies using easily obtainable predictors (Allen et al. 2012a) because infiltration may be an 

important source of exposure heterogeneity in epidemiologic studies of exposure to pollutants of outdoor 

origin. Similar models should be considered for use in Canadian settings, especially considering the 

efforts deployed in characterizing the physical environment in the CHILD study.  

Hopanes can be found in different media, including house dust or window wipes and we explored their 

potential use in house dust. However, house dust as an exposure matrix has limitations related to the 

mode of accumulation. Several factors that may vary among study participants can affect the 
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concentrations of hopanes: cleaning practices and sampling surfaces (carpeted versus non-carpeted) play a 

significant role in the amount of chemicals that deposit inside the home. In addition, the metric of 

exposure for hopanes still lacks consensus, because hopanes can be measured in terms of the loading of 

chemicals (concentration normalized by surface area sampled) or expressed by the more traditional 

approach of normalized concentration to mass dust collected. The need to improve our understanding of 

the composition and deposition mechanisms in house dust is warranted. Work that was undertaken by 

Whitehead et al. with respect to PAHs in house dust should help guide future research (Whitehead et al. 

2011, 2012, 2013). For example, it was shown that repeated measurements of house dust within study 

participants’ homes can improve the precision of PAH exposure estimates and limit attenuation bias. 

Investigation of hopanes using window wipes is another avenue for exploratory research, which may 

show less heterogeneity than house-settled dust.  

LUR models provide high spatial resolution for exposure estimates of within-city variability, which has 

been shown to vary as much as that between cities. However, in light of urbanization trends and 

subsequent urban sprawl, methods are needed to expand the domain of LUR surfaces to include peri-

urban/semi-rural areas. Hybrid models, which take advantage of the ability of dispersion modeling 

(Molter et al. 2010) or satellite data (Mao et al. 2012) to cover large geographical areas, represent a 

promising area of research.  

In the case of population-based birth cohort studies such as BAQS, exposure assessment improvement 

can also be obtained through linkage with records from ministries of education. Cross-walk linkage 

between personal health identifiers and personal education numbers could therefore allow for the 

geocoding of schools and the estimation of exposure levels at these locations where children spend a 

significant amount of time. Time-weighted averages based on the home and school micro-environments 

would help shed more light on asthma analyses conducted on school-age participants. In addition, GIS 

tools can be used to approximate journey exposures, as shown by Gulliver and Briggs (Gulliver and 
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Briggs 2005). While this future research agenda will have limitations due to the coexistence of public and 

private school systems, it may shed more light on the disease etiology by reducing exposure 

misclassification for the school-age period. 

 

6.2.2 Future directions for asthma and allergies research 

 

As mentioned previously, prospective birth cohorts are the most powerful study design to assess the long-

term effects of air pollution exposure on children’s respiratory health, taking into account that certain 

limitations as outlined above (see section 6.1.3) are addressed. In CHILD, the definition of childhood 

atopy should be defined as a continuous outcome to avoid a heuristic, albeit often-used, 2mm cut-off. The 

follow-up over time of allergy tests co-examined with other allergic phenotypes (e.g., eczema) can be 

used to predict different endotypes of asthma and to help understand the relationship between atopy and 

asthma. The lack of understanding of this relationship is related to the absence of a universally accepted 

definition of asthma. It is increasingly recognized that asthma actually represents several different 

diseases presenting with similar symptoms. Although sharing similar phenotypes, these distinct endotypes 

arise via unique and separate pathophysiological mechanisms that are likely to be associated with 

different environmental exposures and genetic markers (Lötvall et al. 2011). The most desirable aspect of 

endotyping asthma and atopy is that such endotypes would be expected to be more stable than their 

observable phenotypic features (e.g., wheezing for asthma or sensitization for atopy) (Anderson 2008; 

Custovic et al. 2013; Henderson 2014b). A more precise case definition that would result from this new 

paradigm of diagnosis would reduce the dilution of a true association with environmental exposures of 

interest. There has been a shift in the analysis of observed or collected symptom data in recent cohort 

research, mainly relying on new statistical approaches including latent class analysis (Henderson 2014b) 

with clusters replicated across different cohorts (Savenije et al. 2011), and on the unsupervised clustering 
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approach (PCA) to determine groups of phenotypes and define specific asthma endotypes in an unbiased 

way (Custovic et al. 2013; Lazic et al. 2013; Simpson et al. 2010). An improvement on the unsupervised 

approach to generate asthma classifications is adding the dimension of time to take into account 

longitudinal phenotype changes that may not be stable over time. We explored the use of Group Based 

Trajectory Modeling (GBTM) due to the fact that this tool offers promising research directions. For 

example, while our work examined time-invariant factors, GBTM can also incorporate time-varying 

covariates as well as multiple outcomes (Nagin and Odgers 2010), thus offering the possibility of 

examining co-morbidities (e.g., obesity) or behavioral outcomes (e.g., school absenteeism) that either 

overlap with or precede the development of asthma.  

From a translational research perspective, such an approach can help inform the design of endotype-

specific treatments. From a public health intervention standpoint, the ability to conduct informative 

population-based studies is dependent upon identifying different, longer-term asthma endotypes, such as 

persistent allergic asthma, that may be amenable to public health intervention via air pollution reduction 

measures or urban planning and design initiatives. Gilliland describes an additional facet to the exposure 

reduction paradigm by demonstrating that treatment of asthma phenotypes may be improved by the 

induction of enzymatic antioxidant defenses to pollutant insults to the immune system via dietary means, 

especially for individuals with high-risk genetic variants of key antioxidant enzymes (Gilliland 2009). 

The identification of a potentially protective role of greenness in this work is novel and important to note. 

Greenness may mitigate the effects of air pollution by improving air quality (Escobedo et al. 2011). 

Several other mechanisms by which the protective effect of green spaces may offset the risks of asthma 

and allergies, as outlined in the subsection 6.1.3.1, need to be explored further. Of particular interest is the 

finding by Mitchell and Popham (Mitchell and Popham 2008) that those exposed to the greenest 

environments also have the lowest levels of health inequality. Subsequent studies confirmed that the 

beneficial effects of green spaces on pregnancy outcomes seem to be more prominent among segments of 



158 
 

the population with low socio-economic status (Dadvand et al. 2012a). Because pregnancy outcomes have 

an impact on the newborn’s immune system, such studies need to be extended to pediatric outcomes. 

Physical environments that promote good health, such as green spaces, might be important to reduce 

socioeconomic health inequalities and therefore reduce the susceptibility of the lower-SES groups to the 

adverse effects of air pollution on respiratory health. Future studies of the effects of air pollution on 

pediatric chronic respiratory diseases would greatly benefit from the inclusion of other attributes of the 

built environment (e.g., green spaces, “blue” spaces, walkability) in order to inform policy-making 

decisions.  
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Appendix A   Allergy skin prick testing  

A.1 Performing the allergy skin prick test 

A.1.1 Allergy skin prick supplies 

• Allergens (ALK Abello) 

• Duotip II Dipwell Trays (Lincoln Diagnostics) 

• Duotips II (Lincoln Diagnostics) 

• Bic Ultra Round Stic Grip pen for circling wheals 

• 3M Scotch® Tear-by-hand™ Tape 105-NA, 48 mm  x 16 mm 

• Antiseptic Isopropyl Alcohol Pad 

• Tissues 

• Epipen 

• Stop watch or timer 

• Allergy Skin Test Record Forms – Skin Test Worksheet 

A.1.2 Quality control of allergens  

Some allergens may not expire for up to 3 years. The variability of allergen effectiveness at room, 

fridge and Dipwell temperature is unknown. For this reason we will replace each antigen yearly at all 

centers. The central site will order the same lot numbers for all study centers on a yearly basis and keep 

logs to track lot numbers and expiry dates 

                                                      

19 CHILD Standard Operating Procedure from © CHILD Version date May 15 2010; accessed from 

health diary resources, adapted with permission from Principal Investigator. 
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A.1.3 Timeline and checklist  

  
DAD 

 
MOM 

 
CHILD 

 

 
 

Allergen (ALK Item #) 

 

 
18 
wk 

  

 
1 

year 

 
2 year 

 

 
 

3 year 

 

 
 

5 year 1 year (PFT) 

1. Histamine � � � � � � 

2. Glycerin Control � � � � � � 

3. Alternaria alternate � � � � � � 

4. Cladosporium � �   � � 

5. Penicillium Mixed � �   � � 

6. Aspergillus fumigatus � �   � � 

7. Cat Hair, Standardized � � � � � � 

8. Dog Epithelium � � � � � � 

9. D. Pteronyssinus � � � � � � 

10. D. Farinae � � � � � � 

11. Cockroach, German � � � � � � 

12. Trees Midwest � �   � � 

13. Grass Mix � �  � � � 

14. Weeds � �   � � 

15. Ragweed Mixed � �  � � � 

16. Peanut � � � � � � 

17. Milk, Whole Cow’s   � � � � 

18. Egg White   � � � � 

19. Soybean   � � � � 

 

Child-Dipwell Tray 2: Labels at 1 year 

  9. D. 

Pteronyssinus 
8. Dog 
Epithelium 

7. Cat Hair, 
Standardized 

3.Alternaria 
alternata 

2.Glycerin 
Control 

 

 

1. 

   
19. Soybean 

18. Egg 
White 

17. Milk, Whole 
Cow’s 

 
16. Peanut 

11. 
Cockroach, 

10. D. 
Farinae 
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A.1.4 Skin testing procedure 

Directions for using the Dipwell Tray II: The tray consists of 40 clear plastic wells that hold test solutions 

and Duotip-Test II devices. The 40 wells are arranged in four rows of ten, with each row identified by 

letters A through D. 

i. Type or print the appropriate extract or control information in the blank boxes provided on 

the label. Apply labels over designated areas (each label contains 10 rectangular spaces). 

ii. Remove sterile wells from their package of 40 and insert 16 wells (2 rows of 8). Use 

enough pressure when placing wells into the receiving holes to push them downward as far as 

they will travel. 

iii. Individual test solutions are placed into individual wells so that each well contains the test 

solution that corresponds with that test solution’s well location shown on the label. 

iv. Dispense 0.25 ml of each skin test solution into its properly identified and numbered well, using 

the dropper in the 10 mL vial. The dropper must be inserted down into the well. Each well 

must contain enough volume to allow complete submersion of the Duotip II (at least 4 drops of 

solution from the vial dropper). 

v. Place clean duotips in the wells and place the lid securely over duotips/ wells and keep 

refrigerated when not in use. Remove tray with wells 15 minutes before skin testing and keep 

at room temperature. 
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A.1.4.1 Procedure for skin prick test 

1. Explain procedure to child’s mother or father as appropriate. Provide a Skin Prick Test 

Result Informational Handout (Appendix A.2 Figure 2) 

2. Ascertain whether the child has taken medications or herbal supplements in the last 7 

days. Give medication/supplement prompt list (Appendix A.2 Supplementary Material 2) 

as a prompt and fill out the medication/supplement skin test form (Appendix A.2 Figure 3). 

3. Seat the child in the parent’s lap if possible and place their forearm in a supine position on a 

flat surface. 

4. Clean and dry inner aspect of child’s forearms with an alcohol swab (70% isopropyl 

alcohol). 

5. Make small dots with pen on the radial aspect of the forearm, in rows corresponding to 

the numbers of allergens that will be used. Include the controls in the total number. Use a 

folded photocopied allergy skin test sheet to space the dots by placing the dot directly 

beside the numbers. 

 

 

 

6. Identify the allergens by corresponding allergen numbers on the radial aspect of the 
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appropriate dot so that the labelling will not be included in the results. 

7. Place one sterile Duotip II in each allergen well. Follow the order on the skin test form 

8. At a site 2 cm medial (ulnar) to the pen mark, using a sterile Duotip for each allergen, hold 

device so its shaft forms a 45 degree angle with the skin plane. Prick with one point and lift 

skin simultaneously. Do not prick twice. 

9. Discard Duotip in the appropriate sharps container. 

10. Blot (DO NOT WIPE) skin dry with tissue making sure not to cross contaminate allergens. 

11. Instruct child not to scratch the area and to remain in the waiting area until tests are read. 

12. Ten minutes after the first (Histamine) prick, use a Bic pen to outline the wheal of the 

Histamine. A wheal response, also called a welt, is a firm elevated swelling of the skin. 

Use your fingers to feel the swelling or bump to help identify a wheal response. After 20 

minutes, outline wheal responses for the allergens. Wheal tracings must be closed 

without any gaps. Do not record the flare. If there is no wheal, do not make any marks. 

Use cross-lighting if needed to identify the edges of the wheals. 

 

13. Using transparent adhesive tape, cut a piece large enough from the roll to cover the 

histamine outline, press gently, and remove. 

14. Apply tape to the skin test form. 

15. Repeat for all other allergy wheals that are outlined. 

16. All allergy sheets are bar coded and numbered specifically for each case. Tape must adhere 

completely flat (ideally without any creases and without hair or other material attached). 
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Wheal tracings cannot cross the allergen box or touch the yellow box on the skin test form. 

(See Appendix A.2 Figure 5, for an example of a correctly completed form). 

17. If there is hair attached to the tape that you cannot readily remove: 

a. Stick the tape to a BLANK piece of paper. 

b. Place another piece of tape, sticky side up, and trace the outline on the sticky side 

of the new piece of tape. 

c. Transfer the new piece of tape with copied outline to the skin test worksheet. 

18. Wipe the arm with an alcohol swab to remove ink and to help decrease itch. 

 

Allergy Skin Testing for the child at 1 year should not be done in the field. The child’s test must be done 

in the clinic 

A.1.4.2 Taking care of allergens and Epipen instructions 

Testing will be to common outdoor allergens, indoor allergens and food allergens. The testing will be 

carried out by the study personnel listed as per SOP. The local site investigator or his/her physician 

delegate must be aware of the testing and be available if an adverse event occurs. If the investigator is 

not available, an alternate contact approved by the investigator must be available. 

FALSE POSITIVES 

may occur if… 

i. the prick is too hard 

ii. patient has sensitive skin (i.e. Dematographism) 

iii. there is cross contamination between allergens 

 

FALSE NEGATIVES 

may occur if… 

i. the antigen site is not pricked hard enough or skin is not lifted 

ii. antihistamines or medication with antihistamine activity (e.g., Gravol, antidepressants such 
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as amitryptiline) have not been withheld for the appropriate length of time 

 

CARING FOR ALLERGENS 

i. Refrigerate allergens when not in use. 

ii. Take  the  allergens  out  of  the  fridge  15  minutes  before  using  and  leave  at  room 
temperature. 

iii. Take great care to return dropper into correct vial to avoid cross contamination. 

iv. Discard allergen if the extracts look cloudy. 

 

SAFETY PRECAUTIONS: Always have two Epipens or Twinjects available at the testing site and 

check the expiry dates regularly. 

If systemic symptoms including urticaria, rhinitis, conjunctivitis, angioedema, cough, wheezing, 

faintness or hypotension occur, give 1 injection of Epipen intramuscularly. Obtain vital signs. 

Ensure that the physician attends immediately. Repeat the dose of Epipen after 5 or 10 minutes if 

necessary. 

An Epipen Jr is a disposable, prefilled automatic injection device used for allergic emergencies. 

They contain a single dose of epinephrine which is injected into the outer thigh. It has an expiry date 

and should be replaced before this date. It should be kept at room temperature. Do not store in 

refrigerator. For complete instructions see Supplementary material 1: Epipen instructions.  

A.1.4.3 Measurements of Wheals 

1. Introduction and Purpose: To measure the taped skin prick reactions to assess individual 

hypersensitivity to allergens. 

2. Scope: This SOP applies to the activities involved in assessing children enrolled in the CHILD 

Study. 

3. Responsibility: The Data Manager at the Winnipeg site will ensure appropriate final analysis of 

allergy skin test measurements using computer analysis and recognition. 

4. Measurement Procedure 
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a. The allergy forms are bar coded and numbered specifically for each study participant. 

b. Skin tests will be initially measured in Hamilton and recorded on the subject’s Skin test 

data form (Figure 4, page 23). 
c. Measurements will be taken of the wheal only and be made to the nearest 0.5 mm. 

d. The length (1
st 

line, seen below) of the wheal is measured first, followed by the width 

measured at the midpoint of, and perpendicular to, the length (2
nd 

line, seen  below). 
e. The length and width will be double entered into HealthDiary. 

f. Original forms will then be sent to the Winnipeg Pediatric Allergy Lab, and scanned into the 

Winnipeg database. 
 

Examples (enlarged): 1
st 

line 

 

 

 

2nd line 
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A.2 Figures and supplemental materials 

A.2.1 Appointment Letter – Child  

Dear Ms.    

Thank  you  for  your  willingness  to  participate  in  the  Canadian  Healthy  Infant  Longitudinal 

Development (CHILD) Study. We look forward to meeting you at the clinic. 

We have arranged an appointment for your child to have a clinical assessment and an allergy skin test and 

to give a sample of blood. We will see you at 

PLACE 

DAY  

DATE  

TIME 

If you need to change this appointment, please call the number at the end of the letter 

Please read the following information regarding the allergy and breathing tests. 

What is an allergy skin prick test? 

The test is done to see if you have sensitivities to common substances such as molds, pollens, animal 

dander, dust mites and some foods to name a few. Before the test, you will be asked about your child’s 

medication history and any antihistamines he/she may have taken. A series of 12 pricks will be made on 

the child’s arm with plastic Duotip devices. Each one carries a drop of an allergen into the superficial 

layer of the skin. You are asked to wait 20 minutes and then we measure any reactions on your child’s 

arm. A reaction looks very similar to a mosquito bite, with itchiness, redness and swelling of the skin. 

What is involved in the clinical assessment? 

The study (paediatrician, team, nurse, staff etc ) will examine your child’s skin for any signs of skin 

redness or inflammation, listen to his/her chest and take a height, weight and head circumference 

measurement. 

HOW SHOULD I PREPARE MY CHILD FOR THE APPOINTMENT? 

The study staff would also like to collect a stool sample, urine sample and nasal swab. 

For 4 days before the appointment: 
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Please do not give your child any anti-histamines (medications such as Hismanol, Benadryl, 

cough medications, Gravol or motion sickness medication) as these will affect the allergy skin 

prick test results. 

When you come in to the clinic, bring all your child’s medications with you including any over the 

counter medication, as treatments may affect the results of these tests in several ways, and so we need 

to know exactly what your child is taking. 

I have attached a map, directions and our contact numbers.  

We look forward to seeing you. 

Sincerely;  

Dr. [site coordinator] 

For any change of appointment, call    
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A.2.2 Informational Skin Test Handout
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A.2.3 Child medications and supplements form 
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A.2.4 Skin test measurement form 
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A.2.5 Skin test result form 
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A.2.6 Supplementary material 1: Epipen instructions 
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A.2.7 Supplementary material 2: medications and supplements Prompt List 

Medications and Supplements that affect skin test. 
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Appendix B : Home assessment (including dust sampling) 

B.1 Preparation of the visit 

B.1.1 Goals  

The research  coordinator  will  call  the  mother  to  set  up  a  3-month  home  visit 2 weeks in 

advance and will follow the phone script template. Ideally, the research coordinator who 

recruited the family into the study will make the first postnatal telephone call 

approximately 1-2 months after delivery. The goals are: 

• To reconnect with the family. 

• To ensure that the family is still eligible (i.e. has not moved, has not refused to further 

participate, etc.). 

• To arrange for a home visit: to discuss possible dates and times that might be feasible for 

a visit, and to confirm the address. 

• To go over home visit package instructions for breast milk collection and stool collection 

• To ask the mother’s to fill out the Environmental home questionnaire 

• To remind the parent about collection of house dust from the bed the child sleeps in and the 

most often used living area 

The participant is reminded about the confidentiality and all measures taken to maintain their 

information non-identifiable. Two days before the visit, phone to confirm the visit and ask the mother 

if she has her breast milk container. Remind the mother to start collecting breast milk a day before 

the visit, and to save a soiled diaper and a wet diaper from the day before the visit. 
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B.1.2 Before the home visit 

B.1.2.1 Home assessment kit protocol 

1. Prepare Home Assessment Kit 

Sanitaire Canister Vac: Model S3680 

(Serial#074002221) 

a) Connection Hose 

b) Telescoping Wand 

c) Vacuum Bag 

d) Vacuum Head - depyrogenated 

e) Sterile Tweezers 

f) Sterile scissors 

2. Cooler 

3. Ice Pack (not included) 

4. Tool Bag 

a) Laser Distance Meter 

b) GPS 

c) Flashlight 

d) Tape Measure 

e) Green Painter’s Tape 

f) Scissors 

g) Pens (not included) 

h) Sharpie 

i) Extra Batteries 

5. Two Clipboards 

“Hognose” © Vacuum Head 
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6. Driver’s Log Book 

7. Dirty Equipment Bag 

8. Extra Soiled Diaper Bag 

9. Sample Collection Box 

a) Refractometer 

b) 20 mL Syringe 

c) 3 Cotton Pads 

d) Nitrile Gloves 

e) Respirator Mask (3M 8210 N95) 

f) Alcohol Wipes 

10. Map book (not included) 

11. Samples’  Bag 

a) 6 pre-labelled cryovials: See SOP 

b) Extra Breast Milk Bottle (x1): See SOP 

c) Dust Bottles (x4) 

d) 4 stool pre-labelled cryovials: See SOP 

e) Nasal Swab and Media (x1) and 6 pre-labelled cryovials: See SOP 

12. Extra Biohazard Bags 

13. Postnatal Questionnaire Package 

B.1.2.2  Protocol for cleaning  

- Vacuum heads and tweezers before visit: 

• Rinse the dirty vacuum head and tweezers with water for 5 minutes.  

• Remove the Teflon wheels of the vacuum head 

• Wrap both the head (without wheels) and tweezers together in tin foil. 
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• Put both in the laboratory oven (Fisher Oven ISOTMP STD 2.5 Cubic ft. Cat 

@ 13 247 625G) and bake at 220°C for 2 hours. Remove from oven and allow to cool. 

- Protocol for cleaning vacuum: After use, clean the vacuum, especially the wheels, with an 

alcohol wipe to prevent dust contamination from house to house. 

- Protocol for cleaning refractometer:  

• After use, rinse the refractometer with water.  

• Pat dry with a paper towel.  

• Wipe with an alcohol swab. 

B.1.2.3  HealthDiary  

Print out sample collection forms and labels from HealthDiary. These forms will contain pre-printed 

information including the subject’s Identification number (ID), the visit (3MON), the sample type 

(NASAL, URINE, STOOL, BRSMILK, MUDUST, CBDUST), and a summary of collection 

instructions (see Appendix B.3 Figure 1, for example of completed Dust Collection Form). 

• 6 aliquot labels for urine cyrovials 

• 1 labeled for extra breast milk bottle (One is given to mother in advance at the 

birth visit) 

• 1 sample (collection) label for diaper bag, 4 cryrovial (aliquot) labels 

• 1 label for nasal sample vial, and 6 labels for cryovials.  

• 2 sample labels for the dust collection bottles with thimbles for the Most 

Used Living Area (MUDUST). 

• 2 sample labels for the dust sample collection bottles with thimbles for the child’s 

sleeping area and bed (CBDUST; see Appendix B.2 Figure 2). 

Ensure ice packs are frozen for the visit. 

Take cooler with ice packs in them to the visit. 
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B.1.3 At the home visit 

Administer questionnaires and conduct home assessment: 

 

3-Months Questionnaires/ Task 
 

HD Code 
 

Version 

Q:  Residences to 3 Months Q160RESIDEN3M 2009M11D11 

Q: Home Environment 3 Months Q114HENVQ3M 2009M09D15 

Q: Environmental Assessment RA 3 Months Q117ENVRA3M 2009M08D07 

Q: Mother's Nutrition  -- 

Q: Mother's Meds-Birth to 3 Months Q151MMED3M 2009M08D31 

Q: Mother's Vitamins and Supplements 3 
Months 

 

Q154MSUPPL3M 
 

2009M11D30 

Q: Child Health 3 Months Q127CHLTH3M 2009M09D15 

Q: Child Medications-Birth to 3 Months Q148CMED3M 2009M08D31 

TCF: Mother Breast Milk 3 Months BRSTMLK- 
F55SPECIMEN 

2008M12D15 

TCF: Child Nasal 3 Months Nasal-F37SPECIMEN 2008M12D15 

TCF: Child Urine 3 Months Urine-F61SPECIMEN 2008M12D15 

TCF: Child Stool 3 Months Stool-F37SPECIMEN 2008M12D15 

TCF: Dust Child's Bedroom 3 Months CBDust-F47SPECIMEN 2008M12D15 

TCF: Dust Most-Used Living Space 3 

Months 

MUDust- 
F47SPECIMEN 

 

2008M12D15 

TCF: Control Dust 3 Months Urine QC- 
F61SPECIMEN 

 

2008M12D15 

  

B.1.3.1 Dust samples 

• Two thimbles of dust to be collected from the most used living area and two thimbles  to be 

collected from the child’s sleeping area (bed and floor). Two dust samples in total will be 

collected (from three sites): The first sample to be taken is a combined dust sample collected 

from the bed that baby sleeps (could be mom’s bed if the baby sleeps with her) and the floor in 

the room where baby sleeps. A separate sample will be collected from the most used living area 

room floor. 

• In conjunction with the home inspection, a dust sample will be collected from a 2- metre square 

area of floor (or greater area if necessary) using the above standardized consumer model 
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vacuum cleaner fitted with a dust collection device. This area is created by four separate squares 

of 0.71 m x 0.71 m. A mask may be worn if sensitive to dust. If there is not enough carpet, 

vacuum available carpet and check thimbles to see if full. If the thimble is full, no more 

vacuuming is necessary. Record the exact area in HealthDiary. If there is not enough dust, 

continue vacuuming any other flooring type and record the exact area. 

• If the flooring is hardwood or laminate, the research assistant will vacuum as much area as 

possible with effort made to collect dust from the corners/edges of the room. 

Carpeted area > 2 square 

metres total 

 
1. Tape off 4 square areas of 

0.71 m x 0.71 m in 
separate locations.  

(not in direct sunlight) 

Hardwood Only 

 
1.Vacuum whole floor 

room to fill dust 
thimbles. 

 
Measure and record the 
exact area vacuumed in 
HealthDiary. 

Area rug < 2 square metres 

 
1. If there is an area rug less 

than 2 square metres, 
vacuum rug, check thimble. 
If there is enough dust, 
document the exact area 

vacuumed. 

 
2. If there is not enough dust, 

vacuum hardwood area of 
the room and document 
total exact area of rug and  

First dust sample will be taken from the child’s bedding and bedroom floor:  

• Don a pair of nitrile gloves. Open the pyrogen-free sampling package. Remove the bag 

containing the tweezers, and carefully open the bag at the closed end of the tweezers. Do not 

touch the open end of the tweezers. Carefully remove the clean sampler head. Using the 

tweezers, place two collection thimbles into the sampler head, taking care to ensure that 

the parts are touched only by the tweezers. Connect the sampler head to the vacuum. Place 

the tweezers back into the sterile bag/tinfoil, with the open end of the tweezers going in first, 

and set them aside in an undisturbed place. 

• Plug the vacuum cleaner into the nearest electrical outlet, using the extension cord if necessary. 

Try not to unplug household items, especially if it is something that requires being reset, such as 

a clock, microwave, or VCR. If you must unplug something, try to unplug a lamp. Do not 
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unplug refrigerators or freezers unless you are immediately able to plug it into a power strip. Be 

careful not to walk or drag the cord or vacuum through the floor area to be vacuumed (floor 

template area). 

• Pull back the bed covers and the top sheet, and vacuum the bottom sheet. 

• If the child sleeps in the parents’ bed, vacuum the half of the bed usually used by the child. If a 

pillow is used, vacuum the pillow with the case on (the outside of the case), then remove case 

and vacuum the pillow or the subsequent cover (for a total 1.5-2 minutes; use timer). If child 

sleeps in a bassinette with a plastic- covered mattress, vacuum the cover or sheet. 

• Using the same vacuum head and collection thimbles, the floor sample will be taken from 

four 0.71-metre squares that are each at different distances from the door of the room. This 

method is used when floor is carpeted. 

• If there is not enough floor space in the child‟s bedroom, add the room in which the child spends 

the next most amount of time. 

• With tape, mark four 0.71-metre squares for the sample. 

• Choose the locations for the four sampling squares in the bedroom as follows: 

o One square on any cleared area where the child is likely to play. 

o Three other squares that are away from direct sunlight, outside the main foot-traffic 

pattern, and at different distances from door (this will often not be possible). 

• Vacuum in one direction in a straight line inside the template, making 10 passes back-and-forth 

along each line until the area has been completely vacuumed. Using the same sampling filter, 

move to the next square and sample it in the same way until all four squares have been sampled. 

Do not include the area directly under the bed or wet areas. 

• Holding the vacuum head with the screws facing up, unscrew the plate, remove the thimble using 

the sterile tweezers, and estimate the mass of dust collected. If the thimble is not full, reassemble 
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and continue to vacuum in the prescribed way, adding 0.71-metre squares as needed to obtain as 

much dust as is required. For some hard or very clean floors, you will need to vacuum the entire 

floor area (e.g. hardwood or laminate flooring). Measure and record the area vacuumed in this 

circumstance. 

• When dust collection is complete, carefully open the labelled storage vial for the bedroom sample 

without touching the inside of the lid. 

• Holding the vacuum head with the screws facing up, unscrew the plate, remove the thimble using 

the sterile tweezers, and transfer the thimble into the vial. Close the vial and store it in the 

transport bag. 

Second sample from the most used living area in which child plays on the floor 

Lay out four 0.71-metre squares with tape. If an area rug is present, use this first to reach the goal of a 2-

metre square. Vacuum in the same manner as in the bedroom. Observe the thimbles for dust quantity. 

Once 2 m2 is vacuumed, hold the vacuum head with the screws facing up, unscrew the plate, remove the 

thimbles using the sterile tweezers, and transfer the thimbles into a storage vial labelled “most used living 

area” (MULA). 

Leave the room as you found it. After collecting all samples required in a room, reconnect any lamps 

or other electrical devices that were disconnected. Remake bed as you found it, replacing pillows or 

stuffed animals in the same location. If the bed was unmade, leave it unmade. Replace any items you 

moved from the bed or floor surface in order to take the dust samples. 

B.1.3.2  Volume measurements 

Use a work sheet to figure out the volume of the home (Figure 3: worksheet example).  

Do not measure individual closets 

Do not measure every room or hall way. 

For basement volumes, if possible foundation length x width x height 
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B.1.3.3 Take GPS measurements 

1) Record position while standing at the 
front door. If a signal cannot be found 
at the front door, attempt to acquire 
coordinates at a point nearest to the 
front door on the perimeter of the 
residence. 

 

2) Turn on the GPS using the ‘power’ 
button on the bottom right. 

 

3) Once the ‘tracking satellites’ screen 
comes on (takes approx 5 seconds) 
push the top right button, labeled 
“page” 4 times.  The Menu screen will 
come up and ‘Mark’ will be 
highlighted 

 

4) Push the ‘enter’ button (bottom left) 
and the coordinates will be 
displayed. 

 

5) Record coordinates on questionnaire. 

 

6) Record accuracy measurement 

7) Ensuring proper set up 

of the GPS The reading 

should be shown as: 
N   °  ’   . ” 

W               °    __’         .    ” (See picture above) 

If the reading is NOT shown as above, please correct format by the following: 

8) Go back to menu by pressing the page button, top right. 
9) Select “setup” on menu by using top left scroll buttons 
10) Press enter , lower left 
11) Select units, by using top left scroll buttons. Press enter 
12) Position format , select  enter 
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13) Select hddd 0mm‟ss.s” 
14) Press Page to get back 

 

B.1.4 After the home visit  

 Questionnaires: Check questionnaires and home assessment forms for completeness. 

 Aliquot biological samples: 

o Breast milk into 6 pre-labelled cryovials and frozen 

o Nasal samples into 6 pre-labelled cryovials and frozen 

o Stool sample into 4 pre-labelled cryovials and frozen 

o Six aliquoted (in the home ) urine cryovials to be frozen 

Freeze all biological samples at -80 degrees. 

Fill out HealthDiary forms, including processing and boxing of samples. 

 Dust samples 

Enter dust sample collection form into HealthDiary. 

Leave dust sample at room temperature until shipping every two weeks on a Monday to the Gage Dust 

Processing Centre in Toronto. 

Toronto and Vancouver will ship every other Monday 1st and 3rd week of the month. Edmonton and 

Winnipeg will ship every othe Monday 2nd and 4th week of the month. 

 Ensure all paperwork for dust sample is complete. DO NOT PROCESS THESE SAMPLES by 

“accepting these under sample processing”. 

 See full HealthDiary dust sample Standard Operating procedures for collection and shipping of 

dust. 

B.1.4.1 Health Concerns and Precautions  

For those coordinators and research assistants that may have allergy/asthma concerns with 

collecting dust, you may require the use of a mask as follows: 
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A. Educational message 

The process of vacuuming a home is very important for the study, BUT it can produce a lot of dust. 

This dust is in the air and easily breathed for approximately one hour after vacuuming. For this 

reason, we ask that any individuals in the home at the time of sampling who may have asthma be not 

present in the same room while such sampling is done. If the research assistant has asthma, 

they, too, can be irritated by the dust from cleaning. A proper dust mask worn over the mouth and 

nose can reduce this irritation and make cleaning safer. The mask does not eliminate all dusts, but 

reduces the dust you breathe by at least 95%. You could still have an asthmatic attack from this 

amount of dust, but it will be less likely than if you do not use the mask. 

B. How to use a mask 

Depending upon how dusty the job is, one mask should be usable for 3-5 cleanings. A mask that 

appears to be dirty should not be used. The mask should fit snugly over the face (beards generally 

prevent a snug fit). Exhalation should be felt through the coloured button in the front- center of the 

mask and not around the edges of the mask. The mask should be used during sampling and for 

about one-half hour afterwards if the technician stays in the rooms that were vacuumed. After use, it 

should be air-dried in the sun and sealed in a plastic bag between uses. 

C. Type of mask used: 3M - #8210 - N95 

 

B.1.5 Quality control and quality assurance 

B.1.5.1 Home visit data collection quality assurance/quality control 

A. Objective 

Home assessments performed at age three months (±15 days) for all children born to CHILD Study 

participants will be monitored for quality control for uniformity in the collection, transport, and 

storage of environmental data and dust collection. 
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B. Responsabilities of CHILD team 

Research Coordinator (RC): 

The Research Coordinator will be responsible for overall coordination of visits, QA/QC for data 

collection in the field, delivery of dust samples to the CHILD envirobank, and checking data collection 

forms are complete. 

The Research Coordinator will provide a monthly report for the national environmental teleconference, 

and address issues raised by the Research Assistants (RAs) with guidance from their national working 

group lead as needed. They may request additional resources, such as seeking advice from local health 

authorities or CMHC consultants, and serve as the liaison with these people. 

This standard operating procedure (SOP) applies to those members of the CHILD research team and 

personnel involved in the home visit. An experienced RA is one that has attended 1 or more training 

sessions and conducted 25 visits. An experienced RA can train other staff members to conduct a home 

assessment. A trained RA has attended 1 or more training session and conducted 5 supervised visits, 

and deemed competent by the experienced site trainer. See Figure 1 for certificate of training criteria 

The Research Coordinator will perform the QA/QC in data collection by shadowing the RAs and 

collecting a separate questionnaire and RA assessment form in 1 home every 50 home assessments. 

Data will be double-entered from the paper questionnaire into HealthDiary at the NCC.  

Research Assistant (RA) 

The RA will prepare for and perform the home assessment under the supervision of the research 

coordinator. They will be responsible for knowing the protocols as outlined in the manual and assuring 

that all the data are collected, dust samples are properly stored, equipment is collected, and forms are 

complete at the end of each visit. 
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C. Other CHILD study quality assurance support 

National environmental assessment Leads 

The leads will be available as a resource to the team and respond promptly to questions raised by the 

RC. They will remain in close communication with the site’s Principal Investigators (PIs) and national 

CHILD Executive and National Coordinating Centre. Communication with experts in the 

environmental field outside of CHILD will be through the national EWG CHILD leads and the Project 

Managers of the CHILD study. The EWG leads will maintain communication with the research 

coordinators through monthly coordinating teleconferences set up by the National CHILD Project 

Managers, and will be responsible for coordinating the uniform collection of environmental data. These 

duties include recommending any changes to protocols or data collection instruments for review and 

final approval by the CHILD Executive. 

Canada Mortgage and Housing Corporation (CMHC) 

Canada mortgage and housing consultants may accompany the RAs and RCs on home visits on 

occasion as part of the QA/QC process, particularly at the beginning of CHILD. They will participate 

in the monthly teleconferences. 

Other resources 

In addition, access is available to local health authorities if issues arise in the assessments that require 

such attention. CHILD will be enhanced by authorities knowing that we are working in their 

jurisdiction. Additional expertise will be sought if required from external advisors that can be accessed 

by the national environmental assessment lead, in collaboration with the CHILD Executive. Each city 

will have a named Research Coordinator from each city maintain contact with the respective National 

Environmental Lead. 
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B.1.5.2 Protocol for preparation of ‘QC Samples of Dust’ 

To be performed once every 12 homes. On average this should work out to be a dust control included 

in every batch of dust shipped to Gage every two weeks. 

a. The Research Coordinator/Research Assistant will pre-clean and depyrogenate a stainless 

steel spatula for transferring NIST dust to a standard dust collection bottle. 

b. Take the dust collection bottle with a thimble from the supply provided by Gage. This bottle 

will have a batch ID, but no other labels. 

c. Add “create a task” in HD to create the control dust sample. 

d. Print a sample ID control dust label using HealthDiary (“CNDust - 7-xxxxxx0-1”) and 

affix to the bottle. 

e. Obtain bottle of NIST (standardized control sample) dust from its storage location (room 

temperature) and bring to a designated lab bench along with the pre-labelled dust 

collection bottle and pre-cleaned spatula. 

f. Open dust collection bottle and place within reach. 

g. Open NIST dust bottle and using the pre-cleaned spatula, scoop ~200 mg (size of a 

quarter) of dust and transfer to the dust collection bottle, dumping the NIST dust into the 

thimble. 

h. Close NIST dust bottle and the dust collection bottle. 

i. Place spatula in area where used lab supplies are kept prior to cleaning. 

j. Clean working space. 

k. Prepare all other supplies needed for home visit. 

l. Pack the dust collection bottle with thimble (tightly sealed), now containing NIST 

dust labelled with “CNDust – 7-xxxxxx-0-1,” along with all the other home visit 

supplies. 

m. Bring this bottle to the home(s) visited for that day. 
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n. Open the NIST dust lid for 30 seconds while preparing the vacuum head and placing the 

thimbles in the hognose. Close lid 

o. When returning to the lab at the end of the day‟s home visits, this CNDust bottle can be 

placed in a dust box and information recorded in HD. The time of collection is the same 

as the first collected dust and the area vacuumed will be entered as “0”. 
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B.2 Figures and supplemental material 

B.2.1 Figure 1: completed dust collection form (Child’s Bedroom)  
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B.2.2 Figure 2: HealthDiary specimen collection label  

***These labels are 1” by 1” in size 
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B.2.3 Figure 3: worksheet example 

 

 

  


