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Abstract

This thesis is on the Continuous Ply Minimization problem, which is an exercise in
minimizing the effects of uncertainty. Many geometric problems have been studied
under models where the exact location of the inputs are uncertain; this adds a layer
of complexity that depends on the level of the uncertainty. The level of uncertainty
is related to the regions in which a given entity may lie. At any given time the
maximum number of these regions which overlap at a single point is called the
“ply” of those entities at that time. These problems may be simplified by assuming
the entities have low ply at specific times. Previous work has investigated the
problem of obtaining low ply at a single targeted time, in a setting where only
single entity can be probed each time step. It was shown that, given a long enough
period of time, ply that was within a constant factor of the minimum ply that could
be obtained at the target time. Continuous Ply Minimization works under a similar
system, but we are interested in maintaining low ply over an entire interval of time.
In order to prove results about this problem we introduce several new tools, which
aid our examination. We then produce an algorithm that can maintain constant
factor competitiveness with any algorithm’s average ply, as long as the entities are
not moving. This algorithm relies on maintaining constant competitiveness with a
new notion, namely the “optimal blanket value” of a given set of entities. In the
case where the entities are moving, if we are given the maximum optimal blanket
value, then we can produce an algorithm that maintains ply that is no worse than a
constant factor more than it.
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Preface

The body of this thesis is based on original, unpublished research, which was con-
ducted with my co-supervisors David Kirkpatrick and Will Evans.
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Chapter 1

Introduction

Motion related problems have long been of interest to the Computer Science com-
munity, and also to members of related fields. There are many different areas these
problems might fall into. The area of motion planning deals with problems related
to calculating routes for agents to follow, from an initial position to a goal position,
without colliding with obstacles [13]. Kinetic Data Structures maintain informa-
tion on certain properties of a point set, whose members are moving [11]. The
simplest versions of these problems rely on knowing the true locations of certain
objects at all times. In practice, this is often not feasible. Frequently we base our
perception of a given environment on data that was collected in the past. There is
no way to know if the situation has changed since the data was collected. How-
ever stale data are sufficient for many real life tasks. For example, when crossing
the street we need to look both ways, but we do not continue to check once it has
been established that the street is empty. This is because we know that cars have
bounded speed, and thus if a certain stretch of road is empty we conclude our path
will remain unobstructed for the near future. Another example, of using stale data
to predict future events, is an Elo-type rating system, used to quantify a player’s
(or team’s) strength in competitive games (e.g. chess). Stronger players generally
have higher scores, and so one may reasonably expect that in a tournament setting
the player with the highest rating will win. However such a rating system is based
on past performance, and it doesn’t take into account changes in a player’s strength
over time. Gains may be made due to more experience and practice, on the other
hand a player’s strength may drop due to time spent without play. There are also
the uncertainties that are inherent in any such system, as a participant’s play on any
given day may be affected by a myriad of factors, and is not completely regular.
However, there generally are bounds on how far off the rating can be, and the more
games the rating is based on, the more accurate it will be. A complete beginner
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has no hope of beating a master. Thus, as long as one has a way to measure the
uncertainty associated with a given ranking, one can think of organizing a world
championship as the problem of calculating which players could potentially be
ranked number one (by looking at their ranking, and then accounting for the uncer-
tainty). Inviting all of those players, and holding the tournament, then resolves the
uncertainty, and gives you a precise ordering at that specific moment in time. This
example illustrates that our methods may be more generally applied, even though
we will mainly focus on the idea of physical entities moving in space.

As the number of autonomous devices being used commercially, personally,
and recreationally increases, the interest in algorithms which deal with the inter-
actions between such devices increases. Many of these devices are equipped with
signalling equipment so that the device can transmit its precise location to some
distant operator. As these entities move it may be infeasible to keep track of the
exact location at all times, especially if your application requires several such de-
vices. Thus, if one is doing computation using the location of these entities, there
needs to be some sort of protocol to decide which entity’s location should be up-
dated at a given time step, to ensure the computation continues smoothly.

1.1 Problem Overview

In this paper we consider the problem of “Continuous Ply Minimization”. It is an
abstraction of the kind of problems discussed in the opening. The problem is based
on the unpredictable movement of a group of entities. We are not instantaneously
alerted to the movement of any given entity, and thus cannot keep accurate data
on the locations of all entities. However we can probe any given entity to receive
updated information on its location at any time step, but only for one entity per
time step. We want to ensure that no group of entities becomes too clustered. To
that end we want to probe the entities in such a way that no matter how they have
moved since being probed, the maximum number of entities that could be at the
same point, which we refer to as the ply, is small.

It may not always be possible to achieve query patterns which lead to “optimal”
overlap. Thus we will often aim to be within a small factor of the best possible
behaviour of any algorithm.
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1.2 Paper Overview

In the next chapter we review some previous work. This includes online algo-
rithms, data in motion, and previous work on the ply minimization problem. On-
line algorithms receive new data in the middle of their computation. Data in motion
is a model for dealing with information which changes with time, and figuring out
what is important to update and what is not. Previous work on the ply minimization
problem has shown that good competitive ratios can be achieved, at pre-specified
time steps.

In the third chapter we set up the model that we will use in our discussion of
this problem. This model will overview how our entities can move, how we query
their locations, and how we measure the effectiveness of our algorithm.

In the fourth chapter we examine a simplification of the problem where none
of the entities move. We refer to this as the “Static Case”. The lack of motion is
known to the algorithm, but not to an observer, so we treat the uncertainty intervals
the same way. With this restriction we create an algorithm that maintains ply that is
no worse than a constant factor more than the worst ply of any algorithm, over the
same time period. Additionally we show that this ply is within a logarithmic factor
of the best possible ply that could be achieved at any specific time in the interval.

In the fifth chapter we discuss how the problem changes when we remove the
static restriction. We show that a tweaked algorithm, which assigns entities to be
probed in “windows” of time, rather than at specific steps, maintains a relatively
good ply. Unfortunately this algorithm relies on having an oracle that gives it some
information about the “crowdedness” of the entities.

We conclude with a review of our results, and ideas for future work. This
includes ways to potentially improve on the result in chapter five to give a more
general algorithm for continuous ply minimization.
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Chapter 2

Related Work

There are many different ways uncertainty manifests itself in computational prob-
lems. We may be interested in making decisions which will have consequences
for a long period of time, before all of the information about the behaviour of our
system during that time is available, as is the case with online algorithms. It may
be expensive to acquire data, consequently we want to acquire only the data that
is crucial to getting an accurate result. The cost of acquiring data comes in many
forms, it may require physically moving a device some distance, or procuring more
expensive equiment, or the expenditure of some other resource. In the Ply Mini-
mization problem the cost associated with acquiring of data is the time it takes to
probe an entity. Whatever the cause of the uncertainty, we want to deal with it as
gracefully as possible. The algorithms for these kinds of problems are often hard to
analyze. Algorithms that know what data to acquire can perform better than “fair”
algorithms that may make useless queries searching for the relevant data.

2.1 Performance Measures for Online Algorithms

There is a large amount of previous work on problems that deal with data that is
updated in real time. Algorithms that have to deal with data as it is produced, rather
than analyzing data after it has been generated, are called “online algorithms”. A
canonical example, from the area of computer systems, is paging. When software
requests data that is stored on a hard drive, or some other storage medium, the op-
erating system needs to decide what data should be kept in main memory and what
should be removed to make room for the newly requested data. Reading data from
a hard drive takes a (relatively) long time, and thus the operating system wants to
keep data in memory if it will be accessed several times, in order to speed up the
program. However the operating system does not know what data will be needed
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again in the future, and thus it cannot make optimal choices about which data to
keep. This is similar to our problem, since we do not know ahead of time which
entities will stay close together, and which will spread apart. If we did know the
entities trajectories calculating the optimal query pattern would be possible. Unlike
the paging problem, in the continuous ply minimization problem the algorithm has
control over what data it receives at each time step, through its probes.

There are many different ways to measure the performance of Online algo-
rithms. Reza Dorrigiv and Alejandro López-Ortiz reviewed several of the most
popular methods in their 2005 survey [7].

The most commonly used measure of performance for online algorithms is the
“Competitive Ratio”. This measure compares the performance of the algorithm to
the performance of the “optimal algorithm”. The “performance” measure depends
on some concept of cost, which will depend on the specific application. For exam-
ple in the case of paging the cost of a given algorithm is usually formulated as the
number of cache misses, that is the number of times a program tries to access data
not in main memory. Let A (σ) be the cost of the algorithm A on input σ , and
OPT(σ) be the cost of the optimal algorithm. Then A is C(n)-competitive if and
only if

C(n) = max
|σ |=n

{
A (σ)

OPT(σ)

}
.[7]

There can be several problems with using such a model of comparison. One
specific problem is in deciding what the optimal algorithm is. Often, in order to
make that decision, more power it given to the optimal algorithm. For example, the
optimal algorithm may be one that is clairvoyant, and knows all the data it needs
ahead of time. One has to balance giving power to the optimal algorithm to make
it easy to describe and argue algorithmic costs for, with making sure it remains
reasonable measuring stick for other algorithms’ performance.

2.2 Data in Motion

In his 1991 PhD thesis Simon Kahan studied “Data in Motion” [12]. Data in Mo-
tion represents a broad class of problems, in which you are trying to answer queries
about moving objects. The problem is exacerbated by the fact that the position of
objects are not automatically updated, instead one has to request their current lo-
cation. The main premise of the thesis is that as long as the queries you want to
answer do not require the exact location of every object you do not have to update
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all of their locations. Instead you can probe objects based on whether or not their
true value will affect the answer to the query. For example if the query is ”What
is the maximum of a set of integer valued variables?”, any variable whose range
of possible values is bounded above by an integer that is smaller than the mini-
mum bound on another variable could not possibly be the current maximum, and
therefore can be ignored in responding to the query. The trade-off this encourages
is sacrificing potentially longer query times in future, if more elements need to be
probed, to expedite the query that is being done at the moment. Whether or not this
trade-off is worth while depends on your model of computation, and how expen-
sive probes are compared to the computation required to determine whether or not
they are necessary.

2.3 The Black Box Model for Kinetic Algorithms

Many classic geometric structures on point sets, such as Convex Hulls or Delau-
nay Triangulations, are also interesting structures to study when the point set is in
motion. The focus of Kinetic algorithms is the problem of how to maintain these
structures as the entities move[11]. One can reduce the amount of computation
necessary, by using insight on what changes can occur as time passes. These prob-
lems were first examined with the assumption that the motion of the objects was
known ahead of time. In the “Black Box Model” the algorithm does not know the
trajectories of the points ahead of time, but gets updates at regular intervals. Us-
ing the “Black Box Model” makes it harder to predict when changes will occur in
the structure. The “Black Box Model” has been used in the study of many differ-
ent kinetic problems, including: Convex Hulls and Delaunay Triangulations [5],
Compressed Quadtrees [4], 2-Centres [6], and Spanners [10].

2.4 Calculations on Uncertain Point Sets

In “The Post Office Problem on Fuzzy Point Sets” Franz Aurrenhammer, Gerd
Stöckl, and Emo Welzl study two different objectives for partitioning the plane, so
that each partition represents a section of the plane which is closest to a certain en-
tity. Their model is very similar to the one used for Voronoi Diagrams, except they
look at uncertain point sets, where an entity’s location may be anywhere within
a given disc [2]. The first objective they consider is answering queries about the
“Probably-closest Disc”. The goal, in this case, is to partition the plane in to re-
gions, one for each entity, so that any point in a given entity’s region is most likely
closest to that entity, rather than to other entities. In order to calculate which entity
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a point is closest to Aurenhammer et al assume that the position of an entity is rep-
resented by a uniformly distributed random variable over the disc corresponding to
that entity. Aurenhammer et al show how to calculate the probably-closest entity
for a given point, and prove that the resulting regions are star-shaped, as long as
the discs are disjoint. They then move on to “Expected-closest Disc”. In this case,
an entity’s region contains all points whose minimal expected distance to an entity
is to the entity ei. They show that solving this problem is equivalent to finding a
power diagram, for the expected minimal distances to the entities. Thus the solu-
tion consists of convex polygons, which can be constructed in O(n logn) time, and
O(n) space.

Maarten Löffler, and Jack Snoeyink showed that, with O(n logn) prepossessing
on a set of uncertainty discs, when given the location of points within correspond-
ing uncertainty discs one can compute Vornoi diagrams in linear time [14]. These
results are originally presented under the assumption that all the discs have the
same radius, and are non-overlapping. However they provide an extension showing
that as long as the ply of the discs is bounded the algiorithm still works, although
the constant in the time bound of the algorithm is increased by a constant.

Maarten Löffler, and Marc van Kreveld showed how to calculate the largest
and smallest possible convex hulls of a set of entities that have uncertain locations
[15]. They examine several different classes for the uncertainty regions, including
line segments, circles, and squares, giving polynomial algorithms for calculating
the largest and smallest convex hull in each case.

2.5 Ply Minimization

William Evans, David Kirkpatrick, Maarten Löffer, and Frank Staals wrote a paper
on a ply minimization problem, in which the algorithm only cares about achieving
the lowest possible ply at a single target time [8][9]. This is contrasted with our
goal of maintaining consistently low ply over an entire time interval.

The adversary in the Evans et al paper is a clairvoyant algorithm, which uses
the available time steps as effectively as possible. Hence it only probes during
the n steps prior to the specified time step, because it has no need to probe any
entity more than once. Evans et al showed that even if one knew the location of
the entities, calculating the optimal query pattern for a single target time, is NP-
Hard. Thus, their adversary is a relatively strong algorithm. The algorithm they
constructed to solve their problem queries all entities, then recurses on the half of
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the entities which will have regions that cover points of high ply at the targeted
time. In this way Evans et al [8] focused their queries on high-priority entities. The
recursion requires you have twice as much time to query as you have entities. If
there is enough time to run the recursion, then their algorithm ensures a ply which
is within a constant multiple of the optimal ply [8].

In previous work the algorithm could project forward to see what the ply would
be at the target time, if no more probes were made. The algorithm would try to af-
fect the final sizes of the entities’ uncertainty regions to produce lower overlap.
After each query it can see what the effect will be on the final situation, and update
its plan. This allows it to ignore entities which it knows will not participate in a
large overlap at the target time. The problem we examine in this paper is different
because there is no one single time to project forward to. We are worried about
the size of the entities’ uncertainty regions at every time step. This means we must
choose queries that will be most effective across all future time steps.

2.5.1 Recurrent Case

The recurrent case studied in Evans et al’s paper [8] was a step in-between their
“One-shot” problem, and our continuous one. Instead of trying to minimize the
ply at one specific time, the recurrent case aims to minimize the ply every time a
certain number of time steps have elapsed. The authors note that if the gap between
times of interest are long enough (i.e. at least twice the number of entities) one can
simply treat every target time as a separate instance of their one-shot problem.
They conclude, in the case where the algorithm doesn’t have enough time just
to run the entirety of their algoirthm, by alternating between “Round Robin” and
their method for minimizing ply they are able to get a O(

√ n
τ
) competitive ratio

with the optimal ply (in one dimensional space, the general bound depends on the
dimension of the space), where τ is the length of the gap between probes. Note that
as τ approaches 1, the ratio approaches

√
n. In chapter four we show that Round

Robin’s ply is O(
√

n∆).
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Chapter 3

Model

In this chapter we outline the model we use to investigate the Continuous Ply Min-
imization problem. We work with a set of entities that have real-valued locations,
and these entities move unpredictably, but with bounded speed. To maintain a idea
of how the entities are located, we probe a single entity at each time step. The aim
of this process is to minimize the overlap between the potential locations of the set
of entities; we measure this overlap as a quantity known as “ply”. It is impossible
to use worst case analysis to judge the effectiveness of a given algorithm, since
if the entities are tightly packed high ply is unavoidable. Thus, we need different
tools to deal with competitiveness. We discuss competing against other algorithms,
and introduce the notion of “intrinsic ply” as another measure to compete against.

3.1 Movement Model

Let E = {e1, ...,en} be a set of entities that we are maintaining information about,
specifically their current location. In this paper we restrict our attention to a one
dimensional universe, that is the entities are living on the real line, R. Issues that
arise from dealing with the continuous version of the ply minimization problem
appear in this simple case. We believe the findings should extend to higher dimen-
sions.

We need to introduce notation for discussing the position and movement of the
entities in E . First we describe the notation for a given entity’s position at a specific
time.

Definition 1. li(t) is the location of entity ei at time t.

Note that since we are dealing with a one dimensional universe li(t) ∈ R.
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Next we discuss how entities move. Each entity’s speed is less than 1
2 unit per

time step. This model is universally applicable, since all objects have bounded up-
per speeds. Thus one can simply scale the unit of distance until the upper speed
is 1

2 per unit time. In the extreme case any object’s speed is theoretically bounded
by the speed of light. More practically, the maximum speed of a given device is
usually well studied, and, unless acted on by outside agents, the device will stay
within expected operating parameters.

The interactions between many different entities will be crucial in several of
our arguments. It will be important to have ways to talk about the distribution of
those entities. One notion we will use is the “diameter” of a set of entities, which
is simply how far apart the extreme entities of the set are.

Definition 2. The diameter of a set of points S is the furthest distance between two
points in S. More formally

diameter(S) = max
x,y∈S

d(x,y)

Where d(x,y) is the Euclidean distance from x to y.

The diameter of a set of entities at a given time is the diameter of the set of
those entities’ locations at that time.

There are many ways this model might be varied to translate better to specific
applications. Evans et al [9] study how their results change when there are several
classes of entities, each of which have different bounds on their speed. There are
many other variables that may be considered such as a bounds on acceleration, or
turning radius. Many real life devices, such as cars, have bounds on their accel-
eration. If there was extra information about the direction and magnitude of the
entities motion at a given time, knowing an acceleration bound would allow the al-
gorithm to reduce its uncertainty about the entity’s location at a future time. These
are all interesting avenues for future work.

3.2 Probe Model

We assume that at time zero we have full knowledge of where all the entities are.
At this point in time the entities start to move unpredictably, but with bounded
speed, from their starting position. The interval that contains all of potential loca-
tions of an entity is referred to as the “uncertainty region” of ei. The uncertainty
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region grows 1
2 unit in each direction at each time step, thus an entity’s uncertainty

region’s volume is the difference between the current time and the last time the
entity was probed.

In order to keep the ply of the uncertainty regions low, we need to be able to
reduce the size of the uncertainty region of a given entity. In our model that tool
is a “probe”. Probes are instantaneous queries of a given entity’s current location.
This means if we probe an entity, ei, at time t, we receive li(t). It is important to
note for any given time we consider the uncertainty region of an entity at that time
to be the uncertainty region before we make the probe, rather than after. Hence all
entities have uncertainty regions of length at least 1 at all times (since it has been
at least a time step since they’ve been probed).

Definition 3. For any given entity ei and any time t, pi(t) is the last time prior to t
that ei was probed.

Definition 4. The uncertainty region associated with entity ei at time t, ri(t), is
the open ball centered at the location of ei when it was last probed, with diameter
t− pi(t). More formally:

ri(t) = (li(pi(t))−
1
2
(t− pi(t)), li(pi(t))+

1
2
(t− pi(t)))

Ignoring the delay between choosing the entity to probe and receiving the cur-
rent location of the entity is reasonable as long as the time it takes to acquire the
entity’s location is short when compared to a single time unit. If it is not, such as
when working with entities which are spatially distant from the computation de-
vice, it may be necessary to compensate for the delay between choosing an entity
to query and receiving the requested information. It may also be interesting to con-
sider cases were some entities can have their location updated more rapidly than
others. It is important to note we ignore the time it takes for the computation to
decide which entity the algorithm wants to probe. Again, unless the unit of time is
very small, this delay is negligible.

3.3 Ply

The notion of ply is at the heart of our discussion. It is the measure we use to
determine how well we are maintaining a clear picture of the current distribution
of the entities. Briefly, the ply of a set of entities at a given time is the maximal
overlap between those entities’ uncertainty regions at that time.
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Definition 5. Given a set of intervals I the depth of a point p at time t, δI (p, t),
is the number of intervals of I which overlap that point. That is δI (p, t) = |{I :
p ∈ I, I ∈I }|.

Definition 6. Given a set of intervals I the ply of that set of intervals at time t,
ρI (t), is the maximum depth of a point, over all points p ∈ R, at time t. That is
ρI (t) = maxp(δI (p, t)).

Previous work by Evans et al introduced this notion of ply [8]. We will often
refer to the ply of a set of entities, by which we mean the ply of the associated
uncertainty regions. When the set of intervals is obvious from context it is omitted
from the notation.

3.3.1 Competitiveness

There are many different ways we could approach competitiveness. The simplest
is to use worst case analysis. As was mentioned at the beginning of the chapter
worst case analysis does not work well for this problem. This is because, in the
case where all n entities are at the same location, the ply will be n regardless of the
sequence of probes. Instead we rely on looking at the competitive ratio between
our algorithm’s ply and the minimum ply any other algorithm could achieve. The
first quantity we consider is the minimum ply an algorithm can achieve at a spe-
cific point in time. This quantity is unfairly low, since it is achieved once, and
not maintained over the entire time interval. Constructing a bound on this quantity
relies on the notion of “uncertainty realizations”. An uncertainty realization is a
set of intervals, which theoretically could be the uncertainty regions for the enti-
ties, given only their current positions. Note that the set of intervals which could
actually be the uncertainty regions for a given set of entities is much smaller than
the set of uncertainty realizations, as the actual uncertainty regions depend on the
trajectories of the entities.

Definition 7. For a set of entities E = {e1, ...,en} a set of open intervals A =
{A1, ...,An} is an uncertainty realization of E at time t if the following three prop-
erties hold:

1. li(t) ∈ Ai

2. |Ai| ∈ Z+

3. |Ai| 6= |A j| if i 6= j

12



Note that, as discussed above, |ri(t)| is never zero, so it makes sense for uncer-
tainty realizations to be restricted to intervals which have positive volume.

Definition 8. For a set of entities E = {e1, ...,en}, A (E ) is the set of all possible
uncertainty realizations.

When the set of entities is clear from context it is omitted.//
Our surrogate for the lowest ply that can be achieved at a specific time is called

the “intrinsic ply” at that time. Each uncertainty realizations has a ply. The intrinsic
ply is the minimum ply that could be achieved by an uncertainty realizations.

Definition 9. For a set of entities E = {e1, ...,en} the intrinsic ply at time t, ∆(t) =
minA(ρA(t)), where A is an uncertainty realization in A (E ).

One can restrict the size of the uncertainty regions to those of size at most n,
since reducing the size of a region can never increase ply. This is useful because
it reduces the number of realizations one has to consider when calculating ∆(t).
This follows fairly directly from the fact that larger uncertainty regions can only
increase the ply.

Theorem 1. When calculating ∆(t) we only need to consider uncertainty real-
izations which use intervals whose sizes are at most n. That is minA(ρA(t)) =
minÃ(ρÃ(t)), where A is in in A (E ), and Ã = {A : A ∈A ∀Ai ∈ A |Ai| ≤ n}.

Proof. Assume to the contrary there is no uncertainty realization for which all the
intervals have size at most n whose ply is the intrinsic ply. Let A be an uncertainty
realization which does achieve intrinsic ply. Note that A contains at least one inter-
val Ai for which |Ai|> n.

We can transform A into a set which contains no intervals of length greater than
n with the following process. First let A

′
= A. For any Ai in A such that |Ai| > n

there exists an interval A
′
i, such that |A′i|= j < n, A

′
i ⊂ Ai, li(t) ∈ A

′
i and no other Ak

in A
′
has length j. Set A

′
= (A∪{A′i})\{Ai}, and repeat until there are no intervals

of length greater than n.

For any point p, the depth at that point for A
′

is at most as large as in A, that
is δA(p, t) ≥ δA′ (p, t), since the only possible change is that some intervals which
used to cover p no longer do. Hence A

′
realizes the intrinsic ply, and contains

intervals whose volume is at most n. This is a contradiction, and thus ∆(t) is always
realized by an uncertainty realization which contains no interval whose volume is
greater than n.

13



Note that ∆(t) is a measure which is oblivious to the past or future behaviour
of the entities. That is the measure only depends on the current location of the
entities. In this way it has a lot fewer restrictions on it than an algorithm does. An
algorithm has to make decisions based on the present situation, but its worst ply
over a time interval depends heavily on what has happened before that time step,
and what happens after that time step, over the course of the interval.

In the discussion of how well an algorithm can do with respect to the intrinsic
ply, it is important to have an example of a point set for which it is hard to maintain
low ply. Our canonical example is “arithmetically spaced” points. The intuition
behind this example is to force all of the entities as close together as possible while
still having low intrinsic ply. This makes sense, since if the entities are close to
one another it will be harder to probe the entities so that their uncertainty regions
remain pairwise independent. Our example is constructed in such a way that the
intrinsic ply is one, regardless of the number of entities used. Consider building
an example in terms of the uncertainty realization we assign to the entities in the
example. Each entity is thought of as corresponding to a “brick” of length equal
to the uncertainty region it is assigned in the optimal uncertainty realization. Since
we are trying to force the entities as close together as possible, without causing
overlap between the regions in the uncertainty realization (as the intrinsic ply will
be one) we should have the uncertainty regions all have volume n or less, and have
no gaps between the entities’ uncertainty regions. However it is not obvious what
order the uncertainty regions should appear in. We decided to place the entities in
order of increasing uncertainty region volume, the smallest is placed at the origin,
and the larger regions are placed to its right. The example is described formally
below.

Definition 10. For any positive integer n, let A(n) = {Ai} be the set of n open
intervals such that the following conditions hold for all positive integers i less than
n:

1. A1 is the interval (0,1).

2. Ai has volume i, that is |Ai|= i.

3. The right endpoint of Ai is the left endpoint of Ai+1, that is supAi = infAi+1.

A set of n entities are “arithmetically spaced” if the entity ei is at the midpoint of
the interval Ai.

It is now straightforward to confirm that our construction leads to the ply we
intended.
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Lemma 2. A set of arithmetically spaced entities has intrinsic ply one.

Proof. By definition the set of intervals A(n) described in the definition of arith-
metically spaced entities is an uncertainty realization of said entities. By definition
each region shares its endpoints with its immediate neighbours, thus no regions
overlap. Thus A(n) has ply one, and hence ∆ = 1.

We are also interested in situations where the entities have larger intrinsic ply
values than one. We have an analogous concept which represents how tightly
packed entities can be if the intrinsic ply is higher than one. We again think about
the entities as “bricks”, which are the length of the uncertainty region assigned to
it. Consider the smallest 2∆ entities. Each of these entities can be paired with an-
other entity, whose assigned uncertainty region has volume at most 2∆, so that the
combined volume of their uncertainty regions is 2∆+ 1. Thus all of the first 2∆

entities can be placed in the interval (0,2∆+ 1). We repeat this process for each
subsequent group of 2∆ entities, creating “blocks” of length (4i− 2)∆+ 1. Thus
the size of the blocks follows an arithmetic sequence. We refer to these sets of
entities as ∆-arithmetically spaced entities.

Definition 11. For any positive integer ∆ define the set of intervals A1(∆) to be:

A1(∆) = {(0, j) : 1≤ j ≤ ∆}∪{( j,2∆+1) : 1≤ j ≤ ∆}

We will define the rest of the Ai(∆)’s recursively. Let mi be the supremum of inter-
vals in Ai(∆). Then mi is also the infimum of intervals in Ai+1(∆). Note m0 = 0.
Thus, since each Ai(∆) has diameter (4i− 2)∆+ 1, the value mi is 2i2∆+ i. Let
Ai

j = (mi−1,mi−1+2i∆+ j) and Ai
j+∆

= (mi−1+2i∆+ j,mi), for j = 1, ...,∆. Ai(∆)
is the set of all of these intervals. That is

Ai(∆) = ∪2∆
j=1Ai

j

Let
A(n,∆) =

⋃
i≤ n

∆

Ai(∆)

A set of n entities are “∆-arithmetically spaced” if the entity e2∆i+ j is located at
the midpoint of Ai

j.

Note that our definition for A(n) corresponds to the definition of A(n,1).

Next we argue that the name ∆-arithmetically spaced entities makes sense,
since their intrinsic ply is in fact ∆. This result follows directly from our definition.

Lemma 3. A set of ∆-arithmetically spaced entities has intrinsic ply ∆.
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Figure 3.1: This diagram illustrates how the regions are layed out for ∆-
arithmetically separated points.

Proof. By definition the set of intervals A(n,∆) described in the definition of ∆-
arithmetically spaced is an uncertainty realization of the given set of uncertainty
regions. In order to show the ply of A(n,∆) is ∆ we will argue that the intervals
in any given Ai(∆) do not overlap with intervals outside of Ai(∆), and that they
overlap at most ∆−1 of the other entities in Ai(∆).

Note that, by construction, the union of the intervals Ai
j and Ai

∆+ j is the interval
(mi,mi+1), minus the point where they meet, since the point at which they meet is
in neither interval. Thus no intervals in Ai(∆) overlap with entities from Ak(∆), for
any k 6= i. Also note the intervals in the pair are non-overlapping. There are ∆ pairs
of intervals which do not overlap in Ai(∆) (since there are 2∆ entities total). Each
point in the interval is overlapped by at most one of the two intervals in each pair,
thus any point is overlapped by at most ∆ intervals, and the ply is at most ∆. The
point mi +

1
2 is in all of the first ∆ intervals, hence the ply is at least ∆. Since we

have matching upper and lower bound, the ply of Ai(∆) is ∆.

Since none of the intervals overlap with intervals from other Ai(∆)’s, and the
ply in any given Ai(∆) is ∆ the set of all the intervals, A(n,∆), has ply ∆.

However, we will find that no algorithm can compete favourably with the in-
trinsic ply, because it is a short sighted measure, which ignores the side effects of
minimizing ply at one specific point in time. ∆-arithmetically spaced entities will
provide an example in which no algorithm can maintain ply that is a constant factor
of ∆(t) at all time steps (proof is provided in chapter four).

We will also compare our algorithm’s performance directly to that of other
algorithms. When comparing against other algorithms it no longer makes sense
to compare their plies at each time step. An algorithm may have behaviour that
makes their ply very low at a certain time step, while it is much higher at another
time step. One does not want to conclude an algorithm is bad simply because one
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evaluates its behaviour at a time when the other is doing much better than it would
at any other given time step. To that end we will argue about the maximum ply
algorithms produce over some time period.
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Chapter 4

Static case

The ply minimization problem can be hard to approach in its full generality. There
are two main sources of difficulty in constructing a competitive algorithm for this
problem. The first snag is the uncertainty associated with the movement of the
entities. This uncertainty obscures which entity is best to probe, as a probe’s ef-
fectiveness depends on how close the entity we are probing is to the neighbouring
points. The second problem is the fact that we are restricted to probing at most
once per time step. In order to gain insight into the techniques and tools we use
in the general case, we first consider a simplification of the problem which focuses
our attention on this second difficulty. That simplification is the “static case” in
which no entities are moving. More formally, in the static case entity ei’s position
li(t) is a constant, and does not depend on the value of t. Because of this fact we
drop the time from the expression and use li to denote the position of ei at any time.

In the static case there is no longer any uncertainty associated with the move-
ment of the entities. This constraint means we have a clear picture of each entities’
location, and hence of a probe’s effect. Specifically, we can calculate what an en-
tities uncertainty region will be at each time step, based on our probe sequence.
Thus, an adversary that knows the trajectories of the entities no longer has a com-
petitive advantage. From the known location of the entities one could construct an
algorithm which follows the optimal probe sequence. However, it is not clear how
one would determine the optimal probe sequence. It seems reasonable to surmise
that determining the optimal probe sequence would be hard, as in the one-shot case
calculating the optimal probe sequence is NP-hard [8].

The main problem is how to choose an entity to probe based on the known
locations of the entities and their current uncertainty regions. To approach this
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problem we first analyze how well an algorithm can maintain low ply if it has no
information about the position of the entities, other than that they are static. Round
Robin is a prime example of such an algorithm. We will argue that Round Robin’s
performance is the best one can get from an “oblivious” algorithm. We show that
Round Robin manages to maintain a sub-linear competitive ratio, an interesting
result for such a simple algorithm.

We then consider how well algorithms in general can perform as a function
of the intrinsic ply, ∆. Although a constant competitive ratio can be achieved at
specific points in time, as discussed in the previous work [8], trying to maintain
low ply at all times is impossible. Any algorithm that runs for a sufficiently long
period of time will have average ply that is at least a log

( n
∆

)
factor greater than ∆,

for certain sets of entities. Finally, we construct an algorithm which probes enti-
ties with frequency proportional to a measure of their “closeness” to other entities,
which we call their “x-blanket”. The algorithm, which we call the “Rounded Blan-
kets algorithm”, achieves ply O

(
∆ log

( n
∆

))
. More importantly, it achieves constant

factor competitiveness with any other algorithm. This shows the “optimal blanket
value” of a given set of entities is indicative that set of entities’ optimal ply, in the
static case. We use the Rounded Blankets algorithm as a guide for how to build an
algorithm in the dynamic case.

4.1 Oblivious Algorithms

We begin our investigation by assuming our algorithm stores no information. Cru-
cially this means it does not remember an entity’s location after it probes that entity.
We refer to such algorithms as “oblivious” algorithms. All an obvious algorithm
can do is partition the time steps, and then assign a set of time steps from the parti-
tion to each entity. This assignment corresponds to the decision to probe the given
entity at each time step in its assigned set. We call an assignment of entities to
these partitions a “labelling” of the entities. The only thing that affects this parti-
tion is the number of entities, so any particular algorithm has the same behaviour
on every set of entities that have the same cardinality. However, the resulting ply
will be vastly different depending on the locations of the entities. We cannot get
constant factor competitiveness with an algorithm which knows where the entities
are. This can be seen by considering a situation where certain entities are close
together, and other entities are spread out, then the ones that are close together re-
quire more probes to minimize ply. The question we aim to answer is how good a
competitive ratio can we achieve.
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Observation 1. Each oblivious algorithm can be described by its partition of the
time steps P = {P1, ...Pn}. At any time t the entity corresponding to the parti-
tion Pi has some gap since the last time it was probed. More formally this gap is
gi(t) = min{t−τ : τ < t, τ ∈ Pi}. The volume of the uncertainty region of the entity
associated with Pi will be gi(t), at time t. Thus finding the worst case labelling is
equivalent to placing uncertainty regions that correspond to these gaps such that
the resulting ply is maximized. Note that unlike the intrinsic ply these uncertainty
regions must be centered on their associated entity’s location.

Round Robin is a simple algorithm, and hence is a nice place to start. Round
Robin is an oblivious algorithm that partitions the time steps evenly into the sets
Pi = {z : z ≡ i (mod n)}. This means each entity is probed periodically, with a
period of n time steps. We show that Round Robin gives the best worst case per-
formance for an oblivious algorithm. We then move on to arguing that it always
manages to maintain ply which is O(

√
n∆), for any set of n static entities. We

then show that, for any given ∆, a set of ∆-arithmetically spaced entities will cause
Round Robin to have ply Ω(

√
n∆) at least half the time in the worst case, showing

the above bound is tight.

First we show that Round Robin is the “best” oblivious algorithm. By best we
mean its worst case ply for a given set of n static entities and time t is no worse than
any other algorithm’s worst case ply for the same set of entities. The worst case
behaviour is understood to be taken over all labellings of the entities. Note that
Round Robin probes all entities with the same period, thus at any given time the
entities’ uncertainty regions have volume one through n. Therefore, unlike with a
generic algorithm, the worst case assignment of uncertainty regions to entities may
be the same at each time step. However, these uncertainty regions will be produced
by a different labelling at each time step.

Theorem 4. For any set E of static entities, and any oblivious algorithm A , at any
time t there is a labelling of the entities such that A has ply greater than or equal
Round Robin’s worst possible ply at t over all potential labellings of the entities.

Proof. Let ρRR be Round Robin’s worst ply at t, over all possible labellings of E .
Note that as Round Robin’s worst ply is the same at all times it doesn’t depend
on t, and thus using just ρRR to represent its worst ply makes sense. Let LRR be a
labelling of the entities that causes Round Robin to have ply ρRR at t. Since we are
interested in the worst case, we may assume that Round Robin is being run with
labelling LRR. For clarity I will refer to the uncertainty region generated by Round
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Robin for entity ei at time t as “rRR
i (t)”. Similarly those produced by A will be

denoted “rA
i (t)”. For simplicity assume t > n, there will be a discussion about how

to deal with smaller time steps at the end of the proof.

Let Eρ(t) = {ei, ...,eρRR} be a subset E which is a minimal set that realizes
Round Robin’s worst ply at t. That is |Eρ(t)| = ρRR, and all the rRR

i (t) for ei in
Eρ(t) contain a common point. Assume the entities are numbered in such a way
that |rRR

1 (t)| > |rRR
2 (t)| > ... > |rRR

ρRR
(t)|. Recall Round Robin probes entities once

every n time steps. Thus we know that the earliest the entity ei was last probed
is the time step t− n+ i, since all the entities have been probed in the last n time
steps, and the entities e1, ...,ei−1 were all last probed before it. Thus |rRR

i (t)| ≤ n− i.

We will now discuss how to label the entities so that A gets ply at least ρRR

at t. By the definition of oblivious algorithms we have n sets of probe times. Let
these sets of time steps be called P1, ...,Pn. Without loss of generality we can
assume that the partitions are ordered by the length of the gap since their last time
step prior to t. That is P1 has the largest gap, and Pn has the smallest. Note that
P1 cannot contain any of the time steps {t−n+1, ..., t−1}, since there are n−1
sets which all must contain times between P1’s last time before t and t itself. By
induction Pi cannot contain any of the time steps {t−n+ i+1, ..., t−1}. Assign
Pi to ei. Then |rA

i (t)| ≥ n− i. Label the remaining entities arbitrarily. At time t,
the probe sequence of A leads to uncertainty regions such that |rA

i (t)| ≥ |rRR
i (t)|

for all i≤ ρRR. Since for these entities the associated uncertainty regions rRR
i (t) all

overlap at t, the uncertainty regions {rA
i (t) : i≤ ρRR} will all overlap at t, and thus

A will have ply at time t which is at least ρRR.

If t ≤ n then there are some entities which haven’t yet been probed by either
algorithm, since not enough time has passed since t = 0. The argument is the same
as before, except the first t− n entities are assigned sets from the partition which
do not include times less than t.

Now to move to how well Round Robin competes with the intrinsic ply. The
maximum possible ply is achieved if all of the entities’ uncertainty regions overlap.
Thus the worst ratio would be if our algorithm had a ply of n but the optimal query
pattern led to a ply of 1. This leads to a ratio of n between our ply, ρ , and the intrin-
sic ply, ∆. We will show that even the simple algorithm of Round Robin does much
better than a linear competitive factor, and manages to maintain ply O(

√
n∆) in all

cases. We also give a specific example where average ply Ω(
√

n∆) is unavoidable
for Round Robin, showing that this bound is optimal.
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Theorem 5. For all times t and all sets of static entities E with cardinality n,
Round Robin has ply O(

√
n∆).

Proof. Consider an arbitrary group of n entities at some arbitrary time t. Consider
a subgroup Eρ of E , such that the cardinality of Eρ is ρ , and the uncertainty regions
of entities in Eρ all overlap at some point p at time t. That is this set of entities is
one of the minimal sets (in terms of number of entities) which has ply ρ at time t.
Assume without loss of generality Eρ = {e1, ...,eρ}.

Round Robin queries these entities every n times steps. Thus each of their
uncertainty regions is at most n units wide, and so for each entity ei in Eρ the
position of ei, li, must be in the interval (p− n, p+ n). Let A = {A1, ...,An} be
an uncertainty realization for Eρ which achieves ply ∆. By Theorem 1 we can
assume that each Ai in A has volume at most n. Note that since li is in the interval
(p− n, p+ n), and |Ai| is at most n, we know Ai is a subset of (p− 2n, p+ 2n).
Since the length of this interval is 4n, and the regions {Ai, ...,Aρ} have ply at most
∆ the total volume of these regions is at most 4n∆. Thus

4n∆≥
ρ

∑
i=0
|Ai|

≥
ρ

∑
i=0

i

≥ 1
2

ρ
2

→ ρ ≤
√

8n∆

Thus Round Robin’s ply is O(
√

n∆)

This result is very interesting, because it provides a glimpse into the underlying
relationship between how densely packed the entities are and the intrinsic ply. It
shows that we can get a non-trivial bound on the competitive ratio between any
intelligent algorithm and the intrinsic ply just because of the amount of space a set
of entities with ply ∆ must take up.

We now move on to showing that this bound is tight for Round Robin. We
will do this by showing for a set of ∆-arithmetically spaced points Round Robin
produces ply Ω(

√
n∆).
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Theorem 6. If n static entities are ∆-arithmetically spaced then Round Robin pro-
duces ply Ω(

√
n∆) at least half of the time.

Proof. Let F be the first 1
2

√
n∆ of the n entities, which are ∆-arithmetically spaced.

Recall one can divide ∆-arithmetically spaced entities into groups of 2∆ entities
each that have diameter (4i−2)∆+1. F covers 1

4

√ n
∆

of these groups.

Consider a point at time t when less than half of the elements of F have been
probed in the past n

2 time steps, that is in the interval [t− n
2 , t]. Then at t half the

entities in F have uncertainty regions which are wider than n
2 , thus they each have

a radius greater than n
4 . The distance from the e1 to e 1

2

√
n∆

is at most the diameter

of the union of the first 1
4

√ n
∆

groups. This is

|l1− l 1
2

√
n∆
| ≤

1
4

√
n
∆

∑
i=1

((4i−2)∆+1)

≤ 4∆

(
1
4

√
n
∆

)2

− (2∆−1)
(

1
4

√
n
∆

)
≤ n

4

Thus all of the entities in F that have been probed more than n
2 time steps ago

have uncertainty regions that cover all of the entities in F . Hence ply is Ω(
√

n∆).

Consider any arbitrary time step t. Some number of entities in F are probed
in the interval [t − n

2 , t] and the others are probed during [t + 1, t + n
2 + 1], since

the union of these two intervals is n time steps long. If more than half are probed
during the first, less than half will be probed in the second and vice versa. Thus
one of either t or t + n

2 + 1 must be after a period of n
2 time steps when less than

half of the elements of F have been probed. For any pair of time steps which are
separated by n

2 time steps Round Robin produces a ply which is Ω(
√

n∆) at one.
This means at half of all time steps Round Robin has ply Ω(

√
n∆).

This shows that there are cases where the ply Round Robin gets can be as bad
as
√

n∆, which we know from Theorem 5 is also an upper bound on Round Robin’s
ply. Since we know no oblivious algorithm can do better than Round Robin, if we
want to guarantee ply less than

√
n∆ we have to use some information about the

location of the entities. However it isn’t clear yet that we should expect to get ply
better

√
n∆. In the next section we will argue the best ply one can get relative to
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the intrinsic ply is O
(
∆ log

( n
∆

))
.

4.2 Intrinsic Ply Ratio

In this section we will show that no algorithm can maintain a constant competitive
ratio to the intrinsic ply, even in the static case. The tool we utilize to demonstrate
this fact is the trade-off between probing an entity frequently enough that its uncer-
tainty region remains manageable, and leaving enough probes for the other entities.
We will conclude that we do not have enough probes to maintain small uncertainty
regions for all the entities.

Our example is again a set of ∆-arithmetically spaced entities, as it was in
the section on oblivious algorithms. The intuition behind using this example, as
discussed in the chapter on the model, is that it packs the entities in as tightly as
possible. As a preview we will informally argue that any algorithm will suffer logn
ply for a set of 1-arithmetically spaced entities. We will make simplifying assump-
tions to make this argument easier. Assume that each element is probed with a
fixed frequency, that is the period between probes for a given entity is unchanging.
Note that how often we can probe entities is bounded by the fact we can only probe
one entity per time step. Hence the sum of these frequencies needs to be less than
one. An easy way to ensure this is to use Round Robin. Unfortunately, as shown
in the previous section, we can’t avoid ply O(

√
n∆) by using Round Robin. So

instead we want to distribute the probes so that the entities that are closely packed
have smaller average uncertainty regions. Since the gap between entities increases
by one for each entity going from e1 to en for 1-arithmetically spaced entities, it
would make sense for the probe frequency of the entities to be linear in the entities
index as well (recall that e1 is the leftmost entity, and en is the rightmost). So the
total probe frequency should be ∑

n
i=1

1
ki for some k. We want this sum to be less

than one so:

1 >
n

∑
i=1

1
ki

>
1
k

logn

→ k > logn

So setting each entity’s probe period to a constant factor of logn times its index
will give us a set of probe frequencies, which do not require more than one probe
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per time step. This means that ei’s uncertainty region grows to have length on the
order of i logn. The region up to i logn units away from ei contains about logn
other entities. This means that we can expect a worst ply of approximately logn.

Now we will build the tools we need to formally argue that ply proportional
to ∆ log

( n
∆

)
is sometimes required to guarantee a usable probe schedule. First, we

introduce a concept that will be important in several upcoming proofs. We will
be interested in averaging the area that an entity’s uncertainty region covers over
a certain time period. However we may be only interested in a subset of the total
uncertainty region that lies within some interval.

Definition 12. σ(i, I,T ) is the total overlap between the interval I and ei’s uncer-
tainty region over the time period T . That is σ(i, I,T ) = ∑t∈T |ri(t)∩ I|.

Using this newly defined quantity we will describe the relationship between
how often an entity is probed and the area covered by its uncertainty region, over
a given time period. This will be useful in arguing how many probes a group of
entities needs to receive to avoid having large amounts of area covered by their un-
certainty regions, which would lead to high ply. Note that this theorem’s hypothesis
is stated in terms of the closure of a given interval I. This will be important in our
application, because we will be looking at open intervals, but want to argue about
entities at the boundary of these intervals.

Lemma 7. For any interval I, and entity ei such that li is in the closure of I, if
ei is probed fewer than pi ≥ 1 times over the time interval T then σ(i, I,T ) >
|T |min

(
|T |
2pi

,|I|
)

2 .

Proof. There are three variables which affect the size of the overlap of ei’s uncer-
tainty region and the interval I. These variables are: how many times the entity is
probed, when it is probed, and where it is positioned.

Note that the area can only be increased by having fewer probes, since a probe
added at time t decreases the area of ei’s uncertainty region at that time, and all
times after it up to the next probe. We know ei is probed less than pi times, thus
we can bound σ(i, I,T ) with the minimal area when ei is probed pi−1 times (note
since pi ≥ 1 this is non-negative).

Consider an arbitrary probe sequence for entity ei, such that the jth probe oc-
curs at time t j. Such a sequence breaks T into a number of “gaps”, that is time in-
tervals between probes. More formally for all k ≤ pi the gap gk is [tk−1, tk], where
t0 = min(T ) and tpi = max(T ). Note that over the gap gk the uncertainty region
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for ei, ri(t), goes from being the ball B(li,1) to being the ball B(li, |gk|) (with the
possible exception of the first gap, since ei may not have been probed at t0). Let
G = {g1, ...,gpi}. Then

σ(i, I,T )≥ ∑
g∈G

g

∑
j=1
|I∩B(li, j)|

Now we will argue what position of ei leads to the minimal σ(i, I,T ) value. The
position of ei affects the length of the intersection in the sum. The length of this
intersection is minimized by placing ei at one of the extremes of I, since then only
half of the ball is within the interval. Thus

σ(i, I,T )≥ ∑
g∈G

g

∑
j=1

min
(

j
2
, |I|
)

We will apply Jensen’s Inequality using f (g) = ∑
g
j=1 min( j

2 , |I|). In order to
use Jensen’s Inequality we need to show that f (g) is convex. To see that this is
true, note the derivative of f (g) when g is less than 2|I| is g

2 , and the derivative is
|I| when g is greater than 2|I|. Thus the derivative is non-decreasing, and f (g) is
convex. Since |G|= pi by Jensen’s Inequality we have :

∑g∈G f (g)
pi

≥ f
(

∑g∈G g
pi

)
= f
( |T |

pi

)

↔
∑g∈G ∑

g
j=1 min

(
j
2 , |I|

)
pi

≥
|T |
pi

∑
j=1

min
(

j
2
, |I|
)

↔ ∑
g∈G

g

∑
j=1

min
(

j
2
, |I|
)
≥ pi

|T |
pi

∑
j=1

min
(

j
2
, |I|
)

Thus

σ(i, I,T )≥ pi

|T |
pi

∑
j=1

min
(

j
2
, |I|
)

Consider the plane R2, let the x-axis be position, and the y-axis be time. Then
we can consider σ to be the area of the union of horizontal bars (ri(t)∩I)× [t, t+1].
We can lower bound this area by the area of right triangles, which each have height
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|T |
pi

and base either |T |2pi
or |I|, whichever is less. The total area of all triangles is half

the area of the rectangle with base length min
(
|T |
2pi

, |I|
)

, and height T .

Thus we get

pi

|T |
pi

∑
j=1

min
(

j
2
, |I|
)
>
|T |min

(
|T |
2pi

, |I|
)

2

Which implies

σ(i, I,T )>
|T |min

(
|T |
2pi

, |I|
)

2

We will probe entities at time intervals which are a constant factor of the length
of an interval they are contained in (this interval, the x-blanket, will be discussed
shortly). The following corollary deals with the case where the number of times
an entity is probed is less than a constant times the ratio between the length of the
time interval and diameter of the spatial interval of interest.

Corollary 8. If ei is probed fewer than pi =
k|T |
|I| ≥ 1 times over the time period T ,

then σ(i, I,T ) > |T ||I|
4k , for k ≥ 1. Note that since we require pi ≥ 1, we must have

|T | ≥ |I|k .

Proof. By Lemma 7 we know

σ(i, I,T )>
|T |min

(
|T |
2pi

, |I|
)

2

Substituting in our value for pi we get

σ(i, I,T )>
|T |min

(
|I|
2k , |I|

)
2

Since k ≥ 1 the value of the min will be its first element, and hence σ(i, I,T ) >
|T ||I|

4k .

Now we use these new tools to show for ∆-arithmetically spaced entities a ply
of ∆ log

( n
∆

)
is unavoidable.

Theorem 9. For every set of ∆-arithmetically spaced entities any algorithm will
have average ply Ω(∆ log

( n
∆

)
) over any time period T , where |T |> n log

( n
∆

)
.
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T

|T |
2pi

|I|

|T |
pi

|I|

Figure 4.1: Lower bounding the area of the uncertainty regions for entity ei over
time interval T and space interval I. The white bars represent the true uncertainty
regions, and the gray triangles represent the area we use for a lower bound. Notice
the triangle may underestimate the uncertainty regions from the first gap by a large
margin. In the figure on the left pi is such that |T |2pi

is less than |I|, in the figure on

the right pi is much smaller, so |I| is larger than |T |2pi
.
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Proof. Let n be the size of the set of ∆-arithmetically spaced entities. To start we
will subdivide the entities into groups of size ∆ log

( n
∆

)
. The first ∆ log

( n
∆

)
entities

will constitute the first group, G1, the next ∆ log
( n

∆

)
the second, G2, and so on.

This means that each group covers
log( n

∆)
2 of the sets of 2∆ intervals we used in

the definition of ∆-arithmetically spaced entities. Recall that diameter(Gi) is the
distance between the entities in Gi that are furthest apart.

We now consider the ply an algorithm will get for each group of entities, ignor-
ing overlap that may occur with uncertainty regions of entities from other groups.
This is a lower bound on the actual ply the algorithm achieves. In order to maintain
a low ply within a group’s entities, a certain number of probes are required. Below
we will prove that over a time interval T , to maintain ply which is O

(
∆ log

( n
∆

))
re-

quires at least
2∆|T | log( n

∆)
diameter(Gi)

probes. Thus we call any group which receives more than
2∆|T | log( n

∆)
diameter(Gi)

probes during the time period T “good”, and all other groups “bad”. We
will show that there exists a bad group, and that bad groups must have high ply.

First we argue there is a bad group. Assume to the contrary there is not. Then

each group uses at least
2∆|T | log( n

∆)
diameter(Gi)

probes. To bound the total number of probes
used we first need a bound on diameter(Gi). Recall the jth set from our construction
of ∆-arithmetically spaced entities has supremum mk = 2k2∆+k. Since each group

covers
log( n

∆)
2 of these sets, the largest such set in Gi has diameter(

4
i log

( n
∆

)
2

−2

)
∆≤ 2i log

( n
∆

)
∆

Thus we get the following bound on the diameter of Gi

diameter(Gi)≤
(

log
( n

∆

)
2

)(
2i log

( n
∆

)
∆

)
≤ ∆ log2

( n
∆

)
i

One important inequality for our next derivation is 2 log
(

n
∆ log( n

∆)

)
> log

( n
∆

)
.

The justification for that inequality is as follows. Note that n
∆
> log2( n

∆

)
, since

n > ∆ by definition. Thus:

n
∆
> log2

( n
∆

)
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↔ n
∆ log2( n

∆

) > 1

↔
(

n
∆ log

( n
∆

))2

>
n
∆

↔ 2log

(
n

∆ log
( n

∆

))> log
( n

∆

)
Using these bounds to sum over all the groups we calculate that the total num-

ber of probes used is:

n
∆ log( n

∆)

∑
i=1

2∆|T | log
( n

∆

)
diameter(Gi)

> 2∆|T | log
( n

∆

) n
∆ log( n

∆)

∑
i=1

1
∆ log2( n

∆

)
i

=
2|T |

log
( n

∆

)
n

∆ log( n
∆)

∑
i=1

1
i

>
2|T |

log
( n

∆

) log

(
n

∆ log
( n

∆

))
> |T |

The last line follows from the above inequality.

This is more than |T | probes over T . This is a contradiction since we only
probe once for each time step. Thus, there must be some group Gk which uses

fewer than
2∆|T | log( n

∆)
diameter(Gk)

probes. That means that in Gk at least
∆ log( n

∆)
2 entities are

probed fewer than 4|T |
diameter(Gk)

times.

Let Gk be the smallest interval containing all the entities in Gk, that is Gk =
argminI{|I| : ∀e j ∈ Gk l j ∈ I}. Note that |Gk| = diameter(Gk). Also, note that
the diameter of Gk is less than the diameter of Gn/∆ log( n

∆)
, which is less than

n
∆ log( n

∆)
∆(log2( n

∆

)
) = n log

( n
∆

)
, by our above bound on the diameter of Gi. By

Corollary 8, since |T |> diameter(Gk), for each entity e j that is probed fewer than
4|T |

diameter(Gk)
times σ( j,Gk,T ) >

|T |diameter(Gk)
16 . Since σ( j,Gk,T ) is the sum over

all times in T of the overlap between e j’s uncertainty region, and Gk, in order to
calculate the average ply we divide the sum of the σ( j,Gk,T ) values for a given
group by the length of the time interval, and the diameter of Gk. Since at least half
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of the entities in Gi were probed fewer than 4|T |
diameter(Gk)

the average ply is greater
than

1
|T |diameter(Gk)

∆|T | log
( n

∆

)
diameter(Gk)

64
=

∆ log
( n

∆

)
32

So any algorithm must have average ply at least
∆ log( n

∆)
32 , which is Ω(∆ log

( n
∆

)
).

This shows that when expressed as a function of the intrinsic ply the best ply
we can hope for is Ω(∆ log

( n
∆

)
).

4.3 Our Algorithm

We saw in the previous section that, for a set of n static entities, no algorithm can
maintain ply less than a constant times ∆ log

( n
∆

)
, where ∆ is the intrinsic ply, over a

sufficiently long interval. This shows that intrinsic ply is an unfair measuring stick
for the effectiveness of our algorithm. We define a measure of entity crowdedness,
called the “optimal blanket value”, in order to produce a more manageable com-
parison for our algorithm. Any algorithm must have average ply which is at least
a constant factor of the optimal blanket value, over a sufficiently long interval. We
also describe an algorithm, the Static Rounded Blankets algorithm, that maintains
ply less than twice the optimal blanket value, at all time steps.

In the previous section breaking up the set of entities into smaller groups, and
then arguing about the number of probes each of those groups requires to maintain
low ply, was shown to be an effective way to argue a certain ply is unavoidable. It
also suggests a simple formula for probing entities in the given example. The ones
which were in the more tightly packed groups require more probes, while the ones
that are more spread out are probed less frequently. It makes sense to prioritize
entities that are closely packed together since they lead to high ply more quickly.
What is not clear from the example is how to decide how large a group one should
be considering in general. To this end, we introduce a measure of local clustering,
which we call an “x-blanket”. The x-blanket is a simple measure of how close one
specific entity is to its neighbours. Our algorithm, Static Rounded Blankets, is a
simple periodic schedule, where each entity’s period is relative to its x-blanket vol-
ume.

31



4.3.1 x-Blankets

In this subsection we introduce the concept of an “x-blanket”, and related notions.
x-blankets form a core part of the way we formulate our algorithm. They are a
measure of how tightly crowded entities are. Before we define the x-blanket, let
us look at an associated set of entities, Γx

i (t). Informally Γx
i (t) is the set of the

x entities closest to ei at time t. These will be the basis of ei’s x-blanket and are
referred to as the entities “covered” by ei’s x-blanket.

Definition 13. For any given x ∈ Z, index i ∈ {1, ...,n}, and time t, the set Γx
i (t)

contains ei and x− 1 other entities, such that for any entity e j ∈ Γx
i (t) and en /∈

Γx
i (t), |li(t)− l j(t)| ≤ |li(t)− ln(t)|. That is at time t all other entities are at least

as far from ei as any given entity in Γx
i (t).

Note that if there are several entities which are the same distance from ei, there
may be multiple different sets which satisfy the requirements of the above defini-
tion for Γx

i (t). In such a case we choose the set which contains the entities with the
lowest indices to be Γx

i (t), arbitrarily.

Now we turn our attention to the main construct, the x-blanket. Informally an
entity ei’s x-blanket is the largest interval centered at ei’s location, which contains
at most x entities.

Definition 14. For any given x ∈ Z, index i ∈ {1, ...,n}, and time t, ei’s x-blanket
at time t, bx

i (t), is the largest open ball centered at li(t) that only contains entities
in Γx

i (t). This ball is the “(true) x-blanket”, of ei at time t.

Note that this interval does not contain all of Γx
i (t) when an entity in Γx

i (t) is
the same distance from li(t) as some entity that is not in Γx

i (t). Thus ei’s x-blanket
wouldn’t change for a different choice of Γx

i (t), since any entity that is the same
distance from li(t) as an entity in Γx

i (t) are on the boundary of bx
i (t); their inclusion

in Γx
i (t) would lead to the same bx

i (t). Also note the entity which is xth furthest
from li(t) (discounting ei) is on the boundary of bx

i (t). Hence the volume of bx
i (t)

is simply twice the distance from li(t) to the entity which is xth furthest from ei.

The above definitions were given with a dependence on time because this gen-
erality will be required for the dynamic case. In the static case the x-blanket is
invariant with respect to time, since entities don’t move. Thus we will drop the de-
pendence on t in our notation for the static case. We use |bx

i | to refer to the volume
of the blanket bx

i .
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Definition 15. If x is the smallest integer such that ∑i
1
|bx

i |
< δ then x is called the

“optimal blanket value for probe density δ”.

The value δ is called the “probe density” because it is related to the fraction
of time steps in which we need to probe entities in order to keep their uncertainty
regions contained within their blankets. The optimal blanket value can be thought
of the smallest value that can be used to generate blankets for a given set of entities,
without needing more than the appropriate probe density to keep the uncertainty
regions inside those blankets. The concept of optimal blanket value is important
for determining what blanket value we should use in our algorithm. Considering a
probe density that is less than one can be helpful to allow flexibility in the timing
of the probes, so that we can avoid cases where multiple entities require probes
simultaneously.

4.3.2 Upper Bound on Blanket Size

We show that the optimal blanket value for any set of n static entities is related
to the intrinsic ply of the entities. In particular, we show that the optimal blanket
value for a given probe density δ is O(∆

δ
log
( n

∆

)
).

Theorem 10. For any given set of n static entities the optimal blanket value for
probe density δ is O(∆

δ
log
( n

∆

)
).

Proof. Let E be an arbitrary set of static entities with intrinsic ply ∆. Let A =
{A1, ...,An} be an uncertainty realization for E with ply ∆. We want to show the
optimal blanket value is O

(
∆

δ
log
( n

∆

))
. This will be achieved by showing ∆

δ
log
( n

∆

)
is greater than the largest value of x for which the sum ∑

n
i=1

1
|bx

i |
is less than the

probe density δ . We can assume that x > 8∆ without loss of generality, since if
x≤ 8∆, then it is in O(∆

δ
log
( n

∆

)
)

In order to show the optimal blanket value is less than ∆

δ
log
( n

∆

)
, we will pro-

vide an upper bound on the sum ∑
n
i=1

1
|bx

i |
. To do this we need a lower bound on the

volume of the bx
i ’s. For any given ei the volume of bx

i is determined by the location
of the xth closest entity to ei ( excluding ei itself ). Naı̈vely the way to minimize
the volume of bx

i would be to simply place x entities right on top of ei. However
we also know that the uncertainty realization A has ply ∆, hence at most ∆ entities
can be at the same location. As shown belov, the minimum width for the bx

i will be
achieved by creating ∆ “layers” of entities, each with ply 1, which are as close to
the same width as possible.
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Figure 4.2: A graphic displaying the ideas behind our bound on |bx
i |. Here ∆ is four.

The black circles represent the static locations of the entities, and the white bars
represent their associate intervals in A. The entities have been split into four layers
to make it easier to see. The eight extremal entities have large intervals, which do
not contribute to the size of |bx

i |. The volume of bx
i can be bounded by summing

over the inverse volumes of the white regions of the eight interior entities.

Consider partitioning the Γx
i into ∆ subsets, L1, ...,L∆, such that the ply the un-

certainty realization A gets for Li is 1. We will refer to these subsets as layers.
More specifically for all e j,ek in Li the associated intervals of the uncertainty re-
alization do not overlap, that is A j ∩Ak = /0. The diameter of Li is the distance
from lmin(i) = minLi{l j : e j ∈ Li} to the similarly defined lmax(i). This is at least
the sum ∑e j∈Li |A j|, minus any of the volume of the A j’s which lies outside of
[lmin(i), lmax(i)]. That sum is minimized when the two entities in Li with the largest
|A j| values are placed at lmin(i) and lmax(i), so the entirety of their A j’s can reside
outside of [lmin(i), lmax(i)]. Thus in each layer we can ignore the A j values of the
two extremal entities. Let Xi, j be the two extremal entities of layer L j. Then let
Xi be the set of extremal entities, that is Xi =

⋃
j Xi, j. For a helpful visualization

see Figure 4.2.

The layer which has the longest width is the only one that affects the length of
bx

i . The length of the longest layer is longer than the average layer length. Hence

|bx
i |>

1
∆

∑
e j∈Γx

i \Xi

|A j|

Now we move to looking at the sum of the inverse values as a whole. From
above we can derive

n

∑
i=1

1
|bx

i |
< ∆

n

∑
i=1

1
∑e j∈Γx

i \Xi |A j|
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Note that each e j can be covered by at most 2x entities’ x-blankets. This means
e j is a member of Γx

i for at most 2x different entities. So each |A j| value shows up
in the sum

∑
e j∈Γx

i \Xi

|A j|

at most 2x times. Note the sum

n

∑
i=1

1
∑e j∈Γx

i
|A j|

is maximized if the smallest n
2x A j’s are used 2x times each. If you don’t use the

smallest n
2x A j’s 2x times each you simply replace one of the instances of a larger

one with one for which |A j| ≤ n
2x that has not been used n

2x and the sum increases.

Each entity needs x entities assigned to its Γx
i . Note that as the volume of the

uncertainty regions of entities in Xi don’t contribute to the sum, their volume is
unimportant, so only the volume of x−2∆ entity’s A j’s need to be considered in our
bound on bx

i . We will assign one of the groups (1, ...,x−2∆),(x−2∆+1, ...,2x−
4∆), ...,(( n

2x −1)(x−2∆)+1, ..., n
2x(x−2∆)) to each entity, each group will be as-

signed 2x times.

In order to see this allocation leads to the largest possible sum, we consider
an abstraction of the problem. There are n different variables zi that are the sum
of γ distinct positive integers, that is zi is equal to the sum yi1 + ...+ yiγ where
each yi j is an integer. We will refer to the set of integers in zi’s sum as Yi, that is
Yi = {yi1 , ...,yiγ}. We can choose which integers are in zi’s sum, but each integer can
only be used for a limited number of sums. Our goal is to maximize the sum ∑

n
i=1

1
zi

.
Now we will show that assigning the smallest y’s to the smallest z’s will lead to the
optimal solution. Assume that we have a system that satisfies the constraints as
described above. We can assume without loss of generality that z1 ≤ z2 ≤ ...≤ zn.
Assume that for some i, j such that i < j there is an integer α in Yj that is not in Yi

that is less than an integer β which is in Yi but not Yj. Then by swapping α and β

so that α is in Yi and β is in Yj we increase the inverse sum of the zi’s by

1
zi +(α−β )

− 1
z j +(β −α)

=
z j− zi

[zi +(α−β )][z j +(β −α)]

Since we know z j > zi, z j > α and zi > β this quantity is positive, and hence
the swap increases the inverse sum. Hence since we are looking for the optimal
blanket value for probe frequency δ we can assume the values are distributed in
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groups as discussed above. From this we produce the following bound, in which
we use the quatity x̃ = x−2∆. Note that x̃ > 3x

4 since x > 8∆:

δ <
n

∑
i=1

∆

∑e j∈Γx
i \Xi |A j|

< 2x∆

n
2x

∑
i=1

1

∑
ix̃
j=(i−1)x̃ j

< 4x∆

n
2x

∑
i=1

1
(ix̃)2 + ix̃− [(i−1)x̃]2− [(i−1)x̃]

= 4x∆

n
2x

∑
i=1

1
(ix̃)2 + ix̃− (ix̃)2 +2ix̃2− x̃2− ix̃+ x̃

= 4x∆

n
2x

∑
i=1

1
(2i−1)x̃2 + x̃

< 4x∆

n
2x

∑
i=1

1
(2i−1)x̃2

=
4x∆

x̃2

n
2x

∑
i=1

1
2i−1

<
4x∆

(3x
4 )

2

n
2x

∑
i=1

1
2i−1

<
8∆

x

n
2x

∑
i=1

1
2i−1

=
8∆

x

( n
x

∑
i=1

1
i
−

n
2x

∑
j=1

1
2 j

)

<
8∆

x

n
x

∑
i=1

1
i

↔ x <
8∆

δ

n
x

∑
i=1

1
i

∈ O
(

∆

δ
log
(n

x

))
∈ O

(
∆

δ
log
( n

∆

))
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Thus the optimal blanket value for probe density δ is O(∆

δ
log
( n

∆

)
).

Although our main motivation to work with the optimal blanket value is to
maintain ply close to any other algorithm’s average ply, this result implies that if
we have an algorithm which maintains ply equal to the optimal blanket value, we
can maintain ply which is ∆ log

( n
∆

)
.

4.3.3 Rounded Blankets Algorithm

Previously we introduced the notion of “x-blankets”, now we want to show how
we can use that tool to create an algorithm which maintains low ply. The sim-
ple idea behind the algorithm is to query entities when their uncertainty region is
the same as their x-blanket. First we need to ensure that the x-blankets are large
enough that probing with this frequency doesn’t require more probes than there are
time units. Probing an entity every time its uncertainty region is the same as its
x-blanket means probing it once every |bx

i | time steps, since the uncertainty region
grows by 1 each time step. So as a simple first step we ensure that the sum ∑

n
i=1

1
|bx

i |
is less than 1.

However, even if ∑
n
i=1

1
|bx

i |
is less than 1, it might be impossible to query the

entities at the appropriate times. For example, two entities might have their uncer-
tainty regions grow to be the same as their x-blankets at the same time. Thus we
will consider rounding the values of the blanket volume in order to make sure all
of the periods are in sync. But, if we use the blankets designated by the optimal
blanket value for probe density 1, then we cannot probe with a frequency greater
than the inverse of the blanket volume, since then the sum of the frequencies will
be greater than one. On the other hand, we cannot probe with a frequency less
than the inverse of the blanket volumes, since then the ply could be higher than we
expect. Instead, we will use the optimal blankets of probe density 1

2 , since this will
give us room to round the blanket volumes to the nearest power of two. This will
make scheduling probes for the entities simple.

The algorithm, which is referred to as the “Rounded Blankets Algorithm”, is
an algorithm which produces a recursive round robin schedule. A recursive round
robin schedule is a schedule that splits its probes evenly among subsets of entities.
These subsets partition the set of entities, that is no entity is in more than a single
subset. Each subset splits its probes in an identical way to the main set, that is
evenly amongst some partition of its elements. In this way round robin is applied
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to each set of entities recursively. It is important to note that even though the probes
are split evenly among the subsets, the subsets may not contain the same number of
entities. Having an unbalanced partition ensures some entities will be probed more
often than others. The notion of recursive round robin is discussed in more depth
in “Scheduling Techniques for Media-on-Demand” by Amotz Bar-Noy, Richard E.
Ladner, and Tami Tamir [3].

The algorithm has two main steps. The first is producing new rounded fre-
quencies, which will be powers of two, and the second is constructing a schedule
for these new frequencies. The algorithm for schedule construction is presented
in “The Scheduling of Maintenance Service” by Shoshana Anily, Ceilia A. Glass,
and Rafael Hassin [1].

The Rounded Blankets algorithm is as follows:

1. For a given set of n entities calculate x = the optimal blanket value for probe
density 1

2 (i.e. the smallest integer such that ∑
n
i=1

1
|bx

i |
< 1

2 ).

2. Set qi = 2blg |b
x
i |c.

3. Query entity ei periodically, with period qi

Now that we have an algorithm for probing entities we need to produce a bound
on its performance, that is we want a bound on the ply the Rounded Blankets al-
gorithm achieves. We will show the ply that the Rounded Blankets algorithm pro-
duces is always bounded by the blanket value we use.

Now to show that our algorithm will never have ply greater than some constant
times the optimal blanket value. This follows fairly directly from the fact that our
blankets never cover more than x entities.

Theorem 11. For all sets of n static entities, and all time steps t the Rounded
Blankets algorithm maintains ply O(x), where x is the optimal blanket value for
probe density 1

2 .

Proof. Note that the qi values are at least half the volumes of the associated x-
blanket, |bx

i |, since they are the largest power of two less than or equal to|bx
i |. Thus

the inverse sum of the qi values will be less than one. Because of this fact, and the
fact they are powers of two, our qi satisfy the conditions on the τi in the hypothesis
of lemma 6.2 in [1]. Thus we can build a schedule in which each ei is probed once
every qi time steps by following their algorithm.
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Since the algorithm probes ei once every qi time steps, it probes entities before
their uncertainty region exceeds their blanket. Thus the depth of any given point
is bounded by the number of blankets that contain that point. Hence the ply is
bounded by the point which is contained in the most blankets.

The maximum number of blankets a point can be contained within is 2x. We
will prove this via a contradiction. Assume to the contrary that 2x+ 1 x-blankets
cover the point p. Let E be the set of all entities whose x-blankets cover p. Let
EL be the subset of E such that for any entity, eL, in EL its position lL is at most
p. Similarly let ER be the subset whose locations are at least p. Assume, without
loss of generality, |EL| ≥ |ER|. Then EL must contain at least x+ 1 entities. Note
that the entity in EL which has the minimal location has a blanket which covers
all of the entities in EL, since it covers p. Thus it covers x+ 1 entities, which is a
contradiction with the definition of x-blanket. Hence the ply at any given point can
be at most 2x. And the Rounded Blanket algorithm’s ply is O(x).

So the Rounded Blankets Algorithm never has ply worse than a constant factor
of the optimal blanket value. Since we have a bound on the intrinsic ply with
respect to the optimal blanket value, we can bound our algorithm’s performance
with respect to the intrinsic ply.

Corollary 12. For any set of static entities the Rounded Blankets algorithm has
ply which is O(∆ log

( n
∆

)
).

Proof. Let x be the optimal blanket value for probe density 1
2 . From Theorem 10

we know that x is O(∆

δ
log
( n

∆

)
), since δ is constant O(∆ log

( n
∆

)
). From Theorem

11 we know the Rounded Blanket algorithm’s ply is O(x). Therefore the Rounded
Blanket algorithm ply is O(∆ log

( n
∆

)
).

This shows that our algorithm can maintain ply which is O(∆ log
( n

∆

)
) at all

time steps. The intrinsic ply can be thought of as the minimal ply any algorithm
can achieve at any time. Thus, the ply obtained by the Rounded Blanket’s algorithm
at every time step is at most O(∆ log

( n
∆

)
) times the smallest ply any algorithm can

obtain at any time step. The fact that Rounded Blanket’s ply is O(∆ log
( n

∆

)
), and

not the Ω(
√

n∆) bound achieved by Round Robin shows that there is an advantage
to looking at how close entities are to each other. Note that, since log( n

∆
) <

√ n
∆

,
∆ log( n

∆
) <
√

n∆, and thus the Rounded Blankets Algorithm performs better than
Round Robin, in their respective worse cases.
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Next we will show that no algorithm, which runs for a sufficiently long time,
can achieve average ply better than Ω(δx), where x is the optimal blanket value
for probe density δ . Hence the maximum ply achieved by the Rounded Blankets
algorithm is within a constant factor of the average ply achieved by any other algo-
rithm, over a sufficiently large interval of time. For the purpose of arguing results
about the Rounded Blankets algorithm we are only interested in the case where δ

is 1
2 , but the generalization to other blanket values will be useful in our discussion

of the dynamic case. This theorem is a stronger version of Theorem 9.

Theorem 13. For all sets of static entities any algorithm has average ply Ω( x
δ
),

where x is the optimal blanket value for probe density δ , over any time interval T ,
such that |T |> δ maxi |bx

i |.
Proof. To prove this theorem we will consider two cases. Either entities are being
probed too frequently, leading us to probe more times than we are allowed, or they
are being probed too infrequently, thus leading to large uncertainty regions and
high ply.

Let x be the optimal blanket value for probe density δ , and consider a time
interval T . Let pi be the number of times ei is probed over this interval. The first
case is that for all ei, the majority of the entities in Γ

x
2
i are probed at least 4|T |

δ |b
x
2
i |

times. Our second case is that there is some entity ei such that the majority of the
entities in Γ

x
2
i are probed fewer than 4|T |

δ |b
x
2
i |

times. Note that the choice of constant is

irrelevant in the second case, since probing fewer than any constant factor of |b
x
2
i |

will give ply on the order of x, as will be discussed later in the proof, however it
is vital for the first argument that the constant is large enough to cause the probe
density to be too high.

In the first case, for all ei, the majority of the entities in Γ
x
2
i are probed more

than 4|T |
δ |b

x
2
i |

times. Note the total number of probes used on entities in a given Γ
x
2
i

will be at least the number of probes used on the x
4 who are probed more than 4|T |

δ |b
x
2
i |

times, that is

∑
e j∈Γ

x
2
i

p j >
x
4

4|T |
δ |b

x
2
i |

=
x|T |

δ |b
x
2
i |
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→
n

∑
i=1

x|T |
δ |b

x
2
i |

<
n

∑
i=1

∑
e j∈Γ

x
2
i

p j

Also note that each entity can be included in at most x of the Γ
x
2
i ’s, since there

are at most x entities which it is within x
2 entities of. Thus

n

∑
i=1

∑
e j∈Γ

x
2
i

p j < x
n

∑
k=1

pk

= x|T |

Combining the above equations we derive

n

∑
i=1

x|T |
δ |b

x
2
i |

< x|T |

↔ x|T |> x|T |
δ

n

∑
i=1

1

|b
x
2
i |

> x|T |

The last line follows since x is the optimal blanket value for probe density δ ,

which means that for any smaller value y
n
∑

i=1

1
|by

i |
> δ . x|T |> x|T | is a contradiction,

thus we can conclude that we are always in the second case.

In the second case there is some entity ei such that the majority of the entities
in Γ

x
2
i are probed fewer than 4|T |

δ |b
x
2
i |

times. By Corollary 8, for each entity ei which

is probed fewer than 4|T |
δ |b

x
2
i |

times over a time period that is longer than δ |b
x
2
i |

4 , which

|T | is by definition, σ(i,bx
i ,T ) >

δ |T ||b
x
2
i |

16 . Then the total area for all entities in Γx
i

is at least the sum of the areas of the entities which were probed fewer than 4|T |
δ |b

x
2
i |

times. Thus

∑
{e j∈Γx

i }
σ( j,b

x
2
i ,T )≥

x
4

δ |T ||b
x
2
i |

16

Averaging over the blanket and the time interval, the average ply is greater than
δx|T ||b

x
2
i |

64|T ||b
x
2
i |

= δx
64 . This shows the average ply is Ω(δx).
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Since we are always in the second case all algorithms have average ply which
is Ω(δx), over a time interval longer than δ maxi |bx

i |.

Now that we know any algorithm has average ply that is within a constant fac-
tor of x, we can argue the Rounded Blankets algorithm performs well against other
algorithms.

Theorem 14. Given any set of entities and any time interval T , such that |T | >
maxi |bx

i |
2 the Rounded Blankets algorithm’s maximum ply over T is O(x) and any

other algorithm’s average ply over T is Ω(x) where x is the optimal blanket value
for probe density 1

2 .

Proof. The Rounded Blankets algorithm always has ply O(x) by Theorem 11. Be-
cause |T |> δ maxi |bx

i | any algorithm has average ply Ω(δx) by Theorem 13, since
δ = 1

2 this is Ω(x).

This last theorem is the most important result in this chapter. It shows that
our algorithm, the Rounded Blankets algorithm, has maximum ply that is within
a constant factor of any other algorithm’s average ply. It relies on the fact that
the optimal blanket value is representative of the best behaviour an algorithm can
exhibit in the static case. Note that average ply is a very good measure of an algo-
rithm’s performance for the continuous ply minimization problem, since ply cannot
change rapidly. At any given time step ply can be decreased by at most one, since
only a single entity may be probed, and may at most double, if two large groups
of uncertainty regions go from non-overlapping to overlapping (this bound on in-
crease only holds in the one dimensional case). Thus the variance of any algorithm
is bounded. Any algorithm whose ply does not change by more than a constant
factor of the optimal blanket value will be within a constant factor of the Rounded
Blanket algorithm’s ply at all time steps. Thus in certain cases it may be possible
to make stronger statements about the competitiveness of the Rounded Blankets
algorithm.

Note that, even if an algorithm is designed to genrate the lowest ply at a spe-
cific point in time, an algorithm’s ply can never be less than ∆. Thus the Rounded
Blankets algorithm is always within a log factor of any other algorithm’s ply at all
time steps. It is unclear in which cases another algorithm might do better than a
constant factor of x for a significant portion of the time.

We now turn our attention to the case where entities are moving, which we
refer to as the “dynamic case”. In this setting our algorithm no longer works, as
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it assumes that the entities are stationary. However, by lowering the probe density
we will give ourselves time to react to a changing environment, and probe enti-
ties frequently enough so that their uncertainty regions are never bigger than their
blankets.
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Chapter 5

Dynamic Case

The static case was a good launching point for our exploration of the continuous
ply minimization problem. It allowed us to focus on a few of the factors that cause
high ply, mainly how closely packed the entities are, without worrying about the
uncertainty of our knowledge. In the dynamic case, where the entities are moving,
there are many more factors that contribute to the success of our algorithm. We
will show that, as long as entities are probed frequently enough, our view of how
crowded the entities are is not too far off the true situation. This means that the
tools we developed while exploring the static case will be applicable in the dy-
namic case, as long as we compensate for our lack of current information.

As we move into the dynamic case our model changes slightly, since entities
are allowed to move, but many aspects of the problem remain the same. Our goal
is still to maintain consistently low ply. As we saw in the static case, comparing
against the intrinsic ply, ∆, at each time step is inherently unfair. In certain situa-
tions the minimum average ply any algorithm can maintain is Ω(∆ log

( n
∆

)
). The

examples from the static case can be used to prove the result holds in the dynamic
case, since the dynamic case does not prohibit static trajectories. However, it may
be possible to set up a situation, in the dynamic case, for which no algorithm can
maintain ply O(∆min log

(
n

∆max

)
), where ∆min = mint(∆(t)) and ∆max = maxt(∆(t)).

In the static case we had a bound on the intrinsic ply with respect to the optimal
blanket value. This bound is still applicable in the dynamic case, but the value of
the intrinsic ply now depends on the time step. Thus we know the optimal blanket
value at time t is at most O(∆(t) log

( n
∆

)
). A dynamic algorithm that is similar to

our Rounded Blankets algorithm will have worst case performance that is tied to
the maximum optimal blanket value over a time interval, because that value char-
acterizes the maximum number of blankets which may overlap at any one time
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over the interval. The obvious comparison with intrinsic ply would be with its
minimum value, which could much less than the intrinsic ply at the time step when
we have the maximum optimal blanket value. This means that intrinsic ply is an
even worse measuring stick in the dynamic case. The movement of the entities will
also make it harder for us to compare against other algorithms. In the static case
we were able to bound all algorithm’s ply with respect to the maximum optimal
blanket value (which is the optimal blanket value at all time steps, since all the
entities were static), but it is no longer clear in the dynamic case that any other
algorithm’s ply should be bounded by the maximum optimal blanket value in the
dynamic case. We cannot even make the weaker claim that an arbitrary algorithm’s
ply is bounded by the average, or even minimum, optimal blanket value.

We would like to be able to argue about the competitiveness between our al-
gorithm and any other algorithm. However our inability to argue a bound on other
algorithm’s ply means we have to aim for an easier target. So our goal will be based
on the target in the static case, that is to maintain ply within a constant factor of the
worst optimal blanket value over a given time period. This means our algorithm
does not need to adjust to the changing blanket value during the running of the
algorithm, which simplifies the process. Regrettably, it is impossible to know the
worst optimal blanket value over a given time period without knowing the trajec-
tories of the entities. So, to make the problem manageable, we assume there is an
oracle that tells us which blanket value to use. Will we refer to this blanket value
as χ .

With the aid of these simplifications we craft an algorithm for the dynamic
case that has the same core ideas as the Rounded Blankets algorithm. However
the movement of the entities, and our uncertainty of their current location, means
it is impossible for an algorithm to know when a given entity’s uncertainty re-
gion will expand beyond its associated x-blanket. We show that, as long as we
probe frequently enough, our perception of an entity’s x-blanket’s volume cannot
be too much larger than its true volume. Since the entities’ rate of movement is
bounded, x-blankets don’t change too quickly over time. Thus we can calculate, by
deducing the minimal possible volume of ei’s x-blanket based on the volume of its
perceived x-blanket when it is probed, the first time ei’s uncertainty region could
extend beyond its x-blanket. By reprobing ei before this time we can ensure that
ei’s uncertainty region does not cover more than x other entities. As we saw in the
static case as long as any entity’s uncertainty region never covers more than x other
entities, our ply is less than 2x.
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5.1 The Bucket Algorithm

Now we will describe the algorithm that we will use to probe entities in the dy-
namic case. In many ways it is similar to the algorithm we used in the static case.
However, we can no longer have a “static” probe sequence, because the demands of
each entity will change as it moves. So we restrict our attention to the next time an
entity will be probed. Our goal is to probe the entity before its uncertainty region
expands beyond its x-blanket. We use the perceived x-blanket volume of the entity
we are currently probing to calculate the first time such an event could occur. Since
we don’t have accurate data on the locations of entities we need to determine the
first time at which the uncertainty region could expand beyond its x-blanket. By
looking at the x-blanket sizes for small probe densities we are able to ensure there
will be enough time to probe all the entities we want to probe.

Since we cannot rely on a static probe sequence we need a way to schedule the
next probe time. The algorithm will use the notion of “buckets”. In our application
a “bucket” is a queue of entities which is associated with a given time interval. All
the entities in a given bucket must be probed within the interval. We will split the
time line into a set of intervals for each power of two, in the natural way. Each of
these intervals is associated with a bucket.

Definition 16. βi, j is the ith bucket of length 2 j. It is associated with the interval
[i2 j +1,(i+1)2 j], and contains a queue of entities.

All the buckets are aligned such that, given a pair of buckets that overlap, the
smaller is wholly contained in the larger. This is described more formally in the
following observation, note we use the notation βi, j ⊂ βk,l to indicate the interval
associated with βi, j is a subset of the interval associated with βk,l

Observation 2. For each pair of buckets βi, j, βk,l , such that j < l, if βi, j∩βk,l 6= /0,
then βi, j ⊂ βk,l .

For convience, we will use the notation |βi, j| to refer to the length of the asso-
ciated interval, that is |βi, j|= 2 j. When talking about a general bucket we drop the
indicies i and j.

The Bucket algorithm is as follows:

Assume that we are given a value χ , which we use as our blanket value.

1. At time t probe an entity from the smallest bucket that overlaps t and contains
unprobed entities.
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2. Let j be the largest power of two which is less than 1
22 |b̂

χ

i (t)|, that is, j =

2blg( 1
22 |b̂

χ

i (t)|)c. Place ei in the queue of the first bucket of length j that con-
tains times after t, that is βdt/ je, j.

3. Increment t, and return to step 1.

We will present an example situation to illustrate how the algorithm works. A
visual representation of the process is shown in Figure 5.1.

We focus on buckets of volume 8 or less which overlap a given time interval,
this narrowing of perspective is necessary since there are infinitely many buckets.
Our starting state is that there are no entities in the smallest bucket which overlaps
the first time step, one in the bucket of volume two, one in the bucket with volume
four, and four entities in the bucket of volume eight. Thus we choose to probe
the entity which is in the bucket of volume two, and it is put in the bucket which
overlaps time steps three and four.

After a few more probes we reach the situation in the third diagram, only one
of the entities in the largest bucket has been probed, and both of the entities which
were in smaller buckets are in the bucket of volume four which overlaps the fifth
through eighth time steps. Since e5 has been placed in a larger bucket its x-blanket
must have grown. In the last figure, neither of these entities is probed in the last
two time steps, so their x-blankets must have grown to the point where they were
placed in the next bucket of volume eight (not shown in figure). Also, we can see
in the last figure that there is one entity left in the bucket of size eight after the eight
time steps have elapsed. This means our algorithm has failed in this case.

We want to argue that, in situations where such a failure occurs, the entities
must have been located in a distribution that had a larger optimal blanket value
than the χ we used. In order to argue about the cases where our algorithm fails, we
need to argue our perceptions are close to the true situation, as we do in the next
section.

5.1.1 Perception Versus Reality

It will be important for us to distinguish between the true location of an entitiy and
the algorithm’s perception of that entity’s location. Our algorithm will often need
to know the volume of an entity’s x-blanket, but it doesn’t know the current location
of the entities. Instead, the algorithm will use the last known location of an entity
as a surrogate for its current location. To that end, we need notation to represent
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Time

e1 e2 e3

e4

e5

e6

(a) At the first time step the algorithm
will probe e5 as it is in the smallest non-
empty “active” bucket.

Time

e1 e2 e3

e4

e5

e5

e6

(b) At the second time step e4 is in the
smallest non-empty “active” bucket.

Time

e1 e2

e4 e5

e5 e4 e5 e3

e6

(c) The situation after the algorithm has
run for half of the time steps in the inter-
val.

Time

e1e2e4e5 e4 e5 e3 e5

e6

(d) The algorithm has run for the entire
interval interval. Note there is still an
entity in the top buckets queue, thus it
has overflowed.

Figure 5.1: An illustration of the state of the bucket algorithm at four different
time steps. The rectangles represent buckets, which contain a queue of entities
inside them, and the dotted lines separate the interval into eight distinct time steps.
Each bucket is associated with the time steps it overlaps. The bolded buckets are
the buckets the algorithm is considering probing an entity from at that time step.
The entities in red, along the bottom of the diagrams, indicate what the algorithm
probed at the associated time step.
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this situation. First recall that pi(t) is the last time ei was probed. We refer to the
location that the entity was at the last time it was probed, as its “perceived location”
at the current time.

Definition 17. For any entity ei, its perceived location at time t, l̂i(t), is the location
of that entity when it was last queried. That is l̂i(t) = li(pi(t)).

The definitions of the perceived covered set and the perceived x-blanket are
similar to their true counterparts, with the true locations of the points replaced by
their perceived locations.

Definition 18. For any given x ∈ Z and i ∈ {1, ...,n}, Γ̂x
i (t) is the set that contains

the perceived locations of ei and x other entities, such that for any entity ea ∈ Γ̂x
i (t)

and eb /∈ Γ̂x
i (t) |l̂i(t)− l̂a(t)| ≤ |l̂i(t)− l̂b(t)|.

Definition 19. For any given x ∈ Z and i ∈ {1, ...,n}, b̂x
i (t) is the largest open ball

centered at l̂i(t) that contains Γ̂x
i (t). This ball is the “perceived x-blanket” of ei at

time t.

All of our uncertainty comes from movement over time. There are two distinct
ways in which this manifests itself in our analysis. First the width of an entity’s
x-blanket may change over time due to the motion of all of the entities. Secondly,
since we are looking at old location information, there is a difference between our
perception of what the entity’s x-blanket is at any time, and what it truly is. We
need to argue that, even though we have flawed information about the location of
entities, we still can deduce how crowded an entity is. Equivalently, we argue that
our perception of an entity’s x-blanket is always close to its true x-blanket. The
argument will rely on us probing the entities with an appropriate frequency.

One fact that will help with this argument is the relationship between an entity’s
x-blanket volume, and the volume of the x-blanket of the entities in Γx

i (t).

Observation 3. For any entity e j that is in Γ
x+1
i (t) at time t, |bx

j(t)| ≤ 2|bx
i (t)|, since

e j is in the closure of bx
i (t) and there are at least x other entities in the closure of

bx
i (t)

Note that if we want a non-trivial lower bound for ei’s x-blanket volume at time
t based on the uncertainty regions of the entities, then there needs to be a gap be-
tween ei’s uncertainty region and the uncertainty region which is xth furthest from
ei, otherwise the x closest entities to ei might all be on top of one another. In that
situation bx

i (t)’s volume would be zero, so we would not be able to discount the
trivial bound. We know the xth closest entity to ei is a distance of 1

2 |bx
i (t)| away

from ei. Thus, if we want these entities to have no overlapping uncertainty regions
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they must have been probed in the last 1
2 |bx

i (t)| time steps, since no entity could
have moved further than 1

4 |bx
i (t)| in that time. From this we can conclude that any

entity must be probed within a number of time steps less than half the volume of
the smallest blanket it is in. As we see from Observation 3, the entities in Γx

i (t) may
have x-blankets which have twice the volume of bx

i (t). Thus, we can ensure that an
entity has been probed within a number of time steps less than half the volume of
any x-blanket it may be in, by probing it within a number of time steps equal to a
quarter of its own x-blanket’s volume.

We will ensure that we have probed all entities within a number of time steps
equal to a quarter of their true x-blanket volume. We will show this is enough to
prove the entities’ true x-blanket volumes have not changed much since the last
time they were probed.

Lemma 15. If t− t
′ ≤ 1

4 |bx
i (t)| then 2

3 |bx
i (t
′
)| ≤ |bx

i (t)| ≤ 2|bx
i (t
′
)|.

Proof. At time t entity ei could be at most d = 1
8 |bx

i (t)| units away from where it
was at t

′
, since t− t

′ ≤ 1
4 |bx

i (t)| and all entities have a maximum speed of 1
2 units

per time step. Similarly, any other entity e j is at most d units from where it was at t
′
.

First we consider the lower bound on the blanket volume at time t. Recall that
the volume of ei’s x-blanket is determined by the entity which is x+1st closest to
ei’s location, since it is the largest open ball that contains at most x entities. At least
the x+ 1 closest entities to ei at time t, that is Γ

x+1
i (t), are in the closure of bx

i (t).
Thus they are all in the interval [min(bx

i (t))−d,max(bx
i (t))+d] at time t

′
. ei could

have been anywhere in the interval [li(t)− d, li(t) + d] at time t
′
. Since li(t)−

min(bx
i (t)) = max(bx

i (t))− li(t) =
|bx

i (t)|
2 , this means that |li(t

′
)−min(bx

i (t
′
))| ≤

|bx
i (t)|
2 +2d. The x-blanket volume is twice this length, and hence

|bx
i (t
′
)| ≤ |bx

i (t)|+4d =
3
2
|bx

i (t)|

Thus
2
3
|bx

i (t
′
)| ≤ |bx

i (t)|

See Figure 5.2 for an illustration of the bounds on the location of points in bx
i (t)

at time t
′
.

The proof of the upper bound is similar, except that we argue at most x entities
(including ei) could be in the interval (min(bx

i (t))+ d,max(bx
i (t))− d) at t

′
. This
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li(t)min(t
′
) max(t

′
)

time

space

t
′

t

2d

max length x-blanket
at time t

′
min length x-blanket
at time t

′

Figure 5.2: Bounds on the possible true x-blanket of ei at time t
′

given the true
x-blanket of ei at time t. The outer grey cones illustrate the bound on the positions
of the extremal points of Γx

i (t) from the time t− 1
4 |bx

i (t)| up to t. The middle grey
cone shows the potential locations of ei.

is because any entity in this interval at t
′

will be in bx
i (t), which we know contains

at most x entities. Hence

|bx
i (t
′
)| ≥ |bx

i (t)|−4d

=
1
2
|bx

i (t)|

Thus

|bx
i (t)| ≤ 2|bx

i (t
′
)|

Combining these bounds we produce 2
3 |bx

i (t
′
)| ≤ |bx

i (t)| ≤ 2|bx
i (t
′
)|.

Next we will show that if we have probed all entities within a number of time
steps equal to a quarter of their true x-blanket volume then their true x-blanket vol-
ume is relatively close to the perceived x-blanket volume for that entity at that time.
The proof of this lemma is very similar to the proof of the previous lemma, so our
discussion will be more terse in this proof.

Lemma 16. For any time t, if for all entities e j, t− p j(t) ≤ 1
4 |bx

j(t)| then for all
entities ei, 4

7 |b̂x
i (t)| ≤ |bx

i (t)| ≤ 4|b̂x
i (t)|.
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li(t)min(bxi (t)) max(bxi (t))
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t− 1
2b

x
i (t)

pi(t)

t

4d

2d

t− 1
2 (b

x
i (t) + z)

z

Figure 5.3: Bounds on the possible perceived x-blanket of ei at time t given the true
x-blanket of ei at time t. Note that the perceived location of any point in Γ̂x

i (t) may
be based on its location up to 1

2 bx
i (t) time steps ago. The orange cone represents a

bound on the location of an entity outside of Γ̂x
i (t). Note that its right endpoint is

necessarily further from ei than the right endpoint of the leftmost grey triangle.

Proof. For any entity e j that is in Γ
x+1
i (t) at time t, |bx

j(t)| ≤ 2|bx
i (t)|, by Observa-

tion 3. Thus, all of these entities have been probed in the past 1
4 |bx

j(t)| ≤ 1
2 |bx

i (t)|
time steps. Hence at time t all of the entities in Γ

x+1
i (t) could have moved a dis-

tance of at most 2d = 1
4 |bx

i (t)| since they were last probed.

To prove the lower bound we will consider the largest b̂x
i (t) could be. Note

that all of the entities in Γ
x+1
i (t) must have been in the interval [min(bx

i (t))−
2d,max(bx

i (t))+ 2d] the last time they were probed. Also note that ei must have
been within the interval [li(t)−d, li(t)+d], since it was probed in the last 1

4 |bx
i (t)|

time steps. Thus the maximum possible distance between l̂i(t) and the perceived
location of an entity in Γ

x+1
i (t) is |b

x
i (t)|
2 +3d = 7

8 |bx
i (t)|. Hence 4

7 |b̂x
i (t)| ≤ |bx

i (t)|.

The argument for the upper bound is similar. It is clear that the entity in Γx
i (t)

which is furthest from ei at time t, ex cannot be in the interval (min(bx
i (t)) +

2d,max(bx
i (t))− 2d) at px(t). This would be enough to argue our result, except

that we also must consider entities not in Γx
i (t). We need to argue all of the enti-

ties that are not in Γx
i (t) have perceived locations that are outside of [min(bx

i (t))+
2d,max(bx

i (t))−2d] at pi(t), since any entity inside that interval would shrink the
volume of ei’s perceived x-blanket. We know for any entity eo not in Γx

i (t), eo’s x-
blanket can at most be large enough to contain all of bx

i (t), since there are x entities
in bx

i (t). Thus
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|bx
o(t)|< 2|li(t)− lo(t)|+ |bx

i (t)|
= 2(z+bx

i (t))

where z = min{|min(bx
i (t))− lo(t)|, |max(bx

i (t))− lo(t)|}

Informally z is the distance from eo to bx
i (t). Hence t− po(t) <

z+bx
i (t)

2 , which

means that |l̂o(t)− lo(t)| < z+bx
i (t)

4 = z
4 +2d. And so no entity which is outside of

bx
i (t) at time t could have a perceived location at time t that is inside [min(bx

i (t))+
2d,max(bx

i (t))− 2d], since the distance from eo to that interval is z+ 2d. This
means the minimal distance between l̂i(t) and entities in Γ̂x

i (t) is at least 1
4 |bx

i (t)|.
Thus |bx

i (t)| ≤ 4|b̂x
i (t)|.

Combining the two bounds we generate 4
7 |b̂x

i (t)| ≤ |bx
i (t)| ≤ 4|b̂x

i (t)|.

The above results all rely on knowing that we have probed each entity recently
with respect to its true x-blanket. It will not be possible for our algorithm to ensure
this directly as our algorithm will be scheduling probes into the future based on the
current perceived volume of a given entity’s x-blanket. However we will show as
long as an entity is probed within a number of time steps that is a small fraction of
our current perception of an entity’s x-blanket volume then it will never have been
left unprobed for more than a quarter of its true x-blanket volume. Note that this
is a bound on the volume of ei’s uncertainty region, as it grows by one each time
step. This result will be important in showing we can maintain a reasonable ply.

Theorem 17. If for all times t and all entities e j, t− p j(t)≤ 1
11 |b̂x

j(p j(t))| then for
all times t and any entity ei, t− pi(t)< 1

4 |bx
i (t)|.

Proof. Assume the hypothesis of the theorem holds. We will prove the result by
induction. Our base case is at time zero. The result is trivially true, since at time 0
for each entity ei, t− pi(t) = 0.

Assume that at all time steps τ < t, all entities e j have been probed in the last
1
4 |bx

j(τ)| time steps. Take ei some arbitrary entity. Our goal to bound the time that
has elapsed since ei was last probed with respect to the volume of its true x-blanket
at time t. To do so we need to bound this volume by the volume of the perceived x-
blanket at pi(t), since that is what we base our probe schedule on. We will do this in
two steps, first we bound the true volume of the x-blanket at pi(t) by the perceived
volume at pi(t), and then we bound the true volume at t, by the true volume at pi(t).
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To bound the volume of the perceived x-blanket at time pi(t) by the true x-
blanket volume at that time, consider the set of entities Γx

i (pi(t)). For every e j in
Γx

i (pi(t)) the last time it was probed, p j(pi(t)), is less than pi(t)− 1
4 |bx

j(pi(t))| time
steps by our inductive hypothesis. Thus, by Lemma 16, 4

7 |b̂x
i (pi(t))| ≤ |bx

i (pi(t))|.

Now we want to bound the volume of bx
i (t). By the hypothesis of the theorem,

t− pi(t)<
1
11
|b̂x

i (pi(t))|

<
7
44
|bx

i (pi(t))|

<
1
6
|bx

i (pi(t))|

Thus at most the entities in Γx
i were in the interval [min(bx

i (pi(t)))+ 1
12 bx

i (pi(t)),max(bx
i (pi(t)))−

1
12 bx

i (pi(t))], and ei itself has moved at most 1
12 bx

i (pi(t)) units. Thus,

|bx
i (t)| ≥ |bx

i (pi(t))|−
1
3
|bx

i (pi(t))|=
2
3
|bx

i (pi(t))|

This implies,

1
6
|bx

i (pi(t))| ≤
1
6

(
3
2
|bx

i (t)|
)
=

1
4
|bx

i (t)|

Combing this with our previous result we find that t− pi(t)< 1
4 |bx

i (t)|.

Thus by induction our result holds for all time steps.

Corollary 18. For all pairs of times t, t
′
, such that t − t

′
< 1

11 |b̂x
j(p j(t))| for all

entities ei, 1
2 |bx

i (t
′
)|< |bx

i (t)|< 3
2 |bx

i (t
′
)|.

Proof. The result follows from Lemma 15 and Theorem 17.

Corollary 19. If for all t and all entities e j, t− p j(t) < 1
11 |b̂x

j(p j(t))| then for all
times t and any entity ei, 4

7 |b̂x
i (t)| ≤ |bx

i (t)| ≤ 4|b̂x
i (t)|.

Proof. The result follows from Lemma 16 and Theorem 17.

The final result for this section combines the above two results to argue that the
volume of our perceived x-blanket at a given time is a good approximation for the
true x blanket, for an interval of time stretching into the future.
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Lemma 20. If for all t and all entities e j, t− p j(t)< 1
11 |b̂x

j(p j(t))| then for all times

t and any entity ei, 8
21 b̂x

i (t)≤ bx
i (t
∗)≤ 8b̂x

i (t) for all t∗ in [t, t f ] where t f = t + b̂x
i (t)
11

Proof. We will prove the upper and lower bounds separately. First we prove the
lower bound.

From Corollary 19 we know that

4
7
|b̂x

i (t)| ≤ |bx
i (t)|

From Corollary 18 we get that

|bx
i (t)| ≤

3
2
|bx

i (t
∗)|

Therefore

4
7
|b̂x

i (t)| ≤
3
2
|bx

i (t
∗)|

↔ 8
21
|b̂x

i (t)| ≤ |bx
i (t
∗)|

For the upper bound, from Corollary 19 we get

|bx
i (t)| ≤ 4|b̂x

i (t)|

From Corollary 18 we know that

1
2
|bx

i (t
∗)| ≤ |bx

i (t)|

This means,

1
2
|bx

i (t
∗)| ≤ 4|b̂x

i (t)|

↔ |bx
i (t
∗)| ≤ 8|b̂x

i (t)|

By combining our upper and lower bounds we get the statement of the lemma:

8
21
|b̂x

i (t)| ≤ |bx
i (t
∗)| ≤ 8|b̂x

i (t)|

In this section we have shown that, by probing frequently enough based on the
perceived x-blanket volume, our perception of the entities is not too far off their
true locations. Knowing this we can show the bucket algorithm will be able to do
fairly well, assuming we have an idea of what the optimal blanket value is.
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5.1.2 Bucket Algorithm Analysis

Using our results from the previous section we will show that the Bucket Algo-
rithm performs well, if we are given a reasonable value for χ .

Definition 20. We say a bucket has “overflowed” if there is still an element in its
queue at the end of its associated time interval.

As long as no bucket overflows, we have managed to probe every entity before
its uncertainty region exceeds its χ-blanket. By an argument similar to the one
used in the static case, this leads us to conclude we have low ply.

Theorem 21. If no bucket overflows the Bucket Algorithm maintains ply O(χ), for
the value χ we are given.

Proof. Assume that for a given χ value the Bucket Algorithm runs without a bucket
ever overflowing.

Let ei be an arbitrary entity, and t be an arbitrary time step. Recall that when
the Bucket Algorithm probed entity ei at time pi(t) it put ei into a bucket which
has length at most 1

22 |b̂x
i (pi(t))|, and note that the time after pi(t) before the start of

that bucket is at most 1
22 |b̂x

i (pi(t)))|, since it is the next bucket of its length which
does not overlap the current time step. Since the algorithm runs without a bucket
overflowing, this means that any ei will have been probed before 1

11 |b̂x
i (pi(t))| at

any time t. Then by Theorem 17 the entity ei was probed in the last 1
4 |b

χ

i (t)| time
steps. Thus |ri(t)|< 1

4 |b
χ

i (t)| (recall ri(t) is the uncertainty region of ei at t). Since
li(t) ∈ ri(t)

ri(t)⊆
[

li(t)−
1
4
|bχ

i (t)|, li(t)+
1
4
|bχ

i (t)|
]

Thus ri(t)⊂ bχ

i (t) =
[
li(t)− 1

2 |b
χ

i (t)|, li(t)+ 1
2 |b

χ

i (t)|
]

for all times t.

Note that, similar to the static case, no more than 2χ of the χ-blankets overlap
on any one given point. This is because for any given point the χ-blankets of at
most the χ entities to the left, and χ entities to the right overlap that point (this is
more formally discussed in Theorem 11). Since an entities uncertainty region is
contained in its χ-blanket, our ply is always less than 2χ , which is O(χ)

Now we will show that a bucket overflows only if there is a time step in its
associated time interval when the inverse sum of the χ-blanket volumes is greater
than 1

800 .
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Theorem 22. If a bucket overflows then there is a time τ , in that bucket’s associated
time interval, such that ∑

n
i=1

1
|bχ

i (τ)|
> 1

800 .

Proof. Assume that some bucket, β ∗, overflows, and let T ∗ be its associated time
interval.

Let B(t) = {βi, j : t ∈ [i2 j +1,(i+1)2 j]}, the set of buckets which include time
t in their intervals. Note that there is one bucket in B(t) for each length j.

We define φ(t) as follows (recall |β | is the length of the associated interval, not
the number of entities in bucket β ):

φ(t) = ∑
β∈B(t)

∑
ei∈β

1
|β |

That is, we sum over all the placements of entities in buckets which overlap time
t, taking the sum of the inverse of the size of the bucket the entity is placed in. We
can think of φ(t) as a surrogate for the inverse sum of the x-blanket volumes, since
the volume of the bucket an entity is placed into is closely related to the volume
of its x-blanket. There are many factors which will cause the sum of the inverse
bucket volumes to be much larger than the sum of the inverse blanket volumes,
these necessitate the 1

800 constant. Since we never remove elements from buckets,
just mark them as probed, this sum includes entities that were chosen to be probed
at a time step earlier than t. Note that if an entity ei that is in bucket β is probed and
placed in a bucket that is shorter than β , the new bucket it is placed in may overlap
β . Thus, it will contribute multiple times to φ(t), for all the times t when both of
the buckets overlap. Note that φ(t) also includes contributions from entities which
are never probed if a bucket which overlaps t overflows.

There are now two steps to our proof:

1. Prove there exists a time τ such that φ(τ)≥ 1.

2. Show that this implies at that time τ the sum ∑
n
i=1

1
|bχ

i (τ)|
is greater than 1

800

For the first step of the proof we will consider ∑t∈T ∗ φ(t). Recall that T ∗ is
the interval associated with β ∗, the bucket which overflowed. The sum over all the
buckets is larger than the sum over just those buckets whose intervals are contained
within β ’s. By Observation 2 we know that each of these buckets are wholly con-
tained within T ∗. Thus we sum over the entities in the bucket β , |β | times. Hence
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∑
t∈T ∗

φ(t) = ∑
t∈T ∗

∑
β∈B(t)

∑
e∈β

1
|β |

≥ ∑
t∈T ∗

∑
β∈B(t)
β⊆β∗

∑
e∈β

1
|β |

= ∑
β⊆β ∗
|β |∑

e∈β

1
|β |

= ∑
β⊆β ∗

∑
e∈β

1

> |T ∗|

The last inequality is a consequence of β ∗ overflowing and thus there are more
than T ∗ entities that are scheduled to be probed over the interval T ∗, each of which
are in buckets β such that β ⊆ β ∗. This implies

φ̄ =
∑t∈T ∗ φ(t)
|T ∗| > 1

That is the average of the φ(t) values over the interval T ∗, φ̄ , is greater than 1.
This means there is some time in T ∗ where the φ(t) is greater than one. Let τ be
such a time.

Having established there exists a time τ when φ(τ) ≥ 1 we will show that
∑i

1
|bχ

i (τ)|
> 1

800 , that is the inverse sum of the blanket volumes is only a factor of
1

800 less than φ(τ).

Our goal is to describe the relationship between the volume of the bucket an
entity is probed in that overlaps time τ , and the volume of the x-blanket of that
same entity at time τ . Consider some arbitrary entity ei, and some bucket β that ei

is placed in that overlaps time τ . Let pi(β ) be the time at which ei was probed and
placed in bucket β . The distinction between pi(β ) and pi(τ) is important, since
the time step pi(τ) may be in β . We will be interested in the probe time at which
ei was placed in β . We aim to probe an entity before time steps equal to 1

11
th of

its perceived x-blanket volume have past. Our algorithm does this by placing the
entity in the first bucket whose size is less than 1

22
nd of the entity’s perceived x-

blanket volume. Note the factor of two is sufficient to insure that the time between
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when the entity was probed and the end of the bucket it is placed in is less than 1
11 .

Thus we know that

τ− pi(β )<
b̂x

i (pi(β ))

11
Hence from Lemma 20

8
21

b̂x
i (pi(β ))≤ bx

i (τ)≤ 8b̂x
i (pi(β ))

We know from the definition of our algorithm that β ’s volume is at least 1
44

th

the volume of b̂x
i (pi(β )). This means,

|bx
i (τ)| ≤ 8|b̂x

i (pi(β ))|
→ |bx

i (τ)| ≤ 352|β |

It is important to note that an entity may show up in several different buckets in
the calculations of φ(τ). Observe the sum ∑τ∈β

1
|β | is a geometric sum. It follows

that the entire contribution from a single entity is not more than twice its largest
contribution, since the bucket sizes are powers of two. That is if ωi is the length of
the smallest bucket that ei is in that intersects τ then

φ(τ)< 2
n

∑
i=1

1
ωi

Since |bx
i (τ)| ≤ 352|β |,

φ(τ)<
n

∑
i=1

704
bx

i (τ)

→
n

∑
i=1

1
bx

i (τ)
>

1
800

Thus if β ∗ overflows, then ∑i
1

|bχ

i (τ)|
> 1

800 for some time step τ in T ∗.

Now we know that if a bucket overflows, it means there is a time when the
inverse sum of the blanket sizes is relatively large, we argue this means the distri-
bution of the entities at that time is “bad”. Specifically if the entities were frozen
in those positions ply Ω(χ) would be unavoidable.

Theorem 23. If a bucket overflows, then there is a time at which the entities are
located in such a way that any algorithm would produce average ply Ω(χ) if the
entities did not move.
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Proof. By Theorem 22 we know if a bucket overflows, there is a time when ∑i
1

|bχ

i (t)|
>

1
800 , let τ be such at time. This means that at τ the optimal blanket value for probe
density 1

800 is greater than χ . By Theorem 13 we know that any algorithm will have
average ply which is at most a constant factor times the optimal blanket value, for
any given probe density, given T is sufficently long. Since the entities do not move
T can be arbitrarily long, eventually any algorithm’s average ply is Ω(χ) for the
distribution of entities at τ .

For the following it is important to note the distinction between the value of
χ we are given, and the true optimal blanket value for probe density 1

800 at time t,
which I will call x(t).

To elaborate on the above theorem, if a bucket overflows then there is some
time τ where the x(τ) was greater than the value χ we were given, by Theorem
22. That means that the value of χ was smaller than the optimal blanket value at
τ . As in the static case, we know the high optimal blanket value is indicative of a
configuration of entities such that high ply is unavoidable if the entities stay in the
“bad” configuration for an extended period of time. However, it is not clear in this
case whether a smart algorithm could avoid having high ply by “preparing” for this
time step when the entities are too closely crowded anticipating that the entities
will become uncrowded quickly.

It is also not clear that our algorithm will fail simply because there is some
time step where the inverse sum of the x-blankets is relatively large. It is entirely
plausible that despite their being a time when x(τ)> χ that our algorithm still runs
successfully. In fact, in our proof of Theorem 22 one can see that although we only
consider a single time step, the sum ∑t∈T φ(t) is relatively high on average. It is
unclear from our analysis how quickly this sum value can change, and whether a
single identifiable violation actually implies a more lengthy interval of poor posi-
tioning of the entities. A study of how sensitive our algorithm actually is to these
violations would be an interesting avenue for future work.

The algorithm presented in this chapter provided a good first step towards solv-
ing the continuous ply minimization problem in its full generality. The algorithm
did depend on a oracle that provided with an χ value to shoot for, that future work
would aim to remove. It was also unfortunate that our algorithm does not adjust
to an ever changing environment. We can get a good estimate of what the optimal
blanket value is, based on the perceived location of the points. It would be inter-
esting to design an algorithm that is more adaptive, and adjusts the blanket value
it uses to generate probes, based on how this estimate of the optimal blanket value
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changes. This is not possible with our current tools, as our estimate of the blanket
value is not tight enough, and it changes to rapidly to be used effectively. Although
there is still work to be done until the question of how to efficiently continuously
probe entities is answered in full, this work has provided a strong base to develop
on.
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Chapter 6

Concluding Remarks

Variants of the ply minimization problem has been explored in a few different pa-
pers [8][9]. The main focus, in these papers, is the “single-shot” case, that is the
case where one wishes to minimize the ply at a single point in time. The current
work built on those investigations, by considering the continuous version of the Ply
Minimization problem. This continuity required the introduction of new tools to
deal with the challenges of being competitive across an entire interval of time.

To start, we simplified the problem by assuming that the entities were not mov-
ing. This simplification decreased the complexity of the problem, while still yield-
ing interesting results. It allowed us to focus on issues that arise from the repetitive
nature of the problem, and ignore those that are caused by the uncertainty of our
information. Looking at the static case lead to the conclusion that being compet-
itive over an interval of time should not be interpreted as being competitive with
the best ply that could be achieved at each time step, because it is impossible for
an algorithm to maintain optimally low ply at each time step. Specifically, the op-
timal ply at a given time step may be a factor of logn smaller than the minimum
maximum ply any algorithm could achieve over the interval in question. Thus, the
focus of our work was on the competitive ratio one could get when comparing their
own algorithm’s maximum minimum ply to that of any other algorithm’s average
ply, over a given time interval. We produced an algorithm, the Rounded Blankets
algorithm, which has worst case ply which is a constant factor more than any other
algorithm’s average ply, over any sufficiently long interval of time. It operates by
calculating the optimal x-blanket for each entity, and then probing that entity be-
fore its uncertainty region is as large as the blanket. This maintains ply which is
within a constant factor of the optimal blanket value. Any other algorithm’s max-
imum minimum ply is within a constant factor of the optimal blanket value. Thus
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we get the aforementioned bound on the competitive ratio of the Rounded blankets
algorithm.

We then adapted the Rounded Blankets algorithm to work in the dynamic case.
It is impossible to calculate a single, optimal, x-blanket for an entity, as we did in
the static case, since the movement of the points means it will change over time.
The reliability of the unchanging locations of the entities in the static case was
important for building a schedule where only one entity is probed at each time
step. In the dynamic case we schedule entities into “windows” of time, instead
of at specific time steps. We call these windows buckets. They are based on the
current blanket volumes, and we require the algorithm to probe an entity before
its window ends. As long as we work with a blanket value which no less than the
true maximum optimal blanket value over the interval, our algorithm will probe all
the entities in the allotted time. We also show that we can conclude our ply will
be close the blanket value we use. Unfortunately the fact the point locations are
changing in the dynamic case means that the optimal blanket value is no longer a
tight bound on the behaviour of all algorithms.

6.1 Future Work

One potential avenue for future work is producing a more adaptive algorithm, and
discovering a bound on the ply algorithms produce, in the dynamic case. An idea
for how such algorithms might improve on our results is to maintain a “working
blanket value”, which is our approximation of the true current blanket value, and
updating it when our perceived optimal blanket value crosses certain thresholds,
such as being double or half the working blanket value. Another idea is increasing
the blanket value when a bucket overflows. Currently we view overflows as a “crit-
ical error”, and they cause the algorithm to halt. By increasing the blanket value
when a bucket overflows we can work around this error state. In such a situation,
entities would be moved into larger buckets, based on their new perceived blanket
volume. Whatever adjustments are made, one will have to argue about the com-
petitiveness of the new algorithm. Arguing about the minimum maximum ply any
algorithm can get in the dynamic case, and how it is related to the optimal blanket
values of the time steps in the time interval of interest, would be useful results.

Future work might also consider different models for the Continuous Ply Min-
imization problem. Some differing models been explored for single shot case,
including having a variety of speed bounds, and extending to higher dimensional
spaces [8][9]. The easiest of these would appear to be extending to a higher di-
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mensional space, which should follow fairly directly from the arguments in this
work. One might also consider bounding the acceleration of the entities, or using
probabilistic models to represent the uncertainty regions of the entities. Another
modification to consider is changing the probe model. It would be interesting to
examine how the results might change if the algorithm had more than one probe
available per time step, or if the algorithm had a finite number of probes, but was
allowed to use more of them at times when the optimal blanket value was high, if
it used fewer when the optimal blanket value was low. The last model change one
might consider is changing the way ply is calculated. Currently we consider ply to
be the maximal overlap between uncertainty regions. However, the usefulness of
this measure will depend on the application. It may be better to consider the total
number of uncertainty regions which are pairwise overlapping. Or alternatively,
to consider some function of the number of uncertainty regions which overlap a
point, and then integrate over the real line. For example, take f (x) = δ (x)2, where
δ (x) is the number of entities which overlap x. Then the value we are interested in
would be

∫
∞

−∞
f (x)dx.

One subject, which was only briefly mentioned in this document, is the hard-
ness of calculating the optimal query pattern. In the one shot case, Evans et al show
that calculating the optimal probe sequence is NP-hard, when one knows the true
trajectories of the entities [8]. It is hard to fathom that the problem gets easier in the
continuous case. However the problem is distinct enough to admit the possibility,
due to the difference between optimizing at a single time, versus optimizing over
an entire interval. Perhaps the wider target area makes the correct probe at any one
given step more tractable. Another way to try to gain insight into the hardness of
continuous probing, or indeed optimal probes in general, would be to relax the re-
striction on probing once per time step. Consider instead the situation if we simply
required the entities be probed periodically, that is every Pi time steps, and that the
inverse sum of these periods is less than one, that is ∑i

1
Pi
< 1. The problem then

transforms into calculating optimal periods for each entity, rather than the optimal
query at each time step. It would be interesting to see if this makes the calculation
simpler.

As we have discussed, there are many interesting directions for future research
to take. Many other variations exist which have not been touched on in this sec-
tion. The answers to these questions will lead to a better understanding of the ply
minimization problem in general.

64



Bibliography

[1] S. Anily, C. A. Glass, and R. Hassin. The scheduling of maintenance service. Discrete
Applied Mathematics, 82(13):27 – 42, 1998.
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