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Abstract

When optimizing black-box functions, little information is available to
assist the user in selecting an optimization approach. It is assumed that
prior to optimization, the input dimension d of the objective function, the
average running time tf of the objective function and the total time T al-
lotted to solve the problem, are known. The intent of this research is to
explore the relationship between the variables d, tf , and T and the perfor-
mance of five optimization algorithms: Genetic Algorithm, Nelder-Mead,
NOMAD, Efficient Global Optimization, and Knowledge Gradient for Con-
tinuous Parameters. The performance of the algorithms is measured over a
set of functions with varying dimensions, function call budgets, and starting
points. Then a rubric is developed to assist the optimizer in selecting the
most appropriate algorithm for a given optimization scenario.

Based on the information available prior to optimization, the rubric es-
timates the number of function calls available to each algorithm and the
amount of improvement each algorithm can make on the objective function
under the function call constraint. The rubric reveals that Bayesian Global
Optimization algorithms require substantially more time than the competing
algorithms and are therefore limited to fewer function call budgets. How-
ever, if the objective function requires a large running time, this difference
becomes negligible. With respect to improvement, the rubric suggests that
Derivative Free Optimization algorithms are preferred at lower dimensions
and higher budgets, while Bayesian Global Optimization algorithms are ex-
pected to perform better at higher dimensions and lower budgets. A test of
the claims of the rubric reveals that the estimate of function call budget is
accurate and reliable, but the improvement is not estimated accurately. The
test data demonstrates large variability for the measure of improvement. It
appears that the variables d, tf , and T are insufficient for describing the
expected performance of the assessed algorithms, since variables such as
function type and starting point are unaccounted for.
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Chapter 1

Introduction

The last century has seen an incredible increase in computing power.
Consider that in the early years of the 20th century, the challenge for inven-
tors in computing was to create a compact machine to perform addition, sub-
traction, multiplication, and division with ease and timeliness, [CKAEY14].
Certainly, it has been a long time since such a machine was at the forefront of
computational innovation. In addition to the increase in computing power,
innovations of the last decades have made this power commonly available
through personal computers and smart phones. One of the results of such
an environment is that computers have been used to create simulations of
processes that are quite complex in real life. In the first chapter of [SWN03]
several examples of computer simulators are presented. Among them are
computer simulators that model the evolution of fires in closed spaces, the
design of prosthesis devices, and the design of helicopter blades. In many
instances the computer simulation of an event is simpler, faster, and cheaper
to perform than it is to observe the actual event. The intensive computa-
tions required by a simulator, which were unfathomable only decades ago,
are at present the best choice in certain applications.

One application of computer simulations is for performing experiments
which would be challenging or impossible to perform in reality. Consider
testing the spread-rate of an infectious disease in a human population,
[BBC+02]. For obvious reasons this test would be unethical to perform
without the use of a computer simulation. Such simulations will be referred
to as computer experiments. While we may express computer experiments
as functions, the code that comprises them can not usually be expressed
analytically and thus very little is known about the nature of the function.
For this reason, computer experiments are referred to as black-box functions.

In some computer experiment applications finding the optimal output
value and the corresponding input values is the main objective. Consider a
computer experiment that simulates a car crash, such as the one described in
[JSW98]. The car design that performs the best in the computer experiment
is the one that should be tested in a real experiment and produced if the
results remain positive. The following subsections present the motivation
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1.1. Motivation for Algorithm Comparison

behind this work and a formal definition of the problem.

1.1 Motivation for Algorithm Comparison

Black-box functions present two challenges to optimizers. The first is
that common optimization methods using gradients, convexity, linearity and
other properties of the objective function do not apply to a black-box func-
tion since it lacks an analytic expression. The second challenge is regarding
the time required to evaluate the black-box function. Some computer sim-
ulation functions may require significant computational time, such as Ford
Motor Company’s crash simulation which can take up to 106 hours to run,
[WS07]. There are, however, black-box functions which are far less expen-
sive in terms of time. In instances where the black-box is very expensive
an algorithm that is near the optimal value in as few function evaluations
as possible is desirable, while computationally cheap functions do not im-
pose such a requirement. This demonstrates that the computational time
of a function should be taken into account when choosing an optimization
algorithm in the black-box context.

The motivation behind this thesis is in part due to claims made by
[JSW98] and [SFP11] regarding Bayesian Global Optimization (BGO). In
[JSW98] it is said that the method “often requires the fewest function eval-
uations of all competing methods” and in [SFP11] the authors look for an
algorithm that can “give satisfactory results with as few function evaluations
as possible.” The downside however is that the algorithm will “spend extra
time deciding where [it] would like to evaluate the function next,” [SFP11].
In addition, both of the works intend to minimize an expensive black-box
function, so that the time taken by the algorithm itself, even if very long,
will be small relative to obtaining the function values. Naturally, several
questions arise.

− Are BGO algorithms really the best choice when the black-box func-
tion is very expensive?

− How expensive does a black-box function have to be in order for BGO
algorithms to be the preferred choice?

− If the black-box function is not very expensive, is another family of
algorithms a better choice?

− Does the input dimension of the function have an effect on choice of
algorithm?

2



1.2. Definition of the Problem

− Can a rubric be developed to select the best performing algorithm
based on function evaluation time and input dimension?

To answer the above questions, the performance of several competing al-
gorithms, including BGO algorithms, will need to be compared. This thesis
focuses on algorithms from three different families. The first family of al-
gorithms used for optimizing black-box functions are heuristic methods. By
nature this family of optimizers does not have a strong theoretical frame-
work and it may not even be guaranteed to converge. However, heuristic
methods are, in general, simple to understand and implement, and are prac-
tically motivated. The second family of algorithms is the Derivative Free
Optimization (DFO) family. These algorithms tend to use function values
to explore the geometry of the objective function and move towards the op-
timal value. The third family of algorithms used for black-box optimization
is the BGO family. These algorithms use statistical tools to create a model
of the true function which is cheaper to compute. New points to explore,
are then chosen based on this model function. Chapter 3 provides a deeper
analysis of each of the algorithms as well as the implementations used.

1.2 Definition of the Problem

To formally define the optimization problem let f : Rd → R be a con-
tinuous black-box function with input variable x ∈ X ⊂ Rd, where X is the
input domain. In this thesis, the domain is the unit hypercube, X ≡ [0, 1]d.
The black-box function is assumed to be deterministic, that is, for any x̄ ∈ X
there exists a ȳ ∈ R such that f(x̄) = ȳ each time x̄ is evaluated. Determin-
istic functions essentially have no measurement error. It is assumed that the
user aims to minimize the black-box function. Mathematically, the problem
is written as

minimize f(x),

subject to x ∈ X.
(1.1)

Let X∗ denote the argmin of f , that is,

X∗ = arg min
x∈X

f(x) := {x ∈ X : f(x) ≤ f(y) for all y ∈ X}.

The optimization domain X is a compact set in Rd and f is continuous
function mapping X to R thus the generalized Extreme Value Theorem
(refer to Chapter 5 of [DD02]) guarantees that X∗ is non-empty. Let f∗

3



1.3. Thesis Outline

denote the minimum value of f over the domain X, that is,

f∗ = min
x∈X

f(x) := {f(x∗) : x∗ ∈ X∗}.

1.3 Thesis Outline

This thesis is laid out as follows. In Chapter 2 some background infor-
mation is provided regarding Gaussian Process models which are used by
two of the algorithms considered in the experiment. Chapter 3 is a presen-
tation of the algorithms used in this thesis. In Chapter 4 the development
of the rubric is documented. Section 4.1 describes the framework of the
rubric and Section 4.2 details the estimation of some functions crucial to
the rubric. Chapter 5 contains a demonstration of the rubric, an analysis
of implications arising from its results, and a test of the reliability of the
rubric. Finally in Chapter 6 some conclusions are drawn and future research
directions discussed.
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Chapter 2

Gaussian Process Model

Two of the algorithms used in this thesis adopt a model based approach,
where the objective function f is replaced by an estimate of the function
(often referred to as a surrogate or model.) One method for creating a model
of the true function is to use a Gaussian process. What follows is a brief
discourse on model building with the Gaussian process. To be consistent
with notation commonly used with Gaussian processes, y will denote the
objective function instead of f .

Assume that the objective function y has been evaluated N times at the
points x1, x2, . . . , xN . This initial sample of N points should be sufficiently
large and provide a good coverage of the domain so that a good model can be
developed. In [LSW09] it is argued that 10d is a sufficient size for an initial
sample. Now the task is to predict the function y based on this sample of
N points. The next step in building a model of y requires some knowledge
of a stochastic process.

Informally, a stochastic process Y = {Yt : t ∈ T} is a family of indepen-
dent random variables specified in some domain T . When T is a singleton
a stochastic process is just a random variable and when T is a set of finitely
many elements the stochastic process is a vector of random variables. How-
ever, when T is a set of infinitely many elements, the stochastic process is a
random function. A stochastic process can therefore be viewed as an exten-
sion of the concept of random variables to functions. A Gaussian process,
then, is a stochastic process where each random variable has a Gaussian dis-
tribution. For a detailed presentation of GPs refer to Chapter 2 in [SWN03].
The Gaussian assumption on the stochastic process is made for the ease of
working with Gaussian distributions.

Adopting a Bayesian approach, prior knowledge of y is specified by the
GP, Y = {Yx : x ∈ X}. Then the random variables Yx1 , Yx2 , . . . , YxN
associated with the N sampled points have a multi-variate normal distri-
bution with mean vector µYN and variance-covariance matrix ΣYNYN . Let
yN = (y(x1), y(x2), . . . , y(xN ))T be the vector of N observed function val-
ues. Then the posterior distribution of any Yx ∈ Y conditioned on the

5



Chapter 2. Gaussian Process Model

observed values yN is normal and specified by

µYx|yN := E[Yx|yN ] = µYx + ΣYxYN Σ−1YNYN (yN − µYN ) (2.1)

and

σ2YxYx|yN := cov[Yx, Yx|yN ] = ΣYxYx −ΣYxYN Σ−1YNYN ΣT
YxYN

, (2.2)

where ΣYxYN is an N -length vector of covariances between Yx and each
element of YN ; ΣYxYx is the variance, σ2Yx , of the random variable Yx; µYx
is the mean of the random variable Yx. The posterior distribution is really
an estimate of the function y. The equations (2.1) and (2.2), as shown in
[CMMY91], then become

ŷ(x) = µYx + ΣYxYN Σ−1YNYN (yN − µYN ), (2.3)

which is the approximation to y at x and

σ2x = ΣYxYx −ΣYxYN Σ−1YNYN ΣT
YxYN

, (2.4)

which is the uncertainty of the estimation in (2.3).
Models created using the GP provide an estimate of the true function

but also provide a measure of the uncertainty that comes along with the
estimate at each point. The uncertainty is manifested in the variance, (2.4),
of ŷ and is heavily relied on by two of the algorithms presented in Chapter 3.
Also note that the costly operation of inverting the matrix in (2.3) does
not depend on the unobserved point x and therefore when Σ−1YNYN has been
computed once, ŷ can be computed quickly for multiple points in the domain.
Equations (2.1) and (2.2) are written for multiple points in [CMMY91]. The
requirements necessary for Σ−1YNYN to be invertible will be discussed shortly.

Equations (2.3) and (2.4) require knowledge of the mean vectors, µYx
and µYN , the covariance vector ΣYxYN , the covariance matrix ΣYNYN and
the variance σ2Yx . All of these values will have to be estimated and to make
the task simpler, in the prior specification of y (that is the GP) it will be
assumed that each Yx ∈ Y will have the same mean, µ, and variance, σ2.
Equations (2.3) and (2.4) then simplify to

ŷ(x) = µ+ rYxYN R−1YNYN (yN − µ1) , (2.5)

and
σ2x = σ2

(
1− rYxYN R−1YNYN rTYxYN

)
, (2.6)

6



Chapter 2. Gaussian Process Model

where 1 is an N -length vector of ones; rYxYN is an N -length vector of cor-
relations; RYNYN is an N × N matrix of correlations. The variance was
factored out of the covariance matrices to obtain the correlation matrices.
Now only one µ and one σ2 need to be estimated which is a simpler task
than estimating 2N + 2 parameters as is the case in equations (2.3) and
(2.4).

Two more terms from equations (2.5) and (2.6) remain to be discussed,
the correlation vector and the correlation matrix. The initial assumption on
the objective function y is that it is continuous over X. This implies that if
x1, x2 ∈ X are close to one another their function values should be similar.
In terms of correlation, two input points close to each other should be highly
correlated. Points far away from each other will exhibit a low correlation.
This leads to a correlation function of the form

corr(Yx1 , Yx2) =

d∏
i=1

R(x1i − x2i ), (2.7)

where R is a correlation function in one dimension and depends on the
distance between x1i and x2i . Recall that each x ∈ Rd, thus the product is
over the dimensions. Equation (2.7) is referred to as a product correlation
and allows for control and analysis of the effects of each dimension. A
possible choice for R is the squared-exponential correlation

R(x1i − x2i ) = e−θi(x
1
i−x2i )2 , (2.8)

where θi ≥ 0 is an unknown parameter. Variants of this exponential correla-
tion are used in [SFP11] and [JSW98]. In the above equation R(x1i −x2i ) will
be close to 1 when x1i − x2i is close to 0 which is in agreement with the con-
tinuity assumption on y. Taking equation (2.8) into the product correlation
of (2.7) gives

corr(Yx1 , Yx2) =

d∏
i=1

e−θi(x
1
i−x2i )2 . (2.9)

Each θi is a parameter specific to dimension i. Small values of θi can indicate
that input variable i has a negligible contribution to the function y. Con-
structing the correlation matrix from (2.5) and (2.6) using the correlation
function from (2.9) ensures that the matrix is positive definite and hence
invertible, [SWN03]. The squared-exponential correlation from (2.8) is only
one type of correlation function and Chapter 2 in [SWN03] presents some
other correlation functions.

7



Chapter 2. Gaussian Process Model

Equations (2.5) and (2.6) have d + 2 parameters which need to be esti-
mated. The most commonly used method of estimating the parameters is by
the well known maximum likelihood estimation which will not be described
in this thesis. For information on this step of the process refer to Chapter
3 of [SWN03]. Once the parameters are estimated, (2.5) and (2.6) are fully
known and the model function ŷ is fully known.

8



Chapter 3

Algorithms

Prior to presenting each of the algorithms, the notation used, as well as,
notions of convergence will be discussed. Let k ∈ N denote the iteration
of the optimization algorithm. Let Sk = {x0, x1, . . . , x|Sk|} be the ordered
set of all points, x ∈ X, that have been sampled from iteration 0 up to
and including iteration k. The points in Sk are ordered chronologically so
that x0 is the first point sampled and x|S

k| is the most recently sampled
point. Then following the completion of iteration k, the best function value
obtained is

fkbest := min
x∈Sk

f(x).

Similarly, the best point obtained by the end of the kth iteration is

xkbest := {x ∈ Sk : f(x) = fkbest}.

If multiple points satisfy the requirements of xkbest, the one with the lower
index in Sk is taken, thus keeping xkbest a singleton. An algorithm is said to
converge to the true minimum value if

lim
k→∞

fkbest = f∗. (3.1)

Let dist(xkbest, X
∗) be the distance between xkbest and X∗, defined as

dist(xkbest, X
∗) := inf

x∈X∗

∥∥∥xkbest − x∥∥∥
2
.

Then, an algorithm is said to converge to a true minimizer if

lim
k→∞

dist(xkbest, X
∗) = 0. (3.2)

In the following sections each of the algorithms is presented in greater
depth along with some convergence results. All implementations are in the
programming language R.

9



3.1. Genetic Algorithm

3.1 Genetic Algorithm

The genetic algorithm is a heuristic approach that was formally intro-
duced in [Hol75] and has since become a well-known option to optimizers.
The basic idea behind this algorithm is to mimic biological evolution and
using “survival-of-the-fittest” obtain the optimal value of the function.

At iteration k, the algorithm considers a set of points, say

P k = {x0, x1, . . . , x|Pk|} ⊂ Rd.

The initial sample of points, P 0, can be chosen randomly, but each sub-
sequent set is derived from the previous. Since the ideology behind the
algorithm is that of biological evolution, each point xi, i = 1, 2, . . . , |P k|, is
viewed as a member of a population P k and the components of the vector xi

are its ‘genes’. The constraint set X is the minimal requirement for survival
in this population and any individual xi /∈ X will fail to survive or pass its
genes to the next generation. In the next step, we use the fitness function,
g, to determine the fitness of each individual in P 0. For the sake of the
application in this thesis we let g = −f so that smaller objective values
correspond to higher fitnesses. And of course we have f(x∗) = −g(x∗) for
any x∗ ∈ X∗.

Based on the fitness values of the members of P k, three steps will be
taken to determine the next population, P k+1. In the first step, Selection,
the fittest individuals from P k will be selected to survive into the next
generation P k+1. The second step, Cross-over, selects sufficiently many
parent points from P k and breeds them to create offspring. To stay true to
the biological motivation for this algorithm, in this step the parent points
are viewed as chromosomes and the components of each parent chromosome
are its genes. As a result of the chromosomal motivation the individuals
in P k are often encoded, with binary encoding being a common choice.
Cross-over will create an offspring by using some genes from each parent
and this process generally relies on probabilities to determine which genes
are taken from which parent. If the chromosomes are not encoded, a convex
combination of the parents, where the parameter of convexity is chosen
randomly, is a common choice. The final step, Mutation, corresponds to the
mutation of genes which takes place in biological reproduction. Here the
offspring are perturbed by changing the value of some of their genes. The
probability of a gene mutating is governed by a mutation parameter which
is generally small so as to not deviate from the biological model. Once all
the steps have been completed and P k+1 has been created, the process is

10



3.2. Nelder-Mead

repeated to obtain future generations. A thorough description of the genetic
algorithm can be found in [Hol75].

In order to determine a stopping point for the genetic algorithm, it will
help to first present the theoretical convergence results. The introduction
of random choices in the Cross-over and Mutation steps at each iteration
places the genetic algorithm in the category of stochastic search methods.
As such, the convergence shown in (3.1) and (3.2) is replaced by equations
involving probabilities. In [EAVH91], the authors show that under some
assumptions the genetic algorithm will converge to the true minimum with
probability 1 as the number of iterations approaches infinity. That is,

Prob

[
lim
k→∞

fkbest = f∗
]

= 1 and lim
k→∞

(
Prob

[
P k ∩X∗ 6= ∅

])
= 1.

With this in mind, there is no theoretically preferred event at which to
stop the algorithm. One common way the algorithm may be stopped is
when a function value budget, say Nfeval, has been reached. Alternatively
the algorithm may be stopped if the number of generations where xkbest has
failed to improve, exceeds the parameter Nfix. The first criteria stops the
algorithm if it has taken too long while the second terminates it if too much
time has passed without improvement to the optimal value.

The implementation used in this thesis can be found in the R package GA

which is documented in [Scr13]. The population size of max{10,
√
Nfeval}

is used at each iteration and the top 5% from each population are assured
survival into the next generation. The mutation parameter is 0.1 and the
algorithm is stopped only when the function call budget has been exhausted.

3.2 Nelder-Mead

The Nelder-Mead (NM) method was introduced in [NM65] and is a min-
imization method utilizing only objective function values. The approach
moves a special type of polytope called a simplex around the domain space
in search of the best function value.

A simplex in Rd is a d-dimensional polytope with d+ 1 vertices. In R2,
for example, a simplex is formed by the edges and interior of a triangle. At
iteration k the NM method considers d + 1 points {x0, x1, . . . , xd} which
are the vertices of a simplex. The points are then ordered so that f(x0) ≤
f(x1) ≤ · · · ≤ f(xd) and a search is performed to replace the worst point,
xd. Up to four points may be evaluated along the line passing through xd

and
∑d−1

i=0 x
i/d. If a better function value is found the corresponding point

11



3.3. Pattern Search

replaces xd, otherwise the simplex shrinks towards the best point x0. The
approach guarantees that the next point(s) chosen along with the ones that
remain are the vertices of a simplex in Rd and the process is repeated in
subsequent iterations.

For objective functions that are bounded below, the NM approach guar-
antees convergence to some function value f̄ , [LRWE98]. That is, if X∗ 6= ∅,
then

lim
k→∞

fkbest = f̄ .

While the assurance of convergence is desirable, the accumulation point
is cause for some concern. It is important to note that the statement of
convergence develops no relationship between f̄ and f∗. Most notably, f̄
is not necessarily the minimum value. An example showing the failure of
the method to converge to a stationary point on a reasonable function was
presented in [McK98]. A second concern is that the NM method is a local
search method in that it makes decisions based on the local geometry of the
objective function. This may cause convergence to a local minimum while
ignoring the global minimum.

The simplicity of this method makes it readily implementable and the
fact that gradients are not needed is appealing to many users. In practice,
the algorithm performance can range from very good to quite poor, [Wri96].
The implementation used in this thesis is that of [VB11] which is an R

implementation of the algorithm presented in [Kel99].

3.3 Pattern Search

The pattern search method was first introduced as a direct search al-
gorithm by [HJ61]. The name ‘direct search’ was used to indicate that
only objective function values were to be used in the optimization process.
Subsequent algorithms such as the one presented in [DT91] expanded on the
original method while staying true to the core ideas. As such, the term ‘pat-
tern search’ does not refer to a specific algorithm, instead it encompasses a
range of algorithms which share several intrinsic properties.

At the kth iteration a pattern search algorithm has a best point xkbest
and the corresponding best function value fkbest. The algorithm then explores
points surrounding xkbest in a pattern of directions and a fixed step size. If
a better function value is found, the corresponding point replaces xkbest and
the process is repeated in the next iteration. For the case where no better
function value is found, the step size is decreased and the same exploratory
step performed.

12



3.3. Pattern Search

Like the NM algorithm, pattern search is a local optimization method
and this fact should be considered when global optimization is desired. A
simple way to combat local optimization is to start the algorithm at multiple
locations in the domain. The algorithm then explores the area local to
each starting point and the combined results provide information about the
global optimum. The pattern search approach is simple, intuitive and more
importantly it is flexible and has strong convergence results. In [Tor97], it
is shown that if f ∈ C1, the level sets of f are compact, and some conditions
are placed on the directions being searched at each iteration, then

lim
k→∞
‖∇f(xkbest)‖ = 0.

This of course is not a guaranteed convergence to the minimum of the func-
tion, but there is at least a guarantee of convergence to a critical point.
The power of this result is that it holds for any pattern search algorithm
satisfying the aforementioned conditions.

With regards to the flexibility of pattern search, as mentioned earlier,
[AD06] introduced a search step prior to the directional exploration which
allows for any type of finite global search. This step has one main benefit
in that it allows the algorithm to ‘jump’ out of local modes if a better
function value is found elsewhere without losing the convergence results
from [Tor97]. The pattern search algorithm used in this thesis is Nonsmooth
Optimization by Mesh Adaptive Direct Search (NOMAD), [ABLD08], which
is a modification of the Mesh Adaptive Direct Search (MADS) algorithm,
[AD06].

In this algorithm a Variable Neighbourhood Search (VNS) subroutine,
[HM03], is used to aid NOMAD in global optimization. Once the step size
used in pattern search has become sufficiently small, the VNS algorithm is
used to perturb xkbest and obtain x′. Then a neighbourhood of x′ is explored
in a pattern of directions and increasing step sizes in search of x′′ such that
f(x′′) ≤ f(xkbest). If no such point is found then pattern search continues
around xkbest otherwise xkbest = x′′. Coupling the local nature of pattern
search with the global nature of VNS creates an algorithm more effective
for global optimization.

The R implementation of NOMAD is sNOMADr and can be found in
the package crs, [RN14]. The algorithm will be referred to as sNOMADr
throughout this paper.
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3.4. Efficient Global Optimization

3.4 Efficient Global Optimization

The Efficient Global Optimization (EGO) algorithm was introduced in
[JSW98] as an approach to minimizing expensive-to-compute black-box func-
tions. The approach improves on several previous attempts at optimization
using GP models, and claims to use a relatively small amount of function
calls.

Suppose only N function calls can be afforded throughout the entire
optimization process. Then the EGO algorithm begins by evaluating an
initial sample of points x1, x2, . . . , xm where m < N . Only a portion of the
entire sampling budget should be used in this step. The suggestion of 10d
points, mentioned in Chapter 2, is often used. Based on these m points,
a GP model, f̂ , of the function is created. The authors then introduce an
improvement criterion to select the next point to evaluate. The improve-
ment criterion looks for an unsampled point x ∈ X where its objective
function value could be smaller than the current lowest function value. The
improvement criterion is

I(x) = max
x∈X

(fbest − Y (x), 0), (3.3)

where fbest is the smallest function value obtained so far, and Y (x) is the
random variable with mean and variance specified by (2.5) and (2.6) (that
is the GP). If Y (x) is smaller than the best function value obtained so far,
then the improvement is the amount by which Y (x) is better than the best
function value. If Y (x) does not improve on fbest, then the improvement
at x will be 0. The improvement function is always non-negative and its
maximum is at the point where the greatest improvement in function value
will occur. However, the criterion in (3.3) contains a random variable and
cannot be computed. Naturally this leads to the expected improvement (EI)
criterion,

E[I(x)] = E

[
max
x∈X

(fbest − Y (x), 0)

]
, (3.4)

which is just the expectation of the improvement criterion in (3.3). The
next point to be sampled is the maximizer of (3.4). The authors show
that the expected improvement criterion can be expressed in closed form
and optimized using a branch and bound algorithm. Once the maximizer
has been found, its function value is obtained, a new GP function model
is created using the m + 1 points and the EI criterion is computed again.
These steps are repeated until the budget, N , is exhausted.
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The EI criterion is the key element of the EGO algorithm. While earlier
work in optimization with GP function models relied on heuristics, [JSW98],
this work introduced a criterion based on theory. The criterion tends to ex-
plore regions of X where the GP function model exhibits low values, but also
regions where the model exhibits high uncertainty. This balance between
local and global search allows the algorithm to avoid stagnating at locally
optimal points.

The EGO approach is not guaranteed to converge in general as shown
in [Bul11]. The problem in convergence comes mainly from the constantly
changing GP model by which the EGO approach makes most of its decisions.
If the GP is not a good model of the true function, then convergence to the
true minimum may not be likely.

EGO was designed for black-box optimization and that is why it is ap-
propriate for this thesis. The implementation used is found in the R package
DiceOptim by [GPR+13].

3.5 Knowledge Gradient for Continuous
Parameters

The Knowledge Gradient for Continuous Parameters (KGCP) was intro-
duced in [SFP11] and is an extension of the previous work, [FPD09], which
was considered in the discrete context. It is also an extension of the EGO
algorithm in that it was designed for non-deterministic data. The KGCP
is designed for maximization problems, so the objective function f which
needs to be minimized will be replaced by g = −f .

The KGCP assumes that the data are noisy and that at any point x ∈ X,

ŷ(x) ∼ N(g(x), λ(x)), (3.5)

where ŷ(x) is the noisy observation at x, g(x) is the true objective value at
x, and λ(x) is the noise variance at x. Like the EGO algorithm the KGCP
takes an initial sample of m points, x1, x2, . . . , xm. Let

Ŷ = {ŷ(x1), ŷ(x2), . . . , ŷ(xm)}

be the set of observed values from the initial sample. Then the GP model
at some x ∈ X is the expected value of the true function at x ∈ X based on
the m observations,

gm(x) = E[g(x)|Ŷ ]. (3.6)
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3.5. Knowledge Gradient for Continuous Parameters

The superscript m is used to index the progression of models. The algorithm
then considers sampling another point x ∈ X and predicts gm+1 (the next
model) without having the observation ŷ(x). That is

ĝm+1(x) = E[g(x)|Ŷ , x]. (3.7)

Use of the ‘hat’ notation in ĝm+1 is to indicate that (3.7) does not express
the actual model of the function based on m + 1 sampled points, since the
(m + 1)th point, x, has not yet been observed. The equation is instead a
way to ‘look ahead’ at what the model might be like if it was built using the
additional point x. Then the KGCP criterion at some x ∈ X is

KGCP (x) =

(
E

[
max

i=1,... ,m+1
ĝm+1

(
xi
) ∣∣∣Ŷ ]− max

i=1,... ,m+1
gm
(
xi
))

xm+1=x

.

(3.8)
This criterion measures the improvement in function value if x was used to
create the next model. The maximizer of this criterion is then the point x
which is expected to create a model with the most improvement in function
value over the current model. The KGCP function is non-negative and
multi-modal and similar to the EI criterion from EGO. A closed form ex-
pression of (3.8) as well as detailed connections of the above equations and
statements can be found in [SFP11] and [FPD09].

The KGCP criterion is differentiable and the derivative is available in
closed form. This allows for use of gradient-based optimization techniques
such as steepest ascent or BFGS. The authors suggest steepest ascent and
use it in their implementation. It should be noted that the non-concavity
of the KGCP function means that any maximizer of (3.8) obtained by
gradient-based methods may only be a local maximizer. As such a multi-
start approach is used to increase the probability of reaching the global
maximizer, although in practice this is not crucial, [SFP11].

The KGCP method continues sampling one point at a time until N − 1
points have been sampled. By this time the model gN−1 should be very
accurate and the last point is taken as the maximizer of this model. In
[SFP11] if the KGCP is used for maximization, under some assumptions, it
is shown that

lim
m→∞

V ar [gm] = 0. (3.9)

This result implies that the KGCP sampling technique leads to GP models
which approach the true function g. Eventually, the model gm is indistin-
guishable from g. This in turn leads to the maximizer of gm being indis-
tinguishable from the maximizer of g. However, one of the assumptions for
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3.5. Knowledge Gradient for Continuous Parameters

this convergence result is that the parameters of the GP are known and
fixed throughout the optimization process. In practice this is unlikely to be
true since the parameters of the GP are unknown and estimated at each
iteration of the algorithm. Thus the GP model is constantly changing and
the concerns regarding EGO, expressed in [Bul11], are valid for the KGCP
algorithm as well.

The KGCP approach was implemented in R by the author, using GP
models created with the package DiceOptim by [GPR+13]. The steepest
ascent algorithm used was also implemented in R and the BFGS optimizer is
from the standard optim package in R. The implementation of KGCP used
in this thesis can be acquired by contacting the thesis author.
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Chapter 4

Developing a Rubric

In Section 1.1 the motivating questions behind this thesis were presented.
This chapter is concerned with the development of a rubric to help answer
those questions. Given the input dimension, the average time required to
evaluate the objective function, and a time budget, the rubric should deter-
mine which of the algorithms in question will provide the best result. The
following sections present the theoretical framework and development of the
rubric.

4.1 Theoretical framework

In black-box optimization it can be assumed that prior to optimizing,
the user will have some basic information regarding the problem. In this
thesis it is assumed that the user will have an allotted time to perform the
optimization. This will be referred to as the time budget and denoted by
T . It is also assumed that the user knows the average time required for the
objective function to evaluate a single point, denoted by tf . Lastly, it is
assumed that the user will know the input dimension, d, of the objective
function. Now, for an optimization problem, the time, T , required to obtain
a solution can be expressed as

T = Tf + TA, (4.1)

where Tf is the time spent evaluating the objective function and TA is the
time used by algorithm A to decide which point(s) to evaluate next. The
first term, Tf , is the time required for a single function evaluation multiplied
by the number of function calls:

Tf = ntf ,

where n is the number of times the function is evaluated. The value n
will be referred to as the function call budget. The second term, TA, of
equation (4.1) is generally unknown, however, some relationships can be
developed. First, the time used by the algorithm will be affected by the
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function call budget, n. If more function evaluations are available, then
more iterations will also follow. This, in turn, will require the algorithm to
make more decisions, hence increasing TA. This relationship will be different
for each algorithm due to a number of factors. One factor is the number
of function calls an algorithm may perform at each iteration. For example,
the implementation of the GA used in this thesis will evaluate max(10,

√
n)

points in each iteration. For n ≥ 100 this leads to
√
n iterations. The EGO

algorithm, on the other hand, will initially obtain 2d + 2 points and then
evaluate the function once per iteration, leaving one function call for the
end. This leads to n− (2d+ 2)− 1 iterations. The second relationship that
can be developed is that between TA and the input dimension d. As already
noted, the number of iterations performed by the EGO algorithm is affected
by the input dimension. The same result is true for the KGCP algorithm. In
the NM algorithm the number of vertices in the simplex is a function of the
input dimension. A higher dimension will lead to a larger simplex which will
increase the decision-making computations at each iteration, leading to an
increased time TA. Similar arguments can be made for each of the algorithms
used in this thesis, concluding that the time used by each algorithm is in
part a function of n and d. The variables n and d may not be the only factors
contributing to TA, however, in this thesis it is assumed that these are the
only variables known prior to optimizing the objective function. While the
functions TA are not known, they will be estimated in Section 4.2.

The discussion from the previous paragraph leads to

T ≈ ntf + tA(d, n), (4.2)

which is a reformulation of (4.1), where tA : R2 → R is the time used by
the algorithm and depends on the input dimension and the function call
budget. In this equation T is a function of d, tf , and n. Assuming that the
function tA is known for each algorithm A, the user can obtain n. Since tA is
different for each algorithm, n will also be different for each algorithm. For
example, an optimization problem with a given T , d and tf , might lead to
the GA evaluating the function 200 times while allowing the EGO algorithm
to sample just 20 points.

This provides the user with at least a starting clue as to which algorithm
may perform better. However, the number of function calls allotted to an
algorithm may not be an accurate measure of performance, since it does
not take into account, the nature of the algorithm. This brings up the need
for a performance criterion. In this thesis the function value improvement
approach is adopted, where the criterion measures how much improvement
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an algorithm makes on the function value over the course of the optimization
process.

Let x0 ∈ X be the first point evaluated by algorithm A and xnbest ∈ X be
the best point evaluated by the end of the optimization process. Then the
improvement in function value by algorithm A after n function evaluations
is

InA = − log10

(
f(xnbest)− f∗

f(x0)− f∗

)
, (4.3)

where f∗ is the minimum of the function. In a good performance, f(xnbest)−
f∗ should be much smaller than f(x0) − f∗, which will lead to a large
improvement value InA. Using the base 10 logarithm means that InA can be
loosely interpreted as the digits of accuracy gained by algorithm A. The
improvement function is not known and most likely does not exist in the
general case, since it can be affected by a large number of different factors.
First of all, “steep” objective functions may provide greater improvement
values than “flat” objectives. Another factor regards the starting point,
x0. Suppose that f(x) = ex and x0 = 10. Some algorithms may make large
improvements on the function value starting at such a “steep” location on the
graph of the objective. If instead the same algorithm was used with starting
point x0 = −10, the algorithm may not demonstrate a drastic improvement
in function value, since it started on a flat spot of the function. To account
for these issues, the improvement is normalized as

InA = − log10

(
f(xnbest)− f∗

f(xnrandom)− f∗

)
, (4.4)

where f(xnrandom) is the best function value obtained after n randomly sam-
pled points from X. The assumption in this formulation, is that if algorithm
A obtains abnormally large improvement on a given function, the random
sampling technique will also obtain abnormally large improvement. The ra-
tio, therefore, is to stabilize the measure of improvement which can now be
loosely interpreted as how many more or less digits of accuracy algorithm
A can obtain compared to a random sample of n points.

The question, now, is whether InA is related to the information available
at the beginning of the optimization process, namely d and n? In this section
the existence and strength of relationships is developed in the theoretical
context. In Section 4.2, the relationships are studied in an empirical setting.
First, the variable n is considered.

Let fnbest be the lowest function value obtained after n function calls.
With knowledge of fnbest, a good optimization algorithm will not choose
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fn+1
best if it is not an improvement on the current best value. Such a policy

ensures that for any m ≥ 0

fn+mbest ≤ f
n
best.

Manipulation of this inequality leads to

fn+mbest − f∗ ≤ f
n
best − f∗

=⇒
fn+mbest − f∗
fnbest − f∗

≤ 1.

The above manipulations are only permitted if fnbest 6= f∗. Corresponding
assumptions for the random sampling technique lead to

fn+mrandom − f∗
fnrandom − f∗

≤ 1.

Now if it is assumed that

fn+mbest − f∗
fnbest − f∗

≤
fn+mrandom − f∗
fnrandom − f∗

(4.5)

then

fn+mbest − f∗
fn+mrandom − f∗

≤
fnbest − f∗

fnrandom − f∗

=⇒ log10

(
fn+mbest − f∗
fn+mrandom − f∗

)
≤ log10

(
fnbest − f∗

fnrandom − f∗

)
=⇒ − log10

(
fn+mbest − f∗
fn+mrandom − f∗

)
≥ − log10

(
fnbest − f∗

fnrandom − f∗

)
=⇒ In+mA ≥ InA.

The implication is that improvement is non-decreasing with budget. Which
might make sense intuitively, however, the normalization in the improvement
criterion presents a challenge for this intuitive idea. The main challenge is
with assumption (4.5). This assumption is that the amount by which algo-
rithm A approaches f∗ over the additional m function calls is greater than
the amount by which the random sample approaches f∗ over the additional
m function calls. For algorithms such as NM and sNOMADr, where there is
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a possibility of converging to a local minimum, such an assumption cannot
be made.

The previous assumption that

fn+mbest ≤ f
n
best

is certainly true if the the first n sampled points are identical, but it is not
true in general. The improvement gained by an algorithm may be affected
by the starting point or randomness and the statement,

fn+mbest ≤ f
n
best,

may not be true if the values are a result of two distinct algorithm runs.
What has been demonstrated here, is that the assumptions required for

a general theoretical statement about the relationship between improvement
and function call budget are unwarranted. In the following section, the pres-
ence and strength of this relationship will be analyzed using experimental
data and a statistical approach.

The other variable available at the beginning of the optimization process
is the input dimension, d. The attempt to develop a relationship between
improvement and n revealed some challenges due to the improvement be-
ing normalized. It is likely difficult to determine the type and amount of
effect d will have on a given algorithm and the random sampling technique.
Therefore theoretical analysis of this relationship will not be discussed in
this thesis. The following section provides an empirical analysis of the rela-
tionship between improvement and the available variables d and n.

4.2 Estimating tA and InA

To estimate the time and improvement functions, a number of test func-
tions with varying input dimensions and function call budgets were opti-
mized using the algorithms from Chapter 3. Regression was then performed
on the resulting data to approximate tA and InA. The test functions used are
from [MS05] and [MGH81]. As was mentioned in the previous section, the
function type could have an effect on the improvement function. Therefore
the functions chosen for this experiment exhibit a variety of types. There are
convex functions, multi-modal functions, functions with multiple minimiz-
ers, and highly erratic functions which have the appearance of noise. The
functions in the test set have input dimensions varying from 2 to 30. A list
of test function names and dimensions appears in Table 4.1. Note that some
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of the functions, such as the Ackley and Rastrigin, are not dimension specific
and can therefore be tested at multiple dimensions. Other functions, such
as the Branin and drop-wave, are dimension specific and are therefore used
at only one dimension. The descriptions of the key characteristics (relative
to optimization) of each of the functions can be found in the third column
of the table. For clarification, ‘flat bowl’ functions have a bowl shape and
exhibit a very small slope in a relatively large neighbourhood of the min-
imizer. The variably dimensioned function has a very large slope in some
directions and very small slope in other directions. The Extended Powell
and Rosenbrock functions each have a single minimizer but have character-
istics which are not easily categorized. The variety of test problems used is
intended to minimize the effect of the test set on the results of this section.

Functions were optimized based on function calls ranging from 10 to
500. Every function was optimized 20 times by each algorithm. Each of
the 20 repeats used a different starting point. The purpose of this approach
was to take into account the effect of the starting point. For each optimiza-
tion problem values necessary for computing the improvement criterion were
stored and the algorithm was timed. The experiment was performed on a
dedicated cluster so that the time values would be more reliable.

Once the data is available regression can be performed. The choice of
regression technique for this data is linear regression. The main reason be-
hind this choice is that linear regression provides a clean equation for the
regression surface and can be used for statistical inference, [Far02]. Other
optimization techniques such as spline regression or kernel regression, pro-
vide complicated regression equations. In the following subsections, the
regression surfaces for tA and InA are developed. Since both tA and InA will
be approximated by functions of d and n, t̂A(d, n) will be used to denote
the estimate of the time function for algorithm A and ÎA(d, n) will be used
to denote the estimate of the improvement criterion.

4.2.1 Time functions

It will be necessary to obtain a time function for each of the five algo-
rithms from Chapter 3. A deeper analysis of the regression process will be
shown for the EGO algorithm, while only the results will be presented for
the remaining four algorithms, since the process is analogous.

Analysis of the data for the EGO algorithm begins with a three dimen-
sional plot of the data shown in the left image of Figure 4.1.

Note that the time (measured in seconds) increases with both dimension
and function call budget. The data appears to be “cut-off” somewhere above
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Table 4.1: A list of the test functions used. The second column indicates the
dimensions for which each function was used and the third column provides
a brief description of relative function characteristics.

Function Name Dimension(s) Description

Ackley
3,7,10,14,

22,24,28,30 Multiple local minima
Branin 2 Multiple global minima

Broyden banded

2,3,4,6,
7,8,10,14,

22,24,28,30 Flat bowl

Broyden tri-diagnoal

2,3,4,6,
7,8,10,14,

22,24,28,30 Bowl

Discrete integral

2,4,5,6,
8,9,10,14,

18,22,26,30 Flat bowl

Drop-wave 2 Multiple local minima

Extended Powell 4,8 Other

Goldstein-Price 2 Multiple local minima

Linear full rank

2,4,5,6,
8,9,10,14,

18,22,26,30 Bowl

Linear rank one

2,4,5,6,
8,9,10,14,

18,22,26,30 Valley

Rastrigin
5,9,10,14,

18,22,26,30 Multiple local minima

Rosenbrock 4 Other

Rotated hyper-ellipsoid
3,7,10,14,

22,24,28,30 Bowl

Shekel 10 4 Multiple local minima

Six-hump camel 2 Multiple local/global minima

Sum of powers

3,5,7,9,
10,14,18,22,
24,26,28,30 Flat bowl

Sum of squares
3,7,14,22,

24,28,30 Bowl

Trigonometric

2,4,5,6,
8,9,10,14,

18,22,26,30 Multiple local minima

Variably dimensioned

2,4,5,6,
8,9,10,14,

18,22,26,30 Steep/shallow valley
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Figure 4.1: Plot of time used by the EGO algorithm as a function of dimen-
sion and function call budget (left). Plot of time used by the EGO algorithm
after a log transformation (right).

15,000s. This is due to a 5 hour (18,000s) limit imposed on the algorithms
throughout the experiment. As dimension and budget increase the spread in
the data also increases. This is not a desirable quality for linear regression
since it violates one of the assumptions of the process, namely that the
variance is constant. A log transformation of the data may lead to a dataset
with constant variance. Indeed, this appears to be the case as can be seen
in the right image of Figure 4.1. This plot seems to indicate a logarithmic
growth in both d and n. Therefore linear regression is performed with the
model

log(tEGO) = β0 + β1 log(d) + β2 log(n) + β3 log(d) log(n), (4.6)

where βi ∈ R are coefficients to be determined by regression for each i =
0, 1, 2, 3. The third term is an “interaction” term and its necessity will be
determined by the statistical inference provided by the regression.

Figure 4.2 shows two diagnostic plots from the linear regression of EGO
time.

On the left is a plot of the residuals against the fitted values. Ideally, the
regression surface should pass through the “middle” of the data at all points
and the plot should have close to half of the points above 0 and the rest of the
points below 0. This is the case with this dataset. For larger fitted values,
there is some deviation from this centrality and this is probably due to the
sharp “cut-off” at 18,000s. The red curve is the centre of the residuals and
in a good linear model should be constant and close to 0. In this particular
plot, the red curve is satisfactory.
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4.2. Estimating tA and InA

Figure 4.2: Residual plot (left) and Q-Q plot (right) from the linear regres-
sion of EGO time.

The plot on the right is a Normal Quantile-Quantile (Q-Q) plot. It is
a plot of the standardized residuals against the quantiles of the standard
normal distribution. In linear regression, it is assumed that the variance is
normally distributed. The purpose of this plot is to verify this assumption.
If the residuals are normally distributed about the regression surface then
the Q-Q plot should be close to the identity line. In this instance the Q-Q
plot does indeed adhere to the identity line and the normality assumption
is validated. The normality assumption makes valid the use of the t and F
statistics for inference. These diagnostic plots indicate that the model from
(4.6) is worth considering.

Prior to analyzing the equation produced by linear regression, it should
be noted that the F statistic for the model was smaller than 2E-16. This
value indicates the probability of observing an F statistic greater than the
one observed under the assumption that all of the coefficients from (4.6) are
0. In this instance the probability of such an event is significantly small
bringing into question the assumption of all coefficients taking on a value of
0. In other words there is at least one valid explanatory term in the model
(4.6). The least squares estimates of the coefficients from (4.6) are shown in
Table 4.2.

The table also shows the p-values for the t statistic for each coefficient.
This p-value can be interpreted as the probability of observing a t statistic
greater than or equal to the one observed under the assumption that the
corresponding coefficient has a value of 0. Note that the p-values for the
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Table 4.2: Summary of linear regression results for the time function of the
EGO algorithm.

Estimate Std. Error t statistic p value

β0 -2.9001E+00 7.6448E-02 -3.7935E+01 0
β1 1.9749E+00 3.9860E-02 4.9547E+01 0
β2 9.6312E-01 1.6824E-02 5.7246E+01 0
β3 -4.9195E-03 8.1360E-03 -6.0466E-01 0.5454

first three coefficients are extremely small, indicating, very strongly that
the coefficients for these terms are unlikely to be 0. The coefficient β3 on
the other hand is simply not small enough to support the inclusion of the
interaction term log(d) log(n). This term can therefore be removed from
the model and linear regression performed again, with the results found in
Table 4.3.

Table 4.3: Summary of linear regression results for the time function of the
EGO algorithm after removal of the interaction term.

Estimate Std. Error t statistic p value

β0 -2.8585E+00 3.3279E-02 -8.5894E+01 0
β1 1.9515E+00 9.1106E-03 2.1420E+02 0
β2 9.5401E-01 7.4847E-03 1.2746E+02 0

This time each of the coefficients is reported as 0. Therefore there is
no reason to believe that any of the remaining terms have no effect on the
response variable.

Using the results from linear regression, an estimate of tEGO is

log
(
t̂EGO(d, n)

)
= −2.859 + 1.952 log(d) + 0.954 log(n),

which can be simplified to

t̂EGO(d, n) = exp (−2.859 + 1.952 log(d) + 0.954 log(n)) . (4.7)

Figure 4.3 shows a plot of the regression surface and the data.
The regression was performed using only 15 of the 20 random restarts

for each algorithm and function. These 15 points are referred to as the
training data, since they are used to create the model function. Data from
the remaining 5 runs is used to assess the quality of the prediction from the
linear regression models. This subset of the data is referred to as the test
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Figure 4.3: Plot of the log transformed time data and the regression surface
for the EGO algorithm.

data, since it is used to test the model developed by the training data. This
process is called model-validation. The idea is that a regression function is
designed to pass through the “middle” of the data. The data obtained in this
section contains multiple time values for each (d, n) pair that was tested. A
good regression function might be expected to lie near the mean of the data
at each tested point (d, n). Now consider the test data which was not used
to develop the regression model. Two qualities are desirable when assessing
the model using test data. First, it is desirable that its values are not
very different from the training data. This implies a well-behaved dataset.
Secondly, the test data should not be very different from the regression
function. These two ideas can be combined into a model-validation criterion.
Before this criterion is presented, however, some notation is required. Let
P be the set of elements (d, n) such that a test problem for the pair (d, n) is
used in this thesis. Let NP denote the number of elements in P. Then the
normalized error (NE) is

NE(t̂A) :=

∑NP
i=1

∑Ni
j=1

(
ttestA (di, ni)− t̂A(di, ni)

)2∑NP
i=1

∑Ni
j=1

(
ttestA (di, ni)− t̄A(di, ni)

)2 , (4.8)

where ttestA (di, ni) is a time value for a test problem with dimension di and
budget ni, t̂A(di, ni) is the estimated time value at (di, ni) based on the
training data, t̄A(di, ni) is the average time value over all training data for
the specific (di, ni pair, and Ni is the number of observations at (di, ni) in
the test data. For NE, a value near 1 indicates that the sum of the squared
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4.2. Estimating tA and InA

residuals from the test data is similar to the sum of the squared distances
from the test data to the average values of the training data.

For the EGO algorithm time function the NE is 1.18. This value is
not too different from 1, however, it indicates that the sum of the distances
squared from the test data to the estimated function is greater than the
sum of the distances squared from the test data to the average values of the
training data.

The process used to produce (4.7) was performed on the remaining five
algorithms with the resulting equations, including that of EGO, shown in
Table 4.4.

t̂GA(d, n) = exp (−3.474 + (8.254E-2) log(d) log(n))

t̂NM (d, n) = exp(−6.411− 0.521 log(d) + 0.503 log(n)+
+0.178 log(d) log(n))

t̂sNOMADr(d, n) = exp(−6.345− (8.906E-2) log(d) + 1.009 log(n)+
+0.161 log(d) log(n))

t̂EGO(d, n) = exp (−2.859 + 1.952 log(d) + 0.954 log(n))

t̂KGCP (d, n) = exp(−4.900− 0.103 log(d) + 2.453 log(n)+
+0.130 log(d) log(n))

Table 4.4: Estimated tA functions for each of the five algorithms.

The regression plots in Figure 4.4 show an increase in log(tA) with re-
spect to both d and n for each algorithm. Notable differences do exist how-
ever in the amount of increase exhibited. The genetic and NM algorithms
require the least amount of time, while EGO and KGCP require substan-
tially more time as dimension and function call budget increase. The time
required by sNOMADr is somewhere in between these two groups.

Table 4.5 shows the NE and three measures of variance for each algo-
rithm.

To analyze the variance present in the time data for each algorithm three
measures of variance are used. The first is the sample variance of the entire
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Figure 4.4: Plots of the regression functions for the algorithm time of GA
(top left), NM (top right), sNOMADr (middle left), EGO (middle right),
and KGCP (bottom).
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Table 4.5: The NE value for each t̂A as well as the sample variance, aver-
age variance over all (d, n) pairs, and the average variance over all (d, n, f)
triples.

Algorithm NE S2 S2
d,n S2

d,n,f

GA 1.71 0.449 0.155 0.0351
NM 1.39 1.46 0.292 0.0558
sNOMADr 1.36 3.14 0.156 0.0694
EGO 1.18 5.16 0.260 0.172
KGCP 1.11 5.70 0.0835 0.0688

dataset,

S2 :=

∑NP
i=1

∑Ni
j=1(tA,j(di, ni)− t̄A)2∑NP

i=1Ni − 1
, (4.9)

where t̄A is the average observed time for algorithm A over all test problems
and reruns. This measure of variance is a reflection of the range of time
data for a specific algorithm. The S2 column in Table 4.5 contains the
sample variance for each algorithm. Larger variance is exhibited by the
more expensive algorithms such as EGO and KGCP. The fastest of the
algorithms, GA, has a small variance.

The second measure of variance is

S2
d,n :=

1

NP

NP∑
i=1

∑Ni
j=1(tA,j(di, ni)− t̄A(di, ni))

2

Ni − 1
, (4.10)

where t̄A(di, ni) is the average over all time observations for algorithm A
and a specific (d, n) pair. Equation (4.10) measures the average variability
over all (d, n) pairs. If the difference between S2 and S2

d,n is small then the
time data is likely close to constant. This is the case for the GA algorithm
where the ratio S2/S2

d,n is close to 3. The plot of the time used by the GA
algorithm in Figure 4.4 demonstrates the near constant nature of the time
used by the algorithm as a function of d and n. For the KGCP on the other
hand the ratio S2/S2

d,n is close to 68, thus indicating that the time used by
the KGCP is far from constant with respect to d and n. Smaller values of
S2
d,n indicate less variability at a given (d, n) pair which in turn implies that

other variables such as function type and starting point have a smaller effect
on the time used by the algorithm. By contrast, larger values of S2

d,n indicate
larger variability at a given (d, n) pair and this in turn implies that other
variables may have a significant effect on the time used by the algorithm.
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4.2. Estimating tA and InA

The KGCP algorithm exhibits the smallest S2
d,n value of all the algorithms

and is therefore least affected by variables other than d and n. On the other
hand, the EGO and NM algorithms exhibit the largest S2

d,n and their time
therefore is most affected by other variables.

The final measure of variance is the average sample variance over all 135
test problems,

S2
d,n,f :=

1

135

135∑
i=1

∑20
j=1(tA,j(di, ni)− t̄A(di, ni))

2

20− 1
, (4.11)

where there are 20 observations for each test problem and t̄A(di, ni) is the
average observed time over those observations. This variance takes into
consideration not only the dimension and function call budget but also the
specific function being optimized. The greatest variability according to this
measure can be found for the EGO algorithm. This means that even if the
exact same function is optimized multiple times, the observed time will vary
more than for the other algorithms. The ratio S2

d,n/S
2
d,n,f can be loosely

be interpreted as the amount by which the time used by an algorithm is
affected by the type of function being optimized. For the GA and NM
algorithms this ratio is greater than 4 and certainly greater than that of the
other algorithms. For EGO and KGCP this ratio is less than 1.5 indicating
that the function being optimized has a minimal effect on the time used by
the algorithms. The larger values for GA and NM indicate a greater effect
of function type on the time used by the algorithms.

Overall, the time data indicates that the BGO algorithms require more
time for optimization but are less affected by function type. The GA and NM
algorithms can perform optimization much more quickly but are also more
affected by function type. It should be noted that the KGCP algorithm was
not able to complete optimization for some higher budgets and dimensions
and as such the time data used to develop the regression functions uses a
subset of the problems from Table 4.1.

4.2.2 Improvement Functions

As was the case in the time function regression, the complete regression
process will only be shown for one algorithm, NM, while only the results will
be shown for the remaining algorithms. Figure 4.5 shows a three dimensional
plot of the improvement data for the NM algorithm.

The majority of the data is positive indicating that the NM algorithm
outperformed the random sample almost every time. The amount by which
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Figure 4.5: Plot of improvement as a function of d and n for the NM algo-
rithm.

NM outperforms the random sample, however, varies quite a bit. NM can
in some instances provide as many as 10 more digits of accuracy than a
random sample but it can also provide no more digits of accuracy than a
random sample for the same dimension and function call budget. Thus it is
clear that the performance of NM varies due to factors other than d and n.

There does appear to be a trend, in that there is a greater difference
in the performance of NM and the random sample at smaller dimensions
and larger budgets. The non-constant variance present in this dataset poses
a challenge for linear regression. It is also difficult to determine the type
of relationship between the response and explanatory variables. In such an
instance it is appropriate to view the diagnostic plots for several models and
select the one that provides the best diagnostics. The model,

INM (d, n) = β0 + β1 log(d), (4.12)

provides good diagnostic plots which can be seen in Figure 4.6.
The plot of residuals against fitted values indicates that the regression

surface lies near the middle of the data. At two locations, d = 24 and d = 28,
the variance is notably smaller than anywhere else in the dataset. This is
because certain types of functions were not found in these dimensions. As it
turns out the omitted functions provide greater variance to the data. This
situation reinforces the idea that function type has an effect on improve-
ment. Nonetheless, the residual plot does not indicate any violation of the
assumptions necessary for linear regression. The Normal Q-Q plot, on the
other hand, does indicate non-trivial deviation from normality. This can
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Figure 4.6: Residual plot (left) and Q-Q plot (right) from the linear regres-
sion of NM improvement.

pose a problem in linear regression, although it may not be very crippling
in this instance. One reason is that the large datasets such as this one are
robust to small deviations from normality. The second reason is that a viola-
tion of the normality assumption in linear regression impedes the statistical
inference based on the t and F statistics, but it does not affect the prediction
of the regression model. With these remarks in mind, the linear regression
process continues with a summary of the results found in Table 4.6.

Table 4.6: Linear regression results for the improvement of the NM algo-
rithm.

Estimate Std. Error t statistic p value

β0 4.6000E+00 7.4084E-02 6.2091E+01 0
β1 -1.1221E+00 3.1687E-02 -3.5411E+01 0

The p-values from the t statistic and F statistic (less than 2E-16) strongly
indicate that there is a significant relationship between the response and
explanatory variables. However, the earlier discussion indicates that these
values should not be trusted entirely. Taking the coefficients from Table 4.6
provides the estimate of the improvement function for the NM algorithm

ÎNM (d, n) = 4.600− 1.122 log(d). (4.13)

A plot of the regression surface and the data can be seen in Figure 4.7.
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Figure 4.7: Plot of improvement data and regression surface for the NM
algorithm.

The regression functions for each of the algorithms can be found in Ta-
ble 4.7.

Table 4.7: Estimated Ia functions for each of the five algorithms.

ÎGA(d, n) = 1.389− (1.543E-2)d+ (1.397E-3)n

ÎNM (d, n) = 4.600− 1.122 log(d)

ÎsNOMADr(d, n) = −9.980 + 0.280d+ (7.061E-3)n+ 2.664 log(d)+
+4.352 log(n)− 1.772 log(d) log(n)

ÎEGO(d, n) = 0.976 + (3.396E-2)d

ÎKGCP (d, n) = 2.687− 0.450 log(d) + (4.100E-3)n

Note that for the NM and EGO algorithms, the regression functions do
not indicate that the function call budget has an effect on improvement. This
may appear to be somewhat puzzling, however, recall that improvement is
normalized by the random sampling technique. Thus it is the amount by
which NM and EGO outperform random sampling that is not expected
to improve with increased function call budgets. The regression functions
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for the GA, NM and KGCP algorithms indicate that an increase in input
dimension leads to a decrease in improvement. This is not the case for
the EGO algorithm where the estimated relationship between dimension
and improvement is positive. This variation in type of relationships helps
explain why it was challenging to develop theoretical relationships between
improvement and d and n. The nature of the relationships appears to be
specific to each algorithm. For the sNOMADr algorithm the relationships
are not as clear due to the log(d) log(n) term.

Plots of the improvement data with the regression functions for each
algorithm can be seen in Figure 4.8.

Model validation for the improvement functions is performed using the
the NE criterion from (4.8) adapted to the improvement function. The NE
value for the model (4.13) is 1.42. This value is not significantly different
from 1 indicating that the predictive power of the model ÎNM is acceptable.
Table 4.8 shows the NE value for each algorithm as well as the three measures
of variance discussed in Section 4.2.1.

Table 4.8: The NE value for each ÎA as well as the sample variance, aver-
age variance over all (d, n) pairs, and the average variance over all (d, n, f)
triples.

Algorithm NE S2 S2
d,n S2

d,n,f

GA 1.03 1.74 1.59 0.718
NM 1.42 6.50 3.80 1.54
sNOMADr 1.09 14.5 6.19 2.22
EGO 1.04 2.12 1.93 1.12
KGCP 1.11 2.8 2.17 0.702

With the exception of the NM algorithm, the NE for the model ÎA is
very close to 1 for every algorithm. This is an indication of good predic-
tive power for the GA, sNOMADr, EGO, and KGCP improvement models.
For all of the algorithms, the lower bound on improvement is nearly the
same. However, the best improvement values are quite different among the
algorithms. The sNOMADr and NM algorithms in particular can obtain a
very high value of improvement. The sample variance, S2, is therefore quite
large for sNOMADr and NM and much smaller for the GA, EGO and KGCP
algorithms. The ratio S2/S2

d,n is close to 1 for the GA, EGO, and KGCP
algorithms implying that there is a more or less constant trend in improve-
ment with respect to d and n for these algorithms. For the sNOMADr and
NM algorithms the ratio is slightly larger and thus the relationship between
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Figure 4.8: Plot of the regression surface for the improvement of GA (top
left), NM (top right), sNOMADr (middle left), EGO (middle right), and
KGCP (bottom).
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improvement and d and n is less constant as can be seen in the images in
Figure 4.8. The relatively large values of S2

d,n indicate the high variability in
the improvement gained by each algorithm for a particular (d, n) pair. Such
a high variability will certainly effect the validity of the regression function
for improvement. The large variability also indicates that the improvement
is likely affected by other variables. This variability is highest for the NM
and sNOMADr algorithms. While the variability decreases when function
type is considered in S2

d,n,f , the values are still relatively large. The ratio

S2
d,n/S

2
d,n,f is greatest for the KGCP algorithm implying that the specific

function being optimized has a notable effect on the amount of improve-
ment gained. This ratio is smallest for the EGO algorithm. The variance in
improvement gained when optimizing a specific function is greatest for the
sNOMADr algorithm and smallest for the GA and KGCP algorithms. The
sNOMADr algorithm is inherently local and as such may converge to locally
optimal points. This of course implies that starting point will have an ef-
fect on improvement. However, the use of VNS combats the local nature
and may lead to larger values of improvement when the algorithm is able to
avoid a locally optimal point. The combination of local and global search in
this algorithm likely leads to the large variability in the improvement it can
obtain. The large variability of the improvement in the NM algorithm even
for a specific function can be attributed to the local nature of this algorithm
and the effect of starting point. The EGO algorithm also exhibits a larger
variance in improvement gained and this may be attributed to the quality
of the GP model. If the GP model is accurate and the parameter estimates
are accurate, the EGO algorithm may perform quite well, however, if the
GP is not an adequate representation of the objective function, the EGO
algorithm may perform poorly.

The large variance noted in the improvement plot of the NM algorithm
is also seen in the other four algorithms. Several remarks can be made
regarding the linear regression functions. The plot of the regression surface
for GA is almost constant. This implies that the behaviour of GA is similar
to that of the random sample which is intuitive since the genetic algorithm
is essentially a “clever” random search. The plot for sNOMADr indicates
a very notable difference between the improvement gained by sNOMADr
and the improvement gained by random search. Out of all the algorithms
sNOMADr is expected to provide the strongest performance for dimensions
smaller than 5 and function call budgets greater than 400. The regression
surface for KGCP indicates that at smaller dimensions and greater budgets,
KGCP will perform much better than random sampling. There are also some
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notable gaps in the data for the KGCP algorithm. At higher dimensions and
larger budgets, KGCP was not able to complete optimizing in the allotted
10 hour time limit. As a result, the function ÎKGCP should be used carefully
in the region where d > 14 and n > 200. The plot for EGO shows a unique
trend among this group of algorithms. The performance of EGO compared
to that of random sampling is greater at higher dimensions.

In the following chapter, the regression functions developed in these sec-
tions will be used for the rubric developed in Section 4.1.
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Chapter 5

Using the Rubric

Chapter 4 saw the development of a rubric to aid algorithm selection
in black-box optimization. In Section 4.1 a framework for the rubric was
developed and in Section 4.2 the time and improvement functions were esti-
mated for each algorithm. The rubric is designed to be used in the following
way. Starting with a time budget, T , the average running time of the ob-
jective function, tf , and the input dimension d, the time equations from
Table 4.4 can be used to obtain the function call budget, nA, for each of
the 5 algorithms. Then the improvement functions from Table 4.7 can be
used to compute the estimated improvement that can be obtained by each
algorithm. Finally the algorithm with the largest estimated improvement is
suggested for the optimization problem.

The purpose of this chapter is two-fold. First, the results of the rubric
will be analyzed with the intent of answering the questions from Section 1.1.
Secondly, the validity and accuracy of the rubric will be tested. In Section 4.2
several concerns were brought up regarding the estimated time and improve-
ment functions. In both cases, there appears to be an amount of variance
unaccounted for by the variables d and n. This is particularly noticeable in
the improvement functions. For the improvement data, there is generally a
large amount of variance. Both of these issues may cause the rubric to be
less reliable.

Before these analyses are presented, an adjusted improvement criterion
is required.

5.1 The Adjusted Improvement Criterion

Note that the function call budget may not be the same for each algo-
rithm. For example, consider a scenario with the following information:

T = 3600s tf = 20s d = 5.

Recall equation (4.2.1)
T = ntf + tA(d, n).
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Substituting the known information this becomes

3600 = 20n+ tA(5, n).

For the GA algorithm this equation is

3600 = 20nGA + exp (−3.474 + (8.254E-2) log(5) log(nGA))

and for the KGCP algorithm it is

3600 = 20nKGCP + exp(−4.900− 0.103 log(5) + 2.453 log(nKGCP )+

+ 0.130 log(5) log(nKGCP )).

These equations can be solved and rounded down to obtain nGA ≈ 179
and nKGCP ≈ 104. The estimated improvement for these two algorithms,
according to the equations in Table 4.7, is

ÎGA(5, 179) = 1.389− (1.543E-2)5 + (1.397E-3)179 = 1.56

and

ÎKGCP (5, 104) = 2.687− 0.450 log(5) + (4.100E-3)104 = 2.39.

It appears that the KGCP algorithm is preferred over the GA algorithm for
this optimization scenario. However, recall that the improvement criterion
from (4.4) is normalized by the random sample having the same budget. In
this instance, GA is compared to a random sample with 179 points while the
KGCP is compared to a random sample with 104 points. It is likely that
the random sample with 179 points will outperform the random sample
with 104 points. This will lead to the improvement criterion for GA to be
smaller than it really is. What is needed is a comparison of each algorithm’s
improvement to a random sample with a fixed function call budget for the
given optimization scenario. The random sample technique requires a very
small amount of time to make decisions about which points to sample. It
can, therefore, be assumed that tr(d, n) = 0. Then the function call budget
permitted for the random sample under a given time budget is

nr =

⌊
T

tf

⌋
.

The improvement for algorithm A after n sampled points, adjusted for the
sampling budget of the random sampling technique, is

AInA = − log10

(
f(xnAbest)− f

∗

f(xnr
r )− f∗

)
. (5.1)
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5.1. The Adjusted Improvement Criterion

The improvement functions developed in the previous chapter now need to
be adapted for this criterion. Equation (5.1) can be expressed in terms of
the improvement criterion, InA, in the following way

AInA = − log10

(
f(xnAbest)− f

∗

f(xnr
r )− f∗

)
= − log10

(
f(xnAbest)− f

∗

f(xnr
r )− f∗

f(xnAr )− f∗

f(xnAr )− f∗

)
= − log10

(
f(xnAbest)− f

∗

f(xnAr )− f∗
f(xnAr )− f∗

f(xnr
r )− f∗

)
= − log10

(
f(xnAbest)− f

∗

f(xnAr )− f∗

)
− log10

(
f(xnAr )− f∗

f(xnr
r )− f∗

)
= InA − log10

(
f(xnAr )− f∗

f(xnr
r )− f∗

)
.

The adjusted improvement can now be estimated as a function of d and n
as

ÂIA(d, n) = ÎA(d, n)− log10

(
f(xnAr )− f∗

f(xnr
r )− f∗

)
. (5.2)

the first term of this expression is modelled in Section 4.2.2 and the equations
ÎA(d, n) for each algorithm can be found in Table 4.7. The second term in
this expression is unknown. The presence of f and f∗ in this expression
present a computational challenge. The approach used here is to assume
that

f(xnAr )− f∗

f(xnr
r )− f∗

≈ ‖x
nA
r − x∗‖
‖xnr

r − x∗‖
.

Substituting into the second term of (5.2) yields

− log10

(
‖xnAr − x∗‖
‖xnr

r − x∗‖

)
.

The assumption made earlier allows the removal of function values from the
above expression, thus simplifying the computation. Note that this new
term is a measure of how much closer a random sample can get to x∗ if nA
function calls are allowed as opposed to nr function calls. Knowledge of x∗

is not crucial here and can be replaced by a randomly selected point x̄ ∈ X.
Then

− log10

(
‖xnAr − x̄‖
‖xnr

r − x̄‖

)
can be quickly approximated using a Monte Carlo method. This method
evaluates the above expression a large number of times randomly and then
computes the average value. Thus (5.2) can be computed.
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5.2 Case Study: Small Time Budgets

In the first case study a relatively small budget of T = 3600s (1 hour)
with tf ∈ {5, 10, 20, 60} and d ∈ {2, 8, 15, 25}. The results of the rubric can
be seen in Table 5.1.

Table 5.1: Results of the rubric for a small time budget of 1 hour and varying
tf and d values. The best performing algorithm for each tf , d pair can be
seen in bold.

tf (s) d
GA NM sNOMADr EGO KGCP

nA AIA nA AIA nA AIA nA AIA nA AIA
5 2 719 2.4 719 3.8 719 18.1 697 1 160 2.7
10 2 359 1.9 359 3.8 359 13.3 354 1 144 2.8
20 2 179 1.6 179 3.8 179 9.9 178 1.1 116 2.8
60 2 59 1.4 59 3.8 59 5.6 59 1.1 56 2.6
5 8 719 2.3 719 2.3 717 7.2 480 1.2 123 2.1
10 8 359 1.8 359 2.3 359 4.3 286 1.2 114 2.1
20 8 179 1.5 179 2.3 179 2.5 159 1.2 98 2.1
60 8 59 1.4 59 2.3 59 0.9 57 1.3 54 2
5 15 719 2.2 719 1.6 716 3.6 261 1.5 110 1.9
10 15 359 1.7 359 1.6 359 1.3 190 1.5 103 1.8
20 15 179 1.4 179 1.6 179 0.4 123 1.5 91 1.8
60 15 59 1.2 59 1.6 59 0 51 1.5 53 1.7
5 25 719 2 719 1 713 1.7 121 1.8 101 1.6
10 25 359 1.5 359 1 358 0.2 103 1.8 96 1.6
20 25 179 1.3 179 1 179 -0.2 79 1.8 85 1.6
60 25 59 1.1 59 1 59 0.5 41 1.8 52 1.4

For low dimensions, d ≤ 8, the improvement gained by sNOMADr is
expected to be significantly greater than that of the other algorithms. The
difference in performance is more noticeabe at smaller dimensions and higher
budgets. As dimension increases, the performance of sNOMADr drops quite
drastically, so that at dimensions greater than 15, this algorithm is expected
to provide less improvement than any of the other algorithms. For higher
dimensions, d ≥ 15, the BGO algorithms are expected to provide the most
improvement. The difference between the two BGO algorithms is that the
improvement of the EGO algorithm is expected to increase as d increases
while for the KGCP algorithm the improvement is expected to decrease.
Thus at dimension 25, the EGO algorithm outperforms KGCP, while at di-
mension 15, KGCP is the preferred algorithm according to the rubric. At
lower dimensions, NM competes with sNOMADr with its expected improve-
ment being greater than that of sNOMADr in one instance. The improve-
ment expected to be gained by GA is never greater than that of the other
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5.2. Case Study: Small Time Budgets

algorithms although it is a close competitor in some instances.
The claims of the rubric can now be tested against real data. The algo-

rithms were used to optimize functions from two scenarios found in Table 5.1:
(tf , d) = (20, 2) and (tf , d) = (60, 25). Each algorithm optimized three func-
tions: Rastrigin, sum of powers, and Rosenbrock. Three repeats were used,
thus creating nine data points for each algorithm under a specific optimiza-
tion scenario. The results are used to test both the time and improvement
predictions of the rubric. Figure 5.1 shows two box plots of the percent
difference between the time required by each algorithm and the 3600s time
budget.

Figure 5.1: Box plots of the percent difference between the time used by
each algorithm and the time budget of 3600s.

The time used by the GA, NM, and sNOMADr algorithms is within 1%
of the time budget. For the KGCP algorithm, this difference is closer to
10% in both plots. For the EGO algorithm, the difference is less than 1%
at dimension 2 but close to 25% at dimension 25. Being more expensive,
the KGCP and EGO algorithms require more time for each iteration. Using
up another iteration would likely take more time than is allotted and so
the algorithms quit sooner. The time required by the EGO algorithm to
complete an iteration increases with dimension. This explains the large
difference between the time used by the EGO algorithm at dimension 2 and
at dimension 25. Note that the test functions did not require 20 seconds
to run. The values in the box plot were obtained by measuring the time
required by the algorithm and then adding 20nA to each value. It should
also be noted that the time budget was not exceeded by any one of the
algorithms.

Figure 5.2 shows two box plots of improvement measured for each algo-
rithm tested for functions where (d, tf ) = (2, 20) and (d, tf ) = (25, 60).

For the box plot on the left, the measured improvement reflects the
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Figure 5.2: Box plots of the measured improvement gained by each algorithm
and the predicted improvement shown in blue.

predictions of the rubric for the most part. One notable deviation is in the
sNOMADr algorithm, where the measured improvement is smaller than that
predicted by the rubric. The overall trend, however, is quite accurate. The
median improvement values for NM and sNOMADr are very similar, but the
higher upper bound for the sNOMADr algorithm supports the choice of the
rubric. In the box plot on the left, the measured improvement for each of the
algorithms was lower than that predicted by the rubric. The most notable
difference is in the EGO algorithm, which was preferred by the rubric, but
its measured improvement is certainly not greater than that of the other
algorithms. The KGCP algorithm is the algorithm with the best measured
improvement and the most accurately predicted by the rubric. Note that
the dataset from which the time and improvement functions were estimated
in Chapter 4 does not contain any functions with dimension 25 and function
call budget as low as 59. Using the rubric in this instance is done with the
understanding that extrapolation is being used. This may in part explain
the disparity between the rubric and measured improvement.

5.3 Case Study: Large Time Budgets

In this section, a case study of optimization problems with large time
budgets and objective functions with long running times is considered. The
time budget allotted here is one week (604800s). Objective functions are
assumed to have average running times between 20 minutes and 2 hours.
The same dimensions considered in the previous sections are considered
here as well. Table 5.2 contains the improvement and budget as predicted
by the rubric.

The large time budget and average running time of the function make
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Table 5.2: Results of the rubric for a large time budget of 1 week and varying
tf and d values. The best performing algorithm for each tf , d pair can be
seen in bold.

tf (s) d
GA NM sNOMADr EGO KGCP

nA AIA nA AIA nA AIA nA AIA nA AIA
3000 2 201 1.6 201 3.8 201 10.4 201 1.1 199 3.2
5000 2 120 1.5 120 3.8 120 8.2 120 1 120 2.9
8000 2 75 1.5 75 3.8 75 6.4 75 1 75 2.7
10000 2 60 1.4 60 3.8 60 5.6 60 1 60 2.6
3000 8 201 1.5 201 2.3 201 2.8 201 1.2 197 2.6
5000 8 120 1.4 120 2.3 120 1.8 120 1.3 120 2.2
8000 8 75 1.4 75 2.3 75 1.2 75 1.2 75 2.1
10000 8 60 1.3 60 2.3 60 1 60 1.3 60 2
3000 15 201 1.4 201 1.6 201 0.5 201 1.5 196 2.3
5000 15 120 1.3 120 1.6 120 0.1 120 1.5 120 2
8000 15 75 1.3 75 1.6 75 0 75 1.5 75 1.8
10000 15 60 1.2 60 1.6 60 0 60 1.5 60 1.7
3000 25 201 1.3 201 1 201 -0.2 199 1.8 194 2
5000 25 120 1.2 120 1 120 0 120 1.8 119 1.7
8000 25 75 1.1 75 1 75 0.3 75 1.8 75 1.5
10000 25 60 1.1 60 1 60 0.5 60 1.8 60 1.5

trivial the time used by the algorithm. Thus all algorithms are more or less
on the same playing field with regard to function call budgets. A general
pattern can be found in the algorithms recommended by the rubric. For
smaller dimensions, algorithms in the DFO category are expected to perform
better, while for higher dimensions, algorithms from the BGO family are
preferred. The trend in preferred algorithms is similar for large time budgets
and small time budgets.

To test the rubric, a procedure identical to the one described for small
time budgets in Section 5.2, was used. Figure 5.3 shows box plots of the
percent difference between the time used by each algorithm and the time
budget.

In the box plots, the time used by each of the algorithms differs from
the time budget by approximately 1% or less. The effect of the expensive
computations required by the BGO algorithms is less prevalent in these box
plots than in Figure 5.1 due to the larger time budget. In the box plot on
the right the time used by the BGO algorithms exceeds the time budget,
albeit not by much.

Figure 5.4 shows a box plot of measured improvement for optimization
problems with (d, tf ) = (8, 3000) and (d, tf ) = (15, 3000).

In both of these box plots, the measured improvement is lower than that
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Figure 5.3: Box plots of the percent difference between the time used by
each algorithm and the time budget of 604800s.

Figure 5.4: Box plots of the measured improvement gained by each algorithm
and the predicted improvement shown in blue.

predicted by the rubric. A very noticeable difference is for the EGO algo-
rithm in the left box plot, where the measured improvement is significantly
smaller than the predicted improvement with very little variance. A clear-
cut best algorithm cannot be determined from either of the box plots. There
is a large amount of overlap in the results between the five algorithms.

With the exception of the NM algorithm in left box plot of Figure 5.1,
the rubric predicted a larger improvement than was measured in the data.
As was noted in Section 4.2.2, function type seems to affect improvement.
This could explain the optimistic predictions of the rubric with respect to
improvement. The functions used in the test could have properties that lead
to below average measures of improvement.
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5.4 Analysis of Rubric

Using the rubric for the two case studies in Sections 5.2 and 5.3 revealed
some trends in preferred algorithms with respect to input dimension and
function call budget. However, testing the claims of the rubric against real
data revealed some concerns regarding its reliability. In this section, the
trends and validity of the rubric will be discussed.

The basic trend seen in the rubric is that DFO algorithms are preferred
at “lower” dimensions and BGO algorithms are preferred at “higher” di-
mensions. The definition of lower and higher dimensions is not exact based
on the data from Table 5.1 and Table 5.2, however, it appears that the cut
off is somewhere between d = 8 and d = 15. A possible conclusion is that
dimension is not the only determining factor. Since in the tables, func-
tions optimized at higher dimensions were not given an appropriately large
budget. It may be that the ratio n/d is more important than the dimension.

In the tables of the previous sections, BGO algorithms were preferred
when

n

d
∈ (2, 13).

Figure 5.5 shows box plots of measured improvement values from the dataset
used in Section 4.2 for d ∈ [2, 30] and n ≤ 10d for each of the algorithms.

Figure 5.5: Box plot of the improvement gained by each of the algorithms for
the dataset described in Chapter 4. Only data where n ≤ 10d are considered.
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The median values for the BGO algorithms are greater than those of the
competing algorithms, but the difference is not that significant, considering
the large variances and the notable outliers. In Figure 5.6, box plots are
shown for dimensions 10 and smaller.

Figure 5.6: Box plot of the improvement gained by each of the algorithms
on real functions where d ≤ 10 and n ≤ 10d.

The difference in median values for this subset of the data is even less
significant. The median performance of KGCP is still slightly greater than
for the other algorithms, but for EGO this is no longer true. Figure 5.7
shows box plots for dimensions 10 and greater.

For this subset of the data, the median performance of BGO algorithms
is greater but, once again, the large variances may render the differences
insignificant.

Regarding time, the amount required by BGO algorithms is far greater
than that of the other algorithms. Therefore BGO algorithms are allowed a
smaller function call budget when the running time of the objective function
is small. However, if the average running time of the objective function is
large, the function call budgets are similar for all of the algorithms. Thus,
the disadvantage of fewer function calls faced by BGO algorithms is elim-
inated. In Table 5.1 and Table 5.2, when the time required to run the
function is 60 seconds or greater, the difference in function call budgets is
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Figure 5.7: Box plot of the improvement gained by each of the algorithms
on real functions where d ≥ 10 and n ≤ 10d.

minor. The difference in function call budgets is not always a limitation
for the BGO algorithms since there are examples, in Table 5.1, where the
improvement in KGCP is greater according to the rubric than the other
algorithms in spite of a much lower function call budget.

Sections 5.2 and 5.3 present specific case studies and the discussion pre-
sented in this section is based on these case studies. While other case studies
could be considered it is likely that the results will be similar to those ob-
served in this chapter. Namely the time prediction will be quite accurate
especially when T is large enough, the trends regarding the DFO and BGO
improvements will be similar, and the large variance in improvement will be
present.
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Chapter 6

Conclusion

The rubric constructed in this thesis estimates the amount of function
calls that can be obtained under a given time budget and it also predicts the
improvement that could be obtained within the time budget. How accurate
are these estimates and is this rubric reliable?

The assessment of time in Section 4.2.1 showed clear trends, strong re-
lationships, and good fits for most of the algorithms. The case studies in
Chapter 5 showed that, with respect to time, the rubric did not deviate
much from the real data. These observations suggest that the predictions
of function call budgets from the rubric are quite reliable. For the BGO
algorithms at small time budgets it is inconclusive whether the prediction
of function call budgets is reliable or not. The large difference between the
time budget and the time used by the BGO algorithms could be due to the
expensive nature of these algorithms or due to the poor estimates by the
rubric.

With regard to improvement, the rubric is much less reliable. In Sec-
tion 4.2.2 it was noted that the improvement data for each algorithm exhib-
ited large variance and in Chapter 5, there was a notable difference between
the improvement according to the rubric and the measured improvement.
In some instances the algorithm suggested by the rubric was clearly out-
performed by other algorithms in the measured improvement. The large
variance present in the improvement data makes it difficult to determine
the best choice for an algorithm. The rubric may be more reliable in in-
stances where the difference in improvement values, as suggested by the
rubric, is large.

The large variance present in the improvement values is likely due to fac-
tors other than those considered: d and n. In Section 4.2.1 and Section 4.2.2
it was shown that for both time and improvement, variance decreased when
measured for data from specific functions. Function type is a factor not
considered in this analysis, but appears to have a considerable effect on im-
provement and a lesser effect on time. Figure 6.1 shows the improvement
values for the KGCP algorithm for a specific dimension and budget.

A distinct break in the data can be seen at a value of 1. This break
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Figure 6.1: Box plot of the improvement gained by the KGCP algorithm for
d = 10 and n = 200.

is determined solely by function type. Two functions that were more chal-
lenging for this solver reported improvement values below the break, while
results for the remaining function types are found above the break. This
phenomenon is not unique to the KGCP algorithm, dimension 10, or the
function value budget of 200. Similar results can be found throughout the
experimental data. In Table 4.8 the variance in improvement for the NM and
sNOMADr algorithms was larger than for the other algorithms even when
function type was taken into account. The improvement of these local opti-
mization algorithms is likely affected by the starting point. The conclusion
is that the variables d and n are insufficient for describing the improvement
in function value gained by a particular algorithm.

This research was conducted using specific implementations of the algo-
rithms from Chapter 3. For improvement, and more so for time, the results
will almost surely differ with implementations. For example, the time used
by KGCP and EGO should be comparable, theoretically, due to the use
of the expensive GP in both algorithms. However, in practice, at higher
dimensions and budgets the time required by the KGCP is almost twice as
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large as that of EGO. This is likely due to approaches in implementation.
Each of the five algorithms were used with more or less default parameters.
An experienced user of each algorithm may have knowledge of preferred
parameter settings and thus improve the performance of the algorithm. It
is, however, unlikely that this improvement will be significant or affect the
general trends observed in this thesis.

The data behind the results in this thesis considers a particular range
of dimensions and function call budgets. The results of the rubric outside
of this domain cannot be fully trusted. Although, large deviations from the
observed trends are unlikely near the boundaries of the test domain. Farther
away from the test domain, the results may not follow the relationships
exhibited in this thesis.

The somewhat inconclusive results of this experiment suggest some di-
rections for further work. An analysis where function type is considered
may increase the accuracy of the rubric. Optimization problem classifica-
tion tools have been available for some time in the Dr. Ampl meta solver,
[FGK87], and could be used in a rubric of this sort. For optimizers regularly
working on black-box functions in specific applications, such an analysis may
be useful, since the black-box functions may be of a similar type.

In Chapter 5, it was noted that the large variance made it challenging
to determine a clear-cut winner. An analysis taking into account worst
case performance and best case performance may assist in “tie-breaking”
scenarios.
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