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Abstract 

 

This work focuses on control and trajectory optimization strategies for high speed contouring 

of machine tools. In the first part, control strategies are studied. Studied strategies are divided 

into three major categories. Axial error controllers, contour error controllers, and feed 

forward controllers. The control strategies are benchmarked on a biaxial XY table. The least 

contouring error was recorded for the control structure consisting of Cartesian Servo Control 

(CSC) with a Proportional Derivative Integral (PID) regulator + Torque Feed Forward (TFF). 

As for the trajectory optimization, a new real time algorithm to select time-optimal feedrates 

has been proposed. The algorithm is independent of the spline representation of the nominal 

path, and incorporates both velocity and acceleration constraints. The fact that the proposed 

algorithm is independent from the spline representation (since it simply adjusts sampling 

times for position increments), makes it more flexible than conventional algorithms in the 

literature that require particular spline representations of the reference trajectory. Also the 

proposed algorithm is computationally efficient because: 1) an analytical solution to the 

optimization is applied at every time step rather than a global numerical optimization 

procedure, and 2) other analytical solutions in the literature require a forward and a backward 

pass over the compete trajectory. The new algorithm only backtracks over a short window 

before decelerations. Finally, this study also introduces two new reference path generation 

techniques that use part tolerance values to reduce machining time.   

 

 

 



 iii 

Preface 

 

A part of Chapter 5 is submitted to the ASME 2015 International Design Engineering 

Technical Conferences & Computers and Information in Engineering Conference 

(IDETC/CIE 2015). I was responsible for the analytical derivation and experimental 

validation of all algorithms presented in this thesis, including the work submitted to the 

IDETC/CIE. 

 



 iv 

Table of Contents 

 

Abstract .................................................................................................................................... ii 

Preface ..................................................................................................................................... iii 

Table of Contents ................................................................................................................... iv 

List of Tables ......................................................................................................................... vii 

List of Figures ....................................................................................................................... viii 

List of Symbols ....................................................................................................................... xi 

Acknowledgements .............................................................................................................. xiii 

Dedication ............................................................................................................................. xiv 

Chapter 1: Introduction and Thesis Organization .............................................................. 1 

1.1 Motivation ............................................................................................................................. 1 

1.2 Objective ............................................................................................................................... 2 

1.3 Thesis Outline ....................................................................................................................... 2 

Chapter 2: Literature Review ................................................................................................ 4 

2.1 CNC Machine Tools ............................................................................................................. 4 

2.2 Trajectory Generation ........................................................................................................... 7 

2.3 Control Strategies .................................................................................................................. 9 

Chapter 3: Experimental Comparison of Contouring Control Architectures ................ 12 

3.1 Model of the Experimental Biaxial Table ........................................................................... 12 

3.2 Cartesian Servo Control (CSC) ........................................................................................... 13 

3.1 Feed Forward Control Strategies ........................................................................................ 19 

3.1.1 Torque Feed Forward (TFF) Controllers ........................................................................ 19 

3.1.2 The Zero Phase Error Tracking (ZPET) Controller ........................................................ 21 

3.2 Cross Coupled Controller (CCC) ........................................................................................ 21 

3.3 Tangential-Contouring (TC) Controller .............................................................................. 23 

3.4 Experimental Comparison of Control Strategies ................................................................ 25 

3.4.1 Experimental Setup ......................................................................................................... 25 

3.4.2 Circular Interpolation...................................................................................................... 26 



 v 

3.4.3 Corner Tracking .............................................................................................................. 31 

3.5 Discussions ......................................................................................................................... 34 

Chapter 4: A New Real Time Feedrate Optimization Algorithm for 2-D Cartesian 

Machine Tools ....................................................................................................................... 35 

4.1 Representing Variable Sampling Times in Position Control Systems with Constant Loop 

Closing Frequencies ......................................................................................................................... 35 

4.2 Expressing Velocity and Acceleration for Sampled Data Systems with Uneven Sample 

Time………………………………………………………………………………………………..37 

4.3 Sample Time Selection for a Single Axis ........................................................................... 39 

4.3.1 (1x) Limit Velocity in X ................................................................................................. 41 

4.3.2 (2x) Limit Acceleration in X .......................................................................................... 42 

4.3.2.1 (2xa) Limit acceleration: ........................................................................................ 42 

4.3.2.2 (2xb) Limit Deceleration:....................................................................................... 44 

4.3.2.3 (2xc) Axis Reversal in X:....................................................................................... 45 

4.3.2.4 (3x) Backtrack in X ................................................................................................ 46 

4.4 Algorithm for Sample Time Selection for Two Axes ......................................................... 48 

4.4.1 (1xy) Limit Velocity in X and Y .................................................................................... 51 

4.4.2 (2x) Limit Acceleration in X, or (2y) Limit Acceleration in Y ...................................... 51 

4.4.2.1 (2xy) Limit Acceleration in X and Y Axes ............................................................ 52 

4.4.2.2 (5) Backtracking in X and Y .................................................................................. 55 

4.5 Experimental Setup ............................................................................................................. 56 

4.6 Experimental Results .......................................................................................................... 57 

4.7 Discussions ......................................................................................................................... 63 

Chapter 5: Reference Trajectories with Tolerance Bounds ............................................. 64 

5.1 Tolerance Bounds at Corner Points .................................................................................... 64 

5.2 Case Studies ........................................................................................................................ 65 

5.2.1 Circles ............................................................................................................................. 65 

5.2.2 Single Axis Reversal: ..................................................................................................... 67 

5.2.3 General Corner ............................................................................................................... 68 

5.3 Fitting an Arc in the Corner ................................................................................................ 70 

5.4 Path Modification Using Average Filter ............................................................................. 71 

5.5 Experimental Setup ............................................................................................................. 73 

5.6 Experimental Results .......................................................................................................... 74 



 vi 

5.7 Discussions ......................................................................................................................... 76 

Chapter 6: Conclusions ........................................................................................................ 77 

6.1 Experimental Comparison of Contouring Control Architectures ....................................... 77 

6.2 A New Real Time Feedrate Optimization Algorithm for 2-D Cartesian Machine Tools ... 78 

6.3 Reference Trajectories with Tolerance Bounds .................................................................. 78 

6.4 Future Works ...................................................................................................................... 79 

References .............................................................................................................................. 81 

 



 vii 

List of Tables 

  

Table 3. 1   CSC comparison .................................................................................................. 15 

Table 3. 2   Experimental setup .............................................................................................. 26 

Table 3. 3   Circular trajectory parameters ............................................................................. 27 

Table 4. 1   Experimental setup .............................................................................................. 57 

Table 5. 1   Experimental setup .............................................................................................. 73 

Table 5. 2   Experimental results using nominal reference trajectory and the feedrate  

                   override method in Chapter 4. ............................................................................. 75 

Table 5. 3   Experimental results of two proposed algorithms. .............................................. 76 

 



 viii 

List of Figures 

 

Figure 2. 1     Vertical milling machine .................................................................................... 5 

Figure 2. 2     Center lathe ......................................................................................................... 5 

Figure 2. 3     Block diagram of a CNC machine’s servo axis.................................................. 6 

Figure 2. 4     Contouring error and axial errors [43]................................................................ 7 

Figure 3. 1     Block diagram of the high speed XY table ...................................................... 13 

Figure 3. 2     CSC strategies a) State feedback (SF), b) Proportional Derivative (PD),  

                       c) Proportional Integral Derivative (PID) ........................................................ 15 

Figure 3. 3     Group delay for ωc=30π rad/sec....................................................................... 17 

Figure 3. 4     Control loop magnitude response for ωc=30π rad/sec. .................................... 18 

Figure 3. 5     Disturbance magnitude response for ωc=30π rad/sec ...................................... 19 

Figure 3. 6     Torque feed forward control block diagram ..................................................... 20 

Figure 3. 7     ZPET block diagram......................................................................................... 21 

Figure 3. 8     Axial, contour, and tangential errors for a linear contour ................................ 22 

Figure 3. 9     CCC block diagram .......................................................................................... 23 

Figure 3. 10   TC block diagram [43] ..................................................................................... 24 

Figure 3. 11   Biaxial table used for the experiments ............................................................. 25 

Figure 3. 12   Axes velocities.................................................................................................. 27 

Figure 3. 13   Path (feed) velocity........................................................................................... 28 

Figure 3. 14   Contouring errors of CSC, LCCC and TC controllers ..................................... 29 

Figure 3. 15   Circular contour errors for ZPET controllers and torque feed forward 

                      controllers ......................................................................................................... 30 

Figure 3. 16   Corner tracking trajectory................................................................................. 32 

Figure 3. 17   a: Axis velocities. b: Tangential velocity ......................................................... 32 

Figure 3. 18   Contouring errors for corner tracking............................................................... 33 

Figure 4. 1 a) X axis moves with programed velocity. b) Feedrate modulation by 

                      inserting zero motion increments to reduce X axis’s velocity to half of  

                      the programed velocity. c) Combining every fifth sample with its 

                      predecessor and 5/4 increase in the programed velocity. ................................. 36 

Figure 4. 2     Parabolic position interpolation ........................................................................ 38 

file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal.doc%23_Toc421877515
file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal.doc%23_Toc421877516
file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal.doc%23_Toc421877524
file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal.doc%23_Toc421877536


 ix 

Figure 4. 3     Flowchart of the single axis algorithm ............................................................. 40 

Figure 4. 4     Velocity constraint............................................................................................ 41 

Figure 4. 5     Acceleration constraint. .................................................................................... 43 

Figure 4. 6     Deceleration constraint. .................................................................................... 44 

Figure 4. 7     Axis reversal constraint. ................................................................................... 45 

Figure 4. 8     Decelerating from maximum velocity to zero. ................................................. 47 

Figure 4. 9     Flowchart of the two axes algorithm ................................................................ 50 

Figure 4.10  Violated acceleration in X and constrained acceleration in Y (black lines).  

                       Simultaneously limiting acceleration in X and Y axes by increasing the  

                       sample times (red lines) ................................................................................... 52 

Figure 4. 11   Control system. ................................................................................................. 57 

Figure 4. 12   A teardrop curve is used as the original reference path. ................................... 58 

Figure 4. 13   Original reference path, velocity and acceleration profiles of the teardrop. .... 59 

Figure 4. 14   Reference and actual velocity. .......................................................................... 60 

Figure 4. 15   Reference and actual acceleration. ................................................................... 60 

Figure 4. 16   Reference and actual acceleration at the corner of the trajectory. .................... 61 

Figure 4. 17   Contour error .................................................................................................... 62 

Figure 5. 1  Tolerance boundary lines and tolerance circle (shown in red) around the 

                      tool path (shown in black) [70] ......................................................................... 65 

Figure 5. 2  Traversing along a circle a) along the inner tolerance band b) along the 

                      outer tolerance band .......................................................................................... 66 

Figure 5. 3   Single axis reversal a) along programmed path b) along outside tolerance  

                      band ................................................................................................................... 67 

Figure 5. 4   Corner tracking a) along the inside tolerance band, b) between outside and 

                      inside tolerance band......................................................................................... 69 

Figure 5. 5    Travel time for a general corner with inside angle theta ................................... 70 

Figure 5. 6    Fitting an arc in the corner................................................................................. 71 

Figure 5. 7    Using average filter to modify a path ................................................................ 72 

Figure 5. 8    Nominal path, modulated reference path, and actual path for the first strategy 

                     (fitting an arc in the corner) ............................................................................... 74 

file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal.doc%23_Toc421877537
file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal.doc%23_Toc421877538
file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal.doc%23_Toc421877539
file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal.doc%23_Toc421877540
file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal.doc%23_Toc421877541
file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal.doc%23_Toc421877542
file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal.doc%23_Toc421877543
file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal%20-2.doc%23_Toc422397004
file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal%20-2.doc%23_Toc422397004
file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal%20-2.doc%23_Toc422397005
file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal%20-2.doc%23_Toc422397005
file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal%20-2.doc%23_Toc422397006
file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal%20-2.doc%23_Toc422397006
file:///C:/Users/sepehr/Documents/Mechanic/Master/Thesis/My%20Thesis/Sepehr_Thesis_Vfinal%20-2.doc%23_Toc422397008


 x 

Figure 5. 9   The nominal path, the modified reference path, and the actual path for the 

                      second strategy (using running average filter) .................................................. 75 



 xi 

List of Symbols 

 

,max normala   Maximum normal acceleration on a circle 

b    Viscous damping coefficient 

c    Contour error 

t    Tangential error 

circler
   Radius of circular reference path 

,max xj    Maximum number of backtracking steps 

x yp p    Ball screw pitch 

modoulatet   Minimum time required to decelerate from maximum to zero speed 

circlev    Circular motion velocity 

c    Controller natural frequency 

circle
   Angular frequency of reference trajectory 

FC    Control loop regulator  

LC    Feedback regulator 

CCx    Cross coupling gain for the X axis  

CCy    Cross coupling gain for the Y axis  

( )Cx s , ( )Cy s   Actual positions in x and y directions 

 D s    Transfer function between disturbance torque and actual position 

xE , yE    Axial errors in x and y directions 

, ,,max x max yI I   Maximum Motor currents in x and y directions 

xJ , yJ    Axis Inertias in x and y directions 

dK    Control loop derivative gain 

iK    Control loop integral gain 

txK , tyK   Motor constants in x and y directions 

pK    Control loop proportional gain 



 xii 

maxN    Maximum length of a running average filter 

 P u    Parameterized curve 

,x yR R    Motor resistances in x and y directions 

( )Rx s , ( )Ry s   Input reference positions in x and y directions 

SF    Scale factor 

Tol    Allowable machining tolerance value 

 T s    Overall position loop transfer function 

gT    Group delay 

 dT s    Disturbance torque 

mT    Motor torque 

S    The distance required to decelerate from Maximum to zero speed 

, ,,max x max yU U   Maximum motor voltages in x and y directions 

X , Y    Axis velocities in x and y directions 

proX , proY   Programed velocities in x and y directions 

X , Y    Axis accelerations in x and y directions 

at     Sample time required to meet acceleration constraints 

bt    Sample time required for backtracking  

Rt    Sample time required for axis reversal  

nomt    Nominal sample time 

vt    Sample time required for velocity constraints    

X , Y   Axis motion increments in x and y directions  

 

 

 

 

 



 xiii 

 Acknowledgements 

 

I would like to express my deepest gratitude to my supervisor, Dr. Rudolf Seethaler. It was a 

great honor for me to work with a professional and friendly supervisor. I am thankful for 

your patience, valuable advice, and your support throughout my Master’s studies. It was not 

possible for me to complete and write my thesis without your guidance and encouragement.  

I would also like to thank Dr. Ian Yellowley for supporting my Master’s studies.  

Last but not least, I would like to offer my special thanks to my beloved family for their 

endless support and love.  

 

 



 xiv 

Dedication 

 

To my mother, who taught me to be diligent, 

To my father, who taught me to be tolerant, 

To my sister, who is my spiritual support.  

 

 



 1 

Chapter 1:     Introduction and Thesis Organization  

 

Automation is a process in which a machine follows a specific order of steps in order to carry 

out a desired task with small or no human interaction [1]. This concept has made 

considerable changes to industrial manufacturing processes and has been implemented in 

different stages: 1- manufacturing operations (milling, drilling, shaping, etc.), 2- moving 

components, 3- assembling components, 4- packaging the products [1]. Within the 

manufacturing operations a hierarchical process plan is followed that prescribes the type of 

machine tools to be used, the tool paths to be followed and finally the selection of machining 

parameters such as feedrate and spindle speed. The topic of this thesis deals with the 

optimization of the algorithms employed by the machine tool that translates the low level 

process plan (path and feedrate) to machine tool motions. 

 

1.1 Motivation 

 

Controlling a machine tool to follow the process plan and produce high quality parts is a 

challenging topic.  Today, Computer Numerically Controlled (CNC) machine tools are 

commonly used in manufacturing environments.  They are usually programmed with a 

programming language referred to as G-code, which was defined in the 1960s and in its 

simplest form, contains geometrical information (tool path) and machining parameters (eg 

feedrate and spindle speed).  The process planning system usually has very little knowledge 

about the physical capabilities of the machine tools, and thus machining parameters are 

commonly selected by the operator from experience.  This leads to inefficiencies since 

operators generally want to err on the conservative side in order to operate the machine 

safely and produce little waste in parts and tools.  Thus, there is considerable potential to 

improve machining parameters.  In fact, there is a whole literature on optimizing process 

plans.  These optimization procedures however are usually very complex and need to be 

performed in a preprocessing step that is dependent on precise material data and machine 

performance data that often is not available. 

Thus, there is a clear need for computationally efficient real-time control strategies that are 

hosted in the machine tool itself.  These control strategies should be able to increase accuracy 
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while reducing machining time.  In the case of ill-defined material properties and raw part 

geometries, the algorithms need to be able to adapt machining parameters to ensure safe, 

efficient and accurate parts.   

 

1.2 Objective 

 

This thesis focuses on optimizing the low level process plan (feedrate and toolpath) and its 

interaction with the position control strategy implemented in the machine tool.  To this end, 

the performance of a wide variety of different position control strategies are analyzed 

analytically and compared experimentally in order to synthesize the most efficient and 

practical low level control strategy. The result of this comparison provides the basis 

necessary for developing a new real-time feedrate optimization algorithm that is validated 

experimentally using linear, circular and freeform motion segments. Contrary to existing 

feedrate optimisation algorithms, the new algorithm needs to be analytical to ensure 

computational efficiency for real-time implementation.  In addition, the algorithm needs to be 

able to work with a finite lookahead window of the path, since the memory for motion 

increments on machine tools is limited.  The final and third objective of this thesis is to 

provide an algorithm that modifies the programmed path in order to take advantage of 

machining tolerances when optimizing for minimum machining time. 

 

1.3   Thesis Outline 

 

The main goal of this study is providing machine tool manufacturers with contouring 

strategies which are easy to implement on their machines. A critical review of position 

control strategies and -feedrate selection strategies is provided in Chapter 2. In Chapter 3 the 

contouring performance of different controller architectures which are provided with 

physically feasible reference trajectories, are compared experimentally.  More specifically, 

the relative performance of conventional axis servo drives, contour error control schemes, 

and feed forward control schemes are investigated. Chapter 4 proposes a new real time 

feedrate optimization algorithm that will provide time-optimal and feasible Cartesian 

trajectories, constrained by velocity and acceleration limits. The algorithm is intended to 
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reside inside the CNC controller. Chapter 5 introduces new trajectory generation algorithms 

which use predefined tolerances to smooth trajectories and reduce machining time. Chapter 6 

provides conclusions and suggestions for future work.  
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Chapter 2:     Literature Review  

 

Modern Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) 

CAD/CAM systems create the process plan for producing a part by selecting machining 

operations, tools, tool paths, feedrates, and spindle speed. The process plan is the result of a 

complex multi-level optimization algorithm based on incomplete machine, material, and 

geometry data.  This thesis aims to provide novel real-time algorithms that update and 

optimize the lowest levels of the process plan (feedrate and toolpath) during the actual 

machining operation. In this chapter, a very brief overview of common machine tools and 

their sources of machining errors is provided followed by a review of path planning, feedrate 

selection, and motion control strategies.   

 

2.1 CNC Machine Tools 

 

The process plan generated by modern CAD/CAM systems has many levels.  The top level is 

responsible for selecting machining operations.  There are various types of CNC machines 

for machining operations. Two representatives are milling machines and lathes shown in 

Figure 2.1 and 2.2 respectively. CNC lathes, are used for machining cylindrical parts.  The 

parts are mounted in a rotating spindle, and the tools are fed into the parts at a feedrate that is 

measured on mm per spindle revolution.  CNC milling machines can be used to create almost 

any geometry.  Their tools are mounted on the rotating spindle and the work piece is fed into 

the rotating tool. 
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Figure 2. 1 Vertical milling machine 

 

Figure 2. 2 Center lathe 
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The second level of the process plan contains selection of tools (size and type) and tool paths.  

The toolpaths define the depths and width of cuts taken by the machine tool in order to create 

the final desired geometry. The third level of the process plan contains the selection of 

spindle rotating speed and feedrate. 

In motion control research, it is common to distinguish between a path and a trajectory.  The 

path contains geometry only (waypoints of the tool with respect to the part).  The trajectory 

includes waypoints and timestamps.  The toolpath describes the part geometry and the 

trajectory describes the dynamic behavior of the machine tool. 

The process planning system delivers a nominal trajectory to the machine tool consisting of a 

nominal path that can be line segments, arcs, or splines and a nominal feedrate.  The machine 

tool then employs an interpolator that creates a reference trajectory consisting of motion 

increments that are equally spaced in time and ready to be fed to the position control loop for 

each axis of motion. Figure 2.3 shows a block diagram of a CNC machine’s servo axis.  

The objective of a CNC machine tool is to follow the nominal path provided by the process 

planning system with as little contouring error as possible. Due to limited system dynamics 

and nonlinearities, the control system cannot always exactly follow the reference path.  The 

resulting errors in position can be expressed in two different coordinate systems as shown in 

Figure 2.4. Contour error ( )c , measures the minimum distance between the actual point and 

reference path.   Axial errors  xE  and  yE , represent distances between the actual point and 

reference position in the direction of the physical drive axes X and Y respectively.  

The axial error shown in Figure 2.4 assumed that the machine tool uses a Cartesian drive 

system. This is true for many machine tools.  

 

Controller 

Feedback signal (actual position)  

C(s) 

 

Interpolator  

Nominal path 

and 

feedrate 

R(s) 

- + 
Servo Motor 

 And Table 

Error 

E(s) 

Reference  

Trajectory 
Actual 

Trajectory 

Figure 2. 3 Block diagram of a CNC machine’s servo axis 
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Contour error can be caused by improper design of the machine tool (alignment, temperature, 

stiffness), or deficiencies of the machine tool software, which performs two basic tasks.  

First, the interpolator creates feasible reference trajectories that do not violate velocity and 

acceleration limitations of the axis servo drives.  Second the control system needs to track the 

feasible reference trajectories as closely as possible.  The next two sections review the 

available literature that has been created for these tasks.  

 

2.2 Trajectory Generation 

 

Motion increments of the reference trajectory of each axis are generated by geometric 

interpolators: e.g. linear/circular interpolators, or parametric interpolators for freeform 

surfaces. To reduce acceleration levels at the start and end of the motion segments, 

Acceleration/Deceleration algorithms are commonly incorporated into the interpolators for 

lines, circles and splines in commercial machine tools [3].  However, these commercial 

implementations are usually very conservative and they only limit accelerations at the 

beginning and the end of motion segments. 

The machining literature shows a wealth of different approaches to further improve 

trajectories [3-16].  Farouki et al. [11] proposed a closed loop solution for the feederate 

optimization problem using degree-n Bezier trajectories. Their algorithm provides feedrates 

 

Figure 2.4 Contouring error and axial errors [43] 
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for the two cases: constant, and speed dependent acceleration limited trajectory. A limitation 

of the proposed algorithm is that it assumes the same acceleration limits in the X  and Y  

directions. Jingchun Feng et al. [12] proposed a real time NURBS interpolator with axis 

acceleration limits for biaxial tables, which confines axis acceleration, and chord error, and 

provides an analytical solution for the time optimal trajectory problem. Altintas and 

Erkokmaz [13] developed a quintic spline trajectory generation algorithm using jerk, 

acceleration, and velocity limits. There are also several other studies which take jerk 

constraints into account to develop smooth acceleration trajectories [8,14,15]. However, 

adding the jerk to the constraints increases computation time, since numerical search 

algorithms have to be used in place of analytical solutions for finding minimum time 

feedrates. The algorithms shown for parametric interpolators above [3-15] are complex and 

require a particular spline representation (Polynomials, NURBS, Bezier, and etc.) of the 

desired geometry.  Thus, they can be difficult to implement, since they require that both the 

CNC machine and the CAD system use the same interpolation scheme. 

Dong and Stori [16] presented a generalized time optimal feedrate generation algorithm 

which is independent of the spline representation. For a given arbitrary parameterized 

curve  P u , 0 1u  (the original reference path), with velocity and acceleration constraints, 

the algorithm uses a two pass iterative search algorithm to find the global time optimal 

feedrate. The forward pass limits acceleration and the backward pass limits decelerations. A 

detailed proof of optimality is also provided for the proposed algorithm. One drawback of 

this algorithm is that it is difficult to implement in real time machining operations since it 

requires the complete trajectory at the beginning of the task. 

All the interpolators discussed above follow the nominal reference path as closely as 

possible, without creating voltage or current violations. Thus, they have to come to a 

complete stop at critical points such as corners.  Another class of parametric interpolators use 

predefined tolerance bounds around the original reference path, and instead of exactly 

following the nominal path, they create the reference path within the predefined tolerance 

bounds. This strategy relaxes the acceleration requirements of the reference path at sharp 

corners and makes the machine move faster. Bosetti and Bertolazzi [72] used variable 

tolerances at different portions of the path. However, they require a computationally 

expensive optimization algorithm to determine optimal feedrates and reference paths. Charlie 
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et al. [73], also used tolerance at the critical portions of the nominal reference path like sharp 

corners to create a smooth reference path. However, their algorithm is also computationally 

expensive. 

In summary, commercial machine tools use conservative acceleration/deceleration 

algorithms for ensuring low contouring errors at the start and end of lines and circles.  Some 

more advanced machine tools can also create splines.  However, due to the substantial 

computational cost, advanced splines with limited velocity, acceleration and jerk are not 

implemented in commercial machine tools. 

 

2.3 Control Strategies 

 

The position control system in a machine tool aims to guide the actual position along the 

reference path with as little contouring error as possible.  In its simple form, the control 

system first calculates position errors from the difference between reference and actual 

positions.  Then it uses this error to decide on an appropriate control action to drive the servo 

motor with.  One can either calculate control actions in the directions of the physical drive 

axes, or normal and tangential to the path.  Due to simplicity and robustness, commercial 

machine tools use axial drive errors with State Feedback (SF) controllers, Proportional 

Derivative (PD) controllers, or Proportional Integral Derivative (PID) controllers. 

The literature shows a great number of more advanced control strategies for compensating 

the axial error. Since most of them are computationally expensive and have not been proven 

to provide enough benefit, they are rarely used by commercial machine tools.  However, they 

are important to understand what is technically feasible. 

Altintas and Erkorkmaz [63], introduced an adaptive sliding mode controller which is robust 

against nonlinearities such as coulomb friction and disturbances. The major characteristic of 

this controller is designing a “sliding surface (S)” as a function of bandwidth of the system. 

A Lyapunov function is used to prove the stability of the controller under nonlinear 

disturbances. One drawback of this control scheme is that due to the switching nature of this 

control scheme, actuator chatter can be a concern. 

Hao and Limei [68], used a real time Model Predictive Control (MPC) strategy on a biaxial 

table. MPC generates control commands by optimizing the predicted model behavior in an 
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iterative manner [69]. However, computational cost make this algorithm hard to implement 

on commercial industrial machines.   

Jee and Koren [64] introduced an adaptive fuzzy logic controller. This algorithm replaces the 

conventional model based control strategies with rule based ones. The rationale for this 

approach is that unknown models for friction and nonlinear disturbances make model based 

controllers perform poorly, but, rule based controllers do not need complete model 

information. Jee and Koren use three parts to define their control strategy. During 

“fuzzification”, control inputs are converted to fuzzy variables. Then the “inference engine 

with a rule base” creates a fuzzy output based on a set of predefined rules. Finally, during 

“defuzzification”, the fuzzy output is converted to a non-fuzzy controller output. Again 

commercial success of this and other fuzzy based algorithms has been hampered by concerns 

of robustness and computational efficiency. 

The axial controllers described so far in this section are all feedback controllers.  In the 

robotics literature, tracking controllers are used to achieve smaller contour errors by adding a 

model based feedforward term to the control strategy.  Surprisingly, for machine tool 

applications, only Zero Phase Error Tracking (ZPET) controllers [25-27], a particular variant 

of feed forward controllers have been studied widely.  Traditional computed Torque Feed 

Forward (TFF) [34-37, 56, 57] strategies have mainly been studied in connection with 

robotic tracking. All feedforward tracking control strategies aim to force individual axis error 

to zero.  This approach is particularly successful in reducing transient errors, where the 

bandwidth of the feedback control system is too low to capture the frequency content of the 

reference trajectory.   

In order to reduce contour error without forcing the individual axis error to zero, Koren 

proposed Cross Coupled Control (CCC) [28]. The original algorithm only works well for 

straight line reference trajectories. By using time variant gains one can also account for 

arbitrary curvatures [29]. A central part in this algorithm is the real-time calculation of 

contour error.  Many studies attempt to improve calculation of contour error for CCC [24, 30, 

and 40]: Shih et al. [30] use the Taylor series expansion. Jeremy R. Conway et al. tried to 

compute the exact value of the contouring error for general free form trajectories through a 

polynomial root tracking algorithm [40]. Other studies replace or augment the PID controller 

of CCC with more advanced control schemes. Ke-Han Su et al. and Ming-Yang Cheng 
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improved contouring error accuracy by adding a position error compensator to the CCC 

structure, which simultaneously reduces the axial and contouring errors [21]. Syh-Shiuh Yeh 

and Pau-Lo Hsu [33] proposed a robust CCC design, which provides a guaranteed control 

performance [32-34]. Feed forward controllers have also been employed to improve the CCC 

algorithm [34-37]. Yet another control strategy combines Iterative Learning Control with 

CCC [38]. Barton et al. [39] used this combination and introduced a control strategy for 

repetitive processes. The main feature of this algorithm is using the output of the system at 

each iteration to update the control command for the next iteration. The main advantage of 

the proposed algorithm is that it is able to learn from the previous iterations to improve its 

performance in the presence of unmodelled disturbances [39]. However, the algorithm is 

limited to the repetitive machining process. 

Contrary to axial error controllers the so called task coordinate frame approach calculates 

control errors in the contour (normal) and tangential directions of the tool path [42-50]. There 

are many ways to define the contour and tangential errors. Yao’s group calculates the contour 

error based on geometric characteristics of the reference trajectory called a global task 

coordinate frame [48], [49]. Yunjiang Lou et al. proposed a task polar coordinate frame that 

estimates the contour error using a second order approximation [50]. Recently the task 

coordinate frame approach has been paired with advanced robust and adaptive control 

schemes. Hu et al. [46] employed an adaptive robust controller combined with a task 

coordinate frame in order to improve the system’s performance against friction and 

nonlinearities. They have specifically studied the performance of their control strategy 

against cogging force. The Adaptive Robust Control (ARC) framework that they used is 

based on work by Yao and Tomizuka [65-67]. The framework adapts to and is robust against 

unknown nonlinear disturbances. However, it is computationally expensive, which makes it 

difficult to implement on commercial machine tools. 

In summary, axial error control, cross coupled control, and task coordinate frame control are 

the main control architectures used for machine tool. Within these architectures, conventional 

PID, advanced MPC, adaptive control, and feed forward strategies can be applied. Due to 

computational costs and robustness, industrial machine tools mainly rely on axial error 

control with a PID regulator.  
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Chapter 3:     Experimental Comparison of Contouring Control 

Architectures 

 

This chapter provides an experimental comparison of contouring control architectures. In 

particular, conventional axis servo control, cross coupled control, and task coordinate frame 

control are studied. The comparison presented in this chapter is based on SF, PD, and PID 

feedback controllers.  This choice of controllers allows for a physical explanation of the 

relative performance of the overlying control architectures using frequency response 

arguments.  In addition, feedforward tracking strategies are added in order to provide better 

transient performance.  Before providing details of the experimental results, the model of the 

experimental biaxial table is presented and the different control systems are discussed in 

detail. 

 

3.1 Model of the Experimental Biaxial Table  

 

A block diagram of the high speed biaxial table is shown in Figure 3.1. The table has 

different inertias xJ , and yJ  in the X and Y directions respectively. The inertias are driven 

through ball screws by identical brushed DC motors that provide torque, mT , proportional to 

current, I: 

 

m tT K I            (3.1) 

 

where, tK  is the motor torque constant. Motors are driven by current amplifiers, whose 

bandwidths are tuned to be more than an order of magnitude higher than the bandwidths of 

the position controllers.  As a result, reference and actual currents appear identical to the 

position controllers, and the current amplifier will be omitted in the derivations during the 

remainder of this thesis.  The overall plant transfer function is then described by: 

 

2
( ) tK

G
Js b

s
s




           (3.2a) 
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2
( .) ~ tK

G
Js

s           (3.2b) 

Even though viscous friction, b  is a common phenomenon in heavy machine tools [71], it 

plays little role in high speed X-Y tables used for applications such as laser machining.  For 

the XY-table used in this study, the friction term can be neglected. 

The position controllers provide a desired current to the current amplifiers for each axis.  

Depending on the architecture of the position controller (shown as XY position controller in 

Figure 3.1), the reference current can be derived from axial errors, or contour errors.  

The overall position loop transfer function will be denoted as  T s  in this work: 

 
 

 
.

C s
T s

R s


              (3.3) 

Disturbances are accounted for through the disturbance torque, Td.  For later reference, the 

transfer function between Td and resulting actual position is denoted as  D s : 

 
 

 
.

d

C s
D s

T s
               (3.4) 

 

 

Figure 3. 1 Block diagram of the high speed XY table 

 

3.2 Cartesian Servo Control (CSC) 

 

The most common control strategies for machine tools use independent servo controllers for 

each drive axis. This thesis focuses on the common case of Cartesian drive systems. Thus, 

axial error controllers are referred to as Cartesian Servo Controllers (CSC). Tracking 

performance and disturbance rejection is dependent on the particular control law employed.  
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The three most widely used commercial CSC strategies are State feedback (SF), Proportional 

Derivative (PD) and Proportional Integral Derivative (PID) control.  Figure 3.2a-c shows 

block diagrams of these controllers.  
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Figure 3. 2 CSC strategies a) State feedback (SF), b) Proportional Derivative (PD), c) Proportional 

Integral Derivative (PID) 

The SF controller considered in this paper consists of two parts: a proportional gain acting on 

the position error, and a derivative gain acting on the measured velocity. Contrary to the SF 

controller, the derivative gain for a PD controller is not applied to measured velocity, but to 

the derivative of position error.  In addition to the proportional and derivative components of 

SF and PD controllers, the PID controller employs an integrator. 

To achieve a fair comparison between the three control strategies, the controller gains are 

selected to provide identical real poles at a frequency of 40   /c rad sec   as shown in 

Table 3.1.  The SF and the PD control laws lead to a second order system, with identical 

denominator.  The only difference between the two controllers is the additional zero for the 

PD case.  The PID control law leads to a third order system, with two zeros. 

 

Table 3. 1 CSC comparison 

  T s   pK    
dK   iK   

0
lim gT


 

 
0

lim  D j




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PID 2

3 2( )
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 

   
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One common source of error in contouring control is axis mismatch.  In terms of the control 

literature, this phenomenon can be explained using group delay.  Ideally, the control loop 

should be linear in phase with identical group delay, Tg, for all axes: 

  
  

11
.g

Imag T j
T tan

Real T j



 


 

  
 
 

           (3.5) 

Figure 3.3 shows that the group delay for trajectories with low frequency components is 

16ms for the SF controller and 0 ms for the PD and the PID controllers.  Table 3.1 lists the 

analytical expressions for this zero frequency group delay, which is responsible for the time-

lag between reference and actual positions during linear motion segments.  Axis mismatch is 

the phenomenon whereby the zero frequency group delay is not identical for all axes, which 

leads to contouring errors in linear motion segments.  The SF controller can be tuned to 

minimize this effect, but both the PD and PID controllers automatically avoid axis mismatch 

during linear motion segments. 

For circles, both motion axes experience the same frequency components, and a matched 

controller will provide identical time lags between reference and actual position for all axes.  

However for generalized curvilinear motion segments, time lag is a function of the frequency 

content of the desired trajectory.  To minimize contour error one would need to ensure that 

the frequency components of the trajectories are well below the bandwidth of the position 

control loops, where the controllers have approximately linear phase. 
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Figure 3. 3 Group delay for ωc=30π rad/sec 

Axis mismatch is related to the phase response of the position control loop.  The magnitude 

response can also lead to contour errors, when the reference trajectory contains frequencies 

close or beyond the bandwidth of the control loop.  Figure 3.4 indicates that the magnitude 

response for the three systems is close to unity for frequencies well below the bandwidth of 

the position loop.  However, for frequencies close to c , the SF controller’s gain is less than 

unity and the gains for the PD and PID controllers are larger than unity.  Clearly, during fast 

circular interpolation, the SF controller’s circles will be too small and the circles of the PD 

and PID controllers will be too large. 
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Figure 3. 4 Control loop magnitude response for ωc=30π rad/sec 

Finally, un-modelled disturbance torques can also lead to significant contouring error.  This 

topic is investigated in depth by a robust control research community, which aims to 

guarantee asymptotic stability for different types of bounded disturbances.  In this thesis, this 

problem is addressed by comparing the magnitude response of the disturbance transfer 

function, D(s).  In Figure 3.5 PID control demonstrates better disturbance rejection across all 

frequencies up to the bandwidth of the position loop.  Beyond the position loop bandwidth, 

all three controllers (SF, PD, and PID) display almost identical disturbance rejection.  Hence, 

compared to the SF and PD controllers, the PID controller is expected to have the lowest 

errors throughout the usable frequency spectrum of the controllers.  Table 3.1 lists the steady 

state position response to a constant unity disturbance torque.  Only the PID controller rejects 

constant disturbance torques.  Thus, only a PID controller is able to reject the common 

phenomenon of sticking friction and provide zero error when the axes are not moving. 
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Figure 3. 5 Disturbance magnitude response for ωc=30π rad/sec 

 

3.1 Feed Forward Control Strategies  

 

To reduce transient errors, one can use a technique called feed forward control.  In this case, 

an accurate system model is used to predict the theoretical control action required for the 

desired trajectory.  This theoretical control action is then superimposed with the existing 

control action.  We will focus on two classical types of feed forward controllers.  

 

3.1.1 Torque Feed Forward (TFF) Controllers  

 

This control strategy is very common for robotic manipulators, where the required control 

action is time varying and nonlinear [34-37], [56, 57].  It uses an inverted plant model for 

calculating the torque that the motor needs to provide in order to achieve the desired motion.  

This calculated torque is added to the position feedback control action of the respective axis.  

Figure 3.6 shows a block diagram of this controller strategy for a time invariant linear single 

servo axis.  
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Figure 3. 6 Torque feed forward control block diagram 

 

In Figure 3.6 LC  represents the control loop regulator and FC  is the feedback regulator. To 

achieve a unity gain control system, the Torque feed forward block would need to be: 

 

 

2

   
.FTFF unity gain

t

J s
F C

K


           (3.6) 

 

Both PD and PID controllers do not contain a FC term, thus the classical Torque feed 

forward formulation reduces to the inverse of the plant.  The SF contains both a LC  and a FC  

term. However if Equation (3.6) is applied to SF control, the SF control system is 

transformed to the PD controller with torque feed forward.  Thus torque feed forward will 

only be applied to PD and PID controllers in this thesis. 

It should be noted that plant models that contain unstable zeros in the transfer function 

numerator cannot be inverted easily without leading to instability. The plant model in this 

thesis has no zeros and can be inverted easily. 
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3.1.2 The Zero Phase Error Tracking (ZPET) Controller 

 

The Zero Phase Error Tracking (ZPET) controller, introduced by Tomizoka [25], minimizes 

the axial error by reducing the phase lag between the actual and the reference position. In 

contrast to torque feed forward, where an inverted plant model is used, ZPETC employs the 

inverse of the position loop transfer function as a pre filter (see Figure 3.7). As a result, 

zeroes and poles of the position loop transfer function will be canceled and there is no lag 

between the actual and the desired position. Care has to be taken when inverting control 

loops with zeros on the right hand side of the s plane, since it would lead to unstable poles in 

the pre filter.  However, since the control systems used in this study have only stable zeros, 

the pre filter is an exact inverse of the position loop transfer function. 

 

 

Figure 3. 7 ZPET block diagram 

 

3.2 Cross Coupled Controller (CCC) 

 

Koren [28] noticed that the contour error due to axis mismatch or controller bandwidth 

limitations in circles changes very slowly along the path.  Thus, he proposed to add a contour 

error compensation scheme to the conventional Cartesian servo control scheme. The 

suggested method employs axial errors to calculate the contour error.  The initial method 

only considers linear contours as reference trajectories. Figure 3.8 shows a reference point P 

on a linear reference trajectory, the corresponding actual point P*, axial errors Ex, Ey, contour 

error εc, and tangential error εT. 
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The contour error, c  is extracted from the axis errors xE  , and yE  using cross coupling gains CCx  

and CCy :  

 

.c x x y yCC E CC E                 (3.7) 

 

The cross coupling gains are functions of the cutting directions and can be calculated from the axis 

velocities X  andY : 

 

2 2

Y
Cx

Y
C

X



         (3.8) 

2 2
.

X

X Y
CCy 


         (3.9) 

 

 

A PID control action is then performed on the contour error.  Finally, xCC  and yCC  are 

employed a second time in order to transfer the control action back to individual axis 

coordinate frames.  Figure 3.9 shows a block diagram of the CCC algorithm.   

 

  

P 

Y   

X   

Ey   

Ex 
  

P * 

 

 

Figure 3. 8 Axial, contour, and tangential errors for a linear contour 



 23 

 

Figure 3. 9 CCC block diagram 

 

It should be noted that the original CCC algorithm was derived for straight lines.  Later, the 

algorithm was updated for lines of arbitrary curvature [Koren 1991].  However this algorithm 

requires the knowledge of local radius of curvature at the control level.  Recently, Rahaman 

et al. [62] introduced linearized cross coupled control (LCCC), which does not require the 

local radius of curvature without compromising control accuracy. 

 

3.3 Tangential-Contouring (TC) Controller 

 

Taking Koren’s idea to control contour error rather than axis position error one step further, 

leads to the Tangential-Contouring control strategies that are often also called a Task 

Coordinate Frame approach (TCFA).  This strategy calculates errors in the normal and 

tangential direction of the trajectory, applies a control law in the normal and tangential 

direction and then transforms the control actions back into the drive directions.  This 

technique was first formulated by Chiu and Tomizuka [41].  In this thesis, a slightly simpler 

version of this original work (see Lo and Chung [1999]) is adopted which does not require 

updating the controller gains with trajectory information.  Chiu and Tomizouka [2001] 
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indicate that this omission would lead to error during fast motions at low curvature.  

However, this study’s experiments indicate that these errors are small. 

The TC control scheme is similar to CCC.  They both use the same transformations for 

calculating contour error, and the same PID style normal controller.  However, the TC 

controller replaces the two axis servo controllers with a single tangential controller.  

Assuming a linear contour, the TC controller employs Equations (3.10) and (3.11) to 

calculate the normal and tangential errors. The transformation coefficients xCC  and yCC  are 

identical to the ones used for CCC shown in Equations (3.8) and (3.9) 

 

c x x y yCC E CC E      Contour error     (3.10) 

 t y x x yCC E CC E       Tangential error    (3.11) 

 

 

Figure 3. 10 TC block diagram [43] 

 

The block diagram of a TC controller shown in Figure 3.10, indicates that the errors, 

c and t , are fed to the contour and tangential controllers respectively, and the controllers’ 

actions are then transferred back and fed into the individual axis plants.  
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3.4 Experimental Comparison of Control Strategies  

 

Two sets of experiments are carried out to determine the best combination of controller 

strategies.  First, circular interpolation is studied.  These experiments highlight the strength of 

contour error control systems such as CCC and TC, since they have relatively slowly 

changing trajectories in normal directions.  In the second set of experiments, corner tracking 

is investigated in order to compare the contouring performance during rapid transients. 

 

3.4.1 Experimental Setup 

 

The experiments are carried out in the custom built high speed biaxial table shown in Figure 

3.11. 

 

 

Figure 3. 11 Biaxial table used for the experiments 

 

The two orthogonal axes of the high speed biaxial table are driven by brushed DC motors and 

ball screws with a pitch of 0.00101   m
r ad

. In order to determine actual positions of the 

motors and calculate the axial errors, 1000 line encoders are employed that are attached to 
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each motor. Copley 311 PWM amplifiers drive the motors in torque mode. Position control 

methods are implemented in a DSpace 1103 DSP control board. The natural frequency and 

damping ratio of the controllers are set to the 20 Hz and 1 respectively.  The sample update 

frequency is set to 25 kHz. The parameters of the experimental table are summarized in 

Table 3.2. 

 

Table 3. 2 Experimental setup 

xJ =4.4205e-04                          
2

[ ]
kg

m
     Total Inertia of X axis 

yJ =4.7736e-04                         
2

[ ]
kg

m
      Total Inertia of Y axis 

, 0.00101x yp p       m
rad

 
 

     Ball screw pitch  

, 0.463tx tyK K                     /Nm A      Motor constant  

, 4.5x yR R                           Ω       Motor resistance 

 , ,, 5                max x max yI I A       Maximum current 

 , ,, 110          max x max yU U V       Maximum voltage 

0.2             max max

m
X Y

s

 
   

 
      Maximum table speed 

2
5                max max

m
X Y

s

 
   

 
                   Maximum table acceleration 

126c                       [ ]rad
sec

     Controller bandwidth   

 

 

3.4.2 Circular Interpolation 

 

The parameters of the circular trajectory are summarized in Table 3.3.  The feed velocity 

during circular interpolation is selected at ½ the maximum axis velocity (see Figure 3.13) and 

the angular frequency of the circular trajectory is selected at approximately ¼ of the 

bandwidth of the control system.  Since the frequency content of the trajectories during entry 
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and exit transients is much higher than during the steady state portion with constant velocity, 

it is expected that transient errors are larger than the steady state errors.  At the beginning and 

end of the trajectory, axis acceleration is limited to 5 
2

m

s
in order to avoid current saturation 

of the axis drives (see Figure 3.12).  

 

Table 3. 3 Circular trajectory parameters 

            31.5    circle
rad

sec
        Angular frequency of reference trajectory 

3.175               circler mm       Radius of the reference trajectory 

 

 

Figure 3. 12 Axes velocities 
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Figure 3. 13 Path (feed) velocity 

 

The results have been divided into two parts.  In the first part, no feed forward algorithms are 

used and CSC using SF, PD, and PID are compared to CCC with SF, and TC control using 

PD and PID.  In the second part, the effects of adding feed forward strategies are studied. 

Figure 3.14 compares the contouring errors of control systems that do not rely on model 

based feed forward terms.  The conventional critically damped 2nd order controller (CSC+SF) 

has up to 300µm of steady state contouring error, since the trajectory frequency is too close 

to the break frequency of the control loop.  To reduce this contouring error one can choose a 

controller with higher order that exhibits a flatter frequency response than the SF controller.  

Figure 3.14 shows that CSC+PD and CSC+PID controllers with identical roots as the 

CSC+SF controller do indeed reduce the contouring error compared to the CSC+SF 

controller. However, the contouring error during the entry transient for the CSC+PID 

controller is still very large at 100 µm.  One technique to further reduce contouring error is 

cross coupled control.  Both traditional CCC+SF and Linearized Cross Coupled Control 

(LCCC+SF) add an integral term to the normal direction of the trajectory that effectively 

eliminates the steady state error of the CSC+SF controller during the circular move.  

However, transients still show contour errors of 50µm.  The difference in performance 

between CCC+SF and LCCC+SF is small and one would usually choose LCCC+SF for its 
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ease of implementation.  Another technique for reducing contouring error is the use of TC 

control.  This technique performs control action in the contour and tangential direction of the 

trajectory.  When combined with PD and PID control schemes, TC+PD provides larger 

contouring errors than CSC+PD, but TC+PID achieves similar contouring errors as 

LCCC+SF which is smaller than CSC+PID. 

 

Figure 3. 14 Contouring errors of CSC, LCCC and TC controllers 

 

Inspecting Figure 3.14, one might wonder why there is such a marked improvement, in the 

steady state contouring error for LCCC+SF and TC+PID compared to conventional PID 

control. The circular reference trajectory has zero frequency components in the normal 

direction during the steady state portion of the trajectory. Since both of these algorithms have 

an integral action in this same normal direction they can compensate for any low frequency 

disturbances in this direction. 

 

Figure 3.14 also demonstrates, that even higher order controllers (CSC+PID instead of 

CSC+SF or CSC+PD) cannot follow the complete frequency spectrum of the reference 

trajectory during entry and exit transients.  However, by using feed forward (either ZPETC or 
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torque feed forward) transient contouring error can largely be mitigated, as long as a good 

plant model is available.  This is demonstrated in Figure 3.15, where various feed forward 

strategies are compared.  

ZPETC has been proposed as a general procedure to achieve low contouring error.  In 

simulations, this technique has zero contouring error when applied to the CSC+SF control 

system.  However, in this experimental study, this finding is not confirmed.  In fact, 

SF+ZPETC delivers larger contouring errors than the CSC+PID scheme without feed 

forward.  These errors are due to un-modelled disturbances like friction in the guides and ball 

screws.  Thus, it becomes apparent, that ZPETC cannot remove errors due to un-modelled 

disturbances that the original control system does not reject.  Disturbance rejection can be 

improved in two ways.   First, one can increase the bandwidth of the controller.  Secondly, 

one can use axis controllers with higher orders (such as ZPETC+CSC+PD or ZPETC 

+CSC+PID) that provide better disturbance rejection.  

Following this logic, ZPETC was tested with PD and PID controllers and significant 

reductions in transient and steady state contouring errors were observed. As expected, 

ZPETC+CSC+PID has the smallest errors, and it is able to drive the steady state contouring 

error at standstill to zero. 

 

Figure 3. 15 Circular contour errors for ZPET controllers and torque feed forward controllers 
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An alternative feed forward technique to ZPET is Computed TFF.  This technique also 

provides a unity gain transfer function albeit at a reduced computational cost compared to 

ZPETC.  Figure 3.15 shows that the contouring errors for ZPETC+CSC+PID and 

TFF+CSC+PID are almost identical.  However, marginally better contouring performance is 

obtained with TFF+TC+PID.  Again, the dynamics in the TC coordinate frame are of zero 

frequency for a circle, and thus, a PID type controller can drive the steady state contouring 

errors to zero during the steady state portion of the circle. 

From these experiments it is concluded that best contouring performance requires good 

disturbance rejection (PID) to eliminate steady state error, and feed forward control (ZPETC 

or TFF) in order to eliminate transient error.  Surprisingly, the Task Coordinate Frame (TC) 

approach shows relatively little advantage over the conventional Cartesian Servo Control 

(CSC). Thus, these experiments suggest, that TFF+CSC+PID should be used as the 

benchmark for more advanced control studies. 

 

3.4.3 Corner Tracking 

 

Corner tracking between line segments is likely the most common transient machining 

operation.  Thus, it warrants a separate set of experiments.  The experimented trajectory (see 

Figure 3.16), consists of four corners, and four linear segments.  During the steady state 

portion of the trajectory, the feed velocity is set to ½ the maximum axis velocity (see Figure 

3.17b).   
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Figure 3. 16 Corner tracking trajectory 

 

Axis acceleration is limited to 25  /m s  (see Figure 3.17a) during transients, in order to limit 

the required axis currents.  

 

 

Figure 3. 17 a: Axis velocities. b: Tangential velocity 

 

Figure 3.18, compares the recorded contouring errors of LCCC+SF, TFF+CSC+PID, and 

TFF+TC+PID for the described corner tracking trajectory.  
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Figure 3. 18 Contouring errors for corner tracking 

 

Even though LCCC+SF performs well in steady state and during start and end transients, the 

contouring errors during the actual corners are well above the desired tolerance of 50µm.  

This indicates, that this algorithm requires a dwell time between motion segments in order to 

fully reach its potential.  For clarity of Figure 3.18 the original CCC algorithm was not 

included, since it showed even larger errors in the corners.   

There is no considerable difference between the contouring performances of the 

TFF+CSC+PID, and TFF+TC+PID controllers during corner tracking.  The PID control law 

eliminates steady state errors, and the Torque Feed Forward method strategy reduces 

transient errors to less than the desired tolerance of 50µm. This confirms the findings from 

the circular experiments that suggested to use TFF+CSC+PID as a benchmark for advanced 

control strategies such as fuzzy logic control, robust control , sliding mode control, or model 

predictive control. 
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3.5 Discussions 

 

In this chapter, the contouring performance of CSC, CCC, and TC control was benchmarked. 

Within these three architectures SF, PD and PID controllers were implemented and 

augmented with feed forward strategies when possible.  Both circular interpolation and 

corner tracking experiments were conducted on a high speed biaxial table. 

As expected, PID control outperforms PD and SF control in all tested architectures, since it 

has superior disturbance rejection throughout the controller bandwidth.  Only PID control 

can achieve zero contouring error during standstill, since the integral term within the PID 

structure provides infinite disturbance rejection at zero frequency.  

LCCC performs well in circles and during start and end transients, but not well in sharp 

corners.  This could be alleviated by introducing dwell times between motion segments, but 

that would also increase the time required to traverse the path.   The smallest contouring 

errors were achieved with TFF+CSC+PID control and TFF+TC+PID control.  In both cases, 

the PID control action eliminates steady state errors and the FF action reduces transient errors 

to acceptable levels.  TFF+TC+PID control performs slightly better during the steady state 

portion of a circle than conventional TFF+CSC+PID control.  However, the marginal 

improvement in accuracy requires significantly more computational effort. 
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Chapter 4:     A New Real Time Feedrate Optimization Algorithm for 2-D 

Cartesian Machine Tools 

 

According to Figure 2.3, the interpolator creates a reference trajectory from the nominal path 

and feedrate provided by the process planning system.  The nominal path is comprised of 

motion segments that could be lines, circles, or splines.  The nominal feedrate limits the 

velocity along the path.  This chapter outlines a new algorithm that will vary the feedrate 

continuously along the path in order to achieve minimum machining time without violating 

velocity and acceleration constraints.  The algorithm works for any type of path interpolation 

(lines, circles, splines), since it varies feedrate along the reference path.  In addition, the 

algorithm is computationally inexpensive and can be implemented in real-time.  

 

4.1 Representing Variable Sampling Times in Position Control Systems with 

Constant Loop Closing Frequencies 

 

To adjust path velocity in real-time at the axis control level, one needs to adjust the rate at 

which the position increments are processed.  Feedrate modulation is a strategy for adjusting 

the increment processing rate without changing the position loop closing frequency.  

Feederate modulation takes advantage of the fact that the position loop bandwidth (< 40Hz) 

is typically orders of magnitude smaller than the position loop closing frequency (between 1 

kHz and 50 kHz).  Feedrate modulation inserts zero motion increments for all axes when the 

feedrate is reduced, and combines several motion increments when the feedrate is increased.  

Figure 4.1 illustrates two examples of this technique. 
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Figure 4. 1 a) X axis moves with programed velocity b) Feedrate modulation by inserting zero motion 

increments to reduce X axis’s velocity to half of the programed velocity c) Combining every fifth sample 

with its predecessor and 5/4 increase in the programed velocity 

 

Figure 4.1 a) shows motion increments for the X axis without any feedrate modulation.  In 

this scenario, the X axis moves at the programed velocity ( )proX . In Figure 4.1 b) a zero 

motion increment is added in between each original motion increment.  As a result, the X 

axis slows down to half of its programed velocity. Figure 4.1 c) shows a case where, every 
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fifth increment is combined with its predecessor, resulting in a 5/4 increase in the axis 

velocity. 

Since the position loop bandwidth is orders of magnitudes smaller than the loop closing 

frequency, the position controller acts as a low pass filter on the modulated reference 

trajectory.  In a sense, feedrate modulation adjusts feedrate in a fashion similar to how a 

PWM driver adjusts voltage for a motor drive. 

Feedrate modulation has been successfully implemented in the past in order to allow for fast 

corner tracking [17-20], as well as compensating for machining constraints such as maximum 

chip thickness constraints [21,22]. 

The above federate modulation algorithms derive an optimum feedrate solely from measured 

position error.  The advantage of this strategy is that it can be implemented with little 

computational effort and it is robust towards model uncertainties.  However, since these 

strategies only use very limited model knowledge, they can only guarantee feasible but not 

necessarily optimal trajectories.  The new algorithm presented in this chapter uses the 

reference path in order to arrive at the time optimal feedrate.  Measured position error can 

then be used to account for process constraints such as chip thickness control. However this 

is outside the scope of this work. 

 

4.2 Expressing Velocity and Acceleration for Sampled Data Systems with Uneven 

Sample Time 

 

By selectively inserting zero motion increments or combining motion increments, feedrate 

modulation effectively allows assigning individual sample times to each motion increment.  

Before developing the algorithm for selecting sample times, expressions for describing 

velocity and acceleration from motion increments with uneven sample times are required. 

Given a string of motion increments iX  the position iX  is defined as: 

 

0

i

i k

k

X X


            (4.1) 
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For a system with constant sample time t , central difference approximations can be used to 

obtain velocity iX
 
, and acceleration iX : 
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2   

i i
i

X X
X

t

 
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         (4.2) 
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          (4.3) 

 

For adjusting travel velocity, feedrate modulation keeps the motion increments of 1iX  and 

iX and adjusts individual sample times for each position increment.  Thus, the central 

difference approximations for position and velocity need to be redefined.  This is 

accomplished by fitting a parabola through the sample points: 
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i i i iX X

X
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Figure 4. 2 Parabolic position interpolation 
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 2
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i i i i

X
X X t t                 (4.5) 

 

Solving for velocity and acceleration yields: 
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         (4.7) 

 

The attentive reader will notice that Equations (4.6) and (4.7) will reduce to Equations (4.2) 

and (4.3) when the sample times of two consecutive samples are equal.   

 

4.3 Sample Time Selection for a Single Axis 

 

Before venturing into the case of multiple axes, it is instructive to examine the algorithm for 

the simpler case of a single X-axis path only.  In this case the following constraints need to 

be met:  

 

i maxX X           (4.8) 

 

.i maxX X           (4.9) 

 

The time optimal trajectory requires that one of these two constraints is met at all times.  A 

flowchart of the algorithm is shown in Figure 4.3.  
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(1x) limit velocity in X 

(2x) Limit acceleration in X 

            (2xa) Limit acceleration  

            (2xb) Limit deceleration  

            (2xc) Axis reversal 
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(3x) Backtrack in X 
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End 
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 1 i i  
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Figure 4. 3 Flowchart of the single axis algorithm 
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The flowchart shows that the single axis algorithm steps through the motion increments from 

i=1 to i=imax. For every motion increment, velocity (1x) is constrained before acceleration 

(2x).  In case of deceleration (2xb) or reversal (2xc) a final backtracking operation is 

required.  This order of operation is deliberate since it reduces the number of times that the 

acceleration (2x) and backtracking (3x) operations need to be applied.  A more detailed 

description of the 3 operations is outlined in the following sections. 

 

4.3.1 (1x) Limit Velocity in X 

 

At every motion increment, the velocity constraint is applied first.  Figure 4.4 shows a case 

where the nominal velocity (shown in black) exceeds the allowable maximum velocity 

(shown in red). 

 

 

 

It is difficult to apply only Equation (4.6) to constrain velocity, since it is dependent both on 

it  and 1it  .  To simplify this task it is noted that: 

1 1
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Figure 4. 4 Velocity constraint 
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This leads to the conclusion that, if both 1

1  

i

i

X

t








 and 

 

i

i

X

t




 are smaller or equal to maxX , then 

iX  must also be smaller or equal to maxX . Thus, it is sufficient to select sample times on the 

following basis in order to ensure that Equation (4.8) is observed: 
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      (4.10b) 

 

where, nomt  is the nominal sample update time of the axis control loop, and ,v it  is the 

sample time required to meet the velocity constraint.  After this step, the velocity constraints 

are met at all times, but the acceleration still needs to be constrained.  To ensure that velocity 

constraints are not violated in the remaining algorithm, sample times can only be increased 

during the subsequent operations to limit accelerations. 

 

4.3.2  (2x) Limit Acceleration in X 

 

Three different cases need to be taken into account when constraining acceleration: 

acceleration, deceleration, and axis reversal. 

 

4.3.2.1 (2xa) Limit acceleration: 

 

Figure 4.5 shows the case where the acceleration resulting from the velocity constraint (1x) 

shown in black, violates the acceleration constraint. 
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Equation 4.7 indicates that this acceleration can be reduced by decreasing sample time ,v it  

or by increasing , 1v it  .  However, sample times can only be increased without violating the 

velocity constraints.  Thus, in case of an acceleration violation, ,v it  cannot be reduced, but 

, 1v it   needs to be increased using Equation (4.11). 
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It can be shown that, this expression is a second order polynomial in , 1a it   with only one 

feasible solution: 
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Figure 4. 5 Acceleration constraint 
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4.3.2.2 (2xb) Limit Deceleration: 

 

Figure 4.6 Shows the case, where the deceleration resulting from the velocity constraint (1x) 

shown in black, violates the deceleration constraint: 

 

 

 

Again, only increased sampling times are allowed and thus, Equation (4.7) can be 

reformulated to provide a rule for selecting ,a it  in case of a deceleration: 
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Using a similar proof for (2xa) it can be shown that there is only one feasible solution of this 

second order polynomial in ,a it . 
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                                       Figure 4. 6 Deceleration constraint 
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It should be pointed out, that an increase in ,v it  can lead to a deceleration violation in 

step   1i  , which would require backtracking.  This scenario is described after the next section 

on axis reversal.  

 

4.3.2.3 (2xc) Axis Reversal in X: 

 

Figure 4.7 shows the case, where the acceleration resulting from the velocity constraint (1x), 

violates the acceleration and deceleration constraint during an X-axis reversal: 

 

 

In this case, step i contains a deceleration and step i+1 an acceleration.  In order to adjust 

both constraints at the same time, an additional relationship is required.  To achieve 

continuous feedrate override through this special case, it is assumed that , , 1R i R it t    .  This 

leads to the following rearrangement of Equation (4.7) 
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Solving for , , 1R i R it t     yields: 
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Figure 4. 7 Axis reversal constraint 
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The deceleration constraint (2xb) and the reversal constraint (2xc) both increase ,v it .  To 

ensure that decelerations of previous increments are not violated, backtracking is required. 

 

4.3.2.4  (3x) Backtrack in X 

 

If the deceleration constraint (2xb) or the reversal constraint (2xc) result in a deceleration 

violation of the previous sample, 1iX  , then the sampling times of up to ,max xj motion 

increments prior to the current motion increment iX  need to be adjusted using the 

following second order polynomial in ,x i jt   : 
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Solving (4.17a) for ,x i jt  yields: 
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To reduce the computational effort, backtracking can be aborted as soon as ,x i jt   is smaller 

than the original sample time ,a i jt  . 

It is noted that the maximum number of back-steps, ,max xj  is limited by the number of sample 

times required for the axis to decelerate from maximum velocity to zero at the maximum 

deceleration.  This scenario is depicted in Figure 4.8 where nominal velocity shown in black 

is constant at the maximum allowable velocity and switches to zero velocity after n  samples. 

Figure 4.8 also shows the velocity profile after feedrate modulation has been applied (shown 

in red).  The time required to reach zero velocity after feedrate modulation has been applied 

is denoted as modulatet t   

Both the nominal and the modulated profiles cover the same distance and can be formulated 

as: 

 

  2

, .
2

max
max max x max modulate modulate

X
S X j t X t t          (4.18) 

 

 

 

Also, maximum velocity and maximum allowable deceleration of the axis are related 

by modulatet : 

Figure 4. 8 Decelerating from maximum velocity to zero 
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.max max modulatetXX           (4.19) 

 

Combining Equations (4.18) and (4.19) the maximum number of backtracking steps, ,max xj  is 

obtained as: , .
2

max
max x

max

X
j

X t



      

 

4.4 Algorithm for Sample Time Selection for Two Axes 

 

When adding a second axis to this optimization problem, two additional expressions for the 

velocity and the acceleration of the second axis are added to the original relationships shown 

in Equations (4.6) and (4.7): 
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As a result two additional constraints are required: 

 

,i maxY Y           (4.22) 

 

.i maxY Y           (4.23) 

 

A time optimal trajectory requires that at least one of the four constraints in (4.8), (4.9), 

(4.22), and (4.23) is met at all times. In most cases, this means that a single constraint of a 

single axis is dominant. The relationships developed for the single axis case can then be 

applied to define new sample times.  The two axis algorithms follows a similar multi step 

process as the single axis algorithm, however there is an additional step in the case when two 
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axes are constraint at the same time. The flowchart in Figure 4.9 shows the procedure for 

enforcing acceleration and velocity constraints for two axes.  
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Figure 4. 9 Flowchart of the two axes algorithm 
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The flowchart shows that the two axis algorithm steps through the motion increments from 

i=1 to i=imax. For every motion increment, velocities in X and Y (1xy) are constrained before 

the acceleration (2x, 2y, 2xy). In case of deceleration (2xb, 2yb) or reversal (2xc, 2yc) a final 

backtracking operation (3xy) is required.  A more detailed description of this procedure is 

outlined in the following sections. 

 

4.4.1 (1xy) Limit Velocity in X and Y 

 

All sample times are selected such that velocity is not violated in either of the two axes. The 

procedure is similar to the single axis case. However in the two axis case, the velocity 

constraint of the second axis also needs to been taken into account. Extending Equation 

(4.10) to the two axes case, sample times are defined by: 
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At the end of this step, all the velocity constraints are fulfilled, but acceleration/deceleration 

constraints still needed to be addressed.  

 

4.4.2  (2x) Limit Acceleration in X, or (2y) Limit Acceleration in Y  

 

After limiting the velocity, accelerations need to be constrained. In many cases one axis 

represents the dominant constraint.  Thus, single axis constraint operations (2x, 2y) can be 

applied.  Only if these operations (2x, 2y) do not yield the desired result, do both axes need 

to be constrained simultaneously (2xy).  This procedure is described in the next section. 
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4.4.2.1 (2xy) Limit Acceleration in X and Y Axes 

 

This is a case where it is not possible to constrain the acceleration of a single axis without 

violating the acceleration of the other axis.  One such example is shown in Figure 4.10 where 

the sample times resulting from the velocity constraint (1xy) shown in black, violate the 

acceleration constraint in the X  axis but not in the Y  axis. Reducing the violated X  axis 

acceleration to the maximum acceleration by increasing , 1v it  , would result in a violated 

deceleration in the Y  axis.   

 

Figure 4. 10 Violated acceleration in X and constrained acceleration in Y (black lines). Simultaneously 

limiting acceleration in X and Y axes by increasing the sample times (red lines) 
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Thus, both ,v it  and , 1v it   need to be increased in order to meet X and Y axis 

acceleration/deceleration constraints. This is achieved by simultaneously solving the 

acceleration constraint equations for both axes (Equations (4.25) and (4.26)).  Again, these 

are second order polynomials with only one feasible solution.  

 

1

, 1 , , 1 ,

2
,

   

i i
max i

a i a i a i a i

X X
X X

t t t t



 

  
        

      (4.25) 

  

1

, 1 , , 1 ,

2
.

   

i i
max i

a i a i a i a i

Y Y
Y Y

t t t t



 

  
        

       (4.26) 

  

The solution depends on the sign of the X and Y velocities. If the X and Y velocities have the 

same sign: 
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If the X and Y velocities have different signs: 
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One might ask whether there is always a solution to this second order equation that has 

increased sample times for both axes (a requirement in order to guarantee that velocity 

constraints are not violated).  This can be proven with a conceptual two step thought process.  

For the example shown in Figure 4.10, increasing , 1v it   reduces acceleration in x and 

increases deceleration in y.  By simply increasing , 1v it   until the acceleration constraint in x 

is not violated, a deceleration constraint in Y would be violated.  Thus, the first step of the 

proof requires that , 1v it  be increased to 1, 1s it   until 1

1

s max

s max

X X

Y Y
  At this point, the 

acceleration constraint in x and the deceleration constraint in y are both violated.  However, 

in the second step of the proof we can now increase both 1, 1s it   and ,v it  by the same 

factor 1 1s s

max max
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      (4.30) 

 

Thus, during both steps of the proof sample times were increased, and we ended up with a 

solution in which both X and Y axis constraints are simultaneously fulfilled.  
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4.4.2.2 (5) Backtracking in X and Y 

 

If the deceleration constraint in 2x, 2y, or 2xy results in a deceleration violation of the 

previous sample, 1iX   then the sampling times of up to max,xyj motion increments prior to the 

current motion increment , i iX Y   need to be adjusted.  Similar to the single axis scenario, 

the algorithm recursively adjusts previous sample times ,a i jt   using the following equations: 
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 (4.31a) 
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 , , , ,, , .b i j a i j x i j y i jt max t t t               (4.31c) 

At every time increment there is a dominant axis that will require a longer time increment.  If 

both Equations (4.31a) and (4.31b) result in shorter time increments , ,,x i j y i jt t   than the 

original increment ,a i jt  , then the backtracking operation can be aborted.  The maximum 

number of back steps ,max xyj  is defined by the following equation: 
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One might ask whether the solution for ,b i jt   can always be obtained by increasing the time 

increment ,a i jt   (a requirement in order to guarantee that velocity constraints are not 

violated). This can be proven using an upper and lower bound for ,b i jt  .  The lower bound 
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for ,b i jt   is ,a i jt  , where acceleration constraints are violated due to the application of 

2x,2y,or2xy in step i : 
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The upper bound for ,b i jt   is infinity, where 1iX   and 1iY   are both zero: 
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Thus, there must be a solution between these two bounds in which the accelerations of at 

least one of the two axes must be equal to their constraint value: 
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       (4.36) 

4.5 Experimental Setup 

 

The experiments to validate the feedrate optimization algorithm are carried out on the same 

biaxial table as in Chapter 3. The experimental setup is outlined in Section 3.5.  

In this chapter, we employ Cartesian Servo Control with Torque Feedforward and PID 

position control (TFF+CSC+PID).  Figure 4.11 shows the controller structure of a single axis 

of the table. 
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Figure 4. 11 Control system 

In order to better show different limit cases for the feedrate optimization algorithm, the 

controller bandwidth and the maximum allowable values for velocity and acceleration have 

been altered from the ones in Chapter 3. The new values are shown in Table 4.1. 

 

 

 

Table 4. 1 Experimental setup 

, 0.12max maxX Y                m
s

 
 

       Maximum table speed 

 , 3.68max maxX Y              2
m

s
 
  

    Maximum table acceleration 

94c                                  [ ]rad
sec

    Controller bandwidth   

 

 

4.6 Experimental Results 

 

A teardrop curve, which is shown in Figure 4.12 is chosen for the experimental validation of 

the feedrate modulation algorithm. 
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Figure 4. 12 A teardrop curve is used as the original reference path 

 

Figure 4.13 shows the original reference position, original reference velocity, and original 

reference acceleration profiles of the tear drop.  The velocity in both axes are violated during 

most parts of the original reference path. The motion starts with an acceptable accelertaion in 

X and violated accelration in the Y axis. In the middle of the path, there is a velocity reversal 

in the X direction, which leads to a violated deceleration in the X axis. The path ends with an 

accepteble deceleration in the X axis and a violated deceleration in the Y axis. Having 

different combinations of acceleration/deceleration cases, this path is a good case study to 

examine the performance of the proposed algorithm.  
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Figure 4. 13 Original reference path, velocity and acceleration profiles of the teardrop 

 

 

The proposed algorithm shown in Figure 4.9 is used to modulate feedrate and provide 

feasible reference velocity and acceleration profiles. This optimized feedrate is then fed to 

the biaxial table. The resulting measurements of velocity and acceleration are plotted 

together with the reference velocities and accelerations in Figures 4.14 and 4.15 respectively. 
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Figure 4. 14 Reference and actual velocity 

 

Figure 4. 15 Reference and actual acceleration 
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Reference velocity and accelerations are shown in blue dotted lines. Velocities are 

constrained to 0.12 /m s and accelerations to
2

3.68 /m s .  The velocities and accelerations 

obtained by taking numerical derivatives of the position measurements are shown in solid red 

and they follow the desired profiles closely.  

An attentive reader will notice that, at any time instant at least one axis moves either at its 

maximum velocity or maximum acceleration/deceleration. In other words, the algorithm 

successfully has created a time optimal feedrate for the biaxial table. One important point of 

interest is the corner of the teardrop on the far right side of Figure 4.14, where the high speed 

table has to decrease its velocity to zero at the corner point and increase velocity after the 

corner. Reference and measured velocities during the corner tracking can be seen in Figure 

4.14 between time  0.57  sec  and  0.64  sec . Figure 4.16 provides a detailed view of the 

reference and measured acceleration/decelerations at the corner point. 

 

 

Figure 4. 16 Reference and actual acceleration at the corner of the trajectory 
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During corner tracking, the X axis moves at its maximum deceleration, while the Y axis 

changes from maximum acceleration to the maximum deceleration.  This corresponds to the 

simultaneous limitation of acceleration in X and Y performed by block 2xy in Figure 4.9.  

Again, the measured acceleration closely follows the reference acceleration. 

 

Figure 4. 17 Contour error 

 

Figure 4.17 shows the contour error of the biaxial table. During the velocity constrained 

portions of the trajectory, contour errors are close to the resolution of the position sensors at 

around 5 m .  During the acceleration constraint portion of the trajectory, transient contour 

errors stay below 35 m , which represents a very low value given the extreme accelerations 

encountered. 
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4.7 Discussions 

 

In this chapter of the thesis a new real time feedrate optimization algorithm is proposed to 

generate a guaranteed time optimal feedrate for high speed biaxial CNC tables in the 

presence of velocity and acceleration constraints. The proposed algorithm is verified on a 

biaxial table using a teardrop path. Experimental results show that the algorithm successfully 

limits the different violated velocity/acceleration/deceleration cases and provides the 

machine with a time optimal feedrate. The main advantage of the proposed algorithm is that 

it is independent of the trajectory representation, which makes it suitable for a vast variety of 

machining processes. Also, in contrast to work published in [16], the algorithm requires only 

a finite look ahead window instead of the whole trajectory, which makes it applicable for real 

time implementations.  
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Chapter 5:     Reference Trajectories with Tolerance Bounds 

 

The interpolator receives a nominal path and feedrate from the process planning system and 

converts them to a reference trajectory for the control system (see Figure 2.3).  Conventional 

interpolators will generate a reference path that exactly corresponds to the nominal path.  To 

avoid current saturation at critical points with large normal accelerations (such as corners), 

the reference velocity needs to be reduced substantially.  In the case of an actual corner, the 

velocity needs to be reduced to zero in order to minimize contouring error.  This strategy is 

inefficient because it does not take machining tolerances into account. This chapter proposes 

two new interpolation techniques which utilize a predefined tolerance bound around the 

nominal path to generate a reference path within the tolerance bounds. As a consequence, the 

machine tool will not need to fully stop at critical points of the path. The first proposed 

algorithm is limited to corners and the second algorithm is a general algorithm applicable to 

any type of path.  

 

5.1 Tolerance Bounds at Corner Points 

 

Figure 5.1 shows a sharp corner which consists of two straight lines. It also shows tolerance 

bounds (shown in red) around the straight portions of the tool path, which are extended to 

their intersection at the corner. Also, the tolerance bound at the corner point is shown as a 

tolerance circle (shown in red). The actual trajectory can lie within the coinciding area of 

tolerance bounds, and tends to go around the corner on a curved path. Hence, a maximum 

allowable radius can be defined for the path through the corner [70]. In this study, this radius 

is defined as the radius of the tangent circle to the tolerance circle. 
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Figure 5. 1 Tolerance boundary lines and tolerance circle (shown in red) around the tool path (shown in 

black) [70] 

In Figure 5.1, Tol  is the value of the predefined tolerance. In this chapter, the reference path 

is modified in accordance with the predefined tolerances. 

 

5.2 Case Studies 

 

When traversing across the corner in Figure 5.1, one could choose a path along the inner 

tolerance bound, the outer tolerance bound, or a combination of the two bounds.  In order to 

select a good strategy for utilizing the tolerance bounds most effectively, it is instructive to 

study three special cases: circles, reversals, and arbitrary corners. 

 

5.2.1 Circles 

 

When traversing a circle within a tolerance band, one can either traverse along the inner or 

the outer tolerance bound (see Figure 5.2): 
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To determine which strategy leads to faster traverse times, we assume that the tool travels at 

constant speed as governed by the maximum allowable normal acceleration, ,max normala : 

, .circle max normalv ra           (5.1) 

 

Allowable velocities increase with radius, but the distance travelled also increases with 

radius. The time to traverse the half circle shown in Figure 5.2 then is: 

 

,

.circle

circle max normal

r r
t

v a


          (5.2) 

 

Clearly the traverse time increases when the circle increases with radius, and one would 

normally aim to traverse the circle along the inner tolerance band. One might ask what the 

sensitivity of reducing the circle radius is. This is presented in Equation (5.3): 

 

  1 .
2

dt
r

t r
           (5.3) 

 

This indicates that reducing the radius to the inner tolerance limit provides more benefit for 

small circles. 

 

2tol 

r r 

2tol 

a b 

Figure 5. 2 : Traversing along a circle a) along the inner tolerance band b) along the outer tolerance 

band 
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5.2.2 Single Axis Reversal:  

 

Another interesting special case is the reversal of a single axis travelling at maximum 

velocity.  Two potential strategies come to mind for this scenario.  First, one could remain on 

the programmed path, but reverse a distance equal to the tolerance limit away from the 

programmed reversal (see Figure 5.3 a).  When starting with a velocity maxv and decelerating 

to zero velocity at a rate of maxa , the complete reversal would take: 

,

2
.max

rev a

max

v
t

a
            (5.4) 

 

 

 

Tol 

a 


2

2
max

max

v
S

a
 

Tol 

2Tol

ol 


2

2
max

max

v
S

a

.  

Tol/
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Figure 5. 3 Single axis reversal a) along programmed path b) along outside tolerance band  
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The second strategy leads along the outside tolerance band as shown in Figure 5.3 b.  In this 

case, the axis does not need to come to a complete stop at the reversal point, but can travel 

around the circle through the endpoint at a speed of: 

.circle maxv a Tol          (5.5) 

Thus, the axis can start to decelerate a distance n/2 later than for case a.  The resulting 

reversal time then computes to:  

 

 , , 2 .rev b rev a
max max

Tol Tolt t
a v

          (5.6) 

 

Surprisingly, it is always faster to come to a complete halt than to travel around the outside 

tolerance bound. 

 

5.2.3 General Corner 

 

For a general corner, two strategies are possible in order to take advantage of the tolerance 

bands.  In the first case, an arc is fit into the inside of the corner, taking advantage of the 

inside tolerance bound only.  This strategy is depicted in Figure 5.4 a where the arc is tangent 

to the tolerance circle.  When the inside angle of the corner is small, then the velocity around 

the arc needs to be reduced in order to guarantee allowable normal accelerations.  In the 

second case, the actual path approaches the corner on the outside tolerance band, then crosses 

over the nominal path and passes through the inside angle of the corner before crossing the 

nominal path after the corner to end up on the outside tolerance band after the corner.  This 

scenario is shown in Figure 5.4 b where the fitted arc is tangent to the tolerance circle. 
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The general formulas for these scenarios do not provide much physical insight, and a case 

study for a typical high speed XY-table is more instructive. Let us consider a maximum 

velocity of 0.2m/s, a maximum acceleration of 10 2/m s , a tolerance band of 50µm, and a 

distance of 3.2 mm before and after the corner.  Figure 5.5 shows the required travel times 

for this scenario: 

2Tol 2Tol 2Tol 2Tol 

Tol 
Tol 

Tolerance circle Tolerance circle 

Figure 5. 4 Corner tracking a) along the inside tolerance band, b) between outside and inside tolerance band 
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Figure 5. 5 Travel time for a general corner with inside angle theta 

 

The single axis reversal discussed in the previous section has an angle of zero.  For this case, 

Figure 5.5 confirms that it is faster to follow the inside tolerance bound rather than the 

outside one.  However this is not true in general.  For large angles, the outside tolerance 

bound requires less time to traverse the corner.  The actual crossover point for selecting the 

optimum strategy is dependent on the tolerance levels and the programmed travel speed.  For 

a real-time implementation, the strategy following the inside tolerance bound is much easier 

to compute and still provides significant savings. In the next two sections, two strategies 

which create trajectories inside the corner are outlined. An experimental comparison of the 

presented strategies is also provided.  

 

5.3 Fitting an Arc in the Corner 

 

The first strategy (submitted in the ASME IDETC/CIE 2015) is limited to corners. It 

modifies the nominal path by fitting an arc in the corners of the path without violating the 
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tolerance limits. As indicated in Figure 5.6 the algorithm requires that the minimum distance 

between the fitted arc and the corner is less than the tolerance limit, the normal acceleration 

along the arc is smaller than the maximum allowable acceleration, and the velocity along the 

arc is set at a constant value which needs to be smaller than the programmed velocity.  If the 

velocity along the arc is smaller than the programmed velocity, then the line segments before 

and after the arc are used to decelerate and accelerate the tool at maximum allowable 

acceleration levels in order to match the velocities between the arc and the lines.  These rules 

not only allow for path modification, but they also govern feedrate selection.  Thus, the arc 

fitting algorithm does not require the feedrate selection algorithm described in Chapter 4. 

 

 

 

5.4 Path Modification Using Average Filter  

 

Instead of fitting arcs into corners, one can also modify the path using a running average 

filter with N samples, where N is related to the desired tolerance limit. The main advantage 

2 Tol 2Tol 

≤ Tol 

Tolerance circle (r= Tol) 

 progv v   

n maxa a .  

Figure 5. 6 Fitting an arc in the corner 
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of this strategy over the previous strategy is that it is implementable on any arbitrary nominal 

path. Also, this strategy is computationally more effective.  

 

 

Figure 5. 7 Using average filter to modify a path 

 

In Figure 5.7, running average filters over 3 samples are applied to the X and Y nominal 

positions respectively, resulting in the reference path indicated with star symbols on the 

dashed line in Figure 5.7. The blue, green, and red stars are averages of the nominal positions 

shown in the blue, green, and red ovals respectively. 

Clearly, the distance between 'cP  and cP  should be smaller than the tolerance value,Tol . In 

order to calculate the distance, one can calculate the position difference in X and Y axes, and 

derive the geometric average of them: 

 

   
2 2

.c c c cTol X X Y Y            (5.7) 

Maximum values of the distances in each axis are encountered in simultaneous reversals of 

both axes at maximum velocity.  If the running average filter has an even number of samples, 

N, this leads to: 
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
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4

max
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Combining Equations (5.7-9) results in: 

 

2 2 2( ) ( )
4 4

.max maxNX T NY T
Tol

 
         (5.10) 

Assuming the same programed velocities in the X and Y axes ( )max max progX Y v  , one can 

derive the maximum length of the filter, N: 

 

2 2
.max

prog

Tol
N

v T



         (5.11) 

After creating the reference path, the feedrate modulation algorithm presented in Chapter 4 is 

utilized to select the reference velocities necessary to define the reference trajectory.  

 

5.5 Experimental Setup 

 

The experimental setup used to compare the two tolerance based trajectory generators in this 

chapter is identical to the setup used in Chapter 4.  A PID controller with torque feedforward 

is used for the position control.  Maximum velocities, maximum accelerations, and position 

loop bandwidth are selected according to Table 5.1.  The interpolator is updated to include 

the algorithms described in sections 5.3 and 5.4. 

 

Table 5. 1 Experimental setup 

max max 0.12                  
m

X Y
s

 
   

 
      Maximum table speed 

 max max 2
5       

m
X Y

s

 
   

 
                  Maximum table acceleration 

126                 c

rad

s


 
  

 
                     Controller bandwidth   
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5.6 Experimental Results 

 

An orthogonal corner is chosen as the nominal path for the machine tool to follow. The linear 

distance before and after the corner is 2.5 mm.  The programmed velocity is 0.12m/s. 

To create a benchmark for the tolerance based interpolators, the nominal reference path with 

zero tolerance and the feedrate modulation algorithm described in Chapter 4 is chosen.  Table 

5.2 indicates that the benchmark scenario takes 82ms and results in a contouring error of 

14µm. 

Since, both proposed strategies require predefined tolerance values to generate the reference 

paths, four tolerance values are selected for the experiments: 100 µm, 200 µm, 400 µm, and 

800 µm. The nominal path, the modified reference path, and the actual path for different 

tolerance values are shown in Figures 5.8, and 5.9 for the arc fitting algorithm and the 

running average algorithm respectively. 

 

 

Figure 5. 8 Nominal path, modulated reference path, and actual path for the first strategy (fitting an arc 

in the corner) 
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Figure 5. 9 The nominal path, the modified reference path, and the actual path for the second strategy 

(using running average filter) 

 

Both proposed strategies successfully modify the nominal reference path and the machine 

tool is able to follow the created reference paths. The travel times and the resulting tolerances 

are recorded in Table 5.3.  The travel time improvement is obtained by normalizing with the 

travel time obtained with the nominal reference trajectory and zero tolerance as listed in table 

5.2.   

Table 5. 2 Experimental results using nominal reference trajectory and the feedrate override method in 

Chapter 4 

Tolerance 

values 

 

[ ]m  

Travel times using 

just feedrate 

override 

             [ ]ms  

Contouring Error 

values 

at the corner 

[ ]m  

0  81.7  13.36  
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Table 5. 3 Experimental results of two proposed algorithms 

Tolerance 

values 

 

[ ]m  

Travel times  

Arc fitting  

strategy 

[ ]ms  

Travel time 

improvement  

 

(%) 

Contouring 

Error values 

at the corner 

[ ]m  

Travel times  

using running 

average filter 

[ ]ms  

Travel time 

improvement 

 

 (%) 

Contouring 

Error values 

at the corner 

[ ]m  

100  70.6 1.40 77  68.5 4.33 80.33 

200 67.3 6.01 173  66.1 7.68 152.81 

400  61.1 14.66 373  61.8 13.69 294.77 

800 55.7 22.21 773  55.7 22.21 575.29 

 

Both new interpolation algorithms show a measureable improvement in travel time, while 

adhering to the prescribed tolerance levels.  However, the arc fitting strategy leads to larger 

contour errors and longer travel times.  It should be pointed out that the running average filer 

algorithm will lead to tolerances that are up to 1.4 times smaller than the desired tolerances.  

Only a biaxial reversal at maximum speed will lead to a path with maximum tolerance levels. 

 

5.7 Discussions 

 

This chapter proposed two new path/trajectory modification strategies. The first strategy is 

limited to corner tracking and fits arcs in corners of the nominal path using predefined 

tolerance values. This strategy has two main disadvantages: It is only applicable to corner 

tracking and it is computationally expensive. The second strategy proposed in this chapter 

uses running average filters based on predefined tolerance values. Both strategies are 

validated and compared experimentally with a nominal zero tolerance trajectory. The 

experiments indicate that both proposed strategies require less time than the nominal 

reference case with zero tolerance. However, the running average filter strategy outperforms 

the arc fitting strategy at smaller tolerance values, and it is more computationally efficient.   
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Chapter 6:     Conclusions 

  

The main focus of this study is on control and feedrate optimization strategies for high speed 

contouring of machine tools. Chapter 1 provides a general review of the challenges faced in 

high speed contouring.  A detailed review on the published solution strategies for these 

challenges is provided in Chapters 2. In Chapter 3 conventional control strategies are 

benchmarked experimentally on a biaxial XY-table. In Chapter 4 a new real time feedrate 

optimization method is proposed that is able to incorporate velocity and acceleration 

constraints. In Chapter 5 two new reference path generation techniques are introduced that 

utilize allowable tolerance values to increase countering speed. The following provide a 

detailed summary of the results obtained in this thesis. 

 

6.1 Experimental Comparison of Contouring Control Architectures 

 

Chapter 3 provides a detailed study on conventional contouring control architectures. Studied 

architectures are divided into three major categories: cartesian servo controllers (CSC), 

contour error controllers, and feed forward controllers. For cartesian servo control (CSC), 

state feedback (SF), proportional derivative (PD), and proportional integral derivative (PID) 

feedback controllers are studied.  As expected, PID control provides lowest static and 

dynamic errors, since it provides unity gain and constant group delay over a wider frequency 

range, as well as better disturbance rejection than SF and PD control. To improve contouring 

performance over CSC architectures, Cross Coupled Control (CCC) and Tangential normal 

Control (TC) have been suggested in the literature.  CCC adds a control action normal to the 

path to conventional CSC.  TC entirely replaces Cartesian control actions with normal and 

tangential control actions along the path.  In our experiments, CCC and TC control do indeed 

provide better tracking performance than CSC, However, transient performance can be 

improved using feed forward strategies.  In this thesis, Torque Feed Forward (TFF) and Zero 

Phase Error Tracking (ZPET) controllers are added to CSC and TC control for benchmarking 

with circles and corners. These experiments lead to three conclusions: 1.) ZPETC and TFF 

provide the same level of tracking performance, but TFF requires less computational effort;  

2.) Both TFF and ZPETC require a PID feedback control law in order to guarantee zero 
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steady state tracking errors; 3.) The performance of a simple CSC+PID+TFF control law  

performs as well as the more complicated control architectures  TC+PID+TFF, suggesting 

that CSC+PID+TFF should be used as the benchmark controller for future developments in 

high-speed contouring control.  

 

6.2 A New Real Time Feedrate Optimization Algorithm for 2-D Cartesian Machine 

Tools 

 

Chapter 4, proposes a new real time feedrate optimization method which is independent of 

the spline representation of the nominal path, and incorporates both velocity and acceleration 

constraints. The algorithm is built on the fact that a time optimal feedrate requires that either 

velocity or acceleration must meet its constraint values at each sample time. In this regard, 

for each pair of position increments, the algorithm adjusts the corresponding pair of sampling 

times by solving velocity and acceleration equations. The fact that the proposed algorithm is 

independent from the spline representation (since it simply adjusts sampling times for 

position increments), makes it more flexible than conventional algorithms in the literature 

that require particular spline representations of the reference trajectory. Another common 

problem of many traditional trajectory generation algorithms is that they perform a forward 

and a backward pass across the complete trajectory.  This requires that the complete path be 

known before the trajectory can be generated.  The algorithm shown in this thesis requires 

only a small look-ahead window.  This allows for an easier implementation of the algorithm 

in practical machine tool control systems.   

 

6.3 Reference Trajectories with Tolerance Bounds 

 

Chapter 5 proposes two new trajectory generator algorithms using allowable tolerance 

values. The proposed algorithms attempt to adjust the tool path at critical points with large 

normal accelerations, which would require substantial velocity reductions in conventional 

trajectory generators. The first proposed algorithm is limited to corners.  It fits arcs in corners 

within the tolerance bounds around the path. The second algorithm works for any trajectory 

type and not just corners. It utilizes a running average filter to smooth the tool path at critical 
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points. The length of the running average filter is determined by the allowable tolerances. An 

experimental study of the two new algorithms shows that the new trajectory generation 

algorithms can provide significant time savings when typical machining tolerances are 

incorporated into the tool trajectories.  The experiments also show that the running average 

filter provides tool path that are both faster and easier to track than circles fitted into corners. 

 

 

6.4 Future Works 

 

This thesis benchmarks conventional contouring control strategies and suggests new 

trajectory generation algorithms. Possible future work based on the findings of this thesis 

includes: 

 

 Studying more complex controllers: This study benchmarked conventional and well 

known controllers. It is suggested that CSC+PID+TFF control should be used as the 

benchmark to study the performance of more advanced controllers. The literature 

showed a large number of complex controllers for machine tools such as Model 

Predictive Control, Robust Control, or Fuzzy Control. Investigating their performance 

and comparing them to (PID+FF) is an interesting topic for future work. 

 Generalized running average filter for trajectory generating: The running average 

filter used in Chapter 5 for reference path generation uses a filter with a constant 

length.   This length is based on providing maximum tolerances at high speed 

reversals.  However, this strategy will not take advantage of the full tolerance bounds 

at lower speeds.  Thus, the length of the running average filter can be adjusted 

adaptively along the trajectory to provide faster contouring performance. 

 Considering machining disturbances: The work shown in this thesis is based on the 

assumption that disturbances due to machining forces are small.  This is accurate for 

machining processes such as laser machining where cutting forces are negligible. For 

conventional turning or milling, cutting forces can be substantial and might require 

real time modification of the tool feedrate.  In the future, the algorithms proposed in 

this thesis should be combined with real time machining process identification 
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algorithms that would then adjust the feedrate in order to avoid tool breakage and 

extend tool life. 
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