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Abstract

Cultivation-independent microbial ecology research relies on high throughput se-

quencing technologies and analytical methods to resolve the infinite diversity of

microbial life on Earth. Microorganisms live in communities driven by genetic and

metabolic processes as well as symbiotic relationships. Interconnected communi-

ties of microorganisms provide essential functions in natural and human engineered

ecosystems. Modelling the community as an inter-connected system can give in-

sight into the community’s functional characteristics related to the biogeochemical

processes it performs. Network science resolves associations between elements of

structure to notions of function in a system and has been successfully applied to the

study of microbial communities and other complex biological systems. Microbial

co-occurrence networks are inferred from community composition data to resolve

structural patterns related to ecological properties such as community resilience to

disturbance and keystone species. However, the interpretation of global and local

network properties from an ecological standpoint remains difficult due to the com-

plexity of these systems creating a need for quantitative analytical methods and

visualization techniques for co-occurrence networks.

This thesis tackles the visualization and analytical challenges of modelling mi-

crobial community structure from a network science approach. First, Hive Panel

Explorer, an interactive visualization tool, is developed to permit data driven ex-

ploration of topological and data association patterns in complex systems. The

effectiveness of Hive Panel Explorer is validated by resolving known and novel

patterns in a model biological network, the C. elegans connectome. Second, net-

work structural robustness analysis methods are applied to study microbial com-

munities from timber harvested forest soils from a North American long term soil
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productivity study. Analyzing these geographically dispersed soils revealed bio-

geographic patterns of diversity and enabled the discovery of conserved organiz-

ing principles shaping microbial community structure. The capacity of robustness

analysis to identify key microbial community members as well as model shifts in

community structure due to environmental change is demonstrated. Finally, this

work provides insight into the relationship between microbes and their ecosystem,

and characterizing this relationship can help us understand the organization of mi-

crobial communities, survey microbial diversity and harness its potential.
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Chapter 1

Introduction

With an estimated cell abundance approaching 1030 cells [167], microorganisms

represent the invisible majority of life on Earth. From the mesosphere to the litho-

sphere, microorganisms are adapted to thrive across a wide range of habitats and

environmental conditions [167]. Interconnected communities of microorganisms

provide essential functions in natural and engineered ecosystems and play integral

roles in global scale biogeochemical processes [113, 114]. Resolving the complex-

ity of these communities can reveal the inner workings of the Earth system with far

reaching implications for biotechnology development and conservation. By har-

nessing the hidden metabolic potential of microbial communities, we can develop

sustainable solutions in energy and materials production [6, 140], synthetic biology

[111], medical diagnosis and therapeutics [28, 38] that are more in sync with the

natural world.

Despite the impact that microbial communities have on the world around them,

charting microbial community metabolism is extremely challenging as less than

1% of microbial diversity has been cultured in laboratory settings [114]. Advances

in sequencing technology are beginning to bridge this cultivation gap through plu-

rality sequencing of microbial community deoxyribonucleic acids (DNA) and ri-

bonucleic acids (RNA) directly from the environment. Applications of these tech-

niques enables the characterization of microbial taxonomic diversity and metabolic

potential. Such environmental surveys have helped discover “who is there” (e.g.,

through taxonomic assessment based on ribosomal RNA gene abundance) and “what
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are they doing” (e.g., metabolic reconstruction through functional gene and path-

way analysis). Thus, sequencing technologies enable the study of microbial com-

munities as structured and dynamic systems.

small subunit (SSU) rRNA sequencing of environmental samples allows di-

rect evaluation of taxonomic identity, abundance and diversity in communities

[29, 141]. These measurements provide knowledge of community structure, which

can be modelled to develop biomarkers for environmental factors and processes.

For example, studies have sequenced environmental SSU rRNA to evaluate the en-

vironmental impact of logging on soil productivity [76, 135, 136] and oil spills on

coastal ecosystems [98]. Different statistical methods, such as the cluster analy-

sis of samples and indicator species analysis of taxonomic distributions, model the

presence and role of individual members, from rare to abundant taxa, and charac-

terize community composition in relation to environmental parameter data.

Microbial communities rely on interconnected genetic and metabolic processes

to drive matter and energy transformations. In particular, metagenomic studies

have provided evidence that different reactions within a metabolic pathway may be

performed by and distributed across different community members [29, 73, 171].

The genetic distribution of the community can also be altered through horizontal

gene transfer [40, 51]. Furthermore, co-culture experiments have demonstrated that

cooperation and competition drive community member dynamics: groups of taxa

engage in a variety of positive, neutral and negative interactions [46, 54, 128, 138].

Though the analysis of individual community members can provide valuable in-

sight into specific metabolic processes, holistic understanding of the ecosystem

requires an awareness of the dynamic interconnections between community mem-

bers. Thus, the “whole is greater than the sum of its parts” as evaluating both com-

munity composition and interactivity can build more elaborate ecosystem models

[54, 73, 171]. Accordingly, microbial communities can be modelled as a dynamic

system where taxonomic, genetic and metabolic distributions are interrelated.

The structure of an interactive system can be modelled by studying its con-

nectivity [118]. Through network abstraction, the connective structure of a system

can be expressed using nodes and edges: the nodes of the network represent the

members of the system and the edges represent the relationships between members.

For example, modelling a microbial community as a connected system, individual

2



taxa become nodes and their interactive relationships become edges. Studies have

built community networks by applying co-occurrence analysis to taxonomic abun-

dances obtained via SSU rRNA sequencing data [11, 54]. To construct the micro-

bial co-occurrence network of a community, the significant positive and negative

co-occurrences are evaluated and assigned as edges. Microbial ecologists have re-

cently adopted this network approach to study both the taxonomic distribution and

the interconnected structure of microbial communities [47, 54, 89, 105, 129, 169].

Network approaches are widely used to study relationships between the struc-

ture and the function of a system in the social, biological and technological sci-

ences. Networks and their structure elucidate functional aspects of the modelled

system such as the wiring efficiency of the C. elegans connectome [34], the vul-

nerability to attack of the World Wide Web [5], extinction dynamics in foodwebs

[45, 122], and missing annotations in protein-protein interactomes [102], etc. In

particular, structural properties of microbial co-occurrence networks have been

characterized to infer biological attributes of the community such as its resilience

to disturbance [76]. Despite the power and the promise of graph theory select-

ing the appropriate or optimal quantitative method to accurately discern patterns

within complex systems remains a challenging enterprise. For instance, biological

network studies have difficulty justifying which of the many different network cen-

trality measurements should be used to identify nodes that are “important”, “cen-

tral”, or even “essential” to the structure of the network and have difficulty inter-

preting the results of their measurements in relation to system properties [62, 85].

Along the same lines, the adaptation of certain quantitative methods from food-

web studies in macroecology to microbial co-occurrence network studies remains

difficult to visualize, interpret and validate [55].

The visualization of complex systems can help reveal patterns, motivate anal-

ysis and generate hypotheses [125, 147]. In order to go beyond presenting known

patterns and reveal new ones, visualizations need to be designed to permit interac-

tive exploration [115, 125, 147]. The discovery of topological features and patterns

can help drive a quantitative analysis of a network and formulate hypotheses infer-

ring the modelled system’s function from its underlying structure. Current network

visualization techniques are not designed for interactive exploration. Network rep-

resentations, such as adjacency matrices do not provide flexibility in adapting their

3



layout rules to systems [115]. Other representations such as force-directed lay-

outs, are not suitable for large networks for they are often inconsistent and difficult

to interpret. On the other hand, rule-based network layouts have been developed

to create consistent and coherent network visualizations [96, 115]. In particular,

hive plots is a rule-based network layout whose design attempts to provide a visual

query language from which to organize and study networks using system properties

[96]. However, these different network layouts have been developed to illustrate

specific connectivity features and more flexible visualization designs are required

to maximize the exploration of patterns in the network. Adapting hive plots to

develop a versatile network visualization and combining this design with interac-

tive features could allow for the exploration and interpretation of patterns in highly

dimensional and complex networks.

This thesis outlines the development and application of a visualization tool and

a quantitative modelling approach to study microbial co-occurrence networks con-

structed from SSU rRNA sequencing data from soil environments that is extensible

to other forms of data. In the following chapter, I review the state of network

science and complexity, describe network visualization and quantitative ecology

tools, and explore their application to the study of microbial structure and func-

tion in natural and engineered ecosystems. In Chapter 2, I describe and evaluate

the development and design of Hive Panel Explorer as an interactive network vi-

sualization tool and demonstrate its effectiveness on a known and well studied

biological network: The C. elegans connectome. In Chapter 3, I demonstrate the

application of Hive Panel Explorer (HYPE) to soil microbial communities from the

Long Term Soil Productivity (LTSP) study based on samples from varied locations

and ecosystems across North America [76, 136]. As the most diverse environment,

the soil microbiome epitomizes the complexity of microbial communities and suc-

cessfully characterizing their structure and function on local and global scales using

the methods outlined in this thesis will be readily adaptable to study less diverse

microbial communities. Furthermore, analyzing geographically dispersed sample

collections may reveal biogeographic patterns of diversity and uncover conserved

organizing principles shaping microbial community structure. Thus this thesis has

the potential to provide insight into the complex relationships between individual

microbes, their community and their environment.
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1.1 Networks and complexity
As put by science writer Dorian Sagan [143]:

Nature no more obeys the territorial divisions of scientific academic

disciplines than do continents appear from space to be coloured to

reflect the national divisions of their human inhabitants. For me, the

great scientific satoris, epiphanies, eurekas, and aha! moments are

characterized by their ability to connect.

While scientific breakthroughs are accomplished via cross-disciplinary syn-

thesis, some disciplines’ knowledge and methodologies lend themselves better

to cross-disciplinary applications. In particular, network science, a mathematical

methodology, has been applied in social, biological and technological sciences to

model systems using networks [118]. Network models can be used to capture the

connective structure of a system and promote the study of interconnectivity in na-

ture. Connections can be drawn within and across many levels, from fundamental

particle interactions to the influence of gravitational fields. Particularly in this Dig-

ital Age, our world has become more interconnected: people and knowledge are

virtually and globally “hyperlinked” through social media and online databases.

Network science harnesses the potential of this interconnected world by study-

ing its structure. Anchored in graph theory, the field of network science has devel-

oped to resolve these dynamic interconnected structures in a variety of systems as

diverse as social circles, ecosystems, and the World Wide Web [118].

Graph theory is thought to have a evolved from a few seminal papers including

one entitled “Seven bridges of Konisberg” published in 1736 by Leonhard Euler

where he analyzes the topology of connected bridges to find a path which crosses

every bridge once [17]. The concepts of system topology first introduced in this

paper quickly evolved to model relationships between objects such as social in-

teractions, predator-prey relations, and web links between articles on Wikipedia.

An ensemble of relationships is called a graph and is denoted by the letter G. The

graph G is formed from nodes, the objects, connected by edges, the relationships.

In mathematical terminology, we say the graph G = (N,E) is composed of the

set of nodes N and the set of edges E [17, 118]. The topology of a graph is its
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“shape” or connective structure. Certain topologies imply that a graph will have

different structural properties [17, 118]. Graph theory encompasses the topological

algorithms and metrics applied to graphs.

Whereas the mathematical concept is denoted a graph, once applied to a sys-

tem with specific objects, the model becomes a network1. The following section

motivates the modelling of a system as a network, provides an overview of graph

theory methods and describes topological characteristics of biological networks

more specifically.

1.1.1 From an interactive system to networks

Graph theory methods have been used to study the relationship between the struc-

ture and the function of complex systems by building social, biological and tech-

nological networks [118, 119, 159]. In social networks, nodes are typically people

and the edges connecting these people represent an interaction between them [162].

Similarly, in foodwebs, the edges are trophic interactions (i.e. “who eats who”) that

connect species, the nodes, in an ecosystem [45, 122]. Graph theory measures such

as degree distributions, modularity and connectance, can help formulate associa-

tions between elements of structure to notions of function in the system and within

its parts [118].

Graphs come in all shapes in sizes: they can be directed or undirected, weighted

or not, connected or not [118], as illustrated in Figure 1.1. Directed graphs are used

to model systems where nodes have relationships with implicit direction, such as

the synaptic connections between neurons in a connectome: one neuron, a node,

fires a signal to another neuron via a synapse, a directed edge [71]. Weighted

graphs model the relationships between nodes quantitatively by assigning a weight

to each edge. For example, the strength of a friendship between two individuals

in a social network can be encoded in the weight of the edge connecting them.

Finally, a connected graph is one where all nodes can be reached by following a

path, a sequence of connected edges. A graph is defined as not connected if a node

or groups of nodes can’t be reached by following a path and the graph is then said

to have more than one connected component.

1In this thesis, both terms will be used according to the context: graphs when discussing theory
and networks when discussing systems modelled using nodes and edges.
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Figure 1.1: An overview of graph types and graph theory metrics. Graphs
are composed of nodes and edges, here represented as circles and
links between circles, respectively. A) Graphs can be simple, directed,
weighted, completely connected or composed of connected compo-
nents. B) Two graph topologies that differ in their degree distribution
are shown: a power law degree distribution and the characteristic bino-
mial degree distribution of randomly generated graphs. C) The topol-
ogy of nodes is characterized by graph theory metrics including degree,
clustering coefficient and centrality measures such as betweenness cen-
trality. The number next to each graph corresponds to the metric value
of the coloured-in node.
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Structural properties of graphs are used to characterize properties of individ-

ual nodes, individual edges, paths, groups of nodes, groups of edges, connected

components and the whole graph. Several review papers [17, 118–120] provide an

overview of different network analyses and graph theory measures, a few of which

are presented in the following section.

1.1.2 Graph theory

Many properties can be calculated to characterize a graph’s topology: degree dis-

tribution, global clustering coefficient, diameter, average shortest path length, cen-

trality measure, scale free index, modularity, etc [5, 118–120]. Whereas parameters

such as the number of nodes and the number of edges provide a quantitative assess-

ment of a graph’s size, other measures such as the diameter of a graph, the longest

shortest path between two nodes in the graph, evaluates the topological size of

the graph: two graphs with orders of magnitude differences between their number

nodes can have the same diameter. Similarly, the global interconnectivity of two

graphs of different topological size or with different number of nodes and edges

can be compare by measuring their connectance, the proportion of realized edges

calculated from:

Connectance =
|E|

|N|(|N|−1)/2
(1.1)

where |E| is the number of edges and |N| the number of nodes [118]. Just as

statistical methods evaluate dependencies and similarities in multivariate datasets,

graph theory measures assess repeated structures, connective patterns, partitions,

and other complex topological patterns.

Graph theory measures take on different formulations depending on whether

they are applied to directed or undirected, weighted or not weighted, connected or

not connected graphs. However, we will present them as applied to unweighted

undirected graphs for simplicity as other formulations are simply derivations of

the ones presented here. Different measures are applied to characterize a system’s

structure at global and local scales by analyzing the resulting network [96]. They

can be divided into two types: ones that measure properties of individual nodes

and edges and ones that evaluate global properties of the graph and connected
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components. An overview of these measures is illustrated in Figure 1.1.

Node degree

The degree of a node is simply the number of edges connected to it. In a social

network, the node degree represents the number of social interactions of that node,

which could be used for example to infer that individual’s popularity [162]. This

node property can be used to classify nodes by their connectivity.

d̄ =
∑

N
i=1 ∑

N
j=1 ei j

|N|
=
|E|
|N|

(1.2)

where |N| is the number of nodes, |E| is the number of edges, and the edge ei j =

1 if the ithand jth nodes are connected, otherwise ei j = 0 [118]. To characterize the

ensemble of node degrees of a graph we evaluate a graph’s degree distribution,

which we described next.

Degree distribution

The degree distribution of a graph is a global property which communicates the

basic connective topology of the graph. Certain characteristic distributions imply

structural properties and specific connectivity patterns in the graph. For instance a

random graph, one which is constructed progressively by joining nodes by an edge

with a certain probability, will have a binomial degree distribution [118, 119] most

nodes will have a degree close to the mean of the distribution and few nodes will

have very low or very high degree.

Another characteristic degree distribution is the power law degree distribution

where node degrees approximately follow:

P(d) = 1/dk (1.3)

where d is the degree of a node, P(d) is the frequency of that degree in the

graph, and k is a constant that defines the scale of the power law distribution

[24, 88, 118]. In this case, the frequency of a node having a certain degree is

inversely proportional to that degree by the factor k. Therefore power law graphs

tend to have a limited number of highly connected nodes, often called hubs. The
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proportion of high and low degree nodes is dependent on the value of k and implies

certain structural properties [24, 88, 118]. When k is small (k < 2), there are very

few hubs that the rest of the graph depends on to remain connected. When k is

large (k > 3), there are many high degree nodes and the graph structure is close to

that of a random graph [24, 88, 118]. When 2 < k < 3 there tends to be a hierarchi-

cal connectivity where the hubs are connected to medium degree nodes which are

connected to low degree nodes [24, 88, 118]. From this connective structure, and

the characterization of hubs from their connectivity patterns, the functional role

of hubs can be interpreted. For example, the C. elegans connectome has a power

law degree distribution and most of its hubs are neurons with a particular cell type

called interneurons whose role is to connect more specialized cell types, sensory

and motor neurons [157]. This example demonstrates how the connective role of

each node can be established through the characterization of the degree distribution

of a graph.

Triangles, cliques, and clustering coefficients

Many graph theory measures have been developed to evaluate the connective struc-

ture of nodes on a local scale. Nodes can be connected in triangles: a set of three

nodes all connected to each other. The transitivity of a graph is accordingly the

proportion of realized to unrealized triangles [118]. Higher order structures of

fully connected nodes are called cliques: a k-clique is one where k nodes have all

possible edges between them realized. Many measures stem from these types of

structures such as the number of triangles, the number of k-cliques in the graph,

the size of the largest clique in the graph, etc.

In order to measure the local connective behaviour on an individual node basis,

the clustering coefficient of a node is calculated as follows:

ci =
∑

N
i ∑

N
j e jk ∗ ei j ∗ e jk

di(di−1)/2
(1.4)

where the numerator of the fraction is the number of triangles through node

i with e jk ∗ ei j ∗ e jk = 1 if the nodes i, j and k are all connected [118]. The de-

nominator represents the total number of possible triangles connected to node i

given that it has a degree of di. The clustering coefficient expresses the connec-
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tivity between neighbours: if all of its neighbours are connected than a node has a

clustering coefficient of 1.

The clustering coefficient of an edge can also be measured by evaluating the

number of overlap in neighbours of the two nodes connected by the edge in ques-

tion. An edge’s clustering coefficient is calculated using:

ci, j =
|Ni∩N j|+1
min(di,d j)

(1.5)

where Ni and N j are neighbours of nodes i and j respectively [103].

The clustering coefficient of a node and its degree are independent properties

though the higher the degree of a node the more connected its neighbours need to

be in order to also have a high clustering coefficient. The global clustering coeffi-

cient is calculated as the average of the nodes’ clustering coefficients. Along with

notions of degrees, triangles and cliques, these graph theory measures characterize

the global connectivity of a graph and the local connectivity of each node.

Centrality measures

Centrality measures are used to evaluate the position of a node within the graph to

determine its centrality with respect to the other nodes in the graph [62, 118, 127,

176]. There are many different centrality measures, each of which uses different

metrics to evaluate the topological position [19, 62, 123] of a node as illustrated in

Figure 1.2.

Each measure estimates the centrality of the position of a node over a certain

range. For instance, degree centrality evaluates the position of a node locally by

simply taking into account it’s degree. Betweenness centrality evaluates the po-

sition of a node globally by evaluating the importance of that node relative to all

paths in the graph, as expressed by the following equation:

bci =
N

∑
j,k, j 6=k

p jk(i)
p jk

(1.6)

where p jk(i) is the number of paths between node j and k that go through i

while p jk is the total number of paths going through j and k [118].

The centrality of a node may reflect its importance in maintaining the overall
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Figure 1.2: An overview of different node centrality measures. Nodes are
coloured by their relative centrality (adapted from c©Tapiocozzo (2015)
under CC-SA license).

structure of a network [5, 85, 118]. The centrality measure that is most appropriate

to find the structurally important or essential nodes in a network depends on the

range of centrality appropriate for the system under study [5, 85]. For example

in a communications grid network where signals are sent between computers, it is

imperative that certain computers don’t go down (as in during a power shortage)

such that all messages can make it to their destination: computers with high be-

tweenness centrality tend to connect others which would be disconnected in their

absence and thus if shut down the message will have no alternate route to follow

[5]. Furthermore, the structure of the network can also influence the applicability

of a centrality measure. For instance, in a network with a very high global cluster-

ing coefficient and thus where most nodes are connected to their neighbours, the

nodes’ betweenness centrality values would be somewhat evenly distributed and

probably not as useful to discern low to high centrality nodes than another measure

such as degree centrality. Therefore picking the appropriate centrality measure for

a system depends on the structure of the network and the roles played by central

nodes in the system.
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Modules

The graph theory measures so far presented have focused on global and local topo-

logical properties in a graph. Modularity analysis evaluates the sub-global topology

of a graph by finding structurally meaningful subgraphs (i.e.. subsets of the graph)

[120]. A module is defined as a subgraph whose connectivity pattern between its

members is greater than the connectivity patterns with nodes outside that subgraph

[103, 120]. Modularity analysis can thus be interpreted as a form of topological

clustering on the graph [120]. One famous example of the application of modular-

ity analysis is the Karate Club network [120, 176]: subsequently to the modelling

the two modules in the social network, the karate club split and its members sep-

arated to form two karate clubs following the modules predicted [173] (see Figure

1.3).

Determining the optimal partitions in the graph to find modules depends on

the type of connectivity patterns evaluated on the subgraph [120, 176]. As in the

case of centrality measures, what is considered an appropriate connectivity pattern

depends on the context of the system being modelled. Several modularity algo-

rithms have been developed and each assesses different connectivity patterns. The

type of pattern used influences the interpretation of the modules and the method

used to find the patterns determines the computational complexity of a modularity

algorithm.

Most modularity algorithms rely on measuring node properties such as degree

or clustering coefficient to evaluate the connectivity of subgraphs. Others measure

larger structures such as triangles and cliques. In summary, modularity algorithms

assess the connectivity of subgraphs by measuring one or a combination of the

following [103, 120, 176]

1. cliques or clusters of cliques

2. minimum edge cut of a graph

3. node density in a subgraph

4. high betweenness centrality nodes between subgraphs

5. total degree within a subgraph
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Figure 1.3: The modularity of the Karate Club network. Nodes are coloured
by their association to the blue and red modules. The two modules
correspond to the actual division of the club into two separate karate
clubs (from c©Zhao et al. (2014))

As in clustering methods, modularity algorithms can have a top-down approach

in which case graphs are partitioned iteratively or a bottom-up approach where

subgraphs are merged iteratively. One advantage of the bottom-up approach is

that it doesn’t rely on knowing how many modules there might be in the graph

[120, 176]. Some modularity algorithms are NP-hard, others have a complexity as

high as Ω(E2N) and thus many are not applicable to large networks with over tens

of thousands of nodes [120, 176]. One low complexity algorithm with a bottom-up

approach which has been evaluated on protein-protein interaction (PPI) networks

is a fast agglomerative algorithm called FAG-EC [103]. This algorithm measures

the modularity of a subgraph by comparing the in-degree of a subgraph to its out-

degree [103] where the in-degree of corresponds to the number of edges between

nodes within the subgraph and the out-degree corresponds to the number of edges
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with nodes outside the subgraph. If the in-degree din is greater than the out-degree

dout of a subgraph S by a multiplicative factor λ , than the subgraph is a module:

∑
i∈S

din
i > λ ∑

i∈S
dout

i (1.7)

where the value of the parameter λ can be adjusted to obtain a stricter definition

of a module [103].

The algorithm builds and evaluates the modularity subgraphs by starting with

singleton subgraphs (i.e. each node is its own subgraph) and merging subgraphs

when their ratio of in- and out-degree increases. So as to reduce the complexity of

the algorithm, the order in which subgraphs are evaluated as merge-able relies on

the strength of the clustering coefficient of an edge (see Equation 1.5) between two

nodes, one in each subgraph: the higher the clustering coefficient of an edge the

higher the probability that the two nodes connected by that edge will be in a module

[103]. Thus the edges with the highest clustering coefficient are used to merge

subgraphs earlier in the algorithm ensuring FAG-EC a complexity of Ω(cE) where

c is a constant, which is relatively low compared to other algorithms [120, 176].

FAG-EC was tested on PPI networks to find groups of proteins that perform

specific biological functions in a cell through these network modules [103]. This

method and other modularity algorithms have also been used to find functional

modules in other systems such as trophic networks [24, 88, 122], and social net-

works including the Karate Club network described above [162] (see Figure 1.3).

1.1.3 Biological network complexity

Complex biological systems are teeming with interactions at different scales: from

molecules to cells to tissues to organs to organisms to species to environment to

ecosystems. Networks have been used to model these complex interactions in bio-

logical systems at every level (Figure 1.4). For instance, at the molecular level, PPI

networks are constructed to model the relationships between protein-protein inter-

actions; at the ecosystem level, foodwebs are built to model trophic interactions

between species. As with other types of systems, biological networks are far from

random and have topological features that have informed researchers on how they

function and their dynamics. For example, PPI networks from different organisms
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Figure 1.4: Complex biological system modelling through networks: a vari-
ety of systems can be described using networks by abstracting system
agents and relationships between agents.

have been found to have modules that match cellular and metabolic functional units

within that organism [24, 88]. Here we present a few recurring and non-random

global and local structural patterns in biological networks followed by the different

challenges faced when visualizing and interpreting them.

Common structures

As a first assessment of the a network model, the topology of biological networks

is tested against the topology of random networks. For a biological network with N

nodes and E edges, a random network can be built with the same number of nodes

and edges [35, 118]. The structure of the two networks can be compared by evalu-

ating their degree distribution, average shortest path length, diameter, modularity,

global clustering coefficient, assortativity, etc [118].

The degree distribution of most biological networks, including protein-protein

networks, gene expression networks, and foodwebs, is typically a power law dis-

tribution [24, 88]. As described in Section 1.1.2, a power law distribution implies

several specific topological properties, two of which are discussed here in the con-

text of biological networks. First, networks with a power law distribution have few

high degree nodes commonly called hubs. In PPI networks, different methodolo-

gies have been used to characterize the essential proteins, proteins that are impor-

tant to the proper function of the system, and have found that these proteins are

often hubs in the network [24, 88]. While these well-connected nodes can play dif-

ferential roles in biological networks, they consistently display properties that dis-

tinguish them from other nodes in the network. Second, power law networks with a

scaling factor 2 < k < 3 are called scale-free networks that manifest a hierarchical
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connective structure: a high degree node is typically connected to medium degree

nodes which are connected to low degree nodes [24, 88] (Figure 1.1B). foodwebs

from different habitats and of different species richness, from tens to thousands of

species, have a scale free network structure which renders them robust to distur-

bances (e.g., change in climate) such as the extinction of species (i.e. the removal

of nodes in the network) [45, 92, 122]. Given such a low proportion of high degree

species in the foodweb, removing a single species will rarely result in network col-

lapse. The topology of foodwebs confers an adaptive connected structure that is

robust to perturbation, a property of scale-free networks that is conserved across

systems [118].

Complexity and systems

Biological systems are dynamically interconnected within and between hierarchi-

cal levels. This complexity makes them difficult to understand even with the use

of graph theory to construct networks. Consider that biological data often faces

accuracy and reproducibility issues which limit the power of the models used to

study them. For instance, brain imaging technology has enabled the measurement

of activity of regions of the brain at a macroscopic level and this data is used to

reconstruct brain networks called connectomes despite the fact that the activity in

the brain occurs at the level of individual neurons [25]. Therefore the construction

and interpretation of the connectome is dependent on and limited by the resolution

of the data and the fact that connection patterns typically vary between individuals

[25].

Beyond data challenges associated with replication and resolution, biological

networks containing tens to tens of thousands of nodes and edges are difficult to

navigate. In particular, most network visualization schemes are inappropriate for

very large networks as we will see in Section 1.2.2. Moreover, because of the great

number of nodes and edges, characterizing local structures in the network such as

cliques, modules, and triangles, as well as manually evaluating the construction of

the network on an individual node basis is not feasible. One alternative is to find

and evaluate local patterns such as repeating connective structures or motifs. Al-

though algorithms exist to identify motifs, these must be specified a priori limiting
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the discovery of new or unexpected patterns.

In addition to being hierarchical, biological systems are multivariate and thus

highly dimensional with respect to intrinsic and extrinsic factors. Each factor and

its influence can be encoded in the nodes and edges of the biological networks as

quantitative and qualitative properties. For example, individual species in food-

webs have diets, population sizes, seasonal habits, etc. which impact their feeding

behavior and are tightly linked to their role in the foodweb. At the same time, envi-

ronmental parameters such as weather and geography also influence trophic inter-

actions [122]. Taking all of these dimensions into account in building a complete

model of the system leads to a multitude of possible association patterns. In order

to meaningfully model these patterns, a network must integrate the dimensionality

of biological systems. Accordingly, both quantitative graph theory measures and

qualitative methods such as visualization need to accommodate for this complexity

in their design and implementation.

1.2 Network exploration
Network analysis typically involves quantitative measures and methods as well as

visualization. However, most network visualizations such as force directed layouts

are not suitable for visualization tasks when scaled up to large networks because

they are inconsistent and difficult to interpret [96, 115], often resembling “hair-

balls” [96] (Figure 1.7). Biological networks in particular are very large networks.

Appropriately visualizing these networks could assist in the interpretation of net-

work properties relevant to system function. Here we motivate visualization as

a means for system exploration and present current network visualization proce-

dures.

1.2.1 Visualization as a means for data exploration

Humans are visual creatures with powerful pattern detection capabilities [50, 125,

147, 151]. While some tasks are best accomplished by computational techniques,

others are difficult to abstract quantitatively and are well suited for visualization

purposes [115]. A visualization tool can thus become medium to explore a dataset

and create a transition between raw data and the formulation of a problem or hy-
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Figure 1.5: Overview of tasks accomplished by visualizations. These tasks
are composed of visual actions applied to data targets (from c©Munzner
(2014)).

pothesis [115, 125]. Visualizations can be designed for different types of data,

and different tasks (Figure 1.5). For example, explorative visualizations have been

built to identify outliers, global and local patterns, similarities, and in general novel

features of the visualized data [115].

Interactivity can further enable a user’s exploration experience of a visualiza-

tion compared to a static graphic [50, 115, 147]. Shneiderman proposed a visual-

ization mantra to optimize a user’s interactive experience: “Overview first, zoom

and filter, then details-on-demand” [147]. In sum, a visualization is designed to op-

timally display the different dimension of dataset in a way that is easily navigable

by a user in the context of an interactive and explorative visualization. Further-

more, Coleman proposed a set of requirements for a design to produce an aesthetic

and comprehensive visualization [37]

Generality in its application to different datasets
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Flexibility in its the range of tasks that can be accomplished

Transparency in its layout to ensure its interpretability

Competence in the number and quality of the features it reveals

Speed in its rendering time

Particularly in the case of biological systems which vary in size, complexity

and number of dimensions, explorative visualizations are invaluable tools to the

discovery of interpretable biological patterns and the development of hypotheses

which can drive subsequent experimental and computational analysis [115].

1.2.2 Current network visualizations

Though a multitude of heuristic and rule-based network visualization methods

exist, here we present three different methods to illustrate the challenges in vi-

sualizing and exploring networks. The pitfalls of these visualization schemes

demonstrate that current network visualizations are not designed to facilitate the

exploration and discovery of novel global and local patterns in complex systems

[96, 115].

Adjacency matrices

Adjacency matrices are both the linear algebraic formulation and a visual repre-

sentation of graphs. Nodes are encoded as row and column labels while edges are

encoded as entries in the matrix. This representation is suitable for the visualization

of directed networks in which case the matrix is asymmetric, of weighted networks

in which case entries encode the weight of an edge, and of connected components

in which case the matrix is sparse.

This visual representation is particularly useful for showing the components,

modules and cliques of a network by applying an appropriate node ordering (Figure

1.6) [115]. However it does not scale to large networks and is not suitable for

looking at individual node topologies such as clustering coefficient.
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Figure 1.6: Adjacency matrices, a tabular representation of graphs. Rows and
columns are labeled by nodes and each entry in the matrix corresponds
to the presence or absence of an edge between the corresponding nodes.
The two adjacency matrices, one ordered alphabetically, one ordered by
clustering node connectivity patterns, lays out the social network of the
characters in Victor Hugo’s Les Miserables (from c©Bostock (2015)).

Force-directed layouts

Force-direct layouts encode nodes as circles and edges as links between them. The

layouts are obtained by applying physical rules to the nodes and edges to place

them on a plane in a way that minimizes overlap and the number of crossing edges

[64]. For example spring-embedded layouts model the edges as springs with dif-

ferent spring coefficients relating to edge weights in the case of weighted networks

[64]. The nodes are modelled as particles with repulsive forces to avoid overlap

[64].

Figure 1.7 illustrates force directed layouts of a large network. While these lay-

outs are suitable for showing modules, cliques and triangles in small networks, the

inconsistencies due to their heuristic algorithms produces network layouts which
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Figure 1.7: Force directed layouts, an intuitive and planar visual represen-
tation of graphs. This force directed layout shows the social network
of the characters in Victor Hugo’s Les Miserables coloured by cluster
(from c©Bostock (2015)).

are inconsistent and thus do not allow for the comparison of networks.

Hive plots

Hive plots are a consistent and coherent rule-based layout and are an appropriate

visualization for comparing and visualizing structural patterns in large networks

across different data dimensions. They provide an interpretable visualization while

leaving several visualization channels such as colour, size and rule choice, to en-

code additional data properties [96]. Hive plot’s design scales to large networks

as it handles visual occlusion and other potential visualization design pitfalls [115]

by organizing the layout of nodes and edges given their attributes and network

properties [96]. Despite their flexibility, hive plots can be a daunting visualization

technique given the large range of options and combinations of layout rules that
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Figure 1.8: Hive plots, a circularly organized representation of graphs. This
simple hive plot has 6 nodes arranged on three axes (from c©Bostock
(2015)).

must be chosen by the user. In addition, they are not suitable for exploring certain

network topological features such as connected components and cliques.

In summary, each network visualization has its strength and weaknesses. De-

pending on the topology of networks being studied and their size, different network

layouts will be more suitable than others. Overall, these strategies are best used in

combination to evaluate and explore networks and the systems they model.

1.3 Charting microbial community structure and
function

As alluded to earlier, charting microbial community metabolism is extremely chal-

lenging because of the cultivation gap between indigenous microorganisms and

laboratory settings [114]. There are several reasons for this cultivation gap, includ-

ing the inability to reproduce in situ physical, chemical and ecological conditions

in a laboratory setting. Thus, culture-based techniques capture only a small frac-

tion of microbial diversity. Plurality sequencing bridges the cultivation gap by

providing direct access to the genetic material of indigenous microorganisms. The

genetic material stored in nucleic acids (DNA and RNA) contains the necessary in-

formation for an organism to grow and reproduce [91]. A genome contains the

genes necessary to encode the organism’s metabolic functions and reproduction.
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Accordingly, the collection of genetic material in an environment defines the en-

semble of the community’s genomes: the metagenome [29]. Metagenomic studies

resolve the taxonomic diversity and functional activity of a community by decod-

ing this genetic information.

Next-generation sequencing techniques have been developed to measure the

genetic material in environmental samples in a high-throughput manner. Given

the seemingly infinite diversity of microbial life and the great variation in ge-

netic encoding, plurality sequencing studies have generated a great abundance of

microbial community data from a variety of natural and engineered ecosystems

[29]. This surge of information has driven the development of different solu-

tions to store, manage, analyze and present this “big data” [160]. For instance,

publicly available databases permit the annotation of nucleotide and amino acid

sequences to known genes and gene products as well as the assessment of their

phylogeny [22, 29, 32, 67, 137, 144, 160]. Software solutions are used to align,

cluster, and manipulate sequences to provide analytical frameworks to charac-

terize the taxonomic, genetic and metabolic potential of a microbial community

[27, 29, 75, 83, 93, 160]. In addition, visualization techniques have been devel-

oped to present and illustrate ecological findings [78, 83, 89, 95, 99]. Finally, as

the quantity of environmental sequence information increases, these solutions are

required to scale to the task to effectively study the organization of microbial com-

munities and their relationship with their environment.

1.3.1 Soil ecology

Soil harbors the most diverse microbiome [167]. From boreal forests to arctic

sediments, one gram of soil containing an estimate of up to tens of thousands of

unique species [167]. Assessing the quality and type of soil involves measuring soil

properties called edaphic factors, including soil moisture, porosity, temperature,

and acidity, which are affected by abiotic and biotic factors such as agricultural

practices, climate, plant and fungi growth. However, the distribution of microbes

throughout the soil profile is influenced by both edaphic factors and interactions

between microbial community members [3, 57, 74, 76, 100, 168] (Figure 1.11).

Nevertheless, to date, most research has focused almost exclusively on the role of
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edaphic factors by relating this measurable information to community composition

data using multivariate methods [3, 57, 74, 76, 100, 168]. For example, studies

have revealed soil acidity [100] as well as carbon and nitrogen pools and cycling

[39] to be strong indicators of soil microbial community structure and diversity. In

addition, decreases in microbial biomass and community diversity with soil depth

[108, 113] have both been attributed to concurrent changes in carbon resources and

soil acidity throughout the soil profile. Current models of soil communities paint

an incomplete picture of this complex system as few studies combine microbial

interactions with environmental parameter data [105, 138, 139].

The long term soil productivity project

The LTSP project is a multidisciplinary effort to monitor the impact of forestry

practices on North American soil productivity that was initiated by the United

States Forest Service 25 years ago [136]. The project spans ten North Ameri-

can ecozones: biogeographic regions manifesting particular temperature ranges,

precipitation patterns and tree species. Today, the LTSP study remains one of the

world’s largest coordinated research networks including over 110 sampling loca-

tions in the United States and Canada [135, 136] (Figure 1.9). Research on LTSP

sites is primarily focused on impacts of tree harvesting practices related to soil or-

ganic matter (OM) removal and soil compaction [76, 136]. Each LTSP site uses a

randomized and replicated factorial design with three levels of OM removal (OM1-

OM3) in 40x70m2 plots (Figure 1.9). A control plot, representing natural reference

forest (OM0) is also included at each site. In OM1 plots, tree boles have been

removed but tree crowns, felled understory, and forest floor material is retained re-

sulting in minimal soil OM removal [136]. In OM2 plots, aboveground vegetation

is removed but forest floor material is retained resulting in intermediate soil OM

removal [136]. In OM3 plots, all surface organic matter is removed leaving bare

soil exposed [76, 135].

Recent efforts to study microbial community responses to soil perturbation in

the LTSP network has resulted in an archive of samples spanning 5 ecozones [76].

Extant microbial studies have focused on community composition from different

soil types, at different depths and different levels of soil organic removal and com-
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Figure 1.9: Overview of the LTSP ecozones and treatments where microbial
communities were sampled. A) The age and geographic location of sites
per ecozone is marked. B) Different OM treatments were conducted in
these forests and harsher treatments reflect increased biomass removal
[31].
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paction, as described above. These forestry practices perturb the soil’s physical,

chemical and ecological conditions which cause a disturbance in the microbial

community with resulting feedback on biogeochemical cycling [76]. Given that

soil microbes recycle the carbon content of the soil and produce climate active gas

such as carbon dioxide, methane, and nitrous oxide, this study has the potential to

help assess the impact of forestry practices on forest ecosystem health and climate

change [97]. With samples from a variety of ecozones, this impact can be mea-

sured on a large geographic scale. However, current analytical and visualization

methods do not facilitate the interpretation of these large datasets and the micro-

bial communities they represent across ecological scales.

1.3.2 Taxonomic assessment

As previously described, microbial community diversity can be assessed using SSU

rRNA gene sequencing [141, 156]. The SSU rRNA gene is a highly conserved gene

with sufficient taxonomic resolution. Its hypervariable regions V1-V9 serve as the

genetic markers to taxonomically identify each organism while the conserved re-

gions enable primer binding and sequencing [141, 156]. High quality sequences

are recovered and can then be clustered at different percent identity thresholds

against a curated database, for instance the Green Gene database [22]. Matches be-

tween the database entries and clustered sequences create an operational taxonomic

unit (OTU) that can be assigned taxonomy to different levels in the taxonomic hier-

archy [67].

An identity threshold of 97% clusters SSU rRNA sequences with sequence vari-

ability expected between organisms of the same species [18]. Lower thresholds

capture higher taxonomic levels such as phylum, class, order, family, and genus

[18]. Given the number of clustered sequences for a given OTU, the relative abun-

dance of that OTU in the community can be estimated and used to infer its abun-

dance pattern across the sample profile. Studies of large collections of SSU rRNA

samples from varying ecosystems (e.g., soil, water, organisms, atmosphere) facili-

tate the characterization of the Earth’s microbiome [67].
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1.3.3 Community composition

Quantitative ecology transformed ecological research from a primarily descriptive

science to an analytical science with hypothesis formulation and testing [101].

Models are developed and validated using numerical approaches; methods from

fields such as mathematical algebra, statistics, information theory, and chaos the-

ory have been utilized to resolve ecological and spatio-temporal patterns in com-

plex and highly dimensional datasets. By measuring dependencies, similarities,

correlations, and other complex relationships in the ecosystem, these quantitative

procedures resolve the influence of abiotic (i.e. non-living) factors such as sun-

light and biotic factors (i.e. living) such as plant growth in an ecosystem [79].

Many of these methods have been adapted from macroecology to characterize the

composition of microbial communities. Here, three ecological quantitative mea-

surements that are generally used in ecological studies and that evaluate different

features of community composition are described: community diversity, clustering

of environmental samples, and indicator species analysis.

Community diversity

Community ecology often focuses on determining relationships between species

diversity and environmental factors. Particularly in macroecology, measuring the

diversity over spacial and temporal scales has been used to assess the effect of

environmental changes on ecosystems [79, 101]. For example, the BIODEPTH

experiment in Europe compared the above-ground plant biomass and plant species

count, a measure of diversity called species richness, over environmental and spa-

tial gradients and showed a log-linear increase in biomass with species richness

[79]. Similar relations have been found in microbial communities inhabiting soil

[76, 108, 113]. Thus, diversity appears to be a quantitative indicator of ecosystem

perturbation across macro and micro scales.

As a key measure of community structure, many different diversity metrics

have been developed, four of which are summarized in Table 1.1. Diversity quan-

tifies the distribution of species in a collection of samples. As described by Pierre

and Louis Legendre, community diversity is “a measure of species composition, in

terms of both the number of species and their relative abundances” [101].
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Table 1.1: An overview of different of ecological diversity metrics where D
is diversity, q is the total number of unique species, i represents the ith

species, pi is the relative abundance of the ith species, f1 is the number
of singletons, and f2 is the number of doubletons.

Metric name Formula Description

species richness D = q number of unique species
Shannon’s entropy D =−∑

q
i=1 pi log pi measure of disorder in

species distribution
Simpson’s index D = 1−∑

q
i=1 p2

i measures concentration of
species

Chao 1 D = q+ f1( f1−1)
(2 f2+1) skews the species richness

by an estimate of the num-
ber of unsampled species

It is important to note here that microbial diversity is an operational and prob-

abilistic measure due to the polyphasic nature of the definition of species. Namely,

microorganisms of the same species can differ phenotypically and genetically [149]

and this differentiation can in return blur the distinction between species. In prac-

tice the species concept can be defined given a measurement of genetic variation

to evaluate the genetic composition of a community and consequently capture its

ecological diversity [149] . Here the species concept definition is based on percent

similarity in SSU rRNA sequences, as described above.

Species richness measures the count of unique species in a sample collection.

This measure is highly affected by rare species and sampling depth (i.e. the number

of sample units collected); however this issue is resolved using the rarefaction

method which calculates the number of species given constant sample unit size

[101]. Richness measures and rarefaction curves are used to quantitatively evaluate

the recovery of the diversity of an environment through sampling [101].

Shannon’s entropy measures how evenly species are distributed by taking into

account their relative abundance: high values of this measure correspond to most

species having similar abundances and low values typically correspond to a few

species dominating the sample units [101].

Simpson’s index corresponds to the sum of probabilities that two randomly
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chosen organisms belong to the same species; the lower this probability, the higher

the overall value of diversity becomes [101]. This measure is highly affected by

changes in rare species and is relatively stable with increasing sample unit sizes

[101].

The Chao 1 diversity measure differs from the others in that it takes into ac-

count f1, the number of singletons (species only found once), and f2, doubletons

(species only found twice). In the context of measuring microbial diversity with

SSU rRNA sequences, singletons are OTUs for which only one sequencing read is

recovered. This measure is based on the idea that the rare species can tell us about

how many species environmental sampling may have missed, and the added factor

to q, the species richness, helps estimate this contribution to the diversity [101].

In the case of microbial species diversity measurements, next generation sequenc-

ing technologies can capture erroneous sequences and therefore most SSU rRNA

sequencing studies do not include singletons in their analysis.

Given that ecological research is often focused on the spatial organization of an

ecosystem, diversity measures are applied to partitions of the sample collection to

assess the distributions of species through spatial components. Whittaker described

three spatial levels of diversity: alpha, beta and gamma diversity. Alpha diversity

(α) represents the diversity at each sample site, gamma diversity (γ) represents the

diversity of the whole sample collection, and beta diversity (β ) measures the per

sample variation in diversity [101]. The three diversity levels are related through

the relation β = γ/α [101]. Different metric, such as the ones in Table 1.1 can be

used to calculate the α , β and γ diversities.

To conclude, these metrics quantify diversity based on different ways of as-

sessing abundance and distributions of species and can be used to evaluate spatial

and temporal variations within and between sample units.

Sample clustering

Environmental samples can be grouped into clusters from their respective species

composition. Samples with similar compositions based on similarity metrics are

grouped into the same cluster based on an operational threshold. These clusters

are characterized to resolve ecological patterns, such as species niches [2, 44, 59],
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groups of species that co-occur across geographically distinct sampling sites, and

in general to assess the similarities within and between sample units. Clustering

analysis is thus a knowledge discovery method.

There are many ways to measure the similarity between samples and many

ways to group samples into clusters. Similarity metrics include the Euclidean dis-

tance and the Manhattan distance [101]. Each distance will weigh abundant and

rare species composition differently. Here we provide an overview of hierarchical

clustering which is commonly used in ecological studies and can be used with any

distance metric. There are two types of hierarchical clustering procedures. Both

take as input a distance matrix: the distance metric chosen is used to assess the

similarity between all pairs of samples thus building a sample distance matrix. Ag-

glomerative clustering iteratively groups pairs of samples to form clusters and then

forms clusters between the initial clusters, and so on [101]. Divisive clustering is

the equivalent “top down” approach: the ensemble of the samples is partitioned

into clusters which are subsequently divided iteratively [101]. Both procedures

rely on a greedy algorithm [101]: they pick the best way to merge or divide clus-

ters in order to maximize the similarity within or distance between new clusters,

respectively. The hierarchy of clusters produced by both methods can be different

and is often visualized using a dendrogram.

Ecological analysis of clusters includes the evaluation of common environmen-

tal factors such as site locations. This idea is based on the fact that related samples

through common environmental factors such as climate will have similar species

compositions and will cluster into the same clusters [101]. Furthermore, hierar-

chical clustering can be used to assess the quality of an environmental sampling

experiment. Finally, hierarchical clustering is one method used to evaluate sample

compositionality which is can be used to expand the ecological understanding of

an environment.

Indicator species analysis

The composition of a community can be characterized on a species level by eval-

uating the ecological relevance of species compared to some environmental factor.

One simple example is a particular species which is consistently found in samples
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of a particular habitat. Significant associations between species abundance pro-

files and environmental factors can help assign ecological meaning to samples and

sample sites [101].

Different methods evaluate the association between species abundance and en-

vironmental factor distributions. One way to measure these associations is to use

correlation indices. Methods differ by how they handle the variance and distribu-

tion of species and samples [101]. Here we provide an overview of an ecologically

motivated method called indicator species analysis.

Once a partition of the samples is established, using a predetermined ecological

factor or a clustering method, indicator species analysis can be applied to discover

which species are indicative of the “condition” of sample partitions. The indicative

value of a species for each condition is calculated using:

IndicatorValuei j = Ai j ∗Bi j (1.8)

where Ai j is the specificity of species i to the cluster j and Bi j is its fidelity

[101]. The specificity is calculated by dividing the average abundance of species

i in the samples belonging to cluster j by its average abundance in all samples for

all clusters k, as follows:

Ai j = pi j/pik (1.9)

High specificity is obtained when a species is highly abundant in all samples

of cluster j and rare in other samples. The fidelity is calculated by dividing the

number of samples in cluster j where species i is found divided by the total number

of samples in cluster j, as follows:

Bi j = samplesi j/samples j (1.10)

High fidelity is obtained when a species is present in all samples within a clus-

ter. Figure 1.10 illustrates how a species can have high fidelity, a high specificity

or both.

Once indicator values are measured for all combinations of species and sample

clusters, the significance of the results are evaluated by taking into the composi-
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species 1
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species 2

species 3
high fidelity
high specificity
for condition B

low fidelity
low specificity
for either condition

low fidelity
high specificity
for condition A

Samples with condition A Samples with condition B

high fidelity
low specificity
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Figure 1.10: An illustration of the specificity and fidelity of species to en-
vironmental conditions. The eight samples are partitioned under two
different conditions.

tional bias in species abundance profiles. One example of compositional bias is the

presence of a very abundant species which lowers and skews the relative abundance

of other species when they occur in the same samples [101]. The significance is

evaluated for each species i by permuting sample counts of other species and re-

calculating the indicator value of species i. This permutation procedures obtains a

distribution of indicator values for each species and by comparing the actual value

found with this distribution, a p-value is obtained which indicates the probability

that this value occurred by chance. Typically p-value thresholds of 0.05% signifi-

cance and lower are used to filter out poor values [101].

Finally, for each cluster a number of indicator species is obtained that can be

used in environmental surveys of the condition implied by the sample cluster. In

particular, hierarchical clustering can be applied to find the sample clusters be-

fore applying indicator species analysis. In this case, indicator species and expert

knowledge can help assess the ecological properties of the clusters. However, an

important consequence of this procedure is the fact that more indicator species will

be found than expected by chance since the sample partitioning was conducted

using the same species abundance data [101]. The lack of independence between

the two methods implies the need for a thorough examination of p-values before

ecological interpretation.
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1.4 Microbial co-occurrence networks
Microbial ecologists adopt macroecology quantitative and qualitative methods to

analyze, visualize and investigate interaction patterns in microbial communities

by constructing microbial community networks [11, 54, 54, 105]. modelling the

community as an inter-connected system can give insight into the community’s

functional characteristics related to, for instance, the biogeochemical processes it

performs [105, 150]. Structural properties of microbial community networks have

been visualized and characterized to infer different biological attributes of the com-

munity such as its resilience to disturbance [5, 11, 47]. However, the interpretation

of global and local network properties from an ecological standpoint, as is done

in macroecology particularly with foodwebs [48, 49, 52, 122], remains difficult

[54, 134]. Inferring and interpreting microbial community networks faces many

challenges some of which are common to all biological network models and others

which are specific to the microcosmos, such as:

1. the selection of a procedure among a multitude of methodologies used to

resolves between taxa [11, 54]

2. the statistical obstacles in assessing the significance of inferred interactions

[16]

3. the lack of standard procedure to analyze the constructed network [16, 54]

4. the difficulty in ecologically interpreting resolved global network structural

properties [24, 54, 88]

5. the difficulty in relating environmental factors to resolved global network

properties [54]

6. the difficulty in ecologically motivating and validating the analysis of local

network patterns [18, 54]

In this section, we motivate the construction of microbial co-occurrence net-

works, describe the possible procedures and pitfalls in their construction and pro-

vide an overview of current microbial co-occurrence network studies and their find-

ings.
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Figure 1.11: Overview of different ecological interactions between microbial
community members. Pairwise interactions can have a positive, neg-
ative or neutral impact on the two participant (from c©Faust and Raes
(2012)).

f

1.4.1 Symbiosis and inter-taxa interactions

Only recent efforts have begun to investigate community structure through the char-

acterization of inter-taxa interactions. These interactions have primarily been re-

solved using co-culture studies where the stability of an artificial community is

tested against the addition and removal of species [113]. Major findings of these

efforts include the mutualistic interactions between microorganisms in which a

metabolic factor produced by one microorganism is utilized by a second and who

then performs a reciprocal service [54, 73, 113, 174]. The different types of inter-

actions, as defined by how they benefit or impair the participating microorganisms

are summarized in Figure 1.11 [54].

These interactions directly influence the composition of a community. Since

environmental factors can affect the abundance of individual taxa (and vice versa),

changes in an environment can have an impact on these interactions. Therefore a

complete model of the system should include interactions between taxa and rela-

tionships between taxa and their environment.
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1.4.2 Microbial network inference

In ecology, the choice of methods used to resolve relationships relies on the as-

sumption that community dynamics can be either stochastic or non random [101,

158]. It is important to note here that Hubbell’s unified theory of biodiversity

proposes that community composition can be explained by random processes af-

fecting the birth, growth and death of taxa [81]. This hypothesis is called “neutral

theory” and has been verified in some ecosystems [33, 81] and contradicted in oth-

ers [101, 104]. Given the evidence of non random and even causal relationships in

microbial communities, we focus on measuring these complex relationships even

though we acknowledge that random processes and stochasticity in general also

plays a role in shaping microbial community structure. Here we use the term re-

lationship to designate association patterns between taxa and their environment

while the term interaction denotes the resolved inter-taxa associations.

These relationships can be quantitatively measured to build networks and model

the community structure. Network inference relies on different quantitative mea-

surements to detect pairwise or complex inter-taxa interactions. For instance, cor-

relation measures assess the similarity in the abundance pattern of microbes: posi-

tive and negative correlations detect co-occurrence and mutual exclusivity, respec-

tively [11, 16, 54]. Methods such as regression analysis and rule association mining

can uncover complex interactions involving 3 or more taxa [54]. Other models have

been adapted to model dynamic interactions that can evolve over time [54]. Here

we focus on pairwise interactions resolved through correlation measures due to its

flexibility in uncovering many different interactions across spatial gradients and be-

cause it is a computationally feasible method to apply to large SSU rRNA datasets,

unlike methods such as rule association mining [54]. Notably, correlation-based

network inference is also used to construct other biological networks such as gene

expression networks [69].

Before a network can be inferred and interpreted from resolved pairwise inter-

actions, many potential pitfalls need to be addressed: normalization bias, similarity

measure bias, and multiple testing issues [16, 54]. The normalization of abundance

patterns on a per sample basis can skew the relative abundance of certain taxa: the

presence of a highly abundant taxon in a few samples can cause the relative abun-
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Figure 1.12: An illustration of microbial network inference through co-
occurrence patterns. A) OTUs whose relative abundance are similar
throughout the sample profile are said to co-occur. B) OTUs whose rel-
ative abundance profile are inversely correlated are said to be mutually
exclusive. C) From a dataset of community composition, a network
can be abstracted by defining OTUs as nodes and co-occurrence and
mutual exclusion interactions as edges [54].

dance of other taxa to be significantly lowered in those samples. In order to avoid

this compositionality bias and to identify correlations which may have been eval-

uated as significant because of skewed abundances, a permutation procedure is

conducted [16, 53, 54]. This procedure helps remove spurious correlations based

on the assumption that permuting the abundance of other taxa and thus varying

their relative abundance shouldn’t affect the predictive power of significant pair-

wise correlations.

Similarity measure bias is caused by the use of particular correlation measures

which may resolve only specific kinds of interactions. For instance, some nonlinear

associations can be detected by Spearman’s correlation coefficient, a rank-based

correlation, but not Pearson’s [148]. In order to maximize the variety of pairwise

interactions measured, we can detect correlations using several distance and cor-

relation measures and by combining their results, as is done in the co-occurrence

network inference software CoNet [53].
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Multiple testing bias is due to the fact that the probability of finding spuri-

ous interactions increases with the number of tests and becomes prominent for a

very large number of tests [4]. Multiple testing correction controls the number of

false-positive interactions and produces a p-value for each interactions whose sig-

nificance under the null hypothesis can then be assessed [54]. Finally, significant

interactions are collected to build microbial community co-occurrence networks

where nodes are OTUs and edges represent co-occurrences or mutual exclusions.

1.4.3 Validating network inference models

Though experimental validation is extremely challenging for uncultiaved microbes

[29], simulation experiments have been used to both validate network inference

methods as well as propose a sampling procedure to produce datasets appropriate

for co-occurrence analysis. Berry and Widder simulated microbial communities

using generalized Lotka-Volterra equations, calculated the resulting community

composition, and inferred microbial co-occurrence networks from the produced

abundances patterns [16]. By varying both experimental and ecological parameters

and measuring the specificity and sensitivity between the simulated communities

and inferred network models they evaluate the conditions under which network in-

ference is an appropriate model to study inter-taxa interactions [16]. Figure 1.13 il-

lustrates the variation in the specificity and sensitivity of the networks models when

varying the number of samples, the correlation measure used, and the abundance

measure used for communities with 100 species [16]. Figure 1.14 demonstrates

how ecological parameters can affect the performance of co-occurrence network

models. In general, experimental parameters that increase the modelling perfor-

mance are the use of several samples, a combination of correlation measures, and

the use of compositionality bias-corrected relative abundances. In addition, sam-

pling designs can help optimize this performance by ensuring a high species rich-

ness and low β diversity.

Finally, these simulations and further theoretical and experimental studies will

help provide a standardized sampling procedure and analytical procedure for build-

ing accurate community networks that can model known and capture novel inter-

taxa interactions.
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Figure 1.13: The effect of experimental parameters on co-occurrence net-
work modelling performance on simulated communities measured us-
ing the sensitivity and specificity of the networks. The experimental
parameters varied were A) the number of samples, B) the correlation
measure used (MI = mutual information score), and C) the use of ab-
solute abundance (AA), relative abundance (RA), or sparCC-corrected
relative abundance (RA-corrected) data, compared for communities
with uniformly- or log-normally-distributed species abundances (from
c©Berry and Widder (2014)).

1.4.4 Current applications of microbial co-occurrence networks

Just as ecological quantitative methods model ecosystems and their relation to their

environment, graph theory measures have been applied to microbial co-occurrence

models to evaluate the community’s inter-connected structure and its relation to

its environment. In particular, network analysis methods have been adapted from

foodwebs studies where interactions between species model trophic relations [89,

105, 138, 150]. The graph theory measures presented in Section 1.1.2 that evaluate

global topological structures have been applied to co-occurrence networks however

interpreting these findings ecologically remains difficult.

Node-based measures such as centrality measures have been used to iden-

tify keystone species: taxa whose presence in the community are essential to its
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Figure 1.14: The effect of ecological properties on co-occurrence network
modelling performance on simulated communities measures using the
sensitivity and specificity of the networks. The parameters varied were
the A) species richness, B) species evenness defined as Shannon’s di-
versity normalized by the maximum entropy of a community, log(q),
and C) the β diversity of sampled sites (from c©Berry and Widder
(2014)).

proper functioning [16, 105, 138]. The current literature which applies methods

from macroecology to study keystone microorganisms has not settled on a method-

ological procedure, in particular which centrality measure to use, to identify key-

stone species in uncultivated communities through co-occurrence networks anal-

ysis. However, network robustness analysis is a method which has shown much

promise in finding an appropriate centrality measure to identify OTUs with inter-

esting topological positions in the network that may be keystone OTUs. Network

robustness is measured by iteratively removing nodes and evaluating the structure

of the network resulting from this removal. The resilience of foodwebs to species

extinction is evaluated this way by measuring the number of secondary extinc-

tions from the iterative removal of species in the foodweb [45, 48, 107, 122, 134].

Network robustness simulations have been applied to microbial co-occurrence net-

works with promising results. For example, network analysis in gut microbiome
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data has revealed that healthy subjects have more robust networks than diseased

subjects [116]. In another co-occurrence network study, robustness simulations

were conducted by removing OTUs using decreasing centrality to attempt to iden-

tify key microbial genera in soils from natural forests and agricultural plantations

[105, 138, 150].

Though community resilience to species extinction can be motivated ecolog-

ically in microbial communities, there is a lack of evidence to support the use

of network robustness simulations on co-occurrence networks to test community

resilience to environmental changes. This motivation gap is a reflection of the

fact that to date no studies have applied network inference methods to study and

compare communities from disturbed and natural environments. However there

is evidence that the community structure captured through network inference may

reflect the presence of disturbance: bacterioplankton communities from a fresh wa-

ter lake demonstrated an increase in species richness and network connectance in

the spring compared to the summer and fall [89]. Since increased topological con-

nectance typically indicates an increase in network robustness [45, 85], and that the

communities from the spring have endured the harsh conditions of the winter [89],

the results of this study suggests that the structure of a microbial co-occurrence

network may reflect the impact of environmental pressures on community com-

position. Therefore such impacts may be measured through network robustness

simulations. Further evidence of environmental changes impacting microbial com-

munity structure through co-occurrence network studies would validate the use of

network robustness analysis which would in turn motivate the identification of key-

stone species using centrality measures.

1.5 Research questions
The following research questions have driven the development and application of

the methods and analytical procedures presented in Chapter 2 and Chapter 3.

1. What visualization design and interactive features are appropriate for explor-

ing biological networks such as microbial co-occurrence networks?

2. What kind of patterns, including associations between network properties
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Figure 1.15: Co-occurrence network visualization and properties for a
decade long time series of bacterioplankton communities in Lake Men-
dota in the United States of America. From spring to autumn, the di-
versity and richness of the community increased while the complexity
of the inferred network decreased (from c©Kara et al. (2013)).

and community biotic and abiotic factors, can be resolved in microbial co-

occurrence networks? What structural or functional features do these asso-

ciations imply? At what scales, global or local (i.e. taxonomic), do these

patterns and associations occur and are they conserved across different geo-

graphical locations or environments?

3. How can the exploration of co-occurrence networks enable the identifica-

tion of global and local community structures such as microbial keystone

species? What is the inferred or hypothesized relationship between the pres-

ence of these structures and the community response to change in environ-

mental factors?

4. Do the characterized global and local patterns resolve both ecological con-

served principles that are shaping the community and the functional roles of
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community structures, such as key microbial species, that are driving it?

1.6 Research overview
Understanding the organization of microbial communities is an important step to-

wards gaining predictive power in microbial ecology. This thesis tackles this chal-

lenge by studying microbial community structure and stability across different ge-

ographic locations using SSU rRNA sequences and network analysis.

Chapter 2 describes the design of Hive Panel Explorer, a data-driven, interac-

tive and explorative network visualization. Its design is formulated to appropriately

adapt to the high dimensionality, complexity and size of biological networks. Its

effectiveness in revealing known and novel topological and data association pat-

terns is tested and demonstrated on the C. elegans connectome.

Chapter 3 attempts to provide a standard ecologically driven analysis of micro-

bial co-occurrence networks which model the inter-connected communities from

the LTSP project. In particular, the robustness of networks obtained from soil com-

munities that have undergone different levels of organic removal will be measured

to evaluate the applicability of robustness simulations on microbial co-occurrence

networks and to assess the effect of disturbance on community structure. Further-

more, robustness simulations can help identify individual taxa with central posi-

tions relative to the community’s structure. These taxa’s soil profile and taxonomy

will then be characterized to evaluate their role in the community. In sum, the

ensemble of network analysis conducted on the LTSP dataset has the potential to

reveal patterns within and between locations and taxonomic groups and give in-

sight onto the functional roles of individual taxa.

Finally, Chapter 4 concludes with a discussion of the assumptions and short-

comings of the current visualization and analytical methods outlined in this thesis,

and lays out future work and improvements to Hive Panel Explorer and the study

of microbial community structure through network analysis.
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Chapter 2

Hive Panel Explorer: an
interactive visualization tool to
explore topological and data
association patterns in large
networks

Networks are used in a variety of fields to relate topological structure to system

dynamics and function. Network analysis is often motivated and complemented by

network visualization. However, the visualization of large networks is challenging

due in part by the abundance of data needing to be visually organized and the dif-

ficulty in finding a suitable network layout to resolve patterns associated to system

properties. Hive plots provide a general, consistent and coherent rule-based visu-

alization alternative to force-directed layouts and are appropriate for assessing and

comparing structural patterns within and between large networks. Despite their

flexibility, hive plots can be a daunting visualization technique given, for exam-

ple, the great number of possible combinations of layout rules that the user must

choose from. Here we present HYPE, a visualization idiom and a D3 based tool

consisting of a grid of hive plots, whose design follows the visualization mantra
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“Overview first, zoom and filter, then details on demand”. HYPE aims to make hive

plots accessible to the broader scientific community by expanding on the original

design and providing a data-driven procedure to construct hive panels and explore

large networks interactively. HYPE allows the user to discover topological and data

specific patterns across several dimensions simultaneously. Here, we evaluate the

different features of hive panels and outline the navigation of a system through

its network using HYPE’s interactive features by exploring and characterizing the

structure of the C. elegans neural connectome. HYPE is available for download on

Github under the GNU license: https://github.com/hallamlab/HivePanelExplorer.

2.1 Introduction

2.1.1 Network science and visualization

Network approaches are widely used to study relationships between the structure

and the function of a system in the social, biological and technological sciences

[118]. Networks are composed of nodes and the relationships between them called

edges. For instance, nodes represent people in social networks [162] and species

in foodwebs [45, 122], while the edges represent their social and trophic interac-

tions, respectively. modelling the relationships of a system, such as a social or

ecological community, using networks can describe and characterize the system’s

structure and dynamics [68, 117, 117]. Network measures such as degree dis-

tributions, modularity and connectance, can help formulate associations between

elements of structure to notions of function in the system [68, 117, 118]. Several

review papers provide an overview of different network analysis and graph the-

ory measures [117, 118, 120] some of which are briefly described here and are

illustrated in Figure 1.1.

Visualization idioms are developed to accomplish different visualization tasks

[115, 147]. Current network visualizations are designed to present, summarize,

annotate, illustrate, investigate or explore the system modelled by the network

(Figure 1.5). From force-directed layouts to circular layouts, each design offers

insights into different structural elements of a network and the system it represents

by highlighting different topological features. For example, force-directed layouts
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give relative positions to the nodes encoded as circular marks and edges encoded as

links (Figure 2.1A) to show paths (a set of successive edges connecting two nodes)

and modules (a subnetwork with increased connectivity within compared to with

the rest of the network) [64, 115]. In contrast, adjacency matrices are appropriate

visualizations for presenting modules and cliques (a fully interconnected group of

nodes) [56, 115]. Many other network visualizations exist such as circular layouts

[112] and spectral layouts [65]. These visualizations can help researchers infer

system structure and dynamics through network properties. For example, modules

can be characterized to assess the biological and functional properties of a group

of interacting proteins in protein-protein interaction networks in the context of in-

teractome research [87, 88, 102]. Similarly, cliques are identified and analyzed

to gain insight into the tightly knit social circles in the context of social networks

[162]. Network visualizations such as force-directed layouts and adjacency matri-

ces were designed to present such patterns in the network [65, 115, 147] but they

are limited in the types and number of patterns they resolve.

In order to go beyond presenting known patterns and reveal new ones, visual-

izations need to be designed to permit an exploration of the system. The discovery

of topological features and patterns can help drive a quantitative analysis of the

network and formulate hypotheses on a system’s structure and function [118, 159].

The discovery process can be accomplished using visualizations that have been

designed for data exploration [124–126, 131, 147]. However, the pitfalls of these

visualization schemes demonstrate that current network visualizations are not de-

signed to facilitate the exploration and discovery of novel global and local patterns

in complex systems [96, 115] Here, we provide an overview of current visualization

pitfalls, introduce hive plots as a flexible and versatile network layout and describe

how to expand hive plots’ potential to build a data-driven interactive visualization

for network exploration.

2.1.2 Current network visualization pitfalls

As models of complex systems, networks come in all shapes and sizes, from small

networks with a few to a hundred nodes to large networks with hundreds to thou-

sands of nodes and with each node or edge having a virtually unlimited number of
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data properties. When scaling up to large networks and to higher levels of mul-

tivariate data complexity, effective network visualization becomes an increasingly

challenging task. A suitable visualization must be flexible enough to enable the

discovery of both global and local patterns across node and edge properties.

Current approaches do not scale effectively when rendering large networks.

Specifically, the amount of data displayed shadows its interpretation, particularly

in the case of force-directed layouts, which suffer from data occlusion and the high

likelihood of pattern misinterpretation [96, 115]. Furthermore, overlaying addi-

tional information about the system by colouring or varying the sizes of nodes and

edges given data properties, is often impossible without further cluttering the dis-

play. Beyond scaling additional visualization pitfalls have been demonstrated. For

example, when using hierarchical layouts, finding the location of a deleted node by

comparing two visualizations of the network, with and without the missing node,

can be a difficult task [96]. In the case of algorithmic-based visualizations, these

fallacies stem from the absence of a coordinate system for node positioning. For

instance, in force-directed layouts node positions are simulated based on the ar-

rangement of edges connecting them and node positions can change from one sim-

ulation to another. These variations can cause inconsistencies between two layouts

of the same network, which can lead to different interpretations of the layout. In

addition, since the layout is built based on a heuristic algorithm, this visualization

is not suitable for the task of visually comparing different networks. These issues

make it difficult to explore and interpret network visualizations. Finally, current

network visualizations include a lack of generality (applicable to different types of

networks), a lack of flexibility (can support different purposes), and their inability

to complement other displays [37]. While layouts based on heuristic algorithms are

not suitable for large networks, a rule-based layout includes some of the features

necessary for building an interpretable, general, flexible and comparable network

visualization.

2.1.3 Hive plots

Krzywinski developed hive plots as an alternate network visualization to force-

directed layouts, circular layouts, hierarchic layouts, etc. [96]. Hive plots are a

47



rule-based layout that attempts to provide a coherent and interpretable network

visualization [96] while leaving several visualization channels such as colour, size

and rule choice, to encode additional data properties. Hive plot’s design scales

to large networks as it handles visual occlusion and other potential visualization

design pitfalls by positioning the nodes using a coordinate system [96].

The nodes and edges’ data properties and network measures are used to orga-

nize the nodes and edges in the coordinate system. A link is drawn between two

circular marks if the nodes represented by these marks have an edge connecting

them in the network (Figure 2.2). The nodes are placed onto circularly arranged

axes and edges are drawn between nodes using Bezier curves (Figure 2.2). The

user defines i) a rule designating a node’s axis assignment and ii) a rule designat-

ing a node’s position along an axis, as illustrated in Figure 2.2. These two rules

are chosen using node properties. While axes are used to group nodes with simi-

lar properties, node positioning along the axis distributes nodes according to node

property values. This coordinate system has many similarities with parallel coor-

dinate plots [84, 96], only in hive plots the axes are organized in a circular fashion

and the nodes are not represented on all axes but are assigned to a particular axis.

Any node property indicating the node’s position in the network (i.e. degree,

clustering coefficient, betweenness value, etc.) or the node’s role in the system

(i.e. gender in social networks, expression value in gene networks, protein family

in protein-protein networks, neuron cell type in connectomes, species diet in food-

webs, etc.), can be used to construct rules designating axis assignment. A visual

overview of node network measures is presented in Figure 1.1. In the social net-

work displayed in Figure 2.1, the individuals are assigned to the hive plot’s axes

according to their gender (boy, girl or alien) and are positioned along their respec-

tive axis by the number of relationships they have in the network i.e., degree. This

layout allows the viewer to investigate relationships between gender and the de-

gree of an individual in the social community and quickly answer questions such

as “Is the individual with the most relationships a boy, girl or alien?”. The hive

plot in Figure 2.1 shows that aliens generally have a high degree (more social re-

lationships than boys and girls) and that the person with the highest degree is an

alien called Zans (pattern 1). An even more striking pattern is that boys and girls

share no connections (pattern 2) and that all boys who share relationships are en-
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emies (pattern 3). Resolving the same patterns in the force-directed layout would

involve searching the layout and counting degrees and edge types. Thus, Figure

2.1 demonstrates that certain patterns are often more difficult to discern using the

force-directed layout compared to a hive plot, even for such a small network.

Difficulty in pattern resolution increases with network size and system com-

plexity. Hive plots facilitate pattern resolution by projecting the network using

node properties to create a consistent, interpretable and flexible layout that is ap-

propriate for interactive network exploration.

2.1.4 Hive Panel Explorer

Despite the fact that hive plots were demonstrated to satisfy the requirements for

an effective aesthetic layout (i.e. are general, flexible, reproducible, comparable

etc.) [37] and to be an appropriate visualization for networks [96], they have been

criticized for their lack of accessibility. Specifically, though the coordinate system

ensures that the plot can be interpreted, users have had difficulties understanding

how to harness the versatility of hive plots for their particular networks and research

questions. HYPE attempts to address this criticism by providing the user with a

data-driven approach to constructing hive plots and interactive methods to explore

them.

Hive plots are appropriate for visualizing networks of all types: weighted or

un-weighted, directed or undirected, complete or not. Several hive plots have been

used in scientific literature to describe gene expression networks [130], splicing

patterns in RNA sequencing data [172], and neural connectomes [153]. In each

case, the users have chosen the rules to assign and position nodes from a large set

of combinations to present the dimensions of the system they were interested in.

The layout’s flexibility and adaptability empowers the user to explore both network

specific and data specific properties. At the same time the user must determine

optimal assignment and positioning rules to produce a single hive plot, potentially

discouraging the use of different combinations.

We have developed HYPE to produce a matrix layout of multiple hive plots

called a “hive panel” [96]. This design circumvents the need to determine the opti-

mal set of rules and enables the user to explore multiple combinations of network
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Figure 2.1: A comparison of a force directed layout and hive plot of a social network. A) Aliens, boys and girls with
relationships are laid out to minimize node overlay and edge crossing. B) A hive plot of the same social network
shows 3 friendship patterns. Friends were grouped onto axes by gender and were positioned along axes by degree.
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measures and data dimensions. HYPE also provides different data transformations

to scale the layout of nodes and edges according to the attribute values used to

place them. We argue that visualizing and exploring multiple projections of the

network in a coordinated layout facilitates the discovery of topological and associ-

ation patterns in the network. Interactive features such as colouring, highlighting,

look-ups and selective filtering enable the exploration of the system. Additional

colour encoding of the circular marks and links, representing the nodes and edges

respectively, draws attention to certain nodes or edges to both facilitate the network

exploration and produce publication ready figures. To our knowledge HYPE is the

first idiom and tool to utilize hive panels and to provide interactive features as an

integral part of its design to visually present and explore networks.

Here we rationalize HYPE’s visual idiom as an appropriate visualization for

network exploration using a general visualization paradigm [115] and we motivate

its interactive features using Shneiderman’s visualization mantra and associated

methodology [147]. We then provide guidelines for building informative panels,

exploring them, and finding known and novel patterns in the network. Finally

we benchmark HYPE on data from the C. elegans connectome to demonstrate it

capacity to find meaningful relationships in model systems.

2.2 Methods

2.2.1 Visualization idiom and design

HYPE’s design is based on a matrix of hive plots and was developed with net-

works in mind though any dataset with relationships between data items can be

appropriately visualized in a hive panel. Table 1 outlines the general design of

HYPE according to a general visual paradigm and language [115] and describes

data transformation, visual network encoding, visualization tasks, and the size of

the dataset it is appropriate for.

Hive plots were designed to permit the organization of nodes according to node

properties. From here on we denote an attribute as either a network property such

as degree (number of edges a node has) or as a node property that is inherited from

associated multivariate data. These attributes can be categorical (e.g. source or
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sink node in directed networks, neuron cell type in connectomes, etc.) or quanti-

tative (e.g. node’s clustering coefficient, age of an individual in a social network,

etc.). Using these attributes, the nodes can be grouped and sorted before they are

organized on the axes.

Typically, a layout of 3 axes is chosen to allow for edges between nodes on

any axis to be drawn without crossing over another axis. When using a layout with

4 or 5 axes, HYPE doesn’t draw edges between non-neighbouring axes as these

curves would affect the interpretability of the visualization. In order to view edges

between nodes that have been assigned to the same axis, a mirror image of each

axis is produced with edges draw between reflected nodes. Figure 2.2 presents a

skeleton of this rule-based visualization with the two layout schemes: single axes

(Figure 2.2A) and doubled axes (Figure 2.2B).

Each hive plot visually encodes node attributes and thus by comparing multiple

hive plots one can assess associations between pairs of node attributes simultane-

ously. To facilitate this comparison we construct a hive panel, a set of multiple

hive plots organized on a grid. This visualization then becomes a matrix type lay-

out where each column denotes the use of a particular axis assignment rule and

each row denotes the use of a particular axis positioning rule (Figure 2.5). Since

multiple node attributes are used as layout rules, different visual projects of the

network onto the axes are presented and compared.

2.2.2 Designing a hive panel

HYPE enables users to construct hive plots and panels using a data-driven approach.

Here we present the different features of HYPE as well as how to best utilize them

depending on the type of system properties being explored.

Choosing assignment and position rules.

In a multivariate dataset, nodes can have numerous categorical and quantitative

properties that can in turn be used as one of the two plotting rules. Certain node

properties are more suitable as axis assignment rules than axis position rules and

vice versa, as summarized in Table 1. For example, a categorical attribute with

three categories is most suitable to group the nodes by their attribute onto the 3
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Table 2.1: HYPE’s visual design idiom

Idiom Hive Panel Explorer

The data Networks where nodes and edges have attributes
which can include calculated network properties
(ordinal, quantitative and categorical properties)

What?
Deriving the data

1. Calculate network properties (i.e. degree)
2. Organize nodes by desired attributes into groups
3. Normalize/scale node attributes

Data attribute Mark or channel

Nodes Circle
Edges Link
Node attributes
(mostly quanti-
tative)

Position on axis

Node attributes
(any type of at-
tribute)

Grouping on axis

How? Encoding the data

Node or edge
attribute

colour, visibility

Actions Targets

Present and
summarize

Distribution of nodes properties

Discover Topology, outliers and patterns
Explore Characteristics of topology, out-

liers, and patterns
Why? Visualization tasks

Compare The position of grouped nodes
and edges in different hive pan-
els of one network. Topologies
and distribution of node proper-
ties between two networks.

Scalability
Nodes: dozens to thousands
edges: hundreds to few tens of thousands.
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Figure 2.2: A schematic layout of single and double axis hive plots. A) Nodes are grouped onto and positioned along
three axes. B) Double axes can be used to view edges between nodes grouped on the same axes.
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axes. However, categorical attributes with several categories (greater than 3) can

be used as axis positioning rules in which case they are ordered alphabetically and

positioned accordingly along the axis (Figure 2.3B). On the other hand, quantita-

tive attributes can be used for either rules: while axis assignment rules organizes

the nodes into low, medium and high values of this attribute (Figure 2.3A), axis

position shows the distribution of nodes given this attribute in more detail (Figure

2.3). Using these rules of thumb, a panel can rapidly be constructed. If an attribute

is not suitable for either plotting rule, or if the user wishes to compare this attribute

across all hive plots, then it can be used to colour the nodes. Taken together, any

node attribute can be presented in three ways: as an axis assignment rule, as an

axis positioning rule or as a colouring rule.

Data transformations through partitions and scales.

In order to adapt to different distributions of node quantitative attributes, the at-

tribute’s values can be mapped to plotting positions using a linear, even or log-
arithmic partition for nodes’ axis assignment and a linear, rank or logarithmic
scale for nodes’ axis positioning (Figure 2.3A and 2.3B). If unspecified, a linear

partition or scale is used for either plotting rule. An even partition determines the

cut-offs to evenly distribute and assign nodes to an axis so that all axes contain the

same number of nodes (give or take one node) (Figure 2.3A). Rank based scales

are used for axis positioning to ensure that no two nodes overlap, even if they have

the same attribute value: if “degree” is the axis position attribute and three nodes of

have a degree of 5 then they are placed in succession and in an arbitrary order along

the axis (Figure 2.3B). A logarithmic partition or scale is best suited for attributes

that are distributed exponentially. If a user is interested in displaying all node at-

tribute values, without overlap, than a rank or even scale should be used. On the

other hand, a linear or logarithmic partition or scale are appropriate for showing

outliers, nodes whose attribute values differ drastically from the other nodes’ val-

ues. The choice of different partitions or scales allows the user to construct panels

in a data-driven manner.

Known network topologies are best displayed using specific data transforma-

tions. A linear partition or scale is appropriate when plotting nodes by degree in

55



Categorical 

A      A     B     B      B      B     C

A

BC

Categorical Linear

1   2    3   4   5   6    7   8   9   10

1 10

 2  2  3  5 6  6  7  7  7   8  9 10

Rank

1 10

low degree nodes
 (1 < x < 3)
medium degree nodes 
 (3 < x < 8)
high degree nodes
 (8 < x)

po
w

er
-l

aw

ra
nd

om

A
D

eg
re

e 
fr

eq
ue

nc
y 

P(
k)

degree (k)

Power-law network

Random network

302

D

B

1-4

5-78-10

Linear

1 104 7

Even density 
1-3

4-67-10
1 103 6

same number of 
nodes on each axis

1-2

3-56-10

Logarithmic 

1 102 5 1         2        3      4   5  6 7 8910

Logarithmic

1 10

A B C

C

Node attributes
A B C

Multiple nodes are shown 
to illustrate overlap

Power law network
   1000 nodes, 2173 edges

Random network
   1000 nodes, 2173 edges

Multiple nodes are shown 
to illustrate overlap

(Optimal)

(Optimal)

Axis Assignment by degree

Li
ne

ar

Linear

0-3

4-78-11

Lo
g

0-3

4-78-11

Log

0-1.34

1.35-4.514.52-12

0-1.34

1.35-4.514.52-12

Axis Assignment by degree

A
xi

s 
Po

si
ti

on
 b

y 
de

gr
ee

Li
ne

ar

Linear

1-101.32

101.33-201.65201.66-302

Lo
g

1-101.32

101.33-201.65201.66-302

Log

1-5.7

5.71-43.9944-302

1-5.7

5.71-43.9944-302

Figure 2.3: An overview of the possible partitions and scales driving node assignment and positioning. A) A schematic
of the four possible axis assignment partitions. B) A schematic of the four possible axis positioning scales. C)
The degree distributions of a random network a power law network with the same number of nodes and edges. D)
Hive panels of the random and power law networks showing the efficacy of different partitions and scales used to
organized nodes based on their degree.
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networks with a binomial degree distribution, such as random networks. A log

scale is better suited for networks with an exponential degree distribution, such

as power-law networks. Figure 2.3C shows the degree distributions of these two

common network types and the optimal choice of partition and scale for drawing

these networks in hive plots is illustrated in Figure 2.3D. Determining the appropri-

ate plotting method can both facilitate the interpretation of node positions as well

as avoid having circular marks and links overlapping. When used appropriately,

axis assignment partitions and position scales help maximize the total visual space

occupied by the circular marks.

Once assignment and position rules have been chosen along with their partition

scheme and scales, the user obtains a hive panel with each hive plot providing dif-

ferent visual projections of the system. Though performing successive refinements

of the initial layout can be tempting, preliminary exploration of the network with

the first constructed panel is encouraged to guide future iterations.

2.2.3 Navigating a hive panel

The layout and interactive features of the HYPE allow the user to explore their

data by following Shneiderman’s visualization exploration mantra “Overview first,

zoom, filter, then details on demand” [147]. The organization of the layout ful-

fills the first two components by creating an overview of the network and allowing

the user to “zoom in” on a subset of the hive plots. Once the layout is selected,

there are five ways to interact with the system using HYPE: colouring, highlight-

ing, searching, selecting and filtering. colouring and filtering effectively increase

and decrease the visual salience of a node or edge, respectively. A user can then

visualize “details on demand” in three ways: searching or highlighting a single

node or a edge, and selecting multiple nodes or edges. An organization of HYPE’s

interface and features is illustrated in Figure 2.4.

Overview. A large panel size such as a 4x4 hive plots provides an overview

of the network: the 16 unique hive plots present different visual projections of

the system against different node attributes. Quickly, the user can assess global

patterns in the network such as particular degree distributions apparent from the

layout of nodes and edges in a Degree (linear) by Degree (linear) or a Degree (log)
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Figure 2.4: An overview of HYPE’s interface.
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by Degree (log) (Figure 2.3D).

Zooming. Starting with a large panel, one can reduce the amount of data shown

by decreasing the number of hive plots. Since the size of the visualization area

doesn’t decrease, one effectively zooms in on the hive plots remaining, which be-

come larger in size.

colouring. Nodes and edges can be given visual emphasis by colouring them

according to their data or network attributes. Simple equality and inequality ex-

pressions, such as “equal to”, “greater than”, and “less than”, are used to colour

nodes and edges by quantitative attributes (Figure 2.4). The position of the coloured

nodes or edges in each hive plot can then be compared. colouring is especially use-

ful to show or compare the position of particular groups of nodes in each hive plot

by assigning a colour to each group. This feature thus permits additional compar-

isons across network and data properties.

Filtering. While colouring can be used to draw attention to nodes and edges,

filtering can be used to hide nodes and edges that are not of interest and that may be

cluttering the display by sharing positions in the layout with other nodes. Hiding

these nodes and edges may facilitate the resolution of hidden patterns. Given their

attributes, nodes and edges can be filtered using two modes “keep” (hide all but

the selected nodes or edges) and “hide” (hide the selected nodes or edges). When

nodes are filtered, the links encoding their edges are also hidden.

When nodes or edges are coloured or filtered, the number of objects and the

action chosen is shown in the reveal box in the top right of the interface. This in-

formation helps the user assess how many nodes or edges have the attribute values

selected and have received a particular visual encoding. However, it is important to

note that in a double axis hive plot certain nodes and edges are drawn twice and in

single axis hive plot certain edges are not drawn at all. In other words, the number

of nodes or edges coloured or filtered using the colouring or filtering rules may not

be equal to the number of circular and link marks that have been visually encoded.

The reveal box relates the number of selected nodes or edges independently of their

visual encoding.

Highlighting. By hovering over nodes or edges, the name of the mark and the

value of its attributes used for the layout rules are revealed in a tooltip window

(Figure 2.4). This feature allows for rapid identification of nodes or edges given
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their position in a plot. In particular, highlighting can be used to identify outlier

nodes and edges.

Selecting. Clicking on a node or edge will cause each instance of the corre-

sponding visual mark to increase in size and in opacity. This selection creates a

“pop out” effect in the entire panel (Figure 2.4) allowing the user to compare the

position of a node or edge in different hive plots. In addition to being visually

revealed in the panel, the select node or edge’s attribute values are shown in the re-

veal box (Figure 2.4). Several circular marks and links can be clicked successively

to select multiple nodes and edges. Once one of the selected marks is clicked on

again, all of the selected marks become “unselected” and return to their normal

size and opacity.

Searching. Nodes and edges can also be “searched” using the search box in the

top right corner of the interface. Identified nodes will be selected and “popped out”

in the same way as clicking on the node would (Figure 2.4). Searching for a node

is useful when the user is interested in locating a particular node whose position in

the hive plots is not known.

Examples of the different applications of these seven features to present a net-

work, explore its structure and generate hypothesis are demonstrated on the C.

elegans connectome, a well characterized and studied neural network.

2.2.4 HyPE as a web tool

The HYPE tool was built using D3 [20, 21], JavaScript [133] and Python [142]. D3

was used for building and rendering the data-driven interactive graphics. D3 was

an ideal candidate to build HYPE because it produces scalable, interactive, data-

driven and web-based graphics [20]. Mike Bostock’s hive plot plug-in was used

to generate the positioning of the nodes and edges and its license is included in

HYPE’s documentation. All scripts, a wiki and tutorials are available on Github

under the GNU license: https://github.com/hallamlab/HivePanelExplorer.

HYPE takes as input a tabular file in .csv format to facilitate the addition of node

and edge properties. While many file formats have been developed to encode net-

works, these can easily be converted to .csv files using export functions in software

such as Gephi [15] and Cytoscape [146].
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Once the hive panel is explored and patterns are identified, users may want to

use the panel to present their findings. The export functionality allows the users

to obtain publication ready figures in a SVG format to allow for further editing

in vector graphics manipulation software. In addition, the set of colouring and

filtering rules applied can be exported in text format to help users keep track of the

visual encodings they used while permitting figure reproducibility.

2.3 Results: the structure of the C. elegans connectome

2.3.1 The system

C. elegans is a model organism whose nervous system can be serially reconstructed

using imaging technologies to provide a comprehensive wiring diagram of neu-

ronal connectivity over developmental time [25, 164, 166]. Moreover, the anatomi-

cal location, the developmental history and the functional role of all neurons within

the nervous system is recorded in public databases such as the Worm Atlas [8].

The C. elegans nervous system can be modelled with nodes representing neurons

and edges representing synaptic connections. The resulting network is commonly

called a connectome [25]. The C. elegans connectome is a logical and informative

connectomics model that has been extensively studied using both experimental and

quantitative modelling approaches [23, 71, 72, 159, 161, 163, 165].

Several studies have applied network visualization and graph theory measures

to analyze different properties of the connectome including wiring efficiency and

cost [34], the relation between connectivity and neural development [159], the rich

club [157] and small world structure [163]. Here we use HYPE to explore the C.

elegans connectome. We demonstrate the application of HYPE’s data-driven design

and interactive features to reveal both known and novel properties of the nervous

system.

2.3.2 The network

The connectome studied here is that of a hermaphrodite worm with 279 somatic

neurons and 2,287 synaptic connections. The initial construction, successive re-

finements and limitations of this dataset were previously described by [159] and
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several studies have analyzed the resulting network [157, 159]. The nodes (neu-

rons) and edges (synaptic connections) have categorical and quantitative attributes.

Notably, the neurons’ location along the posterior-anterior axis (head to tail) of

the worm has been measured. Neurons come in three types: motor neurons con-

nect muscular cells to the nervous system, sensory neurons connect sensory cells

to the nervous system, and interneurons connect two neuronal cells. Synapses

come in two types, chemical or electrical, which correspond to the signal be-

ing transmitted using either neurotransmitters or an electric potential, respectively

[13, 25, 164, 166]. The direction of individual synaptic connections was not en-

coded in this visualization. The connectome is a complete network (all pairs

of nodes are connected by some finite path) and has a small world structure (a

combination of a high average clustering coefficient and low average path length)

[159, 163].

2.3.3 Constructing the hive panel

The hive panel in Figure 2.5 was constructed using combinations of the neuronal

attributes described above and different network properties as axis assignment and

positioning rules. Since there are exactly three types of neurons (motor, sensory

and inter), neuronal cell type can be used to group neurons onto axes as an axis as-

signment rule. Somatic position is a quantitative attribute that could be investigated

using an axis position rule. Other node attributes, such as cell class and associated

neurotransmitter, are all categorical attributes with several possible values and thus

are best investigated using colouring and filtering rules once the panel is built.

In previous studies, the C. elegans connectome was shown to be a scale-free

network with a power-law degree distribution [159, 163]. We therefore opted for

using a logarithmic scale to position the nodes by degree. This attribute will allow

us to evaluate a possible relation between the number of connections of a neuron

and its role in the connectome. To compare the degree of nodes to other attributes

that will also be used as a position rules, we select degree as both an axis position

and assignment rule. We use an even partition to distribute the nodes onto axes

equally.

There are many other network properties we can explore. In particular, previ-
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ous studies have found significant numbers of three node cliques, or triangles, in

the C. elegans connectome [159, 166]. To investigate patterns relevant to neuron

cell clusters we include clustering coefficient as a plotting rule. Since we are more

interested in the magnitude of the clustering coefficient (high or low) versus the

absolute value, we select clustering coefficient as an axis assignment rule. In order

to focus on nodes with a high clustering coefficient, we use a logarithmic partition.

Rich club structure [157] and wiring efficiency [34] studies have demonstrated

that the C. elegans connectome has a relatively efficient structure: neurons are

strategically connected and positioned along the worm’s posterior-anterior axis to

minimize the wiring cost (relative to the total number of synapses) of each neuron

and synapse [34, 157]. In particular, the position and connectivity of interneurons

suggest that they play the role of information highways in the connectome [157,

159]. Accordingly, we expect interneurons and their connections to decrease the

path length needed to connect two neurons and therefore to have high betweenness

centrality values. Because we have determined three axis assignment rules (cell

type, degree, clustering coefficient) and two axis position rules (somatic position

and degree), we choose betweenness centrality as our third axis positioning rule to

complete the example.

Using our knowledge of the system, we chose 2 system properties and 3 net-

work properties to construct a 3x3 hive panel and explore the network (Figure 2.5).

Unless specified, we used a linear partition or scale for the layout rules.

2.3.4 Exploring the C. elegans hive panel

In the following section, bolded key words express the use of different interactive

features. When focusing on individual hive plots in Figure 2.5, these key words

are designated using the following plotting rules: Assignment rule by Position rule.

Before initiating exploration of the network, we colour neurons by cell type to

compare their distribution in the panel. Observed patterns are interpreted in the

Discussion section.
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Overview of cell types and positions

Looking at the whole panel, one can discern the presence of edges connecting

nodes from all axes in each hive plot. For instance, the Cell type by Somatic po-

sition hive plot shows that all three types of neurons share connections within and

between types. If sensory neurons and motor neurons weren’t connected through

synapses, we wouldn’t see any edges between the two axes where each type of

neuron is represented.

Looking at the somatic position of the nodes by their position on the axes in

the Cell type by Somatic position hive plot, we observe that sensory neurons and

interneurons occur at the head, tail and at few discrete positions along the posterior-

anterior axis whereas motor neurons cover the whole length of the worm. Effec-

tively zooming in by only showing Cell type by Degree hive plot, we can get a

better look at the distribution of neurons across the length of the worm. Looking

at the distribution of synapses in this hive plot, we find a high density of synaptic

connections between neurons located in the head and between neurons located in

the tail. Furthermore, many synaptic connections between motor neurons start and

end at similar somatic positions. These observations are consistent with a study by

Varshney and colleagues who illustrated the same patterns using an adjacency ma-

trix [159] and points to coordination between adjacent motor neurons to facilitate

sinusoidal movement.

In contrast, interneurons connect to each other and to sensory or motor neu-

rons from varying and often opposing somatic positions (i.e. head to tail and tail to

head): interneuron-interneuron, interneuron-motor and interneuron-sensory synap-

tic connections link nodes near the center of the hive plot and nodes near the outer

edge. This pattern suggests that interneurons connect physically distant neurons

in the connectome. To further characterize the connectivity of interneurons and

infer their role in the system, we look at another network measure: betweenness

centrality.

Interneuron connectivity

A node’s betweenness centrality measures the importance of its position in the

network relative to other nodes. As illustrated in Figure 1.1C, nodes whose con-
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nections reduce the paths between other nodes or whose absence would create dis-

connected subnetworks have a high betweenness centrality value. We can observe

the centrality of neuronal cell types in the Cell type by Betweenness Centrality hive

plot. We first notice that on average interneurons have higher centralities than sen-

sory and motor neurons. Using the tooltip we can find the maximum betweenness

centrality value per cell type: sensory, motor and interneurons have a maximum of

value of 0.028, 0.036 and 0.103, respectively. Wiring efficiency studies have found

that interneurons and their synapses reduce the path length between other neurons

[34, 159]. The hive panel resolves this pattern by illustrating how interneurons con-

nect physically (across the worm’s length) and topologically (across the network’s

path structure) distant nodes.

Clustering coefficient and connectivity patterns

The clustering coefficient expresses the connectivity between neighbours: if all

of its neighbours are connected than a node has a clustering coefficient of 1. We

can observe clustering between neuronal cell types in the Clustering coefficient by

Somatic position hive plot. Here neurons that were grouped on the axis with high

values (i.e. whose neighbours are connected at a rate of over 54%) are primarily

motor and sensory neurons in the body and the tail. Using the tool tip we can

quickly survey their synaptic connections to low and medium clustering coefficient

neurons on the other axes. If we look at the Clustering coefficient by Degree hive

plot, we notice that these neurons have medium to low degree and share synapses

with medium to high degree nodes. For example, using the tool tip we find that the

motor neuron DB06 has a degree of 7, a clustering coefficient of 1 and is therefore

part of a 7-node clique. These highly connected cliques are characteristic of a

small world network [118, 163]: a significant small world coefficient implies that

the path from any two nodes is relatively short despite the large number of nodes

in the network.

We can colour the neurons with clustering coefficient of 1 using alternative

colours to those used for neuronal type: the reveal box indicates that we have

coloured 9 neurons. These high clustering coefficient neurons are thus part of

cliques whose other members have high degrees and are very connected in the
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network. This topological pattern suggests that these motor and sensory neurons

might relay signals from sensory cells or body wall muscles to the rest of the con-

nectome. Evaluating the direction, strength and the type of synapses between the

members of the clique could further resolve this pattern.

Using filtering to partition the system and study subnetworks

To further understand differences between neuronal connectivity patterns along

the anterior-posterior axis, we filter the head neurons (somatic position < 0.2, 140

nodes) and the tail neurons (somatic position > 0.65, 51 nodes). Filtering only the

head neurons, we notice that all of the interneurons with degree greater than 43

are missing from the Cell type by Degree hive plot. Filtering only the tail neurons,

we observe that a few low and medium degree interneurons and one high degree

sensory neuron and motor neuron with high betweenness centrality are missing.

We can identify these neurons using the tooltip and then selecting them. The

sensory neuron is identified as PQR (degree = 54, betweenness = 0.028) involved

in several processes including aerotaxis and social feeding [70]. The motor neuron

is called DD06 (degree = 50, betweenness = 0.036) and innervates dorsal body

walls muscles along with DD1-DD5 neurons [8, 177]. Filtering out both head and

tail neurons, we notice that many medium degree nodes with high betweenness

centrality remain. These observations suggests that high degree interneurons play

important roles relaying signals at the head of the worm, and a few medium to high

degree interneurons along with one key sensory and one key motor neuron permit

centralized signalling in the tail.

Characterizing synaptic connections

Next, we explore network edges by colouring them to gain insight into synaptic

connections and their distribution in the network. We use 2 distinct colours to

distinguish between electrical and chemical synapses. We notice that two bundles

of electrical synapses seem to be connecting several neurons to two interneurons

with high degree. Selecting these neurons reveals that they are interneurons AVAL

and AVBL. These are command neurons responsible for forward and backward

locomotion, respectively [8, 177]. We can locate these nodes at the head of the
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worm in the Cell type by Soma position plot and assess that they have high degree

betweenness centrality from the Cell type by Betweenness centrality hive plot, as

expected.

Next we study the weights of synapses, which simply represent the number of

synaptic connections between neuron pairs. To do so, we filter out the synapses

with low weights (weight ≤ 10) (Figure 2.6). Looking at the information in the

reveal box we know that we have coloured 51 synapses. In the Cell type by So-

matic Position and the Cell type by Degree hive plot we notice that these synapses

primarily connect low to medium degree motor neurons (node degree between 2

and 21) (Figure 2.6A). To further assess the connectivity of these motor neurons,

we filter out sensory neurons and interneurons and their edges, so that only heavy

weighted synapses between pairs of motor neurons are revealed (Figure 2.6B).

Looking at the Cell type by Degree hive plot and the Cell type by Somatic position

hive plot, we observe that most connections occur between motor neurons with a

degree between 7 and 21 and are located primarily in the body of the worm.

2.4 Discusion

2.4.1 Assessing patterns and generating hypotheses

Using the different interactive features of HYPE we explored known local and

global topological patterns in the C. elegans connectome. We focused our ex-

ploration on somatic position, neuronal type, degree, betweenness centrality, and

clustering coefficient by setting these attributes as plotting rules. We found asso-

ciations between these attributes to reflect known properties of the system such as

its wiring efficiency. Quantitative analysis of these patterns in developmental time

or between mutant and wild type strains can be used to evaluate the significance

of these patterns and generate testable hypotheses. For example, we found a few

outlier neurons with higher betweenness centrality values than other neurons of

the same cell type. To assess if these values are expected in networks with similar

topologies, we can compare these values to the maximum betweenness central-

ity value found in simulated networks with a similar structure to the C. elegans

connectome. We find that randomly generated scale-free networks with the same
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number of nodes as the connectome have much smaller betweenness centrality val-

ues: the interneurons AVAL and AVAR with a betweenness centrality of 0.103 and

0.101 respectively, are much more central than expected (p < 0.05).

Whereas many connectome studies focus on circuits within the connectome,

HYPE invites the user to investigate the connectivity and roles of individual neu-

rons, as well as compare the connectivity of neurons with the same cell type. For

example, the sensory neuron PQR, which was found to have a betweenness central-

ity much higher than the other sensory neurons has a connectivity pattern that sug-

gests it plays a more central role than the other sensory neurons. The PQR neuron

has been implicated in different physiological aspects and behavioral phenotypes

of the worm, including oxygen sensing, innate immunity modulation, social feed-

ing and locomotion related to feeding [70, 165]. The other individual neuron that

HYPE revealed as an outlier in its connectivity pattern was the motor neuron DD6

with a betweenness centrality of 0.036. While this motor neuron shares certain

characteristics with other DD motor neurons, it also has a higher degree (50 com-

pared to DD1 which has a degree of 21) and exhibits an alternative gene expression

profile [106]. The difference in connectivity pattern and biological associations of

these individual neurons compared to their other neurons of the same type suggests

they play multi-functional roles in the system.

In our exploration we also found that heavy weighted synaptic connections

tend to connect pairs of motor neurons. To put this pattern in perspective, consid-

ering the six possible ways of connecting three cell types as well as the number

of neurons in each cell type, the probability of one of these 51 highly weighted

synapses to be between two motor neurons is about 0.1. Therefore the large pro-

portion of weighted motor-motor neuron connections (36%, or 18 out of the 51

synapses) is significant considering the null hypothesis that the weighted synapses

are distributed evenly between neuron cell types (p < 0.001).

To interpret these results, one must consider functional implications of multi-

ple synapses between pairs of neurons. Though there is a huge variation both in the

number and the physical size of synapses, the morphology of synaptic connections

between pairs of neurons has been found to be related to the functional strength

of the interaction between the neurons [13, 14, 86]. The motor neurons connected

through multiple synapses resolved by our exploration include DD1-DD6, several
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VA and VB, one VC and the PDB neuron (Figure 2.6C). The motor circuits involv-

ing DD, VA and VB found in repeating structures along the body of the worm are

responsible for propagating sinusoidal movement [177]. Specifically these multi-

ple synapses occur in the motor circuits responsible for inhibiting dorsal muscle

contraction and innervating ventral muscle contraction [43, 177]. The comple-

mentary circuits are composed of the VD, DA and DB motor neurons that inhibit

ventral muscle contraction and innervate dorsal muscle contraction [43, 177].

Knowing that both complements of these motor circuits are required for the

sinusoidal movement of the worm, why do neurons in one complement have more

synapses per connection than the other? To the best of our knowledge this pattern

has not yet been characterized, however, biological differences between the neuron

cell types involved in these circuits have been studied. First, whereas DD and VD

neurons play similar roles as inhibitors of dorsal and ventral muscles respectively,

the VD1-VD13 neurons develop post-embryonically whereas the DD1-DD6 neu-

rons develop in the embryo and change their synaptic connections after the birth of

VD neurons [72, 161, 164]. Second, these two motor neurons classes differ in their

expression of certain genes, including a gene related to acetylcholine receptor sub-

units [61]. Third, DD motor neurons may regulate the amplitude of the sinusoidal

movement as suggested by UNC-25 and UNC-30 gene mutants [109]. Therefore,

the differences in their connectivity pattern motivates the investigation of possible

differences in the biological roles of DD and VD neurons, some of which have

been presented here, and these functional differences may be associated with their

role in locomotion.

Models of C. elegans locomotion propose an asymetry in the neuromuscular

system of the ventral and dorsal sides of the body to explain the initiation of lo-

comotion from any intial worm shape [23, 90]. While one model suggests this

asymetry may be facilitated by non equal numbers of VD (13) and DD (6) neu-

rons [90], the other model suggests it can be facilitated through a lower activation

threshold for neuron firing in VD neurons [23]. The difference in the connectivity

pattern of VD and DD neurons resolved here suggests that the physiology of their

synaptic connections may also play a role in this asymetry and should be included

in locomotion models. Further characterization of these neurons’ synapses may

reveal a relationship between the embryonic and post-embryonic development, the

71



varying response to gene expression, and differing role in locomotion of the DD

and VD motor neurons.

Despite the fact that the C elegans connectome has been thoroughly character-

ized in previous studies of the network’s structure, we demonstrate that HYPE can

reveal new local and global patterns. Specifically, we suggest the possible associ-

ation between the multi-functional roles and differential connectivity of individual

neurons, and between the asymetry of locomotion models and the difference in the

number of synapses between VD and DD motor neuron circuits. As observed, the

patterns resolved through network exploration motivate quantitative analysis and

the results thereby produced can help formulate hypothesis relating the structure

and function of the system.

2.4.2 A flexible and adaptive visualization tool

Using the C. elegans connectome we demonstrated how HYPE uses system and

networks properties to resolve known and novel patterns. Though the use case was

an undirected weighted network, we explain how the layout rules can be adapted

to a directed network by assessing source, sink, or transit roles of nodes and using

this categorical attribute as a plotting rule. The partitions and scales used permit the

organization of nodes given a variety of distributions of quantitative and qualitative

node attributes. Moreover, additional attributes can be created to enhance the ex-

ploration of system properties. For instance, in weighted networks, a node’s aver-

age weight can be measured by averaging the weights of its edges and this property

can be visually encoded. Moreover, modularity analysis can be used to find sub-

networks and module membership can be encoded as a node attribute. Similarly

to how each hive plot is compared to resolve attribute associations, subnetworks

can be compared by building two different hive panels. Finally, HYPE’s versatility

in its layout rules and its adaptability to different types of system properties and

networks distinguishes it from other network visualizations.

2.4.3 A scalable tool

HYPE was able to resolve patterns such as outliers, trends, similarities, and distri-

butions of the nodes, edges and their attributes. While HYPE was demonstrated on
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a network with hundreds of nodes, we argue that this rule-based layout scales to

larger networks with thousands of nodes. Though in larger networks there is an

increased occurrence of overlap of nodes and edges, the proposed exploration ap-

proach based on Shneiderman’s mantra circumvents this issue [147]. Namely, the

user can start with an overview of the network using a 4x4 panel, investigate the

global trends in the visual signatures provided by 16 hive plots, narrow the num-

ber of attributes of interest, and zoom in on the specific hive plots using a 3x3 or

2x2 hive panel. In this way, patterns can be resolved at all levels from the whole

network topology to subnetworks to individual nodes. In addition, the filtering

rules can be used to study specific subnetworks of the network and compare differ-

ent subnetworks. Therefore, HYPE’s interactive features allow the user to navigate

large networks to resolve both local and global patterns in the system.

2.5 Future directions and conclusions
Despite the fact that HYPE is based on an intuitive encoding of nodes and edges us-

ing circular marks and links, navigating a network through a hive plot or a panel of

hive plots requires a certain familiarity with layout rules and overall set up. For this

reason, we have made available the Friends network shown (Figure 2.1), and the C.

elegans panel (Figure 2.5) on our git repository for interested users to interact with.

In our experience, we have found that users quickly become accustomed to layout

rules and can then take full advantage of the tool’s features to investigate patterns of

interest. As demonstrated on biological networks with resolved structures, HYPE

allows users, which may or may not be experts in the system modelled, to find

known and reveal novel topological and data association patterns. In the future,

we envision HYPE as a web application in the cloud with the purpose to enhance

user experience by creating a community of hive panel builders and to increase the

accessibility of different network types of varying complexity. To accomplish this

it will be necessary to provide embedded settings in the hive panel output and a log

file for generating reproducible visualizations.
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Chapter 3

Characterizing robustness and
centrality in microbial
co-occurrence networks from
natural and disturbed soil
communities

Microbial communities form distributed networks of genetic and metabolite ex-

change shaped by horizontal gene transfer and symbiotic interactions [40, 51, 73,

82, 169]. These networks can be reconstructed based on co-occurrence patterns and

environmental sequence information [55, 93, 110, 175]. The topological proper-

ties of microbial co-occurrence networks including the centrality, connectance, and

clustering have the potential to reveal ecological design principles that ultimately

drive ecosystem functions. Indeed, network centrality measures have been used to

identify important components of systems such as “essential” proteins in protein-

protein interaction networks [87], neurons acting as information highways in con-

nectomes [157] and keystone species in food webs [134]. Recently, different cen-

trality measures have been used to identify microbial keystones in marine and soil

environments using co-occurrence networks [11, 12, 80, 105, 138, 139, 150, 169].
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However, the lack of consistency and methodology in the selection of centrality

measures limit the interpretation of the derived results in these networks [16, 54].

Adopting methods from macroecology, we provide a novel way in which to select

centrality measures to identify taxa which may play structurally important roles

in co-occurrence networks. Our procedure relies on robustness simulations to test

network structural integrity and quantify the structural importance of taxa in co-

occurrence networks. We demonstrate this approach using clustered SSU rRNA

tag sequences sourced from timber harvested forest soils spanning three biogeo-

climatic zones within the Long Term Soil Productivity study (LTSP). We show

that robustness analysis reflects the impact of disturbance from the structure of the

networks inferred from natural and disturbed communities and that the identified

central taxa may play a role in community stability and resilience.

3.1 Introduction
Genetic and metabolic exchanges have been well documented in natural and engi-

neered ecosystems [108, 110, 113, 128, 174, 175, 178] and the absence of taxa

involved in these exchanges can impact the community’s dynamics in varying

amounts [46, 128]. In this way, some species play key roles by providing essential

nutrients to the community or maintaining the appropriate environmental condi-

tions [46, 108, 113, 128, 174, 178]. In macro-ecology, these functionally important

species are denoted “keystone species” [134]. Evidence of keystone species is also

found in microbial communities despite being a much more diverse system than

food webs [105, 128, 138]. For example, low abundant but highly active sulfate

reducers were found to mediate a major and essential biogeochemical process on

which the rest of the community relies [128]. Identifying these keystone species

is critical to understanding community genetic and metabolic processes integral to

ecosystem functions as well as microbial community response to disturbance in a

time of global climate change [145]. However, in highly diverse ecosystems such

as those inhabiting soils resolving keystone connectivity in relation to microbial

community structure and function is a challenging enterprise.

High-throughput technologies such as SSU rRNA sequencing enables the char-

acterization of community membership and bridges the cultivation gap of mi-
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croorganisms [67, 141, 156]. Pairing this high resolution community composi-

tion data with network inference analysis has captured potential inter-taxa inter-

actions [105, 129, 138, 139, 150]. Co-occurrence networks are a type of network

inference model where nodes represent individual taxa and edges represent cor-

relations between taxa. Co-occurrence between two taxa can be interpreted as

mutualism, niche overlap, commensalism etc., and a mutual exclusion can be in-

terpreted as amensalism, competition, alternative niche preference etc. [46, 54, 55].

The topological structure of microbial co-occurrence has been related to environ-

mental properties such as seasonal disturbance in lake water communities [89], en-

terotypes in the human gastrointestinal tract microbiome [10], and the effect of ani-

mal feeding activity on soil communities [139]. Co-occurrence networks have also

been used to first infer and then to isolate symbiotic microorganisms [46]. These

studies suggest that co-occurrence networks combining individual taxonomic com-

position information and inter-taxa relationships can illuminate ecological design

principles organizing microbial community structure and function across ecologi-

cal scales [10, 54, 89, 105, 150, 169].

In microbial co-occurrence networks studies, different node centrality mea-

sures have been used to identify keystone species [16, 105, 138, 139, 150, 169]

based on the idea that structurally critical taxa play important ecological roles

given that their removal leads to network fragmentation [46, 138, 145]. Several

network centrality measures have been applied in robustness analysis: degree cen-

trality, betweenness centrality, eigenvector centrality, closeness centrality, etc (Sec-

tion 1.1.2). For example, Lupatini and colleagues identified key microbial taxa in

soils from natural forests and agricultural plantations using betweenness centrality

and closeness centrality [105]. However, the centrality measure used to identify

these taxa are inconsistent across studies as is the underlying reasoning used to

determine the appropriate centrality measure. For example, one study rationalizes

the use of certain centrality measures by choosing those that agree in the way they

rank taxa by centrality value [139]. Other studies pick centrality measure arbitrar-

ily [105, 169].

In addition, the experimental design and statistical validation of the network

construction methods used in these studies to obtain co-occurrence networks could

be improved. For example, two of these studies use fewer than 10 samples to
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measure correlations [105, 139] and network inference on such low samples num-

bers could produce many false positive co-occurrences [16]. Favorable sample

compositions such as levels of sample heterogeneity have been proposed by Berry

and Widder to maximize the sensitivity and specificity of co-occurrence analy-

sis [16]. Moreover, some these studies do not employ statistical methods to filter

false positive co-occurrences [105, 139] despite known sources of error such as

compositionality bias. Nonetheless, many softwares have been developed to ad-

dress compositionality bias and other pitfalls of network construction [53, 54, 63].

Therefore, combining rigorous statistical methods and proper sample compositions

can increase the sensitivity and specificity of co-occurrence analysis while creating

a standard for future microbial co-occurrence network studies.

Studies in other biological systems have demonstrated that different centrality

measures quantify different structural features of node positions relative to the en-

tire network [19, 62, 123]. In addition, the applicability of a centrality measure

relies on the network topology and the central characteristics of interest [85]. For

example, a centrality measure that captures central characteristics in a local neigh-

bourhood of a node may not be appropriate to compare the centrality of two nodes

found in distinct regions of the network. Different methods have been proposed to

identify the appropriate centrality measure depending on the global topology of the

network and the type of functional role played by central nodes [5, 45, 85]. Iyer

and colleagues demonstrated that robustness simulations can identify structurally

important nodes by measuring the integrity of the network’s structure against the

removal of nodes ranked by centrality measures. In this way, the centrality measure

that decreases the structural integrity of the network is the measure that identifies

the nodes that are required to preserve network structure. It is reasonable to assume

that if a network has been sufficiently fragmented by node removal than a func-

tional process of the system modelled by the network will be less effective in the

fragmented network [5, 85]. In foodweb studies, where nodes are species and edges

are trophic interactions, network robustness simulations and quantitative measure

of robustness have been shown to quantify ecosystem stability to species extinc-

tion [45]. Adopting robustness analysis methods and applying them to microbial

co-occurrence networks has the potential to develop more rigorous selection of

centrality measures, assess community stability and identify keystone taxa.
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Here, we use network inference and robustness simulations to identify cen-

tral taxa in microbial communities in timber harvested soil from the Long term

soil productivity (LTSP) study. Recent efforts to measure microbial community re-

sponses to perturbation in the LTSP sites has resulted in an archive of SSU rRNA

samples spanning biogeoclimatic ecozones sampled at different soil horizons and

in locations with varying levels of timber harvesting [76]. Therefore, the resolved

co-occurrence networks from the LTSP study represent variable topologies influ-

enced by ecozone, soil properties and timber harvesting treatment. Given that soil

communities are highly diverse they provide a real world use case to benchmark

network robustness analysis in microbial ecology that is extensible to less complex

communities.

In the process we ask the following questions:

1. What centrality measures driving robustness simulations are co-occurrence

networks least robust to?

2. Are co-occurrence networks consistently more robust to the same centrality

measure driving node removal?

3. How do the networks inferred from natural and disturbed communities differ

in their topology?

4. How do the networks inferred from natural and disturbed communities differ

in their robustness?

5. How do the networks inferred from communities from different biogeocli-

matic zones differ in their topology, robustness and central taxa?

We find that, despite differences in community composition between LTSP sites

and ecozones, the resolved networks from both natural and disturbed communi-

ties have similar topologies and are consistently less robust to the removal of taxa

ranked by their betweenness centrality value. Finally, we characterize the identi-

fied central taxa to show that the chosen centrality measure captures taxa that could

not be identified by their taxonomy or distribution in the soil profile.
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3.2 Methods

3.2.1 LTSP sample collection and processing

The LTSP study is a multidisciplinary effort to monitor the impact of forestry

practices on North American soil productivity [136]. Our study focuses on three

LTSP ecozones in British Colombia, Ontario and California previously described

by Hartmann and colleagues [76]. The three British Columbia sites are located

in the Sub Boreal Spruce (SBS) biogeoclimatic zone and were harvested 15 years

prior to sampling. The three California sites are located in the Mediterranean (MD)

biogeoclimatic zone and were harvested 16 years prior to sampling. The three On-

tario sites are located in the Jack Pine (JP) biogeoclimatic zone and were harvested

17 years prior to sampling.

At each site, samples were collected at different treatment plots (40x70m2).

Three levels of organic matter (OM) removal and one unharvested control. The

plots were arranged in a randomized, full-factorial design. The three levels of

OM removal were defined as stem-only harvesting (OM1), whole-tree harvesting

(OM2) and whole-tree harvesting plus forest floor removal (OM3). These levels

correspond to an increasing carbon source removal [77]. Table A.13 provides a

summary of the number of samples recovered for each ecozone and each treatment.

Table 3.1 describes the biogeoclimatic properties of individual sites within each

ecozone including the tree species planted post-harvest. This data was collected

from associated LTSP publications [76, 77, 132, 135, 136].

At each plot, samples were collected from the organic soil horizon (top layer

of soil) and mineral soil horizon (bottom layer) randomly with 3 to 5 replicates

per plot. Given the varying depth of organic horizon (typically between 0−20cm)

from one site to another, dimensionless quantities are used to indicate the horizon

sampled: 1 for the organic and 2 for the mineral horizon. In the OM3 plots of the

SBS ecozone, the forest floor removed during harvesting had not redeveloped 15

years post-harvesting and thus the organic soil horizon could not be sampled. This

study includes a total of 326 samples.
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Table 3.1: LTSP sampling sites’ soil data for the SBS, MD and JP ecozones

Site Zone Province or State Latitude Longitude Elevation (m) Climatic Zone (life zones)
Wells JP Ontario 46.42 -83.37 228 Cool temperate moist
Superior 3 JP Ontario 47.57 -82.85 426 Boreal moist
Eddy 3 JP Ontario 46.75 -82.25 488 Moist
Lowell Hill MD California 39.26 -120.78 1270 Warm temperate dry
Blodgett MD California 38.88 -120.64 1320 Warm temperate dry
Brandy City MD California 39.55 -121.04 1130 Warm temperate dry
Log Lake SBS British Columbia 38.88 122.61 780 Wet cool
Topley SBS British Columbia 52.32 126.31 1100 Moist cold
Skulow Lake SBS British Columbia 52.32 121.92 1050 Dry warm

Site Climatic Zone (Köppen classification) Forest type Tree Species
Wells Humid Continental warm summer Mixed pine Jack pine, Black spruce, Red pine
Superior 3 Humid Continental warm summer Jack pine Jack pine, Black spruce
Eddy 3 Humid Continental warm summer Mixed conifer Jack pine, Balsam fir, White birch
Lowell Hill Mediterranean hot summer Mixed conifer Ponderosa pine, Sugar pine, White fir, Giant sequoia
Blodgett Mediterranean hot summer Mixed conifer Ponderosa pine, Sugar pine, White fir, Giant sequoia
Brandy City Mediterranean hot summer Mixed conifer Ponderosa pine, Sugar pine, White fir, Giant sequoia
Log Lake Boreal cool summer Sub-boreal spruce Subalpine fir, Douglas fir, Interior spruce
Topley Boreal cool summer Sub-boreal spruce Lodgepole pine, Subalpine fir, Interior spruce
Skulow Lake Boreal cool summer Sub-boreal spruce Lodgepole pine, Interior spruce

Site Soil parent Principal Soil Classification Year established Year sampled
Wells Glacial outwash Orthic Humo-Ferric Podzol 1993-1994 2011
Superior 3 Glacial outwash Orthic Dystric Brunisol 1993-1994 2011
Eddy 3 Glacial outwash NA 1993-1994 2011
Lowell Hill Volcanic mudflow Mesic Ultic Haploxeralfs 1995 2011
Blodgett Volcanic mudflow Mesic Ultic Haploxeralfs 1995 2011
Brandy City Volcanic mudflow Mesic Ultic Haploxeralfs 1995 2011
Log Lake Glacial till Orthic Humo-Ferric Podzol 1994 2008
Topley Glacial till Orthic Gray Luvisol, Gleyed Gray Luvisol 1994 2008
Skulow Lake Glacial till Orthic Gray Luvisol 1994 2009
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3.2.2 Environmental DNA extraction and sequencing

The hypervariable region V1 to V3 of the bacterial (SSU rRNA) gene, PCR am-

plified from 50ng soil DNA and sequenced using the 454 platform as previously

described by Hartmann and colleagues [77]. The resolved reads were processed as

previously described by Hartmann and colleagues [77]. In brief, reads were filtered

using MOTHUR [144]: reads with ambiguous base calls and average quality scores

< 25 were eliminated. Sequences were clustered into operational taxonomic units

(OTUs) at 97% sequence identity. Singletons, clusters with only one represented

sequences were not included in the analysis. The number of sequences per sample

recovered after quality control is summarized in Tables A.1 to A.12.

3.2.3 Microbial co-occurrence network inference

Samples were grouped by treatment and by ecozone to produce twelve microbial

co-occurrence networks using the software CoNet (version 3.0) implemented in

Cytoscape (version 3.1.0) [53, 55] (Table A.13). First, samples’ composition data

was combined to produce a matrix of OTU read counts per network. Read counts

were filtered so that only OTUs occurring in 25% percent of samples (in sample

grouping per network) were kept and normalized by total reads per sample. Pair-

wise correlations were calculate for each pair of OTUs using two different corre-

lation measures: Spearman correlation coefficient and Bray Curtis dissimilarity.

Pairwise correlations with an absolute value of 0.6 for Spearman and within the

thresholds of 0.4 and 0.6 for Bray Curtis was used to reduce the number of corre-

lations to be evaluated.

Once the initial network is constructed, different procedures are implemented

to refine the network. To avoid compositionality bias, the network co-occurrences

are recomputed for 1000 permutations: for each evaluated co-occurrence, tax-

onomic abundance profiles are shuffled and the abundance matrix is renormal-

ized. Then the network is recomputed for 1000 bootstrapped matrices: the orig-

inal matrix is sub-sampled with replacement and all correlation measures recom-

puted. This procedure provides a confidence interval around the co-occurrence

score which is used to remove all co-occurrences not within the limits of the 95%

confidence interval. From the bootstrap distribution and after applying a multiple-
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test correction, a p-value is calculated per co-occurrence, per measure, and co-

occurrences with a p-value of less than 0.05 are removed. Further details on the dif-

ferent statistical validations of each network construction step are available through

the documentation of the CoNet software [53, 55].

The co-occurrence analysis and sampling composition of each network follows

the recommendation provided by Berry and Widder [16]:

• high resolution of community composition was used and infrequent taxa

were removed

• sample heterogeneity was minimized: samples were grouped by ecozone

defined by biogeoclimatic conditions

• compositionality bias due to relative abundance data was accounted for and

corrected

• Bray Curtis dissimilarity, which is robust to spurious correlations from presence-

absence count data, was used

• several correlation coefficients were measured to increase the sensitivity of

the inferred networks

Twelve LTSP networks are thus produced where nodes are OTUs and edges are

positive co-occurrences and mutual exclusions (Table A.13). These networks and

the collection of samples used to produce each of them are referred to using the

name Ecozone-OMX in the rest of this analysis.

3.2.4 Ecological analysis

In order to be consistent, the composition data used to assess ecological diversity

and clustering patterns is the same data used to compute the networks. Hierarchi-

cal cluster analysis of samples was conducted with the R package pvclust using

the Bray-Curtis dissimilarity metric [152]. All clustering was conducted with a

bootstrapping procedure of 100 permutations. Community diversity was measured

using richness and Shannon’s entropy (see Table Table 1.1).
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3.2.5 Network analysis

Unless otherwise specified, the network and LTSP sample analysis was conducted

using a collection of scripts in Python which are publicly available at https://github.

com/hallamlab/network-robustness. A summary of the Python packages used is

available on the github repository’s front page.

Degree distribution fitting was conducted following the procedure outlined in

[35, 36] and using the associated Python package powerlaw [7]. Modularity anal-

ysis of networks was conducted using our own implementation of the algorithm

FAG-EX [103] in Python. The minimum proportion of in-degrees to out-degrees

for a subgraph to be a module is suggested to be in the range (1,3] [103, 120]. A

higher value of this modularity factor corresponds to a stricter definition of module

and thus modularity [103, 120]. Modularity analysis was conducted on all positive

co-occurrences (not mutual exclusions) in the largest connected component (LCC)

of each network with a factor of 2.

3.2.6 Using HyPE to visualize networks

Hive panel Explorer (HYPE) is a network visualization tool which presents and en-

ables the exploration of complex networks in a data driven manner (Chapter 2). In

order to construct informative hive panels and compare the topology of the LTSP

networks, ecological and network measures were calculated which represent in-

dividual OTUs. Average abundances were computed per network by normalizing

read counts per total sample counts. OTU’ soil horizon was computed by weigh-

ing the sample horizon by the abundance of the OTU in that sample. Resulting

values between 1−2 correspond to the organic and mineral horizon, respectively.

Networks measures were computed using the Python networkx package: degree,

betweenness centrality, clustering coefficient.

The following six parameters were chosen as layout rules: average soil horizon,

abundance, degree, centrality, clustering coefficient and phylum. The average soil

horizon of a node reflects where it is predominantly located within the soil. Given

the known stratification between organic and mineral horizons we therefore choose

average soil horizon as an axis position rule and node degree as an axis assignment

rule. To visualize interactions between phyla we use an OTU’s phylum to rank
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and position the nodes along axes. In order to assess the possible associations be-

tween the clustering coefficient of nodes and their average abundance, we set these

properties as axis positioning and axis assignment rules, respectively. Finally the

betweenness centrality is chosen as the third axis assignment rule. While several

other centrality measures could have been used, previous studies of microbial co-

occurrence networks and other biological networks have found this measure to be

more informative that more local centrality measures such as closeness centrality

[85].

Given the exponential type degree distribution of these networks (evaluated in

Section 3.3), degree and betweenness centrality were plotted using a logarithmic

partitioning scheme. Average soil horizon and clustering coefficient was plotted

using a linear scale while abundance was plotted using an even partitioning scheme.

3.2.7 Network robustness simulations

Network robustness simulations can be conducted by removing nodes using dif-

ferent rankings [85]. The robustness at each removal step can be measured by as-

sessing the change in different network properties, including the number of nodes

disconnected and the diameter of the network [5, 85]. Here, network robustness

simulations were conducted on the LCC of each network (the largest subgraph in

which all nodes are connected by some path) by measuring the relative size of the

LCC at each node removal step. Nodes were ranked randomly or by different net-

work centrality measures: degree, betweenness centrality, eigenvector centrality

and closeness centrality.

In order to obtain a quantitative measure of resilience to different node re-

movals for each network, a robustness factor R is calculated:

R = r/|Nlcc| (3.1)

where r is the number of nodes removed in the network such that the size

of the LCC has decreased by 50% and |Nlcc| is the total number of nodes in the

LCC [45]. Dunn and colleagues proposed this robustness factor to measure the

resilience of food webs to species lost by assessing how many extinctions leads

the 50% of possible ecosystem extinctions [45]. By adopting this factor from this
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macro-ecology study, we are assuming that fragmenting the network such that less

than 50% of the OTUs take part in the original community will drastically affect

the functional processes that rely on core community structure. R has a maximum

value of 0.5 and a minimum value of 1/|Nlcc|. This robustness factor is normalized

and can thus be compared between networks with LCCs of different sizes.

3.3 Results

3.3.1 Ecological diversity within and between ecozones

We begin our analysis by assessing the ecological similarities and differences within

and between ecozones. We expect sample compositions to differ based on biogeo-

climatic conditions (Table 3.1). Figure 3.1 shows a hierarchical clustering analysis

of all samples coloured by ecozone and demonstrates that dendrogram clusters

distinguish ecozone effectively. The same hierarchical clustering dendrogram is

shown in Figure 3.2 with leaves coloured by treatment to demonstrate that individ-

ual samples do not cluster by level of OM removal.
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Figure 3.1: Hierarchical clustering of all samples coloured by ecozone
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Figure 3.2: Hierarchical clustering of all samples coloured by OM treatment level
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Table 3.2: Richness of LTSP samples grouped by ecozone and treatment

OM0 OM1 OM2 OM3
SBS 370 536 489 615
MD 1337 1178 1375 1418
JP 1135 1014 936 1313

Table 3.3: Shannon’s entropy of LTSP samples grouped by ecozone and treat-
ment

OM0 OM1 OM2 OM3
SBS 4.1 4.3 4.3 4.6
MD 5.8 5.7 6.0 6.1
JP 5.6 5.5 5.5 5.7

Within ecozones, hierarchical clustering analysis indicates that samples cluster

by soil horizon (Figures A.1-A.9), except for samples from SBS which first cluster

by the three sampling sites (Figures A.1-A.9).

The diversity of each sample group is quantified using species richness and

Shannon’s entropy and is summarized in Table 3.2 and A.14. Richness and diver-

sity varies between ecozones more than within: the richness on the SBS communi-

ties is an order of magnitude below that of MD and JP. We also find an increased

entropy in these two ecozones indicating a more heterogeneous composition than

the communities from the SBS ecozone.

Overall, communities that have undergone OM3 treatments have a relatively

higher richness and greater Shannon’s entropy. These findings quantify the com-

positionality differences between ecozones and may reflect the fact that treatment

effects vary under different biogeoclimatic conditions[77, 132].

3.3.2 Global network topology

Having found several factors driving ecological differences between sample groups,

we begin our investigation of community structure by evaluating the differences

and similarities in the global topology of our networks. The number of nodes in

each network is of the same order of magnitude as their richness (Table 3.4). Ta-

ble 3.5 and 3.6 summarize each network’s average clustering coefficient and the
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Table 3.4: The number of nodes |N| and edges |E| in the LTSP networks

Ecozone OM0 OM1 OM2 OM3
|N| |E| |N| |E| |N| |E| |N| |E|

SBS 278 1469 285 2253 270 1528 114 166
MD 1299 85832 1118 70489 1316 76511 1395 173591
JP 1057 52363 788 67035 762 51441 68 39

Table 3.5: Global clustering coefficient of the LTSP networks

Ecozone OM0 OM1 OM2 OM3
SBS 0.335 0.462 0.429 0.153
MD 0.466 0.484 0.447 0.553
JP 0.448 0.618 0.581 0.044

size of LCC in terms of number of nodes and diameter (longest shortest path) (see

Section 1.1.2 for a review of network measures). Overall we find a highly clus-

tered topology (Table 3.5), as previously found in other microbial co-occurrence

networks [11, 105, 139, 150]. It’s important to note here that triangles, groups

of three connected nodes, can only be achieved between three co-occurring OTUs

since two mutually exclusive OTUs cannot by definition co-occur with a third OTUs.

Therefore the high clustering coefficient relates the connectivity of co-occurring

OTUs. We also note that the number of nodes and edges in the LCC is of the same

magnitude as in the entire network for all except SBS-OM3 and JP-OM3, suggest-

ing that the clustered topology is found on a global scale, instead of a local scale in

which case there would be several smaller components (disconnected subgraphs).

As explained in Section 1.1.3, many biological networks have a power law de-

Table 3.6: Size of the largest connected component of the LTSP networks:
|Nlcc| and D correspond to the number of nodes in the LCC and its diam-
eter, respectively.

OM0 OM1 OM2 OM3
|Nlcc| D |Nlcc| D |Nlcc| D |Nlcc| D

SBS 249 10 285 8 268 8 78 11
MD 1295 9 1108 9 1285 10 1391 10
JP 1023 10 778 7 744 9 3 2

88



Figure 3.3: Probability distribution function of node degree for all LTSP net-
works with stretched exponential fitting. The JP-OM3 network was
omitted given its lack of structure.

gree distribution (Figure 3.3). We fitted the degree distributions of our networks to

a power law using the procedure described in Clauset and colleagues and compared

the fit to other distributions [35, 36]. We found that all twelve networks follow a

stretched exponential distribution rather than a power law, exponential or lognor-

mal degree distribution (Figure 3.3). This type of distribution is also known as a

power law with exponential tail and was found in marine microbial time-dependent

co-occurrence networks [150]. These kinds of distributions are not scale free and

typically contain numerous high degree nodes [118]. In addition, the diameter of

networks with such distributions scale sub-linearly with increasing network size

[118] which explains why the networks have similar diameter (Table 3.6) despite

having up to an order of magnitude difference in the number of nodes and edges.

Next, we evaluated the subglobal structure of communities by conducting a

modularity analysis on positive co-occurrences and find highly connected clusters
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of co-occurring OTUs. We find modules in most networks that are stratified be-

tween organic and mineral horizons as illustrated by the hive panel in Figure 3.5.

3.3.3 Visualizing microbial co-occurrence networks with HyPE

We next used HYPE to visualize the modularity of the twelve networks to explore

topological and ecological associations. Hive panels of size 3x3 were constructed

for each network by using the six following parameters as layout rules: average soil

horizon, abundance, degree, centrality, clustering coefficient and phylum. We pro-

vide a highlight of the different visually resolved patterns (as of yet quantitatively

validated) illustrated by the hive panel of SBS-OM0 in Figure 3.4:

• co-occurrences stratify by horizon and mutual exclusions connect OTUs with

different average soil horizons

• high degree nodes have average soil horizons near the organic layer or the

mineral layer but not in between

• there are many co-occurrences between OTUs of different abundances and

from different phyla

• OTUs with lower abundances seem to have higher clustering coefficients

• the organic horizon module contains OTUs with a wider range of average soil

horizon than mineral horizon modules

• co-occurrences between the two modules seem to be primarily between low

and high degree nodes.

Given the focus on this chapter, we focus on two patterns in particular which

are shown across all networks in Figure (3.5) and (3.6). Figure 3.5 illustrates the

twelve networks’ modular connectivity and Figure 3.6 shows the connectivity and

centrality of OTUs categorized by phyla. Despite not finding two modules corre-

sponding to the organic horizon and mineral horizon in all twelve networks, we do

see a similar connectivity pattern: most co-occurrences occur within horizons and

few co-occurrences are found between OTUs horizons.
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Figure 3.5: Hive panel of twelve hive plots showing the horizon modularity of the LTSP networks. Hive plots were
constructed by partitioning node degrees logarithmically onto axes and linearly positioning the nodes by average
soil horizon (the organic horizon to hive plot centers)
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Figure 3.6: Hive panel of twelve hive plots showing the connectivity and centrality of OTUs’ phyla of the LTSP net-
works. Hive plots were constructed by partitioning node betweenness centrality values logarithmically onto axes
and linearly positioning the nodes by the alphabetical rank of their phylum
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Figure 3.6 illustrates that OTUs with high betweenness centrality tend to come

from the three most predominant phyla in this samples collection, Proteobacte-

ria, Acidobacteria and Actinobacteria. However, other phyla also have high cen-

trality OTUs in specific networks including Bacteriodetes, Chloroflexi, Gemmati-

monadetes, Planctomycetes, Firmicutes, and Verrucomicrobia. Given that different

centrality measures evaluate different features of node positions and that their ap-

plicability depends on the type of network and the task at hand, we use robustness

simulations to determine the appropriate centrality measure given the topology of

the twelve networks.

3.3.4 Network robustness simulations

Evaluating centrality driven robustness of networks

Robustness analysis tests the integrity of the network’s structure to different types

of node failures. Conducting different simulations by removing nodes ranked by

their centrality value can identify the nodes playing key structural roles in the net-

work. Figure 3.8 shows the robustness simulations on all twelve networks where

nodes were removed either randomly and by ranked values of degree, closeness

centrality, betweenness centrality and eigenvalue centrality. We notice that ranking

nodes by betweenness centrality consistently fragments the LCC earlier in the sim-

ulations. In addition, many simulations show a sharp drop in the relative size of

the LCC: the removal of certain nodes disconnects large subgraphs within the LCC.

In particular, we notice that this drop occurs most precipitously in SBS-OM0 and

JP-OM0 networks. We then measured the robustness factor for each node removal

method and find that overall these networks are least robust to the removal of nodes

ranked by betweenness centrality (Table 3.7, 3.8 and 3.9). Other centralities vary in

their effect on robustness and often produce similar robustness factors as does the

random removal of nodes. Comparing robustness to betweenness centrality node

removal, we observe that the robustness of networks differs most across ecozones

than within: SBS networks are on average less robust than networks from the MD

and JP ecozones. Moreover SBS-OM0 and JP-OM0 are much less robust than the

treatment networks from the same ecozone. This pattern suggests that treatments
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effects on natural and disturbed communities are reflected in the co-occurrence net-

work structure. However, MD networks vary very little in their robustness factors,

as illustrated by the simulations driven by betweenness centrality.

Comparing centrality measures

Figures 3.7, A.10 and A.11 show the relations between each centrality measure

and demonstrate that betweenness centrality captures different OTUs than the other

centrality measures. In particular we notice that a high degree, closeness centrality

or eigenvector centrality does not ensure a high betweenness centrality value. This

trend indicates that, in the case of comparing degree and betweenness centrality,

nodes with few co-occurrences can connect paths of multiple co-occurrences (i.e. a

chain of co-occurrences). In the absence of these high betweenness centrality taxa,

these paths would we be longer or nonexistent in its absence. Only two centrality

measures, degree and eigenvector centrality, seem to have a linear relationship. We

also notice that many nodes tend to have high closeness centrality values, which

does not facilitate the selection of highly central OTUs. This trend is expected as a

node’s closeness centrality is hierarchically calculated from the closeness centrality

of other nodes [118].

3.3.5 Characterizing central taxa

Having determined that betweenness centrality (BC) captures certain structural po-

sitions related to network robustness, we continue our investigation on the OTUs

with highest BC values. A BC value is not as informative as its rank [85]; therefore

we choose a percentile cut off to capture central OTUs. We select the OTUs with the

top 10% percentile of BC values in each network, in combination with a cut off of

0.005. The highest and lowest BC values are 0.41 and 0.007, respectively. These

values express that the corresponding nodes take part in 41%−07% of all shortest

paths in the network. To put this in perspective, a network with |N| nodes has in

the order of |N|2 shortest paths. In this way, we collect from all networks despite

their different sizes and capture a total of 265 central OTUs, which represents 8%

of the total number of OTUs that co-occur in the networks.

We compare central OTUs to other network members by evaluating their aver-
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Figure 3.7: Scatter matrix plot of four centrality measures in the SBS net-
works. Histograms of each centrality measure is also shown. The dif-
ferent centrality values of OTUs for each treatment network was pooled
to produce these plots.
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Table 3.7: Robustness factor of SBS networks per node removal method

Random Betweenness centrality Degree centrality Closeness centrality Eigenvector centrality
OM0 0.37 0.07 0.24 0.07 0.09
OM1 0.42 0.17 0.19 0.19 0.38
OM2 0.39 0.10 0.17 0.25 0.33
OM3 0.29 0.12 0.12 0.12 0.2

Table 3.8: Robustness factor of MD networks per node removal method

Random Betweenness centrality Degree centrality Closeness centrality Eigenvector centrality
OM0 0.48 0.17 0.48 0.46 0.43
OM1 0.47 0.17 0.49 0.45 0.49
OM2 0.47 0.14 0.48 0.46 0.49
OM3 0.48 0.13 0.49 0.46 0.49

Table 3.9: Robustness factor of JP networks per node removal method

Random Betweenness centrality Degree centrality Closeness centrality Eigenvector centrality
OM0 0.42 0.16 0.47 0.13 0.45
OM1 0.47 0.39 0.40 0.41 0.42
OM2 0.47 0.41 0.46 0.44 0.46
OM3 NA NA NA NA NA

97



Figure 3.8: Robustness simulations of twelve LTSP networks driven by different centrality measures. The relative size
of LCC of each treatment network is plotted against the number of nodes removed. Networks are coloured by
associated treatment level.
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A B

Figure 3.9: Venn diagram of all OTUs in ecozone networks (A) and all central
OTUs (B).

age soil horizon and abundance. Figure 3.11 shows that central OTUs have a wide

range of average soil horizons that are primarily not exclusive to either organic nor

mineral horizons. In terms of their abundance, most central OTUs are rare (< 0.1%)

or of intermediate (> 0.1% and (> 0.1% and < 1%) abundance [170], with a few

exceptions (Figure 3.12).

Next we compare the taxonomic distribution of central and non-central OTUs.

Figure 3.10 illustrates the overlap in taxonomic representations in each network

at the phylum, order and class level: the overlap in taxonomies found in all eco-

zone groupings of networks decreases when comparing central OTUs. Taxonomic

overlap at lower taxonomic levels was not evaluated as the number of unclassified

OTUs at those levels drops from 10% to 20%− 80%. Using counts of OTUs per

taxonomic level per network, we evaluate the possible over-representation of tax-

onomies in central OTUs given the null hypothesis that central OTUs were randomly

selected: no individual phylum, order nor class was over-represented in the central

OTUs at a significance below p = 0.05 (Table A.15-A.22). Taxonomic represen-

tation was modelled using a hypergeometric distribution of taxonomic counts and

over-representation p-values were produced using a Bonferonni correction.

Looking at the overlap in central OTUs between networks grouped by ecozone,

we find that few OTUs are central in ecozones (0.7%), despite the fact that many
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Figure 3.10: Venn diagram of the number of phylum, class and order shared
across ecozone networks (A) and the number of central taxonomic lev-
els shared (B).

OTUs are found in all ecozone groupings of networks (7%) (Figure 3.9). Given

that functional relations can be associated to bacterial lineages [58], this pattern

suggests that the role played by central OTUs is fulfilled at a higher taxonomic

level instead of a species level.
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Figure 3.11: Histograms of the average soil horizon of OTUs with high BC

values

3.4 Discussion
Previous studies indicate that community diversity and composition varies by bio-

geoclimatic conditions in LTSP sampling sites and soil horizons [76, 77]. Among

these drivers, soil horizon consistently split samples in all ecozones and OM re-

moval treatments. Despite these differences, the global topology, modularity and

outcome of robustness simulations remained similar across all twelve LTSP net-

works. These results demonstrates that consistent ecological patterns can be re-

solved through network analysis despite the variability in community composition

in forest soils.
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Figure 3.12: Histograms of the abundance of OTUs with high BC values

3.4.1 Soil microbial co-occurrence networks: a complex ecologically
driven structure

Evaluating the global topology of each network, we find similar properties as other

co-occurrence network studies: an exponential type degree distribution [150], a

highly clustered [89, 105, 129, 139, 150, 178], connected [105, 129, 139, 150, 178],

and modular structure [150]. Though most biological networks can be fitted to

a power law distribution, other real world networks have stretched exponential

degree distributions: science collaboration networks [117], certain foodwebs [122]

and power grids [9]. The structural similarity between the LTSP co-occurrence

networks and social, biological and technological networks suggests that the mode

of network inference used in this study captures non-random relationships.
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To illustrate how these topological properties relate to ecological properties,

we visualized these patterns using HYPE, a data-driven and versatile network vi-

sualization tool that overcomes the difficulties in visualizing large networks. The

hive panels indicated that centrality measures may be used to capture structurally

important taxa in co-occurrence networks. Two of these patterns were presented in

all networks and hive panels were constructed to demonstrate the stratification of

co-occurrences between horizons and the possible association between taxonomy

and centrality with and between LTSP sites.

3.4.2 Centrality and robustness across biogeoclimatic networks

Given the similarity in topological structures between networks inferred from nat-

ural and disturbed communities, we expected similar outcomes in robustness sim-

ulations between networks. Indeed, simulations confirmed that our networks were

the least robust to node removal ranked by the same centrality measure, between-

ness centrality. Certain networks were fragmented after the removal of only 10%

of nodes with highest BC values, as reflected by their robustness factor. To further

confirm that high BC values selects different structural positions than other central-

ity measures, we compared the centrality of taxa according to different centrality

measures. High BC values were not consistent with high values of any other cen-

trality measures. To put this in perspective, correlations between centrality mea-

sures have been recorded in randomly generated power law and exponential net-

works [85]. The lack of correlation observed here suggests that these co-occurrence

networks have a more complex structure than that of randomly generated networks

with similar degree distributions. This finding confirms that the mode of network

inference used captures non-random relationships between taxa.

Overall taxa with high BC values were not distributed like other taxa. Their

average relative abundance demonstrated that these taxa have rare or intermediate

abundance, with a few exceptions. This trend agrees with experimental findings of

low abundance keystone taxa in oral biofilms [46] and in fermentative mixed cul-

tures [138]. For instance, Duran-Pinedo and colleagues showed that the addition

of a rare taxa to a culture permitted the isolation of a previously uncultured mi-

croorganism [46]. Looking at the taxonomic distribution of central taxa, we found
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that they originate from rare and abundant phyla, classes and orders. However, no

taxonomy at the phylum, class or order taxonomic level was over-represented in

the set of central taxa (Table A.15-A.22). The ecological attributes and topologi-

cal positions of central taxa suggests that BC selects OTUs which are not artifacts

of network construction and that could not have been resolved through ecological

measurements: central taxa are predominantly rare or intermediate abundant, am-

bivalent in their average horizon, and have mixed centrality values according to

other centrality measures.

3.4.3 Relating treatment effects to robustness analysis

Having confirmed that networks from both natural and disturbed communities were

the least robust to BC driven node removal, we compared robustness factors within

ecozones and between treatments. We found that SBS and JP networks’ robustness

factors decreased between untreated (OM0) and treatment networks whereas MD

network robustness factors did not vary much between treatments (Table 3.7, 3.8

and 3.9). Looking at the classification of soils from different sampling sites, we

notice that SBS and JP samples have glacial soil parents whereas MD soils originate

from volcanic mudflow (Table 3.1). Given that short term (10 years) timber har-

vesting effects on forest productivity in LTSP sites depended on the susceptibility

of different soil types [136], it is not surprising to find different treatment effects

associated with robustness simulations between these ecozones.

Surprisingly, we find a counter-intuitive relation between robustness and treat-

ment in SBS and JP networks. It is unclear why treatment networks from SBS and

JP ecozones exhibited an increased robustness given the evidence of significant

treatment effects in both ecozones. Specifically, ecological assessments of soils in

the JP ecozone showed a significant disturbance in environmental conditions re-

lated to forest productivity [60, 132] and the impact of OM treatment was evident

in changes in microbial community composition in soils from the SBS ecozone

[76, 77]. The increase in robustness in JP and SBS OM1, OM2 and OM3 (for SBS

only) networks compared to the controls (OM0) therefore demonstrates a shift in

topology that could reflect a change in community structure. This change may

echo either community instability, community resilience, or the achievement of an
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alternate stable community structure [145]. Given the expected long-term effect of

organic removal on soil conditions and microbiome [76, 77, 132, 135], a follow-up

study of microbial community structure in the next decades could resolve wither

the apparent shifts in co-occurrence topology capture a state of community adapta-

tion or fragmentation. Moreover, multi-omics studies could help elucidate specific

changes in community metabolic potential resulting from changes in microbial in-

teractions [30].

We now turn to several LTSP studies which have measured the impact of or-

ganic matter removal on forests to infer why this robustness pattern was not found

in the MD ecozone networks and evaluate if the results from our robustness analy-

sis matches ecological findings from prior studies. The effect of organic matter re-

moval has been evaluated based on several criteria including pre- and post-harvest

biomass measurements (volume of organic matter per area) [94, 135, 136], soil

carbon and nitrogen concentration [135, 136, 154], microbial biomass [26], carbon

utilization [26], tree survival [60], tree growth [60], soil bulk density [121], micro-

bial diversity and shifts in community composition [76, 77]. These studies confirm

that MD forests, soil conditions and microbial communities were less impacted by

organic matter removal than SBS and JP. First, Fleming and colleagues showed

that despite similar responses in tree survival in five ecozones including the ones

studied here, tree growth severely decreased in SBS conifers and JP black spruce

and jack pine while MD giant sequoias had an increase in growth [60]. Second,

statistical evaluation of treatment effect was measured on total biomass measure-

ments and was found to be significant in JP but not MD sites [132]. Third, studies

that quantified shifts in microbial community composition from these ecozones

found significant perturbations in community structure and taxonomic composi-

tion in SBS communities using SSU rRNA sequencing [76, 77]. In contrast, mea-

surements of microbial biomass, respiration and carbon utilization did not resolve

any treatment effects in communities from the MD ecozone [26]. These results

support the fact that robustness analysis of co-occurrence networks reflect eco-

logical findings. Therefore the association between robustness and organic matter

removal impact demonstrates the sensitivity of co-occurrence relationships in mi-

crobial communities to environment perturbation.

We have shown that central taxa can be captured by centrality measures chosen
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using robustness simulations and analysis. Given the structural importance of cen-

tral taxa and their role in maintaining network structural integrity, it is reasonable

to infer that central taxa may play important functional roles in microbial com-

munities and suggests that these OTUs could be keystones. In order to asses their

functional (i.e., genetic, metabolic, and biogeochemical) importance, further exper-

imental and quantitative analysis is required. Specifically, the functional roles of

the central taxa can be assessed using plurality and singe-cell genomic sequencing

or co-culture experiments using representative isolates [41, 46, 66, 113]. For ex-

ample, assigning taxonomic information to population genome bins reconstructed

from shotgun sequencing can determine metabolic potential of specific taxa within

the co-occurrence network [42, 66]. The resolved functional associations between

taxa has potential to illuminate distributed metabolic pathways linking taxa at com-

munity levels.

3.5 Conclusion
Microbial co-occurrence studies have adopted different network analysis methods

to find potential keystone taxa. However, the concept of keystone taxa is difficult

to tackle given the diversity and complexity of microbial communities [178] and

the ambiguity of the species concept, as explained in Section 1.3.3. Understanding

how different network measures, including centrality measures, can be interpreted

in the context of co-occurrences networks can help identify keystone taxa and de-

termine the impact of disturbance on microbial community structure and function.

In the case of LTSP sites, we showed that robustness analysis resolved differential

impacts of OM removal on microbial communities across ecozones and determined

that these communities were similar in their inferred networks’ topology and dis-

tribution of central taxa. Furthermore, we identified central taxa from a variety

of taxonomies and characterized their soil profile and abundance. These find-

ings demonstrate the capacity of network inference models in microbial ecology

research to provide new insights into microbial interactions, community stability

and resilience in forest soil ecosystems extensible to other natural and engineered

ecosystems.
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Chapter 4

Conclusion

This thesis described HYPE, an interactive and data driven exploratory tool for bio-

logical networks, and an analytical graph theory based approach to modelling mi-

crobial communities from environmental sequence information. This final chapter

presents a high-level discussion of the assumptions and limitations HYPE’s design

and of SSU rRNA sequencing data, outlines the future of network visualization, and

concludes by presenting the future integrative needs of microbial ecology.

4.1 Assumptions and limitations of sequencing
approaches

High throughput sequencing technologies have bridged the cultivation gap and en-

able the characterization of microbial community composition and genetic poten-

tial. However, certain assumptions and limitation must be considered so as to ap-

propriately analyze and interpret the produced data. First, particularly in diverse

environments like soil, SSU rRNA sequencing under-samples the community cap-

turing the most abundant community members [141]. Similarly, the possibility of

sequencing errors in singletons, OTUs for which only one sequence has been re-

cruited, challenges their credibility when in fact a singleton could represent a rare

organism. Second, the resolution of OTUs’ taxonomies at the family, genus and

species level remains difficult as the Earth’s microbial diversity has not yet been

fully document in public databases. Furthermore, public databases of SSU rRNA
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genes are biased towards culturable microorganisms. Finally, as the quality and

quantity of environmental sequencing increases, microbial ecology research will

gain traction in charting microbial diversity on Earth.

4.2 HyPE as a community tool
HYPE enables the exploration of complex systems and drives their quantitative

analysis through hypothesis generation. As briefly described in Chapter 2, HYPE

has a few usage limitations that need to be acknowledged. In particular, the ef-

ficient exploration of a system must adapt to its size and complexity and certain

patterns may be visually hidden and require a deeper exploration to be uncovered.

Fortunately, as a user gains experience in exploring their system they will find a

combination of the colouring rules, filtering rules and interactive tools to use to

ease their navigation of their network. In order to decrease the learning curve of

the tool and facilitate this learning process, we envision a platform where a com-

munity of HYPE users can share their experience with the tool, their adventures

in exploring their system, and the patterns they resolved. This type of social and

community based learning approach has proved successful on web platforms such

as Stack Overflow [1] where novice and expert users pose and answer statistical,

mathematical and computer science related questions. Moreover, such a platform

would help resolve recurrent usage patterns that can be analyzed to improve HYPE’s

interactive features and develop navigation guidelines and procedures for novice

users. Finally, creating an inter-connected HYPE community can encourage inter-

disciplinary collaboration and research while helping users make the best out of

the tool.

As a collaborative online code host, Github’s code sharing features has already

increased the awareness of HYPE as a novel network visualization tool. As of

June 2015, several dozen unique visitors have visited the repository of which a

few have requested features and cloned the repository (created a local copy). With

the development of an online user interface, the publication of the tool in a peer-

reviewed journal, the development of online use cases for novice users, and a social

community platform for sharing hive panels and patterns, this user base will only

increase.
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4.3 Closing: cross-disciplinarity in microbial ecology
This thesis has demonstrated that the integration of methods from different disci-

plines can empower researchers studying complex systems such as the C. elegans

connectome and microbial communities. In Chapter 2 we combined concepts and

methods from the fields of information visualization, pattern recognition and net-

works science to develop a visualization tool. In Chapter 3 we combined sequenc-

ing methods, soil ecology, microbial ecology, macroecology methods and network

science to demonstrate the applicability of graph theory methods and robustness

analysis to evaluating microbial community stability at a taxonomic and com-

munity level. As motivated by Dorian Sagan (see Section 1.1) cross-disciplinary

synthesis stimulates scientific research and creates scientific breakthroughs [143].

In environmental genomics in particular, the integration of multi-omic sequenc-

ing techniques, statistical methods, network science, complexity modelling, high-

performance computing, and other disciplines will capacitate researchers to under-

stand and harness the potential of the invisible majority of life on Earth [167].
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Table A.1: Number of sequences recovered for samples in ecozone JP with
treatment OM0

Sample Id Number of sequences Sample Id Number of sequences
JE122 9437 JS083 9810
JE123 3711 JS084 7643
JE124 7607 JW013 5730
JE125 7943 JW014 5765
JE126 11042 JW019 15763
JS079 16247 JW020 9750
JS080 9802 JW026 6080

Table A.2: Number of sequences recovered for samples in ecozone JP with
treatment OM1

Sample Id Number of sequences Sample Id Number of sequences
JE086 5351 JS066 6669
JE087 6722 JS075 11716
JE088 8898 JS076 3465
JE105 7970 JS077 7166
JE106 5012 JS078 10627
JE107 7717 JW005 6010
JE108 5046 JW006 10136
JE117 6965 JW007 7390
JE118 16540 JW008 5974
JE119 7537 JW021 8619
JE120 8787 JW022 20003
JS043 7756 JW023 14810
JS044 7295 JW024 3854
JS045 11382 JW027 10694
JS046 8793 JW028 10651
JS063 3647 JW029 7678
JS064 8167 JW030 7358
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Table A.3: Number of sequences recovered for samples in ecozone JP with
treatment OM2

Sample Id Number of sequences Sample Id Number of sequences
JE094 1964 JS060 10059
JE095 12584 JS062 12919
JE096 8922 JS068 8416
JE101 8847 JW015 6425
JE102 6212 JW016 7745
JE103 4257 JW017 8166
JE104 4355 JW018 7403
JE113 6989 JW031 7802
JE114 5888 JW032 8521
JE115 7187 JW033 8590
JE116 8624 JW034 10237
JS051 4689 JW035 7383
JS052 6653 JW036 4180
JS053 16082 JW037 11295
JS054 10421 JW038 6181

Table A.4: Number of sequences recovered for samples in ecozone JP with
treatment OM3

Sample Id Number of sequences Sample Id Number of sequences
JE092 6223 JS074 5337
JE098 11849 JW002 5945
JE100 4294 JW003 6755
JE110 8403 JW004 9522
JE112 7751 JW010 6313
JS048 10142 JW012 8096
JS050 9501 JW040 6700
JS056 12999 JW042 7214
JS058 6284
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Table A.5: Number of sequences recovered for samples in ecozone MD with
treatment OM0

Sample Id Number of sequences Sample Id Number of sequences
BL044 8237 BR071 6132
BL045 9041 BR072 8839
BL046 9110 LH019 6389
BL047 5374 LH020 4973
BL048 7757 LH021 6698
BR067 10270 LH022 3870
BR068 10720 LH023 5030
BR069 8476 LH024 5034

Table A.6: Number of sequences recovered for samples in ecozone MD with
treatment OM1

Sample Id Number of sequences Sample Id Number of sequences
BL026 12668 BR053 8763
BL027 5182 BR054 3884
BL028 3677 LH001 10345
BL029 5411 LH002 6087
BL030 11238 LH003 6025
BR049 4815 LH004 7804
BR050 2532 LH005 6764
BR051 5121 LH006 6655
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Table A.7: Number of sequences recovered for samples in ecozone MD with
treatment OM2

Sample Id Number of sequences Sample Id Number of sequences
BL032 3921 BR059 4798
BL033 5451 BR060 7948
BL034 3279 LH007 9937
BL035 3456 LH008 1883
BL036 12921 LH009 9625
BR055 10010 LH010 7537
BR056 9974 LH011 8605
BR057 6757 LH012 6000

Table A.8: Number of sequences recovered for samples in ecozone MD with
treatment OM3

Sample Id Number of sequences Sample Id Number of sequences
BL038 7839 BR065 9514
BL039 10362 BR066 6010
BL040 12021 LH013 12495
BL041 9506 LH014 4967
BL042 6956 LH015 6512
BR061 6097 LH016 8432
BR062 7366 LH017 8522
BR063 8168 LH018 6185

Table A.9: Number of sequences recovered for samples in ecozone SBS with
treatment OM0

Sample Id Number of sequences Sample Id Number of sequences
LL056 3716 SL180 2169
LL057 3025 TO115 4482
LL058 2052 TO116 3711
LL059 3518 TO117 3956
LL060 3699 TO118 2654
SL175 2899 TO119 1973
SL176 1722 TO120 2308
SL177 2213
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Table A.10: Number of sequences recovered for samples in ecozone SBS with
treatment OM1

Sample Id Number of sequences Sample Id Number of sequences
LL002 4313 SL131 3430
LL003 3970 SL132 2267
LL004 4455 SL133 2516
LL005 3305 SL134 1797
LL006 4047 SL135 3095
LL019 4154 SL136 1992
LL020 3120 SL137 1721
LL021 4452 SL138 1853
LL022 3843 TO061 4232
LL023 5124 TO062 3376
LL024 2904 TO063 5373
LL037 4235 TO064 3065
LL038 4419 TO065 2151
LL039 3444 TO066 2541
LL040 3308 TO079 3779
LL041 3283 TO080 4407
LL042 3151 TO081 3676
SL121 2687 TO082 3101
SL122 3171 TO083 4309
SL123 4593 TO084 2730
SL124 1934 TO097 3543
SL125 2757 TO098 3677
SL126 2151 TO099 3669
SL127 2552 TO100 3187
SL128 2795 TO101 2945
SL129 2056 TO102 2771
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Table A.11: Number of sequences recovered for samples in ecozone SBS with
treatment OM2

Sample Id Number of sequences Sample Id Number of sequences
LL008 3972 SL149 1366
LL009 2628 SL150 2017
LL010 2429 SL151 2583
LL011 3965 SL152 2776
LL012 4701 SL153 1551
LL025 3768 SL154 1832
LL026 3765 SL155 2773
LL027 3943 SL156 2016
LL028 2926 TO067 4564
LL029 3450 TO068 4706
LL030 4188 TO069 4850
LL043 2986 TO070 3494
LL044 3243 TO071 3367
LL045 4308 TO072 3623
LL046 4368 TO085 7649
LL047 3183 TO086 4748
LL048 2947 TO087 5291
SL139 2535 TO089 3925
SL140 1398 TO090 4111
SL141 1713 TO103 2660
SL142 1739 TO104 4959
SL143 1217 TO105 4536
SL144 1669 TO106 3515
SL145 1326 TO107 2696
SL146 1571 TO108 3407
SL147 2091
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Table A.12: Number of sequences recovered for samples in ecozone SBS with
treatment OM3

Sample Id Number of sequences Sample Id Number of sequences
LL017 2346 SL172 4276
LL018 2632 SL173 2159
LL034 4184 SL174 2833
LL035 4230 TO076 2140
LL036 4693 TO077 3942
LL052 2025 TO078 4621
LL053 3428 TO094 4063
LL054 2075 TO095 3604
SL160 2020 TO096 4094
SL161 1976 TO112 4045
SL162 2755 TO113 2569
SL166 2339 TO114 4131
SL167 1789

Table A.13: Summary of samples numbers in each ecozone for each treat-
ment level

Treatment OM0 OM1 OM2 OM3 Ecozone total
SBS 17 54 53 27 151
MD 18 18 18 18 72
JP 16 36 32 19 103
Treatment total 51 108 103 64 326

Table A.14: Shannon’s entropy of LTSP samples grouped by ecozone and
treatment

OM0 OM1 OM2 OM3
SBS 4.1 4.3 4.3 4.6
MD 5.8 5.7 6.0 6.1
JP 5.6 5.5 5.5 5.7
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Figure A.1: Hierarchical clustering of SBS samples colored by treatment
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Figure A.2: Hierarchical clustering of SBS samples colored by horizon
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Figure A.3: Hierarchical clustering of SBS samples colored by sample site

136



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

●

JE
12

1

●

JE
09

5

●

JE
11

0

●

JS
07

7

●

JW
02

7

●

JE
08

7

●

JS
04

8

●

JS
05

0

●

JS
05

8

●

JE
11

9

●

JW
02

3

●

JE
12

3

●

JS
06

2

●

JE
08

5

●

JW
01

9

●

JW
02

1

●

JE
09

0

●

JE
12

5

●

JW
01

3

●

JE
10

3

●

JE
11

5

●

JE
10

7

●

JW
03

7

●

JE
11

7

●

JE
11

3

●

JS
05

3

●

JS
06

5

●

JS
04

5

●

JS
06

3

●

JS
05

9

●

JS
06

8

●

JS
07

9

●

JE
10

1

●

JS
08

2

●

JS
08

3

●

JW
00

5

●

JW
01

5

●

JS
05

1

●

JE
10

5

●

JS
04

3

●

JW
01

7

●

JW
03

1

●

JW
00

7

●

JW
02

9

●

JW
02

6

●

JS
07

5

●

JE
09

3

●

JW
03

3

●

JW
03

5

●

JS
07

2

●

JS
05

6

●

JS
07

4

●

JE
10

0

●

JW
01

0

●

JW
00

2

●

JE
11

2

●

JW
04

0

●

JW
01

2

●

JW
04

2

● ●

JE
09

2

●

JE
09

8

●

JW
00

3

●

JW
00

4

●

JS
06

0

●

JS
06

4

●

JS
05

2

●

JE
12

4

●

JE
10

4

●

JE
12

2

●

JW
01

4

●

JW
02

0

●

JW
02

4

●

JS
08

0

●

JS
05

4

●

JS
06

6

●

JS
04

6

●

JS
07

6

●

JE
08

6

●

JE
09

6

●

JE
10

6

●

JE
12

6

●

JS
07

8

●

JE
10

8

●

JE
12

0

●

JE
11

8

●

JE
08

8

●

JE
11

4

●

JE
11

6

●

JE
09

4

●

JE
10

2

●

JW
02

8
●

JW
03

8
●

JS
08

4
●

JW
03

4
●

JS
04

4

●

JW
03

6

●

JW
03

2

●

JW
00

8

●

JW
02

2

●

JW
00

6

●

JW
01

6

●

JW
03

0

●

JW
01

8

97100 9695 97 9667 939595 9393 61 95 988695 959971 9698 4695 99 95 9693 767996 84 96 947889 67 88 877899 95 6874 8774 95 947366 83 7783 81 84 84 85 9986 7187 8154 58 8068 5993 7584 6430 97 89 9791 667793 99 4985 90 67 4363 93 678379 99 79 72

31 6471 96
5394

36

72

100

9899 8786 72 8859 808292 7080 70 74 475869 288237 1498 2832 41 28 2342 353248 68 80 474948 50 7 104598 64 326 2939 12 202458 7 2624 4 6 69 11 2611 567 829 20 579 282 511 343 68 3 1421 371736 37 757 20 19 853 49 82218 20 18 18

3 422 89
38

34

55

100

X
X
X
X

OM0
OM1
OM2
OM3

Figure A.4: Hierarchical clustering of JP samples colored by treatment
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Figure A.5: Hierarchical clustering of JP samples colored by horizon
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Figure A.6: Hierarchical clustering of JP samples colored by sample site
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Figure A.7: Hierarchical clustering of MD samples colored by treatment
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Figure A.8: Hierarchical clustering of MD samples colored by horizon
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Figure A.9: Hierarchical clustering of MD samples colored by sample site
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Figure A.10: Scatter matrix plot of four centrality measures in the MD net-
works. Histograms of each centrality measure is also shown. The
different centrality values of OTUs for each treatment network was
pooled to produce these plots.
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Figure A.11: Scatter matrix plot of four centrality measures in the JP net-
works. Histograms of each centrality measure is also shown. The
different centrality values of OTUs for each treatment network was
pooled to produce these plots.
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Table A.15: Representation of phyla in central taxa of JP networks

Phylum Number of taxa Number of central taxa
Acidobacteria 395 4
Actinobacteria 425 8
Bacteroidetes 36 1
Candidate division OP10 2 0
Candidate division TG-1 3 0
Candidate division TM6 1 0
Candidate division TM7 17 0
Cyanobacteria 50 0
Firmicutes 26 0
Gemmatimonadetes 26 0
Planctomycetes 110 0
Proteobacteria 1028 17
Verrucomicrobia 25 0
WCHB1-60 2 0

Table A.16: Representation of classes in central taxa of JP networks

Class Number of taxa Number of central taxa
Acidobacteria 379 4
Actinobacteria 425 8
Alphaproteobacteria 814 14
Bacilli 23 0
Betaproteobacteria 63 0
Chloroplast 1 0
Deltaproteobacteria 77 0
Gammaproteobacteria 71 3
Gemmatimonadetes 26 0
Holophagae 13 0
Lineage IV 3 0
MLE1-12 7 0
Opitutae 19 0
Phycisphaerae 25 0
Planctomycetacia 76 0
Spartobacteria 6 0
Sphingobacteria 36 1
WD272 42 0
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Table A.17: Representation of orders in central taxa of JP networks

Order Number of taxa Number of central taxa
32-20 10 0
Acidimicrobidae 107 0
Acidobacteriales 379 4
Actinobacteridae 229 8
Bacillales 23 0
Burkholderiales 42 0
Candidatus Xiphinematobacter 2 0
Caulobacterales 37 0
GR-WP33-30 27 0
Gemmatimonadales 26 0
Legionellales 1 0
Myxococcales 49 0
Nitrosomonadales 7 0
Opitutales 19 0
Planctomycetales 76 0
Rhizobiales 376 10
Rhodospirillales 377 4
Rubrobacteridae 81 0
SC-I-84 9 0
Sphingobacteriales 36 1
TRA3-20 1 0
WD2101 25 0
Xanthomonadales 62 3
iii1-8 3 0
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Table A.18: Representation of phyla in central taxa of MD networks

Phylum Number of taxa Number of central taxa
Acidobacteria 684 17
Actinobacteria 1097 45
Bacteroidetes 271 4
Candidate division OP10 9 0
Candidate division TM7 16 0
Candidate division WS3 7 0
Chloroflexi 89 2
Cyanobacteria 22 2
Fibrobacteres 3 0
Firmicutes 37 1
Gemmatimonadetes 86 5
Nitrospirae 4 1
Planctomycetes 115 1
Proteobacteria 1942 68
Verrucomicrobia 51 0
WCHB1-60 6 0
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Table A.19: Representation of classes in central taxa of MD networks

Class Number of taxa Number of central taxa
Acidobacteria 659 17
Actinobacteria 1097 45
Alphaproteobacteria 1376 48
Anaerolineae 1 1
Bacilli 25 1
Betaproteobacteria 291 8
Chloroflexi 5 0
Chloroplast 3 0
Clostridia 1 0
Deltaproteobacteria 164 6
Fibrobacteria 3 0
Flavobacteria 1 0
Gammaproteobacteria 92 5
Gemmatimonadetes 86 5
Holophagae 18 0
KD4-96 34 1
MLE1-12 2 0
Nitrospira 4 1
OPB35 1 0
Opitutae 47 0
Phycisphaerae 45 0
Planctomycetacia 60 1
S085 9 0
SHA-109 1 0
Spartobacteria 3 0
Sphingobacteria 268 4
TK10 1 0
Thermomicrobia 1 0
WD272 16 2
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Table A.20: Representation of orders in central taxa of MD networks

Order Number of taxa Number of central taxa
32-20 11 0
Acidimicrobidae 136 7
Acidobacteriales 659 17
Actinobacteridae 633 25
Anaerolineales 1 1
Bacillales 25 1
Burkholderiales 164 6
Candidatus Xiphinematobacter 1 0
Caulobacterales 100 2
Chloroflexales 5 0
Clostridiales 1 0
DA101 2 0
Fibrobacterales 3 0
Flavobacteriales 1 0
GR-WP33-30 24 1
Gemmatimonadales 86 5
MB-A2-108 2 0
Methylophilales 1 0
Myxococcales 126 4
Nitrosomonadales 50 2
Nitrospirales 4 1
Opitutales 47 0
Planctomycetales 60 1
Pseudomonadales 12 0
Rhizobiales 704 27
Rhodobacterales 3 0
Rhodospirillales 494 17
Rubrobacteridae 295 12
SC-I-84 26 0
SJA-36 1 0
Sphingobacteriales 268 4
Sphingomonadales 41 1
TRA3-20 19 0
WD2101 39 0
Xanthomonadales 76 5
iii1-8 4 0
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Table A.21: Representation of phyla in central taxa of SBS networks

Phylum Number of taxa Number of central taxa
Acidobacteria 156 24
Actinobacteria 169 36
Bacteroidetes 8 1
Candidate division TM7 1 0
Chloroflexi 35 11
Cyanobacteria 5 1
Firmicutes 2 0
Gemmatimonadetes 10 2
Planctomycetes 1 0
Proteobacteria 366 54
Verrucomicrobia 1 0
WCHB1-60 1 0

Table A.22: Representation of classes in central taxa of SBS networks

Class Number of taxa Number of central taxa
Acidobacteria 138 22
Actinobacteria 169 36
Alphaproteobacteria 261 39
Bacilli 2 0
Betaproteobacteria 70 10
Chloroplast 1 0
Deltaproteobacteria 11 3
Gammaproteobacteria 23 2
Gemmatimonadetes 10 2
Holophagae 15 2
KD4-96 34 11
Opitutae 1 0
Phycisphaerae 1 0
RB25 3 0
Sphingobacteria 8 1
WD272 4 1
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Table A.23: Representation of orders in central taxa of SBS networks

Order Number of taxa Number of central taxa
32-20 15 2
Acidimicrobidae 32 3
Acidobacteriales 138 22
Actinobacteridae 92 22
Bacillales 2 0
Burkholderiales 31 5
Caulobacterales 12 1
Desulfuromonadales 2 0
GR-WP33-30 8 3
Gemmatimonadales 10 2
MB-A2-108 1 1
Myxococcales 1 0
Nitrosomonadales 12 2
Opitutales 1 0
Rhizobiales 134 20
Rhodospirillales 103 15
Rubrobacteridae 42 10
SC-I-84 14 3
Sphingobacteriales 8 1
WD2101 1 0
Xanthomonadales 23 2
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