
Combining SMT with Theorem
Proving for AMS Verification

Analytically Verifying Global Convergence
of a Digital PLL

by

Yan Peng

B.Eng., Zhejiang University, 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

April 2015

© Yan Peng 2015

Abstract

Ubiquitous computer technology is driving increasing integration of digital

computing with continuous, physical systems. Examples range from the

wireless technology, cameras, motion sensors, and audio IO of mobile de-

vices to sensors and actuators for robots to the analog circuits that regulate

the clocks, power supplies, and temperature of CPU chips. While combin-

ing analog and digital brings ever increasing functionality, it also creates a

design verification challenge: the modeling frameworks for analog and digi-

tal design are often quite different, and comprehensive simulations are often

impractical. This motivates the use of formal verification: constructing

mathematically rigorous proofs that the design has critical properties.

To support such verification, I integrated the Z3 ”satisfiability modulo

theories” (SMT) solver into the ACL2 theorem prover. The capabilities of

these two tools are largely complementary – Z3 provides fully automated

reasoning about boolean formulas, linear and non-linear systems of equal-

ities, and simple data structures such as arrays. ACL2 provides a very

flexible framework for induction along with proof structuring facilities to

combine simpler results into larger theorems. While both ACL2 and Z3

have been successfully used for large projects, my work is the first to bring

them together.

I demonstrate this approach by verifying properties of a clock-generation

circuit (called a Phase-Locked Loop or PLL) that is commonly used in CPUs

and wireless communication.

ii

Preface

The work presented in this thesis has been published as Yan Peng and Mark

Greenstreet (2015). Integrating SMT with Theorem Proving for Analog/Mixed-

Signal Circuit Verification. 7th NASA Formal Methods Symposium. April

27-29, 2015, Pasadena, California, USA.

Portions of the text in this thesis are modified with permission from Y.

Peng and M. Greenstreet (2015) of which I am one of the authors. I am

responsible for designing and constructing all programs and proofs, carrying

out performance and result analysis of the research data.

Chapter 2, Program 2.1, Program 2.2, and Program 2.3 are adapted from the

online documentation of the open-source theorem prover ACL2. The pro-

grams in chapter 2.2.5 are my authentic work and have not been published

elsewhere.

I am the lead researcher for the projects located in Chapters 3 and Chap-

ter 4 where I am responsible for all program development, proof construc-

tion, data collection and analysis, as well as the majority of manuscript

composition. Chapter 4, Figure 4.2 is provided by Yu Ge with permission.

Equation 4.1 is modeled and derived by professor Greenstreet. The digital

Phase-Locked Loop example originated from my joint work with J. Wei, G.

Yu and M. Greenstreet [110].

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vii

List of Figures . viii

List of Programs . ix

Acknowledgements . x

1 Introduction . 1

2 Related Work and Background 6

2.1 AMS Design and Verification 7

2.1.1 Circuit Verification 9

2.1.2 Limitations . 16

2.2 Introduction to ACL2 and Z3 17

2.2.1 Theorem Proving Overview 17

2.2.2 SMT Solver Overview 21

2.2.3 Integrating External Procedures to Theorem Provers 25

2.2.4 ACL2 and The Method 26

2.2.5 Examples Using ACL2 and Z3 31

2.3 PLLs and Verification . 35

iv

Table of Contents

3 Combining SMT with Theorem Proving 37

3.1 Clause Processor Architecture 39

3.1.1 The Top-level Architecture 39

3.1.2 Ensuring Soundness in Smtlink 41

3.2 Smtlink Architecture . 42

3.2.1 Type Assertion . 45

3.2.2 Supported Logic . 50

3.2.3 Advanced Issues . 53

3.3 The Low-level Interface . 55

3.3.1 Z3 Interface . 55

3.3.2 Interpret the Result 56

3.4 Conclusion: What’s Trusted? 57

3.5 Future Work . 58

3.6 Summary . 59

4 Verifying Global Convergence of a Digital PLL 61

4.1 The Digital PLL . 61

4.2 Modeling the Digital PLL . 64

4.3 Proving Global Convergence 66

4.3.1 Proof in Parts . 66

4.3.2 Detailed Proof for Fine Convergence 70

4.4 Summary and Future Work 72

5 Conclusion and Future Work 74

5.1 Conclusions . 74

5.2 Future Work . 75

5.2.1 Complete the Convergence Proof for the Digital PLL 75

5.2.2 Build a Better Tool 76

5.2.3 Other Applications 76

Bibliography . 78

v

Table of Contents

Appendices

A Example Proofs with ACL2 and Z3 92

A.1 Geometric Sum Proof with Raw ACL2 92

A.2 Geometric Sum Proof with Arithmetic Book 97

A.3 Geometric Sum Proof with Smtlink 98

A.4 Polynomial Inequality Proof with Z3 100

A.5 Polynomial Inequality Proof with ACL2 101

A.6 Polynomial Inequality Proof with Smtlink 103

B Smtlink Code . 105

B.1 ACL2 Expansion, Translation and Interpretation 105

B.2 Z3 Interface . 155

C Convergence Proof Code . 160

C.1 Z3 Proof for Coarse Convergence 160

C.2 ACL2 Proof for Fine Convergence 167

C.2.1 ACL2 Code . 167

vi

List of Tables

2.1 Geometric sum equation proof comparison using different setups 32

2.2 Polynomial inequality proof comparison using different setups 33

3.1 Type assertion translation . 50

3.2 ACL2’s macro expansions . 51

3.3 Z3 interface for each ACL2 primitives 52

vii

List of Figures

2.1 The Method . 27

2.2 The proof tree . 28

2.3 Three polynomials . 34

2.4 Zoom in the crossing part . 35

3.1 Basic framework for the combination 38

3.2 Clause processor top architecture 40

3.3 Clause processor framework with another SMT 56

4.1 A Digital Phase-Locked Loop 63

4.2 Ring-oscillator response . 65

4.3 Global convergence big picture 68

4.4 Fine convergence . 69

viii

List of Programs

2.1 Function definitions for rev and dupsp 28

2.2 Example theorem statement 28

2.3 Lemmas . 30

3.1 trusted tag theorem . 39

3.2 A SMT eligible theorem in ACL2 42

3.3 A SMT theorem in Z3 . 43

3.4 SMT-eligible ACL2 theorem format 43

3.5 An example showing ACL2’s type recognizer 45

3.6 Rewrite the theorem . 46

3.7 An example showing rational vs. reals problem in ACL2 . . . 49

3.8 An example showing rational vs. reals problem in Z3 49

3.9 Why need user provided substitution 54

ix

Acknowledgements

First of all, I wish to express my sincere thanks to Dr. Mark Greenstreet for

his delightful guidance in my Master’s study. It was Mark who introduced

the amazing world of formal verification and analog circuits to me. Dr. Mark

Greenstreet’s great passion and enthusiasm in research keeps inspiring and

stimulating me. Now that I’ve been prepared with motivation and skill, I

think I am ready for continuing my Ph.D. study with Dr. Mark Greenstreet

now.

Second, I would like to thank my second reader, professor Ronald Garcia

for his insightful comments and valuable suggestions. Discussions with him

about programming language theories have given me a new perspective on

my thesis work.

Third, I would like to thank professor Shahriar Mirabbasi and his student

Yu Ge for instructions on how a Phase-Locked Loop works. Thanks to Yu

Ge for helping with the Spectre® simulation.

Fourth, I would like to thank my fellow lab mates: Jijie Wei, Brad

Bingham, Shabab Hossain, Sam Bayless, Celina Val, Mike Enescu, Jinzhuo

Liu and Long Zhang for the fun time we spent together. Jijie has always

been a great friend of mine. I can’t imagine my first two years’ Master’s

study without her companion. My limited model checking knowledge are

largely due to the stimulating discussions I had with Brad. Now that he has

begun his career, I wish him all the best.

Finally, I would like to thank my family for undivided love and support

on my foreign study and life. I miss them so much. I would also like to

thank my boyfriend, Dongdong Li, for being a man after my own heart.

x

Chapter 1

Introduction

Ubiquitous computer technology [111] is driving increasing integration of

digital computing with continuous, physical systems. Examples range from

mobile devices such as cell phones and tablets, through traditional comput-

ers such as laptops, desktops, and servers, to embedded systems including

toys, kitchen appliances, automobiles, and medical equipments. A common

theme in this technology is the integration of digital and analog capabili-

ties. Analog functions include features that are apparent to the user such as

wireless networking, cameras, displays, microphones, speakers, and motion

sensors, along with system-level infrastructure such as circuits that regulate

the clocks, power supplies, and temperature of chips.

Combining analog circuits, digital circuits, and software into systems

that interact with physical systems presents many design and verification

challenges. First, each of the design domains uses its own models and de-

sign methods. For example, analog circuit designers use circuit simulators

that are based on numerically integrating non-linear differential equations;

digital designers use models based on boolean logic and finite state ma-

chines; and software developers use (for example) object-oriented languages

with extensive libraries that provide a much higher level of abstraction than

those of analog or digital design. Furthermore, each of the relevant time-

scales vary widely for each of these design domains: analog designers require

simulations with sub-picosecond resolution; digital design works with clock

periods a thousand times longer ranging from hundreds of picoseconds to

tens of nanoseconds. Software works on time scales another thousand times

longer ranging from microseconds to seconds. Finally, the aircraft, hospital

patient, or toaster that depends on the computing device may respond in

times from seconds to minutes. It is impractical to perform simulations that

1

Chapter 1. Introduction

cover timescales of seconds or minutes with picosecond resolution. Thus,

abstractions are essential. Such abstractions are also a favorite hiding place

for bugs when an abstraction describes what the designer intended rather

than what the implementation actually does.

This thesis focuses on a particular class of designs, analog/mixed-signal

(AMS) circuits. These circuits combine analog and digital modules to imple-

ment functions that would have been purely analog in earlier designs. The

designer’s motivation for AMS design is that modern fabrication processes

for integrated circuits offer the designer billions of transistors that are opti-

mized for digital applications but less-well suited for analog circuits. This

reflects the reality that nearly all of the transistors on most chips are used

in digital circuits, but the remaining analog functions are critical for the

system. Thus, traditional analog functions (e.g. integrators) are replaced

by their digital equivalents (e.g. accumulators). The unavoidable analog

blocks include circuits such as oscillators, level comparators, voltage reg-

ulators, and RF amplifiers. Even these often include digitally controlled

configuration settings to compensate for the large, statistical variation be-

tween transistors and other circuit components that is inevitable with the

very small geometric features of integrated circuits. These AMS circuits are

mixed analog and digital systems, typically consisting of multiple analog

and digital feedback loops operating at much different time scales. While

my focus is on AMS, the issues that I address are common to those in most

computing devices.

It is not practical to simulate AMS circuits for all possible device param-

eters, initial conditions, inputs, and operating conditions. In fact, running

just one such simulation may require more time than the design schedule.

Most AMS circuits are intended to be correct for relatively simple reasons

– errors occur because the designer’s informal reasoning overlooked some

critical case or had some simple error. My approach is to verify that the

intuitive argument for correctness is indeed correct by reproducing the ar-

gument in an automated, interactive theorem prover. The advantage of the

theorem prover is soundness and generality: by using a carefully designed

and thoroughly tested theorem prover, we have high confidence in the theo-

2

Chapter 1. Introduction

rems that it establishes. The critical limitation of using a theorem prover is

that formulating the proofs can require large amounts of very highly skilled

effort. My key contribution is to integrate a “satisfiability modulo theo-

ries” (SMT) solver into a theorem prover. This allows many parts of the

proof, especially those involving large amounts of tedious algebra, to be

performed automatically. As described in Chapter 2, several other research

projects have integrated SMT solvers into theorem provers. However, we

are not aware of any that have made extensive use of the real-arithmetic

capabilities of SMT solvers or that have applied them to realistic problems

from AMS design or hybrid systems. My focus on real arithmetic and AMS

designs distinguishes the current research from prior work.

Thesis Statement

SMT solvers can be integrated into an interactive theorem prover in a sound

and extensible way. This combination provides an effective tool for verifying

properties of AMS designs including global convergence.

Contributions

This thesis presents my integration of the Z3 SMT solver [36] into the ACL2

theorem prover [71]. With this approach, the theorem prover provides sup-

port for high-level proof structuring and proof techniques such as induction,

while the SMT solver discharges many tedious details of the proofs for verify-

ing real-world designs. The implementation presented in this thesis supports

booleans, integers, and reals, and my approach can be readily extended to

other types including arrays, lists, strings, and more general algebraic data

types. For soundness, my implementation replies on ACL2, Z3, and as little

other code as possible. To make Z3 easily used from within ACL2, my inter-

face performs many, automatic transformations of ACL2 formulas to convert

them into the restricted form required by Z3. I resolve these seemingly con-

flicting objectives with a software architecture that divides the ACL2-to-Z3

translation process into two phases: most of the transformations are per-

formed in the first phase, and the result is verified by ACL2. The second

3

Chapter 1. Introduction

phase is a very simple direct translation from the s-expressions of ACL2 into

their counterparts for Z3’s Python API.

I demonstrate this approach by verifying global convergence for an all-

digital phase-locked loop (PLL). The PLL is an example of an analog-mixed

signal (AMS) design. This thesis considers global convergence: showing that

an AMS circuit converges to the intended operating mode from all initial

conditions. This requires modeling the large-scale, non-linear behavior of

the analog components. If such non-linearities create an unintended basin

of attraction, then the AMS circuit may fail to converge to the intended

operating point. AMS circuits may make many mode changes per second

to minimize power consumption, adapt to changing loads, or changes in

operating conditions. Each of these mode changes requires the AMS circuit

to converge to a new operating region. Once the AMS circuit is in the small

operating region intended by the designer, small-signal analysis based on

linear-systems theory is sufficient to show correct operation [73, 76].

The main contributions of this thesis are:

� The first integration of an SMT solver into the ACL2 theorem prover.

� A description of the challenges that arise when integrating a SMT

solver with a theorem prover and solutions to these issues with an

architecture where the code that must be trusted for soundness is

both fairly small and very simple.

� A model for a state-of-the art digital PLL with recurrences using ratio-

nal functions. This model can be used for evaluating other verification

approaches.

� A proof of global convergence of the digital PLL.

Thesis Organization

The rest of this thesis is organized as follows:

� Chapter 2 surveys prior research related to this thesis, including mod-

ern AMS verification techniques, an introduction to theorem proving

4

Chapter 1. Introduction

and SMT techniques, and why combining them is better than using

either alone. The chapter also describes prior results for verification

of PLLs.

� Chapter 3 explains how to use the trusted clause processor construc-

tion from ACL2 to integrate Z3 into ACL2. The Chapter describes

challenges that come up and presents my solutions to them.

� Chapter 4 describes the proof of global convergence for a state-of-

the-art digital PLL using ACL2 with the clause-processor interface to

Z3. The digital PLL is modeled with recurrence functions and apply

analytical proofs to prove its global convergence. The proof shows the

benefits of combining SMT techniques and theorem proving.

� Chapter 5 concludes the thesis and proposes opportunities for further

research.

5

Chapter 2

Related Work and

Background

Analog/Mixed-Signal (AMS) circuits are prevalent in integrated circuit de-

signs. Chips require analog functionality for multimedia interfaces, sensors

and actuators, and on-chip infrastructure such as power and clock distribu-

tion. The AMS approach replaces or augments traditional analog circuits

with digital ones. The AMS approach is motivated by several technology

trends including:

� Small geometric features lead to greater random variation between cir-

cuit components. Intuitively, transistors and wires are now so small

that variations of a few atoms impact circuit performance. Many tra-

ditional analog circuits rely on having “matched pairs” of transistors,

and such matching is no longer practical.

� Small devices and stringent power constraints mandate low operating

voltages. Many traditional analog circuits rely on having a “voltage

headroom” (the ratio of the power supply voltage to the transistor

threshold voltage) that is not available in current processes.

� Digital circuits can exploit transistor scaling more effectively than ana-

log ones. Smaller transistors lead to smaller logic gates and a greater

density of digital functions, while the inductors and capacitors of ana-

log design do not shrink by nearly as much. Thus, a designer can save

area by replacing analog functions (such as an integrator that requires

a large capacitor) with digital ones (such as a 24-bit accumulator).

6

2.1. AMS Design and Verification

� Replacing analog functions with digital counterparts makes the AMS

circuit more programmable, allowing greater component re-use.

The AMS design approach creates challenges for verification. For exam-

ple, analog blocks operate on time-scales that require picosecond scale time

steps for accurate, transistor-level simulations, whereas digital adaptation

loops may require times of microseconds to several milliseconds to converge.

Formal approaches can verify circuit properties for a large class of inputs

and device parameters and avoid the large compute times and incomplete

coverage of simulation based approaches.

In this work, I model AMS circuits as discrete time recurrences of con-

tinuous values as proposed in [7]. The differential equation model for the

analog circuit is used to determine how the continuous state evolves over a

single period of the digital clock.

When verifying a recurrence system, one usually needs to form an in-

duction proof that proves a specific property on each step of a recurrence

system starting from any initial state. Specifications can be translated into

arithmetic constraints, which can be non-linear. Theorem proving and SMT

provide complementary capabilities for reasoning about recurrences. Theo-

rem proving supports induction proofs, and SMT automates reasoning about

non-linear equalities and inequalities.

This chapter describes historical and recent works related to my research.

Section 2.1 discusses similarity and differences between analog, digital and

AMS design verification. Section 2.2 gives an introduction to interactive

theorem proving (specifically ACL2) and SMT methods (specifically Z3)

and shows the motivation for combining the two. Section 2.3 discusses PLL

verification.

2.1 AMS Design and Verification

AMS (Analog/Mixed Signal) design, as indicated by its name, refers to

circuit designs that include both digital and analog circuitry. Traditionally,

people would think of some circuits as being analog and others being digital.

7

2.1. AMS Design and Verification

Nowadays, nearly all circuits that would previously have been pure analog

are implemented using mixed signal techniques.

AMS designs bring up new verification challenges. Analog circuits in

an AMS design are naturally modeled and specified in terms of continuous

behaviors. Thus, it is not possible to enumerate all possible initial states

and generate all trajectories. Even if one accepts that full test coverage is

unachievable, simulation of AMS designs is difficult because the analog cir-

cuits require detailed, short time-step modeling of non-linear circuits. AMS

designers face a dilemma of missing deadlines, failing to eliminate corner

cases, or using simplified abstractions that may hide real bugs. Digital con-

trols in AMS designs exacerbate this situation. To approximate a smooth,

continuous system, AMS designers tend to use digital control circuits that

only make small changes to their outputs with each clock step. Thus, con-

vergence can take hundreds to thousands or more clock cycles.

Jang et al. [68] discuss this problem in traditional simulation-based meth-

ods and propose an event-driven simulation method in SystemVerilog to

solve it. They use (nearly) linear models for the analog components in

an AMS design and use Laplace transform techniques to find closed-form

solutions for the analog behaviours. From these they identify when ana-

log signals cross switching criteria for the digital controller, and use those

events to drive an event-driven simulation. Like other simulation based ap-

proaches, each simulation run only considers the behaviour from a single

initial condition, with a single choice for any input stimulus functions, and

a single choice of model parameters. The approach also relies on having

accurate, linear models for the analog blocks in the AMS design. The ma-

jor advantage of their approach is that it is much faster than performing

detailed, transistor-level simulation with a simulator such as SPICE [5]. In

comparison, formal approaches can reason about the whole system instead

of just specific execution traces. This offers both faster verification and more

comprehensive coverage than simulation methods.

8

2.1. AMS Design and Verification

2.1.1 Circuit Verification

Two main verification problem exist in circuit design: equivalence checking

and model checking. This section discusses how these techniques are realized

in the digital, analog and AMS domains respectively.

Digital Circuits

Mathematical models that model the dynamics of digital circuits are based

on abstractions like the one below:

s(i+ 1) = next(s(i), in(i)) (2.1)

where s(i) are state vectors that have only elements 0 and 1; i and i+ 1 are

indices for current step and next step; next stands for the discrete recurrence

formula for calculating next state from current state; in represents circuit

inputs.

Typically, model checking is performed using a next state relation for

next instead of a function; in other words, a state may have multiple possible

successors for the same input. The need for non-determinism arises from

several directions including:

� To avoid the state-space explosion problem [96], model checking is usu-

ally performed on abstractions. Thus, the actual hardware or software

has internal state that is not represented in the abstraction, and the

effects of the internal state appear as non-deterministic behaviours.

� The verification may be performed on a high-level design before all of

the details have been determined. For example, a router may be de-

scribed without specifying the exact order in which packets are routed.

This gives the designer freedom to optimize the design later when the

details are better understood.

� The specification may state assumptions about the allowed inputs.

Often, such specifications are complied into state machines for the

9

2.1. AMS Design and Verification

environment, and model checking algorithm is applied to the prod-

uct automaton for the system and its environment. The actions of

the environment may not be fully determined, and this leads to non-

determinism in the product automaton.

� Some physical behaviours such as metastability [85] cannot be cap-

tured by deterministic models.

Thus, we will often treat next as a relation.

A common approach to hardware design is to describe modules as state

machines. Each module has a state that is maintained in registers and a

next state function that describes how the state is updated on each clock

cycle according to the current state and external inputs to the module. Such

a description is typically written in a hardware description language such as

Verilog [4] or VHDL [3] and is called a register transfer level (RTL) descrip-

tion. Software refered to as logic synthesis [104] converts RTL descriptions

into networks of logic gates and flip-flops. Such a network is called a netlist.

The logic synthesis software can perform very aggressive optimizations. On

the other hand, the number of hardware designs that are synthesized and

manufactured is much smaller than the number of software programs that

are compiled for a mainstream language such as Java or C++. Furthermore,

errors in the hardware design are very expensive because of high fabrica-

tion costs and the fabricate, test, and revise cycle can take several months.

These considerations motivate using formal methods to verify the netlists

produced by logic synthesis software. This is the motivating example for

the logic equivalence problem described below.

There are two problems typically addressed by mature verification meth-

ods for digital verification - equivalence checking and model checking. Both

of them have been widely adopted by the chip design industry.

� Equivalence checking

The digital circuit equivalence checking problem is verifying that the

next state function described by the netlist is equivalent to the one

described by the register-transfer level (RTL). In other words, the

10

2.1. AMS Design and Verification

equivalence checker shows that nextnetlist 6= nextRTL is unsatisfiable.

Typically, the RTL description fully specifies the behavior of the de-

vice; in this case, next is a function. A few examples of approaches to

digital equivalence checking include [16, 26, 51, 75].

� Model checking

Digital circuit model checking asks whether all possible sequences of

states arising from the model (see Equation 2.1) have certain desired

properties. The kinds of properties include:

• Safety : show that s(i) is never bad; i.e. the state machine model

will never go into states that violate certain constraints.

• Liveness: show that s(i) is eventually good; will always go into

states that satisfy certain constraints.

Burch et al. [28] propose a symbolic model checking method that

uses BDD to represent formulas symbolically and uses µ-calculus algo-

rithm to derive efficient decision procedures for CTL model checking.

[30] summarizes major breakthroughs in model checking. Most model

checking has been based on BDDs because BDDs provide operations

for composing function and relations, and a canonical representation

that aids in computing fix points. Recently, IC3 [25] has demonstrated

the feasibility of using SAT solvers for model checking by using inter-

polation [88] and k-induction [103]. The IC3 approach has been very

successful on both benchmark problems and real-world examples.

Analog Circuits

Ordinary differential equations, as shown below, are a natural model for the

behaviours of analog circuits.

dx

dt
= f(x, in, u) (2.2)

where x ∈ RN represents the state of the analog circuit; in ∈ RM repre-

sents external inputs to the circuit; and u ∈ RK represents uncontrollable

11

2.1. AMS Design and Verification

disturbances. As with models for digital circuits, it can be convenient to

use a differential inclusion that accounts for all possible disturbances. Such

a differential inclusion can have a form like the one shown below

Ẋ = F (X, In) (2.3)

where X ⊆ RN is a subset of the state space, and In ⊆ RM is a subset of

the input space. Likewise, Ẋ ⊆ Rn is the set of possible time derivatives for

these states and inputs. We note that it is common to have uncertainty in

f , the circuit model itself. For example, we may not have an exact model for

transistor currents or node capacitances. Such uncertainties can be captured

using inclusions. We omit the details of how such inclusions are constructed,

and will assume that they are available for the purposes of verification in

the remainder of this thesis.

Analog circuit verification problems can be cast as equivalence checking

and model checking problems as well.

� Equivalence checking

Equivalence checking for analog circuits aims at the same target as

for digital circuits. But analog circuit equivalence checking is much

more tricky. Basically, one might ask the question “how close is close

enough” for an implementation and its specification, given the state

space is continuous. Different researchers give different answers to this

question.

Hedrich and Barke [63] in 1995 proposed a procedure for calculating

a non-linear mapping from one non-linear system to another system.

They first compute a linear mapping by doing an eigenvalue analysis

then adjust the mapping using quasi-newton optimization on the error

of the state derivatives. They argue the two system to be equivalent if

for each sampling point, the error of state derivatives and state values

are within given ranges.

� Model checking

12

2.1. AMS Design and Verification

Being an analogy to digital circuit model checking, the typical model

checking problem of an analog design is to look for reachable sets given

bounds on inputs. Safety and liveness properties can also be proven

by looking at the intersection of reachable sets with bad or good sets.

Formal verification of analog and AMS circuits is an emerging area. I’ll

describe some other prior work on analog verification and AMS verification

together in Section 2.1.1.

AMS Circuits

AMS circuits combine analog and digital circuits. In this work, I model AMS

designs using discrete time recurrences with both continuous and discrete

valued variables:

dx

dt
= fq(x)

q(i+ 1) = d(q(i), th(x))

(2.4)

where x is a vector of continuous analog states, q is a vector of discrete

digital states, t is time, i is the step index, fq stands for the derivative of x

to time given state q, d stands for the next state relation for q and th is a

sampling function that samples the continuous states at time points where

the discrete steps are.

As with digital and analog circuits, I will roughly categorize prior work

as equivalence checking and model checking.

1. Equivalence checking

For the same reason that equivalence checking of analog circuits is

problematic, to what extent can two models be called equivalent is a

matter of choice.

2. Model checking

The model checking problem of an AMS circuit also looks at the prob-

lem of whether all trajectories satisfy certain safety or liveness proper-

ties. Three approaches exists to do model checking with AMS circuits.

13

2.1. AMS Design and Verification

One way involves state space discretization followed by discrete model

checking methods. The second way uses a hybrid automata that mod-

els the discrete behavior between states and models the continuous

behavior within a state. The third way uses the observation that the

ODE part of the recurrence model is usually simple. Then one can just

solve the linear model and then reason about the recurrences alone.

� Discretization

The earliest attempt to apply model checking to circuit verifica-

tion is Kurshan and McMillan’s 1991 paper [77]. They partition

the range of values for each continuous variable into intervals, and

thus discretize the continuous state space as a finite set of hyper-

rectangles. They compute bounds on the derivative function and

use these to obtain a next state relation. They demonstrate their

approach by verifying the asynchronous arbiter circuit from [102]

assuming that input transitions are instantaneous. They propose

heuristics on how to reduce from a continuous problem to a dis-

crete one by properly choosing granularity of space discretization,

time discretization, input value and input function discretization.

Based on similar idea, Hartong et al. [61] proposed a method

that automatically subdivides state space into boxes satisfying

certain Lipschitz conditions. That way, they can sample points

from a given box and argue that the proposed inclusion algorithm

over-approximates the reachable states. They also introduced a

modified CTL model checking technique for analog verification.

� Hybrid automata and reachability

Reachability analysis considers the problem of where the tra-

jectories can go given a set of initial state points. It can be

distinguished from discretization-based method in that it rea-

sons about the system in the continuous space. Greenstreet [56]

presents a method of using Brockett annulus to verify that a tog-

gle circuit modeled by a system of non-linear differential equa-

tions satisfies a discrete specification. He uses numerical integra-

14

2.1. AMS Design and Verification

tion to determine a manifold that contains all feasible trajecto-

ries. Coho [57, 112] proposes a method called projectagon that

projects high-dimensional objects onto two-dimensional planes.

Reachable sets are calculated by integration and linear program-

ming is used to bound reachable trajectories. d/dt [11] uses

hybrid automata to model AMS behaviour and uses orthogonal

polyhedra to over-approximate reachable sets for proving safety

problems. Many other representations exists.

All of these approaches face the challenge that representing arbi-

trary polyhedra in a high-dimensional space is intractable. Thus,

different approaches employ different simplified representations

such as orthogonal polyhedra [11], convex polyhedra [44], projec-

tion based methods [112], ellipsoids [78], zonotopes [50]. In gen-

eral, there is a trade-off between the amount of over-approximation

incurred by the representation and the time and memory required

to perform the analysis.

� Transform to recurrences

Al-Sammane et al. [7] proposes a symbolic method that extracts

a mathematical representation of any AMS system in terms of re-

currence equations. They build an induction tool in Mathematica

to prove correctness using the normalized equations. Note that

the model in the example in Chapter 4.2 uses this idea to ab-

stract the continuous dynamics of the phase difference variable.

My example shows how their approach can be extended with more

powerful analysis tools to verify a state-of-the-art AMS design.

3. Other analytical methods

� Interval based methods

Tiwary et al. [108] proposed a method that starts from the tran-

sistor level circuit netlist, using intervals to represent the differ-

ential I-V characteristics of transistors. They then model verifi-

cation problems in mainly linear inequalities and use SMT tech-

15

2.1. AMS Design and Verification

niques to solve the linear inequalities. The paper didn’t state how

the transistor level intervals can be obtained.

� Theorem proving

Prior work on using theorem proving methods to reason about

dynamical systems includes [66] which uses the Isabelle theorem

prover to verify bounds on solutions to simple ODEs from a sin-

gle initial condition. In contrast, I verify properties that hold

from all initial conditions. Harutunian [62] present a very gen-

eral framework for reasoning about hybrid systems using ACL2

and demonstrate the approach with some very simple examples.

Here I demonstrate that by discharging arithmetic proof obliga-

tions using a SMT solver, it is practical to reason about more

realistic designs.

2.1.2 Limitations

The methods described above have several limitations. First, many of the

introduced methods require the model of the system to be fixed, meaning

that the verification is for a specific choice of values for the circuit parame-

ters. The circuits that are actually fabricated will have different parameters

values than those used in the verification.

With continuous state spaces, AMS circuits have an uncountably large

number of states. Thus, tools must make approximations. If the approxima-

tions are too course, the tools will over-approximate the reachable space and

report false-errors. On the other hand, if the approximations are too fine,

then the run-time and memory requirements may be completely impracti-

cal. Thus, most prior work on AMS verification has been limited to small

examples. Furthermore, large amounts of manual effort are often needed,

even with “automatic” tools, to tune the circuit models and verification al-

gorithms to a sweet spot that allows the verification to complete. A few

larger AMS verification examples have been published in the past few years,

all looking at various phase-locked loop designs. I also use a phase-locked

loop as the case study in this work. Section 2.3 introduces phase-locked

16

2.2. Introduction to ACL2 and Z3

loops and prior verification efforts for such designs.

2.2 Introduction to ACL2 and Z3

This section gives a brief introduction to general theorem proving and SMT

techniques. I observe that theorem proving and SMT methods offer com-

plementary capabilities for AMS verification.

2.2.1 Theorem Proving Overview

Theorem proving means using computer program to prove mathematical

theorems based upon mathematical logic rules. For the sake of organiz-

ing the presentation, this section examines theorem provers in two major

groups: those based on first-order logic, and those based on higher-order

logic. First-order logic is distinguished from higher-order logic in the sense

that first-order logic only quantifies over individuals but higher-order logic

can quantify over sets, sets of sets, etc. [9]. Noting that a function can be

represented as a set of tuples mapping values in the function’s domain to

values in its range, it can be observed that first order logic does not admit

quantification over functions, but higher order logic allows such quantifica-

tion. E.g. ∀P∀x(∃y.P (x, y)) would be a higher-order logic predicate but

simply ∀x(∃y.P (x, y)) would be a first-order logic predicate.

Proponents of theorem provers for first-order logic often argue that first

order logic is adequate for modeling verification problems [101]. In general,

first-order logic is simpler, thus easier to model and manipulate than higher-

order logic. Very sophisticated theorems can be built from first-order logic

if enough translation and modeling is used.

Conversely, proponents of theorem provers for higher-order logic often

argue that modeling problem with higher-order logic is more natural and in-

tuitive. Gordon [55] extensively discusses why higher-order logic should be a

good formalism for hardware verification in his early paper. He argues in the

paper that higher-order logic are obvious modeling language for hardware

verification problems. Furthermore, higher-order logic enables the ability

17

2.2. Introduction to ACL2 and Z3

of reasoning about logic within the logic. Because one can position quan-

tifiers ahead of predicates and functions, thus one can naturally prove the

correctness of a proof method, or embed semantics for various programming

languages within the logic by using higher-order logic.

This section further discusses existing theorem provers in each category.

As a representative example of higher-order theorem provers, I will examine

the HOL [54] family of theorem provers. Likewise, I will use the Boyer-

Moore theorem prover [23] and its decendants, most notably ACL2 [71], as

the canonical example of a theorem prover for first-order logic. Many other

extensively developed theorem provers include the Coq [18] theorem prover,

PVS [94], and nuPRL [67].

The HOL Family

HOL [54] is one of the earliest theorem provers for higher-order logic. HOL

means Higher-Order Logic. The HOL family refers to a list of modern theo-

rem provers based on the foundation of HOL [29], including HOL Light [58],

HOL4 [106], Isabelle [95] etc. In a HOL-based theorem proving system, all

proofs are derived from a small set of HOL axioms. The system supports

reasoning about higher-order functions and propositions. The proofs are

constructed in the forwards (bottom-up) style.

There are a number of interesting verification results both from industry

and academia using HOL family theorem provers. Pusch [98] uses Isabelle

to verify soundness of the Java bytecode verifier that checks several secu-

rity constraints in a Java Virtual Machine (JVM). Harrison [59] uses HOL

light for formalization of floating-point arithmetic, and the formal verifica-

tion of several floating-point algorithms. Many mathematical results have

been developed using HOL based theorem provers: [1] is a webpage showing

100 well-known theorems from mathematics that have been formalized us-

ing modern theorem provers. Of the 100 theorems, 86 have been formalized

and proven using HOL Light, significantly more than any other theorem

prover. The QED project [22] aims at building a computer system to repre-

sent all important knowledge and techniques in mathematics. These show

18

2.2. Introduction to ACL2 and Z3

theorem provers’ power in proving classical, mathematical results as well as

establishing useful properties of hardware and software designs.

The Boyer-Moore Theorem Prover

The Boyer-Moore theorem prover [23], also known as NQTHM, is a theorem

prover for first-order logic based on a dialect of Lisp. The key idea is to

develop a version of Lisp with a simple semantics axiomatized in the prover.

Users write code in this Lisp dialect both to model and reason about target

systems. ACL2 [71] is a direct descendant of the early Boyer-Moore theorem

prover. ACL2 is short for A Computational Logic for Applicative Common

Lisp.

There are several defining features of ACL2. First, ACL2 reasons about

Lisp code within Lisp. Second, it’s defined to be both automatic and in-

teractive. It is automatic because its automatic proof search engine is im-

plemented for searching for a proof tree. The underling automatic proof

engine follows a procedure called the “waterfall”. The waterfall tries to

solve each goal by passing it through a series of proof processes [72]. It is

interactive because the user needs to follow The Method [2] that develops

lemmas for unproved goals and iteratively follow this strategy until every

lemma is proved. Collections of commonly used lemmas can be collected

into books. ACL2 certifies these books, allowing such lemmas to be used

without repeating the proof each time. Many such books have been devel-

oped that are carefully crafted to work with the ACL2 waterfall – this allows

ACL2 to automatically perform long sequences of common proof steps such

as rewriting terms into canonical forms.

The ACL2 community focuses on large verification problems arising from

industry. Accordingly, ACL2 has a strong emphasis on speed and automa-

tion. There has been a huge number of successful applications of NQTHM

and ACL2 to both academic and industrial verification problems. Some

examples of proofs performed in ACL2 include:

Concurrent programming:

[91] proves correctness of a system of n processes each running a simple,

19

2.2. Introduction to ACL2 and Z3

non-blocking counter program: if the system runs longer than some

given number of steps, then the counter will increase, which guarantees

progress.

Microprocessor verification: [41, 92] both apply ACL2 to real, large, indus-

trial examples of processor designs.

Security: [64] considers a security problem of information flow. Given a

program that has been annotated with assertions about information

flow, their method uses ACL2 and operational semantics to generate

and discharge asserted conditions.

Floating point arithmetic: [100] describes a method for translating from a

subset of Verilog language into the formal logic of ACL2 and proves

correctness of register-transfer level models of floating-point hardware

designs at AMD. [65] verifies the floating-point addition/subtraction

instructions for the media unit in Centaur’s microprocessor.

Numerical algorithms: [99] describes how symbolic differentiation is intro-

duced into ACL2(r) [46]. [47] presents a proof in ACL2(r) on the

convergence rate of the sequence of polynomials that approximate arc-

tangent proposed by Medina [89].

Suitability of Theorem Provers for AMS Verification

Theorem provers are suitable for AMS verification because:

� Theorem provers provide extensible capabilities for reasoning about

linear and non-linear inequalities.

� Theorem provers are designed to have strong support for reasoning

about sequences. This is essential for reasoning about AMS circuits

using recurrences as described in 2.1.1. This is due to their powerful

induction proof support. For example, in ACL2, every user-defined

function must be defined with a proof of termination; in practice,

these proofs are often found automatically by ACL2. Once a recursive

20

2.2. Introduction to ACL2 and Z3

function is defined, it defines a corresponding induction schema. Thus,

introducing new induction schema in ACL2 is straightforward, and

inductive reasoning is highly automated.

� Composibility and reusability of verification results are much more

obvious in a theorem prover because proved theorems are reusable.

Once proved, all theorems will be stored in the system and can be

used to prove new results. Often the results of tools such as reacha-

bility checkers (see Section 2.1.1) only show one aspect of a complete

correctness argument. These lemmas need to be combined to prove the

desired claim. Theorem provers provide a natural and comprehensive

framework for composing these results.

The common objection to using interactive theorem provers such as

ACL2 is that the proofs requires large amounts of manual effort and a level

of mathematical sophistication that puts them out of the reach of typical

programmers and hardware designers. Much of this is because theorem

provers require all claims to be reduced to a small set of axioms. Automatic

tools such as SAT and SMT solvers can automate much of this low-level

reasoning. Section 2.2.2 examines these solvers.

2.2.2 SMT Solver Overview

Researcher have developed many techniques for solving decision problems

that arise in hardware and software verification. Practical decision proce-

dures now exist for many common problem domains. Boolean satisfiability

(SAT) problems are the set of problems that ask if there exists a satisfying

assignment to a boolean formula. Although SAT problem is in general NP-

Complete, modern SAT solvers manage to solve a large portion of the SAT

problems that arise in practice quite efficiently by developing efficient search

algorithms with useful heuristics. While SAT solvers can answer questions

phrased as boolean formulas, other decision procedures have been devel-

oped for other domains. For example, the satisfiability of a system of linear

equalities and inequalities can be determined using a linear program solver.

Solvers exist for classes of non-linear constraints, reads and writes to arrays,

21

2.2. Introduction to ACL2 and Z3

and other domains. This motivates devising decision procedures that com-

bine the results of domain specific solvers. When such combined solvers are

implemented as a generalized version of a SAT solver, the resulting approach

is known as satisfiability modulo theories (SMT). This section describes re-

search in SAT and SMT solvers and some of the modern heuristics used in

these solvers.

Booleans and SAT

The SAT problem has been studied since the early days of computer sci-

ence [34], and is the classical example of a NP-complete problem [32, 70].

From a verification perspective, SAT is interesting because many problems

that arise in verification can be naturally expressed as SAT problems. For

example, equivalence of an RTL specification and a gate-level netlist can

be expressed as a SAT problem [15]. The earliest work proposing an algo-

rithm for solving SAT problems dates back to the 1960s. Davis, Putnam

et al. [34, 35] developed the earliest Davis-Putnam-Logemann-and-Loveland

(DPLL) algorithm framework that remains the foundation for many SAT

solvers. The DP (Davis-Putnam) and DPLL algorithms work on formulas

written in conjunctive normal form (CNF), i.e., the conjunction of clauses,

where each clause is a disjunction of variables or their negations. The basic

idea is that if a clause consists of a single variable (or negation of a variable),

then that determines the value of the variable in any satisfying assignment.

If all such one-literal clauses have been eliminated, then the solver picks a

variable and performs case split on the value of that variable and simplifies

the resulting formula. If a satisfying assignment is found, it is reported. If

a contradiction is found, the solver backtracks. Eventually, either a solution

is found or the formula is shown to be unsatisfiable.

Marques-Silva and Sakallah [86] further enhanced the DPLL algorithm

by adding a conflict analysis procedure that provides information for more

efficient backtracking. Zhang et al. [114] survey various conflict driven learn-

ing strategies and did a thorough experiment in comparing different learning

schemes. Zhang and Malik [113] surveys big breakthroughs in SAT solving

22

2.2. Introduction to ACL2 and Z3

including branching heuristics, variation in deduction and conflict learning

strategies. Gomes et al. [53] summarizes key-features of modern DPLL-

based SAT solvers and extended topics on quantified boolean formula (QBF)

solving and model counting.

SMT

SMT solvers extend a SAT solver with procedures for solving problems in

other domains. Typical domain specific procedures include procedures in

integer arithmetic, linear real-arithmetic, non-linear arithmetic and array

theory. Closely related to AMS verification are the domain specific solvers

for real arithmetic. The first work that gives a decision procedure for “el-

ementary algebra”1 is by Tarski [107]. In his work, he gives a procedure

that proves the decidability of such problem, but the procedure is imprac-

tical with a complexity, using Knuth’s up-arrow notation [74], of 2 ↑↑ n for

a formula of size n. Buchberger developed Gröbner bases [27, 79] which

can be used to solve systems of polynomial equalities. The cylindrical al-

gebraic decomposition approach of Collins [31] can find satisfying solutions

to systems of polynomial equalities and inequalities, or show that no such

solution exist. Both algorithms have doubly-exponential time complexity.

Ben-Or et al. [17] showed that the decision problem for elementary algebra is

exponential-space complete; so, the Collins algorithm is likely to be optimal.

Nevertheless, these algorithms have found use in practice, especially when

augmented with heuristics to simplify problems before attempting a general

solution. Other related work includes Bledsoe et al. [21], and Shostak [105].

Research on satisfiability solvers has been complemented by work on

combining decision procedures for various domains into a single, unified

solver. These solvers go by the name SMT (Satisfiability Modulo Theory)

solvers. One of the earliest contributions in this area was the “cooperating

decision procedure” approach of Nelson and Oppen [93]. They presented a

combination of a theory of linear equalities and inequalities for real numbers,

arrays, list structure and uninterpreted functions. They present a unifying

1Elementary algebra comes from Tarski’s definition in [107].

23

2.2. Introduction to ACL2 and Z3

framework for combining different decision procedures. Their method re-

quires that the separate theories only communicate by equality of terms

and it only applies to convex theories. A theory is convex if for each con-

junctive formula in the theory, if it implies a finite disjunction of equalities,

then it also imply at least one of the equalities. Instead of coordinating two

theories, Bozzano et al. [24] propose a method called delayed theory combi-

nation that first let the SAT solver propose a satisfying assignment for the

case splitting on equalities between theories, thus delayed the combination

of theories. Their work also works for non-convex theories. Examples of

modern SMT solvers include Yices [40], Z3 [36] and CVC4 [14].

There exist other works that focus on various aspects of SMT solving.

HySAT [43] uses an algorithm that tightly integrates interval constraint

propagation with SAT algorithm to solve large systems of non-linear in-

equalities. Gao et al. [49] formulated a theory of ODEs and proposed an

algorithm under the interval constraint propagation (ICP) [52] framework

to solve SMT problems with ODE constraints.

Suitability of SMT Solvers for AMS Verification

For the domain of AMS verification, SMT solvers compliment theorem

provers for following reasons:

� SMT solvers lack the extensive proof structuring and management of

interactive theorem provers. SMT solvers are often used to solve pieces

of the verification problem, and a more general framework is needed to

make sure that these lemmas are sufficient to prove the desired result.

� SMT solvers are weak at reasoning about infinite structures (i.e. lack

of induction). Researchers are aware of it, and there exists preliminary

works on extending SMT solver’s induction proof abilities.

For example, Leino [82] proposed a mechanism for translating asser-

tions about recursive functions into the proof obligations for an induc-

tive proof of the claimed property. Leino implemented this approach

as an extension to the Dafny [81] program verifier which translates the

24

2.2. Introduction to ACL2 and Z3

proof obligations to Boogie 2 [80] which uses the Z3 SMT solver [36].

However, the induction ability such tools can provide is still limited in

comparison to a theorem prover.

� SMT solvers are extremely good at solving systems of inequalities with

a moderate number of variables. The AMS formula one wants to verify

might be too tedious for the user of a theorem prover, thus there’s a

need for combination of SMT technique into a theorem prover.

� As a fully-automated approach, SMT solvers are vulnerable to the

combinatorial explosion problems. By breaking a problem into lem-

mas in the theorem prover, the SMT solver works on manageable sub-

formulas. It is tempting to write a lemma that “tells the SMT solver

everything you know” and then ask it to prove the claim. This often

leads to the SMT solver taking more time than the user has patience

(typically a few hours, aka, a “time-out” failure) or requiring more

memory than available on practical computers (aka a “mem-out” fail-

ure). On the other hand, if the user identifies the hypotheses that are

likely to be needed and breaks the problem into a few smaller pieces,

then the SMT approach succeeds much more often and still spares the

user from large amounts of tedious derivation.

2.2.3 Integrating External Procedures to Theorem Provers

There has been extensive work in the past decade on integrating SAT and

SMT solvers into theorem provers including [10, 19, 20, 37, 42, 87, 90]. Many

of these papers have followed Harrison and Théry’s[60] “skeptical” approach

and focused on methods for verifying SMT results within the theorem prover

using proof reconstruction, certificates, and similar methods. Several of the

papers showed how their methods could be used for the verification of con-

current algorithms such as clock synchronization [42], and the Bakery and

Memoir algorithms [90]. While [42] used the CVC-Lite [12] SMT solver to

verify properties of simple quadratic inequalites, the use of SMT in the-

orem provers has generally made light use of the arithmetic capability of

25

2.2. Introduction to ACL2 and Z3

such solvers. In fact [20] reported better results for SMT for several sets of

benchmarks when the arithmetic theory solvers were disabled!

The work that may be the most similar to this work is [37] which presents

a translation of Event-B sequents from Rodin [6] to the SMT-LIB for-

mat [13]. Like my work, [37] verifies a claim by using a SMT solver to

show that its negation is unsatisfiable. They address issues of types and

functions. They perform extensive rewriting using Event-B sequents, and

then have simple translations of the rewritten form into SMT-LIB. While

noting that proof reconstruction is possible in principle, they do not ap-

pear to implement such measures. The main focus of [37] is supporting the

set-theoretic constructs of Event-B. In contrast, my work shows how the

procedures for non-linear arithmetic of a modern SMT solver can be used

when reasoning about VLSI circuits.

My work demonstrates the value of theorem proving combined with SMT

solvers for verifying properties that are characterized by functions on real

numbers and vector fields. Accordingly, the linear- and non-linear arith-

metic theory solvers have a central role. As the concern is to bring these

techniques to new problem domains, I deliberately take a pragmatic ap-

proach to integration, and trust both the theorem prover and the SMT

solver.

2.2.4 ACL2 and The Method

This section serves as an introduction to how to use the theorem prover

ACL2 by following The Method [2]. Basically, The Method is a depth-first

traversal over the derivation tree of the target theorem directed by ACL2.

See Figure 2.1.

Given a theorem statement, the user may first write it in ACL2 and check

if ACL2 can prove it by automatically applying its proof engine. If proved,

then done. If not, the user can look at the checkpoint generated by the proof

engine illustrating the point where the proof engine gets stuck. Then the user

can come up with a new lemma that should prove the checkpoint theorem

statement. Iteratively, the user can run the lemma statement in ACL2 and

26

2.2. Introduction to ACL2 and Z3

Theorem
proved?

Done No

Yes

State the theorem
in ACL2

Run ACL2
proof engine

Lemma
proved?

YesLook at the
checkpoint and

generate a lemma

Use The Method
to prove the

lemma

No

Run ACL2
proof engine

Figure 2.1: The Method

check if it’s proved. If yes, try proving the original theorem again. If not,

apply The Method to prove the lemma statement. The process is partially

automatic and partially interactive.

I take an example from the ACL2 documentation to show how to apply

The Method. Suppose one wants to prove Theorem 2.1 below:

Theorem 2.1 (Example theorem).

A list contains no duplicated elements if and only if the reverse of the list

contains no duplicated elements.

Suppose we have already define the function for reversing a list and

checking for duplicates as in Program 2.1. Program 2.2 shows the theorem

statement as written in ACL2.

27

2.2. Introduction to ACL2 and Z3

Program 2.1 Function definitions for rev and dupsp

1 (defun rev (x)

2 (if (endp x)

3 nil

4 (append (rev (cdr x)) (list (car x)))))

5

6 (defun dupsp (x)

7 (if (endp x)

8 nil

9 (if (member (car x) (cdr x))

10 t

11 (dupsp (cdr x)))))

Program 2.2 Example theorem statement

1 (defthm dupsp-rev

2 (equal (dupsp (rev x)) (dupsp x)))

Lemma1.1

Lemma2

Thm dupsp-rev

Lemma1

Figure 2.2: The proof tree

Try proving the theorem in ACL2 using The Method, one will end up

with a proof tree as shown in Figure 2.2, where Lemma1, Lemma1.1 and

Lemma2 are shown in Program 2.3. Try proving theorem dupsp-rev in ACL2

28

2.2. Introduction to ACL2 and Z3

produces a checkpoint:

(IMPLIES

(AND

; X is a non-empty list

(CONSP X)

; the first element of X is not an element of the tail

(NOT (MEMBER (CAR X) (CDR X)))

; the induction hypothesis

(EQUAL (DUPSP (REV (CDR X)))

(DUPSP (CDR X))))

; the original claim with REV expanded once

(EQUAL (DUPSP (APPEND (REV (CDR X)) (LIST (CAR X))))

(DUPSP (CDR X))))

which suggests lemma1. Attempting to prove lemma1, ACL2 produces a

checkpoint that contains the term:

(MEMBER (CAR X) (APPEND (CDR X) (LIST E)))

We see that ACL2 needs to understand how MEMBER interacts with APPEND,

which suggests Lemma 1.1. ACL2 proves Lemma 1.1 without any further

assistance. After proving Lemma 1.1, we give Lemma 1 to ACL2, and

ACL2 proves Lemma 1 as well. We ask ACL2 to attempt to prove the

main theorem, and it fails with a checkpoint of the same form as last one.

Through some thinking, one can figure out that ACL2 gets stuck on proving

(NOT (MEMBER (CAR X) (REV (CDR X))))

even given that it knows

(NOT (MEMBER (CAR X) (CDR X))).

So we come up with lemma2, which points out that a member of a list is

also a member in the reverse of that list. This will lead to ACL2’s automatic

reasoning for

29

2.2. Introduction to ACL2 and Z3

(IMPLIES (NOT (MEMBER (CAR X) (REV (CDR X))))

(NOT (MEMBER (CAR X) (CDR X))))

Finally, ACL2 accepts the initial theorem statement for dupsp-rev.

Program 2.3 Lemmas

1 ; e is an element of the concatenation of lists a and b

2 ; iff e is an element of a or e is an element of b.

3 (defthm lemma1.1

4 (iff (member e (append a b))

5 (or (member e a)

6 (member e b))))

7

8 ; If e is not a member of x,

9 ; then appending e to x does not change whether or not

10 ; x has duplicate elements.

11 (defthm lemma1

12 (implies (not (member e x))

13 (equal (dupsp (append x (list e)))

14 (dupsp x))))

15

16 ; e is an element of the reverse of x

17 ; iff e is a member of x.

18 (defthm lemma2

19 (iff (member e (rev x))

20 (member e x)))

In summary, using The Method to prove a theorem is an automatic and

interactive way of building the proof tree in ACL2. ACL2 automatically does

the job of decomposing the theorem into subgoals, using rewriting and other

techniques on simplifying the main goal and subgoals and so forth. When it

gets stuck somewhere in the traversal of the proof tree, user intervention is

required to come up with the right lemma to resolve the stuck point. This

continues until the original theorem statement is proved. When the proof is

complete, the user has an ACL2 script that can be executed to perform the

full proof automatically, without user interaction. Note that The Method is

a guideline for proving theorems in ACL2, but users may at times choose

other ways of identifying helpful lemmas and structuring their proofs. For

30

2.2. Introduction to ACL2 and Z3

example, there may be a better way of decomposing the initial theorem

statement than what is proposed by ACL2. The user can then provide as

hint this decomposition to ACL2 so that ACL2 can use this intuitively better

proof suggested by the user.

2.2.5 Examples Using ACL2 and Z3

This section presents to examples to illustrate the use of the ACL2 theorem

prover, the Z3 SMT solver, and their combination as implemented in this

thesis.

I’ve specifically chosen ACL2 as the theorem prover and Z3 as the SMT

solver. The reason for these choices is somewhat coincidental. When I

started out, I first tried HOL Light. My first experience with theorem prov-

ing got stuck when I tried to figure out how to introduce an external decision

procedure. My supervisor mistakenly believed that SMT solvers had been

integrated into ACL2 already. So I then tried ACL2. Although no such

integration existed at the time, thanks to the comprehensive documentation

of ACL2 and constant help from the ACL2 development group, I was able

to devise an approach based on how SAT solvers get integrated. The reason

I’ve chosen Z3 is even simpler. First, it is a leading SMT solver. Second,

it’s very easy to try out given the web-based interactive webpage and the

z3py interface. Third, I had used Z3 to prove some simple properties of the

digital PLL, i.e. automatically deriving and verifying a ranking function for

convergence. This use of Z3 showed both the value of Z3, and the need for

a more comprehensive collection of reasoning techniques.

While I have implemented our approach using ACL2 and Z3, the ap-

proach is largely independent of the choice of SMT solver and should work

equally well with other SMT solvers or even other decision procedures. Like-

wise, the approach presented Chapter 3 could be used with other theorem

provers, but I would not expect as much direct code reuse in that case.

31

2.2. Introduction to ACL2 and Z3

Example: Sum of Geometric Series

The first example demonstrates ACL2’s induction power, which is not na-

tively available in Z3. The theorem I want to prove is the geometric sum

formula as shown in Theorem 2.2.

Theorem 2.2 (Geometric Sum). Suppose r ∈ R, n ∈ N, r > 0 and r 6= 1.

Then,
n∑
i=0

ri =
1− rn+1

1− r

I proved this theorem using three setups. The first setup uses raw ACL2

without help from any books (see code in Appendix A.1). The second setup

uses ACL2’s arithmetic book (see code in Appendix A.2). The third setup

uses my combination of ACL2 and Z3 (see code in Appendix A.3). Table 2.1

summarizes the effort required for the three approaches. The proof requires

induction and thus cannot be completed using Z3 alone.

Setup LOC # of theorems runtime(s) code time
raw Z3(can’t) - - - -

raw ACL2(proved) 169 19 0.14 2 days
arithmetic-5(proved) 29 1 0.15 10 min
ACL2 & Z3(proved) 72 2 0.06 20 min

Table 2.1: Geometric sum equation proof comparison using different setups

Several observations can be made. First, raw ACL2 is a poor choice

for this problem in nearly every sense. It requires one to implement every

single lemma. This requires the most lines of code. It requires huge amount

of human effort to complete. Of course, this is why users of ACL2 have

developed and use the extensive library of “books” (collections of ACL2

theorems) that have been established to avoid this kind of low-level effort. As

an example of the efficacy of ACL2’s books, Theorem 2.2 is proven with no

additional effort by the user when the standard book of arithmetic theorem

is included. The combined approach although takes longer code compared

to ACL2 with arithmetic book, but relieves the tedium when compared to

raw ACL2.

32

2.2. Introduction to ACL2 and Z3

Example: Intersection of 3 Polynomial Inequalities

Reasoning about the recurrence models for AMS circuits (see Eq 2.2) of-

ten involves systems of non-linear equalities and inequalities with moderate

numbers of variables. To show how Z3 compliments ACL2, we’ll consider

the problem of showing the unsatisfiability of the conjunction of the three

polynomial inequalities given below in Theorem 2.3.

Theorem 2.3 (Polynomial inequality). Suppose x ∈ R and y ∈ R, then the

conjunction of

1.125x2 + y2 ≤ 1

x2 − y2 ≤ 1

3(x− 2.125)2 − 3 ≤ y

(2.5)

does not have a solution.

Figure 2.3 depicts this system of inequalities. The green one is the ellipse,

the blue one is the hyperbola and the red one is the parabola. The small

circles indicates which side of the polynomials the inequalities are referring

to. Zooming in at the crossing part, Figure 2.4 clearly shows why these three

polynomial inequalities have no solution. The experiment results show the

relative power of ACL2 and Z3.

I performed four experiments with four setups. The first setup uses Z3

alone (see code in Appendix A.4). The second and third setups use raw

ACL2 and ACL2 with its arithmetic book (see code in Appendix A.5). The

fourth setup uses my ACL2 and Z3 combination (see code in Appendix A.6).

Table 2.2 shows the results of these experiments.

Setup LOC # of theorems runtime(s) code time
raw Z3(proved) 27 1 0.0004 10 min

raw ACL2(failed) 40 - - 10 min
arithmetic-5(failed) 41 - - 10 min
ACL2 & Z3(proved) 59 1 0.02 10 min

Table 2.2: Polynomial inequality proof comparison using different setups

We make three observations. First, Z3 by itself is somewhat faster than

33

2.2. Introduction to ACL2 and Z3

−3 −2 −1 0 1 2 3 4
−4

−2

0

2

4

6

8

10

12

X

y

Figure 2.3: Three polynomials

when run within ACL2. This is because the current version of my code

creates a new Python process for each clause discharged by Z3. I believe

that the time for the proof with the ACL2 and Z3 combination is dominated

by the time to create this Python process. Second, ACL2 failed to prove the

theorem even with the arithmetic book. Of course, one could, in principle,

guide ACL2 through a sequence of theorems to prove the main result, but

one can easily imagine how much more time it would take to identify, state,

and prove all of the necessary lemmas. This can be shown by examining

the global convergence proof in Appendix C.2.1. Part of the proof is using

purely ACL2 and the theorems being proved are more complex than the

one shown here. Third, the combination does not require significantly more

code or time by the user than using Z3 alone. By utilizing the SMT solver,

our combination can readily prove the theorem without huge effort in faster

speed.

34

2.3. PLLs and Verification

1 1.05 1.1 1.15

0

0.1

0.2

0.3

0.4

0.5

0.6

X

y

Figure 2.4: Zoom in the crossing part

2.3 PLLs and Verification

There have been several previously published reports of PLL verification

using formal methods. The earliest verification that I know of was by Dhin-

gra [38]. Dhingras design uses a fixed-frequency oscillator and adaptively

chooses edges to approximate the edges of the lower frequency reference. I

am not aware of any such PLLs in use for standard PLL applications such

as clock generation, clock-data-recovery, and wireless communication.

PLLs and model checking Dong et al. [39] and Wang et al. [109] pro-

posed using property checking for AMS verification, including PLLs. Shortly

after the work by Dong et al., Jesser and Hedrich [69] described a model-

checking result for a simple analog PLL. Althoff et al. [8] presented the

verification of a charge-pump PLL using an approach that they refer to as

35

2.3. PLLs and Verification

continuization. They use a purely linear model for the components of their

PLL, and their focus is on the switching activities of the phase-frequency

detector, in particular, uncertainties in switching delays. They use zono-

topes [50] to conduct reachability analysis and their method works for ranges

of parameters. In comparison, my work uses the non-linear recurrence model

without any linearizations and reasons directly about this model.

PLLs and SMT More recently, Lin et al. [83, 84] developed an approach

for verifying a digital PLL using SMT techniques. To the best of my knowl-

edge, they are the first to claim formal verification of a digital PLL. They

consider a purely linear, analog model and then reason about the discrep-

ancies between this idealized model and a digital implementation. They use

the iSAT [43] SMT solver to verify bounds on this discrepancy. They verify

bounds on the lock time of a digitally intensive PLL assuming that most of

the digital variables are initialized to fixed values, and that only the oscil-

lator phase is unknown. My work shows initialization for a different PLL

design over the complete state space.

PLLs and reachability Using the SpaceEx [44] reachability tool, Wei

et al. [110] presented a verification of the same digital PLL as described

in this thesis. That work made an over-approximation of the reachable

space by over-approximating the recurrences of the digital PLL with linear,

differential inclusions. As SpaceEx could not verify convergence property for

the entire space in a single run, [110] broke the problem into a collection of

lemmas that were composed manually. There work demonstrated the need

for some kind of theorem proving tool to compose results. Furthermore,

they could not show the limit cycles that my proof does; therefore their

proof does not provide as tight of bounds on PLL jitter and other properties

as can be obtained with my techniques.

36

Chapter 3

Combining SMT with

Theorem Proving

Chapter 2 makes the observation that theorem provers and SMT solvers offer

complementary capabilities for verifying AMS circuits. Theorem provers are

good at managing structured proofs and SMT solvers are, on the other side,

good at automatically solving large non-linear inequalities. Accordingly, I

choose to manage the proof in a theorem prover and invoke a SMT solver

as directed by the user to discharge clauses that can be expressed in the

theories supported by the solver. The theorem prover takes the verification

results from the SMT solver and stores the resulting theorem in the current

theorem environment as one of the main results or as a lemma for future

use.

Figure 3.1 shows an example of how one might use a SMT solver within

ACL2 while using The Method as described in Chapter 2.2.4. In Figure 3.1,

a green theorem means “proved”, a yellow theorem means “currently being

proven”, a gray theorem means “pending for proof” and a red theorem

means “proof failed”. Suppose in the theorem prover, initially we have

proven from Theorem 1 all the way until we reach Theorem smt problem,

which we believe forms a nice SMT problem. The strategy is to take the

negation of the claim for Theorem smt problem and give it to the SMT

solver. The SMT solver automatically determines whether the negation

is satisfiable or not. If the SMT solver shows the negation of the claim

for Theorem smt problem is UNSAT, this establishes the original theorem.

Otherwise, ideally, if the SMT solver returns SAT and gives a satisfiable

assignment, we know this is a counter-example to Theorem smt problem

37

Chapter 3. Combining SMT with Theorem Proving

SMT solver
Verification

result

Success proof

Theorem 1

Theorem 2

Theorem
smt_problem

Theorem n

Theorem
Prover

UNSAT

Failed proof

Theorem 1

Theorem 2

Theorem
smt_problem

Theorem n

Theorem
Prover

SAT and
suitable

counter-example

Initial proof

Theorem 1

Theorem 2

Theorem
smt_problem

Theorem n

Theorem
Prover

Negation of
theorem

smt_problem

Failed proof

Theorem 1

Theorem 2

Theorem
smt_problem

Theorem n

???

Theorem
Prover

Unsuitable counter-example
or other errors
e.g. time out

Figure 3.1: Basic framework for the combination.

and this disproves the theorem. If other errors, e.g. a time out happens, we

are also given proof failure, but we can’t decide the truth value of Theorem

smt problem.

This chapter describes Smtlink, my integration of the Z3 SMT solver

into the ACL2 theorem prover. As described in Chapter 2, both ACL2 and

Z3 have been successfully used for a large variety of research and industrial

problems. Implementing the approach sketched above requires addressing

numerous issues to link the logics of ACL2 and Z3 while preserving sound-

ness. This chapter presents these issues and describes my solutions.

38

3.1. Clause Processor Architecture

3.1 Clause Processor Architecture

ACL2 implements a computational logic for an applicative subset of Com-

mon Lisp [97]. This computational logic is a set of proof rules including

rewriting, induction, and rules for basic Lisp operations such as cons, car,

and cdr. These are applied automatically with guidance from the user in the

form of prior theorems that are proven or in user provided hints. Typically,

the user finds a sequence of simpler theorems that leads ACL2 to a proof of

the main result.

Much of the work for the user can be relieved through ACL2’s “clause

processor” mechanism. A clause processor takes an ACL2 clause (i.e. propo-

sition) as an argument and returns a list of clauses with the interpretation

that the conjunction of the result clauses implies the original clause. In par-

ticular, if the result clause is empty, then the clause processor is asserting

that the original clause is always true. ACL2 supports two types of user-

defined clause processors: verified and trusted. A verified clause processor

is written in the ACL2 subset of Common Lisp and proven correct by ACL2.

A trusted clause processor does not require a correctness proof; instead, all

theorems are tagged to identify the trusted processors that they may depend

on. Logically, the tag adds the soundness of the trusted clause processor as

a hypothesis to any theorem that depends on the clause processor. In other

words, a theorem that depends on a trusted clause processor effectively says:

Program 3.1 trusted tag theorem

1 (defthm trusted-tag-theorem

2 (implies (and (the-hypotheses-given-by-the-user)

3 (the-clause-processor-is-sound))

4 (the-conclusion-holds)))

3.1.1 The Top-level Architecture

I incorporate Z3 into ACL2 as a trusted clause processor as shown in Fig-

ure 3.2. I call the clause processor Smtlink. As directed by a user provided

39

3.1. Clause Processor Architecture

expanded
clause

ACL2 (lisp)
to smt−py
translate SMT clause

(python)
clause

Not(clause)
satisfiable?

generate
return
clause

Z3

simplify
expand &original

clause
ACL2 (lisp)

generate
return
clause

step 2
translation

lisp (ACL2) python (z3)

(proven)

yes

step 1
translation

original expanded

(implies
expanded
original)

false
sat, unsat,

unknownor?unsatno

acl2SMT

return

G GZ3

G′, A1, A2, ..., Am

A1 ∧ A2 ∧ ... ∧ Am ∧ (A1 ∧ A2 ∧ ... ∧ Am ∧G′ ⇒ G)

¬GZ3

Figure 3.2: Top-level architecture of Smtlink

hint, ACL2 can invoke Smtlink to discharge a particular goal or subgoal of

a proof. Let G denote this goal. As described in the subsequent sections,

this formula is first transformed into an equivalent (or stronger) formula,

G′ and a list of auxiliary claims denoted by A1, A2, ...Am. The second

phase of translation produces a z3py (Python) representation of G′, we’ll

call this Gz3. ACL2 starts a Python process to run a script to test the

satisfiability of ¬Gz3. If Z3 establishes that ¬Gz3 is unsatisfiable, then Gz3

and therefore G is a theorem. In this case, Smtlink returns the clause

A1 ∧A2 ∧ ...∧Am ∧ (A1 ∧A2 ∧ ...∧Am ∧G′ ⇒ G) to ACL2. By this mech-

anism, ACL2 verifies that the transformations performed by the translator

were sound. If Z3 finds a satisfying assignment to ¬Gz3, it is returned as a

counter-example. Counter-examples are shown to the user in the printout.

More technical issues about how one can make use of the counter-examples

are described in Section 3.5. If Z3 fails to determine the satisfiability of

¬Gz3, Smtlink reports that it was unable to make progress. Each of these

steps is described in more detail in the remaining sections of chapter.

40

3.1. Clause Processor Architecture

3.1.2 Ensuring Soundness in Smtlink

The soundness (and vulnerabilities) of this approach can be understood from

the following logical sequent:

(
∧m
i=1Ai) ; each Ai verified by ACL2

((
∧m
i=1Ai) ∧G′)⇒ G ; verified by ACL2

GZ3 ⇒ G′ ; we trust translation step 2

GZ3 ; verified by Z32

G

(3.1)

This is easily shown to be a tautology. Note that the first translation

step has no impact on soundness; in other words, the sequent above is a

tautology for any choice of G′. Of course, if the first step is faulty, then

it is likely that either it will produce a G′ that is too strong and Z3 will

be unable to discharge it, or G′ will be too weak, and ACL2 will be unable

to discharge ((
∧m
i=1Ai ∧ G′) ⇒ G. Thus, a correct implementation of the

first translation step is important for Smtlink to be useful, but it has no

impact on soundness. Accordingly, I organized the code so that most of the

complexity would be in the first translation step, and the second step just

translates a small number of simple Lisp operations to their equivalent in

acl2SMT.py, the Python module that I wrote to provide a generic interface

between Smtlink and SMT solvers.

SMT solvers use heuristics for domain specific problems and it is possible

that Z3 may return ‘unknown’ because of the complexity of the problem.

In this case, the SMT solver’s response does not help us determine the

truth of the original theorem. Furthermore, semantic gaps can exist between

the ACL2 formula and formulas that are within the theories supported by

the SMT solver. These issues are described in detail in Section 3.2. The

translator is written to ensure that the claim, G′ that is verified by Smtlink

2For the purposes of the clause processor, determining the truth of G′ also depends on
correctly invoking the Python program and properly interpreting the string output by the
program to report the outcome from Z3. All of this code is simple, straightforward, and
largely based on code for other external clause processors (SAT solvers) that are already
in use with ACL2.

41

3.2. Smtlink Architecture

Program 3.2 A SMT eligible theorem in ACL2

1 (defun foo (x y) (* x (+ 1 y)))

2 (defthm test

3 (implies (and (and (rationalp x)

4 (integerp y)

5 (integerp z))

6 (and (not (<= x 0))

7 (equal z (+ 3/2 4))

8 (or (> x y) (> x (+ y 40/3)))))

9 (> (foo x (foo x z)) (foo x y))))

is at least as strong as the original claim, G. If G′ is stronger than G,

then the SMT solver may find a counter-example to G′ that does not refute

the original claim, G. The goal for Smtlink is to ensure soundness, but

completeness is not possible, nor is completeness required for Smtlink to be

useful in practice.

3.2 Smtlink Architecture

In ACL2, theorems are written in a comprehensive, applicative subset of

Common Lisp. The Smtlink translator produces Python programs that use

the acl2SMT API that I wrote. This API is specifically designed for Z3’s

Python interface, z3py, but should be suitable for use with other SMT solvers

as well. To implement a full translator from ACL2 into Z3 is not possible

due to the asymmetry between the two logics. Therefore, Smtlink only

translates a subset of the ACL2 logic that is practical to express as a SMT

problem. With our emphasis on AMS verification, I designed Smtlink with

an emphasis on using SMT to reason about systems of linear and non-linear

equalities and inequalities.

Program 3.2 shows a simplified example of an ACL2 theorem that is

suitable for discharging with a SMT solver. Such a theorem consists of

four parts: function definitions, type assertions, inequality constraints on

the variables and the inequality property to prove. Program 3.3 shows a

statement of the same theorem using z3py. In general, the translator needs to

42

3.2. Smtlink Architecture

Program 3.3 A SMT theorem in Z3

1 def foo(x,y):

2 return x*(1+y)

3

4 x=Real("x")

5 y=Real("y")

6 z=Real("z")

7

8 hypothesis=And(Not(x <= 0), (z == (3/2 + 4)),

9 Or((x > y), (x > (y + 40/3))))

10 conclusion=foo(x,foo(x,z)) > foo(x,y)

11 Prove(Implies(hypothesis, conclusion))

Program 3.4 SMT-eligible ACL2 theorem format

1 (defthm SMT-eligible-theorem

2 (implies (and (and list-of-variable-type-assertions)

3 (and other-hypothesis))

4 conclusion))

extract the type assertions for variables, the hypotheses, and the conclusion

from the clause given to the clause processor. Furthermore, it should be

able to identify and expand calls to user-defined functions.

For simplicity, I require that the ACL2 clause to be proven using the SMT

solver has the structure shown in Program 3.4: For example, Program 3.2

has this structure. Each type assertion is of the form (type-recognizer

variable), where type-recognizer is one of the ACL2 recognizer functions,

booleanp, integerp, or rationalp, and variable is a symbolic variable ap-

pearing in the clause. All variables must be declared in this fashion. The

terms other-hypotheses and conclusion can be any predicates supported by

the translator; in particular, these terms are quantifier free. Often, other-

hypotheses is a conjunction of equality and/or inequality constraints on the

variables, and conclusion is the equality or inequality to be proven. Requir-

ing this structure simplifies the implementation of the translator and has

not been a serious restriction for the examples we have tried (see Chapter 4)

43

3.2. Smtlink Architecture

as ACL2 theorems about systems of real-valued inequalities are typically

written in a form very similar to the one we require.

Several technical issues arose when I implemented the transformation

and translation.

� Typed vs. untyped. ACL2 is untyped and Z3 is typed. Smtlink re-

quires the user to provide a type assertion for every free variable oc-

curring in the theorem. See Section 3.2.1

� Rational vs. Reals. ACL2 only supports rationals and Z3 supports re-

als. Smtlink strengthens the clause to be proven by replacing rational

assertions with real assertions. See Section 3.2.1

� Richer logic in ACL2. ACL2 supports a much richer logic than is sup-

ported by Z3. Smtlink supports clauses that are boolean combinations

of rational function equalities and inequalities. See Section 3.2.2

� Function expansion. For user-defined functions and recursive func-

tions, Smtlink expands them into a set of primitive functions. See

Section 3.2.2

� Non-polynomial expressions. Z3 only supports theories for polynomial

(and rational function) inequalities. Smtlink provides a mechanism

that allows the user to replace non-polynomial expressions with vari-

ables. See Section 3.2.3

� Adding hypotheses. Smtlink allows the user to specify additional

hypotheses to be added to GZ3 and then verified by ACL2. Typically,

these are instances of previously proven theorems, or constraints on

variables that the user introduced as replacements for non-polynomial

expressions. See Section 3.2.3

� Forwarding hints. Clauses returned to ACL2 are supposed to be “easy”

for ACL2 to prove. In fact, the “automatic” aspect of ACL2 requires

ACL2 to discharge these clauses without further interaction from the

user; otherwise, the proof of the theorem fails. Occasionally, ACL2

44

3.2. Smtlink Architecture

Program 3.5 An example showing ACL2’s type recognizer

1 (defthm not-really-a-theorem

2 (iff (equal x y) (zerop (- x y))))

fails to prove a user added hypothesis. In this case, the user can

provide hints. For example, using The Method (see Chapter 2.2.4),

the user can prove a suitable lemma, and then give a hint that tells

ACL2 how to instantiate this lemma to discharge the clause returned

by Smtlink. See Section 3.2.3

Sections 3.2.1 through 3.2.3 present these challenges and my solutions to

each.

3.2.1 Type Assertion

A fundamental difference between the ACL2 and Z3 is that ACL2 uses an

untyped logic whereas the logic of Z3 is typed. For example, consider the

putative ACL2 theorem 3.5. ACL2 is untyped and requires all functions

to be total. Thus, (- x y) is defined for all values for x and y, including

non-numeric values. For example, x could be a Lisp atom and y could be a

list. What is (- ’dog (list "hello", 2, ’world))? As implemented in

ACL2, arithmetic operators treat all non-numeric arguments as if they were

zero. Thus,

Expression Value

(- ’dog (list "hello", 2, ’world)) 0

(zerop (- ’dog (list "hello", 2, ’world))) t

(equal ’dog (list "hello", 2, ’world)) nil

(iff (equal ’dog (list "hello", 2, ’world)) nil

(zerop (- ’dog (list "hello", 2, ’world))))

On the other hand, Z3 uses a typed logic, and each variable must have

an associated sort. If we treat x and y as real-valued variables, the z3py

equivalent to not-really-a-theorem is

45

3.2. Smtlink Architecture

Program 3.6 Rewrite the theorem

1 (defthm this-is-a-theorem

2 (implies (and (rationalp x) (rationalp y))

3 (iff (equal x y) (zerop (- x y)))))

>>> x, y = Reals([’x’, ’y’])

>>> prove((x == y) == ((x - y) == 0))

proved

In other words, not-really-a-theorem as expressed in the untyped logic

of ACL2 is not a theorem, but the “best” approximation we can make in

the typed logic of Z3 is a theorem.

Smtlink employs two methods to address these issues: type assertions

and type correspondence. With type assertions, the user indicates the in-

tended type of each free variable in an ACL2 claim. If any variables have

values outside of the asserted domains, Smtlink states the claim trivially

holds. With type correspondence, I wrote Smtlink to ensure that the Z3

sorts for variables correspond to the types asserted in the ACL2 claim. For

booleans and integers, this correspondence is immediate. On the other hand,

we represent ACL2 rational numbers using Z3’s sort for reals. The remainder

of this section describes these design decisions in more detail and presents

our justifications for their soundness.

Typed vs. Untyped

Theorems in ACL2 are written as terms in Common Lisp, an untyped lan-

guage. Variables and expressions in Common Lisp, and hence in ACL2, do

not have types. On the other hand, Common Lisp provides type recognizers

for values including integerp and rationalp. We can rewrite the previous

using type assertions as Program 3.6. ACL2 proves this theorem automat-

ically. Note that with our previous example, if x is the atom ’dog and y

is the list ("hello", 2, ’world)), then (rationalp x) and (rationalp

y) are both false and the theorem holds trivially because the antecedent of

46

3.2. Smtlink Architecture

the implication is false. In the case that x and y both have value that are

rational numbers, then the theorem states the basic arithmetic result, which

was (presumably) the user’s intention.

Program 3.4 shows the structure that Smtlink requires. In particular,

if a goal does not preserve the syntactic format illustrated here, Smtlink

will produce an error and fail to prove the theorem. Smtlink maintains

soundness when translating from the untyped logic of ACL2 to the typed

logic of SMT solvers by enforcing the syntactic structure described above

and by using SMT sorts that can represent all values recognized by the

corresponding ACL2 type recognizers. A bit more formally, let U be the set

of all values in the ACL2 universe. Then, a theorem like the one depicted

in Program 3.4 is equivalent to the logical formula:

∀x1, x2, ..., xm ∈ U.

 m∧
i=1

Ti(xi) ∧
n∧
j=1

hj(x)

⇒ C(x) (3.2)

where Ti is the type of the ith variable; hj is the jth “other” hypothesis; C

is the conclusion of the theorem; and the theorem has m free variables and

n “other” hypotheses. The corresponding formula to be discharged by the

SMT solver is:

∀x1 ∈ S1, x2 ∈ S2, ..., xm ∈ Sm.

 n∧
j=1

h̃j(x)

⇒ C̃(x) (3.3)

where S1, S2, ..., Sm are the SMT sorts corresponding to the type recognizers

T1, T2, ..., Tm; h̃j(x) is the translation of h(x); and C̃(x) is the translation

of C(x). For soundness, we want to show that if the formula from Equa-

tion 3.3 holds, then the formula from Equation 3.2 must hold as well. This

correspondence is ensured if:

� ∀xi ∈ U. Ti(xi)⇒ xi ∈ Si

� ∀x1, x2, ..., xm ∈ U. (
∧m
i=1 Ti(xi))⇒ (hj(x)⇒ h̃j(x))

� ∀x1, x2, ..., xm ∈ U. (
∧m
i=1 Ti(xi))⇒ (C̃(x)⇒ C(x))

47

3.2. Smtlink Architecture

The first condition requires that every value that satisfies an ACL2 type

recognizer must be a value of the corresponding SMT sort. As currently

implemented, Smtlink supports booleans, integers, and rationals/reals as

shown in Table 3.1. Z3’s booleans and integers match the same, standard,

mathematical definitions as those used in ACL2. On the other hand, ACL2

uses rational numbers where Z3 uses reals – this difference is discussed in

more detail below. The last two conditions given above require that Smtlink

must preserve the meaning of terms. More specifically, the hypotheses as

translated by Smtlink must be no stronger than those of the ACL2 theorem,

and the conclusion must be at least as strong.

As shown in Figure 3.2, Smtlink performs translation in two phases,

where the first phase is verified by ACL2 and the second is trusted. Type

assertion is handled in the second phase. This means that we are trust-

ing Smtlink to correctly recognize the syntactic structure depicted in Pro-

gram 3.4 and to declare SMT variables of the correct sorts corresponding

to the ACL2 type recognizers. In both cases, the translation is simple, and

the code is easily inspected.

In the current implementation, Smtlink does not check to make sure that

all free variables have type assertions nor does it check if there are multiple

type-assertions for the same variable. If a user omits a type assertion, then

the corresponding variable will be undeclared, and this will cause the Python

code to report an error. If there are duplicated type assertions for the same

variable, ACL2 will take the conjunction of the assertions as hypothesis and

Z3 will use the last declaration. Thus, the Z3 hypothesis will be weaker than

the ACL2 ones. It will be beneficial to check duplicated variable declaration

in future work.

Rationals vs. Reals

Another asymmetry comes from the fact that, due to implementation issues,

every number in ACL2 must be either an integer, a rational number, or an

integer or rational complex number. In contrast, Z3 provides a sorts for

integers and real numbers, but no sort for rational numbers. While we could

48

3.2. Smtlink Architecture

Program 3.7 An example showing rational vs. reals problem in ACL2

1 (defthm rational-vs-reals

2 (implies (and (and (rationalp x))

3 (and))

4 (not (equal (* x x) 2))))

Program 3.8 An example showing rational vs. reals problem in Z3

1 x = Real("x")

2 prove(Not(x*x == 2))

introduce a user-defined type for rational numbers (i.e. a pair of integers)

and define arithmetic and comparison operations on such numbers, doing

so would preclude using Z3’s decision procedures for non-linear arithmetic,

and that is our primary motivation for integrating a SMT solver into ACL2.

Z3 uses Gröbner bases combined with rewriting heuristics to reason about

systems of polynomial equalities and inequalities. These procedures apply to

real-valued variables. Some care is needed to handle this mismatch between

real-numbers and rationals. As an example, consider the theorem shown

in Program 3.7. This theorem can be proven, albeit with some manual

effort, using ACL2 [45]. In English, the theorem states “2 does not have a

rational square root”. Smtlink translates Program 3.7 to the Python code

that is roughly equivalent to (but much more verbose than) that shown in

Program 3.8.

Because Z3’s non-linear arithmetic procedures support real numbers, Z3

finds the counter-example x =
√

2, but this is not a valid counter-example to

the original theorem. More generally, Smtlink may strengthen a theorem.

In this case, the strengthening is because while (rationalp x) implies x ∈
R, the converse does not hold. When Smtlink discharges a strengthened

theorem, the original theorem must hold as well. As currently implemented,

Smtlink does not provide counter-example generation, and if it refutes a

translated theorem, we can make no conclusions about the original version.

Smtlink prints the counter-example to the ACL2 log for the user to examine,

49

3.2. Smtlink Architecture

but ACL2 makes no further use of such results. Presumably, one could check

to see if a counter-example generated by Z3 only used booleans, integers and

rational numbers. If so, then this will be a valid counter-example for the

original theorem in ACL2 and could be used as an existential witness. More

discussion can be found in Section 3.5.

ACL2 Z3

integerp Int
rationalp Real
booleanp Bool

Table 3.1: Type assertion translation

3.2.2 Supported Logic

Smtlink minimizes the portion of code that needs to be trusted in trans-

lation step 2 (as shown in Figure 3.2). It achieves such goal by defining a

small set of primitive functions to be translated in translation step 2. All

other functions (including user-defined functions and ACL2’s other built-in

functions) should be expanded and simplified into the small set of primitive

functions. The expansion and simplification happen in translation step 1,

which is ensured soundness by Smtlink’s software architecture 3.2.

For our intended application, we focus on supporting arithmetic, com-

parison, and boolean operations from ACL2 and translating these to their

SMT equivalents. As shown in Table 3.2,. most of these operators are Lisp

macros in ACL2, and our translator sees the macro-expanded form. Ac-

cordingly, our translator supports clauses consisting of the Lisp functions

appearing in the right column of Table 3.2. Table 3.3 shows how each such

Lisp function has a corresponding method in the acl2SMT module. Chap-

ter 3.3 discusses the Z3 interface class of Smtlink.

2Note that macro expansions shown in the table are not exact definitions but example
instances. E.g. In ACL2, +, -, and and or are actually macro-expanded into a recursive
function that takes an uncertain number of inputs.

50

3.2. Smtlink Architecture

Before macro expansion After macro expansion

(+ x y z) (binary-+ x (binary-+ y z))

(- x y) (binary-+ x (unary-- y))

(* x y z) (binary-* x (binary-* y z))

(/ x y) (binary-* x (unary-/ y))

(equal x y) (equal x y)

(> x y) (> x y)

(>= x y) (>= x y)

(< x y) (< x y)

(<= x y) (<= x y)

(and x y z) (if x (if y z nil) nil)

(or x y z) (if x t (if y t z))

(not x) (not x)

(nth listx) (nth listx)

Table 3.2: ACL2’s macro expansions

Function Expansion

For user defined functions or other ACL2 built-in functions, Smtlink ex-

pands them into the set of primitive functions. This approach has several

benefits. First, we won’t need to worry about translation of a function defi-

nition in ACL2 to Z3, which can be tedious. Second, for recursive functions,

it’s not even possible to directly translate them into Z3, because recursive

definitions can not be symbolically expanded in Z3. As shown in Chap-

ter 3.1.1, clause G′ is the result clause after this expansion. Thus the expan-

sion will be ensured correctness when the clause A1∧A2∧ ...∧Am∧G′ ⇒ G

gets returned back for ACL2 to prove.

To see how the function expansion works, for example, given the function

definition of fun-example:

(defun fun-example (a b c) (+ a b c))

Suppose in some theorem, we encounter function call (foo (+ x y) x (/

z x)). The first phase of translation expands this to:

((lambda (VAR1 VAR2 VAR3) (+ VAR1 VAR2 VAR3)) (+ x y) x (/ z x))

51

3.2. Smtlink Architecture

ACL2 primitives SMT interface

binary-+ acl2SMT.plus
unary– acl2SMT.negate

binary-* acl2SMT.times
unary-/ acl2SMT.reciprocal
equal acl2SMT.equal
> acl2SMT.gt
< acl2SMT.lt
≥ acl2SMT.ge
≤ acl2SMT.le
if acl2SMT.ifx

not acl2SMT.notx
nth acl2SMT.nth
t acl2SMT.True

nil acl2SMT.False

Table 3.3: Z3 interface for each ACL2 primitives

Smtlink requires the user to provide a list of functions that should be ex-

panded. For each such function, the user also specifies the maximum depth

of the expansion and the return type. The function expander traverses the

s-expression and expands along each path for a fixed number of levels for

each function provided by the user. In a world without recursive functions,

this expansion will be performed only once for any function along a specific

path.

With recursive functions, functions along each path will be expanded un-

til user specified levels are reached. Then, Smtlink replaces the remaining

function calls with newly introduced variables and adds type assertions on

the new variables. To ensure correctness, Smtlink returns the corresponding

type specification theorems back to ACL2 as auxiliary theorems (as men-

tioned in Chapter 3.1.1). Using this approach, the expansion strengthens

the original clause; thus, Smtlink asks the SMT solver to prove a stronger

theorem. However, this approach can produce an over-strengthening of the

original theorem that causes Z3 to fail proving the translated theorem. To

solve this issue, the user can provide additional hints to weaken the trans-

lated theorem. This is discussed in Section 3.2.3.

52

3.2. Smtlink Architecture

3.2.3 Advanced Issues

The previous sections described the top-level structure and basic construc-

tions of Smtlink. This section describes other features that makes the

integration more flexible and extensible.

User provided substitutions make it possible to substitute part of the

clause formula with a new variable. Furthermore, the user can provide

hypothesis predicates that constrain those variables or convey other infor-

mation to the SMT solver that may be “obvious” within ACL2. These

hypotheses can make a SMT based proof possible and/or more efficient.

Smtlink returns the user provided predicates as clauses for ACL2 to prove.

Therefore, ACL2 automatically checks if the hypothesis on the substitution

is valid. User provided hints help discharge some of the hard (auxiliary)

theorems returned back to ACL2. The sections below describe each feature

in detail.

User Provided Substitution

To see why we need user provided substitutions, considering the following

claim:

∀a, b, γ ∈ R,∀m,n ∈ Z, 0 < γ < 1, 0 < m < n⇒ γm(a2 + b2) ≥ γn(2ab).

Program 3.9 is the ACL2 code for this theorem. This theorem seems like

a good candidate for proving using SMT methods. Given the function ex-

pansion mechanism of Smtlink, the exponential functions in this theorem

will be expanded to a given level, and the last function call will be replaced

with a typed variable. However, this is an over-strengthening of the original

theorem and Z3 fails to prove such theorem. Is this theorem impossible to

prove using SMT techniques? Taking a closer look, one can see there is a

simple reason why the theorem holds. A manual proof would observe that

because 0 < gamma < 1, 0 < m < n and gammam > gamman > 0. Fur-

thermore, for any a, b ∈ R, a2 + b2 >= 2ab, and a2 + b2 >= 0. The claim

follows directly from these inequalities. All of these are within Z3s theory

of non-linear arithmetic except for deduction that gammam > gamman > 0

this step requires a (trivial) proof by induction. Our strategy is to provide

53

3.2. Smtlink Architecture

Program 3.9 Why need user provided substitution

1 (defthm substitution

2 (implies (and (and (rationalp a)

3 (rationalp b)

4 (rationalp gamma)

5 (integerp m)

6 (integerp n))

7 (and (> gamma 0)

8 (< gamma 1)

9 (> m 0)

10 (< m n)))

11 (>= (* (expt gamma m)

12 (+ (* a a) (* b b)))

13 (* (expt gamma n)

14 (* 2 a b)))))

gammam > gamman and gamman > 0 to the SMT solver as hints, and let

ACL2 discharge those hints using its inductive reasoning capabilities.

I implement this strategy using the mechanisms for substitutions and

adding hypotheses described above. User defined substitutions direct Smtlink

to replace (expt gamma m) and (expt gamma n) with two newly introduced

variables expt-gamma-m and expt-gamma-n. Then, user provided hypothe-

ses about those two variables are added: (< expt-gamma-n expt-gamma-m),

(> expt-gamma-m 0) and (> expt-gamma-n 0). Smtlink sends the result-

ing clause G′ to Z3. Z3 has no problem discharging this theorem. For each

user provided hypothesis, Smtlink produces an auxiliary theorem and sends

it back to ACL2 to discharge.

This mechanism greatly broadens the set of SMT problems Smtlink

can handle. Especially when there exists limitations on Z3 that ACL2 can

handle, or when we want to build upon known theorems about sub-formulas

of the original clause. User provided hypotheses can make it easy to prove

theorems that would involve long, tedious derivations if done entirely within

ACL2 and that would seem unsuitable for SMT alone given the limitations of

the supported theories. Often, a small amount of human reasoning conveyed

as simple hints can enable a large degree of proof automation.

54

3.3. The Low-level Interface

User Provided Hints

Smtlink allows several supposedly “easy” clauses to be sent back to ACL2.

They are in the clause A1 ∧ A2 ∧ ... ∧ Am ∧ (A1 ∧ A2 ∧ ... ∧ Am ∧ G′ ⇒
G). However, ACL2 may be unable to discharge some of these clauses

automatically. Thus hints are needed from human user.

ACL2 has this feature called hints to help guide a proof. Basically, a hint,

which is a theorem already proved in the system, is an antecedent added to

the intended proof. Consider the case where we want to prove theorem T ,

and we recognize that T is a simple arithmetic transformation of an existing

theorem, H. Adding H as a hint to T is equivalent to constructing a new

proof in the form H → T . Since the user has already proven H somewhere

in the ACL2 world, ACL2 knows the theorem T to be true. ACL2 has the

hint feature for common theorem statements, but doesn’t have this feature

for discharging clauses returned by the clause processor. I added this feature

to my construction.

3.3 The Low-level Interface

The previous section described the translator part of the clause processor

which is composed of clause transformation & simplification and a Lisp-

to-Python translator. See Smtlink architecture 3.2. This section presents

two other parts in the low-level interface: the Z3 interface, and the result

interpreter.

3.3.1 Z3 Interface

My current implementation of Smtlink uses the Z3 SMT solver. However,

the code is written in a way that should make using other SMT solvers

straightforward. In particular, all methods of the underlying SMT solver

are invoked through methods of an object called acl2SMT. For example,

acl2SMT.plus provides the addition operator; acl2SMT.True provides the

boolean constant for True; etc. I also wrote a module called acl2 Z3 that

provides a class called to smt with a no-arg constructor that returns an

55

3.3. The Low-level Interface

object with the methods described above. In this case, this object uses Z3s

z3py API to implement these methods.

This mechanism has one significant benefit. The acl2SMT interface pro-

vides a very flexible interaction between ACL2 and other SMT solvers as

shown in figure 3.3. Imagine we want to use another SMT solver, say Yices

[40]. The only thing needed to be done is to develop a Yices interface for

the same set of primitive functions. It is likely that the functions will be

very similar to those for Z3. In a word, Smtlink should be easily extended

to connect to other SMT solvers.

expanded
clause

ACL2 (lisp)
to smt

translate

generate
return
clause

simplify
expand &original

clause
ACL2 (lisp)

generate
return
clause

SMT clause

(target language)
clause

Not(clause)
satisfiable?

step 2
translation

lisp (ACL2) target SMT language

(proven)

yes

step 1
translation

original expanded

(implies
expanded
original)

false unsatno

return

?

SMT

acl2SMT

Interpret result

G

G′, A1, A2, ..., Am

A1 ∧ A2 ∧ ... ∧ Am ∧ (A1 ∧ A2 ∧ ... ∧ Am ∧G′ ⇒ G)

¬GSMT

GSMT

Figure 3.3: Clause processor framework with another SMT.

3.3.2 Interpret the Result

The goal behind interpreting the returned result from SMT solver is to

ensure soundness. As shown in figure 3.2, there are three possible outcomes

from a SMT solver. When it reports UNSAT, we know the original clause

is true. When it reports SAT and provides the counter-example, because

Smtlink strengthens the theorem when doing clause transformation and

translation, we don’t know if the counter-example is valid or not. The third

case is when the SMT solver reports timeout or other exceptions. We don’t

know whether the theorem is true or not as well.

56

3.4. Conclusion: What’s Trusted?

To see in detail how this works, ACL2 provides a function called tshell-

call to call external procedures. This function can only be used when a

program is properly tagged as “trusted”. This function takes the shell com-

mand and returns the output from the command through one of the returned

values which is a list of strings. Smtlink interprets the result as in one of

the three cases discussed above. For example, if Z3 output equals “proved”,

then one knows the negation is UNSAT and the original theorem is proved.

Otherwise, Smtlink simply prints the output and lets the user decide what

kind of error it is.

3.4 Conclusion: What’s Trusted?

This section examines which parts of the code need trust from the user. In

other words, these are the assumptions I’ve made in Smtlink.

� First, I assume that the clause processor can correctly recognize the

proposed theorem statement structure. In particular, it looks for the-

orem statement as in Program 3.4. This is a pattern matching that

can be easily done in LISP.

� Second, I assume the method of weakening type hypotheses can strengthen

the theorem. In particular, I want Z3 sorts to be supersets (or equal

to) their ACL2 counterparts: ACL2 Booleanp gets translated to Z3

Bool, ACL2 Integerp gets tranlsated to Z3 Int and ACL2 Rationalp

gets translated to Z3 Real, which is a superset of ACL2 Rationalp.

This is illustrated in Table 3.1.

� Third, I assume the Z3 operators produced by Smtlink translator

match the semantics of their ACL2 counterparts.

� Fourth, I assume that the code that writes the string generated by the

translator to a file, invokes Python, and interprets the result will work

correctly. Note that these operations are very simple and straightfor-

ward. The high-complexity code only occurs for function expansion,

user specified substitutions, and user added hypotheses. However,

57

3.5. Future Work

none of this code requires trust, because this is done in the first step

of translation, and the result of that translation is verified by ACL2.

3.5 Future Work

For several design decisions I’ve made, more general solutions are possible.

Due to thesis time limitation, I didn’t explore all of them. This section

discusses what could be done differently and could potentially give better

results.

Guards instead of user-provided types: ACL2 provides a mechanism

for restricting inputs and outputs of a function to be in a particular do-

main. This mechanism is called a “guard”. ACL2 users are encouraged

to add guards to their modeling functions so that the functions are more

well-formed. Given that users of ACL2 might follow this mechanism, type

assertions can be retrieved from guards on each function, instead of being

retrieved from user provided type assertions. Smtlink can provide both

methods and let the user decide which mechanism he/she wants to use.

Returning counter-examples: Smtlink returns the potential counter-

examples to ACL2 and prints them out for the user to check. In princi-

ple, Smtlink could check to see if the counter-examples from Z3 are mean-

ingful in ACL2 (i.e., all numbers have integer or rational values). Then,

Smtlink could try that assignment with the original goal. If it satisfies

the original goal, then Smtlink can report a valid counter-example. If it

doesn’t, Smtlink has an indeterminate result. In principle, one could use

this counter-example to refine the definition of G′, and try again.

ACL2(r): There is a version of ACL2 called ACL2(r) [46]; the “r” stands

for reals. ACL2(r) has support for real number reasoning. When I began

developing Smtlink, ACL2(r) did not support the full collection of “books”

of theorems that the mainstream ACL2 theorem prover did. There is an

ongoing effort to unify the two versions that is nearly complete. I have

58

3.6. Summary

successfully used Smtlink with both ACL2 and ACL2(r) for the convergence

proof in the next chapter. Note that when ACL2(r) is used, then there is

no semantic gap in the number representation between the theorem prover

and the SMT solver.

Function expansion with better automation: Smtlink can provide

better automation to function expansion. Smtlink could use a default mode

in which functions would always be expanded one level. It could maintain

a “do-not-expand” list of functions that should not be expanded. Features

can be added to allow a richer set of assertions about the return result for

recursive functions. Such assertions could be automatically obtained from

guard expressions for the function. Right now, the user can only assert

return types, but the user might know more sophisticated properties (e.g.

an inductive property) about a recursive function. Adding these features

should make Smtlink easier to use and enable writing more succinct proofs.

3.6 Summary

This chapter described the implementation of Smtlink, my interface be-

tween ACL2 and SMT solvers, in particular Z3. A key principle I stick

to is that all transformations and translations are only strengthening the

theorem; thus soundness is ensured.

Smtlink consists of three parts: the translator, the low-level interface

and the SMT solver. The translation is performed in two steps. The first

step takes an ACL2 theorem as input and transforms and simplifies the

theorem into a set of auxiliary theorems and a new goal. This new goal uses

only a very small subset of the Lisp functions provided in ACL2. The second

step performs a straight forward translation from LISP to z3py on the new

goal. The architecture is trustworthy in practice because most complexity

falls in clause transformation and simplification code. The result of clause

transformation and simplification is returned for ACL2 to check correctness.

In principle, one could use proof-reconstruction [60] and/or certificates [19]

in which case the user would only need to trust ACL2 itself, but that would

59

3.6. Summary

be a separate thesis topic. My focus has been on developing a useful tool

and demonstrating it on a real example.

The low-level interface makes it possible that one can extend Smtlink

with different SMT solvers. This chapter also discusses a list of interesting

issues that arise in Smtlink and proposes my solutions. From the discussion

of what is trusted, one can see that Smtlink is reliable because it only relies

on a limited set of things. Future work could include several improvement

directions including better type inference, better counter-examples, using

ACL2(r) to get better support for reals and a better function expansion

mechanism.

60

Chapter 4

Verifying Global

Convergence of a Digital PLL

This chapter demonstrates the value of Smtlink for AMS design by using it

to verify the global convergence of a digital phase-locked loop (digital PLL).

This experiment shows that one can employ an analytical approach for AMS

verification, and how Smtlink supports this approach well. The analytical

approach allows us to verify properties that cannot be shown by typical

reachability methods: in particular it can be shown that a convergence

is guaranteed with model parameters in ranges, rather than with specific

values.

In this chapter, Section 4.1 introduces phase-locked loops describing both

their operation and their applications. The particular digital PLL that I

verify is described as well. Section 4.2 develops a mathematical model for the

digital PLL that is amenable to formal reasoning, and Section 4.3 presents

the proof itself. I note that this proof shows the main result needed to

establish convergence, but there are still some details left that would be

needed for a complete verification. Section 4.4 summarizes what has been

proved in this convergence proof and discusses possible future work.

4.1 The Digital PLL

A PLL is a feedback control system that generates an output signal with

the same frequency as the input or with a frequency that is some multiple

of the input frequency. A PLL also requires that the phase of output signal

should match that of the input. To control both the frequency and the

phase of the oscillator, a PLL is a second order control system. PLLs are

61

4.1. The Digital PLL

ubiquitous in a wide range of electronic devices. PLLs are used in computers

for clock generation and to ensure proper timing of high bandwidth interfaces

to DRAM, graphics and network interfaces, etc. For wireless devices such

as mobile phones, PLLs are used to generate, modulate, and decode radio

signals. These are just a few examples of how PLLs are used.

Traditionally, PLLs have been designed as purely or primarily analog sys-

tems. As described in Chapter 2, analog modules are being largely replaced

by digital counterparts due to the difficulties of analog design in state-of-

the-art fabrication processes and the extra configurability offered by digital

designs. These observations apply to PLLs as well, leading to the dominance

of “all-digital” or “digitally intensive” PLL design today. Digital blocks in

the circuitry change the behavior of a circuit from continuous to partially

discrete. The designer’s intuition is that given the original analog circuit

is strongly converging, proper discretization shouldn’t drive it too far from

converging again. However, discretization can introduce unintended modes

of operation. Furthermore, if designers could be confident that their designs

did behave as intended, then more aggressive techniques could be used to

achieve higher performance, lower power consumption, smaller area, etc.

Due to limitations with today’s AMS validation tools, we need formal ver-

ification to make sure a PLL is functioning correctly. Section 2.3 gives a

discussion on related work of PLL verification research.

Figure 4.1 shows the digital phase-locked-loop (PLL) verified in this

thesis; it is a simplified version of the design presented in [33]. The purpose

of this PLL is to adjust the digitally-controlled oscillator (DCO) so that its

output, ΦDCO has a frequency that is N times that of the reference input,

Φref and so that their phases match (i.e. each rising edge of Φref coincides

with a rising edge of ΦDCO). The three control-paths shown in the figure

make this a third-order digital control system. By design, the lower two

paths dominate the dynamics making the system effectively second-order.

The DCO has three control inputs: φ, c, and v. The φ input is used

by a proportional control path: if Φref leads ΦDCO/N then the PFD will

assert up, and the DCO will run faster for a time interval corresponding to

the phase difference. Conversely, if Φref lags ΦDCO/N , the dn signal will be

62

4.1. The Digital PLL

Linear
Phase

Control

Bang−Bang
Frequency

Control

Σ

Fref

Σ

Fref

DAC

BBPFD

0:23

0:14

15:23

0:7

refΦ
ΦDCO

ΦDCO/N

PFD
+
− dn

up

Coarse

Control
Frequency

discarded

c
v DCO

φ

÷N

−
(
Center
code

)

Φref is the reference signal whose frequency is denoted by fref .

ΦDCO is the output of the digitally controlled oscillator whose fre-
quency is denoted by fdco .

Labels of the form lo:hi denote bits lo through hi (inclusive) of a binary
value.

Figure 4.1: A Digital Phase-Locked Loop

asserted, and the DCO will run slower for a time interval corresponding to

the phase difference. If the frequencies of Φref and ΦDCO/N are not closely

matched, then the PFD simply outputs up (resp. dn) if the frequency of

ΦDCO/N is lower (resp. higher) than that of Φref .

The c input of the DCO is used by the integral control path. The

DCO in [33] is a ring-oscillator, and the c input controls switched capacitor

loads on the oscillator – increasing the capacitive load decreases the oscilla-

tor frequency. The bang-bang phase-frequency detector (BBPFD) controls

whether this capacitance is increased one step or decreased one step for each

cycle of Φref . The c input provides a fast tracking loop.

The v input of the DCO is used to re-center c to restore tracking range.

This input sets the operating voltage of the oscillator – the oscillator fre-

quency increases with increasing v. The accumulator for this path is driven

by the difference between c and its target value ccenter .

As a control system, the PLL converges to a switching surface where c

and φ fluctuate near their ideal values. As presented in [33] these limit-cycle

variations are designed to be slightly smaller than the unavoidable thermal

63

4.2. Modeling the Digital PLL

and shot-noise of the oscillator. Furthermore, the time constants of the

three control loops are widely separated. This facilitates intuitive reasoning

about the system one loop at a time – it also introduces stiffness into the

dynamics that must be considered by any simulation or reachability analysis.

These characteristics of convergence to a switching surface and stiffness from

multiple control loops with widely separated tracking rates appear to be

common in digitally controlled physical systems. This motivates using the

digital PLL as a verification example and challenge.

4.2 Modeling the Digital PLL

From Spectre simulations (see Figure 4.2), I observe that the oscillator fre-

quency is very nearly linear in v and nearly proportional to the inverse of

c for a wide range of each of these parameters. The phase error, φ is a

continuous quantity, but the values of c and v are determined by the dig-

ital accumulators that are updated on each cycle of the reference clock,

fref . This motivates modeling the PLL using a discrete-time recurrence for

real-valued variables:

c(i+ 1) = saturate(c(i) + gc sgn(φ), cmin, cmax)

v(i+ 1) = saturate(v(i) + gv(ccenter − c(i)), vmin, vmax)

φ(i+ 1) = wrap(φ(i) + (fdco(c(i), v(i))− fref)− gφφ(i))

fdco(c, v) = 1+αv
1+βc f0

saturate(x, lo, hi) = min(max(x, lo), hi)

wrap(φ) = wrap(φ+ 1), if φ ≤ −1

= φ, if −1 < φ < 1

= wrap(φ− 1), if 1 ≤ φ
(4.1)

where gc, gv, and gφ are the gain coefficients for the bang-bang frequency

control, coarse frequency control, and linear phase paths respectively. The

coefficient α is the slope of oscillator frequency with respect to v, and β is

the slope of oscillator period with respect to c; both are determined from

64

4.2. Modeling the Digital PLL

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

operating voltage, v (volts)

D
C

O
 fr

eq
ue

nc
y,

 f D
C

O
 (G

H
z)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

simulation data
linear fit

(a) frequency vs. operating voltage

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

load capacitance, c (pF)

D
C

O
 fr

eq
ue

nc
y,

 f D
C

O
 (G

H
z)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

simulation data
linear fit for 1/fDCO

(b) frequency vs. load capacitance

Figure 4.2: Ring-oscillator response

65

4.3. Proving Global Convergence

simulation data. I measure phase leads or lags in cycles: φ = 0.1 means

that ΦDCO/N leads Φref by 10% of the period of Φref . We say that c is

“saturated” if,

c = cmin ∧ (φ < 0)

or

c = cmax ∧ (φ > 0)

Likewise, v is saturated if,

v = vmin ∧ (c > ccenter)

or

v = vmax ∧ (c < ccenter)

In this thesis, I scale fref to 1. With similar scaling, I choose gc = 1/3200,

gv = −gc/5, and gφ = 0.8. I assume bounds for c of cmin = 0.9 and cmax =

1.1 with ccenter = 1 and bounds for v of vmin = 0.2 and vmax = 2.5. With

these parameters, the PLL is intended to converge to a small neighbourhood

of c = ccenter = 1; v = fref ccenter = 1 and φ = 0.

4.3 Proving Global Convergence

To prove global convergence of this digital PLL, simulations have been con-

ducted in order to get a sense of how things are moving in the state space.

From this, I identified key points where I can break the proof up into pieces.

By tackling each piece at a time and connecting them together, I form a

proof of the global convergence.

4.3.1 Proof in Parts

I formalize the global convergence proof of this digital PLL into four theo-

rems below. Suppose we use B to stand for the blue region, R to stand for

the red region, G to stand for the green region and Y to stand for the yellow

region in Figure 4.3,

66

4.3. Proving Global Convergence

Theorem 4.1. Global convergence of Digital PLL

∃ small Y ∈ B, ∀[c(0), v(0), φ(0)] ∈ B, ∃N ≥ 0 ∀i ≥ N,

s.t.[c(i), v(i), φ(i)] ∈ Y

Figure 4.3 shows how this Digital PLL converges into a small region

in the middle. My verification proceeds in three phases as depicted in the

figure. First I show that for all trajectory starting with c ∈ [cmin, cmax], v ∈
[vmin, vmax], and φ ∈ [−1,+1] (the blue region in Figure 4.3),the trajectory

eventually reaches a relatively narrow stripe (the red and green regions) for

which fdco ≈ fref . To do so, I construct a series of lemmas that form a

ranking function. When this PLL is far from lock, its convergence is strong.

By proving this I have shown that the non-linearities of the global model

do not create unintended stable modes. Theorem 4.1.1 formally states this

argument.

Lemma 4.1.1. Coarse convergence

∃δ > 0 and N1, ∀[c(0), v(0), φ(0)] ∈ B, and |fdco(0)− fref | > δ,

s.t.∀i ≥ N1, |fdco(i)− fref | ≤ δ,

where R ∪G = {[c(i), v(i), φ(i)] | |fdco(i)− fref | ≤ δ}

Then the second part of the proof pertains to the small, red stripes where

fdco ≈ fref but c is close enough to cmin or cmax that saturation remains a

concern. Consider the red strip near c = cmin. Here, I show that v increases

and that c “tracks” v to keep fdco close to fref and φ small. Together, these

results show that all trajectories eventually enter the region shown in green

in Figure 4.3 in Theorem 4.1.2.

Lemma 4.1.2. Leaving the saturation

∃N2,∀[c(0), v(0), φ(0)] ∈ R, s.t.∀i ≥ N2, [c(i), v(i), φ(i)] ∈ G

The final part of the proof shows convergence to the limit cycle region,

shown in yellow in Figure 4.3. The key observation here is that φ repeatedly

67

4.3. Proving Global Convergence

V

fdco
= f

ref

cmin

vmin c
ccenter cmax

vmax

vhi

vlo

The light blue region denotes the entire space. Using the Lyapunov
argument I generated for the blue region, I proved convergence into the
middle green region. Then I show convergence into the middle yellow

region using another theorem.

Figure 4.3: Global convergence big picture

68

4.3. Proving Global Convergence

0
ceqc1

c2
c

c′1

φ

Figure 4.4: Fine convergence

alternates between positive and negative values. For any given value of v, I

calculate the value of c for which fdco(c, v) = fref , call this ceq(v). Figure 4.4

depicts a trajectory from a rising zero-crossing of φ to a falling crossing. Let

c1 be the value of c following a rising zero-crossing of φ, and let c2 be the

value of c at the subsequent falling crossing. I note that c1 < ceq(v) < c2.

The fine convergence theorem for the points in the stripe to converge into

the middle yellow region has been formally stated in Theorem 4.1.3.

Lemma 4.1.3. Fine convergence

∃Y,N3 and δ > 0, ∀[c(0), v(0), φ(0)] ∈ G, s.t.∀i ≥ N2, [c(0), v(0), φ(0)] ∈ Y

The next section discusses the details on how I proved the fine conver-

gence proof part using the clause-processor combination. Seeing the proof

69

4.3. Proving Global Convergence

might give one a better idea of how this proof cannot practically be done by

any single tool on itself.

4.3.2 Detailed Proof for Fine Convergence

In the green region of Figure 4.3, it is straightforward to show that c and

φ settle into an oscillating behavior. The damping term, −gφφ(i) causes

such oscillations to diminish, but they don’t die out completely due to the

quantization of c. The proof formalizes this intuition.

For any value of v, we can define ceq so that fdco(ceq, v) = fref . As

observed above, the value of c will roughly oscillate around ceq while φ

oscillates around 0. As shown in Figure 4.4, let c1 be the value of c when φ

crosses 0 in a rising direction, and let c2 be the value of c at the subsequent

crossing of 0 by φ in the falling direction. Our proof shows that if |c1−ceq| is
sufficiently large, then |c2−ceq| < |c1−ceq|−g1. A similar argument applies

if we consider a trajectory starting φ crossing 0 in the falling direction and

going until φ crossing 0 in the the rising direction. This shows that if

|c1 − ceq| is sufficiently large, its value will decrease. In our proof, we show

this convergence for |c1 − ceq| > 3g1. This shows that any trajectory in the

green region stays in the green region and moves to region very close to the

fdco(c, v) = fref line. Separately, we can show that if such a cycle occurs

with c < ccenter at all points, then v must eventually increase. Likewise, if

c > ccenter at all points of the cycle, the v must eventually decrease. These

results together show convergence to the yellow region of Figure 4.3.

The obvious way to show convergence is to show that c2 is closer to ceq

than c1 is. However, this involves calculating the recurrence step at which

φ makes its falling crossing of zero, and that involves solving a non-linear

system of equations. Although Z3 has a non-linear arithmetic solver, it does

not support induction as would be required with an arbitrary choice for c1.

Instead, I extrapolate the sequence to the last point to the right of ceq

that is closer to ceq than c1 is. I use formula from Eq. 4.1 for computing

c(i + 1) assuming that sgn(φ) = 1; either this assumption is valid for the

whole sequence, or φ had a falling crossing even earlier. Either is sufficient

70

4.3. Proving Global Convergence

to show convergence.

I stated this theorem in ACL2 and proved it using Smtlink. The proof

involves solving the recurrence, and rewriting the resulting formula. The

key inequality has exponential terms of the form (1 − gφ)n multiplied by

rational function terms of the other model parameters. I use the substitution

technique from Section 3.2.3 to replace these non-polynomial terms, and add

a :hypothesize hint that 0 < (1− gφ)n < 1. ACL2 readily discharges this

added hypothesis using a trivial induction.

The fine convergence proof is based on a 13-page, hand-written proof.

The ACL2 version consists of 75 lemmas, 10 of which were discharged using

the SMT solver. Of those ten, one was the key, polynomial inequality from

the manual proof. The others discharged steps in the manual derivation that

were not handled by the standard books of rewrite rules for ACL2. ACL2

completes the proof in a few minutes running on a laptop computer. I found

one error in the process of transcribing the hand-written proof to ACL2.

The ACL2 formulation enabled making generalizations that I would not

consider making to the manual proof. In particular, the manual proof as-

sumed that ceq−c1 was an integer multiple of g1. After verifying the manual

proof, I removed this restriction – this took about 12 hours of human time,

most of which was to introduce an additional variable 0 ≤ dc < 1 to account

for the non-integer part (see Appendix C.2). I also generalized the proof to

allow v to an interval whose width is a small multiple of |g2(cmax − cmin)|.
This did not require any new operators and took about 3 hours of human

time. The interval can be anywhere in [vlo, vhi]. This shows that the con-

vergence of c and φ continues to hold as v progresses toward fref ccenter . It

also sets the foundation for verifying the PLL with a more detailed model

including the ∆Σ modulator in the c path, an additional low-pass filter in

the v path, and adding error terms in the formula for fdco(c, v).

I completed much of the proof using ACL2 alone while implementing

Smtlink. I plan to rewrite the proof to take more advantage of the SMT

solver and believe that the resulting proof will be simpler, focus more on

the high-level issues, and be easer to write and understand. When faced

with proving a complicated derivation, one can guide ACL2 through the

71

4.4. Summary and Future Work

steps of the derivation, or just check the relationship of the original formula

to the final one using the SMT solver. The latter approach allows novice

users (including the author of this thesis) to quickly discharge claims that

would otherwise take a substantial amount of time even for an expert. As

noted before, if Z3 finds a counter-example, the tool does not return it as a

witness for ACL2. However, the clause processor prints the counter-example

(in its Z3 representation) to the ACL2 proof log. The user can examine this

counter-example; in practice, it often points directly to the problem that

needs to be addressed.

4.4 Summary and Future Work

In my proof, Lemma 4.1.1 and Lemma 4.1.2 are proven using raw Z3 (see

Appendix C.1) and Lemma 4.1.3 is proven using ACL2 with Smtlink (see

Appendix C.2). Smtlink greatly simplified the amount of work in prov-

ing inequalities of large arithmetic formulas. I can’t imagine proving this

lemma in raw ACL2 with reasonable small amount of effort. The analytical

approach I’m taking gives the benefit of flexible and extensible proofs when

small changes are made to the design. It also shows the limit cycle behavior.

However, future work needs to be done to fulfill the proof. More specif-

ically, following directions are possible directions.

1. A liveness property about Lemma 4.1.2 is left for future proof. To

be specific, my proof proves the liveness property that all trajectory

on the left wall will finally leave the wall. However, in order to prove

the behavior of leaving the saturation, I need to prove all trajectories

will eventually left the small saturation region, which means they will

never hit the wall again. I can potentially use Z3 as a bounded model

checker for fulfilling this lemma.

2. Eventually, I want to translate Z3 proofs for Lemma 4.1.1 and Lemma 4.1.2

into ACL2 and let Smtlink call Z3 as a bounded model checker.

3. The main theorem, Theorem 4.1, still needs to be stated in ACL2 and

verified. It seems to require reasoning with an existential quantifier as

72

4.4. Summary and Future Work

shown in Theorem 4.1. ACL2 supports proofs with existential quanti-

fiers. Proving this theorem statement will require connecting the three

lemmas together.

73

Chapter 5

Conclusion and Future Work

This thesis demonstrates that SMT techniques and theorem proving provide

complementary power for AMS verification problems. It proposes a way of

combining a SMT solver and a theorem prover by building an architecture

that provides soundness in practice without proof reconstruction. While an

error in Z3 or our interface code could, in principle, lead to an unsound

theorem, we believe that the likelihood of finding real bugs by applying

our tools to real designs is much greater than the risk of an incorrect theo-

rem slipping through our tools. Of course, nothing we have done precludes

adding proof reconstruction and/or certificates for those who need that level

of soundness. The thesis further applies this combination to proving global

convergence for a state-of-the-art digital PLL. Experiment results show how

this combination is suitable for AMS design verification.

In this Chapter, Section 5.1 points out the differences between this work

and other published AMS verification results. The comparison brings up

several strengths that can be provided with this method. Section 5.2 dis-

cusses a list of future directions that are enabled by the demonstrated thesis

work.

5.1 Conclusions

I presented the integration of the Z3 SMT solver into the ACL2 theorem

prover and demonstrated its application for the verification of global con-

vergence for a digital PLL. The proof involves reasoning about systems of

polynomial and rational function equalities and inequalities, which is greatly

simplified by using Z3’s non-linear arithmetic capabilities. ACL2 comple-

ments Z3 by providing a versatile induction capability along with a mature

74

5.2. Future Work

environment for proof development and structuring. Chapter 3 described

technical issues that must be addressed to ensure the soundness, of the in-

tegrated prover, usability issues that are critical for the tool to be practical,

and my solutions to these challenges.

Chapter 4 showed how this integrated prover can be used to verify global

convergence for a digital phase-locked loop from all initial states to the final

limit-cycle behaviours. The analysis of the limit cycle behaviour requires

modeling the PLL with recurrences. Such limit cycles are not captured

by continuous approximations used in [8, 110]. My approach allowed un-

certainty in the model parameters and not just in the signal values. My

approach shows strong promise for verification that accounts for device vari-

ability and other uncertainties.

Prior work on integrating SMT solvers into theorem provers has focused

on using the non-numerical decision procedures of an SMT solver. My work

demonstrates the value of bringing an SMT solver into a theorem prover for

reasoning about systems where a digital controller interacts with a contin-

uous, analog, physical system. The analysis of such systems often involves

long, tedious, and error-prone derivations that primarily use linear algebra

and polynomials. I have shown that these are domains where SMT solvers

augmented with induction and proof structuring have great promise.

5.2 Future Work

There are three possible directions that are opened up by this work.

5.2.1 Complete the Convergence Proof for the Digital PLL

The digital PLL model is a simplified model. The digital PLL in the original

paper [33] also contains a delta-sigma modulator and a low-pass filter. I

omitted them because they are not critical components of the PLL in the

sense of global convergence.

However, adding those two parts and proving convergence under this

new model would still be beneficial. Then I could analyze how this method

75

5.2. Future Work

adapts to new models. By analyzing how much more time and code I devote

to proving the expanded version, I’ll have more evidence of the scalability

of the method.

5.2.2 Build a Better Tool

As discussed in Chapter 3.5, there are several aspects in which I can im-

prove the tool architecture. These include using guards to infer types, pro-

viding useful counter-example, using ACL2r, and increasing the automation

of function expansion.

There are other things I can implement to extend proof methods and

automation. For example, my supervisor is my first “user” for Smtlink.

We have tried some experiments to automatically identify commonly used

substitutions using uninterpreted functions, the syntactic structure of the

clauses, and the “fast” theories of Z3 (e.g. linear arithmetic) to identify

useful hypotheses. Preliminary results suggest that approaches like this

could greatly simplify the proof for the digital PLL and would be useful for

other problems as well.

Adding the “hooks” so the user can manipulate the clauses creates new

trade-offs between soundness and ease of use. These can be tracked using

ACL2s trust-tag mechanism. This opens up the opportunity to try an idea

without investing a huge effort to ensure soundness. If it turns out to be

useful, then we can go back and progressively remove the need for trust-

assumptions.

5.2.3 Other Applications

I am interested in investigating how this combination of theorem proving

and SMT solving can be applied to other dynamical physical systems that

share common features with AMS designs. Interesting applications include

machine learning proofs and other mathematical proofs, medical system and

other cyber-physical system verification problems.

Machine learning problems are interesting problems to try because they

also make intense use of non-linear arithmetic. In addition to what is already

76

5.2. Future Work

supported by the tool, machine learning problems require more heavy use

of linear algebra theories. Other mathematical proofs with similar structure

could also benefit from the combination.

Some biomedical devices are naturally modeled as hybrid systems. There’s

a huge need in medical systems for correctness verification. For example, [48]

presents an anaesthetizing system that automatically adjusts the amount of

anaesthetic to give to a patient. The system should make sure no overdose

or underdose will occur in the feedback control system.

Cyber-physical systems and other physical dynamical systems that de-

mand verification tasks are also interesting problems to try.

I am currently exploring using my methods to verify other AMS designs

as well as similar problems that arise in hybrid control systems and machine

learning. Trying out these new applications not only helps further justify

my belief that this combination is useful, it also gives us a chance to look at

what’s common in these problems. Those observations might leads to better

automation. For example, common modeling blocks could be implemented

so that new problems can be composed using these library model blocks.

Specification languages could be implemented so that new specifications

can be easily expressed and get processed by the tool automatically.

77

Bibliography

[1] Formalizing 100 theorems. http://www.cs.ru.nl/~freek/100/. Ac-

cessed: 2015-01-16. → pages 18

[2] The Method. http://www.cs.utexas.edu/users/moore/acl2/

manuals/current/manual/?topic=ACL2____THE-METHOD. Accessed:

2015-02-22. → pages 19, 26

[3] Vhdl analysis and standardization group (vasg). http://www.eda.

org/twiki/bin/view.cgi/P1076/WebHome. Accessed: 2015-04-22. →
pages 10

[4] 1364-2005 - IEEE standard for Verilog hardware description

language. https://standards.ieee.org/findstds/standard/

1364-2005.html. Accessed: 2015-04-22. → pages 10

[5] The SPICE page. http://bwrcs.eecs.berkeley.edu/Classes/

IcBook/SPICE/. Accessed: 2015-04-07. → pages 8

[6] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Lau-

rent Voisin. An open extensible tool environment for Event-B. In

Formal Methods and Software Engineering, pages 588–605. Springer,

2006. → pages 26

[7] Ghiath Al-Sammane, Mohamed H Zaki, and Sofiène Tahar. A sym-

bolic methodology for the verification of analog and mixed signal de-

signs. In Proceedings of the conference on Design, automation and test

in Europe, pages 249–254. EDA Consortium, 2007. → pages 7, 15

[8] Matthias Althoff, Akshay Rajhans, Bruce H Krogh, Soner Yaldiz, Xin

Li, and Larry Pileggi. Formal verification of phase-locked loops using

78

http://www.cs.ru.nl/~freek/100/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____THE-METHOD
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____THE-METHOD
http://www.eda.org/twiki/bin/view.cgi/P1076/WebHome
http://www.eda.org/twiki/bin/view.cgi/P1076/WebHome
https://standards.ieee.org/findstds/standard/1364-2005.html
https://standards.ieee.org/findstds/standard/1364-2005.html
http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/
http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/

Bibliography

reachability analysis and continuization. Communications of the ACM,

56(10):97–104, 2013. → pages 35, 75

[9] Peter B Andrews. An introduction to mathematical logic and type

theory, volume 27. Springer Science & Business Media, 2002. → pages

17

[10] Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller,

Laurent Théry, and Benjamin Werner. A modular integration of

SAT/SMT solvers to Coq through proof witnesses. In Certified Pro-

grams and Proofs, pages 135–150. Springer, 2011. → pages 25

[11] Eugene Asarin, Thao Dang, and Oded Maler. The d/dt tool for ver-

ification of hybrid systems. In Computer Aided Verification, pages

365–370. Springer, 2002. → pages 15

[12] Clark Barrett and Sergey Berezin. CVC Lite: a new implementation

of the cooperating validity checker. In Computer Aided Verification,

pages 515–518. Springer, 2004. → pages 25

[13] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB stan-

dard: version 2.0. In A. Gupta and D. Kroening, editors, Proceedings

of the 8th International Workshop on Satisfiability Modulo Theories

(Edinburgh, UK), 2010. → pages 26

[14] Clark Barrett, Christopher L Conway, Morgan Deters, Liana

Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and Ce-

sare Tinelli. CVC4. In Computer aided verification, pages 171–177.

Springer, 2011. → pages 24

[15] Jason Baumgartner, Hari Mony, Viresh Paruthi, Robert Kanzelman,

and Geert Janssen. Scalable sequential equivalence checking across

arbitrary design transformations. In Computer Design, 2006. ICCD

2006. International Conference on, pages 259–266. IEEE, 2007. →
pages 22

79

Bibliography

[16] Bernd Becker and Christoph Scholl. Checking equivalence for partial

implementations. In Equivalence Checking of Digital Circuits, pages

145–167. Springer, 2004. → pages 11

[17] Michael Ben-Or, Dexter Kozen, and John Reif. The complexity of ele-

mentary algebra and geometry. In Proceedings of the 16th Annual ACM

Symposium on Theory of Computing, pages 457–464. ACM, 1984. →
pages 23

[18] Yves Bertot. A short presentation of Coq. In Theorem Proving in

Higher Order Logics, pages 12–16. Springer, 2008. → pages 18

[19] Frédéric Besson. Fast reflexive arithmetic tactics the linear case and

beyond. In Types for Proofs and Programs, pages 48–62. Springer,

2007. → pages 25, 59

[20] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C Paulson.

Extending sledgehammer with SMT solvers. Journal of automated

reasoning, 51(1):109–128, 2013. → pages 25, 26

[21] Woody W Bledsoe, Robert S Boyer, and William H Henneman. Com-

puter proofs of limit theorems. Artificial Intelligence, 3:27–60, 1972.

→ pages 23

[22] Robert Boyer et al. The QED manifesto. Automated Deduction–

CADE, 12:238–251, 1994. → pages 18

[23] Robert S Boyer and J Strother Moore. A theorem prover for a com-

putational logic. In 10th International Conference on Automated De-

duction, pages 1–15. Springer, 1990. → pages 18, 19

[24] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi

Junttila, Silvio Ranise, Peter Van Rossum, and Roberto Sebastiani.

Efficient satisfiability modulo theories via delayed theory combination.

In Computer Aided Verification, pages 335–349. Springer, 2005. →
pages 24

80

Bibliography

[25] Aaron R Bradley. Understanding IC3. In Theory and Applications of

Satisfiability Testing–SAT 2012, pages 1–14. Springer, 2012. → pages

11

[26] Randal E Bryant. Symbolic boolean manipulation with Ordered

Binary-Decision Diagrams. ACM Computing Surveys (CSUR), 24(3):

293–318, 1992. → pages 11

[27] Bruno Buchberger. An algorithm for finding the basis elements of

the residue class ring of a zero dimensional polynomial ideal. Journal

of symbolic computation, 41(3):475–511, 2006. English translation of

Bruno Buchberger’s 1965 PhD thesis. → pages 23

[28] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L

Dill, and Lain-Jinn Hwang. Symbolic model checking: 1020 states and

beyond. In Logic in Computer Science, 1990. LICS’90, Proceedings.,

Fifth Annual IEEE Symposium on Logic in Computer Science, pages

428–439. IEEE, 1990. → pages 11

[29] Alonzo Church. A formulation of the simple theory of types. The

journal of symbolic logic, 5(02):56–68, 1940. → pages 18

[30] Edmund M Clarke, E Allen Emerson, and Joseph Sifakis. Model check-

ing: algorithmic verification and debugging. Communications of the

ACM, 52(11):74–84, 2009. → pages 11

[31] George E. Collins. Quantifier elimination for real closed fields by cylin-

drical algebraic decompostion. In H. Brakhage, editor, Automata The-

ory and Formal Languages 2nd GI Conference Kaiserslautern, May

203, 1975, volume 33 of Lecture Notes in Computer Science, pages

134–183. Springer Berlin Heidelberg, 1975. ISBN 978-3-540-07407-6.

doi: 10.1007/3-540-07407-4 17. URL http://dx.doi.org/10.1007/

3-540-07407-4_17. → pages 23

[32] Stephen A Cook. The complexity of theorem-proving procedures. In

Proceedings of the 3rd Annual ACM Symposium on Theory of Com-

puting, pages 151–158. ACM, 1971. → pages 22

81

http://dx.doi.org/10.1007/3-540-07407-4_17
http://dx.doi.org/10.1007/3-540-07407-4_17

Bibliography

[33] J. Crossley, E. Naviasky, and E. Alon. An energy-efficient ring-

oscillator digital PLL. In Custom Integrated Circuits Conference

(CICC), 2010 IEEE, pages 1–4, Sept 2010. doi: 10.1109/CICC.2010.

5617417. URL http://dx.doi.org/10.1109/CICC.2010.5617417.

→ pages 62, 63, 75

[34] Martin Davis and Hilary Putnam. A computing procedure for quan-

tification theory. Journal of the ACM (JACM), 7(3):201–215, 1960.

→ pages 22

[35] Martin Davis, George Logemann, and Donald Loveland. A machine

program for theorem-proving. Communications of the ACM, 113(2):

156–161, 1962. → pages 22

[36] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver.

In Tools and Algorithms for the Construction and Analysis of Systems,

pages 337–340. Springer, 2008. → pages 3, 24, 25

[37] David Déharbe, Pascal Fontaine, Yoann Guyot, and Laurent Voisin.

Integrating SMT solvers in Rodin. Science of Computer Programming,

94:130–143, 2014. → pages 25, 26

[38] Inderpreet Singh Dhingra. Formalising an integrated circuit design

style in higher order logic. PhD thesis, University of Cambridge, 1988.

→ pages 35

[39] Zhi Jie Dong, Mohamed H Zaki, Ghiath Al Sammane, Sofiene Tahar,

and Guy Bois. Checking properties of PLL designs using run-time

verification. In Microelectronics, 2007. ICM 2007. Internatonal Con-

ference on, pages 125–128. IEEE, 2007. → pages 35

[40] Bruno Dutertre. Yices 2.2. In Computer Aided Verification, pages

737–744. Springer, 2014. → pages 24, 56

[41] Arthur Flatau, Matt Kaufmann, David F Reed, D Russinoff,

EW Smith, and Rob Sumners. Formal verification of microproces-

82

http://dx.doi.org/10.1109/CICC.2010.5617417

Bibliography

sors at AMD. In 4th International Workshop on Designing Correct

Circuits (DCC 2002), Grenoble, France, 2002. → pages 20

[42] Pascal Fontaine, Jean-Yves Marion, Stephan Merz, Leonor Prensa Ni-

eto, and Alwen Tiu. Expressiveness+ automation+ soundness: to-

wards combining SMT solvers and interactive proof assistants. In

Tools and Algorithms for the Construction and Analysis of Systems,

pages 167–181. Springer, 2006. → pages 25

[43] Martin Fränzle and Christian Herde. HySAT: an efficient proof engine

for bounded model checking of hybrid systems. Formal Methods in

System Design, 30(3):179–198, 2007. → pages 24, 36

[44] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Ra-

jarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao

Dang, and Oded Maler. SpaceEx: scalable verification of hybrid sys-

tems. In Computer Aided Verification, pages 379–395. Springer, 2011.

→ pages 15, 36

[45] Ruben Gamboa. Square roots in ACL2: a study in sonata form. Tech-

nical report, Citeseer, 1996. → pages 49

[46] Ruben Gamboa and Robert S Boyer. Mechanically verifying real-

valued algorithms in ACL2. PhD thesis, Citeseer, 1999. → pages

20, 58

[47] Ruben Gamboa and John Cowles. Formal verification of Medina’s

sequence of polynomials for approximating arctangent. arXiv preprint

arXiv:1406.1561, 2014. → pages 20

[48] Victor Gan, Guy A Dumont, and Ian M Mitchell. Benchmark problem:

a PK/PD model and safety constraints for anesthesia delivery. 2014.

→ pages 77

[49] Sicun Gao, Soonho Kong, and Edmund M Clarke. Satisfiability mod-

ulo odes. In Formal Methods in Computer-Aided Design (FMCAD),

2013, pages 105–112. IEEE, 2013. → pages 24

83

Bibliography

[50] Antoine Girard. Reachability of uncertain linear systems using zono-

topes. In Hybrid Systems: Computation and Control, pages 291–305.

Springer, 2005. → pages 15, 36

[51] Evgueni Goldberg, Mukul Prasad, and Robert Brayton. Using SAT for

combinational equivalence checking. In Proceedings of the conference

on Design, automation and test in Europe, pages 114–121. IEEE Press,

2001. → pages 11

[52] Alexandre Goldsztejn, Olivier Mullier, Damien Eveillard, and Hiroshi

Hosobe. Including ordinary differential equations based constraints in

the standard CP framework. In Principles and Practice of Constraint

Programming–CP 2010, pages 221–235. Springer, 2010. → pages 24

[53] Carla P Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman.

Satisfiability solvers. Handbook of Knowledge Representation, 3:89–

134, 2008. → pages 23

[54] Michael JC Gordon and Tom F Melham. Introduction to HOL: a theo-

rem proving environment for higher order logic. Cambridge University

Press, 1993. → pages 18

[55] Mike Gordon. Why higher-order logic is a good formalism for specify-

ing and verifying hardware. In Formal Aspects of VLSI Design, 1986.

→ pages 17

[56] Mark R Greenstreet. Verifying safety properties of differential equa-

tions. In Computer Aided Verification, pages 277–287. Springer, 1996.

→ pages 14

[57] Mark R Greenstreet and Ian Mitchell. Reachability analysis using

polygonal projections. In Hybrid Systems: Computation and Control,

pages 103–116. Springer, 1999. → pages 15

[58] John Harrison. HOL Light: a tutorial introduction. In Formal Methods

in Computer-Aided Design, pages 265–269. Springer, 1996. → pages

18

84

Bibliography

[59] John Harrison. Floating-point verification. In FM 2005: Formal Meth-

ods, pages 529–532. Springer, 2005. → pages 18

[60] John Harrison and Laurent Théry. A skeptic’s approach to combining

HOL and Maple. Journal of Automated Reasoning, 21(3):279–294,

1998. → pages 25, 59

[61] Walter Hartong, Lars Hedrich, and Erich Barke. Model checking al-

gorithms for analog verification. In Proceedings of the 39th annual

Design Automation Conference, pages 542–547. ACM, 2002. → pages

14

[62] Shant Harutunian. Formal Verification of Computer Con-

trolled Systems. PhD thesis, University of Texas, Austin,

May 2007. URL https://www.lib.utexas.edu/etd/d/2007/

harutunians68792/harutunians68792.pdf. → pages 16

[63] Lars Hedrich and Erich Barke. A formal approach to nonlinear ana-

log circuit verification. In Proceedings of the 1995 IEEE/ACM inter-

national conference on Computer-aided design, pages 123–127. IEEE

Computer Society, 1995. → pages 12

[64] Warren A Hunt, Robert Bellarmine Krug, Sandip Ray, and William D

Young. Mechanized information flow analysis through inductive as-

sertions. In Formal Methods in Computer-Aided Design, 2008. FM-

CAD’08, pages 1–4. IEEE, 2008. → pages 20

[65] Warren A Hunt Jr and Sol Swords. Centaur technology media unit

verification. In Computer Aided Verification, pages 353–367. Springer,

2009. → pages 20

[66] Fabian Immler. Formally verified computation of enclosures of solu-

tions of ordinary differential equations. In NASA Formal Methods,

pages 113–127. Springer, 2014. → pages 16

[67] PB Jackson. The Nuprl proof development system. Reference manual

and Users’s Guide (Version 4.1), 1994. → pages 18

85

https://www.lib.utexas.edu/etd/d/2007/harutunians68792/harutunians68792.pdf
https://www.lib.utexas.edu/etd/d/2007/harutunians68792/harutunians68792.pdf

Bibliography

[68] Ji-Eun Jang, Myeong-Jae Park, Dongyun Lee, and Jaeha Kim.

True event-driven simulation of analog/mixed-signal behaviors in Sys-

temVerilog: A decision-feedback equalizing (DFE) receiver example.

In Custom Integrated Circuits Conference (CICC), 2012 IEEE, pages

1–4. IEEE, 2012. → pages 8

[69] Alexander Jesser and Lars Hedrich. A symbolic approach for mixed-

signal model checking. In Proceedings of the 2008 Asia and South Pa-

cific Design Automation Conference, pages 404–409. IEEE Computer

Society Press, 2008. → pages 35

[70] Richard M Karp. Reducibility among combinatorial problems.

Springer, 1972. → pages 22

[71] Matt Kaufmann and J Strother Moore. ACL2: an industrial strength

version of Nqthm. In Computer Assurance, 1996. COMPASS’96, Sys-

tems Integrity. Software Safety. Process Security. Proceedings of the

Eleventh Annual Conference on, pages 23–34. IEEE, 1996. → pages

3, 18, 19

[72] Matt Kaufmann and J Strother Moore. An ACL2 tutorial. In Theorem

Proving in Higher Order Logics, pages 17–21. Springer, 2008. → pages

19

[73] Jaeha Kim, Metha Jeeradit, Byongchan Lim, and Mark A Horowitz.

Leveraging designer’s intent: a path toward simpler analog CAD tools.

In Custom Integrated Circuits Conference, 2009. CICC’09. IEEE,

pages 613–620. IEEE, 2009. → pages 4

[74] Donald Ervin Knuth. Mathematics and computer science: coping with

finiteness. Science (New York, NY), 194(4271):1235–1242, 1976. →
pages 23

[75] Andreas Kuehlmann and Florian Krohm. Equivalence checking using

cuts and heaps. In Proceedings of the 34th annual Design Automation

Conference, pages 263–268. ACM, 1997. → pages 11

86

Bibliography

[76] Kenneth S Kundert. Introduction to RF simulation and its applica-

tion. IEEE Journal of Solid-State Circuits, 34(9):1298–1319, 1999. →
pages 4

[77] Robert P Kurshan and Kenneth L McMillan. Analysis of digital cir-

cuits through symbolic reduction. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 10(11):1356–1371,

1991. → pages 14

[78] Alexander B. Kurzhanski and István Vályi. Ellipsoidal Calculus for

Estimation and Control. International Institute for Applied Systems

Analysis, Austria, 1997. → pages 15

[79] Daniel Lazard. Thirty years of polynomial system solving, and now?

Journal of symbolic computation, 44(3):222–231, 2009. → pages 23

[80] K Rustan M Leino. This is Boogie 2. Manuscript KRML, 178:131,

2008. → pages 25

[81] K Rustan M Leino. Dafny: an automatic program verifier for func-

tional correctness. In Logic for Programming, Artificial Intelligence,

and Reasoning, pages 348–370. Springer, 2010. → pages 24

[82] K Rustan M Leino. Automating induction with an SMT solver. In

Verification, Model Checking, and Abstract Interpretation, pages 315–

331. Springer, 2012. → pages 24

[83] Honghuang Lin and Peng Li. Parallel hierarchical reachability analy-

sis for analog verification. In Design Automation Conference (DAC),

2014 51st ACM/EDAC/IEEE, pages 1–6, 2014. doi: 10.1145/2593069.

2593178. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?

arnumber=6881477. → pages 36

[84] Honghuang Lin, Peng Li, and Chris J Myers. Verification of digitally-

intensive analog circuits via kernel ridge regression and hybrid reacha-

bility analysis. In Proceedings of the 50th Annual Design Automation

Conference, page 66. ACM, 2013. → pages 36

87

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6881477
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6881477

Bibliography

[85] Leonard R. Marino. General theory of metastable operation. IEEE

Transactions on Computers, 100(2):107–115, 1981. → pages 10

[86] João P Marques-Silva and Karem A Sakallah. GRASP: a search algo-

rithm for propositional satisfiability. IEEE Transactions on Comput-

ers, 48(5):506–521, 1999. → pages 22

[87] Sean McLaughlin, Clark Barrett, and Yeting Ge. Cooperating theorem

provers: a case study combining HOL-Light and CVC Lite. Electronic

Notes in Theoretical Computer Science, 144(2):43–51, 2006. → pages

25

[88] Kenneth L McMillan. Interpolation and SAT-based model checking.

In Computer Aided Verification, pages 1–13. Springer, 2003. → pages

11

[89] Herbert A. Medina. A sequence of polynomials for approximating

arctangent. The American Mathematical Monthly, 113(2):pp. 156–

161, 2006. ISSN 00029890. URL http://www.jstor.org/stable/

27641866. → pages 20

[90] Stephan Merz and Hernán Vanzetto. Automatic verification of TLA+

proof obligations with SMT solvers. In Logic for Programming, Arti-

ficial Intelligence, and Reasoning, pages 289–303. Springer, 2012. →
pages 25

[91] J Strother Moore. A mechanically checked proof of a multiprocessor

result via a uniprocessor view. Formal Methods in System Design, 14

(2):213–228, 1999. → pages 19

[92] J. Strother Moore, Thomas W. Lynch, and Matt Kaufmann. A me-

chanically checked proof of the AMD5 K 86 TM floating-point division

program. Computers, IEEE Transactions on, 47(9):913–926, 1998. →
pages 20

88

http://www.jstor.org/stable/27641866
http://www.jstor.org/stable/27641866

Bibliography

[93] Greg Nelson and Derek C Oppen. Simplification by cooperating deci-

sion procedures. ACM Transactions on Programming Languages and

Systems (TOPLAS), 1(2):245–257, 1979. → pages 23

[94] Sam Owre, John M Rushby, and Natarajan Shankar. PVS: a prototype

verification system. In 11th International Conference on Automated

Deduction (CADE), pages 748–752. Springer, 1992. → pages 18

[95] Lawrence C Paulson. Isabelle: a generic theorem prover, volume 828.

Springer, 1994. → pages 18

[96] Radek Pelánek. Fighting state space explosion: review and evalua-

tion. In Formal Methods for Industrial Critical Systems, pages 37–52.

Springer, 2009. → pages 9

[97] Kent Pitman and Kathy Chapman. Information Technology–

Programming Language–Common Lisp, 1994. → pages 39

[98] Cornelia Pusch. Proving the soundness of a Java bytecode verifier

specification in Isabelle/HOL. In Tools and Algorithms for the Con-

struction and Analysis of Systems, pages 89–103. Springer, 1999. →
pages 18

[99] Peter Reid and Ruben Gamboa. Automatic differentiation in ACL2.

Springer, 2011. → pages 20

[100] David Russinoff, Matt Kaufmann, Eric Smith, and Robert Sumners.

Formal verification of floating-point RTL at AMD using the ACL2

theorem prover. Proceedings of the 17th IMACS World Congrress on

Scientific Computation, Applied Mathematics and Simulation, Paris,

France, 2005. → pages 20

[101] Jun Sawada and Warren A Hunt Jr. Hardware modeling using function

encapsulation. In Formal Methods in Computer-Aided Design, pages

271–282. Springer, 2000. → pages 17

[102] Charles L Seitz. System timing. Introduction to VLSI systems, pages

218–262, 1980. → pages 14

89

Bibliography

[103] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking safety

properties using induction and a SAT-solver. In Formal Methods in

Computer-Aided Design, pages 127–144. Springer, 2000. → pages 11

[104] Naveed A Sherwani. Algorithms for VLSI physical design automation.

Kluwer academic publishers, 1995. → pages 10

[105] Robert E Shostak. On the SUP-INF method for proving Presburger

formulas. Journal of the ACM (JACM), 24(4):529–543, 1977. → pages

23

[106] Konrad Slind and Michael Norrish. A brief overview of HOL4. In

Theorem Proving in Higher Order Logics, pages 28–32. Springer, 2008.

→ pages 18

[107] Alfred Tarski. A decision method for elementary algebra and geometry.

Springer, 1998. → pages 23

[108] Saurabh K Tiwary, Anubhav Gupta, Joel R Phillips, Claudio Pinello,

and Radu Zlatanovici. First steps towards SAT-based formal analog

verification. In Computer-Aided Design-Digest of Technical Papers,

2009. ICCAD 2009. IEEE/ACM International Conference on, pages

1–8. IEEE, 2009. → pages 15

[109] Zhiwei Wang, Naeem Abbasi, Rajeev Narayanan, Mohamed H Zaki,

Ghiath Al Sammane, and Sofiene Tahar. Verification of analog and

mixed signal designs using online monitoring. In Mixed-Signals, Sen-

sors, and Systems Test Workshop, 2009. IMS3TW’09. IEEE 15th In-

ternational, pages 1–8. IEEE, 2009. → pages 35

[110] Jijie Wei, Yan Peng, Ge Yu, and Mark Greenstreet. Verifying global

convergence for a digital phase-locked loop. In Formal Methods in

Computer-Aided Design (FMCAD), 2013, pages 113–120. IEEE, 2013.

→ pages iii, 36, 75

[111] Mark Weiser. The computer for the 21st century. Scientific american,

265(3):94–104, 1991. → pages 1

90

[112] Chao Yan and Mark Greenstreet. Faster projection based methods

for circuit level verification. In Design Automation Conference, 2008.

ASPDAC 2008. Asia and South Pacific, pages 410–415. IEEE, 2008.

→ pages 15

[113] Lintao Zhang and Sharad Malik. The quest for efficient boolean satisfi-

ability solvers. In Computer Aided Verification, pages 17–36. Springer,

2002. → pages 22

[114] Lintao Zhang, Conor F Madigan, Matthew H Moskewicz, and Sharad

Malik. Efficient conflict driven learning in a boolean satisfiability

solver. In Proceedings of the 2001 IEEE/ACM international confer-

ence on Computer-aided design, pages 279–285. IEEE Press, 2001. →
pages 22

91

Appendix A

Example Proofs with ACL2

and Z3

A.1 Geometric Sum Proof with Raw ACL2

This program is successfully proved in 0.14 seconds. Note that in order to

make it easier, we made a further constraint that r should be an integer in

this proof. To make it work for arbitrary real number, it will take much

more theorems and time.

1 ;; Basic structure of this file:

2 ;; To avoid reasoning about division throughout the proof, I

first show:

3 ;; (sum_{i=0}^N r^i)*(r-1) = r^(i+1) - 1

4 ;; I then divide both sides by r-1 to get the main result.

5 ;; This file starts with lots of definitions:

6 ;; (my-expt-pos r n): r to the n^th power, for n >= 0.

7 ;; (lhs r n): sum_{i=0}^n r^i

8 ;; (rhs r n): (r^(i+1) - 1)/(r-1)

9 ;; lhs-no-div and rhs-no-div are the lhs*(r-1) and rhs*(r-1)

respectively.

10 ;;

11 ;; The proofs in this file are roughly in the following order:

12 ;; my-expt-pos and lhs are integer valued.

13 ;; some trivial algebra results.

14 ;; a lemma for the induction step for the no-div version of the

formula

15 ;; the no-div version of the formula

16 ;; the main formula.

92

A.1. Geometric Sum Proof with Raw ACL2

17

18 (encapsulate ()

19 (defun my-expt-pos (r n)

20 (declare (xargs :guard (and (natp n) (integerp r))))

21 (if (zp n) 1 (* r (my-expt-pos r (1- n)))))

22

23 (defthm my-expt-pos-integerp

24 (implies (and (integerp r) (integerp n) (<= 0 n))

25 (integerp (my-expt-pos r n))))

26

27 ;; the summation form for a geometric sum

28 (defun lhs (r n)

29 (declare (xargs :guard (and (integerp r) (integerp n) (<= 0

n))))

30 (if (and (natp n) (< 0 n))

31 (+ (my-expt-pos r n) (lhs r (1- n)))

32 1))

33

34 (local (defthm |(integerp (+ a (* b c)))|

35 (implies (and (integerp a) (integerp b) (integerp c))

36 (integerp (+ a (* b c))))

37 :rule-classes nil))

38

39 (encapsulate ()

40 (local (defthm lhs-integerp-lemma-1

41 (implies (and (integerp r) (integerp n) (< 0 n))

42 (integerp (my-expt-pos r (+ -1 n))))

43 :rule-classes nil))

44

45 (local (defthm lhs-integerp-lemma-2

46 (implies (and (integerp n)

47 (< 0 n)

48 (integerp (lhs r (+ -1 n)))

49 (integerp r))

50 (integerp (+ (lhs r (+ -1 n))

51 (* r (my-expt-pos r (+ -1 n))))))

93

A.1. Geometric Sum Proof with Raw ACL2

52 :hints (("Goal" :use ((:instance lhs-integerp-lemma-1 (n n)

(r r))

53 (:instance |(integerp (+ a (* b

c)))|

54 (a (lhs r (+ -1 n)))

55 (b r)

56 (c (my-expt-pos r (+ -1

n)))))))))

57

58 (defthm lhs-integerp

59 (implies (and (integerp r) (integerp n) (<= 0 n))

60 (integerp (lhs r n))))

61)

62

63

64 (local (defun lhs-no-div (r n)

65 (declare (xargs :guard (and (integerp n) (<= 0 n) (integerp

r))))

66 (* (lhs r n) (1- r))))

67

68 (defun rhs-no-div (r n)

69 (declare (xargs :guard (and (integerp r) (integerp n) (<= 0

n))))

70 (1- (my-expt-pos r (+ n 1))))

71

72 (defun rhs (r n)

73 (declare (xargs :guard (and (integerp r) (integerp n) (<= 0

n))))

74 (if (equal r 1) (1+ n) (/ (rhs-no-div r n) (1- r))))

75

76 (defun geo-hyps (r n)

77 (and (integerp r) (natp n) (> r 0) (not (equal r 1))))

78

79 (local (defthm lemma-plus-minus-one

80 (implies (integerp n) (equal (+ 1 -1 n) n))))

81

82 (local (defthm lemma-minus-plus-one ;; simplify (+ -1 1 n)

94

A.1. Geometric Sum Proof with Raw ACL2

83 (implies (integerp n) (equal (+ -1 1 n) n))))

84

85 (local (defthm unexpand-my-expt-pos ;; simplify (* r (my-expt r

(1- n)))

86 (implies (and (geo-hyps r n) (< 0 n))

87 (equal (* r (my-expt-pos r (1- n))) (my-expt-pos r

n)))

88 :rule-classes nil))

89

90 (local (defthm expand-lhs

91 (implies (and (geo-hyps r n) (< 0 n))

92 (equal (lhs r n)

93 (+ (my-expt-pos r n) (lhs r (1- n)))))))

94

95 (local (encapsulate ()

96 (local (defthm expand-lhs-no-div-lemma-1

97 (implies (and (integerp a) (integerp b) (integerp c))

98 (equal (* (+ a b) c) (+ (* a c) (* b c))))))

99

100 (local (defthm expand-lhs-no-div-lemma-2

101 (implies (and (integerp b) (integerp r))

102 (equal (* (+ -1 r) r b) (+ (* -1 r b) (* r r

b))))))

103

104 (defthm expand-lhs-no-div

105 (implies (and (geo-hyps r n) (< 0 n))

106 (equal (* (lhs r n) (1- r))

107 (+ (* (1- r) (my-expt-pos r n)) (lhs-no-div

r (1- n))))))

108))

109

110 (local (encapsulate ()

111 (local (defthm expand-rhs-no-div-lemma

112 (implies (and (integerp b) (integerp c) (integerp r)

113 (equal c (* r b)))

114 (equal (+ -1 b (* (+ -1 r) b)) (+ -1 c))

115)

95

A.1. Geometric Sum Proof with Raw ACL2

116 :rule-classes nil))

117

118 (defthm expand-rhs-no-div

119 (implies (and (geo-hyps r n) (< 0 n))

120 (equal (1- (my-expt-pos r (+ n 1)))

121 (+ (* (1- r) (my-expt-pos r n)) (1-

(my-expt-pos r n)))))

122 :hints (("Goal"

123 :do-not-induct t

124 :hands-off (my-expt-pos)

125 :use ((:instance unexpand-my-expt-pos (n (1+ n)))

126 (:instance lemma-minus-plus-one (n n))

127 (:instance lemma-plus-minus-one (n n))

128 (:instance expand-rhs-no-div-lemma

129 (b (my-expt-pos r n))

130 (c (my-expt-pos r (1+ n)))

131 (r r))

132)))

133 :rule-classes nil)))

134

135 (local (defthm no-div-induct

136 (implies (and (geo-hyps r n) (< 0 n) (equal (lhs-no-div r n)

(rhs-no-div r n)))

137 (equal (* (lhs r n) (1- r))

138 (1- (my-expt-pos r (+ n 1)))

139))

140 :hints (("Goal" :do-not-induct t))))

141

142 (local (defthm geo-lemma-no-div

143 (implies (geo-hyps r n)

144 (equal (* (lhs r n) (1- r))

145 (1- (my-expt-pos r (+ n 1)))))))

146

147 (local (defthm div-eq-by-eq

148 (implies (and (integerp a) (integerp b) (integerp c) (not

(equal a 0)) (equal b c))

149 (equal (/ b a) (/ c a)))))

96

A.2. Geometric Sum Proof with Arithmetic Book

150

151 (local (defthm geo-lemma-1

152 (implies (and (integerp r) (integerp n) (<= 0 n))

153 (integerp (+ -1 (* r (my-expt-pos r n)))))

154 :hints (("Goal"

155 :do-not-induct t

156 :use ((:instance my-expt-pos-integerp (r r) (n n))

157 (:instance |(integerp (+ a (* b c)))|

158 (a -1) (b r) (c (my-expt-pos r

n))))))))

159

160 ;; The main theorem.

161 (defthm geo

162 (implies (geo-hyps r n) (equal (lhs r n) (rhs r n)))

163 :hints (("Goal" :do-not-induct t

164 :use ((:instance div-eq-by-eq

165 (a (1- r))

166 (b (* (lhs r n) (1- r)))

167 (c (1- (my-expt-pos r (+ n 1)))))

168 (:instance geo-lemma-no-div (r r) (n n))))))

169)

A.2 Geometric Sum Proof with Arithmetic Book

This program is successfully proved in 0.15 seconds. This is assuming the

book has already been loaded.

1 ;; This is a program proving the geometric sum equation

2 ;; using arithmetic-5.

3 ;; Arithmetic-5 is tuned for this kind of problem.

4 ;; So it passed easily.

5 ;;

6 ;; by Yan Peng (2015-02-25)

7 ;;

8

9 (in-package "ACL2")

97

A.3. Geometric Sum Proof with Smtlink

10 (include-book "arithmetic-5/top" :dir :system)

11

12 ;; define left hand side

13 (defun lhs (r n)

14 (if (zp n)

15 1

16 (+ (expt r n) (lhs r (1- n)))))

17

18 (defun rhs (r n)

19 (/ (- 1 (expt r (+ n 1)))

20 (- 1 r)))

21

22 (defthm geo

23 (implies (and (natp n)

24 (rationalp r)

25 (> r 0)

26 (not (equal r 1))

27)

28 (equal (lhs r n)

29 (rhs r n))))

A.3 Geometric Sum Proof with Smtlink

This program is successfully proved in 0.06 seconds. This is assuming the

book has already been loaded.

1 ;;; This is a program proving the geometric sum equation

2 ;; using my clause processor.

3 ;;

4 ;; by Yan Peng (2015-02-25)

5 ;;

6

7 (in-package "ACL2")

8 ;; set up directories to clause processor dir

9 (add-include-book-dir :cp

"/ubc/cs/home/y/yanpeng/project/ACL2/smtlink")

98

A.3. Geometric Sum Proof with Smtlink

10 (include-book "SMT-connect" :dir :cp)

11

12

13 ;; define left hand side

14 (defun lhs (r n)

15 (if (zp n)

16 1

17 (+ (expt r n) (lhs r (1- n)))))

18

19 (defun rhs (r n)

20 (/ (- 1 (expt r (+ n 1)))

21 (- 1 r)))

22

23 (defthm geo-cp-lemma

24 (implies (and (and (integerp n)

25 (rationalp r))

26 (and (< 0 n)

27 (equal (lhs r (+ -1 n))

28 (+ (/ (+ 1 (- r)))

29 (* (/ (+ 1 (- r)))

30 (- (* r (expt r (+ -1 n)))))))

31 (<= 0 n)

32 (< 0 r)

33 (not (equal r 1))))

34 (equal (+ (lhs r (+ -1 n))

35 (* r (expt r (+ -1 n))))

36 (+ (/ (+ 1 (- r)))

37 (* (/ (+ 1 (- r)))

38 (- (* r r (expt r (+ -1 n))))))))

39 :hints (("Goal"

40 :clause-processor

41 (my-clause-processor clause

42 ’((:expand ((:functions ())

43 (:expansion-level 1)))

44 (:python-file "geo_cp_2")

45 (:let ((lhs_n_minus_1 (lhs r (+

-1 n)) rationalp)

99

A.4. Polynomial Inequality Proof with Z3

46 (expt_r_n_minus_1 (expt r (+ -1

n)) rationalp)))

47 (:hypothesize ())

48 (:use ((:let ())

49 (:hypo (()))

50 (:main ()))))

51)))

52)

53

54 (defthm geo-cp

55 (implies (and (natp n)

56 (rationalp r)

57 (> r 0)

58 (not (equal r 1)))

59 (equal (lhs r n)

60 (rhs r n)))

61 :hints (("Subgoal *1/1’’"

62 :clause-processor

63 (my-clause-processor clause

64 ’((:expand ((:functions ())

65 (:expansion-level 1)))

66 (:python-file "geo_cp_1")

67 (:let ())

68 (:hypothesize ())

69 (:use ((:let ())

70 (:hypo (()))

71 (:main ()))))

72))))

A.4 Polynomial Inequality Proof with Z3

This program is successfully proved in 0.0004 seconds.

1 # This program check if below theorem can be proven

2 # by Z3 directly. The theorem basically says a set

3 # of polynomial inequalities has no solution.

100

A.5. Polynomial Inequality Proof with ACL2

4 #

5 # The three polynomials:

6 # 1. hyperbola: x*x - y*y <= 1

7 # 2. parabola: y >= 3*(x - 2.125)*(x-2.125) - 3

8 # 3. ellipse: 1.125*x*x + y*y <= 1

9 #

10 # by Yan Peng (2015-02-25)

11

12 # define the hyperbola

13 def hyperbola(x, y):

14 return x*x - y*y <= 1

15 # define the parabola

16 def parabola(x, y):

17 return y >= 3*(x - 2.125)*(x-2.125) - 3

18 # define the ellipse

19 def ellipse(x, y):

20 return 1.125*x*x + y*y <= 1

21

22 from z3 import *

23

24 x = Real("x")

25 y = Real("y")

26

27 print prove(Not(And(hyperbola(x,y), parabola(x,y), ellipse(x,y))))

A.5 Polynomial Inequality Proof with ACL2

ACL2 failed to prove this program. It stops at 0.09 seconds.

1 ;; This program check if below theorem can be proven

2 ;; by ACL2’s arithmetic5 book directly. The theorem

3 ;; basically says a set of polynomial inequalities

4 ;; has no solution.

5 ;;

6 ;; The three polynomials:

7 ;; 1. hyperbola: x*x - y*y <= 1

101

A.5. Polynomial Inequality Proof with ACL2

8 ;; 2. parabola: y >= 3*(x - 2.125)*(x - 2.125) - 3

9 ;; 3. ellipse: 1.125*x*x + y*y <= 1

10 ;;

11 ;; by Yan Peng (2015-02-25)

12

13 (in-package "ACL2")

14 (include-book "arithmetic-5/top" :dir :system)

15

16 ;; define the hyperbola

17 (defun hyperbola (x y)

18 (<= (- (* x x)

19 (* y y))

20 1))

21 ;; define the parabola

22 (defun parabola (x y)

23 (>= y

24 (- (* 3

25 (- x 17/8)

26 (- x 17/8))

27 3)))

28 ;; define the ellipse

29 (defun ellipse (x y)

30 (<= (+ (* 9/8 x x)

31 (* y y))

32 1))

33

34 ;; prove the theorem using arithmetic-5

35 (defthm prove-with-arithmetic-5

36 (implies (and (and (realp x) (realp y)))

37 (not (and (hyperbola x y)

38 (parabola x y)

39 (ellipse x y))))

40 :rule-classes nil)

102

A.6. Polynomial Inequality Proof with Smtlink

A.6 Polynomial Inequality Proof with Smtlink

This program is successfully proved in 0.02 seconds.

1 ;; This program check if below theorem can be proven

2 ;; by our clause processor directly. The theorem

3 ;; basically says a set of polynomial inequalities

4 ;; has no solution.

5 ;;

6 ;; The three polynomials:

7 ;; 1. hyperbola: x*x - y*y <= 1

8 ;; 2. parabola: y >= 3*(x - 2.125)*(x - 2.125) - 3

9 ;; 3. ellipse: 1.125*x*x + y*y <= 1

10 ;;

11 ;; by Yan Peng (2015-02-26)

12

13 (in-package "ACL2")

14 ;; set up directories to clause processor dir

15 (add-include-book-dir :cp

"/ubc/cs/home/y/yanpeng/project/ACL2/smtlink")

16 (include-book "SMT-connect" :dir :cp)

17

18

19 ;; define the hyperbola

20 (defun hyperbola (x y)

21 (<= (- (* x x)

22 (* y y))

23 1))

24 ;; define the parabola

25 (defun parabola (x y)

26 (>= y

27 (- (* 3

28 (- x 17/8)

29 (- x 17/8))

30 3)))

31 ;; define the ellipse

32 (defun ellipse (x y)

103

A.6. Polynomial Inequality Proof with Smtlink

33 (<= (+ (* 9/8 x x)

34 (* y y))

35 1))

36

37 (defthm prove-with-cp

38 (implies (and (and (rationalp x) (rationalp y))

39 (and))

40 (not (and (hyperbola x y)

41 (parabola x y)

42 (ellipse x y))))

43 :hints (("Goal"

44 :do-not ’(simplify)

45 :clause-processor

46 (my-clause-processor clause

47 ’((:expand ((:functions ((hyperbola

rationalp)

48 (parabola

rationalp)

49 (ellipse

rationalp)))

50 (:expansion-level 1)))

51 (:python-file "prove_with_cp")

52 (:let ())

53 (:hypothesize ())

54 (:use ((:let ())

55 (:hypo (()))

56 (:main ()))))

57)

58))

59 :rule-classes nil)

104

Appendix B

Smtlink Code

B.1 ACL2 Expansion, Translation and

Interpretation

1 (in-package "ACL2")

2

3 (include-book "config")

4 (include-book "helper")

5 (include-book "SMT-extract")

6 (include-book "SMT-formula")

7 (include-book "SMT-function")

8 (include-book "SMT-translator")

9 (include-book "SMT-interpreter")

10 (include-book "SMT-run")

11 (include-book "SMT-z3")

12 (include-book "SMT-connect")

1 ;;

2 ;; This file is adapted from :doc define-trusted-clause-processor

3 ;; The dependent files, instead of being in raw Lisp, are in ACL2.

4 ;; That makes me doubt if I really need to do defstub, progn,

5 ;; progn!, and push-untouchable...

6 ;;

7 ;; However, I’m using them right now in case if there are

8 ;; behaviours with those constructs that are not known to me.

9 ;;

10 (in-package "ACL2")

11 (include-book "tools/bstar" :dir :system)

12 (set-state-ok t)

105

B.1. ACL2 Expansion, Translation and Interpretation

13

14 (defstub acl2-my-prove

15 (term fn-lst fn-level fname let-expr new-hypo let-hints

hypo-hints main-hints state)

16 (mv t nil nil nil nil state))

17

18 (program)

19 (defttag :Smtlink)

20

21 (include-book "SMT-z3")

22 (value-triple (tshell-ensure))

23

24 (progn

25

26 ; We wrap everything here in a single progn, so that the entire

form is

27 ; atomic. That’s important because we want the use of

push-untouchable to

28 ; prevent anything besides my-clause-processor from calling

acl2-my-prove.

29

30 (progn!

31

32 (set-raw-mode-on state) ;; conflict with assoc, should use

assoc-equal, not assoc-eq

33

34 (defun acl2-my-prove (term fn-lst fn-level fname let-expr

new-hypo let-hints hypo-hints main-hints state)

35 (my-prove term fn-lst fn-level fname let-expr new-hypo

let-hints hypo-hints main-hints state))

36)

37

38 (defun Smtlink-arguments (hint)

39 (b* ((fn-lst (cadr (assoc ’:functions

40 (cadr (assoc ’:expand hint)))))

41 (fn-level (cadr (assoc ’:expansion-level

42 (cadr (assoc ’:expand hint)))))

106

B.1. ACL2 Expansion, Translation and Interpretation

43 (fname (cadr (assoc ’:python-file hint)))

44 (let-expr (cadr (assoc ’:let hint)))

45 (new-hypo (cadr (assoc ’:hypothesize hint)))

46 (let-hints (cadr (assoc ’:type

47 (cadr (assoc ’:use hint)))))

48 (hypo-hints (cadr (assoc ’:hypo

49 (cadr (assoc ’:use hint)))))

50 (main-hints (cadr (assoc ’:main

51 (cadr (assoc ’:use hint))))))

52 (mv fn-lst fn-level fname let-expr new-hypo let-hints hypo-hints

main-hints))

53)

54

55 (defun Smtlink (cl hint state)

56 (declare (xargs :guard (pseudo-term-listp cl)

57 :mode :program))

58 (prog2$ (cw "Original clause(connect): ~q0" (disjoin cl))

59 (b* (((mv fn-lst fn-level fname let-expr new-hypo let-hints

hypo-hints main-hints)

60 (Smtlink-arguments hint)))

61 (mv-let (res expanded-cl type-related-theorem hypo-theorem

fn-type-theorem state)

62 (acl2-my-prove (disjoin cl) fn-lst fn-level fname let-expr

new-hypo let-hints hypo-hints main-hints state)

63 (if res

64 (let ((res-clause (append (append (append fn-type-theorem

type-related-theorem) hypo-theorem)

65 (list (append expanded-cl cl))

66)))

67 (prog2$ (cw "Expanded clause(connect): ~q0 ~% Success!~%"

res-clause)

68 (mv nil res-clause state)))

69 (prog2$ (cw "~|~%NOTE: Unable to prove goal with ~

70 my-clause-processor and indicated

hint.~|")

71 (mv t (list cl) state)))))))

72

107

B.1. ACL2 Expansion, Translation and Interpretation

73 (push-untouchable acl2-my-prove t)

74)

75

76 (define-trusted-clause-processor

77 Smtlink

78 nil

79 :ttag Smtlink)

1 ;; SMT-extract extracts the declarations, hypotheses and conclusion

from a SMT formula in ACL2.

2 ;; A typical SMT formula is in below format:

3 ;; (implies (and <decl-list>

4 ;; <hypo-list>)

5 ;; <concl-list>)

6

7 (in-package "ACL2")

8 (include-book "./helper")

9

10 ;; get-orig-param

11 (defun get-orig-param (decl-list)

12 "get-orig-param: given a declaration list of a SMT formula,

return a list of variables appearing in the declaration list"

13 (if (atom decl-list)

14 (cond ((or (equal decl-list ’if)

15 (equal decl-list ’nil)

16 (equal decl-list ’rationalp)

17 (equal decl-list ’integerp)

18 (equal decl-list ’quote))

19 nil)

20 (t decl-list))

21 (combine (get-orig-param (car decl-list))

22 (get-orig-param (cdr decl-list)))))

23

24 ;; SMT-extract

25 (defun SMT-extract (term)

26 "extract decl-list, hypo-list and concl from a ACL2 term"

27 (let ((decl-list (cadr (cadr term)))

108

B.1. ACL2 Expansion, Translation and Interpretation

28 (hypo-list (caddr (cadr term)))

29 (concl-list (caddr term)))

30 (mv decl-list hypo-list concl-list)))

1 ;; SMT-function

2 (in-package "ACL2")

3 (include-book "std/strings/top" :dir :system)

4 (include-book "./helper")

5 (include-book "./SMT-extract")

6 (set-state-ok t)

7 (set-ignore-ok t)

8

9 ;; create-name

10 (defun create-name (num)

11 "create-name: creates a name for a new function"

12 (let ((index (STR::natstr num)))

13 (if (stringp index)

14 (mv (intern-in-package-of-symbol

15 (concatenate ’string "var" index) ’ACL2)

16 (1+ num))

17 (prog2$ (cw "Error(function): create name failed: ~q0!" index)

18 (mv nil num)))))

19

20 ;; replace-var

21 (defun replace-var (body var-pair)

22 "replace-var: replace all appearance of a function symbol in the

body with the var-pair"

23 (if (atom body)

24 (if (equal body (car var-pair))

25 (cadr var-pair)

26 body)

27 (cons (replace-var (car body) var-pair)

28 (replace-var (cdr body) var-pair))))

29

30 ;; set-fn-body

31 (defun set-fn-body (body var-list)

32 "set-fn-body: set the body for let expression"

109

B.1. ACL2 Expansion, Translation and Interpretation

33 (if (endp var-list)

34 body

35 (set-fn-body

36 (replace-var body (car var-list))

37 (cdr var-list))))

38

39 ;; make-var-list

40 (defun make-var-list (formal num)

41 "make-var-list: make a list of expressions for replacement"

42 (if (endp formal)

43 (mv nil num)

44 (mv-let (var-name res-num1)

45 (create-name num)

46 (mv-let (res-expr res-num2)

47 (make-var-list (cdr formal) res-num1)

48 (mv (cons (list (car formal) var-name) res-expr)

res-num2)))))

49

50 ;; assoc-fetch-key

51 (defun assoc-fetch-key (assoc-list)

52 "assoc-fetch-key: fetching keys from an associate list"

53 (if (endp assoc-list)

54 nil

55 (cons (caar assoc-list) (assoc-fetch-key (cdr assoc-list)))))

56

57 ;; assoc-fetch-value

58 (defun assoc-fetch-value (assoc-list)

59 "assoc-fetch-value: fetching values from an associate list"

60 (if (endp assoc-list)

61 nil

62 (cons (cadr (car assoc-list)) (assoc-fetch-value (cdr

assoc-list)))))

63

64 ;; decrease-level-by-1

65 (defun decrease-level-by-1 (fn fn-level-lst)

66 "decrease-level-by-1: decrease a function’s expansion level by 1."

67 (if (endp fn-level-lst)

110

B.1. ACL2 Expansion, Translation and Interpretation

68 nil

69 (if (equal (car (car fn-level-lst)) fn)

70 (cons (list fn (1- (cadr (car fn-level-lst))))

71 (cdr fn-level-lst))

72 (cons (car fn-level-lst)

73 (decrease-level-by-1 fn (cdr fn-level-lst))))))

74

75 ;; expand-a-fn

76 ;; e.g.(defun double (x y) (+ (* 2 x) y))

77 ;; (double a b) -> (let ((var1 a) (var2 b)) (+ (* 2 var1) var2))

78 ;; (double a b) -> ((lambda (var1 var2) (+ (* 2 var1) var2)) a

b)

79 ;; 2014-07-01

80 ;; added code for decreasing level for function expanded

81 (defun expand-a-fn (fn fn-level-lst fn-waiting fn-extended num

state)

82 "expand-a-fn: expand an expression with a function definition,

num should be accumulated by 1. fn should be stored as a symbol"

83 (let ((formal (cdr (cadr (meta-extract-formula fn state))))

84 ;; the third element is the formalss

85 (body (end (meta-extract-formula fn state)))

86 ;; the last element is the body

87)

88 (if (endp formal)

89 (mv body

90 (my-delete fn-waiting fn)

91 (cons fn fn-extended)

92 (decrease-level-by-1 fn fn-level-lst)

93 num)

94 (mv-let (var-list num1)

95 (make-var-list formal num)

96 (mv (list ’lambda (assoc-fetch-value var-list)

97 (set-fn-body body var-list))

98 (my-delete fn-waiting fn)

99 (cons fn fn-extended)

100 (decrease-level-by-1 fn fn-level-lst)

101 num1)))))

111

B.1. ACL2 Expansion, Translation and Interpretation

102

103 ;; lambdap

104 (defun lambdap (expr)

105 "lambdap: check if a formula is a valid lambda expression"

106 (if (not (equal (len expr) 3))

107 nil

108 (let ((lambdax (car expr))

109 (formals (cadr expr)))

110 ;;(body (caddr expr)))

111 (if (and (equal lambdax ’lambda)

112 (listp formals)) ;; I can add a check for no

113 ;; occurance of free variable in the

future

114 t

115 nil))))

116

117 (skip-proofs

118 (mutual-recursion

119 ;; expand-fn-help-list

120 (defun expand-fn-help-list (expr fn-lst fn-level-lst fn-waiting

fn-extended num state)

121 "expand-fn-help-list"

122 (declare (xargs :measure (list (acl2-count (len fn-waiting))

(acl2-count expr))))

123 (if (endp expr)

124 (mv nil num)

125 (mv-let (res-expr1 res-num1)

126 (expand-fn-help (car expr) fn-lst fn-level-lst fn-waiting

fn-extended num state)

127 (mv-let (res-expr2 res-num2)

128 (expand-fn-help-list (cdr expr) fn-lst fn-level-lst

fn-waiting fn-extended res-num1 state)

129 (mv (cons res-expr1 res-expr2) res-num2)))))

130

131 ;; expand-fn-help

132 ;; This function should keep three lists of function names.

133 ; First one stores all functions possible for expansion.

112

B.1. ACL2 Expansion, Translation and Interpretation

134 ; Second one is for functions to be expanded

135 ; and the third one is for functions already expanded.

136 ;; They should be updated accordingly:

137 ; when one function is expanded along a specific path

138 ; that function should be deleted from fn-waiting and added

139 ; into fn-expanded.

140 ;; Resursion detection:

141 ; When one function call is encountered

142 ; we want to make sure that function is valid for expansion

143 ; by looking at fn-lst. Then we expand it, delete it from

144 ; fn-waiting and add it onto fn-expanded. The we want to make

145 ; sure that fn-waiting and fn-expaned is changing as we walk

146 ; through the tree of code.

147 ;; Another way of recursion detection:

148 ; One might want to use this simpler way of handling recrusion

149 ; detection. We note the length of fn-lst, then we want to

150 ; count down the level of expansion. Any path exceeding this

151 ; length is a sign for recursive call.

152 (defun expand-fn-help (expr fn-lst fn-level-lst fn-waiting

fn-extended num state)

153 "expand-fn-help: expand an expression"

154 (declare (xargs :measure (list (acl2-count (len fn-waiting))

(acl2-count expr))))

155 (cond ((atom expr) ;; base case, when expr is an atom

156 (mv expr num))

157 ((consp expr)

158 (let ((fn0 (car expr)) (params (cdr expr)))

159 (cond

160 ((and (atom fn0) (exist fn0 fn-lst)) ;; function exists in

the list

161 (if (> (cadr (assoc fn0 fn-level-lst)) 0) ;; if fn0’s

level number is still larger than 0

162 (mv-let (res fn-w-1 fn-e-1 fn-l-l-1 num2)

163 (expand-a-fn fn0 fn-level-lst fn-waiting fn-extended

num state) ;; expand a function

164 (mv-let (res2 num3)

113

B.1. ACL2 Expansion, Translation and Interpretation

165 (expand-fn-help res fn-lst fn-l-l-1 fn-w-1 fn-e-1

num2 state)

166 (if (endp params)

167 (mv res2 num3)

168 (mv-let (res3 num4)

169 (expand-fn-help-list params fn-lst

fn-level-lst fn-waiting fn-extended num3 state)

170 (mv (cons res2 res3) num4)))))

171 (prog2$ (cw "Recursive function expansion level has

reached 0: ~q0" fn0)

172 (mv expr num))))

173 ((atom fn0) ;; when expr is a un-expandable function

174 (mv-let (res num2)

175 (expand-fn-help-list (cdr expr) fn-lst fn-level-lst

fn-waiting fn-extended num state)

176 (mv (cons (car expr) res) num2)))

177 ((lambdap fn0) ;; function is a lambda expression, expand

the body

178 (let ((lambdax fn0) (params (cdr expr)))

179 (let ((formals (cadr lambdax)) (body (caddr lambdax)))

180 (mv-let (res num2)

181 (expand-fn-help body fn-lst fn-level-lst fn-waiting

fn-extended num state)

182 (mv-let (res2 num3)

183 (expand-fn-help-list params fn-lst fn-level-lst

fn-waiting fn-extended num2 state)

184 (mv (cons (list ’lambda formals res) res2)

num3))))))

185 ((and (not (lambdap fn0)) (consp fn0))

186 (mv-let (res num2)

187 (expand-fn-help fn0 fn-lst fn-level-lst fn-waiting

fn-extended num state)

188 (mv-let (res2 num3)

189 (expand-fn-help-list params fn-lst fn-level-lst

fn-waiting fn-extended num2 state)

190 (mv (cons res res2) num3))))

114

B.1. ACL2 Expansion, Translation and Interpretation

191 (t (prog2$ (cw "Error(function): can not pattern match:

~q0" expr)

192 (mv expr num)))

193)))

194 (t (prog2$ (cw "Error(function): strange expression == ~q0"

expr)

195 (mv expr num)))))

196)

197)

198

199 (mutual-recursion

200

201 ;; rewrite-formula-params

202 (defun rewrite-formula-params (expr let-expr)

203 "rewrite-formula-params: a helper function for dealing with the

param list of rewrite-formula function"

204 (if (endp expr)

205 nil

206 (cons (rewrite-formula (car expr) let-expr)

207 (rewrite-formula-params (cdr expr) let-expr))))

208

209 ;; rewrite-formula

210 ;; rewrite the formula according to given hypothesis and

let-expression

211 (defun rewrite-formula (expr let-expr)

212 "rewrite-formula rewrites an expression by replacing

corresponding terms in the let expression"

213 (cond ((atom expr) ;; if expr is an atom

214 (let ((res-pair (assoc-equal expr let-expr)))

215 (if (equal res-pair nil)

216 expr

217 (cadr res-pair))))

218 ;; if expr is a consp

219 ((consp expr)

220 (let ((fn (car expr))

221 (params (cdr expr)))

222 (if (listp fn)

115

B.1. ACL2 Expansion, Translation and Interpretation

223 ;; if first elem of expr is a list

224 (cond

225 ;; if it is a lambda expression

226 ((lambdap fn)

227 (let ((lambda-params (cadr fn))

228 (lambda-body (caddr fn)))

229 (let ((res-pair (assoc-lambda

230 lambda-body

231 (create-assoc lambda-params params)

232 let-expr)))

233 (if (not (equal res-pair nil))

234 (cadr res-pair)

235 (cons (list ’lambda lambda-params (rewrite-formula

lambda-body let-expr))

236 (rewrite-formula-params params let-expr))))))

237 ;; if it is a only a list, for handling nested list

238 (t

239 (cons (rewrite-formula fn let-expr)

240 (rewrite-formula-params params let-expr))))

241 ;; if first elem of expr is an atom

242 (let ((res-pair (assoc-equal expr let-expr)))

243 (if (not (equal res-pair nil))

244 (cadr res-pair)

245 (cons fn (rewrite-formula-params params let-expr)))))))

246 ;; if expr is nil

247 (t (cw "Error(function): nil expression."))))

248)

249

250 ;; extract-orig-param

251 (defun extract-orig-param (expr)

252 (mv-let (decl-list hypo-list concl-list)

253 (SMT-extract expr)

254 (get-orig-param decl-list)))

255

256 ;; augment-formula

257 (defun augment-formula (expr new-decl let-type new-hypo)

116

B.1. ACL2 Expansion, Translation and Interpretation

258 "augment-formula: for creating a new expression with hypothesis

augmented with new-hypo, assuming new-hypo only adds to the

hypo-list"

259 (mv-let (decl-list hypo-list concl-list)

260 (SMT-extract expr)

261 (list ’implies

262 (list ’if

263 (append-and-decl decl-list new-decl let-type)

264 (append-and-hypo hypo-list new-hypo)

265 ’’nil)

266 concl-list

267)))

268

269 ;; reform-let

270 (defun reform-let (let-expr)

271 "reform-let: reforms a let expression for convenient fetch"

272 (let ((inverted-let-expr (invert-assoc let-expr)))

273 (if (assoc-no-repeat inverted-let-expr)

274 inverted-let-expr

275 (cw "Error(function): there’s repetition in the associate

list’s values ~q0" let-expr))))

276

277 ;; initial-level-help

278 (defun initial-level-help (fn-lst fn-level)

279 "initial-level-help: binding a level to each function for

expansion. fn-lst is a list of functions, fn-level is the

number of levels we want to expand the functions."

280 (if (endp fn-lst)

281 nil

282 (cons (list (car fn-lst) fn-level)

283 (initial-level-help (cdr fn-lst) fn-level))))

284

285 ;; initial-level

286 (defun initial-level (fn-lst fn-level)

287 "initial-level: binding a level to each function for expansion"

288 (if (not (integerp fn-level))

289 (initial-level-help fn-lst 1)

117

B.1. ACL2 Expansion, Translation and Interpretation

290 (initial-level-help fn-lst fn-level)))

291

292 ;; split-fn-from-type

293 (defun split-fn-from-type (fn-lst-with-type)

294 ""

295 (if (endp fn-lst-with-type)

296 nil

297 (cons (caar fn-lst-with-type)

298 (split-fn-from-type (cdr fn-lst-with-type)))))

299

300 ;; replace-a-rec-fn

301 (defun replace-a-rec-fn (expr fn-lst-with-type fn-var-decl num)

302 ""(mv-let (name res-num)

303 (create-name num)

304 (prog2$ (cw "~q0" name

305 ;;(cons (list name

306 ;; expr

307 ;; (cadr (assoc (car expr) fn-lst-with-type)))

308 ;; fn-var-decl)

309 ;;res-num

310)

311 (mv name

312 (cons (list name

313 expr

314 (cadr (assoc (car expr) fn-lst-with-type)))

315 fn-var-decl)

316 res-num))))

317

318 (mutual-recursion

319

320 ;; replace-rec-fn-params

321 (defun replace-rec-fn-params (expr fn-lst-with-type fn-var-decl num)

322 ""

323 (if (endp expr)

324 (mv expr fn-var-decl num)

325 (mv-let (res-expr1 res-fn-var-decl1 res-num1)

326 (replace-rec-fn (car expr) fn-lst-with-type fn-var-decl num)

118

B.1. ACL2 Expansion, Translation and Interpretation

327 (mv-let (res-expr2 res-fn-var-decl2 res-num2)

328 (replace-rec-fn-params (cdr expr) fn-lst-with-type

res-fn-var-decl1 res-num1)

329 (mv (cons res-expr1 res-expr2)

330 res-fn-var-decl2

331 res-num2)))))

332

333 ;; replace-rec-fn

334 ;; 2014-07-04

335 ;; added function for postorder traversal

336 (defun replace-rec-fn (expr fn-lst-with-type fn-var-decl num)

337 ""

338 (cond ((atom expr)

339 (mv expr fn-var-decl num))

340 ((consp expr)

341 (let ((fn0 (car expr)) (params (cdr expr)))

342 (cond

343 ((and (atom fn0) (not (endp (assoc fn0

fn-lst-with-type)))) ;; function exists in the list

344 (prog2$ (cw "fn-lst-with-type: ~q0" fn-lst-with-type)

345 (mv-let (res fn-var-decl2 num2)

346 (replace-a-rec-fn expr fn-lst-with-type fn-var-decl

num)

347 (prog2$ (cw "res: ~q0 fn-var-decl2: ~q1, num2: ~q2"

res fn-var-decl2 num2)

348 (mv res fn-var-decl2 num2)))))

349 ((atom fn0) ;; when expr is a un-expandable function

350 (mv-let (res fn-var-decl2 num2)

351 (replace-rec-fn-params params fn-lst-with-type

fn-var-decl num)

352 (mv (cons fn0 res) fn-var-decl2 num2)))

353 ((lambdap fn0) ;; function is a lambda expression, expand

the body

354 (let ((lambdax fn0) (params (cdr expr)))

355 (let ((formals (cadr lambdax)) (body (caddr lambdax)))

356 (mv-let (res fn-var-decl2 num2)

357 (replace-rec-fn body fn-lst-with-type fn-var-decl num)

119

B.1. ACL2 Expansion, Translation and Interpretation

358 (mv-let (res2 fn-var-decl3 num3)

359 (replace-rec-fn-params params fn-lst-with-type

fn-var-decl2 num2)

360 (mv (cons (list ’lambda formals res) res2)

361 fn-var-decl3

362 num3))))

363))

364 ((and (not (lambdap fn0)) (consp fn0))

365 (mv-let (res fn-var-decl2 num2)

366 (replace-rec-fn fn0 fn-lst-with-type fn-var-decl num)

367 (mv-let (res2 fn-var-decl3 num3)

368 (replace-rec-fn-params params fn-lst-with-type

fn-var-decl2 num2)

369 (mv (cons res res2) fn-var-decl3 num3))))

370 (t (prog2$ (cw "Error(function): Can not pattern match,

~q0" expr)

371 (mv expr fn-var-decl num)))

372)))

373 (t (prog2$ (cw "Error(function): Strange expr, ~q0" expr)

374 (mv expr fn-var-decl num)))))

375

376)

377

378 ;; expand-fn

379 (defun expand-fn (expr fn-lst-with-type fn-level let-expr let-type

new-hypo state)

380 "expand-fn: takes an expr and a list of functions, unroll the

expression. fn-lst is a list of possible functions for

unrolling."

381 (let ((fn-lst (split-fn-from-type fn-lst-with-type)))

382 (let ((reformed-let-expr (reform-let let-expr)))

383 (let ((fn-level-lst (initial-level fn-lst fn-level)))

384 (mv-let (res-expr1 res-num1)

385 (expand-fn-help (rewrite-formula expr reformed-let-expr)

386 fn-lst fn-level-lst fn-lst nil 0 state)

387 (mv-let (res-expr res-fn-var-decl res-num)

388 (replace-rec-fn res-expr1 fn-lst-with-type nil res-num1)

120

B.1. ACL2 Expansion, Translation and Interpretation

389 (let ((rewritten-expr

390 (augment-formula (rewrite-formula res-expr

reformed-let-expr)

391 (assoc-get-value reformed-let-expr)

392 let-type

393 new-hypo)))

394 (let ((res (rewrite-formula res-expr1

reformed-let-expr)))

395 (let ((expr-return ;; (augment-formula res

396 ;; (assoc-get-value reformed-let-expr)

397 ;; let-type

398 ;; new-hypo)

399 res

400)

401 (orig-param (extract-orig-param res)))

402 (prog2$ (cw "~q0~%~q1~%" rewritten-expr expr-return)

403 (mv rewritten-expr expr-return res-num orig-param

res-fn-var-decl)))))))))))

1 ;; SMT-formula contains functions for constructing a SMT formula in

ACL2

2 (in-package "ACL2")

3

4 ;; -------------- SMT-operator -----------:

5 (defun operator-list (opr)

6 "operator-list: an associate list with possible SMT operators"

7 (assoc opr ’((binary-+ binary-+ 0)

8 (binary-- binary-- 2)

9 (binary-* binary-* 0)

10 (unary-/ unary-/ 1)

11 (unary-- unary-- 1)

12 (equal equal 2)

13 (> > 2)

14 (>= >= 2)

15 (< < 2)

16 (<= <= 2)

17 (if if 3)

121

B.1. ACL2 Expansion, Translation and Interpretation

18 (not not 1)

19 (lambda lambda 2)

20 ;; (list list 0)

21 ;; (nth nth 2)

22 (implies implies 2)

23 (integerp integerp 1)

24 (rationalp rationalp 1)

25 (booleanp booleanp 1)

26 (my-floor my-floor 1))))

27

28 (defun is-SMT-operator (opr)

29 "is-SMT-operator: given an operator in ACL2 format, check if it’s

valid"

30 (if (equal (operator-list opr) nil)

31 nil

32 t))

33

34 ;; SMT-operator

35 (defun SMT-operator (opr)

36 "SMT-operator: given an operator in ACL2 format, establish its

ACL2 format by looking up the associated list"

37 (if (is-SMT-operator opr)

38 (cadr (operator-list opr))

39 (prog2$ (cw "Error(formula): Operator ~q0 does not exist!" opr)

40 nil)))

41

42 ;; --------------------- SMT-type -------------------------:

43

44 ;; is-SMT-type

45 (defun is-SMT-type (type)

46 "SMT-type: given a type in ACL2 format, check if it’s valid"

47 (if (or (equal type ’RATIONALP)

48 (equal type ’INTEGERP)

49 (equal type ’BOOLEANP))

50 t

51 nil))

52

122

B.1. ACL2 Expansion, Translation and Interpretation

53 ;; SMT-type

54 (defun SMT-type (type)

55 "SMT-type: given a type in ACL2 format, establish its ACL2 format

by looking up the associated list"

56 (if (is-SMT-type type)

57 type

58 (prog2$ (cw "Error(formula): Type ~q0 not supported!" type)

59 nil)))

60

61 ;; --------------------- SMT-number -------------------------:

62

63 ;; is-SMT-rational

64 (defun is-SMT-rational (number)

65 "is-SMT-rational: Check if this is a SMT rational number"

66 (if (and (rationalp number)

67 (not (integerp number)))

68 t

69 nil))

70

71 ;; is-SMT-integer

72 (defun is-SMT-integer (number)

73 "is-SMT-integer: Check if this is a SMT integer number"

74 (if (integerp number)

75 t

76 nil))

77

78 ;; is-SMT-number

79 (defun is-SMT-number (number)

80 "is-SMT-number: Check if this is a SMT number"

81 (if (or (is-SMT-rational number)

82 (is-SMT-integer number))

83 t

84 nil))

85

86 ;; SMT-number

87 (defun SMT-number (number)

88 "SMT-number: This is a SMT number"

123

B.1. ACL2 Expansion, Translation and Interpretation

89 (if (is-SMT-number number)

90 number

91 (cw "Error(formula): This is not a valid SMT number: ~q0"

number)))

92

93 ;; --------------------- SMT-variable -------------------------:

94 ;; Q: I want to add a check on possible SMT-variables.

95

96 ;; is-SMT-variable

97 (defun is-SMT-variable (var)

98 "is-SMT-variable: check if a variable is a SMT var"

99 (if (symbolp var) t nil))

100

101 ;; SMT-variable

102 (defun SMT-variable (var)

103 "SMT-variable: This is a SMT variable name"

104 (if (is-SMT-variable var)

105 var

106 (cw "Error(formula): This is not a valid SMT variable name:

~q0" var)))

107

108 ;; --------------------- SMT-constant -------------------------:

109

110 ;; is-SMT-constant-name

111 (defun is-SMT-constant-name (name)

112 "is-SMT-constant-name: Check if this is a SMT constant name"

113 (if (symbolp name) t nil))

114

115 ;; SMT-constant-name

116 (defun SMT-constant-name (name)

117 "SMT-constant-name: This is a SMT constant name"

118 (if (is-SMT-constant-name name)

119 name

120 (cw "Error(formula): This is not a valid SMT constant name:

~q0" name)))

121

122 ;; SMT-constant

124

B.1. ACL2 Expansion, Translation and Interpretation

123 (defun SMT-constant (constant)

124 "SMT-constant: This is a SMT constant declaration"

125 (if (not (equal (len constant) 2))

126 (cw "Error(formula): Wrong number of elements in a constant

declaration list: ~q0" constant)

127 (let ((name (car constant))

128 (value (cadr constant)))

129 (list (SMT-constant-name name) (SMT-number value)))))

130

131 ;; SMT-constant-list-help

132 (defun SMT-constant-list-help (constant-list)

133 "SMT-constant-list: This is a list of SMT constant declarations,

the helper function"

134 (if (consp constant-list)

135 (cons (SMT-constant (car constant-list))

(SMT-constant-list-help (cdr constant-list)))

136 nil))

137

138 ;; SMT-constant-list

139 (defun SMT-constant-list (constant-list)

140 "SMT-constant-list: This is a list of SMT constant declarations"

141 (if (not (listp constant-list))

142 (cw "Error(formula): The SMT constant list is not in the

right form: ~q0" constant-list)

143 (SMT-constant-list-help constant-list)))

144

145 ;; --------------------- SMT-declaration -------------------------:

146

147 ;; SMT-declaration

148 (defun SMT-declaration (decl)

149 "SMT-declaration: This is a SMT variable declaration"

150 (if (not (equal (len decl) 2))

151 (cw "Error(formula): Wrong number of elements in a variable

declaration list: ~q0" decl)

152 (let ((type (car decl))

153 (name (cadr decl)))

154 (list (SMT-type type) (SMT-variable name)))))

125

B.1. ACL2 Expansion, Translation and Interpretation

155

156 ;; SMT-declaration-list-help

157 (defun SMT-declaration-list-help (decl-list)

158 "SMT-declaration-list-help: This is a list of SMT variable

declarations, the helper function"

159 (if (consp decl-list)

160 (cond ((equal (car decl-list) ’if)

161 (cons (SMT-declaration (cadr decl-list))

162 (SMT-declaration-list-help (caddr decl-list))))

163 (t (cons (SMT-declaration decl-list)

164 nil)))

165 nil))

166

167 ;; SMT-declaration-list

168 (defun SMT-declaration-list (decl-list)

169 "SMT-decl-list: This is a list of SMT variable declarations"

170 (if (not (listp decl-list))

171 (cw "Error(formula): The SMT declaration list is not in the

right form: ~q0" decl-list)

172 (SMT-declaration-list-help decl-list)))

173

174 ;; --------------------- SMT-expression -------------------------:

175

176 (mutual-recursion

177

178 ;; SMT-lambda-formal

179 (defun SMT-lambda-formal (formal)

180 "SMT-lambda-formal: check if it’s a valid formal list for a

lambda expression"

181 (if (endp formal)

182 nil

183 (if (symbolp (car formal))

184 (cons (car formal)

185 (SMT-lambda-formal (cdr formal)))

186 (cw "Error(formula): not a valid symbol in a formal list ~q0"

(car formal)))))

187

126

B.1. ACL2 Expansion, Translation and Interpretation

188 ;; SMT-expression-long

189 (defun SMT-expression-long (expression)

190 "SMT-expression-long: recognize a SMT expression, in a SMT

expression’s parameters"

191 (if (consp expression)

192 (cons (SMT-expression (car expression))

193 (SMT-expression-long (cdr expression)))

194 nil))

195

196 ;; SMT-expression

197 (defun SMT-expression (expression)

198 "SMT-expression: a SMT expression in ACL2"

199 (if (consp expression)

200 (cond ((and (consp (car expression))

201 (is-SMT-operator (caar expression))

202 (equal (caar expression) ’lambda))

203 (cons (list (SMT-operator

204 (car (car expression)))

205 (SMT-lambda-formal

206 (cadr (car expression)))

207 (SMT-expression

208 (caddr (car expression))))

209 (SMT-expression-long (cdr expression))))

210 ((is-SMT-operator (car expression))

211 (cons (SMT-operator (car expression))

212 (SMT-expression-long (cdr expression))))

213 ;; for handling a list

214 ((equal (car expression) ’QUOTE)

215 (if (consp (cadr expression))

216 (cons ’list

217 (SMT-expression-long (cadr expression)))

218 (SMT-expression (cadr expression))))

219 (t (cw "Error(formula): This is not a valid operator: ~q0"

expression)))

220 (cond ((is-SMT-number expression) (SMT-number expression))

221 ((is-SMT-variable expression) (SMT-variable expression))

127

B.1. ACL2 Expansion, Translation and Interpretation

222 (t (cw "Error(formula): Invalid number or variable: ~q0"

expression)))))

223)

224

225 ;; --------------------- SMT-hypothesis -------------------------:

226

227 ;; SMT-hypothesis-list

228 (defun SMT-hypothesis-list (hyp-list)

229 "SMT-hypothesis-list: This is a SMT hypothesis list"

230 (if (not (listp hyp-list))

231 (cw "Error(formula): The SMT hypothesis list is not in the

right form: ~q0" hyp-list)

232 (SMT-expression hyp-list)))

233

234 ;; --------------------- SMT-conclusion -------------------------:

235

236 ;; SMT-conclusion-list

237 (defun SMT-conclusion-list (concl-list)

238 "SMT-conclusion-list: This is a SMT conclusion list"

239 (if (not (listp concl-list))

240 (cw "Error(formula): The SMT conclusion list is not in the

right form: ~q0" concl-list)

241 (SMT-expression concl-list)))

242 ;; --------------------- SMT-formula ----------------------------:

243

244 ;; SMT-formula

245 (defun SMT-formula (const-list

246 decl-list

247 hyp-list

248 concl-list)

249 "SMT-formula: This is a SMT formula"

250 (list (SMT-constant-list const-list)

251 (SMT-declaration-list decl-list)

252 (SMT-hypothesis-list hyp-list)

253 (SMT-conclusion-list concl-list))

254)

255

128

B.1. ACL2 Expansion, Translation and Interpretation

256 ;; SMT-formula-top

257 (defmacro SMT-formula-top (&key const-list

258 decl-list

259 hyp-list

260 concl-list)

261 "SMT-formula-top: This is a macro for fetching parameters of a

SMT formula"

262 (list ’quote (SMT-formula const-list

263 decl-list

264 hyp-list

265 concl-list))

266)

1 ;; translate-SMT-formula translate a SMT formula in ACL2 into Z3

python code

2 (in-package "ACL2")

3 (include-book "SMT-formula")

4 (include-book "helper")

5

6 ;; -------------- translate operator -----------:

7

8 ;; translate-operator-list

9 (defun translate-operator-list (opr)

10 "translate-operator-list: look up an associate list for the

translation"

11 (assoc opr ’((binary-+ "s.plus" 0)

12 (binary-- "s.minus" 2)

13 (binary-* "s.times" 0)

14 (unary-/ "s.reciprocal" 1)

15 (unary-- "s.negate" 1)

16 (equal "s.equal" 2)

17 (> "s.gt" 2)

18 (>= "s.ge" 2)

19 (< "s.lt" 2)

20 (<= "s.le" 2)

21 (if "s.ifx" 3)

22 (not "s.notx" 1)

129

B.1. ACL2 Expansion, Translation and Interpretation

23 (lambda "lambda" 2)

24 ;; (nth "s.nth" 2)

25 ;; (list "s.array" 0)

26 (implies "s.implies" 2)

27 (integerp "s.integerp" 1)

28 (rationalp "s.rationalp" 1)

29 (booleanp "s.booleanp" 1)

30 (my-floor "s.floor" 1))))

31

32 ;; translate-operator

33 (defun translate-operator (opr)

34 "translate-operator: given an operator in ACL2 format, translate

into its Z3 format by looking up the associated list"

35 (let ((result (translate-operator-list opr)))

36 (if (equal result nil)

37 (prog2$ (cw "Error(translator): Operator ~q0 does not exist!"

opr)

38 nil)

39 (cadr result))))

40

41 ;; ----------------------- translate-type

-----------------------------:

42

43 ;; translate-type-list

44 (defun translate-type-list (type)

45 "translate-type-list: look up an associate list for the

translation"

46 (assoc type ’((RATIONALP "s.isReal")

47 (INTEGERP "s.isReal")

48 (BOOLEANP "s.isBool"))))

49

50 ;; translate-type

51 (defun translate-type (type)

52 "translate-type: translates a type in ACL2 SMT-formula into Z3

type" ;; all using reals because Z3 is not very good at

mixed types

53 (let ((result (translate-type-list type)))

130

B.1. ACL2 Expansion, Translation and Interpretation

54 (if (equal result nil)

55 (prog2$ (cw "Error(translator): Type ~q0 does not exist!" type)

56 nil)

57 (cadr result))))

58

59 ;; ----------------------- translate-number

-----------------------------:

60

61 ;; translate-number

62 (defun translate-number (num)

63 "translate-number: translates ACL2 SMT-number into a Z3 number"

64 (if (is-SMT-rational num)

65 (list "Q(" (numerator num) "," (denominator num) ")")

66 (if (is-SMT-integer num)

67 num

68 (cw "Error(translator): Cannot translate an unrecognized

number: ~q0" num))))

69

70 ;; ----------------------- translate-variable

---------------------------:

71

72 ;; translate-variable

73 (defun translate-variable (var)

74 "translate-variable: transalte a SMT variable into Z3 variable"

75 (if (is-SMT-variable var)

76 var

77 (cw "Error(translator): Cannot translate an unrecognized

variable: ~q0" var)))

78

79 ;; ----------------------- translate-constant

---------------------------:

80

81 ;; translate-const-name

82 (defun translate-const-name (const-name)

83 "translate-const-name: translate a SMT constant name into Z3"

84 (subseq

85 (coerce (symbol-name const-name) ’list)

131

B.1. ACL2 Expansion, Translation and Interpretation

86 1 (1- (len const-name))))

87

88 ;; translate-constant

89 (defun translate-constant (const)

90 "translate-constant: translate a SMT constant definition into Z3

code"

91 (list (translate-const-name (car const)) ’= (translate-number

(cadr const))))

92

93 ;; translate-constant-list

94 (defun translate-constant-list (const-list)

95 "translate-constant-list: translate a SMT constant list in ACL2

into a Z3 line of code"

96 (if (consp const-list)

97 (cons (translate-constant (car const-list))

98 (cons #\Newline (translate-constant-list (cdr const-list))))

99 nil))

100

101 ;; ;; check-const

102 ;; (defun check-const (expr)

103 ;; "check-const: check to see if an expression is a constant"

104 ;; (if (and (atom expr)

105 ;; (let ((expr-list (coerce (symbol-name expr) ’list)))

106 ;; (and (equal #* (car expr-list))

107 ;; (equal #* (nth (1- (len expr-list)) expr-list)))))

108 ;; t

109 ;; nil))

110

111 ;; ;; get-constant-list-help

112 ;; (defun get-constant-list-help (expr const-list)

113 ;; "get-constant-list-help: check all constants in a clause"

114 ;; (cond

115 ;; ((consp expr)

116 ;; (let ((const-list-2 (get-constant-list-help (car expr)

const-list)))

117 ;; (get-constant-list-help (cdr expr) const-list-2))

118 ;;)

132

B.1. ACL2 Expansion, Translation and Interpretation

119 ;; ((check-const expr)

120 ;; (mv-let (keyword name value)

121 ;; (pe expr) ;; pe will not be working for this

122 ;; (cons (list expr (translate-number value)) const-list))

123 ;;)

124 ;; ((atom expr)

125 ;; (get-constant-list-help (cdr expr) const-list)

126 ;;)

127 ;; (t

128 ;; const-list

129 ;;)

130 ;;)

131 ;;)

132

133 ;; ;; get-constant-list

134 ;; (defun get-constant-list (expr)

135 ;; "get-constant-list: get the list of constants in an associate

list"

136 ;; (get-constant-list-help expr ’()))

137

138

139 ;; ----------------------- translate-declaration

---------------------------:

140

141 ;; translate-declaration

142 (defun translate-declaration (decl)

143 "translate-declaration: translate a declaration in ACL2 SMT

formula into Z3 declaration"

144 (let ((type (car decl))

145 (name (cadr decl)))

146 (list (translate-variable name) ’= (translate-type type) ’\(

’\" (translate-variable name) ’\" ’\))))

147

148 ;; translate-declaration-list

149 (defun translate-declaration-list (decl-list)

150 "translate-declaration-list: translate a list of SMT-formula

declarations into Z3 code"

133

B.1. ACL2 Expansion, Translation and Interpretation

151 (if (consp decl-list)

152 (cons (translate-declaration (car decl-list))

153 (cons #\Newline (translate-declaration-list (cdr

decl-list))))

154 nil))

155

156 ;; ----------------------- translate-expression

--------------------------:

157

158 ;; make-lambda-list

159 (defun make-lambda-list (lambda-list)

160 "make-lambda-list: translating the binding list of a lambda

expression"

161 (if (endp (cdr lambda-list))

162 (car lambda-list)

163 (cons (car lambda-list)

164 (cons ’\, (make-lambda-list (cdr lambda-list))))))

165

166 (skip-proofs

167 (mutual-recursion

168

169 ;; translate-expression-long

170 (defun translate-expression-long (expression)

171 "translate-expression-long: translate a SMT expression’s

parameters in ACL2 into Z3 expression"

172 (if (endp (cdr expression))

173 (translate-expression (car expression))

174 (cons (translate-expression (car expression))

175 (cons ’\,

176 (translate-expression-long

177 (cdr expression))))))

178

179 ;; stuff.let([’x’, 2.0], [’y’, v(’a’)*v(’b’) + v(’c’)], [’z’,

...]).inn(2*v(’x’) - v(’y’))

180 ;; translate-expression

181 (defun translate-expression (expression)

134

B.1. ACL2 Expansion, Translation and Interpretation

182 "translate-expression: translate a SMT expression in ACL2 to Z3

expression"

183 (if (and (not (equal expression nil))

184 (consp expression)

185 (not (equal expression ’’1)))

186 (cond ((and (consp (car expression))

187 (is-SMT-operator (caar expression))

188 ;; special treatment for let expression

189 (equal (caar expression) ’lambda))

190 (list ’\(

191 (translate-operator (caar expression))

192 #\Space

193 (if (endp (cadr (car expression)))

194 #\Space

195 (make-lambda-list (cadr (car expression))))

196 ’\:

197 (translate-expression (caddr (car expression)))

198 ’\) ’\(

199 (if (endp (cdr expression))

200 #\Space

201 (translate-expression-long (cdr expression)))

202 ’\)))

203 ;; ((and (is-SMT-operator (car expression))

204 ;; (equal (car expression) ’list))

205 ;; (list (translate-operator (car expression))

206 ;; ’\(’\[

207 ;; (translate-expression-long (cdr expression))

208 ;; ’\] ’\)))

209 ((is-SMT-operator (car expression))

210 (list (translate-operator (car expression))

211 ’\(

212 (translate-expression-long (cdr expression))

213 ’\)))

214 (t (list "s.unknown" ’\((translate-expression-long (cdr

expression)) ’\))))

215 (cond ((is-SMT-number expression)

216 (translate-number expression))

135

B.1. ACL2 Expansion, Translation and Interpretation

217 ((equal expression ’nil) "False") ;; what if when ’nil is a

list?

218 ((equal expression ’t) "True")

219 ((is-SMT-variable expression)

220 (translate-variable expression))

221 (t (cw "Error(translator): Invalid number or variable: ~q0"

expression)))))

222)

223)

224 ;; ----------------------- translate-hypothesis

--------------------------:

225

226 ;; translate-hypothesis-list

227 (defun translate-hypothesis-list (hyp-list)

228 "translate-hypothesis-list: translate a SMT-formula hypothesis

statement into Z3"

229 (list (cons "hypothesis"

230 (cons ’= (translate-expression hyp-list))) #\Newline))

231

232 ;; ----------------------- translate-conclusion

--------------------------:

233 ;; translate-conclusion-list

234 (defun translate-conclusion-list (concl-list)

235 "translate-conclusion-list: translate a SMT-formula conclusion

statement into Z3"

236 (list (cons "conclusion"

237 (cons ’= (translate-expression concl-list))) #\Newline))

238

239 ;; ----------------------- translate-theorem

--------------------------:

240 ;; translate-theorem

241 (defun translate-theorem ()

242 "translate-theorem: construct a theorem statement for Z3"

243 (list "s.prove(hypothesis, conclusion)" #\Newline))

244

245 ;; ----------------------- translate-SMT-formula

--------------------------:

136

B.1. ACL2 Expansion, Translation and Interpretation

246

247 ;; translate-SMT-formula

248 (defun translate-SMT-formula (formula)

249 "translate-SMT-formula: translate a SMT formula into its Z3 code"

250 (let (;(const-list (car formula))

251 (decl-list (cadr formula))

252 (hypo-list (caddr formula))

253 (concl-list (cadddr formula)))

254 (list ;;(translate-constant-list

255 ;; (get-constant-list formula))

256 (translate-declaration-list decl-list)

257 (translate-hypothesis-list hypo-list)

258 (translate-conclusion-list concl-list)

259 (translate-theorem))))

1 (in-package "ACL2")

2 (include-book "./helper")

3 (include-book "./SMT-run")

4 (include-book "./SMT-interpreter")

5 (include-book "./SMT-function")

6 (include-book "./SMT-translator")

7 (defttag :tshell)

8 (value-triple (tshell-ensure))

9 (set-state-ok t)

10 (set-ignore-ok t)

11 (program)

12

13 (mutual-recursion

14 ;; lisp-code-print-help

15 (defun lisp-code-print-help (lisp-code-list indent)

16 "lisp-code-print-help: make a printable lisp code list"

17 (if (endp lisp-code-list)

18 nil

19 (list #\Space

20 (lisp-code-print (car lisp-code-list) indent)

21 (lisp-code-print-help (cdr lisp-code-list) indent))))

22

137

B.1. ACL2 Expansion, Translation and Interpretation

23 ;; lisp-code-print: make printable lisp list

24 (defun lisp-code-print (lisp-code indent)

25 "lisp-code-print: make a printable lisp code list"

26 (cond ((equal lisp-code ’nil) "nil") ;;

27 ((equal lisp-code ’quote) "’") ;; quote

28 ((atom lisp-code) lisp-code)

29 ((and (equal 2 (length lisp-code))

30 (equal (car lisp-code) ’quote))

31 (cons "’"

32 (lisp-code-print (cadr lisp-code)

33 (cons #\Space

34 (cons #\Space indent)))))

35 (t

36 (list #\Newline indent ’\(

37 (cons (lisp-code-print (car lisp-code)

38 (cons #\Space

39 (cons #\Space indent)))

40 (lisp-code-print-help (cdr lisp-code)

41 (cons #\Space

42 (cons #\Space indent))))

43 ’\)))))

44)

45

46 ;; my-prove-SMT-formula

47 (defun my-prove-SMT-formula (term)

48 "my-prove-SMT-formula: check if term is a valid SMT formula"

49 (let ((decl-list (cadr (cadr term)))

50 (hypo-list (caddr (cadr term)))

51 (concl-list (caddr term)))

52 (SMT-formula ’()

53 decl-list

54 hypo-list

55 concl-list)))

56

57 ;; my-prove-write-file

58 (defun my-prove-write-file (term fdir state)

59 "my-prove-write-file: write translated term into a file"

138

B.1. ACL2 Expansion, Translation and Interpretation

60 (write-SMT-file fdir

61 (translate-SMT-formula

62 (my-prove-SMT-formula term))

63 state))

64

65 ;; my-prove-write-expander-file

66 (defun my-prove-write-expander-file (expanded-term fdir state)

67 "my-prove-write-expander-file: write expanded term into a log

file"

68 (write-expander-file fdir

69 expanded-term

70 state))

71

72 ;; create-level

73 (defun create-level (level index)

74 "create-level: creates a name for a level"

75 (intern-in-package-of-symbol

76 (concatenate ’string level (str::natstr index)) ’ACL2))

77

78 ;; my-prove-build-log-file

79 (defun my-prove-build-log-file (expanded-term-list index)

80 "my-prove-build-log-file: write the log file for expanding the

functions"

81 (if (endp expanded-term-list)

82 nil

83 (cons (list (create-level "level " index) ’\:

84 (lisp-code-print

85 (car expanded-term-list) ’())

86 #\Newline #\Newline)

87 (my-prove-build-log-file

88 (cdr expanded-term-list) (1+ index)))))

89

90 ;; translate added hypothesis to underling representation

91 (defun translate-hypo (hypo state)

92 "translate-hypo: translate added hypothesis to underling

representation"

93 (if (endp hypo)

139

B.1. ACL2 Expansion, Translation and Interpretation

94 (mv nil state)

95 (mv-let (res1 state)

96 (translate-hypo (cdr hypo) state)

97 (mv-let (erp res state)

98 (translate (car hypo) t nil t nil (w state) state)

99 (if (endp res)

100 (mv (cons (car hypo) res1) state)

101 (mv (cons res res1) state)))

102)))

103

104 ;; translate a let binding for added hypothesis

105 (defun translate-let (let-expr state)

106 "translate-let: translate a let binding for added hypo"

107 (if (endp let-expr)

108 (mv nil state)

109 (mv-let (res1 state)

110 (translate-let (cdr let-expr) state)

111 (mv-let (erp res state)

112 (translate (cadar let-expr) t nil t nil (w state) state)

113 (if (endp res)

114 (mv (cons (list (caar let-expr) (cadar let-expr) (caddar

let-expr)) res1) state)

115 (mv (cons (list (caar let-expr) res (caddar let-expr))

res1) state)))

116)))

117

118 ;; get-hint-formula

119 (defun get-hint-formula (name state)

120 "get-hint-formula: get the formula by a hint’s name"

121 (formula name t (w state)))

122

123 ;; add-hints

124 (defun add-hints (hints clause state)

125 "add-hints: add a list of hint to a clause, in the form of ((not

hint3) ((not hint2) ((not hint1) clause)))"

126 (if (endp hints)

127 clause

140

B.1. ACL2 Expansion, Translation and Interpretation

128 (add-hints (cdr hints)

129 (cons (list ’not (get-hint-formula (car hints) state))

clause)

130 state)))

131

132 ;; construct augmented result

133 (defun augment-hypothesis-helper (rewritten-term let-expr

orig-param main-hints state)

134 "augment-hypothesis: augment the returned clause with \

135 new hypothesis in lambda expression"

136 (cond ((and (endp let-expr) (endp main-hints))

137 (list (list ’not rewritten-term)))

138 ((and (endp main-hints) (not (endp let-expr)))

139 (list (list ’not

140 (cons (list ’lambda (append (assoc-get-key let-expr)

orig-param) rewritten-term)

141 (append (assoc-get-value let-expr) orig-param)))))

142 ((and (not (endp main-hints)) (endp let-expr))

143 (add-hints main-hints (list (list ’not rewritten-term)) state))

144 (t

145 (add-hints main-hints

146 (list (list ’not

147 (cons (list ’lambda (append (assoc-get-key let-expr)

orig-param) rewritten-term)

148 (append (assoc-get-value let-expr) orig-param))))

149 state))

150))

151

152 (defun add-aux (clause aux-thms)

153 (if (endp aux-thms)

154 clause

155 (add-aux (let ((thm (car aux-thms)))

156 (cons (list ’not

157 (list ’implies (cadar thm) (cadr thm)))

158 clause))

159 (cdr aux-thms)

160)))

141

B.1. ACL2 Expansion, Translation and Interpretation

161

162 (defun augment-hypothesis (rewritten-term let-expr orig-param

main-hints aux-thms state)

163 (prog2$ (cw "aux-thms: ~q0~%" aux-thms)

164 (let ((res (augment-hypothesis-helper rewritten-term let-expr

orig-param main-hints state)))

165 (add-aux res aux-thms))))

166

167 ;;separate-type

168 (defun separate-type (let-expr)

169 "separate-type: separate let expression types from let

expression, I do it in this way for convenience. I might want

to use them as a whole in the future."

170 (if (endp let-expr)

171 (mv nil nil)

172 (mv-let (res-let-expr res-let-type)

173 (separate-type (cdr let-expr))

174 (mv (cons (list (caar let-expr) (cadar let-expr))

175 res-let-expr)

176 (cons (caddar let-expr)

177 res-let-type)))))

178

179 (defun create-type-theorem-helper-no-hints (decl-hypo-list let-expr

let-type)

180 (if (endp let-expr)

181 nil

182 (cons (list (list ’not

183 (list ’if (cadr decl-hypo-list)

184 (append-and-hypo (caddr decl-hypo-list)

185 (list (list ’equal (caar let-expr) (cadar

let-expr))))

186 ’’nil))

187 (list (car let-type) (caar let-expr)))

188 (create-type-theorem-helper-no-hints decl-hypo-list (cdr

let-expr) (cdr let-type)))))

189

142

B.1. ACL2 Expansion, Translation and Interpretation

190 (defun create-type-theorem-helper-with-hints (decl-hypo-list

let-expr let-type let-hints state)

191 (if (endp let-expr)

192 nil

193 (cons (add-hints (car let-hints)

194 (list (list ’not

195 (list ’if (cadr decl-hypo-list)

196 (append-and-hypo (caddr decl-hypo-list)

197 (list (list ’equal (caar let-expr) (cadar

let-expr))))

198 ’’nil))

199 (list (car let-type) (caar let-expr)))

200 state)

201 (create-type-theorem-helper-with-hints decl-hypo-list (cdr

let-expr) (cdr let-type) (cdr let-hints) state))))

202

203

204 ;; create-type-theorem

205 (defun create-type-theorem (decl-hypo-list let-expr let-type

let-hints state)

206 "create-type-theorem"

207 (if (endp let-hints)

208 (create-type-theorem-helper-no-hints decl-hypo-list let-expr

let-type)

209 (create-type-theorem-helper-with-hints decl-hypo-list

let-expr let-type let-hints state)))

210

211 (defun create-hypo-theorem-helper-no-hints (decl-hypo-list let-expr

hypo-expr orig-param)

212 (if (endp hypo-expr)

213 nil

214 (cons (list (list ’not decl-hypo-list)

215 (cons (list ’lambda (append (assoc-get-key let-expr)

orig-param) (car hypo-expr))

216 (append (assoc-get-value let-expr) orig-param)))

217 (create-hypo-theorem-helper-no-hints decl-hypo-list let-expr

(cdr hypo-expr) orig-param))))

143

B.1. ACL2 Expansion, Translation and Interpretation

218

219 (defun create-hypo-theorem-helper-with-hints (decl-hypo-list

let-expr hypo-expr orig-param hypo-hints state)

220 (if (endp hypo-expr)

221 nil

222 (cons (add-hints (car hypo-hints)

223 (list (list ’not decl-hypo-list)

224 (cons (list ’lambda (append (assoc-get-key let-expr)

orig-param) (car hypo-expr))

225 (append (assoc-get-value let-expr) orig-param)))

226 state)

227 (create-hypo-theorem-helper-with-hints decl-hypo-list

let-expr (cdr hypo-expr) orig-param (cdr hypo-hints) state))))

228

229 ;; create-hypo-theorem

230 (defun create-hypo-theorem (decl-hypo-list let-expr hypo-expr

orig-param hypo-hints state)

231 "create-hypo-theorem: create a theorem for proving user added

hypothesis"

232 (if (endp hypo-hints)

233 (create-hypo-theorem-helper-no-hints decl-hypo-list let-expr

hypo-expr orig-param)

234 (create-hypo-theorem-helper-with-hints decl-hypo-list

let-expr hypo-expr orig-param hypo-hints state)))

235

236 ;;create-fn-type-theorem

237 (defun create-fn-type-theorem (decl-hypo-list fn-var-decl)

238 ""

239 (if (endp fn-var-decl)

240 nil

241 (cons (list (list ’not

242 (list ’if (cadr decl-hypo-list)

243 (append-and-hypo (caddr decl-hypo-list)

244 (list (list ’equal (caar fn-var-decl) (cadar

fn-var-decl))))

245 ’’nil))

246 (list (caddar fn-var-decl) (caar fn-var-decl)))

144

B.1. ACL2 Expansion, Translation and Interpretation

247 (create-fn-type-theorem decl-hypo-list (cdr fn-var-decl)))))

248

249 ;;add-fn-var-decl-helper

250 (defun add-fn-var-decl-helper (decl-term fn-var-decl)

251 ""

252 (if (endp fn-var-decl)

253 decl-term

254 (list ’if

255 (list (caddar fn-var-decl) (caar fn-var-decl))

256 (add-fn-var-decl-helper decl-term (cdr fn-var-decl))

257 ’’nil)))

258

259 ;;add-fn-var-decl

260 (defun add-fn-var-decl (term fn-var-decl)

261 ""

262 (list (car term)

263 (list (caadr term)

264 (add-fn-var-decl-helper (cadadr term) fn-var-decl)

265 (caddr (cadr term))

266 (cadddr (cadr term)))

267 (caddr term)))

268

269 ;; my-prove

270 (defun my-prove (term fn-lst fn-level fname let-expr new-hypo

let-hints hypo-hints main-hints state)

271 "my-prove: return the result of calling SMT procedure"

272 (let ((file-dir (concatenate ’string

273 *dir-files*

274 "/"

275 fname

276 ".py"))

277 (expand-dir (concatenate ’string

278 *dir-expanded*

279 "/"

280 fname

281 "_expand.log")))

282 (mv-let (hypo-translated state)

145

B.1. ACL2 Expansion, Translation and Interpretation

283 (translate-hypo new-hypo state)

284 (mv-let (let-expr-translated-with-type state)

285 (translate-let let-expr state)

286 (mv-let (let-expr-translated let-type)

287 (separate-type let-expr-translated-with-type)

288 (mv-let (expanded-term-list-1 expanded-term-list-2 num

orig-param fn-var-decl)

289 (expand-fn term fn-lst fn-level let-expr-translated

let-type hypo-translated state)

290 (let ((expanded-term-list

291 (add-fn-var-decl expanded-term-list-1 fn-var-decl)))

292 (prog2$ (cw "Expanded(SMT-z3): ~q0 Final index

number: ~q1" expanded-term-list num)

293 (let ((state (my-prove-write-expander-file

294 (my-prove-build-log-file

295 (cons term expanded-term-list) 0)

296 expand-dir

297 state)))

298 (let ((state (my-prove-write-file

299 expanded-term-list

300 file-dir

301 state)))

302 (let ((type-theorem (create-type-theorem (cadr

term)

303 let-expr-translated

304 let-type

305 let-hints

306 state))

307 (hypo-theorem (create-hypo-theorem (cadr

term)

308 let-expr-translated

309 hypo-translated

310 orig-param

311 hypo-hints

312 state))

313 (fn-type-theorem (create-fn-type-theorem

(cadr term)

146

B.1. ACL2 Expansion, Translation and Interpretation

314 fn-var-decl)))

315 (let ((aug-theorem (augment-hypothesis

expanded-term-list-2

316 let-expr-translated

317 orig-param

318 main-hints

319 (append fn-type-theorem

320 (append hypo-theorem

321 (append type-theorem)))

322 state)))

323 (if (car (SMT-interpreter file-dir))

324 (mv t aug-theorem type-theorem hypo-theorem

fn-type-theorem state)

325 (mv nil aug-theorem type-theorem

hypo-theorem fn-type-theorem state))))))))))))))

1 ;; SMT-run writes to Z3, invoke Z3 and gets the result

2 (in-package "ACL2")

3

4 (include-book "./config")

5 (include-book "std/io/top" :dir :system)

6 (include-book "centaur/misc/tshell" :dir :system)

7 (defttag :tshell)

8 (value-triple (tshell-ensure))

9

10 ;;(set-print-case :downcase state)

11

12 (set-state-ok t)

13 (defttag :writes-okp)

14

15 ;; princ$-list-of-strings

16 (defun princ$-list-of-strings (alist channel state)

17 "princ$-list-of-strings: the real function to print the Z3

program."

18 (if (consp alist)

19 (let ((state (princ$-list-of-strings (car alist) channel

state)))

147

B.1. ACL2 Expansion, Translation and Interpretation

20 (princ$-list-of-strings (cdr alist) channel state))

21 (if (and (not (equal alist nil))

22 (not (acl2-numberp alist))) ;; if alist is a number,

should be treated seperately

23 (princ$ (string alist) channel state)

24 (if (acl2-numberp alist)

25 (princ$ alist channel state)

26 state))))

27

28 ;; coerce a list of strings and characters into a string

29 (defun coerce-str-and-char-to-str (slist)

30 "coerce-str-and-char-to-str: coerce a list of strings and

characters into a string"

31 (if (endp slist)

32 nil

33 (cond ((stringp (car slist))

34 (concatenate ’string

35 (car slist)

36 (coerce-str-and-char-to-str (cdr slist))))

37 ((characterp (car slist))

38 (concatenate ’string

39 (coerce (list (car slist)) ’STRING)

40 (coerce-str-and-char-to-str (cdr slist))))

41 (t (cw "Error(run): Invalid list ~q0." (car slist))))))

42

43 ;; write-head

44 (defun write-head ()

45 "write-head: writes the head of a z3 file"

46 (coerce-str-and-char-to-str

47 (list "from sys import path"

48 #\Newline

49 "path.insert(0,\"" *dir-interface* "\")"

50 #\Newline

51 "from " *z3-module* " import " *z3-class* ", Q"

52 #\Newline

53 "s = " *z3-class* "()"

54 #\Newline)))

148

B.1. ACL2 Expansion, Translation and Interpretation

55

56 ;; write-SMT-file

57 (defun write-SMT-file (filename translated-formula state)

58 "write-SMT-file: writes the translated formula into a python

file, it opens and closes the channel and write the including

of Z3 inteface"

59 (mv-let

60 (channel state)

61 (open-output-channel! filename :character state)

62 (let ((state (princ$-list-of-strings

63 (write-head) channel state)))

64 (let ((state (princ$-list-of-strings translated-formula

channel state)))

65 (close-output-channel channel state)))))

66

67 ;; write-expander-file

68 (defun write-expander-file (filename expanded-term state)

69 "write-expander-file: write expanded term to a file"

70 (mv-let

71 (channel state)

72 (open-output-channel! filename :character state)

73 (let ((state

74 (princ$-list-of-strings

75 expanded-term channel state)))

76 (close-output-channel channel state))))

77

78 ;; SMT-run

79 (defun SMT-run (filename)

80 "SMT-run: run the external SMT procedure from ACL2"

81 (let ((cmd (concatenate ’string *smt-cmd* " " filename)))

82 (time$ (tshell-call cmd

83 :print t

84 :save t)

85 :msg "; Z3: ‘~s0‘: ~st sec, ~sa bytes~%"

86 :args (list cmd))))

1 ;;SMT-interpreter formats the results

149

B.1. ACL2 Expansion, Translation and Interpretation

2

3 (in-package "ACL2")

4 (include-book "SMT-run")

5 (defttag :tshell)

6

7

8 ;; SMT-interpreter

9 (defun SMT-interpreter (filename)

10 "SMT-intepreter: get the result returned from calling SMT

procedure"

11 (mv-let (finishedp exit-status lines)

12 (SMT-run filename)

13 (cond ((equal finishedp nil)

14 (cw "Warning: the command was interrupted."))

15 ((not (equal exit-status 0))

16 (cw "Z3 failure: ~q0" lines))

17 (t (if (equal (car lines) "proved")

18 t

19 (cw "~q0" lines))))))

1 ;; This file configs the path to below directories:

2 ;; 1. Z3_interface

3 ;; 2. Z3_files

4 ;; 3. name of z3 class

5 ;; 4. SMT command

6 (in-package "ACL2")

7 (defconst *dir-interface*

"/ubc/cs/home/y/yanpeng/project/ACL2/smtlink/z3_interface")

8 (defconst *dir-files* "z3_files")

9 (defconst *z3-module* "ACL2_translator")

10 (defconst *z3-class* "to_smt")

11 (defconst *smt-cmd* "python")

12 (defconst *dir-expanded* "expanded")

1 ;; helper functions for basic data structure manipulation

2 (in-package "ACL2")

3

150

B.1. ACL2 Expansion, Translation and Interpretation

4 ;; exist

5 (defun exist (elem lista)

6 "exist: check if an element exist in a list"

7 (if (endp lista)

8 nil

9 (if (equal elem (car lista))

10 t

11 (exist elem (cdr lista)))))

12

13 ;; end

14 (defun end (lista)

15 "end: return the last element in a list"

16 (if (endp (cdr lista))

17 (car lista)

18 (end (cdr lista))))

19

20 ;; my-last

21 (defun my-last (listx)

22 "my-last: fetch the last element from list"

23 (car (last listx)))

24

25 ;; my-delete

26 (defun my-delete (listx elem)

27 "my-delete: delete an element from the list. If there’re

duplicates, this function deletes the first one in the list."

28 (if (endp listx) ;; elem does not exist in the list

29 listx

30 (if (equal (car listx) elem)

31 (cdr listx)

32 (cons (car listx)

33 (my-delete (cdr listx) elem)))))

34

35 (defthm delete-must-reduce

36 (implies (exist a listx)

37 (< (len (my-delete listx a)) (len listx))))

38

39 ;; dash-to-underscore-char

151

B.1. ACL2 Expansion, Translation and Interpretation

40 (defun dash-to-underscore-char (charx)

41 (if (equal charx ’-)

42 ’_

43 charx))

44

45 ;; dash-to-underscore-helper

46 (defun dash-to-underscore-helper (name-list)

47 (if (endp name-list)

48 nil

49 (cons (dash-to-underscore-char (car name-list))

50 (dash-to-underscore-helper (cdr name-list)))))

51

52 ;; dash-to-underscore

53 (defun dash-to-underscore (name)

54 (intern-in-package-of-symbol

55 (coerce

56 (dash-to-underscore-helper

57 (coerce (symbol-name name)’list))

58 ’string)

59 ’ACL2))

60

61 ;; append-and-decl

62 (defun append-and-decl (listx listy let-type)

63 "append-and-decl: append two and lists together in the underneath

representation"

64 (if (endp listy)

65 listx

66 (append-and-decl

67 (list ’if (list (car let-type) (car listy)) listx ’’nil)

68 (cdr listy)

69 (cdr let-type))))

70

71 ;; append-and-hypo

72 (defun append-and-hypo (listx listy)

73 "append-and-hypo: append two and lists together in the underneath

representation"

74 (if (endp listy)

152

B.1. ACL2 Expansion, Translation and Interpretation

75 listx

76 (append-and-hypo

77 (list ’if (car listy) listx ’’nil)

78 (cdr listy))))

79

80 ;; assoc-get-value

81 (defun assoc-get-value (listx)

82 "assoc-get-value: get all values out of an associate list"

83 (if (endp listx)

84 nil

85 (cons (cadar listx)

86 (assoc-get-value (cdr listx)))))

87

88 ;; assoc-get-key

89 (defun assoc-get-key (listx)

90 "assoc-get-key: get all keys out of an associate list"

91 (if (endp listx)

92 nil

93 (cons (caar listx)

94 (assoc-get-key (cdr listx)))))

95

96 ;; assoc-no-repeat

97 (defun assoc-no-repeat (assoc-list)

98 "assoc-no-repeat: check if an associate list has repeated keys"

99 (if (endp assoc-list)

100 t

101 (if (equal (assoc-equal (caar assoc-list) (cdr assoc-list))

nil)

102 (assoc-no-repeat (cdr assoc-list))

103 nil)))

104

105 ;; invert-assoc

106 (defun invert-assoc (assoc-list)

107 "invert-assoc: invert the key and value pairs in an associate

list"

108 (if (endp assoc-list)

109 nil

153

B.1. ACL2 Expansion, Translation and Interpretation

110 (cons (list (cadar assoc-list) (caar assoc-list))

111 (invert-assoc (cdr assoc-list)))))

112

113 ;; create-assoc-helper

114 (defun create-assoc-helper (list-keys list-values)

115 (if (endp list-keys)

116 nil

117 (cons (list (car list-keys) (car list-values))

118 (create-assoc-helper (cdr list-keys) (cdr list-values)))))

119

120 ;; create-assoc

121 (defun create-assoc (list-keys list-values)

122 "create-assoc: combines two lists together to form an associate

list"

123 (if (equal (len list-keys) (len list-values))

124 (create-assoc-helper list-keys list-values)

125 (cw "Error(helper): list-keys and list-values should be of

the same len.")))

126

127 ;; replace-lambda-params

128 (defun replace-lambda-params (expr lambda-params-mapping)

129 "replace-lambda-params: replace params in the expression using

the mapping"

130 (if (atom expr)

131 (let ((res (assoc-equal expr lambda-params-mapping)))

132 (if (equal res nil)

133 expr

134 (cadr res)))

135 (cons (replace-lambda-params (car expr)

lambda-params-mapping)

136 (replace-lambda-params (cdr expr) lambda-params-mapping))))

137

138 ;; assoc-lambda

139 (defun assoc-lambda (expr lambda-params-mapping assoc-list)

140 "assoc-lambda: replacing params in expression using

lambda-params-mapping \

154

B.2. Z3 Interface

141 and check if the resulting term exist in assoc-list keys. Return

the resulting \

142 pair from assoc-list."

143 (let ((new-expr (replace-lambda-params expr

lambda-params-mapping)))

144 (assoc-equal new-expr assoc-list)))

145

146 ;; combine

147 (defun combine (lista listb)

148 "combine: takes two items, either atoms or lists, then combine

them together according to some rule. E.g. if either element is

nil, return the other one; if a is atom and b is list, do cons;

if both are lists, do append; if a is list and b is atom,

attach b at the end; if both are atoms, make a list"

149 (cond ((and (atom lista) (atom listb) (not (equal lista nil))

(not (equal listb nil)))

150 (list lista listb))

151 ((and (atom lista) (listp listb) (not (equal lista nil)))

152 (cons lista listb))

153 ((and (listp lista) (atom listb) (not (equal listb nil)))

154 (append lista (list listb)))

155 ((and (listp lista) (listp listb))

156 (append lista listb))))

B.2 Z3 Interface

1 from z3 import Solver, Bool, Int, Real, BoolSort, IntSort,

RealSort, And, Or, Not, Implies, sat, unsat, Q, Array, Select,

Store, ToInt

2

3 def sort(x):

4 if type(x) == bool: return BoolSort()

5 elif type(x) == int: return IntSort()

6 elif type(x) == float: return RealSort()

7 elif hasattr(x, ’sort’):

8 if x.sort() == BoolSort(): return BoolSort()

9 if x.sort() == IntSort(): return IntSort()

155

B.2. Z3 Interface

10 if x.sort() == RealSort(): return RealSort()

11 else:

12 raise Exception(’unknown sort for expression’)

13

14 class to_smt:

15 class status:

16 def __init__(self, value):

17 self.value = value

18

19 def __str__(self):

20 if(self.value is True): return ’QED’

21 elif(self.value.__class__ == ’msg’.__class__):

return self.value

22 else: raise Exception(’unknown status?’)

23

24 def isThm(self):

25 return(self.value is True)

26

27 def __init__(self, solver=0):

28 if(solver != 0): self.solver = solver

29 else: self.solver = Solver()

30 self.nameNumber = 0

31

32 def newVar(self):

33 varName = ’$’ + str(self.nameNumber)

34 self.nameNumber = self.nameNumber+1

35 return varName

36

37 def isBool(self, who):

38 return Bool(who)

39

40 def isInt(self, who):

41 return Int(who)

42

43 def isReal(self, who):

44 return Real(who)

45

156

B.2. Z3 Interface

46 def floor(self, x):

47 return ToInt(x)

48

49 def plus(self, *args):

50 return reduce(lambda x, y: x+y, args)

51

52 def times(self, *args):

53 return reduce(lambda x, y: x*y, args)

54

55 def andx(self, *args):

56 return reduce(lambda x, y: And(x,y), args)

57

58 def orx(self, *args):

59 return reduce(lambda x, y: Or(x,y), args)

60

61 def minus(self, x,y): return x-y

62

63 # special care for reciprocal because

64 # in ACL2 3/0 = 0 and in z3 3/0 == 0

65 # will return a counter-example

66 def reciprocal(self, x):

67 if(type(x) is int): return(Q(1,x))

68 elif(type(x) is float): return 1.0/x

69 elif(x.sort() == IntSort()): return 1/(Q(1,1)*x)

70 else: return 1/x

71

72 def negate(self, x): return -x

73 def div(self, x, y): return times(self,x,reciprocal(self,y))

74 def gt(self, x,y): return x>y

75 def lt(self, x,y): return x<y

76 def ge(self, x,y): return x>=y

77 def le(self, x,y): return x<=y

78 def equal(self, x,y): return x==y

79 def notx(self, x): return Not(x)

80

81 def implies(self, x, y): return Implies(x,y)

82

157

B.2. Z3 Interface

83 # type related functions

84 def integerp(self, x): return x.sort() == IntSort()

85 def rationalp(self, x): return x.sort() == RealSort()

86 def booleanp(self, x): return x.sort() == BoolSort()

87

88 def ifx(self, condx, thenx, elsex):

89 v = 0

90 if sort(thenx) == sort(elsex):

91 if sort(thenx) == BoolSort(): v = Bool(self.newVar())

92 if sort(thenx) == IntSort(): v = Int(self.newVar())

93 if sort(thenx) == RealSort(): v = Real(self.newVar())

94 if v is 0: raise Exception(’mixed type for

if-expression’)

95 self.solver.add(And(Implies(condx, v == thenx),

Implies(Not(condx), v == elsex)))

96 return(v)

97

98 # # array

99 # def array(self, mylist):

100 # if not mylist:

101 # raise("Can’t determine type of an empty list.")

102 # else:

103 # ty = sort(mylist[0])

104 # a = Array(self.newVar(), IntSort(), ty)

105 # n = len(mylist)

106 # for i in range(0,n):

107 # j = Int(self.newVar())

108 # self.solver.add(j == i)

109 # self.solver.add(Select(a, j) == mylist[i])

110 # return a

111

112 # # nth

113 # def nth(self, i, a):

114 # return Select(a, i)

115

116 # usage prove(claim) or prove(hypotheses, conclusion)

117 def prove(self, hypotheses, conclusion=0):

158

B.2. Z3 Interface

118 if(conclusion is 0): claim = hypotheses

119 else: claim = Implies(hypotheses, conclusion)

120

121 self.solver.add(Not(claim))

122 res = self.solver.check()

123

124 if res == unsat:

125 print "proved"

126 return self.status(True) # It’s a theorem

127 elif res == sat:

128 print "counterexample"

129 m = self.solver.model()

130 print m

131 # return an counterexample??

132 return self.status(False)

133 else:

134 print "failed to prove"

159

Appendix C

Convergence Proof Code

C.1 Z3 Proof for Coarse Convergence

1 from z3 import *

2 from DPLL import DPLL_model

3

4 def leave(dpll=DPLL_model()):

5 c = [Real(’c[0]’), Real(’c[1]’), Real(’c[2]’)]

6 v = [Real(’v[0]’), Real(’v[1]’), Real(’v[2]’)]

7 phi = [Real(’phi[0]’), Real(’phi[1]’), Real(’phi[2]’)]

8 s = Solver()

9 s.add(And(initialRegion(dpll, c[0], v[0], phi[0]),

dpll.next(c[:2], v[:2], phi[:2])))

10

11 # show that the initial region is an invariant

12 prove(s, initialRegion(dpll, c[1], v[1], phi[1]), ’initial region

is invariant’)

13

14 # find bound on v when c=c_min and fDCO crosses fref

15 s.push()

16 s.add(dpll.next(c[1:], v[1:], phi[1:]))

17 s.add(And(c[0] == dpll.cmin, dpll.fDCO(c[0], v[0]) < dpll.fref,

phi[0] == 0, phi[2] >= 0))

18 ch = s.check()

19 if(ch == sat):

20 print ’phi can change sign’

21 print str(s.model())

22 else:

23 print "phi is stuck (how’d that happen?)"

160

C.1. Z3 Proof for Coarse Convergence

24 print "ch =", str(ch)

25

26

27 def initialRegion(dpll, c, v, phi):

28 return And(dpll.cmin <= c, c <= dpll.cmax,

29 dpll.vmin <= v, v <= dpll.vmax,

30 -1 <= phi, phi <= +1)

31

32 def prove(s, claim, what):

33 s.push()

34 s.add(Not(claim))

35 ch = s.check()

36 if(ch == unsat):

37 print ’Proven’, what

38 s.pop()

39 else:

40 print ’FAILED TO PROVE:’, what

41 if(ch == sat):

42 print "Here’s a counter-example:"

43 print str(s.model())

44 else: print "Z3 couldn’t decide"

45 s.pop()

46 raise Exception(’Proof failed’);

1 from DPLL import *

2 from z3 import *

3 import time

4

5 def my_prove(what, hyp, concl):

6 s = Solver()

7 s.add(hyp)

8 s.add(Not(concl))

9 p = s.check()

10 if(p == unsat):

11 print ’PROOF! ’, what

12 return "proved"

13 elif(p == sat):

161

C.1. Z3 Proof for Coarse Convergence

14 print ’Failed to prove: ’, what

15 print "Here’s a counter-example: ", str(s.model())

16 print ":("

17 return "can’t prove"

18 else:

19 print what + ’? -- I dunno’

20 return "stuck"

21

22 c = Reals(["c", "c’"])

23 v = Reals(["v", "v’"])

24 phi = Reals(["phi", "phi’"])

25 dpll = DPLL_model()

26 s = Solver()

27 s.push()

28 s.add(And(c[0] == 1.05, v[0] == 0.8, phi[0] == 0.25, dpll.next(c,

v, phi)))

29 print ’Is the model satisfiable? ’, str(s.check())

30 if(s.check() == sat):

31 print "Here’s a solution: ", str(s.model())

32 s.pop()

33

34 # All c v phi will stay in valid region

35 hyp = And(dpll.valid(c[0], v[0], phi[0]), \

36 dpll.next(c, v, phi))

37 concl = dpll.valid(c[1], v[1], phi[1])

38 my_prove(’invariance of valid states’, hyp, concl)

39

40 # When f_dco < 0.9*fref, positive phi decreases

41 hyp = And(dpll.fDCO(c[0], v[0])/dpll.N < 0.9*dpll.fref, \

42 0 <= phi[0], \

43 dpll.valid(c[0], v[0], phi[0]), \

44 dpll.next(c, v, phi))

45 concl = phi[1] < phi[0] - dpll.eps

46 my_prove(’Positive phi decreases for f_dco/N < 0.9*f_ref’, hyp,

concl)

47

48 # When f_dco < 0.9*fref and phi < 0, phi stays negative

162

C.1. Z3 Proof for Coarse Convergence

49 hyp = And(dpll.fDCO(c[0], v[0])/dpll.N < 0.9*dpll.fref, \

50 phi[0] < 0, \

51 dpll.valid(c[0], v[0], phi[0]), \

52 dpll.next(c, v, phi))

53 concl = phi[1] < 0

54 my_prove(’invariance of negative phi for f_dco/N < 0.9*f_ref’, hyp,

concl)

55

56 # When f_dco < 0.9*fref and phi < 0, c >= cmin+gc, c decreases at

least for some amount

57 hyp = And(dpll.fDCO(c[0], v[0])/dpll.N < 0.9*dpll.fref, \

58 phi[0] < 0, \

59 c[0] >= dpll.cmin + dpll.gc, \

60 dpll.valid(c[0], v[0], phi[0]), \

61 dpll.next(c, v, phi))

62 concl = c[1] == c[0] - dpll.gc

63 my_prove(’c decrease by gc for f_dco/N < 0.9*f_fref when phi<0 and

c >= cmin + gc’, hyp, concl)

64

65 # When f_dco < 0.9*fref and phi < 0, c < cmin+gc, c collapse to cmin

66 hyp = And(dpll.fDCO(c[0], v[0])/dpll.N < 0.9*dpll.fref, \

67 phi[0] < 0, \

68 c[0] < dpll.cmin + dpll.gc, \

69 dpll.valid(c[0], v[0], phi[0]), \

70 dpll.next(c, v, phi))

71 concl = c[1] == dpll.cmin

72 my_prove(’c collapses to cmin for f_dco/N < 0.9*f_fref when phi<0

and c < cmin + gc’, hyp, concl)

73

74 # How to prove c will crawl up??

75 # When f_dco < 0.9*fref and phi < 0, c == cmin, v increases

76 hyp = And(dpll.fDCO(c[0], v[0])/dpll.N < 0.9*dpll.fref, \

77 phi[0] < 0, \

78 c[0] >= dpll.cmin, \

79 c[0] <= dpll.cmin + dpll.gc, \

80 dpll.valid(c[0], v[0], phi[0]), \

81 dpll.next(c, v, phi))

163

C.1. Z3 Proof for Coarse Convergence

82 concl = v[1] > v[0] + dpll.eps

83 my_prove(’v increases for f_dco/N < 0.9*f_fref when phi<0 and cmin

+ gc >= c >= cmin’, hyp, concl)

84

85 # How to prove in the middle stripe, when at saturation?

86 # First prove when f_dco >= 0.9*fref and f_dco <= 1.0*fref

87 # and phi < 0, c == cmin, v will increase c will stay cmin and phi

will stay negative

88 hyp = And(dpll.fDCO(c[0],v[0])/dpll.N <= 1.0*dpll.fref, \

89 dpll.fDCO(c[0],v[0])/dpll.N >= 0.9*dpll.fref, \

90 phi[0] < 0, \

91 c[0] == dpll.cmin, \

92 dpll.valid(c[0],v[0],phi[0]), \

93 dpll.next(c,v,phi))

94 concl = And(v[1] > v[0], phi[1] < 0, c[1] == dpll.cmin)

95 my_prove("v will increase, c and phi will stay when

0.9*fref<=fdco<=1.0*fref, phi < 0 and c == cmin", hyp, concl)

96

97

98 # Find the next points leave the wall

99 # v in range [arg_v(fdco/N == fref), arg_v(fdco/N == fref)+gv]

100 # phi in range [-1,0)

101 # c = cmin

102 # ask if after i steps all state will become phi >= 0

103 def newVar(nameList,indexList):

104 res = []

105 for j in range(0,len(nameList)):

106 arg = nameList[j]+" = Reals(["

107 for i in range(0,len(indexList[j])-1):

108 arg = arg + "\""+ nameList[j]+"_"+str(indexList[j][i])+"\","

109 arg = arg + "\""+ nameList[j]+"_"+str(indexList[j][i+1])+ "\"])"

110 res.append(arg)

111 return res

112

113 def OrPos(argList):

114 res = False

115 for item in argList:

164

C.1. Z3 Proof for Coarse Convergence

116 res = Or(res, item > 0)

117 return res

118

119 def OrNeg(argList):

120 res = False

121 for item in argList:

122 res = Or(res, item > 0)

123 return res

124

125 def OrEql(argList, v):

126 res = False

127 for item in argList:

128 res = Or(res, item == v)

129 return res

130

131 def Inc(argList):

132 res = True

133 for i in range(0,len(argList)-1):

134 res = And(res, argList[i]<argList[i+1])

135 return res

136

137 # All points leave the wall after 7 steps.

138 start = time.time()

139 steps = 0

140 for i in range(2,10):

141 decl = newVar(["c","v","phi"], [range(0,i),range(0,i),range(0,i)])

142 for stmt in decl:

143 exec(stmt)

144

145 tmp = Real("tmp")

146 hyp = And(phi[0] < 0, \

147 phi[0] >= -1.0, \

148 c[0] == dpll.cmin, \

149 dpll.fDCO(c[0],tmp)/dpll.N == dpll.fref, \

150 v[0] >= tmp, \

151 v[0] < tmp - dpll.gv, \

152 dpll.valid(c[0],v[0],phi[0]), \

165

C.1. Z3 Proof for Coarse Convergence

153 dpll.unwind(c,v,phi))

154 concl = OrPos(phi)

155 if my_prove("All points leave wall after "+str(i-1)+"

steps",hyp,concl) == "proved":

156 steps = i-1

157 break

158

159 end = time.time()

160 print "Time elapsed: " + str(end - start) + "s"

161

162 # If can prove for all points leaving the wall, they will go back

before

163 # hitting onto the other wall, then done.

164

165

166 # === #

167 #

168 # FOR THE UPPER HALF

169 # When f_dco > 1.1*fref, negative phi increases

170 hyp = And(dpll.fDCO(c[0], v[0])/dpll.N > 1.1*dpll.fref, \

171 0 >= phi[0], \

172 dpll.valid(c[0], v[0], phi[0]), \

173 dpll.next(c, v, phi))

174 concl = phi[1] > phi[0]-dpll.eps

175 my_prove(’Negative phi increases for f_dco/N > 1.1*f_ref’, hyp,

concl)

176

177 # When f_dco > 1.1*fref and phi > 0, phi stays positive

178 hyp = And(dpll.fDCO(c[0], v[0])/dpll.N > 1.1*dpll.fref, \

179 phi[0] > 0, \

180 dpll.valid(c[0], v[0], phi[0]), \

181 dpll.next(c, v, phi))

182 concl = phi[1] > 0

183 my_prove(’invariance of positive phi for f_dco/N > 1.1*f_ref’, hyp,

concl)

184

166

C.2. ACL2 Proof for Fine Convergence

185 # When f_dco > 1.1*fref and phi > 0, c <= cmax-gc, c increases at

least for some amount

186 hyp = And(dpll.fDCO(c[0], v[0])/dpll.N > 1.1*dpll.fref, \

187 phi[0] > 0, \

188 c[0] <= dpll.cmax - dpll.gc, \

189 dpll.valid(c[0], v[0], phi[0]), \

190 dpll.next(c, v, phi))

191 concl = c[1] == c[0] + dpll.gc

192 my_prove(’c increase by gc for f_dco/N > 1.1*f_fref when phi>0 and

c <= cmax - gc’, hyp, concl)

193

194 # When f_dco > 1.1*fref and phi > 0, c > cmax-gc, c collapse to cmax

195 hyp = And(dpll.fDCO(c[0], v[0])/dpll.N > 1.1*dpll.fref, \

196 phi[0] > 0, \

197 c[0] > dpll.cmax - dpll.gc, \

198 dpll.valid(c[0], v[0], phi[0]), \

199 dpll.next(c, v, phi))

200 concl = c[1] == dpll.cmax

201 my_prove(’c collapses to cmax for f_dco/N > 1.1*f_fref when phi>0

and c > cmax - gc’, hyp, concl)

202

203 # When f_dco > 1.1*fref and phi > 0, c == cmax, v decreases

204 hyp = And(dpll.fDCO(c[0], v[0])/dpll.N > 1.1*dpll.fref, \

205 phi[0] > 0, \

206 c[0] <= dpll.cmax, \

207 c[0] >= dpll.cmax - dpll.gc, \

208 dpll.valid(c[0], v[0], phi[0]), \

209 dpll.next(c, v, phi))

210 concl = v[1] < v[0] - dpll.eps

211 my_prove(’v decreases for f_dco/N > 1.1*f_fref when phi>0 and cmax

- gc <= c <= cmax’, hyp, concl)

C.2 ACL2 Proof for Fine Convergence

C.2.1 ACL2 Code

� Definitions:

167

C.2. ACL2 Proof for Fine Convergence

1 ;; There are two files for the proof of recurrence model of the

2 ;; DPLL: global.lisp, DPLL_functions.lisp and

DPLL_theorems.lisp.

3 ;; global.lisp

4 ;; global.lisp defines global variables that are repeatedly

5 ;; called in a lot of the functions.

6

7 (in-package "ACL2")

8 ;; (defconst *g1* 1/3200)

9 (defconst *g2* (- (/ 1/3200 5)))

10 (defconst *ccode* 1)

11 (defconst *Kt* 4/5)

12 (defconst *N* 1)

13 (defconst *fref* 1)

14 (defconst *alpha* 1)

15 (defconst *beta* 1)

16 (defconst *f0* 1)

17 (defconst *vcenter* 1)

18 ;; (defconst *v0* 1)

19

20 ; Define intermediate variables

21 (defun equ-c (v0)

22 (- (* *f0* (+ 1 (* *alpha* v0)) (/ (* *beta* *N* *fref*)))

23 (/ *beta*)))

24 (defun gamma ()

25 (- 1 *Kt*))

26 ;;(defun gamma () (/ 1 2))

27 (defun mu ()

28 (/ *f0* (* *N* *fref*)))

29 (defun m (n v0 g1)

30 (- (/ (equ-c v0) g1) n))

31 ;; (defun m-constraint (n v0 g1)

32 ;; (and (> m (- (- (/ (equ-c v0) g1) n) 1))

33 ;; (< m (- (/ (equ-c v0) g1) n))))

34 (defun dv0 ()

35 (* -2 *g2*))

168

C.2. ACL2 Proof for Fine Convergence

� Original proof:

1 (in-package "ACL2")

2 (include-book "global")

3

4 ;;(add-include-book-dir :book

"/ubc/cs/research/isd/users/software/ACL2/acl2-7.0/books")

5 (deftheory before-arith (current-theory :here))

6 (include-book "arithmetic/top-with-meta" :dir :system)

7 (deftheory after-arith (current-theory :here))

8

9 (deftheory arithmetic-book-only (set-difference-theories

(theory ’after-arith) (theory ’before-arith)))

10

11 ;; for the clause processor to work

12 (add-include-book-dir :cp

"/ubc/cs/home/y/yanpeng/project/ACL2/smtlink")

13 (include-book "top" :dir :cp)

14 (logic)

15 :set-state-ok t

16 :set-ignore-ok t

17 (tshell-ensure)

18

19 ;;:start-proof-tree

20

21 ;; (encapsulate ()

22

23 ;; (local (include-book "arithmetic-5/top" :dir :system))

24

25 ;; (defun my-floor (x) (floor (numerator x) (denominator x)))

26

27 ;; (defthm my-floor-type

28 ;; (implies (rationalp x)

29 ;; (integerp (my-floor x)))

30 ;; :rule-classes :type-prescription)

31

32 ;; (defthm my-floor-lower-bound

169

C.2. ACL2 Proof for Fine Convergence

33 ;; (implies (rationalp x)

34 ;; (> (my-floor x) (- x 1)))

35 ;; :rule-classes :linear)

36

37 ;; (defthm my-floor-upper-bound

38 ;; (implies (rationalp x)

39 ;; (<= (my-floor x) x))

40 ;; :rule-classes :linear)

41

42 ;; (defthm my-floor-comparison

43 ;; (implies (rationalp x)

44 ;; (< (my-floor (1- x)) (my-floor x)))

45 ;; :hints (("Goal"

46 ;; :use ((:instance my-floor-upper-bound (x (1- x)))

47 ;; (:instance my-floor-lower-bound))))

48 ;; :rule-classes :linear)

49 ;;)

50

51 ;; functions

52 ;; n can be a rational value when c starts from non-integer

value

53 (defun fdco (n v0 dv g1)

54 (/ (* (mu) (+ 1 (* *alpha* (+ v0 dv)))) (+ 1 (* *beta* n

g1))))

55

56 (defun B-term-expt (h)

57 (expt (gamma) (- h)))

58

59 (defun B-term-rest (h v0 dv g1)

60 (- (* (mu) (/ (+ 1 (* *alpha* (+ v0 dv))) (+ 1 (* *beta* (+

(* h g1) (equ-c v0)))))) 1))

61

62 (defun B-term (h v0 dv g1)

63 (* (B-term-expt h) (B-term-rest h v0 dv g1)))

64

65 (defun B-sum (h_lo h_hi v0 dv g1)

66 (declare (xargs :measure (if (or (not (integerp h_hi)) (not

170

C.2. ACL2 Proof for Fine Convergence

(integerp h_lo)) (< h_hi h_lo))

67 0

68 (1+ (- h_hi h_lo)))))

69 (if (or (not (integerp h_hi)) (not (integerp h_lo)) (> h_lo

h_hi)) 0

70 (+ (B-term h_hi v0 dv g1) (B-term (- h_hi) v0 dv g1)

(B-sum h_lo (- h_hi 1) v0 dv g1))))

71

72 (defun B-expt (n)

73 (expt (gamma) (- n 2)))

74

75 (defun B (n v0 dv g1)

76 (* (B-expt n)

77 (B-sum 1 (- n 2) v0 dv g1)))

78

79 ;; parameter list functions

80 (defmacro basic-params-equal (n n-value &optional (v0 ’nil)

(dv ’nil) (g1 ’nil) (phi0 ’nil) (other ’nil))

81 (list ’and

82 (append

83 (append

84 (append

85 (append (list ’and

86 (list ’integerp n))

87 (if (equal g1 ’nil) nil (list (list ’rationalp g1))))

88 (if (equal v0 ’nil) nil (list (list ’rationalp v0))))

89 (if (equal phi0 ’nil) nil (list (list ’rationalp phi0))))

90 (if (equal dv ’nil) nil (list (list ’rationalp dv))))

91 (append

92 (append

93 (append

94 (append

95 (append

96 (append

97 (append

98 (append

99 (list ’and

171

C.2. ACL2 Proof for Fine Convergence

100 (list ’equal n n-value))

101 (if (equal g1 ’nil) nil (list (list ’equal g1 ’1/3200))))

102 (if (equal v0 ’nil) nil (list (list ’>= v0 ’9/10))))

103 (if (equal v0 ’nil) nil (list (list ’<= v0 ’11/10))))

104 (if (equal dv ’nil) nil (list (list ’>= dv (list ’-

(list ’dv0))))))

105 (if (equal dv ’nil) nil (list (list ’<= dv (list

’dv0)))))

106 (if (equal phi0 ’nil) nil (list (list ’>= phi0 ’0))))

107 (if (equal phi0 ’nil) nil (list (list ’< phi0 (list ’-

(list ’fdco (list ’1+ (list ’m ’640 v0 g1)) v0 dv g1)

’1)))))

108 (if (equal other ’nil) nil (list other)))))

109

110 (defmacro basic-params (n nupper &optional (v0 ’nil) (dv ’nil)

(g1 ’nil) (phi0 ’nil) (other ’nil))

111 (list ’and

112 (append

113 (append

114 (append

115 (append (list ’and

116 (list ’integerp n))

117 (if (equal g1 ’nil) nil (list (list ’rationalp g1))))

118 (if (equal v0 ’nil) nil (list (list ’rationalp v0))))

119 (if (equal dv ’nil) nil (list (list ’rationalp dv))))

120 (if (equal phi0 ’nil) nil (list (list ’rationalp phi0))))

121 (append

122 (append

123 (append

124 (append

125 (append

126 (append

127 (append

128 (append

129 (append (list ’and

130 (list ’>= n nupper))

131 (list (list ’<= n ’640)))

172

C.2. ACL2 Proof for Fine Convergence

132 (if (equal g1 ’nil) nil (list (list ’equal g1

’1/3200))))

133 (if (equal v0 ’nil) nil (list (list ’>= v0 ’9/10))))

134 (if (equal v0 ’nil) nil (list (list ’<= v0 ’11/10))))

135 (if (equal dv ’nil) nil (list (list ’>= dv (list ’-

(list ’dv0))))))

136 (if (equal dv ’nil) nil (list (list ’<= dv (list

’dv0)))))

137 (if (equal phi0 ’nil) nil (list (list ’>= phi0 ’0))))

138 (if (equal phi0 ’nil) nil (list (list ’< phi0 (list ’-

(list ’fdco (list ’1+ (list ’m ’640 v0 g1)) v0 dv g1)

’1)))))

139 (if (equal other ’nil) nil (list other)))))

140

141 (encapsulate ()

142

143 (local (in-theory (disable arithmetic-book-only)))

144

145 (local

146 (include-book "arithmetic-5/top" :dir :system)

147)

148

149 (local

150 (defthm B-term-neg-lemma1

151 (implies (basic-params h 1 v0 dv g1)

152 (< (+ (* (B-term-expt h) (B-term-rest h v0 dv g1))

153 (* (B-term-expt (- h)) (B-term-rest (- h) v0 dv g1)))

154 0)

155)

156 :hints

157 (("Goal"

158 :clause-processor

159 (Smtlink clause

160 ’((:expand ((:functions ((B-term-rest rationalp)

161 (gamma rationalp)

162 (mu rationalp)

163 (equ-c rationalp)

173

C.2. ACL2 Proof for Fine Convergence

164 (dv0 rationalp)))

165 (:expansion-level 1)))

166 (:python-file "B-term-neg-lemma1") ;;mktemp

167 (:let ((expt_gamma_h (B-term-expt h) rationalp)

168 (expt_gamma_minus_h (B-term-expt (- h))

rationalp)))

169 (:hypothesize ((<= expt_gamma_minus_h (/ 1 5))

170 (> expt_gamma_minus_h 0)

171 (equal (* expt_gamma_minus_h expt_gamma_h)

1)))

172 (:use ((:let ())

173 (:hypo (()))

174 (:main ()))))

175 state)

176))

177)

178)

179

180 (defthm B-term-neg

181 (implies (basic-params h 1 v0 dv g1)

182 (< (+ (B-term h v0 dv g1) (B-term (- h) v0 dv g1)) 0))

183 :hints (("Goal"

184 :use ((:instance B-term)

185 (:instance B-term-neg-lemma1)

186)))

187 :rule-classes :linear)

188)

189

190 (defthm B-sum-neg

191 (implies (basic-params n-minus-2 1 v0 dv g1)

192 (< (B-sum 1 n-minus-2 v0 dv g1) 0))

193 :hints (("Goal"

194 :in-theory (disable B-term)

195 :induct ())))

196

197 (encapsulate ()

198

174

C.2. ACL2 Proof for Fine Convergence

199 (local ;; B = B-expt*B-sum

200 (defthm B-neg-lemma1

201 (implies (basic-params n 3 v0 dv g1)

202 (equal (B n v0 dv g1)

203 (* (B-expt n)

204 (B-sum 1 (- n 2) v0 dv g1))))))

205

206 (local

207 (defthm B-expt->-0

208 (implies (basic-params n 3)

209 (> (B-expt n) 0))

210 :rule-classes :linear))

211

212 (local

213 (defthm B-neg-lemma2

214 (implies (and (rationalp a)

215 (rationalp b)

216 (> a 0)

217 (< b 0))

218 (< (* a b) 0))

219 :rule-classes :linear))

220

221 (local

222 (defthm B-neg-type-lemma3

223 (implies (and (and (rationalp n-minus-2) (rationalp v0)

(rationalp g1) (rationalp dv)))

224 (rationalp (B-sum 1 n-minus-2 v0 dv g1)))

225 :rule-classes :type-prescription))

226

227 (local

228 (defthm B-neg-type-lemma4

229 (implies (basic-params n 3)

230 (rationalp (B-expt n)))

231 :rule-classes :type-prescription))

232

233 (defthm B-neg

234 (implies (basic-params n 3 v0 dv g1)

175

C.2. ACL2 Proof for Fine Convergence

235 (< (B n v0 dv g1) 0))

236 :hints (("Goal"

237 :do-not-induct t

238 :in-theory (disable B-expt B-sum B-sum-neg B-expt->-0)

239 :use ((:instance B-sum-neg (n-minus-2 (- n 2)))

240 (:instance B-expt->-0)

241 (:instance B-neg-type-lemma3 (n-minus-2 (- n 2)))

242 (:instance B-neg-type-lemma4)

243 (:instance B-neg-lemma2 (a (B-expt n))

244 (b (B-sum 1 (+ -2 n) v0 dv g1)))))))

245)

246

247 (defun A (n phi0 v0 dv g1)

248 (+ (* (expt (gamma) (- (* 2 n) 1)) phi0)

249 (* (expt (gamma) (- (* 2 n) 2))

250 (- (fdco (m n v0 g1) v0 dv g1) 1))

251 (* (expt (gamma) (- (* 2 n) 3))

252 (- (fdco (1+ (m n v0 g1)) v0 dv g1) 1))))

253

254 (defun phi-2n-1 (n phi0 v0 dv g1)

255 (+ (A n phi0 v0 dv g1) (B n v0 dv g1)))

256

257 (defun delta (n v0 dv g1)

258 (+ (- (* (expt (gamma) (* 2 n))

259 (- (fdco (1- (m n v0 g1)) v0 dv g1) 1))

260 (* (expt (gamma) (* 2 n))

261 (- (fdco (m n v0 g1) v0 dv g1) 1)))

262 (- (* (expt (gamma) (- (* 2 n) 1))

263 (- (fdco (m n v0 g1) v0 dv g1) 1))

264 (* (expt (gamma) (- (* 2 n) 1))

265 (- (fdco (1+ (m n v0 g1)) v0 dv g1) 1)))

266 (* (expt (gamma) (1- n))

267 (+ (* (expt (gamma) (1+ (- n)))

268 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

269 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0)))))

270 1))

271 (* (expt (gamma) (1- n))

176

C.2. ACL2 Proof for Fine Convergence

272 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

273 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0)))))

274 1))))))

275

276 (defun delta-1 (n v0 dv g1)

277 (+ (* (expt (gamma) (* 2 n))

278 (- (fdco (1- (m n v0 g1)) v0 dv g1)

279 (fdco (m n v0 g1) v0 dv g1)))

280 (* (expt (gamma) (- (* 2 n) 1))

281 (- (fdco (m n v0 g1) v0 dv g1)

282 (fdco (1+ (m n v0 g1)) v0 dv g1)))

283 (* (* (expt (gamma) (1- n)) (expt (gamma) (1+ (- n))))

284 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

285 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0))))) 1))

286 (* (* (expt (gamma) (1- n)) (expt (gamma) (1- n)))

287 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

288 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0))))) 1))))

289

290 (defun delta-2 (n v0 dv g1)

291 (+ (* (expt (gamma) (* 2 n))

292 (- (fdco (1- (m n v0 g1)) v0 dv g1)

293 (fdco (m n v0 g1) v0 dv g1)))

294 (* (expt (gamma) (- (* 2 n) 1))

295 (- (fdco (m n v0 g1) v0 dv g1)

296 (fdco (1+ (m n v0 g1)) v0 dv g1)))

297 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

298 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0))))) 1)

299 (* (expt (gamma) (+ -1 n -1 n))

300 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

301 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0))))) 1))))

302

303 (defun delta-3 (n v0 dv g1)

304 (* (expt (gamma) (+ -1 n -1 n))

305 (+ (* (expt (gamma) 2)

306 (- (fdco (1- (m n v0 g1)) v0 dv g1)

307 (fdco (m n v0 g1) v0 dv g1)))

308 (* (expt (gamma) 1)

177

C.2. ACL2 Proof for Fine Convergence

309 (- (fdco (m n v0 g1) v0 dv g1)

310 (fdco (1+ (m n v0 g1)) v0 dv g1)))

311 (* (expt (gamma) (- 2 (* 2 n)))

312 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

313 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0))))) 1))

314 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

315 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0))))) 1))))

316

317 (defun delta-3-inside (n v0 dv g1)

318 (+ (* (expt (gamma) 2)

319 (- (fdco (1- (m n v0 g1)) v0 dv g1)

320 (fdco (m n v0 g1) v0 dv g1)))

321 (* (expt (gamma) 1)

322 (- (fdco (m n v0 g1) v0 dv g1)

323 (fdco (1+ (m n v0 g1)) v0 dv g1)))

324 (* (expt (gamma) (- 2 (* 2 n)))

325 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

326 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0))))) 1))

327 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

328 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0))))) 1)))

329

330 (defun delta-3-inside-transform (n v0 dv g1)

331 (/

332 (+ (* (expt (gamma) 2)

333 (- (fdco (1- (m n v0 g1)) v0 dv g1)

334 (fdco (m n v0 g1) v0 dv g1)))

335 (* (expt (gamma) 1)

336 (- (fdco (m n v0 g1) v0 dv g1)

337 (fdco (1+ (m n v0 g1)) v0 dv g1)))

338 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

339 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0))))) 1))

340 (- 1

341 (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

342 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0))))))))

343

344 ;; rewrite delta term

345 (encapsulate ()

178

C.2. ACL2 Proof for Fine Convergence

346

347 (local

348 ;; considering using smtlink for the proof, probably simpler

349 (defthm delta-rewrite-1-lemma1

350 (implies (basic-params n 3 v0 dv g1)

351 (equal (+ (- (* (expt (gamma) (* 2 n))

352 (- (fdco (1- (m n v0 g1)) v0 dv g1) 1))

353 (* (expt (gamma) (* 2 n))

354 (- (fdco (m n v0 g1) v0 dv g1) 1)))

355 (- (* (expt (gamma) (- (* 2 n) 1))

356 (- (fdco (m n v0 g1) v0 dv g1) 1))

357 (* (expt (gamma) (- (* 2 n) 1))

358 (- (fdco (1+ (m n v0 g1)) v0 dv g1) 1)))

359 (* (expt (gamma) (1- n))

360 (+ (* (expt (gamma) (1+ (- n)))

361 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

362 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0)))))

363 1))

364 (* (expt (gamma) (1- n))

365 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

366 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0)))))

367 1)))))

368 (+ (* (expt (gamma) (* 2 n))

369 (- (fdco (1- (m n v0 g1)) v0 dv g1)

370 (fdco (m n v0 g1) v0 dv g1)))

371 (* (expt (gamma) (- (* 2 n) 1))

372 (- (fdco (m n v0 g1) v0 dv g1)

373 (fdco (1+ (m n v0 g1)) v0 dv g1)))

374 (* (* (expt (gamma) (1- n)) (expt (gamma) (1+ (-

n))))

375 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

376 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0))))) 1))

377 (* (* (expt (gamma) (1- n)) (expt (gamma) (1- n)))

378 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

379 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0)))))

1)))))

380 :hints

179

C.2. ACL2 Proof for Fine Convergence

381 (("Goal"

382 :clause-processor

383 (Smtlink clause

384 ’((:expand ((:functions ((m integerp)

385 (gamma rationalp)

386 (mu rationalp)

387 (equ-c rationalp)

388 (fdco rationalp)

389 (dv0 rationalp)))

390 (:expansion-level 1)))

391 (:python-file "delta-rewrite-1-lemma1") ;;mktemp

392 (:let ((expt_gamma_2n

393 (expt (gamma) (* 2 n))

394 rationalp)

395 (expt_gamma_2n_minus_1

396 (expt (gamma) (- (* 2 n) 1))

397 rationalp)

398 (expt_gamma_n_minus_1

399 (expt (gamma) (1- n))

400 rationalp)

401 (expt_gamma_1_minus_n

402 (expt (gamma) (1+ (- n)))

403 rationalp)

404))

405 (:hypothesize ()))

406 state)

407)))

408)

409

410 (local

411 (defthm delta-rewrite-1

412 (implies (basic-params n 3 v0 dv g1)

413 (equal (delta n v0 dv g1)

414 (delta-1 n v0 dv g1))))

415)

416

417 (local

180

C.2. ACL2 Proof for Fine Convergence

418 (defthm delta-rewrite-2-lemma1

419 (implies (basic-params n 3)

420 (equal (* (expt (gamma) (1- n))

421 (expt (gamma) (1+ (- n))))

422 1))

423 :hints (("Goal"

424 :use ((:instance expt-minus

425 (r (gamma))

426 (i (- (1+ (- n))))))

427)))

428)

429

430 (local

431 (defthm delta-rewrite-2-lemma2

432 (implies (basic-params n 3)

433 (equal (* (expt (gamma) (1- n))

434 (expt (gamma) (1- n)))

435 (expt (gamma) (+ -1 n -1 n))))

436 :hints (("Goal"

437 :do-not-induct t

438 :use ((:instance exponents-add-for-nonneg-exponents

439 (i (1- n))

440 (j (1- n))

441 (r (gamma))))

442 :in-theory (disable exponents-add-for-nonneg-exponents)

443))

444)

445)

446

447 (local

448 (defthm delta-rewrite-2-lemma3

449 (implies (basic-params n 3)

450 (equal (+ A

451 B

452 (* (* (expt (gamma) (1- n))

453 (expt (gamma) (1+ (- n))))

454 C)

181

C.2. ACL2 Proof for Fine Convergence

455 (* (* (expt (gamma) (1- n))

456 (expt (gamma) (1- n)))

457 D))

458 (+ A B C

459 (* (expt (gamma) (+ -1 n -1 n)) D))))

460 :hints (("Goal"

461 :use ((:instance delta-rewrite-2-lemma1)

462 (:instance delta-rewrite-2-lemma2)))))

463)

464

465 (local

466 (defthm delta-rewrite-2

467 (implies (basic-params n 3 v0 dv g1)

468 (equal (delta-1 n v0 dv g1)

469 (delta-2 n v0 dv g1)))

470 :hints (("Goal"

471 :use ((:instance delta-rewrite-2-lemma3

472 (A (* (expt (gamma) (* 2 n))

473 (- (fdco (1- (m n v0 g1)) v0 dv g1)

474 (fdco (m n v0 g1) v0 dv g1))))

475 (B (* (expt (gamma) (- (* 2 n) 1))

476 (- (fdco (m n v0 g1) v0 dv g1)

477 (fdco (1+ (m n v0 g1)) v0 dv g1))))

478 (C (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

479 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0)))))

1))

480 (D (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

481 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c

v0))))) 1)))))))

482)

483

484 (local

485 (defthm delta-rewrite-3-lemma1-lemma1

486 (implies (basic-params n 3)

487 (equal (expt (gamma) (+ (+ -1 n -1 n) 2))

488 (* (expt (gamma) (+ -1 n -1 n))

489 (expt (gamma) 2))))

182

C.2. ACL2 Proof for Fine Convergence

490 :hints (("Goal"

491 :use ((:instance exponents-add-for-nonneg-exponents

492 (i (+ -1 n -1 n))

493 (j 2)

494 (r (gamma))))

495 :in-theory (disable exponents-add-for-nonneg-exponents

496 delta-rewrite-2-lemma2))))

497)

498

499 (local

500 (defthm delta-rewrite-3-lemma1-stupidlemma

501 (implies (basic-params n 3)

502 (equal (* 2 n) (+ (+ -1 n -1 n) 2))))

503)

504

505 (local

506 (defthm delta-rewrite-3-lemma1

507 (implies (basic-params n 3)

508 (equal (expt (gamma) (* 2 n))

509 (* (expt (gamma) (+ -1 n -1 n))

510 (expt (gamma) 2))))

511 :hints (("Goal"

512 :use ((:instance delta-rewrite-3-lemma1-lemma1)

513 (:instance delta-rewrite-3-lemma1-stupidlemma)))))

514)

515

516 (local

517 (defthm delta-rewrite-3-lemma2-lemma1-lemma1

518 (implies (basic-params n 3)

519 (>= (+ n n) 2))))

520

521 (local

522 (defthm delta-rewrite-3-lemma2-lemma1-stupidlemma

523 (implies (basic-params n 3)

524 (>= (+ -1 n -1 n) 0))

525 :hints (("GOal"

526 :use ((:instance

183

C.2. ACL2 Proof for Fine Convergence

delta-rewrite-3-lemma2-lemma1-lemma1))))))

527

528 (local

529 (defthm delta-rewrite-3-lemma2-lemma1-lemma2

530 (implies (basic-params n 3)

531 (integerp (+ -1 n -1 n)))

532))

533

534 (local

535 (defthm delta-rewrite-3-lemma2-lemma1-lemma3

536 (implies (basic-params n 3)

537 (>= (+ -1 n -1 n) 0))

538 :hints (("Goal"

539 :use ((:instance

delta-rewrite-3-lemma2-lemma1-stupidlemma))))))

540

541 (local

542 (defthm delta-rewrite-3-lemma2-lemma1

543 (implies (basic-params n 3)

544 (equal (expt (gamma) (+ (+ -1 n -1 n) 1))

545 (* (expt (gamma) (+ -1 n -1 n))

546 (expt (gamma) 1))))

547 :hints (("Goal"

548 :use ((:instance delta-rewrite-3-lemma2-lemma1-lemma2)

549 (:instance delta-rewrite-3-lemma2-lemma1-lemma3)

550 (:instance exponents-add-for-nonneg-exponents

551 (i (+ -1 n -1 n))

552 (j 1)

553 (r (gamma))))

554)))

555)

556

557 (local

558 (defthm delta-rewrite-3-lemma2-stupidlemma

559 (implies (basic-params n 3)

560 (equal (- (* 2 n) 1)

561 (+ (+ -1 n -1 n) 1))))

184

C.2. ACL2 Proof for Fine Convergence

562)

563

564 (local

565 (defthm delta-rewrite-3-lemma2

566 (implies (basic-params n 3)

567 (equal (expt (gamma) (- (* 2 n) 1))

568 (* (expt (gamma) (+ -1 n -1 n))

569 (expt (gamma) 1))))

570 :hints (("Goal"

571 :use ((:instance delta-rewrite-3-lemma2-lemma1)

572 (:instance delta-rewrite-3-lemma2-stupidlemma))

573 :in-theory (disable delta-rewrite-2-lemma2)))

574)

575)

576

577 (local

578 (defthm delta-rewrite-3-lemma3

579 (implies (basic-params n 3)

580 (equal (* (expt (gamma) (- 2 (* 2 n)))

581 (expt (gamma) (+ -1 n -1 n)))

582 1))

583 :hints (("Goal"

584 :use ((:instance expt-minus

585 (r (gamma))

586 (i (- (- 2 (* 2 n)))))))))

587)

588

589 (local

590 (defthm delta-rewrite-3

591 (implies (basic-params n 3 v0 dv g1)

592 (equal (+ (* (expt (gamma) (* 2 n))

593 (- (fdco (1- (m n v0 g1)) v0 dv g1)

594 (fdco (m n v0 g1) v0 dv g1)))

595 (* (expt (gamma) (- (* 2 n) 1))

596 (- (fdco (m n v0 g1) v0 dv g1)

597 (fdco (1+ (m n v0 g1)) v0 dv g1)))

598 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

185

C.2. ACL2 Proof for Fine Convergence

599 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0))))) 1)

600 (* (expt (gamma) (+ -1 n -1 n))

601 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

602 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0)))))

1)))

603 (* (expt (gamma) (+ -1 n -1 n))

604 (+ (* (expt (gamma) 2)

605 (- (fdco (1- (m n v0 g1)) v0 dv g1)

606 (fdco (m n v0 g1) v0 dv g1)))

607 (* (expt (gamma) 1)

608 (- (fdco (m n v0 g1) v0 dv g1)

609 (fdco (1+ (m n v0 g1)) v0 dv g1)))

610 (* (expt (gamma) (- 2 (* 2 n)))

611 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

612 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0))))) 1))

613 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

614 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0)))))

1)))))

615 :hints

616 (("Goal"

617 :in-theory (disable delta-rewrite-2-lemma1)

618 :do-not-induct t

619 :clause-processor

620 (Smtlink clause

621 ’((:expand ((:functions ((m integerp)

622 (gamma rationalp)

623 (mu rationalp)

624 (equ-c rationalp)

625 (fdco rationalp)

626 (dv0 rationalp)))

627 (:expansion-level 1)))

628 (:python-file "delta-rewrite-3")

629 (:let ((expt_gamma_2n

630 (expt (gamma) (* 2 n))

631 rationalp)

632 (expt_gamma_2n_minus_1

633 (expt (gamma) (- (* 2 n) 1))

186

C.2. ACL2 Proof for Fine Convergence

634 rationalp)

635 (expt_gamma_2n_minus_2

636 (expt (gamma) (+ -1 n -1 n))

637 rationalp)

638 (expt_gamma_2

639 (expt (gamma) 2)

640 rationalp)

641 (expt_gamma_1

642 (expt (gamma) 1)

643 rationalp)

644 (expt_gamma_2_minus_2n

645 (expt (gamma) (- 2 (* 2 n)))

646 rationalp)

647))

648 (:hypothesize ((equal expt_gamma_2n

649 (* expt_gamma_2n_minus_2 expt_gamma_2))

650 (equal expt_gamma_2n_minus_1

651 (* expt_gamma_2n_minus_2 expt_gamma_1))

652 (equal (* expt_gamma_2_minus_2n

expt_gamma_2n_minus_2)

653 1)))

654 (:use ((:type ())

655 (:hypo ((delta-rewrite-3-lemma1)

656 (delta-rewrite-3-lemma2)

657 (delta-rewrite-3-lemma3)))

658 (:main ()))))

659 state))))

660)

661

662 (local

663 (defthm delta-rewrite-4

664 (implies (basic-params n 3 v0 dv g1)

665 (equal (delta-2 n v0 dv g1)

666 (delta-3 n v0 dv g1)))

667 :hints (("Goal"

668 :use ((:instance delta-rewrite-3)))))

669)

187

C.2. ACL2 Proof for Fine Convergence

670

671 (defthm delta-rewrite-5

672 (implies (basic-params n 3 v0 dv g1)

673 (equal (delta n v0 dv g1)

674 (delta-3 n v0 dv g1)))

675 :hints (("Goal"

676 :use ((:instance delta-rewrite-1)

677 (:instance delta-rewrite-2)

678 (:instance delta-rewrite-3)

679 (:instance delta-rewrite-4)))))

680)

681

682 (encapsulate ()

683

684 (local

685 (defthm delta-<-0-lemma1-lemma

686 (implies (basic-params n 3 v0 dv g1)

687 (implies (< (+ (* (expt (gamma) 2)

688 (- (fdco (1- (m n v0 g1)) v0 dv g1)

689 (fdco (m n v0 g1) v0 dv g1)))

690 (* (expt (gamma) 1)

691 (- (fdco (m n v0 g1) v0 dv g1)

692 (fdco (1+ (m n v0 g1)) v0 dv g1)))

693 (* (expt (gamma) (- 2 (* 2 n)))

694 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

695 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0)))))

1))

696 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

697 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0))))) 1))

698 0)

699 (< (* (expt (gamma) (+ -1 n -1 n))

700 (+ (* (expt (gamma) 2)

701 (- (fdco (1- (m n v0 g1)) v0 dv g1)

702 (fdco (m n v0 g1) v0 dv g1)))

703 (* (expt (gamma) 1)

704 (- (fdco (m n v0 g1) v0 dv g1)

705 (fdco (1+ (m n v0 g1)) v0 dv g1)))

188

C.2. ACL2 Proof for Fine Convergence

706 (* (expt (gamma) (- 2 (* 2 n)))

707 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

708 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c

v0))))) 1))

709 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

710 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0)))))

1)))

711 0)))

712 :hints (("Goal"

713 :clause-processor

714 (Smtlink clause

715 ’((:expand ((:functions ((m integerp)

716 (gamma rationalp)

717 (mu rationalp)

718 (equ-c rationalp)

719 (fdco rationalp)

720 (dv0 rationalp)))

721 (:expansion-level 1)))

722 (:python-file

"delta-smaller-than-0-lemma1-lemma")

723 (:let ((expt_gamma_2n

724 (expt (gamma) (* 2 n))

725 rationalp)

726 (expt_gamma_2n_minus_1

727 (expt (gamma) (- (* 2 n) 1))

728 rationalp)

729 (expt_gamma_2n_minus_2

730 (expt (gamma) (+ -1 n -1 n))

731 rationalp)

732 (expt_gamma_2

733 (expt (gamma) 2)

734 rationalp)

735 (expt_gamma_1

736 (expt (gamma) 1)

737 rationalp)

738 (expt_gamma_2_minus_2n

739 (expt (gamma) (- 2 (* 2 n)))

189

C.2. ACL2 Proof for Fine Convergence

740 rationalp)

741))

742 (:hypothesize ((> expt_gamma_2n_minus_2 0))))

743 state))))

744)

745

746 (local

747 (defthm delta-<-0-lemma1

748 (implies (basic-params n 3 v0 dv g1)

749 (implies (< (delta-3-inside n v0 dv g1) 0)

750 (< (delta-3 n v0 dv g1) 0))))

751)

752

753 (local

754 (defthm delta-<-0-lemma2-lemma

755 (implies (basic-params n 3 v0 dv g1)

756 (implies (< (/ (+ (* (expt (gamma) 2)

757 (- (fdco (1- (m n v0 g1)) v0 dv g1)

758 (fdco (m n v0 g1) v0 dv g1)))

759 (* (expt (gamma) 1)

760 (- (fdco (m n v0 g1) v0 dv g1)

761 (fdco (1+ (m n v0 g1)) v0 dv g1)))

762 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

763 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0)))))

1))

764 (- 1

765 (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

766 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0)))))))

767 (expt (gamma) (- 2 (* 2 n))))

768 (< (+ (* (expt (gamma) 2)

769 (- (fdco (1- (m n v0 g1)) v0 dv g1)

770 (fdco (m n v0 g1) v0 dv g1)))

771 (* (expt (gamma) 1)

772 (- (fdco (m n v0 g1) v0 dv g1)

773 (fdco (1+ (m n v0 g1)) v0 dv g1)))

774 (* (expt (gamma) (- 2 (* 2 n)))

775 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

190

C.2. ACL2 Proof for Fine Convergence

776 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0)))))

1))

777 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

778 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0))))) 1))

779 0)))

780 :hints (("Goal"

781 :clause-processor

782 (Smtlink clause

783 ’((:expand ((:functions ((m integerp)

784 (gamma rationalp)

785 (mu rationalp)

786 (equ-c rationalp)

787 (fdco rationalp)

788 (dv0 rationalp)))

789 (:expansion-level 1)))

790 (:python-file

"delta-smaller-than-0-lemma2-lemma")

791 (:let ((expt_gamma_2n

792 (expt (gamma) (* 2 n))

793 rationalp)

794 (expt_gamma_2n_minus_1

795 (expt (gamma) (- (* 2 n) 1))

796 rationalp)

797 (expt_gamma_2n_minus_2

798 (expt (gamma) (+ -1 n -1 n))

799 rationalp)

800 (expt_gamma_2

801 (expt (gamma) 2)

802 rationalp)

803 (expt_gamma_1

804 (expt (gamma) 1)

805 rationalp)

806 (expt_gamma_2_minus_2n

807 (expt (gamma) (- 2 (* 2 n)))

808 rationalp)

809))

810 (:hypothesize ((> expt_gamma_2_minus_2n 0))))

191

C.2. ACL2 Proof for Fine Convergence

811 state))))

812)

813

814 (local

815 (defthm delta-<-0-lemma2

816 (implies (basic-params n 3 v0 dv g1)

817 (implies (< (delta-3-inside-transform n v0 dv g1)

818 (expt (gamma) (- 2 (* 2 n))))

819 (< (delta-3-inside n v0 dv g1) 0)))

820 :hints (("Goal"

821 :use ((:instance delta-<-0-lemma2-lemma)))))

822)

823

824 (local

825 ;; This is for proving 2n < gamma^(2-2n)

826 (defthm delta-<-0-lemma3-lemma1

827 (implies (and (integerp k)

828 (>= k 6))

829 (< k (expt (/ (gamma)) (- k 2)))))

830)

831

832 (local

833 (defthm delta-<-0-lemma3-lemma2-stupidlemma

834 (implies (basic-params n 3)

835 (>= n 3))))

836

837 (local

838 (defthm delta-<-0-lemma3-lemma2-stupidlemma-omg

839 (implies (and (rationalp a) (rationalp b) (>= a b))

840 (>= (* 2 a) (* 2 b)))))

841

842 (local

843 (defthm delta-<-0-lemma3-lemma2-lemma1

844 (implies (basic-params n 3)

845 (>= (* 2 n) 6))

846 :hints (("Goal"

847 :use ((:instance delta-<-0-lemma3-lemma2-stupidlemma)

192

C.2. ACL2 Proof for Fine Convergence

848 (:instance delta-<-0-lemma3-lemma2-stupidlemma-omg

849 (a n)

850 (b 3))

851))))

852)

853

854 (local

855 (defthm delta-<-0-lemma3-lemma2

856 (implies (basic-params n 3)

857 (< (* 2 n)

858 (expt (/ (gamma)) (- (* 2 n) 2))))

859 :hints (("Goal"

860 :use ((:instance delta-<-0-lemma3-lemma1

861 (k (* 2 n)))

862 (:instance delta-<-0-lemma3-lemma2-lemma1))))

863 :rule-classes :linear)

864)

865

866 (local

867 (defthm delta-<-0-lemma3-lemma3-stupidlemma

868 (equal (expt a n) (expt (/ a) (- n))))

869)

870

871 (local

872 (defthm delta-<-0-lemma3-lemma3

873 (implies (basic-params n 3)

874 (equal (expt (/ (gamma)) (- (* 2 n) 2))

875 (expt (gamma) (- 2 (* 2 n)))))

876 :hints (("Goal"

877 :use ((:instance delta-<-0-lemma3-lemma3-stupidlemma

878 (a (/ (gamma)))

879 (n (- (* 2 n) 2))))

880 :in-theory (disable

delta-<-0-lemma3-lemma3-stupidlemma))))

881)

882

883 (local

193

C.2. ACL2 Proof for Fine Convergence

884 (defthm delta-<-0-lemma3-lemma4-stupidlemma

885 (implies (and (< a b) (equal b c)) (< a c)))

886)

887

888 (local

889 (defthm delta-<-0-lemma3-lemma4

890 (implies (basic-params n 3)

891 (< (* 2 n)

892 (expt (gamma) (- 2 (* 2 n)))))

893 :hints (("Goal"

894 :do-not ’(preprocess simplify)

895 :use ((:instance delta-<-0-lemma3-lemma2)

896 (:instance delta-<-0-lemma3-lemma3)

897 (:instance delta-<-0-lemma3-lemma4-stupidlemma

898 (a (* 2 n))

899 (b (expt (/ (gamma)) (- (* 2 n) 2)))

900 (c (expt (gamma) (- 2 (* 2 n))))))

901 :in-theory (disable delta-<-0-lemma3-lemma2

902 delta-<-0-lemma3-lemma3

903 delta-<-0-lemma3-lemma4-stupidlemma)))

904 :rule-classes :linear)

905)

906

907 (local

908 (defthm delta-<-0-lemma3

909 (implies (basic-params n 3 v0 dv g1)

910 (implies (< (/ (+ (* (expt (gamma) 2)

911 (- (fdco (1- (m n v0 g1)) v0 dv g1)

912 (fdco (m n v0 g1) v0 dv g1)))

913 (* (expt (gamma) 1)

914 (- (fdco (m n v0 g1) v0 dv g1)

915 (fdco (1+ (m n v0 g1)) v0 dv g1)))

916 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

917 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0)))))

1))

918 (- 1

919 (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

194

C.2. ACL2 Proof for Fine Convergence

920 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0)))))))

921 (* 2 n))

922 (< (/ (+ (* (expt (gamma) 2)

923 (- (fdco (1- (m n v0 g1)) v0 dv g1)

924 (fdco (m n v0 g1) v0 dv g1)))

925 (* (expt (gamma) 1)

926 (- (fdco (m n v0 g1) v0 dv g1)

927 (fdco (1+ (m n v0 g1)) v0 dv g1)))

928 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

929 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0)))))

1))

930 (- 1

931 (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

932 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0)))))))

933 (expt (gamma) (- 2 (* 2 n))))))

934 :hints (("Goal"

935 :clause-processor

936 (Smtlink clause

937 ’((:expand ((:functions ((m integerp)

938 (gamma rationalp)

939 (mu rationalp)

940 (equ-c rationalp)

941 (fdco rationalp)

942 (dv0 rationalp)))

943 (:expansion-level 1)))

944 (:python-file "delta-smaller-than-0-lemma3")

945 (:let ((expt_gamma_2n

946 (expt (gamma) (* 2 n))

947 rationalp)

948 (expt_gamma_2n_minus_1

949 (expt (gamma) (- (* 2 n) 1))

950 rationalp)

951 (expt_gamma_2n_minus_2

952 (expt (gamma) (+ -1 n -1 n))

953 rationalp)

954 (expt_gamma_2

955 (expt (gamma) 2)

195

C.2. ACL2 Proof for Fine Convergence

956 rationalp)

957 (expt_gamma_1

958 (expt (gamma) 1)

959 rationalp)

960 (expt_gamma_2_minus_2n

961 (expt (gamma) (- 2 (* 2 n)))

962 rationalp))

963)

964 (:hypothesize ((< (* 2 n)

expt_gamma_2_minus_2n)))

965 (:use ((:type ())

966 (:hypo ((delta-<-0-lemma3-lemma4)))

967 (:main ())))

968)

969 state)

970 :in-theory (disable delta-<-0-lemma3-lemma1

971 delta-<-0-lemma3-lemma3-stupidlemma

972 delta-<-0-lemma3-lemma2

973 delta-<-0-lemma3-lemma3

974 delta-<-0-lemma3-lemma4-stupidlemma)

975)))

976)

977

978 (local

979 (defthm delta-<-0-lemma4

980 (implies (basic-params n 3 v0 dv g1)

981 (< (/ (+ (* (expt (gamma) 2)

982 (- (fdco (1- (m n v0 g1)) v0 dv g1)

983 (fdco (m n v0 g1) v0 dv g1)))

984 (* (expt (gamma) 1)

985 (- (fdco (m n v0 g1) v0 dv g1)

986 (fdco (1+ (m n v0 g1)) v0 dv g1)))

987 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

988 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0))))) 1))

989 (- 1

990 (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

991 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0)))))))

196

C.2. ACL2 Proof for Fine Convergence

992 (* 2 n)))

993 :hints (("Goal"

994 :clause-processor

995 (Smtlink clause

996 ’((:expand ((:functions ((m integerp)

997 (gamma rationalp)

998 (mu rationalp)

999 (equ-c rationalp)

1000 (fdco rationalp)

1001 (dv0 rationalp)))

1002 (:expansion-level 1)))

1003 (:python-file "delta-smaller-than-0-lemma4")

1004 (:let ((expt_gamma_2n

1005 (expt (gamma) (* 2 n))

1006 rationalp)

1007 (expt_gamma_2n_minus_1

1008 (expt (gamma) (- (* 2 n) 1))

1009 rationalp)

1010 (expt_gamma_2n_minus_2

1011 (expt (gamma) (+ -1 n -1 n))

1012 rationalp)

1013 (expt_gamma_2

1014 (expt (gamma) 2)

1015 rationalp)

1016 (expt_gamma_1

1017 (expt (gamma) 1)

1018 rationalp)

1019 (expt_gamma_2_minus_2n

1020 (expt (gamma) (- 2 (* 2 n)))

1021 rationalp))

1022)

1023 (:hypothesize ((equal expt_gamma_1 1/5)

1024 (equal expt_gamma_2 1/25))))

1025 state)

1026 :in-theory (disable delta-<-0-lemma3-lemma1

1027 delta-<-0-lemma3-lemma3-stupidlemma

1028 delta-<-0-lemma3-lemma2

197

C.2. ACL2 Proof for Fine Convergence

1029 delta-<-0-lemma3-lemma3

1030 delta-<-0-lemma3-lemma4-stupidlemma

1031 delta-<-0-lemma3-lemma4))))

1032)

1033

1034

1035 (defthm delta-<-0

1036 (implies (basic-params n 3 v0 dv g1)

1037 (< (delta n v0 dv g1) 0))

1038 :hints (("Goal"

1039 :use ((:instance delta-rewrite-5)

1040 (:instance delta-<-0-lemma4)

1041 (:instance delta-<-0-lemma3)

1042 (:instance delta-<-0-lemma2)

1043 (:instance delta-<-0-lemma1))

1044 :in-theory (disable delta-<-0-lemma3-lemma1

1045 delta-<-0-lemma3-lemma3-stupidlemma

1046 delta-<-0-lemma3-lemma2

1047 delta-<-0-lemma3-lemma3

1048 delta-<-0-lemma3-lemma4-stupidlemma

1049 delta-<-0-lemma3-lemma4)

1050)))

1051) ;; delta < 0 thus is proved

1052

1053 ;; prove phi(2n+1) = gamma^2*A+gamma*B+delta

1054 (encapsulate ()

1055

1056 (local

1057 (defthm split-phi-2n+1-lemma1-lemma1

1058 (implies (basic-params n 3 v0 dv g1 phi0)

1059 (equal (A (+ n 1) phi0 v0 dv g1)

1060 (+ (* (expt (gamma) (+ (* 2 n) 1)) phi0)

1061 (* (expt (gamma) (* 2 n))

1062 (- (fdco (1- (m n v0 g1)) v0 dv g1) 1))

1063 (* (expt (gamma) (- (* 2 n) 1))

1064 (- (fdco (m n v0 g1) v0 dv g1) 1))))))

1065)

198

C.2. ACL2 Proof for Fine Convergence

1066

1067 (local

1068 (defthm split-phi-2n+1-lemma1-lemma2

1069 (implies (basic-params n 3 v0 dv g1 phi0)

1070 (equal (+ (* (expt (gamma) (+ (* 2 n) 1)) phi0)

1071 (* (expt (gamma) (* 2 n))

1072 (- (fdco (1- (m n v0 g1)) v0 dv g1) 1))

1073 (* (expt (gamma) (- (* 2 n) 1))

1074 (- (fdco (m n v0 g1) v0 dv g1) 1)))

1075 (+ (* (+ (* (expt (gamma) (- (* 2 n) 1)) phi0)

1076 (* (expt (gamma) (- (* 2 n) 2))

1077 (- (fdco (m n v0 g1) v0 dv g1) 1))

1078 (* (expt (gamma) (- (* 2 n) 3))

1079 (- (fdco (1+ (m n v0 g1)) v0 dv g1) 1)))

1080 (expt (gamma) 2))

1081 (- (* (expt (gamma) (* 2 n))

1082 (- (fdco (1- (m n v0 g1)) v0 dv g1) 1))

1083 (* (expt (gamma) (* 2 n))

1084 (- (fdco (m n v0 g1) v0 dv g1) 1)))

1085 (- (* (expt (gamma) (- (* 2 n) 1))

1086 (- (fdco (m n v0 g1) v0 dv g1) 1))

1087 (* (expt (gamma) (- (* 2 n) 1))

1088 (- (fdco (1+ (m n v0 g1)) v0 dv g1) 1))))))

1089)

1090)

1091

1092 (local

1093 (defthm split-phi-2n+1-lemma1-A

1094 (implies (basic-params n 3 v0 dv g1 phi0)

1095 (equal (A (+ n 1) phi0 v0 dv g1)

1096 (+ (* (A n phi0 v0 dv g1) (gamma) (gamma))

1097 (- (* (expt (gamma) (* 2 n))

1098 (- (fdco (1- (m n v0 g1)) v0 dv g1) 1))

1099 (* (expt (gamma) (* 2 n))

1100 (- (fdco (m n v0 g1) v0 dv g1) 1)))

1101 (- (* (expt (gamma) (- (* 2 n) 1))

1102 (- (fdco (m n v0 g1) v0 dv g1) 1))

199

C.2. ACL2 Proof for Fine Convergence

1103 (* (expt (gamma) (- (* 2 n) 1))

1104 (- (fdco (1+ (m n v0 g1)) v0 dv g1) 1)))))))

1105)

1106

1107 (local

1108 (defthm split-phi-2n+1-lemma2-lemma1

1109 (implies (basic-params n 3 v0 dv g1)

1110 (equal (B (+ n 1) v0 dv g1)

1111 (* (expt (gamma) (- n 1))

1112 (B-sum 1 (- n 1) v0 dv g1)))))

1113)

1114

1115 (local

1116 (defthm split-phi-2n+1-lemma2-lemma2

1117 (implies (basic-params n 3 v0 dv g1)

1118 (equal (B (+ n 1) v0 dv g1)

1119 (* (expt (gamma) (- n 1))

1120 (+ (B-term (- n 1) v0 dv g1)

1121 (B-term (- (- n 1)) v0 dv g1)

1122 (B-sum 1 (- n 2) v0 dv g1))))))

1123)

1124

1125 (local

1126 (defthm split-phi-2n+1-lemma2-lemma3

1127 (implies (basic-params n 3 v0 dv g1)

1128 (equal (B (+ n 1) v0 dv g1)

1129 (+ (* (expt (gamma) (- n 1))

1130 (B-sum 1 (- n 2) v0 dv g1))

1131 (* (expt (gamma) (- n 1))

1132 (B-term (- n 1) v0 dv g1))

1133 (* (expt (gamma) (- n 1))

1134 (B-term (- (- n 1)) v0 dv g1))))))

1135)

1136

1137 (local

1138 (defthm split-phi-2n+1-lemma2-lemma4

1139 (implies (basic-params n 3 v0 dv g1)

200

C.2. ACL2 Proof for Fine Convergence

1140 (equal (B (+ n 1) v0 dv g1)

1141 (+ (* (gamma) (expt (gamma) (- n 2))

1142 (B-sum 1 (- n 2) v0 dv g1))

1143 (* (expt (gamma) (- n 1))

1144 (+ (B-term (- n 1) v0 dv g1)

1145 (B-term (- (- n 1)) v0 dv g1)))))))

1146)

1147

1148 (local

1149 (defthm split-phi-2n+1-lemma2-lemma5

1150 (implies (basic-params n 3 v0 dv g1)

1151 (equal (B (+ n 1) v0 dv g1)

1152 (+ (* (gamma) (B n v0 dv g1))

1153 (* (expt (gamma) (- n 1))

1154 (+ (B-term (- n 1) v0 dv g1)

1155 (B-term (- (- n 1)) v0 dv g1)))))))

1156)

1157

1158 (local

1159 (defthm split-phi-2n+1-lemma2-B

1160 (implies (basic-params n 3 v0 dv g1)

1161 (equal (B (+ n 1) v0 dv g1)

1162 (+ (* (gamma) (B n v0 dv g1))

1163 (* (expt (gamma) (- n 1))

1164 (+ (* (expt (gamma) (- (- n 1)))

1165 (B-term-rest (- n 1) v0 dv g1))

1166 (* (expt (gamma) (- n 1))

1167 (B-term-rest (- (- n 1)) v0 dv g1))))))))

1168)

1169

1170 (local

1171 (defthm split-phi-2n+1-lemma3-delta-stupidlemma

1172 (implies (basic-params n 3 v0 dv g1)

1173 (equal (+ (- (* (expt (gamma) (* 2 n))

1174 (- (fdco (1- (m n v0 g1)) v0 dv g1) 1))

1175 (* (expt (gamma) (* 2 n))

1176 (- (fdco (m n v0 g1) v0 dv g1) 1)))

201

C.2. ACL2 Proof for Fine Convergence

1177 (- (* (expt (gamma) (- (* 2 n) 1))

1178 (- (fdco (m n v0 g1) v0 dv g1) 1))

1179 (* (expt (gamma) (- (* 2 n) 1))

1180 (- (fdco (1+ (m n v0 g1)) v0 dv g1) 1)))

1181 (* (expt (gamma) (- n 1))

1182 (+ (* (expt (gamma) (- (- n 1)))

1183 (B-term-rest (- n 1) v0 dv g1))

1184 (* (expt (gamma) (- n 1))

1185 (B-term-rest (- (- n 1)) v0 dv g1)))))

1186 (+ (- (* (expt (gamma) (* 2 n))

1187 (- (fdco (1- (m n v0 g1)) v0 dv g1) 1))

1188 (* (expt (gamma) (* 2 n))

1189 (- (fdco (m n v0 g1) v0 dv g1) 1)))

1190 (- (* (expt (gamma) (- (* 2 n) 1))

1191 (- (fdco (m n v0 g1) v0 dv g1) 1))

1192 (* (expt (gamma) (- (* 2 n) 1))

1193 (- (fdco (1+ (m n v0 g1)) v0 dv g1) 1)))

1194 (* (expt (gamma) (1- n))

1195 (+ (* (expt (gamma) (1+ (- n)))

1196 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

1197 (1+ (* *beta* (+ (* g1 (1- n)) (equ-c v0)))))

1))

1198 (* (expt (gamma) (1- n))

1199 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

1200 (1+ (* *beta* (+ (* g1 (- 1 n)) (equ-c v0)))))

1))))))))

1201)

1202

1203 (local

1204 (defthm split-phi-2n+1-lemma3-delta

1205 (implies (basic-params n 3 v0 dv g1)

1206 (equal (+ (- (* (expt (gamma) (* 2 n))

1207 (- (fdco (1- (m n v0 g1)) v0 dv g1) 1))

1208 (* (expt (gamma) (* 2 n))

1209 (- (fdco (m n v0 g1) v0 dv g1) 1)))

1210 (- (* (expt (gamma) (- (* 2 n) 1))

1211 (- (fdco (m n v0 g1) v0 dv g1) 1))

202

C.2. ACL2 Proof for Fine Convergence

1212 (* (expt (gamma) (- (* 2 n) 1))

1213 (- (fdco (1+ (m n v0 g1)) v0 dv g1) 1)))

1214 (* (expt (gamma) (- n 1))

1215 (+ (* (expt (gamma) (- (- n 1)))

1216 (B-term-rest (- n 1) v0 dv g1))

1217 (* (expt (gamma) (- n 1))

1218 (B-term-rest (- (- n 1)) v0 dv g1)))))

1219 (delta n v0 dv g1)))

1220 :hints (("Goal"

1221 :use ((:instance split-phi-2n+1-lemma3-delta-stupidlemma)

1222 (:instance delta)))))

1223)

1224

1225 (local

1226 (defthm split-phi-2n+1-lemma4

1227 (implies (basic-params n 3 v0 dv g1 phi0)

1228 (equal (phi-2n-1 (1+ n) phi0 v0 dv g1)

1229 (+ (A (+ n 1) phi0 v0 dv g1)

1230 (B (+ n 1) v0 dv g1)))))

1231)

1232

1233 (local

1234 (defthm split-phi-2n+1-lemma5

1235 (implies (basic-params n 3 v0 dv g1 phi0)

1236 (equal (phi-2n-1 (1+ n) phi0 v0 dv g1)

1237 (+ (+ (* (A n phi0 v0 dv g1) (gamma) (gamma))

1238 (- (* (expt (gamma) (* 2 n))

1239 (- (fdco (1- (m n v0 g1)) v0 dv g1) 1))

1240 (* (expt (gamma) (* 2 n))

1241 (- (fdco (m n v0 g1) v0 dv g1) 1)))

1242 (- (* (expt (gamma) (- (* 2 n) 1))

1243 (- (fdco (m n v0 g1) v0 dv g1) 1))

1244 (* (expt (gamma) (- (* 2 n) 1))

1245 (- (fdco (1+ (m n v0 g1)) v0 dv g1) 1))))

1246 (+ (* (gamma) (B n v0 dv g1))

1247 (* (expt (gamma) (- n 1))

1248 (+ (* (expt (gamma) (- (- n 1)))

203

C.2. ACL2 Proof for Fine Convergence

1249 (B-term-rest (- n 1) v0 dv g1))

1250 (* (expt (gamma) (- n 1))

1251 (B-term-rest (- (- n 1)) v0 dv g1))))))))

1252 :hints (("Goal"

1253 :use ((:instance split-phi-2n+1-lemma1-A)

1254 (:instance split-phi-2n+1-lemma2-B)))))

1255)

1256

1257 (local

1258 (defthm split-phi-2n+1-lemma6

1259 (implies (basic-params n 3 v0 dv g1 phi0)

1260 (equal (phi-2n-1 (1+ n) phi0 v0 dv g1)

1261 (+ (* (A n phi0 v0 dv g1) (gamma) (gamma))

1262 (* (gamma) (B n v0 dv g1))

1263 (+ (- (* (expt (gamma) (* 2 n))

1264 (- (fdco (1- (m n v0 g1)) v0 dv g1) 1))

1265 (* (expt (gamma) (* 2 n))

1266 (- (fdco (m n v0 g1) v0 dv g1) 1)))

1267 (- (* (expt (gamma) (- (* 2 n) 1))

1268 (- (fdco (m n v0 g1) v0 dv g1) 1))

1269 (* (expt (gamma) (- (* 2 n) 1))

1270 (- (fdco (1+ (m n v0 g1)) v0 dv g1) 1)))

1271 (* (expt (gamma) (- n 1))

1272 (+ (* (expt (gamma) (- (- n 1)))

1273 (B-term-rest (- n 1) v0 dv g1))

1274 (* (expt (gamma) (- n 1))

1275 (B-term-rest (- (- n 1)) v0 dv g1)))))))))

1276)

1277

1278 (defthm split-phi-2n+1

1279 (implies (basic-params n 3 v0 dv g1 phi0)

1280 (equal (phi-2n-1 (1+ n) phi0 v0 dv g1)

1281 (+ (* (gamma) (gamma) (A n phi0 v0 dv g1))

1282 (* (gamma) (B n v0 dv g1)) (delta n v0 dv g1))))

1283 :hints (("Goal"

1284 :use ((:instance split-phi-2n+1-lemma6)

1285 (:instance split-phi-2n+1-lemma3-delta)))))

204

C.2. ACL2 Proof for Fine Convergence

1286

1287)

1288

1289 ;; prove gamma^2*A + gamma*B < 0

1290 (encapsulate ()

1291

1292 (local

1293 (defthm except-for-delta-<-0-lemma1

1294 (implies (and (and (rationalp c)

1295 (rationalp a)

1296 (rationalp b))

1297 (and (> c 0)

1298 (< c 1)

1299 (< (+ A B) 0)

1300 (< B 0)))

1301 (< (+ (* c c A) (* c B)) 0))

1302 :hints (("Goal"

1303 :clause-processor

1304 (Smtlink clause

1305 ’((:expand ((:function ())

1306 (:expansion-level 1)))

1307 (:python-file

"except-for-delta-smaller-than-0-lemma1")

1308 (:let ())

1309 (:hypothesize ()))

1310 state)))

1311 :rule-classes :linear)

1312)

1313

1314 (defthm except-for-delta-<-0

1315 (implies (basic-params n 3 v0 dv g1 phi0 (< (phi-2n-1 n phi0

v0 dv g1) 0))

1316 (< (+ (* (gamma) (gamma) (A n phi0 v0 dv g1))

1317 (* (gamma) (B n v0 dv g1)))

1318 0))

1319 :hints (("Goal"

1320 :do-not-induct t

205

C.2. ACL2 Proof for Fine Convergence

1321 :use ((:instance except-for-delta-<-0-lemma1

1322 (c (gamma))

1323 (A (A n phi0 v0 dv g1))

1324 (B (B n v0 dv g1)))

1325 (:instance B-neg)))))

1326)

1327

1328 ;; for induction step

1329 (encapsulate ()

1330

1331 (defthm phi-2n+1-<-0-inductive

1332 (implies (basic-params n 3 v0 dv g1 phi0 (< (phi-2n-1 n phi0

v0 dv g1) 0))

1333 (< (phi-2n-1 (1+ n) phi0 v0 dv g1) 0))

1334 :hints (("Goal"

1335 :use ((:instance split-phi-2n+1)

1336 (:instance delta-<-0)

1337 (:instance except-for-delta-<-0)))))

1338

1339 (defthm phi-2n+1-<-0-inductive-corollary

1340 (implies (basic-params (- i 1) 3 v0 dv g1 phi0

1341 (< (phi-2n-1 (- i 1) phi0 v0 dv g1) 0))

1342 (< (phi-2n-1 i phi0 v0 dv g1) 0))

1343 :hints (("Goal"

1344 :use ((:instance phi-2n+1-<-0-inductive

1345 (n (- i 1)))))))

1346

1347 (defthm phi-2n+1-<-0-inductive-corollary-2

1348 (implies (basic-params (- i 1) 3 v0 dv g1 phi0

1349 (< (phi-2n-1 (- i 1) phi0 v0 dv g1) 0))

1350 (< (+ (A i phi0 v0 dv g1)

1351 (* (B-expt i)

1352 (B-sum 1 (- i 2) v0 dv g1))) 0))

1353 :hints (("Goal"

1354 :use ((:instance phi-2n+1-<-0-inductive-corollary)))))

1355

1356 (defthm phi-2n+1-<-0-base

206

C.2. ACL2 Proof for Fine Convergence

1357 (implies (basic-params-equal n 2 v0 dv g1 phi0)

1358 (< (phi-2n-1 (1+ n) phi0 v0 dv g1) 0))

1359 :hints (("Goal’’"

1360 :clause-processor

1361 (Smtlink clause

1362 ’((:expand ((:function ())

1363 (:expansion-level 1)))

1364 (:python-file "phi-2n+1-smaller-than-0-base")

1365 (:let ())

1366 (:hypothesize ()))

1367 state)))

1368)

1369

1370 (defthm phi-2n+1-<-0-base-new

1371 (implies (basic-params-equal (- i 2) 1 v0 dv g1 phi0)

1372 (< (phi-2n-1 (- i 1) phi0 v0 dv g1) 0))

1373 :hints (("Goal’’"

1374 :clause-processor

1375 (Smtlink clause

1376 ’((:expand ((:function ())

1377 (:expansion-level 1)))

1378 (:python-file "phi-2n+1-smaller-than-0-base-new")

1379 (:let ())

1380 (:hypothesize ()))

1381 state)))

1382)

1383

1384 (defthm phi-2n+1-<-0-base-corollary

1385 (implies (basic-params-equal (1- i) 2 v0 dv g1 phi0)

1386 (< (phi-2n-1 i phi0 v0 dv g1) 0))

1387 :hints (("Goal"

1388 :use ((:instance phi-2n+1-<-0-base

1389 (n (- i 1))))))

1390)

1391

1392 (defthm phi-2n+1-<-0-base-corollary-2

1393 (implies (basic-params-equal (1- i) 2 v0 dv g1 phi0)

207

C.2. ACL2 Proof for Fine Convergence

1394 (< (+ (A i phi0 v0 dv g1)

1395 (* (B-expt i)

1396 (B-sum 1 (- i 2) v0 dv g1))) 0))

1397 :hints (("Goal"

1398 :use ((:instance phi-2n+1-<-0-base-corollary))))

1399)

1400

1401 (defthm stupid-proof

1402 (implies (and (equal a f)

1403 (equal a i)

1404 (implies (and m l) l)

1405 (implies l (and c h))

1406 (implies (and c h) (and c j))

1407 (implies (and a b c d) e)

1408 (implies (and f b c d) g)

1409 (implies (and f b h d e) g)

1410 i

1411 m

1412 (implies (and a b j d) e)

1413 f

1414 b

1415 l

1416 d)

1417 g)

1418 :rule-classes nil)

1419

1420 (defthm phi-2n+1-<-0-lemma-lemma1

1421 (implies

1422 (and

1423 (implies

1424 (and (and (integerp (+ -2 i))

1425 (rationalp g1)

1426 (rationalp v0)

1427 (rationalp phi0)

1428 (rationalp dv))

1429 (equal (+ -2 i) 1)

1430 (equal g1 1/3200)

208

C.2. ACL2 Proof for Fine Convergence

1431 (<= 9/10 v0)

1432 (<= v0 11/10)

1433 (<= -1/8000 dv)

1434 (<= dv 1/8000)

1435 (<= 0 phi0)

1436 (< phi0

1437 (+ -1

1438 (* (fix (+ 1 (fix (+ v0 dv))))

1439 (/ (+ 1

1440 (fix (* (+ 1

1441 (* (+ (fix (* (+ 1

(fix v0)) 1)) -1)

1442 (/ g1))

1443 -640)

1444 g1))))))))

1445 (< (phi-2n-1 (+ -1 i) phi0 v0 dv g1) 0))

1446 (implies

1447 (and (and (integerp (+ -1 i))

1448 (rationalp g1)

1449 (rationalp v0)

1450 (rationalp phi0)

1451 (rationalp dv))

1452 (equal (+ -1 i) 2)

1453 (equal g1 1/3200)

1454 (<= 9/10 v0)

1455 (<= v0 11/10)

1456 (<= -1/8000 dv)

1457 (<= dv 1/8000)

1458 (<= 0 phi0)

1459 (< phi0

1460 (+ -1

1461 (* (fix (+ 1 (fix (+ v0 dv))))

1462 (/ (+ 1

1463 (fix (* (+ 1

1464 (* (+ (fix (* (+ 1

(fix v0)) 1)) -1)

1465 (/ g1))

209

C.2. ACL2 Proof for Fine Convergence

1466 -640)

1467 g1))))))))

1468 (< (+ (a i phi0 v0 dv g1)

1469 (* (/ (expt 5 (+ -2 i)))

1470 (b-sum 1 (+ -2 i) v0 dv g1)))

1471 0))

1472 (implies

1473 (and (and (integerp (+ -1 i))

1474 (rationalp g1)

1475 (rationalp v0)

1476 (rationalp dv)

1477 (rationalp phi0))

1478 (<= 3 (+ -1 i))

1479 (<= (+ -1 i) 640)

1480 (equal g1 1/3200)

1481 (<= 9/10 v0)

1482 (<= v0 11/10)

1483 (<= -1/8000 dv)

1484 (<= dv 1/8000)

1485 (<= 0 phi0)

1486 (< phi0

1487 (+ -1

1488 (* (fix (+ 1 (fix (+ v0 dv))))

1489 (/ (+ 1

1490 (fix (* (+ 1

1491 (* (+ (fix (* (+ 1

(fix v0)) 1)) -1)

1492 (/ g1))

1493 -640)

1494 g1)))))))

1495 (< (phi-2n-1 (+ -1 i) phi0 v0 dv g1) 0))

1496 (< (+ (a i phi0 v0 dv g1)

1497 (* (/ (expt 5 (+ -2 i)))

1498 (b-sum 1 (+ -2 i) v0 dv g1)))

1499 0))

1500 (not (or (not (integerp i)) (< i 1)))

1501 (implies

210

C.2. ACL2 Proof for Fine Convergence

1502 (and (and (integerp (+ -1 -1 i))

1503 (rationalp g1)

1504 (rationalp v0)

1505 (rationalp dv)

1506 (rationalp phi0))

1507 (<= 2 (+ -1 -1 i))

1508 (<= (+ -1 -1 i) 640)

1509 (equal g1 1/3200)

1510 (<= 9/10 v0)

1511 (<= v0 11/10)

1512 (<= -1/8000 dv)

1513 (<= dv 1/8000)

1514 (<= 0 phi0)

1515 (< phi0

1516 (+ -1

1517 (* (fix (+ 1 (fix (+ v0 dv))))

1518 (/ (+ 1

1519 (fix (* (+ 1

1520 (* (+ (fix (* (+ 1

(fix v0)) 1)) -1)

1521 (/ g1))

1522 -640)

1523 g1))))))))

1524 (< (+ (a (+ -1 i) phi0 v0 dv g1)

1525 (* (/ (expt 5 (+ -2 -1 i)))

1526 (b-sum 1 (+ -2 -1 i) v0 dv g1)))

1527 0))

1528 (integerp (+ -1 i))

1529 (rationalp g1)

1530 (rationalp v0)

1531 (rationalp dv)

1532 (rationalp phi0)

1533 (<= 2 (+ -1 i))

1534 (<= (+ -1 i) 640)

1535 (equal g1 1/3200)

1536 (<= 9/10 v0)

1537 (<= v0 11/10)

211

C.2. ACL2 Proof for Fine Convergence

1538 (<= -1/8000 dv)

1539 (<= dv 1/8000)

1540 (<= 0 phi0)

1541 (< phi0

1542 (+ -1

1543 (* (fix (+ 1 (fix (+ v0 dv))))

1544 (/ (+ 1

1545 (fix (* (+ 1

1546 (* (+ (fix (* (+ 1 (fix v0))

1)) -1)

1547 (/ g1))

1548 -640)

1549 g1))))))))

1550 (< (+ (a i phi0 v0 dv g1)

1551 (* (/ (expt 5 (+ -2 i)))

1552 (b-sum 1 (+ -2 i) v0 dv g1)))

1553 0))

1554 :hints (("Goal"

1555 :use ((:instance stupid-proof

1556 (a (integerp (+ -1 -1 i)))

1557 (b (and (rationalp g1)

1558 (rationalp v0)

1559 (rationalp dv)

1560 (rationalp phi0)))

1561 (c (equal (+ -2 i) 1))

1562 (d (and (equal g1 1/3200)

1563 (<= 9/10 v0)

1564 (<= v0 11/10)

1565 (<= -1/8000 dv)

1566 (<= dv 1/8000)

1567 (<= 0 phi0)

1568 (< phi0

1569 (+ -1

1570 (* (fix (+ 1 (fix (+ v0 dv))))

1571 (/ (+ 1

1572 (fix (* (+ 1

1573 (* (+ (fix (* (+ 1 (fix v0)) 1)) -1)

212

C.2. ACL2 Proof for Fine Convergence

1574 (/ g1))

1575 -640)

1576 g1)))))))))

1577 (e (< (+ (a (+ -1 i) phi0 v0 dv g1)

1578 (* (/ (expt 5 (+ -2 -1 i)))

1579 (b-sum 1 (+ -2 -1 i) v0 dv g1)))

1580 0))

1581 (f (integerp (+ -1 i)))

1582 (g (< (+ (a i phi0 v0 dv g1)

1583 (* (/ (expt 5 (+ -2 i)))

1584 (b-sum 1 (+ -2 i) v0 dv g1)))

1585 0))

1586 (h (and (<= 3 (+ -1 i))

1587 (<= (+ -1 i) 640)))

1588 (i (integerp i))

1589 (j (and (<= 2 (+ -1 -1 i))

1590 (<= (+ -1 -1 i) 640)))

1591 (l (and (<= 2 (+ -1 i))

1592 (<= (+ -1 i) 640)

1593))

1594 (m (>= i 1)))))))

1595

1596 (defthm phi-2n+1-<-0-lemma-lemma2

1597 (implies (and (or (not (integerp i)) (< i 1))

1598 (integerp (+ -1 i))

1599 (rationalp g1)

1600 (rationalp v0)

1601 (rationalp dv)

1602 (rationalp phi0)

1603 (<= 2 (+ -1 i))

1604 (<= (+ -1 i) 640)

1605 (equal g1 1/3200)

1606 (<= 9/10 v0)

1607 (<= v0 11/10)

1608 (<= -1/8000 dv)

1609 (<= dv 1/8000)

1610 (<= 0 phi0)

213

C.2. ACL2 Proof for Fine Convergence

1611 (< phi0

1612 (+ -1

1613 (* (fix (+ 1 (fix (+ v0 dv))))

1614 (/ (+ 1

1615 (fix (* (+ 1

1616 (* (+ (fix (* (+ 1

(fix v0)) 1)) -1)

1617 (/ g1))

1618 -640)

1619 g1))))))))

1620 (< (+ (a i phi0 v0 dv g1)

1621 (* (/ (expt 5 (+ -2 i)))

1622 (b-sum 1 (+ -2 i) v0 dv g1)))

1623 0))

1624 :rule-classes nil)

1625

1626 (defthm phi-2n+1-<-0-lemma

1627 (implies (basic-params (1- i) 2 v0 dv g1 phi0)

1628 (< (+ (A i phi0 v0 dv g1)

1629 (* (B-expt i)

1630 (B-sum 1 (- i 2) v0 dv g1))) 0))

1631 :hints (("Goal"

1632 :do-not ’(simplify)

1633 :induct (B-sum 1 i v0 dv g1))

1634 ("Subgoal *1/2"

1635 :use ((:instance phi-2n+1-<-0-base-new)

1636 (:instance phi-2n+1-<-0-base-corollary-2)

1637 (:instance phi-2n+1-<-0-inductive-corollary-2)

1638))

1639 ("Subgoal *1/2’’"

1640 :use ((:instance phi-2n+1-<-0-lemma-lemma1)))

1641 ("Subgoal *1/1’"

1642 :use ((:instance phi-2n+1-<-0-lemma-lemma2)))

1643)

1644)

1645

1646 (defthm phi-2n+1-<-0

214

C.2. ACL2 Proof for Fine Convergence

1647 (implies (basic-params (1- i) 2 v0 dv g1 phi0)

1648 (< (phi-2n-1 i phi0 v0 dv g1) 0))

1649 :hints (("Goal"

1650 :use ((:instance phi-2n+1-<-0-lemma))

1651))

1652)

1653

1654 (defthm phi-2n-1-<-0

1655 (implies (basic-params n 3 v0 dv g1 phi0)

1656 (< (phi-2n-1 n phi0 v0 dv g1) 0))

1657 :hints (("Goal"

1658 :use ((:instance phi-2n+1-<-0

1659 (i n))))))

1660)

� Augmented proof with arbitrary c:

1 (in-package "ACL2")

2 (include-book "global")

3

4 (deftheory before-arith (current-theory :here))

5 (include-book "arithmetic/top-with-meta" :dir :system)

6 (deftheory after-arith (current-theory :here))

7

8 (deftheory arithmetic-book-only (set-difference-theories

(theory ’after-arith) (theory ’before-arith)))

9

10 ;; for the clause processor to work

11 (add-include-book-dir :cp

"/ubc/cs/home/y/yanpeng/project/ACL2/smtlink")

12 (include-book "top" :dir :cp)

13 (logic)

14 :set-state-ok t

15 :set-ignore-ok t

16 (tshell-ensure)

17

18 ;;:start-proof-tree

215

C.2. ACL2 Proof for Fine Convergence

19

20 ;; (encapsulate ()

21

22 ;; (local (include-book "arithmetic-5/top" :dir :system))

23

24 ;; (defun my-floor (x) (floor (numerator x) (denominator x)))

25

26 ;; (defthm my-floor-type

27 ;; (implies (rationalp x)

28 ;; (integerp (my-floor x)))

29 ;; :rule-classes :type-prescription)

30

31 ;; (defthm my-floor-lower-bound

32 ;; (implies (rationalp x)

33 ;; (> (my-floor x) (- x 1)))

34 ;; :rule-classes :linear)

35

36 ;; (defthm my-floor-upper-bound

37 ;; (implies (rationalp x)

38 ;; (<= (my-floor x) x))

39 ;; :rule-classes :linear)

40

41 ;; (defthm my-floor-comparison

42 ;; (implies (rationalp x)

43 ;; (< (my-floor (1- x)) (my-floor x)))

44 ;; :hints (("Goal"

45 ;; :use ((:instance my-floor-upper-bound (x (1- x)))

46 ;; (:instance my-floor-lower-bound))))

47 ;; :rule-classes :linear)

48 ;;)

49

50 ;; functions

51 ;; n can be a rational value when c starts from non-integer

value

52 (defun fdco (n v0 dv g1 dc)

53 (/ (* (mu) (+ 1 (* *alpha* (+ v0 dv)))) (+ 1 (* *beta* (+ n

dc) g1))))

216

C.2. ACL2 Proof for Fine Convergence

54

55 (defun B-term-expt (h)

56 (expt (gamma) (- h)))

57

58 (defun B-term-rest (h v0 dv g1 dc)

59 (- (* (mu) (/ (+ 1 (* *alpha* (+ v0 dv))) (+ 1 (* *beta* (+

(* (+ h dc) g1) (equ-c v0)))))) 1))

60

61 (defun B-term (h v0 dv g1 dc)

62 (* (B-term-expt h) (B-term-rest h v0 dv g1 dc)))

63

64 (defun B-sum (h_lo h_hi v0 dv g1 dc)

65 (declare (xargs :measure (if (or (not (integerp h_hi)) (not

(integerp h_lo)) (< h_hi h_lo))

66 0

67 (1+ (- h_hi h_lo)))))

68 (if (or (not (integerp h_hi)) (not (integerp h_lo)) (> h_lo

h_hi)) 0

69 (+ (B-term h_hi v0 dv g1 dc) (B-term (- h_hi) v0 dv g1

dc) (B-sum h_lo (- h_hi 1) v0 dv g1 dc))))

70

71 (defun B-expt (n)

72 (expt (gamma) (- n 2)))

73

74 (defun B (n v0 dv g1 dc)

75 (* (B-expt n)

76 (B-sum 1 (- n 2) v0 dv g1 dc)))

77

78 ;; parameter list functions

79 (defmacro basic-params-equal (n n-value &optional (dc ’nil)

(v0 ’nil) (dv ’nil) (g1 ’nil) (phi0 ’nil) (other ’nil))

80 (list ’and

81 (append

82 (append

83 (append

84 (append

85 (append (list ’and

217

C.2. ACL2 Proof for Fine Convergence

86 (list ’integerp n))

87 (if (equal dc ’nil) nil (list (list ’rationalp dc))))

88 (if (equal g1 ’nil) nil (list (list ’rationalp g1))))

89 (if (equal v0 ’nil) nil (list (list ’rationalp v0))))

90 (if (equal phi0 ’nil) nil (list (list ’rationalp phi0))))

91 (if (equal dv ’nil) nil (list (list ’rationalp dv))))

92 (append

93 (append

94 (append

95 (append

96 (append

97 (append

98 (append

99 (append

100 (append

101 (append

102 (list ’and

103 (list ’equal n n-value))

104 (if (equal dc ’nil) nil (list (list ’>= dc ’0))))

105 (if (equal dc ’nil) nil (list (list ’< dc ’1))))

106 (if (equal g1 ’nil) nil (list (list ’equal g1 ’1/3200))))

107 (if (equal v0 ’nil) nil (list (list ’>= v0 ’9/10))))

108 (if (equal v0 ’nil) nil (list (list ’<= v0 ’11/10))))

109 (if (equal dv ’nil) nil (list (list ’>= dv (list ’-

(list ’dv0))))))

110 (if (equal dv ’nil) nil (list (list ’<= dv (list

’dv0)))))

111 (if (equal phi0 ’nil) nil (list (list ’>= phi0 ’0))))

112 (if (equal phi0 ’nil) nil (list (list ’< phi0 (list ’-

(list ’fdco (list ’1+ (list ’m ’640 v0 g1)) v0 dv g1 dc)

’1)))))

113 (if (equal other ’nil) nil (list other)))))

114

115 (defmacro basic-params (n nupper &optional (dc ’nil) (v0 ’nil)

(dv ’nil) (g1 ’nil) (phi0 ’nil) (other ’nil))

116 (list ’and

117 (append

218

C.2. ACL2 Proof for Fine Convergence

118 (append

119 (append

120 (append

121 (append (list ’and

122 (list ’integerp n))

123 (if (equal dc ’nil) nil (list (list ’rationalp dc))))

124 (if (equal g1 ’nil) nil (list (list ’rationalp g1))))

125 (if (equal v0 ’nil) nil (list (list ’rationalp v0))))

126 (if (equal dv ’nil) nil (list (list ’rationalp dv))))

127 (if (equal phi0 ’nil) nil (list (list ’rationalp phi0))))

128 (append

129 (append

130 (append

131 (append

132 (append

133 (append

134 (append

135 (append

136 (append

137 (append

138 (append (list ’and

139 (list ’>= n nupper))

140 (list (list ’<= n ’640)))

141 (if (equal dc ’nil) nil (list (list ’>= dc ’0))))

142 (if (equal dc ’nil) nil (list (list ’< dc ’1))))

143 (if (equal g1 ’nil) nil (list (list ’equal g1 ’1/3200))))

144 (if (equal v0 ’nil) nil (list (list ’>= v0 ’9/10))))

145 (if (equal v0 ’nil) nil (list (list ’<= v0 ’11/10))))

146 (if (equal dv ’nil) nil (list (list ’>= dv (list ’-

(list ’dv0))))))

147 (if (equal dv ’nil) nil (list (list ’<= dv (list

’dv0)))))

148 (if (equal phi0 ’nil) nil (list (list ’>= phi0 ’0))))

149 (if (equal phi0 ’nil) nil (list (list ’< phi0 (list ’-

(list ’fdco (list ’1+ (list ’m ’640 v0 g1)) v0 dv g1 dc)

’1)))))

150 (if (equal other ’nil) nil (list other)))))

219

C.2. ACL2 Proof for Fine Convergence

151

152 (encapsulate ()

153

154 (local (in-theory (disable arithmetic-book-only)))

155

156 (local

157 (include-book "arithmetic-5/top" :dir :system)

158)

159

160 (local

161 (defthm B-term-neg-lemma1

162 (implies (basic-params h 1 dc v0 dv g1)

163 (< (+ (* (B-term-expt h) (B-term-rest h v0 dv g1 dc))

164 (* (B-term-expt (- h)) (B-term-rest (- h) v0 dv g1

dc)))

165 0)

166)

167 :hints

168 (("Goal"

169 :clause-processor

170 (Smtlink clause

171 ’((:expand ((:functions ((B-term-rest rationalp)

172 (gamma rationalp)

173 (mu rationalp)

174 (equ-c rationalp)

175 (dv0 rationalp)))

176 (:expansion-level 1)))

177 (:python-file "B-term-neg-lemma1") ;;mktemp

178 (:let ((expt_gamma_h (B-term-expt h) rationalp)

179 (expt_gamma_minus_h (B-term-expt (- h))

rationalp)))

180 (:hypothesize ((<= expt_gamma_minus_h (/ 1 5))

181 (> expt_gamma_minus_h 0)

182 (equal (* expt_gamma_minus_h expt_gamma_h)

1)))

183 (:use ((:let ())

184 (:hypo (()))

220

C.2. ACL2 Proof for Fine Convergence

185 (:main ()))))

186 state)

187))

188)

189)

190

191 (defthm B-term-neg

192 (implies (basic-params h 1 dc v0 dv g1)

193 (< (+ (B-term h v0 dv g1 dc) (B-term (- h) v0 dv g1 dc))

0))

194 :hints (("Goal"

195 :use ((:instance B-term)

196 (:instance B-term-neg-lemma1)

197)))

198 :rule-classes :linear)

199)

200

201 (defthm B-sum-neg

202 (implies (basic-params n-minus-2 1 dc v0 dv g1)

203 (< (B-sum 1 n-minus-2 v0 dv g1 dc) 0))

204 :hints (("Goal"

205 :in-theory (disable B-term)

206 :induct ())))

207

208 (encapsulate ()

209

210 (local ;; B = B-expt*B-sum

211 (defthm B-neg-lemma1

212 (implies (basic-params n 3 dc v0 dv g1)

213 (equal (B n v0 dv g1 dc)

214 (* (B-expt n)

215 (B-sum 1 (- n 2) v0 dv g1 dc))))))

216

217 (local

218 (defthm B-expt->-0

219 (implies (basic-params n 3)

220 (> (B-expt n) 0))

221

C.2. ACL2 Proof for Fine Convergence

221 :rule-classes :linear))

222

223 (local

224 (defthm B-neg-lemma2

225 (implies (and (rationalp a)

226 (rationalp b)

227 (> a 0)

228 (< b 0))

229 (< (* a b) 0))

230 :rule-classes :linear))

231

232 (local

233 (defthm B-neg-type-lemma3

234 (implies (and (and (rationalp n-minus-2) (rationalp v0)

(rationalp g1) (rationalp dv) (rationalp dc)))

235 (rationalp (B-sum 1 n-minus-2 v0 dv g1 dc)))

236 :rule-classes :type-prescription))

237

238 (local

239 (defthm B-neg-type-lemma4

240 (implies (basic-params n 3)

241 (rationalp (B-expt n)))

242 :rule-classes :type-prescription))

243

244 (defthm B-neg

245 (implies (basic-params n 3 dc v0 dv g1)

246 (< (B n v0 dv g1 dc) 0))

247 :hints (("Goal"

248 :do-not-induct t

249 :in-theory (disable B-expt B-sum B-sum-neg B-expt->-0)

250 :use ((:instance B-sum-neg (n-minus-2 (- n 2)))

251 (:instance B-expt->-0)

252 (:instance B-neg-type-lemma3 (n-minus-2 (- n 2)))

253 (:instance B-neg-type-lemma4)

254 (:instance B-neg-lemma2 (a (B-expt n))

255 (b (B-sum 1 (+ -2 n) v0 dv g1

dc)))))))

222

C.2. ACL2 Proof for Fine Convergence

256)

257

258 (defun A (n phi0 v0 dv g1 dc)

259 (+ (* (expt (gamma) (- (* 2 n) 1)) phi0)

260 (* (expt (gamma) (- (* 2 n) 2))

261 (- (fdco (m n v0 g1) v0 dv g1 dc) 1))

262 (* (expt (gamma) (- (* 2 n) 3))

263 (- (fdco (1+ (m n v0 g1)) v0 dv g1 dc) 1))))

264

265 (defun phi-2n-1 (n phi0 v0 dv g1 dc)

266 (+ (A n phi0 v0 dv g1 dc) (B n v0 dv g1 dc)))

267

268 (defun delta (n v0 dv g1 dc)

269 (+ (- (* (expt (gamma) (* 2 n))

270 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc) 1))

271 (* (expt (gamma) (* 2 n))

272 (- (fdco (m n v0 g1) v0 dv g1 dc) 1)))

273 (- (* (expt (gamma) (- (* 2 n) 1))

274 (- (fdco (m n v0 g1) v0 dv g1 dc) 1))

275 (* (expt (gamma) (- (* 2 n) 1))

276 (- (fdco (1+ (m n v0 g1)) v0 dv g1 dc) 1)))

277 (* (expt (gamma) (1- n))

278 (+ (* (expt (gamma) (1+ (- n)))

279 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

280 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c v0)))))

281 1))

282 (* (expt (gamma) (1- n))

283 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

284 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c v0)))))

285 1))))))

286

287 (defun delta-1 (n v0 dv g1 dc)

288 (+ (* (expt (gamma) (* 2 n))

289 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc)

290 (fdco (m n v0 g1) v0 dv g1 dc)))

291 (* (expt (gamma) (- (* 2 n) 1))

292 (- (fdco (m n v0 g1) v0 dv g1 dc)

223

C.2. ACL2 Proof for Fine Convergence

293 (fdco (1+ (m n v0 g1)) v0 dv g1 dc)))

294 (* (* (expt (gamma) (1- n)) (expt (gamma) (1+ (- n))))

295 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

296 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c v0)))))

1))

297 (* (* (expt (gamma) (1- n)) (expt (gamma) (1- n)))

298 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

299 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c v0)))))

1))))

300

301 (defun delta-2 (n v0 dv g1 dc)

302 (+ (* (expt (gamma) (* 2 n))

303 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc)

304 (fdco (m n v0 g1) v0 dv g1 dc)))

305 (* (expt (gamma) (- (* 2 n) 1))

306 (- (fdco (m n v0 g1) v0 dv g1 dc)

307 (fdco (1+ (m n v0 g1)) v0 dv g1 dc)))

308 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

309 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c v0))))) 1)

310 (* (expt (gamma) (+ -1 n -1 n))

311 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

312 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c v0)))))

1))))

313

314 (defun delta-3 (n v0 dv g1 dc)

315 (* (expt (gamma) (+ -1 n -1 n))

316 (+ (* (expt (gamma) 2)

317 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc)

318 (fdco (m n v0 g1) v0 dv g1 dc)))

319 (* (expt (gamma) 1)

320 (- (fdco (m n v0 g1) v0 dv g1 dc)

321 (fdco (1+ (m n v0 g1)) v0 dv g1 dc)))

322 (* (expt (gamma) (- 2 (* 2 n)))

323 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

324 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c v0))))) 1))

325 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

326 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c v0)))))

224

C.2. ACL2 Proof for Fine Convergence

1))))

327

328 (defun delta-3-inside (n v0 dv g1 dc)

329 (+ (* (expt (gamma) 2)

330 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc)

331 (fdco (m n v0 g1) v0 dv g1 dc)))

332 (* (expt (gamma) 1)

333 (- (fdco (m n v0 g1) v0 dv g1 dc)

334 (fdco (1+ (m n v0 g1)) v0 dv g1 dc)))

335 (* (expt (gamma) (- 2 (* 2 n)))

336 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

337 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c v0))))) 1))

338 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

339 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c v0)))))

1)))

340

341 (defun delta-3-inside-transform (n v0 dv g1 dc)

342 (/

343 (+ (* (expt (gamma) 2)

344 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc)

345 (fdco (m n v0 g1) v0 dv g1 dc)))

346 (* (expt (gamma) 1)

347 (- (fdco (m n v0 g1) v0 dv g1 dc)

348 (fdco (1+ (m n v0 g1)) v0 dv g1 dc)))

349 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

350 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c v0)))))

1))

351 (- 1

352 (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

353 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c v0))))))))

354

355 ;; rewrite delta term

356 (encapsulate ()

357

358 (local

359 ;; considering using smtlink for the proof, probably simpler

360 (defthm delta-rewrite-1-lemma1

225

C.2. ACL2 Proof for Fine Convergence

361 (implies (basic-params n 3 dc v0 dv g1)

362 (equal (+ (- (* (expt (gamma) (* 2 n))

363 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc) 1))

364 (* (expt (gamma) (* 2 n))

365 (- (fdco (m n v0 g1) v0 dv g1 dc) 1)))

366 (- (* (expt (gamma) (- (* 2 n) 1))

367 (- (fdco (m n v0 g1) v0 dv g1 dc) 1))

368 (* (expt (gamma) (- (* 2 n) 1))

369 (- (fdco (1+ (m n v0 g1)) v0 dv g1 dc) 1)))

370 (* (expt (gamma) (1- n))

371 (+ (* (expt (gamma) (1+ (- n)))

372 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

373 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c

v0)))))

374 1))

375 (* (expt (gamma) (1- n))

376 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

377 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c

v0)))))

378 1)))))

379 (+ (* (expt (gamma) (* 2 n))

380 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc)

381 (fdco (m n v0 g1) v0 dv g1 dc)))

382 (* (expt (gamma) (- (* 2 n) 1))

383 (- (fdco (m n v0 g1) v0 dv g1 dc)

384 (fdco (1+ (m n v0 g1)) v0 dv g1 dc)))

385 (* (* (expt (gamma) (1- n)) (expt (gamma) (1+ (-

n))))

386 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

387 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c

v0))))) 1))

388 (* (* (expt (gamma) (1- n)) (expt (gamma) (1- n)))

389 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

390 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c

v0))))) 1)))))

391 :hints

392 (("Goal"

226

C.2. ACL2 Proof for Fine Convergence

393 :clause-processor

394 (Smtlink clause

395 ’((:expand ((:functions ((m integerp)

396 (gamma rationalp)

397 (mu rationalp)

398 (equ-c rationalp)

399 (fdco rationalp)

400 (dv0 rationalp)))

401 (:expansion-level 1)))

402 (:python-file "delta-rewrite-1-lemma1") ;;mktemp

403 (:let ((expt_gamma_2n

404 (expt (gamma) (* 2 n))

405 rationalp)

406 (expt_gamma_2n_minus_1

407 (expt (gamma) (- (* 2 n) 1))

408 rationalp)

409 (expt_gamma_n_minus_1

410 (expt (gamma) (1- n))

411 rationalp)

412 (expt_gamma_1_minus_n

413 (expt (gamma) (1+ (- n)))

414 rationalp)

415))

416 (:hypothesize ()))

417 state)

418)))

419)

420

421 (local

422 (defthm delta-rewrite-1

423 (implies (basic-params n 3 dc v0 dv g1)

424 (equal (delta n v0 dv g1 dc)

425 (delta-1 n v0 dv g1 dc))))

426)

427

428 (local

429 (defthm delta-rewrite-2-lemma1

227

C.2. ACL2 Proof for Fine Convergence

430 (implies (basic-params n 3)

431 (equal (* (expt (gamma) (1- n))

432 (expt (gamma) (1+ (- n))))

433 1))

434 :hints (("Goal"

435 :use ((:instance expt-minus

436 (r (gamma))

437 (i (- (1+ (- n))))))

438)))

439)

440

441 (local

442 (defthm delta-rewrite-2-lemma2

443 (implies (basic-params n 3)

444 (equal (* (expt (gamma) (1- n))

445 (expt (gamma) (1- n)))

446 (expt (gamma) (+ -1 n -1 n))))

447 :hints (("Goal"

448 :do-not-induct t

449 :use ((:instance exponents-add-for-nonneg-exponents

450 (i (1- n))

451 (j (1- n))

452 (r (gamma))))

453 :in-theory (disable exponents-add-for-nonneg-exponents)

454))

455)

456)

457

458 (local

459 (defthm delta-rewrite-2-lemma3

460 (implies (basic-params n 3)

461 (equal (+ A

462 B

463 (* (* (expt (gamma) (1- n))

464 (expt (gamma) (1+ (- n))))

465 C)

466 (* (* (expt (gamma) (1- n))

228

C.2. ACL2 Proof for Fine Convergence

467 (expt (gamma) (1- n)))

468 D))

469 (+ A B C

470 (* (expt (gamma) (+ -1 n -1 n)) D))))

471 :hints (("Goal"

472 :use ((:instance delta-rewrite-2-lemma1)

473 (:instance delta-rewrite-2-lemma2)))))

474)

475

476 (local

477 (defthm delta-rewrite-2

478 (implies (basic-params n 3 dc v0 dv g1)

479 (equal (delta-1 n v0 dv g1 dc)

480 (delta-2 n v0 dv g1 dc)))

481 :hints (("Goal"

482 :use ((:instance delta-rewrite-2-lemma3

483 (A (* (expt (gamma) (* 2 n))

484 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc)

485 (fdco (m n v0 g1) v0 dv g1 dc))))

486 (B (* (expt (gamma) (- (* 2 n) 1))

487 (- (fdco (m n v0 g1) v0 dv g1 dc)

488 (fdco (1+ (m n v0 g1)) v0 dv g1 dc))))

489 (C (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

490 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c

v0))))) 1))

491 (D (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

492 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c

v0))))) 1)))))))

493)

494

495 (local

496 (defthm delta-rewrite-3-lemma1-lemma1

497 (implies (basic-params n 3)

498 (equal (expt (gamma) (+ (+ -1 n -1 n) 2))

499 (* (expt (gamma) (+ -1 n -1 n))

500 (expt (gamma) 2))))

501 :hints (("Goal"

229

C.2. ACL2 Proof for Fine Convergence

502 :use ((:instance exponents-add-for-nonneg-exponents

503 (i (+ -1 n -1 n))

504 (j 2)

505 (r (gamma))))

506 :in-theory (disable exponents-add-for-nonneg-exponents

507 delta-rewrite-2-lemma2))))

508)

509

510 (local

511 (defthm delta-rewrite-3-lemma1-stupidlemma

512 (implies (basic-params n 3)

513 (equal (* 2 n) (+ (+ -1 n -1 n) 2))))

514)

515

516 (local

517 (defthm delta-rewrite-3-lemma1

518 (implies (basic-params n 3)

519 (equal (expt (gamma) (* 2 n))

520 (* (expt (gamma) (+ -1 n -1 n))

521 (expt (gamma) 2))))

522 :hints (("Goal"

523 :use ((:instance delta-rewrite-3-lemma1-lemma1)

524 (:instance delta-rewrite-3-lemma1-stupidlemma)))))

525)

526

527 (local

528 (defthm delta-rewrite-3-lemma2-lemma1-lemma1

529 (implies (basic-params n 3)

530 (>= (+ n n) 2))))

531

532 (local

533 (defthm delta-rewrite-3-lemma2-lemma1-stupidlemma

534 (implies (basic-params n 3)

535 (>= (+ -1 n -1 n) 0))

536 :hints (("GOal"

537 :use ((:instance

delta-rewrite-3-lemma2-lemma1-lemma1))))))

230

C.2. ACL2 Proof for Fine Convergence

538

539 (local

540 (defthm delta-rewrite-3-lemma2-lemma1-lemma2

541 (implies (basic-params n 3)

542 (integerp (+ -1 n -1 n)))

543))

544

545 (local

546 (defthm delta-rewrite-3-lemma2-lemma1-lemma3

547 (implies (basic-params n 3)

548 (>= (+ -1 n -1 n) 0))

549 :hints (("Goal"

550 :use ((:instance

delta-rewrite-3-lemma2-lemma1-stupidlemma))))))

551

552 (local

553 (defthm delta-rewrite-3-lemma2-lemma1

554 (implies (basic-params n 3)

555 (equal (expt (gamma) (+ (+ -1 n -1 n) 1))

556 (* (expt (gamma) (+ -1 n -1 n))

557 (expt (gamma) 1))))

558 :hints (("Goal"

559 :use ((:instance delta-rewrite-3-lemma2-lemma1-lemma2)

560 (:instance delta-rewrite-3-lemma2-lemma1-lemma3)

561 (:instance exponents-add-for-nonneg-exponents

562 (i (+ -1 n -1 n))

563 (j 1)

564 (r (gamma))))

565)))

566)

567

568 (local

569 (defthm delta-rewrite-3-lemma2-stupidlemma

570 (implies (basic-params n 3)

571 (equal (- (* 2 n) 1)

572 (+ (+ -1 n -1 n) 1))))

573)

231

C.2. ACL2 Proof for Fine Convergence

574

575 (local

576 (defthm delta-rewrite-3-lemma2

577 (implies (basic-params n 3)

578 (equal (expt (gamma) (- (* 2 n) 1))

579 (* (expt (gamma) (+ -1 n -1 n))

580 (expt (gamma) 1))))

581 :hints (("Goal"

582 :use ((:instance delta-rewrite-3-lemma2-lemma1)

583 (:instance delta-rewrite-3-lemma2-stupidlemma))

584 :in-theory (disable delta-rewrite-2-lemma2)))

585)

586)

587

588 (local

589 (defthm delta-rewrite-3-lemma3

590 (implies (basic-params n 3)

591 (equal (* (expt (gamma) (- 2 (* 2 n)))

592 (expt (gamma) (+ -1 n -1 n)))

593 1))

594 :hints (("Goal"

595 :use ((:instance expt-minus

596 (r (gamma))

597 (i (- (- 2 (* 2 n)))))))))

598)

599

600 (local

601 (defthm delta-rewrite-3

602 (implies (basic-params n 3 dc v0 dv g1)

603 (equal (+ (* (expt (gamma) (* 2 n))

604 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc)

605 (fdco (m n v0 g1) v0 dv g1 dc)))

606 (* (expt (gamma) (- (* 2 n) 1))

607 (- (fdco (m n v0 g1) v0 dv g1 dc)

608 (fdco (1+ (m n v0 g1)) v0 dv g1 dc)))

609 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

610 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c

232

C.2. ACL2 Proof for Fine Convergence

v0))))) 1)

611 (* (expt (gamma) (+ -1 n -1 n))

612 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

613 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c

v0))))) 1)))

614 (* (expt (gamma) (+ -1 n -1 n))

615 (+ (* (expt (gamma) 2)

616 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc)

617 (fdco (m n v0 g1) v0 dv g1 dc)))

618 (* (expt (gamma) 1)

619 (- (fdco (m n v0 g1) v0 dv g1 dc)

620 (fdco (1+ (m n v0 g1)) v0 dv g1 dc)))

621 (* (expt (gamma) (- 2 (* 2 n)))

622 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

623 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c

v0))))) 1))

624 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

625 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c

v0))))) 1)))))

626 :hints

627 (("Goal"

628 :in-theory (disable delta-rewrite-2-lemma1)

629 :do-not-induct t

630 :clause-processor

631 (Smtlink clause

632 ’((:expand ((:functions ((m integerp)

633 (gamma rationalp)

634 (mu rationalp)

635 (equ-c rationalp)

636 (fdco rationalp)

637 (dv0 rationalp)))

638 (:expansion-level 1)))

639 (:python-file "delta-rewrite-3")

640 (:let ((expt_gamma_2n

641 (expt (gamma) (* 2 n))

642 rationalp)

643 (expt_gamma_2n_minus_1

233

C.2. ACL2 Proof for Fine Convergence

644 (expt (gamma) (- (* 2 n) 1))

645 rationalp)

646 (expt_gamma_2n_minus_2

647 (expt (gamma) (+ -1 n -1 n))

648 rationalp)

649 (expt_gamma_2

650 (expt (gamma) 2)

651 rationalp)

652 (expt_gamma_1

653 (expt (gamma) 1)

654 rationalp)

655 (expt_gamma_2_minus_2n

656 (expt (gamma) (- 2 (* 2 n)))

657 rationalp)

658))

659 (:hypothesize ((equal expt_gamma_2n

660 (* expt_gamma_2n_minus_2 expt_gamma_2))

661 (equal expt_gamma_2n_minus_1

662 (* expt_gamma_2n_minus_2 expt_gamma_1))

663 (equal (* expt_gamma_2_minus_2n

expt_gamma_2n_minus_2)

664 1)))

665 (:use ((:type ())

666 (:hypo ((delta-rewrite-3-lemma1)

667 (delta-rewrite-3-lemma2)

668 (delta-rewrite-3-lemma3)))

669 (:main ()))))

670 state))))

671)

672

673 (local

674 (defthm delta-rewrite-4

675 (implies (basic-params n 3 dc v0 dv g1)

676 (equal (delta-2 n v0 dv g1 dc)

677 (delta-3 n v0 dv g1 dc)))

678 :hints (("Goal"

679 :use ((:instance delta-rewrite-3)))))

234

C.2. ACL2 Proof for Fine Convergence

680)

681

682 (defthm delta-rewrite-5

683 (implies (basic-params n 3 dc v0 dv g1)

684 (equal (delta n v0 dv g1 dc)

685 (delta-3 n v0 dv g1 dc)))

686 :hints (("Goal"

687 :use ((:instance delta-rewrite-1)

688 (:instance delta-rewrite-2)

689 (:instance delta-rewrite-3)

690 (:instance delta-rewrite-4)))))

691)

692

693 (encapsulate ()

694

695 (local

696 (defthm delta-<-0-lemma1-lemma

697 (implies (basic-params n 3 dc v0 dv g1)

698 (implies (< (+ (* (expt (gamma) 2)

699 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc)

700 (fdco (m n v0 g1) v0 dv g1 dc)))

701 (* (expt (gamma) 1)

702 (- (fdco (m n v0 g1) v0 dv g1 dc)

703 (fdco (1+ (m n v0 g1)) v0 dv g1 dc)))

704 (* (expt (gamma) (- 2 (* 2 n)))

705 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

706 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c

v0))))) 1))

707 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

708 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c

v0))))) 1))

709 0)

710 (< (* (expt (gamma) (+ -1 n -1 n))

711 (+ (* (expt (gamma) 2)

712 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc)

713 (fdco (m n v0 g1) v0 dv g1 dc)))

714 (* (expt (gamma) 1)

235

C.2. ACL2 Proof for Fine Convergence

715 (- (fdco (m n v0 g1) v0 dv g1 dc)

716 (fdco (1+ (m n v0 g1)) v0 dv g1 dc)))

717 (* (expt (gamma) (- 2 (* 2 n)))

718 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

719 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c

v0))))) 1))

720 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

721 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c

v0))))) 1)))

722 0)))

723 :hints (("Goal"

724 :clause-processor

725 (Smtlink clause

726 ’((:expand ((:functions ((m integerp)

727 (gamma rationalp)

728 (mu rationalp)

729 (equ-c rationalp)

730 (fdco rationalp)

731 (dv0 rationalp)))

732 (:expansion-level 1)))

733 (:python-file

"delta-smaller-than-0-lemma1-lemma")

734 (:let ((expt_gamma_2n

735 (expt (gamma) (* 2 n))

736 rationalp)

737 (expt_gamma_2n_minus_1

738 (expt (gamma) (- (* 2 n) 1))

739 rationalp)

740 (expt_gamma_2n_minus_2

741 (expt (gamma) (+ -1 n -1 n))

742 rationalp)

743 (expt_gamma_2

744 (expt (gamma) 2)

745 rationalp)

746 (expt_gamma_1

747 (expt (gamma) 1)

748 rationalp)

236

C.2. ACL2 Proof for Fine Convergence

749 (expt_gamma_2_minus_2n

750 (expt (gamma) (- 2 (* 2 n)))

751 rationalp)

752))

753 (:hypothesize ((> expt_gamma_2n_minus_2 0))))

754 state))))

755)

756

757 (local

758 (defthm delta-<-0-lemma1

759 (implies (basic-params n 3 dc v0 dv g1)

760 (implies (< (delta-3-inside n v0 dv g1 dc) 0)

761 (< (delta-3 n v0 dv g1 dc) 0))))

762)

763

764 (local

765 (defthm delta-<-0-lemma2-lemma

766 (implies (basic-params n 3 dc v0 dv g1)

767 (implies (< (/ (+ (* (expt (gamma) 2)

768 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc)

769 (fdco (m n v0 g1) v0 dv g1 dc)))

770 (* (expt (gamma) 1)

771 (- (fdco (m n v0 g1) v0 dv g1 dc)

772 (fdco (1+ (m n v0 g1)) v0 dv g1 dc)))

773 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

774 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c

v0))))) 1))

775 (- 1

776 (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

777 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c

v0)))))))

778 (expt (gamma) (- 2 (* 2 n))))

779 (< (+ (* (expt (gamma) 2)

780 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc)

781 (fdco (m n v0 g1) v0 dv g1 dc)))

782 (* (expt (gamma) 1)

783 (- (fdco (m n v0 g1) v0 dv g1 dc)

237

C.2. ACL2 Proof for Fine Convergence

784 (fdco (1+ (m n v0 g1)) v0 dv g1 dc)))

785 (* (expt (gamma) (- 2 (* 2 n)))

786 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

787 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c

v0))))) 1))

788 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

789 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c

v0))))) 1))

790 0)))

791 :hints (("Goal"

792 :clause-processor

793 (Smtlink clause

794 ’((:expand ((:functions ((m integerp)

795 (gamma rationalp)

796 (mu rationalp)

797 (equ-c rationalp)

798 (fdco rationalp)

799 (dv0 rationalp)))

800 (:expansion-level 1)))

801 (:python-file

"delta-smaller-than-0-lemma2-lemma")

802 (:let ((expt_gamma_2n

803 (expt (gamma) (* 2 n))

804 rationalp)

805 (expt_gamma_2n_minus_1

806 (expt (gamma) (- (* 2 n) 1))

807 rationalp)

808 (expt_gamma_2n_minus_2

809 (expt (gamma) (+ -1 n -1 n))

810 rationalp)

811 (expt_gamma_2

812 (expt (gamma) 2)

813 rationalp)

814 (expt_gamma_1

815 (expt (gamma) 1)

816 rationalp)

817 (expt_gamma_2_minus_2n

238

C.2. ACL2 Proof for Fine Convergence

818 (expt (gamma) (- 2 (* 2 n)))

819 rationalp)

820))

821 (:hypothesize ((> expt_gamma_2_minus_2n 0))))

822 state))))

823)

824

825 (local

826 (defthm delta-<-0-lemma2

827 (implies (basic-params n 3 dc v0 dv g1)

828 (implies (< (delta-3-inside-transform n v0 dv g1 dc)

829 (expt (gamma) (- 2 (* 2 n))))

830 (< (delta-3-inside n v0 dv g1 dc) 0)))

831 :hints (("Goal"

832 :use ((:instance delta-<-0-lemma2-lemma)))))

833)

834

835 (local

836 ;; This is for proving 2n < gamma^(2-2n)

837 (defthm delta-<-0-lemma3-lemma1

838 (implies (and (integerp k)

839 (>= k 6))

840 (< k (expt (/ (gamma)) (- k 2)))))

841)

842

843 (local

844 (defthm delta-<-0-lemma3-lemma2-stupidlemma

845 (implies (basic-params n 3)

846 (>= n 3))))

847

848 (local

849 (defthm delta-<-0-lemma3-lemma2-stupidlemma-omg

850 (implies (and (rationalp a) (rationalp b) (>= a b))

851 (>= (* 2 a) (* 2 b)))))

852

853 (local

854 (defthm delta-<-0-lemma3-lemma2-lemma1

239

C.2. ACL2 Proof for Fine Convergence

855 (implies (basic-params n 3)

856 (>= (* 2 n) 6))

857 :hints (("Goal"

858 :use ((:instance delta-<-0-lemma3-lemma2-stupidlemma)

859 (:instance delta-<-0-lemma3-lemma2-stupidlemma-omg

860 (a n)

861 (b 3))

862))))

863)

864

865 (local

866 (defthm delta-<-0-lemma3-lemma2

867 (implies (basic-params n 3)

868 (< (* 2 n)

869 (expt (/ (gamma)) (- (* 2 n) 2))))

870 :hints (("Goal"

871 :use ((:instance delta-<-0-lemma3-lemma1

872 (k (* 2 n)))

873 (:instance delta-<-0-lemma3-lemma2-lemma1))))

874 :rule-classes :linear)

875)

876

877 (local

878 (defthm delta-<-0-lemma3-lemma3-stupidlemma

879 (equal (expt a n) (expt (/ a) (- n))))

880)

881

882 (local

883 (defthm delta-<-0-lemma3-lemma3

884 (implies (basic-params n 3)

885 (equal (expt (/ (gamma)) (- (* 2 n) 2))

886 (expt (gamma) (- 2 (* 2 n)))))

887 :hints (("Goal"

888 :use ((:instance delta-<-0-lemma3-lemma3-stupidlemma

889 (a (/ (gamma)))

890 (n (- (* 2 n) 2))))

891 :in-theory (disable

240

C.2. ACL2 Proof for Fine Convergence

delta-<-0-lemma3-lemma3-stupidlemma))))

892)

893

894 (local

895 (defthm delta-<-0-lemma3-lemma4-stupidlemma

896 (implies (and (< a b) (equal b c)) (< a c)))

897)

898

899 (local

900 (defthm delta-<-0-lemma3-lemma4

901 (implies (basic-params n 3)

902 (< (* 2 n)

903 (expt (gamma) (- 2 (* 2 n)))))

904 :hints (("Goal"

905 :do-not ’(preprocess simplify)

906 :use ((:instance delta-<-0-lemma3-lemma2)

907 (:instance delta-<-0-lemma3-lemma3)

908 (:instance delta-<-0-lemma3-lemma4-stupidlemma

909 (a (* 2 n))

910 (b (expt (/ (gamma)) (- (* 2 n) 2)))

911 (c (expt (gamma) (- 2 (* 2 n))))))

912 :in-theory (disable delta-<-0-lemma3-lemma2

913 delta-<-0-lemma3-lemma3

914 delta-<-0-lemma3-lemma4-stupidlemma)))

915 :rule-classes :linear)

916)

917

918 (local

919 (defthm delta-<-0-lemma3

920 (implies (basic-params n 3 dc v0 dv g1)

921 (implies (< (/ (+ (* (expt (gamma) 2)

922 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc)

923 (fdco (m n v0 g1) v0 dv g1 dc)))

924 (* (expt (gamma) 1)

925 (- (fdco (m n v0 g1) v0 dv g1 dc)

926 (fdco (1+ (m n v0 g1)) v0 dv g1 dc)))

927 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

241

C.2. ACL2 Proof for Fine Convergence

928 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c

v0))))) 1))

929 (- 1

930 (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

931 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c

v0)))))))

932 (* 2 n))

933 (< (/ (+ (* (expt (gamma) 2)

934 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc)

935 (fdco (m n v0 g1) v0 dv g1 dc)))

936 (* (expt (gamma) 1)

937 (- (fdco (m n v0 g1) v0 dv g1 dc)

938 (fdco (1+ (m n v0 g1)) v0 dv g1 dc)))

939 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

940 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c

v0))))) 1))

941 (- 1

942 (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

943 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c

v0)))))))

944 (expt (gamma) (- 2 (* 2 n))))))

945 :hints (("Goal"

946 :clause-processor

947 (Smtlink clause

948 ’((:expand ((:functions ((m integerp)

949 (gamma rationalp)

950 (mu rationalp)

951 (equ-c rationalp)

952 (fdco rationalp)

953 (dv0 rationalp)))

954 (:expansion-level 1)))

955 (:python-file "delta-smaller-than-0-lemma3")

956 (:let ((expt_gamma_2n

957 (expt (gamma) (* 2 n))

958 rationalp)

959 (expt_gamma_2n_minus_1

960 (expt (gamma) (- (* 2 n) 1))

242

C.2. ACL2 Proof for Fine Convergence

961 rationalp)

962 (expt_gamma_2n_minus_2

963 (expt (gamma) (+ -1 n -1 n))

964 rationalp)

965 (expt_gamma_2

966 (expt (gamma) 2)

967 rationalp)

968 (expt_gamma_1

969 (expt (gamma) 1)

970 rationalp)

971 (expt_gamma_2_minus_2n

972 (expt (gamma) (- 2 (* 2 n)))

973 rationalp))

974)

975 (:hypothesize ((< (* 2 n)

expt_gamma_2_minus_2n)))

976 (:use ((:type ())

977 (:hypo ((delta-<-0-lemma3-lemma4)))

978 (:main ())))

979)

980 state)

981 :in-theory (disable delta-<-0-lemma3-lemma1

982 delta-<-0-lemma3-lemma3-stupidlemma

983 delta-<-0-lemma3-lemma2

984 delta-<-0-lemma3-lemma3

985 delta-<-0-lemma3-lemma4-stupidlemma)

986)))

987)

988

989 (local

990 (defthm delta-<-0-lemma4

991 (implies (basic-params n 3 dc v0 dv g1)

992 (< (/ (+ (* (expt (gamma) 2)

993 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc)

994 (fdco (m n v0 g1) v0 dv g1 dc)))

995 (* (expt (gamma) 1)

996 (- (fdco (m n v0 g1) v0 dv g1 dc)

243

C.2. ACL2 Proof for Fine Convergence

997 (fdco (1+ (m n v0 g1)) v0 dv g1 dc)))

998 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

999 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c

v0))))) 1))

1000 (- 1

1001 (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

1002 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c

v0)))))))

1003 (* 2 n)))

1004 :hints (("Goal"

1005 :clause-processor

1006 (Smtlink clause

1007 ’((:expand ((:functions ((m integerp)

1008 (gamma rationalp)

1009 (mu rationalp)

1010 (equ-c rationalp)

1011 (fdco rationalp)

1012 (dv0 rationalp)))

1013 (:expansion-level 1)))

1014 (:python-file "delta-smaller-than-0-lemma4")

1015 (:let ((expt_gamma_2

1016 (expt (gamma) 2)

1017 rationalp)

1018 (expt_gamma_1

1019 (expt (gamma) 1)

1020 rationalp))

1021)

1022 (:hypothesize ((equal expt_gamma_1 1/5)

1023 (equal expt_gamma_2 1/25)

1024)

1025))

1026 state)

1027 :in-theory (disable delta-<-0-lemma3-lemma1

1028 delta-<-0-lemma3-lemma3-stupidlemma

1029 delta-<-0-lemma3-lemma2

1030 delta-<-0-lemma3-lemma3

1031 delta-<-0-lemma3-lemma4-stupidlemma

244

C.2. ACL2 Proof for Fine Convergence

1032 delta-<-0-lemma3-lemma4))))

1033)

1034

1035

1036 (defthm delta-<-0

1037 (implies (basic-params n 3 dc v0 dv g1)

1038 (< (delta n v0 dv g1 dc) 0))

1039 :hints (("Goal"

1040 :use ((:instance delta-rewrite-5)

1041 (:instance delta-<-0-lemma4)

1042 (:instance delta-<-0-lemma3)

1043 (:instance delta-<-0-lemma2)

1044 (:instance delta-<-0-lemma1))

1045 :in-theory (disable delta-<-0-lemma3-lemma1

1046 delta-<-0-lemma3-lemma3-stupidlemma

1047 delta-<-0-lemma3-lemma2

1048 delta-<-0-lemma3-lemma3

1049 delta-<-0-lemma3-lemma4-stupidlemma

1050 delta-<-0-lemma3-lemma4)

1051)))

1052) ;; delta < 0 thus is proved

1053

1054 ;; prove phi(2n+1) = gamma^2*A+gamma*B+delta

1055 (encapsulate ()

1056

1057 (local

1058 (defthm split-phi-2n+1-lemma1-lemma1

1059 (implies (basic-params n 3 dc v0 dv g1 phi0)

1060 (equal (A (+ n 1) phi0 v0 dv g1 dc)

1061 (+ (* (expt (gamma) (+ (* 2 n) 1)) phi0)

1062 (* (expt (gamma) (* 2 n))

1063 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc) 1))

1064 (* (expt (gamma) (- (* 2 n) 1))

1065 (- (fdco (m n v0 g1) v0 dv g1 dc) 1))))))

1066)

1067

1068 (local

245

C.2. ACL2 Proof for Fine Convergence

1069 (defthm split-phi-2n+1-lemma1-lemma2

1070 (implies (basic-params n 3 dc v0 dv g1 phi0)

1071 (equal (+ (* (expt (gamma) (+ (* 2 n) 1)) phi0)

1072 (* (expt (gamma) (* 2 n))

1073 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc) 1))

1074 (* (expt (gamma) (- (* 2 n) 1))

1075 (- (fdco (m n v0 g1) v0 dv g1 dc) 1)))

1076 (+ (* (+ (* (expt (gamma) (- (* 2 n) 1)) phi0)

1077 (* (expt (gamma) (- (* 2 n) 2))

1078 (- (fdco (m n v0 g1) v0 dv g1 dc) 1))

1079 (* (expt (gamma) (- (* 2 n) 3))

1080 (- (fdco (1+ (m n v0 g1)) v0 dv g1 dc) 1)))

1081 (expt (gamma) 2))

1082 (- (* (expt (gamma) (* 2 n))

1083 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc) 1))

1084 (* (expt (gamma) (* 2 n))

1085 (- (fdco (m n v0 g1) v0 dv g1 dc) 1)))

1086 (- (* (expt (gamma) (- (* 2 n) 1))

1087 (- (fdco (m n v0 g1) v0 dv g1 dc) 1))

1088 (* (expt (gamma) (- (* 2 n) 1))

1089 (- (fdco (1+ (m n v0 g1)) v0 dv g1 dc) 1))))))

1090)

1091)

1092

1093 (local

1094 (defthm split-phi-2n+1-lemma1-A

1095 (implies (basic-params n 3 dc v0 dv g1 phi0)

1096 (equal (A (+ n 1) phi0 v0 dv g1 dc)

1097 (+ (* (A n phi0 v0 dv g1 dc) (gamma) (gamma))

1098 (- (* (expt (gamma) (* 2 n))

1099 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc) 1))

1100 (* (expt (gamma) (* 2 n))

1101 (- (fdco (m n v0 g1) v0 dv g1 dc) 1)))

1102 (- (* (expt (gamma) (- (* 2 n) 1))

1103 (- (fdco (m n v0 g1) v0 dv g1 dc) 1))

1104 (* (expt (gamma) (- (* 2 n) 1))

1105 (- (fdco (1+ (m n v0 g1)) v0 dv g1 dc) 1)))))))

246

C.2. ACL2 Proof for Fine Convergence

1106)

1107

1108 (local

1109 (defthm split-phi-2n+1-lemma2-lemma1

1110 (implies (basic-params n 3 dc v0 dv g1)

1111 (equal (B (+ n 1) v0 dv g1 dc)

1112 (* (expt (gamma) (- n 1))

1113 (B-sum 1 (- n 1) v0 dv g1 dc)))))

1114)

1115

1116 (local

1117 (defthm split-phi-2n+1-lemma2-lemma2

1118 (implies (basic-params n 3 dc v0 dv g1)

1119 (equal (B (+ n 1) v0 dv g1 dc)

1120 (* (expt (gamma) (- n 1))

1121 (+ (B-term (- n 1) v0 dv g1 dc)

1122 (B-term (- (- n 1)) v0 dv g1 dc)

1123 (B-sum 1 (- n 2) v0 dv g1 dc))))))

1124)

1125

1126 (local

1127 (defthm split-phi-2n+1-lemma2-lemma3

1128 (implies (basic-params n 3 dc v0 dv g1)

1129 (equal (B (+ n 1) v0 dv g1 dc)

1130 (+ (* (expt (gamma) (- n 1))

1131 (B-sum 1 (- n 2) v0 dv g1 dc))

1132 (* (expt (gamma) (- n 1))

1133 (B-term (- n 1) v0 dv g1 dc))

1134 (* (expt (gamma) (- n 1))

1135 (B-term (- (- n 1)) v0 dv g1 dc))))))

1136)

1137

1138 (local

1139 (defthm split-phi-2n+1-lemma2-lemma4

1140 (implies (basic-params n 3 dc v0 dv g1)

1141 (equal (B (+ n 1) v0 dv g1 dc)

1142 (+ (* (gamma) (expt (gamma) (- n 2))

247

C.2. ACL2 Proof for Fine Convergence

1143 (B-sum 1 (- n 2) v0 dv g1 dc))

1144 (* (expt (gamma) (- n 1))

1145 (+ (B-term (- n 1) v0 dv g1 dc)

1146 (B-term (- (- n 1)) v0 dv g1 dc)))))))

1147)

1148

1149 (local

1150 (defthm split-phi-2n+1-lemma2-lemma5

1151 (implies (basic-params n 3 dc v0 dv g1)

1152 (equal (B (+ n 1) v0 dv g1 dc)

1153 (+ (* (gamma) (B n v0 dv g1 dc))

1154 (* (expt (gamma) (- n 1))

1155 (+ (B-term (- n 1) v0 dv g1 dc)

1156 (B-term (- (- n 1)) v0 dv g1 dc)))))))

1157)

1158

1159 (local

1160 (defthm split-phi-2n+1-lemma2-B

1161 (implies (basic-params n 3 dc v0 dv g1)

1162 (equal (B (+ n 1) v0 dv g1 dc)

1163 (+ (* (gamma) (B n v0 dv g1 dc))

1164 (* (expt (gamma) (- n 1))

1165 (+ (* (expt (gamma) (- (- n 1)))

1166 (B-term-rest (- n 1) v0 dv g1 dc))

1167 (* (expt (gamma) (- n 1))

1168 (B-term-rest (- (- n 1)) v0 dv g1 dc))))))))

1169)

1170

1171 (local

1172 (defthm split-phi-2n+1-lemma3-delta-stupidlemma

1173 (implies (basic-params n 3 dc v0 dv g1)

1174 (equal (+ (- (* (expt (gamma) (* 2 n))

1175 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc) 1))

1176 (* (expt (gamma) (* 2 n))

1177 (- (fdco (m n v0 g1) v0 dv g1 dc) 1)))

1178 (- (* (expt (gamma) (- (* 2 n) 1))

1179 (- (fdco (m n v0 g1) v0 dv g1 dc) 1))

248

C.2. ACL2 Proof for Fine Convergence

1180 (* (expt (gamma) (- (* 2 n) 1))

1181 (- (fdco (1+ (m n v0 g1)) v0 dv g1 dc) 1)))

1182 (* (expt (gamma) (- n 1))

1183 (+ (* (expt (gamma) (- (- n 1)))

1184 (B-term-rest (- n 1) v0 dv g1 dc))

1185 (* (expt (gamma) (- n 1))

1186 (B-term-rest (- (- n 1)) v0 dv g1 dc)))))

1187 (+ (- (* (expt (gamma) (* 2 n))

1188 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc) 1))

1189 (* (expt (gamma) (* 2 n))

1190 (- (fdco (m n v0 g1) v0 dv g1 dc) 1)))

1191 (- (* (expt (gamma) (- (* 2 n) 1))

1192 (- (fdco (m n v0 g1) v0 dv g1 dc) 1))

1193 (* (expt (gamma) (- (* 2 n) 1))

1194 (- (fdco (1+ (m n v0 g1)) v0 dv g1 dc) 1)))

1195 (* (expt (gamma) (1- n))

1196 (+ (* (expt (gamma) (1+ (- n)))

1197 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

1198 (1+ (* *beta* (+ (* g1 (+ (1- n) dc)) (equ-c

v0))))) 1))

1199 (* (expt (gamma) (1- n))

1200 (- (/ (* (mu) (1+ (* *alpha* (+ v0 dv))))

1201 (1+ (* *beta* (+ (* g1 (+ (- 1 n) dc)) (equ-c

v0))))) 1))))))))

1202)

1203

1204 (local

1205 (defthm split-phi-2n+1-lemma3-delta

1206 (implies (basic-params n 3 dc v0 dv g1)

1207 (equal (+ (- (* (expt (gamma) (* 2 n))

1208 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc) 1))

1209 (* (expt (gamma) (* 2 n))

1210 (- (fdco (m n v0 g1) v0 dv g1 dc) 1)))

1211 (- (* (expt (gamma) (- (* 2 n) 1))

1212 (- (fdco (m n v0 g1) v0 dv g1 dc) 1))

1213 (* (expt (gamma) (- (* 2 n) 1))

1214 (- (fdco (1+ (m n v0 g1)) v0 dv g1 dc) 1)))

249

C.2. ACL2 Proof for Fine Convergence

1215 (* (expt (gamma) (- n 1))

1216 (+ (* (expt (gamma) (- (- n 1)))

1217 (B-term-rest (- n 1) v0 dv g1 dc))

1218 (* (expt (gamma) (- n 1))

1219 (B-term-rest (- (- n 1)) v0 dv g1 dc)))))

1220 (delta n v0 dv g1 dc)))

1221 :hints (("Goal"

1222 :use ((:instance split-phi-2n+1-lemma3-delta-stupidlemma)

1223 (:instance delta)))))

1224)

1225

1226 (local

1227 (defthm split-phi-2n+1-lemma4

1228 (implies (basic-params n 3 dc v0 dv g1 phi0)

1229 (equal (phi-2n-1 (1+ n) phi0 v0 dv g1 dc)

1230 (+ (A (+ n 1) phi0 v0 dv g1 dc)

1231 (B (+ n 1) v0 dv g1 dc)))))

1232)

1233

1234 (local

1235 (defthm split-phi-2n+1-lemma5

1236 (implies (basic-params n 3 dc v0 dv g1 phi0)

1237 (equal (phi-2n-1 (1+ n) phi0 v0 dv g1 dc)

1238 (+ (+ (* (A n phi0 v0 dv g1 dc) (gamma) (gamma))

1239 (- (* (expt (gamma) (* 2 n))

1240 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc) 1))

1241 (* (expt (gamma) (* 2 n))

1242 (- (fdco (m n v0 g1) v0 dv g1 dc) 1)))

1243 (- (* (expt (gamma) (- (* 2 n) 1))

1244 (- (fdco (m n v0 g1) v0 dv g1 dc) 1))

1245 (* (expt (gamma) (- (* 2 n) 1))

1246 (- (fdco (1+ (m n v0 g1)) v0 dv g1 dc) 1))))

1247 (+ (* (gamma) (B n v0 dv g1 dc))

1248 (* (expt (gamma) (- n 1))

1249 (+ (* (expt (gamma) (- (- n 1)))

1250 (B-term-rest (- n 1) v0 dv g1 dc))

1251 (* (expt (gamma) (- n 1))

250

C.2. ACL2 Proof for Fine Convergence

1252 (B-term-rest (- (- n 1)) v0 dv g1 dc))))))))

1253 :hints (("Goal"

1254 :use ((:instance split-phi-2n+1-lemma1-A)

1255 (:instance split-phi-2n+1-lemma2-B)))))

1256)

1257

1258 (local

1259 (defthm split-phi-2n+1-lemma6

1260 (implies (basic-params n 3 dc v0 dv g1 phi0)

1261 (equal (phi-2n-1 (1+ n) phi0 v0 dv g1 dc)

1262 (+ (* (A n phi0 v0 dv g1 dc) (gamma) (gamma))

1263 (* (gamma) (B n v0 dv g1 dc))

1264 (+ (- (* (expt (gamma) (* 2 n))

1265 (- (fdco (1- (m n v0 g1)) v0 dv g1 dc) 1))

1266 (* (expt (gamma) (* 2 n))

1267 (- (fdco (m n v0 g1) v0 dv g1 dc) 1)))

1268 (- (* (expt (gamma) (- (* 2 n) 1))

1269 (- (fdco (m n v0 g1) v0 dv g1 dc) 1))

1270 (* (expt (gamma) (- (* 2 n) 1))

1271 (- (fdco (1+ (m n v0 g1)) v0 dv g1 dc) 1)))

1272 (* (expt (gamma) (- n 1))

1273 (+ (* (expt (gamma) (- (- n 1)))

1274 (B-term-rest (- n 1) v0 dv g1 dc))

1275 (* (expt (gamma) (- n 1))

1276 (B-term-rest (- (- n 1)) v0 dv g1 dc)))))))))

1277)

1278

1279 (defthm split-phi-2n+1

1280 (implies (basic-params n 3 dc v0 dv g1 phi0)

1281 (equal (phi-2n-1 (1+ n) phi0 v0 dv g1 dc)

1282 (+ (* (gamma) (gamma) (A n phi0 v0 dv g1 dc))

1283 (* (gamma) (B n v0 dv g1 dc)) (delta n v0 dv g1

dc))))

1284 :hints (("Goal"

1285 :use ((:instance split-phi-2n+1-lemma6)

1286 (:instance split-phi-2n+1-lemma3-delta)))))

1287

251

C.2. ACL2 Proof for Fine Convergence

1288)

1289

1290 ;; prove gamma^2*A + gamma*B < 0

1291 (encapsulate ()

1292

1293 (local

1294 (defthm except-for-delta-<-0-lemma1

1295 (implies (and (and (rationalp c)

1296 (rationalp a)

1297 (rationalp b))

1298 (and (> c 0)

1299 (< c 1)

1300 (< (+ A B) 0)

1301 (< B 0)))

1302 (< (+ (* c c A) (* c B)) 0))

1303 :hints (("Goal"

1304 :clause-processor

1305 (Smtlink clause

1306 ’((:expand ((:function ())

1307 (:expansion-level 1)))

1308 (:python-file

"except-for-delta-smaller-than-0-lemma1")

1309 (:let ())

1310 (:hypothesize ()))

1311 state)))

1312 :rule-classes :linear)

1313)

1314

1315 (defthm except-for-delta-<-0

1316 (implies (basic-params n 3 dc v0 dv g1 phi0 (< (phi-2n-1 n

phi0 v0 dv g1 dc) 0))

1317 (< (+ (* (gamma) (gamma) (A n phi0 v0 dv g1 dc))

1318 (* (gamma) (B n v0 dv g1 dc)))

1319 0))

1320 :hints (("Goal"

1321 :do-not-induct t

1322 :use ((:instance except-for-delta-<-0-lemma1

252

C.2. ACL2 Proof for Fine Convergence

1323 (c (gamma))

1324 (A (A n phi0 v0 dv g1 dc))

1325 (B (B n v0 dv g1 dc)))

1326 (:instance B-neg)))))

1327)

1328

1329 ;; for induction step

1330 (encapsulate ()

1331

1332 (defthm phi-2n+1-<-0-inductive

1333 (implies (basic-params n 3 dc v0 dv g1 phi0 (< (phi-2n-1 n

phi0 v0 dv g1 dc) 0))

1334 (< (phi-2n-1 (1+ n) phi0 v0 dv g1 dc) 0))

1335 :hints (("Goal"

1336 :use ((:instance split-phi-2n+1)

1337 (:instance delta-<-0)

1338 (:instance except-for-delta-<-0)))))

1339

1340 (defthm phi-2n+1-<-0-inductive-corollary

1341 (implies (basic-params (- i 1) 3 dc v0 dv g1 phi0

1342 (< (phi-2n-1 (- i 1) phi0 v0 dv g1 dc) 0))

1343 (< (phi-2n-1 i phi0 v0 dv g1 dc) 0))

1344 :hints (("Goal"

1345 :use ((:instance phi-2n+1-<-0-inductive

1346 (n (- i 1)))))))

1347

1348 (defthm phi-2n+1-<-0-inductive-corollary-2

1349 (implies (basic-params (- i 1) 3 dc v0 dv g1 phi0

1350 (< (phi-2n-1 (- i 1) phi0 v0 dv g1 dc) 0))

1351 (< (+ (A i phi0 v0 dv g1 dc)

1352 (* (B-expt i)

1353 (B-sum 1 (- i 2) v0 dv g1 dc))) 0))

1354 :hints (("Goal"

1355 :use ((:instance phi-2n+1-<-0-inductive-corollary)))))

1356

1357 (defthm phi-2n+1-<-0-base

1358 (implies (basic-params-equal n 2 dc v0 dv g1 phi0)

253

C.2. ACL2 Proof for Fine Convergence

1359 (< (phi-2n-1 (1+ n) phi0 v0 dv g1 dc) 0))

1360 :hints (("Goal’’"

1361 :clause-processor

1362 (Smtlink clause

1363 ’((:expand ((:function ())

1364 (:expansion-level 1)))

1365 (:python-file "phi-2n+1-smaller-than-0-base")

1366 (:let ())

1367 (:hypothesize ()))

1368 state)))

1369)

1370

1371 (defthm phi-2n+1-<-0-base-new

1372 (implies (basic-params-equal (- i 2) 1 dc v0 dv g1 phi0)

1373 (< (phi-2n-1 (- i 1) phi0 v0 dv g1 dc) 0))

1374 :hints (("Goal’’"

1375 :clause-processor

1376 (Smtlink clause

1377 ’((:expand ((:function ())

1378 (:expansion-level 1)))

1379 (:python-file "phi-2n+1-smaller-than-0-base-new")

1380 (:let ())

1381 (:hypothesize ()))

1382 state)))

1383)

1384

1385 (defthm phi-2n+1-<-0-base-corollary

1386 (implies (basic-params-equal (1- i) 2 dc v0 dv g1 phi0)

1387 (< (phi-2n-1 i phi0 v0 dv g1 dc) 0))

1388 :hints (("Goal"

1389 :use ((:instance phi-2n+1-<-0-base

1390 (n (- i 1))))))

1391)

1392

1393 (defthm phi-2n+1-<-0-base-corollary-2

1394 (implies (basic-params-equal (1- i) 2 dc v0 dv g1 phi0)

1395 (< (+ (A i phi0 v0 dv g1 dc)

254

C.2. ACL2 Proof for Fine Convergence

1396 (* (B-expt i)

1397 (B-sum 1 (- i 2) v0 dv g1 dc))) 0))

1398 :hints (("Goal"

1399 :use ((:instance phi-2n+1-<-0-base-corollary))))

1400)

1401

1402 (defthm stupid-proof

1403 (implies (and (equal a f)

1404 (equal a i)

1405 (implies (and m l) l)

1406 (implies l (and c h))

1407 (implies (and c h) (and c j))

1408 (implies (and a b c d) e)

1409 (implies (and f b c d) g)

1410 (implies (and f b h d e) g)

1411 i

1412 m

1413 (implies (and a b j d) e)

1414 f

1415 b

1416 l

1417 d)

1418 g)

1419 :rule-classes nil)

1420

1421 (defthm phi-2n+1-<-0-lemma-lemma1

1422 (implies

1423 (and

1424 (implies

1425 (and (and (integerp (+ -2 i))

1426 (rationalp g1)

1427 (rationalp v0)

1428 (rationalp phi0)

1429 (rationalp dv)

1430 (rationalp dc))

1431 (equal (+ -2 i) 1)

1432 (equal g1 1/3200)

255

C.2. ACL2 Proof for Fine Convergence

1433 (>= dc 0)

1434 (< dc 1)

1435 (<= 9/10 v0)

1436 (<= v0 11/10)

1437 (<= -1/8000 dv)

1438 (<= dv 1/8000)

1439 (<= 0 phi0)

1440 (< phi0

1441 (+ -1

1442 (* (fix (+ 1 (fix (+ v0 dv))))

1443 (/ (+ 1

1444 (fix (* (+ 1

1445 (* (+ (fix (* (+ 1

(fix v0)) 1)) -1)

1446 (/ g1))

1447 -640 dc)

1448 g1))))))))

1449 (< (phi-2n-1 (+ -1 i) phi0 v0 dv g1 dc) 0))

1450 (implies

1451 (and (and (integerp (+ -1 i))

1452 (rationalp g1)

1453 (rationalp v0)

1454 (rationalp phi0)

1455 (rationalp dv)

1456 (rationalp dc))

1457 (equal (+ -1 i) 2)

1458 (equal g1 1/3200)

1459 (>= dc 0)

1460 (< dc 1)

1461 (<= 9/10 v0)

1462 (<= v0 11/10)

1463 (<= -1/8000 dv)

1464 (<= dv 1/8000)

1465 (<= 0 phi0)

1466 (< phi0

1467 (+ -1

1468 (* (fix (+ 1 (fix (+ v0 dv))))

256

C.2. ACL2 Proof for Fine Convergence

1469 (/ (+ 1

1470 (fix (* (+ 1

1471 (* (+ (fix (* (+ 1

(fix v0)) 1)) -1)

1472 (/ g1))

1473 -640 dc)

1474 g1))))))))

1475 (< (+ (a i phi0 v0 dv g1 dc)

1476 (* (/ (expt 5 (+ -2 i)))

1477 (b-sum 1 (+ -2 i) v0 dv g1 dc)))

1478 0))

1479 (implies

1480 (and (and (integerp (+ -1 i))

1481 (rationalp g1)

1482 (rationalp v0)

1483 (rationalp dv)

1484 (rationalp phi0)

1485 (rationalp dc))

1486 (<= 3 (+ -1 i))

1487 (<= (+ -1 i) 640)

1488 (>= dc 0)

1489 (< dc 1)

1490 (equal g1 1/3200)

1491 (<= 9/10 v0)

1492 (<= v0 11/10)

1493 (<= -1/8000 dv)

1494 (<= dv 1/8000)

1495 (<= 0 phi0)

1496 (< phi0

1497 (+ -1

1498 (* (fix (+ 1 (fix (+ v0 dv))))

1499 (/ (+ 1

1500 (fix (* (+ 1

1501 (* (+ (fix (* (+ 1

(fix v0)) 1)) -1)

1502 (/ g1))

1503 -640 dc)

257

C.2. ACL2 Proof for Fine Convergence

1504 g1)))))))

1505 (< (phi-2n-1 (+ -1 i) phi0 v0 dv g1 dc) 0))

1506 (< (+ (a i phi0 v0 dv g1 dc)

1507 (* (/ (expt 5 (+ -2 i)))

1508 (b-sum 1 (+ -2 i) v0 dv g1 dc)))

1509 0))

1510 (not (or (not (integerp i)) (< i 1)))

1511 (implies

1512 (and (and (integerp (+ -1 -1 i))

1513 (rationalp g1)

1514 (rationalp v0)

1515 (rationalp dv)

1516 (rationalp phi0)

1517 (rationalp dc))

1518 (<= 2 (+ -1 -1 i))

1519 (<= (+ -1 -1 i) 640)

1520 (>= dc 0)

1521 (< dc 1)

1522 (equal g1 1/3200)

1523 (<= 9/10 v0)

1524 (<= v0 11/10)

1525 (<= -1/8000 dv)

1526 (<= dv 1/8000)

1527 (<= 0 phi0)

1528 (< phi0

1529 (+ -1

1530 (* (fix (+ 1 (fix (+ v0 dv))))

1531 (/ (+ 1

1532 (fix (* (+ 1

1533 (* (+ (fix (* (+ 1

(fix v0)) 1)) -1)

1534 (/ g1))

1535 -640 dc)

1536 g1))))))))

1537 (< (+ (a (+ -1 i) phi0 v0 dv g1 dc)

1538 (* (/ (expt 5 (+ -2 -1 i)))

1539 (b-sum 1 (+ -2 -1 i) v0 dv g1 dc)))

258

C.2. ACL2 Proof for Fine Convergence

1540 0))

1541 (integerp (+ -1 i))

1542 (rationalp g1)

1543 (rationalp v0)

1544 (rationalp dv)

1545 (rationalp phi0)

1546 (rationalp dc)

1547 (<= 2 (+ -1 i))

1548 (<= (+ -1 i) 640)

1549 (>= dc 0)

1550 (< dc 1)

1551 (equal g1 1/3200)

1552 (<= 9/10 v0)

1553 (<= v0 11/10)

1554 (<= -1/8000 dv)

1555 (<= dv 1/8000)

1556 (<= 0 phi0)

1557 (< phi0

1558 (+ -1

1559 (* (fix (+ 1 (fix (+ v0 dv))))

1560 (/ (+ 1

1561 (fix (* (+ 1

1562 (* (+ (fix (* (+ 1 (fix v0))

1)) -1)

1563 (/ g1))

1564 -640 dc)

1565 g1))))))))

1566 (< (+ (a i phi0 v0 dv g1 dc)

1567 (* (/ (expt 5 (+ -2 i)))

1568 (b-sum 1 (+ -2 i) v0 dv g1 dc)))

1569 0))

1570 :hints (("Goal"

1571 :use ((:instance stupid-proof

1572 (a (integerp (+ -1 -1 i)))

1573 (b (and (rationalp g1)

1574 (rationalp v0)

1575 (rationalp dv)

259

C.2. ACL2 Proof for Fine Convergence

1576 (rationalp phi0)

1577 (rationalp dc)))

1578 (c (equal (+ -2 i) 1))

1579 (d (and (>= dc 0)

1580 (< dc 1)

1581 (equal g1 1/3200)

1582 (<= 9/10 v0)

1583 (<= v0 11/10)

1584 (<= -1/8000 dv)

1585 (<= dv 1/8000)

1586 (<= 0 phi0)

1587 (< phi0

1588 (+ -1

1589 (* (fix (+ 1 (fix (+ v0 dv))))

1590 (/ (+ 1

1591 (fix (* (+ 1

1592 (* (+ (fix (* (+ 1 (fix v0)) 1)) -1)

1593 (/ g1))

1594 -640 dc)

1595 g1)))))))))

1596 (e (< (+ (a (+ -1 i) phi0 v0 dv g1 dc)

1597 (* (/ (expt 5 (+ -2 -1 i)))

1598 (b-sum 1 (+ -2 -1 i) v0 dv g1 dc)))

1599 0))

1600 (f (integerp (+ -1 i)))

1601 (g (< (+ (a i phi0 v0 dv g1 dc)

1602 (* (/ (expt 5 (+ -2 i)))

1603 (b-sum 1 (+ -2 i) v0 dv g1 dc)))

1604 0))

1605 (h (and (<= 3 (+ -1 i))

1606 (<= (+ -1 i) 640)))

1607 (i (integerp i))

1608 (j (and (<= 2 (+ -1 -1 i))

1609 (<= (+ -1 -1 i) 640)))

1610 (l (and (<= 2 (+ -1 i))

1611 (<= (+ -1 i) 640)

1612))

260

C.2. ACL2 Proof for Fine Convergence

1613 (m (>= i 1)))))))

1614

1615 (defthm phi-2n+1-<-0-lemma-lemma2

1616 (implies (and (or (not (integerp i)) (< i 1))

1617 (integerp (+ -1 i))

1618 (rationalp g1)

1619 (rationalp v0)

1620 (rationalp dv)

1621 (rationalp phi0)

1622 (rationalp dc)

1623 (<= 2 (+ -1 i))

1624 (<= (+ -1 i) 640)

1625 (>= dc 0)

1626 (< dc 1)

1627 (equal g1 1/3200)

1628 (<= 9/10 v0)

1629 (<= v0 11/10)

1630 (<= -1/8000 dv)

1631 (<= dv 1/8000)

1632 (<= 0 phi0)

1633 (< phi0

1634 (+ -1

1635 (* (fix (+ 1 (fix (+ v0 dv))))

1636 (/ (+ 1

1637 (fix (* (+ 1

1638 (* (+ (fix (* (+ 1

(fix v0)) 1)) -1)

1639 (/ g1))

1640 -640 dc)

1641 g1))))))))

1642 (< (+ (a i phi0 v0 dv g1 dc)

1643 (* (/ (expt 5 (+ -2 i)))

1644 (b-sum 1 (+ -2 i) v0 dv g1 dc)))

1645 0))

1646 :rule-classes nil)

1647

1648 (defthm phi-2n+1-<-0-lemma

261

C.2. ACL2 Proof for Fine Convergence

1649 (implies (basic-params (1- i) 2 dc v0 dv g1 phi0)

1650 (< (+ (A i phi0 v0 dv g1 dc)

1651 (* (B-expt i)

1652 (B-sum 1 (- i 2) v0 dv g1 dc))) 0))

1653 :hints (("Goal"

1654 :do-not ’(simplify)

1655 :induct (B-sum 1 i v0 dv g1 dc))

1656 ("Subgoal *1/2"

1657 :use ((:instance phi-2n+1-<-0-base-new)

1658 (:instance phi-2n+1-<-0-base-corollary-2)

1659 (:instance phi-2n+1-<-0-inductive-corollary-2)

1660))

1661 ("Subgoal *1/2’’"

1662 :use ((:instance phi-2n+1-<-0-lemma-lemma1)))

1663 ("Subgoal *1/1’"

1664 :use ((:instance phi-2n+1-<-0-lemma-lemma2)))

1665)

1666)

1667

1668 (defthm phi-2n+1-<-0

1669 (implies (basic-params (1- i) 2 dc v0 dv g1 phi0)

1670 (< (phi-2n-1 i phi0 v0 dv g1 dc) 0))

1671 :hints (("Goal"

1672 :use ((:instance phi-2n+1-<-0-lemma))

1673))

1674)

1675

1676 (defthm phi-2n-1-<-0

1677 (implies (basic-params n 3 dc v0 dv g1 phi0)

1678 (< (phi-2n-1 n phi0 v0 dv g1 dc) 0))

1679 :hints (("Goal"

1680 :use ((:instance phi-2n+1-<-0

1681 (i n))))))

1682)

262

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Programs
	Acknowledgements
	Introduction
	Related Work and Background
	AMS Design and Verification
	Circuit Verification
	Limitations

	Introduction to ACL2 and Z3
	Theorem Proving Overview
	SMT Solver Overview
	Integrating External Procedures to Theorem Provers
	ACL2 and The Method
	Examples Using ACL2 and Z3

	PLLs and Verification

	Combining SMT with Theorem Proving
	Clause Processor Architecture
	The Top-level Architecture
	Ensuring Soundness in Smtlink

	Smtlink Architecture
	Type Assertion
	Supported Logic
	Advanced Issues

	The Low-level Interface
	Z3 Interface
	Interpret the Result

	Conclusion: What's Trusted?
	Future Work
	Summary

	Verifying Global Convergence of a Digital PLL
	The Digital PLL
	Modeling the Digital PLL
	Proving Global Convergence
	Proof in Parts
	Detailed Proof for Fine Convergence

	Summary and Future Work

	Conclusion and Future Work
	Conclusions
	Future Work
	Complete the Convergence Proof for the Digital PLL
	Build a Better Tool
	Other Applications

	Bibliography
	Example Proofs with ACL2 and Z3
	Geometric Sum Proof with Raw ACL2
	Geometric Sum Proof with Arithmetic Book
	Geometric Sum Proof with Smtlink
	Polynomial Inequality Proof with Z3
	Polynomial Inequality Proof with ACL2
	Polynomial Inequality Proof with Smtlink

	Smtlink Code
	ACL2 Expansion, Translation and Interpretation
	Z3 Interface

	Convergence Proof Code
	Z3 Proof for Coarse Convergence
	ACL2 Proof for Fine Convergence
	ACL2 Code

