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Abstract

Microscopic dynamics and mechanical response of polymer glasses are studied
in four projects using molecular dynamics simulations of a simple bead-spring
model. The first project studies the interplay between physical aging and
mechanical perturbation. Structural, dynamical and energetic quantities are
monitored in the recovery regime following aging and uniaxial tensile defor-
mation periods. The total engineering strain is found to control a continuous
transition from transient to permanent mechanical rejuvenation: After defor-
mation in the pre-yield regime all quantities quickly reset to pre-deformation
values, while deformation around the yield point results in the erasure of ag-
ing history. Deformation in the post-yield regime, however, drives the system
into a distinct thermodynamic state.

In the second project, I introduce an efficient algorithm that detects
microscopic relaxation events, which are the basis of aging dynamics and
plasticity. I use this technique to calculate the density-density correlations
from the spatio-temporal distribution of so called hops in quiescent polymer
glasses at different temperatures and ages. Correlation ranges are extracted
and I analyze the size distributions of collaboratively rearranging groups of
particles. Furthermore, I spatially resolve dynamical heterogeneity (DH) as
hop-clusters, and I compare cluster growth, as well as volume distribution
during aging with the four-point dynamical susceptibility χ4 as the estab-
lished measure of DH.

The third and fourth project use the hop detection technique to investi-
gate the link between relaxation events and local structure. Quasi-localized
low-energy vibrational modes, called soft modes, are found to correlate with
the location and direction of hops. In the third project, I analyze the
temperature- and age-dependence of this correlation in quiescent polymer
glasses, and I show that the soft modes are long lived structural features.
The fourth project extends the analysis to mechanically deformed polymer
glasses. I find that the spatial correlation of hops and soft modes is reduced
to pre-aging values after deformation in the strain softening regime. This
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reveals an additional perspective on mechanical rejuvenation and substanti-
ates the findings from the first project. In the strain hardening regime the
correlation increases, and this novel effect is linked to a growing localization
of the soft modes.
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Chapter 1

Introduction

In the last century a new class of matter has become a key manufacturing
material: polymer glasses also known as plastics. Rather than a specific ma-
terial, the term encompasses a variety of polymeric substances in the same
state, the glass state. The glass state is reached by cooling a glass form-
ing material below a characteristic, material dependent temperature that is
called glass transition temperature Tg. Already in Roman times glassy mat-
ter was known in the form of silicon dioxide SiO2 (window glass), which
is a non-polymeric glass former. Nowadays, especially plastics are of enor-
mous industrial importance, because they are cheap and easy to produce.
Furthermore they are easy to manipulate and shape by exploiting the glass
transition, i.e. a plastic is poured at high temperature into a mold and then
cooled to below Tg. Polymers are often used in the glass state, and promi-
nent examples of polymer glasses are Nylon, PVC (polyvinyl chloride) and
other carbon-hydrogen based polymers like polyethylene (shopping bags),
polyethylene terephthalate (PET - bottles) and polypropylene (PP - pack-
aging). Not all plastics are in a purely glassy state, but rather contain a
degree of crystallinity which is introduced to alter the material characteris-
tics. Although the use of glasses permeates most manufacturing branches,
from water bottles and office material to medical instruments, houses and
aircraft, our knowledge of the physical processes governing this state of mat-
ter is limited. Key mechanical properties like the yield point and onset of
flow in Plexiglas (PMMA) or for a rope of Nylon are estimated largely based
on empirical data. In contrast to crystalline solids, we do not have access
to theoretically well founded models for the propagation and interaction of
structurally weak regions. We can therefore not predict at which location
in the material critical failure might occur. Furthermore, the mechanical
properties of glasses are changing over time. A plastic ruler will be more
brittle in a year than it is today, yet we have no model that describes this
evolution. This lack of knowledge stands in the way of confidently utilizing
glasses in critical components. Furthermore, a better understanding of the
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Chapter 1. Introduction

processes in the glass state might give new insights into how to better uti-
lize or manipulate the material in order to perform new tasks or increase its
efficiency.

This thesis explores the underlying physics in the glass state. This is
done by analyzing the molecular scale behavior of a model polymer glass
using computer simulations in order to better understand the processes that
control macroscopic behavior like mechanical failure under load. In this
chapter I introduce the conceptual ideas behind our current understanding of
the glass state and I highlight how this work contributes to open questions.
My research focuses on the more specific class of polymer glasses, which
includes industrially important plastics, and I elaborate on specific properties
of polymer glasses.

Plasticity of glasses Why can we not describe plasticity in glasses in the
same way in that we understand it in crystalline solids? Crystalline solids un-
dergo a phase transition upon cooling below the melting temperature, where
the material rearranges on the atomic level into an ordered lattice. This long-
range order is the basis of our understanding of plasticity in crystalline solids:
The solid is modeled as a set of springs that attach atoms to their lattice
positions. Elastic, or reversible deformation is understood as small displace-
ment of atoms from the lattice and the resulting pendulum-like relaxations
back towards the equilibrium positions. Plastic, or irreversible deformation
is modeled as irregularities in the long-range order, where the lattice sym-
metry is locally broken. An example is the so called edge-dislocation which
is located at the end of an extra plane that extends into one half-space and
ends in the lattice. The dynamics and interactions of such dislocations is the
basis of plasticity models in crystalline solids.

The glass state combines rigidity and mechanical properties of a solid
with a liquid-like structure. Unlike the freezing phase transition, the glass
transition is not accompanied by long-range ordering on the atomic scale. In
the liquid phase, molecules do not form a lattice but are essentially randomly
distributed in space. Repulsive and attractive interactions (typically van-
der-Waals interactions) drive the self-organization of nearest neighbor shells,
yet this ordering is only short-range. As the temperature is lowered below
Tg, the material vitrifies and the molecules are stabilized in their current
positions, i.e. the liquid-like structure is preserved in the solid. The transition
is discussed in more detail below, yet the key point is that without long-
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Figure 1.1: (a) Sketch of viscosity as function of temperature when approach-
ing Tg from above. Viscosity is shown on a logarithmic scale and temperature
is rescaled such that 1 indicates T = Tg. (b) Sketch of volume and enthalpy
dependence as function of temperature. Melting and glass transition tem-
peratures are indicated with vertical dashed lines.

range order plastic deformations can not be understood in terms of lattice
defects. In the absence of a lattice, dislocations can not be defined and
the machinery developed for plasticity in crystalline solids is incompatible
with glasses. Indeed, being mechanically solid without long-range ordered
structure is the defining feature of a larger class of matter called amorphous
solids. Polymer glasses are amorphous solids with disorder on the nanometer
scale, yet the term also encompasses systems like colloidal glasses, foam and
granular media that show disorder on the micro- to millimeter scale and even
tectonic faults on the kilometer scale. All of these systems share a common
dynamical behavior that arises from the absence of long-range order, and the
results of this work can be considered in the context of this broader class of
materials.

1.1 The glass transition

The glass state is reached by cooling a glass forming material in the liquid
state to the glass transition temperature Tg. As the temperature approaches
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1.1. The glass transition

Tg one observes a sharp increase in the viscosity by many orders of magni-
tude. The viscosity η measures the ability of a liquid to withstand shear or
tensile stress, i.e., a liquid with large viscosity requires a large force to create
flow. The glass transition is reached when the viscosity is 1013Pa ·s, which is
an empirical threshold that originates from practices in (silicon based) glass-
manufacturing. Figure 1.1(a) shows a sketch of the viscosity as function
of temperature in a semi-log plot. The temperature is rescaled by Tg and
decreases from left to right. Two types of behavior are distinguished: mea-
surements of SiO2 show exponential behavior η ∝ exp (E/kBT ) known from
thermally activated processes with activation energy E, kB is the Boltzmann
constant and T is the temperature. Materials that exhibit such Arrhenius-
type behavior are known as strong glass formers. The second type of behavior
is called super-Arrhenius, because of the much steeper increase of viscosity
near Tg. It can be expressed with the empirical Vogel-Tammann-Fulcher
equation η ∝ exp [E/(kBT − kBT0)] [14]. The polymer glasses discussed in
this work fall into this category and are called fragile glass formers. The
reasons underlying this separation of glasses into two groups is still actively
discussed [30]. The research presented in this work is based on a fragile glass
model and generalization of the results to strong glass formers should be
considered with care. However, the exponential dependence on temperature
indicates that thermally activated processes dominate structural relaxation
and molecular mobility in the glass state.

Fingerprints of the glass transition can also be found in the change of slope
at Tg of state variables like volume or enthalpy, as sketched in fig. 1.1(b). A
similar behavior is known from first order phase transitions, yet the change
of slope is continuous in case of the glass transition. The crossover between
liquid- and glass-slope is often used to measure the glass transition temper-
ature more accurately than based on the threshold criterion of the viscosity.

The glass state is furthermore characterized by another feature: ther-
modynamic state variables and mechanical properties are time- and history
dependent. In other words, a glass is not in thermodynamic equilibrium,
because its state variables and properties do not fluctuate around history
independent mean values, but change over time. Glasses are therefore non-
equilibrium systems, and an alternative definition of the transition is when a
glass former falls out of equilibrium upon cooling. The reason behind the loss
of equilibrium is connected to the mobility in the glass state. As the mobility
decreases, the system requires more time to find its optimal configuration,
which is the thermodynamic mean. Upon cooling, the system is eventually
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1.1. The glass transition

unable to keep up with the change of this optimal configuration, and the
non-equilibrium glass state is reached. This inability to fully explore the
accessible configurational- or phase-space is also called a loss of ergodicity.

Glass forming matter To understand which materials are glass formers,
it is helpful to contrast the glass transition with the freezing transition of
crystalline solids, where the material self-assembles on an atomic-scale lat-
tice. This process is driven by the existence of an ordered ground state that
is energetically favorable. The crystallization transition is sharp, meaning
that a material will rapidly transform from an unordered liquid-like struc-
ture with high entropy to an energetically stable structure with long-range
order. In contrast to this, the glass transition is not sharp, but gradual.
Motion on the atomic scale rapidly slows until diffusion becomes negligible
and the atoms become arrested in their current position. The unordered
liquid-like structure is essentially frozen into the material. Why does the
competition between a thermally stabilized high entropy state and an ener-
getically favorable ground state not result in a first order phase transition?
There are two possible reasons: Either such a ground state does not exist, or
the temperature quench is too rapid for the system to self-assemble onto a
lattice before the existing structure is frozen into place. Both possibilities are
observed in nature. From a simplified perspective, order on a lattice requires
that the atomic interactions are dominated by a common length scale, which
becomes the lattice constant. Systems that exhibit two competing length
scales might not have a well defined ground state, because no structure sup-
ports both lengths at the same time. Many polymers are such systems, with
PMMA (Plexiglas) being a prominent example: the average distance between
bonded monomers along the backbone is different from the average distance
between non-bonded monomers. Systems without a well defined crystalline
state are also known as good glass formers, because the cooling rate does
not play a critical role. However, it is also possible to produce a glass state
by cooling a liquid so rapidly, that crystallization is avoided. Without going
into any detail, the dynamics in first order phase transitions requires nucle-
ation processes. If nucleation does not occur, then one can cool a liquid to
temperatures below its freezing point and the system is then called a super-
cooled liquid. Nucleation is a diffusive process, and further cooling reduces
the mobility on the atomic scale and stabilizes the supercooled state. The
glass transition occurs when the system falls out of equilibrium (see above).
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1.2. Key features of glassy matter

Nature of the glass transition Whether the glass transition can be
understood as a phase transition is still a matter of active research [11].
One prominent microscopic theory is the Mode Coupling Theory [6, 39, 60]
(MCT), which predicts a phase transition from a liquid state to a dynamically
arrested state where particles stop diffusing and an amorphous density profile
is frozen into the system. The theory successfully describes aspects of the
super-cooled liquid state, yet it fails to predict the Arrhenius-type behavior
of the viscosity near Tg and leads to a complete freezing of the particle con-
figuration which is clearly not observed in glasses. Another view on the glass
transition is given by kinetically constrained models (KCM, see ref. [23] for
a review), which assume that dynamical activity is facilitated by nearby dy-
namical events and does not decay or arise spontaneously. This leads to the
propagation of dynamical activity via “defect-like” objects, and such mod-
els successfully predict Arrhenius and super-Arrhenius behavior [11]. One
drawback of this approach is the lack of a microscopic derivation and that
details of different models lead to different qualitative features. Rather than
adding to the debate about the glass transition, this thesis aims at exploring
the physical processes inside the glass state. I use computer simulations as
numerical experiments that give insights into dependences, correlations and
trends, rather than providing accurate quantitative estimates for specific ma-
terial properties.

1.2 Key features of glassy matter

1.2.1 Intermittent microscopic dynamics: the caging
effect

The molecular scale dynamics in glasses is separated into three regimes:
the ballistic regime at small timescales, the caging regime at intermediate
timescales and the diffusive regime at large timescales. Figure 1.2(a) shows
a sketch of the mean square displacement (MSD)

〈
(r(t0)− r(t0 + t))2〉 typ-

ically found in glasses, which measures the average distance that a particle
moves between times t and t0. The three regimes are visible in the MSD:
On very small time scales a particle moves ballistically, like a free particle
in empty space. When the corresponding length scales become of order the
mean separation between particles, the MSD flattens to a plateau that is
characteristic for the glass phase. On these intermediate time scales a par-
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Figure 1.2: (a) Sketch of a typical mean square displacement in glassy matter.
Ballistic, caging and diffusive regimes are indicated and cartoons illustrate
caging effect and hop process. (b) Square displacement of individual particles
measured in simulations of the model polymer glass introduced in section 2.1.
Particles mostly vibrate around fixed mean positions and the sharp changes
are indications for hops.
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ticle becomes effectively trapped by the shell of neighboring particles due to
high densities at which the glass state exists. The surrounding particles act
as a cage that confines the motion of the central particle to vibrations around
the center of that cage. The left sketch in fig. 1.2(a) illustrates this caging
effect. The MSD does not increase until such times at which the probability
for a particle to escape the cage becomes large. The cage escape is a cooper-
ative and therefore nonlinear process, since particles in the neighboring shell
have to move to “open the cage” and allow the central particle to escape. I
call this process a hop and it is visualized in the central sketch of fig. 1.2(a).
Indications of particle hops can be found by inspecting the squared displace-
ment (SD) of individual particles as shown in fig. 1.2(b). The SD has long
periods of relative stagnation where the particle is caged that are interrupted
by short jumps in the SD that correspond to hop events. Finally, at large
time scales diffusive motion is realized as a succession of hops as indicated by
the right sketch in fig. 1.2(a). The MSD shows a departure from the caging
plateau and a transition to diffusive behavior. Vollmayr-Lee [95] was amongst
the first to exploit this essential feature of glassy dynamics to measure the
effective motion in a glass and additional detection methods for hops have
been developed for glasses [98] and amorphous solids [19]. A key technical
accomplishment of this work is the improvement of an algorithm introduced
by Candelier et al. [19] such that hop events can be measured during com-
puter simulations of glasses with high spatial and temporal resolution. The
hop detection algorithm is discussed in detail in section 2.6.

Hop events are of key importance not only to explain motion in glasses on
the molecular scale, but they are also vital for the understanding of plasticity
in glasses. Plastic events are irreversible rearrangements of atoms driven by
external mechanical deformation. Vibrational motion is not irreversible, since
particles merely fluctuate around their static mean positions and stay within
their cages. Plastic events can therefore be identified with changes of the
configuration of cages. Assuming that in the presence of external load the
molecular mobility remains dominated by the caging effect, then hops are
elementary plastic events. In the absence of mechanical load, hop events
play the role of structural relaxation events. The non-equilibrium nature of
the glass state drives such structural relaxation processes to evolve the glass
into more favorable configurations. Hops are therefore also at the center of
non-equilibrium effects discussed in the next section.
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1.2. Key features of glassy matter

1.2.2 Non-equilibrium effects: aging

Matter in the glass state is not in thermodynamic equilibrium but slowly
changes its properties over time. The state of the system can therefore
not be described by a small set of equilibrium mean values and fluctua-
tions around them. The reason for this is that the molecular mobility has
decreased so far at the glass transition, that the glass can not explore phase
space sufficiently to relax to the equilibrium state. Instead, the glass be-
comes trapped in the transition, resulting in a non-equilibrium system that
is slowly evolving towards an “ideal equilibrium state”. This time evolution
is known as physical aging, which I simply call aging in this work. The dy-
namical processes governing aging are of key importance in making reliable
predictions of mechanical and other properties of glasses. Aging effects are
particularly important in polymer glasses [48]: density, enthalpy and yield
stress increase, but also the tendency for shear localization, which limits the
lifetime to failure. The seminal work of Struik [88] is a striking presentation
of the age-dependence of mechanical properties of polymer glasses. Struik
performed creep experiments (deformation at constant stress, see next chap-
ter) of PVC, Polystyrene (PS) and other glass samples repeatedly over up to
four years of time between measurements. He measured the creep compli-
ance, which is the ratio of strain over the applied stress as function of time
during deformation. His results show a shift towards smaller compliance for
increasing age, indicating that the plastics become stiffer with time. The
size of this shift increases like a power law with the glass age with exponent
. 1. In other words, the mechanical response of plastic to an applied stress
is strongly dependent on aging effects.

Potential energy landscape To better understand the aging dynamics
and indeed glasses themselves, it is helpful to describe the state of a system
as a single point on a potential energy landscape (PEL). For a 3D system
with N particles, the landscape exists in a dim = 3N + 1 dimensional space
with the added dimension representing the current total potential energy. A
sketch of the PEL in the glass state is shown in fig. 1.3. While all particles
are trapped in their respective cages in the glass state, the system resides in
a minimum in the PEL. A hop event changes the local structure and with it
the potential energies, which moves the system from the original minimum
into another one close by. In the remainder of this work, I will therefore refer
to hops as structural relaxation events.
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Figure 1.3: Sketch of the potential energy landscape in the glass state. The
x-axis represents all configurational coordinates.

Let us first consider the glass transition from the PEL perspective. At
temperatures much higher than Tg, the kinetic energy in the system is higher
than the maxima in the PEL and the system is in a molten state. When
cooled into the supercooled regime T & Tg, then the kinetic energy becomes
so low, that the system evolves by switching from one minimum to another.
The transitions are thermally activated, which corresponds to the exponen-
tial behavior of the viscosity discussed above. At the glass transition, the
thermal transition processes become sufficiently unlikely, that the system can
no longer fully explore the PEL on experimental timescales. The dynamics
become non-ergodic and the system gets stuck in the process of finding the
equilibrium state. It falls out of equilibrium and the material transitions into
the glass state. The key reason for this is that the PEL is very rough, with
many metastable states. Inside the glass state, the process of finding the
equilibrium state continues, and the glass evolves towards regions of lower
potential energy and higher barriers between minima. This non-equilibrium
relaxation is the process causing physical aging or structural recovery.

Hops are processes that allow the system to explore the PEL. Vollmayr-
Lee et al. [95, 97] measured hops directly during aging, finding indications
for an age- and temperature-independent distribution of persistence times,
i.e. times that particles stay inactive between hops. A closer investigation of
the persistence time distribution by Warren and Rottler in quiescent poly-
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mer and binary Lennard-Jones glasses [98] showed that physical aging can
indeed be explained by hops on the microscopic level. They found that the
persistence times are distributed following a broad power-law with exponent
µ ∼ −1.3 that is independent of the age of the glass. Power-law distributions
with exponent µ > −2 have no defined mean value, which means that with
increasing number of draws from the distribution the mean persistence time
increases. During the evolution of a glass, hops occur and because of the
broad power-law, the persistence times increase with age. This increase was
directly measured as an age-dependence of the time distribution until the first
hop occurs for all particles. Hops are therefore intimately tied to the non-
equilibrium dynamics in glasses. Chapter 4 explores the hop process beyond
the level of persistence time distributions by investigating spatio-temporal
correlations between hop events.

Mechanical rejuvenation Mechanical deformation interacts with the in-
trinsic relaxation (non-equilibrium) dynamics in complicated ways. Numer-
ous experimental observations [40, 42, 88, 89, 93] suggest that the history of
a glass can be altered by mechanical perturbation in such a way that the ma-
terial appears “younger”. Struik [88] observed that after a short but strong
tensile stress pulse the creep compliance of PVC was shifted towards larger
compliance, thereby effectively reversing effects of previous aging. Continued
measurements of the creep compliance after the pulse then showed shifts with
age that paralleled that of a younger glass. Mechanical deformation therefore
“erased” part of aging and the phenomenon was coined mechanical rejuve-
nation. However, the nature and extent of this “mechanical rejuvenation” in
aging glasses is far from understood and frequently debated [64]. The often
reported [22, 59, 61, 74, 75] increase of molecular mobility during deforma-
tion may suggest that a “material clock” has indeed been turned back, but
the thermodynamic state reached by mechanical perturbation could be very
different from that of a younger version of the system. In other words, is
the “rejuvenated” state indeed comparable to a younger glass with measures
other than molecular mobility and mechanical response?

Studies of “rejuvenation” tend to differentiate between deformation in the
sub-yield regime, without yield and material flow, and the post-yield regime,
where the material has undergone significant plastic deformation (the defor-
mation regimes are discussed in more detail further below). Experiments
in the sub-yield regime observe an initial increase in mobility in agreement
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with the rejuvenation hypothesis [56, 79]. However, further measurements
after the deformation has ended indicate that the mobility rapidly returns
to values found for samples of the same age but without deformation. It
is therefore often suggested that sub-yield deformation only transiently per-
turbs the aging dynamics and that there is no direct connection to changes
in material properties [56, 64, 79]. For post-yield deformation, however, reju-
venation experiments on polystyrene [42] and polycarbonate [40, 93] glasses
demonstrate more convincingly thermal and yield stress properties akin to a
much younger glass.

A recent series of experiments on PMMA glasses by Lee and Ediger pro-
vides a very detailed insight into the interaction between physical aging and
plastic deformation [57, 58]. These authors employ a fluorescence microscopy
technique that permits measurements of segmental relaxation times simulta-
neously with macroscopic mechanical response [59]. During creep deforma-
tion at constant stress, they report significantly increased molecular mobility
indicating partial erasure of aging. Full erasure, however, was only found in
the post-yield regime [57]. In a second study the authors went a step fur-
ther, and performed detailed measurements of the molecular mobility in the
recovery regime immediately following the deformation. Their results quali-
tatively distinguish two impacts of deformation: in the pre-flow regime only
transient rejuvenation effects were found and relaxation times rapidly re-
turned to those of an unperturbed glass. Glasses that experienced post-yield
however, did not return to the pre-deformation aging trajectory but were
instead found to age in the same way as a thermally quenched glass. Based
on these observations, the authors suggest that mechanical rejuvenation does
occur in the post-yield regime [58].

From the perspective of PEL, mechanical deformation can be abstracted
to a tilting of the PEL towards the directions that are favored by the de-
formation, see fig. 1.4. Barriers and adjacent minima are lowered by the
deformation, and the system evolves away from the aging-favored region in
the PEL. At the end of the deformation, the tilt is removed and the system
state in the PEL is in a region with higher potential energy and lower barriers.
The system again begins evolving towards lower minima and higher barriers,
which manifests as a renewed physical aging. Simulations that investigate
the energy landscape of strongly deformed glasses [54, 62, 92] find indeed
that the material has been taken to higher inherent structure energies. The
deformation trajectory, however, does not appear to return the material to
the exact same position on the landscape as a thermal quench, but rather to a
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Figure 1.4: Sketch of the PEL in the quiescent state and during external
deformation. The x-axis represents all configurational coordinates.

different state. One focus of this work is to investigate mechanical rejuvena-
tion on the molecular level, see chapters 3 and 6. Computer simulations give
access to experimentally inaccessible quantities like local structural features,
and this allow me to quantify whether a deformed system is indeed similar to
an equivalent glass of less or equal age. Furthermore, I explore the transition
from transient to permanent impact of deformation, and which deformation
variable is governing this transition.

1.2.3 Heterogeneous dynamics

The rapid slowing of the molecular mobility that is observed when approach-
ing the glass transition is accompanied by a characteristic feature that further
distinguishes glasses from other systems. Instead of a homogeneous distri-
bution of the particle mobility known from simple liquids, the dynamics of
glasses are spatially heterogeneous. This dynamical heterogeneity (DH) man-
ifests itself as “fast” regions in a glass sample with dynamics that are orders
of magnitude faster than other “slow” regions which are only a few nanome-
ters apart [34]. Computer simulations are especially useful to visualize DH,
and fig. 1.5 shows an example snapshot of a simulated model polymer glass
with squared displacements indicated by the coloring (blue - slow, red - fast).
In the left half of the simulation box one can see large areas of blue particles
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Figure 1.5: Snapshot of the simulated model polymer glass, see section 2.1.
The coloring indicates the squared displacement measured over a time inter-
val τα/5, here τα is the structural relaxation time. On the right side only the
15% fastest particles are shown.
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indicating slow regions with a largely static structure. In the right half of
the simulation box I only show the 15% fastest particles. One can see that
these fast particles are clustered in small fast regions that undergo substantial
structural relaxation.

Dynamical heterogeneity in glasses is now supported by a large number of
experimental [9, 28, 34] as well as computational results [24, 47, 51, 53], and
it explains the non-exponential structural relaxation observed for example
in fluorescence microscopy experiments [57, 58]. It furthermore directed the
search for growing correlation effects near Tg away from static correlation
functions known from conventional phase transitions, towards the study of
dynamical correlations. Since fast and slow particles spatially cluster into
distinct groups, such a correlation is present in glassy systems. First insights
were gained by computational studies that monitored a subset of “fast” parti-
cles, which revealed a heterogeneous distribution and string-like cooperative
motion [33, 51]. The dynamical correlation itself can be directly measured
by calculating a four-point correlation function [7] that quantifies how many
pairs of particles (two points in space) have moved by a similar distance over
the same time window (two points in time). This allows the measurement
of a “dynamical susceptibility” χ4 [9, 53]. Strikingly, it was found that χ4

increases when Tg is approached from above, indicating a growing correlation
length. Diverging correlation lengths play a crucial role in phase transition
theory, and it is currently believed that the correlation between the dynam-
ics of particles is driving the glass transition [11, 12]. The measurement of
the distribution of hops gives a direct picture of DH on the level of struc-
tural relaxation events. In chapter 4, I explore this strategy of observing
DH with high spatial and temporal resolution. My analysis focuses on the
spatio-temporal correlation between hops and the aggregation of hops into
clusters that as the system evolves grow until percolation and bulk structural
relaxation is reached.

As a consequence of DH, structural relaxation is concentrated in some
regions and this has important consequences for the plasticity of glasses. Mi-
croscopic plastic events are structural relaxation events under external load,
and one can therefore expect that DH leads to a partition of glassy matter
into soft (hard) regions of fast (slow) particles. In order to create predictive
models of plasticity, it is of key importance to understand what makes certain
regions structurally weaker than others. In crystalline solids, the location of
plastic events is intimately tied to the local structure via dislocations. In
glasses, the situation is less clear and conventional structural indicators like
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1.2. Key features of glassy matter

local geometric order (e.g. hexagonal order) or density fail to correlate well
to the location of plastic events. A first key insight that a link between
structure and dynamics exists was found using computer simulations in the
iso-configurational (IC) ensemble [101]. In the IC ensemble the kinetic contri-
bution to DH is suppressed by averaging displacement maps over many real-
izations of a system, where the same spatial configuration of particles is used
with velocities drawn at random from the appropriate Maxwell-Boltzmann
distribution. The resulting map for the propensity of motion, that depends
only on the initial structure, still shows DH with distinct regions of high and
low likelihood of particle rearrangements. In a later study [13] the relative
impact of kinetic and structural contributions to DH were quantified for a
simple metallic glass model, and the results suggest that on the order 50%
of DH is linked to the molecular structure. Understanding this link in terms
of structural features that determine whether a certain region in a glass is
soft or hard is an important open question that is addressed in chapter 5 for
the case of a quiescent glass during aging and in chapter 6 for a glass under
load.

1.2.4 Soft modes

A promising candidate of a structural feature that predicts relaxation and
plastic events are anomalous modes in the vibrational spectrum of glasses.
The vibrational motion in a solid can be understood in terms of normal
modes, which describe vibration of particles as a collective dynamical process.
The modes are given by the eigenmodes of the Hessian

H(ri)k(rj)l =
∂2U({ri})
∂(ri)k∂(rj)l

. (1.1)

Here U({ri}) is the interaction potential between pairs of particles and (ri)k
is the k’th component of the position of particle i. For the case of crystalline
solids the Debye model describes vibrational modes via planar waves known
as phonons. In amorphous solids the description of vibrational properties is
less understood, yet the spectrum characteristically shows an excess of modes
in the low energy range when compared to the Debye expectation, which is
known as the Boson peak [18, 31, 83, 105].
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Figure 1.6: The upper half of the figure shows the eight lowest energy vibra-
tional modes of an example polymer glass simulation, and the participation
ratio is indicated above each snapshot. The modes are visualized by their
polarization vector fields and coloring indicates depth. (a) Density of states
as function of the mode frequency, rescaled to reveal the boson peak. (b)
Participation ratio as function of mode frequency. The curve is an average
over 20 independent realizations of the system.
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Already over 20 years ago [55], it was observed that many modes in the
low energy range are “quasi-localized” in the sense that most of the activity
is concentrated on a small number of particles that are clustered in space.
This is caused by the scattering of phonons at the local structure. Quasi-
localized modes have been observed in a variety of glasses and super-cooled
liquids in computer simulations [55, 80] as well as experiments [18], and they
have been linked to the Boson peak [31]. At the top of fig. 1.6 I show the
eight lowest energy eigenmodes of an example simulation of a polymer glass
(details of the model and simulation are discussed in the next chapter). In

each mode j a particle i is represented by the polarization vector e
(i)
j , which

is the projection of the eigenvector on the degrees of freedom of particle i.
The extent of localization of mode j can be calculated via its participation
ratio

Pj =

(∑N
i=1(e

(i)
j )2

)2

N
∑N

i=1(e
(i)
j )4

,

where N is the total number of particles in the system. A small participation
ratio indicates that only few particles are active and that the mode is there-
fore quasi-localized, while P = 0.66 is the value found for a planar wave. The
participation ratio of each mode in fig. 1.6 is indicated above the snapshot,
and localized as well as planar waves are shown. Figure 1.6(a) shows the
density of state rescaled by the Debye-expectation, and the Boson peak is
located at ω ∼ 2.3. The peaks at ω ∼ 1.0 and ω ∼ 1.3 are due to the finite
volume of the simulation box. In fig. 1.6(b) I show the participation ratio
as the function of eigenfrequency, and one can see that the low participation
modes are concentrated before and around the Boson peak and that at higher
frequencies the modes are less localized.

In 2008, Widmer-Cooper et al. [102] reported a qualitative spatial corre-
lation between quasi-localized, low energy vibrational modes or soft modes
and irreversible molecular rearrangements. The correlation was observed in
computer simulations of a metallic glass model in 2D [102] and 3D [103] in
the supercooled regime, and it successfully linked DH to a structural prop-
erty, the vibrational spectrum. Further indications for this link were found in
simulations of hard spheres [16], a kinetically constrained lattice glass [3], a
quasi-statically sheared binary glass in 2D [90], and experiments on colloidal
glasses [27]. Indications for the reason behind the connection of curvature
in the PEL (Hessian, see eq. (1.1)) and particle rearrangements in amor-
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1.3. Polymer glasses under deformation

phous solids was identified in a study of a binary mixture of jammed packed
spheres [104]. The authors found that soft modes identify the directions in
the PEL with the lowest-energy barriers to adjacent minima. This links the
harmonic vibrational modes to the anharmonic event of particle rearrange-
ments.

A striking quantitative correlation between soft modes and rearrangement
events was verified by Manning and Liu [63] in a study from 2011. In com-
puter simulations of a metallic glass in 2D they calculated the lowest energy
vibrational modes and derived a map of “soft spots” by overlaying the most
participating particles of the lowest modes in a binary map. Starting from
the initial configuration for which the soft spot map was calculated, the au-
thors applied very small step strains using a quasi-static shear protocol while
monitoring where the first rearrangements would occur. They found that the
rearrangements strongly overlap with one of the identified soft spots. This
correlation between soft spots and plastic events was recently found to hold
also in thermal binary glasses at finite shear rate [81]. Chapters 5 and 6 dis-
cuss in how far this correlation holds in the case of a more realistic thermal
polymer glass in 3D.

1.3 Polymer glasses under deformation

Polymers are macromolecules that consist of many individual segments that
are chemically bonded via covalent bonds. Due to their importance in indus-
trial applications, a multitude of polymers have been developed, especially
in the family of oil-based carbon-hydrogen polymers. If upon cooling of a
polymer melt no chemical crosslinks are formed, then the polymer is ther-
moplastic and it undergoes a glass transition into a polymer glass.

In this work, I study an idealized model of such polymer glasses in order
to better understand these crucial manufacturing materials in particular and
glassy matter in general. Besides their huge practical importance, I chose to
focus on polymer glasses, because they are good glass formers without ten-
dencies to poly-crystallization. It is important to note, that having the chain
topology of polymers in our model does introduce characteristic processes
linked to polymer physics into the analysis of the glass state, specifically in
the context of mechanical deformation. This section discusses the origin and
importance of these processes in the context of this work.
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1.3. Polymer glasses under deformation

Reduced mobility in the melt To understand the dynamics of polymers,
the Rouse model [32] proposes a simple view on polymers as a set of Nc

beads that are connected via Nc-1 linear springs. This is also known as the
Gaussian chain model. The connectivity between the beads constrains the
diffusive motion, and one finds that the mean square displacement (MSD) of
the polymer increases more slowly in time (∝ t1/2) than a single bead based
on Brownian motion (∝ t). However, this behavior is only observed for small
chain lengths. As the number of beads increases, multiple chains become
entangled, meaning that they are wrapped around each other. Since polymers
can not cross through one another, this further constrains the chain motion
to a process called reptation [32]. De Gennes showed that at chain lengths
beyond a material dependent entanglement length the MSD is reduced to
∝ t1/4 [29]. The dependence of the diffusion coefficient to chain length Nc

also changes from ∝ Nc in the Rouse model to ∝ N3
c for entangled chains [32].

Mobility in the glass state As discussed above, the dynamics in the glass
state is dominated by the caging effect and the MSD exhibits a characteristic
plateau beyond the ballistic time scale. In glassy matter, the important dy-
namical processes are cage-escapes that I call hop events. Although diffusive
motion is possible as a series of hops by the same particle, the key glassy fea-
tures of aging and heterogeneous dynamics are governed by the hop process
and not by very long time scale diffusion. The diffusion constraining effects
of polymer topology are therefore unimportant for the glassy dynamics [1].
This is true for polymer glasses in the quiescent state, yet one has to be more
careful in the case of mechanical deformation.

Mechanical response A schematic stress-strain curve of a polymer glass
is shown in fig. 1.7. The first three regimes are common to all glassy matter
and amorphous solids: First, at small strains the stress increases linearly
with the strain. In crystalline solids this linear response is a consequence
of displacements of particles away from their lattice positions without re-
arrangements to other lattice points. When the external load is removed,
the system returns to its original state and the deformation is elastic. In
amorphous solids this elastic regime is marked by an analog linear macro-
scopic response, yet close observation reveals some plastic activity even at
very small strains [10]. Viewed from the perspective of hops as elementary
plastic events, this is not surprising however, since hops are present even in
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Figure 1.7: Stress versus strain observed in our polymer glass model. The
deformation regimes are indicated (left to right): Elastic, yield, strain soft-
ening, strain hardening. The horizontal dashed line indicates steady state
flow of a non-polymeric glass.

the quiescent state (no external load) due to the non-equilibrium dynamics.
As the strain increases the linear response smoothly transitions to a max-

imum stress, the yield point. This is accompanied by an increase in plastic
events until the yield stress is reached and the system begins to flow. The
height of the yield stress indicates the stiffness of the glass, is history de-
pendent and increases during aging. The onset of flow is followed by a
strain softening regime, where the stress decreases with increasing strain.
The steepness of this decrease is again dependent on the material history
and aging.

In non-polymeric glasses, flow drives the system to a steady state and
the stress reaches a plateau value. In polymer glasses, the situation is dif-
ferent due to the chain-topology, and polymeric effects become important
for the macroscopic mechanical response. As shown in fig. 1.7, instead of
a steady state plateau, polymer glasses enter the strain hardening regime,
where the stress increases non-linearly with strain. To increase the strain,
the orientation of the polymer backbones have to more and more align with
the deformation axis. As this happens an increasing amount of stress is
stored in the bond interactions along the polymer backbone, which are much
stronger than the monomer pair-interactions. Furthermore, if the chains are
sufficiently long, entanglement effects come into play which further increase
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the stress necessary to apply additional strain on the system.

1.4 Objectives of this work

The central goal of this thesis is to illuminate the microscopic processes that
govern the mechanical properties of glassy matter in general, and polymer
glasses in particular. Although plastics are ubiquitous industrial materials,
our understanding of their plasticity is limited. The macroscopic response
can be measured in experiments, yet the underlying microscopic processes
have proven difficult to resolve. To bridge the gap between the microscopic
behavior, the mesoscopic phenomena of dynamical heterogeneity and the
marcroscopic response, I performed large scale molecular dynamics simula-
tions of a widely used polymer model. The computer simulations allow the
observation of each particle with perfect detail and are therefore uniquely
positioned to provide insights on the microscopic level. In chapter 2, I ex-
plain in detail the simulation techniques and the polymer model, as well
as the measurement techniques used to identify the driving processes. In
the remainder of this chapter, I highlight the individual questions that I am
addressing in this work. The results of the four projects are discussed in
chapters 3-6. This is followed by concluding remarks in the final chapter.

Recovery from mechanical deformation The design of my first project
is inspired by the recent experimental study of Lee and Ediger [58] of polymer
glasses in the recovery regime, discussed in detail in section 1.2.2. I give a
complementary picture of the recovery regime by simultaneously measuring a
variety of structural quantities that are inaccessible to experimental studies.
To this end, I mirror the creep experiment in computer simulations as well
as performing constant strain rate deformation. In addition to structural
quantities I monitor the structural relaxation time (molecular mobility) as
well as the inherent structure energy in the recovery regime. The key question
is, whether mechanical deformation indeed leads to erasure of aging and to
an “as newly quenched” glass beyond the perspective of molecular mobility.
Computational studies of the PEL [54, 62] suggest that deformation leads to
a state that is distinct from that of a younger glass. This study provides new
insights by comparing the full aging behavior in the recovery regime with that
of undeformed glasses. Furthermore, I explore the transition from transient
to permanent rejuvenation and which deformation parameter is controlling
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1.4. Objectives of this work

this transition. This question is important, since the driving deformation
parameter has to play a prominent role in any theory of plasticity and there
is a debate whether stress, strain or strain rate should be considered.

Spatio-temporal correlation between structural rearrangements
The aim of the second project is to spatially resolve DH and to quantify the
correlated dynamics for a 3D glass in the aging regime, where only a few
studies exist [71]. Does physical aging change DH in terms of correlation
range or geometry of the regions that undergo significant structural relax-
ation? To perform our study on large-scale systems over extended simulation
periods that are sufficient to analyze aging effects, I implement a novel hop
detection algorithm that is based on a technique introduced by Candelier
et al. [19]. This new algorithm allows the monitoring of hop events for all
particles in large scale computer simulations with high spatial and temporal
resolution. I use this method to create a detailed map of hops and to directly
quantify the density-density correlation between hops. I study dependence
on temperature, aging and infer correlation ranges. In the second part of this
study, I focus on DH in the aging regime. This regime has only recently been
explored using three- and four-point correlators [17, 71], and indications were
found for an increase of dynamical correlation with age. The detailed map
of hops allows me to spatially resolve DH and to measure its evolution as
growing clusters of hops. A cluster algorithm is used to calculate the cluster
volume distribution and I compare its evolution directly with the four-point
dynamical susceptibility χ4 as the standard measure for DH.

Soft modes link structure and rearrangements in polymer glasses
The third project broadens the understanding of the link between the loca-
tion of rearrangements and the local structure. Recent studies [63, 81] showed
that quasi-localized modes in the vibrational spectrum of glasses identify soft
spots in model binary glasses, discussed in much detail in section 1.2.4. To
fully understand the role of soft spots in plasticity of amorphous solids, it
is important to test the robustness of the soft spot picture in other glass
formers. For the first time, I quantify this link in the more realistic and
industrially relevant case of a thermal polymer glass in 3D. Are particle re-
arrangements indeed predominantly occurring at soft spots and what is the
impact of temperature and aging on this correlation? Furthermore, do soft
modes hold additional information about the direction of individual rear-
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rangements, and what is the lifetime of soft spots? As a first step, I explore
different approaches on how to extract a map of the structural softness from
the soft modes. In this third project, I focus on the quiescent state and I
analyze the correlation between the calculated softness field with the like-
lihood to undergo hops. My results show that a positive correlation exists
not only between the location of hops and soft modes, but also that the hop
direction is correlated to the soft mode direction. Systems above (super-
cooled regime) and below (aging regime) the glass transition temperature
are analyzed, and I discuss the impact of temperature as well as aging on
the correlation. Furthermore, I analyze the lifetime of the softness field and
my results show that the identified “soft” and “hard” regions are long lived
compared to elementary vibrational timescales. This is important, because
it shows that the softness field is a meaningful structural variable that could
play a role in plasticity of amorphous solids similar to dislocations in the case
of crystalline solids.

Predicting plastic events with structural features As a fourth and fi-
nal project, I investigate the robustness of the found link between soft modes
and hops in the case of deformed polymer glasses. The hops represent lo-
cal plastic events and predicting their location based on the softness map
is a central result of this project. Is this correlation affected by mechani-
cal deformation and what are the processes underlying such a change in the
correlation? To answer these questions, I quantify the correlation of soft-
ness field and hops at different points during uniaxial tensile deformation,
from the elastic regime immediately after loading until far into the strain
hardening regime. Prior to the deformation the polymer glass is aged for an
extended time period, and I investigate indications for mechanical rejuvena-
tion in the spatial correlation between softness field and hops. Interestingly,
I find that the spatial correlation is increasing with growing strain in the
strain hardening regime, and I explore possible explanations of this novel
polymeric effect.
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Chapter 2

Simulation and measurement
techniques

The results of this thesis are based on molecular dynamics (MD) simulations
with a simple glass-forming polymer model. The simulation approach has
the advantage of giving access to microscopic details that are inaccessible
via experimental techniques. Many experiments only give access to bulk
averaged quantities, and this makes the study of inherently local phenomena
like dynamical heterogeneity and plastic events challenging. With computer
simulations it is possible to measure the microscopic dynamics with perfect
detail, so that connections between microscopic processes and macroscopic
response can be explored.

In the first half of this chapter, I introduce the polymer model, and elab-
orate on the MD techniques, the simulation of mechanical deformation, and
the preparation of glass states. I also discuss general issues of this type
of computer simulations, and how to interpret the results correctly. In the
second half of this chapter, I explain the key measurements that I use to
probe the polymer glass: First, I give details on the hop detection algorithm
and second, I elaborate how vibrational modes are calculated and how the
softness field is defined.

2.1 Polymer model

This work is based on a coarse-grained bead-spring polymer model that cap-
tures the chain-topology of a linear polymer without including the full atom-
istic detail. The polymer is represented as a sequence of identical beads,
and neighboring beads are bonded to a linear chain that forms the polymer
backbone. Figure 2.1 shows an example polymer and simulation box. Orien-
tational correlations along the polymer backbone decay with increasing sep-
aration, and the characteristic decay length is called persistence length [32].
A polymer can therefore be partitioned into segments that are independent
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2.1. Polymer model

Figure 2.1: Visualization of a bead-spring polymer and the filled simulation
box. The beads are indicated as spheres.
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Figure 2.2: The LJ-potential between non-bonded beads is given by the blue
curve, with energy- and force-shifted corrections in red and orange. For
better comparison, the FENE spring potential is scaled by a factor of 10−2

and indicated by the green curve.

from each other. In the present model a single bead represents such a seg-
ment.

In a classical MD simulation, one defines potentials that describe the
interaction between beads, as well as the covalent bonds along the polymer
backbone. This work uses the finitely extensible nonlinear elastic (FENE)
bead-spring polymer model [52]. It has been studied extensively in the glass
state and shows the characteristic behavior expected for polymer glasses [8,
38, 70, 76, 94, 99]. The pair-potential between non-bonded beads is modeled
as a 6-12 Lennard-Jones (LJ) potential

ULJ(ri,j) = 4u0

[(
a

ri,j

)12

−
(
a

ri,j

)6
]
. (2.1)

Here, a is the bead diameter, u0 is the depth of the LJ energy-well and ri,j is
the distance between beads i and j. To simplify the notation, I neglect this
index in the following. The potential is shown in fig 2.2. It has a repulsive
part at short range r < 21/6a, which ensures that beads don’t occupy the same
volume. For r > 21/6a the potential becomes attractive and it models the
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2.1. Polymer model

van der Waals force. To improve computational efficiency [2], the potential
is cut off and set to zero for distances r > rc together with an energy shift,
which ensures that the potential is continuous at rc. In the projects discussed
in chapters 3 and 4 the pair potential is given by

Upair(r) =

{
ULJ(r)− ULJ(rc) r < rc

0 r ≥ rc
(2.2)

with rc = 1.5a chosen at the first minimum in the radial distribution func-
tion, i.e., only particles that are neighboring each other are interacting. The
projects that study soft modes, chapters 5 and 6, require the calculation of
second derivatives of the potentials. To ensure that the forces are differen-
tiable at rc I include a force-shift term

Upair(r) =

{
ULJ(r)− ULJ(rc) + (rc − r) · FLJ(rc) r < rc

0 r ≥ rc
. (2.3)

In this case I use the cut-off rc = 2.5a, which is beyond the second minimum
of the radial distribution function. This choice makes the potential more
numerically comparable to eq. (2.1), and both energy- and force-shifted ver-
sions are compared to eq. (2.1) in fig. 2.2. The main difference between both
models is the extended attractive range of eq. (2.3), which results in small
differences in the glass transition temperature and densities (see below).

A non-linear stiff spring-like interaction

Ubond(r) =

{
KR2

0

2
ln
[
1− (r/R0)2]+ ULJ + ε r < 21/6a

KR2
0

2
ln
[
1− (r/R0)2] r ≥ 21/6a

(2.4)

acts as covalent bonds along the polymer backbone and it consists of two
parts: The last two terms are the repulsive part of the energy-shifted LJ
potential with a cut-off rc = 21/6a. The first term is attractive and diverges
at a distance R0, which models unbreakable chains. My choice of K = 30u0

and R0 = 1.5a [52] ensures that chains can not cross through each other.

Reduced units The above defined potentials allow a scaling of distances
and energies with the bead diameter a and energy-well depth u0 respectively.
In this thesis all results are given in reduced LJ-units [2] that are listed in
table 2.1. For simplicity the ∗ is omitted henceforth.
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2.2. Molecular dynamics simulations

length r∗ = r
a

density ρ∗ = ρ a3

energy U∗ = U
u0

temperature T ∗ = kBT
u0

time t∗ = t
√

u0
ma2

pressure P∗ = P a3

u0

force F∗ = F a
u0

Table 2.1: Reduced units used in this work in terms of bead diameter a, bead
mass m as well as the characteristic energy u0.

2.2 Molecular dynamics simulations

The principal idea behind MD simulations is to solve Newtons equations of
motion simultaneously for N particles in a fixed volume. The simulations for
this thesis were done with the open-source package LAMMPS [72] that uses
the velocity-Verlet algorithm [2]. The key approximation is the discretization
of time, and the simulation updates particle locations r(t), velocities v(t),
and accelerations a(t) to the next time step t+ ∆t in four stages:

1. Velocities are updated to their mid-step values

v(t+ ∆t/2) = v(t) + a(t)∆t/2 .

2. New positions are calculated

r(t+ ∆t) = r(t) + v(t)∆t+ a(t)∆t2/2 .

3. New forces and accelerations are calculated for all particles i with mass
m using the model potentials and Newtons 2nd law

m ai(t+ ∆t) =
∑
j 6=i

Fij(t+ ∆t) = −
∑
j 6=i

∇U(rij(t+ ∆t))

4. The velocity-step is completed

v(t+ ∆t) = v(t+ ∆t/2) + a(t+ ∆t)∆t/2 .

This procedure is repeated to evolve the system of N particles forward in
time. For the simulation results shown in this thesis I used ∆t = 0.0075.
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2.2. Molecular dynamics simulations

Figure 2.3: Sketch that illustrates periodic boundary conditions and mini-
mum image convention. The central square with the blue particles is the
simulation box, while image-particles are shown in gray. The arrow illus-
trates the position update of the particle. The dashed lines indicate the
distance vectors from the central particle to all particles within a cut-off
(dashed circle).
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Boundary conditions This thesis explores the physics of polymer glasses
in the bulk, and confinement effects near the edges of the simulation volume
are avoided by imposing periodic boundary conditions. When a particle
leaves the rectangular simulation box through one surface, a copy of it (an
image-particle) reenters on the opposite surface. This effectively creates an
infinite lattice of simulation boxes as indicated in fig. 2.3. As sketched in the
same figure by a circle, particle interactions and other distance dependent
calculations are performed by considering image-particles whenever they are
closer than the particles in the simulation box. This technique is known as
minimum image convention.

Thermostat Conventional MD simulations are energy conserving, since
they are based on Newtons equations of motion. Under experimental condi-
tions, however, the polymer glass is interacting with its environment. It is
therefore more realistic to simulate the system at constant temperature. A
variety of approaches have been developed to constrain the kinetic tempera-
ture in the system in agreement with the NVT ensemble (constant number
of particles, volume and temperature). These methods are called “ther-
mostats”, and I use the LAMMPS [72] implementation of two algorithms. I
am using the Langevin thermostat [2] during equilibration in the melt, the
temperature quench and during mechanical deformation. The Nosé-Hoover
thermostat [46, 69] is used during the simulation of a quiescent glass.

The Langevin thermostat(LT) simulates the existence of a heat bath by in-
troducing random and dissipation forces into the equations of motion, which
become Langevin equations

m a(t) = F(t)−mγv(t) + fr .

Here, γ is a dampening constant and I used γ = 1. The random forces
are independent for each particle as well as time step and have zero mean.
They couple the system to a fixed external temperature T via a fluctuation-
dissipation relation and the variance of the random force is 2mkBT/γ∆t,
with kB being the Boltzmann constant.

In the Nosé-Hoover thermostat (NHT), the heat bath is introduced as an
additional degree of freedom, that controls the flow of energy between the
system and the reservoir. This approach leads to an additional friction force

m a(t) = F(t)−mξ v(t) ,
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with a coefficient ξ that is coupled to the fixed external temperature [2] via

ξ̇ =
1

Q

(∑
i

mv2
i − f kBT

)
.

Here, the dot above ξ represents a time derivative, f = 3N is the number of
degrees of freedom in the system, and Q = f kBT τ

2
NH controls the strength

of the coupling via a relaxation time τNH . The simulations discussed in this
thesis were performed with τNH = 0.5.

The preparation of the polymer glass and mechanical deformation (dis-
cussed in the next two sections) as well as all simulations for the project
discussed in chapter 3 were performed using the LT. During the implemen-
tation of the hop detection algorithm (see below) I realized that the LT can
have a diminishing impact on the spatially heterogeneity of the dynamics
in the glass state. The LT applies to each particle an independent random
force and thus has a homogenizing effect on the dynamics. In contrast to
this, the friction coefficient ξ of the NHT is a global property of the system
(there is only one degree of freedom added for the heat bath), and in this
sense the thermostat affects all particles in the same way. A comparison of
the hop frequency and cluster size measured in the glass state shows that
simulations with the NHT have slightly more hops that are more clustered
in space. I emphasize that the observed differences are small, and to assess
which simulation describes the glassy dynamics more accurately goes beyond
the scope of this thesis. However, for the projects discussed in chapters 4-6
I chose to simulate the quiescent glass state (no external deformation) using
the NHT, because I believe it to be the “safer” alternative that avoids to
artificially drive the system into a dynamically less heterogeneous state.

Barostat The pressure is controlled by a Nosé-Hoover barostat [45], which
adds an additional degree of freedom that simulates a pressure-bath [2]. This
allows simulations in the NPT ensemble (constant number of particles, pres-
sure and temperature). The bath couples to the pressure by rescaling the
simulation box L̇α = ναLα in dimension α with coefficient να that acts as a
strain rate. Physically, the coupling resembles the action of a piston, which
adjusts the accessible volume depending on the balance between internal and
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external pressure. The equations of motion are modified to

ṙα(t) = vα(t) + να(rα −R0,α)

maα(t) = Fα(t)−mναvα(t) ,

and in analogy to the thermostat discussed above, the coupling coefficient
evolves according to [65]

να =
1

τ 2
BN kBT

V (Pαα(t)− Pext,αα) .

Here, Pαβ(t) = (
∑N

i vi,αvi,βm/2+
∑N

i ri,αFi,β)/3V is the instantaneous pres-
sure tensor, while Pext is the fixed external pressure. All deformation sim-
ulations are performed with a relaxation time τB = 7.5, and I use the
LAMMPS [72] implementation of the algorithm that controls each dimen-
sion independently.

2.3 Mechanical deformation

Uniaxial tensile deformation is simulated with two different protocols. In
both protocols the pressure perpendicular to the deformation axis is kept at
Pxx = Pyy = 0. A creep experiment is simulated by applying a constant stress
σz in the z-direction for a time period ts, using the barostat with Pzz = −σz.
To avoid discontinuities, the pressure is ramped to −σz over the time period
37.5. At the end of the deformation period, the pressure is ramped back to
zero in the same way. This creep-protocol is used in the project discussed
in chapter 3. A limitation of this protocol is that deformation can only be
simulated up to the yield point. At the onset of flow the barostat becomes
numerically unstable, since it cannot keep up with the rapid response of the
system to the applied stress.

An alternative protocol that allows the simulation of mechanical defor-
mation beyond the yield point is the deformation at constant strain rate
ε̇ = L̇z/Lz, where strain is defined as engineering strain ε = ∆Lz/Lz. The
simulation box size along the z-direction is continuously increased at a con-
stant rate for a time period ts by directly rescaling space in that dimension.
During the deformation period, the z-component of the pressure is not con-
trolled by the barostat, while the other pressure components remain fixed at
zero.
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Energy-shifted model, eq. (2.2) Force-shifted model, eq. (2.3)

T ρ T ρ

0.2 1.005 0.2 1.059

0.25 0.995 0.3 1.043

0.3 0.983 0.4 1.023

Table 2.2: Densities in the melt used for the different target temperatures
in the glass state. Densities in the left two columns are used in the projects
discussed in chapters 3 and 4, while the right two columns are the parameters
used in chapters 5 and 6.

2.4 Preparing the polymer glass

The polymer glass is prepared in two steps [99]: First, I create and equilibrate
a polymer melt at the temperature T = 1.2. Second, this melt is quenched at
a rate 6.7 ·10−4 to below the glass transition temperature Tg. In the projects
discussed in chapters 3 and 4 I simulated chains of length Nc = 50 beads
with a total number of beads in the simulation N = 50, 000. The simulation
box volume was chosen such that the pressure at the end of the quench is
close to P = 0, and the densities used for the different final temperatures
are given in the first two columns of table 2.2. The calculation of the soft
modes (see further below) in chapters 5 and 6 is computationally expensive
and required a reduction of the system size to N = 10, 000. The changes in
the model potential discussed above result in slightly different melt densities
and are given in the two right columns in table 2.2. The spatial size of the
system is around 20 particle diameters in each dimension (for N = 10, 000,
otherwise larger), which is much larger than the physically important length
scales. As discussed in section 1.2.1, glassy dynamics are dominated by the
caging effect caused by neighboring particles, and particle distances are on
the order of the particle diameter. The largest length scale present in the
system is the end-to-end distance of a polymer, which is around 8.5 particle
diameters (see fig. 2.4 below).
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2.4. Preparing the polymer glass

Polymer melt The creation of the polymer melt closely follows the proce-
dure introduced in Ref. [4]. The positions of the beads of each polymer are
initialized as a random walk in the simulation box with step length 0.92a,
and consecutive steps are constrained by ‖ri−ri+2‖ ≥ 1.02a [4]. This results
in polymer configurations that are close to the equilibrium statistics, yet it
allows beads to overlap, which is unphysical and result in diverging forces
due to the repulsive part of the LJ potential (see eq. (2.1)). This problem is
resolved in two stages:

1. Slow push - Instead of using the LJ pair-potential from the beginning,
one simulates the first 3000 time steps using the soft potential

Upair(r) = A [1 + cos(πr/rc)] , if r < rc .

The coefficient A is increased linearly 1 ≤ A ≤ 100 over the run, driving
a reduction of the overlap.

2. Fast push - The soft potential is now replaced by the LJ potential and
the simulation is run for an additional 3000 time steps. To keep the
particle velocities from diverging due to the remaining overlap, one
rescales the velocities every 50 time steps such that the temperature is∑N

i=1 v
2
i /2m = 1.2.

The system is then equilibrated by running it in the NVT ensemble for
107 time steps. To ensure that an equilibrium state is reached, I measure
the mean-square end-to-end distance of chain segments of length n along the
polymer backbone

〈R2〉(n) =

〈
1

Nn

Nn∑
|i−j|=n

(ri − rj)
2

〉
.

Here, 〈.〉 indicates an average over all polymers. This mean square internal
distance (MSID) has a signature peak at intermediate n that vanishes when
equilibration is reached [4]. Figure 2.4 shows the MSID at different equilibra-
tion run lengths N∆t for a short-chain system. One can see a characteristic
peak around n = 10, which reduces with increasing run time. After 107

time steps the MSID does not change any more and the system has reached
equilibrium.
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Figure 2.4: Mean square internal distance at different times during the equi-
libration run, as indicated in the legend.

Glasses at different temperatures and ages The polymer glass is cre-
ated from the melt via a rapid quench to below the glass transition tempera-
ture at constant volume and quench rate Ṫ = −6.7·10−4. The glass transition
temperature for the energy-shifted model (chapters 3, 4) is Tg ' 0.35 [76].
For the force-shifted model (chapters 5, 6) Tg ' 0.4 is estimated from the
temperature dependence of the pressure during cooling, see also fig. 1.1(b).
To study the temperature dependence of measured quantities, glasses at dif-
ferent final temperatures are created, and a list of all temperatures used in
this thesis is given in table 2.2.

As discussed above, the density is chosen for different target temperatures
such that the hydrostatic pressure is close to zero at the end of the quench. In
a final step after the quench, the simulation is switched to the NPT ensemble
using a barostat (see above) and the pressure is quickly ramped to zero over
the time period 37.5. The resulting system is what I call an “as quenched”
or “newly quenched” glass in the quiescent state. To study the effects of
non-equilibrium dynamics, the system can then be evolved to different ages
by simulating it at zero pressure in the NPT ensemble for the desired time
period.
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2.5. Interpreting simulation results

2.5 Interpreting simulation results

There are two fundamental problems in correctly interpreting results from
these simulations. The first challenge is: how can one ensure that the nu-
merical model accurately simulates the physical glass? Fully atomistic simu-
lations with quantum-mechanical detail are computationally very expensive
and restrict the system size to a few hundred atoms. As explained in the
introduction, glassy dynamics can be found in many diverse physical sys-
tems that stretch many orders of length scales. Glassy physics is therefore
not critically dependent on microscopic details, but is instead driven by the
interaction of many particles in a crowded environment and without an ac-
cessible ordered ground state. As mentioned above, the bead-spring polymer
model has been successfully used in other studies [8, 70, 76, 94, 99] to explore
the glass state. To ensure that my simulations capture the glassy physics, I
have checked that the key signatures of glassy dynamics (see introduction)
are present in the simulation. I identified the expected power-law age depen-
dence of the relaxation time and logarithmic aging of structural properties
(chapter 3), as well as dynamical heterogeneity (chapter 4).

The second fundamental problem is the numerical accuracy of the pre-
dicted dynamics. MD simulations are based on Newtons equations of motion,
and temperature as well as pressure are controlled via well established tech-
niques. Although this work is not aiming at characterizing a specific physical
system with high numerical detail, but rather to explore general character-
istics, trends and dependencies of glassy dynamics, it is nonetheless crucial
to accurately estimate the equations of motion in order to successfully sim-
ulate the physical processes that drive glassy dynamics. The key numerical
approximation of MD is the discretization of time and a typical time step
is of order 10−14s. Although computational resources are growing exponen-
tially, it is currently only possible to simulate on time scales up to ∼ µs. In
contrast to this, at the viscosity threshold for the glass transition structural
relaxation happens on time scales ∼ 100s. In order to use MD techniques to
study glasses, it is therefore necessary to choose a model that exhibits glassy
behavior on the computationally accessible, rather than realistic time scales.
Furthermore, to simulate experimental perturbations like mechanical defor-
mation and cooling, one has to increase the rate of change by 4-8 orders of
magnitude. These non-physical rates, which are used in this study, are a com-
mon and legitimate cause of concern for numerical studies of glasses and there
is no simple solution for this problem. The “accelerated dynamics” that is
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introduced via the simple bead-spring model might equalize the disparity be-
tween physical and simulated perturbation rates, i.e., the system is deformed
much faster than in the laboratory, but due to the faster than physical dy-
namics it can respond in kind and in a physically correct way. Validation of
the simulation results again relies on a comparison with experimental results.
The project discussed in chapter 3 was designed in close relation to a recent
experimental study, and our results for the structural relaxation time all the
qualitative features identified by the experiment. Despite the challenges of
simulating glassy dynamics with MD there is a large body of computational
work that study binary [50, 81, 82, 98] and polymeric glasses [38, 70, 74, 99],
supercooled liquids [21, 101] and granular media [19, 20] using MD.

2.6 Hop detection

A key measurement used in this thesis is the detection of hops, see caging
effect in section 1.2.1. The detection is based on an adaptation of an algo-
rithm proposed by Candelier et al. [19]. The algorithm measures the average
squared distance between two adjacent parts of the trajectory, and a hop
is detected when this distance is bigger than a threshold, which is related
to the height of the caging regime plateau in the MSD [19, 20] (see fig. 1.2
in section 1.2.1). The method was successfully used in studies of agitated
granular media [19, 20], a supercooled liquid in 2D [21] and more recently in
a cyclically sheared glass in 3D [73].

The original algorithm is based on a recursive scheme on saved trajecto-
ries, and my adaptation is to run the detection “on-the-fly” in the spirit of
a running average. This adaptation is an important technical contribution
of this thesis, because it allows the measurement of hops with much better
temporal resolution.
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Figure 2.5: Sample trajectory of a particle and hop identifier function Phop.
(a) shows the localization into two cages and the ’hop’ is marked by rapid
changes in the trajectory (e). Corresponding to this, Phop in (d) is sharply
peaked at the transition and the maximum defines the hop time thop. Plots
(b) and (c) are overlays of Phop and the trajectory just before and after the
hop (z-comp. only for better visibility). The colored fields (A and B) in both
plots indicate the evaluation window for Phop [see eq. (2.5)]. Initial and final
positions are calculated from time averages of the trajectory parts that are
highlighted as zoom, i.e., (b) initial position (orange) and (c) final position
(cyan).
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During the simulation run the most recent section of the trajectory of a
particle is stored in Nhist = 20 data points, and every Nobs = 100 time steps
the oldest point is replaced by the current position. This gives access to a
time window teval = NobsNhist ∆t = 15 (the parameter choices are discussed
below), and the trajectory is separated into two parts A (t− teval, t− teval/2]
and B (t− teval/2, t] of equal size. A hop identifier function

Phop

(
t− teval

2

)
=
√〈

(rA − r̄B)2〉
A
·
〈
(rB − r̄A)2〉

B
(2.5)

is calculated every Nobs time steps that measures the averaged squared dis-
tance between the mean position in part A, r̄A, and all trajectory points in
part B, rB, and vice versa. It is large when the trajectory changes rapidly at
t− teval/2, and a hop is detected when Phop exceeds a temperature dependent
threshold Phop > Pth. The thresholds used in this thesis are given in table 2.3
and the parameter choices are discussed further below.

In Figs. 2.5(a) and (e) I show a sample trajectory of a particle together
with the calculated Phop, fig. 2.5(d). A hop is clearly identified and the
algorithm records particle id, hop time thop and position of the particle before
and after the hop rinit and rfinal. The hop time is defined at the maximum
of Phop, and the locations are calculated from averages as the threshold is
crossed: before the peak rinit = 〈r〉A [see fig. 2.5(b)] and after the peak
rfinal = 〈r〉B [see fig. 2.5(c)]. Using this algorithm on each particle via a
parallel implementation in LAMMPS [72] allows the monitoring of all hops
in the system for the full duration of the simulation.

Irreversible hops In the projects discussed in chapters 5 and 6, I use
an additional evaluation step in order to exclude back-and-forth hops of a
particle between the same two positions. This is implemented as a post-
processing procedure at the end of the simulation. All hops of a single particle
are read from the output of the hop detection algorithm, and two consecutive
hops are removed, if the final position of the second hop is within a distance
of
√
Pth/2 of the initial position of the first hop. With this adaptation, the

remaining hops give a full map of the irreversible structural rearrangements
measured during the simulation. To assess the robustness of this procedure,
the results in chapter 5 were recalculated with a distance threshold

√
Pth,

and no significant changes were found.
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2.6. Hop detection

T 0.2 0.25 0.3 0.4

Pth 0.15 0.18 0.21 0.27

Table 2.3: Hop identifier function thresholds used for the different target
temperatures in the glass state.

Parameter choices Candelier et al. [19] used a threshold Pth that was
somewhat bigger than the plateau height in the MSD, which I denote as
a2
c . I reduce the ambiguity in the choice of Pth by measuring a histogram of

peak-heights in the hop identifier function. If one assumes that a particle in
a glass has only two well defined modes of movement: vibration around a
fixed mean position (caged) and instant jump by a distance > ac (hop), then
the hop detection would only pick up peaks of height > a2

c .
In fig. 2.6 the D data (standard time window parameters, see below) is the

measured histogram. We find a distribution of peak heights that is largest
at small heights, with a long exponential tail towards larger peaks. The
small peaks are due to shifts of the mean particle position within the cages.
This is expected, because each member of the surrounding shell that form
the cage is not fixed in space, but moves within a small area (its own cage).
Cages are therefore not static, but instead change slightly over time. The
measured distribution shows a relatively sharp transition to an exponential
tail, which indicates the existence of an additional source of larger peaks, the
cage-escapes or hops. I therefore use the crossover point as the threshold,
and based on the data shown in fig. 2.6 for the polymer glass at temperature
T = 0.3 the threshold is Pth = 0.21 (dashed line). For comparison, the inset
shows the mean square displacement and the horizontal line indicate Pth.
Analog measurements were performed for the other glass temperatures and
all thresholds used in this thesis are given in table 2.3.

The time window teval = NhistNobs ∆t used in the algorithm is defined
by two parameters, the number of stored trajectory points Nhist and the
frequency in time steps Nobs at which the trajectory is updated and Phop
recalculated. The update frequency used in this thesis is Nobs ∆t = 0.75,
which is the mean time between particle collisions indicated by the onset of
the caging plateau in the inset of fig. 2.6 (dotted line). This also sets the
maximal temporal resolution for the hop time. The time window teval is the
main influence on the detection algorithm. It sets the maximal resolution of
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Figure 2.6: Histograms of hop identifier Phop peak heights calculated
at glass temperature T = 0.3 and time window parameters (order of
legend):(Nhist, Nobs) = (20, 100), (40, 50), (10, 200), (10, 100), (40, 100). The
data for the three parameter sets with teval = 15 are nearly identical (blue
D overlay other markers). The solid line is an exponential fit of the distri-
bution tail and the dashed line indicates the resulting parameter choice Pth.
The inset shows the mean square displacement as function of time and Pth
is indicated by the horizontal line.

two consecutive hops (teval/2) and also acts as an upper limit for the duration
of a hop. To maximize the resolution but also ensure that meaningful aver-
ages are possible [see eq. (2.5)], I choose Nhist = 20 and therefore teval = 15.
In fig. 2.6 I illustrate the impact of this parameter. Note that the histogram
for the present parameter values (D) coincides with two other parameter sets
with equal teval (histograms are nearly identical and therefore difficult to dis-
tinguish). This shows that only the window size has a direct impact on the
hop detection. Consequently, a smaller time window yields the detection of
more peaks with small height, and a larger teval results in fewer small peaks,
but also in a lower resolution.
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2.7 Vibrational modes and the softness field

The low energy vibrational spectrum is used to calculate a softness field that
quantifies the participation of particles in quasi-localized vibrational modes,
see discussion in section 1.2.4. During the simulation run, snapshots of the
system are stored in logarithmically spaced time intervals. The softness field
at time t is measured in four steps:

1. Starting with a snapshot of the system at time t, a combination of
gradient descent and damped dynamics (FIRE [15]) algorithms are used
to minimize the forces present in the system. Both algorithms are
implemented in LAMMPS [72]. The resulting spatial configuration of
the particles is the inherent structure.

2. The Hessian [see eq. (1.1)] is calculated with the model potentials and
the inherent structure. The result is a 3N by 3N symmetric sparse
matrix.

3. The low energy vibrational spectrum is calculated by partially diago-
nalizing the Hessian using ARPACK [87]. I am using the solver for a
real symmetric matrix in the shift-inverted mode with shift parameter
set to zero. Arpack is an implementation of the Implicitly Restarted
Lanczos Method [87], which is a numerically reliable algorithm for the
estimation of eigenmodes that is based on the power method for finding
eigenmodes. It exploits the idea that the result of repeated multiplica-
tion xn = A · xn−1 of an initially random vector x0 with the matrix A
converges to the eigenvector of the largest eigenmode of A.

4. The Nm lowest energy eigenmodes with non-zero eigenvalues are used
to calculate the softness field. The definition of the softness field is
explained in detail below.

An analysis of the maximal cross-correlation (see eq. (5.1) in chapter 5)
between hops and softness field (see eq. (2.6) below) as a function of Nm

reveals a broad and weak maximum between 300 > Nm > 900 (1-3% of
the modes). For the results discussed in chapters 5 and 6 I use Nm = 600.
Already Nm = 300 yields 95% of the quantitative accuracy.
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Softness field definition The softness of a particle is defined as the
superposition of the participation fractions in the low energy vibrational
modes [68, 102, 103],

φi =
1

Nm

Nm∑
j=1

|e(i)
j |2 . (2.6)

Here, the polarization vector e
(i)
j is the projection of the eigenvector of mode

j on the degrees of freedom of particle i, see section 1.2.4 for more details.
The softness field φ depends on a single parameter, the number of included
low energy modes Nm, and the scaling factor is added to make the softness
an intensive quantity in terms of Nm. A particle i is considered “softer” the
larger φi is, and it is used to rank the particles according to their relative
softness. The absolute value of φ is not in itself meaningful, since the partici-
pation fractions are normalized quantities, i.e.,

∑N
i=1 |e

(i)
j |2 = 1. The softness

of a particle therefore describes its average participation fraction in the Nm

lowest energy vibrational modes.
It is worth pointing out that the contribution of each mode should be

weighted by its energy. A particle that is involved in a low energy mode
requires less energy to be excited to the same extent than a particle with
identical projection |e(i)|2 in a higher frequency mode. However, I find that
this weighting does not improve the predictive strength of the softness field
for the present system, since the frequency does not vary strongly for the
contributing modes. More details about the effect of this weighting as well
as alternative definitions of softness are discussed below.

Direction of the softness field Directional information can be added to
the scalar softness field in a similar superposition scheme. The eigenvector
of mode j defines the mode direction for particle i via the polarization vector
e

(i)
j . This vector is defined up to its sign due to the harmonic nature of the

description. In order to find the dominating direction in the Nm modes, I
calculate nematic tensors from the unit length projection vectors (Q

(i)
j )α,β =(

3
2
ê

(i)
j,αê

(i)
j,β − 1

2
δα,β

)
and perform a weighted average

Q
(i)
φ =

∑Nm
j=1 |e

(i)
j |2Q

(i)
j∑Nm

j=1 |e
(i)
j |2

.
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Figure 2.7: Distribution of softness in the system T = 0.3, tage = 750 for
three definitions of the softness field. The softness is rescaled in terms of the
mean softness to allow an easier comparison.

The eigenvector of the largest eigenvalue of Q
(i)
φ then defines the direction

of the softness field e
(i)
φ . The direction of the softness of a particle therefore

indicates the mean direction of the Nm lowest energy vibrational modes.

2.7.1 Alternative definitions

The definition of a field that quantifies the participation of particles in soft
modes is not unique. The superposition of participation fractions used here
and in several other studies [68, 102, 103] essentially measures the average
potential energy of the particles. To see this, note that the participation
fractions distribute the total potential energy 〈Uj〉 of mode j over particles i

so that 〈U (i)
j 〉 = 〈Uj〉|e(i)

j |2, and 〈...〉 denotes a thermal rather than disorder
average. The softness field defined in eq. (2.6) is therefore proportional to the
mean potential energy of particle i in the Nm lowest energy modes, assuming
equipartition of the mode energies. However, as mentioned above, participa-
tion in lower energy modes should be more important than in higher energy
modes, since less energy is needed to displace a particle from its inherent
structure position. In this view, the softness of a particle becomes propor-

tional to its mean squared vibrational amplitude 〈x(i)2

j 〉 = 2〈U (i)
j 〉/mω2

j , and
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the softness field becomes

φi =
1

Nm

Nm∑
j=1

|e(i)
j |2

mω2
j

. (2.7)

Finally, one may ask why the mean squared vibrational amplitude should be
considered rather than the mean absolute or root-mean-squared amplitude.
This leads to a third alternative for the softness field

φi =
1

Nm

Nm∑
j=1

|e(i)
j |√
mω2

j

. (2.8)

Figure 2.7 compares the distributions of softness resulting from these three
alternative definitions. The weighting w.r.t. mode energy given in eq. (2.7)
stretches the distribution obtained from eq. (2.6) without changing it qual-
itatively. Using the average displacements as measures on the other hand
yields a qualitatively different, purely exponential distribution of softness.
This exponential form reminds of the self-part of the van Hove function,
which measures the distribution of particle displacements over a fixed time
window. A signature of dynamical heterogeneity is the non-Gaussian, expo-
nential tail found in the van Hove function, and the softness field based on
eq. (2.8) seems to hold a fingerprint of this characteristic feature of glassy
dynamics. I also compared the spatial and directional correlation of the soft-
ness based on eqns. (2.6)-(2.8) to hops. The results are remarkably insensitive
qualitatively as well as quantitatively, with eq. (2.8) yielding a slightly bet-
ter spatial correlation. I chose to use the definition in eq. (2.6) for ease of
comparison with previous studies in other systems.
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Chapter 3

Recovery from mechanical
deformation1

This first project studies the complex interplay between physical aging and
mechanical deformation in glasses, specifically the phenomenon called me-
chanical rejuvenation. A detailed explanation is given in section 1.2.2, in
summary: aging leads to a slowing of the molecular mobility, which can be
measured as an increasing bulk structural relaxation time τα with growing
age. One can therefore think of τα as an internal “material clock”. Mechan-
ical deformation decreases τα and this reversal of the aging effect results in
a system that is dynamically equivalent to a younger glass. Whether the
deformed glass is truly comparable to a younger glass is still an open ques-
tion [64], with computational studies of the potential energy landscape [54,
62] suggesting that deformation drives the system into a state that is different
from a glass of less age.

A recent experiment [58] explored the behavior of polymer glasses in the
recovery regime after the end of a creep deformation. A fluorescence mi-
croscopy technique was used to observe changes of the molecular mobility
over time and the results in the recovery regime were compared to the aging
behavior of a quiescent glass without deformation history. The experiment
found that pre-yield deformation results in a transient reduction of τα fol-
lowed by a quick return to pre-deformation behavior, while the molecular
mobility of a glass after deformation far in the post-yield regime is compara-
ble with an as quenched glass.

This project uses computer simulations to give a complementary picture
of glasses in the recovery regime. The glass was simulated in the aging
regime at the temperature T = 0.2, which is far below the glass transition
temperature Tg ∼ 0.35 [76]. In addition to the molecular mobility I monitor
structural as well as energetic quantities to clarify whether deformation drives
glasses to a state that is comparable to a younger glass without deformation

1Large parts of this chapter have been published in ref. [84]
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Figure 3.1: Schematic protocol of the simulation with waiting time period
tw, uniaxial tensile creep (a) or fixed strain rate (b) deformation period ts,
and recovery period tr.

history. In analogy to the experiment, the simulations are designed in three
stages, shown in fig 3.1(a): The newly quenched glasses are aged at zero
pressure in the quiescent state for a waiting time tw. This is followed by
a creep period ts at constant tensile stress σ, and the recovery regime tr
after unloading. At the beginning and end of the creep period, the stress is
quickly ramped up and down to avoid unphysical discontinuities. I study the
quasi-adiabatic limit of negligible aging during deformation by restricting the
deformation time to ts < tw. To study the effect of deformations beyond the
yield point at strains ε ∼ 6%, I also use the constant strain rate ε̇ protocol
shown in 3.1(b).

3.1 Immediate impact of creep

When tensile stress is applied to a glass, the material reacts first with an
elastic response followed by plastic deformation. In fig. 3.2(a) I show the
plastic part of the creep compliance

J(t, tw) =
ε(t, tw)

σ

of the glass for a range of imposed stress amplitudes σ. The engineering
strain ε = ∆L/L is calculated along the z-direction and the values at ts =
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Figure 3.2: Panel (a) shows the creep compliance of a glass with age tw =
75000 for different external stresses σ. The indicated strains are calculated
at ts = 15000. Panel (b) shows the intermediate scattering function CS

q of
the perturbed glasses shown in (a) in the recovery regime together with a
just-quenched glass (F). The main graph shows CS

q just after unloading
(tr = 0) and the inset is calculated at tr = 75000. The dashed lines define
the α-relaxation time.
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3.2. Recovery of the relaxation time

15000 are given in the legend. It is clearly visible that larger stress yields a
much larger creep compliance, indicating a non-linear response. Figure 3.2(a)
shows results for a glass with age tw = 75000, and for increasing wait times
I observe (not shown here) the well known double logarithmic shift towards
smaller compliance as discussed for instance in ref. [99].

Figure 3.2(b) shows the self part of the intermediate scattering function
(ISF)

CS
q (t, ta, tr) = 〈exp(iq · [r(t+ ta + tr)− r(ta + tr)])〉 ,

which is a standard measure of relaxation times in aging glasses [50]. Here,
the average is performed over all beads at a certain time, r(t) is the position of
a bead at time t and the wave vector q = 2πez corresponds to a displacement
of a along the deformation axis. The glass age after unloading is given by
ta = tw + ts. In glasses, the ISF shows three regimes that are identical
to those discussed for the mean square displacement in section 1.2.1: A
ballistic regime at very small time scales is followed by a caging plateau
at intermediate times, and the decay at large times indicates the diffusive
regime. Aging increases the intrinsic time scale of the glass, and the resulting
lengthening of the plateau is visible by comparing the inset and main plot of
fig. 3.2(b). I define the structural relaxation time τα as the time when the ISF
has decayed below the caging-plateau or CS

q (τα, ta, tr) = 0.8. In fig. 3.2(b),
this is indicated by dashed lines.

The main graph in fig. 3.2(b) shows the ISF measured immediately after
unloading at tr = 0 for the systems in panel (a) that were deformed at
stresses σ = 0.2, 0.4, 0.5, 0.6. Additionally, the ISF of a newly quenched
glass is shown (F). The mechanical perturbation yields a shortening of the
caging plateau and a corresponding shift of τα towards smaller times, which
agrees with previous studies [48, 88, 99]. The relaxation curve for ε = 5.5%
indicates that this glass relaxes even faster than the just-quenched glass.
The reason for this is that the later already has an effective age of ∼ 103,
which it acquires during the quench. The inset shows that the differences
in the relaxation behavior disappear after a long recovery period. In the
following, I clarify whether the impact of mechanical perturbation is transient
or permanent by studying the path of recovery.

50



3.2. Recovery of the relaxation time

0 5 10 15 20 25 30
t (104)

102

103

104

105

106

τ α

tw ts tr

σ=0.2

σ=0.4

σ=0.5

σ=0.6

new

Figure 3.3: Evolution of α-relaxation time of a just-quenched “new” glass
compared to those of mechanically perturbed glasses in the recovery regime.
The glasses are identical in the initial aging regime tw = 75000, the creep
time is ts = 15000, and the time regimes are indicated by the dashed lines.
Other results from simulations with these parameters are shown in fig. 3.2.

3.2 Recovery of the relaxation time

The evolution of the α-relaxation time after unloading holds key informa-
tion about the change in the aging dynamics. Lee and Ediger showed ex-
perimentally that τα measured in the recovery regime can be shifted onto
the relaxation time of an unperturbed sample [58], and this behavior was
associated with mechanical rejuvenation. Furthermore, they repeated the
experiment with a sample deeper in the glass phase and found merely tran-
sient changes. The relaxation time did not behave like that of a new glass,
but rather returned to the original unperturbed evolution after a short time.
In fig. 3.3 I show the relaxation time of an unperturbed glass together with
τα in the recovery regime after mechanical perturbation with several stress
amplitudes. In all cases I find that the relaxation time immediately after
unloading decreases with increasing stress amplitude. For σ < 0.5 my results
show a rapid return to the unperturbed evolution, which suggests a non-
permanent change of the aging dynamics. In agreement with ref. [58], τα
for larger stresses σ ≥ 0.5 exhibits dynamics very similar to a just-quenched
glass but shifted in time.
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Figure 3.4: Relaxation time dynamics of unperturbed glasses with a range
of wait times 103 ≤ tw ≤ 105 in a double logarithmic plot. The continuous
black line is the “generic” aging dynamics τ 0

α and in the inset (axes: τα over
tr) I show the shift of τα with increasing tw. The main graph shows a data
collapse with tr measured in units of glass age ta = tw and τα being rescaled
by τ 0

α(ta). The dashed lines are guides to the eye.
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Figure 3.5: Relaxation time of mechanically perturbed glasses in the recovery
regime. The coloring represents the total strain at time of unloading. The
continuous line indicates the generic aging dynamics and the dashed lines are
guides to the eye.

To illuminate this transition from transient to permanent change, I com-
pare the recovery paths of perturbed glasses in a wide parameter range to
those of unperturbed control samples. I calculate the τα dynamics of a just-
quenched glass by averaging results of six simulations. I find the known
power law behavior with aging exponent µ ' 0.89 and refer to it as the
“generic” aging scenario τ 0

α ∝ tµw [26, 50] (0 indicates generic behavior). In
fig. 3.4 the generic aging is indicated as a continuous black line and the inset
shows the relaxation time of unperturbed glasses: The initial value depends
on the wait time and the power law behavior is seen for t > tw. In the main
graph I collapse this data by rescaling with the total age ta = tw + ts and τ 0

α

at this age. The dashed lines are guides to the eye and illustrate the ideal
path of unperturbed glasses until the power law behavior is resumed at their
intersection. Changes introduced by mechanical perturbation can therefore
be seen as departure from this expected path. The applied rescaling allows
me to compare glasses of all ages and with varying time intervals of stress
application ts.
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3.2. Recovery of the relaxation time

In fig. 3.5 I show the evolution of the relaxation time of mechanically
perturbed glasses in the recovery regime. The results were gathered from
simulations with parameters 103 ≤ tw ≤ 105 and 0.1 ≤ σ ≤ 0.6. I find that
the magnitude of change from the unperturbed behavior is best characterized
by the total strain ε at the end of creep - not the stress amplitude. Note that
the further away τα is from the horizontal dashed line, the stronger the impact
of the perturbation, and the larger the corresponding strain. Indeed one can
identify three recovery behaviors in fig. 3.5 which are indicated by coloring:
The green curves (ε ≤ 1%) are in close proximity to the dashed line and
the relaxation time stays constant at timescales smaller than the glass age
ta. This means that creep with small total strain has little impact on the
glass and the behavior essentially equals that of an unperturbed sample. At
intermediate strains 1% ≤ ε ≤ 3% (blue curves) the initial τα is at a lower
value but it begins to evolve before reaching the black line. The merger with
the generic glass behavior however, only takes place at the intersection of
the dashed lines. This indicates timescales around the original glass age and
the implications are discussed in the next paragraph. Finally, the red curves
indicate that the largest strains ε ≥ 3% yield the lowest τα. Remarkably, the
relaxation times of these strongly perturbed glasses do not begin to evolve
immediately but stay approximately constant until reaching the generic aging
dynamics which is then followed. This is the behavior that is expected for a
younger glass, i.e., I observe mechanical rejuvenation.

To better understand the recovery behavior observed in fig. 3.5, I show
a sketch of idealized paths in fig. 3.6. As before, the diagonal black line
indicates the generic aging dynamics and path (o) would be followed by an
unperturbed glass. I have shown that mechanical perturbation results in a
shift towards lower τα, which is the starting point of possible recovery scenar-
ios: path (a) is a fast return to the original (unperturbed) aging trajectory.
This is and idealized example of a memory effect and not observed in the
simulations. The glass remembers its age and the appropriate relaxation time
is recovered on timescales that are small compared to the aging dynamics.
Path (b) also exhibits dynamics on smaller timescales, but it merges with the
original aging trajectory at a later time. Indeed the intersection is at times
of the order of the glass age, whereupon the power law behavior is resumed.
This timing shows that the original age is still remembered by the perturbed
glass. By comparing fig. 3.5 and fig. 3.6 it is easy to see that glasses with
intermediate total strain (blue) follow this path. Similarly, the recovery from
large strains (red) is found to follow the third idealized trajectory (c). The
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3.3. Recovery of the local structure

Figure 3.6: Sketch of possible recovery paths of the α-relaxation time. Line
(o) is the path of an unperturbed glass and lines (a)-(c) are possible paths
of glasses after mechanically perturbation. The diagonal black line indicates
the generic aging dynamics.

relaxation time essentially stays constant until the generic aging behavior is
reached. The merger happens at times that are smaller than the original age,
which apparently indicates a loss of memory, i.e., mechanical rejuvenation.
However, it is important to realize that no curve in fig. 3.5 truly enters the
region to the right of the black line. The reason for this lies in the non-
equilibrium nature of glasses. The evolution of τα is driven by the relaxation
towards equilibrium and a given value can only become stable when thermo-
dynamic equilibrium is reached. Since for an ideal glass this state is never
reached, the black line acts as an upper time limit for the impact of memory
effects, which is the recovery of remembered age and corresponding τα. Fur-
thermore, dynamics on very small timescales (ballistic regime) can not alter
the relaxation time, because collective motion is required. This means that
a lower initial τα gives the glass less time to act on its memory. As a result,
a strongly perturbed glass that has a small initial relaxation time but that
still remembers its original age behaves very similar to a truly rejuvenated
glass when viewed only from this dynamical perspective.
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Figure 3.7: Percentage change of the rescaled average Voronoi cell volume
with respect to the “generic” value ∆〈Vv〉 = 〈Vv(t)〉 − 〈V 0

v (ta)〉 at glass age
ta = tw + ts. Shown in the main graph is the evolution of mechanically
perturbed glasses in the recovery regime. The coloring represents the total
strain at time of unloading. The continuous line indicates the generic aging
dynamics and the dashed lines are guides to the eye. The inset shows the
evolution of the average cell volume for just-quenched glasses and the black
line is a logarithmic fit that yields the generic aging dynamics.

56



3.3. Recovery of the local structure

3.3 Recovery of the local structure

Identifying structural quantities that are equally sensitive to aging has proven
to be difficult. No power-law behaviors similar to that of the α-relaxation
time are known. I am, however, able to find measures of the local structure
with logarithmic dependencies on the glass age. I calculate a variety of such
quantities to better characterize the recovery path after deformation and the
underlying thermodynamic state. Similar to the relaxation time analysis, I
approximate the “generic” aging behavior (indicated via superscript 0) and
compare this to the evolution after deformation. To perform a combined
analysis for varying stress amplitudes and glass ages (see section 3.2 for
parameter ranges) I use the same rescaling approach as for τα. Note that
in the case of logarithmic dependencies, the rescaling yields a change of the
generic aging slope (continuous black line in fig. 3.7 and following). I still
use the approach, however, because the evolution during aging and therefore
the change of the slope is small.

I first study the decrease of local volume during aging in the NPT en-
semble by performing a Voronoi tessellation on configuration snapshots and
calculating the average cell volume 〈Vv〉 [78]. The Voronoi tesselation divides
space into cells around the particle locations, and each cell is that part of
space that is closest to a single particle. In the main graph of fig. 3.7 I
show the recovery paths after creep for the same simulations as in fig. 3.5.
As before, the horizontal dashed line indicates the expected path of an un-
perturbed glass until the intersection with the continuous black line, which
indicates the generic aging behavior. The calculation of the generic aging
〈V 0

v 〉 is shown in the inset of fig. 3.7 and this is exemplary for all quanti-
ties with logarithmic dependency on the glass age: I combine the simulation
data of six just-quenched glasses and fit for the slope of the emerging loga-
rithmic behavior. In the main graph, the coloring again indicates the total
strain at time of unloading. One can clearly see that the deviation from the
unperturbed path increases with increasing strain, which agrees with the re-
sults from the dynamical perspective. I also observe the merger of red (large
strains) recovery paths with the continuous line at timescales smaller than
ta, indicating erasure of memory.

In the absence of long range order, which is the case for glasses, the local
spatial order is important for the characterization of the thermodynamic
state. I calculate three measures of the local structure that are sensitive
to aging and their recovery paths are shown in fig. 3.8. Since I focus on
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Figure 3.8: (a) Difference in the coordination number ∆〈cv〉 = 〈cv(t)〉 −
〈c0
v(ta)〉, (b) triangulated surface order parameter ∆〈S〉 = 〈S(t)〉 − 〈S0(ta)〉,

and (c) evolution of the eigenvalue difference ∆〈λ1,3〉 = 〈λ1,3(t)〉 − 〈λ0
1,3(ta)〉.

All three quantities are rescaled percentage changes with respect to the
“generic” value at glass age ta = tw + ts. The coloring represents the total
strain at time of unloading (see e.g., fig. 3.7). The continuous line indicates
the generic aging dynamics and the dashed lines are guides to the eye.
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3.4. Recovery in the potential energy landscape

mechanical rejuvenation and because the data is relatively noisy, only the
results for strains ε ≥ 2.5% are shown. In panel (a) one can see the evolution
of the average coordination number 〈cv〉, i.e., the number of beads that form
the nearest neighbor shell which is calculated using the Voronoi tessellation.
I find that the number of participating beads is decreasing with increasing
glass age and that an increase in strain leads to larger coordination numbers.
In panel (b) I show the recovery paths of the triangulated surface order
parameter

S =
∑
q

(6− q)νq ,

which is sensitive to short range order and often used in the study of amor-
phous metals [82, 99]. Here q is defined for each bead in the coordination
shell as the number of nearest neighbors that are also part of the shell, and
νq is the number of beads in the shell that have the same q. This order
parameter decreases during aging, which is a sign of increasing order and
packing fraction. I find that 〈S〉 is larger after mechanical deformation and
that the recovery path for large strains is similar to that of younger unper-
turbed glasses. The third structural quantity that is shown is the averaged
difference between the biggest and the smallest eigenvalue of the moment of
inertia tensor of the cages 〈λ1,3〉 = 〈λ1 − λ3〉. The Voronoi tessellation iden-
tifies the cage for each bead and after setting the origin of the coordinate
system to the position of the central bead, I calculate the tensor using the
positions of all beads that form the cage. I find that all eigenvalues decrease
with glass age, and more importantly that all differences exhibit a logarith-
mic dependency as well. This means that the aging dynamics manifest in
a change of the cages towards a more spherical shape. In fig. 3.8(c) I only
show the evolution of 〈λ1,3〉 and the just discussed “generic” aging behavior
is again indicated by the continuous black line. The observed paths resem-
ble the expected behavior of younger unperturbed glasses, which indicates
mechanical rejuvenation. All of these measures of local order show the now
familiar dependence on strain, i.e., increase in strain yields further distance
from the unperturbed aging path.
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Figure 3.9: Percentage change of the difference between the minimized
potential energy of a mechanically perturbed glass ∆〈umin〉 = 〈umin(t)〉 −
〈u0

min(ta)〉 and the “generic” behavior at glass age ta = tw + ts. Shown is
the evolution of the potential energy landscape in the recovery regime. The
coloring represents the total strain at time of unloading. The continuous line
indicates the generic aging dynamics and the dashed lines are guides to the
eye.

3.4 Recovery in the potential energy

landscape

The potential energy is another quantity that is sensitive to aging, and the
depth of the occupied minima in the potential energy landscape has been
the focus of previous studies [54, 62, 92]. I explore this third perspective on
the recovery paths by investigating the evolution of the inherent structure
energy 〈umin〉 in the recovery regime. The inherent structure is the particle
configuration in the zero temperature limit. The calculations are performed
using a gradient descent algorithm on spatial configuration snapshots, which
yields results in agreement with the potential energy after a very fast quench
to zero temperature. In analogy to the analysis of the local structure (see
section 3.3), I calculate the “generic” aging behavior 〈u0

min〉 and rescale the
recovery paths of simulations with varying stress amplitudes and glass ages
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3.5. Recovery after constant strain rate deformation

to allow a direct comparison.
In fig. 3.9 I show the recovery of the inherent structure energy of mechan-

ically perturbed glasses after unloading. As before, the horizontal dashed
line marks the expected path of an unperturbed glass and the continuous
black line is the generic aging behavior. The shown energies are calculated
solely from contributions of non-bonded beads, since the stiff springs between
bonded monomers do not age. I find that the depths of the minima decrease
with increasing total strain, which is indicated by color code. The green
curves (ε ≤ 1%) closely follow the horizontal dashed line and cross over to
the generic behavior at times of the order of the glass age. This indicates
that the mechanical perturbation was too weak to yield changes in the ag-
ing dynamics. For intermediate strains 1% < ε < 5% (blue and purple) I
observe a decreased initial depth of the minima 〈umin〉 and the onset of dy-
namics at times smaller than ta. However, in agreement with the relaxation
time dynamics and the evolution of the local structure, I find that the merger
with the generic dynamics takes place at timescales similar to the glass age.
The recovery paths at larger strains (red) resemble the expected paths of
younger unperturbed glasses: An initially constant behavior is followed by
the crossover to the generic aging at timescales smaller than the original age
of the glass, suggesting mechanical rejuvenation.

3.5 Recovery after constant strain rate

deformation

Deformations in the creep protocol are restricted to around the yield point,
because the onset of flow introduces numerical instabilities in the barostat,
see also section 2.3. I extend the range of analyzed strains by deforming
at a constant strain rate as shown in fig. 3.1(b), and results in the recovery
regime are shown in fig. 3.10. In close analogy to fig. 3.5, the α-relaxation
time in panel (a) decreases with increasing total strain. Although results for
different strain rates and wait times again collapse for the same amount of
strain, I note that the α-relaxation time begins to change noticeably only
for strains greater than ∼ 2%. This observation points to some differences
between the two deformation protocols that require further investigation.

Focusing on the regime of strains larger than 6%, I find that the recovery
paths saturate and cannot enter the region to the right of the generic aging
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Figure 3.10: Evolution of (a) α-relaxation time, (b) Voronoi cell volume, and
(c) inherent structure energy in the recovery regime after deformation with
constant strain rates ε̇ = 10−5 and 10−6 and two waiting times (glass age
ta = tw + ts). (b) and (c) are percentage changes as defined in fig. 3.7 and
fig. 3.9, and the coloring represents the total strain at time of unloading. The
continuous lines indicate the generic aging dynamics and the dashed lines are
guides to the eye.
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curve (thick solid line) as explained before. By contrast, I show in panel
(b) that the Voronoi volume can be driven beyond the range covered by
unperturbed aging dynamics. This is clearly visible for strains ε > 12%,
as the recovery paths overshoot the generic aging curve. It signifies that
I find cell volumes at time scales at which unperturbed aging would have
relaxed them to smaller sizes. With regard to the parameters describing local
order (see fig. 3.8), I find a similar overshoot in the recovery curves of the
eigenvalue differences, but not for the coordination number and triangulated
surface order parameter (not shown). I suspect that these quantities would
also begin to show overshoots for even larger deformations.

Finally, the inherent structure energy shown in panel (c) also exhibits
a recovery path that enters the regime inaccessible to unperturbed aging.
This crossing of the generic aging behavior indicates that strongly perturbed
glasses (ε > 12%) remain at a point in the potential energy landscape for a
time period that would be sufficient for an unperturbed system to relax to
a lower energy minimum. This implies that the state after deformation is
distinct from that of a younger glass.

3.6 Conclusions

I investigate the recovery of polymer glasses from uniaxial tensile creep de-
formation via molecular dynamics simulations. The impact of mechanical
perturbation on the aging dynamics is analyzed by comparing the recovery
paths after deformations of different duration and stress amplitude to the be-
havior of unperturbed control samples. The evolution of α-relaxation time,
inherent structure energy and measures of local spatial order are monitored,
and they give three different perspectives on perturbed glasses. In the regime
of negligible aging during deformation, all the data suggests that the impact
of deformation on the aging behavior is described solely by the total engi-
neering strain ε at the end of the deformation, i.e. an increase in strain yields
a recovery path further away from the unperturbed control path. I find a
clear progression from seemingly no impact at ε ≤ 1% to transient changes
at 1% ≤ ε ≤ 3 − 5% and finally permanent alterations of the glass history
at larger strains. This transition from “transient rejuvenation” to full “era-
sure” of aging is continuous and the onset of permanent changes is around
the yield strain [76].

I propose to distinguish between transient and permanent changes of the
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glass memory by identifying the timescale at which a perturbed glass recov-
ers the aging behavior known from unperturbed samples. If this timescale is
around the full age ta = tw + ts, then the glass has preserved its memory. On
the other hand, if the timescale is smaller than ta, then the glass history has
been altered. I visualize this measure of memory effects in fig. 3.6. For sam-
ples deformed via tensile creep to strains of 3−6%, all quantities indicate per-
manent rejuvenation as defined above. This agreement of dynamical, struc-
tural, and energetic criteria suggests that the underlying thermodynamic
state is indeed similar to that of a younger glass. Simulations at constant
strain rate were used to perform deformations beyond the yield strain. The
results for the recovery after post-yield deformation show a distinct behavior:
The evolution of the α-relaxation time still suggest rejuvenation and a state
equivalent to a younger glass. Structural and energetic quantities, however,
can be can be driven beyond the range accessible to younger glasses. This
indicates that a distinct thermodynamic state is reached after deformations
in the post-yield regime.

The creep deformation protocol used here closely followed that of recent
experimental studies [58]. The results are in agreement with earlier studies
in so far, as in observing transient changes of the aging dynamics in the
sub-yield regime and permanent changes in the post-yield regime. Addition-
ally, I show that the transition towards permanent mechanical rejuvenation
is continuous, and that its only control parameter is the total strain at the
end of the deformation. This finding supports an earlier study that reports
the importance of strain in describing accelerated dynamics during deforma-
tion [100].
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Chapter 4

Spatio-temporal correlation of
structural relaxation events2

This second project explores dynamical heterogeneity (DH) in polymer glass,
and this central feature of glassy dynamics is discussed in detail in sec-
tion 1.2.3. The dynamical activity in glasses is heterogeneously distributed,
with some regions undergoing rapid structural rearrangements, while other
regions remain structurally mostly static. The heterogeneity manifests in co-
operative motion of rearranging particles [33, 51], and four-point correlation
functions have been used to quantify DH in terms of a dynamical suscepti-
bility χ4 [9, 53], which is proportional to the volume within the glass that
exhibits correlated dynamics.

This study gives a new, spatially resolved perspective on DH by reduc-
ing the particle motion to local structural relaxation events. As discussed
in section 1.2.1, the particle dynamics in glasses is dominated by vibrations
in metastable cages that is interrupted by rearrangements of the local struc-
ture. In section 2.6 I introduce a new algorithm that detects rapid changes
in the particle trajectories, which is the signature of cage escapes or hops.
Using this algorithm I can record a list of all hops that happen during a
simulation run. Each hop is characterized by a time, the initial and final po-
sition of the particle (see section 2.6 for definitions) and the particle index.
In fig. 4.1(a) I show a snapshot of the whole system followed in fig. 4.1(b)
by a reduced picture where only particles are shown that hop at that time
step. The comparison highlights the sparseness of the effective dynamics,
showing a reduction from 50000 to four particles. By merging all hops that
were detected in a time window of 3000τLJ I directly reveal in fig. 4.1(c) the
heterogeneous distribution of hops and their grouping into clusters, i.e. I
directly show the dynamical heterogeneity in the glass resolved to individual
structural relaxation events.

The study focuses on glasses in the quiescent state at three tempera-

2Large parts of this chapter have been published in ref. [85]
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Chapter 4. Spatio-temporal correlation of structural relaxation events

Figure 4.1: Snapshots of a single configuration showing (a) all particles and
(b) only those particles that are in the middle of a hop. There are only
four hops at that time step and their positions are highlighted by arrows.
(c) shows all hops that are detected in a time window of 3000τLJ . The
configurations are taken from a glass at T = 0.2 and age ta = 20000.

tures T = 0.2, 0.25, 0.3 (Tg ' 0.35 [76]) in the aging regime. To increase
the accuracy of the analysis I performed 11 independent simulation runs for
temperatures T = 0.25, 0.3 and I report averaged results with error bars in-
dicating the standard error. The results are separated into two parts. In the
first section, I analyze the hop statistics and the dependence on temperature
and age. Hop frequency, persistence time in cages, hop distance as well as
direction are discussed, and a comparison to earlier studies is made that used
different detection algorithms and monitored hops on subsets of the parti-
cles in the simulation. The main result of this section is the calculation of
the spatio-temporal density-density correlation of hop events. I furthermore
quantify collaborative motion in the polymer glass and identify temperature-
and age-dependence. In the second part, I focus on DH in the aging regime.
This regime has only recently been explored using three- and four-point cor-
relators [17, 71], finding indications for an increase of dynamical correlation
with age. On the basis of our hop detection, I calculate the four-point dy-
namical susceptibility χ4 as the standard measure for correlated dynamics
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Figure 4.2: (a) Distribution of persistence time τ of cages at three tempera-
tures. The solid lines indicate power laws. (b) Distribution of hop distances
|d|, i.e., the distance between old and new cage. Exponential fits are indi-
cated by the solid lines and the vertical dashed lines indicate

√
Pth and 2

√
Pth

for the respective temperatures; see legend in panel (a). Error bars in both
plots are smaller than the markers and are omitted for visibility.

and directly compare it with the aggregation of hops into clusters, which is
the manifestation of DH in the hop picture. With this spatial resolution of
DH I calculate the full volume distribution of hop clusters and give a measure
of their compactness.

4.1 Statistical properties of hops

The non-equilibrium nature of glasses gives rise to a continuously slowing
structural relaxation with increasing age. The caging plateau in the mean
squared displacement, see section 1.2.1, extends to longer times with increas-
ing age, which suggests an increasing time that a particle remains in its cage.
This persistence time is measured as the time between two consecutive hops
of the same particle. Aging is caused by a broad distribution of persistence
times and previous studies have found a power law p(τ) ∝ τµ with exponent
−1 > µ > −2 in simulations of polymer glasses and binary mixtures [98].
In a very recent study this broad distribution was also found in simula-
tions of a strong glass former [97], although with exponent −0.3 ≥ µ ≥ −1.
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Figure 4.3: The hop frequency fhop in units 1/τLJ over the duration of the
simulation run in a log-log plot. Solid lines indicate power-law fits with
exponents µ given in the legend.

In fig. 4.2(a) I show the persistence time distribution for quiescent glasses
at three temperatures T = 0.2, 0.25, 0.3. I find a power-law behavior with
µ ' −1.5 insensitive to the glass temperature, which agrees well with the
previously found value for polymer glasses of −1.23 [98]. The slightly smaller
value is probably due to the increased sensitivity of the detection algorithm,
which increases the likelihood of shorter persistence times. The shortened
tail observed for T = 0.3 indicates that persistence times in this system are
sampled from a finite distribution and hence the system will equilibrate at
long times (see also ref. [97]). However, since the turnover happens at times
of the order of the total simulation time, during the observation time window
the system is still well within the aging regime.

During a hop, the particle moves from one metastable local configuration
to another, i.e., from one cage to the next. The detection algorithm estimates
both locations rinit, rfinal and I can therefore calculate the hop distance

|d| = |rfinal − rinit| . (4.1)

In panel (b) of fig. 4.2 the distribution of the hop distance is shown for
three temperatures. For each glass, the main peak is located at

√
Pth (the

first vertical dashed line), which is the minimal distance that the detection
algorithm sets for the separation of two ideal cages. I find an exponential
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Figure 4.4: Hop displacement autocorrelation for three glass temperatures
at age tage = 105 (a) as function of number of hops separation and (b) as his-
togram, that is calculated using normalized displacement vectors (T = 0.25
and age as above) and reveals an anisotropy in the direction of consecutive
hops. The lines are guides to the eye.

decay following the peak, with a transition to a faster exponential decay at
around 2

√
Pth. The transition is expected, because at distances > 2

√
Pth it

is possible for the detection algorithm to separate the particle motion into
two hops, if the particle briefly stabilizes at an intermediate distance. The
form of the distribution is qualitatively unchanged for varying temperatures,
suggesting that the hop process is unchanged inside the glass state. Indeed,
in simulations of a strong glass former [97] a comparable distribution was
found, indicating a similar role of the hop process.

In fig. 4.3 I show the hop frequency of the glass, i.e. the number of hops
per time τLJ . I observe about six times more hops at T = 0.3 compared to
T = 0.2. Furthermore, I find that the frequency decreases as a weak power
law with age. Aging is accelerated at higher temperatures, which indicates
that the phase space is explored more quickly. Indeed, for the glass closest
to the glass transition (T = 0.3), I observe a flattening of the curve, i.e. the
simulation reaches timescales close to the end of the aging regime.

I can further characterize the hop process by calculating the autocorrela-
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tion

Cauto(∆i) =
〈di · di+∆i〉
〈di · di〉

(4.2)

of the displacement vector d [see eq. (4.1)]. The average in the numerator is
taken over all hop-pairs i of a particle with a separation ∆i, the average hop
direction is zero and the denominator is the variance of d with zero mean.
Simple mean-field trap models [67] assume a solely temperature driven escape
from the cage, which yields independent hops, and a previous study indeed
found a vanishing autocorrelation after about two hops [98]. Although the
earlier study used a different hop detection algorithm with lower sensitivity,
our results shown in fig. 4.4(a) principally agree with these findings. We
observe a correlation that decreases below 0.2 after at most seven hops, with
a more rapid decline at higher temperatures. The decay is slower than previ-
ously found, because the detection algorithm used here is able to separately
pick up back-and-forth hops of a particle between the same two cages. I
confirm this observation with the autocorrelation histogram in fig. 4.4(b),
where the displacement vectors were normalized to unit length. This isolates
the directional correlation of the hops and one can clearly see a pronounced
anisotropy. For consecutive hops I find that angles close to 180 ◦ are clearly
favored, indicating that the particle is more likely to return to the location
where it came from. Furthermore, there is an increased probability for a
following third hop to be in the same direction as the first, indicating a back-
and-forth between the two cages. The anisotropy is subdued with increasing
separation of hops and vanishes at ∆i = 5 for a glass at T = 0.25.

Up to this point the results took advantage of the increased sensitivity and
greater number of detected hops. However, since all particles are tracked,
I am able to directly measure the spatio-temporal correlation of hops. In
fig. 4.5 I present surface plots that visualize probable temporal and spacial
distances between hops. I calculate the density-density correlation of hops
along the lines of the normalized distinct part of the van Hove function [41]

Ghop
d (r, t) =

1

N ′

〈
δ
(
r − |r(i)

init(t
′)− r

(j 6=i)
init (t′ + t)|

)〉
. (4.3)

Here the average is taken over all N ′ hop pairs that involve two distinct parti-
cles, and using the initial positions, i.e. the initial cages. Figure 4.5(a) shows
an example probability distribution. I find a dominating peak at times close
to zero and at a distance ' 1, which is caused by hops in the surrounding
shell of particles. The accumulation of near-simultaneous hops is a direct
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Figure 4.5: (a) Probability density surface for spatio-temporal separation of
two different hopping particles based on Eq. (4.3) for a glass at T = 0.25
and tage = 105. The color scale is logarithmic (scale at the top-right corner)
and the dashed lines indicate integration limits used to calculate the one-
dimensional probability functions (b,c). Center plots show the probability
function of (b) separation and (c) time delay between hops for T = 0.2(blue
©), T = 0.25(green 5), and T = 0.3(red 3) at the same age. The gray
vertical dashed lines in (b,c) illustrate the correlation ranges and the black
dashed curve in (b) indicates the radial distribution function. (d) Probability
density surface following Eq. (4.3) for the same glass as the left panel, but
with r∗ calculated from initial position (at the origin) to the final position of
the second particle after the hop. The color scale is again logarithmic.
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indicator of the cooperative nature of the hop process. The area r . 0.7
and t . 7 is empty, which is an effect of the excluded volume of the hopping
particle at the origin. A secondary, at least an order of magnitude weaker
peak is located around r = 1/2 and t = 10. It is caused by particles that hop
after having entered the space that was vacated by the particle at the origin.
A comparison of density-density correlations calculated at various ages (not
shown) indicate that aging effects are minimal. To highlight the dependence
on temperature I partially integrate eq. (4.3) from the origin to the dashed
lines, which are chosen such that the main features are included. In fig. 4.5(b)

I show the spatial correlation phopcorr(r) =
∫ 30

0
dtGhop

d (r, t) for three tempera-
tures. One can see that the main features are found at all temperatures and
that an increased temperature weakens the sharpness of the peaks, which is
due to the increased vibrational motion of the particles. Apart from the first
peak at r = 1/2 (see above), I find peaks at positions that coincide with
the static shell structure of the glass as indicated by the radial distribution
function (black dashed curve). The splitting of the peak at around r = 1
is due to the different mean distance between particles that are neighbors
in the same polymer backbone and particles that are not directly bonded to
each other. The existence of the double peak shows that both pairs take part
in cooperative rearrangements. Figure 4.5(c) shows the temporal correlation

phopcorr(t) =
∫ 1.5

0
drGhop

d (r, t). A sharp decay at small times is followed by a peak
at around t = 9, which is due to the immediate re-hopping of particles; the
back-and-forth hopping that is also discussed in connection with the hop au-
tocorrelation (see above). The position of the peak, i.e. the secondary peak in
the probability density surface is directly linked to the maximal resolution of
two consecutive hops, which is t = 7.5 for the used parameters (see sec. 2.6).
I find only a very weak temperature dependence in the temporal correlation,
suggesting that the fundamental mechanisms of cooperativity are the same
over the temperature range studied here. The data also does not show any
clear indication for Poisson processes like those found for supercooled liq-
uids and granular matter [19, 21]. Based on the sharp drop following the
main peak in the spatial probability distribution, I infer a correlation range
of rcorr = 1.5 [fig. 4.5(b), vertical dashed line], i.e., the correlation does not
extend beyond the nearest neighbor shell. From the temporal probability
distribution I determine a correlation range of tcorr = 2.5 [fig. 4.5(c), vertical
dashed line], which is the time at which the initial peak has decayed to val-
ues below the close to constant region after the second peak. These ranges
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therefore restrict “correlated” hops to near-simultaneous hops of neighboring
particles, as indicated by the primary peak in the density-density correlation.

Knowledge of the final position of hopping particles also allows me to
explore the direction of correlated hops. The probability distribution surface
in fig. 4.5(d) shows a density-density correlation very similar to the one on
the left. Again I use eq. (4.3), but the distance is now calculated between
initial cage at the origin and the final position of other hopping particles
r

(j 6=i)
final. Therefore, high probability regions indicate where the particles end

up after a correlated hop. By comparing the surfaces, I find that hops that
started in the first shell (the primary peak in left plot) mostly end at r . 1/2,
see the primary peak in the right plot. Indeed this peak extends all the way
to r ' 0, indicating that it is possible for the cage at the origin to stay largely
intact with a new particle taking the place of the last one. This suggests the
string-like motion that was previously observed in a binary LJ mixture [33].
We also find a secondary peak at a distance r ∼ 1.5, which suggests that
some hops from the first shell are directed away from the cage at the origin.
Please note that the color scale in the plot is logarithmic, and that this
second hop destination is at least one order of magnitude less likely than the
first one. The secondary feature in fig. 4.5(d) at t ∼ 10 is located around
r = 1, confirming that the accumulation of hops at this time lag are due to
back-hops of particles that return to the first shell after having hopped into
the vacated volume closer to the center of the cage (origin).

The correlation ranges rcorr = 1.5 and tcorr = 2.5 allow me to identify “co-
operatively rearranging” groups of particles and I perform a cluster analysis
to measure their size. Two particles are in the same cluster if they are closer
in space and time than rcorr and tcorr, which is in close analogy to Candelier
et al.’s study [19]. In fig. 4.6 I show the measured cluster size distributions,
which exhibit initial exponential decays with stretched tails that approach
a power law. In the main panel I show results for a single temperature and
varying age, and one can see that as the age increases the distribution flat-
tens and becomes more exponential-like. In an older glass the hop-activity is
reduced (see hop frequency in fig. 4.3), and therefore the constant clustering
time (tcorr) used here results in a lower likelihood of finding larger clusters
with growing age. Varying temperature at the same age has a similar effect:
as temperature increases, I observe a broadening of the distribution away
from exponential and towards a power-law form.
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Figure 4.6: Size distribution of cooperatively rearranging particles. The main
panel shows distributions at six ages for a glass at temperature T = 0.3; see
legend in fig. 4.7. The inset shows the size distribution of three glasses at
age tage = 105 and temperatures T = 0.2 (blue ©), 0.25 (green 5), 0.3 (red
3). Both plots have the same axes ranges, and the solid black lines indicate
P (s) ∝ exp (−s).

4.2 Dynamical heterogeneity and clustering

of hops

In previous studies the heterogeneous dynamics in glasses and supercooled
liquids were mainly probed with four-point correlation functions. A standard
approach is to measure the number of particles that remain approximately
stationary as a function of time using overlap functions [53]. The variance of
this quantity over a multitude of independent simulations is the four-point
dynamical susceptibility χ4, which quantifies how many particles are mov-
ing substantially from their initial position in the same time window. The
dynamical susceptibility exhibits a peak at the time of maximal dynamical
correlation in the system. The peak height is connected to the number of
particles with correlated dynamics, and the increase of that height when
approaching the glass transition signifies growing dynamical length scales.
With knowledge of the location and time of all hops in the system, I can
provide a new perspective on the correlated dynamics. Specifically, I am
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Figure 4.7: The top panel shows the number of caged, i.e. not yet hopped,
particles Ncaged averaged over independent simulations as a function of time
for six glass ages. The four-point susceptibility χ4 shown in the bottom panel
is calculated from the variance of Ncaged, eq. (4.4).

able to spatially resolve the clustering of hops, directly revealing the hetero-
geneous dynamics, and to study the cluster distribution as a complimentary
perspective to χ4. For this part of the study I focus specifically on the aging
regime, for which few studies exist. The results shown below are calculated
from a glass at T = 0.3, yet an equivalent analysis for T = 0.25 (not shown)
confirms our findings further inside the aging regime.

In a first step, I calculate the number of particles that have not hopped
directly from the hop data

Ncaged(t, tage) =
N∑
i

bi(t, tage) (4.4)

where bi(t, tage) = 0 if particle i has hopped in the time window [tage, tage + t]
and bi(t, tage) = 1 otherwise. In the upper panel of fig. 4.7, I show results for
six ages. I employed simulations of N = 5000 particles that are otherwise
equivalent to the usual simulations with N = 50, 000 particles. I had to
downscale the system, because converged measurements of χ4 required 300
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independent runs. As mentioned above, the four-point dynamical suscepti-
bility is proportional to the variance of Ncaged [53]

χ4(t, tage) =
βV

N2

(
〈N2

caged〉 − 〈Ncaged〉2
)
, (4.5)

with V being the simulation box volume, and 〈·〉 representing an average over
independent realizations of the system. The bottom panel of fig. 4.7 shows
χ4 as function of time for the same six ages. In an earlier study, Parsaeian
and Castillo [71] investigated four-point correlations in the aging regime of a
binary LJ glass, and I observe the same main features in fig. 4.7: a shift of
the peak towards larger times with increasing age and an increase in height,
indicating a larger volume of correlated dynamics.

To obtain a complementary picture of the spatially resolved dynamics,
I perform a spatial cluster analysis on the subset of hops in the same time
window [tage, tage+t] that is used for the calculation ofNcaged. I use a standard
single-linkage cluster criterion, i.e., hops i and j are part of the same cluster,
if the distance between the initial positions is below a threshold

|riinit − rjinit| < rcl .

If a hop k is already in a cluster with i, then hops j and k will belong to
the same cluster even if they don’t fulfill the above criterion. As a threshold
I use the spatial correlation range that is obtained from the density-density
correlation rcl = rcorr = 1.5 (see previous section). As the time window is
increased, I include more hops into the analysis and the clusters grow and
merge.

In fig. 4.8 I illustrate the observed growth via snapshots of an example
cluster at increasing time t. The cluster first consists only of a few hopping
particles and successively grows into an extended structure. An animation
of the growth of a single cluster over time reveals periods of near stagnation
interrupted by large bursts which are due to the merging of simultaneously
existing clusters. The plot in fig. 4.8 illustrates this intermittent growth
process. It shows the cluster volume of 15 example clusters as a function of
time. I define the volume of a cluster as the total correlated space of all hops
that comprise the cluster

Vcl = ∪iVsp(riinit, rcorr) .

Each hop contributes a spherical volume Vsp with radius equal to the correla-
tion range rcorr = 1.5 centered around the initial position of the particle. In
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Figure 4.8: Snapshots of the growth of a single cluster over time. The parti-
cles are visualized at their initial positions (before the hop) and the coloring
indicates depth. The plot on the right shows the cluster volume of 15 ex-
ample clusters as a function of time. Examples were recorded at glass age
tage = 105.

other words, with each hop I associate the volume of the entire cage and the
cluster volume is the union of all cages that have rearranged. To calculate
this joined volume, I use a voxel technique, i.e. I partition the simulation
box into small cubes (voxels) and count the number of voxels with a center
closer than rcorr to any hop of a given cluster.

To explore the cluster configurations near the χ4 peak I calculate the mean
volume and number of clusters as a function of time, and results for six ages
are shown in fig. 4.9. In the upper panel one can see that at long times I
observe a single cluster that spans the simulation box, and its formation is
shifted in time with increasing age. In the inset I show the same data with a
time axis that is rescaled by the time of the χ4 peak, which collapses the data
onto a single master curve. Note that the dominating cluster emerges just
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Figure 4.9: Mean cluster volume (top) given as a fraction of the total sim-
ulation box volume and the number of simultaneous clusters (bottom) as a
function of time. Results for six ages are shown, see legend in fig. 4.7. The
insets show data collapse when time is rescaled by the time of the χ4 peak.

when the four-point susceptibility reaches its peak. The success of the scaling
collapse indicates that aging merely delays, but does not otherwise alter the
formation of this dominating cluster. The amount of clusters (bottom panel)
peaks at much earlier times, and the rescaled data in the inset also shows
an approximate collapse with age. Additionally, I find an age dependence
of the peak height, showing that the maximal number of clusters decreases
with increasing age.

To gain a more complete picture of the formed structures, I also measure
the extent of the regions where no hops are detected. To quantify these
“holes,” I use the same voxel partition and perform a nearest neighbor cluster
analysis on the subset of voxels that does not lie inside the volume of any
cluster. In fig. 4.10 I show the mean volume of the holes (top panel) and
the number of holes (bottom panel) as a function of time. I find that with
increasing time window, the size of the holes shrinks, which is of course due
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Figure 4.10: Mean hole volume (top) given as a fraction of the total sim-
ulation box volume and the number of simultaneous holes (bottom) as a
function of time. Results for six ages are shown, see legend in fig. 4.7. The
insets show data collapse when time is rescaled by the time of the χ4 peak.

to the growing hop clusters. Again, I observe a shift with glass age towards
larger times, and the inset in the top panel reveals that the break up of the
single dominating hole happens just when the number of clusters is largest
(both at ∼ 10−2 in rescaled time). In analogy, I find that the number of holes
Nh is maximal just when the mean cluster volume diverges and therefore
when χ4 reaches its peak (see bottom panel inset). The maximum in Nh

appears when the probability of closing a hole by placing a new hop into the
system becomes larger than the probability of splitting a hole with a new
hop. Therefore, the majority of the holes have shrunk to a size on the order
of a single cage at the time of the χ4-peak. The time of this crossover shows
the same age-dependence as χ4, yet I also find that the maximal number
of holes decreases with age. The scaling behavior of the hole volumes with
age mirrors the behavior of the cluster volumes, and further supports the
interpretation that the geometry of DH is unchanged by aging.
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Figure 4.11: Collection of cluster volume distributions of a glass at age
tage = 105 measured at various times in double-log scale. Each distribu-
tion is plotted in the Vcl-p(Vcl) plane and placed along the t axis according
to the size of the time window used for the cluster analysis. The back wall
shows an overlay of distributions at small times in a single plane. I include
data at times . 103 (up to and including the second blue distribution) and
the same colors as the separate distributions are used to indicate the origin
of the data points. The solid line on the back wall indicates a power law
with exponent −2. The black solid curve on the floor wall indicates χ4 as a
function of time.
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The mean cluster volume already suggests a single, dominating cluster in
the system when χ4 is maximal. I gain further insight by directly studying
the full distribution of cluster volumes. In fig. 4.11 I show its evolution
for a single glass age, where the distributions for increasing time windows
[tage, tage + t] are stacked along the t axis. One can clearly see how the
distribution lengthens over time until ∼ 103. At this time (blue to green) the
dominating cluster is formed, indicated by a detached peak at large volume
and the successive shortening of the remaining distribution. The solid black
curve on the floor wall indicates χ4 as a function of time, and as the large
cluster grows, so does χ4. The peak is reached when the dominating cluster
essentially covers the whole volume. Furthermore, I analyzed the form of
the distributions, which prior to the emergence of the dominating cluster
follow a power law. On the back wall of fig. 4.11 I show an overlay of these
early distributions (see caption) in a single plane. The overlay shows that
the cluster volume distribution lengthens until a power law with exponent of
approximately −2 is reached.

From the snapshots in fig.4.8, one can see that the clusters are not com-
pact, but have a complex geometry. Parsaeian and Castillo investigated DH
in an aging binary LJ glass using four-point correlators [71]. By assuming
that the height of the χ4 peak was proportional to the correlated volume and
using an identified correlation range ξ, they found a scaling of χpeak4 ∝ ξb

with b = 2.89 ± 0.03. Our access to spatially resolved clusters allows us to
directly calculate their fractal dimension and compare to this scaling result.

I use the box counting method [36], in which one covers the cluster with
successively smaller cubes, counting each time how many boxes are needed.
Here, a cluster is represented by its correlated volume, i.e., the union of
spheres with radius 1.5 centered at each hop. The dimensionality of the
cluster is then calculated via power-law fit

Nl ∝ ldf ,

where l is the side length of the cube and Nl the cube count. In fig. 4.12
I show the fractal dimension as a function of time for six ages. I find a
mean fractal dimension around 2.88 for short and intermediate times and an
increase to 3 for long times. The inset shows that this increase happens as
χ4 peaks and from the discussion of the volume distribution above, I know
that the peak is accompanied by the emergence of a system spanning cluster.
Since such a cluster has the dimensionality of the simulation box, the increase
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Figure 4.12: Main panel shows the mean fractal dimension of the hop clusters
over time for six ages, see legend in fig. 4.7. The inset shows data collapse
when time is rescaled by the time of the χ4 peak.

to df = 3 is not surprising and it is clearly a finite size effect. Therefore, the
found value of 〈df〉 = 2.88 agrees remarkably well with the above mentioned
result that was solely based on four-point correlators.

4.3 Conclusions

The microscopic structural relaxation is studied in quiescent polymer glasses
at three temperatures in the aging regime. A refined version of a detection
algorithm initially introduced by Candelier et al. [19] was used to measure
the relaxation events defined as particle hops everywhere in the system and
on-the-fly for the full duration of the simulation. An evaluation of the distri-
bution of persistence times, hop distance, and hop autocorrelation at three
temperatures showed good agreement with previous studies that used other
methods [97, 98]. Since the detection algorithm allows hop detection for the
full system, I was able to directly analyze the spatio-temporal density-density
correlation between relaxation events. A strong correlation was observed be-
tween near-simultaneous hops of neighboring particles, which indicates coop-
erative motion of groups of particles. I estimated correlation ranges and used
these to analyze the size of the collaborative rearrangements as a function
of temperature and age. I found distributions that first have an exponen-
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tial shape and then transition over to a power-law tail that becomes flatter
during aging. An increase in temperature broadened the power law, and
this trend connects well to the power-law distributions seen by Candelier et
al. [19] in agitated granular media, where a very similar definition for the
rearranging groups was used. An earlier study of a binary LJ-glass in the
aging regime on the other hand showed power-law distributions [96], both for
various temperatures and ages. I believe that this disagreement is due to the
very different hop-time resolution, that was about three orders of magnitude
smaller than what was used in this work.

In the second part of this study, I compared the standard χ4 measure of
dynamical heterogeneity (DH) with a direct geometric analysis of hop clus-
ters, which gives a spatially resolved picture to complement the bulk averaged
χ4. My results show that χ4 reaches its peak when a single dominating clus-
ter is developed that extends throughout the system and is accompanied by
mostly single-cage-sized pockets of inactive particles. I also observed a de-
layed cluster aggregation in older glasses that mirrored the shift of the χ4

peaks towards larger times with increasing age. Therefore, the geometric
formation of DH is continuously slowed but otherwise unchanged by physical
aging. We furthermore observed increasing χ4 peak heights, which indicate
a growing dynamical correlation range during aging. Both the shift of χ4

with increasing age and the increasing χ4 peak height were also reported by
Parsaeian and Castillo [71] in simulations of a binary LJ mixture. Recently,
further evidence for growing dynamical correlations was obtained via experi-
mental measurements of the nonlinear dielectric susceptibility in glycerol by
Brun et al. [17]. Parsaeian and Castillo also identified a power-law scaling be-
tween an estimated growing correlation range and the χ4-peak height, which
is connected to the total correlated volume. I showed that this scaling is in
excellent agreement with the fractal dimension of the hop clusters. The mean
cluster volume did not directly reveal the aging correlation range, as it is not
proportional to χ4 in the range of its peak, yet a clear age dependence was
observed for the maximal number of clusters and inactive regions (holes).

The shape of the evolving distribution of hop cluster volumes helps to
understand the somewhat surprising success of mean-field models of aging.
Despite the presence of heterogeneous dynamics, aging continuous time ran-
dom walk descriptions [98] based on the trap model of aging [67] are very
successful in capturing the evolution of mean squared displacements, dynam-
ical structure factors and van Hove functions while entirely neglecting DH.
My measurements of the cluster volume distribution prior to the merging
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into a single dominating cluster (fig. 4.11) showed a power-law form with
exponent ≤ −2. This observation indicates that fluctuations in the size of
the DH are sufficiently small that average quantities such as mean cluster
size do not behave anomalously.
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Chapter 5

Soft modes predict structural
relaxation3

This third project investigates the link between heterogeneous dynamics
(DH) and local structure in polymer glasses. In other words, which structural
feature determines whether the particles in a certain region are dynamically
active and undergo substantial rearrangements, while other regions are struc-
turally static? Recent studies [63, 102] indicate that so called soft modes,
low energy vibrational modes in disordered solids that are spatially localized,
could provide the key to answering this question, and section 1.2.4 discusses
soft modes in great detail.

So far, quantitative evidence for the correlation between soft modes and
structural rearrangements is restricted to studies of model metallic glasses
in 2D under deformation [63, 81]. This project quantifies the correlation in
a 3D polymer glass in the quiescent state and I investigate temperature and
age dependence. Participation of particles in soft modes is measured in the
form of a softness field and the definition as well as implementation details
are given in section 2.7. I use the force-shifted model potential discussed in
section 2.1, since differentiable forces are required for the calculation of the
Hessian. The Hessian is used to find the low-energy vibrational spectrum
and I use a system size of N = 10, 000 for numerical efficiency. Structural
rearrangements are measured as irreversible hops as discussed in section 2.6.

In addition to the spatial correlation of softness field and hops, the di-
rection of hops is found to directly correlate to the direction of soft modes.
I furthermore quantify the lifetime of the softness field and compare it to
time scales of structural relaxation. Two glasses are investigated in the ag-
ing regime, at temperatures T = 0.2, 0.3, and one system at T = 0.4. At this
latter temperature, the relaxation times are short enough so that the system
reached equilibrium shortly after the quench and it is therefore a supercooled
liquid. To evaluate aging effects, I analyzed the glass at T = 0.3 at three

3Large parts of this chapter have been published in ref. [86]
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Figure 5.1: (a) Snapshot of the softness field. The right side shows only the
10% softest regions and the solid black spheres (size equals particles) indicate
the first 100 hopping particles detected after the measurement of the softness
field. (b) Distribution of the softness field for three temperatures and three
ages. Error bars are omitted and smaller than the symbols.

ages: tage = 7.5 ·102, 7.5 ·103, 7.5 ·104. The results shown below are averaged
over 20 realizations of each system with independent initial configurations
and error bars indicate the standard error.

5.1 Softness field

In fig. 5.1(a) I show an example snapshot of the softness field. One can
clearly see the heterogeneous spatial distribution of soft regions across the
simulation box. The black spheres are the first 100 hopping particles detected
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Figure 5.2: Autocorrelation of the softness field for three temperatures (a-b)
and three ages (c-d). Panel (a)[(c)] shows Ca as function of time, and the
dotted lines indicate the ISF for the same temperatures [ages]. Panel (b)[(d)]
shows Ca as function of number of hopped particles Nh, with dotted lines
again indicating the ISF and dashed lines mark when 50% of the system has
hopped. Error bars are omitted and smaller than the symbols.

immediately after the measurement of the softness field, and some overlap is
visible between hops and soft areas. The following sections are dedicated to
a quantitative analysis of this correlation, yet I first focus on characteristics
of the softness field itself. Fig. 5.1(b) shows the softness distribution in the
entire polymer sample for different temperatures and ages. I find that the
distributions feature a strong peak at small values and a rapid, yet slower
than exponential decay. The results show that the structural heterogeneity
is remarkably similar for all studied systems.

In order for the softness field φ to represent the molecular structure in
terms of “soft” and “hard” or stable and unstable regions, the lifetime of
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5.1. Softness field

φ must be of order of the structural lifetime. I measure the lifetime of the
softness field via the decay of its autocorrelation function

Ca(t, tage) =

〈[
φ(tage)− φ̄(tage)

] [
φ(tage + t)− φ̄(tage + t)

]
σφ(tage)σφ(tage+t)

〉

Here, the average is over all particles, σφ(t) is the standard deviation of the
softness field φ(t), and φ̄(t) is its average. In fig. 5.2 I show the autocor-
relation for three temperatures (a-b) and three ages (c-d). All systems in
the glass state exhibit an initial plateau in the ballistic regime, followed at
intermediate times by a shoulder that becomes more pronounced at lower
temperature and with increasing age. The final decay to zero has stretched
exponential form and the autocorrelation reaches over many orders of mag-
nitude in time. These characteristics are also found in the self-intermediate
scattering function (ISF)

CS
q (t, tage) = 〈exp [iq · (rj(tage + t)− rj(tage))]〉 ,

which is the standard measure of structural lifetime [41]. Here, the average is
over all particles and I use q = (0, 0, 2π). A value of CS

q (t, tage) close to zero
means that most particles have moved further than their diameter away from
their initial position. In fig. 5.2(a),c the ISFs are indicated as dotted lines,
and I observe two main differences when compared to Ca: First, the plateau
and associated shoulder of the ISF are more pronounced and reach further in
time. Second, the ISF decays to zero at later times than the autocorrelation.

Before these differences are discussed in detail, I clarify the role of tem-
perature and age on the autocorrelation of the softness field: Panel 5.2(a)
shows that the decay-time becomes larger with decreasing temperature, as
Ca shifts to the right. This is accompanied by the development of a shoulder
at intermediate times, which is not present in the supercooled state (T = 0.4)
but develops as the system becomes more glassy. This mimics the temper-
ature dependence of the ISF, although a shoulder is already present in the
supercooled state. In panel 5.2(b) I show how much of the system has un-
dergone rearrangements as Ca decays by re-parametrizing time in terms of
the fraction of particles that have hopped at least once. I observe that com-
plete decorrelation of φ occurs for T = 0.3, 0.4 after & 50% of particles have
rearranged, and extrapolation suggests that this also holds true for T = 0.2.
Panel 5.2(c) shows the autocorrelation for three ages at T = 0.3. I observe
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Figure 5.3: Number of holes as a function of the fraction of hopped particles.
The sketch illustrates the definition of a hole: a continuous volume (green)
that is surrounded by the union of spheres that approximates the cages that
hopping particles have escaped and are “broken”. The dashed line indicates
50% of the system has undergone rearrangements, and the solid lines are
guides to the eye. See fig. 5.1 for a legend.

that an increase in age results in a shift of Ca towards larger times via length-
ening of the shoulder. The ISFs are shown as dotted lines and one can see
a similar shift with increasing age. In panel 5.2(d) one can see that total
decorrelation of φ again occurs when & 50% of the system has undergone
rearrangements, independent of the glass age.

A key difference between autocorrelation Ca and ISF is that the decorre-
lation of the softness field begins as soon as particles hop, whereas the ISF
remains at a high value for much longer. However, this is not surprising, since
the ISF can only change after a substantial part of the particles has moved.
The structurally soft regions on the other hand may very well only require
a few hops to transition into a more stable local configuration, which could
explain the faster decay of Ca at intermediate times. It is also important to
realize that the mean hop distance is of order half a particle diameter, while
with a wavevector magnitude q = 2π the ISF is sensitive to displacements
of order one particle diameter. A particle therefore has to undergo multiple
relaxation events to fully decorrelate the ISF, and in this sense the ISF decay
provides an upper bound on the structural relaxation time.
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5.2. Spatial correlation

Why does the softness field decorrelate after & 50% of particles have
hopped? To answer this question, I first note that a particle that hops
by escaping its own local cage changes the local configuration of all the
neighboring particles at the same time. To measure how much of the system
has been affected by hops in this way, I place a sphere around each hopping
particle with radius 1.5σ. This distance is the position of the first peak in
the pair correlation function and the sphere therefore approximates the cage
around each hopping particle. I then count the number of unconnected holes
in the union of all spheres. The sketch in fig. 5.3 visualizes this: a hole is
a continuous volume that is not part of any of the cages that are “broken”
by the hopping particles. In the main panel of fig. 5.3 I show the number
of holes as function of the fraction of hopped particles. When only a few
particles have hopped, then there is only a single hole. As more particles
hop, the spheres form clusters [85], interconnect and eventually percolate,
leading to a subdivision into many holes. A maximum is reached when the
probability of splitting a hole in two by including an additional sphere is
equal to the likelihood of destroying a hole. In other words, the maximum is
reached when the size of the holes is of the order of single cages. I find that
this transition occurs when ∼ 50% of the particles have hopped (indicated
by the dashed line). At this time the total volume of the holes has dropped
to ∼ 5% of the system size. Therefore, the decorrelation of the softness field
at & 50% coincides with the change of the local configuration of nearly all
particles.

5.2 Spatial correlation

In fig. 5.1(a) I show hops as black spheres together with the softness field,
and one can see that hops appear at the center of soft regions as well as in the
space between them. Before analyzing the overlap of individual hops with
the softness field, I focus on the DH of the whole system. How well does a
single measurement of a softness field reflect the distribution of regions with
high/low rearrangement activity? I create a map of DH by accumulating
hop events in a binary list hi of all particles. The map changes as the time-
window [tage, tage + t] of included hops grows. The similarity of DH and the
softness field is then quantified with the cross-correlation

CDH(t, tage) =

∑N
i=1

(
hi(t, tage)− h̄(t, tage)

) (
φi(tage)− φ̄(tage)

)
Nσhσφ

. (5.1)
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Figure 5.4: Cross-correlation between softness field and cumulative map of
hopped particles (a) as function of time and (b) as function of number of
hopped particles. See fig. 5.1 for a legend, and error bars are omitted and
are smaller than the symbols.

Here h̄, φ̄ are averaged over all particles and σh, σφ are standard deviations.
In fig. 5.4(a) I show the cross-correlation as a function of elapsed time after
the φ measurement. A maximum is observed at times that grow with in-
creasing age and decreasing temperature. The re-parametrization in terms
of number of hopped particles in fig. 5.4(b) collapses the maxima at ∼ 20%
rearrangement of the system. The degree of agreement is given by the max-
imum value of the correlation, ranging from 0.11 for the supercooled system
to 0.21 for the oldest glass at T = 0.3. The absolute value of the correlation is
not very high, which can be expected from thermal systems. Simulations in
the iso-configurational (IC) ensemble [101] reduce the impact of kinetics on
the map of DH by averaging over many realizations of a single configuration
with randomly assigned velocity distributions. I performed such an analysis
on a single configuration of the system T = 0.3, tage = 75000 and found a
cross-correlation between the softness field and 〈hi〉IC that is twice as strong
at the peak. A systematic analysis using this technique, however, is beyond
the scope of the present study.

The temperature and age dependence reveal the importance of the soft
modes especially in the glass state. The increase of CDH with age shows
that the non-equilibrium state is important for the link between structure
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5.2. Spatial correlation

and dynamics. From the perspective of the potential energy landscape [43]
(PEL): As the glass moves down the PEL towards more arrested, lower en-
ergy configurations, the soft modes increasingly dominate the dynamics of
the glass. In the supercooled state I observe a lower correlation, indicating
that higher temperature increasingly washes out the effect of structural het-
erogeneity defined by the soft modes. A lower temperature therefore yields
a higher correlation. For the investigated temperature and age range both
effects are of comparable magnitude. The largest correlation was observerd
in the oldest T = 0.3 glass, which was aged for two orders of magnitude
longer than the T = 0.2 glass.

In fig. 5.5 I show two approaches that quantify the spatial correlation
of relaxation events and softness field in greater detail: panel 5.5(a) shows
the probability for a particle of given softness to undergo a hop at times
immediately after the φ measurement, rescaled by the total hop probability

Ω(φ) =
Nh(φ)

N(φ)

∫
dφN(φ)∫
dφNh(φ)

.

Here N(φ) indicates the number of particles with given softness and Nh(φ)
is the subset of those particles that have hopped at least once. I observe a
clear increase of the hop probability with increasing softness for all tempera-
tures and ages. Starting from a value below one at very low φ (hard region),
the probability monotonically rises to a saturation plateau of up to 7 times
the average probability of relaxation events. The correlation is temperature
dependent, being much more pronounced in the aging regime (T = 0.2, 0.3)
than in the supercooled system (T = 0.4), where the soft regions undergo
rearrangements with three times the average probability. Furthermore, in-
creased age yields a stronger correlation between soft modes and relaxation
events.

I explore an alternative view on the spatial correlation by binarizing the
softness field into a soft spot map, where the fraction of particles f with
largest softness are assigned a softness of φ

(b)
i = 1 and all other particles have

a softness of zero. I then define the predictive success rate Θ of a softness
field as the fraction of the first Nh = 100 hopping particles that are part of
a soft spot, or

Θ(f) =

∑N
i=1 φ

(b)
i hi

Nh

with hi = 1 if particle i is one of the first Nh particles to hop after the
measurement of the softness field, and hi = 0 otherwise.
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Figure 5.5: (a) Probability of a particle to hop as function of its softness,
rescaled by the average hop probability. The solid lines indicate the averaged
saturation probability and the dotted line is a guide to the eye. Success rate
of predicting hops to occur in the softest regions of the system Θ (b) as
function of coverage fraction of the softest region f and (c) as function of
time rescaled to the number of hopped particles at constant coverage fraction
of f = 30%. The solid lines in (b,c) indicate the success rate based on
randomly chosen regions and the dashed line indicates 50% of the system
has undergone rearrangements. To evaluate (a) and (b) the first 100 (1%)
hopping particles after the softness field measurement were used. See fig. 5.1
for legend, and error bars are omitted when smaller than symbols.
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Panel 5.5(b) shows the predictive success rate as function of the coverage
fraction and a comparison with a randomly chosen subset of the system as
soft spots is indicated by the solid line. Clearly, the softness field is a much
better predictor, with the absolute difference being maximal at around 30%
coverage fraction. Here, up to 70% of the first 100 hopping particles are
predicted. Again, I find that systems at lower temperature show a stronger
correlation and that increasing age also improves the predictive strength of
the softness field. In panel 5.5(c) I show how the spatial correlation develops
as a function of time between the φ measurement and hops, i.e., the predictive
success rate for 30% coverage fraction. Time is rescaled in terms of the
number of particles that have hopped at least once, identical to the rescaling
in fig. 5.2 and fig. 5.4. The correlation is long-lived, decays logarithmically
and decorrelates only when & 50% of the system has undergone structural
relaxation events.

5.3 Directional correlation

The direction of the softness field, which is the average direction of the soft
modes, contains information about the dynamics of the relaxation events.
More precisely, the direction of the hops align with the direction of the soft-
ness field in soft regions. I quantify this correlation via the second Legendre
polynomial

Cd = 〈3
2

(
d̂ · eφ

)2

− 1

2
〉 ,

where d̂ = (rfinal − rinit)/|rfinal − rinit| is the unit vector between final and
initial position of a hopping particle, and eφ is the direction of the softness
field for the same particle (see section 2.7). The average is taken over all hop-
ping particles. A value of Cd = 1 means full alignment of hop and softness
field direction, while Cd = 0 indicates that a random orientation with respect
to each other. In fig. 5.6(a) I show the correlation immediately after the mea-
surement of φ as function of softness. The alignment grows with increasing
φ for all temperatures and ages until a saturation plateau is reached. Similar
to the spatial correlation discussed above, increased temperature weakens
the link between the soft modes and the hops. The saturation value reaches
from 0.4 for the supercooled system to 0.8 for the glass at T = 0.2, indicat-
ing that hops in soft regions are nearly perfectly aligned with the softness
field direction at low temperatures. The effect of aging, however, seems to
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Figure 5.6: Directional correlation between softness field and hops (a) as
function of softness and (b) as function of time rescaled to the number of
hopped particles. The dashed line indicates 50% of the system has undergone
rearrangements and the hop direction is measured as the vector between
initial and final position of the particle. To evaluate (a) the first 100 (1%)
hopping particles after the softness field measurement were used. See fig. 5.1
for a legend.

be negligible for the strength of the directional correlation. This behavior
is qualitatively different from the age-dependent spatial correlation, which
grows with increasing age. Our finding implies that the direction of molec-
ular relaxation events is independent of the position on the PEL, because
the latter is changed during aging. In other words, the non-equilibrium na-
ture of the glass has no direct impact on the alignment of soft modes and
hops. Temperature on the other hand acts as noise and reduces the degree
of alignment.

In panel 5.6(b) I show the mean directional correlation as function of
number of hopped particles since the measurement of φ. I observe a slow
logarithmic decay of the correlation that vanishes only after & 50% of the
system has hopped at least once, for all temperatures and ages. A close
inspection reveals that at increased age, the decay curve develops a small
shoulder around 1%−10% hopped particles. This behavior does not indicate
a direct age-dependence, but rather is a consequence of the longevity of
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the softness field itself. The autocorrelation data discussed in section 5.1
shows how aging leads to an increased stability of φ in the range of < 50%
hopped particles. The decay curves for the directional correlation reflect this
longevity, showing that the softness field direction has predictive strength
over the direction of hops until the local configuration of nearly all particles
has changed.

5.4 Conclusions

The correlation between soft modes and structural relaxation events was
quantified in a quiescent polymer glass at two temperatures below Tg in the
aging regime and one temperature above Tg in the supercooled regime. One
system in the aging regime was analyzed at three ages and I identified the
impact of temperature as well as aging on the correlation. The structural
relaxation events were identified as hops in the particle trajectories, and the
participation of particles in soft modes is quantified in terms of a softness
field φ, which was constructed from a superposition of low energy vibrational
eigenmodes [102]. The softness field is closely related to the binary soft spot
approach introduced by Manning and Liu [63], but here the sole adjustable
parameter is the number of included modes.

For all temperatures and ages the softness field was found to be heteroge-
neous, with small regions of large softness. I showed that a strong correlation
exists between the softness of a particle and its likelihood of undergoing a
structural relaxation event. Starting from a much decreased probability at
small φ, I found that with growing softness the hop probability increases to
up to 7 times the average value. The spatial correlation is stronger at lower
temperature and also grows with increasing age. I showed that a binary
soft spot map based on φ with 30% coverage fraction predicts up to 75% of
the hops immediately following the φ-measurement. The predictive strength
was found to decrease slowly with increasing time separation between φ-
measurement and hops. The correlation vanishes for all temperatures and
ages only after & 50% of the polymer glass has undergone rearrangements,
which coincides with the decay of the softness autocorrelation function. The
softness field and the binarized soft spots that can be derived from it are
therefore long lived features that capture the heterogeneity of the amorphous
structure.

In addition to the spatial correlation of hops to soft regions in the glass,
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I showed that the soft modes also correlate to the dynamics of relaxation
events. The direction of hops, measured as displacement vector between
initial and final position of the particle, are correlated to the soft mode di-
rections. I find an increasing alignment with increasing softness that reaches
values of 70% for the lowest temperature glass. The correlation is again
stronger at lower temperature, yet it appears to be independent of the glass
age. An older soft spot will attract more hops and hence has a larger spatial
correlation than a younger soft spot, but hops actually occurring on a soft
spot follow the soft directions independent of age.

The findings are in good quantitative agreement with a recent study [81]
on a sheared 2D binary mixture at finite temperature. This study found
rearrangements to be 2-3 times more probable at soft spots than at ran-
dom locations. A detailed analysis of the individual soft spot dynamics
showed that they are robust structures that reach lifetimes of up to the bulk
structural relaxation time scale, which agrees with my analysis of the φ au-
tocorrelation function. In the driven systems, there is a closer relationship
between self-intermediate scattering function and soft spot decay as in the
present quiescent case. This may be due to extremely long local persistence
times which here are not bound by an imposed external drive. Both spatial
and directional correlations were furthermore identified in a recent study [77]
that investigated the role of soft modes at the crossover between ordered to
disordered systems. Soft modes were observed to predict the direction and
location of rearrangements in a hierarchy of systems: from a crystal with a
single dislocation, to a polycrystal and a binary glass in 2D.
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Chapter 6

Soft modes and local plastic
events during deformation

In this final project, I extend the analysis of the correlation between soft
modes and particle rearrangements to polymer glasses under deformation.
The previous chapter verified a strong correlation in the quiescent state, and
discussed temperature- as well as age-dependence. For the case of mechani-
cally driven systems, this link between local structure and plastic events was
only quantified in metallic glasses in 2D [63, 81]. These studies showed that
local plastic deformation is concentrated at so called soft spots, which are
defined from a binarized superposition of quasi-localized soft modes.

This project focuses on two questions: First, do soft modes predict the
location and direction of individual plastic events during mechanical defor-
mation in polymer glasses? In analogy to the methods used in chapter 5,
plastic events are measured as irreversible particle hops using the detection
algorithm introduced in section 2.6, and I use the softness field definition
given in section 2.7 to measure the participation of particles in soft modes.
Uniaxial tensile deformation is simulated at a constant strain rate and I
analyze the correlation at different stages during the deformation.

Second, does the correlation quantitatively change with the extent of the
deformation, and is this change in agreement with the concept of mechanical
rejuvenation? From the study presented in the last chapter, it is known that
the spatial correlation between softness field and hops increases during aging.
Furthermore, the analysis in chapter 3 showed that mechanical deformation
in the pre-yield regime leads to a transient rejuvenation of the system in terms
of dynamical as well as structural quantities, which becomes a permanent
erasure of history at around the yield point. In this project, I first age a
glass at T = 0.3 in the quiescent state for a time 7.5 · 106 and it is then
deformed using the constant strain rate protocol discussed in section 2.3
at a rate ε̇ = 10−5. The deformation ends at a final engineering strain of
ε = ∆lz/l0 = 4, with ∆lz being the change in the simulation box length
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Figure 6.1: Snapshots of the system are shown at beginning (a) and end
(b) of the deformation. To better visualize polymer configurations, 15 poly-
mers are colored separately and only beads that belong to these polymers
are displayed on the right side of the simulation box. (c) Stress along the
deformation axis es function of total strain. Vertical colored lines indicate
the investigated deformation states ε = 0.0, 0.04, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0
and the inset shows the peak at the yield point in more detail.

along the deformation axis and l0 is the box length before the deformation.
All results shown below are averages of 20 independent simulation runs and
I use the force-shifted model potential discussed in section 2.1 to ensure
that the forces are differentiable, which is required for the calculation of the
Hessian. In analogy to the study discussed in chapter 5 I use a system size
of N = 10, 000 for numerical efficiency.

The snapshots in fig. 6.1 show the system at the beginning (a) and end
(b) of the deformation. In fig.6.1(c) I show the stress along the deformation
axis as function of total engineering strain. The deformation is separated into
three regimes: After an elastic deformation at very small strains, the stress
reaches a maximum at the yield strain ε = 0.04 (see inset). This is followed
by a strain softening regime, where the stress decreases until at ε ∼ 0.1 a
plateau is reached and the stress remains constant until ε = 0.2. At this
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Figure 6.2: (a) Fraction of hops in soft spots as function of the coverage
fraction of soft spots measured in three deformation regimes: elastic (ε =
0.0), strain softening (ε = 0.1), and strain hardening (ε = 4.0). The dashed
line indicates no correlation. The evolution of the predictive success rate
reached at f = 0.3 is shown during aging (b) and during deformation (c) -
the dashed lines are guides to the eye.

point, the stress starts to increase with strain, a polymeric effect known as
strain hardening, and at the end of the deformation at ε = 4.0 the stress has
increased to about twice the yield stress.

6.1 Correlation between hops and softness

field

The spatial correlation between softness field and hops is quantified as the
predictive success rate Θ that is also used in chapter 5. Here, the softness
field is binarized into a soft spot map by assigning a softness of one to the
fraction f of particles with largest softness and zero to the other particles. I
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then calculate the fraction of the first Nh = 100 hopping particles that are
part of a soft spot, or

Θ(f) =

∑N
i=1 φ

(b)
i hi

Nh

with hi = 1 if particle i is one of the first Nh particles to hop after the
measurement of the softness field, and hi = 0 otherwise.

Figure 6.2(a) shows the predictive success rate measured at three different
strains during the deformation, and the dashed line indicates Θ for randomly
distributed soft spots (no correlation). For all deformation regimes, I find a
positive correlation between softness field and the occurrence of hops. Com-
pared to the strong correlation in the elastic regime, measured immediately
upon loading at ε = 0.0, the correlation is decreased in the post-yield strain
softening regime at ε = 0.1. Interestingly, however, in the strain hardening
regime at ε = 4.0 the correlation is again at a value comparable to the elastic
regime.

I furthermore calculated the directional correlation between softness field
and hops (not shown) in analogy to the analysis presented in section 5.3. I
find that the alignment found in the quiescent state is also present during
deformation and that it is unchanged by the extent of the deformation.

To explain the striking change in the spatial correlation, from decrease in
the pre-yield and strain softening regime to an increase in the strain harden-
ing regime, I first compare to the evolution of the correlation during aging.
To simplify the analysis I focus on the predictive success rate at a coverage
fraction of 30%. This is the fraction where the difference between measured
Θ and uncorrelated value (dashed line) is maximal. In fig. 6.2(b) I show
Θ(30%) at five ages. In agreement with the results reported in chapter 5,
the correlation increases from 0.61 to 0.71 as the age grows by four orders
of magnitude. The position in the potential energy landscape (PEL), which
is changed in the direction of lower minima during aging, therefore plays
an important role for the spatial correlation of soft modes and hops. Panel
(c) shows the predictive success rate measured at different points during the
deformation. One can see that the spatial correlation in the elastic regime at
ε = 0 is roughly equal to the value found in the quiescent state immediately
prior to the deformation. At the yield strain ε = 0.04 the correlation has
decreased to 0.64 and at the end of the strain softening regime (ε = 0.1)
Θ(30%) has reached the pre-aging value 0.61. This reversal of the aging
effects is consistent with the picture of mechanical rejuvenation, which is
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Figure 6.3: Mean inherent structure energy during aging (a) and (b) as
function of strain during deformation.

discussed in much detail in chapter 3.
Interestingly, the spatial correlation does not remain constant upon fur-

ther deformation in the strain hardening regime. Figure 6.2(c) shows that
Θ(30%) monotonically increases with growing strain. The increase in Θ(30%)
accelerates at large strains ε > 2, reaching a value of 0.72 at ε = 4., which is
above the predictive success rate measured in the quiescent state prior to the
deformation. Is this strengthening spatial correlation the result of the same
processes that drive the increase during aging?

6.2 Examining the strain hardening regime

Aging is the non-equilibrium evolution of the system towards lower energy
states in the PEL, and it is discussed in detail in section 1.2.2. The position
in the PEL can be measured by minimizing the energy in the zero tempera-
ture limit. The particle configuration at the minimum is called the inherent
structure, and its potential energy UIS, previously introduced in section 3.4,
is measured during the calculation of the softness field. In fig. 6.3 I show
the mean total inherent structure energy, the summation of pair and bond
potential energy averaged over all particles, during aging [panel (a)] and me-
chanical deformation [panel (b)]. As expected, panel (a) shows that UIS
decreases logarithmically during aging. Other than the predictive success
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Figure 6.4: (a) Mean participation ratio as function of eigenfrequency. (b)
Mean participation ratio of all Nm modes used for the softness field calcula-
tion as function of total engineering strain.

rate Θ, which depends on the first Nh = 100 hops after the softness field
measurement, the inherent structure is an instantaneous quantity, and UIS
at time of loading (ε = 0.0) is therefore identical to the quiescent state just
prior to loading. At the yield strain, ε = 0.04, UIS has increased nearly to
pre-aging values, and in the strain softening regime, ε = 0.1, the increase of
UIS slows and full erasure of history (mechanical rejuvenation) is reached.
Importantly, in the strain hardening regime, the inherent structure energy is
found to increase with the extent of the deformation. In the PEL picture,
this evolution is in the opposite direction than that occurring during aging,
and “over-aging” can therefore not be the reason for the increase in spatial
correlation.

To better understand why the softness field correlates more strongly with
hops at large strain deformation, I investigate changes in the low energy vi-
brational spectrum, which is the basis for the softness field calculation. The
extent of localization of a vibrational mode j can be calculated as participa-
tion ratio

Pj =

(∑N
i=1(e

(i)
j )2

)2

N
∑N

i=1(e
(i)
j )4

.

Here, e
(i)
j is the polarization vector of particle i, see also section 1.2.4. A
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value of Pj = 1 means that all particles are participating equally in mode
j, whereas a small value indicates that the mode is quasi-localized around a
few active particles.

In fig. 6.4(a) I show the participation ratio P (ω) as function of mode fre-
quency. Since the vibrational spectrum is a feature of the inherent structure,
P (ω) at ε = 0.0 is identical to that in the quiescent state at the same age.
The participation ratios at the end of the strain softening regime (ε = 0.1)
are nearly unchanged, with a slight shift of the extended modes (large par-
ticipation ratio) towards smaller frequencies. In the strain hardening regime
at ε = 4.0, the vibrational spectrum has changed in two ways: First, I
find modes with large participation ratio at much smaller frequencies. This
change is due to the large (400%) elongation of the simulation box along the
deformation axis, which allows modes with larger wavelength to “fit” into
the simulation volume. The participation ratios of these modes suggest that
they are extended and do not scatter at the structurally weak regions in the
glass. Second, the participation ratios of the modes near the boson peak
ω ∼ 2.0 (see discussion in section 1.2.4) is reduced compared to the unde-
formed system. In fig. 6.4(b) I show the average participation ratio 〈P (ω)〉
of all Nm = 600 modes used for the calculation of the softness field. In the
strain hardening regime I find a reduction of the average participation ratio,
indicating that the soft modes become more localized as the deformation
grows. In the elastic and strain softening regime 〈P (ω)〉 is nearly constant,
which is also the behavior observed during aging (not shown).

The increase in predictive success rate in the strain hardening regime is
well correlated with the decrease of the average participation ratio. To show
this, I calculate the relative change of these quantities in the strain range
0.1 ≤ ε ≤ 4.0. For a measured quantity O(ε) the relative change is defined
as

∆O(ε) =
O(ε)−O(ε = 0.1)

O(ε = 4.0)−O(ε = 0.1)
.

In fig. 6.5 I compare the relative change of predictive success rate Θ(30%)
(black) and average participation ratio 〈P (ω)〉 (red) in the strain hardening
regime. Definition and scaling of the relative change sets the value at ε = 0.1
to zero, while the final value at ε = 4.0 is set to one. The spatial correla-
tion increases slowly at smaller strains and more rapidly at larger strains.
This increase is closely tracked by the change in the participation ratio. Lo-
calized (low participation ratio) soft modes, as discussed in more detail in
section 1.2.4, are caused by the scattering of phonons at structurally weak
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Figure 6.5: Relative change observed during deformation in the strain hard-
ening regime. Lines are guides to the eye.

regions. That more strongly localized soft modes lead to a better predictive
strength of the softness field is therefore not surprising. However, the inter-
esting question must be: What process drives the increase of localization in
the strain hardening regime?

Strain hardening is a polymeric effect, where elastic energy is stored in the
covalent bond interaction along the polymer backbone. The stored energy
increases with growing strain, which leads to larger external stresses. In
fig. 6.5 I also show the relative change of the average covalent bond energy
(blue) during strain hardening, calculated from the inherent structure. The
bond energy is near constant until ε = 1.0 and then increases more and
more rapidly with growing strains. The evolution matches the behavior of
participation ratio and predictive strength reasonably well, and there is a
clear correlation between all three quantities. This correlation suggests that
the process responsible for the increase in spatial correlation of softness field
and hops might indeed be tied to the polymeric nature of the glass.

A known process that is present during the deformation of polymer glasses
is the alignment of polymers along the deformation axis [32]. The extent of
alignment can be calculated by projecting the bond orientations, that is the
unit length vector connecting two bonded particles, on the deformation axis
and averaging over all bonds in the system. I monitored the alignment of the
polymer with the deformation axis over the full deformation (not shown) and
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found that it does not correlate to the data shown in fig. 6.5. The polymer
alignment starts to increase from zero immediately upon loading and grows
most rapidly in the elastic and strain softening regime. It then continuously
slows until reaching a value of 0.6 at strain ε = 4.0 (zero means no corre-
lation and one indicates full alignment). In addition to this, I investigated
anisotropy effects in the softness field direction and hop direction during
strain hardening, yet both quantities remain isotropically distributed.

6.3 Conclusions

The correlation between soft modes and local plastic events is quantified for a
well aged polymer glass under uniaxial tensile deformation. A constant strain
rate protocol was used and the correlation is analyzed at various points of
the deformation: in the elastic regime, at the yield strain, during strain soft-
ening and far into the strain hardening regime with a maximum engineering
strain of ε = 4.0. The plastic events were monitored as hops in the particle
trajectories, and the participation of particles in soft modes is quantified as a
superposition of low energy vibrational eigenmodes [102] in a scalar softness
field. The mean soft mode direction was calculated from a weighted average
of the eigenvectors [86].

At all points of the deformation, I find a strong spatial correlation between
large softness of a particle and the occurrence of plastic events. The correla-
tion is quantified as the overlap between a binarized soft spot map [63, 81]
of the softest particles with the occurrence of hops immediately after the
softness measurement. At a coverage fraction of 30% soft spots, the location
of 71% of hops is predicted immediately after loading in the elastic regime.
The overlap decreases to 61% after yield in the strain softening regime. In
the following strain hardening regime the overlap increases, and at a strain
of ε = 4.0 it has reached a value of 72%, indicating that the correlation has
become stronger than in the pre-deformation polymer glass. In agreement
with the results in chapter 5, I find that the direction of hops is well aligned
with the direction of the soft modes in the soft spots, and deformation did
not alter this directional correlation.

The study discussed in chapter 5 and published in ref. [86] showed that
aging increases the spatial correlation of soft modes and particle hops. This
study measured the increase in the overlap of soft spots and hops in the
aging period prior to the deformation, and I directly show that the decrease
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during deformation in the elastic and strain softening regime fully reverses
the impact of prior aging. This erasure of history indicates mechanical re-
juvenation and the results are consistent with the more detailed study of
mechanical rejuvenation in polymer glasses discussed in chapter 3 and pub-
lished in ref. [84].

I showed that the increase of overlap between soft spots and hops in
the strain hardening regime is accompanied by a growing localization of the
soft modes. I furthermore showed that this localization is correlated to the
increase of elastic energy stored in the covalent bonds of the polymers. This
is an indication for a polymeric effect, tied to the chain-topology of the
polymer glass. However, what process is driving the localization could not
be clearly identified from the gathered data. The alignment of polymers
with the deformation axis [32] was found to not correlate to the increase in
localization and no indications for anisotropy in the softness field direction
or hop direction were found in the strain hardening regime. It is also possible
that the increase in correlation is merely due to the change in box geometry
during deformation, which as discussed above alters the vibrational spectrum.
Resolving this question requires further study.
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Chapter 7

Conclusions

The research presented in this thesis aims at creating a better understanding
of the physical processes that govern plasticity in polymer glasses. Although
a large amount of research has explored the physics of glasses [5, 12, 25, 35,
88], the challenge remains to connect the macroscopic effects of mechanical
deformation with microscopic scale processes that are prevalent in glassy
matter. This thesis uses large scale molecular dynamics simulations of a
well known bead-spring polymer model [52] with documented glass forming
capabilities [8, 38, 70, 76, 94, 99] to investigate key aspects of glassy physics
in the industrially important case of polymer glass and to bridge the gap
from microscopic scale to macroscopic plasticity. In four projects I studied
physical aging, mechanical rejuvenation, dynamical heterogeneity and soft
modes as the link between heterogeneous dynamics and local structure both
in the quiescent state and during deformation.

The first project explored mechanical rejuvenation using bulk-averaged
quantities that simultaneously captured the dynamical, structural and en-
ergetic state of post-deformation polymer glasses, which are compared to
systems without deformation history. A key technical contribution of this
work is the development of an effective algorithm for the detection of indi-
vidual structural relaxation events called hops. The detection method was
first used to spatially resolve dynamical heterogeneity in the second project.
Building on these results, maps of hop events were then used to investigate
signature features in the local structure of regions that undergo rearrange-
ments in quiescent polymer glasses. Subsequently, the analysis was extended
to mechanically deformed systems to study the structural origin of local
plastic events. This link between local structure and plastic events was fur-
thermore found to be sensitive to physical aging as well as to mechanical
perturbation, substantiating the results on mechanical rejuvenation found
using bulk-averaged quantities.
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Mechanical rejuvenation The non-equilibrium nature of the glass drives
a continuous evolution towards lower energy states, which causes an increase
in yield stress as well as brittleness of polymer glasses with increasing age [88].
Mechanical deformation can reverse the impacts of physical aging, an effect
known as mechanical rejuvenation [88]. Whether deformation and aging
are indeed directly coupled is a matter of scientific controversy [64] with
one central question: Is the state that the glassy system is driven into by
mechanical deformation indeed comparable to the state of a younger glass?
In a recent series of experiments Lee and Ediger showed that the molecular
mobility, which decreases during aging, is increased after the application of
mechanical stresses [57, 59]. Measurements in the recovery regime after the
deformation, however, revealed two different impacts [58]: After deformation
at a small stress amplitude, the molecular mobility quickly recovered its pre-
deformation value, while the application of a much larger stress amplitude
permanently altered the mobility and the system evolved in the recovery
regime comparable to a younger glass without deformation history.

The study discussed in chapter 3 and published in ref. [84] was designed
to complement these results with an experimentally inaccessible perspective
of the evolution in the recovery regime (recovery path) by simultaneously
monitoring the structural α-relaxation time, inherent structure energy and
measures of local spatial order. In agreement with the experiment, my results
show that after weak deformation in the pre-yield regime the recovery path
returns to the aging behavior of an undeformed polymer glass of equal age.
The perturbation of the recovery path becomes stronger with increasing to-
tal strain at the end of the deformation and the history of the polymer glass
is permanently erased at around the yield strain. Here, structural, dynam-
ical and energetic perspectives indicate a recovery path that is comparable
with the aging behavior of a younger glass, i.e. permanent mechanical re-
juvenation. After deformation in the post-yield regime, however, the three
perspectives on the recovery path yield different indications on mechanical
rejuvenation: While the α-relaxation time is consistent with that of a younger
glass, the structural and energetic quantities reveal that the deformed system
is driven into a state that is distinct from a quiescent polymer glass of any
age. This observation supports the view of McKenna [64] that mechanical
deformation does not only reset the internal clock of a glass, but that it can
drive the system to a new thermodynamic state.

Furthermore, my results discussed in chapter 6 give an additional per-
spective on mechanical rejuvenation: The correlation between local plastic
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events and soft modes was found to be sensitive to aging as well as me-
chanical perturbation. The correlation became stronger during aging, yet
deformation up to the end of the strain softening regime resulted in a reset
of the correlation to pre-aging values, indicating mechanical rejuvenation of
this link between local structure and dynamics.

My results for the pre- and post-yield deformation therefore resolve the
question of mechanical rejuvenation in the following sense: Mechanical de-
formation around the yield-point leads to a permanently altered glass state
that is comparable to a younger glass without deformation history. If the
deformation is limited to the elastic regime prior to the yield point, the sys-
tem state is only transiently altered and the glass recovers quickly to the
pre-deformation state. Deformation in the post-yield regime, beyond the
end of strain softening as indicated by the results discussed in chapter 6,
drives the glass to a new state that is structurally and energetically distinct
from a younger glass without deformation history. My results furthermore
show that, in the limit of no aging in the deformation period, the impact of
deformation on the recovery path is controlled solely by the total engineer-
ing strain at the end of the deformation. This finding supports an earlier
study [100] that reports the importance of strain in describing accelerated
dynamics during deformation. It would be interesting to further explore the
role of strain as deformation parameter, because it could provide more insight
into the key components for models of plasticity in polymer glasses [25, 37].

Dynamical heterogeneity in the aging regime One of the defining
characteristics of glassy physics is the emergence of dynamical heterogene-
ity (DH) near the glass transition [9, 24, 28, 34, 47, 51, 53]. In the glass
state particle rearrangements are correlated on the molecular level, leading
to cooperative motion of groups of particles [33, 51] and the partition of
the system into transient regions of “faster” and “slower” structural relax-
ation. The study of DH has been concentrated on supercooled liquids, yet it
is clearly important in understanding plasticity in polymer glasses. Recent
studies that quantify DH via three- and four-point correlators indicate that
dynamical correlation is increasing during physical aging [17, 71].

In the second project, discussed in chapter 4 and published in ref. [85],
I analyzed the spatio-temporal distribution of structural relaxation in qui-
escent polymer glasses at various temperatures and ages. Relaxation events
were detected as hops in the particle trajectories and I introduced an adap-
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tation of an algorithm by Candelier et al. [19]. This detection algorithm is a
key technical contribution of this thesis, because it allows the measurement
of relaxation events with high spatio-temporal resolution on-the-fly for the
full duration of the simulation. The technique allowed me to calculate the
spatio-temporal density-density correlation and I found a strong correlation
between near-simultaneous hops of neighboring particles. A cluster analysis
was used to measure the size of cooperatively moving groups of particles,
and I found an exponential distribution with power-law tail that becomes
less pronounced during aging and at lower temperatures. The latter trend
connects well with results for agitated granular media [19].

I furthermore used the map of relaxation events to spatially resolve DH
as hop clusters, and I compare their growth and volume distribution with the
simultaneously measured four-point dynamical susceptibility χ4 as the stan-
dard measure of DH [9, 53]. In agreement with a study of a model metallic
glass [71], I find a growing maximal dynamical correlation with increasing
age that is shifted towards larger time scales during aging. A cluster analysis
showed that the time of maximal correlation coincides with the formation
of a single hop cluster that encompasses nearly the whole system, with only
single cage sized pockets of particles that have not undergone structural re-
arrangements. The cluster volume distribution prior to the merging into a
single dominating cluster follows a power-law with exponent −2, which in-
dicates that fluctuations are sufficiently small so that averaged quantities do
not behave anomalously. This result helps explain the success of mean-field
models of aging [98], which capture the evolution of dynamical quantities like
the mean squared displacement while entirely neglecting DH.

I introduced an efficient hop detection algorithm, that allowed me to give
a new perspective on dynamical heterogeneity by simultaneously measuring
DH using the established dynamical susceptibility measure as well as the
aggregation of hops into mesoscopic clusters. For the first time, I measured
growing dynamical correlation and shift towards larger time scales during
physical aging in a polymer glass, confirming recent results for model binary
glasses. The time of maximal correlation was found to coincide with the
formation of a single system spanning cluster of hops with only single-cage
sized regions that did not undergo structural relaxation.

Link between local structure and particle rearrangements A key
open challenge in developing a theory of plasticity in glasses is to understand
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the link between the location of particle rearrangements and the local struc-
ture. Which structural feature determines the spatial distribution of DH
and distinguishes regions with rapid structural relaxation from quasi-stable
local configurations of particles? The goal of this inquiry is to find a coarse
grained structural description for amorphous solids in the spirit of disloca-
tions of crystalline solids. Recently, quasi-localized low energy vibrational
modes have attracted much attention as a possible candidate [102, 103], and
a strong correlation was quantified between these soft modes and particle re-
arrangements in a mechanically driven model metallic glass in 2D and at zero
temperature [63]. My third and fourth projects were dedicated to verify this
correlation in a thermal, three-dimensional polymer glass in the quiescent
state and during mechanical deformation. Structural relaxation events, or
elementary plastic events in the case of deformation, were spatio-temporally
resolved as particle hops using the detection algorithm developed in the sec-
ond project, and I used a simple superposition scheme to construct a softness
field from the low energy vibrational spectrum [102].

In the third project, discussed in chapter 5 and published in ref. [86],
I studied the correlation between softness field and hops in the quiescent
state at three temperatures and during physical aging. My results show that
hops occur up to 7 times more often than average in the softest regions of
the system. This indicates a strong spatial correlation that increases during
aging and decreases at higher temperatures. I furthermore found a strong
directional alignment of hops in these soft regions with the mean direction
of soft modes. These findings support a very recent study that investigated
the role of soft modes at the crossover between ordered to disordered sys-
tems [77]. Soft modes were observed to predict the direction and location
of rearrangements in a hierarchy of systems: from a crystal with a single
dislocation, to a polycrystal and a binary glass in 2D. My analysis of the
softness field autocorrelation showed that soft modes are long-lived struc-
tural features compared to vibrational time scales, and the autocorrelation
only decays to zero when nearly the entire system has undergone structural
relaxation. A very recent study of a sheared, thermal model binary glass in
2D supports this finding by tracking the lifetime of individual soft regions,
called soft spots [81]. The study showed that the lifetime is correlated to the
structural relaxation time and that individual soft spots can survive many
individual rearrangements.

The final project, discussed in chapter 6, quantified the correlation in an
aged polymer glass under uniaxial tensile deformation at various points of
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the deformation. Measurements were analogous to the study of the quies-
cent case, and I verified the spatial and directional correlation of soft modes
and hops in all deformation regimes. Interestingly, the spatial correlation,
which increased during the aging period prior to the deformation, was found
to decrease to the pre-aging value when the deformation reached the strain
softening regime. This finding showed that the link between structure and
dynamics in glasses is sensitive to mechanical rejuvenation as discussed in
the first project. Monitoring of the position in the PEL confirmed this con-
nection: After a decrease of the inherent structure energy during aging, the
system was driven back towards higher energies by the deformation and the
pre-aging value was reached in the strain softening regime, simultaneously
with the resetting of the spatial correlation.

Measuring the correlation of soft modes and hops during deformation in
the strain hardening regime revealed a novel effect with a link to the chain
connectivity in polymer glasses: The spatial correlation was found to increase
with increasing strain, reaching values higher than observed just prior to the
deformation at a strain of ε = 4. The increase in spatial correlation was
shown to be tied with a growing localization of the soft modes as well as
with the increase in potential energy stored in the covalent bonds, which is
the mechanism causing strain hardening. The latter link suggests a poly-
meric origin of the effect. However, the orientation of polymers along the
deformation axis did not correlate to the increase in localization, nor did I
find anisotropies in the softness field direction or hop direction during the
deformation.

My results show a strong link between quasi-localized soft modes and
the location of particle rearrangements. For the first time, this correlation
was quantified in a polymer glass and I studied the impact of temperature,
physical aging as well as mechanical deformation. Beyond the spatial cor-
relation I also showed that the direction of individual rearrangements are
aligned with the polarization of the soft modes. Finally, I showed that the
structural information encoded in the soft modes is long-lived compared to
the vibrational time scale and that the correlations fully decay on the order
of the structural relaxation time.

Outlook A growing body of research is indicating that soft modes are in-
deed linking irreversible rearrangements, plasticity and microscopic structure
in amorphous solids. Evidence has been found in a diverse set of model sys-
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tems mostly in 2D, and this thesis adds quantitative evidence in 3D: From
binary supercooled liquids in the quiescent state [44, 102, 103], sheared bi-
nary glasses at zero temperature [63, 68, 90] and finite temperature [81], to
polycrystals[77], lattice models [3] and the present quiescent as well as de-
formed polymer glass. Various measures for rearrangements have been used,
ranging from the change of nearest neighbors [102], to maxima in the non-
affine displacement field [81], and here hops in individual particle trajectories.
Moreover, soft modes were quantified in different ways: correlations to rear-
rangements were identified w.r.t. individual modes [90], the binary soft spot
field [63] and the superposition of participation fractions [102] used here.

A recent study used information theory to directly measure the extent of
correlation between soft modes and the propensity of motion [49], which is
the part of the particle motion that is determined by the structure alone and
that can be isolated by averaging in the iso-configurational ensemble [13, 101].
The study quantified the difference between joined probability distribution
of soft modes and propensity of motion and the factorized distribution (in-
dependent variables hypothesis), with a large difference indicating a strong
correlation. Not surprisingly, the difference was maximal when the propen-
sity was measured in a time interval on the order of the vibrational time
scale and it decreased with increasing interval size. However, a significant
difference was still present at time intervals of the order of the structural
relaxation time proving that a correlation exists. Despite these variations
in simulated models and analysis, the robustness of the correlation suggests
that soft spots should play a prominent role in theories of plasticity for amor-
phous solids in general, and the practically important case of polymer glasses
in particular.

A second approach to understand the cause of dynamical heterogeneity
in amorphous solids has developed around the discovery of heterogeneously
distributed local elastic moduli [66, 70, 91, 106]. Regions of small shear
moduli were found to be prone to plastic rearrangements, whereas areas
with high moduli tend to be more structurally stable. Both approaches
are closely related as they are harmonic theories and some work has been
done to understand the link between them [31]. It would be interesting to
further explore the relationship between soft modes and local elastic moduli,
and directly analyze both spatial distributions. Do soft spots indeed have
a small shear modulus, and are the decay timescales of the heterogeneous
distributions related?

The softness field analysis during deformation in the strain hardening
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regime revealed a growing spatial correlation of hops to soft modes during
strain hardening. Clearly identifying the process responsible for this increase
is an interesting question emerging from this thesis and should be the topic of
future work. To answer this question, it would be instrumental to understand
the true cause for the increase in localization of the vibrational modes. Strain
hardening introduces a stiffening of the polymer backbones, and it would
be interesting to investigate more closely how this affects the vibrational
modes. One possibility would be to model an amorphous solid as a random
network of springs and to study the vibrational modes while increasing the
stiffness of springs that are oriented along one dimension. Another possible
avenue would be to investigate whether strain hardening has an impact on
the distance to the glass transition in terms of molecular mobility. The
third project showed that the spatial correlation is increasing with decreasing
temperature, i.e. the correlation is stronger deep in the glass state, where the
molecular mobility is very low. Does the stiffening of the polymer backbone
lead to a slowing of molecular mobility? A fruitful starting point of a future
study could be to measure the non-affine displacement, which excludes the
displacement introduced by the change of the simulation box shape, and to
compare it at different points during deformation in the strain hardening
regime.

Recently, Fielding et al. [37] proposed a simple model that explains the
impact of deformation-induced flow on the structural relaxation time in poly-
mer glasses. The key idea is to separate relaxation events caused by the
elastic energy stored in covalent bonds from those that relax the elastic field
of neighboring but non-bonded monomers. This separation of “polymeric”
and “solvent” degrees of freedom leads to a competition between these re-
laxation types during flow. The solvent relaxes on smaller time scales and
increases the energy in the covalent bonds, until this forces polymeric relax-
ation events. It would be interesting to verify such an interplay in polymer
glasses that are more complex than the dumbbell systems that were analyzed
by the above authors. The hop detection technique could be instrumental in
such an analysis.
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