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Abstract 

With rapid increase in complexity of modern power systems, there is a strong need for 

better computational tools to ensure the reliable operation of electrical grids. These tools 

need to be accurate, computationally efficient, and capable of using advanced measurement 

devices. In this context, transient stability assessment (TSA) is an important study that 

determines system’s dynamic security margins following a major disturbance. The TSA 

consists of a set of differential-algebraic equations (DAEs), which are typically solved using 

time-domain simulation (TDS) approach. While being very accurate, the TDS requires 

significant computational resources when applied to practical power systems. This 

problem becomes more significant in transient stability monitoring (TSM), wherein the 

computational performance of the TDS is typically the bottleneck. This research is to 

investigate available challenges in the TSM applications and develop new algorithms to 

help realizing a practical monitoring tool for transient stability studies. The thesis focuses 

on three research thrusts: i) dynamic reduction of power system to reduce problem size; ii) 

advanced computation approaches to expedite the TDS method; iii) integration of PMU 

measurements into the TSM. Initially, a new adaptive aggregation algorithm for dynamic 

reduction is proposed, wherein parameters of generators and structure of transmission 

network are considered to aggregate coherent generators and create a reduced-order 

system. Also, a new criterion is defined to monitor validity of the constructed reduced 

system. It is shown that the proposed technique is more accurate than traditional 

aggregation methods. To expedite the TDS approach, this thesis presents two new 

integration techniques, which are called Multi-Decomposition Approach (MDA) and 
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Successive Linearization and Integration Technique (SLIT). In these methods, the nonlinear 

DAEs are decomposed into a series of linear subsystems, which participate in 

approximating actual solution. It is demonstrated that sequential and parallel versions of 

the MDA and SLIT are faster than state-of-the-art integration techniques. Finally, a dynamic 

state estimator based on Extended Kalman Filter is developed to convert the PMU 

measurements into a set of state variables suitable for transient stability studies. Computer 

studies show that the proposed framework provides accurate results in highly disturbed 

power systems with fairly low PMU sampling rates. 
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CHAPTER 1: INTRODUCTION 

 

 

1.1 Motivation 

Due to many technological advancements in energy sector, modern power systems have 

been pushed to their physical operating limits more than ever before. To increase the 

utilization of available infrastructures and resources, stability margins have decreased 

considerably, making the systems potentially more prone to instability following a major 

disturbance. To continue operating power systems in a stable and reliable manner, 

electrical utilities and engineers are using sophisticated computer simulations and tools in 

order to monitor, analyze, and control the system during unforeseen events. Currently, 

state estimation, voltage stability analysis, and transient stability analysis (TSA) are a part 

of dynamic security assessment (DSA) tool, which are carried out either offline or online 

using model of the system and measurements from supervisory control and data 

acquisition (SCADA) systems. 

Among different studies performed in the DSA, the TSA is one of the most time-demanding 

dynamic studies. Time-domain simulation (TDS) is the most reliable approach for solving 

the TSA problems, wherein numerical integration is employed. The TDS is able to handle a 

wide variety of dynamic models and provide very accurate results. Several commercial 

packages, such as DSATools from Powertech Labs Inc. ‎[1], PSS/E from Siemens ‎[2], 
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PowerWorld Simulator from Power World Corporation ‎[3], and PSLF from General Electric 

Energy ‎[4] have been developed, wherein the TDS is the primary method for solving 

transient stability problem. While modern simulation tools are constantly improving, 

simulation speed and time-consuming nature of the TDS remain to be limiting factors. 

Recently, phasor measurement units (PMUs) with modern communication facilities have 

also become widely available. The additional accurate, high-rate, and synchronized 

measurements provided by the PMUs are able to capture transients of power systems and 

therefore, they open the opportunity to perform the TSA following occurrence of fault or 

disturbance. This scheme is known as transient stability monitoring (TSM) and it aims at 

using PMU data to monitor and control system’s dynamic behavior in real-time. The overall 

structure of the TSM is shown in Figure ‎1-1. Initially, PMU measurements are collected 

across the network and transferred to control centre, wherein the measured quantities are 

translated into system’s state variables to initialize the transient stability problem. Next, 

the TDS approach is employed to solve the differential-algebraic equations (DAEs) 

appearing in the transient stability problem for the next few seconds and provide a short-

term prediction of system dynamic status. If an instability is detected in this step, 

appropriate corrective actions are taken to stabilize the system.  

The computational cycle depicted in Figure ‎1-1 encompasses three steps: initializing 

transient stability problem; solving the DAEs; taking appropriate corrective action. In a 

practical TSM, this cycle should be completed at least two times faster than real-time 

dynamics to allow some time for taking appropriate corrective action. However, the state-

of-the-art transient stability solvers are not fast enough to achieve this objective. In fact, 
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with current solution speed of the TDS method, each TSM cycle is almost 4 times slower 

than real-time system dynamics when applied to very detailed and large power grids with 

over 15,000 buses, such as Western Electricity Coordinating Council (WECC) system ‎[5]. 

Therefore, in order to make TSM computationally feasible, there is a strong need for 

expediting transient stability solution. 

Initialization Solving TSA Control Action
PMU

PMU

Control Centre 

(computations should be completed at least twice 
faster than real-time dynamics)

A Set of PMU Data

Initialize Transient 
Stability Problem

Find system dynamic response 
in the next few seconds

Trigger appropriate control action 
if system will become unstable

GPS Satellite

 

Figure ‎1-1 Structure of one computational cycle in transient stability monitoring. 

In this regard, a significant effort has been made to expedite the transient stability 

assessment using theory of nonlinear systems ‎[6]-‎[10] and the concept of instability in 

single-machine infinite bus (SMIB) system ‎[11]-‎[13]. These methods are able to solve the 

problem without numerical integration, which results in a significant time advantage over 

the TDS. However, with the rapid development of new devices with sophisticated dynamic 

models, their inability to handle different models became apparent. Additionally, these 

methods occasionally may give inaccurate results, which has limited their applications to 

contingency selection. 
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System dynamic reduction technique is another approach for reducing size of the system 

and improving performance of the TDS. In the state-of-the-art solutions, the coherent 

generators may be aggregated using a weighted averaging approach, wherein the weight of 

each generator is proportional to its inertia. However, this approach may result in a sub-

optimal reduced-order system if a large generator is not able to deliver enough power in 

the post-disturbance system. More importantly, available dynamic equivalencing 

techniques fail to provide accurate results when there errors exist in coherency 

identification step. 

Using multi-core processors has been another active area of research for improving 

computational performance of TDS. The traditional approaches use system partitioning 

techniques to share computational tasks among several processors. However, this 

approach, if applied in a straightforward way, suffers from significant overhead 

communication cost and leads to a reduction in convergence rate of the nonlinear solver 

used inside. 

The TSM helps increasing utilization of available resources while maintaining dynamic 

security of the system, which ultimately translates into significant economic benefits. In 

order to realize a TSM tool, there is a considerable need to develop new methods and 

algorithms that expedite solution speed of the TDS approach. The application of new tools, 

however, will not limited to the TSM and they can also be used in offline and online 

transient stability studies to model larger power systems with more contingencies and/or 

perform the TSA more often. In both cases, having more accurate and fast transient 
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simulation tools enhances the awareness of system operators and improves reliability of 

the system. 

1.2 Background 

In transient stability studies, system dynamics are divided into short-term (fast) and long-

term (slow) transients. For the purpose of transient stability studies, transmission 

network, including transmission lines, transformers, and loads, are considered to belong to 

the category of fast transients, for which differential equations are substituted by algebraic 

equations that are obtained assuming equilibrium conditions. Also, the generators’ 

windings, excitation systems, and turbine-governor control system define long-term 

transients of the system and they are represented by differential equations. Overall, the 

transient stability problem constitutes a set of differential-algebraic equations (DAEs).  

In the online TSA ‎[14], these DAEs are solved using numerical integration for a number of 

predefined contingencies to ensure that the system is reliable against foreseeable incidents. 

In this application, a snapshot of the system operating condition is taken using SCADA 

measurements, and it is used to initialize the DAEs. Due to poor measurement resolution, 

the SCADA system is not able to capture transient dynamics of system, and therefore, its 

application has been traditionally limited to steady state conditions. With the development 

of PMUs providing synchronized measurements at high-rate, it is now possible to monitor 

transients of the system and perform the TSA using real-time measurements, which is 

known as the transient stability monitoring (TSM) ‎[15]. As discussed in section ‎1.1, the 

solution speed of the transient stability solver is the main bottleneck for the TSM, which is 
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almost 4 times slower than real-time system dynamics when applied to large-scale 

systems. In this situation, the TSM cannot identify and secure unstable scenarios in a timely 

and reliable manner. Another challenge in the TSM is that while the internal states of 

synchronous machines (and other dynamic devices) are required to initiate the transient 

stability problem, the PMUs can only measure electrical quantities such as voltage and 

current. As a result, an intermediate step is required to transform the PMUs’ measured 

quantities into states of dynamic devices. Therefore, in order to achieve an industrial-grade 

TSM, the above problems should be addressed first. Numerous solutions have been 

proposed in the literature to tackle these challenges, which are reviewed in the next two 

sections. 

1.2.1 Solving the DAEs in transient stability problem 

The TDS ‎[16]-‎[18] has been proven to be the most accurate and reliable approach for 

solving DAEs appearing in transient stability problems. In this approach, the DAEs are 

solved numerically and the system is simulated typically for 3 to 5 seconds for studying the 

local modes, and for 10 to 20 seconds for studying inter-area modes ‎[19].  This approach 

can handle various dynamic models of system components. 

There are two basic methodologies for solving transient stability DAEs ‎[17] using TDS. In 

the first approach (also called power-balance form), the equations are solved 

simultaneously.  In this approach, an implicit integration technique is used to discretize the 

differential equations, which are then solved together with the algebraic equations. In the 

second approach (also called current-balance form), the DAEs are partitioned, and the 

discretized differential equations along with algebraic equations are solved separately, 
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alternating each time step. According to ‎[20], the alternating approach tends to be faster as 

it allows to use explicit integration rules such as Runge-Kutta ‎[21]. However, the transient 

stability problem can be stiff with highly nonlinear elements, especially when control 

systems have large gains, small time constants, saturation limiters, etc. ‎[22]. In this 

situation, the simultaneous method is preferred as it uses implicit integration and ensures 

numerical stability. 

Since the DAEs are generally nonlinear, the solution of such problems typically requires 

iterations using either Full Newton method (with complete update of Jacobian matrix at 

every iteration) ‎[23] or a very dishonest Newton (VDHN) method (with skipping of 

updating the Jacobian matrix) ‎[24]. Despite recent advancements in computer technology, 

the TDS requires significant computational resources when applied to practical industrial 

problems. As a result, considerable effort has been devoted in the literature to find a 

replacement for the TDS. Energy function method ‎[6]-‎[10] is one of the alternative 

approaches where the system stability is assessed by comparing system's energy level 

against the energy level at certain unstable equilibrium point. Its inability in handling 

different dynamic models is the main problem associated with the energy function method. 

Extended equal area criterion (EEAC) ‎[11]-‎[13] is a hybrid approach, wherein the TDS 

along with the concept of energy function method are used to detect instability. While 

being more computationally efficient, the results of EEAC may not always be sufficiently 

accurate or even conservative ‎[25]. Recently, several heuristic methods based on artificial 

neural networks ‎[26], support vector machines ‎[27], and decision tree ‎[28] have been 

proposed as fast tools for the transient stability assessment. 
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Despite of many innovations, significant economic implications faced by utilities prevent 

operators from using approximate methods, and many companies still prefer to use the 

TDS as the most trustable method. For this reason, many research efforts have been 

focused on expediting the TDS using dynamic equivalencing and parallel computing. 

1.2.1.1 Dynamic equivalencing 

Dynamic equivalencing aims at reducing size of the system by aggregating coherent 

generators. The steps involved in dynamic equivalencing include: (i) identifying groups of 

coherent generators ‎[29]-‎[34]; and (ii) aggregating a coherent group to create an 

equivalent generator ‎[35]-‎[42]. The first step involves identification of generators with 

similar angular swing curves. The accuracy of reduced-order system highly depends on the 

results of stage (i), which is supposed to identify only tightly coherent generators. Linear 

time simulation (LTS) ‎[29] is one of the earliest methods, which simulates the linearized 

system using trapezoidal integration with large time step (e.g. 100ms), and the groups of 

coherent generators are identified using simulation results. Weak couplings approach was 

proposed in ‎[30], wherein a group of coherent generators is recognized when the coupling 

between this group and the rest of system is weak. Modal analysis and eigenvalue 

decomposition approaches are powerful tools proposed in ‎[31], ‎[32], wherein participation 

factors ‎[33] were used to measure the effect of each machine on system modes. The main 

challenge associated with the modal-based methods is that when several generators 

(which are not necessarily coherent) participate in the same mode, these methods cannot 

separate such generators and may give inaccurate results. Moreover, the modal-based 

methods typically need the number of coherent groups of generators as the input, which is 
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not easy to determine before solving the transient stability problem. The groups of 

generators can also be found using relation factors ‎[34], which are calculated directly from 

state matrix. In this approach, the coherent groups are determined using relative degree of 

coupling. 

Once the groups of coherent generator are identified, each group is aggregated to create an 

equivalent machine. The generator terminal bus aggregation algorithm ‎[35] is one of the 

earliest methods in this area. This method aggregates the generators using an inertial 

weighting average. The problem associated with this approach is that the infinite 

admittances are introduced, which can stiffen the problem. The inertial and slow coherency 

aggregation method ‎[36] is one of the well-established algorithms in this area. In this 

approach, the aggregation is performed at the generator’s internal nodes using weighted 

average of generators. The weight of each generator is determined by its inertia and 

accordingly, the generators with large inertia contribute more to the dynamic 

characteristics of the corresponding equivalent generator. Moreover, the linearized swing 

equation is used to modify the impedance connecting the terminals of coherent generators. 

This modification eliminates stiffening problem encountered in ‎[35] and it might slightly 

improve the accuracy of the reduced-order system. Using terminal bus method for 

aggregating generators was investigated in ‎[37], wherein the terminals of the coherent 

generators are connected to an equivalent bus via an ideal transformer with complex ratio. 

Since the method is based on the power preservation at the terminal bus of the equivalent 

generator, it preserves the steady state characteristics of the system. However, this method 

is less accurate than the inertial and slow coherency method ‎[36] since the terminals of the 
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coherent generators are less coherent compared to the internal nodes. Using participation 

factors for aggregating generators was investigated in ‎[38], wherein a reference machine is 

selected for each group of coherent generators and the weight of each generator is 

determined based on the participation factor between the given generator and the 

reference machine. The synchrony aggregation approach was presented in ‎[39], where the 

reference generator is represented in detailed model and the rest of the generators in the 

group are represented as a current source. 

The size of the system can be further reduced by extending the dynamic reduction to 

transmission level. In transient stability studies, more than half of the equations are 

attributed to the transmission system. By locating and aggregating coherent load buses, it 

is possible to reduce the number of corresponding equations and expedite the transient 

stability programs. Although significant literature is devoted to coherency identification at 

generation level, much less has been published regarding identifying coherent areas in the 

transmission systems. One of the earliest methods in this area was proposed in ‎[32], where 

a small machine is added to each load bus to convert it to a generation bus. Coherent areas 

are then found using eigenvalue decomposition approach. This method considerably 

increases the problem size and creates a large number of modes which are too close to each 

other and therefore difficult to separate. Assigning load buses to generators was presented 

in ‎[43], where a connection between a load bus and a generator is established via modal 

analysis. This method tries to find load buses which are coherent with generators. Using 

network reduction and keeping only high voltage part of the system (230kv and higher) 
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was investigated in ‎[44]. Therein, the network reduction is applicable as long as all loads 

are modeled as constant impedance. 

1.2.1.2 Parallel computing 

With the recent development of high-performance computing, significant effort in the 

literature has been devoted to using multi-core processors to expedite the TDS. In the most 

straightforward approach, m  contingencies are shared among m  processors, which has a 

potential of reducing the computing time by almost m  factors. While this approach is very 

efficient in analyzing large number of independent scenarios, similar performance 

improvement is hardly achieved in a single-contingency TDS problem - which is sequential 

in nature. As a result, several parallel algorithms have been developed over the past two 

decades to expedite the TDS in a single-contingency problem. These algorithms can be 

broadly divided into two categories: parallel-in-time and parallel-in-space methods. In 

parallel-in-time method ‎[47]-‎[49], several time-steps are solved concurrently by enlarging 

the size of the problem solved simultaneously. However, due to sequential dependency 

between integration time-steps, convergence rate of such relaxed approaches significantly 

degrades especially when large numbers of processors are used. In parallelism-in-space 

‎[50]-‎[59], several processors are employed to solve a single time-step. In the Multi-Area 

Thevenin Equivalent (MATE) method presented in ‎[50]-‎[54], system is decomposed into a 

number of sub-networks, which are connected by the links. In this approach, the solution is 

computed in two stages. First, sub-networks are solved independently, assuming that the 

links are open. In this stage, the computational tasks are shared among several processors 

to improve performance of the algorithm. In the second stage, the sub-networks are 
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represented by their Thevenin equivalent to find the current flowing through the links. 

This process is continued iteratively until the solution converges. In another approach 

presented in ‎[55]-‎[59], network equations are decomposed into several groups considering 

structure of problem as well as network topology. The groups of variables are subsequently 

shared among processors based on their size and required computational cost. Each 

processor solves the assigned sub-problem by relaxing variables from other sub-problems 

and at the end of each iteration, the processors exchange the interfacing variables to 

update the solution. While parallelism-in-space can efficiently reduce computational time, 

there are two challenges associated with this approach. Firstly, the Full Newton and VDHN 

methods used for solving system of nonlinear equations are replaced with a parallelizable 

algorithm such as Gauss-Seidel ‎[49], Successive-Over Relaxation (SOR) ‎[56], or Gauss-

Jacobi ‎[58]-‎[59], which can significantly reduce convergence rate and increase number of 

iterations. Additionally, in algorithms based on parallel-in-space approach, each processor 

needs to access memory of processors corresponding to adjacent areas, which can impose 

significant communication overhead cost. Due to these challenges, applications of parallel 

computing for a single-contingency TDS problem have been limited to large power systems 

with few partitions. 

1.2.2 Using phasor measurement units in the TSM 

In order to use PMUs in the TSM, their measurements need to be translated into a set of 

states of dynamics components such as machines. In this regard, ‎[60] used extended 

Kalman filter (EKF) method to estimate internal states of a generator using the PMUs 

installed at the high voltage buses. In this approach, the field voltage was assumed to be 
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unknown, and it was estimated along with other states of generator by augmenting state 

vector. While it was demonstrated that the EKF is able to accurately estimate machine’s 

states, the system simulation time-step and PMU’s sampling rate were the same in the 

studies presented in ‎[60], which is not a valid assumption considering the PMUs’ 

measurement resolution (30~60 samples/sec). Applying the EKF to a wide-area 

measurement system (WAMS) was proposed in ‎[61], wherein the data collected from all 

PMUs were used to estimate states of all generators. In this approach, the state estimation 

was carried out in two stages. In the first stage, a static state estimation based on the EKF 

was used to estimate voltage of terminal buses of generators using PMU measurements. In 

the second stage, estimated terminal voltages were used to calculate the internal states of 

the generators using the EKF method. While it was demonstrated that the EKF accurately 

estimates the states of machines, ‎[61] oversimplified the problem by considering a classic 

model for generators and a linear model for the system. In a typical transient stability 

problem, wherein the nonlinear terms are highly excited and the excitation system has 

significant effect on the stability limit, this level of simplification might not be acceptable. In 

order to avoid the limitations imposed by the linearization step in the EKF, ‎[62]-‎[64] 

proposed using unscented Kalman filter (UKF) in dynamic state estimation problem. This 

method was able to eliminate the Jacobian matrix computation step; however, it requires a 

large number of derivate function evaluations which ultimately makes it less efficient when 

applied to large-scale power systems. Using extended particle filter (EPF) was investigated 

in ‎[65], wherein the mean and covariance of states were propagated via Monte Carlo 

simulation. Similar to the UKF, EKP does not require computation of Jacobian matrix, and 

moreover, it is able to handle non-Gaussian noise. However, large number of function 
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evaluations in this method is a significant challenge when applied to large-scale systems. 

Ensemble kalman filter (EnKF) is presented in ‎[66] wherein, the noise vector is augmented 

to model inaccuracies in parameters. This vector is then used to estimate the system 

parameters as well as dynamic states. 

1.3 State-of-the-Art Research 

1.3.1 Dynamic equivalencing 

The dynamic equivalencing approach has been developed to account for the computational 

challenges associated with the rapid expansion of power systems. This method has been an 

active area of research for more than 3 decades and various research groups in the world 

have focused on creating accurate and reliable dynamic equivalents of original system.  

Prof. J. H. Chow and his research group at Rensselaer Polytechnic Institute have made 

considerable contributions to developing coherency identification and aggregation 

methods. The slow coherency approach was originally proposed for identifying coherency 

in the system ‎[32] and inertial weighted average ‎[36] for aggregating coherent machines. 

Both of these methods have received significant acceptance in research community.  

DYNRED is a software program that was originally developed by EPRI in 1990 to create 

dynamically reduced systems. In 2010, Powertech Labs. Inc. completed and 

commercialized the DYNRED package ‎[67]. This project was sponsored by EPRI and it 

aimed at adding performance evaluation indices to DYNRED, and making it compatible 

with present data formats used by industry. The DYNRED is currently a graphical tool that 
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reduces size of the system for both static and dynamic studies. Moreover, it provides 

performance benchmarking tools to evaluate accuracy of the reduced system. 

At Arizona State University, Prof. V. Vittal and his research group have focused on 

determining appropriate size of reduced-order system using online SCADA measurements 

‎[68], ‎[69]. They have also proposed a hybrid dynamic equivalencing method using artificial 

neural network approach to improve the accuracy of dynamically reduced system ‎[70]. 

North Carolina State University has also been active in developing dynamically equivalent 

models. Dr. A. Chakrabortty and his research group have focused on using graph theory 

‎[71] and PMUs ‎[72], ‎[73] to aggregate coherent generators and create an equivalent 

reduced-order model. 

The research group at National Technology University of Athens has been researching in 

area of aggregating control systems of AVRs and turbine-governors. In particular, they have 

presented a method that is suitable for aggregating prime movers and excitation systems in 

quasi-steady-state studies ‎[40]-‎[42]. 

1.3.2 Parallel computing 

Parallel computing has been an active area of research for more than two decades. In the 

recent years, with a significant increase in the availability of multi-core processing units, 

parallel computing is now playing an increasingly important role in power systems 

computational and modeling tools, and more software developers are becoming interested 

in using parallel computation in their commercial packages. 
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Universita' degli Studi di Napoli in Italy has been a research centre for developing parallel 

algorithms for transient stability studies. They have proposed several parallel algorithms 

including Gauss-Jacobi ‎[48] and Gauss-Seidel ‎[49] to expedite TDS method. 

Prof. V. Dinavahi and his research group at University of Alberta have made considerable 

contributions with developing real-time transient stability simulation tools. Instantaneous-

relaxation-based method ‎[58], ‎[59] is a parallel Gauss-Jacobi approach developed by Prof. 

V. Dinavahi and his research team for solving transient stability problems. This method has 

been implemented on CPUs as well as graphic processing units (GPUs). 

The research group in University of Liege in Belgium has made significant participation in 

accelerating transient stability simulations on large-scale systems using multi-thread 

computer systems. Recently, Prof. T. V. Cutsem and his research group have focused on 

network partitioning techniques to use multi-core processors for expediting time-domain 

simulation in transient stability studies. 

The Electric Power and Energy Systems research group at the University of British 

Columbia has been active in the area of transient stability since 1972 ‎[18]. In the more 

recent publications, Prof. J. R. Marti and his research group have presented a Multi-Area 

Thevenin Equivalent approach ‎[50]-‎[54] to partition the network equations and solve them 

in parallel. 

For the past two years, Pacific Northwest National Laboratory has collaborated with 

Powertech Labs. Inc. to use network partitioning algorithms for parallelizing network 
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solution in DSATools. Using a 64-core processor, they have been able to improve the 

solution speed of differential equations by 45 times, and network equations by 4 times. It is 

claimed that the overall simulation speed has been improved by 25 times. 

A joint research group between Lawrence Livermore National Laboratory ‎[74] and General 

Electric Energy has recently investigated the possibility of using parallel computing in GE 

Concorda PSLF software ‎[4]. The group has used matrix re-ordering techniques to improve 

computational performance of single-contingency problems. It has been shown that speed 

improvement becomes saturated when more than 5 processors are used. Also, the 

maximum speed improvement is slightly more than 3 times, which is achieved using 12 

processors ‎[75]. 

1.3.3 Using phasor measurement units in the TSA 

PMUs are one of the most advanced measurement devices available in power systems. 

They are becoming an increasingly important part of power systems protection, 

monitoring, and control. There has been a considerable amount of research from various 

groups in the world focused on the using PMUs in different types of studies such as model 

validation and calibration, system protection, and dynamic simulation. 

Prof. A. Abur and his research group at the Texas A&M University have made significant 

contributions to developing accurate and robust state estimation algorithms. In the more 

recent publications, they have used PMUs in static state estimation studies ‎[76]-‎[80]. In 

particular, the PMU measurements are employed to identify status of unobservable areas 

‎[78] and eliminate bad measurements ‎[79]-‎[80]. 
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Prof. J. H. Chow and his research group at Rensselaer Polytechnic Institute have been 

researching in the area of transient stability studies and dynamic equivalencing for more 

than two decades. In their recent publications ‎[73], ‎[81], they have used PMUs to construct 

a dynamically equivalent model of major areas in power system. The results are then used 

to monitor the major power transfer paths of electrical grid. 

In the recent years, Georgia Institute of Technology, Georgia, USA, has also been active in 

the area of using PMUs leaded by Prof. A. P. S. Meliopoulos. In the recent publications, they 

have utilized PMU measurements to estimate machine parameters and create a 

dynamically equivalent system ‎[82], ‎[83]. Also, Prof. A. P. S. Meliopoulos and his research 

group have been focusing on re-constructing a real-time model of the system using PMU 

measurements ‎[84]. 

Prof. I. Kamwa and his research group at Laval University, Quebec, Canada, have used PMUs 

in dynamic state estimation studies. In the recent publication ‎[60], they have proposed the 

EKF to estimate unknown inputs of the system. A variation of the UKF has also been 

presented in ‎[62] to reduce computational cost of dynamic state estimator. 

The research group at the University of South Florida Leaded by Dr. L. Fan have been using 

PMU measurements in UKF ‎[64],  Least Squares ‎[85], and Finite Difference ‎[86] approaches 

to estimate dynamic states and machine’s parameters concurrently. 

Pacific Northwest National Lab and its researchers led by Dr. N. Zhou have also made 

significant contributions with using PMU measurements in transient stability studies. 
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Initially, they proposed the ensemble Kalman filter ‎[66] to estimate the system parameters 

as well as dynamic states. In the more recent publication ‎[65], they have presented 

extended particle filter (EPF) which is claimed to be more robust than the EKF. 

1.4 Research Objectives and Anticipated Impacts 

According to the discussion presented in previous sections and for the purpose of this 

research, detailed structure of a TSM tool is depicted in Figure ‎1-2. This figure shows how 

the TSM utilizes one set of PMU data to predict system status in the next few seconds. As 

discussed, PMUs’ measured quantities are initially converted into systems’ state variables 

using a dynamic state estimation technique, and the results serve as initial conditions of the 

transient stability problem. Also, in order to improve computational performance of 

transient stability solver, dynamic equivalencing technique is performed at both 

transmission and generation levels to reduce size of power grid. The reduced-order system 

is then passed to a TDS package to solve the differential-algebraic equations using 

numerical integration. At this stage, partitioning techniques discussed in section ‎1.2.1.2 

might be used to decompose original nonlinear DAEs into smaller sub-problems and share 

them among several processors to expedite solution speed. The TDS package then 

simulates the system for a short duration (3~5s) and if an instability is detected, an 

appropriate corrective action is chosen and required signals are sent to protection devices 

to stabilize the system. 
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Figure ‎1-2 Detailed structure of a transient stability monitoring package. 

Based on the structure shown in Figure ‎1-2, this thesis considers following research 

objectives: 

Objective 1: Develop more accurate aggregation methods 

The state-of-the-art methods to aggregate coherent generators tend to keep dynamics of 

large generators since these generators provide large inertia and potentially a significant 

amount of power to the system. However, this methodology loses its accuracy if, for 

example, a large generator is not able to provide enough power in the post-fault state of the 

system. By considering structure of transmission system as well as machine parameters, 

this problem will be addressed here to provide a more accurate scheme for aggregating 

coherent generators.  
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Also, available methods ‎[36]-‎[42] fail to create an accurate reduced-order system when the 

generators in a group are not tightly coherent, which shows that identifying and fixing 

errors in coherency identification is a key step in creating an accurate and reliable 

equivalent system. Therefore, this thesis aims at defining a new criterion for evaluating the 

accuracy of reduced-order system and identifying non-coherent generators. 

Moreover, most of the available dynamic equivalencing methods solely rely on coherency 

identification and aggregation at generation level. However, because of the structural 

difference between generation and transmission systems, these algorithms may not be as 

efficient when applied to the transmission system. Therefore, locating coherent areas in the 

transmission system requires algorithms which are specifically designed for this system. As 

another direction in the first objective, this research aims at developing a new method for 

identifying and aggregating coherent areas in transmission system for transient stability 

studies.  

Objective 2: Improve computational performance of transient stability solver  

The state-of-the-art parallel algorithms in transient stability area rely on parallelizable 

nonlinear solvers such as Gauss-Seidel ‎[49], SOR ‎[56], or Block Gauss-Jacobi ‎[58]-‎[59] to 

utilize several processors for solving system of nonlinear equations. However, the 

convergence rate of these methods is much smaller than Full Newton and VDHN methods, 

which makes them inefficient unless the power network can be clearly partitioned into 

several areas. Moreover, considerable exchange of information between different 

processors, which translates into significant communication overhead cost, is a limiting 
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factor in number of processors employed in these methods. Therefore, it is very desirable 

to develop a new parallelizable algorithm whose sequential version is comparable to the 

VDHN method. Developing new schemes for decomposing the original nonlinear DAEs into 

smaller or linear sub-problems for using multi-core processors is considered in this thesis. 

Objective 3: Integrate the PMU-measured quantities to initialize the TSA problem 

Using PMU measurements in TSM is still a developing area. The pioneering methods 

proposed in the literature for estimating internal states of synchronous machines ‎[60]-‎[65] 

are suitable only for quasi-steady-state conditions, wherein no significant change occurs in 

the system variables. However, in transient stability study abrupt changes might occur in 

electrical quantities, which makes it challenging to estimate internal states using PMUs’ 

measured quantities. This problem becomes more apparent when the PMU sampling rate 

becomes smaller than frequency of variations in the system. As the third objective, this 

research focuses on proposing a system-wide dynamic state estimation method to estimate 

the internal states of generators using PMU data, considering practical sampling rates 

(30~60 samples/sec). We particularly focus on the TSA problems, wherein the system is 

largely disturbed and the effects of nonlinear terms are significant. 
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The outcome of this research will be new methods that improve accuracy and efficiency of 

available transient stability solvers, and facilitate using advanced measurement 

technologies in the TSM packages. The results of this research will also help improving 

computational performance of available TDS methods, which is the main obstacle against 

realizing a TSM tool. In addition to monitoring applications, the developed tools can be 

used in offline and online studies. In the offline TSA, larger number of scenarios can be 

simulated and/or the length of each simulation can be extended. In the online TSA, it will 

become possible to perform the transient stability assessment more often. In all cases, 

improving performance of the TSA programs will have significant and beneficial impact on 

the system reliability. 
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CHAPTER 2: AGGREGATION OF GENERATORS 

AND BUSES FOR DYNAMIC EQUIVALENCING  

2.1 Aggregating Generators 

For the purpose of reducing the system size and aggregating the generators, an equivalent 

generator is typically created using a weighted average of the coherent generators, wherein 

the weight of each generator is determined by the inertia ‎[35], ‎[36]. This approach tends to 

keep dynamic characteristic of the large generators in the reduced-order system. This is a 

reasonable assumption since large generators are usually more influential on the overall 

system dynamics. However, this approach may not be accurate when a large generator is 

not able to deliver enough power in the post-fault system. Moreover, all available 

aggregation methods assume that the generators in a group are tightly coherent. Thus, if 

there is an error in coherency identification, the conventional aggregation methods ‎[35]-

‎[40] typically fail to give an accurate reduced-order system. This Chapter deals with 

challenges associated with creating an accurate and representative reduced-order system. 

2.1.1 Formulation of the transient stability problem 

In power system, there exists a variety of dynamic sub-systems such as generators, 

excitation and turbine-governor systems, transmission lines, transformers, etc. The 

transients associated with these sub-systems are decomposed into fast (short-term) and 

slow (long-term) transients ‎[87]. While studying long-term dynamics, the differential 

equations corresponding to short-term transients are replaced by the algebraic equilibrium 
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conditions ‎[42], which helps to reduce the computational expense without significant loss 

of accuracy ‎[87]. In transient stability analysis (TSA), the natural transients of network fall 

into category of fast transients and therefore they are represented by algebraic equations. 

The dynamics of generators’ excitation systems and turbine-governor systems are 

considered as long-term transients, and these are represented by differential equations. 

Based on this decomposition, the formulation of TSA is described by set DAEs, which can be 

written in the following general form: 

)( addd ,yyfy  , 

),(0 ada yyf , 

(2-1)   

where, vectors dy  and ay  represent dynamic and algebraic variables in the full-order 

system, respectively; vector function df  relates the time derivative of the dynamic variables 

to the dynamic and algebraic variables; and vector function af  represents the power flow 

algebraic constraints in the transmission system. 

2.1.2 Inertial aggregation algorithm 

The choice of aggregation of buses has direct effect on the accuracy of the reduced-order 

system. Generally, aggregating coherent generators can be performed either at internal 

nodes or at high voltage terminal buses. Since the coherent generators exhibit similar rotor 

angular swings, it is also appropriate to perform aggregation at the internal nodes. 

Moreover, in this section we focus on aggregating terminal buses and determining the 

weight of individual generators. However, if it is intended to keep the AVR and turbine-

governor controls systems, they can be simplified and/or aggregated as well, for example 
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using the methods described in ‎[40]-‎[42], ‎[88]. Therefore, in the presence of the 

generators’ control systems, the aggregation should be performed both at internal nodes as 

well as control systems.  

The reduced-order system should preserve the steady state power flow of the original 

system. To ensure this condition, the full- and reduced-order systems should have the same 

power injected at high voltage terminals of each individual generator. The inertial 

aggregation algorithm (IAA) ‎[36] is one of the well-established methods for aggregating 

classic generators, which addresses the mentioned issues. The steps included in the IAA 

and the overall procedure can be summarized as follows: 

a) Assume generators 1 to N  constitute a group of coherent generators denoted by L . 

b) Calculate the initial complex phasor of the voltage behind reactance (VBR) of each 

generator in the group using the generators’ injected power and currents right after 

fault is cleared. 

c) Compute the initial complex phasor of the internal voltage of the equivalent generator 

( '
qLE


) using an inertial weighted average of the internal voltages of the generators in 

the group as: 
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where, lM  and '
qlE


 represents the inertia and the initial VBR of generator l , 

respectively. 

d) Connect the internal bus of the equivalent generator to the internal bus of the 

individual generators using a transformer with the following complex voltage 

transformation ratio: 

'

'
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E

E




 , (2-3)   

This transformer is introduced to ensure that the power flow is the same in full- and 

reduced-order systems. 

These steps are summarized in Figure ‎2-1. As can be seen in Figure ‎2-1 (ii), the internal bus 

of the equivalent generator is connected to more than one bus, which is not consistent with 

the available model for the classic generators. In order to be consistent with the available 

models and to avoid introducing a zero impedance link, ‎[36] extends bus p  to bus q  using 

impedance '
,eqdjx . Here, '

,eqdx  represents the transient reactance of the equivalent 

generator and it is computed as follows: 
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Then, the bus q  is connected to the internal bus of the equivalent generator. 

In the IAA method, the common bus is created using an inertial weighted average of the 

coherent generators, wherein the weight of each generator is determined by its inertia. In 
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this approach, the contribution of small generators becomes negligible and the equivalent 

generator mainly represents the dynamic characteristics of large generators. The IAA gives 

accurate results in most cases since the small generators have negligible impact on the 

overall system. However, in addition to the inertia of the generators, structure of 

transmission network also affects the overall system dynamics. Neglecting the effect of the 

transmission network in the IAA can lead to a sub-optimal reduced-order system, 

especially when the effect of small generators is considerable or the generators in a group 

are not tightly coherent. In this situation, the IAA may fail to give accurate results.  
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Figure ‎2-1 The procedure of creating an equivalent generator in the IAA.  
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2.1.3 Network-dependent aggregation (NDA) technique for finding 

generators weights 

Suppose generator l  belongs to group L . Moreover, suppose that all nonlinear loads (i.e. 

constant current and constant power loads) are linearized around the initial conditions 

corresponding to the post-fault condition of the system. The linearized loads as well as 

constant impedance loads and transient reactances of the generators are then included into 

the network admittance matrix (Y-Bus), which makes it possible to eliminate the load 

buses from the system using Kron method ‎[89] to obtain the reduced admittance matrix 

(Y ). Using these steps and assumptions, the electromechanical dynamics of the generator 

l  is described by: 

ll    , 

elmlll PPM  , 

(2-5)   

where 
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In ‎(2-5) and ‎(2-6), M l
 and Pml  represent the generator’s inertia and input mechanical 

power; nb  represents number of generators in the system; liY


 represents the admittance 

between generators l  and i  in the reduced Y-Bus; l  represents rotor angular speed of 

generator l ; l  represents the change in the rotor angle with respect to the initial angle of 

the generator; and .  represents the real part of a complex number. Equation ‎(2-6) 

calculates the power injected at bus l  in the full-order system. In an accurate reduced-order 
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system, the power injected at bus l  should be as close as possible to ‎(2-6). Using Figure ‎2-1 

(ii), the injected power at bus l  in the reduced-order system is calculated as: 
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where eq  represents the rotor angle of the equivalent generator with respect to its initial 

angle; R
elP  represents the electrical power injected at bus l  in the reduced-order system. By 

substituting ‎(2-3) into ‎(2-7), R
elP  can be rewritten in terms of the rotor angle of the 

equivalent generator ( eq ) and the voltage behind transient reactance of generator l  

( '
qlE


) as: 
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Comparing ‎(2-8) with ‎(2-6), it can be seen that l  is replaced by eq . If all generators in 

the group are tightly coherent the following condition can be assumed:  

eqN   21 , (2-9)   

which implies that el
R

el PP  . Therefore, if all generators in a group are tightly coherent, the 

reduced-order system will be accurate. However, if the generators are not tightly coherent, 

‎(2-9) does not hold and the accuracy of the reduced-order system degrades. In this 

situation, inappropriate selection of generators’ weights further contributes to degradation 

of the accuracy of the reduced-order system. In order to see how deviation from ‎(2-9) can 

reduce the accuracy of the reduced-order system, consider the mismatch R
elel PP  : 
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where l  represents the difference between the active power injected at bus l  in the full- 

and reduced-order systems. This equation shows that the mismatch R
elel PP   is caused by 

the difference between 1je  and eqj
e


, and it is magnified by the following term: 
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In ‎(2-11), MFl  is called the magnification factor of generator l  and it shows the sensitivity 

degree of this generator to the mismatch eql
jj

ee
 

 . The generators with large 

magnification factor are more sensitive to deviation from the solution of the full-order 

system. These generators may cause larger errors if the reduced-order system is not 

accurate, and therefore, they need to be modeled more accurately. The magnification 

factors can also be seen as the capability of generators for injecting power. Typically, large 

generators have larger VBR and larger elements in the corresponding row in the 

admittance matrix. This also implies that large generators typically have larger 

magnification factors. 

Based on this observation, the magnification factors can be used to find the weights of 

generators. However, i  is not constant in ‎(2-11), which implies that the magnification 

factors are time-dependent parameters. In order to find the weights of generators, i  can 

be ignored in ‎(2-11). Using this assumption, an estimate can be derived as: 
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In ‎(2-12), 
l

FM
~~

 represents an estimation of MFl . Using ‎(2-12), the weight of each generator 

in group L  can be defined as: 
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(2-13)   

where wk  is the weight of generator k   in the proposed NDA method. Equation ‎(2-13) 

defines the weight of generator k  in the corresponding group of coherent generators. Thus, 

unlike the IAA, the proposed NDA ranks the generators based on their sensitivity to the 

error in reduced-order system. Considering ‎(2-12), it can be seen that lFM
~~

 also represents 

the injected power by generator l  right after the fault is cleared. Therefore, the proposed 

NDA approach assigns large weights to the generators which are capable of injecting more 

power right after the fault. 

2.1.4 Aggregating coherent generators 

In this section, it is demonstrated how the weights calculated in the previous section are 

used to aggregate the coherent terminal buses of the generators. Suppose that the 

generators G1
 and G2

 in Figure ‎2-2 are coherent. The coherency condition between these 

generators can be expressed in terms of their voltage behind reactance as follows 
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where 
1l

  and 
2l

 represent the rotor angles of generators 1l  and 2l , respectively; 0c


 is a 

constant complex number; and   represents the error in the coherency between these two 

generators. If the generators are tightly coherent,   is negligible and the ratio between the 

VBR of the coherent generators becomes constant for all times. Moreover, it is commonly 

assumed that within each coherent group, local and inter-area oscillations are neglected, 

which implies that all the generators within a group have identical rotor speed as: 

Neq   21 , (2-15)   
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(i)       (ii) 

Figure ‎2-2 Creating an equivalent generator from two coherent generators. 

The equivalent generator can be created using a weighted average of the coherent 

generators in the group, where the weight of each generator is determined by the method 

presented in the previous section. Using this methodology, the parameters of the 

equivalent generator are calculated as follows: 
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Substituting the rotor speed dynamics ‎(2-5) into ‎(2-15), the rotor dynamics of the 

equivalent generator can be computed as follows: 

eqeq    , (2-18)   
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Equation ‎(2-19) can be simplified, 
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(2-20)  

  

In ‎(2-20), eqmP ,  and eqeP , denote the aggregated input mechanical power and output 

electrical power, respectively. Equations ‎(2-18) and ‎(2-20) describe the parameters and 

the dynamics of the equivalent generator. 

The concept of aggregation of terminal buses is shown in Figure ‎2-2, which is based on the 

terminal buses aggregation shown in Figure ‎2-1. The equivalent generator receives the 

aggregated input mechanical power and provides the electrical power eqeP , , which is sent 
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to the terminals of the coherent generators in the corresponding group. The total power 

transferred to the terminal buses in the full-order system is equal to: 
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If all generators are tightly coherent, the VBR of the individual generators can be written in 

terms of the VBR of the equivalent generator as: 
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(2-22)   

Using ‎(2-9) and ‎(2-22), one can rewrite ‎(2-21) in terms of parameters of the equivalent 

generator as 
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(2-23)   

Equation ‎(2-23) represents the total power transferred from the equivalent generator to 

the individual buses. Presence of 
l




 implies that a transformer/phase-shifter is required to 

connect the equivalent bus to the internal buses of the coherent generators, as shown in 

Figure ‎2-2 (ii). 

The block diagram representation of the reduced-order system [described by ‎(2-15)-‎(2-

23)] is shown in Figure ‎2-3, where the aggregation of one group of coherent generators is 

shown as an example. In Figure ‎2-3, iGT   represents turbine-governor control system of 
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the generator i , which uses the equivalent rotor speed to adjust input mechanical power. If 

the turbine-governor control system is neglected, the input mechanical power will be 

constant. While the excitation systems of the generators are not shown in Figure ‎2-3, they 

can be maintained and simplified/aggregated using the methods described in ‎[40]-‎[42], 

‎[88]. These dynamics along with network equations are included in the block marked as 

“Network Equations and Generators’ Excitation Systems” in Figure ‎2-3. 
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Figure ‎2-3 Block diagram of the aggregated group of coherent generators when local and inter-area 

oscillations are neglected within the coherent group. 

 

2.1.5 Errors in coherency identification 

Equations ‎(2-21) and ‎(2-23) establish connection between the power injected in the 

terminals of coherent generators in the full- and reduced-order systems. These equations 

are equivalent as long as the assumption ‎(2-9) holds. This is the underlying assumption in 

all available aggregation methods and its accuracy highly depends on the coherency 

between the generators in a group. If the generators are not tightly coherent, ‎(2-9) is not a 

valid assumption, and consequently, the reduced-order system will not be valid. In this 



37 

situation, the reduced-order system might lead to invalid results. For example, the 

generation limits derived from an inaccurate reduced-order system might be too 

conservative (which imposes additional economical cost), or be a bit larger than the real 

limit (which can lead to angular instability in the system in case of a real contingency). 

Therefore, it is of significant importance to monitor the accuracy of the reduced-order 

system and ensure that all the generators within a group are tightly coherent. In this 

section, the problem of coherency identification error is addressed, and an algorithm is 

proposed to identify the errors in coherency identification.  

As discussed before, the full-order system of the transient stability problem consists of 

DAEs described by ‎(2-1). In order to solve the DAEs, an implicit integration method such as 

backward Euler or trapezoidal rule is typically used to discretize differential equations, 

which results in a system of nonlinear equations. For example, discretizing ‎(2-1) using 

trapezoidal rule yields the following nonlinear equation: 
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where h  is called the mismatch vector; T  and n  denote the integration time-step and the 

current integration step, respectively. Equation ‎(2-24) should be solved iteratively to find 

1n
dy  and 1n

ay . Using iterative solvers such as Newton-Raphson or SOR ‎[89], it is ensured 

that the following condition is met in each integration step: 
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where T  represents the tolerance; and 


. represents the infinite norm of a vector. 

Since differential equations of coherent generators are aggregated in the reduced-order 

system, dy  is only partially available, and therefore ‎(2-25) cannot be checked in the 

reduced-order system to verify the solution. However, if the generators are tightly 

coherent, it can be assumed that ‎(2-9) holds, and neglecting local and inter-area oscillations 

within a coherent group is a valid assumption. In this situation, the slow dynamics of 

individual generators in the full-order system can be reconstructed assuming that ‎(2-9) 

and ‎(2-15) are valid. For example, the rotor angles and rotor speeds of the individual 

generators in the full-order system can be reconstructed using the following: 

eqll   0

~
, 

eql  ~  

(2-26)   

where l
~

 and l
~  represent the reconstructed rotor angle and rotor speed of generator l . 

Equation ‎(2-26) describes the dynamic variables of the individual generators in terms of 

the corresponding equivalent generator. Using ‎(2-26), the state variables of the individual 

generators in the full-order system can be estimated and a good estimation is achieved only 

when the reduced-order system is accurate. Suppose that  11 ~,~  n
a

n
d yy  represents the 

reconstructed state of the full-order system. If the reduced-order system is accurate, this 

solution will be close to the solution of the full-order system, and accordingly,  11 ~,~  n
a

n
d yy  

along with  n
a

n
d yy ~,~  will satisfy the following condition: 
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where T  denotes the specified error tolerance. However, if one or more generators are 

not tightly coherent in their group, the reduced-order system will not be accurate, and ‎(2-

27) will not be satisfied. In this situation, it is required to identify the non-coherent 

generators and separate them from the rest of the group, which can be carried out by 

analyzing  n
a

n
d

n
a

n
d yyyyh ~,~,~,~ 11 

. If the reduced-order system is not accurate due to an error 

in coherency identification, some of the elements of  n
a

n
d

n
a

n
d yyyyh ~,~,~,~ 11 

 will be large, which 

shows that reduced-order system is inaccurate. More importantly, the error mainly 

appears in the variables corresponding to the misplaced generators, making it is possible to 

identify the source of inaccuracy in the reduced-order system. The block diagram of this 

approach is shown in Figure ‎2-4. According to this approach, the following steps are taken 

to ensure that the reduced-order system is accurate: 

1. Initially, an integration rule is chosen to integrate reduced-order system. The 

selected integration rule can be implicit or explicit and might use fixed or variable 

time-step. 

2. Using the selected integration criterion, the solution of the reduced-order system is 

found in each integration time-step, which is denoted by  11 ˆ,ˆ  n
a

n
d yy  in Figure ‎2-4. 

3. The rotor angle and speed of the individual aggregated generators are reconstructed 

using ‎(2-26). In this stage, if excitation and/or turbine-governor systems of the 

aggregated generators are also considered, the state variables corresponding to 
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these systems should be reconstructed according to the assumptions made to 

simplify/aggregate the control systems. This step yields an estimate of the state 

vector of the full-order system, denoted by  11 ˆ,ˆ  n
a

n
d yy . 

4. Using the integration rule (step 1) and time-step (step 2), the differential equations 

are discretized using results from step 3. The discretized differential equations 

along with algebraic equations form the mismatch vector  n
a

n
d

n
a

n
d yyyyh ~,~,~,~ 11 

. 

5. The elements of  n
a

n
d

n
a

n
d yyyyh ~,~,~,~ 11 

 which do not satisfy ‎(2-27) are identified, and 

the corresponding generators are separated from their groups. 

6. The groups which have been modified are updated, and a new equivalent generator 

is calculated for each group. 
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Figure ‎2-4 Block diagram of the proposed error identification algorithm. 
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Using the proposed algorithm, it is ensured that the reduced-order system is accurate 

within the specified tolerance denoted by T . It is appropriate to check ‎(2-27) at each 

integration step for the first 10 to 100 integration steps. If any misplaced generators are 

identified at this stage, the simulation is restarted using the updated groups. However, 

sometimes the reduced-order system is accurate for the first 2~3 seconds and then it 

gradually starts to deviate from the solution of the full-order system. In this case, it might 

not be efficient to check the validity of the solution at each integration step as computation 

of  n
a

n
d

n
a

n
d yyyyh ~,~,~,~ 11 

 is expensive. In this case, ‎(2-27) may be checked once in several 

integration steps. If ‎(2-27) is not satisfied, the simulation is restarted using the last verified 

step. 

Since the oscillations among coherent generators are neglected in the reduced-order 

system, the solution found by integrating the reduced-order system is not as accurate as 

the solution derived by solving the full-order system. Therefore, the error tolerance 
T
  

used in ‎(2-27) should be generally larger than the error tolerance used in integration of the 

full-order system. Moreover, it should be noted that while the trapezoidal rule is used in ‎(2-

24) to construct h , the proposed methodology is not limited to trapezoidal rule only. In 

fact, as Figure ‎2-4 suggests, the same integration rule and the same time-step should be 

used to integrate the reduced-order system and in the proposed error identification 

algorithm. Finally, it is worth to mention that if there are several non-coherent generators 

in a group, then a large number of variables will be affected. In this situation, it might be 

hard to identify the misplaced generators and separate them from the rest of the group. 

Therefore, the proposed algorithm works best when there are only few misplacements. 
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2.1.6 Simulation results 

The IEEE transient stability test system with 50 generators and 145 buses, presented in 

‎[91], has been considered here to evaluate the effectiveness of the proposed adaptive 

aggregation method. In this system, 44 generators are represented using the 

simplified/classical model, and the rest are represented using the two-axes model 

equipped with Type AC-4 exciter ‎[92]. A 4th order model with one damper winding on the 

rotor ‎[93] is used to simulate the detailed generators. The Powertech Labs DSATools is 

used to generate the time-domain reference solution. For comparison purposes, the 

proposed network-dependent aggregation algorithm described in sections ‎2.1.3 and ‎2.1.4 

and the inertial aggregation algorithm described in section ‎2.1.2 are also coded into 

MATLAB, which are referred to as NDA and IAA, respectively. A three-phase fault is 

assumed at bus #7 at st 1 . The fault is cleared in 8 cycles by opening the transmission line 

between buses #7 and #6. The integration time-step is s210  and the post-fault simulation 

time is 10 seconds. It should be mentioned that within the scope of this chapter and 

simulation studies, it is sufficient to choose the same integration time-step in all three 

methods: the benchmark solution (DSATools), IAA, and the NDA. Moreover, our 

simulations show that in the studied system, choosing 10ms time-step covers all dynamics 

of interest. Additionally, in order to identify coherent generators, the rotor angle swings 

generated by the DSATools are compared to identify the coherent generators. While this 

method is tedious, it is assumed to be the most reliable for the purpose of the studies 

presented here. Also, in the proposed error identification algorithm, the tolerance T  is set 

to 210 . 
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In the first study, only tightly coherent generators are identified. Table ‎2-1 presents the 

results, wherein each curly bracket represents a group of coherent generators, and the 

numbers inside bracket represent the bus number of each generator. For example, {79, 80} 

represent a group of coherent generators located at buses #79 and #80. The groups of 

coherent generators are then used in the NDA and IAA to create the reduced-order 

systems. In order to compare the results, numerical integration is employed to solve the 

reduced-order systems. In the test system, the generator #60 is largely affected by the fault 

since it is very close to the fault location. The rotor angle of generator #60 is plotted in 

Figure ‎2-5. As shown in Figure ‎2-5, the rotor angle is initially in steady state for the first 

second. As soon as the fault happens, the rotor angle starts to accelerate. After the fault is 

cleared, the rotor angle oscillates, and the oscillations persist until the end of the 

simulation indicating that the system has very small damping. This figure shows that both 

aggregation methods are able to generate sufficiently accurate reduced-order systems and 

the results are close to reference solution obtained using the DSATools throughout the 

study. In order to further compare the methods, two error terms are defined as: 
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where  tDSA ,  tNDA , and  tIAA  represent rotor angles calculated by the DSATools, the 

proposed aggregation algorithm, and the inertial aggregation algorithm, respectively; NDAe  

and IAAe  represent the percentage error of the proposed NDA and the inertial aggregation 



44 

algorithms, respectively. For the rotor angles shown in Figure ‎2-5, %38.0NDAe  and 

%42.0IAAe , which shows that NDA slightly outperforms IAA. 

Table ‎2-1 The Groups of Tightly Coherent Generators 

Group Number Generators’ bus numbers 

1 {79, 80} 

2 {93, 110} 

3 {82, 109} 

4 {101, 112} 

5 {105, 106} 

6 {67, 97} 

7 {108 ,121} 

 

 

Figure ‎2-5 Rotor angle of generator #60 in the first study. 

In the second study, the generators #124 and #91 are added to groups 6 and 7, 

respectively, to create new coherent groups shown in Table ‎2-2. These generators are less 
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coherent with the rest of the group and accordingly, it is expected that the resulting 

reduced-order system will be less accurate. The coherent groups of generators in Table ‎2-2 

are used to create reduced-order systems. The rotor angle of the generator located at bus 

#60 is depicted in Figure ‎2-6, where it can be seen that while the accuracy of the reduced-

order system has degraded compared to Figure ‎2-5, the NDA is still able to create a more 

accurate reduced-order system and its solution is closer to that predicted by the DSATools. 

Calculating the error shows that %79.0NDAe  and %29.1IAAe , which implies that the 

NDA is almost 63% more accurate than the IAA. 

Table ‎2-2 The Groups of Coherent Generators in the Second Study 

Group Number Generators’ bus numbers 

1 {79, 80} 

2 {93, 110} 

3 {82, 109} 

4 {101, 112} 

5 {105, 106} 

6 {67, 97, 124} 

7 {91, 108, 121} 
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Figure ‎2-6 Plot of rotor angle of generator #60 in the second study. 

In the third study, a new group consisting of generators #104 and #111 is added to Table 

‎2-2. The resulting coherent groups of generators are shown in Table ‎2-3. In this test 

system, the generators #104 and #111 are coherent in most scenarios since they are 

physically close. However, when a fault happens at bus #7, the generators are no longer 

coherent as both generators are largely affected by the fault. To demonstrate this point, the 

rotor angles of these generators are plotted in Figure ‎2-7. While both generators tend to 

oscillate together, the generators #104 and #111 are not coherent since the difference 

between their rotor angle varies up to 20°. The coherent groups shown in Table ‎2-3 are 

used in the NDA and the IAA to create reduced-order systems, and the results are shown in 

Figure ‎2-8. As can be seen, while the NDA still outperforms the IAA, the accuracy of the 

resulting reduced-order systems is not acceptable. The reason is that the aggregation 

methods are based on assumption that ‎(2-9) holds and all groups of generators are tightly 

coherent. However, due to nonlinear nature of the transient stability problem, the 
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aggregation algorithms are very sensitive to this assumption. Introducing a group of non-

coherent generators invalidates this assumption and leads to an inaccurate reduced-order 

system. In this situation, it is necessary to identify the non-coherent generators and 

separate them from their groups. Therefore, the error identification algorithm presented in 

Section ‎2.1.5 is used to monitor the accuracy of the reduced-order system. By continuously 

checking ‎(2-27), the proposed algorithm detected that the mismatches corresponding to 

dynamic and algebraic equations of the generators #104 and #111 are much larger than 

T
 , which denotes that these two generators are not coherent. Therefore, generators #104 

and #111 were separated and the simulation was restarted. The results are shown in 

Figure ‎2-8, where it can be seen that the proposed adaptive algorithm has produced more 

accurate results. It should be stressed that as Figure ‎2-8 shows, a coherency identification 

error affects the solution of all the variables in the reduced-order system, which implies 

that in the presence of non-coherent generators, the solution of the reduced-order system 

is not reliable. The traditional aggregation methods cannot identify errors in coherency 

identification and may silently give inaccurate results. In this situation, the proposed error 

identification algorithm can significantly help to validate the solution of the reduced-order 

system. 
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Table ‎2-3 The Groups of Coherent Generators with One Non-Coherent Group 

Group Number Generators’ bus numbers 

1 {79, 80} 

2 {93, 110} 

3 {82, 109} 

4 {101, 112} 

5 {105, 106} 

6 {91, 108 ,121} 

7 {67, 97, 124} 

8 {104, 111} 

 

 

Figure ‎2-7 Rotor angle of generators #104 and #111 in the full-order system 
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Figure ‎2-8 Rotor angle of generator #60 in the presence of an error in coherency identification 

As the last study, the significance of accuracy of the reduced-order system as well as the 

proposed error identification algorithm are investigated. As mentioned in ‎[91], the 

described three-phase fault at bus 7 imposes a stability limit on the maximum power 

generated by generators at buses #104 and #111. In this study, using the same groups 

presented in the previous studies, the plant generation limit at bus #104 is determined by 

changing the pre-fault generation at this bus. Using the methodology described in ‎[91], the 

generation at bus #104 is increased in 10MW steps until the system becomes unstable. The 

results are presented in Table ‎2-4, wherein the first column represents the study number. 

In studies 1, 2, and 3, the groups of coherent generators presented in Table ‎2-1, Table ‎2-2, 

and Table ‎2-3 are used, respectively. According to Table ‎2-4, in the first study, wherein only 

the tightly coherent generators were used, the maximum plant generation predicted by all 

methods is the same. In the second study, while the NDA and DSATools give the same 

results, the IAA method has 10MW error in plant generation limit. In the third study, 

wherein an error in coherency identification exists, the maximum generation predicted by 
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the IAA and the NDA (without error identification) are much larger than DSATools. If an 

operator relies on these results to set the generation at bus #104, a serious risk will be 

imposed to the grid and the power system might become unstable if a fault happens at bus 

#7. However, the last column in Table ‎2-4 shows that using the proposed error 

identification algorithm it is possible to create an accurate reduced-order system, which 

results in the accurate amount for the plant generation limit. 

Table ‎2-4 Plant Generation Limit for Generator at bus #104 

Study Number 
DSATools (Full-order 

system) 
IAA 

NDA without error 

identification 

NDA with error 

identification 

1 2200 2200 2200 2200 

2 2200 2210 2200 2200 

3 2200 2280 2270 2200 
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2.2 Aggregation in Transmission System 

2.2.1 Identifying coherent areas in transmission system 

Nature of coherency in transmission system is different from generation system. In order 

to investigate the coherency in transmission system, as the first step, the factors affecting 

bus voltages should be identified. The buses in the power system are the nodes of a large 

electrical circuit whose voltages are supported by generators (voltage sources) and loads 

(current sources). The effect of each source on each bus voltage is described by network 

nodal admittance (Y-bus) and impedance (Z-bus) matrices. Generally, being affected by 

same sources, voltages of adjacent buses tend to follow the same pattern whereas buses 

which are physically far from each other are usually affected by different sources and their 

voltages profile are different. This observation is the basic idea behind the coherency 

concept in the transmission system, where a coherent area consists of several buses whose 

voltages are affected by same sources to almost the same degree. Therefore, investigating 

the coherency in transmission system is equivalent to finding effect of each source on each 

bus voltage using network nodal admittance and impedance matrices. 

Suppose generators are represented by the voltage behind reactance model ‎[94]. This 

model can be used to represent both classical model (in the simplest form) and full-order 

model for the generators. In the latter case, the generators are equipped with the excitation 

system. The magnitude of VBR is constant in classical model and variable in the detailed 

model, and the proposed method is able to handle both cases. The bus voltages can be 
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described in terms of generator voltages and currents of the nonlinear loads (i.e. constant 

current and constant power loads) as 
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where:  Tj
qm

j
q

j
qq

m
eEeEeEE

''
2

'
1

' ,,, 21   represents vector of voltages behind transient 

reactances of generators;
 cci  and cpi  represent vectors of injected currents due to constant 

current and constant power loads, respectively; vector  Tnvvvv ,,, 21    represents bus 

voltages; nnRZ  is the nodal impedance matrix of the transmission system which 

contains transmission lines, constant impedance loads, and transient reactances of 

generators; mnRM  is the matrix connecting internal nodes of generators to bus 

voltages; m  is the number of generators; and n  is number of buses in the system. It should 

be stressed that ‎(2-29) does not assume a linear model in the network. The linear loads (i.e. 

constant impedance loads) are included in the admittance matrix which finally appear in 

N . The nonlinear loads are supposed to be independent sources and included in the vector 

representing sources (i.e.  Tcpccq iiE ,,' ). 

Unless otherwise specified, in the rest of this section, the term “voltages” refers to bus 

voltages and “sources” refers to voltage and current sources, i.e. '
qE , cci , and cpi , 

respectively. 
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Each row in N  describes effect of sources on each voltage. Dependency between two rows 

indicates that two voltages are affected by same sources to same degree, which implies 

coherency between buses. Symbolically, the dependency between rows i  and j  can be 

expresses as 

ji vv  , (2-30)   

where   is some complex number. If the difference between angles of iv  and jv  remains 

constant for all times, this implies that iv  and jv  are coherent. Therefore, if two rows in N  

are dependent, the corresponding voltages will be coherent. Generally, a set of dependent 

rows in N  creates a coherent area in the transmission system. Accordingly, the objective of 

the proposed methodology is to find dependent rows in N . An algorithm for finding 

linearly dependent rows in a matrix was proposed in ‎[32]. However, this algorithm 

requires Gauss-elimination with full pivoting as well as solving a system of equations, 

which makes it very costly. Here, we propose a more efficient algorithm for finding 

dependent rows in N .  

Eq. ‎(2-29) represents the linear relationship between sources and voltages including 

different loads, i.e. constant power, constant current, and constant impedance. Using this 

relationship, it is shown in the appendix that rows i  and k  are dependent (and 

consequently buses i  and k  are coherent) if the following inequality is satisfied: 
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This equation describes coherency condition in terms of elements of matrix N . As two 

rows i  and k  in this matrix get closer, the terms  lkli ,,sin    (nominator) and 

 lkli ,,cos    (denominator) in ‎(2-31) become smaller and larger, respectively. Therefore, 

‎(2-31) tries to find those rows in N  which are close to each other, and accordingly, 

dependent.  

2.2.2 Reducing redundancy 

So far, we assumed that there is no coherency at generation level. In the presence of 

coherent generators, two buses can be coherent even if corresponding rows in the matrix 

N  are not dependent, which implies that the algorithm described in Section ‎2.2.1 will not 

be able to find all coherent buses when the coherency at generation level is neglected. 

Furthermore, coherent machines tend to show similar VBRs and keeping all of them 

creates redundancy in computations, which ultimately increases the computational cost. By 

eliminating coherent generators, it is possible to avoid the computational redundancy and 

improve accuracy and computational performance of the proposed method. To this end, we 

assume that results of coherency identification at generation level are available and it is 

shown how the groups of coherent generators can be removed from ‎(2-29) to create a set 

of non-coherent generators. 

By definition, the generators i  and j  are coherent if the ratio between their VBRs is 

approximately constant for all times, i.e. 

 



55 

0'

'

c
eE

eE

j

i

j

qj

j
qi






, 
(2-32)   

where 0c  is a small complex number. In a group of coherent generators each pair of the 

generators keep a constant ratio between the voltages behind reactance. If a generator is 

not coherent with any other generator, it creates a group which consists of only one 

machine. Suppose there are g  groups of coherent generators each denoted by kJ . 

Additionally, let eq
k  represents rotor angle of the equivalent machine in group k , and l  

denotes angle difference between machine l  and its equivalent machine, i.e. l
eq
kl   . 

It should be noted that if generators are tightly coherent, 
eq
k  can be rotor angle of any 

generator in the group. However, in order to achieve more accurate results, it is more 

appropriate to use the NDA algorithm described in sections ‎2.1.3 and ‎2.1.4 to create the 

equivalent machine. This would be a safe choice as it tends to keep dynamics of the 

generators which are more influential. 

Since each generator belongs to exactly one group of coherent machines, voltage of bus i  

can be written as 
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where 
eq
kj

e


 is independent from l  and can be taken out of first summation. This results in 

the following 
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which can be reformulated in the following matrix form 
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(2-35)   

Eq. ‎(2-35) describes the relationship between voltages and equivalent generators. 

Comparing ‎(2-35) with ‎(2-29), it can be observed that '
qE  and M  are replaced by eq

q
'

E  and 

M
~

, respectively. Size of '
qE  and eq

q
'

E  (as well as number of columns in M  and M
~

) are 

equal to number individual generators and equivalent generators, respectively. In the 

presence of coherency among generators, number of equivalent generators is always less 

than number of individual generators since the proposed NDA algorithm aggregates each 

group of coherent generators into one equivalent machine, which implies that size of eq
q
'

E  

and M
~

 is always less than '
qE  and M , respectively. Thus, the size of problem ‎(2-29) can be 

reduced be replacing coherent generators with an equivalent machine. 
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2.2.3 Simulation results 

The IEEE transient stability test system described in section ‎2.1.6 has been used here to 

evaluate effectiveness of the proposed method. In this section, different load models are 

used for different loads as shown in Table ‎2-5. In this table, first column represents bus 

number where the load is located and columns two to four represent the percentage of 

constant power, constant current and constant impedance of the load, respectively. For 

example in bus #112, the load is supposed to be 20% constant power, 50% constant 

current, and 30% constant impedance. Also, Powertech’s DSATools is used to simulate the 

system using TDS and the results are used as a benchmark. A fault is applied at bus #59 and 

cleared by opening transmission line between buses #59 and #72 after 0.08sec. Coherent 

groups identified by the DSATools as well as the proposed method are summarized in 

Table ‎2-6. In this table, each bracket represents a group of coherent buses. In the second 

column, plain font denotes correct identification. The bold numbers show that the 

corresponding bus is not identified correctly. For example, in the 6th row, the TDS shows 

that buses #{54,55,61,62,86} are coherent. However, the proposed method has placed 

these buses into two groups #{54,55,61} and #{62,86}. As can be seen, buses #{62,86} have 

been separated from their group and they are denoted by bold font. Further results are 

summarized in Table ‎2-7, which shows that the maximum possible reduction is 63% as 

determined by the TDS results. The proposed method has achieved a 57% reduction, which 

is close to the TDS result. 

In dynamic equivalencing, the accuracy of the aggregated system highly depends on the 

coherency identification algorithm, which should be able to identify very tightly coherent 
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buses as most of transient stability simulations tend to last 10 or more seconds to 

investigate multi swing stability phenomenon ‎[19]. If the buses in a group are not coherent, 

the aggregated system will not be valid since the aggregation algorithm assumes that all 

buses in a group are tightly coherent. Therefore, although very important, the reduction 

percentage is not the only factor in evaluating performance of a coherency identification 

method. In fact, the method should manifest a conservative behavior and identify only very 

tightly coherent buses. To further evaluate the performance of the proposed algorithm, two 

types of errors are defined as follows: 

1. Isolation Error: This term refers to a situation where a bus belonging to a group of 

coherent buses, is isolated from the rest of the group. For example, in Table ‎2-6, the 

proposed method has isolated bus #27 from its true group. 

2. Misplacement Error: This type of error refers to a bus that is misplaced into a group to 

which it does not belong. For example, in Table ‎2-6, a misplacement error occurs if bus 

#3 is added to the first group, as this bus is not coherent with the rest of the group. 

The isolation error only increases size of the aggregated system and does not threaten 

accuracy of the reduced system. However, the misplacement error places two non-coherent 

buses in the same group, and therefore, this error violates the underlying assumption in the 

aggregation algorithm. Thus, the reduced system and final results may not be valid when 

misplacement errors exist. 
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The results in Table ‎2-7 shows that the TDS and the proposed method have identified 60 

and 55 buses which can be eliminated via aggregation, respectively, which implies that 

there are 5 isolation errors in the proposed coherency identification method. Moreover, by 

comparing the results presented in Table ‎2-6, it can be seen that the proposed method does 

not have any misplacement error. Presence of isolation errors and lack of misplacement 

errors show that the proposed method has a conservative nature. For the sake of 

illustration, the voltage angles and magnitudes of the second group of coherent buses 

identified by the proposed method are shown in Figure ‎2-9 and Figure ‎2-10. As can be 

seen, all buses in this group are tightly coherent even after 10 seconds. 

 

The algorithms described in this chapter can be used to reduce size of original system and 

create an accurate and robust reduced-order model. The resulting system is then solved 

using the TDS approach to simulate system dynamics and predict status of the electrical 

grid following the disturbance. In the next two chapters, it is assumed that the original 

system can be reduced using the proposed methods, and we focus on expediting the TDS 

using parallel processing. 
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Table ‎2-5 Load Models 

Bus Number 
Percent of the load 

Bus Number 
Percent of the load 

P,Q I Z P,Q I Z 

34 0 50 50 112 20 50 30 

35 10 40 50 115 10 50 40 

51 0 40 60 116 5 35 60 

58 10 30 60 117 0 0 100 

66 0 0 100 118 0 100 0 

68 0 50 50 119 40 20 40 

70 0 0 100 120 10 50 40 

71 5 30 65 121 20 50 30 

74 10 30 60 122 10 50 40 

78 20 40 40 123 0 0 100 

79 10 45 45 124 0 100 0 

80 15 20 65 125 20 40 40 

81 20 30 50 126 10 50 40 

82 15 15 70 127 10 50 40 

84 20 50 30 128 20 20 60 

85 10 50 40 129 5 60 35 

88 20 55 25 130 30 30 40 

89 10 60 30 131 30 50 20 

90 20 40 40 132 10 60 30 

92 20 50 30 133 0 0 100 

93 0 0 100 134 0 100 0 

94 30 40 30 135 0 50 50 

95 30 30 40 136 10 40 50 

99 10 50 40 137 20 40 40 

101 0 0 100 138 30 50 20 

102 0 100 0 139 5 30 65 

104 0 100 0 140 10 50 40 

105 0 100 0 141 20 40 40 

106 0 80 20 142 10 50 40 

107 40 40 20 143 0 0 100 

110 20 40 40 144 0 100 0 

111 10 50 40 145 20 50 30 
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Table ‎2-6 Coherent Buses Identified by TDS and Proposed Method 

TDS Proposed Method 

{1,2,113,114} {1, 2,113,114} 

{3,4,5,6,9,10,12, 

33,34,35,36,37,38,39,40,47,48,49,50,70,71,72} 

{3,4,5,6, 

9,10,12,33,34,35,36,37,38,39,40,47,48,49,50,72}{70

,71} 

{11,32,69} {11,32,69} 

{41,42,43,44,51} {41,42,43,44,51} 

{45,46,52,53} {45,46,52,53} 

{54,55,61,62,86} {54,55,61}{62,86} 

{84,88} {84,88} 

{76,77} {76,77} 

{27,28,29,75} {28,29,75}{27} 

{18,19,20,21,59} {18,19,20,21,59} 

{22,30,78, 23,83} {23,30,78,83}{22} 

{26,31,73,74,81} {26,31,73,74,81} 

{64,65} {64,65} 

{14,15,16,56,57,58} {15,16,56,57,58}{14} 

 

Table ‎2-7 Reduction Achieved After Aggregating Coherent Buses 

 TDS Proposed Method 

Total number of buses after aggregation 35 40 

Size of the system after aggregation (% of base system) 37% 43% 
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Figure ‎2-9 Voltage angle of second group consisting of buses #{3,4,5,6, 

9,10,12,33,34,35,36,37,38,39,40,47,48,49,50,72}. 

 

Figure ‎2-10 Voltage magnitudes of second group consisting of buses #{3,4,5,6, 

9,10,12,33,34,35,36,37,38,39,40,47,48,49,50,72}. 
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CHAPTER 3: MULTI-DECOMPOSITION 

APPROACH 

 

3.1 Conventional Time-Domain Simulation Approach 

As discussed in section ‎1.2.1, the nonlinear DAEs in transient stability problem can be 

solved using simultaneous or alternative approach ‎[17]. In this thesis, we focus on 

simultaneous approach for solving ‎(2-1), wherein the dynamic and algebraic variables are 

solved simultaneously. In simultaneous approach, an implicit integration method such as 

backward Euler or trapezoidal is typically used to discretize differential equations, which 

results in a system of nonlinear equations. For example, discretizing ‎(2-1) using trapezoidal 

rule yields the following nonlinear equations: 
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where, h  is called mismatch vector; T  and n  represent integration time-step and number 

of current integration step, respectively. Eq. ‎(3-1) should be solved iteratively to find 
1n

d
y  

and 
1n

ay . The Newton-Raphson method ‎[89] has been widely used to solve ‎(3-1), which 

encompasses four steps: (a) Construct h  (b); Calculate partial derivatives of h  with respect 

to 
1n

dy  and 
1n

ay  to construct Jacobian matrix; (c) Decompose the Jacobian matrix using LU 

factorization ‎[89]; and (d) Update the solution by solving the linearized system using 
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forward/backward substitution. This approach is referred to as Full Newton method since 

the Jacobian matrix is updated at every iteration.  

The Full Newton method typically requires few iterations (1~3) to solve the system of 

nonlinear equations. However, performing LU factorization at every iteration is very time-

consuming, which makes Full Newton inefficient for large-scale power systems. In order to 

reduce the amount of calculations, a Very DisHonest Newton (VDHN) method ‎[95] was 

proposed, wherein the Jacobian matrix is updated only when the number of iterations 

exceeds a specific threshold (typically 4~5) ‎[96]. While the number of iterations in VDHN is 

larger than Full Newton method, the LU factorizations are performed far less, and for this 

reason the VDHN method has been proven to be the fastest available sequential approach 

‎[24]. The block diagram of VDHN is shown in Figure ‎3-1. This figure depicts the steps 

required to solve a single integration step. In Figure ‎3-1, k  and itrMx  represent iteration 

number and maximum number of iterations before updating Jacobian matrix, respectively; 

J  represents the Jacobian matrix; and matrices L  and U  represent lower and upper 

triangular factors of J , respectively. As Figure ‎3-1 suggests, the mismatch vector h  in each 

iteration depends on the solution from the previous iteration, which implies that VDHN is 

inherently sequential and cannot be expedited using parallel computing. Instead, 

parallelism is mainly exploited in solving the system of linear equations, which is known as 

parallelism-in-space ‎[50]-‎[59]. More importantly, the local convergence property of the 

Full Newton does not exist in VDHN, and a complex mechanism is required to ensure that 

VDHN converges. 



 

65 

Update J
No

Yes

k > itrMx

k = k + 1

hyLU 

Yes

No

 11,  n
a

n
d yyh

Construct

Go to Next 

Integration Step

tolh

Compute 

LU = J

y
y

y

y

y



































1

1

1

1

n
a

n
d

n
a

n
d

Solve

 

Figure ‎3-1 Block diagram of the VDHN method for solving system of nonlinear equations at each 

integration step. 

3.2 Proposed Multi-Decomposition Approach 

In this section, we propose a new integration technique for solving nonlinear DAEs ‎(2-1) 

based on a Volterra-like series method ‎[97]-‎[99]. In the proposed MDA, the original 

nonlinear system is decomposed into several linear subsystems using multivariable Taylor 

series. This procedure is schematically depicted in Figure ‎3-2. The linear subsystems are 

subsequently used to approximate the solution of the original nonlinear system ‎(2-1). At 

each decomposition step, the MDA separates linear and nonlinear terms. The linear part 

participates in approximating the solution while the nonlinear part is further decomposed 

into a new linear and nonlinear subsystem. The sum of the solutions of linear subsystems 

approximates the solution of the original nonlinear system. In general, the accuracy of such 

approximation can be improved by increasing the number of decompositions. However, the 

computational cost of constructing such subsystems is also increasing. To better 

understand this approach, it is instructive to consider the multivariable Taylor series. 
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Figure ‎3-2 Decomposing nonlinear system into linear subsystems using MDA. 

 

3.2.1 Taylor series of multivariable functions 
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where, 0iii zzx  ; and ilil xfA , ,  jilijl xxfH  2
, , and  kjilijkl xxxfT  3

,  

represent the first-, the second-, and the third-order partial derivatives of lf , respectively. 

Each vector in ‎(3-2) can be represented in matrix form as 
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 (3-3)   

where  0zii fb  . The representation can be simplified further using Kronecker product 

‎[100] notation as follows 

       xxxTxxHAxbzf , 

0z-zx  , 

(3-4)   

where   denotes the Kronecker product;  and matrices NNRA , 
2NNRH , and 

3NNRT  denote the first-, the second-, and the third-order partial derivatives of f , 

respectively. In ‎(3-4) vector b  is called mismatch vector, and matrices A  and H  are the 

Jacobian and Hessian matrices, respectively. 
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3.2.2 Multi-decomposition approach 

Consider the following form of the original DAEs ‎(2-1): 

 zf=zC , (3-5)   

where, vector   NTT
a

T
d Ryyz  ,  represents both dynamic and algebraic variables, and 

NNRC  is used to separate differential and algebraic equations. This matrix has the 

following form:  















mmnm

mnnn

00

0I
C , 

(3-6)   

where, nnI  and mn0  represent n  by n  identity matrix and n  by m  zero matrix, 

respectively. Using Taylor series, ‎(3-5) can be expanded around 0z  as 

      xxxTxxHAxbxC , 

0zzx  . 

(3-7)   

The first step in decomposing ‎(3-5) can be performed by neglecting the nonlinear terms in 

‎(3-7) to derive the first linearized system as 

111 : AxbxC L . (3-8)   

where, 1x  represents the solution to the first linear subsystem and is called the first-order 

term of the response. The linearized system approximates the original nonlinear system 

well only in the vicinity of 0z  and later deviates from the solution. Therefore, the linearized 

system along may only be valid for the first few steps. In order to improve the 
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approximation, it is required to consider nonlinear terms, which leads to the second step of 

decomposition.  

Let h1x  denotes the difference between the original solution x  and its first-order 

approximate 1x , i.e.  

h11 xxx  . (3-9)   

Then h1x  will represent the effect of nonlinear terms in ‎(3-7). The dynamics of h1x  can be 

derived by substituting ‎(3-8) and ‎(3-9) into ‎(3-7), as 

      hhhhhh 1111111111 xxxxxxHxxHAxxC . (3-10)   

A linear approximation of h1x  can be derived by neglecting the higher-order terms in ‎(3-

10) as 

 11222 : xxHAxxC L . (3-11)   

In ‎(3-11), 2x  represents the linear approximation of h1x , and if it is added to 1x  it would 

improve the approximate solution.  

Similarly, let h2x  represent the difference between h1x  and 2x , i.e. hh 221 xxx  . Then, the 

solution of original nonlinear problem can be written in terms of solutions of the first two 

linear subsystems as 

h221 xxxx  . (3-12)   
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If h2x  is neglected in ‎(3-12), it would provide a second-order approximation to the solution 

x .  

The approximation can be improved further by decomposing h2x  and calculating higher 

order terms. For example, decomposing h2x  and considering the third order term results in 

the following third linear subsystem 

   1111221333 : xxxTxxxxHAxxC L . (3-13)   

Ideally, if an infinite number of decomposition is performed, x  can be reconstructed as 







1k

ixx . 
(3-14)   

This process is depicted in Figure ‎3-3, wherein n  linear subsystems are used to 

approximate the solution. The input to each linear subsystem depends on the solutions of 

all previous linear subsystems and thus, the linear subsystems are solved recursively. 

Since the MDA depends on partial derivatives of f , construction of Hessian and higher 

order matrices should be computationally cheap. In transient stability problems, a 

considerable portion of computational cost is attributed to nonlinear power flow 

constraints, wherein the trigonometric functions are the main source of nonlinearity. In 

trigonometric functions, the second- and higher-order derivatives can be represented as a 

linear combination of the function itself and the first-order derivative. This characteristic 

makes the transient stability problem a convenient application for the MDA since most of 

the elements of Hessian, and higher order matrices are implicitly calculated while the 
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mismatches corresponding to the power flow constraints are evaluated. Therefore, 

construction of Hessian and higher order matrices requires small additional computational 

cost. 

L1

∑ L2

L3

Ln

x1

x2

x3

xn

b

......

x

 

 Figure ‎3-3 Computing system response  tx  using interconnected linear subsystems according to the 

proposed MDA. 

3.3 Applying MDA to Transient Stability Problem 

3.3.1 Application of MDA to single machine system  

To demonstrate application of the MDA, a single machine infinite bus example system is 

considered first. This system is described by the following equations: 

  , 

 
X

PP

M

em 


sin1 
 , 

(3-15)   

where,   and   represent the rotor angle and speed of the machine, respectively; M  is 

the inertia; and X  represent an equivalent reactance between the machine and the infinite 

bus, respectively; mP  and eP  denote the input mechanical power and the maximum output 
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electrical power, respectively. The following parameters and initial conditions are 

assumed:   5.188MXPm ,   754MXPe , 500  , and 150  . The resulting transient 

of the rotor angle is shown in Figure ‎3-4. The reference solution is obtained using a 

traditional TDS and conventional numerical integration of ‎(3-15). Additionally, several 

approximate solutions have been calculated using the MDA, wherein the n th order 

approximation is defined as follows 

nxxxx  ...21 . (3-16)   

In order to better illustrate the difference between the orders of approximation, absolute 

value of approximation error is shown in Figure ‎3-5. This figure shows that the first-order 

approximation starts to noticeably deviate from the reference solution after 02.0t s. The 

second- and third-order approximations also start to significantly deviate after 1.0t s and 

12.0t s, respectively. In this way, one can see that the accuracy of approximation can be 

improved by increasing its order. 
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Figure ‎3-4 Transient in the rotor angle as predicted by various orders of MDA for the single-machine 

example system ‎(3-15).  

 

Figure ‎3-5  Approximation error in the rotor angle resulting from using MDA.  
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3.3.2 Adaptive updating scheme for the MDA 

To make the MDA practical for large-scale systems, one can choose to use the second-order 

approximation and continuously update the mismatch vector b , Jacobian matrix A , and 

Hessian matrix H  (which are also called linear subsystems’ parameters) using the last 

calculated state. Every such update requires a new construction of the Jacobian and 

Hessian matrices. More importantly, each new Jacobian matrix should be decomposed 

using LU factorization (which is used later for integrating the linear subsystems). Overall, 

updating the matrices is computationally expensive. In order to minimize the number of 

updates, the matrices should be updated only when the considered approximation starts to 

deviate from the reference solution and exceeds a certain error tolerance. The time when 

an update is required herein is called maximum prediction time (MPT). For example, for 

the study presented in Figure ‎3-4, the MPT may be approximately at 1.0t s.  

The MPT can also be defined as the maximum time for which the effect of higher order 

terms remains negligible. For example, for the considered second-order approximation, the 

update should be performed as soon as 3x  (the contribution from the next order of 

approximation) starts to grow above an acceptable error tolerance, 
MPT

 . So, the system ‎(3-

13) can be used as an error function. However, using ‎(3-13) requires third-order partial 

derivatives. While construction of T  may be computationally cheap, a matrix-vector 

multiplication including T  can be costly. Since ‎(3-13) is used only to approximate 3x , 

accurate computation of 3x  is not required and therefore, the third-order partial 

derivatives are neglected to approximate 3x  from the following 
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 122133
~~ xxxxHxAxC  . (3-17)   

A block diagram representation of applying the MDA to transient stability problem is 

shown in Figure ‎3-6. The trapezoidal rule is depicted here to solve the linear subsystems. 

As the first step, )(zf  is expanded around initial conditions to compute mismatch vector, 

Jacobian matrix, and Hessian matrix. The LU factors of Jacobian matrix are calculated next. 
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Figure ‎3-6  Block diagram of the MDA assuming trapezoidal integration rule. 

Then, the algorithm enters the inner-loop, wherein the linear systems are solved. Three 

main steps in direct path calculate 1x , 2x , and 3
~x . If 3

~x  exceeds the threshold MPT , it is 

concluded that it is necessary to update the linear subsystems. In this condition, the 

algorithm goes to the outer-loop and updates the matrices using the last calculated state. 

Otherwise, the algorithm remains in the inner-loop and continues solving the linear 

subsystems.  

As it is depicted in Figure ‎3-6, the MDA checks validity of the approximation at each 

integration step and the linear subsystems are updated whenever it is necessary. 

Therefore, while avoiding unnecessary updates, it is ensured that the approximation 

remains accurate within the specified tolerance, regardless of the disturbance. Another 
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important aspect of the MDA is that no iterative solver is used in this method. As shown in 

Figure ‎3-6, the MDA solves three systems of linear equations in each integration time step, 

which does not require any iterations. Accordingly, the MDA does not experience 

convergence problems associated with iterative solvers. 

At the same time, since the MDA performs three forward/backward substitutions in each 

integration step, it might appear that the MDA is not efficient for practical large-scale 

systems. In order to clarify this point, it is instructive to compare computational stages in 

VDHN and MDA methods, respectively. These stages can be described using block diagrams 

shown in Figure ‎3-1 and Figure ‎3-6. In the VDHN method, the LU factors of the Jacobian 

matrix are computed after fault is cleared and they are updated once the convergence is 

about to slow down (which is measured in terms of number of iterations required to find 

the solution). In the VDHN method, the solution in each integration step is found iteratively 

by solving a system of nonlinear equations, wherein several iterations are typically 

required to find the solution. Moreover, each iteration requires one evaluation of derivative 

function and a forward/backward substitution. However, in the proposed MDA, the LU 

factors of the Jacobian matrix are computed when fault is cleared and the factors are 

updated once the algorithm reaches to the MPT to satisfy the error tolerance 
MPT

 . In 

addition, three forward/backward substitutions are performed in each integration step to 

solve three linear subsystems and find the solution for the specific integration step. Overall, 

although the MDA performs three forward/backward substitutions in each step, the 

number of forward/backward substitutions in the VDHN is variable (due to its iterative 

nature), and can be (and typically is) more than three.  
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3.4 Parallel Multi-Decomposition Approach 

The block diagram of the MDA shown in Figure ‎3-6 has two major loops: the outer-loop, in 

which mismatch vector, Jacobian matrix, and Hessian matrix are constructed and LU 

factorization of 2/AC T  is computed; and the inner-loop, in which three linear 

subsystems are integrated through forward/backward substitution. Similar to the VDHN, 

the LU factorization is performed not very often and most of the CPU time is spent into the 

inner-loop. While the LU factorization has been highly optimized and there are several 

sparse packages available ‎[101]-‎[103] to perform parallel LU factorization, the parallel 

forward/backward substitution is still un-scalable due to high communication to 

computation ratio ‎[104]. 

In the MDA, according to ‎(3-8), ‎(3-11), and ‎(3-13), there is a unidirectional dependency 

between the blocks in the inner-loop, i.e. the first linear subsystem is independent from 

other linear subsystems, and the second linear subsystem is independent from the third 

one. In this framework, solving the linear subsystems can be shared among different 

processors as shown in Figure ‎3-7. As the program enters the inner-loop, each processor 

waits until a new solution is generated by the previous linear subsystems. For example, the 

second linear subsystem waits until  T1x  is calculated by the first linear subsystem and 

then it starts to use this solution to compute  T2x . The main advantage of the MDA is that 

while the second linear subsystem is computing  T2x , the first linear subsystem can 

concurrently work on computing  T21x , which means two forward/backward 

substitutions are performed simultaneously. Similarly, after two initial steps, three 



 

78 

processors will be busy, which shows that the execution of the inner loop can roughly 

become three times faster using three processors. The last processor monitors 3
~x  to 

detect if it exceeds MPT . If this is the case, a signal is sent to all processors to stop working 

and the program goes into the outer-loop to update the parameters of the linear 

subsystems. 

The basic parallel structure of the MDA implementation is depicted in Figure ‎3-7. The inner 

loop and parallel threads are also depicted in more detail in Figure ‎3-8. In our 

implementation, the Pthreads library ‎[105] was used to create and synchronize three 

parallel threads, each corresponding to one of the linear subsystems. When a thread 

computes a new solution, the results are stored in a buffer, and a notification signal is sent 

to the next thread (corresponding to the next linear subsystem). The next thread waits 

until the notification signal is received, and then uses the solution of the previous linear 

subsystem (stored in the buffer) to start working on the next integration step. In this 

implementation, the last thread continuously monitors the norm of solution of third linear 

subsystem, and if it exceeds the specified threshold MPT , a stop signal is sent to other 

threads. After that, the algorithm goes into the outer loop (shown in Figure ‎3-6). In order to 

reduce the overhead associated with creation of parallelization paths, the threads are not 

terminated when the algorithm leaves the inner loop. The threads are kept active and re-

used when the algorithm comes back into the inner loop, wherein a signal is sent to the 

threads to start the calculations again. Using this approach, the threads are created only 

once and at the beginning of the simulation.  
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The proposed MDA is demonstrated to use three linear subsystems, which makes this 

approach easy to implement on three cores. Increasing the number of linear subsystems 

(cores) requires higher order partial derivatives of the derivative function, which will be 

computationally expensive to construct and evaluate. However, the main advantage offered 

by the MDA is that other parallelizable methods proposed in the literature can also be used 

inside the MDA to employ more processors. The MDA decomposes original nonlinear DAEs 

into three linear DAEs, which opens the possibility to use waveform relaxation techniques 

‎[106] and parallel-in-time methods ‎[47]-‎[49]. Moreover, since a system of linear equations 

is solved in each integration step, available parallel-in-space techniques such as SOR ‎[56], 

and network partitioning techniques ‎[57] can be used as well. 
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Figure ‎3-7  Block diagram of sharing computational tasks among three processors in the inner-loop of 

MDA. 
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Figure ‎3-8 Implementation of the inner loop in parallel MDA. 

3.5  Benchmark System and Simulation Results 

The test system described in section ‎2.1.6 is used here to evaluate the effectiveness of the 

MDA. This system has 124 dynamic and 302 algebraic variables. The DSATools is used to 

generate the reference TDS solution and the results are referred to as DSATools. For 

comparison purposes, the Full-Newton and VDHN methods are coded in standard C. The 

Full-Newton method updates the Jacobian matrix at each iteration while for the VDHN, the 

Jacobian matrix is updated only when the number of iterations in the Newton-Raphson 

method used inside exceeds 4. Moreover, the error tolerance in both methods is set to 410 . 

Both sequential and parallel versions of the MDA have been implemented using standard C, 

wherein the update tolerance is 410MPT . These implementations are referred to as the 

MDA and MDA_P, respectively. Also, Math Kernel Library from Intel Corporation ‎[101] is 

used to perform LU factorizations and forward/backward for solving linear system of 

equations. This package takes advantage of sparsity of matrices to improve computational 

performance. 
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Without loss of generality, the implicit trapezoidal integration rule with the fixed time-step 

of mst 1  is used for all methods. All simulations are performed using a desktop 

computer with quad-core Intel i7 2600@3.4GHz CPU and 8GB RAM. 

3.5.1 Case study 

A three-phase fault at bus #90 is imposed at time st 1 . The fault is cleared in 8 cycles by 

opening transmission line between buses #90 and #94. The post-fault system is simulated 

for 8 seconds using DSATools, VDHN, and MDA. To compare the results, voltage magnitude 

of bus #90 and rotor angle of the generator located at this bus are shown in Figure ‎3-9. 

Initially, the voltage and rotor angle are in steady state for the first second. As soon as the 

fault happens, the voltage at bus #90 drops to zero and the generator at this bus starts to 

accelerate. After the fault is cleared, both variables start to oscillate and the oscillations 

persist until the end of the simulation indicating that the system has very small damping. 

All the results shown in Figure ‎3-9 are visibly indistinguishable. In order to show the very 

small difference, a fragment of the rotor angle plot has been magnified, where a slight 

difference between DSATools, VDHN, and MDA can be observed. 
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Figure ‎3-9 Bus voltage and rotor angle of the generator at bus #90. 

3.5.2 Calculation of critical clearing time 

In order to further validate the accuracy of the MDA, the critical clearing time (CCT) has 

been calculated for a number of scenarios. In each scenario, a three-phase fault is applied at 

the faulted bus and cleared by opening a transmission line between the faulted bus and one 

of its adjacent buses. The scenarios presented here are among those which lead to the least 

CCT in the test system. The CCTs are calculated iteratively and by increasing fault clearance 
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time. Initially, the fault clearance time is selected so that the post-fault system is stable. 

Then, the fault clearance time is increased in 1ms steps and until the system becomes 

unstable. Thus, the resolution of the CCT is 1ms in this study. The results calculated by the 

DSATools and MDA are presented in Table ‎3-1. In this table, the second and third columns 

represent the faulted bus and the tripped transmission line, respectively. Also, the forth 

and fifth columns represent the CCTs calculated by the DSATools and the MDA, 

respectively. According to this table, the MDA and the DSATools result in the same CCT in 

all scenarios, which demonstrates that the MDA is as accurate as the DSATools considering 

the same tolerance. 
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Table ‎3-1 Comparison of CCT Calculated by DSATools and MDA. 

Scenario 

Number 
Faulted Bus Disconnected Line DSATools (ms) MDA (ms) 

1 142 142-145 63 63 

2 142 142-120 63 63 

3 121 121-125 64 64 

4 131 131-141 66 66 

5 141 141-132 85 85 

6 122 122-132 195 195 

7 7 7-6 152 152 

8 67 67-125 174 174 

9 90 90-94 178 178 

10 60 60-135 194 194 

11 96 96-108 208 208 

12 80 80-90 212 212 

13 109 109-121 264 264 

14 120 120-125 238 238 

 

3.5.3 Evaluate performance of the MDA during the fault 

A known problem associated with the Newton-type methods is that they might fail to 

converge, particularly during the fault when the voltages become very low. To investigate 

this issue, a fault is applied at bus #73 at t = 0.1s  and it is cleared after 12 cycles (0.2s) by 

opening the transmission line between buses #73 and #69. In order to illustrate the effect 

of fault on bus voltage in different locations of the network, the voltages of five buses 
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located in different proximity to the fault are shown in Figure ‎3-10. When the system is in a 

pre-fault steady state condition, all bus voltages are within the range of 0.95 to 1.05 pu, as 

expected. After the fault, the voltages at buses #105, #96, and #27 drop significantly, which 

shows that these buses are close to the fault location. In contrast, the voltages at buses 

#113 and #120 are less affected by the fault as these buses are further away from the fault.  

The fault scenario of Figure ‎3-10 has been implemented using several methods. When the 

system is simulated using Newton method with constant step size, it was observed that 

Newton method fails to converge at st 244.0 . In order to show that the solution exists and 

Newton method cannot find it, a damped Newton method ‎[107], ‎[108] has been 

implemented and used to find the solution. In this approach, the step-size is adjusted 

adaptively based on the norm of the mismatch. If norm of the mismatch vector increases in 

two consecutive iterations, it means that the Newton method is about to diverge and the 

algorithm reduces step-size. While the damped Newton method is able achieve 

convergence (unlike the conventional Newton method), the convergence rate is degraded 

since smaller steps are selected. Using this methodology, the during-fault system was 

successfully simulated. In addition to the two Newton-type methods, the system was also 

simulated using the proposed MDA without any modifications. Since the MDA works with 

linear subsystems, not convergence problems were observed. For example, the transient 

observed in the rotor angle of generator at bus #101 is shown in Figure ‎3-11, as calculated 

by different methods. As Figure ‎3-11 shows, the Newton method with constant step-size 

fails to converge at st 244.0  while the damped Newton method and the MDA yield the 

same results. 
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Figure ‎3-10 Voltages of five buses when fault is applied at bus #73. 

 

Figure ‎3-11 Rotor angle of generator at bus #101 simulated by three methods when fault is applied at 

bus #73.  

3.5.4 Computational performance 

In this section, the speed of MDA is compared against the conventional TDS methods. The 

execution time of different methods for the considered scenarios is presented in Table ‎3-2. 
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The first column in Table ‎3-2 represents the scenario number, according to Table ‎3-1, and 

the rest of columns represent the execution time of each method. In order to summarize 

the results, the total time required to solve all scenarios as well as the average time 

required to solve a scenario is shown in the last two rows, where it can be seen that both 

MDA and MDA_P outperform Full Newton and VDHN. The last two rows show that MDA is 

faster than Full Newton and VDHN by 6.75 and 1.09 times, respectively. Using parallel 

implementation of the MDA, better computational performance can be achieved.  

Specifically, Table ‎3-2 shows that MDA_P is faster than Full Newton and VDHN by 12.9 and 

2.08 times, respectively.  

As one of the fastest commercial packages for transient stability studies, computational 

performance of the DSATools is also compared against the MDA and MDA_P. The TSAT 

Scheduler program was used to run the scenarios and measure execution time of the 

DSATools. Since the test system was not large enough, it was not possible to measure the 

execution time of the DSATools precisely for each individual scenario. Instead, the total 

time required to solve all scenarios is compared. To do so, a single case study with all 14 

scenarios was created in the DSATools, and the total time required for solving the case 

study was recorded. The same procedure was carried out for MDA and MDA_P and the 

results are summarized in Table ‎3-3. As can be seen in this table, the MDA and MDA_P are 

faster than DSATools by 1.64 and 3.15 times, respectively. 
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Table ‎3-2 Execution Time for Different Scenarios. 

Scenario Number Full Newton (sec) VDHN (sec) MDA (sec) MDA_P (sec) 

1 5.162 0.719 0.641 0.304 

2 5.503 0.721 0.643 0.305 

3 3.174 0.706 0.570 0.244 

4 5.194 0.715 0.570 0.247 

5 5.455 0.715 0.613 0.276 

6 5.407 0.784 0.803 0.503 

7 4.602 0.753 0.746 0.446 

8 5.777 0.780 0.746 0.431 

9 2.890 0.630 0.580 0.259 

10 4.319 0.715 0.683 0.366 

11 3.422 0.635 0.619 0.405 

12 3.568 0.710 0.645 0.330 

13 2.896 0.714 0.648 0.318 

14 4.702 0.735 0.694 0.380 

Total Time 62.071 10.032 9.201 4.814 

Average Time 4.438 0.717 0.657 0.344 

 

Table ‎3-3 Total Execution Time for Fourteen Scenarios. 

 DSATools (sec) MDA (sec) MDA_P (sec) 

Execution Time 15.1 9.2 4.8 
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3.5.5 Large-scale system 

In order to explore the efficiency of the proposed MDA in larger-scale systems, the previous 

test system has been duplicated and interconnected 8 times to create a larger test system 

as depicted in Figure ‎3-12. Here, the “Base Test System i ” refers to the i th copy of IEEE 50 

generators and 145 buses test system discussed in ‎3.5.1. In Figure ‎3-12, the adjacent 

systems are connected using six transmission lines. Thus, the new test system has 400 

generators and 1160 buses, which amounts to 992 dynamic variables and 2416 algebraic 

variables, respectively. The same scenarios as described in Section ‎3.5.2, were used here. In 

each scenario, the fault is applied at the corresponding bus in “Base Test System 1”. The 

computational performances of different methods are summarized in Table ‎3-4. As it can 

be seen in this table, on average, the VDHN, MDA, and MDA_P solve each scenario in 8.59, 

7.59, and 3.84 seconds, respectively. These results show that MDA and MDA_P are faster 

than VDHN by 1.13 and 2.24 times, respectively. These results are consistent with the 

performance presented for small-scale system in Section VI-D, wherein the MDA and 

MDA_P were faster than VDHN by 1.09 and 2.08 times, respectively. As it has been 

demonstrated, the MDA is consistently faster than VDHN. Moreover, the performance 

improvement achieved using parallel MDA becomes more significant for the large-scale 

system. The additional improvement in parallel MDA is mainly attributed to the reduction 

in the overhead of creating and synchronizing the threads relative to the system size. 
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Figure ‎3-12 Duplicating base test system to create a large-scale system. 

Table ‎3-4 Execution Time for Different Scenarios in Large-Scale System 

Scenario Number VDHN (sec) MDA (sec) MDA_P (sec) 

1 8.62 7.288 3.59 

2 7.51 6.96 3.57 

3 7.804 6.568 2.95 

4 7.715 6.618 2.95 

5 9.813 8.8 2.74 

6 9.022 8.951 5.68 

7 8.901 8.11 4.98 

8 9.316 7.524 4.56 

9 8.959 8.017 3.36 

10 9.421 7.245 4.18 

11 8.241 7.689 3.49 

12 8.002 7.442 3.88 

13 8.276 7.756 3.66 

14 8.62 7.288 4.19 

Total Time 120.22 106.26 53.78 

Average Time 8.59 7.59 3.84 
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CHAPTER 4: SUCCESSIVE LINEARIZATION AND 

INTEGRATION TECHNIQUE 

In chapter 3, an innovative multi-decomposition approach (MDA) was proposed, which is 

based on constructing three linear subsystems of the original system of nonlinear DAEs. 

These subsystems may then be solved sequentially or in parallel. While it was 

demonstrated in section ‎3.5 that the proposed MDA outperforms other state-of-the-art TDS 

methods, this method has its challenges as it requires second-order partial derivatives and 

the level of parallelization is limited by number of linear subsystems. In order to eliminate 

these limitations, this chapter proposes Successive Linearization and Integration 

Technique (SLIT) method, which is an innovative approach for integrating nonlinear DAEs 

through successive linearization of nonlinear terms. In the SLIT, there is no theoretical limit 

on number of linearizations performed, and the accuracy of approximated solution can be 

enhanced by increasing number of linear systems. Alternatively, one might choose to limit 

number of linear systems and update their parameters when an increasing error is 

detected, which can lead to better computational performance. 

4.1 Mathematical Formulation 

Assume that 0z  represents the initial conditions of the problem and z  denotes the 

difference between z  and 0z , i.e. zzz  0 . The goal is to approximate z  and use the 

results to find an estimation of z . For this purpose, Eq. ‎(3-5) is expanded about 0z  using 

Taylor series, which yields 
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     2

00 zzAzfzzfzC  O  (4-1)   

where, matrix A  is the Jacobian of f  about 0z  and  2
zO  represents the remaining 

nonlinear terms. This equation can be simplified by neglecting nonlinear terms, which 

results in the following linearized DAEs: 

 01 zfu  , 

1111 : uzAzC L . 

(4-2)   

Here, 1L  denotes the first linear system and 1z  is the solution of this system. This solution 

approximates z  in the vicinity of 0z  and later deviates from the real solution. In 

particular, when the nonlinear terms are significant, the approximation provided by 1z  is 

valid only for few steps. In this situation, it is required to consider nonlinear terms to 

improve the approximation, which leads to the second linear system. 

Let 1e  represents the difference between z  and 1z  as 

11 zze  . (4-3)    

Taking time derivative of ‎(4-3) and multiplying both sides by C  results in: 

11 zCzCeC   . (4-4)   

By substituting ‎(4-1) and ‎(4-3) into ‎(4-4) and expanding the derivative function using 

Taylor series, the dynamics of 1e  can be derived as: 

 

   2

11110

11101

ezCAezzf

xCezzfeC

O







 (4-5)   
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Similar to the first linear system, a linear time-invariant approximation of ‎(4-5) is obtained 

by neglecting higher order terms: 

  1102 zCzzfu  , 

2222 : uzAzC L ,  

(4-6)   

where, 2L  represents the second linear system; 2u  is the input to this system; and 2z  is 

the solution of the system, which approximates 1e . This solution can be added to 1z  to 

derive a better approximation of z , i.e. 21 zzz  . 

Similarly, the terms neglected in ‎(4-5) can be considered to formulate the third linear 

system. Assume that 2e  represents the error of the approximation provided by the first two 

linear systems, i.e.: 

 212 zzze  .
 (4-7)   

The dynamics of 2e  are derived by taking time-derivative of ‎(4-7) and multiplying both 

sides by C  as:  

 212 zCzCzCeC   .
 (4-8)   

Substituting ‎(4-1) in ‎(4-8) leads to the following: 

 

   

     2

2212210

2122102

ezCzCAezzzf

zCzCezzzfeC

O







 (4-9)   
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Then, the third linear system is derived by neglecting higher order terms in ‎(4-9) as: 

   212103 zCzCzzzfu   , 

3333 : uzAzC L . 

(4-10)   

The described procedure can be generalized to increase number of linear systems. Overall, 

the i th linear system has the following general form: 






 
1

1

01

i

j

ji zzz , 

  




 
1

1

1

i

j

jii zCzfu  ,
 

iiiiL uzAzC : , 

(4-11)   

where, iu  is the input to iL , and iz  is the solution of iL . In ‎(4-11), iz  estimates the error 

in the approximate solution provided by previous linear systems. Therefore, it can be 

added to solution of previous linear systems to improve accuracy of approximation. Ideally, 

if infinite number of linear systems are used, the final solution z  can be reconstructed as: 







1

0

i

izzz . (4-12)   

However, in practice, a limited number of systems are sufficient to achieve the desired 

accuracy. 
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4.2 Practical Considerations and Implementation  

In the method described in previous section, the Jacobian matrix A  is constructed by 

linearizing derivative function about initial conditions. As the simulation proceeds and the 

actual solution deviates from the initial conditions, this Jacobian becomes less accurate and 

subsequently, newer linear systems will be required to maintain the accuracy of 

approximation. While the method presented has no limitation in terms of number of linear 

systems, it might become computationally inefficient if large number of linear systems are 

used to approximate the solution. Therefore, it is more appropriate to update the Jacobian 

matrix to reduce number of linear systems. However, construction of Jacobian is time-

consuming and more importantly, each new Jacobian needs to be LU factorized (which is 

used later to integrate the linear systems), which implies that frequent update of Jacobian 

matrix can also be computationally expensive and should be avoided. Similar to the VDHN 

method, it is possible to keep the Jacobian matrix constant for several integration steps 

until the convergence rate slows down. For this purpose, a maximum number of linear 

systems may be considered, and the Jacobian matrix is then updated only once the number 

of iterations exceeds this value. 

The block diagram representation of implementation of the proposed SLIT is shown in 

Figure ‎4-1. In this figure, the trapezoidal integration rule is used to integrate the linear 

systems; however, it should be noted that any implicit integration technique can be used 

here. The SLIT is started by initializing linear systems. Since the solutions of linear systems 

approximate z  (which is initially zero), the vectors jz  are set to zero to ensure that 

linear systems have zero initial conditions. However, note that the vector ẑ , which 
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approximates z , is initialized by 0z . Also, the inputs to all linear systems are initially zero 

except the first one, which has a constant input that equals to  0zf . Next, the Jacobian 

matrix is constructed about 0z  and LU factors of AC
2

T  are computed (which will be 

used later to integrate the linear systems). The initialized vectors and matrices are passed 

to the linear systems to compute the first approximate solution. As the first step inside 

linear system i , the trapezoidal rule is employed to discretize the linearized DAEs ‎(4-11) 

and find the solution of iL  in the current integration step, i.e. iz . This solution is added to 

ẑ  to refine the approximation. This step also updates the vector s , which represents the 

term 



i

j

j

1

zC   in ‎(4-11). This vector is then subtracted from  zf ˆ  to find the input to the 

next linear system at  Tnt 1 , i.e. 1
1



n
iu . If 1

1



n
iu  is smaller than the specified threshold 

THR , this would imply that the algorithm has converged and the solution at  Tnt 1  has 

been found within acceptable accuracy. Otherwise, the next linear system should be 

employed to further improve the approximation. At this point, if a Jacobian matrix has 

already been computed in the current integration step, the algorithm directly goes to the 

next linear system without updating the Jacobian. Otherwise, the current number of linear 

systems is checked and if the maximum number of linear systems (i.e. I ) is reached a new 

Jacobian is constructed. 
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 Figure ‎4-1 Block diagram representation of implementation of the SLIT assuming trapezoidal 

integration rule. 

In the proposed implementation of SLIT, the norm of 1
1



n
iu  is used as the error function to 

evaluate the accuracy of approximation and detect convergence of the algorithm. 

Alternatively, one might choose to use the conventional trapezoidal convergence criterion 

to ensure that the approximate solution is accurate within the specified threshold. This 

criterion is described by the following condition: 

  THRzh ˆ , 
(4-13)   

where h  represents nonlinear equations presented in ‎(3-1). Both of these criteria can be 

equally used in the SLIT and they are expected to give the same level of accuracy. However, 

using 1
1



n
iu

 is computationally more efficient as construction of  zh ˆ  requires an 

additional evaluation of derivate function.  
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4.3 Using Multi-Core Processor Architecture with SLIT 

In the proposed SLIT, there is a unidirectional dependency between linear systems, i.e. 

each linear system depends only on its previous systems. This feature can be easily shown 

for the first two linear systems. According to ‎(4-2), solution of  1L  depends on 0z  and A . 

As shown in Figure ‎4-1, as long as the number of linear systems used inside SLIT does not 

exceed I , the parameters 0z  and A  remain constant and the solution of the first LTI 

system will be independent from solutions of next linear systems. Similarly, ‎(4-6) shows 

that the solution of the second linear system depends only on A  and solution of the first 

linear system. 

In multi-core processor architecture, this feature can be utilized to distribute the 

computational tasks among several processing units, as shown in Figure ‎4-2. In this figure, 

it is assumed that N  processors are available. In this scheme, processor i  performs the 

tasks shown inside the dashed rectangle in Figure ‎4-1, i.e. computing the solution of i th 

linear system using a forward/backward substitution and finding the input to  1i th 

linear system. Once calculated, these results are passed to the next processor to perform 

the similar steps and compute further refinement to the solution using the next linear 

system.  

In Figure ‎4-2, each processor waits until a new solution is generated by previous processor. 

For example, the second processor waits until 1
1z  and 1

2u  are calculated by the first 

processor, and then it starts computing 1
2z  and 1

3u . In this configuration, while the second 
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processors is computing 1
2z , the first processor can work on computing 2

1z , which 

means that two linear systems are solved concurrently. Similarly, after 1N  initial steps, 

N  processors will be busy. The last processor monitors n
N 1u , and if it exceeds THR , a 

flag signal is sent to all processors to stop working and then, the algorithm updates 0z  and 

A . 

Since different linear systems are solved by different processors, there will be no time-

advantage in skipping some linear systems if the algorithm converges in less than N  

systems. Therefore, N  linear systems are solved for all integration steps and the 

convergence criterion is checked only when the last processor completes its computations. 

This strategy helps to slightly improve the accuracy of solution. Moreover, in the parallel 

structure shown in Figure ‎4-2, each processor solves a system of linear equations in each 

integration step, which opens the possibility of using available parallel-in-space methods 

such as Gauss-Seidel ‎[49], SOR ‎[56], or Block Gauss-Jacobi ‎[58]-‎[59] to employ more 

processors and achieve further speed improvement. 



 

100 

...

...

...

...
...

CPU 1

CPU 2

CPU 3

CPU N

...

CPU Time

Simulation 

Time

t0 t1 t2 tN-1 tN

T 2T

Calculate Calculate Calculate Calculate Calculate

1
2

1
1,uz

2
2

2
1 ,uz

1
3

1
2 ,uz

3
2

3
1 ,uz

2
3

2
2 ,uz

1
4

1
3 ,uz

NN
21 ,uz

1
3

1
2 ,




NN
uz

2
4

2
3 ,




NN
uz

1
1

1
,  NN uz






N

i

i

1

11
zz

1
2

1
1 ,




NN
uz

1
4

1
3 ,




NN
uz

2
1

2
,  NN uz






N

i

i

1

22
xz

...

...

...

...

...

Calculate Calculate Calculate Calculate
1

2
1

1 ,



NN

uz

Calculate Calculate Calculate

Calculate Calculate

 

Figure ‎4-2 Sharing computational tasks among N  processors in the parallel SLIT. 

4.4 Handling Saturation Function with Hard Limits 

Similar to Newton-type methods, the proposed SLIT is a derivative-based method and the 

first-order partial derivatives of the derivative function are required to solve the linear 

systems. However, in transient stability analysis, saturation functions with hard limits are 

frequently used in control systems of the generators and FACTS devices. Such saturation 

functions do not have continuous derivatives at certain points. To illustrate this, a 

saturation function with hard limits at lx  and ux  is shown in Figure ‎4-3. In this figure, x  

and y  represent input and output of the function, respectively. The function shown in 

Figure ‎4-3 consists of three sections: B1, A, and B2. The derivative of the function in each of 

these sections is plotted in Figure ‎4-4, where it can be seen that the derivative is not 

continuous at points  ll lx ,  and  lu ux , . Whenever solution jumps from section A to B1 or 
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B2 and vice versa, the corresponding entries in the Jacobian matrix are updated, which 

subsequently requires a new LU factorization of the Jacobian matrix. 

In order to avoid excessive Jacobian updates, the derivative of saturation function can be 

approximated by a continuous function. This approach might slow down the convergence 

rate about the discontinuity points. However, it helps to reduce the number of updates of 

Jacobian matrix, which subsequently reduces the computational penalty when the 

operating point is on a change in saturation function. For this purpose, the derivative of a 

saturation function with hard limits may be approximated using a family of continuous 

functions described by the following: 

 
 

n

lu

u

xx

xx
xD

2

1
2

1

1


















 , ,2,1n  
(4-14)   

Function  xD is plotted for different values of n  in Figure ‎4-5. As shown, for large values of 

n , the difference between exact derivative and  xD  becomes visible only in the vicinity of 

discontinuity points. Moreover, while the accuracy of  xD  improves as n  increases, the 

improvement becomes less visible for large values of n . Therefore, choosing 4n  will be 

accurate enough in transient stability analysis. 
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Figure ‎4-3  Saturation function with hard limits. 

 

Figure ‎4-4 Derivative of saturation function with hard limits. 
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Figure ‎4-5 Approximating derivative of saturation function using function  xD . 

4.5 Benchmark System and Simulation Results 

The effectiveness of the proposed SLIT method is evaluated using the IEEE transient 

stability test system described in section ‎2.1.6. The DSATools is used to generate the 

reference TDS solution. For comparison purposes, both the VDHN and the SLIT methods 

have been coded in standard C. In both methods, the solution tolerance within the time step 

iterations is set to 410 . Also, in both VDHN and SLIT methods, the Jacobian matrix is 

reused for multiple time steps and is forced to be updated when the number of iterations 

(linear systems) exceeds 4. Additionally, a parallel version of the SLIT was also 

implemented in standard C. For consistency of benchmarking, the implicit trapezoidal 

integration rule with fixed time-step of mst 4  is used for all methods. All simulations are 

performed using a desktop computer with 16GB RAM and 8-core Intel Xeon processor 

running at 2.00 GHz. 
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4.5.1 Case study 

In order to evaluate accuracy of SLIT method, a three-phase fault is applied at time st 1  at 

bus #7. The fault is cleared after 8 cycles by opening transmission line between buses #7 

and #6, and the post-fault system is simulated for 15 seconds. Since the generator at bus 

#111 is highly affected by this fault, the rotor angle and field voltage of this generator are 

plotted in Figure ‎4-6. As can be seen, during the fault, the generator rotor angle increases to 

almost 130  and the field voltage stays at its maximum limit (5pu). After the fault is cleared, 

the generator decelerates and the rotor angle decreases, which implies that this scenario is 

stable. The post-fault oscillations are more apparent in field voltage, which hits the upper 

and lower limits several times. The results in Figure ‎4-6 have been computed using the 

DSATools, VDHN, and SLIT method. These transient responses are very close to each other, 

which verifies that all methods are in good agreement. 
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Figure ‎4-6 Rotor angle and field voltage of generator at bus #111. 

4.5.2 Verification and accuracy evaluation 

Next, we investigate the accuracy of the proposed SLIT method for different integration 

time step sizes. For this purpose, the fault scenario described in Section ‎4.5.1 is solved 

using different integration time-steps from 1 to 8 ms, and the results are compared against 

the reference solution, which is obtained using Full-Newton method with 0.1ms time-step. 

Since the bus #111 is considered to be highly disturbed, only its generator field voltage is 



 

106 

considered for the error calculations. Here, the 2-norm (cumulative) relative error ‎[109] of 

the field voltage fd
E  is computed as 

  %100

2

2

,





fd
ref

Tfdfd
ref

Te
E

EE
, 

(4-15)   

where superscript T  represents integration time-step size; fd
refE  is the reference solution; 

and Tfd ,
E  is the field voltage solution trajectory computed by the SLIT (or the VDHN), 

using a given time step T . In ‎(4-15), the field voltage fd
E  can be replaced by other 

variables in the system; however, this variable was chosen as to examine the worst case. 

The results are plotted in Figure ‎4-7. As predicted, the error in both SLIT and VDHN 

methods decreases as smaller integration time-steps are used, which verifies that both 

methods are consistent and converge to the same solution. The VDHN method shows a 

slightly better accuracy, but this difference is very small. 

 

Figure ‎4-7 Percentage of integration error in VDHN and SLIT methods. 
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4.5.3 Computational performance using large-scale system 

In this section, computational performance of sequential and parallel implementation of 

SLIT is compared against the conventional VDHN method as well as the MDA. For this 

study, a larger test system is created by duplicating and interconnecting previous test 

system four times as shown in Figure ‎4-8, wherein the adjacent subsystems are connected 

using 6 transmission lines. The new test system has 200 generators and 580 buses. 

Additionally, 14 scenarios described in Table ‎3-1 are considered in this section. 

The CPU times achieved by different methods for all 14 scenarios are summarized in Table 

‎4-1, wherein the first column represents scenario number according to Table ‎3-1. The 

other columns in Table ‎4-1 show the computational time achieved by VDHN, sequential 

MDA, and sequential SLIT, respectively. Also, the last two columns show the speed-up 

ratios, which are defined as follows: 

MDA

VDHNMDA

T

T
R

Seq
 , 

(4-16)   

SLIT

VDHNSLIT

T

T
R

Seq


, 

(4-17)   

where VDHNT , MDAT , and SLITT  represent CPU time of VDHN, sequential MDA, and 

sequential SLIT, respectively. The last row in Table ‎4-1 shows the average time required to 

solve a scenario, where it can be seen that MDA and SLIT are faster than VDHN by 6% and 

21%, respectively. 
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To further analyze why SLIT is faster than VDHN and MDA, it is instructive to compare the 

number of LU factorizations performed in the given scenarios. The results are presented in 

Table ‎4-2, wherein it is shown that the SLIT generally performs less LU factorizations 

which also demonstrates that this method has a better convergence rate. Since LU 

factorization is a computationally demanding task, it can be observed that the speed-up 

ratio becomes more significant as the difference between number of LU factorizations 

performed in VDHN and SLT methods increases. 

The computational performance of parallel MDA (MDA_P) and parallel SLIT (SLIT_P) is also 

compared against the VDHN method. In this study, the maximum number of processors 

used concurrently in MDA_P and SLT_P is 3 and 6, respectively. The results are summarized 

in Table ‎4-3, wherein MDA
ParR   and SLIT

ParR  represent the speed-up ratio achieved by the 

MDA_P and SLIT_P, respectively. As it can be seen in Table ‎4-3, the MDA_P and SLIT_P are 

faster than VDHN by 2.19 and 3.32 times, respectively. These results confirm that the 

proposed SLIT_P method outperforms the VDHN and has superior scalability compared to 

the MDA_P as it can take advantage of more processors. 

Base Test 

System

Base Test 

System

Base Test 

System

Base Test 

System
 

Figure ‎4-8 Duplicating base test system to create a large-scale system. 
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Table ‎4-1 CPU Execution Time for Different Scenarios. 

Scenario Number VDHN (sec) MDA (sec) SLIT  (sec) 
MDA
SeqR  SLIT

SeqR  

1 2.764 2.632 2.412 1.050 1.15 

2 2.803 2.659 2.428 1.054 1.15 

3 1.831 1.701 1.940 1.076 0.94 

4 2.847 2.473 2.201 1.151 1.29 

5 1.903 1.715 2.050 1.110 0.93 

6 4.949 4.304 2.993 1.150 1.65 

7 3.162 2.847 2.510 1.111 1.26 

8 4.252 3.926 2.896 1.083 1.47 

9 2.625 2.703 2.882 0.971 0.91 

10 3.839 3.800 2.776 1.010 1.38 

11 2.911 2.877 2.363 1.012 1.23 

12 3.261 3.306 2.860 0.986 1.14 

13 3.328 3.284 2.854 1.013 1.17 

14 3.709 3.630 2.852 1.022 1.30 

Average Time 3.16 2.99 2.57 1.06 1.21 
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Table ‎4-2 Comparing Number of Jacobian Calculations and LU Factorization Performed in Different 

Methods. 

Scenario Number 
SLIT
SeqR  

No. of LU Factorization 

VDHN MDA SLIT 

9 0.91 119 622 157 

5 0.93 94 188 78 

3 0.94 92 191 78 

11 1.23 328 625 240 

4 1.29 279 490 150 

12 1.14 405 827 248 

1 1.15 524 890 274 

2 1.15 531 908 274 

7 1.26 624 714 329 

13 1.17 652 1270 339 

14 1.30 991 1633 471 

10 1.38 971 1746 428 

8 1.47 1087 1360 470 

6 1.65 1293 1424 554 
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Table ‎4-3 CPU Execution Time Of Parallel MDA and Parallel SLIT 

Scenario 

Number 
VDHN (sec) MDA_P (sec) SLIT_P (sec) 

MDA
parR  SLIT

parR  

1 2.764 1.189 0.79 2.32 3.50 

2 2.803 1.190 0.83 2.36 3.37 

3 1.831 0.798 0.59 2.29 3.12 

4 2.847 1.038 0.73 2.74 3.88 

5 1.903 0.772 0.47 2.47 4.02 

6 4.949 2.500 1.16 1.98 4.28 

7 3.162 1.631 0.91 1.94 3.48 

8 4.252 2.077 1.10 2.05 3.88 

9 2.625 1.206 1.21 2.18 2.17 

10 3.839 1.904 1.25 2.02 3.08 

11 2.911 1.367 0.98 2.13 2.96 

12 3.261 1.578 1.23 2.07 2.64 

13 3.328 1.558 1.20 2.14 2.76 

14 3.709 1.827 1.10 2.03 3.37 

Average 

Time 
3.16 1.474 0.97 2.19 3.32 
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CHAPTER 5: USING PHASOR MEASUREMENT 

UNITS IN REAL-TIME TSA 

5.1 Problem Statement 

For the purpose of DSE, we assume that the generators are represented by detailed model. 

Ignoring the fast sub-transient dynamics, the model of synchronous machine i  equipped 

with the AC-Type 4 excitation system can be described by the forth-order differential 

equations as in ‎(5-1) ‎[17]: 
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(5-1)   

where: fdE  represents the internal field voltage; 
'
qE  and '

dE  represent transient voltage 

along the q  and d  axes, respectively;   and   represent rotor angle and rotor speed of 

synchronous machine, respectively; qI  and dI  represent terminal currents; V  represents 

magnitude of terminal voltage; and function  .L  is the saturation function that limits the 
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fdE  to physical limits of the excitation system. The rest of parameters are defined in Table 

‎5-1. 

Table ‎5-1 Nomenclature of Machine Parameters 

'
qoT  open circuit time-constant along q  axis 

'
doT  open circuit time-constant along d  axis 

'
qX  transient reactance along along q  axis 

'
dX  transient reactance along along d  axis 

s  rated angular frequency 

M  machine’s inertia 

D  damping factor 

mT  input mechanical torque 

aT  time-constant associated with the regulator and/or firing of thyristors 

aK  gain associated with the regulator and/or firing of thyristors 

bT  
time-constants of the lag-lead controller used inside the excitation 

system 

cT  
time-constants of the lag-lead controller used inside the excitation 

system 

1eS  coefficient of saturation function 

2eS  coefficient of saturation function 

refV  reference and terminal voltage 

The stator equations relate terminal voltage and current to the states of the synchronous 

machine as follows: 

  0sin ,
'
,,,

'
,  iqiqidisiiiid IXIRVE   , 

(5-2)   

  0cos ,
'

,,,
'
,  ididiqisiiiiq IXIRVE  , 



 

114 

where   represents angle of terminal voltage with respect to network’s synchronous 

reference frame. Overall, the machine equations can be described in the following compact 

form: 

  Tififdiiidiqi REEE ,,
'

,
'
, ,,,,, x  ,   

 Tiqidii IIV ,, ,,a ,  

 iiici axfx ,, , (5-3)   

 iii axg ,0  , (5-4)   

where ic,f  represents differential equations ‎(5-1) and ig  represents stator equations ‎(5-2). 

In the local DSE ‎[60] and ‎[65], a PMU is installed at the terminal bus of generator and it 

measures the vector ia . Then, these measurements along with the generator model ‎(5-3)-

‎(5-4) are used to estimate state vector ix . Ref. ‎[60] uses the EKF and ‎[65] uses the EPF 

approach to estimate the states of the generator. In contrast, a global DSE utilizes all PMU 

measurements throughout the network to estimate states of all generators. Since more 

information is available in the global DSE, it is expected to achieve a better accuracy in 

estimating states. 

In order to formulate the global DSE, it is required to add the model of transmission 

network to the generator model. As discussed in section ‎2.1.1, the generator model and the 

network equations form a set of nonlinear Differential Algebraic Equations (DAEs), which 

can be described as follows: 
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 axfx ,c ,

 

(5-5)   

 axg ,0  ,

 

(5-6)   

where, 1n  and 2n  represent number of generators and buses, respectively; x  represents 

state variables of all machines; a  represents the algebraic variables that encompasses 

phasors of voltages and currents; the vector function cf  includes the derivative functions of 

machines’ models; and the algebraic function g  represents the stator equations ‎(5-2) as 

well as network power flow constraints.  

In the global DSE, some or all of the algebraic variables are observed by PMU 

measurements, which are used to estimate state vector x . Since the PMU measurements 

always carry some level of noise, it is appropriate to rewrite ‎(5-5)-‎(5-6) as a stochastic 

model as follows: 

  wvaxfx  ~,c , (5-7)   

 vaxg  ~,0 . (5-8)   

where, a~  represents measured algebraic variables; v  is the measurement noise; and w  

represents inaccuracies in the model and/or parameters. 
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5.2 Applying Extended Kalman Filter to DSE Problem 

5.2.1 Review of extended kalman filter 

Suppose a nonlinear dynamic system is described by a pair of nonlinear stochastic process 

and measurement equations as: 

 111 ,,  kkkdk wuxfx  , (5-9)   

 kkk vxhz , , (5-10)   

where, k  represents measurement step; x  and u  represent the states and input of the 

system, respectively; z  represents vector of measured quantities; df  is the state transition 

function, which is typically a difference equation that approximates dynamics of original 

continuous model of the system; h  is the observation function that relates the states to the 

measurements; w  is the process noise; and v  is the measurement noise. The noise 

sequences  kw  and  kv  are assumed to be white, Gaussian, and mutually independent, 

i.e.: 

   Qw ,0~ Np , (5-11)   

   Rv ,0~ Np , (5-12)   

  jkE T
jk ,,0 wv , (5-13)   

  jkE T
jk ,,0 xv , (5-14)   
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where, p  represents probability distribution function; N  represents a normal distribution 

function; Q  and R  represent process and measurement noise covariance matrices, 

respectively; and  .E   represents expected value of a random variable. 

For the purpose of describing the EKF approach, let 
kx  be a prediction of states at step k  

that is derived using the state estimation results from previous step. Based on this 

definition, predicted estimation error and its covariance matrix are defined as: 

  kkk xxe , (5-15)   

 





  T

kkk E eeP . (5-16)   

Likewise, let 
kx  be an updated estimate of states at step k , which is computed using the 

results of previous step as well as the measurements in current step. Based on this 

definition,  

  kkk xxe , (5-17)   

 





  T

kkk E eeP , (5-18)   

are updated estimation error and its covariance matrix, respectively. 

The state estimation process is started by choosing an initial guess for 
0x  and 

0P . The EKF 

then estimates the state variables in two stages. In the first stage, which is called the 

prediction stage, a prediction of states is computed based on system’s dynamic model. This 

step is realized by the following set of equations: 
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where, 
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(5-22)  

The prediction stage essentially uses the dynamic model ‎(5-9) to derive an estimation of 

states. Due to model inaccuracies and measurement noise, the results might not be 

accurate enough and therefore, the data measured at step k  are used subsequently to 

refine 
kx . This stage is called update stage and it is realized by the following set of 

equations: 

RHPHS   T
kkk ,

 

1 SHPK
T
kkk , 

(5-23)   

  0,  kkkkk xhzKxx , (5-24)   

    kkkk PHKIP , (5-25)   

where, 


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
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k
k xx

h
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






k
k xv

h
V | . (5-27)   

Overall, ‎(5-19)-‎(5-27) represents the formulation of the classic EKF used for estimating 

states of a dynamic system. 

5.2.2 Prediction stage in the TSA 

The formulation of EKF requires the states at current step to be expressed as explicit 

function of states and input in the previous step. Therefore, in order to apply the EKF to the 

TSA problem, the continuous model ‎(5-7) has to be discretized using an explicit integration 

technique. Explicit Euler method has been used in the literature ‎[60]-‎[65] to form a 

discrete model suitable for the EKF. This technique typically provides good results in quasi-

steady-state studies. However, when the system experiences a severe disturbance, the 

accuracy of prediction provided by Euler method can be significantly degraded. Therefore, 

in this section, a forth-order Runge-Kutta formula ‎[110] is used to discretize ‎(5-7) as 

follows: 
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where vectors 1k  to 4k  are defined as: 
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34 .  

Using this discretized model ‎(5-28) in the EKF, a prediction of states is computed by setting 

noises 1kv , kv , and 1kw  to zero as: 

 0,~,~, 11 kkkdk aaxfx 



  , (5-29)   

and the results are used to find a prediction of algebraic variables by solving: 

  kk axg ,0 . (5-30)   

In order to complete the prediction stage, the covariance matrix 
kP  needs to be computed. 

However, the partial derivatives of (5-28) with respect to states and noise should be 

computed first. Since the coefficients 2k  to 4k  are related to states, the chain rule can be 

used to compute the partial derivatives of (5-28) with respect to states as follows: 



































 1

4

1

3

1

2

1

1

1

22
6 kkkkk

d
k

T

x

k

x

k

x

k

x

k
I

x

f
F , (5-31)   
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Here, kF  represents the partial derivatives of ‎(5-28) with respect to states. In addition, the 

partial derivatives of ‎(5-28) with respect to process and measurement noises can be 

computed as follows: 
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In ‎(5-32)-‎(5-34), V  and W  represent the partial derivatives of (5-28) with respect to 

measurement and process noise, respectively. Note that in ‎(5-7), the process noise is 

assumed to be additive, which makes W  constant identity matrix. However, df  is a 

nonlinear function of measurements (and therefore measurement noise), which means (5-

28) needs to be linearized about the measurement noise to form matrices 1kV  and kV  in 

each measurement step. The results of ‎(5-31)-‎(5-34) are then used to find 
kP  as: 

WQQRVVRVVFPFP
TT

kk
T
kk

T
kkkk  





111 , (5-35)   

which completes the prediction stage in the EKF.  

5.2.3 Update stage in the TSA - simultaneous approach 

In the update stage ‎(5-23)-‎(5-25), the measured quantities are explicit functions of states. 

However, ‎(5-8) shows that in transient stability problem, the measured quantities (i.e. 

algebraic variables) are implicitly related to the states through powerflow equations. In 

this situation, the observation matrix H  is not available and the update stage cannot be 

carried out.  

This problem can be addressed by developing appropriate formulation for the EKF with 

implicit observation. Assume 
kx  is a linear combination of 

kx  and the difference between 

measured and predicted algebraic variables, i.e. 
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   kkkkk aaKxx ~ , (5-36)   

where, kK  is the Kalman gain. In the conventional EKF ‎[111], the Kalman gain is calculated 

by minimizing trace of 
kP , which ultimately aims at minimizing sum of errors in all 

measurement steps. Inspired by this method, we derive the formulation of 
kP  in the 

systems with implicit observation. For this purpose, suppose a

 
represents the difference 

between measured and estimated algebraic variables, i.e.  kkk aaa ~ . Using this 

definition with ‎(5-15), the power flow equations ‎(5-8) can be re-written as: 

 kkkkk vaaexg   ,0 . (5-37)   

Expanding ‎(5-37) about  
kk ax ,  using Taylor series results in the following equation: 
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vaGeGaxg ax , 

(5-38)   

where, TOH ..  represents higher order terms; k,xG  and k,aG  represent partial derivatives 

of g

 
with respect to states and algebraic variables, respectively. By neglecting higher order 

terms and considering ‎(5-30), ka  can be approximated by: 

 kkkkk veGGa xa  
,

1
, . (5-39)   

Substituting ‎(5-39) into ‎(5-36), an updated estimate of states is approximated as: 
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 kkkkkk veGGKxx xa  
,

1
, , (5-40)   

Subtracting both sides from kx , the updated estimation error is computed as follows: 

  kkkkkkk vKeGGKIe xa  
,

1
, . (5-41)   

This equation describes the updated estimation error in terms of predicted estimation 

error and the measurement noise. Observing that 
ke  and kv  are two independent random 

variables, 
kP  is computed as follows: 
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In ‎(5-42), Kalman gain is the only unknown, which is computed by minimizing trace of 
kP . 

The minimization process is omitted here, more information can be found in ‎[111]. Overall, 

minimizing trace of 
kP  results in the following pair of equations: 

  RGGPGGS axxa   T
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kkkk
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,,,
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, , 

  11
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T

k
T
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(5-43)   

Equation ‎(5-43) shows that the formulation of Kalman gain in a system with implicit 

observation.  

Comparing ‎(5-23) and ‎(5-43), it can be seen that observation matrix kH  is replaced by 

kk ,
1
, xa GG
 . Considering the formulation of k,aG  and k,xG  in ‎(5-38), the term kk ,

1
, xa GG
  

represents linear sensitivity of algebraic variables to the states, and therefore, it is herein 

called the sensitivity factors. 
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Once Kalman gain is computed using ‎(5-43), the states can be updated as: 

 kkkkk aaKxx ˆ~   , (5-44)   

    kkkkk PGGKIP xa ,
1
, . (5-45)   

Overall, ‎(5-43)-‎(5-45) describe the update stage of the EKF in a global DSE scheme in the 

TSA. 

5.2.4 Update stage in the TSA – sequential approach 

In order to compute the Kalman gain in ‎(5-43), matrix S  needs to be inverted in each step. 

In power systems with large number of measurements, the size of this matrix will be large, 

making it computationally expensive to construct and invert S  for each set of PMU 

measurements. However, this matrix inversion can be effectively avoided by sequential 

processing of the measurements.  The pseudo code representation of this approach is 

shown in Algorithm 1, wherein 
km,p  represents m th row of 

kP ; km,g  represents m th row 

of kk ,
1
, xa GG
 ; mr  represents m th diagonal element in matrix R ; mka ,

~  and 
mka ,  represent 

m th element of ka~  and 
ka , respectively; and mN  represents number of measured 

quantities.  

In Algorithm 1, the measurements are processed one by one whereas in simultaneous 

approach presented in Section ‎5.2.3, all the measurements are processed simultaneously. 

In Algorithm 1, the Kalman gain matrix K  is replaced by a series of vectors km,k , which 

corresponds to the Kalman gain computed for each measurement. These vectors are used 
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subsequently to update 
kx  and 

kP . As can be seen, this approach replaces matrix inversion 

1
S  by a series of scalar inversions, which can help reducing the overall computational cost. 

Algorithm 1. Pseudo-code representation of update step in the EKF with sequential 

processing of measurements. 

for 1m  to mN  

 m
T

kmkkmm rs  
,, gPg  

   1
,,

 mkmkkm sgPk

 

    mkmkkmkk aa ,,,
~kxx

 

     kkmkmk PgkIP ,,  

end for 

5.3 Implementation 

5.3.1 Avoid inverting matrix of sensitivity factors 

In both methods presented in sections ‎5.2.3  and ‎5.2.4, the inverse of matrix k,aG  needs to 

be computed. This inversion is a consequence of existence of implicit observation in 

transient stability problem, which is an integral part of the EKF with implicit observation. 

The size of k,aG  is typically large, and computation of kk ,
1
, xa GG
  for each set of PMU 

measurements is a computationally expensive task. However, since the term kk ,
1
, xa GG
  

represents the linear sensitivity of algebraic variables to states of the system, it does not 
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change significantly in a given contingency. Therefore, unless a major disturbance and a 

change in network configuration happen, it is not necessary to update the sensitivity 

factors. Based on this observation, we propose to compute the sensitivity factors at the 

beginning of simulation and update them only when the configuration of network changes. 

5.3.2 Summary 

The required steps are shown in Algorithm 2. As the first step, the filter is initialized using 

the initial guess for state variables and the error covariance. The initial guess of state 

variables is used to compute the initial guess for algebraic variables ( 
0a ) and the 

sensitivity factors. Then, for each set of PMU measurements, the filter performs prediction 

and update stages to estimate the state variables. In prediction stage, ‎(5-29)-‎(5-35) are 

used to the predict the state and algebraic variables at the next step. In the update stage, 

the sensitivity factors can be updated for each set of measurements, or they might be kept 

constant until the configuration of network changes. Also, ‎(5-43)-‎(5-45) can be used to 

simultaneously process the measurements and perform the update stage. Alternatively, 

one might choose to use Algorithm 1 to sequentially process the measurements in the 

update stage to achieve a better computational performance. 
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Algorithm 2. The required steps in the proposed dynamic state estimator. 

Initialization 

Initialize the filter at 0k  by choosing 
0x  and 

0P . 

Solve   0ˆ, 00 
axg  to find initial guess of algebraic variables. 

Compute the sensitivity factors 0,
1
0, xa GG

  

for ,2,1k  perform the following steps 

 Prediction 

Use ‎(5-29) to find 
kx . 

Use ‎(5-30) to find 
ka . 

Use ‎(5-31), ‎(5-33), and ‎(5-34) to find kF , kV , and 1kV . 

 Use ‎(5-35) to find 
kP . 

 Update 

IF update of sensitivity factors should be skipped 

Update sensitivity factors only if a major disturbance has happened. 

ELSE IF sensitivity factors are updated for each measurement 

Update sensitivity factors by computing kk ,
1
, xa GG
 . 

END IF 

IF simultaneous approach is used: 

Use ‎(5-43) to find kK . 

Use ‎(5-44) to find 
kx . 

Use ‎(5-45) to find 
kP . 

ELSE IF sequential approach is used: 

Use Algorithm 1 to compute 
kx  and 

kP . 

END IF 

end for 
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5.4 Simulation Studies 

The IEEE test system described in section ‎2.1.6 is used here to evaluate the effectiveness of 

the proposed DSE technique. As stated in IEEE standard C37.118-2005 ‎[112], the 

accumulation of magnitude, angle, and timing errors of PMU measurements should be less 

than 1%. Therefore, 1% of white Gaussian noise is added to the measured voltage phasors. 

Moreover, the DSATools is used here to generate the reference TDS solution. 

In order to simulate a disturbance in the system, a three-phase fault at bus #7 is applied at 

st 4 . The fault is cleared in 8 cycles by opening the transmission line between buses #7 

and #6. This scenario will be used throughout this section. To quantitatively evaluate the 

performance of different DSE schemes, the 2-norm (cumulative) relative error defined in 

‎(4-15) is used here.  

5.4.1 Comparing accuracy of local DSE against global DSE 

As the first study, the accuracy of global DSE is compared against local DSE scheme. In the 

global DSE, Algorithm 2 is used to estimate states of the system.  In the local DSE, similar 

steps are carried out, except system model ‎(5-5)-‎(5-6) is replaced by generator model ‎(5-

3)-‎(5-4). In this case, it is assumed that a PMU is installed at bus #111 and it measures the 

vector ia  that corresponds to the generator located at this bus. The measurements are then 

used in Algorithm 2 to estimate the states of this generator. In both schemes, the Runge-

Kutta method described in Section ‎5.2.2 is considered for discretizing differential 

equations; and the simultaneous approach described in Section ‎5.2.3 is used for processing 



 

130 

the PMU measurements. The sensitivity factors are updated in each measurement step. 

Also, for the purpose of this study, the PMU sampling rate is assumed to be 25 samples/sec.  

The state estimation results are shown in Figure ‎5-1. As this figure shows, the local DSE has 

started to noticeably deviate from the reference solution at about st 12 , and the 

estimation completely diverged after about st 17 . In contrast, the global DSE is able to 

provide good estimation throughout the simulation. The calculated estimation error for the 

global and local DSE is 10.89% and 70.54%, respectively. These results confirm that the 

global DSE is able to provide an acceptable estimation of generator’s field voltage. 

 

Figure ‎5-1. Comparing global versus local dynamic state estimation. 

5.4.2 Effect of discretization method 

In this section, the effectiveness of using forth-order Runge-Kutta vs. Euler (which has been 

used by ‎[60]-‎[65]) discretization method is investigated. In both methods, the global DSE 

scheme is implemented according to Algorithm 2, and simultaneous approach is used to 
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process the PMU measurements. The sensitivity factors are updated in each measurement 

step. First, it is assumed that the PMUs send data at a rate of 60 samples/sec. Figure ‎5-2 

shows the estimated output voltage of the excitation system when the Euler and Runge-

Kutta methods are used in the prediction stage. As Figure ‎5-2 shows, both integration 

techniques are able to estimate the field voltage throughout the simulation. The estimation 

error and CPU timings for these methods are summarized in Table 5-2. The first column in 

this table shows that the Runge-Kutta is almost 3 times more accurate. The second column 

in this table represents the total time required to complete the simulation, wherein there is 

a slight difference between Euler and Runge-Kutta methods. However, note that this 

quantity also includes the time that algorithm spends to perform other operations such as 

solving ‎(5-30), computing kalman gain, and computing sensitivity factors. Therefore, in 

order to better compare computational performance of Euler and Runge-Kutta, it is more 

appropriate to evaluate the time that algorithm spends to compute 
kx  and 

kP , since the 

computational cost associated with calculation of these quantities is directly related to the 

choice of discretization method. These results are shown in the third column of Table 5-2, 

wherein it is demonstrated that the Euler is almost 5 times faster than Runge-Kutta.  

Next, the PMU sampling rate is reduced to 30 samples/sec, which is the practical sampling 

rate for some utilities such as BC Hydro. The results are shown in Figure ‎5-3, where it is 

shown that the DSE with Runge-Kutta method is able to provide a good estimation of field 

voltage, while the DSE with Euler method has diverged very quickly once the fault is 

cleared. In this case, the estimation error for the DSE with RK4 method is %48.24 RK ,
 

which is slightly larger than it was in previous case with PMU sampling of 60 samples/sec. 
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Figure ‎5-2 Dynamic state estimation provided by Euler and RK4 methods for PMU sampling rate at 60 

samples/sec. 

 

Figure ‎5-3 Dynamic state estimation provided by Euler and RK4 methods for PMU sampling rate at 30 

samples/sec. 
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Table ‎5-2 Evaluation of Error and CPU Timing for Euler and Runge-Kutta Methods 

Discretization 

Technique 
Error 

CPU Time (Total 

Simulation Time) 

CPU Time (Only Computation 

of 
kx  and 

kP ) 

Euler 5.3% 53s 3s 

Runge-Kutta 1.75% 65s 15s 

5.4.3 Simultaneous vs. sequential processing of measurements 

The measured quantities can be processed sequentially to avoid inverting matrix S  as 

discussed in Section ‎5.2.3. In this study, the DSE problem is solved using simultaneous and 

sequential processing of measurements. In the first case, which corresponds to 

simultaneous processing of the measured data, ‎(5-43)-‎(5-45) are used in the update stage. 

In this case, the matrix S  is formed and inverted for each set of PMU measurements. In the 

second case, Algorithm 1 is used to perform the update stage. In both cases, the prediction 

stage is solved using Runge-Kutta method as described in Algorithm 2. The PMU sampling 

rate of 30 samples/sec is assumed. 

The state estimation results for these cases are presented in Figure ‎5-4, wherein green and 

red lines represent the results provided by simultaneous and sequential processing of 

measured quantities, respectively. As this figure suggests, the sequential processing of 

measured data provides almost the same accuracy as the simultaneous approach. The 

results can be further compared by evaluating the estimation error and CPU timing for both 

cases, as summarized in Table ‎5-3. These results verify that while simultaneous processing 

of data provides slightly more accurate estimation, the accuracy of both approaches are 
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very close. Moreover, the results show that 25% improvement in the computational 

performance can be achieved using sequential approach. 

 

Figure ‎5-4 Dynamic state estimation results derived by simultaneous and sequential processing of 

measured data. 

Table ‎5-3 Comparing Performance of Simultaneous and Sequential Approach for Processing 

Measurements 

Processing Measurements Error CPU Time 

Simultaneous 2.75% 32s 

Sequential 2.90% 24s 

5.4.4 Effect of updating sensitivity factors 

It was mentioned in Section ‎5.3.1 that it may not be necessary to frequently update the 

sensitivity factors, and that it may be more computationally efficient if the sensitivity 

factors are updated only when the system configuration changes. The accuracy of this 

strategy will be investigated here. For this purpose, the scenario described at the beginning 
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of this section is considered. In this scenario, the states of generator at bus #111 are largely 

disturbed and the nonlinear terms are highly excited. Therefore, it can represent a system 

wherein the sensitivity factors experience a wide change.  

It is assumed that DSE with Runge-Kutta method in prediction step is used; the 

measurements are processed sequentially; and the PMUs send measured quantities at a 

rate of 30 samples/sec. The results of this study are shown in Figure ‎5-5, where the blue 

line represents the reference solution, the green line represents the DSE results when the 

sensitivity factors are updated for every set of PMU measurements, and the red line 

represents the case wherein the sensitivity factors are updated only at the beginning of 

simulation when the fault happens and when the fault is cleared. As Figure ‎5-5 shows, 

updating sensitivity factors does not have a significant effect on the estimated field voltage.   

The accuracy and performance of the proposed strategy is further summarized in Table 

‎5-4, wherein the 2-norm error and CPU timings are presented. These results verify that by 

skipping the update of sensitivity factors further computational speed-up may be achieved 

without significant sacrifice in accuracy.  
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Figure ‎5-5 Effect of updating sensitivity factors on accuracy of DSE results. 

Table ‎5-4 Evaluting Accuracy and Performance of DSE When the Update of Sensitivity Factors is 

Skipped 

Updating Sensitivity Factors Error CPU Time 

At each measurement step 2.76% 24s 

Only when the network configuration changes 3.05% 18s 
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CHAPTER 6: SUMMARY OF CONTRIBUTIONS 

AND FUTURE WORKS 

6.1 Conclusions and Contributions 

The main objective of this thesis was to investigate challenges that exist in a TSM package 

and develop new algorithms to address these challenges. Based on the structure of a TSM 

tool shown in Figure ‎1-2 and according to the discussion presented in section ‎1.4, several 

contributions were made to expedite the TDS approach and take advantage of PMU 

measurements in monitoring applications. Figure ‎6-1 demonstrates how the newly 

developed method are integrated into a TSM tool, where it is shown that the contributions 

made by this research address the challenges existing in steps 1 to 3 of a TSM package. 

To summarize, a novel NDA algorithm was proposed in chapter 2 to aggregate coherent 

generators and buses, which helps improving accuracy of reduced system in dynamic 

equivalencing. The proposed NDA method is able to identify and remove the errors in 

coherency identification step. Also, to further expedite the simultaneous solution of the 

nonlinear DAEs appearing in the TSA time-domain simulation, two new methods, namely 

MDA and SLIT, were presented in chapters 3 and 4. Both MDA and SLIT techniques 

decompose the original nonlinear DAEs into a series of linear systems, which can be solved 

concurrently. However, the SLIT approach is easier to parallelize among many processors 

and does not need hessian matrix, which represents additional practical advantage. Finally, 

a general framework for using PMUs’ measured quantities in transient stability monitoring 
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was presented in chapter 5. This framework aims at improving accuracy of state estimation 

in transient stability studies with practical PMU’s sampling rate. More specifically, with 

respect to the initial objectives of this research, the contributions of the thesis can be 

summarized as follows: 

One Set of 
PMU Data

Estimate system’s 
state variables using 

Extended Kalman 
Filter (chapter 5)

Reduce size of 
problem using 
adaptive NDA 

approach (chapter 2)

Solve transient 
stability problem using 

MDA and SLIT 
(chapters 3 and 4)

Take corrective 
action if required 

(to be done in future)

Control Centre

Control
Signals

PMU PMU PMU

Step 1: Step 2: Step 3: Step 4:

 

Figure ‎6-1 Integrating the methods developed in this thesis into a transient stability monitoring tool. 

Objective 1 

In Section ‎2.1, a new network-dependent aggregation algorithm of coherent generators for 

constructing the reduced-order transient stability problem was proposed. In the proposed 

NDA method, the weight of each generator is determined based on its contribution to the 

mismatch between full- and reduced-order systems – which is different from traditional 

methods that assign a relative weight simply based on the generator inertia and/or power 

level. The proposed NDA approach keeps the dynamics of the generators which can cause 
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larger errors in the reduced-order system. Moreover, based on trapezoidal integration rule, 

a new criterion is defined to evaluate the accuracy of the reduced-order system. In the 

proposed approach, while integrating the reduced-order system, the accuracy of the results 

is continuously monitored. If an error in coherency identification is detected, 

corresponding generator will be isolated from its group and a new reduced-order system 

will be constructed. Computer studies show that the proposed NDA is more accurate and 

robust compared to the conventional IAA algorithm. 

In Section ‎2.2, a new method to identify coherent buses in transmission system was 

proposed. Using the algebraic relationship between generation and transmission systems, 

the sufficient condition for coherency between each two buses was derived. The presented 

simulation results demonstrate that the proposed method is able to identify almost all 

tightly coherent buses in the IEEE 50-gen 95-bus benchmark system. The results are valid 

for more than 10 seconds, which makes it possible to analyze multi-swing stability 

problems using reduced system. 

Objective 2 

In Chapter 3, we presented a multi-decomposition approach for solving transient stability 

problem. The proposed MDA decomposes the nonlinear DAEs of the transient stability 

problem into three linear subsystems, which are subsequently solved to approximate the 

solution. The linear subsystems are updated as necessary to ensure that the approximation 

remains accurate within the user-specified tolerance. The accuracy of the MDA is verified 

against the conventional time-domain simulation using the DSATools from Powertech Labs 
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Inc. It was also shown that sequential MDA is as accurate and slightly faster than VDHN. 

Moreover, contrary to Full Newton and VDHN, the MDA is easily parallelizable into three 

processors, which represents a significant potential for extending this method to larger 

systems. 

Chapter 4 proposed successive linearization integration technique (SLIT), which is a new 

integration technique for solving transient stability problems in power systems. In the 

proposed method, a series of linear systems are constructed by successively linearizing the 

original nonlinear DAEs. The sum of the solutions of linear systems approximates the 

trajectory of actual solution. Since different linear systems can be solved in parallel, the 

proposed method can be readily parallelizable and implemented over several processors. 

The DSATools was used to verify the SLIT method. It was demonstrated that SLIT is faster 

than the VDHN and the MDA methods without compromising accuracy. Moreover, it was 

demonstrated that the parallel version of the SLIT is more scalable compared to the MDA. 

Objective 3 

Chapter 5 presents a general framework for using extended Kalman filter (EKF) in 

transient stability studies. In the proposed technique, a forth-order Runge-Kutta method is 

used to discretize differential equations and find a prediction of states. Also, it was 

demonstrated that the conventional EKF cannot be applied to the formulation of global DSE 

since the measured quantities are implicitly related to the states in transient stability 

problem.  The conventional formulation of the Kalman gain was modified and extended to 

the systems with implicit observation, such as the transient stability problem. The 
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performance of the proposed framework was evaluated using IEEE 145 bus test system 

and it was demonstrated that the proposed technique can provide an accurate 

approximation of state variables even when the system is largely disturbed and the PMU 

sampling rate is fairly low (~25 samples/sec). 

6.2 Potential Impacts of Contributions 

The proposed NDA method improves accuracy and robustness of dynamic equivalencing 

packages. With the rapid growth of size of power systems, these features are becoming 

increasingly important in evaluating performance of reduced-order systems. Moreover, the 

NDA is applicable to online dynamic reduction techniques ‎[72],‎[73], wherein real-time 

PMU measurements are used to create an equivalent machine. In this applications, the NDA 

can help creating more accurate equivalents and better monitoring transfer paths ‎[81]. 

It is envisioned that the proposed MDA and SLIT will find wide application in commercial 

transient stability solvers. In particular, the SLIT method requires the same 

vectors/matrices as used in an implicit integration technique (i.e. mismatch vector and 

Jacobian matrix), which should make it easier for the software developers to implement 

this method in programs such as DSATools. The proposed fast and accurate integration 

techniques allow user to model larger systems, analyze larger number of contingencies, 

and take advantage of multi-core processing units.  

As mentioned in section ‎1.1, in order to make TSM computationally feasible, available 

transient stability solvers need to become at least 8 times faster. Currently, BC Hydro is 
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decreasing size of the WECC system from 15,000 buses to 5,000 buses in dynamic studies, 

which helps improving computational performance by at least 3 times. Moreover, the 

results presented in section ‎4.5.3 demonstrated that an extra 3-time speed-up can be 

achieved by parallelizing solution in the SLIT method. Therefore, reducing size of problem 

using dynamic reduction technique combined with parallelizing solution in the SLIT can 

exceed the 8-time speed-up criterion, which further verifies that the proposed SLIT is a 

promising approach for the TSM applications. 

Also, the proposed dynamic state estimation scheme makes it possible to use PMUs with 

low measurement rate (25~30 samples/sec) in a TSM application. Since the proposed 

methodology is not limited to any specific model or assumptions, it can be used by operator 

to estimate states of all generators as well as other dynamic devices. 

6.3 Future Work 

As mentioned in Section ‎2.1.5, the algorithm proposed for finding coherency identification 

errors might fail when there are numerous errors in coherency identification step. In 

practice, the operator does not know how many errors exist and therefore, this algorithm 

needs to be improved to become more robust against large number of misplacements. 

The MDA and SLIT methods are capable of parallelizing solution of transient stability 

problem by decomposing original nonlinear DAEs into a series of linear sub-problems. In 

order to increase number of processors, it is possible to take advantage of available parallel 

techniques, such as Gauss-Seidel ‎[49], MATE ‎[50]-‎[54], SOR ‎[56], Gauss-Jacobi ‎[58]-‎[59], 
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etc., inside the MDA and SLIT to perform more decompositions on each sub-problem. The 

newly decomposed sub-problems can then be shared among more processors to further 

improve computational performance of transient stability solver. 

For more accurate dynamic state estimation, the effect of a malfunction PMU should be 

considered. In this thesis, it was assumed that all PMUs are working properly. However, in 

reality, a malfunction PMU might send noisy or invalid data. The dynamic state estimation 

algorithm should be able to detect and eliminate these wrong measurements. Also, in 

Chapter 6, it was assumed that there are enough measurements available to make the 

whole system observable. While this assumption might become true in near future, there is 

still significant difficulty in having enough PMU measurements considering economic 

challenges associated with installing PMUs and communication infrastructures. Therefore, 

it is required to extend the method described in Chapter 6 to the cases where unobservable 

areas exist in the system. 

As the last step in the TSM, an appropriate corrective action is required if system is found 

to be unstable. The corrective action is typically performed by either reducing generated 

power or adding breaking resistors. In both cases, the amount of generation shed from the 

system should be minimized. Choosing appropriate location for performing the corrective 

action can significantly help reducing the amount of generation shed. Our initial analysis 

shows that the solutions of high-order linear systems inside the SLIT may be a good 

starting point to determine the optimal places amount of required energy shedding. 
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Further analysis is required to investigate the possibility of using the linearized subsystems 

of either MDA or SLIT for identifying the appropriate remedial action. 

Finally, developing a prototype is an essential step toward realizing an industrial-grade 

transient stability monitoring package. This prototype should be able to read PMU 

measurements and perform a transient stability simulation on a large-scale system, e.g. 

WECC. 
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APPENDIX A: VALIDATION OF EQUATION ‎(2-31) 

Coherency between buses i  and j  implies   ji  

 where   is some small angle (e.g. 5 ). Since   xx tan  as 0x , following condition is 

considered for coherency identification. 

    tantan  ki  (A.1) 

Left hand side of ‎(A.1) can be expanded using trigonometric identities. 
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Since      ii j
i

j
ii eVeV

 Re/Imtan  , ‎(A.2) can be reformulated using real and imaginary 

part of voltages. 
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This equation can be simplified by choosing    ki j
k

j
i eVeV


ReRe  as common denominator. 
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Moreover,  
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(A.6) 

In ‎(A.4), there are four multiplications between real and imaginary parts which can be 

expanded using ‎(A.5) and ‎(A.6). 
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In ‎(A.7),  A  and B  in nominator, and C  and D  in denominator can be aggregated to create 

one summation. The results can be further aggregated using trigonometric identity 

         xyyxyx cossincossinsin    to get ‎(A.8). 
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Generally, ‎(A.8) is time-variant since   is a function of time t  and accordingly, nothing can 

be concluded from ‎(A.8). Instead, summations in nominator and denominator are 

decomposed into time-dependent and time-independent summations. 
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In ‎(A.9),  sinS  represents difference between elements from same columns in rows i  and k  

while sinC  represents mutual effect of different columns in rows i  and k  on  ki  tan . 

The main difference between sinS  and sinC  as well as cosS  and cosC  relies in their 

dependency on time. While sinS  and cosS  are time-independent,  sinC  and cosC  depend on 

time. In the next step, effect of sinC  and cosC  on coherency is investigated. 

Suppose, 

lMlilk MM ,,, 
, 

llilk ,,,  
, 

(A.10)  

where lM ,  and l,  are two small numbers and means columns of row k  are slightly 

different from row i . Also, note that for each term in sinC  with pl 1  and ql 2 , there is 

exactly one other term with ql 1  and pl 2 . Separating these terms and computing their 

summation results in: 
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Therefore, for sufficiently small M  and  , following relationship holds: 
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where  pMqMpqMax ,,,, ,,,max   . Since there are nn 2  terms in sinC , 
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   Maxqipi MMnnC ,,
2

sin   (A.13)  

Additionally, in a power system, voltage of bus i  is highly affected by adjacent generators 

whose rotor angle, in turn, are close to each other (less than 90 ) and therefore if 

assumption ‎(A.10) holds,  cosC  is always positive. Accordingly, 
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In order to  Max  be small, ‎(A.10) should be met. Each term in sinS  represents the 

difference between liM ,  and lkM ,  and accordingly, if all terms in sinS  are small, ‎(A.10) is 

satisfied automatically. Therefore in order to make sure, ‎(A.10) is satisfied and 

    tantan  ji , following inequality should hold. 
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where   is some small angle. 
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