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Abstract

A mechanism is a formal protocol for collective decision making among self-interested agents. Mechanisms
model many important social processes from auctions to elections. They are also widely studied in computer
science: the participants in real-world mechanisms are often autonomous software systems (e.g., algorithmic
bidding and trading agents), and algorithmic problems (e.g., job scheduling) give rise to mechanisms when
users have competing interests.

Strategic behavior (or “gaming”) poses a major obstacle to understanding mechanisms. Although real-world
mechanisms are often fairly simple functions (consider, e.g., plurality voting), a mechanism’s outcome
depends on both this function and on agents’ strategic choices. Game theory provides a principled means for
analyzing such choices. Unfortunately, game theoretic analysis is a difficult process requiring either human
effort or very large amounts of computation.

My thesis is that mechanism analysis can be done computationally, due to recent advances in compact
representations of games. Compact representation is possible when a game’s description has a suitable
independence structure. Exploiting this structure can exponentially decrease the space required to represent
games, and exponentially decrease the time required to analyze them.

The contributions of my thesis revolve around showing that the relevant kinds of structure (specifically, the
structure exploited by action-graph games) are present in important mechanisms of interest. Specifically, I
studied two major classes of mechanisms, position auctions (as used for internet advertising) and voting rules.
In both cases, I was able to provide exponential improvements in the space and time complexity of analysis,
and to use those improvements to address important open questions in the literature. I also introduced a
new algorithm for analyzing action-graph games, with faster empirical performance and additional benefits
over the previous state-of-the-art. Finally, I created the Positronic Economist system, which consists of a
python-based descriptive language for mechanism games, with automatic discovery of computationally useful
structure.
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Chapter 1

Introduction

A mechanism is a formal protocol that a group of agents can use to arrive at a decision, even when those

agents disagree about which choice is best. A simple example is a committee voting to choose a single

recommendation from a small set of candidates. In computer science terms, a mechanism can be though of as

an algorithm whose inputs can be distorted by agents who want to influence the output.

Mechanism analysis is an increasingly important topic in computer science research. As the internet

brings agents with competing interests together, many traditional computer science problems are now being

investigated as mechanisms. Two important example problems are routing messages through a network [90],

and scheduling tasks across a set of processors [78]; both are made more complicated by the presence of

multiple users with competing interests. Mechanisms also provide important non-traditional application

domains for artificial intelligence. One example application is AI agents that participate in mechanisms, e.g.,

automated auction bidders [72]. Another is AI systems that design novel mechanisms for specific, unusual

settings [16].

The study of mechanisms also has many important applications outside the realm of computer science.

Mechanisms are a model of many important social institutions, including auctions [58], elections [33, chapter

5] and matching systems [34] such as those used to match medical students to internships or to match organ

donors with recipients.

Mechanism analysis is the investigation of what happens when a mechanism is run. However, treating a

mechanism as a simple mapping from inputs to outputs misses a critical point; the inputs to the mechanism can

be distorted by agents hoping to manipulate the output. To understand a mechanism one needs to understand

the relationship between the outcome and the agents’ true preferences. For example, when considering the

question “who will win an election, if we use voting rule X?,” the answer “whoever gets the most votes” is

much less satisfactory than “whoever best reflects the actual preferences of the majority of voters.” This kind
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of investigation is especially difficult because agents will not merely try to outwit the mechanism designer,

but will also try to outwit each other.

Mechanism analysis means studying the interaction between a setting, i.e., the agents and their preferences,

and a mechanism, but also involves a third element: a formal model of the strategic choices made by the

agents. The models of choice come from game theory: the mechanism and setting specify a game, and

game-theoretic solution concepts, e.g., Nash equilibrium, are used to identify the strategies that rational agents

would follow in that game. Thus, mechanism analysis means answering the question “Given mechanism M

and setting S, what happens in an equilibrium of type E?”

One could object to this way of framing the problem, arguing that researchers should focus on mechanisms

where agents do not have any incentive to manipulate the outcome. Such mechanisms are called incentive

compatible (IC) or truthful. In fact, the revelation principle shows that incentive compatibility is without

loss of generality, in the sense that every mechanism is equivalent to some incentive compatible mechanism

[75]. However, the revelation principle does not eliminate the need for study of non-IC mechanisms for

several reasons. One reason is that non-IC mechanisms are widely used in practice, e.g., simultaneous

ascending auctions [18], plurality votes [33], the generalized second-price auction [103]. To replace any

of these mechanisms with an equivalent IC mechanism first requires that one completely understand how

agents behave in the original mechanism. IC mechanisms also have many inherent weakness that could make

them impractical for many applications, including exponentially large computation and communication costs

and a need for the revelation of confidential information. Another reason is that IC mechanisms are often

only IC under restrictive assumptions about the agents’ preferences and abilities. When these assumptions

are relaxed, the mechanism may be as manipulable as any other non-IC mechanism, e.g., when the Vickrey

auction is used to sell to agents with common values [58], when multiple single-good Vickrey auctions sell

goods to agents with combinatorial preferences [10], or when the combinatorial Vickrey auction is used to

sell to agents who are capable of bidding under multiple identities [112].

My thesis is that mechanism analysis can be done computationally, leveraging compact representa-
tions of games. (See Figure 1.1.) Equilibrium computation has made substantial strides in the last decade.

Importantly for my thesis, two major areas of progress are (1) designing and identifying algorithms that

are fast in practice [80, 84], and (2) compactly representing games, along with algorithms that exploit this

compactness for more efficient computation [51, 55, 91]. Using a compact game representation allows me to

decouple the problem of representation, i.e., storing the game in a computationally useful form, from the

problem of solving the game, i.e., computing a solution concept such as a Nash or correlated equilibrium.

It also allows me to leverage existing algorithms and implementations for solving compact games, as well

as any new algorithms that are developed concurrently. For a compact representation, I chose action-graph

games (AGGs) [51], and their incomplete information counterpart Bayesian action-graph games (BAGGs)

[47], because they are more compact than nearly any other representation1 and there are preexisting fast

1MAIDs [57] are more compact than AGGs for some games. However, MAIDs are lacking in practical implemented algorithms,
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Mechanism-Based
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Agents with
Preferences

+
Mechanism

Compact Game
Representation

Equilibrium
OutcomeSolverEncoder

Computational Mechanism Analysis

Figure 1.1: My thesis is that is it possible to do mechanism analysis, i.e., identifying equilibrium
outcomes of non-truthful mechanisms, computationally. Computational mechanism analysis
(CMA) is different from most other mechanism analysis in that the equilibrium-finding is done
entirely by computer. To do this, I use compact game representations, action-graph games [51]
and Bayesian action-graph games [47], as intermediate data structures.

implementations of state-of-the-art solvers for AGGs.

Beyond the freedom to choose among solver algorithms, our two-stage design also provides freedom to

choose among solution concepts. To date, (Bayes) Nash equilibrium has tended to dominate the game-

theoretic analysis of mechanisms. (For example, see the works cited in Chapter 4, which cover a broad

range of analyses of internet advertising auctions.) However, arguments can be made for many other solution

concepts such as correlated equilibrium, perfect equilibrium and rationalizability, as well as behavioural

solution concepts such as quantal-response equilibrium or cognitive hierarchy. Computing these solution

concepts often requires computing game-theoretic “building blocks” such as expected utility, best response

and dominance. Thus, the (B)AGG-representation language, which allows for exponential speedup of these

building blocks, can provide a substantial computational advantage. (See Roughgarden and Papadimitriou

[91] for an example of how fast expected utility calculations can lead to exponentially faster correlated

equilibrium computation.)

One could argue that any hard-to-compute solution concept is implausible, precisely because of its hardness.

If an equilibrium is hard for researchers to find, then surely it must be hard for the agents to find as well;

thus, the argument follows, researchers could better predict agent behaviour by using only easy-to-compute

solution concepts, such as the limits of learning dynamics. Our approach could still be useful, even for a

researcher studying such a solution concept. Learning dynamics can converge to many different outcomes

depending on learning parameters (and random seeds), and it could be infeasible to bound the range of

possible outcomes. However, many kinds of learning dynamics are guaranteed to converge to correlated

equilibrium, and thus, an algorithm to compute optimal or extreme correlated equilibrium (e.g., the algorithm

from Jiang and Leyton-Brown [49]) can be used to identify which outcomes are possible, while remaining

and even basic operations like calculating expected utility are typically NP-hard because they generalize an existing NP-hard problem:
Bayes-Net inference [17].
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49 : A� B�C

47 : B�C � A

4 : C � B� A

Figure 1.2: An example setting for demonstrating that truthful voting can be a Nash equilibrium in
plurality voting, but that it can lead to the “wrong” outcome. The top line can be read as “49 voters
prefer candidate A over candidate B, and candidate B over candidate C.” Voting truthfully, i.e.,
for your most preferred candidate, is an Nash equilibrium in this setting: because the final tallies
separated by more than one vote, no agent has an incentive to deviate and strategically vote. In this
Nash equilibrium, candidate A wins. However, candidate A is the wrong candidate in the sense
that he is a “Condorcet loser,” i.e., he would lose in a pairwise vote against any other candidate.

agnostic about learning parameters.

Another significant, and fair, criticism of this approach is that it involves analyzing one game at a time,

and thus, any result it produces will be sensitive to the exact parameters of the mechanism, setting and

equilibrium-selection criteria that produced that specific game and equilibrium2. These results can be called

“existential” results; i.e., they show that a game with a particular property exists. (See Figure 1.2 for an

example.) In contrast, the literature on mechanisms contains many “universal results,” i.e., results showing

that some property holds for every mechanism-setting pair in some space. One example of a famous universal

result is Myerson’s revenue equivalence theorem [75], which identifies a wide range of settings in which all

economically efficient single-good auctions generate the same amount of revenue, in symmetric Bayes-Nash

equilibrium. These results are not dependent on parameters in the same way that existential results are, but

they are nevertheless limited, typically covering only a small space of mechanisms and settings. Using CMA

it is often possible to explore much larger spaces. For example, the famous EOS/Varian [30, 103] results

about economic efficiency in advertising auctions only applies to a very narrow range of settings, a single

mechanism and a specific family of equilibria. In contrast, the CMA tools in Chapter 4 can evaluate economic

efficiency for a wide range of settings, a large parameterized family of auctions, and the entire space of Nash

equilibria, using the algorithm from Chapter 3.

Despite only producing existential results, CMA can make a wide range of contributions to the study of

mechanisms:

• Additional analysis of even a single game can yield new insights. For example, the work in Chapter 4

includes one of the first analyses of what happens when the envy-free-ness assumption is relaxed in the

2The first part of the issue—that computational mechanism analysis (CMA) can only handle a single game at a time—seems to
be intrinsic to our way of framing the problem. The second part—that CMA only works with arbitrary sample equilibria—can be
overcome with better equilibrium-finding algorithms. Although most research into equilibrium-finding algorithms focuses on finding
sample Nash equilibria, itself a computationally hard problem, there are algorithms that can go further, finding all equilibria of a
particular type (see Chapter 3), or finding equilibria that provably optimize some objective (as in [48] for example).
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advertising auction games of Edelman et al [30] and Varian [103].

• Although CMA cannot directly produce universal results, it can help human researchers to do so,

through its ability to cheaply analyze large numbers of games. CMA helps to disprove hypotheses, by

enumerating many games searching for a counterexample. CMA results can also inspire researchers to

find new universal results based on unexpected patterns that appear in sample games. For example,

we were able to partially characterize the space of Bayes-Nash equilibria in plurality voting games

(Theorem 14) based on patterns found in a small set of sample games.

• By sampling settings, it is also possible to compute expected properties of a mechanism, e.g., expected

revenue given an arbitrary sample-able distribution, possibly derived from real-world data. This also

makes it possible to compare the expected performance of different mechanisms, even in cases where

neither mechanism dominates the other.

• Computational mechanism analysis enables automated mechanism design; in this approach, mechanism

design is framed as a constrained optimization where the search space is the parameter space of a

parameterized mechanism and the objective is some property of equilibrium outcomes, computed using

CMA. Vorobeychick et al [108] have had success with this approach, even using iterative best response,

an extremely simple Nash-equilibrium-finding algorithm. Chapter 5 shows an extended example of

revenue optimization using CMA. As in the case of voting, surprising experimental results have lead to

new theoretical insights.

• Lastly, CMA can facilitate the computation of empirical bounds, such as on the price of anarchy.3

This document proceeds as follows. Chapter 2 contains formal models of the concepts described above, as

well as relevant background. Chapter 3 describes a novel solver algorithm that became a key tool for my CMA

techniques. Chapters 4 and 5 describe my first application domain, internet advertising auctions. Chapter 4

shows how my CMA approach can be used to compare different advertising auctions across a wide range of

models. Chapter 5 demonstrates how mechanism analysis can facilitate mechanism design, searching for a

profit-maximizing mechanism from a parameterized space of auction designs. Chapter 6 describes my second

application domain, strategic voting in elections. Each application domain required building novel encoder

algorithms, which involved substantial cognitive effort. Chapter 7 describes the Positronic Economist system,

which simplifies, unifies and generalizes the CMA software used in the preceding chapters.

3 “Price of anarchy,” a worst-case bound on economic efficiency has recently become popular as a way of doing mechanism
analysis. (See Chapters 17–21 of [79].) Price of anarchy results typically consist of a existential result, i.e., an example of a setting
and equilibrium where this mechanism is a factor of x away from economic efficiency, and corresponding universal result, i.e., a
proof that no setting-equilibrium pair exists where this mechanism is more than x away from economic efficiency.
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Chapter 2

Background

A full review of game theory and mechanisms is far beyond the scope of this document; this chapter is written

with the assumption that the reader is familiar with both topics. (See Chapters 3–6 and 9–11 of [96] for a

detailed treatment.) Thus, this chapter discusses only more specialized areas of game theory. The first area

is compact game representations, particularly action-graph games. These are essential for computational

mechanism analysis: without them I would not be able even to store many games of interest. The second

area is solvers, specifically Nash-equilibrium-finding algorithms. One of the major advantages of using an

existing compact game representation is that I can directly apply these algorithms, rather than having to rely

entirely on novel solvers. The third area is computational mechanism analysis: there is a very small existing

literature on making general purpose algorithms for finding equilibrium outcomes of mechanisms.

Because each application domain has its own extensive body of research, I provide application-specific

literature surveys in their respective chapters.

2.1 Compact Games

The first barrier to computational mechanism analysis is game representation. Since normal-form games

grow exponentially in the number of players, they yield infeasibly large encodings of all but the simplest

interactions. The literature contains many compact representations for simultaneous move games, for example

congestion games [89], graphical games [55] and action-graph games [51]. For my purposes, action-graph

games are the most useful, because they combine two important features. They’re very compactly expressive,

i.e., if other representations can encode a game in polynomial-space then so can AGGs, and there are existing

empirically fast tools for working with them.

Action-graph games achieve compactness by exploiting two kinds of structure in the payoffs. (There are
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Figure 3: AGG representation of the
ice cream vendor game

locations along a beach. Vendors are of two kinds, choco-
late and vanilla. Chocolate (vanilla) vendors are nega-
tively affected by the presence of other chocolate (vanilla)
vendors in the same or neighboring locations, and are si-
multaneously positively affected by the presence of nearby
vanilla (chocolate) vendors. Note that this game exhibits
context-specific independence without any strict indepen-
dence, and that the graph structure is independent ofn.

Other examples of compact AGGs that cannot be com-
pactly represented as graphical games include: location
games, role formation games, traffic routing games, prod-
uct placement games and party affiliation games.

2.3 Notation

Letϕ(X) denote the set of all probability distributions over
a setX. Define the set of mixed strategies fori as

Σi ≡ ϕ(Si), (5)

and the set of all mixed strategy profiles as

Σ ≡
∏

i∈N

Σi. (6)

We denote an element ofΣi by σi, an element ofΣ by σ,
and the probability that playeri plays actions by σi(s).

Next, we give notation for applying some of the concepts
defined in Section 2.1 to situations where one or more
agents are omitted. By∆−{i,i′} we denote the set of pos-
sible distributions of agents other thani and i′, and by
D−{i,i′} we denote an element of∆−{i,i′}. Analogously,
we defineN−{i,i′}, S−{i,i′},Σ−{i,i′} and σ−{i,i′}. As a
shorthand for the subscript−{i, i′}, which we will need
frequently in the remainder of the paper, we use an overbar,
yielding∆, D,N, S,S,Σ andσ . When only one agent is
omitted, we writee.g. ∆−i. Finally, we overload our no-
tation, denoting byD(si, s′i, D) the distribution that results

when the actions ofi andi′ are added toD.

Define the expected utility to agenti for playing pure strat-
egy s, given that all other agents play the mixed strategy
profileσ−i, as

V i
s (σ−i) ≡

∑

s−i∈S−i

u(s, s−i) Pr(s−i|σ−i). (7)

The set ofi’s pure strategy best responses to a mixed strat-
egy profileσ−i is arg maxs V

i
s (σ−i), and hence the full set

of i’s pure and mixed strategy best responses toσ−i is

BRi(σ−i) ≡ ϕ(arg max
s

V i
s (σ−i)). (8)

A strategy profileσ is a Nash equilibrium iff

∀i ∈ N, σi ∈ BRi(σ−i). (9)

Finally, we describe the projection of a distribution of
agents onto a smaller action space. Intuitively we construct
a graph from the point of view of an agent who took a par-
ticular action, expressing his indifference between actions
that do not affect his chosen action. For every actions ∈ S
define a reduced graphG(s) by including only the nodes
ν(s) and a new node denoted∅. The only edges included
in G(s) are the directed edges from each of the nodesν(s)
to the nodes. The projected distributionD(s) is defined
over the nodes ofG(s) as

D(s)(s′) ≡
{

D(s′) s′ ∈ ν(s)∑
s′′ 6∈ν(s) D(s′′) s′ = ∅ . (10)

In the analogous way, we defineS(s), s(s), Σ(s) andσ(s).

Figure 2.1: An action graph for an “ice-cream game” [51]. In an ice-cream game, each player has either
chocolate or vanilla ice-cream to sell and must choose from a set of possible locations to set up his
stand. The action graph encodes that a player’s payoff depends only on his location, and the type
and number of competitors within one step of his location.

AGG extensions that can exploit additional types of structure.)

• Anonymity means that an agent’s payoff depends only on his own action, and the “configuration”

induced by the other agents. A configuration is a tuple of counts of how many agents played each

action. In other words, the agent’s payoff does not depend on who played which action. Therefore,

instead of storing an action’s payoff for every pure-strategy profile of the other agents, AGGs only

need to store one payoff for every configuration.

• Context-specific independence means that an agent’s payoff for playing some action only depends the

counts on a subset of the actions. These independences are encoded in an action graph, a directed

graph where each node corresponds to an action. The payoff for playing an action only depends on the

counts on its neighboring nodes. Instead of storing an action’s payoff for every configuration, AGGs

only need to store one for every “projected configuration,” a tuple of counts on the neighbors of a

vertex, denoted C(v) for vertex v. See Figure 2.1 for an example.

Formally, an action-graph game is a 4-tuple 〈N,A,G,u〉 where N is the set of agents 〈1,2, ...,n〉; A = Πi∈NAi

is the set of action profiles; G = 〈V,E〉 is a directed graph with vertices V , where V =
⋃

i∈N Ai, and edges E;

and u = 〈u1,u2, ...,u|V |〉 is a tuple of utility functions, where uv : C(v) 7→R.

The other advantage of AGGs, beside their size, is that they can be reasoned about efficiently. In particular,

given a mixed-strategy profile it is possible to compute the expected utility (for an agent i playing a particular

action ai) in polynomial time using dynamic programming [51]. This is important because expected utility is
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the main bottleneck in two important equilibrium-finding algorithms. The dynamic program proceeds through

n iterations, where at the kth iteration, it computes the marginal distribution over the projected configurations

C(ai) given the strategies of the first k agents.

There are two other variants of AGGs that will be relevant to my work:

• AGGs with function nodes (AGG-FNs) [51] — These have additional nodes that correspond to

functions rather than only actions. The projected configuration on a function node is a function of the

projected configuration on its neighbourhood. These are sometimes exponentially smaller than AGGs.

• Bayesian AGGs (BAGGs) [47] — In Bayesian AGGs, each agent has a private random type, typically

drawn independently from the other agents’ types, and each type has its own action set which is a

subset of the available action nodes.

2.2 Nash-Equilibrium-Finding Algorithms

Nash equilibrium finding is one of the central problems in algorithmic game theory and as such, the literature

on it is extensive, including numerous algorithms and hardness results. (See chapters 4–6 of [96] and chapters

1–9 of [79] for a overview.) Because the literature is so broad, I will focus specifically on Nash equilibrium

finding in AGGs. The most powerful hardness result—i.e., that finding an sample Nash equilibrium is PPAD

complete1 [14, 20]—applies directly to all fully expressive compact representations, including AGGs. There

are also applicable NP-hardness results: Finding a pure-strategy Nash equilibrium of a symmetric AGG with

unbounded tree-width is NP-hard [19]. Finding a pure-strategy Nash equilibrium of a graphical game2 is

NP-hard [42]. Thus, it is unlikely that there exists a polynomial-time algorithm for finding Nash equilibria of

general action-graph games. There have been some polynomial-time algorithms for finding Nash equilibria of

restricted AGGs [19, 46] but these have gone unimplemented, and often the restrictions rule them unsuitable

for my purposes, e.g., bounded treewidth, full symmetry, no function nodes.

In contrast, there have been promising results taking existing normal form algorithms and making them

work on AGGs [51]. These modified algorithms have exponentially faster asymptotic runtime than their

normal-form counterparts when inner loop operations are optimized for AGGs. They also often have very

good performance in practice, quickly finding Nash equilibria of games that would be infeasible to even

store on a modern hard drive if represented in the normal form. Below, I describe two algorithms, simplicial

subdivision and the global Newton method, that were previously made exponentially faster for AGGs. In

both cases, the algorithm’s bottleneck was calculating expected utility, and performance was improved by

using AGG-specific expected utility routines. A third state-of-the-art Nash-equilibrium-fining algorithm, the
1PPAD stands for “Polynomial Parity Arguments on Directed graphs.” This class also includes many other fixed-point problems,

and there is no known polynomial time algorithm for any PPAD-complete problem.
2Graphical games are a specialization of AGGs. Graphical games only exploit a very strong form of independence, where two

players are independent iff their actions can never affect each other’s payoffs.
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support enumeration method [84], is covered in detail in Chapter 3. It has different bottlenecks from the other

two algorithms, but I was still able to make it exponentially faster.

2.2.1 The Global Newton Method and Simplicial Subdivision

The global Newton method (GNM) [43] and simplicial subdivision (SimpDiv) [102] are two algorithms

for finding sample Nash equilibria with many common features. Most critically, both use expected utility

calculations as a critical inner-loop step, meaning that when analyzing AGGs they can be made exponentially

faster by using computing expected utility according to Jiang et al’s dynamic programming method [51].

Both have been implemented in GAMBIT [68] with AGG-specific extensions by Jiang.

The global Newton method (GNM) of Govindan and Wilson is a homotopy method. This means that it works

by tracing a continuous path from an easy-to-solve problem instance through to the actual problem instance

of interest, maintaining a solution throughout the process. This particular algorithm works by tracing a space

of games, starting from a game with strict dominant strategies and ending with the original input game, with

interpolated payoffs on the games in between. GNM is a Las Vegas algorithm3: the starting game with the

dominant strategy is generated at random, but the algorithm is always guaranteed to terminate eventually.

Simplicial subdivision works by exploring the space of mixed-strategy profiles in the game. Specifically, it

divides that space according to successively smaller triangular grids, i.e., dividing the simplex into smaller

simpleces, while tracing a fixed path along the verteces of this grid so that the current vertex is adjacent to a

simplex that contains a fixed point. SimpDiv is also a Las Vegas algorithm, because the starting point of the

path determines how much time the exploration will take and which fixed point will be found.

2.3 Other Computational Mechanism Analysis

There is a small existing literature on general-purpose techniques for analysing mechanisms. This is in

contrast with special-purpose techniques that only work for a specific small family of mechanisms, settings

and equilibrium concepts. For example, [103] and [5] include special-purpose algorithms for finding Nash

equilibria of internet-advertising auctions. However, both are tied to specific auctions, settings and equilibrium

refinements.

Vorobeychik et al [108] have experimented with applying iterative best response to simple two-bidder auction

problems. Iterative best response is a very straightforward algorithm: each agent initially plays some pure

strategy, and in each iteration one agent changes to a pure strategy that is a best response given the current

pure strategies of the other agents. Unfortunately, this algorithm can only find pure-strategy Nash equilibria.

Further, even in games in which such equilibria exist, iterative best response can cycle forever without finding

3A Las Vegas algorithm is an algorithm that has random behavior and runtime, but that never produces incorrect output [6].
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one.

Gerding et al [35, 86, 95] have explored refinements of the fictitious play algorithm applied to simultaneous

auction games and double auctions. Fictitious play is similar to iterative best response; however, when

players update their strategies, they best respond to the empirical distribution over previous iterations. In the

limit, these empirical distributions can converge to mixed Nash equilibria. However, fictitious play is not

guaranteed to converge.

Neither of these approaches, nor my approach, dominates the others in terms of expressiveness: Each can

model games that are impossible to model for the other two. One advantage of using AGGs, apart from

being able to model scenarios that are impossible for the other two, is that it allows for more sophisticated

algorithms, i.e., ones that are guaranteed to converge to equilibrium on any input, and that can be targeted to

search for specific types of equilibria.

Vorobeychik et al, have also studied interactions such as position auctions, approximating Nash equilibria

by simulation [105–107]. In principle, a simulator can model an arbitrarily complicated game. However, in

practice their approach involves sampling a small number of strategies (and a small number of random seeds

capturing any randomness in the game) and then finding an equilibrium of a game defined by those samples.

This approach is currently only practical when the number of players and samples is small. Unfortunately, a

game defined by a small number of samples is unlikely to encode the full complexity of the simulator.
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Chapter 3

The Support-Enumeration Method for
Action-Graph Games

3.1 Introduction

In this chapter, we introduce a novel equilibrium-finding algorithm for AGGs, based on the support-

enumeration method (SEM) of Porter, Nudelman and Shoham [84]. Similarly to the SimpDiv and GNM

variants produced by Jiang et al [51], our SEM variant works by replacing the main inner-loop operations with

faster AGG-specific alternatives. SEM has two distinguishing features compared to those other algorithms:

1) for many important families of games, SEM is much faster at finding sample Nash equilibria, and 2) SEM

can enumerate Nash equilibria, rather than just finding a single sample equilibrium. (Further, this search can

be directed towards specific types of Nash equilibria, particularly small-support Nash equilibria. No other

algorithm can do this.) Although the first feature originally motivated us to develop SEM for AGGs, the

second has proved even more valuable. As subsequent chapters will show, we often found that games of

interest have many Nash equilibria, and that considering only the sample equilibria found by other solvers

could be misleading. Thus, SEM’s equilibrium enumeration ultimately became the main game-solving

algorithm for all our subsequent analyses.

A key reason that SEM has not been extended to work with compact game representations is that it operates

very differently from other equilibrium-finding algorithms, and hence existing techniques could not be applied

to it directly. In this chapter we show how SEM can be extended to work with AGGs (and hence with other

game families compactly encodable as AGGs, such as graphical games and congestion games). Specifically,

we show how three of SEM’s subroutines can be made exponentially faster. Experimentally, we show that

these optimizations dramatically improve SEM’s performance, rendering it competitive with, and often faster

than, other state-of-the-art algorithms for computing equilibria of AGGs.
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∑
a−i∈S−i

p(a−i)ui(ai,a−i) = vi ∀i ∈ N,∀ai ∈ Si (3.1)

∑
a−i∈S−i

p(a−i)ui(ai,a−i) ≤ vi ∀i ∈ N,∀ai ∈ Ai \Si (3.2)

∑
ai∈Si

pi(ai) = 1 ∀i ∈ N (3.3)

pi(ai) ≥ 0 ∀i ∈ N,∀ai ∈ Si (3.4)

Figure 3.1: The Test-Given-Support (TGS) feasibility program for n-player games. For any given
support profile S ∈ ∏i∈N 2Ai , we can construct a TGS feasibility program where any feasible
solution (p,v) is a Nash equilibrium with support S,1where the players randomize according to the
probabilities in p and get the payoffs specified by v. The constraints on line 3.1 specify that each
player is indifferent between all the actions in the support of his strategy. Those on line 3.2 specify
that each player weakly prefers the actions in the support of his strategy. The remaining lines
specify that each mixed strategy is a probability distribution. Note thatp(a−i) = Π j∈N\{i}p(a j)
because agents randomize independently in Nash equilibria.

3.2 Technical Background

The support-enumeration method (SEM) is a brute-force-search method for finding Nash equilibria. Rather

than searching through all mixed strategy profiles, it searches through support profiles (specifying which

actions each agent plays with positive probability) and tests whether there is a Nash equilibrium with that

particular support. This test can be performed using the polynomial feasibility program given in Figure 3.1,

which is feasible if and only if a Nash equilibrium with that support profile exists. Though several algorithms

have been proposed for searching in the space of supports to find Nash equilibria [24, 63, 65], we will focus

on the most recent SEM variant, due to Porter, Nudelman and Shoham [84]. This variant introduces two

important features designed to improve empirical performance. First, it uses heuristics to order its exploration

of the space of supports, searching from smallest to largest, breaking ties in favor of more balanced support

profiles. This order can speed up equilibrium finding for several reasons. First, there are fewer small

support-size profiles to search through. Second, the corresponding feasibility programs have fewer variables

and simpler constraints. And third, in many games of interest (see, e.g., [80]), Nash equilibria with small,

balanced supports are common [84]. The second important feature is that instead of simply iterating through

the complete set of support profiles of a given size, SEM explores this space by tree search (see Figure 3.3 for

1Note that this formulation allows for actions in the support to be played with zero probability. This does not adversely affect
SEM’s behavior when looking for a single Nash equilibrium; if such a Nash equilibrium existed, SEM would have found it already.
However, this can have adverse affects when searching for multiple mixed Nash equilibria, e.g., on the game below:

A B
A 0,0 -1,0
B 0,-1 0,0

Although this game has no mixed Nash equilibria, TGS is feasible given full supports. This issue is easily addressed by adding an
objective maxx subject to x≤ pi(ai) for all actions in the support. Although supports strictly smaller than S are still feasible, the
optimal solution will have smaller support iff no MSNE with support S exists (which is indicated by x being equal to zero).
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Input: D = (D1, . . . ,Dn): profile of domains
Output: Updated domains, D, or failure
repeat

changed← false
foreach i ∈ N do

foreach ai,a′i ∈ ∪di∈Di do
if ConditionallyDominated(ai,a′i,D−i) then

Di← Di \{di ∈ Di : ai ∈ di}
changed← true
if Di = /0 then

return failure

until ¬changed ;
return D

Figure 3.2: Iterative Removal of Strictly Dominated Strategies

an example). This search works by, at each level, selecting a support for a single additional player. At the

leaves of the tree, the support is specified for every agent, and that support profile can be tested using TGS

for the existence of a Nash equilibrium. (See Section 3.3.5 for an example of this.) The advantage of using

this tree search comes from pruning: after an agent’s support is selected, SEM performs iterative removal

of strictly dominated strategies (IRSDS — see Algorithm 3.2), conditional on agents only playing actions

in their supports. This has the effect of eliminating many support profiles from consideration. The search

backtracks whenever an agent has an empty support or the TGS feasibility program is infeasible.

While SEM can find (or enumerate) exact PSNEs, but there are two important caveats when it comes to mixed-

strategy Nash equilibria. The first is that mixed-strategy Nash equilibria can involve irrational probabilities,

making them impossible to store in any rational representation. Thus, the best any implementation working

with rational or floating-point representations can guarantee is to find ε-Nash equilibria. (For our experiments,

we used an additive ε of 10−10.) Second, games can have multiple, even infinitely many, Nash equilibria

for a single support profile; enumerating all MSNEs requires enumerating all feasible solutions to the TGS

system. For our enumeration experiments, we restricted our attention to PSNEs, which are finite in number

and can be represented exactly using rational numbers.

3.3 SEM for AGGs

Observe that we can trivially make a version of SEM that takes an AGG as input, simply replacing the

normal form game (NFG) utility lookups (ui(a)) with the AGG equivalents (ui(a) = uai(c
(ai)), where c(ai) is

the projected configuration given a). We denote this algorithm NFG-SEM, because its behavior is exactly

the same as that of SEM for strategically equivalent normal-form games. However, while SEM and NFG-

13



S1={H} S1={T} S1={H,T}

S2={H} S2={T} S2={H,T}

Figure 3.3: Porter et al’s [84] tree-search works by instantiating strategies from agents’ supports, one
agent at a time, and removing strategies that are strictly dominated conditional on the agents
playing within their given supports. The search backtracks whenever an agent has an empty
support or the TGS feasibility program is infeasible.

SEM will do the same sequence of operations, their asymptotic performance analyses are not equivalent.

This is because NFG-SEM’s inputs can be exponentially smaller, due to the representational efficiency of

AGGs. Specifically, we show that NFG-SEM’s inner-loop operations—iterative removal of strictly dominated

strategies and the TGS feasibility program—are at least worst-case exponential in the AGG input length

(denoted `).2 The outer-loop search over supports also requires exponential time, even for games with PSNEs.

However, we can do better if we construct a version of SEM that explicitly takes AGG structure into account.

We present such an extension of SEM, denoted AGG-SEM, and its asymptotic analysis. Overall, we show

that AGG-SEM’s worst-case performance is exponentially faster than that of NFG-SEM.3

3.3.1 Conditional Dominance

Because SEM makes extensive use of iterative removal of strictly dominated strategies, efficiently identifying

dominated strategies is critical. For normal-form games, testing whether or not some pure strategy ai is

2AGG’s representation sizes are usually dominated by the size of their payoff tables. Intuitively, one might conclude that each
table has size O(nd) (where d is the in-degree of a the corresponding action node). However, this bound is often extremely loose for
AGGs, and does not apply to AGG-FNs, at all. Thus, it is both simpler and more accurate to express asymptotic performance in
terms of actually input size, `, rather than in terms of properties of the graph such as in-degree.

3Note that our theoretical results only show that AGG-SEM has exponentially faster worst-case runtime than NFG-SEM. There
may exist other SEM-based algorithms that are as fast (or faster than) AGG-SEM.
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dominated by some other a′i is straightforward: one can exhaustively search through through the pure strategy

profiles of the other agents, looking for the existence of some a−i to which ai is a weakly better response.

This trivial algorithm only requires time linear in the size of a normal-form game. However, it can require

time exponential in the size of an action-graph game.

Lemma 1. NFG-SEM’s dominance check has a worst-case running time of Θ(2`).

Proof. Consider the family of action-graph games with two actions per player and no edges. For this

family, there are at most 2n nodes, the payoff table for each of which contains only a single value. Thus,

` is Θ(n), while |A−i| = 2n−1 and therefore is Θ(2`). In the worst case (where an agent has a dominated

strategy), exhaustive search iterates over every a−i ∈ A−i to confirm that ai is not a best response to any action

profile.

However, we can do better: a straightforward, polynomial-time algorithm for AGG dominance checking can

be derived using an idea similar to that of Jiang et al’s [51] dynamic-programming algorithm. To determine

whether or not ai is dominated by a′i, we do not need to search through the entirety of A−i; we only need

to search over the set of possible projected configurations on the joint neighborhoods of ai and a′i. This

adaptation guarantees polynomial runtime. However, empirically we observed that it often gave rise to

poor performance, compared to exhaustive search over A−i. We attribute this to stopping conditions: the

exhaustive search can stop as soon as it finds any case where ai is a better response, while the dynamic-

programming algorithm must build up all configurations first before it ever encounters a better response,

effectively performing a breadth-first search. Based on this insight, we created a depth-first-tree-search-based

algorithm that combines the best of both approaches: like exhaustive search, it can find a better response

without needing to compute the entire set of projected configurations; like our adaptation above, it exploits

AGG structure and so needs only to evaluate a polynomial number of projected configurations. It works as

follows. At each level, the search fixes the action of some agent, giving a search tree that potentially includes

every A−i. (Recall that m denotes the maximum number of possible actions for any agent.) However, we

also perform multiple-path pruning: a search refinement in which previously visited nodes are recorded, and

the search backtracks whenever it re-encounters a node along a different search path [83]. In our case, the

algorithm backtracks whenever it encounters a previously visited projected configuration, based on a lookup

from a trie map. (See Algorithm 3.4 and see Section 3.3.5 for an example the algorithm’s execution.)

Lemma 2. AGG-SEM’s dominance check has a worst-case running time of O(nm`3).

Proof. The search traverses a tree with a depth of n and a branching factor of m. However, at every level, at

most ζ 2 nodes are expanded (where ζ denotes the largest set of possible projected configurations for any

node), because there are at most ζ 2 distinct projected configurations on the neighborhood of ai,a′i. In the

worst case, when it traverses the whole tree, the search must follow each of m arcs from O(ζ 2) nodes at

each of n levels, or O(nmζ 2) arcs. For each arc, the search may perform a trie-map lookup and insert; these

operations each require runtime that grows like the maximum in-degree of the graph, ι , and so the total cost

15



is O(nmζ 2ι). Because ` is Ω(ζ + ι), nmζ 2ι is O(nm`3).

Input: Two actions for player i: ai,a′i
A domain for each of the other players: D−i

Output: True iff a′i dominates ai conditional on −i only playing actions from D−i

T ← an empty trie

c← an empty projected configuration on neighbors of ai,a′i
return RecursiveCD(ai,a′i,D−i,T,c,1)

Figure 3.4: ConditionallyDominatedAGG

Input: Two actions for player i: ai,a′i
A domain for each of the other players: D−i

A trie map T (passed by reference)

A projected configuration c on the neighbors of ai and a′i
A player j

Output: True iff a′i dominates ai conditional on −i only playing actions from D−i

if j = i then
return RecursiveCD(ai,a′i,D−i,T,c, j+1)

if j = n+1 then
if ui(ai,c)≥ ui(a′i,c) then

return false
return true

foreach a j ∈ {a j ∈ A j : ∃s j ∈ D js.t.a j ∈ s j} do
c′← c⊕a j

if ¬( j,c′) ∈ T then
T ← T ∪{( j,c′)}
if ¬RecursiveCD(ai,a′i,D−i,T,c′, j+1) then

return false

return true

Figure 3.5: RecursiveCD

3.3.2 TGS Feasibility Program

SEM’s asymptotic performance is dominated by the Test-Given-Support feasibility program. (Polynomial

feasibility is NP-hard; e.g., polynomial constraints generalize 0–1 integrality constraints [104].) For NFG-
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SEM, this complexity obstacle is particularly severe: directly representing the TGS feasibility program

requires space exponential in the size of the AGG. Thus, TGS could require doubly exponential time.

Lemma 3. The NFG-SEM TGS feasibility program has worst-case size of Θ(nm2`).

Proof sketch, similar to Lemma 1’s proof. TGS can have |A−i| terms in each constraint, and this quantity is

Θ(2`) in the worst case. There are O(nm) such constraints. �

The essential challenge is in the expected utility constraints (lines 1 and 2 of Figure 3.1) which can be

exponentially long. We already have Jiang et al’s [51] dynamic-programming algorithm for computing

expected utility given a specific mixed-strategy profile. Now we want to compute expected utility symbolically,

without specifying the probabilities beforehand. This can be accomplished by “unrolling” the dynamic

program: every update in the dynamic program is expressed as a polynomial equality constraint in the TGS

program. This set of new constraints is polynomial in the size of the AGG.

Lemma 4. The AGG-SEM TGS feasibility program has worst-case size of O(n2m2`2).

Proof. For each j ∈ {1, . . . ,n} we introduce O(ζ ) new constraints, each corresponding to the probability of a

projected configuration given the strategies of the first j agents. This gives O(nζ ) constraints. Each contains

at most O(ζ m) terms, corresponding to the possible projected configurations and actions that could lead to

some new projected configuration when another agent is added. Since ζ is O(`), the output requires O(nm`2)

space. It must be run once for each agent i and for each action in Ai: O(nm) times in total. Thus, the TGS

feasibility program requires O(n2m2`2) space.

Although this optimization speeds up the worst case exponentially, it is not guaranteed to be helpful on

average. This is because the symbolic representation of the TGS system is made exponentially smaller

by replacing each exponentially long expected-utility constraint with multiple small constraints. How this

change affects runtime in the average case depends on the (black-box) feasibility solver.

3.3.3 Asymptotic Analysis of SEM for AGGs

We are now ready to compare the overall asymptotic runtime of AGG-SEM and NFG-SEM. We assume

that both algorithms make use of a polynomial feasibility solver with worst-case runtime O(2x) where x is

the length of the feasibility program. Unfortunately, without knowing which instances are hard for a given

polynomial feasibility solver, we cannot know if these inputs produced by either SEM variant will actually

require that much time. Thus, we can only upper-bound the runtime of each algorithm.

Theorem 5. NFG-SEM’s worst-case runtime requires the solving of O(2`) feasibility programs of size

O(nm2`). Thus, NFG-SEM’s worst-case runtime is bounded above by O(2nm2`+`), assuming a feasibility

solver with worst-case runtime of O(2x) where x is the length of the feasibility program.

Proof sketch. In the worst case, AGGs can have Ω(2`) support profiles (as in Lemma 1), even for symmetric
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games. Thus, the search must traverse a tree with O(2`) leaf nodes where TGS is solved, and O(2`) interior

nodes where iterative removal of strictly dominated strategies (IRSDS) is performed. Each TGS system

requires O(nm2`) space by Lemma 3. The time to solve each one is bounded above by O(2nm2`), which

dominates the time required by IRSDS. Thus the total runtime bounded by O(2nm2`+`). �

Theorem 6. AGG-SEM’s worst-case runtime requires the solving of O(2`) feasibility programs of size

O(n2m2`2). Thus, AGG-SEM’s worst-case runtime is bounded above by O(2n2m2`2+`), assuming a feasibility

solver with worst-case runtime of O(2x) where x is the length of the feasibility program.

Proof sketch. AGG-SEM still searches O(2`) interior nodes and leaf nodes. At each leaf node, a TGS system

requiring O(n2m2`2) space (by Lemma 4) must be solved. The time to solve each one is bounded above by

O(2n2m2`2
), which dominates the time required by IRSDS. Thus the total runtime bounded by O(2n2m2`2+`).

�

Given complexity results known in the literature, it is unsurprising that AGG-SEM requires exponential time

in the worst case. In particular, finding even PSNEs of AGGs in polynomial time would imply P=NP. The

reasoning behind this observation is that AGG-SEM always returns a PSNE, if one exists. Thus, if AGG-SEM

could find a sample Nash equilibrium in polynomial time, it could be used to determine whether a given AGG

has any PSNEs in polynomial time. AGGs generalize graphical games (and have the same asymptotic size),

and finding a PSNE of an arbitrary graphical game is NP-hard [42]. Further, finding a PSNE of a symmetric

AGG with unbounded m is NP-hard [19].

3.3.4 Further Speedups for k-Symmetric Games

We now show that the search over supports can be sped up in the case of AGGs with k-symmetry, i.e., where

the players can be partitioned into k classes such that all players in a class are identical. (We describe the

algorithm for the case of k = 1, or full symmetry. The generalization is straightforward.) We saw in the

proof of Theorem 5 that symmetry does not help for NFG-SEM. Here we strengthen that result, showing that

NFG-SEM can take exponential time even when PSNEs exist in k-symmetric AGGs with bounded m and k.

Theorem 7. NFG-SEM requires exponential time to find a sample PSNE in a k-symmetric AGG with bounded

m and k.

Proof sketch. For games with PSNEs, we never need to solve TGS: any support profile that survives IRSDS

is a Nash equilibrium. The tree search must still expand O(2`) nodes to explore all O(2`) pure support

profiles. At each interior node, IRSDS is called, requiring O(n2m3) calls to the conditional dominance test,

which requires O(2`) time (by Lemma 1). For bounded m, the total runtime to find a PSNE is O(n222`).

Further, recall from Lemma 1 that NFG-SEM’s conditinal dominance test requires Θ(2`) when the strategy is

dominated. Thus, NFG-SEM’s worst-case run-time is Ω(2`). �

Next, we show that we can achieve an improvement on such games for AGG-SEM. This optimization works
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by skipping any support profile that is a permutation of a previously explored support profile. At every stage

of the tree search, we explore a support Si iff Si � S j where j is any player with support selected higher in the

tree, and where � is the order in which supports are explored at each level of the tree.

Lemma 8. AGG-SEM’s search evaluates poly(n) support profiles in the worst case, even for games without

PSNEs, given a k-symmetric AGG with bounded k and m.

Proof. Every distinct support profile can be identified by a vector of O(k2m) integers in the range [0,n],

where each element indicates how many agents of a given class have a given support. There are at most

O(nk2m
) such vectors. For bounded k and m, this quantity is poly(n).

Theorem 9. AGG-SEM requires poly(`) time to either

1. find a sample PSNE, or

2. determine that no PSNE exists

in a k-symmetric AGG with bounded m and k.

Proof sketch. For bounded m and k, AGG-SEM’s search expands polynomially many nodes (by Lemma 8),

each of which requires running IRSDS. IRSDS performs O(n2m3) conditional dominance tests, requiring

O(nm`3) time (by Lemma 2). Thus, AGG-SEM has poly(`) runtime on such games. �

3.3.5 Examples

In this section, we show two examples of key operations of AGG-SEM.

Outer-Loop Search Example

First, we show a example of AGG-SEM enumerating PSNEs, for the following simple symmetric game (with

PSNEs entries marked in bold):

A B C

A 1,1 1,0 1,0

B 0,1 2,2 3,3
C 0,1 3,3 2,2

AGG-SEM’s enumeration of supports proceeds in a depth-first fashion. Each arc represents choosing the

support of a single agent. (See Figure 3.6.) For PSNEs, only supports of size one are considered. First, the

algorithm selects that agent one plays action A (node 2), then IRSDS is performed, which removes B and C
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a1=A
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a1=B
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a1=C
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a2=A
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a2=B
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Figure 3.6: Visualizing the outer-loop tree search process followed by AGG-SEM when enumerating
PSNEs. Each edge specifies that one more agent’s support has been determined. Edges that can be
pruned by IRSDS are marked in gray, while edges that can be pruned by symmetry are marked by
dashes. Shaded (leaf) nodes correspond to PSNEs. Note that AGG-SEM does not need to visit
node 12, because this is just a permutation of the equilibrium identified at node 9.

from the space of possible actions for agent two. The algorithm proceeds to node 3, and identifies a PSNE,

(A,A). Because the other children of node 2 have been pruned by IRSDS, the algorithm backtracks and goes

to node 6. Here, IRSDS can prune both A and B from the space of possible actions. a2 = A will also not be

explored because this is a permutation of a profile that was previously explored or ruled out. The algorithm

proceeds to node 9, another PSNE, (B,C). Then the algorithm backtracks and proceeds to node 10. However,

all the children of node 10 can be pruned: A and C are dominated given that a1 =C, and profile (C,B) can be

pruned by symmetry. With the space of pure-strategy profiles exhausted, the algorithm ends.

Conditional Dominance

Next we show a worked example of conditional dominance testing in a simple 3-agent, 4-resource simple

congestion game with resources denoted by (A,B,C,D), where each agent can only choose a single resource,

and where the payoff for using resource x is 6/cx where cx denotes the number of agents using that resource.

Note that this corresponds to a symmetric AGG where there are 4 nodes, and the only edges are self-edges.

ConditionallyDominatedAGG works by searching for partial strategy profile a−i where ai is a weak best

response, which would prove that a′i does not strictly dominate ai, or by confirming that no such profile

exists (meaning that ai is strictly dominated and can be pruned without any risk of failing to find a Nash

equilibrium).

This search proceeds in a depth-first fashion, fixing the actions of all the other agents, one at a time. (See
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1: (cA=0, cD=0)

2: (cA=1, cD=0)

a1=A

3: (cA=2, cD=0)

a3=A

6: (cA=1, cD=0)

a3=B

9: (cA=1, cD=0)

a3=C

10: (cA=1, cD=1)

a3=D

4: (cA=3, cD=0)
u2=2

a2=A

5: (cA=2, cD=1)
u2=6

a2=D

7: (cA=2, cD=0)
u2=3

a2=A

8: (cA=1, cD=1)
u2=6

a2=D

11: (cA=2, cD=1)
u2=3

a2=A

12: (cA=1, cD=2)
u2=3

a2=D

Figure 3.7: Visualizing a ConditionallyDominatedAGG search. Each edge is labeled with an assignment
of an action to an agent. Each node is labeled with an integer identifying the order in which
ConditionallyDominatedAGG explores, and with a 2-tuple, identifying the projected configuration
given the actions leading to that node. Leaf nodes are square and come in pairs, representing
actions ai and a′i, and are also labeled with agent i’s utility. If i’s utility is weakly greater for action
ai (as in the shaded nodes), then ai is not dominated by a′i and the search can exit successfully.

Figure 3.7.) At node 2, agent 1 plays A. This increases the projected configuration on A, denoted cA to 1.

At node 3, agent 3 does the same, increasing cA to 2. Nodes 4 and 5 correspond to agent 2’s choice of A

and D respective, which increases cA and cD respectively. Because D has strictly higher utility for agent

2, the algorithm cannot yet confirm that D does not dominate A. Backtracking, to node 6, we consider the

case where agent 3 plays B. Because B is not a neighbor to either of the actions under consideration, the

projected confirmation does not change between node 2 and node 6. As in nodes 4 and 5, agent 2 has a higher

payoff for D in nodes 7 and 8. Thus, the search backtracks to node 9. Because node 9 has the same projected

configuration as node 6, it can be pruned and the search backtracks to nodes 10 (where agent 3 plays D) and

it’s children, nodes 11 and 12. In this case (where agents 1 and 3 play A and D respectively), agent 2 gets

equal utility for A and for D, showing that D does not strictly dominate A.

3.4 Experimental Evaluation

So far, our analysis has concentrated on the worst case. However, improvements to the worst case do

not necessarily imply improvements on instances of interest. As we are motivated by developing practical

methods for computing Nash equilibria, we conducted an experimental evaluation to compare the performance

of NFG-SEM and AGG-SEM.
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3.4.1 Experimental Setup

We sampled 50 instances from each of 11 different game distributions. Nine distributions were from GAMUT

[80]; each had n = 10 players, m = 10 actions per player, and action graphs with in-degree at most five. The

remaining two distributions were over position auction games with n = 10 players and up to m = 11 actions

per player (though weakly dominated actions, which occurred frequently, were omitted by the generator).

The two position auctions distributions based on 1) the generalized first-price auction (GFP), which is often

has no pure-strategy Nash equilibrium, and 2) the weighted generalized second-price auction (GSP), which

often has many pure-strategy Nash equilibrium [98]. (See Table 3.1.)

On each game, we compared AGG-SEM to three other algorithms: NFG-SEM, and the two existing state-of-

the-art Nash-equilibrium-finding algorithms: GNM, the global Newton method [43], and SimpDiv, simplicial

subdivision [102], both using Gambit implementations [68] extended to work efficiently with AGGs by Jiang

et al[51]. All algorithms were given error tolerance of 10−10. For AGG-SEM and NFG-SEM, we used

MINOS [74] to solve the TGS feasibility problems.

We performed a blocking mean-of-means test [15] (with p≤ 0.05) to compare mean runtimes across game

distributions. This is a blocking test (i.e., rather than testing whether the mean runtime of algorithm A was

significantly less than the mean runtime of algorithm B, we tested whether zero was significantly greater than

the mean difference between the runtimes of algorithms A and B), to account for the fact that some instances

may be harder than others, e.g., because they are lacking in small-support equilibria. The bootstrapping

process for testing these differences was run with 20,000 samples per test. Because the same instances

were used in multiple tests (e.g., comparing algorithm A to algorithm B and to algorithm C), we applied a a

Bonferroni correction.

In three distributions (see Table 3.1), we were not able to conclude that differences were significant because

of high runtime variation. Such problems can be overcome by obtaining additional data; thus, for these

distributions we generated an additional 150 instances (i.e., 200 total). We included the resulting additional

tests in our Bonferroni correction. In the end, we were able to identify a significantly faster algorithm for

every distribution, except for D1, the coffee-shop game.

Our experiments were performed on machines with dual Intel Xeon 3.2GHz CPUs, 2MB cache and 2GB

RAM, running Suse Linux 11.1 (Linux kernel 2.6.27.48-0.3-pae). Each run was limited to 12 CPU hours; we

report runs that did not complete as having taken 12 hours. In total, our experiments required about 420 CPU

days.
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Figure 3.8: Scatterplot contrasting the runtimes of AGG-SEM and NFG-SEM. The left plot shows
runtimes for computing a sample Nash equilibria; the right plot shows runtimes for computing all
pure strategy Nash equilibria.

3.4.2 Results

Overall, we found that AGG-SEM provided a substantial performance improvement over NFG-SEM, outper-

forming it on the vast majority of instances. (See Figure 3.8). As we expected, AGG-SEM was not faster

on absolutely every instance. Nevertheless, AGG-SEM achieved significantly faster mean performance in

every game distribution. Its largest speedup over NFG-SEM was 280× (on D1 — Figure 3.12a), its smallest

speedup was 1.45× (on D4 — Figure 3.12d), and its median speedup was 10× (on D10 — Figure 3.12j).

While the biggest speedups were on games where AGG-SEM could leverage k-symmetry, ranging from

280× (on D1 — Figure 3.12a) to 7× (on D2 — Figure 3.12b), we still achieved substantial speedups on

asymmetric games (those with n player classes), ranging from 10× (on D10 — Figure 3.12j) to 1.45× (on

D4 — Figure 3.12d). AGG-SEM stochastically dominated NFG-SEM overall (see Figure 3.11), but on a

per-distribution basis, it only stochastically dominated on four distributions (D3 and D9–11 — Figure 3.12c

and i–k). AGG-SEM’s failure to stochastically dominate on the remaining seven distributions was due to

the fact that all contained instances that both methods solved extremely quickly (in less than one second),

but that NFG-SEM finished more quickly. Considering runtimes over a second, AGG-SEM stochastically

dominated NFG-SEM on every distribution.

AGG-SEM signficantly outperformed SimpDiv and GNM on 8 of the 11 game distributions (see Table 3.1),

and furthermore stochastically dominated GNM overall (see Figure 3.11). Comparing the runtimes of AGG-

SEM and SimpDiv, we found that the two were correlated: they both solved many (338) of the same instances

in under 600s, with SimpDiv having better mean runtime on these instances (µ = 12.71s vs µ = 108.32s). On

the remaining instances, SEM finished far more often (87.74% vs 23.11%). Thus, SimpDiv was only fastest
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on D2 (Ice-cream games — Figure 3.12b), which contained almost exclusively instances that were easy for

both algorithms. AGG-SEM only stochastically dominated SimpDiv on D10 and D11 (Figure 3.12j and k),

which contained no instances that were easy for SimpDiv. AGG-SEM’s runtime was less correlated with that

of GNM than it was with that of SimpDiv. For example, GNM solved every instance in D4 (GFP position

auctions — Figure 3.12d), which contained instances that were not solved by either SimpDiv or AGG-SEM.

Overall, however, GNM had the worst performance (and was stochastically dominated by AGG-SEM on

every distribution but D3 and D4). Although AGG-SEM had the fastest overall average runtime, there were

at least a few instances for which each of AGG-SEM, SimpDiv and GNM was hundreds of times faster than

the others. The best practical approach may thus be a portfolio of all three algorithms, following e.g. [111].

Like Porter, et. al., [84], we found that in many (7 of 11) distributions, most games (over 90%) had PSNEs.

AGG-SEM finished on every such game. Thus the four distributions (D4 and D9–11 – Figure 3.12d and i–k)

in which PSNEs were least common were also those on which AGG-SEM was mostly likely to time out. (We

verified that AGG-SEM terminated on every game with PSNEs by checking the support size AGG-SEM was

considering when it timed out. In every case, it ruled out all pure support profiles before running out of time.)

One advantage of SEM over other Nash-equilibrium-finding algorithms is its ability to enumerate all Nash

equilibria (or all equilibria with support sizes not more than some constant). This is particularly useful when

we want to understand the range of possible outcomes. For example, in [98] one of the goals was to identify

the minimum and maximum revenue possible in equilibrium of position auction games. At the time, we were

only able to compute empirical bounds on revenue in any given auction game (e.g., asserting the best-case

equilibrium revenue must be at least $5 because we found an equilibrium where the revenue is $5). Tools

that could search through or enumerate the full set of equilibria (e.g., to find the equilibrium that provably

maximizes revenue) did not exist at the time. We have since tested equilibrium enumeration by searching for

all PSNEs on a representative subset of these games (20 from each distribution). We found that AGG-SEM

was significantly faster than NFG-SEM (see Figure 3.8) at enumerating the set of all PSNEs. Notably, for

every position auction game, AGG-SEM was able to find all PSNEs in under one CPU minute. (These games

each have ten bidders, eight positions and eleven bid increments per bidder.)

3.5 The Hardness of Generalizing AGG-SEM

In the previous sections, we have focused on AGGs with function nodes (or AGG-FNs). We introduced the

AGG-SEM algorithm for AGG-FNs, and demonstrated its advantages both theoretically and experimentally.

However, this algorithm depends on solving many conditional-dominance problems as a key inner-loop step.

In this section, we show that conditional dominance is computationally hard for two key extensions of AGGs:

AGGs with function nodes and additivity (or AGG-FNAs) and Bayesian AGGs (BAGGs, with or without

function nodes). Thus, SEM (and other algorithms depending on dominance checking) may not be feasible

for such generalized AGGs.
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No. Game type Player Mean runtime (CPU s)
Classes AGG-SEM NFG-SEM GNM SimpDiv

D1 Coffee shop 1 18.00 5032.38? 3309.73? 362.63†

D2 Ice cream 3 131.64? 957.42? 151.59? 0.39
D3 Job market 1 249.02 6070.61? 372.96?† 1536.45?†

Position Auctions:
D4 GFP n 7519.90? 10878.19? 75.73 10750.93?

D5 Weighted GSP n 45.10 96.78? 723.19? 734.56?†

Random AGGs:
D6 Random graph 1 68.02 7005.34? 10580.58? 5188.02?

D7 Road graph 1 441.11 32103.15? 41814.79? 9507.58?

D8 Small-world graph 1 596.75 31750.79? 28195.09? 4665.58?

Random Graphical Games:
D9 Random graph n 11953.48 20469.50? 24337.47? 27002.81?

D10 Road graph n 3244.50 32052.36? 43200.00? 43200.00?

D11 Small-world graph n 11356.47 29861.96? 43200.00? 40677.67?

Overall: 3244.28 16520.09? 18265.93? 13176.94?

Table 3.1: Mean runtimes. ? denotes significantly slower than fastest solver, α = 0.05. Capped runs
count as 43200s. † denotes distributions where, due to high variance, more instances (200) were
necessary for statistical significance.

Formally, an AGG-FNA is similar to an AGG-FN, except for the space of pure strategies: in an AGG-FNA,

each agent chooses a pure strategy from a list of subsets of action nodes. His payoff of for a given pure

strategy is simply the sum of the payoff values for all the action nodes in his selection.

We define the decision problem as follows: the input is an AGG-FNA, an agent i, and a pure strategy si for

that agent; the decision property is that si is not strictly dominated by any pure strategy.

Theorem 10. UNDOMINANCE(AGG-FNA) is NP-complete.

Proof. Part 1: UNDOMINANCE(AGG-FNA) is in NP: A certificate for this problem is a pure-strategy profile

for all the agents except i. A certificate can be checked by simply enumerating all of i’s pure strategies,

computing the expected utility for each. The certificate is valid iff si’s utility is weakly maximal.

Part 2: UNDOMINANCE(AGG-FNA) is NP-hard: by reduction from 3SAT In 3SAT, the input a set of k

clauses of length at most three, and involving m boolean variables denoted x1, · · · ,xm. The decision property is

that there exists a satisfying assignment, i.e., an assignment to all m variables where every clause is satisfied.

This reduction creates an m+1 player AGG-FNA (as in Figure 3.9) where player i (for i≤m) corresponds to

variable xi. Each of these players has two pure strategies, corresponding to the possible assignments of his

variable. Each of these pure strategies corresponds to a single action node, not shared with any other player.

The payoffs of these players are not important, and can therefore be constant (meaning the corresponding

action nodes have no in-arcs). Player m+1 also has two pure strategies, which we call SAFE and SAT. SAFE

consists of a single action node with no in-arcs; player m+1 gets a payoff of k−1/2 whenever he plays

SAFE. SAT consists of k action nodes, corresponding to the k clauses in the 3SAT problem instance. Each of

these action nodes at most three in-arcs corresponding to single-variable assignments that could satisfy the

clause. The payoff for each of these action nodes is one if the assignment would satisfy the clause and zero
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SAT
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x1=T

x1=T or x2=F or x3=T

x1=F x2=Tx2=F

x2=T or x3=F or x4=T

x3=T x3=F x4=Tx4=F

SAFE

Figure 3.9: An example 3SAT instance reduced to dominance in an AGG-FNA. Dashed boxes denote
action sets for agents, elipses denote action nodes and shaded regions denote pure-strategies. Every
pure strategy except SAT has a single action node; the payoff of SAT is the sum of the payoffs of
its two action nodes.

otherwise.

Sub-claim (Testing for undominance can be used to test for satsifiability): There is a one-to-one mapping

between assignments in the 3SAT problem instance and pure-strategy profiles for the first m players. Given

such a pure-strategy profile, the payoff for player m+ 1 playing SAT is equal to the number of clauses

satisfied by the assignment. Thus, player m+1 cannot get a payoff of k unless an assignment exists which

satisfies all k clauses. Thus, SAT is dominated by SAFE (with a guaranteed payoff of k−1/2) unless the

3SAT problem instance is satisfiable.

Sub-claim (The reduction is polynomial in time and size): This game has 2m action nodes for the variable

players, and k+1 action nodes for the SAFE/SAT player. Each variable-assignment action node (and the

SAT node) have no in-arcs, and thus their payoff tables each have only a single entry. Each of the k clause

action nodes has 3 in-arcs, which can only be zero or one (because action node is shared between any two

agents). Thus, each of those action nodes has a payoff table with 23 entries. Each action node only appears in

a single pure-strategy. The entire AGG-FNA can be created in a single pass (iterating through variables then

through clauses, creating the relevant parts of the AGG-FNA as they arise). Therefore, the entire reduction

can be accomplished in O(m+ k) time and space.

Therefore, UNDOMINANCE(AGG-FNA) is NP-hard.

A similar proof can be used with Bayesian action-graph games (BAGGs).

Bayesian action-graph games are a combination of action-graph games and epistemic-type Bayesian games.
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As in Bayesian games, each agent has a private epistemic type drawn from a discrete distribution with a

commonly known prior. (Types need not be probabilistically independent.) Each type maps to subset of

action nodes that the agent may choose from. BAGGs can also include function nodes and additivity, but

these features are not necessary for our proof of hardness.

We define the UNDOMINANCE(BAGG) as follows: the input is an BAGG, an agent i, a type ti for that agent

and an action node ai for that agent given that type; the decision property is that ai is not ex interim strictly

dominated by any pure strategy.

Theorem 11. UNDOMINANCE(BAGG) is NP-complete.

Our proof of NP-completeness for BAGGs follows the same structure as previous AGG-FNA proof. In

particular, the hardness reduction also involves a subset of the players whose strategies correspond to

certificates and player who has choose between a safe action and an action that corresponds to the decision

property (which will be strictly dominated when the decision property is false).

Proof. Part 1: UNDOMINANCE(BAGG) is in NP: A certificate for this problem is a behavioral-strategy

profile for all the agents except i. A certificate can be checked by simply enumerating all of i’s possible

actions, computing the ex interim expected utility for each. The certificate is valid iff ai’s utility is weakly

maximal.

Part 2: UNDOMINANCE(BAGG) is NP-hard, by reduction from INDEPENDENTSET: In INDEPENDENTSET,

the input is an undirected graph with n vertices, and a non-negative integer k. The decision property is

that there exists an independent set (i.e., a set of nodes where no two nodes in that set share an edge) with

cardinality k.

This reduction creates a 3 player BAGG. (See Figure 3.10.) The first two players each have n types (with

uniform probability) each of which corresponds to one of the nodes vi in the graph. Given each of these

types, an agent has a choice of two action nodes, labeled IN and OUT. Again, the payoffs of these players are

irrelevant, so these action nodes have no inputs. The third player has only one type, with two action-nodes,

SAFE and INDSET. If he plays SAFE, he gets a constant utility of k−1/2. If he plays INDSET his ex post

utility is given by the table below:

case t1 and t2 a1 and a2 u3

i equal both IN n2

ii equal both OUT 0

iii equal otherwise −n3

iv neighbours both IN −n3

v neighbours otherwise 0

vi otherwise otherwise 0
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i=1,2; ti=3i=1,2; ti=1 i=1,2; ti=2

i=3

IN

INDSET

OUT INOUT INOUT

SAFE

Figure 3.10: An example INDEPENDENTSET instance reduced to dominance in a BAGG. Dashed boxes
denote action sets for agents given their types.

Note that these payoffs can be computed by connecting every IN node to the INDSET node.

Sub-claim (Testing for undominance can be used to test for independent set cardinality): For agents 1 and

2, every pure strategy is a mapping from the set of vertices to {IN,OUT}, and thus corresponds to a subset

of the vertices. If agents 1 and 2 play strategies that are not identical, then agent 3’s ex interim expected

utility of INDSET is at most zero. (This is because agent 3 get a payoff of –n3 with probability at least 1/n2

(case iii); the only positive payoff agent 3 can get is n2 and this happens with probability at most n/n2.) If

agents 1 and 2 play strategies that are identical but that do not correspond to an independent set, agent 3’s ex

interim expected utility of INDSET is at most zero, by the same reasoning as with non-identical strategies

(but using the penalty from case iv). If agents 1 and 2 play strategies that are identical, and that correspond

to an independent set with cardinality j, then agent 3’s ex interim expected utility of INDSET is exactly j

(because he gets payoff n2 (case i) with probability j/n2). Thus, INDSET is dominated by SAFE (which gets

a payoff of k−1/2) unless there is an independent set with cardinality k.

Sub-claim (The reduction is polynomial in time and size): This BAGG has 2n+2 action nodes, and all but

INDSET have no inputs (and therefore have payoff tables of size 1). INDSET has n inputs, but those inputs

must be non-negative integers and must sum to at most two. Thus, the payoff table for INDSET can have

only n2 possible configurations, and can only require O(n3) space. This O(n3) factor dominates the other

costs in both time and space.

Therefore, UNDOMINANCE(BAGG) is NP-hard.
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Figure 3.11: Runtime CDFs for AGG-SEM and the three incumbent algorithms

3.6 Conclusion

We have shown that the support enumeration method can be extended to games compactly represented as

AGGs. Our approach outperforms the original SEM algorithm for such games both asymptotically and in

practice. Theoretically, we showed that SEM’s worst-case runtime can be reduced exponentially. Our work

in this vein may also be of independent interest, as it shows novel ways of exploiting AGG structure in

theoretical analyses. In particular, the polynomial-time algorithm for removing dominated strategies could

be useful, e.g. as a preprocessing step for other equilibrium-finding algorithms. Empirically, we observed

that our new algorithm was substantially (often orders of magnitude) faster than the original SEM algorithm,

and that it almost always outperformed current state-of-the-art algorithms. Beyond this, our algorithm offers

substantial advantages over existing algorithms, such as the ability to enumerate equilibria and to identify

pure-strategy Nash equilibria or prove their non-existence.

We envision several extensions to AGG-SEM. One promising direction is to search for specific types of (e.g.,

symmetric or social-welfare-maximizing) equilibria, for example by replacing the depth-first search with

branch-and-bound search. This could be particularly valuable for computational mechanism analysis in cases

with many equilibria; sometimes the main bottleneck is to finding an specific equilibrium is that it belongs

to exponentially large set, which SEM exhaustively enumerates. Performance could also be improved by

using good heuristics to choose the order in which supports are instantiated, or even by exploring the space of

supports using stochastic local search rather than tree search. (However, using local search would require

giving up the ability to enumerate equilibria, one of SEM’s most unusual and valuable features.)
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(a) D1: Coffee shop
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(b) D2: Ice cream
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(c) D3: Job market
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(d) D4: GFP
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(e) D5: Weighted GSP

10-2 10-1 100 101 102 103 104

Runtime (CPU s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
in

st
a
n
ce

s 
so

lv
e
d

AGG-SEM

SimpDiv

GNM

NFG-SEM

(f) D6: AGG - random

10-2 10-1 100 101 102 103 104

Runtime (CPU s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
in

st
a
n
ce

s 
so

lv
e
d

AGG-SEM

SimpDiv

GNM

NFG-SEM

(g) D7: AGG - road
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(h) D8: AGG - small-world

10-2 10-1 100 101 102 103 104

Runtime (CPU s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
in

st
a
n
ce

s 
so

lv
e
d

AGG-SEM

SimpDiv

GNM

NFG-SEM

(i) D9: GG - random
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(j) D10: GG - road
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(k) D11: GG - small-world

Figure 3.12: Per-distribution runtime CDFs for all four algorithms
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Chapter 4

Application: Position Auctions for Internet
Advertising

4.1 Introduction

This chapter covers the first application domain for my computational mechanism analysis techniques,

position auctions. Position auctions are a relatively new family of mechanisms in which bidders place a single

bid for a set of goods of varying quality, and the ith-highest bidder wins the ith-most-desirable good. Each

year, these auctions yield billions of dollars selling advertising space on search-engine results pages. Various

position auction designs have been considered over the years; e.g., advertisers who attract more clicks may

be given advantages over weaker bidders, and bidders may have to pay their own bid amounts or a smaller

amount computed from the bids of others. After some initial experimentation with these design dimensions,

the major search engines have converged on a single design: the weighted, generalized second-price auction

(which we denote wGSP; we define it formally in what follows). The main question that this chapter seeks

to address is whether wGSP represents a good choice, as compared both to the auctions it has replaced and

to theoretical benchmarks. Specifically, we ask whether wGSP is more economically efficient, whether it

generates more revenue, whether it yields results that users find more relevant, and whether it produces

low-envy allocations.

There is an enormous literature on auction analysis that seeks to answer such questions. Overwhelmingly, this

literature proceeds by modeling a setting as a (Bayesian; perfect-information) game and then using theoretical

analysis to describe what occurs in (Bayes–Nash; dominant-strategy; locally envy-free) equilibrium. There is

much to like about this approach: it is often capable of determining that a given mechanism optimizes an

objective function of interest or proving that no mechanism can satisfy a given set of properties. Indeed, most

of what we know about mechanism design was established through such analysis. However, the approach
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also has limitations: in order to obtain clean theoretical results it can be necessary to make strong assumptions

about bidder preferences and to simplify tie-breaking and bid discretization rules. Even when considering

such a simplified version of a given problem, it is often extremely difficult to make quantitative comparisons

between non-optimal mechanisms (e.g., which non-revenue-optimizing mechanism yields higher revenue on

expectation)? The current state of affairs in the literature is thus that we know a great deal about auctions, but

that many open questions appear to be resistant to analysis by known techniques.

In the case of position auctions, most research has used perfect-information Nash equilibrium as the solution

concept of choice. This choice is justified by the fact that advertisers interact repeatedly: nearly identical

goods—user views of a particular search result page—are sold up to millions of times per day, and advertisers

can continuously adjust their bids and observe the effects. A variety of other technical assumptions are

commonly made, characterizing advertiser preferences (e.g., a click has the same value regardless of position,

and regardless of which other ads are shown), user behavior (e.g., a user’s response to an ad is independent of

which other ads she has seen), and advertiser behavior (e.g., an advertiser will act to reduce his envy even

when doing so does not increase his utility). With all these assumptions in place, various strong results have

been obtained (e.g., wGSP is efficient and generates weakly more revenue than VCG), but other important

questions remain open (e.g., does wGSP generate more revenue than other position auctions?). Relaxing any

one of these assumptions can lead to many further open questions.

This chapter shows that my computational mechanism analysis techniques are able to address a wide variety of

open questions that have not proven amenable to theoretical analysis. We maintain the approach of modeling a

mechanism as a game and of reasoning about (exact) solution concepts of interest; we depart from traditional

analysis by allowing only a discrete set of bids and by answering questions by providing statistical evidence

rather than theorems. Specifically, we sample advertiser preferences from a given distribution, compute

an exact Nash equilibrium of the resulting game between advertisers, and reason about this equilibrium to

compute properties of the outcome, such as expected revenue or social welfare. By repeatedly sampling,

we can make quantitative statistical claims about our position auction setting (e.g., that one auction design

generates significantly more expected revenue than another). The results of this chapter demonstrate that

mymethods are able to yield qualitatively new findings about a widely studied setting.

Computational mechanism analysis differs in many ways from theoretical methods. As already mentioned,

one clear disadvantage is that our approach only produces statistical results (e.g., given distribution D, A

performs significantly better than B on expectation) rather than theorems (e.g., A always performs better than

B). Conversely, our methods have the advantage that they are able to produce results in settings for which such

simple patterns do not exist. For example, we have observed distributions over advertiser preferences under

which the wGSP auction sometimes generates far less revenue than its predecessor, uGSP, and sometimes

generates far more. Thus, we know that any comparison of these auctions must necessarily be statistical

and distribution dependent, rather than guaranteeing that one of these auctions always yields more revenue.

Our computational approach also allows us to consider arbitrary preference distributions, possibly derived
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from real-world data, as opposed to being restricted to distributions with convenient theoretical properties

like monotone hazard rates. A further property of computational mechanism analysis is both a benefit and a

weakness: bidders must be restricted to a finite set of discrete bids, unlike the vast majority of literature on

auction theory, which assumes that bids are continuous. While we depart from this tradition, we do not see

discreteness as necessarily disadvantageous; real-world position auctions tend to be rather coarsely discrete.

For example, position auctions often clear for tens of cents per click, while bids are required to be placed in

integer numbers of cents. Finally, some auction features, like rules for tie-breaking and rounding, are difficult

to analyze in the continuous case, but pose no obstacle to our approach.

The bulk of this chapter shows the effectiveness of computational mechanism analysis by demonstrating

what it can tell us about position auctions. In Section 4.5 we consider both simple models (such as those of

Varian and Edelman et al) and richer models (such as cascade) in which advertisers have position-dependent

valuations and externalities, in each case using our techniques to shed light on open problems.1 Some

high-level findings emerged from our analysis. Most strikingly, we found that wGSP consistently showed

the best ads of any position auction, measured both by social welfare and by relevance (expected number of

clicks). Further, even in models where wGSP was already known to have bad worse-case efficiency (either in

terms of price of stability or price of anarchy), we found that it almost always had very good average-case

performance. In contrast, we found that revenue was extremely variable across auction mechanisms, and

furthermore was highly sensitive to equilibrium selection, the preference model, and the valuation distribution.

In Section 4.6 we consider the extent to which our findings are sensitive to the bid discretization used, the

number of bidders, and the number of slots sold.

4.2 Background

Although a variety of position auction variants have been proposed, only three have seen large-scale use in

practice. We describe them here and also provide short form names that we will use throughout the chapter.

All auctions are pay-per-click; that is, bidders pay every time an end-user clicks on an advertisement, not

every time an advertisement is displayed.

GFP The generalized first-price auction, used by Overture and by Yahoo! from 1997–2002. Each bidder

submits a single bid; the highest bidder’s advertisement is displayed in the highest position, the second

bidder gets the second-highest position, and so on. Each bidder pays the amount of his bid.

uGSP The unweighted, generalized second-price auction, used by Yahoo! from 2002–2007. As before,

bidders are ranked by their bids; the bidder winning the ith position pays the i+1st-highest bid.

wGSP The weighted, generalized second-price auction, used by Google AdWords and Microsoft adCenter,

1We previously presented results for the no-externalities models in a conference paper [98]. The representation for models with
externalities is new to the current paper, as are all experimental results.
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and by Yahoo! since 2007. The search engine assigns each bidder a weight or “quality score”; we

model this as the probability that an end-user would click on each bidder’s advertisement if it were

shown in the highest position. Bidders are scored by the products of their weights and their bids, and

are ranked in descending order of their scores. Each bidder pays the smallest bid amount that would

have been sufficient to cause him to maintain his position.

These auctions have all received theoretical analysis under a variety of models, typically with the assumption

that bidders will converge, in repeated play, to an equilibrium of the full-information, one-shot game.

4.2.1 Metrics for Evaluating Auction Outcomes

It is tempting to believe that search engines have settled on wGSP because it is a better auction design. To

claim this, we need to decide what we mean by “better.” In this chapter, we will consider four such metrics.

1. Most straightforwardly, perhaps search engines gravitated to an auction design that maximizes their

(short-term) interests: revenue.

2. Perhaps search engines are better off maximizing the welfare of advertisers, to ensure advertisers’

ongoing participation, and thus the search-engine’s longer-term revenue. If so, we should assess a

mechanism according to the sum of advertisers’ valuations for the allocation achieved in equilibrium.

3. Both of these measures neglect a third group of agents: the search engine’s end-users, without whom

there would be no profits for advertisers and thus no revenues for the search engine. Some researchers

believe that our second metric, social welfare among advertisers, is a good proxy for end-user payoffs,

because advertisers only get revenue from clicks that satisfy users’ needs [4]. Others have argued

that click-through rates are a more direct measure of whether advertisements are interesting to users,

measuring the relevance of a page of search ads by the expected number of clicks it receives [60]. Note

that this is an expectation because even if the allocation of positions is deterministic, because whether

or not a user clicks on a given ad is (for all the models covered in this paper, at least) a random event.

4. Finally, envy is another important measure of the quality of a multi-good allocation. One agent i

envies another agent j if i’s expected utility could be increased by exchanging i’s and j’s allocations

and payments [44]. Allocations that do not give rise to such envy have been considered desirable in

themselves. In the position auction literature, however, it is more common for envy to be used as a tool

for equilibrium selection. Many researchers have restricted their attention to envy-free Nash equilibria

(i.e., Nash equilibria in which the total envy across all bidders is zero) [30, 103].2 In this chapter, we

2Although these researchers focused on locally envy-free equilibria—under which no bidder envies the bidders in adjacent
positions—this distinction is not important for our purposes. Under their models, local envy-freeness implies global envy-freeness,
using the more general definition of envy from [44]. We need this richer definition of envy—which allows for randomization—to
study cases involving randomized tie-breaking or mixed strategies. Even so, this richer definition does not cover externalities—where
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also use envy as a tool for equilibrium selection, contrasting envy-free and general Nash equilibria.

4.2.2 Models of Bidder Valuations

A wide range of different models have been proposed for bidder valuations in position auctions. There are

broadly two classes of models: those that make a no-externalities assumption—holding an ad’s position

constant, it will generate the same expected number of clicks and same expected value regardless of which

ads are shown in other positions—and those that do not make such an assumption.

Models Without Externalities

We consider four no-externalities models. The first two models (which we call EOS and V, after the researchers

who introduced them) have in common the assumption that each advertiser values clicks independently of

their advertisement’s position. The next two models (which we call BHN and BSS) allow for “position

preferences”: an advertiser might have different values for clicks when the advertisement appears in different

positions. In each case, we describe important results from the literature, as well as open questions that we

will address.

EOS Model. Edelman, Ostrovsky and Schwarz [30] analyzed the GSP under a preference model in which

each bidder’s expected value per click is independent of position. The click-through rate is the same for all

ads in a given position (making uGSP equivalent to wGSP), and decreasing in position (ads that appear lower

on the screen get fewer clicks). EOS defined locally envy-free equilibria as Nash equilibria in which no bidder

envies the allocation received by a bidder in a neighboring position, and showed that in such equilibria, uGSP

is efficient and revenue dominates the truthful equilibrium of VCG. Caragiannis et al [12] showed that other,

lower-efficiency Nash equilibria exist, but that none is worse in terms of social welfare by a factor greater

than 1.259. (In other words, 1.259 is an upper bound on the price of anarchy.) Given that locally envy-free

equilibria are only guaranteed to exist in the continuous case, while real wGSP uses discrete increments,

some natural open questions about this model follow.

Question 1: Under EOS preferences, how often does wGSP give rise to envy-free (efficient, VCG-revenue-

dominating) Nash equilibria? What happens in other equilibria, and how often do they occur?

V Model. Varian [103] analyzed wGSP under a more general model, in which each bidder’s value per click is

still independent of position, but click-through rates are decreasing and “separable.” Separability means that

for any position/bidder pair, the click-through rate can be factored into a position-specific component that is

an advertiser’s utility depends not just on his own allocation, but also on which agents receive which other goods. Thus, we do not
consider envy when working with settings involving externalities.
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independent of bidder identity and a bidder-specific component that is independent of position (corresponding

to wGSP’s weights). Varian showed that in any “symmetric” (globally envy-free) equilibrium, wGSP is

efficient and revenue dominates VCG. The price of anarchy result of Caragiannis et al. also applies to the V

model. Lahaie and Pennock studied the problem of what happens in this model in uGSP and wGSP (and

points in between) [60]. Under additional assumptions about the valuations, they found that uGSP was less

efficient than wGSP but generated more revenue. These findings suggest some natural open questions about

the V model.

Question 2: Under V preferences, how often does wGSP have envy-free (efficient, VCG-revenue-dominating)

Nash equilibria? What happens in other equilibria, and how often do they occur? Is uGSP generally better

than wGSP for revenue, or does their relative performance depend on equilibrium selection, the valuation

distribution, and/or other properties of the game? Is wGSP generally better for efficiency?

BHN Model. Blumrosen, Hartline and Nong [11] proposed a model that (like the one that follows) allows

for the possibility that not all clicks are equally valuable to an advertiser. In this model, click-through rates

are still decreasing and separable. However, a bidder’s expected value per click increases with the bidder’s

rank in a separable fashion, subject to the constraint that a bidder’s expected value per impression is weakly

decreasing. The authors support their generalization by describing empirical evidence that conversions (e.g.,

sales) occur for a higher proportion of clicks on lower-ranked ads. They show that preference profiles exist

under their valuation model in which wGSP has no efficient, pure-strategy Nash equilibrium. However, while

we know that such preference profiles exist, we do not know how much of a problem they pose on average.

Question 3: Under BHN preferences, how often does wGSP have no efficient Nash equilibrium? How much

social welfare is lost in such equilibria?

BSS Model. Benisch, Sadeh and Sandholm [9] proposed another position-preference model that generalizes

EOS. In this model, click-through rates are decreasing in position but independent of bidder identities.

However, bidders’ values are single peaked in position and strictly decreasing from that peak. For example,

“brand” bidders might prefer the prestige of top positions, while “value” bidders prefer positions further down.

Benisch, Sadeh and Sandholm analyzed this model in an imperfect-information setting, and showed both

that uGSP and wGSP ranking rules can be arbitrarily inefficient for such models and that more expressive

bidding languages can improve efficiency. For different valuation distributions consistent with their model,

they bounded the loss of efficiency in the best-case Bayes-Nash equilibrium. We observe that this bound

derives entirely from GSP’s inexpressiveness—the fact that agents lack the ability to communicate their true

preferences—rather than from agents’ incentives. Under the more common assumption of perfect-information

Nash equilibria, expressiveness cannot cause an inefficient outcome (because for any order of the bidders,

strategy profiles exist that will rank the bidders in that order), but incentives can (some bidder might want to

deviate from any efficient strategy profile).
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Question 4: Under BSS preferences, how often does wGSP have no efficient perfect-information Nash

equilibrium? How much social welfare is lost in such equilibria?

Models with Externalities

So far we have assumed that advertisers do not care about which ads appear above and below their own. We

now consider three models that relax this assumption: cascade and two further models that generalize cascade

(hybrid, GIM).

Cascade Model. The most widely studied model of position auction preferences with externalities is the

“cascade model ” [2, 36, 56]. It captures the idea that users scan and click ads in the order they appear; a good

ad can make lower ones less desirable, while a bad ad can cause a user to give up entirely. More specifically,

users scan the ads starting from the top, and each time the user looks at (and possibly clicks on) an ad, she

may subsequently decide to stop scanning. In this model, it is possible for wGSP to have low-efficiency

equilibria, with price of anarchy 4 [92]. If weights are modified to take into account the probability that a

user will continue reading ads, wGSP has a revenue-optimal equilibrium, but this equilibrium may require

bidders to bid above their own valuations, which is a weakly dominated strategy.3

Question 5: Under cascade preferences, how often are there low-efficiency equilibria? In cases where

low-efficiency equilibria exist, are these the only equilibria? When agents play only undominated strategies,

how much revenue can wGSP generate? How do the modified weights affect wGSP’s efficiency?

Hybrid Model. A richer model, which we call “hybrid”, combines features of the separable (V) and cascade

models. Users decide whether or not to continue scanning ads based on the number of ads they have already

scanned (as in V), and the content of each of those ads (as in cascade) [56]. Under this model, auctions

that allocate according to greedy heuristics—including GSP—are not economically efficient; indeed, no

economically efficient, polynomial-time allocation algorithm is known [56]. Further, strategic behavior in

GSP can lead to greater efficiency loss. When k slots are being sold, the worst Nash equilibrium can be as

little as 1/k-efficient, while the best can be as little as 2/k-efficient [39].

Question 6: With hybrid preferences, how much social welfare is lost? On typical instances (as opposed to

worst-case ones), how much difference is there between best- and worst-case equilibria?

GIM Model. Beyond their work on cascade, Gomes, Immorlica and Markakis [40] also introduced an even

richer model (which we call GIM) which generalizes the hybrid model in two important ways. First, it allows

for arbitrary pairwise externalities. For example, after looking at—and possibly clicking on—the first ad,

3This reweighted wGSP mechanism is only optimal among mechanisms that do not use reserve prices. Also, because some
agents’ strategies may be dominated—bidding strictly more than their valuations—the equilibria tend to not be rationalizable.
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a user might update her beliefs about which ads are promising, affecting some ads positively and others

negatively. Second, this model allows for the possibility that a user’s behavior might depend on which sets of

ads she has seen and clicked on before. Its authors argue that this richer model should have similar properties

to the cascade model.4

Question 7: Are the efficiency and revenue achieved by wGSP substantially different under the cascade and

GIM models?

4.3 Representing Position Auctions

We now present algorithms for succinctly encoding various position auction settings as AGGs. Implementa-

tions of all our algorithms are freely available at http://www.cs.ubc.ca/research/position auctions.

4.3.1 Representing No-Externality GFPs as AGGs

We can naively represent a no-externality GFP as an AGG as follows. We begin by creating a distinct action

set for each agent i containing nodes for each of his possible bids bi. Other agents will push agent i below the

top position if they bid strictly more than i’s bid bi or if they bid exactly bi and are favored by the tie-breaking

rule. Thus, we create directed edges in the action graph pointing to each bi from every b j that could potentially

be awarded a higher position: every b j for which b j ≥ bi and j 6= i. (If the tie-breaking rule is randomized,

we consider all of the different positions the agent could achieve and return his expected utility.) The price an

agent pays is simply the amount of his bid, and so can be determined without adding any more edges.

How much space does this representation require? Let the number of agents be n and the number of bid

amounts for each agent be k. Consider the action node b0
i corresponding to i’s lowest bid amount. This

node has edges incoming from each action node belonging to another agent, meaning that the utility table

corresponding to b0
i must store a value for every configuration over these nodes. There are k possible

configurations over each agent j’s action nodes, and n−1 other agents who bid independently, so a total of

kn−1 such configurations. This expression is exponential, and so we consider the AGG to be intractably large.

However, notice that our naive representation failed to capture key regularities of the no-externalities GFP

setting. Bidder i does not care about the amount(s) by which he is outbid, nor does he care about the identities

of the bidders who outbid him. We can capture these regularities by introducing function nodes. For every

action node bi, we can create one summation function node (formally, a node whose count is defined as the

sum of the counts of its parents in the action graph) counting the number of other bids greater than or equal

4This is clearly true for the issue of whether or not clicking on an ad affects the click-through rates of subsequent ads: before
the user first clicks, the auction must already have allocated all the ad space. Nevertheless, GIM’s increased range of possible
externalities could lead to dramatic differences from cascade in terms of equilibrium outcomes.
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Figure 4.1: A weighted GFP represented as an AGG. (Square nodes represent summation function
nodes. β denotes the quality score of each advertisier.)

to bi, and another counting the number equal to bi. These two quantities are sufficient for computing the

position of an agent who bids bi. Each node in the action graph is thus connected to only two other nodes.

Consider again the table encoding the utility for agent i’s bid b0
i . There are n−1 possible configurations over

the ≥ function node, and for each of these configurations, up to n−1 possible configurations over the =

function node, yielding a total of O((n−1)2) configurations—a polynomial number. There are nk nodes in

the action graph (and none has a larger table), so the graph’s total representation size is O(n3k). An example

of such an AGG is given in Figure 4.1. (As it does not complicate the representation, and is useful both to our

exposition and in Section 4.5.2, we build weighted GFPs, which we define in the natural way. Of course,

setting all bidders’ weights to 1 returns us to the unweighted case.)

More formally, we define a no-externalities position auction setting as a 4-tuple 〈N,v,c,q〉 where N is a set of

agents numbered 1, . . . ,n; vi, j is agent i’s value per click in position j; ci, j is agent i’s probability of receiving

a click in position j; and qi is agent i’s quality (typically, the probability that i will receive a click in the top

position). To specify a position auction game we additionally specify the range of allowed bid amounts K and

the tie breaking rule T . (For now we will consider only the case where T is uniform-random; in Section 4.6.2

we revisit this choice.) We can now more precisely define our construction as Algorithm 4.2.

4.3.2 Representing No-Externality uGSPs and wGSPs as AGGs

GSPs are similar to GFPs in that each agent’s payoff depends on a small number of values. To determine

an agent’s position (or possible range of positions under randomized tie breaking), we start with a graph

structure similar to the one we built for GFPs. The first difference is that we must allow for bidder weights.

We do this by creating function nodes for each “effective bid”—each distinct value that can be obtained by

multiplying a bid amount by a bidder weight—rather than one for each bid amount.5 Of course, we can

5We can also derive AGG representations of Lahaie and Pennock’s ranking rules [60] by adjusting the values of q appropriately.
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foreach agent i ∈ N do
foreach bid k ∈ K do

create an action node representing i bidding k;

foreach effective bid e ∈ {k ·qi | ∀i ∈ N,∀k ∈ K} do
create a summation function node (=,e) counting the bidders bidding exactly e;
create a summation function node (≥,e) counting the bidders bidding above e;
add an arc from (=,e) to (≥,e) ;
if e > 0 then

add an arc from (≥,e) to (≥,e′) (where e′ is the next largest effective bid);

foreach action node ai,k representing i bidding k do
add an arc from ai,k to (=,k ·qi);
add an arc from (=,k ·qi) to ai,k, and denote the value of (=,k ·qi) as `;
add an arc from (≥,k ·qi) to ai,k, and denote the value of (≥,k ·qi) as g;
instantiate the utility table for ai,k as

uai,k(`,g) =
1
`

g+`

∑
j=g+1

ci, j(vi, j− k).

Figure 4.2: An algorithm for converting a no-externality auction setting into an action graph representing
a (weighted) GFP. Inputs are an AGG setting (N,v,c,q), a set of allowable bid values K and the
tie-breaking rule T ; this algorithm assumes that T corresponds to uniform randomization.

recover the unweighted case (and thus represent uGSP) by setting all weights to 1. Because effective bids are

real numbers while the set of possible bids and payments K is discrete, our definition of a position auction

game must now also include a “rounding rule” R that is used to determine payments. For most of the chapter

we will only consider the case where R corresponds to rounding up (meaning that agents pay the minimum

amount that they could have bid to maintain their positions); we will revisit this choice in Section 4.6.3.

We also need to augment the action graph to capture the GSP pricing rule. We do this by adding “price

nodes”: function nodes that identify the next-highest bid below the bid amount encoded by each given action

node. We use the term argmax node to refer to a function node whose value is equal to the largest in-arc

carrying a non-zero value, based on a given, fixed ordering of the in-arcs. By ordering action nodes according

to the values of their effective bids (i.e., bids multiplied by bidder weights), an argmax node identifies the

highest effective bid among the subset of action nodes connected to it. Our encoding is defined more precisely

in Algorithm 4.4. An example of the resulting action graph is illustrated in Figure 4.3.6 This representation

results in a graph containing nm action nodes, each of which stores a payoff table with at most O(n2|E|)
entries, where E is the set of effective bids and |E| ≤ nm. Thus, this representation requires O(n4m2) space.

6Note that although the in-degree of the argmax nodes can get large—O(nm)—the computational complexity of solving an AGG
only depends on the in-degrees of the action nodes.
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Figure 4.3: To represent a GSP as an AGG, we add price nodes (argmax nodes denoted by hexagons)
to a GFP representation. For clarity only one price node is pictured; a full GSP representation
requires one price node for each effective bid.

4.3.3 Representing Auctions with Externalities

We now describe an algorithm for representing GIM auctions as AGGs; this also suffices for cascade and

hybrid, which GIM generalize. We define a GIM position auction setting by the 4-tuple 〈N,v,q, f 〉 where N

is a set of agents numbered 1, . . . ,n; vi is agent i’s value per click; qi is agent i’s quality (the probability that i

will receive a click in the top position); and fi : 2N →R encodes the externalities that affect i. When agent i’s

ad is shown below the ads of the agents in set S, his probability of receiving a click is qi fi(S). We assume

that f is monotone decreasing (i.e., S′ ⊆ S implies f (S′)≥ f (S)), and normalized so that f ( /0) = 1.

A GSP auction in a GIM setting can be converted to an AGG using Algorithm 4.5. This representation results

in a graph containing nk action nodes, where each node has 2n−1 in-arcs. The total size of a payoff table for

any node is O(22nnk), so the full representation requires O(22nn2k2) space. However, storing a single agent’s

preferences requires O(2n) values (to encode f (·)), so the AGG representation is only quadratically larger

than the input. Nevertheless, GIM settings with large n are impractical.

4.4 Experimental Setup

Broadly speaking, the method we employ in this chapter is to generate many preference-profile instances

from distributions over each of the preference models, to build AGGs encoding the corresponding perfect-

information auction problems for each auction design, to solve these AGG computationally, and then to

compare the outcomes against each other and against VCG.
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foreach agent i ∈ N do
foreach bid k ∈ K do

create an action node representing i bidding k;

foreach effective bid e ∈ {k ·qi | ∀i ∈ N,∀k ∈ K} do
create a summation function node (=,e) counting the bidders bidding exactly e;
create a summation function node (≥,e) counting the bidders bidding above e;
add an arc from (=,e) to (≥,e) ;
if e > 0 then

add an arc from (≥,e) to (≥,e′) (where e′ is the next largest effective bid);
create a weighted argmax function node (argmax,e) identifying the next-highest effective bid
below e;
foreach action node a corresponding to effective bid e′ do

if e′ < e then
add an arc from a to (argmax,e) with arc weight of e′ ;

if e′ = e then
add an arc from (argmax,e) to a, and denote the value of (argmax,e) as ρ ;

foreach action node ai,k representing i bidding k do
add an arc from ai,k to (=,k ·qi);
add an arc from (=,k ·qi) to ai,k, and denote the value of (=,k ·qi) as `;
add an arc from (≥,k ·qi) to ai,k, and denote the value of (≥,k ·qi) as g;
add an arc from (argmax,k ·qi) to ai,k, and denote the value of (argmax,k ·qi) as ρ;
instantiate the utility table for ai,k as

uai,k(`,g,ρ) =
1
`

(
ci,g+`(vi,g+`−dρ/qie)

)
+

g+`−1

∑
j=g+1

ci, j(vi, j− k).

Figure 4.4: An algorithm for converting an auction setting into an action graph representing a wGSP.
(Specifically, this algorithm encodes wGSP with uniform random tie-breaking and prices that
are rounded up to whole increments. These choices are revisited in Sections 4.6.2 and 4.6.3,
respectively.)

4.4.1 Problem Instances

We generated our preference profiles by (1) imposing a probability distribution over a preference model

and then (2) drawing instances from those distributions. Except for BSS, whose definition already includes

a distribution, we take two approaches to imposing distributions: one is to assume that all variables are

uniformly distributed over their acceptable ranges, and the other is to draw variables from the log-normal

distributions of Lahaie and Pennock [60] that have been fitted to real-world data. Thus, we used a total of 13

distributions (see Table 4.1). For each we generated 200 preference-profile instances for each of the three

position-auction types, GFP, uGSP and wGSP, yielding 13×200×3 = 7800 perfect-information games in
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foreach agent i ∈ N do
foreach bid k ∈ K do

create an action node representing i bidding k;

foreach pair of agents i, j ∈ N do
foreach ai ∈ Ai do

create an OR function note (=,ai, j) representing that j having the same effective bid as i;
create an OR function node (>,ai, j) representing that j having a strictly greater effective bid
than i;
create a weighted argmax function node (ρ,ai) representing the price i pays given ai;
create arcs from all three function nodes to ai;
foreach a j ∈ A j do

if a j > ai then
create an arc from a j to (>,ai, j);

if a j = ai then
create an arc from a j to (=,ai, j);

if a j < ai then
create an arc from a j to (ρ,ai);

foreach agent i ∈ N do
foreach action node ai,k representing i bidding k do

Let L denote the set of agents with the same effective bid as ai,k;
Let G denote the set of agents with greater effective bids than ai,k;
Let ρ denote the next highest effective bid after ai,k;
instantiate the utility table for ai,k as

uai,k(L,G,ρ) =
fi(G∪L)

2|L|
(vi,g+`−dρ/qie})+ ∑

S∈2L\L

fi(G∪S)
2|L|

(vi, j− k).

Figure 4.5: Creating the action graph for a GIM position auction

Without externalities With externalities

EOS-UNI Cascade-UNI
EOS-LN Cascade-LN
V-UNI Hybrid-UNI
V-LN Hybrid-LN

BHN-UNI GIM-UNI
BHN-LN GIM-LN

BSS

Table 4.1: The distributions we considered for our experiments. UNI denotes distributions that are uni-
form across all values. LN denotes distributions with parameters log-normal distributed following
[60], with additional parameters not discussed in that work again uniformly distributed.
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total. Each of these games had 5 bidders, 5 positions and 30 bid increments. In Section 4.6 we describe

further experiments in which we investigated the our findings’ sensitivity to these and other parameters.

We normalized values in each game so that the highest was equal to the highest possible bid, to ensure that

the full number of bid increments was potentially useful. We also removed weakly dominated strategies

from each game, both for computational reasons and to select against implausible equilibria. Specifically, we

eliminated strategies in which agents bid strictly more than (the ceilings of) their valuations.7.

4.4.2 Equilibrium Computation

We performed our experiments on WestGrid’s Orcinus cluster—384 machines with dual Intel Xeon E5450

3.0GHz CPUs, 12MB cache and 16GB RAM, running 64-bit Red Hat Enterprise Linux Server 5.3. To

compute Nash equilibria, we used three algorithms:8 (1) simpdiv, the simplicial subdivision algorithm of

van der Laan et al [102], adapted to AGGs by Jiang, Bhat and Leyton-Brown [51]; (2) gnm, the global Newton

method of Govindan and Wilson [43], adapted to AGGs by Jiang, Bhat and Leyton-Brown [51]; and (3) sem,

the support-enumeration method of Porter, Nudelman and Shoham [84], adapted to AGGs by Thompson,

Leung and Leyton-Brown [100]. We ran sem to enumerate all pure-strategy Nash equilibria. For finding

sample mixed-Nash equilibria, we ran simpdiv from ten different pure-strategy-profile starting points chosen

uniformly at random, and also ran gnm ten times with random seeds one through ten. We limited runs of

simpdiv and gnm to five CPU minutes. In total, we spent about 15 CPU months on equilibrium computation.

4.4.3 Benchmarks: VCG and Discretized VCG

As well as comparing GSP and GFP to each other, we also compared these position auctions to VCG. There

are two ways of doing this. First, we considered VCG’s truthful equilibrium given agents’ actual (i.e.,

non-discretized) preferences. However, this prevents us from determining whether differences arise because

of the auction mechanism or discretization. To answer this question, we also compared to an alternate version

of VCG in which we discretized bids to the same number of increments as in the position auctions. In this

case, we assume that bidders report the discrete value nearest to their true value. (Observe that this is always

an ε-Nash equilibrium with ε equal to half a bid increment.)

7In past work, for computational reasons, we also eliminated very weakly dominated strategies. In particular, this included bids
that led to identical outcomes regardless of the actions of other agents (e.g., from an agent with an extremely low quality score). We
did not do this here because we now enumerate equilibria: although the elimination of very weakly dominated strategies does not
change the set of equilibrium outcomes, it can change the relative frequency of these outcomes.

8Implementations of all three algorithms are available at http://agg.cs.ubc.ca.
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4.4.4 Statistical Methods

In order to justify claims that one auction achieved better performance than another according to a given

metric (e.g., revenue), we ensure that this difference was judged significant by a statistical test. Specifically,

we performed blocking, means-of-means, bootstrapping tests [15] as follows:

1. For each setting instance, find the difference in the metric across that pair of auctions on that instance.

Each value is normalized by the achievable social welfare in that instance. Call this set of values S.

2. Draw |S| samples from S (with replacement), and compute the mean. Perform this procedure 20,000

times. Let M denote the set of means thus computed.

3. Our estimated performance difference is the mean of M (the mean-of-means of S).

4. This difference has significance level α if the α th quantile of M is weakly greater than zero.

When reporting results, we use the symbol ∗ to denote that a result has a significance level of at least α = 0.05

and ∗∗ to denote that a result has a significance level of at least α = 0.01. For each group of data points (i.e.,

for a specific size and preference model) we perform many simultaneous tests, comparing revenue, welfare,

relevance and envy between all pairs of auctions. To avoid spurious claims of significance, we thus perform

Bonferroni multiple-testing correction (effectively, dividing the desired significance level by the number of

tests performed) [73].

To avoid undermining the statistical reliability of our data, we did not drop individual games that we could

not solve within our chosen time budget: we worried that the features that made some instances hard to

solve could also make their equilibrium outcomes qualitatively different from those of easier-to-solve games.

Instead, when we were not able to identify any Nash equilibria of a particular game (typically involving GFP

auctions), we replaced the metric value of interest with an suitable upper or lower bound (e.g., a position

auction’s revenue is trivially guaranteed to be between 0.0 and the maximum possible social welfare). When

we have incomplete data about one or both of auctions A and B, we do not claim that auction A achieves

significantly better performance according to some metric than auction B unless the lower bound on A’s

performance is significantly better than the upper bound on B’s performance.

4.5 Results

We now turn to our experimental results. Our goal is to demonstrate the effectiveness of computational

mechanism analysis in general and to shed light on open questions about position auctions in particular. In

the latter vein our main aim is to justify the search industry’s convergence on the wGSP auction; we also

consider the seven model-specific questions we asked in the introduction. This section thus begins with a

broad comparison of the different position auction mechanisms, followed by a more detailed examination of

45



each individual model. We also describe some follow-up experiments prompted by model-specific claims in

the research literature. The last section of this chapter gives all of our results in tabular form (i.e., providing

numerical values rather than just graphs) and also reports the results of statistical significance tests for all

comparisons.

4.5.1 Main Comparison

We begin by looking at the relative performance of GFP, uGSP, and wGSP position auctions, averaged

across all of our different models and distributions, and compared to the VCG and discrete VCG baselines as

appropriate (see Figure 4.6). In a nutshell, the industry’s choice of wGSP appears to be justified in terms of

efficiency, relevance and (to a lesser extent) envy, but not in terms of revenue. More specifically, in terms

of both efficiency and relevance, we found that wGSP was clearly the best position auction design; it also

exhibited relatively little variation in these metrics (less than 10%) across equilibria. wGSP ranked lower

on efficiency and relevance than VCG (with or without discretization), but was surprisingly close, given

that in many of our models wGSP is known to be inefficient. wGSP also clearly outperformed GFP and

uGSP in terms of envy, but also exhibited very substantial variation across equilibria. Revenue comparisons

were much more ambiguous: all auctions achieved fairly similar median revenues, and variation from one

equilibrium to another could be very large for both GSP variants (with best-case equilibrium revenues of

about twice worst-case equilibrium revenues). We also saw substantial revenue variation across models,

distributions, and equilibrium selection criteria, which we will discuss in detail in what follows.

4.5.2 Basic Models: EOS and V

We consider the EOS and V models together because they are very similar, both in terms of what was

known from previous work, and in terms of our findings. The main difference between EOS and V is that V

introduces quality scores, which can be used to weight advertisers’ bids. Thus, in EOS, wGSP and uGSP are

identical, while in V they are not. Earlier we asked the following two questions.

Question 1: Under EOS preferences, how often does wGSP give rise to envy-free (efficient, VCG-revenue-

dominating) Nash equilibria? What happens in other equilibria, and how often do they occur?

Question 2: Under V preferences, how often does wGSP have envy-free (efficient, VCG-revenue-dominating)

Nash equilibria? What happens in other equilibria, and how often do they occur? Is uGSP generally better

than wGSP for revenue, or does their relative performance depend on equilibrium selection, the valuation

distribution, and/or other properties of the game? Is wGSP generally better for efficiency?

We begin by investigating how often envy-free equilibria exist in wGSP (with discrete bids) and how many
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Figure 4.6: Performance of different position auction types, averaged across all 13 distributions (effi-
ciency, revenue, and relevance) and the 7 no-externality distributions (envy, which does not apply
to settings with externalities). The “whiskers” in this plot indicate equilibrium selection effects:
the bar is the median equilibrium, while the top and bottom whiskers correspond to best- and
worst-case equilibria.

such equilibria there are, as compared to pure Nash equilibria. Surprisingly, we found that envy-free equilibria

did not exist in the majority of games, despite most games having hundreds or thousands of pure-strategy

Nash equilibria (see Figure 4.7), and that even when they did exist there were orders of magnitude more Nash

equilibria than envy-free equilibria. This led us to investigate the amount of envy present in wGSP equilibria.

We found that this quantity varied substantially across equilibria, but that envy-minimizing Nash equilibria

tended to get very close to zero envy (see Figure 4.8).

We know that in the EOS and V models, envy-free equilibria are economically efficient and yield high

revenue; however, we have just observed that such envy-free equilibria did not reliably exist in our games. We

next investigated the efficiency and revenue properties of general Nash equilibria. We found that wGSP was
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Figure 4.7: Empirical cumulative probability distributions over the number of equilibria. Many lines do
not begin at p = 0, due to our use of a log scale; a line beginning at p = 0.6 indicates that 60% of
games had zero envy-free Nash equilibria.
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Figure 4.8: Empirical box plot of wGSP’s envy under different equilibrium selection criteria (minimum,
median and maximum). The envy-minimizing Nash equilibrium always had very little envy, but
other equilibria can have substantial envy. Note that we report envy normalized by total possible
social welfare. Even normalized, envy can occasionally exceed 1, as it is possible for an agent to
be envied by many other agents.

48



Min Med
EOS-UNI

Max Min Med
EOS-LN

Max Min Med
V-UNI

Max Min Med
V-LN

Max
0.75

0.80

0.85

0.90

0.95

1.00
E
ff

ic
ie

n
cy

Figure 4.9: Empirical box plot of wGSP’s social welfare under different equilibrium selection criteria
(minimum, median and maximum). Note that the majority of equilibria (indicated by the median)
tend to be very nearly efficient.

very efficient, not just in the best-case equilibrium, but in the majority of equilibria; however, the worst-case

equilibria could be substantially less efficient (see Figure 4.9).9

Concerning revenue, we found that equilibrium selection has a very large effect. Further, this effect is not

merely confined to a few very bad equilibria. In every distribution, we found that wGSP’s best-case revenue

was better than VCG, worst-case was much worse than VCG and median was slightly worse in EOS settings

and approximately equal in V settings (see Figure 4.10).

It remains to compare uGSP with wGSP under the V model in terms of both revenue and efficiency. First,

recall that Lahaie and Pennock [60] found that uGSP generated much more revenue but moderately less

social welfare, but only for the specific case of “symmetric equilibria” and log-normal distributions. For

both V distributions, we found that uGSP was better than wGSP for revenue (provided that we compared

the mechanisms under the same equilibrium selection criterion, e.g., median), but that both mechanisms

were very sensitive to equilibrium selection: the difference between mechanisms (∼ 1.2×) was very small

compared to the difference between good and bad equilibria (at least ∼ 2×) (see Figure 4.11). The gains

from uGSP were much larger in the log-normal distribution than in the uniform distribution. Concerning

efficiency, wGSP was indeed better overall. We also found that uGSP’s social welfare was far more sensitive

to equilibrium selection (at least ∼ 1.2×) than wGSP’s (∼ 1.04×), and even uGSP’s best equilibria were

9We note that in our previous work we found almost no instances with such low efficiency [98]; we attribute this discrepancy
to the fact that we did not previously have a practical algorithm for enumerating Nash equilibria, and so we previously reported
minimum and maximum efficiency based only on the most extreme equilibria our sample-Nash-finding algorithms could find. In
contrast, our current work uses the SEM algorithm, and hence guarantees that we have truly found the best/worse case PSNEs, and
furthermore allows us to identify the median equilibrium (which we could not do before).
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Figure 4.10: Empirical box plot of wGSP’s revenue under different equilibrium selection criteria
(minimum, median and maximum). The median equilibrium of wGSP performs similarly to
VCG, while the worst-case and best-case equilibria are substantially different.
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Figure 4.11: Empirical box plot of uGSP and wGSP’s revenue under different equilibrium selection
criteria (minimum, median and maximum).
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Figure 4.12: Empirical box plot of uGSP and wGSP’s social welfare under different equilibrium
selection criteria (minimum, median and maximum).

sometimes very inefficient (see Figure 4.12).

Finally, we come to the overarching question of this chapter, “which position auction design is best?” We

conducted a general 4-way comparison between GFP, uGSP, wGSP and VCG for each metric. In terms of

social welfare, we found that wGSP was clearly the most efficient position design in the V model, regardless

of equilibrium selection. In the EOS model, u/wGSP was more efficient than GFP in best- and median-case

equilibria, but not in the worst case (see Figure 4.13(a)). Comparing revenue, we found that equilibrium-

selection effects were very large for GSP auctions—much larger than differences between auction designs (see

Figure 4.13(b)). In terms of relevance (i.e., expected number of clicks),10 we see that wGSP was consistently

better than the other designs and roughly comparable to VCG (see Figure 4.13(c)). Finally, treating envy as

an objective to minimize, in EOS settings we see that in GFP performed very well in all equilibria, while

GSP designs were more sensitive to equilibrium selection. In the V model, unweighted designs performed

very poorly compared to wGSP (see Figure 4.13(d)).

Weighted GFP

Under the EOS model, we found that GFP had high efficiency in its worst-case equilibria, compared to the

other two position auctions. This finding nicely compliments another by Chawla and Hartline [13]: GFP’s

worst-case Bayes-Nash equilibrium is efficient in games with independent, identically distributed private

values. Because the EOS model does not include bidder-specific click probabilities, GFP’s unweighted

10We do not consider the EOS model for relevance: because it is unweighted, it predicts that every complete allocation—where all
positions are sold—will produce the same expected number of clicks.
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Figure 4.13: Comparing the average performance of different position auction types in EOS and V
settings. The “whiskers” in this plot indicate equilibrium selection effects: the bar is the median
equilibrium, while the top and bottom whiskers correspond to best- and worst-case equilibria.

allocation is not a problem. We thus wondered whether adding weights to GFP would produce a mechanism

with good worst-case Nash equilibria under the V model, which does include bidder-specific click probabilities.

Recall that it is straightforward to include weights in our AGG reduction for GFP position auctions. We

performed two experiments, one at the same scale as our others (where enumerating all mixed-strategy Nash

equilibria (MSNEs) of weighted GFP is computationally infeasible) and one at a scale small enough to permit

such enumeration.

In the smaller experiment, we found that 98.5% of games had a single mixed Nash equilibrium. When

multiple equilibria existed, they tended all to have nearly identical revenue and social welfare (within 4% and

1% respectively). In our full-sized experiments, we also observed little variability across equilibria. In 97% of

games, revenue and social welfare varied less than 0.1% from the best case to the worst case. In the remaining

3% of games, social welfare never differed by more than 0.3% across equilibria while revenue never differed
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Figure 4.14: Comparing wGFP to wGSP. We found that wGFP’s efficiency varied extremely little across
equilibria, but that its worst case was not better than wGSP’s. wGFP’s revenue again varied little,
with worst-case revenue much larger than wGSP’s worst case and roughly comparable to wGSP’s
median case.

by more than 3.5%. Comparing wGFP to wGSP, we found that wGFP did not yield significantly better

worst-case efficiency. However, wGFP did achieve much higher worst-case revenue, roughly equal to wGSP’s

median case (see Figure 4.14).

4.5.3 Position-Preference Models

We now consider the richer BHN and BSS models, which allow advertisers’ values to depend on ad positions.

The BHN Model

Blumrosen, Hartline and Nong’s [11] key motivation was that advertisers may prefer clicks in the lowest

position, because the few users who actually click on low-position ads are likely to buy. They found that

wGSP sometimes has no efficient Nash equilibrium under their model.

Question 3: Under BHN preferences, how often does wGSP have no efficient Nash equilibrium? How much

social welfare is lost in such equilibria?

We observed two kinds of efficiency failures (see Figure 4.15). The first kind involved a complete failure

to allocate, with every agent bidding zero. This equilibrium arises when the top-most position has so many

spurious (non-converting) clicks that paying even one increment per click is too much. (This scenario also

leads to an interesting outcome under discrete VCG: the advertiser who gets the top position can actually
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Figure 4.15: Empirical CDF of economic efficiency in BHN models.

be paid, since the externality he imposes on other bidders is to allow them to reach the higher-value lower

positions.) A similar phenomenon can arise in lower positions as well: e.g., if exactly one advertiser values

the second position (and by monotonicity, the first as well) at weakly more than one bid increment, then in any

pure equilibrium all the other bidders bid zero. The second kind of efficiency failure involves mis-ordering

the advertisers (e.g., placing the highest-valuation advertiser in some slot other than the highest), as we

already saw in the V and EOS settings. However, the magnitude of inefficiency can be more than we saw in

those models, because different positions have different conversion rates. In equilibria of EOS and V models,

the high-valuation bidder might prefer to avoid the top position because the top positions’ greater numbers of

clicks are offset by disproportionately greater prices per click. In the BHN model, top-position clicks can

also be too expensive, and this is compounded by the fact that top-position clicks are least likely to convert.

Discretization can exacerbate this problem. Because per-click valuations for the top positions are small

compared to lower positions, discretization has a greater effect on top positions, leading to inefficiencies due

to rounding. Because high positions get the majority of clicks, this causes a large loss of welfare.

We now consider how different auction designs performed on BHN (see Figure 4.16). First, we observed

that all position auctions designs were very inefficient (≤ 69%), and substantially less efficient than discrete

VCG (which achieved 91.6% and 90.5% efficiency in BHN-UNI and BHN-LN respectively.) wGSP was

dramatically better than GFP; wGSP’s worst-case equilibria were more efficient that GFP’s best case. The

comparison between uGSP and wGSP was less clear, because uGSP’s efficiency varied much more across

equilibria. In the case of BHN-UNI, this made uGSP’s best-case equilibria slightly (but not significantly)

better than wGSP’s. In other distributions and for other criteria, uGSP was clearly worse.

Turning to revenue, we found that no auction design extracted more than 30% of the surplus, but that

every position auction design was dramatically better at generating revenue than VCG. This finding has a
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Figure 4.16: Comparing the average performance of different position auction types in BHN settings.
The “whiskers” in this plot indicate equilibrium selection effects: the bar is the median equilib-
rium, while the top and bottom whiskers correspond to best- and worst-case equilibria.

straightforward explanation: in BHN models, conversion rates are higher in low positions. In VCG, an agent

pays his externality, i.e., the amount he decreases the welfare of the lower-ranked agents by displacing them

one position. In GSP, an agent pays the amount of the next highest bid, as if he had entirely removed the next

highest bidder entirely. In EOS, V and BHN models, the VCG payment (for a given bid profile) is always

weakly less than GSP, because the VCG payment takes into account that next highest agent gets a position

of value. In BHN, the displaced agents are moved into positions that are likely to be closer to the value of

pre-displacement positions (compared with EOS and V settings). We also observe that, as we saw before,

revenue variation across equilibria was dramatically larger than revenue variation across position auction

designs. Unlike the V model, under BHN uGSP did not provide dramatically more revenue than wGSP when

values were lognormally distributed.

All position auction designs achieved dramatically worse relevance than VCG (both with and without
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Figure 4.17: Empirical CDF of economic efficiency in BSS models

discretization). wGSP was clearly the best position auction in terms of relevance..

Envy varied substantially among both GSP designs, but nevertheless wGSP outperformed the other position

auction designs in minimizing this metric.

The BSS Model

Next we investigated to the model of Benish, Sadeh and Sandholm [9]. This model is similar to the BHN

model in that different advertisers can have different per-click valuations. However, in this case, valuations

are “single-peaked” in the sense that each advertiser has a most preferred position and their per-click valuation

decreases as the ad is moved further from that position. Recall that BSS is an unweighted model (i.e., all the

advertisers have identical quality scores and click probabilities). Thus, wGSP and uGSP are equivalent in this

model.

Question 4: Under BSS preferences, how often does wGSP have no efficient perfect-information Nash

equilibrium? How much social welfare is lost in such equilibria?

We found that efficiency failures were very common under BSS, and could be very large, though zero-

efficiency outcomes were rare and never happened in best-case equilibria (see Figure 4.17). This was due in

part to randomized tie-breaking. When none of the agents values the top slot, all the agents can bid zero in

equilibrium. However, they can also all bid a small but nonzero amount and tie for top bid; this leads them all

to get more valuable intermediate positions often enough to justify the cost.

Comparing auction designs (see Figure 4.18), we observed that uGSP was significantly more efficient than

GFP, but fell well behind discrete VCG. In revenue, uGSP and GFP both varied substantially across equilibria,
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Figure 4.18: Comparing the average performance of different position auction types in BSS settings.
The “whiskers” in this plot indicate equilibrium selection effects: the bar is the median equilib-
rium, while the top and bottom whiskers correspond to best- and worst-case equilibria.

and both were significantly worse than VCG in their median equilibria. uGSP slightly outperformed VCH in

best-case equilibrium, but not significantly so. Both uGSP and GFP achieved more relevant outcomes than

VCG, largely due to the tieing effect described earlier, where agents were often sold clicks that they did not

particularly value. Both auctions had little envy in absolute terms, though GSP was worse than GFP.
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Figure 4.19: Empirical CDF of economic efficiency in the cascade models.

4.5.4 Externality Models

We now consider Cascade, Hybrid and GIM, three models in which bidders can care about the positions

awarded to other agents.

The Cascade Model

Cascade is the simplest of our models involving externalities. Cascade settings are similar to V settings in

that each bidder has a quality (proportional to click probability) and a per-click valuation. The difference

is that each advertiser also has a continuation probability: the probability that a user looks at subsequent

ads. Thus, in both models, lower positions are less valuable because they receive fewer clicks. However, in

cascade models, this reduction depends on what is shown in higher positions.

Question 5: Under cascade preferences, how often are there low-efficiency equilibria? In cases where

low-efficiency equilibria exist, are these the only equilibria? When agents play only undominated strategies,

how much revenue can wGSP generate? How do the modified weights affect wGSP’s efficiency?

We found that inefficiency was common, though the magnitudes of efficiency losses were smaller than we

expected (see Figure 4.20). We found that wGSP’s efficiency was always greater than 50% and was almost

always greater than 80%. In contrast, Giotis and Karlin [39] showed that the price of anarchy is k and thus,

for k = 5 there exist instances (which we evidently did not sample) with as little as 20% efficiency.11 The gap

between best- and worst-case equilibria was typically quite large, though a few instances had poor (∼ 60%)

11Although they studied the more general model that we refer to as hybrid, the construction of their worst-case example uses a
part of the hybrid model space that is also consistent with the more restrictive cascade model.
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Figure 4.20: Empirical CDF of revenue in the cascade models.
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Figure 4.21: Comparing the average performance of different position auction types in cascade set-
tings. The “whiskers” in this plot indicate equilibrium selection effects: the bar is the median
equilibrium, while the top and bottom whiskers correspond to best- and worst-case equilibria.

efficiency even in the best case.

wGSP’s revenue varied substantially across equilibria (see Figure 4.20), with the best-case equilibrium

generating at least 2.5 times as much revenue as the worst case.

Comparing position auctions, we observed relative performance similar to that under the no-externality models

(see Figure 4.21). First, we found that wGSP was the most efficient position auction design. Surprisingly,

wGSP’s best-case equilibria tended to be close to fully efficient (at least ∼ 95%). However, variation

across equilibria was greater than in no-externality settings like EOS and V. Both uGSP and wGSP varied

substantially in their revenue across equilibria, with wGSP’s median equilibrium achieving slightly more

revenue than VCG. Like in the V model, wGSP was roughly comparable to uGSP in terms of revenue

when values were uniformly distributed, and noticeably worse when values were log-normally distributed.

Concerning relevance, we found that wGSP was clearly superior to other position auction designs, but not
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Figure 4.22: Comparing the average performance of wGSP and cwGSP in cascade settings. The
“whiskers” in this plot indicate equilibrium selection effects: the bar is the median equilibrium,
while the top and bottom whiskers correspond to best- and worst-case equilibria.

quite as good as VCG. Recall that envy is not well defined in settings with externalities; thus, we do not

discuss it here or in what follows.

wGSP with Cascade-Specific Weights

To address of some of the shortcomings of wGSP in cascade, Gomes et al proposed an alternative way of

calculating advertiser qualities for wGSP. In their alternative weighting, an advertiser’s weight is equal to her

top-position click probability divided by the probability that a user will stop looking at ads after seeing hers

(i.e., one minus her continuation probability). This simple reweighting scheme has the nice property that an

advertiser with a continuation probability of one will always be ranked first, a desirable property given that

the efficient ranking will always rank such bidders first. Gomes et al also showed that this weighting gives

rise to a revenue-optimal equilibrium. (There are two important caveats about this equilibrium. (1) It is only

revenue-optimal among mechanisms that always allocate every position; mechanisms that use reserve prices

can get strictly more revenue. (2) It might not be rationalizable, requiring some agents to play the weakly

dominated strategy of bidding strictly above their own valuations.)

We experimented with this alternative mechanism, which we call cwGSP, and found that it was dramatically

more efficient that wGSP (see Figure 4.22). However, we also found that it was noticeably worse than wGSP

in terms of revenue. Thus, we conclude that Gomes et al’s revenue claims about cwGSP stem mainly from

their unusual equilibrium-selection criteria.
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Figure 4.23: Empirical CDF of revenue in the hybrid model.
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Figure 4.24: Empirical CDF of economic efficiency in the hybrid model.

The Hybrid Model

The hybrid model generalizes both the V and cascade models; lower positions can get fewer clicks either due

to the number of higher-placed ads (as in V) or to the content of those ads (as in cascade). Hybrid settings

can have a very large price of stability and an even larger price of anarchy [56].

Question 6: With hybrid preferences, how much social welfare is lost? On typical instances (as opposed to

worst-case ones), how much difference is there between best- and worst-case equilibria?

We again found that wGSP’s revenue varied substantially across equilibria (see Figure 4.23). However, we

were surprised to find that while wGSP’s efficiency was quite low (∼ 60%) in a few games, wGSP was often
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Figure 4.25: Comparing the average performance of different position auction types in hybrid set-
tings. The “whiskers” in this plot indicate equilibrium selection effects: the bar is the median
equilibrium, while the top and bottom whiskers correspond to best- and worst-case equilibria.

efficient, even in its worst-case equilibria (see Figure 4.24). This result stands in contrast with our previous

findings on cascade. The very small difference between best- and worst-case equilibria did not arise because

games had few Nash equilibira: wGSP still had many Nash equilibria in just about every game. In the next

subsection, we compare all three externality models and investigate this anomaly more deeply.

Comparing the different position auction designs (see Figure 4.25), we again found that wGSP was the

most efficient and produced the most relevant results. Concerning revenue, we found that both uGSP and

wGSP varied substantially across their equilibria, but that uGSP was consistently better than wGSP. wGSP

substantially outperformed GFP and uGSP in terms of relevance.

The GIM Model

Finally, we turn to the model of Gomes, Immorlica and Markakis, which is the most general of our externality

models. In the GIM model, every bidder has a quality score, which corresponds to her probability of getting

a click in the top position, but the click probability in lower positions can depend arbitrarily on which

advertisers are shown in higher positions as long as this probability weakly decreases with position. Gomes

et al conjectured that this model was similar to cascade, which motivated our questions.

Question 7: Are the efficiency and revenue achieved by wGSP substantially different under the cascade and

GIM models?

Recall that in the cascade model, revenue and efficiency both varied substantially across equilibria, and that

the majority of games exhibited moderately large inefficiency (∼ 90%) in worst-case equilibrium. In GIM,

we observed similar effects of similar magnitude (see Figures 4.26 and 4.27). We found it surprising that

GIM, which generalizes the hybrid model (which in turn generalizes cascade), should be have outcomes that

are more similar to cascade than to hybrid. To explain the anomaly, we looked for features that were common
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Figure 4.26: Empirical CDF of economic efficiency in the GIM model.
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Figure 4.27: Empirical CDF of revenue in the GIM model.

to cascade and GIM, but not to hybrid. There are many such features (e.g., in wGSP’s equilibrium rankings,

the effect of position on CTR is much greater under hybrid). In the end we concluded that the feature that best

explains our findings is the relative value of the top position—which is higher in hybrid settings—because in

all three models, instances where this fraction was large tended to have very good worst-case efficiency in

wGSP (see Figure 4.28). This correlation was moderately strong (ρ > 0.4 using Spearman’s rank correlation)

and highly significant (p < 0.01 with Bonferroni correction) for every distribution except BHN-LN, in which

the majority of equilibria achieved almost perfect efficiency.

Lastly, we compare different position auctions in the GIM setting (see Figure 4.29). As under other

externality models, we found that wGSP produced more efficient and relevant rankings than GFP and uGSP,

but performed significantly worse than VCG. Again, revenue was ambiguous, with GSP revenue varying
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Figure 4.28: wGSP tended to have good worst-case efficiency when the top position produced the
majority of the surplus (in an efficient allocation). Thus, in hybrid distributions, where this
occurred extremely frequently, wGSP tended to have better worst-case efficiency than in cascade
or GIM.
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Figure 4.29: Comparing the average performance of different position auction types in GIM settings.
The “whiskers” in this plot indicate equilibrium selection effects: the bar is the median equilib-
rium, while the top and bottom whiskers correspond to best- and worst-case equilibria.
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substantially across equilibria and all median revenues fairly close to VCG’s revenue.

4.6 Sensitivity Analysis

Computational analysis techniques oblige us to make concrete choices about discretization and the sizes of

problems that we study. This section examines the extent to which our findings varied under five such details

about the position auction setting that we have held constant until now. (1) Although real-world auctions

are discrete, the coarseness of the discretization can vary greatly from keyword to keyword or advertiser

to advertiser, depending on the size of each advertiser’s valuation relative to the bid increment. Thus, it is

important to understand how sensitive our findings are to the scale of the discretization. When bids and

payments are discrete, issues also arise that are not significant in continuous games, such as (2) how ties

will be broken and (3) how payments will be rounded or aggregated. Furthermore, computational analysis

requires setting many parameters that can often be left unspecified in a theoretical analysis, such as (4) the

number of bidders and (5) the number of slots for sale. We chose two widely studied distributions to consider

in our scaling studies: one simple (V) and one with externalities (cascade). In both cases we used the more

realistic valuation distribution, log-normal.

4.6.1 Sensitivity to Bid Increment Size

First, we considered the problem of increment size. In addition to V-LN and CAS-LN we also considered

the BHN-UNI distribution, because we found BHN’s interaction with increment size particularly interesting.

Recall that earlier we found that the single-increment reserve price was sufficient to cause dramatic efficiency

loss. We anticipated that as increment size decreased, this would occur less frequently. For each distribution,

we varied the number of bid increments from 5 to 40, at each step generating 100 instances and computing

all relevant metrics (see Figures 4.30 and 4.31). In the V and cascade distributions, we found that (with

one exception) the relative performance of different mechanisms became steady once k was greater than 10,

and that absolute performance became stable once k was greater than 20. The one exception was the GFP

auction; in both distributions, GFP’s performance (both in relative and absolute terms) varied dramatically as

k grew. BHN’s behavior was particularly interesting. As the number of increments increased, the efficiency

and relevance of all auctions dramatically increased (because the problem of unallocated slots became less

common). Worst-case envy and revenue tended to get worse as the number of increments increased, while

median- and best-case revenue and envy remained fairly flat.
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Figure 4.30: Comparing different auction designs as the number of bid increments varies.
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Figure 4.31: Comparing different auction designs as the number of bid increments varies (continued).
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4.6.2 Sensitivity to Tie-Breaking Rules

Discretization also invites the possibility that ties will occur between bids with positive probability. Thus,

while tie-breaking rules are typically unimportant to the analysis of auctions with continuous action spaces,

they can be significant in discrete settings. Observe, however, that this problem does not arise under most of

our distributions; although bids are integral, each bid is weighted by a real number, with the property that for

any pair of weights the probability of their ratio being integral is zero. Thus, we only needed to examine

sensitivity to tie breaking in the two models that did not have weights: EOS-LN and BSS-UNI.

Broadly, we found that tie breaking made almost no difference in the EOS-LN distribution; however,

lexicographic tie breaking consistently decreased performance in every metric in the BSS distribution (see

Figure 4.32). This problem arose when multiple agents preferred a lower slot to a higher slot, and strictly

preferred not to be shown in the high position. With random tie breaking, each agent could win their more

preferred slot often enough to justify paying a high price. However, when ties are broken lexicographically,

some agent must pay a higher price and get a less desirable slot, inducing him to deviate. Thus, random tie

breaking achieved much higher relevance, selling clicks even in cases where continuous VCG did not.

4.6.3 Sensitivity to Rounding Rules

The last problem discretization poses for an auctioneer is the question of how to round prices in wGSP

auctions. Because each bidder’s integral bid is scaled by an arbitrary real constant, the next-highest bid

might not correspond to any integer price. So far, we have assumed that prices are rounded up (i.e., that a

bidder must pay the minimum amount that she could bid to win the position she won). In this section we

also consider rounding down, rounding to the nearest integer, and rounding up plus 1 increment (which was

used by Yahoo! [30]). Here our experiments consisted of 100 instances each from the V-LN and CAS-LN

distributions (see Figure 4.33). We found, somewhat unsurprisingly, that more “aggressive” rounding rules

(i.e., rules that favor higher prices) tended to produce higher revenue regardless of the distribution and the

equilibrium-selection criterion (the difference between the best and worst rounding rules ranged from 10%

to 25%), with a corresponding improvement in envy. More surprisingly, we found that rounding rules had

noticeably smaller effects on economic efficiency and relevance (not more than 2.5%). Thus, the aggressive

rounding rules used in practice appear to increase revenue at very little cost in terms of ad quality.

4.6.4 Sensitivity to the Number of Bidders

To study whether our findings were sensitive to the number of bidders, we used the same two distributions,

V-LN and CAS-LN. For each, we solved 100 instances, and studied how each auction performed as the

number of bidders varied from two to ten. Throughout, we assumed that there was no artificial limit on supply;
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Figure 4.32: How tie breaking affects auction outcomes. The “whiskers” in this plot indicate equilibrium
selection effects: the bar is the median equilibrium, while the top and bottom whiskers correspond
to best- and worst-case equilibria.

i.e., the search engine would allocate a slot to every advertiser who bid more than zero. (We investigate

the impact of this assumption next.) We found that the relative ranking between position auction variants

remained consistent as the number of bidders varied (see Figures 4.34 and 4.35). As the number of bidders

increased, all position auctions became progressively less efficient and relevant (although in V-LN, wGSP

experienced less such decrease than the other position auctions), and all auctions (including VCG) saw

increasing normalized revenue (i.e., fraction of the surplus going to the seller).

4.6.5 Sensitivity to the Number of Slots

So far, all of our experiments have assumed that the search engine can allocate space to every single advertiser

(as, indeed, is often the case). Here we consider what happens when the supply of slots is limited. This is
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Figure 4.33: How price rounding affects auction outcomes. The “whiskers” in this plot indicate
equilibrium selection effects: the bar is the median equilibrium, while the top and bottom
whiskers correspond to best- and worst-case equilibria.

particularly important for cascade and hybrid models, under which both price of anarchy and computational

complexity are known to depend on the total supply (m) [56]. We again considered V-LN and CAS-LN, in

each case varying the number of slots from one to five.

We present our results in Figures 4.36 and 4.37. Our first striking observation is that the case of m = 1 (i.e.,

selling a single good to “quality-weighted” bidders) is distinctly different from m > 1. When m = 1 there

is almost no variability in the allocation across different auctions, and therefore likewise no variability in

efficiency and relevance. (The one exception is relevance in wGSP: if two bidders have quality-weighted

valuations within an increment of each other but different click-through rates, either one could win in

equilibrium.) However, in GSP auctions revenue (and therefore envy) was nevertheless extremely variable

across equilibria. (Indeed in the continuous case, any outcome having revenue between zero and the VCG

payment is possible in conservative equilibrium.) When two or more slots were available, competition for the
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Figure 4.34: Comparing different auction designs as the number of agents varies.

lower slots dramatically decreased the range of prices that the top bidder could be charged, and hence the

range of possible revenues. However, these lower slots could attract a bidder who should (in the efficient

allocation) have appeared in a high position. Thus, with two or more slots, efficiency (and relevance) became

more variable for all position auction designs. The relative performance of all auctions remained consistent,

with wGSP being slightly worse than VCG and substantially better than uGSP and GFP. Revenue was a

different story: as m increased, all auctions extracted a smaller fraction of the possible surplus because the

availability of lower positions decreased competition for the higher positions. However, in GSP auctions, this

decline occurred more gradually than in GFP and VCG.
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Figure 4.35: Comparing different auction designs as the number of agents varies (continued).

4.7 Conclusions and Future Work

This chapter demonstrates the feasibility of computational, rather than theoretical, mechanism analysis,

applying algorithms for equilibrium computation to address a wide range of open questions about position-

auction games. The main technical obstacle we faced was representing such games in a computationally

usable form. We accomplished this by identifying encoder algorithms that take as input a position-auction

setting (based on a wide variety of models drawn from the literature) and the parameters of the position

auction (e.g., pricing rule, tie-breaking rule) and produce as output an action-graph game (AGG). These

encoder algorithms, when combined with state-of-the-art equilibrium-finding algorithms, allow us to very

quickly compute exact Nash equilibria of realistic position-auction games, and hence to provide quantitative

statistical answers to many open questions in the literature. For example, where existing research into the
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Figure 4.36: Comparing different auction designs as the number of slots varies.

widely-studied V and EOS models has focused on locally envy-free Nash equilibria, we found that such

equilibria are a small minority among the set of equilibria, and often do not exist when bids are restricted

to integer increments. These two sets also had interesting qualitative differences: while every envy-free

equilibrium is known to yield more revenue than VCG, we found that the majority of Nash equilibria yield less

revenue than VCG. These techniques also allowed us to make direct, apples-to-apples to comparisons between

different auction designs—varying the auction while holding the set of bidders and the equilibrium-selection

criteria constant—yielding some striking results. In particular, while wGSP is known to be inefficient under

many models of bidder valuations, we found that it was the most efficient position auction under nearly every

model and valuation distribution, and often close to fully efficient in expectation even in models where its

worst-case efficiency is very poor. Similarly, wGSP tended to outperform other position auction designs in

terms of relevance and envy. On the other hand, we found that different position auction mechanisms could

not easily be distinguished in terms of their revenues, with relative performance varying dramatically across
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Figure 4.37: Comparing different auction designs as the number of slots varies (continued).

models, distributions, and equilibria.

Our techniques for computational mechanism analysis are applicable to many other open problems in position

auctions. One very general direction is using computational mechanism analysis to facilitate mechanism

design (e.g., searching through the space of reserve prices and quality-score distortions in order to find a

position auction variant that optimizes some objective such as revenue or relevance, as indeed we do in

Chapter 5). Other promising ideas include investigating nonlinear value for money (representing bidders

who are not risk neutral, or who have budgets or return-on-investment targets), and Bayesian games. We

also expect that it would be possible to extend our encoders to deal with richer auction rules (e.g., auctions

where bidders specify budgets, or auctions with greater expressiveness as in [9]), or to encompass strategic

interactions between multiple heterogeneous auctions (e.g., arising due to advertisers using broad match, or

location targeting, or having a single budget that spans a multi-keyword campaign).

74



4.8 Summary Tables and Statistical Comparisons

In this section we provide detailed numerical summaries of our main experiments, as well as statistical

comparisons between different auctions. For each pair of auctions A,B and metric (e.g., efficiency), we first

test whether A is robustly superior to B, meaning that A’s worst case is significantly better than B’s best

case. (This is signified by †.) Next, we test a looser condition, whether A is better than B up to the limits of

equilibrium selection, meaning that A is significantly better than B when comparing best case to best case,

median to median and worst case to worst case. Next, we test whether or not one auction’s performance

“spans” the other, denoted by ⊆. That is, A⊆ B indicates that A’s worst-case performance is significantly

better than B’s, but that B’s best-case performance is significantly better than A’s. ∼ is used to indicate that

none of these conditions is true with sufficient statistical confidence.

Mechanism Worst Median Best n

GFP 0.979 (σ = 0.011) 0.979 (σ = 0.011) 0.979 (σ = 0.011) 161
uGSP 0.958 (σ = 0.039) 0.998 (σ = 0.003) 1.000 (σ = 0.001) 200

VCG discrete 1.000 (σ = 0.001) 1.000 (σ = 0.001) 1.000 (σ = 0.001) 200

GFP uGSP VCG dVCG

GFP ∼ ≤ †?? ≤ †??

uGSP ≤ †?? ∼
VCG ≥ †??

dVCG

Table 4.2: Comparing Efficiency (EOS-UNI distribution)

Mechanism Worst Median Best n

GFP 0.487 (σ = 0.168) 0.487 (σ = 0.168) 0.487 (σ = 0.168) 161
uGSP 0.365 (σ = 0.172) 0.498 (σ = 0.161) 0.635 (σ = 0.170) 200

VCG 0.572 (σ = 0.190) 0.572 (σ = 0.190) 0.572 (σ = 0.190) 200
VCG discrete 0.573 (σ = 0.191) 0.573 (σ = 0.191) 0.573 (σ = 0.191) 200

GFP uGSP VCG dVCG

GFP ∼ ∼ ∼
uGSP ⊇?? ⊇??

VCG ∼
dVCG

Table 4.3: Comparing Revenue (EOS-UNI distribution)
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Mechanism Worst Median Best n

GFP 0.021 (σ = 0.013) 0.021 (σ = 0.013) 0.021 (σ = 0.013) 161
uGSP 0.003 (σ = 0.005) 0.092 (σ = 0.083) 0.282 (σ = 0.230) 200

GFP uGSP

GFP ∼
uGSP

Table 4.4: Comparing Envy (EOS-UNI distribution)
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Mechanism Worst Median Best n

GFP 0.971 (σ = 0.010) 0.971 (σ = 0.009) 0.971 (σ = 0.010) 176
uGSP 0.935 (σ = 0.048) 0.995 (σ = 0.005) 1.000 (σ = 0.000) 198

VCG discrete 1.000 (σ = 0.001) 1.000 (σ = 0.001) 1.000 (σ = 0.001) 200

GFP uGSP VCG dVCG

GFP ∼ ≤ †?? ≤ †??

uGSP ∼ ∼
VCG ≥ †??

dVCG

Table 4.5: Comparing Efficiency (EOS-LN distribution)

Mechanism Worst Median Best n

GFP 0.352 (σ = 0.083) 0.352 (σ = 0.083) 0.352 (σ = 0.082) 176
uGSP 0.236 (σ = 0.062) 0.387 (σ = 0.078) 0.547 (σ = 0.114) 198

VCG 0.422 (σ = 0.111) 0.422 (σ = 0.111) 0.422 (σ = 0.111) 200
VCG discrete 0.422 (σ = 0.111) 0.422 (σ = 0.111) 0.422 (σ = 0.111) 200

GFP uGSP VCG dVCG

GFP ⊆?? ∼ ∼
uGSP ⊇?? ⊇??

VCG ∼
dVCG

Table 4.6: Comparing Revenue (EOS-LN distribution)

Mechanism Worst Median Best n

GFP 0.036 (σ = 0.015) 0.037 (σ = 0.015) 0.037 (σ = 0.015) 176
uGSP 0.001 (σ = 0.002) 0.066 (σ = 0.041) 0.279 (σ = 0.109) 198

GFP uGSP

GFP ∼
uGSP

Table 4.7: Comparing Envy (EOS-LN distribution)
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Mechanism Worst Median Best n

GFP 0.830 (σ = 0.157) 0.830 (σ = 0.157) 0.830 (σ = 0.157) 146
uGSP 0.736 (σ = 0.218) 0.826 (σ = 0.208) 0.883 (σ = 0.195) 200
wGSP 0.964 (σ = 0.040) 0.999 (σ = 0.005) 1.000 (σ = 0.001) 200
wGFP 0.974 (σ = 0.014) 0.974 (σ = 0.014) 0.974 (σ = 0.014) 181

VCG discrete 1.000 (σ = 0.001) 1.000 (σ = 0.001) 1.000 (σ = 0.001) 200

GFP uGSP wGSP wGFP VCG dVCG

GFP ∼ ≤ †?? ∼ ≤ †?? ≤ †??

uGSP ≤ †?? ∼ ≤ †?? ≤ †??

wGSP ∼ ≤ †?? ∼
wGFP ≤ †?? ≤ †??

VCG ≥ †??

dVCG

Table 4.8: Comparing Efficiency (V-UNI distribution)

Mechanism Worst Median Best n

GFP 0.393 (σ = 0.132) 0.393 (σ = 0.132) 0.393 (σ = 0.131) 146
uGSP 0.267 (σ = 0.152) 0.407 (σ = 0.160) 0.570 (σ = 0.182) 200
wGSP 0.255 (σ = 0.142) 0.389 (σ = 0.152) 0.525 (σ = 0.179) 200
wGFP 0.393 (σ = 0.173) 0.393 (σ = 0.173) 0.393 (σ = 0.173) 181

VCG 0.443 (σ = 0.187) 0.443 (σ = 0.187) 0.443 (σ = 0.187) 200
VCG discrete 0.442 (σ = 0.187) 0.442 (σ = 0.187) 0.442 (σ = 0.187) 200

GFP uGSP wGSP wGFP VCG dVCG

GFP ∼ ∼ ∼ ∼ ∼
uGSP ∼ ⊇?? ⊇?? ⊇??

wGSP ⊇?? ⊇?? ⊇??

wGFP ∼ ∼
VCG ∼

dVCG

Table 4.9: Comparing Revenue (V-UNI distribution)
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Mechanism Worst Median Best n

GFP 0.701 (σ = 0.211) 0.701 (σ = 0.211) 0.701 (σ = 0.211) 146
uGSP 0.630 (σ = 0.243) 0.697 (σ = 0.245) 0.751 (σ = 0.247) 200
wGSP 0.866 (σ = 0.136) 0.901 (σ = 0.128) 0.915 (σ = 0.127) 200
wGFP 0.888 (σ = 0.118) 0.889 (σ = 0.118) 0.889 (σ = 0.118) 181

VCG 0.901 (σ = 0.129) 0.901 (σ = 0.129) 0.901 (σ = 0.129) 200
VCG discrete 0.902 (σ = 0.128) 0.902 (σ = 0.128) 0.902 (σ = 0.128) 200

GFP uGSP wGSP wGFP VCG dVCG

GFP ∼ ≤ †?? ∼ ≤ †?? ≤ †??

uGSP ≤ †?? ∼ ≤ †?? ≤ †??

wGSP ∼ ⊇?? ⊇??

wGFP ∼ ∼
VCG ∼

dVCG

Table 4.10: Comparing Relevance (V-UNI distribution)

Mechanism Worst Median Best n

GFP 0.335 (σ = 0.348) 0.335 (σ = 0.348) 0.335 (σ = 0.348) 146
uGSP 0.242 (σ = 0.350) 0.409 (σ = 0.422) 0.627 (σ = 0.452) 200
wGSP 0.002 (σ = 0.004) 0.076 (σ = 0.067) 0.247 (σ = 0.183) 200
wGFP 0.026 (σ = 0.014) 0.026 (σ = 0.014) 0.026 (σ = 0.014) 181

GFP uGSP wGSP wGFP

GFP ∼ ∼ ≥ †??

uGSP ≥?? ≥ †??

wGSP ⊇??

wGFP

Table 4.11: Comparing Envy (V-UNI distribution)
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Mechanism Worst Median Best n

GFP 0.921 (σ = 0.059) 0.922 (σ = 0.059) 0.922 (σ = 0.059) 174
uGSP 0.810 (σ = 0.157) 0.941 (σ = 0.092) 0.993 (σ = 0.033) 200
wGSP 0.938 (σ = 0.056) 0.997 (σ = 0.005) 1.000 (σ = 0.000) 200
wGFP 0.970 (σ = 0.012) 0.970 (σ = 0.012) 0.970 (σ = 0.012) 198

VCG discrete 1.000 (σ = 0.001) 1.000 (σ = 0.001) 1.000 (σ = 0.001) 200

GFP uGSP wGSP wGFP VCG dVCG

GFP ∼ ∼ ∼ ≤ †?? ≤ †??

uGSP ≤?? ⊇?? ≤ †?? ≤ †??

wGSP ∼ ∼ ∼
wGFP ≤ †?? ≤ †??

VCG ≥ †??

dVCG

Table 4.12: Comparing Efficiency (V-LN distribution)

Mechanism Worst Median Best n

GFP 0.333 (σ = 0.076) 0.333 (σ = 0.076) 0.333 (σ = 0.076) 174
uGSP 0.190 (σ = 0.054) 0.362 (σ = 0.079) 0.558 (σ = 0.128) 200
wGSP 0.172 (σ = 0.074) 0.328 (σ = 0.096) 0.489 (σ = 0.138) 200
wGFP 0.302 (σ = 0.107) 0.302 (σ = 0.107) 0.302 (σ = 0.107) 198

VCG 0.351 (σ = 0.126) 0.351 (σ = 0.126) 0.351 (σ = 0.126) 200
VCG discrete 0.351 (σ = 0.126) 0.351 (σ = 0.126) 0.351 (σ = 0.126) 200

GFP uGSP wGSP wGFP VCG dVCG

GFP ⊆?? ⊆?? ∼ ∼ ∼
uGSP ≥?? ⊇?? ⊇?? ⊇??

wGSP ⊇?? ⊇?? ⊇??

wGFP ≤ †?? ≤ †??

VCG ∼
dVCG

Table 4.13: Comparing Revenue (V-LN distribution)
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Mechanism Worst Median Best n

GFP 0.842 (σ = 0.114) 0.842 (σ = 0.114) 0.842 (σ = 0.114) 174
uGSP 0.750 (σ = 0.147) 0.848 (σ = 0.132) 0.921 (σ = 0.104) 200
wGSP 0.882 (σ = 0.104) 0.938 (σ = 0.082) 0.979 (σ = 0.046) 200
wGFP 0.925 (σ = 0.065) 0.925 (σ = 0.065) 0.925 (σ = 0.065) 198

VCG 0.938 (σ = 0.083) 0.938 (σ = 0.083) 0.938 (σ = 0.083) 200
VCG discrete 0.939 (σ = 0.081) 0.939 (σ = 0.081) 0.939 (σ = 0.081) 200

GFP uGSP wGSP wGFP VCG dVCG

GFP ∼ ≤ †?? ≤ †?? ≤ †?? ≤ †??

uGSP ≤?? ∼ ≤ †?? ≤ †??

wGSP ⊇?? ⊇?? ⊇??

wGFP ≤ †?? ≤ †??

VCG ∼
dVCG

Table 4.14: Comparing Relevance (V-LN distribution)

Mechanism Worst Median Best n

GFP 0.148 (σ = 0.149) 0.148 (σ = 0.149) 0.148 (σ = 0.150) 174
uGSP 0.033 (σ = 0.077) 0.168 (σ = 0.174) 0.429 (σ = 0.259) 200
wGSP 0.001 (σ = 0.002) 0.057 (σ = 0.045) 0.257 (σ = 0.123) 200
wGFP 0.033 (σ = 0.015) 0.033 (σ = 0.015) 0.033 (σ = 0.015) 198

GFP uGSP wGSP wGFP

GFP ⊆?? ∼ ≥ †??

uGSP ≥?? ∼
wGSP ⊇??

wGFP

Table 4.15: Comparing Envy (V-LN distribution)
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Mechanism Worst Median Best n

GFP 0.611 (σ = 0.398) 0.638 (σ = 0.387) 0.640 (σ = 0.388) 200
uGSP 0.584 (σ = 0.392) 0.657 (σ = 0.400) 0.682 (σ = 0.412) 200
wGSP 0.648 (σ = 0.427) 0.671 (σ = 0.440) 0.675 (σ = 0.443) 200

VCG discrete 0.916 (σ = 0.151) 0.916 (σ = 0.151) 0.916 (σ = 0.151) 200

GFP uGSP wGSP VCG dVCG

GFP ⊆?? ∼ ≤ †?? ≤ †??

uGSP ∼ ≤ †?? ≤ †??

wGSP ≤ †?? ≤ †??

VCG ≥ †??

dVCG

Table 4.16: Comparing Efficiency (BHN-UNI distribution)

Mechanism Worst Median Best n

GFP 0.225 (σ = 0.180) 0.252 (σ = 0.193) 0.257 (σ = 0.198) 200
uGSP 0.196 (σ = 0.170) 0.258 (σ = 0.197) 0.295 (σ = 0.220) 200
wGSP 0.231 (σ = 0.201) 0.270 (σ = 0.218) 0.296 (σ = 0.234) 200

VCG 0.269 (σ = 0.160) 0.269 (σ = 0.160) 0.269 (σ = 0.160) 200
VCG discrete 0.219 (σ = 0.236) 0.219 (σ = 0.236) 0.219 (σ = 0.236) 200

GFP uGSP wGSP VCG dVCG

GFP ⊆?? ∼ ∼ ∼
uGSP ∼ ∼ ∼
wGSP ∼ ∼
VCG ≥ †??

dVCG

Table 4.17: Comparing Revenue (BHN-UNI distribution)
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Mechanism Worst Median Best n

GFP 0.510 (σ = 0.351) 0.528 (σ = 0.342) 0.530 (σ = 0.344) 200
uGSP 0.464 (σ = 0.338) 0.542 (σ = 0.356) 0.581 (σ = 0.377) 200
wGSP 0.604 (σ = 0.413) 0.626 (σ = 0.423) 0.638 (σ = 0.430) 200

VCG 0.903 (σ = 0.113) 0.903 (σ = 0.113) 0.903 (σ = 0.113) 200
VCG discrete 0.788 (σ = 0.256) 0.788 (σ = 0.256) 0.788 (σ = 0.256) 200

GFP uGSP wGSP VCG dVCG

GFP ⊆?? ≤ †?? ≤ †?? ≤ †??

uGSP ≤?? ≤ †?? ≤ †??

wGSP ≤ †?? ≤ †??

VCG ≥ †??

dVCG

Table 4.18: Comparing Relevance (BHN-UNI distribution)

Mechanism Worst Median Best n

GFP 0.152 (σ = 0.173) 0.174 (σ = 0.190) 0.176 (σ = 0.191) 200
uGSP 0.121 (σ = 0.180) 0.191 (σ = 0.220) 0.287 (σ = 0.311) 200
wGSP 0.097 (σ = 0.185) 0.110 (σ = 0.185) 0.146 (σ = 0.198) 200

GFP uGSP wGSP

GFP ⊆?? ∼
uGSP ∼
wGSP

Table 4.19: Comparing Envy (BHN-UNI distribution)

Mechanism Worst Median Best n

GFP 0.775 (σ = 0.221) 0.835 (σ = 0.127) 0.854 (σ = 0.120) 189
uGSP 0.799 (σ = 0.208) 0.902 (σ = 0.118) 0.918 (σ = 0.109) 200

VCG discrete 0.999 (σ = 0.003) 0.999 (σ = 0.003) 0.999 (σ = 0.003) 200

GFP uGSP VCG dVCG

GFP ∼ ≤ †?? ≤ †??

uGSP ≤ †?? ≤ †??

VCG ≥ †??

dVCG

Table 4.20: Comparing Efficiency (BSS distribution)
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Mechanism Worst Median Best n

GFP 0.255 (σ = 0.171) 0.306 (σ = 0.154) 0.360 (σ = 0.170) 189
uGSP 0.210 (σ = 0.140) 0.327 (σ = 0.152) 0.436 (σ = 0.193) 200

VCG 0.408 (σ = 0.188) 0.408 (σ = 0.188) 0.408 (σ = 0.188) 200
VCG discrete 0.412 (σ = 0.186) 0.412 (σ = 0.186) 0.412 (σ = 0.186) 200

GFP uGSP VCG dVCG

GFP ∼ ∼ ∼
uGSP ∼ ∼
VCG ≤ †?

dVCG

Table 4.21: Comparing Revenue (BSS distribution)

Mechanism Worst Median Best n

GFP 0.015 (σ = 0.020) 0.017 (σ = 0.021) 0.022 (σ = 0.021) 189
uGSP 0.016 (σ = 0.023) 0.046 (σ = 0.057) 0.107 (σ = 0.113) 200

GFP uGSP

GFP ∼
uGSP

Table 4.22: Comparing Envy (BSS distribution)

Mechanism Worst Median Best n

GFP 0.837 (σ = 0.150) 0.837 (σ = 0.150) 0.837 (σ = 0.150) 153
uGSP 0.650 (σ = 0.230) 0.819 (σ = 0.191) 0.916 (σ = 0.145) 200
wGSP 0.855 (σ = 0.118) 0.947 (σ = 0.081) 0.981 (σ = 0.048) 200
cwGSP 0.956 (σ = 0.040) 0.995 (σ = 0.010) 1.000 (σ = 0.002) 164

VCG discrete 1.000 (σ = 0.000) 1.000 (σ = 0.000) 1.000 (σ = 0.000) 200

GFP uGSP wGSP cwGSP VCG dVCG

GFP ∼ ∼ ∼ ≤ †?? ≤ †??

uGSP ≤?? ∼ ≤ †?? ≤ †??

wGSP ∼ ≤ †?? ≤ †??

cwGSP ≤ †?? ≤ †??

VCG ≥ †??

dVCG

Table 4.23: Comparing Efficiency (CAS-UNI distribution)
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Mechanism Worst Median Best n

GFP 0.344 (σ = 0.114) 0.344 (σ = 0.114) 0.344 (σ = 0.114) 153
uGSP 0.189 (σ = 0.117) 0.370 (σ = 0.137) 0.575 (σ = 0.157) 200
wGSP 0.189 (σ = 0.108) 0.337 (σ = 0.127) 0.498 (σ = 0.157) 200
cwGSP 0.156 (σ = 0.098) 0.270 (σ = 0.119) 0.396 (σ = 0.158) 164

VCG 0.312 (σ = 0.159) 0.312 (σ = 0.159) 0.312 (σ = 0.159) 200
VCG discrete 0.312 (σ = 0.158) 0.312 (σ = 0.158) 0.312 (σ = 0.158) 200

GFP uGSP wGSP cwGSP VCG dVCG

GFP ⊆?? ∼ ∼ ∼ ∼
uGSP ∼ ∼ ⊇?? ⊇??

wGSP ∼ ⊇?? ⊇??

cwGSP ∼ ∼
VCG ∼
dVCG

Table 4.24: Comparing Revenue (CAS-UNI distribution)

Mechanism Worst Median Best n

GFP 0.669 (σ = 0.211) 0.669 (σ = 0.211) 0.669 (σ = 0.211) 153
uGSP 0.516 (σ = 0.224) 0.645 (σ = 0.224) 0.757 (σ = 0.214) 200
wGSP 0.718 (σ = 0.167) 0.813 (σ = 0.167) 0.878 (σ = 0.140) 200
cwGSP 0.876 (σ = 0.120) 0.918 (σ = 0.115) 0.945 (σ = 0.097) 164

VCG 0.909 (σ = 0.117) 0.909 (σ = 0.117) 0.909 (σ = 0.117) 200
VCG discrete 0.906 (σ = 0.120) 0.906 (σ = 0.120) 0.906 (σ = 0.120) 200

GFP uGSP wGSP cwGSP VCG dVCG

GFP ∼ ∼ ∼ ≤ †?? ≤ †??

uGSP ≤?? ∼ ≤ †?? ≤ †??

wGSP ∼ ≤ †?? ≤ †??

cwGSP ∼ ∼
VCG ∼

dVCG

Table 4.25: Comparing Relevance (CAS-UNI distribution)
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Mechanism Worst Median Best n

GFP 0.905 (σ = 0.096) 0.905 (σ = 0.096) 0.905 (σ = 0.096) 180
uGSP 0.788 (σ = 0.161) 0.905 (σ = 0.119) 0.973 (σ = 0.062) 200
wGSP 0.861 (σ = 0.125) 0.951 (σ = 0.074) 0.984 (σ = 0.049) 200
cwGSP 0.952 (σ = 0.044) 0.996 (σ = 0.010) 1.000 (σ = 0.002) 170

VCG discrete 1.000 (σ = 0.000) 1.000 (σ = 0.000) 1.000 (σ = 0.000) 200

GFP uGSP wGSP cwGSP VCG dVCG

GFP ∼ ∼ ∼ ≤ †?? ≤ †??

uGSP ∼ ∼ ≤ †?? ≤ †??

wGSP ∼ ≤ †?? ≤ †??

cwGSP ≤ †?? ∼
VCG ≥ †??

dVCG

Table 4.26: Comparing Efficiency (CAS-LN distribution)

Mechanism Worst Median Best n

GFP 0.344 (σ = 0.112) 0.344 (σ = 0.112) 0.344 (σ = 0.112) 180
uGSP 0.214 (σ = 0.101) 0.376 (σ = 0.112) 0.558 (σ = 0.146) 200
wGSP 0.172 (σ = 0.096) 0.317 (σ = 0.123) 0.474 (σ = 0.167) 200
cwGSP 0.143 (σ = 0.086) 0.249 (σ = 0.114) 0.363 (σ = 0.160) 170

VCG 0.283 (σ = 0.166) 0.283 (σ = 0.166) 0.283 (σ = 0.166) 200
VCG discrete 0.283 (σ = 0.166) 0.283 (σ = 0.166) 0.283 (σ = 0.166) 200

GFP uGSP wGSP cwGSP VCG dVCG

GFP ⊆?? ⊆?? ∼ ∼ ∼
uGSP ≥?? ∼ ⊇?? ⊇??

wGSP ∼ ⊇?? ⊇??

cwGSP ∼ ∼
VCG ∼
dVCG

Table 4.27: Comparing Revenue (CAS-LN distribution)
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Mechanism Worst Median Best n

GFP 0.784 (σ = 0.166) 0.784 (σ = 0.166) 0.784 (σ = 0.166) 180
uGSP 0.658 (σ = 0.182) 0.764 (σ = 0.181) 0.873 (σ = 0.156) 200
wGSP 0.755 (σ = 0.168) 0.842 (σ = 0.150) 0.912 (σ = 0.126) 200
cwGSP 0.904 (σ = 0.090) 0.953 (σ = 0.068) 0.980 (σ = 0.046) 170

VCG 0.942 (σ = 0.079) 0.942 (σ = 0.079) 0.942 (σ = 0.079) 200
VCG discrete 0.942 (σ = 0.079) 0.942 (σ = 0.079) 0.942 (σ = 0.079) 200

GFP uGSP wGSP cwGSP VCG dVCG

GFP ∼ ∼ ∼ ≤ †?? ≤ †??

uGSP ≤?? ∼ ≤ †?? ≤ †??

wGSP ∼ ≤ †?? ≤ †??

cwGSP ∼ ∼
VCG ∼

dVCG

Table 4.28: Comparing Relevance (CAS-LN distribution)

Mechanism Worst Median Best n

GFP 0.821 (σ = 0.160) 0.821 (σ = 0.160) 0.821 (σ = 0.160) 89
uGSP 0.711 (σ = 0.263) 0.812 (σ = 0.242) 0.867 (σ = 0.225) 200
wGSP 0.955 (σ = 0.083) 0.987 (σ = 0.041) 0.994 (σ = 0.029) 200

VCG discrete 1.000 (σ = 0.001) 1.000 (σ = 0.001) 1.000 (σ = 0.001) 200

GFP uGSP wGSP VCG dVCG

GFP ∼ ≤ †?? ≤ †?? ≤ †??

uGSP ≤ †?? ≤ †?? ≤ †??

wGSP ≤ †?? ≤ †??

VCG ≥ †??

dVCG

Table 4.29: Comparing Efficiency (HYB-UNI distribution)
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Mechanism Worst Median Best n

GFP 0.503 (σ = 0.141) 0.503 (σ = 0.141) 0.504 (σ = 0.142) 89
uGSP 0.342 (σ = 0.179) 0.508 (σ = 0.188) 0.670 (σ = 0.208) 200
wGSP 0.321 (σ = 0.158) 0.469 (σ = 0.152) 0.615 (σ = 0.175) 200

VCG 0.534 (σ = 0.185) 0.534 (σ = 0.185) 0.534 (σ = 0.185) 200
VCG discrete 0.534 (σ = 0.185) 0.534 (σ = 0.185) 0.534 (σ = 0.185) 200

GFP uGSP wGSP VCG dVCG

GFP ∼ ∼ ∼ ∼
uGSP ∼ ⊇?? ⊇??

wGSP ⊇?? ⊇??

VCG ∼
dVCG

Table 4.30: Comparing Revenue (HYB-UNI distribution)

Mechanism Worst Median Best n

GFP 0.638 (σ = 0.214) 0.638 (σ = 0.214) 0.638 (σ = 0.214) 89
uGSP 0.570 (σ = 0.257) 0.652 (σ = 0.261) 0.708 (σ = 0.255) 200
wGSP 0.829 (σ = 0.164) 0.864 (σ = 0.152) 0.888 (σ = 0.139) 200

VCG 0.886 (σ = 0.136) 0.886 (σ = 0.136) 0.886 (σ = 0.136) 200
VCG discrete 0.888 (σ = 0.132) 0.888 (σ = 0.132) 0.888 (σ = 0.132) 200

GFP uGSP wGSP VCG dVCG

GFP ∼ ∼ ≤ †? ≤ †?

uGSP ≤ †?? ≤ †?? ≤ †??

wGSP ∼ ∼
VCG ∼
dVCG

Table 4.31: Comparing Relevance (HYB-UNI distribution)
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Mechanism Worst Median Best n

GFP 0.775 (σ = 0.210) 0.775 (σ = 0.210) 0.776 (σ = 0.210) 171
uGSP 0.698 (σ = 0.305) 0.759 (σ = 0.298) 0.812 (σ = 0.275) 200
wGSP 0.982 (σ = 0.046) 0.997 (σ = 0.014) 1.000 (σ = 0.001) 200

VCG discrete 1.000 (σ = 0.004) 1.000 (σ = 0.004) 1.000 (σ = 0.004) 200

GFP uGSP wGSP VCG dVCG

GFP ∼ ≤ †?? ≤ †?? ≤ †??

uGSP ≤ †?? ≤ †?? ≤ †??

wGSP ≤ †?? ∼
VCG ≥ †??

dVCG

Table 4.32: Comparing Efficiency (HYB-LN distribution)

Mechanism Worst Median Best n

GFP 0.365 (σ = 0.133) 0.366 (σ = 0.133) 0.366 (σ = 0.133) 171
uGSP 0.192 (σ = 0.116) 0.320 (σ = 0.160) 0.472 (σ = 0.229) 200
wGSP 0.151 (σ = 0.125) 0.274 (σ = 0.176) 0.390 (σ = 0.238) 200

VCG 0.325 (σ = 0.222) 0.325 (σ = 0.222) 0.325 (σ = 0.222) 200
VCG discrete 0.326 (σ = 0.221) 0.326 (σ = 0.221) 0.326 (σ = 0.221) 200

GFP uGSP wGSP VCG dVCG

GFP ∼ ∼ ∼ ∼
uGSP ∼ ⊇?? ⊇??

wGSP ⊇?? ⊇??

VCG ∼
dVCG

Table 4.33: Comparing Revenue (HYB-LN distribution)
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Mechanism Worst Median Best n

GFP 0.613 (σ = 0.268) 0.613 (σ = 0.268) 0.613 (σ = 0.268) 171
uGSP 0.543 (σ = 0.315) 0.596 (σ = 0.325) 0.651 (σ = 0.321) 200
wGSP 0.864 (σ = 0.206) 0.895 (σ = 0.180) 0.921 (σ = 0.152) 200

VCG 0.904 (σ = 0.168) 0.904 (σ = 0.168) 0.904 (σ = 0.168) 200
VCG discrete 0.900 (σ = 0.171) 0.900 (σ = 0.171) 0.900 (σ = 0.171) 200

GFP uGSP wGSP VCG dVCG

GFP ∼ ≤ †?? ≤ †?? ≤ †??

uGSP ≤ †?? ≤ †?? ≤ †??

wGSP ⊇?? ⊇??

VCG ∼
dVCG

Table 4.34: Comparing Relevance (HYB-LN distribution)

Mechanism Worst Median Best n

GFP 0.829 (σ = 0.131) 0.829 (σ = 0.131) 0.829 (σ = 0.131) 130
uGSP 0.684 (σ = 0.214) 0.828 (σ = 0.189) 0.905 (σ = 0.135) 200
wGSP 0.858 (σ = 0.112) 0.950 (σ = 0.073) 0.981 (σ = 0.043) 200

VCG discrete 1.000 (σ = 0.001) 1.000 (σ = 0.001) 1.000 (σ = 0.001) 200

GFP uGSP wGSP VCG dVCG

GFP ∼ ∼ ≤ †?? ≤ †??

uGSP ≤?? ≤ †?? ≤ †??

wGSP ≤ †?? ≤ †??

VCG ≥ †??

dVCG

Table 4.35: Comparing Efficiency (GIM-UNI distribution)
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Mechanism Worst Median Best n

GFP 0.424 (σ = 0.120) 0.424 (σ = 0.120) 0.424 (σ = 0.120) 130
uGSP 0.274 (σ = 0.129) 0.462 (σ = 0.147) 0.650 (σ = 0.153) 200
wGSP 0.248 (σ = 0.111) 0.405 (σ = 0.122) 0.569 (σ = 0.156) 200

VCG 0.384 (σ = 0.164) 0.384 (σ = 0.164) 0.384 (σ = 0.164) 200
VCG discrete 0.385 (σ = 0.165) 0.385 (σ = 0.165) 0.385 (σ = 0.165) 200

GFP uGSP wGSP VCG dVCG

GFP ∼ ∼ ∼ ∼
uGSP ∼ ⊇?? ⊇??

wGSP ⊇?? ⊇??

VCG ∼
dVCG

Table 4.36: Comparing Revenue (GIM-UNI distribution)

Mechanism Worst Median Best n

GFP 0.642 (σ = 0.190) 0.642 (σ = 0.190) 0.642 (σ = 0.190) 130
uGSP 0.536 (σ = 0.208) 0.654 (σ = 0.222) 0.736 (σ = 0.203) 200
wGSP 0.728 (σ = 0.153) 0.818 (σ = 0.160) 0.869 (σ = 0.145) 200

VCG 0.900 (σ = 0.124) 0.900 (σ = 0.124) 0.900 (σ = 0.124) 200
VCG discrete 0.900 (σ = 0.126) 0.900 (σ = 0.126) 0.900 (σ = 0.126) 200

GFP uGSP wGSP VCG dVCG

GFP ∼ ∼ ≤ †?? ≤ †??

uGSP ≤?? ≤ †?? ≤ †??

wGSP ≤ †?? ≤ †??

VCG ∼
dVCG

Table 4.37: Comparing Relevance (GIM-UNI distribution)
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Mechanism Worst Median Best n

GFP 0.891 (σ = 0.091) 0.892 (σ = 0.091) 0.892 (σ = 0.091) 169
uGSP 0.802 (σ = 0.165) 0.906 (σ = 0.128) 0.954 (σ = 0.089) 200
wGSP 0.881 (σ = 0.104) 0.956 (σ = 0.064) 0.981 (σ = 0.039) 200

VCG discrete 1.000 (σ = 0.001) 1.000 (σ = 0.001) 1.000 (σ = 0.001) 200

GFP uGSP wGSP VCG dVCG

GFP ∼ ∼ ≤ †?? ≤ †??

uGSP ≤?? ≤ †?? ≤ †??

wGSP ≤ †?? ≤ †??

VCG ≥ †??

dVCG

Table 4.38: Comparing Efficiency (GIM-LN distribution)

Mechanism Worst Median Best n

GFP 0.398 (σ = 0.119) 0.398 (σ = 0.119) 0.398 (σ = 0.118) 169
uGSP 0.277 (σ = 0.101) 0.428 (σ = 0.120) 0.582 (σ = 0.160) 200
wGSP 0.225 (σ = 0.118) 0.354 (σ = 0.148) 0.493 (σ = 0.191) 200

VCG 0.339 (σ = 0.185) 0.339 (σ = 0.185) 0.339 (σ = 0.185) 200
VCG discrete 0.339 (σ = 0.186) 0.339 (σ = 0.186) 0.339 (σ = 0.186) 200

GFP uGSP wGSP VCG dVCG

GFP ⊆?? ∼ ∼ ∼
uGSP ≥?? ⊇?? ⊇??

wGSP ⊇?? ⊇??

VCG ∼
dVCG

Table 4.39: Comparing Revenue (GIM-LN distribution)
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Mechanism Worst Median Best n

GFP 0.755 (σ = 0.156) 0.755 (σ = 0.155) 0.755 (σ = 0.155) 169
uGSP 0.661 (σ = 0.182) 0.762 (σ = 0.179) 0.830 (σ = 0.160) 200
wGSP 0.765 (σ = 0.137) 0.844 (σ = 0.132) 0.897 (σ = 0.113) 200

VCG 0.933 (σ = 0.093) 0.933 (σ = 0.093) 0.933 (σ = 0.093) 200
VCG discrete 0.934 (σ = 0.092) 0.934 (σ = 0.092) 0.934 (σ = 0.092) 200

GFP uGSP wGSP VCG dVCG

GFP ∼ ∼ ≤ †?? ≤ †??

uGSP ≤?? ≤ †?? ≤ †??

wGSP ≤ †?? ≤ †??

VCG ∼
dVCG

Table 4.40: Comparing Relevance (GIM-LN distribution)
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Chapter 5

Application: Maximizing Internet
Advertising Revenue

5.1 Introduction

The previous chapter introduced internet advertising auctions, and showed that computational mechanism

analysis could be used to analyze and compare different auction designs. This chapter also focuses on internet

advertising as an application domain. However, in this chapter, the focus is on computational mechanism

analysis as a tool for mechanism design, specifically with the objective of maximizing search-engine revenue.

As described in the previous chapter, the major search engines generate most of their revenue from advertising

auctions and all have converged on the weighted generalized second-price auction (wGSP). Notably, this

auction design is not incentive compatible—it is typically not in an advertiser’s best interest to truthfully

report her per-click willingness to pay. In contrast, incentive compatible designs have been proposed by the

research community [e.g., 1], but not adopted by any search engine.

Revenue optimization is typically framed as a question of finding the revenue-maximizing incentive-

compatible auction design. We instead ask “how can we optimize revenue within the basic GSP design?”

Specifically, we consider a range of different GSP variants that have been used in practice. Each has adjustable

parameters; we consider how these parameters should be set in order to optimize revenue.

Our most striking finding is that a new reserve price scheme used by major search engines (“quality-weighted

reserves”: low-quality advertisers must pay more per click) is not a good choice from a revenue perspective;

the old scheme (“unweighted reserves”: all advertisers have the same per-click reserve price) is substantially

better. Indeed, this finding is not just striking, but also robust: we offer evidence for it across three different
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analysis methods and two different sets of assumptions about bidder valuations. We observed that richer GSP

variants sometimes outperformed GSP with unweighted reserves, but these variants tended to incorporate

(approximately) unweighted reserves. Three of this chapter’s other findings also deserve mention here. First,

we identify a new GSP variant that is provably revenue optimal in some restricted settings, and that achieves

very good revenue in settings where it is not optimal. Second, we perform the first systematic investigation

of the interaction between reserve prices and another revenue-optimization technique called “squashing”.

Interestingly, we find that squashing can substantially improve the performance of quality-weighted reserve

prices, but this effect arises because squashing undoes the quality weighting. Third, we perform the first

systematic investigation of how equilibrium selection interacts with revenue optimization techniques like

reserve prices. Again, unweighted reserve prices prove to be superior, especially from the perspective of

optimizing the revenue of worst-case equilibria.

This chapter proceeds as follows. Section 5.2 describes the GSP variants and how they are used in practice,

the model of advertiser preferences, and finally a review of related work. In Section 5.3 we perform a

theoretical analysis of the problem of selling only a single position. The simplicity of this setting allows

us to identify properties of the optimal auction, and to contrast them with the GSP variants. Section 5.4

covers our first computational analysis of auctions involving multiple ad positions. Here, we we used efficient

game representations to enumerate the entire set of pure-strategy equilibria. Section 5.5 describes a further

computational analysis, where we performed very large-scale experiments, focusing on a commonly studied

restricted class of equilibria. Section 5.6 discusses some implications of our results and directions for future

work.

5.2 Background

Recall the weighted generalized second-price auction (wGSP) from the previous chapter. (Hereafter, we refer

to it as the “vanilla GSP” to distinguish it from the other wGSP-based auction designs that we discuss later

Each advertiser i is assigned a quality score qi ∈ (0,1] by the search engine. We assume that this quality score

is equal to the probability that the advertiser’s ad would be clicked on if it were shown in the top position.

Each advertiser submits a bid bi that specifies the maximum per-click price that she would be willing to pay.

Ads are shown ordered by biqi from highest to lowest. When a user clicks on an ad, the advertiser pays the

minimum amount she could have bid while maintaining her position in the ordering.

Three simple variants of vanilla GSP have been proposed—and used in practice—to improve revenue.

1. Squashing changes vanilla GSP by changing how bidders are ranked, according to a real-valued

parameter s: bidders are ranked by biqs
i . When s = 1, squashing GSP is identical to regular GSP.

When s = 0, squashing GSP throws away all quality information and ranks advertisers by their bids,

promoting lower-quality advertisers and forcing higher-quality advertisers to pay more to retain the
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same position. Intermediate values of s ∈ (0,1) smoothly interpolate between these two extremes [60].

2. An unweighted reserve price (UWR) specifies a minimum per-click price r that every advertiser must

bid (and pay) in order for her ad to be shown.1 We call this per-click reserve price “unweighted”

because it is constant across all advertisers, regardless of their qualities.

3. A quality-weighted reserve price (QWR) also specifies a minimum price that advertisers must pay, but

now this price is increased for higher-quality bidders. Specifically, each advertiser i must pay at least

r/qi per click.

Squashing and both kinds of reserve prices have been used in practice (and in combination). Google initially

used a UWR of $0.05 across all keywords [103], but switched to QWR in 2005 [45]. Yahoo! also had a UWR

($0.10), but in a well-documented field experiment switched to QWR while both tailoring reserve prices to

specific keywords and dramatically increasing them overall [81]. Yahoo! researchers have publicly confirmed

that their auctions use squashing [71]. However, since search engines withhold many auction details (e.g., the

methods used to calculate quality scores and minimum bids), it is impossible to be certain of current practice.

Finally, we consider three richer GSP variants. The first two, UWR+Sq and QWR+Sq, combine squashing

with the two reserve price variants. The third—which to our knowledge had not previously been discussed

in the literature, and which we dub anchoring2—imposes unweighted reserve prices, but ranks advertisers

based only on the portion of bids that exceeds the reserve price, multiplied by the quality score: (bi− r)qi.

Anchoring is interesting because (as we show in Section 3) it is the optimal auction for some very simple

settings; we also found that it performed well in settings where it was not provably optimal.

5.2.1 Model

For this chapter, we focus on Varian’s model (V) [103], which is one of the most widely studied models,

particularly among researchers studying revenue optimization.3 In this model, a setting is specified by a

4-tuple 〈N,v,q,α〉: N is the set of agents (numbered 1, . . . ,n); vi specifies agent i’s value for a single click; qi

specifies agent i’s quality score, which is equal to the probability that i’s ad would receive a click if shown in

the top position (qi > 0); and α j is the probability that an agent with quality of 1.0 will receive a click in

position j. Observe that α1 = 1.0; we further assume that α is decreasing, meaning that higher positions get

1Note: we assume that advertisers who do not bid above their minimum bid do not affect the outcome in any way. Particularly,
this means that an advertiser who bids below her minimum bid does not affect the prices that other agents must pay.

2Roberts et al, studying much the same problem as this chapter, independently invented the same auction design [88].
3Among the models considered in the previous chapter, V is the most important for this analysis. EOS [30] is unsuitable, because

it lacks quality scores. This lack means that we cannot compare many GSP variants that differ in how they handle quality scores. The
other models include multi-parameter agents (BHN and BSS) or externalities (cascade, hybrid and GIM). Although these features do
not prevent computational analysis using our methods (as in Section 5.4), they do rule out more conventional methods (such as those
in Section 5.5). Perhaps because these models are harder to analyze, there is also essentially no literature on revenue optimization for
them. Revenue optimization in richer models remains an important open problem where CMA can make a substantial contribution.
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more clicks. Thus, if agent i’s ad is shown in position j with a price of p per click, then her expected payoff

is α jqi(vi− p).

As in Chapter 4 and in most of the literature on GSP [e.g., 30, 103], we assume that the setting is common

knowledge to all the advertisers. This assumption is motivated by the fact that in practice, advertisers can

learn a great deal about each other through repeated interactions. We assume that the search engine is able

to directly observe and condition on the number of bidders and their quality scores. As is common in the

literature on revenue optimization (going back to [75] and continuing in work related to GSP [81, 97]),

we further assume that details of the setting (v,q,α) are drawn from a distribution which is known to the

auctioneer. Thus while the search engine is unable to choose a reserve price conditional on the advertisers’

valuations, it can base this decision on the distribution from which these values are drawn. We further assume

that the auctioneer can observe and condition on the number of agents, and on each agent’s quality score. To

understand this last assumption, note that the search engine directly observes every click on an ad. Thus, even

if qi begins as private information, it is impossible for an advertiser to misreport this value. This assumption

is a key distinction between our work and previous work on revenue optimization (most notably, [97]).

5.2.2 Related Work

Revenue has been a major consideration since the earliest equilibrium analysis of vanilla GSP. Foundational

research in the area [30, 103] analyzed a specific equilibrium refinement, under which they found that GSP

was at least as good at generating revenue as VCG. Subsequent research has shown that VCG (and therefore

GSP) achieves revenue close to that of the optimal auction [25]—though in practice, this could mean that

search engines leave billions of dollars on the table. Other work has looked into general Nash equilibria

(without the refinements mentioned earlier) and found that GSP has many equilibria, ranging from some

much worse than VCG [98] to others that are significantly better [64, 98].

Lahaie and Pennock [60] first introduced the concept of squashing. While squashing behaves similarly to the

virtual values of Myerson, in that it tends to promote weak bidders, they proved that no squashing scheme (or

indeed any other manipulation of quality scores) can yield an optimal auction. (Our Figure 5.1 gives some

visual intuition as to why this is true.) They also performed substantial simulation experiments, demonstrating

the effectiveness of squashing as a means of sacrificing efficiency for revenue. Recently—and departing from

the model we consider in our own work—it has been shown that squashing can improve efficiency when

quality scores are noisy [59].

Reserve prices have been used in GSP auctions for years, but our theoretical understanding of their effects is

still relatively limited. Since weighted GSP has the same outcome as VCG in many analyses (e.g., [1] and the

Bayesian analyses of [103] and [41]), one could infer that weighted GSP with a weighted reserve would have

the same outcome as VCG with an unweighted reserve, which often corresponds to the optimal auction of

[75]. [81] showed that GSP with weighted reserves is not quite equivalent to the optimal auction in the case

97



of asymmetric bidders. Recently, [97] showed that GSP with weighted reserves is optimal when the quality

score is part of the advertisers’ private information. However, the question of how to optimize revenue in the

arguably more realistic case where quality scores are known to the auctioneer remains open. Despite the fact

that squashing and reserve prices have been used together in practice, we are aware of no studies of how they

interact. Further, little is known about how equilibrium selection affects the revenue of GSP with reserves or

squashing.

5.3 First Analysis: Single-Slot Auctions with Known Quality Scores

For our first analysis of the problem of revenue optimization in GSP, we consider an extremely restricted

case—selling a single slot to advertisers with independent, identically distributed per-click valuations, but

known quality scores. We restrict ourselves to a single slot because it allows us to rely directly upon Myerson’s

characterization to identify the optimal auction. Observe that our use of Varian’s model in this setting is less

restrictive than it might appear: richer models such as cascade [e.g., 36, 56] and position preferences [e.g.,

9, 11] all collapse to Varian’s model in the single-slot case.

First, we consider the problem of which kind of reserve prices are optimal.

Proposition 12. The optimal auction uses the same per-click reserve price for all bidders in any one-position

setting for which all agents’ per-click valuations (v) are independently drawn from a common, regular

distribution g.

Proof. First, observe that although per-click valuations are identically distributed in this setting, agents’

per-impression valuations (denoted V ) are not. If an agent i’s per-click valuation is vi, then her per-impression

valuation (given qi) is qivi = Vi. Because the auctioneer is effectively selling impressions, it is the latter value

that matters. Let fi and Fi denote the probability density function and cummulative distribution function of

Vi.

As was shown by Myerson [75], when f is regular the optimal auction allocates by virtual values ψ:

ψi(Vi) = Vi−
1−Fi(Vi)

fi(Vi)
. (5.1)

For any per-click valuation distribution g, we can identify the per-impression valuation distribution for an

agent with quality qi: f (qivi) = g(vi)/qi and F(qivi) = G(vi). Substituting these into (1) gives

ψi(qivi) = qivi−
1−Gi(vi)

gi(vi)/qi
= qi

(
vi−

1−Gi(vi)

gi(vi)

)
. (5.2)

The value vi that makes this expression equal to zero is independent of qi, and so the optimal per-click reserve

is independent of qi.
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Auction Revenue Parameter(s)

VCG/GSP 0.208 —
Squashing 0.255 s = 0.19

QWR 0.279 r = 0.375
UWR 0.316 r = 0.549

QWR+Sq 0.321 r = 0.472,s = 0.24
UWR+Sq 0.322 r = 0.505,s = 0.32

Anchoring 0.323 r = 0.5

Table 5.1: Comparing GSP variants for two bidders with q1 = 1, q2 = 1/2, and v1,v2∼ U(0,1).

Next, we consider a simple value distribution: the uniform one. Because this case has such a simple functional

form, it is easy to identify the optimal auction for such bidders. In fact, the optimal auction for the uniform

distribution is precisely the anchoring rule described earlier.

Proposition 13. The anchoring GSP auction is optimal in any one-position setting for which (1) all the

agents’ per-click valuations (v) are independently drawn from a uniform distribution on [0,v] (hereafter

U(0,v)), and (2) each agent i’s quality score qi is known to the auctioneer.

Proof. For valuations from U(0,x), f (v) = 1/x and F(v) = v/x. Note that for every agent i, x corresponds to

i’s maximum possible per-impression valuation qiv. Substituting these into Equation (1) gives

ψi(qivi) = qivi−
1−qivi/(qiv)

1/(qiv)
= qi(2vi− v). (5.3)

Thus, the optimal per-click reserve price r∗i occurs at ψi(qiri) = 0, ri = v/2 in this case. In the optimal auction,

advertisers are ranked by ψ(qivi) = qi(2vi− v) ∝ qi(vi− r∗i ), and so the anchoring auction is optimal.

However, not all value distributions give rise to optimal auctions with simple (e.g., linear) forms. Consider the

log-normal distribution, which some researchers have argued is a good model of real-world bidder valuations

[60, 81]. The optimal auction for log-normal distributions uses unweighted reserve prices, and behaves

similarly to anchoring when bids are close to the reserve. However, far from the reserves, the optimal auction’s

allocation more closely resembles vanilla GSP. (See Figure 5.1 for a visualization of the optimal auction for

uniform valuations and Figure 5.4 for a visualization of the optimal auction for log-normal valuations.)

The uniform distribution also makes it easy to calculate the optimal auction’s expected revenue. We considered

the case of two bidders, one with high quality (q1 = 1) and one with lower quality (q2 = 1/2), and calculated

the optimal parameter settings for each of the GSP variants defined above (see Table 5.1).4 While anchoring

(of course) generated the most revenue, other mechanisms could also be configured to achieve very nearly

4Because of the simplicity of the model, we could calculate the expected revenues numerically (to 10−5 accuracy). To find the
optimal parameter settings, we used grid search with increments of 0.001 for r and increments of 0.01 for s.
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Figure 5.1: Allocation functions visualized (regions in which agent 1 wins are dark green; regions
where agent 2 wins are yellow.) Left: the efficient (VCG) auction; middle: the revenue-optimal
auction; right: the optimal squashing auction. Note that squashing changes the slope of the
dividing line, while the optimal auction transposes it without changing the slope. (Specifically, the
optimal auction “anchors” the dividing line to the point where every agent bids his reserve price.)
This provides intuition for the result by [60] that no combination of squashing and reserve prices
can implement the optimal auction.

optimal revenues: reserves and squashing used together were ∼ 99% optimal, and UWR was ∼ 98% optimal.

Squashing and QWR were far behind (at ∼ 79% and ∼ 83% respectively).

We can gain insight into the GSP variants’ similarities and differences by visualizing their allocation functions,

for the same setting with two bidders with uniformly distributed valuations and different quality scores (see

Figures 5.1–5.3). In each case, the x and y axes correspond to the per-click valuations of agents 1 and 2

respectively. The green region, yellow region and white region respectively indicate joint values for which

agent 1 wins, agent 2 wins, and neither agent wins. The dashed line indicates the dividing line of the efficient

allocation, with agent 1 winning below the line and agent 2 winning above it.

In summary, this section considered single-slot auctions with i.i.d. per-click values, and obtained the following

main findings:

1. the optimal auction uses unweighted reserve prices;

2. when values are uniform, anchoring GSP is optimal;

3. in a very restricted uniform setting, the richer mechanisms (anchoring, QWR+sq, and UWR+sq)

achieve approximately equal revenue when optimized, and are slightly better than UWR which is better

than QWR and squashing.
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Figure 5.2: Left: the optimal UWR auction; right: the optimal QWR auction. Note that the optimal
unweighted reserve is higher than the reserve used by the optimal auction (0.588 rather than
0.5), and that agent 2 only wins when agent 1 does not meet his reserve, because 1’s quality is
much higher. Also, note the compromise involved in quality-weighted reserve prices: because
the reserve prices must correspond to a point on the efficient dividing line, obtaining a reasonable
reserve for agent 1 (relative to the optimal auction) results in a much-too-high reserve for agent 2.
Because of this compromise, QWR generates ∼ 13% less revenue than UWR. Note that whenever
agent 1 exceeds his reserve price in UWR, he wins regardless of agent 2’s bid. For multi-slot
UWR auctions, this can have an unexpected side effect: it can be impossible for a high-quality
advertiser to win the second position.
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Figure 5.3: Left: the UWR+Sq auction; right: the QWR+Sq auction. Both have reserves that are much
closer to the reserves of the optimal auction (and both are within ∼ 1% of revenue-optimal), but
both use substantial squashing (0.2 and 0.3 respectively, where squashing of 0 indicates completely
disregarding quality scores).
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Figure 5.4: The optimal auction for log-normal valuations (µ = 0 and σ = 0.25) and plotting valuations
up to the 99.9th% quantile. This auction resembles anchoring (shown with the solid black line)
when values are below or near the reserve price. As values get further from the reserve, the
allocation tends towards the efficient auction.

5.4 Second Analysis: Multiple Slots, All Pure Nash Equilibria

As mentioned earlier, it is widely known that GSP has multiple Nash equilibria that can yield substantially

different revenue and social welfare. For our second analysis, we investigated how equilibrium selection

affects GSP and the six GSP variants by directly calculating their pure strategy Nash equilibria. We use the

wGSP encoding algorithm from Chapter 4 to represent these auction games as AGGs, and AGG-SEM (from

Chapter 3) to enumerate all5 the PSNEs of each game.

For this set of experiments we used a uniform distribution6 over settings: drawing each agent’s valuation

from U(0,25), each agent’s quality score from U(0,1), and αk+1 from U(0,αk). We generated 100 5-bidder,

5-slot settings. (Observe that our use of reserves implies that not all ads will be shown for every realization of

bidder values.) Every auction has a minimum bid of 1 bid increment per click, with ties broken randomly

and prices rounded up to the next whole increment. We used grid search to explore the space of possible

parameter settings. We varied reserve prices between 0.1 and 1 in steps of 0.1 (this range only affects low

quality advertisers and only in QWR), and between 1 and 25 in steps of 2. We varied squashing power

between 0 and 1 in steps of 0.2.

As with our previous two-bidder, one-slot analysis, we used grid search to explore the space of possible

reserve prices and squashing factors. Specifically, we computed all pure-strategy Nash equilibria of every

5As is common in worst-case analysis of equilibria of auctions, [e.g., 12, 92] we assume that bidders are conservative, i.e., no
bidder ever follows the weakly dominated strategy of bidding more than his valuation. Without this assumption, many implausible
equilibria are possible, e.g., even single-good Vickrey auctions have equilibria that are unboundedly far from efficient, and
unboundedly far from the revenue of truthful bidding.

6We could not get meaningful results for log-normal distributions. In a log-normal distribution, a large fraction of the expected
revenue is contributed by a small fraction of instances involving bidders with exceptionally high quality scores and valuations. Thus,
accurate expected-revenue estimates require many more samples than we could practically generate.
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Auction Revenue Parameter(s)

Vanilla GSP 3.814 —
Squashing 4.247 s = 0.4

QWR 9.369 r = 9.0
Anchoring 10.212 r = 13.0
QWR+Sq 10.217 r = 15.0,s = 0.2

UWR 11.024 r = 15.0
UWR+Sq 11.032 r = 15.0,s = 0.6

Auction Revenue Parameter(s)

Vanilla GSP 9.911 —
QWR 10.820 r = 5.0

Squashing 11.534 s = 0.2
UWR 11.686 r = 11.0

Anchoring 12.464 r = 11.0
QWR+Sq 12.627 r = 7.0,s = 0.2
UWR+Sq 12.745 r = 9.0,s = 0.2

Table 5.2: Comparing the various auction variants given their optimal parameter settings (Left: Worst-
case equilibrium; Right: Best-case equilibrium) Bold indicates variants that are significantly better
than all other variants, but not significantly different from each other (based on p ≤ 0.05 with
Bonferroni correction).

one of our 100 perfect-information auction settings, and every discretized setting of each GSP variant’s

parameter(s). For each variant we identified the parameter settings that maximized: (i) the revenue of the

worst-case equilibrium, averaged across settings; and (ii) the revenue of the best-case equilibrium, again

averaged across settings.

Broadly, we found that every reserve price scheme dramatically improved worst-case revenue, though UWR

was particularly effective. Squashing did not help appreciably with the revenue of worst-case equilibria (see

Figure 5.5). Comparing the mechanisms (Table 5.2), we found that UWR and UWR+Sq were among the

best and were dramatically better than any other mechanism in terms of worst-case equilibria. Also, we

noticed that optimizing for worst-case equilibria consistently yielded higher reserve prices than optimizing

for best-case equilibria.

In summary, for this experiment we enumerated the equilibria of perfect-information, 5-slot, 5-bidder ad

auction settings with independent, uniform valuations, and found that:

1. There is a huge gap between best- and worst-case equilibria (over 2.5× for vanilla GSP). Squashing

does not help to close this gap, but reserve prices do.

2. The optimal reserve price is much higher (for any GSP variant) when optimizing worst-case revenue

than when optimizing best-case revenue.

3. When considering best-case equilibria, the revenue ranking remains roughly the same as in our simple

2-bidder, 1-slot analysis (Anchoring ' QWR+sq ' UWR+sq > UWR > Squashing > QWR). When

considering the worst-case equilibria, the revenue ranking changes slightly (UWR ' UWR+sq >

Anchoring ' QWR+sq > QWR > Squashing).
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Figure 5.5: Depending on parameter settings, revenue can vary dramatically between worst- and best-
case equilibria. Squashing has almost no effect on worst-case equilibrium, while any reserve price
scheme can substantially improve it. (Top left: squashing; top right: anchoring; middle left: UWR;
middle right: QWR; bottom left: UWR+sq (s = 0.2); bottom right: QWR+sq (s = 0.2))
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Figure 5.6: It is easy to compute incentive compatible pricing for a position auction. For every marginal
increase in click probability that an agent gains by moving up a position, she must pay that
probability times the minimum she must bid to be shown that position. Thus, her payment must
be equal to the shaded area.

5.5 Third Analysis: Multiple Slots, Equilibrium Refinement

For our third analysis, we again considered multiple-slot settings. In this case we solved the equilibrium

selection problem by considering the perfect-information Nash equilibrium in which each agent’s expected

payment is equal to what she would pay in a dominant-strategy truthful mechanism with the same allocation

function as the corresponding GSP variant. This refinement has been used extensively in the analysis of

vanilla GSP, where it is the unique Nash equilibrium equivalent to VCG’s truthful equilibrium (i.e., one that

chooses the same outcome and charges the same expected payments). When applied to vanilla GSP, this

equilibrium has a number of desirable properties:

• It is guaranteed to exist (provided that bids are continuous) and is computable in polynomial time [1].

• The outcome is a competitive, symmetric and envy-free equilibrium [30, 103]

• The equilibrium is impersonation-proof [53].

• It does not violate the non-contradiction criterion (i.e., we should not be interested in equilibria of the

perfect-information game that generate more expected revenue than the optimal auction) [29].

This equilibrium refinement can also be applied to other GSP variants ([60] used it to analyze squashing, and

[29] used it to analyze reserve prices). This equilibrium is guaranteed to exist for all of our GSP variants

because they are all monotonic (i.e., increasing an agent’s bid weakly increases his position and therefore his

expected number of clicks).

Although we focus on this equilibrium for mainly economic reasons, this choice also has computational

advantages. Specifically, it is possible to compute the payments very quickly using the algorithm of Aggarwal

et al [1]. (See Figure 5.6.)
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For the experiments presented in this section, we considered two distributions:

• Uniform, where each agent’s valuation is drawn from U(0,25), each agent’s quality score is drawn

from U(0,1), and αk+1 is drawn from U(0,αk) (as in Section 5.4);

• Log-normal, where each agent’s valuation and quality are drawn from log-normal distributions, and

valuation and quality are positively correlated using a Gaussian copula [77]. The exact parameters

were provided to us by Sébastien Lahaie of Yahoo! Research, who derived them from confidential bid

data. (To maintain confidentiality, the bids were scaled by arbitrary positive constants. Thus, the bids,

prices and revenue in our results are not in any standard unit of currency.) Although we cannot disclose

them, we can say that the distribution is a refinement of the distribution studied in [60].

From the uniform distribution, we sampled 1000 5-bidder, 5-slot settings; for the log-normal distribution we

sampled 10000 5-bidder, 5-slot settings.7 To explore auction parameters, we used a simple grid search. We

varied reserve prices between 0 and 30 in steps of 2, between 30 and 100 in steps of 10, between 100 to 1000

in steps of 100, and from 1000 to 10000 in steps of 1000. We varied squashing power between 0 and 1 in

steps of 0.25. Our objective was expected revenue averaged across all samples.

We began by investigating the optimal parameter settings for each mechanism. For squashing, the optimal

squashing power was 0 for log-normal distributions (as was also observed in previous work [60]), but greater

than zero for uniform distributions, where squashing was also somewhat less effective (see Figure 5.7). UWR

and anchoring had similar optimal reserve prices, which were dramatically different from QWR’s optimal

reserve (see Figure 5.8). Adding squashing to UWR produced some improvements and had little effect on the

optimal reserve price (see Figure 5.9). QWR greatly benefited from squashing, but the optimal reserve price

was extremely sensitive to the squashing parameter (see Figure 5.10).

We then compared GSP variants (summarized in Table 5.3). We found that among simple variants UWR was

clearly superior to both squashing and QWR. The richer variants—anchoring, QWR+Sq and UWR+Sq—all

performed comparably well (within ∼ 2% of each other), though QWR+Sq was consistently the worst.

Interestingly, QWR+Sq was only competitive with the other top mechanisms when squashing power was set

close to zero. Observe that squashing has two effects when added to QWR: it changes the ranking among

bidders who exceed their reserve prices, but it also changes the reserve prices. As squashing power gets closer

to zero, reserve prices tend towards UWR. We hypothesized that QWR+Sq only performed as well as it did

because of this second effect. To tease apart these two properties, we tested them in isolation. Specifically,

we tested (1) a GSP variant in which reserve prices were weighted by squashed quality but ranking among

reserve-exceeding bidders was performed according to their true quality scores, and (2) a GSP variant in

which reserve prices were weighted by true quality scores but rankings were done using squashed quality

7A substantial fraction of the expected revenue in log-normal settings comes from rare, high valuation bidders. Thus, the
expected revenue had much higher variance than in the uniform case; we thus needed many more samples to reduce noise and obtain
statistically significant results.
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Figure 5.7: The optimal squashing power is zero or close to it. Squashing offers modest revenue gains
given a uniform value distribution (left) and substantial gains given a log-normal value distribution
(right).

0 5 10 15 20 25
Reserve Price

0

2

4

6

8

10

12

14

R
e
v
e
n
u
e

anchor

uRes

wRes

100 101 102 103 104 105

Reserve Price

0

10

20

30

40

50

60

70

80

90

R
e
v
e
n
u
e

anchor

uRes

wRes

Figure 5.8: All three reserve-based variants (anchoring, QRW and UWR) provide substantial revenue
gains. Anchoring is slightly better than UWR, and both are substantially better than QWR. (left:
uniform; right: log-normal)
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Figure 5.9: Adding squashing to UWR provides modest marginal improvements (compared to the
optimal unweighted reserve price with no squashing) and does not substantially affect the optimal
reserve price. (left: uniform; right: log-normal)
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Figure 5.10: Adding squashing to QWR provides dramatic improvements. However, the higher the
squashing power, the less the reserve prices are actually weighted by quality. In the case of a
log-normal value distribution, the optimal parameter setting (s = 0.0) removes quality scores
entirely and is thus equivalent to UWR. Note that different values of squashing power lead to
dramatically different optimal reserve prices. (left: uniform; right: log-normal)
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Auction Revenue Parameter(s)

Vanilla GSP 7.737 —
Squashing 9.123 s = 0.25

QWR 10.598 r = 8.0
UWR 12.026 r = 14.0

QWR+Sq 12.046 r = 12.0,s = 0.25
UWR+Sq 12.220 r = 12.0,s = 0.25
Anchoring 12.279 r = 12.0

Auction Revenue Parameter(s)

Vanilla GSP 20.454 —
QWR 48.071 r = 400.0

Squashing 53.349 s = 0.0
QWR+Sq 79.208 r = 20.0,s = 0.0

UWR 80.050 r = 20.0
Anchoring 80.156 r = 20.0
UWR+Sq 81.098 r = 20.0,s = 0.5

Table 5.3: Comparing the various auction variants given their optimal parameter settings. (Left: uniform
distribution; right: log-normal distribution.) Note that in this analysis, vanilla GSP is equivalent to
VCG. Bold indicates variants that are significantly better than all other variants, but not significantly
different from each other. (p≤ 0.05 with Bonferroni correction.)
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Figure 5.11: When squashing is only applied to reserve prices, it can dramatically increase QWR’s
revenue. However, there has to be a lot of squashing (i.e., s close to 0), and the optimal reserve
price is very dependent on the squashing power. In fact, for both distributions, the optimal
parameters set s = 0, in which case the mechanism is identical to UWR.

scores. These experiments confirmed our hypothesis: the first variant (Figure 5.11)—which uses squashing

to make the mechanism behave more like UWR—was much more effective at increasing revenue than the

second (Figure 5.12).

Next, we investigated the effect of varying the number of bidders. Broadly, we found that the ranking among

auctions remained consistent (see Figure 5.13). The optimal reserve price tended to increase with the number

of bidders, particularly in the case of UWR. We found this especially interesting because a heuristic often

described in the literature is to take Myerson’s optimal reserve prices and add them to GSP [e.g., 81]. Our

results show that Myerson’s finding that the optimal reserve price does not vary with the number of bidders is

only a property of the optimal auction, not of other auctions such as these GSP variants.
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Figure 5.12: When squashing is only applied to ranking, but not to the reserve prices, the marginal
gains from squashing over QWR (with the optimal reserve) are very small.
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Figure 5.13: As the number of agents varies, the relative ranking of GSP variants remains mostly
unchanged. The one notable exception to this is squashing and QWR, their ranking can be
reversed depending on the distribution and number of bidders.
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In summary, this section considered the equilibria of multi-slot ad auctions which are revenue equivalent to

the truthful equilibria of corresponding dominant-strategy mechanisms with the same allocation rules, and

considered both uniform and log-normal valuations. Our main conclusions were that:

1. As in the previous analyses, the mechanisms best able to optimize revenue were Anchoring, QWR+sq,

UWR+sq and UWR; either squashing or QWR took fifth place with the other in sixth. Within these

groups, the exact ranking depended on the distribution and the number of bidders.

2. QWR+sq only performed as well as it did when squashing was configured to make its reserve prices

behave like UWR. When squashing is applied to the allocation in QWR, but not to the reserve prices,

very little revenue improvement was possible.

5.6 Conclusions and Future Work

This chapter demonstrates how computational mechanism analysis can enable computational mechanism

design. Despite the fact that we only explored a small space of mechanisms, we were able to discover

new and important things about revenue-optimizing position auctions. First, we observed that the highest

revenues were produced by mechanisms that (directly or effectively) use unweighted per-click reserve prices,

an observation that we were able to replicate with two more-conventional methods of analysis. Second, we

found that any kind of reserve price dramatically improved worst-case-equilibrium revenue, while vanilla

GSP and squashing were very sensitive to equilibrium selection. However, we found that squashing could

provide extra benefits when used in conjunction with UWR or QWR. This finding could not be made with

existing techniques; CMA was necessary to explore the full space of equilibria. Third, our experimental

findings also inspired new theoretical insights, including a characterization of the optimal mechanism for

some settings (a novel auction called anchoring that is also nearly-optimal in settings where it is not optimal)

and a characterization of the optimal reserve prices for a wide range of settings.

Our rather robust conclusion that UWR achieves higher revenues than QWR raises the question of why

Google and Yahoo! both made the transition from unweighted to quality-weighted reserves. One likely

explanation is that search engines do not aim to optimize their short-term revenue, but instead optimize

long-term revenue via other short term objectives such as efficiency, user satisfaction, revenue under a

constraint that ads are costly to show, etc. Other possibilities are that search engines are motivated by other

business considerations entirely,8 that they have simply acted in error, or that our findings expose a flaw in the

standard model of position auctions. Finally, it is possible that the premise of our question is wrong: perhaps

search engines do not in fact use QWR, but instead use some other (secret) approach to setting reserves.

We believe that the most pressing open problem stemming from our work is to attempt to resolve these

8[81] report that they were explicitly instructed to use weighted reserve prices in their experiments because these are more
consistent with an otherwise weighted auction and are perceived to be more fair by bidders.
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questions by examining richer models that allow short-term revenue to be contrasted with longer-term revenue.

Considering short-term revenue, we conjecture that in the field experiment of [81], where Yahoo! increased

revenue by increasing reserve prices and simultaneously switching to QWR, the revenue increases would

have been even greater if Yahoo! had retained optimized reserve prices but maintained UWR. To analyze

longer-term revenue, a richer model could include quality and click probability that are determined by the

advertiser’s choice of ad text, rather than being exogenous. In equilibrium, this choice must be a best response

to the rules of the auction and the choices of the other agents. For example, consider the problem of an

advertiser who has two choices of ad text. One choice will yield 1000 clicks per hour, leading to 11 sales per

hour. The other choice yields 10 clicks per hour, but every click produces a sale. With weighted reserve prices

(and no squashing) the advertiser will always choose the first text, since it produces more sales per hour for

the same price. With appropriate quality-weighted reserve prices (or squashing), the advertiser would chose

the second, which generates nearly as many sales, and requires him to pay the reserve price far less often. It

is not immediately clear which text the search engine should prefer: the first satisfies more users, but also

wastes the time of many users who click through but do not buy.
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Chapter 6

Application: Strategic Voting in Elections

6.1 Introduction

This chapter shows a dramatically different application for computational mechanism analysis: the study of

strategic voting in elections. As with the auction applications we have discussed so far, the kinds of voting

mechanisms that are used in practice tend to be very simple and structured in ways that make them amenable

to compact representations (e.g., anonymity is a common feature). Unlike auctions, incentive compatible

mechanisms are nearly non-existent (and those that do exist are so undesirable as to almost never be used in

practice1), so researchers tend to focus on mechanisms that are not incentive compatible.

Since voters may have an incentive vote strategically to influence an election’s results, according to their

knowledge or perceptions of others’ preferences, much research has considered ways of limiting manipulation.

This can be done by exploiting the computability limits of manipulations (e.g., finding voting mechanisms for

which computing a beneficial manipulation is NP-hard [7, 8, 110]), by limiting the range of preferences (e.g.,

if preferences are single peaked, there exist non-manipulable mechanisms [31]), randomization [38, 85], etc.

When studying the problem of vote manipulation, nearly all research falls into two categories: coalitional

manipulation and equilibrium analysis. Much research into coalitional manipulation considers models in

which a group of truthful voters faces a group of manipulators who share a common goal. Less attention

has been given to Nash equilibrium analysis which models the (arguably more realistic) situation where all

voters are potential manipulators. One reason is that it is difficult to make crisp statements about this problem:

strategic voting scenarios give rise to a multitude of Nash equilibria, many of which involve implausible

outcomes. For example, even a candidate who is ranked last by all voters can be unanimously elected in a

1A simple majority vote is incentive compatible, provided there are only two candidates. For settings with more than two
candidates, the Gibbard-Satterthwaite theorem [37, 94] shows that every incentive compatible mechanism either 1) is a dictatorship
where only a single agent’s vote matters, or 2) is not onto, in the sense that it disqualifies all but at most two candidates a priori.
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Nash equilibrium—observe that when facing this strategy profile, no voter gains from changing his vote.

Another problem is that finding even a single Nash equilibrium of a game can be computationally expensive,

and plurality votes can have exponentially many equilibria (in the number of voters).

Given the tools of CMA, this chapter naturally focuses on the second approach, analysis using the Nash (and

subsequently, Bayes-Nash) equilibria of voting games. We focus on plurality, as it is by far the most common

voting mechanism used in practice. We refine the set of equilibria by adding a small additional assumption:

that agents realize a very small gain in utility from voting truthfully; we call this restriction a truthfulness

incentive. We ensure that this incentive is small enough that it is always overwhelmed by the opportunity

to be pivotal between any two candidates: that is, a voter always has a greater preference for swinging an

election in the direction of his preference than for voting truthfully. All the same, this restriction is powerful

enough to rule out the bad equilibrium described above, as well as being, in our view, a good model of reality,

as voters might reasonably have a preference for voting truthfully.

The computational approach has not previously been used in the literature on strategic voting, because the

resulting normal-form games are enormous. For example, representing some of our games (e.g., with 20

players and 3 candidates) in the normal form would require billions of payoff-table entries (20× 320 '
6.97×1010).

Our first contribution is an equilibrium analysis of full-information models of plurality elections. We analyze

the number of Nash equilibria that exist when truthfulness incentives are present. We also examine the

winners, asking questions like how often they also win the election in which all voters vote truthfully, or

how often they are also Condorcet winners. We also investigate the social welfare of equilibria; for example,

we find that it is very uncommon for the worst-case result to occur in equilibrium. Our approach can be

generalized to richer mechanisms where agents vote for multiple candidates (i.e., approval, k-approval, and

veto).

Our second contribution involves the arguably more realistic scenario in which the information available

to voters is incomplete. We assume that voters know only a probability distribution over the preference

orders of others, and hence identify Bayes-Nash equilibria. We found that although the truthfulness incentive

eliminates the most implausible equilibria (i.e., where the vote is unanimous and completely independent

of the voters preferences), many other equilibria remain. Similarly to Duverger’s law (which claims that

plurality election systems favor a two-party result [28], but does not directly apply to our setting), we found

that a close race between almost any pair of candidates was possible in equilibrium. Equilibria supporting

three or more candidates were possible, but less common.
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6.1.1 Related Work

Analyzing equilibria in voting scenarios has been the subject of much work, with many researchers proposing

various frameworks with limits and presumptions to deal with both the sheer number of equilibria, and to

deal with more realistic situations, where there is limited information. Early work in this area, by McKelvey

and Wendell [67], allowed for abstention, and defined an equilibrium as one with a Condorcet winner. As this

is a very strong requirement, such an equilibrium does not always exist, but they established some criteria for

this equilibrium that depend on voters’ utilities.

Myerson and Weber [76] wrote an influential article dealing with the Nash equilibria of voting games. Their

model assumes that players only know the probability of a tie occurring between each pair of players, and that

players may abstain (for which they have a slight preference). They show that multiple equilibria exist, and

note problems with Nash equilibrium as a solution concept in this setting. The model was further studied and

expanded in subsequent research [21, 54]. Assuming a slightly different model, Messner and Polborn [70],

dealing with perturbations (i.e., the possibility that the recorded vote will be different than intended), showed

that equilibria only includes two candidates (Duverger’s law). Our results, using a different model of partial

information (Bayes-Nash), show that with the truthfulness incentive, there is a certain tendency towards such

equilibria, but it is far from universal.

Looking at iterative processes makes handling the complexity of considering all players as manipulators

simpler. Dhillon and Lockwood [23] dealt with the large number of equilibria by using an iterative process

that eliminates weakly dominated strategies (a requirement also in Feddersen and Pesendorfer’s definition of

equilibrium [32]), and showed criteria for an election to result in a single winner via this process. Using a

different process, Meir et al. [69] and Lev and Rosenschein [62] used an iterative process to reach a Nash

equilibrium, allowing players to change their strategies after an initial vote with the aim of myopically

maximizing utility at each stage.

Dealing more specifically with the case of abstentions, Desmedt and Elkind [22] examined both a Nash

equilibrium (with complete information of others’ preferences) and an iterative voting protocol, in which

every voter is aware of the behavior of previous voters (a model somewhat similar to that considered by Xia

and Contizer [109]). Their model assumes that voting has a positive cost, which encourages voters to abstain;

this is similar in spirit to our model’s incentive for voting truthfully, although in this case voters are driven to

withdraw from the mechanism rather than to participate. However, their results in the simultaneous vote are

sensitive to their specific model’s properties.

Rewarding truthfulness with a small utility has been used in some research, though not in our settings. Laslier

and Weibull [61] encouraged truthfulness by inserting a small amount of randomness to jury-type games,

resulting in a unique truthful equilibrium. A more general result has been shown in Dutta and Sen [27], where

they included a subset of participants which, as in our model, would vote truthfully if it would not change the
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result. They show that in such cases, many social choice functions (those that satisfy the No Veto Power) are

Nash-implementable, i.e., there exists a mechanism in which Nash equilibria correspond to the voting rule.

However, as they acknowledge, the mechanism is highly synthetic, and, in general, implementability does not

help us understand voting and elections, as these involve a predetermined mechanism. The work of Dutta and

Laslier [26] is more similar to our approach. They use a model where voters have a lexicographic preference

for truthfulness, and study more realistic mechanisms. They demonstrated that in plurality elections with

odd numbers of voters, this preference for truthfulness can eliminate all pure-strategy Nash equilibria. They

also studied a mechanism strategically equivalent to approval voting (though they used an unusual naming

convention), and found that when a Condorcet winner exists, there is always a pure-strategy Nash equilibrium

where the Condorcet winner is elected.

6.2 Definitions

Elections are made up of candidates, voters, and a mechanism to decide upon a winner.

Definition 1. Let C be a set of m candidates, and let A be the set of all possible preference orders over C.

Let V be a set of n voters. Every voter vi ∈V has some element in A which is his true, “real” value (which we

shall mark as ai), and some element of A that he announces as his value, which we shall denote as ãi.

The voting mechanism is a function f : An→C.

Note that our definition of a voter incorporates the possibility of him announcing a value different than his

true value (strategic voting).

In this work, we restrict our attention to scoring rules, i.e., voting rules in which each voter assigns a certain

number of points to each candidate, and the candidate with the most points wins. Specifically, we study

scoring rules in which each candidate can get at most 1 point from each voter. We focus on four mechanisms:

• Plurality: A single point is given to one candidate.

• Veto: A point is given to everyone except one candidate.

• k-approval: A point is given to exactly k candidates.

• Approval: A point is given to as many candidates as each voter chooses.

Another important concept is that of a Condorcet winner.

Definition 2. A Condorcet winner is a candidate c ∈C such that for every other candidate d ∈C (d 6= c) the

number of voters that rank c over d is at least bn
2c+1.

Condorcet winners do not exist in every voting scenario, and many voting rules—including plurality—are

not Condorcet-consistent (i.e., even when there is a Condorcet winner, that candidate may lose).
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To reason about the equilibria of voting systems, we need to formally describe them as games, and hence to

map agents’ preference relations to utility functions. More formally, each agent i must have a utility function

ui : An 7→ R, where ui(aV )> ui(a′V ) indicates that i prefers the case when all the agents have voted aV over

the case when the agents vote a′V . Representing preferences as utilities rather than explicit rankings allows

for the case where i is uncertain about what outcome will occur. This can arise either because he is uncertain

about the outcome given everyone’s actions (because of random tie-breaking rules), or because he is uncertain

about the actions the other agents will take (e.g., agents behaving randomly; agents playing strategies that

condition on information that i does not observe). Here we assume that an agent’s utility only depends on the

candidate that gets elected and on his own actions (e.g., an agent can get some utility for voting truthfully).

Thus, we obtain simpler utility functions ui : C×A 7→R, with an agent i’s preference for outcome aV denoted

ui( f (aV ), ãi).

In this work, we consider two models of games, full-information games and symmetric Bayesian games. In

both models, each agent must choose an action ãi without conditioning on any information revealed by the

voting method or by the other agents. In a full-information game, each agent has a fixed utility function

which is common knowledge to all the others. In a symmetric Bayesian game, each agent’s utility function

(or “type”) is an independent, identically distributed draw from a commonly known distribution of the space

of possible utility functions, and each agent must choose an action without knowing the types of the other

agents, while seeking to maximize his expected utility.

We consider a plurality voting setting with voters’ preferences chosen randomly. We show detailed results for

the case of 10 voters and 5 candidates (numbers chosen to give a setting both computable and with a range of

candidates), but we also show that changing these numbers results in qualitatively similar equilibria.

Suppose voter i has a preference order of a5 � a4 � . . .� a1, and the winner when voters voted aV is a j. We
then define i’s utility function as

ui( f (aV ), ãi) = ui(a j, ãi) =





j ai 6= ãi

j+ ε ai = ãi,

with ε = 10−6.

Note that we use utilities because we need, when computing an agent’s best response, to be able to compare

nearly arbitrary distributions over outcomes (e.g., for mixed strategies or Bayesian games). This is not meant

to imply that utilities are transferable in this setting. Most of our equilibria would be unchanged if we moved

to a different utility model, provided that the preferences were still strict, and the utility differences between

outcomes were large relative to ε . The one key distinction is that agents are more likely to be indifferent to

lotteries (e.g., an agent that prefers A� B�C is indifferent between {A,B,C} and {B}) than under some

other utility models.
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As with perfect information games, we consider Bayesian games with a fixed number of candidates (m) and

voters (n). The key difference is that the agents’ preferences are not ex ante common knowledge. Instead,

each agent’s preferences are drawn from a distribution pi : A 7→R. Here we consider the case of symmetric

Bayesian games, where every agent’s preferences are drawn independently from the same distribution, p.

Due to computational limits, we cannot study games where p has full support; each agent would have

55! ' 7.5×1083 pure strategies. Instead, we consider distributions where only a small subset of preference

orders are in the support of p. We generate distributions by choosing six preference orderings, uniformly at

random (this gives a more reasonable 56 = 15625 pure strategies). For each of these orderings a, we draw

p(a) from a uniform [0,1] distribution. These probabilities are then normalized to sum to one. This restricted

support only affects what preference orders the agents can have; we do not restrict agents’ action sets in any

way.

Note that formally the ε truthfulness incentive represents a change to the game, rather than a change in the

solution concept. However, there is an equivalence between the two approaches: for any sufficiently small

ε , the set of pure-strategy Nash equilibria in the game with ε truthfulness incentives is identical to the set

of pure-strategy Nash equilibria (of the game without truthfulness incentives) that also satisfy the property

that only the pivotal agents (i.e., agents who, were their vote to change, the outcome would change) deviate

from truthfulness. The meaning of sufficiently small depends on the agents’ utility functions, and on the

tie-breaking rule. If u is the difference in utility between two outcomes, and t is the minimum joint probability

of any type profile (in a Bayesian game), then ε must be less than ct/|C| (the 1/|C| factor comes from the

fact that uniform tie-breaking can select some candidate with that probability).

6.3 Method

Encoding plurality games as action-graph games is relatively straightforward. For each set of voters with

identical preferences, we create one action node for each possible way of voting. For each candidate, we

create a sum node that counts how many votes the candidate receives. Directed edges encode which vote

actions contribute to a candidate’s score, and that every action’s payoff can depend on the scores of all the

candidates (see Figure 6.1). The same approach generalizes to approval-based mechanisms; if an action

involves approving more than one candidate, then there must be an edge from that action node to each

approved candidate’s sum node. Similarly, positional scoring rules (e.g., Borda) can be encoded by using

weighted sum nodes.

A variety of Nash-equilibrium-finding algorithms exist for action-graph games [19, 51]. In this work, we

used the support enumeration method (see [84, 100] and Chapter 3) exclusively, because it allows Nash

equilibrium enumeration. This algorithm works by iterating over possible supports, testing each for the

existence of a Nash equilibrium. In the worst case, this requires exponential time, but in practice SEM’s

heuristics (exploiting symmetry and conditional dominance) enable it to find all the pure-strategy Nash
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Figure 6.1: An action graph game encoding of a simple two-candidate plurality vote. Each round node represents
an action a voter can choose. Dashed-line boxes define which actions are open to a voter given his
preferences; in a Bayesian AGG, an agent’s type determines the box from which he is allowed to choose his
actions. Each square is a sum node, tallying the number of votes a candidate received.

equilibria (PSNEs) of a game quickly.

We represented our symmetric Bayesian games using a Bayesian game extension to action-graph games [47].

Because we were concerned only with symmetric pure Bayes-Nash equilibria, it remained feasible to search

for every equilibrium with SEM. (No pruning of supports is possible because dominance checking of BAGGs

is NP-hard. Thus, SEM in this context essentially amounts to pure brute-force search.)

6.4 Pure-Strategy Nash Equilibrium Results

To examine pure strategies, we ran 1000 voting experiments using plurality with 10 voters and 5 candidates.

6.4.1 Selectiveness of the Truthfulness Incentive

The logical first question to ask about our truthfulness incentive is whether or not it is effective as a way of

reducing the set of Nash equilibria to manageable sizes. As a baseline, when we did not use any equilibrium

selection method, each plurality game had over a million PSNEs. A stronger baseline is the number of PSNEs

that survive removal of weakly dominated strategies (RDS). RDS reduces the set by an order of magnitude,

but still allows over 100,000 PSNEs per game to survive. In contrast, the truthfulness incentive reduced the

number of PSNEs down to 30 or fewer, with the median game having only 3. Interestingly, a handful of

games (1.1%) had no PSNEs. Laslier and Dutta [26] had shown that PSNEs were not guaranteed to exist,

but only when the number of voters is odd (and at least 5). Our results show that the same phenomenon can

occur, albeit infrequently, when the number of voters is even.

One of the problems with unrestricted Nash equilibria is that there are so many of them; the other problem is

that they are compatible with any outcome. Given that the TI is so effective at reducing the set of PSNEs, one

could wonder whether or not the TI is helpful for the second problem. Unfortunately, the TI had only limited

effectiveness in ruling some outcomes as impossible: only 4.4% of games support exactly one outcome in
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Figure 6.2: Even with the truthfulness incentive, many different outcomes were still possible in equilibrium.

equilibrium. However, nearly always (> 99% of the time) some outcomes occur more frequently than others.

See Figures 6.2 and 6.3.

6.4.2 Equilibrium Outcomes

With a workable equilibrium selection method, we can now consider the question of what kinds of outcomes

occur in plurality. We shall examine two aspects of the results: the preponderance of equilibria with victors

being the voting method’s winners, and Condorcet winners. Then, moving to the wider concept of social

welfare of the equilibria (which we can consider since we work with utility functions), we examine both the

social welfare of the truthful voting rule vs. best and worse possible Nash equilibria and the average rank of

the winners in the various equilibria.

The first issues to consider are to what extent truthful voting is an equilibrium, and to what extent the agents

cancel out each other’s manipulations (i.e., when there are non-truthful Nash equilibria that lead to the same

outcome as truthful voting). We call a candidate the “truthful winner” iff that candidate wins when voters vote

truthfully. For 63% of the games, the truthful preferences were a Nash equilibrium, but more interestingly,

many of the Nash equilibria reached the same result as the truthful preferences: 80% of the games had at

least one equilibrium where the truthful winner wins, and looking at the multitude of equilibria, 42% elected

the truthful winner (out of games with a truthful result as an equilibrium, the share was 52%). Without the
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Figure 6.3: With the truthfulness incentive, some outcomes occur much more frequently than others.

truthfulness incentive, the truthful winner only won 22% of equilibria.

Next, we turn to the question of whether or not strategic voting leads to the election of good candidates,

starting with Condorcet winners. 55% of games had Condorcet winners, which would be elected by truthful

voting in 49% of the games (not a surprising result; plurality is known not to be Condorcet consistent).

However, the combination of truthful voting both being an equilibrium and electing a Condorcet winner only

occurred in 42% of games. In contrast, a Condorcet winner could win in some Nash equilibrium in 51% of

games (though only 36% of games would elect a Condorcet winner in every equilibrium).

Turning to look at the social welfare of equilibria, once again, the existence of the truthfulness incentive

enabled us to reach “better” equilibria. In 93% of the cases, the worst-case outcome was not possible at all

(recall that without the truthfulness incentive, every result is possible in some Nash equilibrium), while only

in 30% of cases, the best outcome was not possible. While truthful voting led to the best possible outcome

in 59% of cases, truthful voting was still stochastically dominated by the best-case Nash equilibrium (see

Figure 6.4).

When looking at the distribution of welfare throughout the multitudes of equilibria, one can see that the

concentration of the equilibria is around high-ranking candidates, as the average share of equilibria by

candidates with an average ranking (across all voters in the election) of less than 1 was 56%. (See Figure 6.5.)

Fully 72%, on average, of the winners in every experiment had above (or equal) the median rank, and in more

than half the experiments (52%) all equilibria winners had a larger score than the median. As a comparison,
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Figure 3: Empirical CDF of social welfare

3 Social Welfare Results

Without the ✏ preference for truthful voting, every outcome is always possible
in some PSNE. (This implies that the price of anarchy is unbounded, while
the price of stability is one.) With it, the worst case-outcome is almost always
impossible in PSNE (92.8%). Sometimes (29.7%) the best case outcome is also
impossible (29.7%). The gap between best and worst PSNEs can be very large,
though both can lead to the worst-case outcome. (Thus, the price of anarchy and
price of stability are unbounded if I normalize social welfare from worst to best
outcome. I think I need a new way of normalizing.) In the majority of games
(59%), truthful voting will lead to the best possible outcome. Nevertheless, the
best-case PSNE still stochastically dominates truthful voting.

In games where truthfulness is a PSNE, truthfulness is closer to the best-
case PSNE, but still stochastically dominated. In games where truthfulness is
not a PSNE, the equilibrium outcomes and truthful outcomes tend to be worst
than went it is.

Note: for welfare results I omit the games with no PSNEs.

4 Condorcet Winners

Of the 1000 games tested, 931 games had a Condorcet winner. In fact, 204
games had multiple Condorcet winners. (See Figure 5.) As with social welfare,
when comparing the relative probability of having a Condorcet winner win the

3

Figure 6.4: CDF of social welfare.

the numbers from experiments without the truthfulness incentive, are quite different: candidates—whatever

their average rank—won, with minor fluctuations, about the same number of equilibria (57% of winners,

were, on average, above or equal to the median rank).

6.4.3 Scaling Behavior and Stability

We next varied the number of voters and candidates. Our main finding was that when voter number was odd,

the probability that a game had no equilibria at all increased dramatically, as the truthfulness incentive caused

many such situations to be unstable (see Figure 6.6). Less surprisingly, as the number of candidates increased

PSNEs were less likely to exist.

Nevertheless, these equilibria equilibria retained the properties we have seen—a concentration of equilibria

around “quality” candidates, such as truthful and Condorcet winners, as can be seen in Figure 6.7a, for

truthful winners (never below 40%) and in Figure 6.7b for Condorcet winners. These effects were even more

pronounced with an odd number of voters, as the number of equilibria was so small.
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Figure 6.5: The average proportion of equilibria won by candidates with average rank of 0–1, 1–2, etc.

6.4.4 Richer Mechanisms

Approval (and variants such as k-approval and veto) are straightforward extensions of plurality, so it is natural

to consider whether our approach will work similarly well for these mechanisms. Also, Laslier and Dutta [26]

were able to resolve the existence problem for plurality and approval, but noted that the existence of PSNEs

for k-approval was an open problem.

Thus, we started by investigating k-approval and veto. As was the case with plurality, the truthfulness

incentive kept the number of equilibria manageable. As can be seen from Figure 6.8, in all cases more than

75% of games had 35 equilibria or fewer, and it seems that the number of equilibria roughly increases with

the number of candidates. Our data also allowed us to resolve the open problem of equilibrium existence: for

every value of k and m we observed at least one instance without any PSNE.
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Figure 6.6: Percentage of games with a Nash equilibrium of a given type with 3 candidates and varying number
of voters.
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(a) Percentage of equilibria that elect the truthful win-
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Figure 6.7: Varying the number of voters and candidates.

We also considered approval voting. Laslier and Dutta have already shown that a Condorcet consistent

equilibrium is always guaranteed to exist. However, this raises an interesting question: are there other Nash

equilibria? In our experiments, we found that approval voting had an extremely large number of equilibria

(over 200,000 per game), so it seems that the addition of another dimension (allowing each voter to decide

how many candidates to vote for), reduces the effectiveness of the truthfulness incentive.

Looking at the equilibrium outcomes, we found that they maintained some of the qualities that were present
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Figure 6.8: Empirical CDF of counts of equilibria.

in plurality equilibrium outcomes: truthful winners won, on average, in over 30% of the equilibria in every

setting, and sometimes more (e.g., 2-approval with 4 candidates resulted in almost 50% of equilibria, on

average, electing truthful winners). However, Condorcet winners were not similarly common in equilibrium,

and it seems that as the number of candidates grows, and as the number of candidates to which voters allot

points to increases, the percent of equilibria with a Condorcet winner drops (so in 2-approval such equilibria

are common, in 3-approval somewhat less so, and in 4-approval even less).

6.5 Bayes-Nash Equilibria Results

Moving beyond the full-information assumption, we considered plurality votes where agents have incomplete

information about each other’s preferences. In particular, we assumed that agents have independent, identically

distributed (but not necessarily uniformly distributed) preferences, and that each agent knows only his own
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preferences and the (commonly-known) prior distribution. Again, we considered the case of 10 voters and 5

candidates, but now also introduced 6 possible types for each voter. For each of 50 games, we computed the

set of all symmetric pure-strategy Bayes-Nash equilibria, both with and without the ε-truthfulness incentive.2

Our first concern was studying how many equilibria each game had and how the truthfulness incentive

affected the number of equilibria. The set of equilibria was small (< 28 in every game) when the truthfulness

incentive was present. Surprisingly though, removing the truthfulness incentive added only a few equilibria.

In fact, in the majority of games (76%), there were exactly five new equilibria: one for each strategy profile

in which all types vote for a single candidate. Looking into the structure of these equilibria, we found two

interesting, and seemingly contradictory, properties. First, most equilibria (95%) only ever involved two

or three candidates (i.e., voters only voted for a limited set of candidates). Second, every candidate was

involved in some equilibrium. Thus, we can identify an equilibrium by the number of candidates it involves

(see Figure 6.9). Notably, most equilibria involved only two candidates, with each type voting for their most

preferred candidate of the pair. Further, most games had 10 such equilibria, one for every possible pair. There

were two reasons why some pairs of candidates did not have corresponding equilibria in some games. First,

sometimes one candidate Pareto-dominated the other (i.e., was preferred by every type). Second, sometimes

the types that liked one candidate were so unlikely to be sampled that close races occurred with extremely

low probability (relative to ε); in such cases, agents preferred to be deterministically truthful than pivotal

with very small probability. This observation allowed us to derive the following theoretical result about when

a 2-candidate equilibrium will exist.

Theorem 14. In any symmetric Bayesian plurality election game (with n≥ 2), for any pair of candidates

c1,c2, one of the following conditions is true:

• with some positive ε truthfulness incentive, there exists a Bayes-Nash equilibrium where each voter

votes for his most preferred of c1,c2; or

• one of the candidates Pareto-dominates the other ex ante (i.e., the probability that a voter prefers the

second candidate to the first is zero).

Sketch. If c1 Pareto dominates c2, then every agent would vote for c1 and no agent could influence the

outcome. For any non-zero ε , voters would deviate to honest voting instead of c1.

So as long as there is non-zero probability of some agent preferring c2 to c1, every agent has a non-zero

probability of being pivotal between those two outcomes (and a zero probability of being pivotal between any

two other outcomes). For a sufficiently small ε , the value of influencing the outcome overwhelms the value

of truthful voting.

2We omitted two games from our results. The omitted games each have a type with very low probability. For some
profiles, the probability of agents with these types being pivotal was less than machine-ε . This led to SEM finding
“Bayes-Nash equilibria” that were actually only ε-Bayes-Nash.
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Figure 6.9: Every instance had many equilibria, most of which only involved a few candidates.

These two-candidate equilibria have some interesting properties. Because they can include any two candidates

where one does not Pareto-dominate the other, they can exist even when a third candidate Pareto-dominates

both. Thus, it is possible for two-candidate equilibria to fail to elect a Condorcet winner. However,

because every two-candidate equilibrium is effectively a pairwise runoff, it is impossible for a two-candidate

equilibrium to elect a Condorcet loser.

Equilibria supporting three or more candidates are less straightforward. Which 3-candidate combinations are

possible in equilibrium (even without ε-truthful incentives) can depend on the specific type distribution and

the agents’ particular utilities. Also, in these equilibria, agents do not always vote for their most preferred of

the three alternatives (again, depending on relative probabilities and utilities). Finally, 3-candidate equilibria

can elect a Condorcet loser with non-zero probability.
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6.6 Discussion and Future Work

Our work shows that computational mechanism analysis can be applicable to mechanisms other than position

auctions. Using the AGG representation and the AGG-SEM algorithm, we were able to explore the entire

space of Nash equilibria for games where conventional representations and algorithms would be far too costly

to use. As was the case with position auctions, AGG-SEM was particularly valuable because of its ability to

enumerate all PSNEs of a game. The issue of multiple equilibria arose even with the added assumption of

the truthfulness incentive; further, it is only by enumeration that we were able to measure exactly how many

equilibria a given game had with and without the truthfulness incentive.

We saw several interesting results, beyond a reduction in the number of equilibria due to our truthfulness

incentive. One of the most significant was the “clustering” of many equilibria around a subset of candidates,

that reflect the voters aggregated preferences (e.g., Condorcet winners). A very large share of each game’s

equilibria resulted in winners that were either truthful winners (according to plurality) or Condorcet winners.

Truthful winners were selected in a larger fraction of equilibria when the total number of equilibria was fairly

small (as was the case in a large majority of our experiments), and their share decreased as the number of

equilibria increased (where we saw, in cases where there were Condorcet winners, that those equilibria took a

fairly large share of the total). Furthermore, these results held up even when varying the number of candidates

and voters, and many of them appear to also hold with other voting systems, such as veto and k-approval.

Looking at social welfare enabled us to compare equilibrium outcomes to all other possible outcomes. We

observed that plurality achieved nearly the best social welfare possible (a result that did not rely on our

truthfulness incentive). While another metric showed the same “clustering” we noted above, most equilibrium

results concentrated around candidates that were ranked, on average, very highly (on average, more than 50%

of winners in every experiment had a rank less than 1). This suggests that one should question whether it is

even important to minimize the amount of manipulation, as we found that manipulation by all voters very

often results in socially beneficial results.

In the Bayes-Nash results, we saw that lack of information often pushed equilibria to be a “battle” between a

subset of the candidates—usually two candidates (as Duverger’s law would indicate), but occasionally more.

There is much more work to be done in the vein we introduced in this chapter. This includes examining the

effects of changing utility functions, as well as looking at more voting rules and determining properties of

their equilibria. Voting rules can be ranked according to their level of clustering, how good, socially, their

truthful results are, and similar criteria. Furthermore, it would be worthwhile to examine other distributions

of preferences and preference rules, such as single-peaked preferences.
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Chapter 7

The Positronic Economist

7.1 Introduction and Motivation

The work of the previous chapters clearly demonstrates that computational mechanism analysis is technologi-

cally feasible, and can produce novel, scientifically interesting results. The major thread that connects this

body of work, and differentiates it from other work that uses computational methods to analyze mechanisms,

is that the equilibrium computation is done by state-of-the-art general-purpose equilibrium-finding algorithms.

This chapter focuses on laying out a way forward for our approach to computational mechanism analysis,

codifying some of the desiderata that motivated our past design decisions, and ultimately providing a general,

easy-to-use system that other researchers can build on to answer their own mechanism analysis questions.

We call this system “the Positronic Economist.”

Our desiderata for a computational-mechanism-analysis system are spelled out in our “Three Laws of

Positronic Economics,” inspired by Asimov’s [1942] “Three Laws of Robotics.” (See Figure 7.1.)

In order for a CMA system to address real open questions, fidelity is key: any imprecision in either the

game representation or the equilibrium could compromise the relevance of the system’s findings. While

approximate equilibria are a major subject of research in algorithms and complexity, researchers in mechanism

design and auction theory overwhelmingly favor exact equilibria.

Our second desideratum is speed, with a strong emphasis on empirical performance over worst-case asymp-

totic guarantees. While polynomial-time guarantees are strongly associated with good empirical performance,

they do not always provide a complete picture, e.g., see the discussion of different IRSDS variants in Chap-

ter 3. For our game representation of choice, Bayesian action-graph games (BAGGs), Nash equilibrium

finding is an NP- or PPAD-hard problem, depending on the equilibrium type, but good heuristics can often
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1. Precision: Games are represented exactly. Equilibria are either exact, or are
ε-equilibria where ε is on the order of machine-ε .a

2. Speed: Algorithms must be fast enough to be used in practice, except when this
is in conflict with the first law. Algorithms must provably require only polynomial
time and space, except when this
• is in conflict with the first law,
• cannot be done without answering a major open complexity-theory problem,

such as P == NP.
3. Autonomy: Human effort should be minimized, except when this is in conflict

with the first two laws.
aFor all the analyses in preceding chapters, ε = 10−10. Since the games typically involve payoffs that

can be 1 or more, this represents a multiplicative error of one part per at least 1010. In contrast, IEEE
32-bit floating point numbers have 22 significand bits, thus have a multiplicative error of up to one part per
222 ' 4.2×107. Rational numbers represented as a ratio of signed 32-bit integers have a multiplicative
error 231 ' 2.2×109.

Figure 7.1: The Three Laws of Positronic Economics

find exact equilibria quickly (see Chapter 3 and Jiang et al. [51]).

Our last desideratum for a CMA system is that it be autonomous, requiring minimal human effort and

ingenuity. While the previous two desiderata are substantially addressed by previous work, this one is not, and

thus receives the most attention in this chapter. In our pipeline (Figure 1.1), analysis is broken down into a

two-stage process: encoding followed by solving. Due to our use of BAGGs, solving is straightforward—we

rely on off-the-shelf Nash equilibrium finding algorithms. On the other hand, until now, encoding has required

ingenuity and effort, first for devising a suitable graphical-model representation of a game and then for

working with lower-level APIs or file specifications to produce a BAGG encoding for use with an existing

solver.

The main aim of the Positronic Economist system is to produce compact BAGG representations of econom-

ically relevant settings while preserving the main advantages of such BAGG representations: fidelity and

speed.

This chapter makes two major contributions. The first is the Positronic Economist API (PosEc), which is

a high-level python-based declarative language for describing games in a form that resembles their natural

mathematical representation as closely as possible. The second is a pair of complementary algorithms that

automatically infer the structure of a game specified in PosEc and produce a compact BAGG.

The structure of this chapter is as follows. First, we survey related work. Next, we describe the PosEc

representation language. We go on to describe projection, an extension of our mathematical model that can be

used to describe some common forms of game structure. We then describe our structure inference algorithms

and prove some properties about their performance. We move on to experimental results, demonstrating that
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our algorithms can work in practice to quickly produce compact games. Finally, we discuss some directions

for future work.

7.1.1 Related work

There is a small body of work on the use of equilibrium computation for analysis of mechanisms, but none

of it interfaces with the compact games literature in the same way as our work. Nevertheless, we now

reconsider the three other general-purpose CMA systems of which we are aware, assessing how well they

satisfy our desiderata. In brief: each of the systems we discuss can represent games that cannot be represented

by the other systems, including ours. However, our approach is best able to leverage high-performance

equilibrium-finding algorithms.

The first system, due to Rabinovich et al. [87], does not explicitly specify how games are to be represented.

Instead, a user has to provide code for computing expected utility given a strategy profile. This could require

substantial human effort; observe that one of the main benefits of action-graph games is that they provide

such an efficient computational procedure. This also gives rise to some risk of lost fidelity; for example, in

their application to simultaneous auctions, Rabinovich et al. were forced to approximate the tie-breaking

rule. Further, their system only supports the fictitious play algorithm (FP), which is a relatively weak Nash

equilibrium computation algorithm, being prone to getting stuck in cycles. Thus, FP can consume extreme

amounts of time without ever finding a high-fidelity (i.e., small ε) equilibrium.

Second, the system of Vorobeychik et al. [108] represents mechanisms and settings as piecewise linear

equations. Given that many single-parameter mechanisms and settings are described algebraically in the

literature, this representation requires very little human effort and has great fidelity. However, the only

equilibrium-finding algorithm available for this representation is iterative best response, which is a degenerate

case of fictitious play and converges even less often.

The third system, called empirical algorithmic game theory (EAGT), developed by Wellman and others

[52, 66, etc.], involves writing a software simulator of a given game. At the simulator stage, perfect fidelity is

possible, and human effort is mitigated since the user can build the simulator in whatever language is most

convenient. However, these simulator-based games are then reduced to normal-form games by sampling from

the simulator based on a representative set of strategies. Devising these strategies requires substantial user

effort; it also risks loss of fidelity. The method does offer the advantage that high-fidelity equilibrium-finding

algorithms can be used once a normal-form game representation is obtained.
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7.2 Representing Games in PosEc

The Positronic Economist system consists of two key parts: a declarative language for specifying utility

functions and mechanisms, and a structure inference system for automatically constructing compact Bayesian

Action Graph Games (BAGGs)1 for settings described in this language. We describe both of these elements

in turn, beginning with the language. Our goal is to follow the natural mathematical formalization of a

mechanism as closely as possible.

7.2.1 Mechanisms and Settings

Recall the definitions of mechanisms and settings, from Chapter 2.

An epistemic-type Bayesian game is specified by 〈N,A,Θ, p,U 〉, where

• N is a set of agents, numbered 1 to n,

• A = A1×A2×·· ·×An and Ai is a set of actions that agent i can perform,

• Θ is the a set of private types that an agent can have,

• p is the joint type distribution, p ∈ ∆Θn, and

• U is a profile of n utility functions where Ui : A×Θn→ R.

This paper considers “mechanism-based games,” and so splits games into two parts, a mechanism and a

setting. A mechanism is given by 〈A,M〉 where

• A = A1×A2×·· ·×An and Ai is a set of actions that agent i can perform, and

• M is the choice function, M : A→ ∆O.

A Bayesian setting is given by 〈N,O,Θ, p,u〉 where

• N is a set of agents, numbered 1 to n,

• O is a set of outcomes,

• Θ is the a set of private types that an agent can have,

• p is the joint type distribution, p ∈ ∆Θn,2 and

1

2We will assume that p can be factored into independent pi’s where p(θ) = ∏
n
1 pi(θi). This assumption is not without loss

of generality, but is present in the current reference implementation of BAGGs. Thus, any setting that is not consistent with this
assumption cannot be represented by the Positronic Economist.
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• u is a utility function u : N×Θn×O→ R.3

Perfect information settings are a special case of Bayesian settings where each agent’s type distribution is a

point mass. Any mechanism and setting that both use the same n and O can be combined to form a game

where Ui(θN ,aN) = u(i,θN ,M(aN)) and where aN ∈ A denotes an action profile.

7.2.2 The PosEc Modeling Language

PosEc is a language that aims to make it easy for users to describe mechanisms and settings. This section

provides examples and discussion of some of the key decisions that went into its design. The appendices

go much further, giving an introduction to the API as well as exhaustive documentation of the API’s

specifications.

Our modeling language is based on python. Thus, the tuples, sets and utility functions of the mathematical
representation become tuples, set and functions in python. To specify a mechanism-based game, a user must
define a choice function M and a setting. For example, here is the choice function for a plurality vote with
deterministic tie-breaking:

def M(setting,a_N):

for c1 in setting.O:

c1Wins = True

for c2 in setting.O:

if a_N.count(c2)>a_N.count(c1):

c1Wins=False

if c1Wins: return c1

A corresponding setting follows, where the elements of Theta represent descending preference orderings.

n=10

O = ("c1","c2","c3")

Theta = [("c1","c2","c3"),

("c2","c3","c1"),

("c3","c1","c2"),

("c1","c3","c2")]

P = [UniformDistribution(Theta)]*n

def u(i,theta,o,a_i):

return theta[i].index(o)

setting = Setting(n,O,Theta,P,u)

Once the user has defined the mechanism and setting in this way, the Positronic Economist system creates

3Note that it is equivalent to say either
1. u is a profile of n utility functions ui : Θ×O→ R; or
2. u is a utility function that takes an agent number as one of its parameters u : N×Θ×O→ R.

While form (1) is more common, form (2) is dramatically easier for a novice Python user to produce correctly. Thus, we prefer form
(2).
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a BAGG of that game (described in the next section), allowing it to be analyzed using a variety of high-

performance algorithms.

7.2.3 Special Functions in PosEc

One of our goals was to let the user implement their utility and choice functions however they liked. Indeed,

PosEc will convert any valid Python functions into a valid BAGG.

However, the way that the functions are implemented can affect the size of the BAGG and the amount of time

required to produce it. In this section, we outline the key PosEc constructs that can be used to signal game

structure.

First, consider an anonymous mechanism with a constant number of actions c, such as our voting game. The

corresponding normal-form game requires O(ncn) space, while the corresponding AGG is O(nc). We can

signal that the mechanism is anonymous by using the a N.count() function, as in the plurality-vote code

above.

Second, many important settings involve exponentially large outcome spaces (consider e.g., stable matching

settings such as kidney exchange), which require exponential space when represented using standard Python

classes. The situation is even worse if the natural specification of a setting involves an infinite outcome space

(e.g., in much of the auction literature valuations and payments can be arbitrary real values) as there are no

standard Python classes for infinite sets.4 Both problems have the same solution: introducing special-purpose

set-like classes. The PosEc system includes several such set-like classes, allowing for outcome spaces that

include permutation, for use in position auctions, real values, and partition matroids, as well as their Cartesian

products.

Third, randomized mechanisms also need to be handled carefully, in order to avoid violating the first law.

In particular, if a choice function performed its own randomizing, e.g., via the Python random module,

PosEc would need to sample the choice function in order even to approximate the distribution over outcomes.

Instead, mechanisms should be implemented with the choice function returning a distribution over outcomes,

so that PosEc can compute the expected utilities as accurately as possible.

The overriding goal for the PosEc API is to allow the user to precisely specify games as easily as possible.
Thus, our design decisions emphasize an extremely simple general language for the user to build with, rather
than a palette of options for the user to choose from. For example, there is no special keyword to specify that
an agent has quasilinear utility with linear value for money. Instead, we make it easy for the user to specify
such a utility function directly:

4Of course, PosEc only generates finite-action games. Nevertheless, PosEc encourages the specification of infinite outcome
spaces when it is natural to do so; this allows the user to vary the discretization imposed by a mechanism while holding the setting
constant.
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def u(i, theta, o, a_i):

alloc,payments = o

if alloc==i:

return theta[i]-payments[i]

return -payments[i]

Naturally, we hope that users will produce a library of reusable mechanisms and settings. We provide code

for position auctions and voting.

7.2.4 Projection

In many single-good auction settings (including settings with the utility function shown in the previous

section), each agent’s payoff depends only on whether he is allocated the good and on his own payment. Such

structure is computationally useful: an agent’s utility may be computed without deriving a distribution over

the entire outcome space. We can generalize this concept via the idea of projection.

Formally, a projected setting is 〈N,O,Θ,Ψ,u,π〉 where N,O and Θ are defined as before. Ψ is the space of

projected outcomes, u is overloaded where u : N×Θn×Ψ→R, and π is a projection function π : N×O→Ψ

(where for any o,o′ ∈ O, π(i,o) = π(i,o′) implies u(i,θN ,o) = u(i,θN ,o′)). Projected settings do not

necessarily lead to computational savings, but are useful because they make it possible to define mechanisms

that only compute projected outcomes for a single agent at a time. Formally, a projected mechanism is

specified by 〈A,M′〉 where A is again a set of action profiles, and M is a choice function over (distributions

over) projected outcomes; M′ : N×A→ ∆Ψ (where M′(i,aN) = π(i,M(aN))). Any projected setting and

projected mechanism that both use the same n and Ψ can be combined to form a Bayesian game where

Ui(θN ,aN) = u(i,θN ,M′(aN)) for each action profile aN ∈ A. Such Bayesian games can be much more

compact than Bayesian games based on the equivalent (unprojected) settings and mechanisms. PosEc’s

black-box structure inference algorithm can discover these more compact BAGGs by itself; however, this can

take significant time: e.g., Ω(2n) computation for digital good settings and Ω(n!) for position auction settings.

Thus, while expressing projection structure can be more work for the user, doing so can yield exponentially

faster computation.

7.3 Structure Inference in PosEc

The second main component of PosEc is structure inference: automatically generating compact BAGGs given

setting and mechanism descriptions in PosEc’s own modeling language. We provide two approaches for doing

this. First, “white-box structure inference” uses structure made explicit in the PosEc representation—e.g.,

via use of the count operator, randomization via distributions, projection, etc.—to generate a BAGG. (In the

degenerate case, no such structure is explicitly given, and we obtain an exponential-size BAGG.) Second,
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Input: Bayesian game, utility represented as a function
Output: Bayesian action-graph game
Create a BAGG with actions agents N, actions A, types Θ, type distribution p, and no edges or function
nodes
foreach Action-node a do

create payoff table for action node a
repeat

f ← 0
foreach projected configuration c on neighbors of a do

try to compute payoff given c
if success then add c and payoff to table
else

v← a missing variable needed to compute payoff
if no function node computes v then

add function node and edges to compute v
add edge from function node to a
erase contents of payoff table
f ← 1
break

until f =0 ;
Figure 7.2: White-Box Structure Inference

“black-box structure inference” takes the BAGG generated in the first step and probes it to find additional

structure and hence to obtain a more compact BAGG. This procedure is completely automatic, but (1) depends

on the size of the initial representation, and (2) relies upon heuristics to avoid getting stuck in local minima.

Thus, black-box structure inference should be seen as a procedure for further refining the compact BAGGs

obtained via white-box structure inference, not as a replacement for white-box structure inference.

7.3.1 White-Box Structure Inference

We aim to obtain what we call the “straightforward BAGG”: a BAGG that contains only those function nodes

and edges that are necessary to compute features used by the input game. Let `s denote the representation

length of this game. Our goal is to compute the straightforward BAGG using only poly(`s) calls to the utility

function of the input game. We do so via a relatively direct algorithm. Essentially, it works by beginning

with a totally disconnected action graph, and progressively adding function nodes and edges whenever their

absence means that the utility function cannot compute a payoff. (See Algorithm 7.2.)

Theorem 15. For any game parameterized by the number of agents n, the number of actions per agent m,

and the number of types t, where the choice and utility functions each can make a constant number of different

calls to accessor functions, and where any weighted-sum calls involve weights bounded by poly(nmt), the

straightforward BAGG will require only poly(nmt) space.
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Proof sketch. WBSI introduces at most one function node per accessor call. A weighted max node can

have at most O(nmt) different projected configurations. A weighted sum node with maximum w can only

have at most O(wn) different projected configurations. For each action node, there are a constant number of

neighbors, all of which are function nodes. Thus the possible projected configurations on the neighborhood

of any action node is at most the Cartesian product of the possible projected configurations of each neighbor.

Since these spaces are all poly(nmt) and there are boundedly many of them, the total configuration space in

the neighborhood of every action is at most poly(nmt). �

Small outputs are important because the BAGGs produced by WBSI are typically used as inputs to game-

solving algorithms, which often require worst-case exponential time. Nevertheless, these algorithms often

have good empirical performance. (See e.g., Chapter 3 and Jiang et al. [51]). Thus, it is important that WBSI

also be fast, so as not to become the main bottleneck.

Theorem 16. The white-box structure-inference algorithm (Algorithm 7.2) runs in O(c(`s)
2) time, where `s

denotes the size of its output, the straightforward BAGG, and c denotes the amount of time that the input code

requires to compute a single agent’s payoff for a single type-action-profile.

Proof sketch. The runtime is dominated by the computation of payoff tables. The outer for loop and repeat

loop jointly take O(`s) time: the for loop runs once per action node, and each iteration of the repeat loop

after the first one involves creating a new edge, and both actions and edges take up space in the BAGG

representation. The inner for loop iterates over projected configurations, where one payoff per projected

configuration is also part of the BAGG representation. Because this loop only deals with BAGGs that contain

weakly fewer edges than the straightforward BAGG, it can only iterate over projected-configuration spaces

that are weakly smaller than the projected configuration space of the straightforward AGG. Thus, this inner

loop also takes O(`s) time. �

Provided the outcome and utility functions passed to WBSI are polynomial time, and make bounded numbers

of calls to accessor functions, WBSI will run in polynomial time and produce a polynomial-sized BAGG as

output.

7.3.2 Black-Box Structure Inference

The goal of black-box structure inference is to take a BAGG obtained from white-box structure inference—in

the degenerate case, a completely unstructured BAGG—and return another BAGG that more efficiently

represents the same game. In other words, BBSI is a constrained optimization problem where the feasi-

ble region is the set of all BAGGs that are equivalent to the input game and the objective is to find the

smallest BAGG, measured by input length, in the feasible region. We can also define a decision version

of BBSI: BAGGREDUCIBILITY takes a BAGG G and an integer k, and asks whether there exists a BAGG

G′ that is strategically equivalent to G and that has representation size no larger than k. We conjecture that

BAGGREDUCIBILITY is NP-hard.
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Our focus in this paper is thus on heuristics for performing BBSI. There are some natural local operations that

can produce a smaller, strategically equivalent BAGG. A simple, polynomial-time example is to try cutting

an edge to an action node, reducing by one the dimension of that action node’s payoff table. (E.g., in a GFP

auction, an agent’s payoff is unaffected by each bid less than his own.) Another example is aggregating two

or more actions, replacing their inputs with a single sum node. (E.g., in a no-externality GFP auction, an

agent’s payoff only depends on the number of higher bids, not these bids’ values.) Unfortunately, such local

operations can get stuck in local optima. Consider, for example, a five-candidate vote using the two-approval

mechanism where voters have the option to abstain. This setting can be encoded as summing the number of

approvals each candidate gets using five sum nodes, for a O(n5) representation. However, a naive anonymous

encoding could count how many agents approved each pair of candidates, for a O(n10) representation. It is

not possible to get from the naive encoding to the efficient encoding using the two operations defined above;

none of the counts can be cut and no pair of counts can be replaced with their sum.

Given that locally improving moves can get stuck in local optima, we opted to implement BBSI using an

iterative local-search (ILS) algorithm that sometimes makes non-improving moves. Our ILS algorithm

optimizes the size of the payoff table for each action node independently. For each action node, the algorithm

starts from the initial neighborhood of that node (in order to preserve information already encoded in the

BAGG by WBSI), and alternates between non-improving perturbations (introducing function nodes that

aggregate existing inputs, even when those inputs cannot subsequently be cut) and locally improving moves

(cutting edges to an action node when doing so maintains strategic equivalence).

Our BBSI-ILS algorithm is a heuristic search with several free parameters, which were manually configured

to exploit the kinds of structure that are commonly present in mechanism-based games. Initially, the focus is

on finding and exploiting anonymity structure, so the mechanism introduces SUM nodes to compute action

counts and tries to cut arcs that provide asymmetric information. Once this phase is complete, the algorithm

searches more broadly. The perturbation phase introduces weighted SUMs constructed by adding together

existing weighted SUM nodes, biased in favor of not introducing weights greater than 1. The improvement

phase cuts any arc, not just those that provide asymmetric information.

7.4 Experimental Results

In this section, we describe experimental evidence that our structure inference algorithms can produce

compact BAGGs in a practical amount of time.

We began by recreating games from Chapter 4 and Chapter 6—specifically, GFP and wGSP position auctions,

and two-approval votes—which were originally produced using hand-tuned encoders. To test WBSI, we

generated straightforward specifications of these settings in PosEc. In all cases, WBSI produced exactly the

same output as the hand-tuned encoders, which are dramatically smaller than the corresponding normal-form
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(c) 2-Approval

Figure 7.3: Measuring the performance of WBSI on efficiently-represented games. Solid lines corre-
spond to mean size and runtime while the dashed lines correspond to the 5th percentile, median
and 95th percentile of 50 runs.

games. Runtime performance was also good: even extremely large games involving 20 players were produced

in less than an hour, except in the case of two-approval. (The largest two-approval games we created had 12

players. Even so, these games took roughly three hours each to produce. See Figure 7.3.)

To validate black-box structure-inference, we tested the same games, both with and without well-implemented

inputs. When the inputs were well implemented (i.e., using appropriate accessor functions), BBSI did not

make substantial, further reductions to representation size, suggesting that the solution obtained by WBSI

was already nearly optimal. In contrast, BBSI was able to make dramatic improvements to the size of

poorly implemented inputs, shrinking games from their exponential normal-form size to within less than

twice the size of hand-tuned encodings. However, the runtime of BBSI grew with the size of the normal

form: exponentially with n. Thus, BBSI could take as much as an hour even for small games (n = 4). (See
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Figure 7.4: Measuring the performance of the BBSI-ILS algorithm on tuned inputs. Because these
inputs were already somewhat efficient, the compression is mostly small, except in the case of
GSP. Runtime was manageable for position auction games, but prohibitively expensive for larger
voting games.

Figures 7.4 and 7.5.)

We have so far motivated BBSI as a refinement of WBSI for computational reasons. However, it has another

use: as a sort of automated tutorial to help a user make better use of the PosEc system. Although BBSI cannot

practically be applied to large, unstructured games, it can indirectly help in such cases by identifying more

efficient representations of smaller, related games. A user can then examine this representation to learn what

sort of structure is important, and write a PosEc description of the setting that makes this structure explicit.

This tutorial mode works by taking a PosEc-produced BAGG and explaining, for each action node, which

accessor function calls are used to produce the payoff table. By design, our BBSI implementation only makes
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Figure 7.5: Measuring the performance of the BBSI-ILS algorithm on untuned inputs. BBSI was able
to produce a dramatic improvement in size for every input, though it was seldom as good as the
reference games produced by WBSI with a tuned input.

moves that are consistent with PosEc’s accessors. Specifically, every cut reduces the number of accessor calls

and every perturbation introduces a function node that corresponds to a single accessor call. Thus, the output

of BBSI is always explainable terms of PosEc accessors. Because our aim here is to help a user represent a

class of games in a way that scales well in the number of agents, the appropriate measure is not the size of the

output BAGG, but rather the asymptotic size of the family of BAGGs with the same structure. To measure

this, we calculate an upper bound on the size of each payoff table, as a function of n, based on the accessor

functions. For example, a call to count() will return an integer between zero and n− 1—or 1 and n if

counting how many agents played the action correspoding to that payoff table entry, while a call to any()

has two possible values. Thus, an action node that is explained by these two calls has a payoff table with

at most 2n entries. From this expression, it is possible to compute a bound on the size of the BAGG, as a

function of n.
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For each of the games from the previous subsection, we computed these bounds, as a measure of the efficiency

of the structure discovered by BAGGs. We compared this measure against two benchmarks: the size of the

normal form and the size of the efficient representation produced by carefully hand-tuned inputs to WBSI. In

our experiments, extrapolating from the structure that BBSI identified in games with three agents, we found

that extrapolated games were dramatically larger than hand-tuned games produced by WBSI, but far smaller

than normal-form games. (See Figure 7.6.) Thus, we found that BBSI was capable of producing output that

is not only more compact than unstructured games, but also informative to human users.

7.5 Conclusion and Future Work

This chapter makes two major technical contributions: the Positronic Economist declarative language for

describing mechanism-based Bayesian games, and the two structure-inference algorithms that make it possible

to compactly represent such games as Bayesian action-graph games. These contributions dramatically

reduce the human effort necessary to perform computational mechanism analysis, without leading to a

substantial loss of accuracy or speed. There are many potential applications in which PosEc could shed light

on hard-to-analyze economic situations. Even within the limited and well-studied sphere of single-good

auctions, PosEc could be used to study non-linear utility for money (e.g., budgets; risk attitudes), asymmetric

valuation distributions, other-regarding preferences (both altruism and spite), and conditional type dependence

(including common and affiliated values).

One limitation of the current PosEc system is that it can only describe simultaneous-move games. In contrast,

many real-world mechanisms proceed in multiple stages (e.g., sequential auctions; clock-proxy auctions).

In both cases, decisions made in one stage can affect which outcomes are possible or desirable in the next

stage. BAGGs are inherently single-stage games, but could be used to analyze multi-stage mechanisms

by representing the different stages as individual BAGGs and solving the complete system by a process of

backward induction. Such a process would likely resemble the special-purpose algorithm that Paes Leme

et al. [82] proposed for computing the equilibria of sequences of single-good auctions. Alternatively, CMA

could be performed using a compact game representation that explicitly supports multi-stage games, such as

temporal AGGs [50] or MAIDs [57]. Unfortunately, the algorithms for reasoning about such representations

currently offer much poorer performance than algorithms for reasoning about BAGGs.

Another limitation of the PosEc system is the cost of explicitly representing types and actions; no BAGG

can be asymptotically smaller than its number of types or actions. Thus, games with large type or action

spaces—such as combinatorial auctions—cannot be succinctly represented. There is very little work on

representing games with implicitly specified action spaces—Koller and Milch [57] and Ryan et al. [93] are

the two exceptions, unfortunately both without good implementations—but as this literature develops there

may be opportunities for extending our encode-and-solve CMA approach to new game families.
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Figure 7.6: Measuring the scales of BAGGs using structure learned by BBSI. Note that the extrapolated
BBSI output is a loose upper bound; for example, no (B)AGG representation can ever include
more payoff table entries than the strategically (B)NFG. Solid lines correspond to mean size and
runtime while the dashed lines correspond to the 5th percentile, median and 95th percentile of 50
runs. In position-auction games, we only included actions up to each bidder’s valuation. Thus, the
size (in terms of number of actions) could vary from game to game. This is the cause of the much
higher variance on position-auction games, compared to voting games.
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Appendix A

Using the PosEc API

Recall that PosEc’s main function is to take mechanisms and settings and convert them into (B)AGGs. Thus,

the most essential call is

agg = makeAGG(setting, mechanism). Then, the AGG object can be stored to file in a format

that Gambit can read:

agg.saveToFile(filename). The challenging part of using PosEc is specifying settings and mecha-

nisms.

A.1 Representing Settings

In PosEc, settings are represented by Python objects. Their constructors are designed to mimic the mathemat-

ical representation in the body of the paper. Their constructor have the following forms:

•

Setting(n, O, Theta, u),

•

BayesianSetting(n, O, Theta, P, u),

•

ProjectedSetting(n, O, Theta, u, Psi, pi), and

•
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ProjectedBayesianSetting(n, O, Theta, P, u, Psi, pi),

where

n is an integer specifying the number of agents,

O is a “set-like object”1 containing the set of possible outcomes,

Theta is the (finite) collection of types which must be hashable (in non-Bayesian games, this is assumed to

be an n-length list/tuple where

Theta[i] is the type of agent i),

P is an n-length vector of type distributions represented as

Distribution objects (essentially mappings from

Theta to real numbers),

u is a utility function (described below),

Psi is a set-like object containing the set of projected outcomes, and

pi is a projection function (described below).

Every utility function has the signature

u(i, theta, o, a i) where

i is an integer indicating the agent number,

theta is a

TypeProfile object (essentially an n-length vector of types, but with accessor methods described below),

o is an outcome (from set

O), and

a i is agent i’s action. Every utility function returns a real value.

1We define set-like object to mean any object that has

contains () and
eq () methods. This includes

list,
tuple and
set, as well as several special purpose classes provided by PosEc.
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Every projection function has the signature

pi(i, o) where

i is the agent number and

o is an outcome. Every projection function returns a projected outcome (i.e., an element of the set

Psi).

A.2 Set-Like Classes for Outcome Spaces

PosEc includes several set-like classes to deal with the fact that often mechanism outcome spaces are too

large to represent with conventional Python collections such as

list or

set.

RealSpace(k) is a class for k-dimensional real vectors.

CartesianProduct(

*factors) is a class for Cartesian products of set-like objects. For example, one could create a the

outcome space for a single-good auction with n-bidders (i.e., where the outcome space consists of an

allocation between 0 and n−1, and an n-length vector of payments) as follows:

O = CartesianProduct(range(n), RealSpace(n)).

Permutations(S) is a class for every permutation of the elements of collection

S.

PowerSet(S) is a class containing every subset of

S, while

PartitionMatroid(S, k) is a class containing every subset of

S of length at most k.
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A.3 Representing Mechanisms

PosEc provides two abstracted mechanism classes: mechanisms with and without projections. These classes

have nearly identical constructors:

Mechanism(A, M) and

ProjectedMechanism(A, M).

A is an action-set function, which has the signature

A(setting, i, theta i) where

setting is any valid setting,

i is the agent number, and

theta i is that agent’s type. The output of an action-set function is always a container (e.g.,

list,

tuple) of actions.

M is an outcome function (described below). The output of any outcome function is either an outcome (from

O) or a

Distribution over outcomes.

For a

Mechanism, the outcome function has the signature

M(

setting, a N) where

setting is a valid setting and

a N is an

ActionProfile object (essentially an n-length vector of actions, but with accessor methods described

below).

For a

ProjectedMechanism, the outcome function has the signature
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M(setting, i, theta i, a N) where

setting is a valid setting,

i is an agent number,

theta i is agent i’s type and

a N is an

ActionProfile object.

PosEc includes two probability distribution classes:

UniformDistribution(events) and

Distribution(

events,

probabilities). Both accept finite collections of hash-able events.

A.4 Accessor Methods

Both

ActionProfile and

TypeProfile objects have many accessor methods. At the most basic level, each is an n-length vector

where

v[i] returns the ith element.

The accessor methods for an

ActionProfile are:

•

a N.action(j) – returns the action played by agent

j

•

a N.any(A, agents = None) – returns
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True iff any agent plays an action in list

A. If the agents parameter is not

None, it can be a collection of agents to consider.

•

a N.argmax(A, fn = lambda x:x, default = None) – returns some action

a where (1)

a is in

A, (2)

a is played by at least one agent, and (3)

a maximizes

fn() subject to (1) and (2).

default is returned if no agent plays an action in

A.

•

a N.argmin(A, fn = lambda x:x, default = None) – returns some action in

A or

default (see

argmax)

•

a N.count(a) – returns a count of how many agents played action

a

•

a N.max(A, fn = lambda x:x, default = None) – returns

fn(a) or
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default (see

argmax)

•

a N.min(A, fn = lambda x:x, default = None) – returns

fn(a) or

default (see

argmax)

•

a N.plays(j, a j) – returns

True iff agent

j played action

a j Optionally,

j can be a collection of agents.

•

a N.sum(A) – returns a count of how many agents played any action in collection

A.

•

a N.weightedSum(A, W) – returns a weighted sum of how many agents played any action in

collection

A (The weight for action

A[j] is

W[j].)

The accessor methods for a

TypeProfile are:
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•

argmax(T, fn = lambda x:x, default = None) – returns some type

t where (1)

t is in

T, (2)

t is the type of at least one agent, and (3)

t maximizes

fn() subject to (1) and (2).

default is returned if no agent has any type in

T.

•

theta.any(T) – returns

True iff at least one agent has a type in

T

•

theta.argmin(T, fn = lambda x:x, default = None) – returns some type in

T or default (see

argmax)

•

theta.count(t) – returns a count of how many agents have type

t

•

theta.hasType(j, theta) – returns

True iff agent
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j has type

theta

•

theta.max(T, fn = lambda x:x, default = None) – returns

fn(t) or

default (See

argmax)

•

theta.min(T, fn = lambda x:x, default = None) – returns

fn(t) or

default (See

argmax)

•

theta.sum(T) – returns a total of how many agents have types in

T

•

theta.type(j) – returns the type of agent

j

•

theta.weightedSum(T, W ) – returns a weighted sum of how many agents had any type in

collection

T (The weight for type

T[j] is

W[j].)
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Appendix B

Documentation of the PosEc API
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B.1 Module posec.bbsi

B.1.1 Functions

preprocess(agg)

collapseTest(f, C, t)

testCut(agg, act, arcIndex)

tryCutNode(agg, act, node)

tryCut(agg, act, arcIndex, strict=False)

If possible (and, optionally, strictly improving) cut an arc

findArcIndex(agg, act, otherNode)

makeSum(agg, act, existingSums, weights, functionName)

Create a new weighted sum node that combines a bunch of existing inputs

makeOr(agg, act, sumNode, functionName)

Create a new weighted sum node that combines a bunch of existing inputs

makeMax(agg, act, existingMaxes, weights, functionName)

compressByILS(agg, seed=None)

anonymityCuts(agg)

pass

B.1.2 Variables

Name Description
SUM LOG Value: []

package Value: ’posec’
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B.2 Module posec.mathtools

B.2.1 Functions

isDistribution(d)

d is a list of probabilities

isDelta(d)

cartesianProduct(listOfLists)

permutations(S)

subsetPermutations(S)

product(S)

intToBitVector(n, minBits=0)

powerSet(S, cast fn=<type ’list’>)

B.2.2 Variables

Name Description
package Value: ’posec’
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B.3 Module posec.posec core

B.3.1 Functions

makeAGG(setting, mechanism, symmetry=False, transform=None, quiet=False, bbsi level=0)

Takes a Setting and a Mechanism, returns a corresponding pyagg.AGG object

transform is a function (setting,i,theta i,a i,o,theta N) that returns a real value quiet==True produces
no standard output bbsi level==0 means to do no BBSI bbsi level==1 means to do limited BBSI
(suitable for fine-tuning games) bbsi level==2 means to do extensive BBSI (suitable for discovering
coarse structure)

explain(agg, acts=None)

Describes the set of function-calls that can be used to produce a strategically equivalent AGG.
Optionally, acts can cover a specific subset of action nodes.

B.3.2 Variables

Name Description
package Value: ’posec’

B.3.3 Class ActionProfile

posec.posec core. InstrumentedDataStore

ActionProfile

Representation of an action profile with efficient ways of accessing the data.

An ActionProfile is passed to a Mechanism’s outcome function as the argument a N

Methods

count(self, a)

Returns a count of how many agents played action a
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sum(self, A)

Returns a count of how many agents played any action in collection A

weightedSum(self, A, W)

Returns a weighted sum of how many agents played any action in collection A (The weight for
action A[j] is W[j].)

argmax(self, A, fn=<function <lambda> at 0x10147bd70>, default=None)

Returns some action a where (1) a is in A, (2) a is played by at least one agent, and (3) a maximizes
fn() subject to (1) and (2). <default> is returned if no agent plays an action in A.

max(self, A, fn=<function <lambda> at 0x10147be60>, default=None)

Returns fn(a) or default (See argmax)

argmin(self, A, fn=<function <lambda> at 0x10147bf50>, default=None)

Returns some action in A or default (See argmax)

min(self, A, fn=<function <lambda> at 0x1014930c8>, default=None)

Returns fn(a) or default (See argmax)

any(self, A, agents=None)

Returns True iff any agent plays an action in list A If the agents parameter is not None, it can be a
list of agents to consider

plays(self, j, a j)

Returns True iff agent j played action a j Optionally, j can be a list or tuple of agents.

action(self, j)

Returns the action played by agent j

getitem (self, j)

Returns the action of agent j

Inherited from posec.posec core. InstrumentedDataStore

init ()
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B.3.4 Class TypeProfile

posec.posec core. InstrumentedDataStore

TypeProfile

Representation of an type profile with efficient ways of accessing the data.

A TypeProfile is passed to a Setting’s utility function as the argument theta N

Methods

hasType(self, j, theta)

Returns True iff agent j has type theta

type(self, j)

Returns the type of agent j

getitem (self, j)

Returns the type of agent j

count(self, t)

Returns a count of how many agents have type t

sum(self, T)

Returns a total of how many agents have types in T

weightedSum(self, T, W)

Returns a weighted sum of how many agents had any type in collection T (The
weight for type T[j] is W[j].)

any(self, T)

Returns Truee iff at least one agent has a type in T
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argmax(self, T, fn=<function <lambda> at 0x1014936e0>,
default=None)

Returns some type t where (1) t is in T, (2) t is the type of at least one agent, and (3)
t maximizes fn() subject to (1) and (2). <default> is returned if no agent has any
type in T.

max(self, T, fn=<function <lambda> at 0x1014937d0>,
default=None)

Returns fn(t) or default (See argmax)

argmin(self, T, fn=<function <lambda> at 0x1014938c0>,
default=None)

Returns some type in T or default (See argmax)

min(self, T, fn=<function <lambda> at 0x1014939b0>,
default=None)

Returns fn(t) or default (See argmax)

Inherited from posec.posec core. InstrumentedDataStore

init ()

B.3.5 Class RealSpace

A set-like object that contains vectors of floating-point numbers

Useful for defining the (projected) outcome space in a Setting

Methods

init (self, dimensions=None)

If dimensions==None, it contains all floating point numbers. If dimensions>=0, it
contains all dimensions-length lists & tuples of floating point numbers.
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contains (self, element)

If dimensions==None, it contains all floating point numbers. If dimensions>=1, it
contains all dimensions-length lists & tuples of floating point numbers.

eq (self, other)

Returns True iff other is a RealSpace instance with the same dimensions

repr (self )

B.3.6 Class CartesianProduct

A set-like object that contains vectors containing elements of the ”factor” set

Useful for defining the (projected) outcome space in a Setting

Methods

init (self, *factors, **options)

factors is a list of set-like objects (let k denote its length) contains only k-length
vectors where each element is in the corresponding factor

options: memberType=<type> - contains only objects of type <type> (also
supports tuples of types)

contains (self, vector)

Returns True iff vector is a k-length vector where each element is in the
corresponding factor if memberType!=None, then vector must alos have type
<memberType> (

eq (self, other)

True iff both inputs are CertesianProducts with the same factors and memberType

repr (self )
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B.3.7 Class Setting

Known Subclasses: posec.posec core.BayesianSetting, posec.posec core.ProjectedSetting

A data structure representing a (not projected) full-information setting

Methods

init (self, n, O, Theta, u)

Class Variables

Name Description
n Value: TypeCheckDescriptor("n",

"integer number of agents", lam...

O Value: TypeCheckDescriptor("O",

"set-like container of outcomes...

Theta Value: TypeCheckDescriptor("Theta",

"n-length vector of (hash()...

u Value: TypeCheckDescriptor("u",

"Utility function; u(i,theta,o,...

B.3.8 Class ProjectedSetting

posec.posec core.Setting

ProjectedSetting

Known Subclasses: posec.posec core.ProjectedBayesianSetting,
posec.applications.position auctions externalities.HybridSetting,
posec.applications.position auctions.NoExternalitySetting

168



Methods

init (self, n, O, Theta, u, Psi, pi)

Overrides: posec.posec core.Setting. init

Class Variables

Name Description
Psi Value: TypeCheckDescriptor("Psi",

"set-like container of projec...

pi Value: TypeCheckDescriptor("pi",

"Projection function; pi(i,o) ...

u Value: TypeCheckDescriptor("u",

"Projected utility function; u(...

Inherited from posec.posec core.Setting (Section B.3.7)
O, Theta, n

B.3.9 Class BayesianSetting

posec.posec core.Setting

BayesianSetting

Known Subclasses: posec.posec core.ProjectedBayesianSetting

Methods

init (self, n, O, Theta, P, u)

Overrides: posec.posec core.Setting. init

Class Variables
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Name Description
P Value: TypeCheckDescriptor("P",

"n-length vector of Distributio...

Theta Value: TypeCheckDescriptor("Theta",

"Finite collection of (hash...

Inherited from posec.posec core.Setting (Section B.3.7)
O, n, u

B.3.10 Class ProjectedBayesianSetting

posec.posec core.Setting

posec.posec core.ProjectedSetting

posec.posec core.Setting

posec.posec core.BayesianSetting

ProjectedBayesianSetting

Methods

init (self, n, O, Theta, P, u, Psi, pi)

Overrides: posec.posec core.BayesianSetting. init

Class Variables

Name Description
Inherited from posec.posec core.ProjectedSetting (Section B.3.8)
Psi, pi, u
Inherited from posec.posec core.Setting (Section B.3.7)
O, Theta, n
Inherited from posec.posec core.BayesianSetting (Section B.3.9)
P
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B.3.11 Class Mechanism

Known Subclasses: posec.posec core.ProjectedMechanism,
posec.applications.voting.AbstractVotingMechanism

Methods

init (self, A, M)

Class Variables

Name Description
A Value: TypeCheckDescriptor("A",

"Action function; A(setting, i,...

M Value: TypeCheckDescriptor("M",

"Outcome function; M(setting, a...

B.3.12 Class ProjectedMechanism

posec.posec core.Mechanism

ProjectedMechanism

Known Subclasses: posec.applications.position auctions.NoExternalityPositionAuction,
posec.applications.basic auctions.FirstPriceAuction

Methods

Inherited from posec.posec core.Mechanism(Section B.3.11)

init ()

Class Variables
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Name Description
M Value: TypeCheckDescriptor("M",

"Outcome function; M(setting, i...

Inherited from posec.posec core.Mechanism (Section B.3.11)
A

B.3.13 Class Distribution

Known Subclasses: posec.posec core.UniformDistribution

Representation of a distribution with finite support

Methods

init (self, support, probabilities)

support and probabilities are equal-length vectors

iter (self )

Returns an iterator over 2 tuples representing the probability of an event and the
event

probability(self, event)

Returns the probability of event Returns 0.0 if event is not in support

B.3.14 Class UniformDistribution

posec.posec core.Distribution

UniformDistribution
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Methods

init (self, support)

support and probabilities are equal-length vectors

Overrides: posec.posec core.Distribution. init extit(inherited documentation)

Inherited from posec.posec core.Distribution(Section B.3.13)

iter (), probability()
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B.4 Module posec.pyagg

Python wrapper class for representing action-graph games

B.4.1 Functions

fromLtoLL(L, aSizes)

fromLLtoLC(LL)

fromLLtoString(LL, actionDelim=’ ’, agentDelim=’\t’)

purgeBarren(agg)

Removes any functions nodes that have no children

B.4.2 Variables

Name Description
FN TYPE SUM Value: 0
FN TYPE OR Value: 1
FN TYPE WEIGHTED SU-
M

Value: 10

FN TYPE WEIGHTED M-
AX

Value: 12

gnm Value: Solver("gambit-gnm -n {runs}
{filename}", {"runs": 1})

simpdiv Value: Solver("gambit-simpdiv -n

{runs} {filename}", {"runs": 1})
ipa Value: Solver("gambit-ipa -n {runs}

{filename}", {"runs": 1})
enumpure Value: Solver("gambit-enumpure

{filename}")
enumpoly Value: Solver("gambit-enumpoly

{filename}")
continued on next page
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Name Description
SOLVERS Value: [gnm, simpdiv, ipa, enumpure,

enumpoly]

package Value: ’posec’

B.4.3 Class AGG File

Known Subclasses: posec.pyagg.AGG, posec.pyagg.BAGG File

Methods

init (self, filename)

parse(self, strategyString)

interpretProfile(self, sp)

fixStrategy(self, stratStr)

test(self, strategyString)

Returns a n-length vector of the agents’ payoffs

isNE(self, strategyString)

Tests whether or not a given strategy profile is a (Bayes) Nash equilibrium

del (self )

B.4.4 Class BAGG File

posec.pyagg.AGG File

BAGG File

Known Subclasses: posec.pyagg.BAGG

>>> import AGG Examples
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>>> bagg = AGG Examples.MixedValueChicken()

>>> bagg.saveToFile("mvc.bagg")

>>> bagg.isNE("1 0 1 0 1 0 1 0")

False

>>> bagg.testExAnte("1 0 1 0 1 0 1 0")

[0.0, 0.0]

>>> baggf = BAGG File("mvc.bagg")

>>> baggf.Theta

[’High’, ’Low’]

>>> baggf.S["High"]

["(’High’, ’Swerve’)", "(’High’, ’Straight’)"]

>>> baggf.P

{’1’: {’High’: 0.5, ’Low’: 0.5}, ’2’: {’High’: 0.5, ’Low’: 0.5}}
>>> baggf.isNE("1 0 1 0 1 0 1 0")

False

>>> baggf.testExAnte("1 0 1 0 1 0 1 0")

[0.0, 0.0]

Methods

test(self, strategyString)

Returns an ex interim expected payoff profile

Overrides: posec.pyagg.AGG File.test

testExAnte(self, strategyString)

Inherited from posec.pyagg.AGG File(Section B.4.3)

del (), init (), fixStrategy(), interpretProfile(), isNE(), parse()

B.4.5 Class AGG

posec.pyagg.AGG File

AGG
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Known Subclasses: posec.pyagg.BAGG

Methods

sizeAsAGG(self )

sizeAsNFG(self )

177



init (self, N, A, S, F, v, f, u, title=None)

N is a list of players A is a list of actions S is a mapping from players to lists of
actions F is a list of projection (aka function) nodes v is a list of arcs (2-tupes of
start,end nodes) f is a mapping from projection node to type of projection (integer)
u is a mapping from an action node to a payoff mapping (tuples of inputs to real
values)

>>> import AGG Examples

>>> agg = AGG Examples.PrisonersDilemma()

>>> agg.saveToFile("pd.agg")

>>> agg.test("NE,1,0,1,0")

[3.0, 3.0]

>>> agg.isNE("NE,1,0,1,0")

False

>>> string.strip(simpdiv.solve(agg).next())

’NE,0,1,0,1’

>>> string.strip(gnm.solve(agg).next())

’NE,0.000000,1.000000,0.000000,1.000000’

>>> f = open("pd2.agg","w")

>>> f.write(open("pd.agg","r").read())

>>> f.close()

>>> aggf = AGG File("pd2.agg")

>>> aggf.test("NE,1,0,1,0")

[3.0, 3.0]

>>> aggf.isNE("NE,1,0,1,0")

False

>>> string.strip(list(enumpoly.solve(aggf))[0])

’NE,0.000000,1.000000,0.000000,1.000000’

Overrides: posec.pyagg.AGG File. init

arcsTo(self, node)

neighbours(self, node)

saveToFile(self, filename)

Inherited from posec.pyagg.AGG File(Section B.4.3)
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del (), fixStrategy(), interpretProfile(), isNE(), parse(), test()

Class Variables

Name Description
signature Value: ’#AGG\n’

B.4.6 Class BAGG

posec.pyagg.AGG File

posec.pyagg.BAGG File

posec.pyagg.AGG File

posec.pyagg.AGG

BAGG

Methods

sizeAsNFG(self )

Returns the size of the games as a Bayesian normal-form game

Overrides: posec.pyagg.AGG.sizeAsNFG

init (self, N, Theta, P, A, S, F, v, f, u, title=None)

N is a list of players Theta is a list of types P is a mapping from players to mappings
from types to probability A is a list of actions S is a mapping from types to lists of
actions F is a list of function nodes v is a list of arcs (2-tupes of start,end nodes) f is
a mapping from projection node to type of projection (integer) u is a mapping from
an action node to a payoff mapping (tuples of inputs to real values)

Overrides: posec.pyagg.AGG. init

Inherited from posec.pyagg.BAGG File(Section B.4.4)
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test(), testExAnte()

Inherited from posec.pyagg.AGG File(Section B.4.3)

del (), fixStrategy(), interpretProfile(), isNE(), parse()

Inherited from posec.pyagg.AGG(Section B.4.5)

arcsTo(), neighbours(), saveToFile(), sizeAsAGG()

Class Variables

Name Description
signature Value: ’#BAGG\n’
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Appendix C

Documentation of the Included PosEc
Applications
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C.1 Package applications

C.1.1 Modules

• basic auctions (Section C.2, p. 183)

• position auctions: This is strictly for no-externality position auctions.
(Section C.3, p. 188)

• position auctions externalities (Section C.4, p. 192)

• voting (Section C.5, p. 195)

C.1.2 Variables

Name Description
package Value: None
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C.2 Module applications.basic auctions

C.2.1 Functions

ProjectedBayesianSetting(typeDistros)

typeDistros is an n-length vector of vectors of floats for each of thesis vectors, a
value of x in the ith position denotes that an agent has valuation of i with probability
x

welfareTransform(setting, i, theta N, o, a i)

paymentTransform(setting, i, theta N, o, a i)

C.2.2 Variables

Name Description
SCALE Value: 10

package Value: ’applications’

C.2.3 Class SingleGoodOutcome

object

tuple

SingleGoodOutcome

SingleGoodOutcome(allocation, payments)

Methods

getnewargs (self )

Return self as a plain tuple. Used by copy and pickle.

Overrides: tuple. getnewargs
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new ( cls, allocation, payments)

Create new instance of SingleGoodOutcome(allocation, payments)

Return Value

a new object with type S, a subtype of T

Overrides: object. new

repr (self )

Return a nicely formatted representation string

Overrides: object. repr

Inherited from tuple

add (), contains (), eq (), ge (), getattribute (), getitem (),
getslice (), gt (), hash (), iter (), le (), len (), lt (), mul (),
ne (), rmul (), sizeof (), count(), index()

Inherited from object

delattr (), format (), init (), reduce (), reduce ex (), setattr (), str (),
subclasshook ()

Properties

Name Description
allocation Alias for field number 0
payments Alias for field number 1
Inherited from object

class
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C.2.4 Class ProjectedOutcome

object

tuple

ProjectedOutcome

ProjectedOutcome(i win, my payment)

Methods

getnewargs (self )

Return self as a plain tuple. Used by copy and pickle.

Overrides: tuple. getnewargs

new ( cls, i win, my payment)

Create new instance of ProjectedOutcome(i win, my payment)

Return Value

a new object with type S, a subtype of T

Overrides: object. new

repr (self )

Return a nicely formatted representation string

Overrides: object. repr

Inherited from tuple

add (), contains (), eq (), ge (), getattribute (), getitem (),
getslice (), gt (), hash (), iter (), le (), len (), lt (), mul (),
ne (), rmul (), sizeof (), count(), index()

Inherited from object

delattr (), format (), init (), reduce (), reduce ex (), setattr (), str (),
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subclasshook ()

Properties

Name Description
i win Alias for field number 0
my payment Alias for field number 1
Inherited from object

class

C.2.5 Class FirstPriceAuction

posec.posec core.Mechanism

posec.posec core.ProjectedMechanism

FirstPriceAuction

Known Subclasses: applications.basic auctions.AllPayAuction

Methods

init (self, scale=10)

Overrides: posec.posec core.Mechanism. init

A(self, setting, i, theta i)

Overrides: posec.posec core.Mechanism.A

M(self, setting, i, theta i, a N)

Overrides: posec.posec core.Mechanism.M
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C.2.6 Class AllPayAuction

posec.posec core.Mechanism

posec.posec core.ProjectedMechanism

applications.basic auctions.FirstPriceAuction

AllPayAuction

Methods

M(self, setting, i, theta i, a N)

Overrides: posec.posec core.Mechanism.M

Inherited from applications.basic auctions.FirstPriceAuction(Section C.2.5)

A(), init ()

187



C.3 Module applications.position auctions

This is strictly for no-externality position auctions.

C.3.1 Functions

normalizeSetting(setting, k)

Normalizes values and CTR so that the highest valuation is exactly k and the
highest ctr is exactly 1. Makes to change to quality scores.

makeAlpha(n, m, r)

makeLNAlpha(n, m, r)

EOS(n, m, k, seed=None)

Varian(n, m, k, seed=None)

BHN(n, m, k, seed=None)

BSS(n, m, k, seed=None)

BHN LN(n, m, k, seed=None)

gauss2(rand, rho)

Sample from a 2D Gaussian (with correlation rho)

LNdistro(rand, k)

LP(n, m, k, seed=None)

EOS LN(n, m, k, seed=None)

C.3.2 Variables
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Name Description
LN CORR Value: 0.4
LN params Value: [0.0, 1.0, 0.0, 1.0]

GENERATORS Value: {"BHN-LN": BHN LN, "V-LN":

LP, "EOS-LN": EOS LN, "EOS":

E...

package Value: ’applications’

C.3.3 Class Permutations

Methods

init (self, members, lengths=None)

contains (self, element)

eq (self, other)

C.3.4 Class NoExternalitySetting

posec.posec core.Setting

posec.posec core.ProjectedSetting

NoExternalitySetting

Methods

init (self, valuations, ctrs, qualities)

Overrides: posec.posec core.Setting. init

pi(self, i, o)

Overrides: posec.posec core.ProjectedSetting.pi
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u(self, i, theta, po, a i)

Overrides: posec.posec core.Setting.u

Class Variables

Name Description
Inherited from posec.posec core.ProjectedSetting (Section B.3.8)
Psi
Inherited from posec.posec core.Setting (Section B.3.7)
O, Theta, n

C.3.5 Class NoExternalityPositionAuction

posec.posec core.Mechanism

posec.posec core.ProjectedMechanism

NoExternalityPositionAuction

Methods

init (self, reserve=1, squashing=1.0, reserveType=’UWR’, rounding=None,
tieBreaking=’Uniform’, pricing=’GSP’)

Overrides: posec.posec core.Mechanism. init

q(self, theta i)

reservePPC(self, i, theta i)

makeBid(self, theta i, b, eb)

A(self, setting, i, theta i)

Overrides: posec.posec core.Mechanism.A
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projectedAllocations(self, i, theta i, a N)

Returns a list of positions (all the positions that can happen depending on how
tie-breaking goes) the last element in the list means losing every tie-break

ppc(self, i, theta i, a N)

makeOutcome(self, alloc, price)

M(self, setting, i, theta i, a N)

Overrides: posec.posec core.Mechanism.M

191



C.4 Module applications.position auctions externalities

C.4.1 Functions

cascade UNI(n, m, k, seed=None)

cascade LN(n, m, k, seed=None)

hybrid UNI(n, m, k, seed=None)

hybrid LN(n, m, k, seed=None)

C.4.2 Variables

Name Description
GENERATORS Value: {"cascade UNI": cascade UNI,

"cascase LN": cascade LN, "h...

C.4.3 Class HybridSetting

posec.posec core.Setting

posec.posec core.ProjectedSetting

HybridSetting

Methods

init (self, valuations, ctrs, qualities, continuation probabilities)

Overrides: posec.posec core.Setting. init

ctr(self, i, theta, projectedAllocation)
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u(self, i, theta, po, a i)

Overrides: posec.posec core.Setting.u

Class Variables

Name Description
Inherited from posec.posec core.ProjectedSetting (Section B.3.8)
Psi, pi
Inherited from posec.posec core.Setting (Section B.3.7)
O, Theta, n

C.4.4 Class ExternalityPositionAuction

posec.posec core.Mechanism

posec.posec core.ProjectedMechanism

applications.position auctions.NoExternalityPositionAuction

ExternalityPositionAuction

Methods

makeOutcome(self, alloc, price)

Overrides:
applications.position auctions.NoExternalityPositionAuction.makeOutcome

makeBid(self, theta i, b, eb)

Overrides: applications.position auctions.NoExternalityPositionAuction.makeBid
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projectedAllocations(self, i, theta i, a N)

Returns a list of all the projected allocations (a projected allocation is the list of
externality types of agents ranked above i)

Overrides:
applications.position auctions.NoExternalityPositionAuction.projectedAllocations

Inherited from applications.position auctions.NoExternalityPositionAuction(Section C.3.5)

A(), M(), init (), ppc(), q(), reservePPC()
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C.5 Module applications.voting

C.5.1 Functions

leastFavorites(setting, i, theta i)

returns a list of i’s least favorite outcomes (or an empty list if the computation can’t
be done, due to CTD)

mostFavorites(setting, i, theta i)

returns a list of i’s most favorite outcomes (or an empty list if the computation can’t
be done due to CTD)

isRanking(setting, i, theta i)

Returns outcomes listed from i’s most to least favorite

settingFromRankings(rankings, truthfulness=True)

urn model setting(n, m, a, seed)

uniform Setting(n, m, seed)

impartialAnonymousCulture Setting(n, m, seed)

threeUrn Setting(n, m, seed)

jMajority Setting(n, m, j, seed)

twoMajority Setting(n, m, seed)

threeMajority Setting(n, m, seed)

isSinglePeaked(ranking)

singlePeaked Setting(n, m, seed)

uniformXY Setting(n, m, seed)
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C.5.2 Variables

Name Description
MECHANISM CLASSES Value: [Plurality, Approval,

kApproval, Veto, Borda,

InstantRunoff]

package Value: ’applications’

C.5.3 Class AbstractVotingMechanism

posec.posec core.Mechanism

AbstractVotingMechanism

Known Subclasses: applications.voting.Approval, applications.voting.Borda, applica-
tions.voting.InstantRunoff, applications.voting.Plurality

Provides a bunch of support features for real voting mechanisms

Methods

init (self, randomTieBreak=True, removeDominatedStrategies=False,
allowAbstain=False)

Overrides: posec.posec core.Mechanism. init

A(self, setting, i, theta i)

returns self.actions(setting, i, theta i) after (optionally) removing dominated
strategies and adding an abstain action

Allows RDS, etc to be re-used

Overrides: posec.posec core.Mechanism.A

outcome(self, scores)

Subroutine for M, identifies the maximal-score candidates and breaks ties
appropriately
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Class Variables

Name Description
randomTieBreak Value: True
allowAbstain Value: False
removeDominatedStrategies Value: False
Inherited from posec.posec core.Mechanism (Section B.3.11)
M

C.5.4 Class VoteTuple

object

tuple

VoteTuple

Like a normal tuple, but it can also mark an action as truthful

Methods

repr (self )

repr(x)

Overrides: object. repr extit(inherited documentation)

Inherited from tuple

add (), contains (), eq (), ge (), getattribute (), getitem (),
getnewargs (), getslice (), gt (), hash (), iter (), le (), len (), lt (),
mul (), ne (), new (), rmul (), sizeof (), count(), index()

Inherited from object

delattr (), format (), init (), reduce (), reduce ex (), setattr (), str (),
subclasshook ()

197



Properties

Name Description
Inherited from object

class

Class Variables

Name Description
truthful Value: False

C.5.5 Class Plurality

posec.posec core.Mechanism

applications.voting.AbstractVotingMechanism

Plurality

Methods

actions(self, setting, i, theta i)

truthful(self, setting, i, theta i, a)

dominated(self, setting, i, theta i, a)

M(self, setting, a N)

Overrides: posec.posec core.Mechanism.M

Inherited from applications.voting.AbstractVotingMechanism(Section C.5.3)

A(), init (), outcome()

Class Variables
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Name Description
Inherited from applications.voting.AbstractVotingMechanism (Section C.5.3)
allowAbstain, randomTieBreak, removeDominatedStrategies

C.5.6 Class Approval

posec.posec core.Mechanism

applications.voting.AbstractVotingMechanism

Approval

Known Subclasses: applications.voting.Veto, applications.voting.kApproval

Methods

actions(self, setting, i, theta i)

truthful(self, setting, i, theta i, a)

dominated(self, setting, i, theta i, a)

M(self, setting, a N)

Overrides: posec.posec core.Mechanism.M

Inherited from applications.voting.AbstractVotingMechanism(Section C.5.3)

A(), init (), outcome()

Class Variables

Name Description
Inherited from applications.voting.AbstractVotingMechanism (Section C.5.3)
allowAbstain, randomTieBreak, removeDominatedStrategies
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C.5.7 Class kApproval

posec.posec core.Mechanism

applications.voting.AbstractVotingMechanism

applications.voting.Approval

kApproval

Methods

init (self, k, randomTieBreak=True, removeDominatedStrategies=False,
allowAbstain=False)

Overrides: posec.posec core.Mechanism. init

actions(self, setting, i, theta i)

Overrides: applications.voting.Approval.actions

truthful(self, setting, i, theta i, a)

Overrides: applications.voting.Approval.truthful

dominated(self, setting, i, theta i, a)

Overrides: applications.voting.Approval.dominated

Inherited from applications.voting.Approval(Section C.5.6)

M()

Inherited from applications.voting.AbstractVotingMechanism(Section C.5.3)

A(), outcome()

Class Variables
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Name Description
Inherited from applications.voting.AbstractVotingMechanism (Section C.5.3)
allowAbstain, randomTieBreak, removeDominatedStrategies

C.5.8 Class Veto

posec.posec core.Mechanism

applications.voting.AbstractVotingMechanism

applications.voting.Approval

Veto

Methods

actions(self, setting, i, theta i)

Overrides: applications.voting.Approval.actions

truthful(self, setting, i, theta i, a)

Overrides: applications.voting.Approval.truthful

dominated(self, setting, i, theta i, a)

Overrides: applications.voting.Approval.dominated

Inherited from applications.voting.Approval(Section C.5.6)

M()

Inherited from applications.voting.AbstractVotingMechanism(Section C.5.3)

A(), init (), outcome()

Class Variables
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Name Description
Inherited from applications.voting.AbstractVotingMechanism (Section C.5.3)
allowAbstain, randomTieBreak, removeDominatedStrategies

C.5.9 Class Borda

posec.posec core.Mechanism

applications.voting.AbstractVotingMechanism

Borda

Methods

actions(self, setting, i, theta i)

truthful(self, setting, i, theta i, a)

dominated(self, setting, i, theta i, a)

M(self, setting, a N)

Overrides: posec.posec core.Mechanism.M

Inherited from applications.voting.AbstractVotingMechanism(Section C.5.3)

A(), init (), outcome()

Class Variables

Name Description
Inherited from applications.voting.AbstractVotingMechanism (Section C.5.3)
allowAbstain, randomTieBreak, removeDominatedStrategies
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C.5.10 Class InstantRunoff

posec.posec core.Mechanism

applications.voting.AbstractVotingMechanism

InstantRunoff

Methods

init (self, allowAbstain=False)

FIXME: So far, ties must be broken alphabetically

Overrides: posec.posec core.Mechanism. init

actions(self, setting, i, theta i)

truthful(self, setting, i, theta i, a)

dominated(self, setting, i, theta i, a)

Dominance checking is not implemented by InstantRunoff

M(self, setting, a N)

Overrides: posec.posec core.Mechanism.M

Inherited from applications.voting.AbstractVotingMechanism(Section C.5.3)

A(), outcome()

Class Variables

Name Description
Inherited from applications.voting.AbstractVotingMechanism (Section C.5.3)
allowAbstain, randomTieBreak, removeDominatedStrategies
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