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Abstract

To investigate the possibility that an intrinsic form of gravitational decoher-
ence can be theoretically demonstrated within canonical quantum gravity,
we develop a model of a self-gravitating interferometer, and analyze the
WKB regime of its reduced phase space quantization. We search for evi-
dence in the resulting interference pattern that general relativity necessarily
places limits on coherence, due to the inherent ambiguity associated with
forming superpositions of geometries. We construct the “beam” of the in-
terferometer out of WKB states for an infinitesimally thin shell of matter,
and work in spherical symmetry to eliminate the occurrence of gravitational
waves. For internal consistency, we encode information about the beam op-
tics within the dynamics of the shell itself, by arranging an ideal fluid on the
surface of the shell with an equation of state that enforces beam-splitting
and reflections.

The interferometric analysis is performed for single-mode inputs, and co-
herence is shown to be fully present regardless of gravitational self-interaction.
Next we explore the role coordinate choices play in our description of the in-
terferometer, by considering a family of generalized coordinate systems and
their corresponding quantizations. Included in this family are the Painlevé-
Gullstrand coordinates, which are related to a network of infalling observers
that are asymptotically at rest, and the Eddington-Finkelstein coordinates,
which are related to a network of infalling observers that travel at the speed
of light. We then introduce another model, obtained by adding to the shell a
harmonic oscillator as an internal degree of freedom. The internal oscillator
evolves with respect to the local proper time of the shell, and therefore serves
as a clock that ticks differently depending on the shell’s position and mo-
mentum. If we focus only on the external dynamics, we must trace out the
clock degree of freedom, and this results in a form of intrinsic decoherence
that shares some features with a recently-proposed “universal” decoherence
mechanism attributed to gravitational time dilation. We discuss some vari-
ations of this proposal, and point out a way to bootstrap the gravitational
contribution to the time dilation decoherence with self-gravitation. We in-
terpret this as a fundamentally gravitational intrinsic decoherence effect.
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Chapter 1

Introduction

1.1 Preliminary Considerations

Ever since the discovery by Hawking in the early 1970s that black holes
emit thermal radiation due to quantum effects [2], it has been a major
goal in theoretical physics to understand the connections between general
relativity, quantum theory, and thermodynamics. The four laws of black hole
mechanics [3] themselves closely resemble thermodynamic laws, with horizon
area playing the role of an entropy (as pointed out by Bekenstein [4]), and
Hawking’s discovery of black hole evaporation indicated that this was more
than just a resemblance: a black hole was shown to have a temperature
equal to 1/2π times its surface gravity, and an entropy of 1/4 times the area
of its event horizon (in natural units, c = G = ~ = 1).

There still remain many open questions about the role of entropy in
gravitational systems, as well as possible quantum-mechanical origins. One
might hope that a complete theory of quantum gravity would answer such
questions, but until such a theory is formulated we have to settle for partial
pictures coming from approximation schemes. Black hole radiation, for in-
stance, was demonstrated within the framework of quantum field theory in
curved spacetime, which approximates the spacetime as being fixed and the
quantum field as being a negligible perturbation that does not significantly
affect the curvature of the spacetime.

One of the major goals of this thesis is to determine the consequences
of eliminating the assumption of a fixed background spacetime on the ap-
plication of quantum theory to gravitational systems. It is not possible to
accomplish this in general, so we will find an appropriate (idealized) arena
for our exploration, and work within a particular approximation scheme in
order to formulate tractable problems. Though it may be incorrect to simply
“quantize” general relativity, as the Einstein equation could emerge from an
underlying theory as an equation of state [5], for the purposes of this thesis
we will consider the spacetime metric a fundamental degree of freedom, and
work within canonical quantum gravity.

Apart from the specific issues raised by quantum field theory in curved
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1.2. The Universe of this Nutshell

spacetimes, it is in general becoming more and more important to under-
stand systems for which both quantum and general relativistic effects are
important (see [6]-[8] for some recent experimental examples, though an ex-
haustive discussion of such systems is beyond the scope of this thesis). It has
also become increasingly clear that our current conceptual understanding of
quantum gravitational systems is severely lacking. This lack of understand-
ing inspires us to study such systems, and the clash between quantum theory
(QT) and general relativity (GR), in hope that we may find guidance to-
wards a resolution of the many technical and conceptual problems one faces
when attempting to unify these two pillars of physics.

1.2 The Universe of this Nutshell

The specific purpose of this work is to explore an ambiguity that results
from taking both QT and GR seriously: quantum superpositions of different
matter states are associated with different spacetime geometries, and hence
different definitions of time evolution; how, then, can we use a single time-
evolution operator to evolve superpositions of distinct spacetimes? Since
the 1980s, Roger Penrose has been arguing that this ambiguity results in an
instability, and that in turn this instability leads to a type of “decay” that
reduces the system to a state with a single well-defined geometry [9].

Let us sketch the line of reasoning Penrose uses to reach this conclusion
[10]. Suppose we have two quantum states, |ψ〉 and |χ〉, which represent
two static mass distributions, each with the same energy E but localized in
different places. Neglecting gravity, both of these states will be “stationary,”
meaning that each will be an eigenfunction of the appropriate Hamiltonian
operator H. Accordingly, we will have H|ψ〉 = E|ψ〉 and H|χ〉 = E|χ〉, and
by the superposition principle we will also have

H (α|ψ〉+ β|χ〉) = E (α|ψ〉+ β|χ〉) , (1.1)

for any (complex) α, β. This tells us that the arbitrary superposition α|ψ〉+
β|χ〉 is also stationary, as it is an eigenstate of the Hamiltonian H with
energy E.

In GR, gravity is a consequence of the manner in which a distribution of
mass/energy curves space and time. Thus, to incorporate gravity into our
description, we associate each mass distribution with a spacetime geometry,
and therefore each of the states |ψ〉 and |χ〉 a geometry state (denoted by
|Gψ〉 and |Gχ〉, respectively). The superposed state then takes the form

α|ψ〉|Gψ〉+ β|χ〉|Gχ〉. (1.2)

2



1.2. The Universe of this Nutshell

Is this superposition “stationary”? One should keep in mind that in GR,
a spacetime is considered stationary if there exists a timelike Killing vector
T , which generates time-translations. Penrose then regards this T as the
differential operator ∂/∂t for the spacetime, and interprets quantum states
that are eigenstates of T to be stationary states, since they have well-defined
energies. Explicitly, |Ψ〉 is considered stationary if

T |Ψ〉 = −iEΨ|Ψ〉, (1.3)

for some energy EΨ.
One then faces a problem, when trying to understand the superposed

state (1.2): there is no longer a specific timelike Killing vector, since there
is no longer a specific spacetime. GR tells us that we cannot in general
compare two spacetimes unambiguously through point-wise identification,
so we therefore do not have an unambiguous differential operator with which
to define time-translation. This also prevents us from defining “stationary
states” as the eigenvectors of such an operator.

If the states |ψ〉 and |χ〉 are very similar, then we can identify points
in the corresponding spacetimes in an approximate way. In the Newtonian
limit, for instance, we can identify the time coordinate t of the two space-
times, but even then we can not identify individual points of the spatial
geometries. In other words, there is a correspondence between the spatial
slices of one spacetime with the spatial slices of the other, but not between
the points of a spatial slice of one spacetime with the points of a spatial slice
of the other. This ambiguity in point-wise identification of spatial slices di-
rectly implies an essential ill-definedness in the notion of a time-translation,
since although the time coordinates of the two spacetimes can be identified,
it is the structure of the remaining (spatial) coordinates that defines the
time-translation operator.

Penrose then suggests that we can quantify the difference between two
(similar) spacetimes with the scalar quantity

(fψ − fχ)2 = (fψ − fχ) · (fψ − fχ) , (1.4)

with fψ and fχ being the acceleration 3-vectors of geodesic (free-fall) mo-
tions of the associated spacetimes. From a Newtonian perspective, fψ and fχ
represent the Newtonian gravitational force-per-unit-test-mass (also called
simply the gravitational field), at a particular point, in each space-time [10].

The total measure of incompatibility (or “uncertainty,” as Penrose calls
it) can be obtained by integrating (1.4) over a spatial slice. We will call the

3



1.2. The Universe of this Nutshell

resulting quantity ∆G. For concreteness, Penrose uses a flat spatial metric
for the integration, in which case the spatial integral of (1.4) yields

∆G = −4π

∫ ∫
d3x d3y

(ρψ(x)− ρχ(x)) (ρψ(y)− ρχ(y))

|x− y|
, (1.5)

with the mass density ρ connected to the gravitational field f via the New-
tonian gravitational equation (Gauss’s law) ∇·f = −4πρ. The quantity ∆G

is effectively the gravitational self-energy of the difference between the two
mass distributions. Penrose thinks of ∆G as an energy uncertainty associ-
ated with the superposition of geometries, and hypothesizes that this energy
uncertainty makes the superposition unstable. In analogy with a radioactive
nucleus, or any other unstable particle, we can use the time-energy uncer-
tainty principle to estimate the lifetime of the superposition, ∆t ∼ 1/∆G,
after which there is a significant probability that the superposition will “de-
cay” into one geometry or the other. A consequence of this lifetime estimate
is that as the geometries associated with each element of the superposition
become arbitrarily different, the superposition becomes arbitrarily unstable,
and decays after an arbitrarily short time.

It is not clear from Penrose’s work, however, whether some sort of “col-
lapse” occurs, or whether there is simply a form of “intrinsic” decoher-
ence that removes phase correlations between states associated with suf-
ficiently different geometries. In this thesis, we consider the latter, and
discuss whether or not a direct application of both QT and GR is enough
to demonstrate the existence of this new type of “intrinsic” decoherence.

By “intrinsic” decoherence, we mean a decoherence effect that arises
solely out of the internal behaviour of an isolated system, and not due to
its interaction with the external world. For example, if we use a buckyball
in a double-slit experiment, and prepare one of the slits to excite internal
degrees of freedom of the buckyball, then the internal degrees of freedom
carry “which-way” information and decohere the center-of-mass degree of
freedom [11]. More generally, if a system carries an internal clock and is
in a superposition of states corresponding to two paths that have different
proper times associated with them, then again the internal clock read at the
interference screen could provide which-way information, and decohere the
center-of-mass [12]-[14].

Whereas the decoherence produced by entangling internal degrees of
freedom to a center-of-mass coordinate could be considered “third-party”
decoherence [15], what we are primarily concerned with here is whether or
not there is something about the quantum effect of a system’s gravity on
the system itself that could lead to such intrinsic decoherence. Penrose’s

4



1.2. The Universe of this Nutshell

intuition says yes: the path a mass takes alters the associated spacetime
and especially the flow of time. Since the quantum phase is determined by
the flow of time, the phase evolution is also altered by which path the mass
takes. When one tries to interfere the two paths, these “random” phases
(because it is impossible to uniquely map one spacetime onto another) cause
decoherence. It is this gravitational intrinsic decoherence that we explore
here.

There are several proposals in the literature for a mechanism to describe
intrinsic forms of gravitational decoherence [16]-[18], and other proposals
for intrinsic decoherence mechanisms that are merely inspired by tension
between QT and GR [19]-[21]. Many of these approaches incorporate alter-
ations to known physics, such as adding stochastic [21] or nonlinear [22]-[24]
terms to the Schrödinger equation, in order to achieve the desired decoher-
ence effect. Such alterations are often ad hoc, and have historically faced
difficulties maintaining consistency with experimental constraints; nonlinear
additions to the Schrödinger equation, for instance, have been shown under
a wide range of conditions to lead to either superluminal signal propagation
or to communication between different branches of the wavefunction [25].
While it may be possible to obtain a sensible theory that allows communi-
cation between different wavefunction branches [26], it remains to be seen
whether a consistent interpretation results from this alteration. Instead, we
take Penrose’s initial arguments at face value, and entertain the possibility
that a consistent combination of QT and GR can explain (gravitational)
intrinsic decoherence without any assumptions about new physics.

Now, it is well-known that gravitational waves can carry away informa-
tion from a system in a manner analogous to standard decoherence [27],
[28]. Penrose’s suggestion is independent of such standard gravitational-
wave-induced decoherence, so to distinguish between the two we will work
in spherical symmetry. The restriction to spherical symmetry is not only
a technical simplification, but avoids the occurrence of gravitational waves
altogether.

Because this exploration requires both QT and GR, we will naturally be
faced with some serious difficulties, which we will have to either overcome,
sidestep, or ignore [29]. For instance, we will avoid issues with the factor-
ordering ambiguity by working in the WKB1 regime (as in [30]), and we
will avoid issues with perturbative non-renormalizability by working in min-
isuperspace (i.e. enforcing spherical symmetry) and employing a reduced

1By “WKB,” we mean “Wentzel-Kramers-Brillouin.”
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1.2. The Universe of this Nutshell

phase space approximation (as in [31])2. It is still unclear what the exact
connection is between the reduced phase space approximation, obtained by
solving the GR constraints classically and then quantizing the reduced the-
ory, and the standard Dirac quantization, obtained by quantizing the theory
in the full kinematical Hilbert space and then enforcing the constraints at
the quantum level. Following Hawking’s path integral approach to quantum
gravity [32], Halliwell has made some progress elucidating the connection
between reduced phase space minisuperspace quantization and the standard
Dirac approach in special cases [33], but in general the connection is not well
understood. Nonetheless, the limit we will work in has a rich structure, and
in this thesis we will explore whether or not it has a rich enough structure
to contain evidence of intrinsic decoherence caused by gravity.

Since we aim to test whether or not gravity places a fundamental limit on
the coherence of quantum systems, we develop a model of a self-gravitating
interferometer. Interferometers are ideal for studying coherence, because
interference is a key feature of coherent systems. We describe how the same
interferometer would behave in the absence of gravity, and then we inves-
tigate the consequences of general relativistic corrections to this behaviour.
In an interferometric setting, the intrinsic decoherence we seek to under-
stand manifests itself as a phase-scrambling along different interferometer
arms (for a general discussion see [34]), which in this case is attributed to
gravity. According to Penrose, we should expect that the (interferometric)
coherence should decay as the arm-length increases indefinitely, since this
would correspond to a superposition of arbitrarily different spacetimes. We
focus on the possibility that no collapse occurs, so we will simply analyze
the interference pattern and search for departures from non-gravitational
behaviour that indicate coherence loss. Conceptually, we are testing the
idea that when one forms superpositions of geometries in the interferome-
ter, the nature of time in GR leads at the quantum level to an imprint of
which-way information, which is accompanied by a loss of fringe visibility
[35].

Still, an objection may be raised that if one describes the interferome-
ter as a closed quantum system without tracing out over any physical de-
grees of freedom, then QT implies that coherence must prevail, regardless
of whether the system is general relativistic. This objection was raised by
Banks, Susskind, and Peskin [36] in the context of black hole evaporation,

2As we will see in Chapter 2, the combination of the minisuperspace restriction and the
reduced phase space approximation reduce the number of (continuous) degrees of freedom
from infinity to one, thus sidestepping any renormalization issues.

6



1.2. The Universe of this Nutshell

but it was later pointed out not only that the arguments in [36] were incon-
clusive, and that we have reason to support the possibility that pure states
can effectively evolve into mixed states in black hole systems [37].

The more radical idea entertained here is that one might find pure states
evolving to mixed states in gravitational systems without horizons. In gen-
eral, this “dissipationless” type of decoherence has been explored to some
degree [38]-[42], but even the fact that it is possible has not been widely
appreciated. Nonetheless, one can observe that the thermal character of ac-
celeration radiation is approximately present even without the involvement
of Rindler horizons (for recent analyses see [43]-[46]), and by the equivalence
principle one might expect to find a gravitational analog of this thermal be-
haviour. This means, then, that one might expect that gravity generates
an intrinsic form of entropy, even in systems without the horizon structure
that one usually associates with entropy in black hole thermodynamics.

With this in mind, we will construct our interferometer, theoretically,
out of a self-gravitating, spherically symmetric, infinitesimally thin shell of
matter. The interferometer “optics” are encoded internally, by adding tan-
gential pressure to the fluid that lives on the surface of the shell. The result-
ing model is reminiscent of an idea Einstein first proposed in 1939 [47], but
in our case, the tangential pressure satisfies an equation of state that pro-
duces a beam-splitter and perfect reflectors. The fluid is ideal, in the sense
that one obtains a perfect-fluid stress-energy tensor, if one projects the full
four-dimensional spacetime stress-energy tensor onto the three-dimensional
history of the shell. This approach ensures that at the classical level, the
interferometric setup is manifestly invariant under coordinate transforma-
tions.

The configuration we construct resembles that of a Michelson interfer-
ometer in optics. Thus, we will send initial states at a beam-splitter, at
which point the transmitted and reflected components travel in opposite di-
rections until they encounter “mirrors.” The components will then reflect,
travel back towards each other, and encounter the splitter once more. There
will be two possible outputs, corresponding to final transmission and final
reflection, which are comprised of different combinations of the initially split
wave components.

What we mean by (interferometric) coherence, in this system, is the
sustained phase relationships between different wave components that can
allow us, for instance, to completely cancel either of the final outputs. In
other words, if we are unable to obtain complete constructive or destructive
interference in our interferometer (as predicted by Penrose), we can conclude
that coherence is being limited in the system. The goal of our current
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1.3. Outline

investigation is to determine whether or not general relativistic effects could
demonstrably produce such a limitation.

1.3 Outline

Our investigation begins in the following chapter (Chapter 2) with the con-
struction of our self-gravitating interferometer model, followed by an anal-
ysis of the resulting interference for single-mode input states, in the WKB
regime. The stationary nature of the probability distributions for the single-
mode states makes the notion of a probability current very useful, and we
will exploit this usefulness to study the interference patterns in our system.

Chapter 2 makes use of a specific coordinate choice during the process
of phase space reduction. The reduced phase space is classically equiva-
lent to the full phase space, modulo coordinate transformations. Does this
property hold at the quantum level? Chapter 3 generalizes the original co-
ordinate choice to a family of similar coordinate choices, at which point we
can determine which aspects of our system (if any) depend on the coordi-
nate choice. Along the way, we will encounter several serious obstacles that
obscure the answers to these questions, and discuss what we can learn from
the difficulties that arise.

We then turn our attention to a more complicated model, presented in
Chapter 4, obtained by adding an internal degree of freedom to the shell.
The internal degree of freedom is chosen to be a harmonic oscillator that
evolves with respect to the proper time of the shell. As such, the oscillator
behaves as a local clock, and evolves differently depending on the shell’s
(external) motion due to time dilation. If one is only interested in making
a measurement of the external properties of the shell, it is necessary to take
the partial trace over the clock degree of freedom. We show that even in the
(gravity-free) limit of flat spacetime, this leads to the type of intrinsic deco-
herence previously referred to as “third-party” decoherence [15], due to the
acceleration produced by the tangential pressure on the surface of our shell.
Though in this limit the system exhibits “third-party” decoherence, it does
not result from a fundamental limit to coherence brought about by general
relativity, and is thus not the type of intrinsic decoherence studied in the ear-
lier chapters. However, by incorporating gravitational self-interaction, we
can demonstrate that the system exhibits “third-party” decoherence even
when the tangential pressure vanishes, because of the gravitational influ-
ence of the system on itself. We interpret this “third-party decoherence
without the third party” as a fundamentally gravitational intrinsic decoher-
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1.3. Outline

ence effect.
The thesis then finishes in Chapter 5 with a reflection on the results of

the previous chapters: the implications, remaining questions, and overall
lessons that can be learned from this work.

9



Chapter 2

Self-gravitating
Interferometry

2.1 Introduction

This chapter introduces the model we use to construct our self-gravitating
interferometer. To remind the reader, this model has spherical symmetry,
to avoid gravitational wave decoherence, and involves an infinitesimally thin
shell of matter, so that we only have a single (continuous) physical degree
of freedom to work with. The physical degree of freedom in this case is the
“areal” radial coordinate of the shell, defined as the square root of the shell
area divided by 4π. This “areal” radius is closely connected with the shell’s
energy density.

In our construction of the interferometer, we will embed “mirrors” and
a beam-splitter into the dynamics of the shell itself, to avoid any artificial
external influences on the system. This can be accomplished by adding tan-
gential pressure to the surface of the shell, with an equation of state that
has the necessary features to describe reflections and beam-splitter. Thus,
the “mirrors” and beam-splitter are designed to be triggered by internal fea-
tures of the shell, like energy density, rather than being located at particular
coordinate points; this removes all possible coordinate dependence from the
motion of the shell and the locations of the interferometer’s optical compo-
nents. Since we are using an “areal” radial coordinate to describe the shell
position, the correspondence between the shell area and the energy density
fixes the optical components at specific radial coordinate values.

The reduced Hamiltonian treatment of a spherically symmetric system
was originally done by Berger, Chitre, Moncrief and Nutku [48] and was
corrected by Unruh [49], who also applied the technique to a spherical shell
[private communication]. This is similar to Kraus and Wilczek [50]-[52] who
used it to quantize a pressureless spherical shell. The coordinate choices they
made (the Painlevé-Gullstrand form) simplified the Hamiltonian equations
significantly, and left the Hamiltonian that of a single degree of freedom (the
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2.2. Theory of Self-gravitating Spherical Shells

position of the shell). This approach also works for a shell with tangential
pressure, which is what we will use in this thesis.

Much of this chapter will focus on the construction of a general relativis-
tic action principle for our model, followed by the Hamiltonian formulation
of the system, and subsequent phase space reduction. Once in its reduced
form, the system is simple enough to be analyzed as an interferometer. We
will first describe this interferometer in the flat spacetime limit, and point
out how coherence manifests itself in the interference pattern. Finally, we
will calculate general relativistic corrections to the flat spacetime behaviour,
to search for evidence of a fundamental limitation on the system caused by
gravity.

2.2 Theory of Self-gravitating Spherical Shells

2.2.1 Action Principle

The perfect-fluid shell model we now develop is a generalization of the dust
shell model used by Kraus and Wilczek in their attempt to calculate self-
interaction corrections to standard Hawking radiation [50]-[52]. Generalizing
the Kraus and Wilczek approach to include the required pressure effects
is not without complications, even in the classical theory. In contrast to
the approach to thin-shells pioneered by Israel that involves stitching two
spacetimes together along the shell’s history [53], the starting point for our
theoretical considerations is an action that is composed of a gravitational
part given by the Einstein-Hilbert action, plus some action for the shell that
we can initially leave unspecified, written (in natural units) as

I =
1

16π

∫
d4x

√
−g(4) R(4) + Ishell. (2.1)

The superscripts on the metric determinant g and the Ricci scalar R indi-
cate that these quantities are constructed from the full (3 + 1)-dimensional
spacetime metric components {gµν}, with µ, ν ∈ {0, 1, 2, 3}.

We will express the metric in Arnowitt-Deser-Misner (ADM) form [54],
which in spherical symmetry is given by

gµνdx
µdxν = −N2dt2 + L2 (dr +N rdt)2 +R2dΩ2, (2.2)

where N is the lapse function, N r is the radial component of the shift vector,
and L2 and R2 are the only nontrivial components of the spatial metric.

The angular variables are taken to be the polar angle θ and the azimuthal
angle φ, such that the angular metric takes the form dΩ2 = dθ2 + sin2 θdφ2.
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2.2. Theory of Self-gravitating Spherical Shells

The shell action studied by Kraus and Wilczek takes the form

Idust = −m
∫
dλ

√
−gµν

dxµ

dλ

dxν

dλ
, (2.3)

with m being the rest-mass of the shell and all metric quantities evaluated on
the shell history. The arbitrary parameter λ can be chosen to coincide with
the coordinate time t, which simplifies the integrand for the shell action.

To describe a more general fluid than dust, we need a more general
action. There are well-established variational principles for regular perfect
fluids in GR [55], but the authors are unaware of any satisfactory variational
principles for the perfect fluid shells we wish to describe. The stress-energy
tensor for a perfect fluid with density σ and pressure p is given by

Sab = σuaub + p(γab + uaub), (2.4)

where ua are the components of the fluid proper velocity in coordinates that
cover the fluid history. For our purposes, the geometry along the fluid history
of our shell is described by an induced metric γabdy

adyb = −dτ2 + R̂2dΩ2,
with τ being the shell proper time. This induced metric obeys the relation

γab = eµae
ν
bgµν , (2.5)

with the introduction of projectors onto the shell history given by

eµa =
∂xµ

∂ya
= uµδτa + δµΩδ

Ω
a . (2.6)

Here and elsewhere, the repeated Ω denotes a sum over angular coordinates.
These projectors allow us to express the full spacetime stress-energy tensor
of our perfect fluid shell as

Tµν = Sabeµae
ν
b δ(χ), (2.7)

where we have introduced a Gaussian normal coordinate χ in the direction
of the outward-pointing space-like unit normal ξ, with the shell location
defined by χ = 0.

We want to obtain an action, expressed in terms of the full spacetime
quantities, that yields the tensor (2.4) in the intrinsic coordinates of the shell
history. To convert derivative expressions from the intrinsic coordinates to
the ADM coordinates given in equation (4.3), we can write infinitesimal
changes in r and t as

dt = utdτ + ξtdχ, dr = urdτ + ξrdχ. (2.8)
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2.2. Theory of Self-gravitating Spherical Shells

Taking advantage of the fact that ξ satisfies uµξµ = 0 and ξµξµ = 1, and
suppressing the (vanishing) angular components for brevity, the outward
normal can be written as

ξα =
√
g2
tr − gttgrr

(
−ur, ut

)
= N2L2

(
−ur, ut

)
. (2.9)

For radial integration within an ADM slice, one has dt = 0, and in this
case we can solve for dr

dχ in equation (2.8) to obtain [56]

dr

dχ
= ξr − ur

ut
ξt. (2.10)

Also, since uµ = (dt/dτ)(1, Ẋ, 0, 0), the 4-velocity normalization uµuµ = −1
(evaluated on the shell) implies(

dt

dτ

)2

= (ut)2 =
(
N2 − L2(N r + Ẋ)2

)−1
. (2.11)

This allows conversion of the delta function appearing in our expression
(2.7) for the full spacetime stress-energy tensor:

δ(χ) =
dr

dχ
δ(r −X) =

√
N2 − L2(N r + Ẋ)2

NL
δ(r −X). (2.12)

Using equation (2.7), we find that our stress-energy tensor takes the form

Tµν =
(
σuµuν + pgΩΩδµΩδ

ν
Ω

)
δ(χ), (2.13)

where the repeated Ω indices denote a single sum over angular coordinates.
In expression (2.13), the “tangential” nature of the pressure is manifest, since
the projection of this tensor onto the space-like normal ξ clearly vanishes.

The action we seek, then, yields (2.13) upon taking variations with re-
spect to the metric, in accordance with the definition

δI =
1

2

∫
d4x

√
−4gTµνδgµν . (2.14)

We are especially interested in the contribution from the tangential pressure,
which takes the form

δIp = 8π

∫
dt dr NLδ (χ) pRδR. (2.15)
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2.2. Theory of Self-gravitating Spherical Shells

By inspection, we find that the action

Ishell = −
∫
dλ

√
−gµν

dxµ

dλ

dxν

dλ
M(R), (2.16)

with all quantities evaluated on the shell history, yields the appropriate
stress-energy tensor: the relevant variational derivative of (4.1) with respect
to the metric is

δIshell,p = −
∫
dt dr NLδ (χ)M ′(R)δR, (2.17)

from which it follows that one has the pressure identification p = −M ′(R)/8πR,
along with the usual density identification σ = M(R)/4πR2. We will use
the freedom in choosing the function M(R) to parametrize an equation of
state that relates the density and pressure of our fluid. It should be noted
that R is not a coordinate, but a metric component that serves as a measure
of the shell’s internal energy.

The action (4.1) is reparametrization-invariant, as well as invariant under
general (spherically symmetric) coordinate transformations, even with the
inclusion of an R-dependent ‘mass’. As mentioned above, this is because R,
when evaluated on the shell, is nothing more than the reduced area of the
shell, and this area is independent of coordinate choices.

2.2.2 Hamiltonianization

Following the canonical formalism [54], one can perform a Legendre transfor-
mationH = PẊ−L, for the shell variables. Here L is the Lagrangian defined
by (4.1), subject to the condition that the shell history is parametrized by
t. One then finds

L = −
∫
dr

√
N2 − L2(N r + Ẋ)2M(R)δ(r −X), (2.18)

and it follows that the momentum conjugate to the shell position X for the
unreduced problem is given by

P =
∂L
∂Ẋ

=

∫
dr

L2(N r + Ẋ)M(R)√
N2 − L2(N r + Ẋ)2

δ(r −X). (2.19)

Explicitly, we can determine the Hamiltonian H to be

H = PẊ − L =

∫
dr (NHs

0 +N rHs
r ), (2.20)
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2.2. Theory of Self-gravitating Spherical Shells

with the definitions

Hs
0 =

√
L−2P 2 +M(R)2δ(r −X),

Hs
r = −Pδ(r −X). (2.21)

Similarly, we can Hamiltonianize the gravitational action, and express
the total action as

I =

∫
dt PẊ +

∫
dt dr

(
πRṘ+ πLL̇−NH0 −N rHr

)
, (2.22)

for H0 = Hs
0 +HG

0 and Hr = Hs
r +HG

r , such that

HG
0 =

Lπ2
L

2R2
− πLπR

R
+

(
RR′

L

)′
− (R′)2

2L
− L

2
,

HG
r = R′πR − Lπ′L. (2.23)

2.2.3 Equations of Motion

Once in Hamiltonian form, the equations of motion for the system are ob-
tained by varying the action with respect to the variables N , N r, πL, πR,
L, and R. Explicitly, these variations (respectively) lead to

H0 = 0,

Hr = 0,

L̇ =
N

R

(
LπL
R
− πR

)
+ (N rL)′ ,

Ṙ = −NπL
R

+N rR′, (2.24)

π̇L =
N

2

(
1−

π2
L

R2
− (R′)2

L2

)
− N ′RR′

L2

+N rπ′L +
NP 2δ(r −X)

L2
√
P 2 + L2M2

,

π̇R =
NπL
R2

(
LπL
R
− πR

)
−N

(
R′

L

)′
−
(
N ′R

L

)′
+ (N rπR)′ −

NM dM
dR δ(r −X)

√
L−2P 2 +M2

.

The first two equations are the Hamiltonian and momentum constraints,
whereas the next four are the dynamical equations of motion for the gravi-
tational variables.

15



2.2. Theory of Self-gravitating Spherical Shells

For the shell variables, the equation of motion for X can be easily ob-
tained by varying the action with respect to P , or simply by solving equation
(2.19) for Ẋ. The result is

Ẋ =

∫
dr

(
NP

L
√
P 2 + L2M2

−N r

)
δ(r −X)

=
N̂P

L̂
√
P 2 + L̂2M̂2

− N̂ r, (2.25)

with hats indicating that one evaluates the quantities at r = X.
The equation of motion for P is more subtle, since a standard variation

of the action with respect to X is formally ambiguous, as noted in [57].
The ambiguity arises because one must evaluate quantities on the shell (L′,
(N r)′, N ′ and R′) that are (possibly) discontinuous at r = X:

Ṗ =
(
N rP −N

√
L−2P 2 +M2

)′
shell

. (2.26)

However, it has been demonstrated in [58] that this ambiguity can be
removed by requiring consistency with the constraints and the gravitational
equations of motion (2.24), at least for the case of a dust shell. The ar-
gument described in [58] shows that one must average the discontinuous
quantities when interpreting the equation of motion for the shell momen-
tum, and similar reasoning leads to the same conclusion for the arbitrary
perfect fluid shell described here. One then has the equation of motion

Ṗ = ¯(N r)′P − N̄ ′

L̂

√
P 2 + L̂2M̂2 +

N̂
(
P 2L̄′ − L̂3M̂M̄ ′

)
L̂2
√
P 2 + L̂2M̂2

, (2.27)

with the average taken over (N r)′ in the first term of the right-hand-side,

and the last term containing the factor M̄ ′ defined as M̄ ′ = ˆdM
dR R̄

′.
Let us briefly sketch the argument that leads to this result. To start,

we take the time derivative of the (integrated and rearranged) momentum
constraint:

Ṗ = −∆πL
d

dt

(
L̂
)
− L̂ d

dt
(∆πL) . (2.28)

Then, by continuity of L̇, we have

d

dt
L(X) = L′(X ± ε)Ẋ + L̇(X ± ε) = L̄′Ẋ + ¯̇L. (2.29)
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Averaging the equation of motion for L, noting that d
dt(∆πL) = ∆(π′L)Ẋ +

∆(π̇L), and calculating ∆(π̇L) from the equation of motion for πL, we obtain

Ṗ = Ṗ + Φ, (2.30)

with Ṗ representing the right side of equation (2.27), and Φ defined such
that

Φ = − P
N̂

R̂L̂
π̄R +

N̂∆R′R̄′

L̂
+ ∆N ′

R̄′R̂

L̂

− L̂∆π′L(N̂ r + Ẋ) +
N̂M̂ ˆdM

dR R̄
′√

L̂−2P 2 + M̂2
. (2.31)

To then demonstrate that Φ vanishes, one needs to take the jump of the
momentum constraint across the shell to obtain L̂∆π′L = R̄′∆πR + π̄R∆R′,
then integrate the equation of motion for πR across the shell, and use the
result, combined with the fact that the delta contribution to π̇R is given by
−Ẋ(∆πR)δ(r −X) [57].

2.2.4 Phase Space Reduction

We now seek a description of the system in terms of only the shell coordinate
X and a conjugate momentum Pc. Note that it is not necessarily true that
Pc will coincide with the conjugate momentum P for the unreduced problem,
as will become clear in what follows.

To proceed with the Hamiltonian reduction, we will make use of the
Liouville form F and the symplectic form Ω, which on the full phase space
(denoted by Γ) can be written as

F = PδX +

∫
dr (πLδL+ πRδR) (2.32)

and

Ω = δP ∧ δX +

∫
dr (δπL ∧ δL+ δπR ∧ δR), (2.33)

respectively, with δ denoting an exterior derivative in the associated func-
tional space (see [57] for more details). The reduced phase space Γ̄ is defined
as the set of equivalence classes in Γ under changes of coordinates, and each
(permissible) choice of coordinates defines a hypersurface H̄ ⊆ Γ that is
transversal to the orbits generated by coordinate transformations; this en-
sures that there exists an isomorphism between Γ̄ and the representative
hypersurface H̄.
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2.2. Theory of Self-gravitating Spherical Shells

At this point we can determine the symplectic form Ω̄ induced on H̄ as
follows: first, consider the pullback of F to H̄; this yields a quantity which
we denote by FH̄ . Then, the symplectic form ΩH̄ on the representative
hypersurface H̄ (corresponding to Ω̄) takes the form

ΩH̄ = δFH̄ . (2.34)

This quantity defines the canonical structure of the reduced phase space.
To explicitly determine the (nonlocal) contribution of the gravitational

variables to the dynamics on the reduced phase space, we can solve the
GR constraints for the gravitational momenta, insert the solutions into the
Liouville form on the full phase space, and perform the integration to express
the gravitational contribution solely in terms of the (local) shell variables.
Away from the shell, take the following linear combination of the constraints:

− R′

L
H0 −

πL
RL

Hr =M′, (2.35)

for

M(r) =
π2
L

2R
+
R

2
− R(R′)2

2L2
. (2.36)

The quantityM(r) corresponds to the ADM mass H when evaluated outside
of the shell, and vanishes inside the shell. This enables us to solve for the
gravitational momenta πL, πR away from the shell. The result is

πL = ±R

√(
R′

L

)2

− 1 +
2M
R

, πR =
L

R′
π′L. (2.37)

One then makes a coordinate choice, to pick out a representative hyper-
surface H̄. The coordinates we will use resemble the flat-slice coordinates
{L = 1, R = r} described in [51] (also known as Painlevé-Gullstrand coor-
dinates), though we will have a deformation region X− ε < r < X explicitly
included, in order to both satisfy the constraints and yield a continuous
spatial metric. The deformation region is related to a jump in R′ across the
shell. This can be seen by first integrating the Hamiltonian and momentum
constraints across the shell. Doing so yields, respectively,

∆R′ = − V̂
R̂
, ∆πL = −P

L̂
, (2.38)

where V =
√
P 2 +M2L2 and ∆ indicates the jump of a quantity across the

shell. We therefore take

L = 1, R(r, t) = r − ε

X
V̂ G

(
X − r
ε

)
, (2.39)
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for a function G having support in the interval (0, 1) with the property
dG(z)/dz → 1 as z ↘ 0. Outside of the deformation region, these coincide
with flat-slice coordinates. For concreteness, let us suppose G(z) takes the
form

G(z) = ze−z
2/(1−z2) (2.40)

for all z ∈ (0, 1).
In what follows, it will be useful to note that M̂ = M(R̂) = M(X), and

that now P is considered to be a function of X and H, as a consequence of
the gravitational constraints. We can implicitly determine this function by
inserting the gravitational momentum solutions away from the shell given
by equation (4.22) into the jump equations (2.38) and squaring. We are
then left with

H = V̂ +
M̂2

2X
− P

√
2H

X
. (2.41)

With this coordinate choice, the only gravitational contribution to the
Liouville form comes from the πR term, and only from within the deforma-
tion region. Keeping in mind that we only care about terms that remain
nonzero in the ε→ 0 limit, we have, in the deformation region,

πR =
XR′′√

(R′)2 − 1
+O(1), (2.42)

since R = X + O(ε) and R′′ = O
(
ε−1
)
. One can also note that δR =

(1−R′) δX +O(ε), and express the gravitational contribution to the Liou-
ville form as∫ X

X−ε
dr πRδR = XδX

∫ X

X−ε
dr
R′′ (1−R′)√

(R′)2 − 1
+O(ε). (2.43)

To evaluate this integral, one can change the integration variable from r to
v = R′: ∫ X

X−ε
dr πRδR = XδX

∫ R′−

1
dv

(1− v)√
v2 − 1

+O(ε), (2.44)

with R′− being R′ evaluated just inside the shell. The integration is then
straightforward, and after applying (2.41) and making some rearrangements
one arrives at

XδX

[
−P
X
−
√

2H

X
+ ln

(
1 +

√
2H

X
+
V̂ + P

X

)]
, (2.45)
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plus terms that vanish as ε→ 0. This completes the calculation of FH̄ , the
pullback of the full Liouville form F to H̄:

FH̄ = PcδX, (2.46)

with the reduced canonical momentum evidently given by

Pc = −
√

2HX +X ln

(
1 +

√
2H

X
+
V̂ + P

X

)
. (2.47)

This result agrees with [57] in the limit of a dust shell (M̂ ′ = 0).
To connect this with the expression derived by Kraus and Wilczek, we

need only apply the expression (2.41) to the argument of the logarithm,
which leads to

Pc = −
√

2HX −X ln

(
X + V̂ − P −

√
2HX

X

)
. (2.48)

This form of the reduced momentum coincides with [50] in the dust-shell
limit.

2.2.5 Boundary Terms

To obtain a well-defined variational principle for the reduced problem, we
must be careful with boundary terms, as first noted in [59] and [49]. In
[50], it is observed that for asymptotically-flat spacetimes, we simply need
to subtract the ADM mass (denoted suggestively by H) from our reduced
Lagrangian. Specifically, as mentioned in [57], a nonzero boundary variation
results from integrating the term

∫
dtdrN rL(δπL)′ (which is part of the

momentum constraint) by parts. The only contribution comes from infinity,
and in this case we have N r → N

√
2H/r, N → 1, and

δ(πL)→ δ(
√

2Hr) =

√
r

2H
δH, (2.49)

so the variation of the boundary term is cancelled if we add to the action
the term

Ibdry = −
∫
dtH. (2.50)

Including the boundary term in the action defined by FH̄ , one obtains
the reduced action

Ireduced =

∫
dt
(
PcẊ −H

)
, (2.51)
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with the reduced momentum given by (2.48). From the form of the reduced
action (2.51), we can see that the ADM mass is the reduced Hamiltonian,
defined implicitly by (2.48) and (2.41).

Since (2.41) has more than one solution P = P (X,H), our conjugate
momentum Pc in turn becomes a multi-valued function of X and H, as one
expects from a theory that allows the degree of freedom to either increase
or decrease. Explicitly, P is given by

P =
1

1− 2H
X

(√
2H

X

(
H − M̂2

2X

))

± 1

1− 2H
X


√√√√(H − M̂2

2X

)2

− M̂2

(
1− 2H

X

) , (2.52)

while the combination V̂ −P that appears in the reduced momentum (2.48)
is

V̂ − P =
H − M̂2

2X ∓
√(

H − M̂2

2X

)2
− M̂2

(
1− 2H

X

)
1 +

√
2H
X

. (2.53)

2.2.6 Constructing Classical Spacetime

Suppose one can find a solution X(t) to the classical equations of motion for
the reduced system (2.51). Then, the gravitational constraints and equations
of motion (2.24) can be solved to determine all the metric components gµν .
Therefore, from the reduced system solution X(t) one can construct the
classical spacetime structure, as we will now demonstrate.

By inserting the gravitational momenta solutions (4.22) into the grav-
itational equations of motion (2.24), one can obtain the lapse function N
and the radial shift component N r that correspond to our coordinate choice
(2.39).

Outside of the shell, one finds the familiar Schwarzschild structure, in
flat-slice coordinates. The lapse function is constant, and unity if we want
a time coordinate that increases towards the future, while the radial shift is
given by

N r(r ≥ X) = ±
√

2H

r
. (2.54)

The ± here indicates two possible time-slicings, though we will often take
the upper sign (this means that the gravitational momenta solution (4.22)
should take the upper sign as well, to ensure N → 1 as r →∞).
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2.3. Single-mode Interferometry

Along with the expression (2.41) for P in terms of X and H, we now have
enough information to determine the classical path X(t), since H is constant
along such paths. Specifically, the equation of motion for X becomes

Ẋ =
P√

P 2 + M̂2
−
√

2H

X
, (2.55)

which leads to the expression

dt

dX
=

√
2HX

X − 2H
(2.56)

±
H − M̂2

2X(
1− 2H

X

)√(
H − M̂2

2X

)2
− M̂2

(
1− 2H

X

) .
Therefore, finding the classical path X(t) has been reduced to quadrature
and inversion.

With the classical path known, one can also calculate the classical action,
as done for the case of dust in [50]:

S(t,X(t)) = S(0, X(0)) +

∫ t

0
dt̃
[
Pc(t̃)Ẋ(t̃)−H

]
, (2.57)

with

Pc(0) =
∂S

∂X
(0, X(0)). (2.58)

Unlike the (massless) dust case, however, our classical path X(t) is not a
null geodesic of the flat-slice metric

ds2 = −dt2 +

(
dr +

√
2H

r
dt

)2

, (2.59)

and so we cannot so easily determine explicit expressions for our shell tra-
jectories.

2.3 Single-mode Interferometry

2.3.1 Equation of State Determination

Up until this point, the function M(X) has been left unspecified, though
we have established the identifications σ = M(X)/4πX2 for the density and
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2.3. Single-mode Interferometry

p = −M ′(X)/8πX for the pressure. We would like to exploit this freedom
for the purposes of interferometry. To maintain internal consistency, there
should be a relationship p = p(σ), which represents an equation of state for
our fluid shell. The function M(X) parametrizes this relationship, though
not every choice of M(X) yields a consistent (let alone physical) equation
of state.

The interferometric setup resembles that of Michelson, except we only
have one spatial dimension to work with, since our system is spherically
symmetric. Still, we would like the equation of state to produce two ‘reflec-
tors’ - one to reflect the shell outward if it gets too small, and one to reflect
the shell inward if it gets too large. Also, we would like the equivalent of a
‘half-silvered mirror’ to be in between the two reflectors, to act as a beam-
splitter. This is depicted schematically in Figure 2.1, with X± being the
shell radii that correspond to the reflectors, and Xδ the radius correspond-
ing to the splitter. Accordingly, our equation of state p = p(σ) must have
a large positive peak for some large density, a large negative peak for some
small density, and an intermediate peak (serving as the beam-splitter) for
some intermediate density.

It would be convenient to use delta functions for these purposes, but
due to the conversion between δ(σ − σ0) and δ(X − X0) and the resulting
appearance of products of delta functions, this possibility seems problem-
atic. Therefore, we have been considering the simplest alternative one could
think of: rectangular barriers. These can be described with the use of step
functions, which we will define such that Θ(x < 0) = 0 and Θ(x > 0) = 1.

The equation of state, then, takes the form

p = p1 (Θ(σ − σ1)−Θ(σ − σ2))

+p2 (Θ(σ − σ3)−Θ(σ − σ4))

+p3 (Θ(σ − σ5)−Θ(σ − σ6)) , (2.60)

with σi+1 > σi, p1 < 0, and p2, p3 > 0. We may as well take p1 = −p3, since
both of these peaks serve the same purpose of reflecting, but we will not yet
impose this condition.

One would now like to find the function M(X) that parametrizes the
equation of state (2.60). If we could express (2.60) as p =

∑
i p̃iΘ(X −Xi),

then the identification p = −M ′(X)/8πX would imply

M(X) = M0 + 4π
∑
i

p̃i
(
X2
i −X2

)
Θ(X −Xi), (2.61)
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2.3. Single-mode Interferometry

Figure 2.1: Schematic representation of the splitting, reflecting, and recom-
bining that occur in our shell interferometer. The inner and outer mirrors
are located at X− and X+, respectively, and the beam-splitter is located
at Xδ. The initial split, depicted near the bottom of the diagram, is char-
acterized by a transmission coefficient T← and a reflection coefficient R←.
These coefficients determine the amplitudes of the transmitted and reflected
components of the initial state, which propagate along the different interfer-
ometer arms. The two arrows at the top of the diagram represent the final
interferometer outputs, after recombination.
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2.3. Single-mode Interferometry

Figure 2.2: A sample equation of state represented by (2.60). There is a
negative pressure peak p1 for some low density σ2 that causes the shell to
reflect inwards whenever X gets sufficiently large, there is a positive pressure
peak p2 for some high density σ5 to reflect the shell outwards whenever X
gets sufficiently small, and there is an intermediate pressure peak p2 that
serves as a beam-splitter for our interferometer.

which would yield a density given by

σ =
M0

4πX2
+
∑
i

p̃i

(
X2
i

X2
− 1

)
Θ(X −Xi). (2.62)

The problem with this possibility is that, in general, it isn’t necessarily true
that Θ(X −Xi) produces the same (reversed) ordering as Θ(σ − σi), given
that σi = M(Xi)/4πX

2
i . This problem can be avoided by making sure that

the density σ is a monotonically decreasing function of X. This leads to the
condition

M0

4π
≥ −

∑
i

p̃iX
2
i Θ(X −Xi). (2.63)

Figure 2.2 illustrates the desired step function peaks, to enable our system
to operate as an interferometer.

To understand what this means in terms of the pressure peaks in our
equation of state (2.60), we first note that if σ monotonically decreases in
X, then step functions can be converted by Θ(σ − σi) = 1 − Θ(X − Xi).
This allows us to conclude that p̃2 = −p̃1 = p1, p̃4 = −p̃3 = p2, and
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2.3. Single-mode Interferometry

p̃6 = −p̃5 = p3. Then, one finds that monotonicity is maintained as long as

M0

4π
> max{p3X

2
5,6, p3X

2
5,6 + p2X

2
3,4,

p3X
2
5,6 + p2X

2
3,4 − p1X

2
2}, (2.64)

where the notation X2
i,j = X2

i −X2
j was introduced, for brevity.

Since an equation of state (2.60) is described by the pressure as a function
of density, one should translate the conditions for monotonicity in terms of
the step locations {σi} and the step amplitudes {pi}. To convert between
the {Xi} and the {σi}, one can use the relations

X2
6 =

M0

4πσ6
,

X2
5 =

M0

4πσ6

(σ6 + p3)

(σ5 + p3)
,

X2
4 =

M0

4πσ6

(σ6 + p3)

(σ5 + p3)

σ5

σ4
,

X2
3 =

M0

4πσ6

(σ6 + p3)

(σ5 + p3)

σ5

σ4

(σ4 + p2)

(σ3 + p2)
,

X2
2 =

M0

4πσ6

(σ6 + p3)

(σ5 + p3)

σ5

σ4

(σ4 + p2)

(σ3 + p2)

σ3

σ2
,

X2
1 =

M0

4πσ6

(σ6 + p3)

(σ5 + p3)

σ5

σ4

(σ4 + p2)

(σ3 + p2)

σ3

σ2

(σ2 + p1)

(σ1 + p1)
. (2.65)

With these expressions, one can write the monotonicity conditions in the
much simpler form

{σ5 > 0, σ3 > 0, σ1 + p1 > 0}. (2.66)

Thus, as long as we keep the density σ positive, it will be monotonic in X
provided σ1 + p1 > 0.

2.3.2 The WKB Approximation

Now that we have fully defined the reduced action (2.51) of our interfer-
ometer, we can seek a quantum description of the system. As mentioned
above, there are immediate complications that one is faced with: the Hamil-
tonian is only implicitly defined, which makes even writing down an explicit
Schrödinger equation impossible, and even if we could write down an explicit
Schrödinger equation we would have to deal with factor-ordering ambigu-
ities. Fortunately, both of these issues are for the most part avoided by
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2.3. Single-mode Interferometry

focusing one’s attention on the parameter space region of validity of the
WKB approximation (the so-called “WKB regime”). Let us now clarify
what we mean by this.

First, we will consider the time-independent Schrödinger equation,

HΨ = EΨ, (2.67)

for a Hamiltonian that is quadratic in momentum:

H(X,P ) = H0(X) +H1(X)P +H2(X)P 2. (2.68)

For our purposes, we will approximate a general Hamiltonian H(X,P )
by the first three terms in a Taylor expansion in P , given by

Hw = H(X, 0) +

(
∂H

∂P

)
P +

1

2

(
∂2H

∂P 2

)
P 2, (2.69)

with the P -derivatives evaluated at P = 0.
To make sure this Hamiltonian becomes Hermitian in the quantum the-

ory, we must order the operators appropriately. We can symmetrize the
term linear in P , such that(

∂H

∂P

)
P → 1

2

(
ˆ(
∂H

∂P

)
P̂ + P̂

ˆ(
∂H

∂P

))
, (2.70)

as well as ordering the quadratic term as(
∂2H

∂P 2

)
P 2 → P̂

ˆ(
∂2H

∂P 2

)
P̂ . (2.71)

In the weak field limit, i.e. X large compared to the Schwarzschild radius
2E, the WKB Hamiltonian for our shell system is given by

Hw ∼

(
M̂ − M̂2

18X

)
− 2

3

√
2M̂

X
P +

(
1

2M̂
+

1

3X

)
P 2. (2.72)

We will postpone the derivation of the WKB Hamiltonian (2.72) until Sec-
tion 3.5, as it will be instructive to consider the details in a more general
setting. For brevity, we have dropped the subscript c on the reduced mo-
mentum here and for the rest of the chapter.

The WKB approximation we seek is obtained by considering the ~→ 0
limit of (2.67). We will rewrite the wavefunction Ψ as

Ψ = e
i
~

∞∑
n=0

~nSn(X)
, (2.73)

27



2.3. Single-mode Interferometry

where for the purposes of keeping track of asymptotic orders we are explicitly
writing the “~”s. If we take the usual coordinate representation of the
momentum operator P̂ = −i~ d

dX , it follows that

P̂Ψ = −i~ d

dX
Ψ =

( ∞∑
n=0

~nS′n

)
Ψ (2.74)

and

P̂ 2Ψ =

(
−i~ d

dX

)2

Ψ =

(
−i~

∞∑
n=0

~nS′′n

)
Ψ +

( ∞∑
n=0

~nS′n

)2

Ψ. (2.75)

Equation (2.67) then tells us that

E = H0 +H1

∞∑
n=0

~nS′n −
i~H ′2

2
− i~H ′2

∞∑
n=0

~nS′n

+H2

( ∞∑
n=0

~nS′n

)2

− i~H2

( ∞∑
n=0

~nS′′n

)
. (2.76)

At order ~0, equation (2.76) yields

E = H0 +H1S
′
0 +H2

(
S′0
)2
. (2.77)

Upon comparison with the classical Hamiltonian form (2.68), we can deduce
that S′0 = P±(E,X), with P± being the two momentum solutions to equa-
tion (2.68) with the value H = E. We have thus arrived at the standard
WKB phase,

S0 =

∫
dX P±(E,X). (2.78)

By inspection, one can also see that this WKB phase holds for an arbitrary
Hamiltonian H(X,P ), as long as it is possible to expand H(X,P ) in powers
of P .

At order ~, we have

H1S
′
1 −

1

2
iH ′1 − iH ′2S′0 − iS′′0H2 + 2H2S

′
0S
′
1 = 0, (2.79)

from which we can obtain

S′1 =
i

2

d
dX (H1 +H2S

′
0)

H1 +H2S′0
=
i

2

d

dX
ln
∣∣H1 +H2S

′
0

∣∣. (2.80)
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Figure 2.3: A sample mass function M̂ is plotted with respect to the shell
radius X. The mass function M̂ serves to parametrize an equation of state
of the form depicted in Figure 2.2. The approximate step function near
X = 2 serves as a beam-splitter, and the steep quadratic sides correspond
to the inner and outer reflectors of the interferometer.

Comparing again with the classical Hamiltonian form (2.68), we can write
H1+H2S

′
0 = ∂H/∂P (evaluated at H = E), and up to an irrelevant constant

the next term in the WKB expansion for Ψ can be written as

S1 =
i

2
ln

∣∣∣∣∂H∂P
∣∣∣∣. (2.81)

If we only include contributions from S0 and S1, we arrive at the form
of the WKB approximation used to describe modes in our interferometer:

ΨE =
e
i
~
∫
dX P±(E,X)√∣∣∂E

∂P

∣∣ . (2.82)

2.3.3 Flat Spacetime Limit

To determine whether or not gravity produces some form of decoherence
in our interferometer, let us first clarify the manner in which coherence
manifests itself in the absence of gravity. In this case spacetime is flat, and
along the arms of the interferometer defined by (2.61) the shell behaves as
a free particle.

As evident from Figure 2.3, the mass of the “free” shell is different on
each interferometer arm. Let us call the inner mass M−, and the outer mass
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M+, such that M− > M+. For simplicity, suppose the reflectors are perfect,
which for this system means that the quadratic walls of the mass function
are large and steep. Similarly, let the quadratic beam-splitter interval be
approximated by a step function, to ensure that only constant mass function
basis states need to be used in the quantum analysis.

Further, let us treat each element of the interferometer separately, in a
similar manner to that which is done in optical systems. The initial state will
first encounter the splitter, at which point each incoming mode will trans-
form into a reflected mode with a factor R← and a transmitted mode with a
factor T← (subscripts are used here because the reflection/transmission co-
efficients depend on the direction the incoming state encounters the splitter
from).

The split initial state components will then perfectly reflect off of the
outer/inner reflectors, and travel back towards one another to the beam-
splitter. Upon recombination there will be further splitting of the compo-
nents coming from each direction of the splitter, which produces two outputs
(one going in each direction from the splitter) that are themselves composed
of two parts; it is the interference between these two parts of each output
that we are interested in.

Let us now describe the process in detail. For the purposes of this section,
we will restrict our attention to a single-mode input, since the multi-mode
analysis is more involved and will be discussed in Appendix B. As mentioned
in Section 2.3.2, we will approximate the single-mode input by an ingoing
WKB state:

Ψ0 =
ei

∫
dXP−+√

|∂E/∂P−+|
≡ ψ−+, (2.83)

where the first set of plus/minuses of the reduced momentum P indicating
outgoing/ingoing, and the second set indicating evaluations of P as X ap-
proaches Xδ from above/below. We will define the integration such that the
lower bound in X is Xδ.

Treating the first splitting on its own, let us consider the wavefunction

Ψ =

{
ψ−+ +R←ψ++ : X > Xδ

T←ψ−− : X < Xδ

The (classical) flat spacetime Hamiltonian satisfies H =
√
P 2 + M̂2, which

in the nonrelativistic limit yields H ≈ M̂ +P 2/2M̂ . Applying wavefunction
continuity at Xδ, and integrating the nonrelativistic Schrödinger equation

i
∂ψ

∂t
= M̂ψ − 1

2

∂

∂X

(
1

M̂

∂ψ

∂X

)
(2.84)

30



2.3. Single-mode Interferometry

acrossXδ, one can obtain the reflection and transmission amplitudesR← and
T←. The equations take a simpler form after transforming to the variables
R̄← and T̄←, which are defined by

R̄← ≡

√√√√∣∣∣∣∣
∂E
∂P−+

∂E
∂P++

∣∣∣∣∣R←, T̄← ≡

√√√√∣∣∣∣∣
∂E
∂P−+

∂E
∂P−−

∣∣∣∣∣T←. (2.85)

One can then easily solve for the new variables:

R̄← =
M−P−+ −M+P−−
M+P−− −M−P++

, T̄← =
M−(P++ − P−+)

M−P++ −M+P−−
. (2.86)

For convenience, we can also derive the reflection and transmission ampli-
tudes from the left, which are found to be

R̄→ =
M−P++ −M+P+−
M+P−− −M−P++

, T̄→ =
M+(P+− − P−−)

M−P++ −M+P−−
, (2.87)

using the similar definitions

R̄→ ≡

√√√√∣∣∣∣∣
∂E
∂P+−
∂E
∂P−−

∣∣∣∣∣R→, T̄→ ≡

√√√√∣∣∣∣∣
∂E
∂P+−
∂E
∂P++

∣∣∣∣∣T→. (2.88)

Let us call the outgoing state after the split Ψ
(i)
+ and the ingoing state

Ψ
(i)
− . We then can consider the first splitting a transformation of the wave-

function such that

Ψ0 = ψ−+ →

(
Ψ

(i)
+

Ψ
(i)
−

)
=

(
R←ψ++

T←ψ−−

)
. (2.89)

This splitting should preserve the probability current, for consistency. In
the nonrelativistic, flat spacetime limit, the probability current J satisfies
the continuity equation

∂

∂t

(
|ψ|2

)
+

∂

∂X
J = 0 (2.90)

and is given by the usual quantum mechanics expression

1

2im

(
ψ∗ψ′ − ψψ∗′

)
. (2.91)
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Therefore, in this limit we have an input probability current of

J0 = |Ψ0|2
P−+

M+
. (2.92)

After first encountering the beam-splitter, the probability current (2.92)
splits into reflected and transmitted components

|J (i)
+ | =

1

2iM+

(
Ψ

(i)∗
+

(
Ψ

(i)
+

)′
−Ψ

(i)
+

(
Ψ

(i)
+

)∗′)
= |J0|R̄2

← (2.93)

and

|J (i)
− | =

1

2iM−

(
Ψ

(i)∗
−

(
Ψ

(i)
−

)′
−Ψ

(i)
− (Ψ−(i))∗′

)
= |J0|

(
M+P−−
M−P−+

)
T̄ 2
←. (2.94)

The splitting preserves probability current, as can be confirmed by observing

that

∣∣∣∣J(i)
+

J0

∣∣∣∣+ ∣∣∣∣J(i)
−
J0

∣∣∣∣ is unity. The terms

∣∣∣∣J(i)
+

J0

∣∣∣∣ and

∣∣∣∣J(i)
−
J0

∣∣∣∣ are usually called the

reflection and transmission coefficients, respectively.
The second transformation propagates the modes along the interferom-

eter arms, such that(
Ψ

(i)
+

Ψ
(i)
−

)
→

(
Ψ

(ii)
+

Ψ
(ii)
−

)
=

(
(E,++ )−1/2R←e

iΦ++

(E,−− )−1/2T←e
iΦ−−

)
. (2.95)

For brevity, the notation E,±± was used to denote ∂E/∂P±±, and it is
understood that we are evaluating these quantities at the outer walls of the
interferometer. We have also introduced the quantities Φ±± = φ±±−Et±±,
for φ±± =

∫ X±
Xδ

dXP±±, where t++ and t−− denote the travel times from
the splitter to X+ and X−, respectively.

The modes then reflect off of the outer walls, as(
Ψ

(ii)
+

Ψ
(ii)
−

)
→

(
Ψ

(iii)
+

Ψ
(iii)
−

)
=

(
(E,−+ )−1/2R←e

iΦ++R→

(E,+− )−1/2T←e
iΦ−−R←

)
. (2.96)

The outer wall reflection amplitudes (R→, R←) only depend on continuity
of the wavefunction. To obtain the reflection amplitude from the left, for
instance, consider the wavefunction

Ψ = ψ++ →
{

0 : X > X+

(ψ++ +R→ψ−−) : X < X+
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By applying wavefunction continuity at X+, one immediately obtains R→.
R← can be similarly determined, and the results are

R̄→ = −ei(φ+++φ−+), R̄← = −ei(φ+−+φ−−), (2.97)

with help of the simplifying definitions

R̄→ ≡

√√√√∣∣∣∣∣
∂E
∂P++

∂E
∂P−+

∣∣∣∣∣R→, R̄← ≡
√√√√∣∣∣∣∣

∂E
∂P−−
∂E
∂P+−

∣∣∣∣∣R←. (2.98)

The phases are defined such that φ±∓ =
∫ Xδ
X∓

dXP±∓ (signs chosen together).

We will refer to the modes after reflection from the outer walls as Ψ
(iii)
± .

Propagation along the arms back to the splitter then proceeds as(
Ψ

(iii)
+

Ψ
(iii)
−

)
→

(
Ψ

(iv)
+

Ψ
(iv)
−

)
, (2.99)

for (
Ψ

(iv)
+

Ψ
(iv)
−

)
=

(
(E,−+ )−1/2R←e

iΦ++R→eiΦ−+

(E,+− )−1/2T←e
iΦ−−R←eiΦ+−

)
. (2.100)

In this expression, the quantities E,−+ and E,+− are evaluated at the split-
ter, and we have used the definitions Φ±∓ = φ±∓−Et±∓ (signs again chosen
together). Here t−+ and t+− denote the travel times from X+ to the splitter
and from X− to the splitter, respectively.

The second encounter with the splitter occurs as it did before, as(
Ψ

(iv)
+

Ψ
(iv)
−

)
→

(
Ψ

(v)
+

Ψ
(v)
−

)
=

(
R̄← T̄→
T̄← R̄→

)(
Ψ

(iv)
+

Ψ
(iv)
−

)
. (2.101)

At the order we are working at in ~, the derivatives of our final outputs
satisfy

d

dX
Ψ

(v)
± = iP±±Ψ

(v)
± , (2.102)

and so the currents for our final outputs are given by

J
(v)
± =

1

2iM±

(
Ψ

(v)∗
±

(
Ψ

(v)
±

)′
−Ψ

(v)
±

(
Ψ

(v)
±

)∗′)
=

P±±
M±

∣∣∣Ψ(v)
±

∣∣∣2 . (2.103)
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We then have enough information to calculate the final reflected and
transmitted probability currents, which can be written

|J (v)
+ | = |J0|

[
1− 4R̄2

←
(
1− R̄2

←
)

sin2 ϕ
]

(2.104)

and
|J (v)
− | = |J0|4R̄2

←
(
1− R̄2

←
)

sin2 ϕ, (2.105)

where we have defined ϕ = φ+++φ−+−φ+−−φ−− and made use of the iden-
tity R̄2

←+ M+P−−
M−P−+

T̄ 2
← = 1. The flat-spacetime interferometer thus manifestly

conserves probability current in all regions of the parameter space.
One can now search for a nice region in the parameter space that cancels

one of the outputs. First, we would like to avoid regions of the parameter
space that don’t describe splitting, i.e. complete initial reflection or trans-
mission by the beam-splitter. We can accomplish this in a simple way by
enforcing an equal splitting condition, R̄2

← = 1/2. This leads to compact
expressions for the final reflection and transmission coefficients, given by

Rf ≡
|J (v)

+ |
|J0|

= cos2 ϕ (2.106)

and

Tf ≡
|J (v)
− |
|J0|

= sin2 ϕ, (2.107)

respectively.
We should also make sure that our shell velocity doesn’t approach the

speed of light, since we are working in the nonrelativistic limit. For small
shell speeds, given an outer mass M+ and an initial speed v+, the initial
splitting will be equal provided the inner mass satisfies

M− ≈M+

[
1 +

(
6
√

2− 8
)
v2

+ −
(

99
√

2− 140
)
v4

+

]
. (2.108)

In the quantum context, the “speed” v+ is defined such that E = M+ +
1
2M+v

2
+, for a WKB state with energy E.

If we denote the interferometer arm lengths by L± ≡ ±(X± − Xδ), we
can see from the form of the reflection and transmission coefficients that one
of the outputs will be completely cancelled if

ϕ = 2L+

√
2M+ (E −M+)− 2L−

√
2M− (E −M−)

= 2L+M+v+ − 2L−M−v−

=
nπ

2
, (2.109)
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2.3. Single-mode Interferometry

for n ∈ Z. Thus, as the outer arm length is increased or decreased, the
outputs are alternately cancelled out for each value of n (odd values cancel
the transmitted output, and even values cancel the reflected output), with
partial interference for intermediate arm lengths that don’t correspond to
solutions of (2.109). This behaviour is a direct reflection of coherence in the
flat spacetime interferometer.

2.3.4 General Relativistic Picture

The current framework was designed to facilitate the inclusion of general rel-
ativistic corrections. Several expressions become messier once one includes
gravity, and some expressions fundamentally change in structure. For in-
stance, the standard probability current Js = 1

2im (ψ∗ψ′ − ψψ∗′) given by
(2.91) is no longer conserved in systems with more general Hamiltonians.
In fact, a probability current for an arbitrary Hamiltonian system has never
been constructed; only special cases are known, such as the standard current
Js for the nonrelativistic Hamiltonian H = P 2/2m + V (X). For any other
Hamiltonian, the current Js does not satisfy the continuity equation (2.90),
and therefore does not conserve probability.

A special case that is less well-known is for the first relativistic correction
to the nonrelativistic Hamiltonian H = P 2/2m+V (X), which is of the form
αP 4 (with α = −1/8m3, to match the next term in the Taylor expansion of√
P 2 +m2 in P ). The Schrödinger equation i∂ψ/∂t = Hψ, along with its

conjugated counterpart −i∂ψ∗/∂t = H†ψ∗, imply that

∂ρ

∂t
= i
[
ψ
(
H†ψ∗

)
− ψ∗ (Hψ)

]
, (2.110)

and so linearity in H allows us to determine the correction to the current
Js coming from the extra term αP 4 independently of the first terms in the
Hamiltonian. If one observes that

ψ
∂4ψ∗

∂X4
− ψ∗ ∂

4ψ

∂X4
= − ∂

∂X

(
ψ∗

∂3ψ

∂X3
− ∂ψ∗

∂X

∂2ψ

∂X2
+
∂2ψ∗

∂X2

∂ψ

∂X
− ∂3ψ∗

∂X3
ψ

)
(2.111)

then one can deduce that the current correction takes the form

iα

(
ψ∗

∂3ψ

∂X3
− ∂ψ∗

∂X

∂2ψ

∂X2
+
∂2ψ∗

∂X2

∂ψ

∂X
− ∂3ψ∗

∂X3
ψ

)
. (2.112)

Similar (somewhat more complex) constructions exist for Hamiltoni-
ans with higher powers of the momentum, but our system of interest has
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2.3. Single-mode Interferometry

position-dependent coefficients when expanded in powers of the momentum.
If we take the operator ordering of the approximate form (2.69) as an exact
Hamiltonian, we end up with a more general quadratic Hamiltonian than
H = P 2/2m + V (X), since now we have a term linear in momentum with
a function of X as a coefficient, as well as another function of X as a coef-
ficient of the term quadratic in momentum. As demonstrated in Appendix
A, we can find a probability current J for this more general Hamiltonian
that satisfies the continuity equation (2.90). We can express this probability
current as

J =

(
∂H

∂P

)
|Ψ|2 +

1

2i

(
∂2H

∂P 2

)(
Ψ∗Ψ′ −ΨΨ∗′

)
. (2.113)

The P -derivatives in this expression are again evaluated at P = 0, and

for the special case of {
(
∂H
∂P

)
= 0,

(
∂2H
∂P 2

)
= 1/m}, we are left with the

nonrelativistic, flat spacetime limit described by (2.91).
If we use the WKB Hamiltonian (2.72), we find that the generalized

probability current is given by

J ∼ −2

3

√
2M̂

X
|Ψ|2 +

(
1 +

2M̂

3X

)
Js, (2.114)

with Js being the standard (nonrelativistic) expression (2.91) for the proba-
bility current. Note that although the functional form of Js with respect to
Ψ is the same as the nonrelativistic current (2.91), in the above expression
we are inserting the general relativistic WKB wavefunction Ψ.

Since our Schrödinger equation now takes the asymptotic form

HwΨ = i
∂

∂t
Ψ, (2.115)

taking the operator ordering mentioned above, we no longer have the simple
reflection and transmission amplitudes obtained in the previous section. For
instance, integrating (2.115) across Xδ yields[(

3

2M̂
+

1

X

)
Ψ′
]
δ

= i

√
2

Xδ

[√
M̂
]
δ

Ψ(Xδ). (2.116)

Here, [·]δ represents the jump of a quantity across Xδ.
To the order we are working at in ~, the new reflection and transmission

amplitudes for scattering from the right are given by

R̄← =

√
2
Xδ

[√
M̂
]
δ

+
(

3
2M−

+ 1
Xδ

)
P−− −

(
3

2M+
+ 1

Xδ

)
P−+

−
√

2
Xδ

[√
M̂
]
δ
−
(

3
2M−

+ 1
Xδ

)
P−− +

(
3

2M+
+ 1

Xδ

)
P++

(2.117)
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2.3. Single-mode Interferometry

and

T̄← =

(
3

2M+
+ 1

Xδ

)
(P++ − P−+)

−
√

2
Xδ

[√
M̂
]
δ
−
(

3
2M−

+ 1
Xδ

)
P−− +

(
3

2M+
+ 1

Xδ

)
P++

. (2.118)

Similarly, for scattering from the left we have

R̄→ =

√
2
Xδ

[√
M̂
]
δ

+
(

3
2M−

+ 1
Xδ

)
P+− −

(
3

2M+
+ 1

Xδ

)
P++

−
√

2
Xδ

[√
M̂
]
δ
−
(

3
2M−

+ 1
Xδ

)
P−− +

(
3

2M+
+ 1

Xδ

)
P++

(2.119)

and

T̄→ =

(
3

2M−
+ 1

Xδ

)
(P+− − P−−)

−
√

2
Xδ

[√
M̂
]
δ
−
(

3
2M−

+ 1
Xδ

)
P−− +

(
3

2M+
+ 1

Xδ

)
P++

. (2.120)

Reflection from the outer walls is again described by (2.98), though it
should be noted that since the partial derivatives in (2.98) now have X-
dependence, they are to be evaluated at the outer walls (X+ for R→ and
X− for R←).

Given the definition of probability current in this (more general) setting,
we have

J
(v)
± =

((
1 +

2M±
3Xδ

)
P±±
M±

− 2

3

√
2M±
Xδ

)∣∣∣Ψ(v)
±

∣∣∣2 . (2.121)

Just as in the flat spacetime limit, the final output states are given by
(2.101), except that now the reflection/transmission amplitudes and the
WKB phases are more complicated.

The initial current can be expressed as

Ji =

(
1− 2M+

3P−+

√
2M+

Xδ
+

2M+

3Xδ

)
J0, (2.122)

with J0 being the nonrelativistic initial current (2.92), and so the final reflec-

tion and transmission coefficients Rf ≡
|J(v)

+ |
|Ji| and Tf ≡

|J(v)
− |
|Ji| (respectively)

are fully determined.
Another similarity to the flat spacetime limit is that the oscillatory part

of the final reflection and transmission coefficients is defined by ϕ = φ++ +
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2.3. Single-mode Interferometry

Figure 2.4: Sample interference pattern, for M+ = 15, v+ = 0.003,
X− = 5000, L− = 20, and M− chosen to satisfy (2.108), plotted against
the outer mirror position, X+. The alternating pattern from 0 to 1 of both
the final reflection and final transmission coefficients indicates that complete
constructive/destructive interference occurs in this parameter region, from
which we can conclude that coherence is fully present.

Figure 2.5: Sample interference pattern, for M+ = 15, v+ = 0.01, X− = 200,
L− = 20, and M− chosen to satisfy (2.108), plotted against the outer mirror
position, X+. As in the previous figure, there is an alternating pattern of
the final reflection/transmission coefficients from 0 to 1 as the outer arm
length changes, indicating that coherence is still fully present as we bring
the interferometric range closer to the Schwarzschild radius of the shell. In
this region of the parameter space, we begin to see the sum of the final
reflection and transmission coefficients fail to add up to exactly unity, due
to the gradual breakdown of our approximation to the probability current.
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2.3. Single-mode Interferometry

φ−+−φ+−−φ−−, with the various φ terms involving integrals of the general
relativistic momentum (2.48). In the weak-field limit, the initial ingoing
momentum is given by

P−+ ∼ −
√
H2 −M2

+ +
2

3

√
2H

X
H

−
(
H2 −M2

+/2
)
H√

H2 −M2
+X

, (2.123)

to second order in 1/
√
X. Care should be taken with these approximations,

however, because our probability current (2.113) is exactly conserved only
in the quadratic momentum limit, which for the shell system is defined by
(2.72). Also, the WKB solutions only approximately satisfy the Schrödinger
equation. Because of this, in order to control the errors involved in the
approximations we find it useful to consider the “WKB momentum,” which
we define by solving (2.72) for P , and expanding to second order in 1/

√
X.

For the initial ingoing momentum, the WKB momentum takes the form

Pw−+ ∼ −
√

2M+ (H −M+) +
2

3

√
2M+

X
M+

−

√
2M+

(H −M+)

(7M+ − 4H)

12X
. (2.124)

To understand the interference pattern described by Rf and Tf , let us
consider what ϕ looks like in the weak-field limit, for slow speeds (v± → 0):

ϕ ∼ 2L+M+v+ − 2L−M−v−

+
M2

+

v+
ln
(
X+

Xδ

)
− M2

−
v−

ln
(
Xδ
X−

)
. (2.125)

Let us further imagine that we vary the outer arm length L+, while keeping
all other parameters constant. If the phase condition (2.109) from flat space-
time still approximately holds, then the corresponding expression (2.125) in
the weak-field limit tells us that successive values of n (say, n to n + 1)
are associated with outer arm length values L+n and L+(n+1). Subtracting
ϕn = nπ/2 from ϕn+1 = (n+ 1)π/2 yields

π

2
= 2M+v+∆Ln +

M2
+

v+
ln

(
X+n + ∆Ln

X+n

)
, (2.126)
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2.3. Single-mode Interferometry

Figure 2.6: Sample interference pattern, for M+ = 0.05, v+ = 0.0001,
X− ≈ 1, L− ≈ 0.997, and M− chosen to satisfy (2.108), plotted against
the outer mirror position, X+. The node spacing decreases as the interfer-
ometric range is pushed closer to the Schwarzschild radius of the shell, and
asymptotes to a fixed value ∆Ln = π/4M+v+ as we approach spatial infin-
ity. This “gravitational node squeezing” was present, though not visually
detectable, in the previous interference patterns.

with the definitions X+n = Xδ + L+n and ∆Ln = L+(n+1) − L+n. The dis-
tance between nodes of the interference pattern, denoted by ∆Ln, is some-
what less than the outer mirror radius X+, for the cases we are interested
in; thus, we can expand the logarithm and solve for ∆Ln, which gives us

∆Ln ≈
π

4M+

(
v+ + M+

2v+X+n

) . (2.127)

This result shows that gravity causes the node spacing in the interference
pattern to increase with increasing outer arm length. In the flat space limit
(i.e. as X± →∞), we obtain the equal node spacing ∆Ln = π/4M+v+, for
all n ∈ Z.

One can see from Figures 2.4 and 2.5 that as we go from the essentially
flat limit (X± → ∞) to less than 10 Schwarzschild radii, we can still alter-
nately cancel the reflection and transmission coefficients, even though the
approximations lead to a probability current that is not fully conserved (note
that the sum of the final probability currents differs from the initial current
by about 1%). We take this as a direct indication that coherence is fully
present in the single-mode system even with general relativistic corrections
taken into account.
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2.4. Discussion

It is not clear from Figures 2.4 and 2.5, but the node spacing is indeed
changing as (2.127) suggests. The reason it is not visible from these plots is
that the node spacing changes noticeably only over a range of many wave-
lengths. Under more extreme circumstances, as depicted in Figure 2.6, there
are visible changes in node spacing, though this represents a situation that
is of less physical interest, since the de Broglie wavelength of the shell is
larger than the interferometer arms.

2.4 Discussion

There are two problems with taking this result of no loss of coherence as
the definitive answer to whether or not gravity, by itself, could decohere a
system. The first is that these single-mode states correspond in some sense
to energy eigenstates; one might expect it is only a superposition of energies
that leads to decoherence, since from the above analysis one can see that the
time-dependence cancels out of the final expressions for output probabilities
in the interferometer. As mentioned above, we discuss how wave-packets
behave in this model in Appendix B.

The second problem is that Penrose’s intuition ties the loss of coherence
to the inability to map one spacetime in any unique way onto a different
spacetime. By our coordinate choice we have, in effect, chosen a unique
way: two spacetime points are the same if they have the same coordinates.
However, this is of course arbitrary and depends on the coordinate choice
made. While the Painlevé-Gullstrand coordinates have many advantageous
features, they are not the only possible choice. Do all coordinate choices
produce the same maxima and minima in the interference pattern? The
full classical action that describes our interferometer is independent of the
coordinate choice, but it is not obvious whether this is enough to ensure
coordinate independence in the reduced phase space quantization. These
issues will be examined in Chapter 3.

It could also be argued that the reduced phase space approximation leads
to an artificial form of time-evolution that is not entirely consistent with
the “timeless” structure of canonical quantum gravity. For instance, the
lack of a satisfactory interpretation of reduced phase space minisuperspace
quantum cosmology was discussed in [60]. One might then be drawn to the
conclusion that in the limited setting of our approximations, the evolution
will necessarily be unitary (by construction), and we will escape Hawking’s
original arguments about pure states evolving into mixed states [61] by virtue
of our approximation scheme.
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2.4. Discussion

Certainly, our simple model does not have the features often associated
with nonunitary modifications to standard Hamiltonian evolution (such as
the inclusion of microscopic wormhole interactions [62]), but there is still
reason to believe the evolution defined by (2.48) could in principle exhibit
decoherence. For one thing, we have in some places used an approximate
Hamiltonian (2.72) that is quadratic in momenta and strictly Hermitian,
but it may not be possible to define a Hermitian Hamiltonian operator that
exactly corresponds to the solution of (2.48) (which is transcendental). For
another, even if one could solve (2.48), the resulting Hamiltonian would be
non-polynomial in both the momenta and the coordinate X. This means
that the time evolution of the wavefunction at X is not described by a finite
number of derivatives at X, and is thus nonlocal, in the sense that the evo-
lution equation is equivalent to an integro-differential equation with finitely-
many derivatives [63]-[66]. While some systems can be nonlocal in this way
and yet maintain coherence (such as in the case of relativistic particles in
flat spacetime [63], [64]), in other such systems there can be unexpected be-
haviour such as “nonlocally-induced randomness” [65], [66], which would in
our case be attributable to gravity. These studies are still in their infancy, so
it remains an open question whether or not this type of nonlocal behaviour
can be connected with gravitational intrinsic decoherence.
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Chapter 3

The Meaning of Time in
Reduced Phase Space

3.1 Coordinate Generalizations and Time
Transformations

In Section 2.2.4, we chose a specific coordinate system when we carried
out the Hamiltonian reduction. One naturally wonders whether there is
coordinate dependence in any of the results we have presented. The canon-
ical momentum in the reduced system certainly depends on the coordinate
choice, but one can show that a broad set of choices lead to the same reduced
classical action [58].

What about the quantization associated with the specific coordinate
choice we made? It is often claimed that different choices of a time variable
lead to unitarily inequivalent quantizations (see [67], for instance). Does
this imply that different coordinate choices lead to fundamentally different
interference patterns? For each choice of coordinates, we can uniquely define
a (classical) network of observers whose worldlines span the spacetime, so
a different coordinate choice produces a reduced phase space quantization
defined with respect to a different observer network. Which features of each
quantization reflect properties of the shell system itself, and which features
are due entirely to the properties of the observer network?

We will investigate differences that may arise due to different coordinate
choices by considering a family of coordinate systems that generalize the
Painlevé-Gullstrand coordinates used in the previous chapter. We will re-
peat many of the previous calculations, this time for an arbitrary member of
the family of coordinate systems. In doing so, we will face some serious dif-
ficulties interpreting the results and connecting the generalized calculations
with the previous ones.

Let us now describe the infinite family of coordinate systems that gen-
eralized our previous coordinates: in terms of the metric variables defined
above, we can define the coordinate family (as demonstrated by Martel and
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Poisson [68]) by

L = λ, R = r, N =
1

λ
, N r = ±

√
1− λ2f

λ2
, f = 1− 2M

r
, (3.1)

withM being the (enclosed) ADM mass and 0 < λ ≤ 1 corresponding to the
set of Painlevé family members. In the λ→ 0 limit, the coordinates defined
by (3.1) become the familiar (null) Eddington-Finkelstein coordinates 3.
In the upper limit, λ → 1, the coordinates (3.1) reduce to the Painlevé-
Gullstrand coordinates used in the previous chapters. We will choose the
positive sign for the shift vector N r, for simplicity.

The line element in these coordinates then takes the form

ds2 =
1

λ2
dt2λ + λ2

(
dr +

1

λ2

√
1− λ2fdtλ

)2

+ r2dΩ2. (3.2)

This generalized Painlevé-Gullstrand coordinate system still possesses
the connection between coordinate lines and infalling observers, as with the
standard λ = 1 coordinates. The quantity λ is related to the “initial velocity
at infinity”4 of an infalling observer:

λ =
√

1− v2
∞. (3.3)

This initial velocity is in turn related to the geodesic observer’s energy per
unit rest mass Ẽ through the standard expression Ẽ = 1/

√
1− v2

∞ [68].
Any particular generalized coordinate system in the family can therefore be
interpreted as a network of geodesic observers, each with the same energy
per unit rest mass. Any such network has the property that its observers
all have proper 4-velocities equal to a constant times the gradient of a time
function tλ, with the time function given by

tλ = T +

∫
dr

√
1− λ2f

f
. (3.4)

Here T is the Schwarzschild time, which is related to the standard (λ = 1)
Painlevé-Gullstrand time t by

t = T + 4M

(√
r

2M
+

1

2
ln

∣∣∣∣∣
√

r
2M − 1√
r

2M + 1

∣∣∣∣∣
)
. (3.5)

3Also known as Penrose-Eddington-Finkelstein coordinates, due to Penrose’s explicit
initial use of them [69].

4Following the convention from [68], we define positive observer velocity to be radially
inward, such that v∞ takes on values from 0 to 1 as λ varies from 1 to 0. This is the
opposite convention as the one used for the shell velocity.
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The time transformation (3.4) also implies that the relationship between
the time coordinates (at the shell) specified by two different choices of λ is

tλ − tλ′ = Fλ − Fλ′ , (3.6)

such that

Fλ =

∫
dX

√
1− λ2f

f

= 4H

[
X

4H

√
1− λ2f + ln

( √
f

1 +
√

1− λ2f

)

+

(
1− λ2

2

)
√

1− λ2
ln

(√
X

2H

(√
1− λ2 +

√
1− λ2f

)) (3.7)

and f = 1 − 2H/X. This expression differs from the corresponding (incor-
rect) expression presented by Martel and Poisson in [68], though one need
only perform some simple differentiation to see that (3.7) is the correct one.

In the context of investigating the connections between quantizations for
different time choices, the transformation defined by (3.6) and (3.7) has some
peculiar features. Most notably, the relation between two time coordinates
involves both the shell position X and the Hamiltonian H. This makes it
unclear under what conditions this transformation can be implemented; at
the quantum level, both X and H are operators, which implies that either
the relation between different time choices is operator-valued, or that we
may only be able to perform the transformation at the classical level. Then
it is no simple matter connecting the evolution operators for different time
choices, since each operator takes the form

Uλ(tλ) = e−iHtλ . (3.8)

Will the quantization for one choice of λ be interpreted from a different
choice λ′ as having an operator-valued time “parameter”?

To explore this issue, among others, we will quantize the shell system for
an arbitrary time choice in the reduced phase space approximation. Before
we can do this, we need to determine the reduced Hamiltonian structure in
the generalized coordinates, which we will now focus our attention on.
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3.2. Phase Space Reduction in a Family of Coordinate Systems

3.2 Phase Space Reduction in a Family of
Coordinate Systems

The starting point in the phase space reduction associated with the general-
ized Painlevé-Gullstrand coordinates (3.1) is again to consider the Liouville
form F on the full phase space Γ; just as in Chapter 2, this is given by

F = PδX +

∫
dr (πLδL+ πRδR). (3.9)

We can then pull this back to the representative hypersurface H̄λ ⊆ Γ associ-
ated with the particular coordinate choice for a given λ. The pulled-back Li-
ouville form Fλ induces a Liouville form on the reduced phase space through
the isomorphism between the reduced phase space Γ̄ and the representative
hypersurface H̄λ ⊆ Γ mentioned in Chapter 2. The induced Liouville form
on Γ̄ yields the canonical structure of our reduced system. As usual, the
reduced phase space Γ̄ is defined as the set of equivalence classes in Γ under
changes of coordinates.

To avoid repetition with Section 2.2.4, we will just sketch the steps in-
volved in the calculation of Fλ.

As with our previous coordinate choice, we must take care to include
a deformation region (in R) near the shell (X − ε < r < X), in order to
satisfy the gravitational constraints. Away from the shell, the gravitational
momenta solutions (4.22) evaluated in our new coordinates (3.1) are given
by

πL = ±R

√(
R′

λ

)2

− 1 +
2M(r)

R
, πR =

λ

R
π′L, (3.10)

with M(r) being a function that equals the ADM mass outside of the shell
and 0 inside.

We can then determine what conditions the gravitational constraints
defined in Section 2.2.3 impose on the metric function R by integrating these
constraints across the shell, and assuming both continuity of the (spatial)
metric and finiteness of the gravitational momenta. One then finds the
conditions

∆R′ = − V̄
R̂
, ∆πL = −P

λ
, (3.11)

where V̄ =
√
P 2 + M̄2, M̄ = M̂λ, and ∆ indicates the jump of a quantity

across the shell. By inspection, the metric function R defined in equation
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(3.12) can be generalized as

R(r, t) = r − ε

X
V̄ G

(
X − r
ε

)
, (3.12)

for a function G having the same properties as in Section 2.2.4, i.e.

lim
z→0+

dG(z)

dz
= 1 (3.13)

lim
z→0−

dG(z)

dz
= 0 , (3.14)

from which follows

lim
ε→0

R′(X − ε) = 1 +
V̄

X
(3.15)

lim
ε→0

R′(X + ε) = 1 . (3.16)

As can be expected from the form of the coordinate choice (3.1), the
πR term integrated over the deformation region will again give the only
contribution to the pullback of the Liouville form:

Fλ = PδX +

∫ X

X−ε
dr πRδR. (3.17)

In the ε→ 0 limit, we have, in the deformation region,

πR =
XR′′

λ

√(
R′

λ

)2 − 1
+O(1), (3.18)

which allows us to express the gravitational contribution to the Liouville
form as ∫ X

X−ε
dr πRδR = XδX

∫ X

X−ε
dr

R′′ (1−R′)

λ

√(
R′

λ

)2 − 1
+O(ε). (3.19)

We can then change the integration variable from r to v = R′, which yields∫ X

X−ε
dr πRδR =

XδX

λ

∫ R′−

1
dv

(1− v)√(
v
λ

)2 − 1
+O(ε), (3.20)
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with R′− being R′ evaluated just inside the shell. Integrating and rearranging
then leads to

δX
[
−P −Xλ

√
w +X

(√
1− λ2 − ln

(
1 +

√
1− λ2

))
+ X ln

(
1 + λ

√
w +

V̄ + P

X

)]
(3.21)

(plus terms that vanish as ε→ 0), where we have used the definition

w ≡ 1

λ2
− 1 +

2H

X
. (3.22)

This completes the calculation of Fλ, the pullback of the full Liouville form
F to H̄λ:

Fλ = PλδX, (3.23)

with the reduced canonical momentum evidently given by

Pλ = − Xλ
√
w +X

[√
1− λ2 − ln

(
1 +

√
1− λ2

)]
+ X ln

(
1 +

V̄ + P

X
+ λ
√
w

)
. (3.24)

In the reduced phase space, the unreduced momentum P becomes a con-
strained function of H and X. One can obtain this function by inserting the
gravitational momentum solutions away from the shell given by equation
(3.10) into the jump equations (3.11) and squaring. We then find that P is
constrained to solve

λ2H = V̄ +
M̄2

2X
− Pλ

√
w. (3.25)

It is straightforward to check that this reduces to the previous case intro-
duced in Chapter 2 when λ = 1.

3.3 Boundary Terms

In the previous Hamiltonian reduction, the boundary term we added to the
initial reduced action was (very conveniently) equal to −

∫
dtH, with H

being the ADM mass. Thus, the ADM mass was identified with the reduced
Hamiltonian of the system. We will now demonstrate that this property
holds for an arbitrary Painlevé family member.

As mentioned in Section 2.2.5, a nonzero boundary variation results
from integrating by parts the term

∫
dtλ dr N

rL(δπL)′, which is part of
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3.3. Boundary Terms

the momentum constraint. The boundary in this case is spatial infinity,
and as r → ∞ we now have N r →

√
1− λ2f/λ2, N → 1/λ, and πL →√

1/λ2 − 1 + 2M/r. It then readily follows that

δ(πL)→ δH√
1
λ2
− 1 + 2M

r

, (3.26)

and so δ(πL)N rL → δH. From this we can conclude that the variation of
the boundary term is cancelled if we add to the action the term

Ibdry = −
∫
dtλH, (3.27)

which has the same form as before, with the previous time t replaced by the
Painlevé family member time tλ.

We can then determine the reduced action associated with each family
member by adding the boundary term to the action defined by Fλ. The
result is

Iλreduced =

∫
dtλ

(
Pλ
dX

dtλ
−H

)
, (3.28)

with the reduced momentum now given by (3.24). As before, we can see
from the form of the reduced action (3.28) that the ADM mass is the reduced
Hamiltonian for an arbitrary Painlevé family member.

Let us now explicitly write the unreduced momentum P that satisfies
the constraint (3.25). The result is a function of X, H, and λ:

P =

√
1− λ2fh±

√
h2 −M2f

f
, (3.29)

with f = 1− 2H/X and h = H −M2/2X. One can easily confirm that this
reduces to the previous case given by equation (2.52) when λ = 1.

Though the equations seem somewhat more complicated, they are still of
the same form as before: P still obeys a quadratic equation, and the reduced
canonical momentum can still be explicitly determined. This remarkable fact
readily allows the previous calculations to be performed for arbitrary λ (for
0 < λ ≤ 1), so that one can straightforwardly investigate which properties
of the system depend on the particular choice of coordinates.
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3.4 Reduced Equations of Motion

In order to derive Hamilton’s equations of motion for the reduced system,
we will make use of the expression

P = X

√(
V̄

X
+ 1

)2

− λ2 −X
√

1− λ2f, (3.30)

which results from the gravitational momentum solution πL (3.10) and the
second jump condition (3.11). With (3.30), along with the implicit relation
(3.24), we can obtain

Ẋ =
∂H

∂Pλ
=

1

λ2

[
P

V̄
−
√

1− λ2f

]
. (3.31)

Solving (3.31) for P and substituting into (3.30) yields

Hλ

M(X)
− M(X)λ

2X
=

1−
(
Ẋλ2 +

√
1− λ2f

)√
1− λ2f√

1−
(
Ẋλ2 +

√
1− λ2f

)2
(3.32)

The line element (3.2) gives the relation between the proper time of the
shell, τ , and the coordinate time, tλ:

dτ2 =
1

λ2
dt2λ − λ2

(
dr +

1

λ2

√
1− λ2fdtλ

)2

, (3.33)

from which it follows that

dtλ
dτ

=
1

f

dX
dτ

√
1− λ2f +

√(
dX

dτ

)2

+ f

 . (3.34)

Using (3.34) to express Ẋ as Ẋ = dX
dτ

dτ
dtλ

and rearranging relation (3.30), we
find

H

M(X)
− M(X)

2X
=

√(
dX

dτ

)2

+ f (3.35)

which is the correct classical equation of motion for the shell.
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3.5 Transcendental Hamiltonian Approximations

Though it is not possible to solve the relation (3.24) for the Hamiltonian H
when X is finite, in Chapter 2 we presented an approximate Hamiltonian
(2.72) associated with the weak-field limit (large X) of the system defined by
the canonical momentum (2.48). We will now derive this result as a special
case of the results for arbitrary λ.

In the X → ∞ limit (flat spacetime), the Hamiltonian is given exactly
by

H =
1

1− v2
∞

(
−v∞Pλ +

√
M(X)2(1− v2

∞) + P 2
λ

)
. (3.36)

For finite but large X, it is possible to obtain the Hamiltonian for small
momentum Pλ. To this end, we choose the ansatz

H = H0 +H1Pλ +H2P
2
λ (3.37)

with some functions H0(X), H1(X), and H2(X). We substitute this ansatz
into the relation (3.24) and expand for large X and small Pλ. Then we
compare the coefficients for the various powers of Pλ and deduce for λ = 1

H0 = M − M2

18X
+

2M3

405X2
+O(1/X3) (3.38)

H1 = −2

3

√
2M

X
− M3/2

135
√

2

1

X3/2
+

161M5/2

48600
√

2X5/2
+O(1/X7/2)(3.39)

H2 =
1

2M
+

1

3X
+

M

270X2
+O(1/X3) . (3.40)

When the coordinate system corresponds to an observer with finite velocity
at infinity, we find

H0 ∼ M√
1− v2

∞
−
√

1− v2
∞M

3

24v2
∞X

2
(3.41)

H1 ∼ − v∞
1− v2

∞
− M

2Xv∞
√

1− v2
∞

+
M2

6v3
∞X

2
(3.42)

H2 ∼ 1

2M(1− v2
∞)3/2

+
1

2X(1− v2
∞)
− 3M

16X2v2
∞
√

1− v2
∞
. (3.43)

Note that these asymptotic expansions do not have the correct limit for
v∞ → 0. The reason for this is that for large X and finite v∞, we have
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√
1− λ2f ∼ 1/X (modulo a constant) whereas for vanishing v∞, we find√
1− f ∼ 1/

√
X. However, it is possible to find to the order to which we

expanded the Hamiltonian an interpolating function. Specifically, a possible
interpolating Hamiltonian is

H int
0 =

M√
1− v2

∞
+A0

√
v4
∞ +

B0

X2
+
C0

X3
−A0v

2
∞ (3.44)

H int
1 = −A1 −B1

√
v2
∞ +

C1

X(1 + v2
∞E1X)

+
3D1v

3
∞

2X

−D1

(
v6
∞ +

1

X

)3/2

−
√
v2
∞ +

E1

X
(3.45)

H int
2 = −A2

2
− B2v

2
∞

2 (1 + v2
∞X)

− C2

2

√
v4
∞ +

D2

X2
− 1

2

√
v4
∞ +

E2

X4
(3.46)

with the term zeroth-order in Pλ given explicitly by{
A0 = −M

27
, B0 =

9M2

4

√
1− v2

∞, C0 = −2M3

5

}
, (3.47)

the first-order coefficient given by

A1 = v∞

(
− 1− M3/2v8

∞
135
√

2
+

1

1− v2
∞

+
40(1− v2

∞)3/2
(

2
√

2M − 3
√
M

(1−v2∞)1/4

)2

M5/2(
√

2(1− v2
∞) + 30

√
M(1− 4v2

∞))

)
(3.48)

B1 =
40(1− v2

∞)7/2
(

2
√

2M − 3
√
m

(1−v2∞)1/4

)2 (
90
√
M − (

√
2 + 120

√
M)(1− v2

∞)
)

M5/2(1− v2
∞)2(

√
2(1− v2

∞) + 30
√
M(1− 4v2

∞))2

(3.49)

C1 =
M5

(√
2(1− v2

∞) + 30
√
M(1− 4v2

∞)
)2

14400(1− v2
∞)3

(
2
√

2M − 3
√
M

(1−v2∞)1/4

)2 (3.50)

D1 =
M3/2

135
√

2
(3.51)

E1 =
M√

1− v2
∞
, (3.52)
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and the quadratic coefficient given by

A2 = − 1

M (1− v2
∞)3/2

+ v2
∞

(
−1 +

16
√

1− v2
∞

−27M + 48
√

1− v2
∞

)
(3.53)

B2 = −2

3
(3.54)

C2 =
16
√

1− v2
∞

3(9M − 16
√

1− v2
∞)

(3.55)

D2 =
M2

18225
(3.56)

E2 =
(9M − 16

√
1− v2

∞)2

64(1− v2
∞)

. (3.57)

We now have all of the generalized asymptotics necessary to re-perform
the interferometric calculations of Chapter 2, this time for an arbitrary
member of the Painlevé-Gullstrand family of coordinate systems.

3.6 Interferometry in the Painlevé-Gullstrand
Family

3.6.1 Flat Spacetime Limit

Before exploring the implications of our generalized coordinates for the self-
gravitating system, let us see how the flat spacetime interferometer is af-
fected. We will consider single-mode inputs, as in Chapter 2, for simplicity.
In the flat spacetime limit our Hamiltonian takes the form (3.36), which we
can then take the nonrelativistic limit of (Pλ → 0) to obtain

H ∼ M̂√
1− v2

∞
− v∞

1− v2
∞
Pλ +

1

2M̂ (1− v2
∞)3/2

P 2
λ . (3.58)

Unlike the situation for finite X described in Section 3.5, this Hamiltonian
has the correct behaviour as v∞ → 0 (or, equivalently, λ → 1), and re-
produces the nonrelativistic, flat spacetime Hamiltonian given in Section
2.3.3.

The (exact) momentum Pλ that corresponds to equation (3.36) is given
by

Pλ = v∞H ±
√
H2 − M̂2. (3.59)
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This expression has the usual flat spacetime momentum in the v∞ → 0 limit,
and as v∞ → 1 (λ→ 0) leads to the “null observer” Hamiltonian

H =
P 2

0 + M̂2

2P0
. (3.60)

It should be noted that we still use the same symbol H here because the
actual value of the (classical) Hamiltonian is the same, despite being ex-
pressed in terms of a different momentum. Perhaps unsurprisingly, in the
null observer limit the exact momentum (3.59) is always positive for mas-
sive shells, regardless of whether the shell is ingoing or outgoing. In the
coordinate representation, the operator P̂0 is represented as −i∂/∂X, so
one might expect the inverse operator “1/P̂0” to be nonlocal. Whether or
not a nonlocal Hamiltonian can produce an evolution that is equivalent (or
perhaps just approximately equivalent) to a local Hamiltonian evolution is
an open question.

We will also make use of the “WKB momentum,” as in Section 2.3.4,
which in this context is defined as the solution of (3.58) (treated as an
equality) for Pλ:

Pwλ =M̂v∞
√

1− v2
∞

±
(
1− v2

∞
)3/4√√√√2M̂

[
H − M̂

(
1− 1

2v
2
∞√

1− v2
∞

)]
.

(3.61)

For a small observer velocity v∞, the special relativistic boost factors in the
WKB momentum expression (3.61) are approximately unity, and we are left
with

Pwλ ≈ M̂v∞ ±
√

2M̂
(
H − M̂

)
. (3.62)

This is just as one might expect: the shell momentum defined with respect to
our generalized Painlevé-Gullstrand coordinate system is given by the usual
nonrelativistic expression, offset by a momentum M̂v∞ that is attributed to
the shell due to the infalling nature of the coordinates.

The null observer limit of the WKB momentum (3.61), however, is ill-
defined. One can see from (3.58) that the quadratically truncated Hamilto-
nian has divergent terms as v∞ → 1. Thus, as we approach this limit we
must use the exact momentum (3.59) in our WKB modes, to avoid patho-
logical behaviour. As for the Hamiltonian, as we approach the null observer
limit we should use the exact Hamiltonian, though for simplicity we will
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expand in λ up to second order, such that

H ≈ Pλ
2

(
1 +

λ2

4

)
+
M̂2

2Pλ

(
1− M̂2λ2

4P 2
λ

)
. (3.63)

The Hamiltonian (3.63) has a perfectly good limit as λ → 0, but looks
slightly unwieldy. Even with the inverse powers of the momentum, we can
solve the corresponding Schrödinger equation in each section where M̂ is
constant (i.e. each side of the beam-splitter) by making use of the momen-
tum representation. When gravitational corrections are added, however,
inverse powers of X prevent us from avoiding a confrontation with nonlocal
operators. We will keep this in mind when considering whether or not there
are fundamental differences to the quantum evolution introduced by general
relativity.

For much slower asymptotic observers, with v∞ sufficiently less than
unity, the Hamiltonian (3.58) is well-behaved, and leads to the (simpler)
Schrödinger equation

i
∂

∂tλ
Ψ =

M̂√
1− v2

∞
Ψ +

iv∞
1− v2

∞
Ψ′ − 1

2 (1− v2
∞)3/2

(
1

M̂
Ψ′
)′
, (3.64)

with Hermitian factor-ordering on the last term. As well as being continuous,
one can immediately see by integrating (3.64) across the splitter at Xδ that
the wavefunction Ψ obeys the same jump condition as in Section 2.3.3;
namely, [

1

M̂
Ψ′
]
δ

= 0, (3.65)

with [·]δ indicating the jump of a quantity across Xδ. If we consider the
simple scattering problem from the right,

Ψ =

{
ψλ−+ +Rλ←ψλ++ : X > Xδ

Tλ←ψλ−− : X < Xδ

we realize that determination of the reflection and transmission amplitudes
is trivial, because they obey the same relations as in Section 2.3.3:

R̄λ← =
M−Pλ−+ −M+Pλ−−
M+Pλ−− −M−Pλ++

, T̄λ← =
M−(Pλ++ − Pλ−+)

M−Pλ++ −M+Pλ−−
, (3.66)

where now the momentum terms are given by (3.59), and the barred ampli-
tudes are related to the unbarred amplitudes via

R̄λ← ≡

√√√√∣∣∣∣∣
∂E

∂Pλ−+

∂E
∂Pλ++

∣∣∣∣∣Rλ←, T̄λ← ≡

√√√√∣∣∣∣∣
∂E

∂Pλ−+

∂E
∂Pλ−−

∣∣∣∣∣Tλ←. (3.67)
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As with our previous definitions, the first set of plus/minuses indicate out-
going/ingoing, and the second set indicate M±.

The same pattern occurs for scattering from the left, and the correspond-
ing amplitudes are

R̄λ→ =
M−Pλ++ −M+Pλ+−
M+Pλ−− −M−Pλ++

, T̄λ→ =
M+(Pλ+− − Pλ−−)

M−Pλ++ −M+Pλ−−
, (3.68)

using the similar definitions

R̄λ→ ≡

√√√√∣∣∣∣∣
∂E

∂Pλ+−
∂E

∂Pλ−−

∣∣∣∣∣Rλ→, T̄λ→ ≡

√√√√∣∣∣∣∣
∂E

∂Pλ+−
∂E

∂Pλ++

∣∣∣∣∣Tλ→. (3.69)

The details of sending an initial state through the interferometer thus
exactly parallel the nonrelativistic, flat spacetime case presented in Section
2.3.3. The reflection off of the inner and outer walls (X− and X+, respec-
tively) is described by the same reflection coefficients

R̄λ→ = −ei(φλ+++φλ−+), R̄λ← = −ei(φλ+−+φλ−−), (3.70)

with the definitions φλ±± =
∫ X±
Xδ

dXPλ±±, φλ±∓ =
∫ Xδ
X∓

dXPλ±∓ (signs

chosen together), and

R̄λ→ ≡

√√√√∣∣∣∣∣
∂E

∂Pλ++

∂E
∂Pλ−+

∣∣∣∣∣Rλ→, R̄λ← ≡
√√√√∣∣∣∣∣

∂E
∂Pλ−−
∂E

∂Pλ+−

∣∣∣∣∣Rλ←. (3.71)

The probability current Jλ still satisfies the continuity equation

∂

∂tλ

(
|Ψλ|2

)
+

∂

∂X
Jλ = 0, (3.72)

but this time the current is described by the generalized form (2.113), which
in this case is

Jλ = − v∞
1− v2

∞
|Ψλ|2 +

1

2iM̂ (1− v2
∞)3/2

(
Ψ∗λΨ′λ −ΨλΨ∗′λ

)
= − v∞

1− v2
∞
|Ψλ|2 +

1

(1− v2
∞)3/2

Jλs. (3.73)

In the last line, we used Jλs to denote the standard (nonrelativistic) ex-
pression (2.91), evaluated with the λ-dependent WKB state Ψλ. Expression
(3.73) implies that for real momenta, the input probability current is

Jλ0 =
|Ψλ0|2

1− v2
∞

(
Pλ−+

M+

√
1− v2

∞
− v∞

)
, (3.74)
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(a) E = 1.01, M− = 1.0097 (b) E = 1.1, M− = 1.0997

Figure 3.1: Sample reflection and transmission coefficients for the initial
beam-splitting using the exact flat spacetime momentum given by (3.59),
for M+ = 1 and different combinations of M− and E. The coefficients are
plotted against the asymptotic observer velocity, v∞.

which certainly differs in form from the previous flat spacetime result (2.92).
In this case the difference is superficial, because our initial WKB state Ψλ0 =
ψλ−+ has a modulus-squared given by

|Ψλ0|2 =

∣∣∣∣ ∂H

∂Pλ−+

∣∣∣∣−1

=

∣∣∣∣∣ Pλ−+

M+ (1− v2
∞)3/2

− v∞
1− v2

∞

∣∣∣∣∣
−1

, (3.75)

from which we can immediately deduce Jλ0 = −1.5

Let us take a moment to consider the reflection and transmission co-
efficients associated with the initial split. Since |Jλ0| = 1, the reflection

and transmission coefficients are given by |J (i)
λ+| and |J (i)

λ−| (respectively). A

simple calculation then confirms that |J (i)
λ+| = |Rλ←|

2 and |J (i)
λ−| = |Tλ←|

2.
Figures 3.1 and 3.2 highlight the drastic differences in the reflection and

transmission coefficients for the initial splitting, depending on whether one
uses the exact momentum (3.59) or the WKB momentum (3.61). What’s

5The previous initial current (2.92) is also equal to −1, although this was not explicitly
mentioned.
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(a) E = 1.01, M− = 1.0097 (b) E = 1.1, M− = 1.0997

Figure 3.2: Sample reflection and transmission coefficients for the initial
beam-splitting, using the flat spacetime WKB momentum given by (3.61),
for M+ = 1 and different combinations of E and M−. The coefficients are
plotted against the asymptotic observer velocity, v∞.

happening here is that the discriminant from (3.61) is changing signs, and so
the WKB momenta are taking on imaginary components. This is illustrated
in Figure 3.3. In the process, for the first set of parameters Figure 3.2a
shows that as v∞ increases from 0, the splitter continuously goes from being
a 50−50 splitter, to totally reflecting, and then to totally transmitting. This
is in stark contrast with the behaviour shown in Figure 3.1a for the same
parameters, which shows the splitter smoothly transitioning from being a
50−50 splitter for v∞ = 0 to being somewhat more reflecting (Rλ← → 1) as
the observer velocity reaches about half of the speed of light (v∞ = 1). After
this point, the shell momenta are too relativistic to be approximated by our
probability current (which is conserved for Hamiltonians that are quadratic
in momenta), resulting in a breakdown of the probabilistic interpretation of
our reflection and transmission coefficients. Figure 3.3 depicts the ingoing
and outgoing WKB momenta merging as the discriminant approaches zero,
after which there cease to be real WKB momenta. The straight lines are
the exact momenta, which continue (linearly) up to v∞ = 1.
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In the entire parameter range of v∞, the sum of the reflection and trans-
mission coefficients is identically 1 if we use only the WKB momenta in
the expressions for Rλ← and Tλ← (we will demonstrate this in a more gen-
eral context in the next section). If we use the exact momenta, we notice
that the probability current is not quite conserved, as the current expres-
sion was derived for systems with Hamiltonians that are exactly quadratic
in momentum. On the other hand, the phase in a WKB state is more
accurately the momentum obtained from inverting a Hamiltonian H(x, p)
with respect to p than it is the momentum obtained from solving H(x, p) ≈
H0(x) +H1(x)p+H2(x)p2 for p (= pw). Since phase information is crucial
for interferometry, and at the same time probability conservation is crucial
for a sensible interpretation of a quantum system, we will use the various
momenta carefully.

It should be mentioned that in Figures 3.1 and 3.2, the initial probability
current is equal to −1 for all v∞ ∈ [0, 1], though the initial state is defined
to be an ingoing WKB mode (with the same energy for each individual
plot). Strictly speaking, since each choice of v∞ defines a different coordi-
nate system (and therefore a different notion of time), this means that the
initial state is different for each value of v∞ being plotted. We shouldn’t be
surprised, then, that the reflection and transmission probabilities vary with
v∞, because this is not an indication that the coordinates used to describe
the initial scatter change these probabilities for a given initial state. We will
address this issue in the following sections.

Let us focus now on the final interferometer outputs. In the gener-
alized coordinates, we are no longer able to exploit the “identity” R̄2

← +
M+P−−
M−P−+

T̄ 2
← = 1, which led to the simple form of (2.104) and (2.105), since

it is no longer valid in the new coordinates. Instead, we must calculate the
final probability currents from the final output states defined by (2.101) and
(2.100). Using the fact that for single-mode WKB states in flat spacetime
the derivatives of the final states obey

d

dX
Ψ

(v)
λ± = iPλ±±Ψ

(v)
λ±, (3.76)

we can write the term Jλs as

Jλs =
Pλ±±
M±

∣∣∣Ψ(v)
λ±

∣∣∣2 . (3.77)

This means we can write the output currents as

J
(v)
λ± =

∣∣∣Ψ(v)
λ±

∣∣∣2(− v∞
1− v2

∞
+

1

M± (1− v2
∞)3/2

Pλ±±

)
(3.78)
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(a) WKB momenta and exact momenta for M− = 1.0097, E =
1.01

(b) WKB momenta and exact momenta for M− = 1.0997, E = 1.1

Figure 3.3: Various WKB momenta in flat spacetime, for M+ = 1 and dif-
ferent combinations of E and M−, plotted against the asymptotic observer
velocity, v∞. The curved lines are WKB momenta which converge at the
point where they become imaginary; at this point, they become significantly
different from the exact momenta (straight lines), which are real and dis-
tinct for all regions of the parameter space. To avoid cluttering the y-axis
with multiple labels, the y-values of the plots, which are various types of
momenta, are specified in the legends.
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3.6. Interferometry in the Painlevé-Gullstrand Family

which we can readily interpret to be

J
(v)
λ± =

∣∣∣Ψ(v)
λ±

∣∣∣2( ∂H
∂Pλ

)
±±

, (3.79)

with the partial derivative evaluated at Pλ±±. The expression (3.79) makes
intuitive sense: Hamilton’s equation for Ẋ and the identification of the

probability density ρ with
∣∣∣Ψ(v)

λ±

∣∣∣2 yield the familiar current relation

J = ρv, (3.80)

where we have used v = Ẋ to denote the shell velocity.
Taking the modulus-squared of the output states (2.101) gives us∣∣∣Ψ(v)
λ+

∣∣∣2 =

∣∣∣∣ ∂H

∂Pλ++

∣∣∣∣−1 (
R̄4
λ← + T̄ 2

λ←T̄
2
λ→ + 2R̄2

λ←T̄λ←T̄λ→ cos 2ϕλ
)

(3.81)

and∣∣∣Ψ(v)
λ−

∣∣∣2 =

∣∣∣∣ ∂H

∂Pλ−+

∣∣∣∣−1

T̄ 2
λ←
(
R̄2
λ← + R̄2

λ→ + 2R̄λ←R̄λ→ cos 2ϕλ
)
, (3.82)

with the definition ϕλ = (φλ++ + φλ−+ − φλ+− − φλ−−). Using (3.79), we
can express the final reflected and transmitted probability currents as

J
(v)
λ+ =

(
∂H

∂Pλ++

)
∣∣∣ ∂H
∂Pλ−+

∣∣∣
(
R̄4
λ← + T̄ 2

λ←T̄
2
λ→ + 2R̄2

λ←T̄λ←T̄λ→ cos 2ϕλ
)

(3.83)

and

J
(v)
λ− =

(
∂H

∂Pλ−−

)
∣∣∣ ∂H
∂Pλ−+

∣∣∣ T̄ 2
λ←
(
R̄2
λ← + R̄2

λ→ + 2R̄λ←R̄λ→ cos 2ϕλ
)
. (3.84)

These final output currents immediately determine the final reflection and

transmission coefficients, since Rλf = |J (v)
λ+ | and Tλf = |J (v)

λ− |. Implicit in
these expressions, as well as several other expressions in this section, is the
assumption that the momenta are real. We will enforce this reality condition
for the rest of this thesis, because apart from the above comments regarding
the discriminant of the WKB momenta switching signs in some regions of the
parameter space, we regard these imaginary components as an unnecessary
(and in this case, unphysical) addition to the interferometric analysis.
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3.6. Interferometry in the Painlevé-Gullstrand Family

How does the interference pattern in this case compare with the flat
spacetime case presented in Chapter 2? If we use the WKB momenta, the
final reflection and transmission coefficients take the simpler forms

Rλf =
[
1− 4R̄2

λ←
(
1− R̄2

λ←
)

sin2 ϕλ
]

(3.85)

and
Tλf = 4R̄2

λ←
(
1− R̄2

λ←
)

sin2 ϕλ, (3.86)

which bear a striking resemblance to the previous flat spacetime expressions
(2.104) and (2.105). Continuing the same steps as in Section 2.3.3 would
lead us to the phase condition

ϕλ = 2L+Pλ++ + 2L−Pλ−− =
nπ

2
(3.87)

(for n ∈ Z), which is the generalized form of (2.109). We can then deduce
the distance between nodes in the interference pattern to be

∆Lλn =
π

4Pλ++
, (3.88)

and again observe that coherence is fully present in the flat spacetime inter-
ferometer.

The node spacing (3.88) varies with the asymptotic observer velocity, but
we should be careful what we conclude from this, because there is still the
issue of a changing initial state to deal with. We will will see that the initial
state problem in question presents us with a serious obstacle in our investiga-
tion of the coordinate dependence of our description of the interferometer:
different coordinate choices define different notions of time, and different
definitions of time evolution. We expected this to be the case because of
(3.4)-(3.8), but we will see in Section 3.7 that the time transformation (3.6)
has some very peculiar consequences indeed.

3.6.2 General Relativistic Corrections

We will worry about the initial state issue in the next section; first, let us use
the generalized Hamiltonian asymptotics from Section 3.5 to determine the
final output reflection and transmission coefficients for our shell interferome-
ter by transforming the (tentative) input state accordingly. The Schrödinger
equation for the arbitrary quadratic Hamiltonian (3.37) takes the form

i
∂

∂tλ
Ψ = H0Ψ− i

2

(
2H1Ψ′ +H ′1Ψ

)
−
(
H2Ψ′

)′
, (3.89)
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3.6. Interferometry in the Painlevé-Gullstrand Family

and upon integration across Xδ one obtains the jump condition[
H2Ψ′

]
δ

= − i
2

[H1]δ Ψ(Xδ). (3.90)

To calculate the reflection and transmission amplitudes for the initial
scatter off of the beam-splitter, we consider the wavefunction

Ψ =

{
ψλ−+ +Rλ←ψλ++ : X > Xδ

Tλ←ψλ−− : X < Xδ

If we apply continuity at Xδ and the jump condition (3.108) we can deter-
mine the reflection amplitude Rλ← and transmission amplitude Tλ←. Mak-
ing use of the notation

∆

(
∂H

∂Pλ

)
=

1

2

((
∂H

∂Pλ

)
++

−
(
∂H

∂Pλ

)
−−

)
, (3.91)

∆ (H2Pλ)± =
1

2
H2± (Pλ+± − Pλ−±) , (3.92)

and
H2± = lim

ε→0
H2

∣∣∣
X=Xδ±ε

, (3.93)

we can express the barred amplitudes compactly as

R̄λ← =
2∆ (H2Pλ)+ −∆

(
∂H
∂Pλ

)
∆
(
∂H
∂Pλ

) (3.94)

and

T̄λ← =
2∆ (H2Pλ)+

∆
(
∂H
∂Pλ

) , (3.95)

for scattering from the right. Similarly, we can express the barred amplitudes
as

R̄λ→ =
2∆ (H2Pλ)− −∆

(
∂H
∂Pλ

)
∆
(
∂H
∂Pλ

) (3.96)

and

T̄λ→ =
2∆ (H2Pλ)−

∆
(
∂H
∂Pλ

) , (3.97)

for scattering from the left.
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3.6. Interferometry in the Painlevé-Gullstrand Family

Before working out the specific interferometric properties of our system
in the Painlevé-Gullstrand family of coordinates, let us explore the general
features of scattering with the Hamiltonian (3.37). We will assume, however,
that the arbitrary quadratic Hamiltonian still has a discontinuity at Xδ, to
serve as a beam-splitter. Dropping the λ subscript temporarily and solving
(3.37) for P gives us the WKB momentum,

P = − H1

2H2
±

√
(H −H0)

H2
+

(
H1

2H2

)2

. (3.98)

For brevity, we will denote this by P = P0± ± P±, with the ± subscripts
referring to which side of the splitter the quantity is evaluated at, and the
other ± indicating outgoing/ingoing. We can then express the WKB P -
derivatives as (

∂H

∂P

)
±±

= H1± + 2H2±P±± = ±2H2±P±. (3.99)

We can tell from (3.99) that the WKB P -derivatives satisfy∣∣∣∣∂H∂P
∣∣∣∣
+±

=

∣∣∣∣∂H∂P
∣∣∣∣
−±

, (3.100)

which implies that R̄← = R←, as well as R̄→ = R→, R̄→ = R→, and
R̄← = R←.

In the previous section it was pointed out that the initial probability
current is −1, and that the reflection and transmission coefficients for the
initial scatter off the beam-splitter are R2

λ← and T 2
λ←, respectively. We can

notice that this remains true for arbitrary quadratic Hamiltonians, since to
the order we are working at in ~, the derivative relation

d

dX
Ψλ± = iPλ±±Ψλ± (3.101)

holds, which in turn implies that the current relation

J
(v)
λ± =

∣∣∣Ψ(v)
λ±

∣∣∣2( ∂H
∂Pλ

)
±±

(3.102)

also holds. The aforementioned expressions for the reflection and transmis-
sion coefficients then directly follow.
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3.6. Interferometry in the Painlevé-Gullstrand Family

Probability is conserved in this description of the initial split provided
the reflection and transmission coefficients add up to 1, since by definition
these coefficients give the splitting probabilities. Specifically, we find

R2
← + T 2

← =

∣∣∣∣∂H∂P
∣∣∣∣−1

−+

(
R̄2
←

∣∣∣∣∂H∂P
∣∣∣∣
++

+ T̄ 2
←

∣∣∣∣∂H∂P
∣∣∣∣
−−

)

=

∣∣∣∣∂H∂P
∣∣∣∣−1

−+

(2∆ (H2P )+ −∆
(
∂H
∂P

)
∆
(
∂H
∂P

) )2 ∣∣∣∣∂H∂P
∣∣∣∣
++

+

(
2∆ (H2P )+

∆
(
∂H
∂P

) )2 ∣∣∣∣∂H∂P
∣∣∣∣
−−


=

8∆ (H2P )2
+ − 4∆ (H2P )+

(
∂H
∂P

)
++

+
(
∂H
∂P

)
++

∆
(
∂H
∂P

)∣∣∂H
∂P

∣∣
−+

∆
(
∂H
∂P

)
=

1

(2H2+P+) 1
2 (2H2+P+ + 2H2−P−)

[
8P 2

+H
2
2+

−2 (2H2+P+) (2P+)H2+ +H2+P+ (2H2+P+ + 2H2−P−)]

=
4P 2

+H2+ − 4H2+P
2
+ + P+ (H2+P+ +H2−P−)

P+ (H2+P+ +H2−P−)

= 1, (3.103)

thus confirming that probability is conserved for the initial split, if we use
the WKB momenta in our scattering expressions.

The final output states are determined by equations (2.101) and (2.100),
which yield

Ψ
(v)
λ+ = ψλ++

(
Rλ←e

iΦλ++Rλ→eiΦλ−+Rλ←

+ Tλ←e
iΦλ−−Rλ←eiΦλ+−Tλ→

)
, (3.104)

and

Ψ
(v)
λ− = ψλ−−

(
Rλ←e

iΦλ++Rλ→eiΦλ−+Tλ←

+ Tλ←e
iΦλ−−Rλ←eiΦλ+−Rλ→

)
, (3.105)

with the mode functions ψλ±± evaluated at X = Xδ + 0±.
Taking the modulus-squared of the final states (3.104) and (3.105) gives
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us ∣∣∣Ψ(v)
λ+

∣∣∣2 = |ψλ++|2
[∣∣∣R2

λ←R̃
λ→
∣∣∣2 +

∣∣∣Tλ←Tλ→R̃λ←∣∣∣2
+ 2 <

{
R2
λ←R̃

λ→
(
Tλ←Tλ→R̃

λ←
)∗}]

, (3.106)

and ∣∣∣Ψ(v)
λ−

∣∣∣2 = |Tλ←ψλ−−|2
[∣∣∣Rλ←R̃λ→∣∣∣2 +

∣∣∣Rλ→R̃λ←∣∣∣2
+ 2 <

{
Rλ←R̃

λ→
(
Rλ→R̃

λ←
)∗}]

, (3.107)

where <{·} denotes the real part of a quantity and (·)∗ denotes complex
conjugation. We have also used the abbreviations R̃λ→ = Rλ→ei(Φλ+++Φλ−+)

and R̃λ← = Rλ←ei(Φλ−−+Φλ+−), for brevity.
The same reasoning we used to establish that the probability is conserved

for the initial split can be easily extended to show that the final interferom-
eter output probabilities also sum to unity if the WKB momenta are used,
but we will not belabour that point here. We will instead return to the task
of determining the final output probabilities in the Painlevé-Gullstrand fam-
ily of coordinates. The case λ = 1 was presented in Chapter 2, so we will
restrict our attention to 0 < λ < 1. Using the asymptotic Hamiltonian
expressions (3.41)-(3.43), the jump condition (3.90) becomes[(

1

λM̂
+

1

X

)
Ψ′
]
δ

=
iλ∆M

v∞Xδ
Ψ(Xδ), (3.108)

with ∆M = (M+ −M−) /2. This parallels the previous gravitational jump
condition (2.116), though we can see from the right hand side of (3.108) that
the v∞ → 0 limit is ill-defined.

The reflection and transmission amplitudes for scattering from the right
can be written as

R̄λ← =

λ∆M
v∞Xδ

+
(

1
λM−

+ 1
Xδ

)
Pλ−− −

(
1

λM+
+ 1

Xδ

)
Pλ−+

− λ∆M
v∞Xδ

−
(

1
λM−

+ 1
Xδ

)
Pλ−− +

(
1

λM+
+ 1

Xδ

)
Pλ++

(3.109)

and

T̄λ← =

(
1

λM+
+ 1

Xδ

)
(Pλ++ − Pλ−+)

− λ∆M
v∞Xδ

−
(

1
λM−

+ 1
Xδ

)
Pλ−− +

(
1

λM+
+ 1

Xδ

)
Pλ++

. (3.110)
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which correspond to the previous gravitational reflection and transmission
amplitudes (2.117) and (2.118). Similarly, for scattering from the left we
have

R̄λ→ =

λ∆M
v∞Xδ

+
(

1
λM−

+ 1
Xδ

)
Pλ+− −

(
1

λM+
+ 1

Xδ

)
Pλ++

− λ∆M
v∞Xδ

−
(

1
λM−

+ 1
Xδ

)
Pλ−− +

(
1

λM+
+ 1

Xδ

)
Pλ++

(3.111)

and

T̄λ→ =

(
1

λM−
+ 1

Xδ

)
(Pλ+− − Pλ−−)

− λ∆M
v∞Xδ

−
(

1
λM−

+ 1
Xδ

)
Pλ−− +

(
1

λM+
+ 1

Xδ

)
Pλ++

, (3.112)

which are the analogs of (2.119) and (2.120). Remarkably, as v∞ → 0,
the transmission amplitudes from both the left and right approach zero, for
any finite values of the remaining parameters. This does not reproduce the
Painlevé-Gullstrand limit presented in the previous chapter, and so is clearly
not the correct behaviour as v∞ → 0; the singular nature of the Hamiltonian
asymptotics (3.41)-(3.43) is causing our WKB scattering approximation to
break down.

To resolve this issue, we can use the interpolating Hamiltonian we derived
in Section 3.5. Though the interpolating Hamiltonian has the correct limit
as v∞ → 0, its use leads to some ugly expressions, which we will not present
here. Nonetheless, even with the interpolating Hamiltonian, one still ends
up with reflection and transmission probabilities that are λ-dependent, and
it is unclear exactly how to interpret this, given the λ-dependence of the
initial state.

A similar issue arises when using the reflection and transmission am-
plitudes to determine the node spacing in the interference pattern. The
oscillatory part of the final reflection and transmission coefficients involves
the phase

ϕ̄λ = Φλ++ + Φλ−+ − Φλ+− − Φλ−−, (3.113)

with Φλ±±̃ = φλ±±̃ − Htλ±±̃ and φ±±̃ = ±±̃
∫ X±̃
Xδ

dX Pλ±±̃. Modulo a
possible factor of 2, this means that if we fix all other system parameters
and vary the outer interferometer arm length L+ = X+ − Xδ, the node
spacing in phase space for the nth node is given by ϕ̄λ(n+1) − ϕ̄λn = π, for

ϕ̄λn =

∫ X+n

Xδ

dX (Pλ++ − Pλ−+)−
∫ Xδ

X−

dX (Pλ+− − Pλ−−)

−H (tλ++ + tλ−+ − tλ+− − tλ−−) . (3.114)
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If we make the assumption of equal travel times, i.e. we recombine the
quantum states after a definite (shared) coordinate time has elapsed, then
the node spacing condition becomes

π = ϕ̄λ(n+1) − ϕ̄λn =

∫ X+(n+1)

X+n

dX (Pλ++ − Pλ−+) . (3.115)

We can further simplify the analysis by working in a regime where the node
spacing is much smaller than the outer interferometer arm length; in this
case we can use the definitions ∆Ln = L+(n+1) − L+n, L+n = X+n − Xδ,
∆(Pλ)± = (Pλ+± − Pλ−±)/2, and ∆(Pλ)+n = ∆(Pλ)+|X=X+n

to approxi-
mate the integral in (3.115) as

π = 2

∫ X+n+∆Ln

X+n

dX ∆ (Pλ)+

≈ 2∆ (Pλ)+n ∆Ln +

(
∂∆ (Pλ)+n

∂∆Ln

)
(∆Ln)2 . (3.116)

When solved for the node spacing ∆Ln, the approximation (3.116) yields

∆Ln =

−∆ (Pλ)+n ±
√(

∆ (Pλ)+n

)2
+ π

(
∂∆(Pλ)+n
∂∆Ln

)
(
∂∆(Pλ)+n
∂∆Ln

) . (3.117)

As the outer interferometer arm length increases, the node spacing changes
as

∂∆Ln
∂L+n

=
∂∆Ln
∂X+n

, (3.118)

which clearly has a rather complicated dependence on λ.

3.7 Discussion

What can we conclude from the λ-dependence of this interference pattern?
Since each λ specifies a coordinate choice, and this coordinate choice can be
associated with a network of infalling observers, one might wonder if coher-
ence itself could be observer-dependent. At first sight, this seems like quite
an unintuitive possibility, but can we rule it out on consistency grounds?
If a beam-splitter has a transmission probability of 50% according to one
observer network, then that observer network could be used to make a series
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of output measurements, and there would be roughly 50% recorded trans-
missions. Is this not an objective property of the beam-splitter, agreed upon
by any other observer network?

To address these questions, let us return to the issue about the initial
state mentioned earlier in the Chapter. In Chapter 2, we chose an initial
(ingoing) WKB state of the form

Ψ0 =
ei

∫
dX P−+√

|∂H/∂P−+|
≡ ψ−+, (3.119)

evaluated at H = E, which we generalized in the previous section to

Ψλ0 = ψλ−+. (3.120)

The problem with this generalization is that although the states ψ−+ and
ψλ−+ have the same energy, for λ 6= 1 they are, strictly speaking, different
states. The time dependence of the generalized initial state, for instance, is
defined by

Ψλ−+ = ψλ−+e
−iEtλ , (3.121)

with tλ being related to the previous Painlevé-Gullstrand time by

t− tλ =

∫
dX

√
2E/X

f
−
∫
dX

√
1− λ2f

f
(3.122)

as a result of the transformations presented in Section 3.1. Here f = 1 −
2E/X, and the integration can be performed to obtain

t− tλ = 4E

(√
X

2E
+

1

2
ln

∣∣∣∣∣
√
X/2E − 1√
X/2E + 1

∣∣∣∣∣
)

−4E

[
X

4E

√
1− λ2f + ln

( √
f

1 +
√

1− λ2f

)

+

(
1− λ2

2

)
√

1− λ2
ln

(√
X

2E

(√
1− λ2 +

√
1− λ2f

)) .(3.123)

One can then see that t = 0 corresponds to a generalized time tλ that
depends on the values of X and E, which implies that the (classical) trans-
formation between the two definitions of time depends on the location in
phase space. At the quantum level, the state of a system with respect to a
particular coordinate choice at a specific value of the associated coordinate
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time does not in general correspond to a system state with respect to a dif-
ferent coordinate choice at any individual value of the time associated with
this other coordinate choice.6 The very notion of “initial state” therefore
seems to be coordinate-dependent, which would potentially render the ques-
tion of how the coordinate choice affects the propagation of a given initial
state through the interferometer ill-defined.

To avoid this paradoxical conclusion, one could use an augmented family
of coordinate systems that had equivalent constant-time hypersurfaces in
the region where the initial state is defined, but were different everywhere
else. For instance, one could have a family that were equal to Painlevé-
Gullstrand coordinates (λ = 1) for r > r0, but for r < r0 the coordinate
systems in this new family range from the λ = 1 to the λ = 0 coordinates
of the original family. The different coordinate systems for r < r0 then
continuously connect to the same (λ = 1) coordinates for r > r0, which
enables us to define the same initial state for each member of the new family
(in the r > r0 region). This idea was suggested very recently (by Bill Unruh),
and until it has been fully implemented we will have to accept that the
analysis of coordinate dependence in our description of the self-gravitating
interferometer is inconclusive.

6Given the connection between coordinate choices and observer networks, we might
summarize this behaviour with the (somewhat Rovellian) maxim, “Everyone else’s time
is an operator except one’s own.”
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Chapter 4

Superpositions of Clocks and
Intrinsic Decoherence

4.1 Introduction

Time dilation is one of the most profound consequences of relativity theory.
In classical systems, time dilation effects are fairly well understood, but in
quantum systems there are still many questions that remain unanswered.
One such question is how to properly incorporate the effects of time dilation
into the quantum evolution of composite systems, either in the limit of flat
spacetime or in situations where gravitational effects are significant.

In a series of papers by Pikovski et al. [12]-[14], for instance, a “univer-
sal” decoherence mechanism was proposed for composite general relativistic
systems, due to gravitational time dilation. In [12], Pikovski et al. present
an approximate quantum description of such a composite system that as
a whole behaves as a point particle (located at the center-of-mass of the
system) with a well-defined proper time, with internal degrees of freedom
that are defined in the rest frame of the system. The system is placed
in the gravitational field of the earth, and the authors postulate that the
quantum evolution of the system with respect to a laboratory frame on the
surface of the earth should be given by a Schrödinger equation of the form
i DDτΨ = HrestΨ, with τ being the proper time of the system (treated as a
point particle), and Hrest being the rest-frame Hamiltonian. Expressing the
proper time derivative in terms of the lab-frame time t induces a coupling
between the internal degrees of freedom and the center-of-mass coordinate,
and if one only keeps track of the center-of-mass dynamics, tracing out over
the internal degrees of freedom leads to a novel form of the “third-party
decoherence” described in Chapter 1. It is this effect, and variations on the
theme, that we focus on in this chapter.

It is unclear whether any inconsistencies result from simply replacing
the usual time derivative in the Schrödinger equation with a proper time
derivative for the system’s center-of-mass, since this is not the standard
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procedure for quantizing general relativistic systems. Rather than make
use of the same model used by Pikovski et al., we will explore similar ideas
with a model that generalizes the self-gravitating spherical perfect fluid shell
introduced in Chapter 2. Whereas the original model was introduced to
study the consequences of general relativity on massive interferometers, here
we extend the model to include an “internal” harmonic oscillator, to analyze
the quantum structure of composite relativistic systems. By “internal,” we
mean that the harmonic oscillator is described by an internal coordinate q
that oscillates in an abstract space that is not part of the spacetime; such an
internal degree of freedom could represent the values of a single spherically
symmetric mode of an oscillating field confined to the surface of the shell,
for instance. The internal coordinate oscillates harmonically with respect to
the proper time of the (external) shell position, and therefore the oscillator
serves as a clock, evolving based on the local flow of time determined by
the external motion. Unlike the postulated evolution in [12], however, our
internal coordinates evolve classically according to the proper time of the
shell, and then a Hamiltonian H is defined with respect to a coordinate time
t, which then allows us to quantize the system with a standard Schrödinger
equation i ∂∂tΨ = HΨ. This avoids any extra postulates about how such
systems evolve quantum-mechanically.

We should keep in mind that the internal oscillator contributes to the
external shell dynamics as well, which in turn affects the spacetime; in other
words, the very ticking of our clock influences the manner in which it ticks.
This is especially relevant in the quantized system, because uncertainties in
clock readings become intimately connected with uncertainties in spacetime
geometry.

We will explore some of the ambiguities associated with the quantum
theory of this generalized shell system in reduced phase space, and then re-
late an approximate form of our reduced Hamiltonian with the Hamiltonian
presented in [12]. We exploit this parallel to demonstrate time dilation deco-
herence in our system, and observe that when the fluid pressure is nonzero,
the (external) shell position decoheres even in the (gravity-free) limit of flat
spacetime, because of the acceleration caused by the pressure. This indicates
that the proposed effect results from proper time differences alone, and as
such is not necessarily related to gravity.

Further, we can use our generalized shell model to include self-interaction
corrections to the time dilation decoherence, such that the decoherence is
altered by the manner in which our shell and its clock influence the state of
their own geometry. We find that even without pressure, the self-gravitation
of the shell leads to the nonzero acceleration required to produce the time di-
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lation decoherence. We interpret this “self-decoherence” as a fundamentally
gravitational effect.

4.2 Classical Action

For context, before adding an internal oscillator, the self-gravitating spher-
ical perfect fluid shell model introduced in Chapter 2 is described by the
action Ix + IG, where Ix is the shell action

Ix = −
∫
dλ

√
−gµν

dxµ

dλ

dxν

dλ
M(R), (4.1)

with all quantities evaluated on the shell history, and IG is the Einstein-
Hilbert action

I =
1

16π

∫
d4x

√
−g(4) R(4). (4.2)

Here superscripts on the metric determinant g and the Ricci scalar R indi-
cate that these are constructed from the full (3 + 1)-dimensional spacetime
metric components {gµν}. We make use of the ADM form of the metric in
spherical symmetry,

gµνdx
µdxν = −N2dt2 + L2 (dr +N rdt)2 +R2dΩ2, (4.3)

where N is the lapse function, N r is the radial component of the shift
vector, and L2 and R2 are the only nontrivial components of the spatial
metric [54]. It is then clear that R is the “radius” of the shell, obtained
from the area 4πR2 of symmetry two-spheres. The shell contribution Ix is
analogous to a free relativistic particle action, except with a mass M that
depends on the position-dependent metric function R; the function M(R)
serves to parametrize the relationship between the density σ = M(R)/4πR2

and pressure Pσ = −M ′(R)/8πR of the fluid.
We add an internal oscillator to our shell with the action

Iq =
1

2

∫
dτ

[
m

(
dq

dτ

)2

− kq2

]
, (4.4)

with τ being the proper time evaluated on the shell history, and q being an
internal coordinate that does not take values in the (external) spacetime.
The quantity k is related to ω0, the natural frequency of the oscillator,
via k = mω2

0. The action (4.4) is manifestly invariant under coordinate
transformations, as it only makes use of the proper time of the shell.
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4.2. Classical Action

It simplifies the description to parametrize the shell history with the co-
ordinate time t, such that the classical shell motion is defined by a trajectory
r = X(t). We can use the shell 4-velocity uµ = (dt/dτ)(1, Ẋ, 0, 0) to express
the proper time differentials as

dτ = −uµdxµ = τ̇ dt (4.5)

and
dq

dτ
= −uµ∂µq = τ̇−1dq

dt
. (4.6)

Now q is being treated as a function solely of coordinate time t, to reflect
our choice of parametrization. The 4-velocity normalization uµuµ = −1 then
implies that one can express the derivative of the proper time with respect
to the coordinate time as

τ̇ =

∫
dr

√
N2 − L2(N r + Ẋ)2δ(r −X)

=

√
N̂2 − L̂2(N̂ r + Ẋ)2. (4.7)

An overhat denotes that a quantity is to be evaluated on the shell history;
likewise, it is understood that the overdots denote coordinate-time deriva-
tives along the shell trajectory.

If we define the original shell Lagrangian as

Lx = −
∫
dr

√
N2 − L2(N r + Ẋ)2M(R)δ(r −X)

= −τ̇ M̂ (4.8)

and the oscillator Lagrangian as

Lq =
1

2

∫
dr τ̇

[
m

(
q̇

τ̇

)2

− kq2

]
δ(r −X)

=
1

2

(
m
q̇2

τ̇
− kτ̇q2

)
, (4.9)

then the shell-oscillator action is given by

Ishell =

∫
dtL =

∫
dt (Lx + Lq). (4.10)
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4.3 Hamiltonianization

We can Hamiltonianize the shell-oscillator system with the Legendre trans-
formation H = PẊ + pq̇ − L. The momentum p conjugate to the internal
coordinate q is given by

p ≡ ∂L
∂q̇

= m

∫
dr

q̇

τ̇
δ(r −X) = m

q̇

τ̇
, (4.11)

and that the momentum conjugate to the shell position X is given by

P ≡ ∂L
∂Ẋ

= −M̂ ∂τ̇

∂Ẋ
− 1

2
m

(
q̇

τ̇

)2 ∂τ̇

∂Ẋ
− 1

2
kq2 ∂τ̇

∂Ẋ

= − ∂τ̇

∂Ẋ

(
M̂ +

p2

2m
+

1

2
kq2

)
= − ∂τ̇

∂Ẋ

(
M̂ +Hq

)
, (4.12)

where the internal “clock” Hamiltonian Hq = p2/2m+kq2/2 takes the form
of a (free) harmonic oscillator. Introducing the notation M̃ = M̂ +Hq, one
can observe that our shell-oscillator system becomes very similar to the shell
system without the oscillator, subject to the transformation M̂ → M̃ .

More explicitly, the shell momentum P can be expressed as

P =

∫
dr

L2
(
N r + Ẋ

)
M̃√

N2 − L2
(
N r + Ẋ

)2
δ (r −X), (4.13)

from which we can solve for Ẋ to obtain

Ẋ =

∫
dr

(
NP

L
√
P 2 + L2M̃2

−N r

)
δ (r −X)

=
N̂P

L̂
√
P 2 + L̂2M̃2

− N̂ r. (4.14)

The Legendre transformation then gives us the Hamiltonian

H = PẊ + pq̇ − L =

∫
dr (NHs

t +N rHs
r ), (4.15)

with the definitions

Hs
t =

√
L−2P 2 + M̃2δ(r −X),

Hs
r = −Pδ(r −X). (4.16)

75



4.4. Reduced Phase Space Quantization

We remind the reader that M̃ = M̂ +Hq, so our clock Hamiltonian adds to
the (position-dependent) shell mass M̂ to alter the Hamiltonian constraint
from the form it took in Chapters 2 and 3.

Hamiltonianizing the gravitational sector as well, as in Chapter 2, leads
to the total action

I =

∫
dt
(
PẊ + pq̇

)
+

∫
dt dr

(
πRṘ+ πLL̇−NHt −N rHr

)
, (4.17)

for Ht = Hs
t +HG

t and Hr = Hs
r +HG

r , such that

HG
t =

Lπ2
L

2R2
− πLπR

R
+

(
RR′

L

)′
− (R′)2

2L
− L

2
,

HG
r = R′πR − Lπ′L. (4.18)

4.4 Reduced Phase Space Quantization

Since we are working in spherical symmetry, the metric itself has no actual
degrees of freedom, because although there are only two gravitational con-
straints (Ht = 0 and Hr = 0), there are also only two independent metric
functions (L and R). Accordingly, one can obtain an unconstrained descrip-
tion of the system by making a coordinate choice, solving the constraints for
the corresponding gravitational momenta, and inserting the solutions into
the Liouville form F on the full phase space,

F = PδX + pδq +

∫
dr (πLδL+ πRδR). (4.19)

This amounts to a pullback of the full Liouville form to the representative
hypersurface defined by the coordinate choice. From the Liouville pullback,
denoted by F̃ , we can deduce the canonical structure of the reduced phase
space, which only depends on the shell-oscillator variables X and q (and
their momenta).

To solve the gravitational constraints, first consider the following linear
combination of the constraints, away from the shell:

− R′

L
Ht −

πL
RL

Hr =M′, (4.20)

for

M(r) =
π2
L

2R
+
R

2
− R(R′)2

2L2
. (4.21)
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4.4. Reduced Phase Space Quantization

The quantity M(r) corresponds to the ADM mass H when evaluated out-
side of the shell, and vanishes inside the shell. We can now solve for the
gravitational momenta πL, πR away from the shell. The result is

πL = ±R

√(
R′

L

)2

− 1 +
2M
R

, πR =
L

R′
π′L. (4.22)

Assuming a continuous metric and singularity-free gravitational mo-
menta, we can integrate the gravitational constraints (Ht = 0 and Hr = 0)
across the shell, from which we obtain the jump conditions

∆R′ = − Ṽ
R̂
, ∆πL = −P

L̂
, (4.23)

where Ṽ =
√
P 2 + M̃2. We use ∆ to denote the jump of a quantity across

the shell (at r = X(t)).
The coordinates we will use resemble the Painlevé-Gullstrand coordi-

nates {L = 1, R = r}, though the jump conditions force us to include a
deformation region (X − ε < r < X) near the shell. By inspection, the
required metric function R can be generalized as

R(r, t) = r − ε

X
Ṽ G

(
X − r
ε

)
, (4.24)

for a function G having the properties

lim
z→0+

dG(z)

dz
= 1 (4.25)

lim
z→0−

dG(z)

dz
= 0 , (4.26)

from which it follows that

lim
ε→0

R′(X − ε) = 1 +
Ṽ

X
(4.27)

lim
ε→0

R′(X + ε) = 1 . (4.28)

By inserting the gravitational momentum solutions (4.22) associated
with the coodinate choice (4.24) into the jump equations (4.23) and squar-
ing, one finds

H =
√
P 2 + M̃2 +

M̃2

2X
− P

√
2H

X
. (4.29)
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This implies that the unreduced momentum P is implicitly defined as a
function of the reduced phase space quantities X, q, p, and H: one can
easily solve (4.29) to obtain

P =
1

1− 2H
X

(√
2H

X

(
H − M̃2

2X

))
(4.30)

± 1

1− 2H
X


√√√√(H − M̃2

2X

)2

− M̃2

(
1− 2H

X

) .

The ± in (4.30) indicates whether the shell is outgoing (+) or ingoing (-),
with respect to our choice of coordinates.

Let us now calculate the pullback of the full Liouville form to the rep-
resentative hypersurface defined by our coordinate choice. The condition
L = 1 and the fact that R = r outside of the deformation region implies
that

F̃ = PδX + pδq +

∫ X

X−ε
dr πRδR. (4.31)

We can then simplify the remaining integral by changing the integration
variable from r to v = R′, which yields∫ X

X−ε
dr πRδR = XδX

∫ R′−

1
dv

(1− v)√
v2 − 1

+O(ε), (4.32)

with R′− being R′ evaluated just inside the shell. Now the integration is
trivial, and we can easily obtain the desired Liouville form pullback,

F = PcδX + pδq, (4.33)

with the reduced canonical momentum for the shell position satisfying

Pc = −
√

2HX +X ln

(
1 +

Ṽ + P

X
+

√
2H

X

)
. (4.34)

This expression gives an implicit definition of the Hamiltonian H on the
reduced phase space, as a function of the shell-oscillator variables (X and
q), along with the momenta that are conjugate to them in the reduced phase
space (Pc and p, respectively).

Just as the expressions (2.47) and (2.48) from Chapter 2 were shown to be
equivalent, the expression (4.34) for the reduced canonical shell momentum
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4.4. Reduced Phase Space Quantization

Pc is equivalent to

Pc = −
√

2HX −X ln

(
X + Ṽ − P −

√
2HX

X

)
, (4.35)

despite the different minus sign placement.
To gain some intuition for how the presence of the oscillator alters the

reduced dynamics, let us consider the flat spacetime limit of the system
defined by (4.35). Keeping in mind the similarities with the relativistic-
particle-like structure of our shell system, it should be unsurprising that in
this limit (4.35) becomes

Pc = ±
√
H2 − M̃2 = ±

√
H2 −

(
M̂ +Hq

)2
, (4.36)

and therefore the Hamiltonian is given by

H =

√
P 2
c + M̃2 =

√
P 2
c +

(
M̂ +Hq

)2
. (4.37)

In the nonrelativistic regime (i.e. small Pc), the Hamiltonian can then be
expressed as

H ≈ M̂ +Hq +
P 2
c

2
(
M̂ +Hq

)
= M̂ +

1

2
kq2 +

p2

2m
+

P 2
c

2
(
M̂ + 1

2kq
2 + p2

2m

) . (4.38)

The last term in this approximate Hamiltonian is an effective coupling be-
tween the internal oscillator variables (q and p) and the external shell vari-
ables (X and Pc). The coupling is of course produced by the fact that the
internal “clock” oscillates harmonically with the shell’s proper time, the flow
of which is influenced by the external variables.

Even in the flat spacetime nonrelativistic limit, one can tell from the
appearance of the clock Hamiltonian Hq in the denominator of the last
term in (4.38) that exact quantization will require nonstandard techniques.
The Hamiltonian (4.38) leads to the following Schrödinger equation, in the
coordinate basis:

i
∂

∂t
Ψ =

(
M̂ +

1

2
kq2 − 1

2m

∂2

∂q2

)
Ψ

−1

2

∂

∂X

[
1

M̂ + 1
2kq

2 − 1
2m

∂2

∂q2

]
∂

∂X
Ψ. (4.39)
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The factor-ordering in the last term of (4.39) was chosen to make the differ-
ential operator Hermitian, but there is still some ambiguity in the meaning of
the bracketed factor between the X-derivatives, since the formal expression
has q-derivatives in the denominator.

To formulate a more tractable problem, let us consider the following
approximation to the Hamiltonian (4.38):

H = M̂ +Hq +
P 2
c

2M̂
(

1 +
Hq

M̂

)
≈ M̂ +Hq +

P 2
c

2M̂

(
1− Hq

M̂

)
, (4.40)

which should be valid as long as the shell mass M̂ is sufficiently larger
than the clock energy Hq. In this case the system decomposes into a more
standard form

H = H0 +Hxq = Hx +Hq +Hxq, (4.41)

with the approximate shell Hamiltonian Hx = M̂ + P 2
c /2M̂ , the internal

“clock” Hamiltonian Hq = p2/2m+ kq2/2, and the interaction

Hxq = − P 2
c

2M̂2
Hq, (4.42)

which is induced by the clock oscillation being defined with respect to the
proper time of the shell.

4.5 Time Dilation Decoherence

The decomposition (4.41) is of the same form as the one used recently by
Pikovski et al. [12] to demonstrate decoherence due to gravitational time
dilation for composite systems, though the interpretation of the system vari-
ables is different. In the (gravity-free) limit of flat spacetime, the main dif-
ference is simply that the “external” coordinate of our system is the shell
radius instead of the (somewhat ill-defined) center-of-mass coordinate. In
the next section, however, the self-gravitation of the shell-plus-clock system
is taken into account, so both the shell and the clock influence the spacetime
geometry, which is therefore no longer fixed. Nonetheless, we can exploit
the similarity enough to demonstrate a decoherence effect in our system
analogous to that described by Pikovski et al., as will become clear in what
follows.
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Represented by a density operator, the full state ρ obeys the von Neu-
mann equation,

ρ̇ = −i [H, ρ] . (4.43)

We can then change the frame to primed coordinates, as in [12], which are
defined by ρ′(t) = eit(H0+h)ρ(t)e−it(H0+h), for h(X,Pc) = Trq [Hxqρq(0)].
We are assuming that the initial state of the system is of the product form
ρ(0) = ρx(0)ρq(0), i.e. initially uncorrelated. Denoting the average clock
energy Trq [Hqρq(0)] by Ēq and the shell part of the interaction by Γ =
−P 2

c /2M̂
2, we obtain the expression h = Γ(X,Pc)Ēq. The transformed von

Neumann equation is

ρ̇′(t) = i
[
H ′0(t) + h′(t), ρ′(t)

]
− i
[
H ′0(t) +H ′xq(t), ρ

′(t)
]

= −i
[
H ′xq(t)− h′(t), ρ′(t)

]
, (4.44)

with h′(t) = h(X ′(t), P ′c(t)). If we integrate and iterate equation (4.44), we
are led to the integro-differential equation

ρ̇′(t) = −i
[
H ′xq(t)− h′(t), ρ′(0)

]
(4.45)

−
∫ t

0
ds
[
h̃(t),

[
h̃(s), ρ′(s)

]]
,

using the definition h̃(t) = H ′xq(t)−h′(t). At this point Pikovski et al. trace
over the internal variables, which for us describe the clock, and make use
of the Born part of the Born-Markov approximation, keeping only terms up
to second order in the interaction Hamiltonian Hxq, and replacing the ρ′(s)
in the integral by ρ′x(s)ρ′q(0). This application of the Born approximation
assumes weak coupling, but in contrast to the full Born-Markov it does not
ignore memory effects. For a detailed discussion of this approximation, see
[71]. The reduced equation for the external shell evolution is then given by

ρ̇′x(t) = Trq
[
ρ̇′(t)

]
≈ −

∫ t

0
ds Trq

{[
h̃(t),

[
h̃(s), ρ′(s)

]]}
= −

∫ t

0
ds Trq

{(
Hq − Ēq

)2 [
Γ′(t),

[
Γ′(s), ρ′(s)

]]}
= − (∆Eq)

2
∫ t

0
ds
[
Γ′(t),

[
Γ′(s), ρ′x(s)

]]
, (4.46)

with Γ′(s) = Γ(X ′(s), P ′c(s)) and

(∆Eq)
2 = Trq

[(
Hq − Ēq

)2
ρq(0)

]
. (4.47)

81



4.6. Discussion

One can then transform back to the unprimed frame, whereby the substitu-
tion s→ t− s leads to the expression

ρ̇x(t) = −i
[
Hx + ΓĒq, ρx(t)

]
(4.48)

− (∆Eq)
2
∫ t

0
ds
[
Γ, e−isHx [Γ, ρx(t− s)] eisHx

]
.

In general, the reduced evolution equation (4.48) exhibits decoherence
due to the nonunitary contribution of the last term on the right. Under
some special circumstances this term vanishes, leaving the reduced system
to evolve unitarily; for example, such a circumstance occurs for initial states
that are eigenstates of the internal (clock) Hamiltonian, of course then the
oscillator is not much of a clock, as it never changes with time (modulo a
phase).

4.6 Discussion

In the last section, we demonstrated intrinsic decoherence due to time dila-
tion, in the (gravity-free) limit of flat spacetime. In the system described by
Pikovski et al. [12], which includes spacetime curvature caused by the ex-
ternal gravitational field of the earth, the time dilation decoherence should
vanish in the absence of the earth’s gravitational influence: without the
earth, the center-of-mass coordinate they use defines the origin of an iner-
tial frame, and in that frame the proper time associated with the center-of-
mass coordinate is equal to the coordinate time.7 However, in our system,
decoherence (in the position basis) is present even without an external grav-
itational field, because of the nonzero acceleration of the shell due to the
position dependence of the mass (M̂ = M(X)). We are then led to conclude
that the time dilation decoherence proposed in [12] is not necessarily related
to gravity, but produced by proper time differences in composite systems
with nonzero accelerations.

The preceding analysis can be extended to include self-interaction effects,
by making use of the Hamiltonian asymptotics derived in Chapter 3, along
with the transformation M̂ → M̃ . We then find that the components Hx

7Of course, quantum fluctuations of the center-of-mass motion will still produce deco-
herence in the momentum basis for the reduced system, but coherence will remain for the
center-of-mass position itself; similarly, for our shell system in the absence of both gravity
and pressure, the effective interaction 4.42 will lead to decoherence in the momentum basis
of the reduced system, but coherence will remain for the (external) shell position.
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and Γ of the decomposition (4.41) generalize to

Hx →
(
M̂ +

P 2
c

2M̂

)
+

 P 2
c

3X
− 2

3

√
2M̂

X
Pc −

M̂2

18X

 (4.49)

and

Γ→
(
− P 2

c

2M̂2

)
+

− M̂
9X
− 1

3M̂

√
2M̂

X
Pc

 , (4.50)

to second order in 1/
√
X. The bracketed term in each of these expressions

originates from self-gravitation. From this we can observe that even in the
constant M̂ limit, where the fluid pressure vanishes, (4.48) (with the gener-
alized components Hx and Γ) indicates that the time dilation decoherence
remains present, in this case because the self-gravitation produces a nonzero
acceleration of the shell position. Conceptually, such an effect should occur
for any composite general relativistic system that has internal motion that
(classically) evolves according to the proper time associated with the sys-
tem’s external motion, since the alteration of the local flow of time caused
by the system’s influence on its own spacetime geometry induces an effec-
tive coupling between the internal and external degrees of freedom. It is this
effect that is fundamentally gravitational in nature, as it is present even in
the absence of any other interactions.

We have therefore arrived at a type of intrinsic decoherence similar to the
“third-party” decoherence described by Stamp [15], though in contrast to
the use of the earth as the third party as proposed by Pikovski et al. [12], we
have bootstrapped the idea by incorporating gravitational self-interaction,
effectively producing third-party decoherence without the third party.
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Chapter 5

Denouement

5.1 Reflections and Resolutions

In the preceding chapters, we have explored some of the consequences of
forming superpositions of quantum states that correspond to different space-
time geometries, in the context of a general relativistic model of a self-
gravitating spherical perfect fluid shell. It has long been argued by Penrose
(and others) that there is an inherent ambiguity associated with forming
such superpositions [9], [10]. However, if the corresponding spacetime ge-
ometries are nearly identical, we know from standard quantum mechanics
that there is effectively a well-defined notion of time evolution. When such
an effective structure exists (as it does in almost every conceivable quantum
system within technological reach), it has been extensively confirmed ex-
perimentally that quantum coherence is possible, which enables interference
between distinct elements of a superposition.

When the spacetime geometries are sufficiently different, Penrose argues
that the effective structure of quantum-mechanical time evolution ceases to
be well-defined, at least with the current interpretation given to how we
usually apply our quantization techniques. Penrose speculates that this suf-
ficient difference in spacetime geometries leads to an instability that causes
the interference between the corresponding quantum states to decay, though
it is unclear from his work whether the system undergoes a “collapse” or
just an intrinsic form of gravitational decoherence. Since the former possibil-
ity seems to necessarily require altering the foundations of quantum theory,
this thesis focused on the possibility that a suitably-interpreted quantum
description of time evolution in an idealized general relativistic system can
exhibit this intrinsic form of gravitational decoherence, without the addition
of any exotic or untested physics. Accordingly, we worked within canonical
quantum gravity; for simplicity, as well as practicality, we restricted our
attention to minisuperspace, and used the reduced phase space approach to
quantization.

We used our self-gravitating fluid shell model to perform an interfer-
ometric analysis in Chapter 2 for single-mode input states, but ended up
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concluding that even though the classical model was general-relativistically
correct, we did not observe any limitations on the coherence of the system
attributable to gravity. This outcome does not necessarily imply that our
model is incapable of producing such a limitation, as discussed in Section 2.4,
though it does mean that our approximation scheme did not capture the es-
sential features necessary to confirm Penrose’s proposed decoherence effect.

The fact that we did not observe any limitation on the coherence of our
self-gravitating interferometer could also be explained if Penrose’s argument
about the ill-definedness of time evolution for superpositions of geometries
is avoided by the very structure of canonical quantum gravity itself. Pen-
rose recognizes this possibility, as well as the fact that superpositions of
3-geometries are ubiquitous in canonical quantum gravity, but considers the
picture one ends up with insufficient to describe the physics within such a
superposition of spaces [10]. Rather than being this dismissive, the perspec-
tive we have entertained in this thesis is that canonical quantum gravity is
precisely the arena to obtain a resolution of the issues Penrose raises, and
perhaps the resolution entails no fundamental decoherence whatsoever, by
providing a well-defined description not only of how superpositions of 3-
geometries behave, but also of what this implies for the physics within such
a superposition.

To understand how this could be the case, let’s recall the details of the
single-mode analysis. We followed the standard quantum mechanical pre-
scription, and assumed that the system evolves according to a time evolution
operator ∂/∂t that is the same for both components of our superposition.
Penrose’s argument suggests that it is exactly this identification that is in-
herently ambiguous, since by “∂/∂t” we do not mean the timelike Killing
vector associated with any specific spacetime; how, then, can we justify the
use of a single operator for both components?

A natural possibility is that once a coordinate choice is made that de-
fines a physical time evolution, one can construct a quantum theory that
reflects the geometric structure in the (physical) Hamiltonian operator, while
treating the associated time as a parameter that is no longer endowed with
nontrivial geometric meaning. In our shell system, then, the position depen-
dence and non-polynomial form of our Hamiltonian encodes the geometric
content about spacetime, while using the coordinate time t as a parameter
that flows forward independent of the quantum state of the geometry, thus
defining an operator ∂/∂t that acts in the same way on any particular state.
As long as we take into account how the Hamiltonian operates differently
on states corresponding to different geometries, we could potentially escape
Penrose’s argument by construction, since the time evolution has a unique
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definition once a particular coordinate choice is made that fixes the meaning
of the Hamiltonian.

Regardless of what the true theoretical explanation is, there are exper-
imental investigations already underway to test for signatures of gravity-
induced intrinsic decoherence in various optical systems [72]. These exper-
iments generalize the infamous Colella-Overhauser-Werner (COW) experi-
ment [73]-[75], which measures the gravitational phase shift experienced by
neutrons in an interferometer that has one path at a different gravitational
potential than the other. The original COW experiment was the first ex-
periment to include both quantum and gravitational effects, though it only
required Newtonian gravity to describe it. The more recent experiments,
such as the efforts to observe macroscopic superposition effects in optome-
chanical systems [76], [77], intend to test the role of general relativity in
quantum systems. There are many technical obstacles to overcome to mini-
mize the effects of standard environmental decoherence, which obscures the
desired behaviour, but there is hope that these types of experiments will
bear fruit within the next decade [78].

One of the remaining questions from the analysis presented in Chapter 2
is about the role of our coordinate choice on the properties of the inter-
ference pattern: does our approximation scheme describe coherence in a
coordinate-invariant manner, or are our conclusions about the coherence of
the system dependent on the coordinates used? In Chapter 3, we attempted
to answer this question by re-performing the previous analysis, this time
using an infinite family of similar coordinate systems. We interpreted these
family members as different networks of infalling observers, each with a dif-
ferent asymptotic velocity. Upon doing so, we encountered some perplexing
obstacles due to the nebulous connection between quantizations associated
with different family members. The main problem was that the very con-
cept of an “initial state” seemed to be coordinate-dependent, which directly
impeded our ability to compare the interference patterns we obtained using
different coordinate choices.

Another issue worth mentioning is the identification of travel times for
the two interferometer paths (tλ++ + tλ−+ = tλ−− + tλ+−). We enforced
this identification for our interferometric analysis in both Chapter 2 and
Chapter 3, but a difficulty arises when we consider the time transformation
defined by equation (3.123): if the travel times are equal in one coordinate
system, the dependence of the transformation on the Hamiltonian H and
the shell position X makes it unlikely that the travel times will remain equal
in another coordinate system. This difficulty therefore must also be over-
come before any conclusive statements can be made about the coordinate
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dependence of our interferometer.
So, though we have found indications that the interferometric coherence

might be “observer-dependent,” and speculated about the implications of
the difficulties we encountered trying to obtain a concrete determination of
the possible observer-dependence, we are ultimately forced to accept that the
investigation of coordinate dependence in our interferometer is inconclusive
(at least tentatively).

It is also possible that the only way to describe the coherence of a gen-
eral relativistic interferometer in a coordinate-independent way is to in some
way define the quantum evolution with respect to a physical clock that is
embedded within the system. An initial realization of this idea was explored
by Page and Wooters [79], and later extended by Gambini, Porto and Pullin
[80], [18] by incorporating a generalization of the relational interpretation of
quantum mechanics put forward by Rovelli [81], [82]. There have even been
experimental proposals to test the validity of the relational interpretation
of quantum evolution [83], though nothing concrete has yet been produced
to this end. The main contention of these approaches is that one should
formulate quantum time evolution using conditional probabilities, such that
instead of determining the probability that an observable takes on a partic-
ular value at a coordinate time “t”, one should determine the probability
that an observable takes on a particular value, given the condition that the
clock observable takes on a particular value. It is this conditional probabil-
ity, in these proposals, that yields a physically meaningful description of the
evolution of quantum predictions.

In Chapter 4, we explored the effects of adding such a “clock” degree
of freedom to our shell system, in the form of an internal oscillator. Upon
analysis of the combined system, we obtained a clear picture of some di-
rect consequences of forming superpositions of geometries, though rather
than attempting to formulate the evolution using conditional probabilities
(which it is not clear we should necessarily do), we applied the same quanti-
zation techniques used in the previous chapters. We first showed that time
dilation induces an effective coupling between the external variables (that
describe the shell’s motion) and the internal (clock) variables, and identified
a regime where the reduced Hamiltonian of our system has the same form
as the Hamiltonian used in a recent proposal of a “universal” decoherence
mechanism due to gravitational time dilation [12]. For the situation where
only the external variables are observed, one can follow the calculation pre-
sented in [12], and trace out the clock variables. This leads to an interesting
form of intrinsic decoherence called “third-party” decoherence [15], which
we showed in Section 4.5 in the (gravity-free) limit of flat spacetime.
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Since the proposed time dilation decoherence effect was present even in
the flat spacetime limit of our system, we concluded that the effect was
not necessarily related to gravity. Though the specific application of the
effect mentioned in [12] was gravitational, with the role of the “third-party”
played by the earth, the effect relies only on proper time differences. Our
shell system generally has tangential pressure that produces acceleration,
and this alone leads to time dilation decoherence, even without gravity.

As a variation on this theme of time dilation decoherence, we then con-
sidered what happens when one takes into account the gravitational self-
interaction of the shell. We found that the same calculation, with suitably
generalized components, provided us with a demonstration that the time
dilation decoherence still remains present when there is no tangential pres-
sure whatsoever (or any other interactions), by virtue of the quantum con-
sequences of self-gravitation. We interpreted this example of “third-party
decoherence without the third party” to be a manifestly gravitational effect.

One can then connect this gravitational “self-decoherence” to the ideas
brought up by Penrose: conceptually, tracing out the clock variables effec-
tively averages the contribution of the internal oscillation to the ADM mass
of the spacetime (as indicated by the appearance of Ēq in equation 4.48),
while producing a nonunitary contribution to the (external) evolution of the
reduced density matrix that is proportional to the square of the clock en-
ergy uncertainty. Thus, the reduced dynamics associated with the external
degree of freedom experiences an averaged geometry due to our ignorance of
the internal evolution, and also decoheres due to the resulting uncertainty in
the spacetime geometry. In this way, we see that the fundamentally gravita-
tional form of intrinsic decoherence we demonstrated captures the spirit of
Penrose’s ideas, though it requires the additional structure of a local clock
to do so.
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tum mechanical which-way experiment with an internal degree of free-
dom,” Nature Comm. 4, 2594 (2013).

89



Bibliography

[12] I. Pikovski, M. Zych, F. Costa, and C̆. Brukner, “Universal decoherence
due to gravitational time dilation,” [arXiv:quant-ph/1311.1095] (2013).

[13] M. Zych, F. Costa, I. Pikovski, and C̆. Brukner, “Quantum interfero-
metric visibility as a witness of general relativistic proper time,” Nat.
Commun. 2, 505 (2011). [arXiv:quant-ph/1105.4531v2]

[14] M. Zych, F. Costa, I. Pikovski, T.C. Ralph and C̆. Brukner, “General
relativistic effects in quantum interference of photons,” Class. Quantum
Grav. 29, 224010 (2012). [arXiv:quant-ph/1206.0965v2]

[15] P. C. E. Stamp, “The decoherence puzzle,” Stud. in Hist. and Phil. of
Mod. Phys. 37, 467 (2006).

[16] L. Diosi, “Intrinsic time-uncertainties and decoherence: comparison of
4 models,” Braz. J. Phys. 35, 260 (2005). [arXiv:quant-ph/0412154v2]

[17] C. Anastopoulos and B. L. Hu, “Intrinsic and Fundamental Decoher-
ence: Issues and Problems,” Class. Quant. Grav. 25, 154003 (2008).

[18] R. Gambini, R. A. Porto, and J. Pullin, “Fundamental decoherence
from quantum gravity: a pedagogical review,” Gen. Rel. Grav. 39,
1143 (2007).

[19] G. J. Milburn, “Intrinsic decoherence in quantum mechanics,” Phys.
Rev. A 44, 5401 (1991).

[20] G. J. Milburn, “Lorentz invariant intrinsic decoherence,” New J. Phys.
8, 96 (2006).

[21] I. C. Percival, “Quantum spacetime fluctuations and primary state dif-
fusion,” Proc. R. Soc. Lond. A 451, 503 (1995).

[22] S. Weinberg, “Precision tests of quantum mechanics,” Phys. Rev. Lett.
62, 485 (1989).

[23] S. Weinberg, “Testing quantum mechanics,” Ann. Phys. 194, 336
(1989).

[24] I. M. Moroz, R. Penrose, and P. Tod, “Spherically-symmetric solutions
of the Schrödinger-Newton equations,” Class. Quant. Grav. 15, 2733
(1998).

[25] J. Polchinski, “Weinberg’s Nonlinear Quantum Mechanics and the
Einstein-Podolsky-Rosen Paradox,” Phys. Rev. Lett. 66, 397 (1991).

90



Bibliography

[26] P. C. E. Stamp, “Environmental decoherence versus intrinsic decoher-
ence,” Phil. Trans. R. Soc. A 370, 4429 (2012).

[27] C. H-T. Wang, R. Bingham, and J. T. Mendonça, “Quantum gravita-
tional decoherence of matter waves,” Class. Quantum Grav. 23, L59-
L65 (2006).

[28] B. L. Hu, “Gravitational Decoherence, Alternative Quantum Theo-
ries, and Semiclassical Gravity,” To appear in J. Phys. (Conf. Ser. ).
[arXiv:gr-qc/1402.6584v1] (2014).

[29] B. S. DeWitt, “Quantum Theory of Gravity. I. The Canonical Theory,”
Phys. Rev. 160, 1113 (1967).

[30] M. Visser, “Quantum wormholes,” Phys. Rev. D 43, 402 (1991).
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Appendix A

Probability Current
Conservation

A.1 Standard Nonrelativistic Quantum
Mechanics

Throughout this thesis, we make use of the concept of a probability current.
In nonrelativistic quantum mechanics, the probability current takes the form

J(x, t) =
1

2im

[
ψ∗ψ′ − ψ (ψ∗)′

]
, (A.1)

where the prime indicates differentiation with respect to x (we’ll restrict our
attention to one dimension, for simplicity). In Dirac notation, this can also
be expressed as

J(x) =
1

2im

[
〈ψ|x〉 〈x |p̂|ψ〉+ 〈x|ψ〉

(
〈x|p̂†|ψ〉

)∗]
, (A.2)

from which we can deduce, provided the momentum operator p̂ is Hermi-
tian 8, that the current J(x) is the expectation value of a simple operator:

J(x, t) = 〈ψ|Ĵ(x)|ψ〉, (A.3)

for the operator

Ĵ(x) =
1

2m

(
|x〉〈x|p̂+ p̂†|x〉〈x|

)
. (A.4)

Note that in these expressions, a hat denotes an operator, in contrast with
the majority of this thesis, in which a hat indicates that a quantity is eval-
uated along the shell trajectory.

8Note that in this appendix, we are denoting the momentum operator by p̂, which
corresponds to the classical momentum p. This should not be confused with our use of p
in other parts of the thesis to denote pressure.
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The utility of the probability current (A.1) comes from the fact that it
satisfies the continuity equation,

∂ρ(x, t)

∂t
+
∂J(x, t)

∂x
= 0, (A.5)

with ρ(x, t) = |ψ|2 being the probability density. This can be established
straightforwardly using the standard nonrelativistic Schrödinger equation,

i
∂

∂t
|ψ〉 = Ĥ|ψ〉 =

(
p̂2

2m
+ V̂

)
|ψ〉, (A.6)

and its dual-space counterpart

− i ∂
∂t
〈ψ| = 〈ψ|Ĥ†, (A.7)

where Ĥ is the Hamiltonian operator and V̂ is the potential energy operator.
Taking the time derivative of the probability density yields

∂

∂t
|ψ|2 =

∂ψ∗

∂t
ψ + ψ∗

∂ψ

∂t

= i〈ψ|Ĥ†|x〉〈x|ψ〉 − i〈ψ|x〉〈x|Ĥ|ψ〉

= i

(
1

2m
〈ψ|(p̂†)2|x〉+ 〈ψ|V̂ †|x〉

)
〈x|ψ〉

−i〈ψ|x〉
(

1

2m
〈x|p̂2|ψ〉+ 〈x|V̂ |ψ〉

)
= i

(
−1

2m
(ψ∗)′′ + ψ∗V (x)

)
ψ − iψ∗

(
−1

2m
ψ′′ + V (x)ψ

)
= i

1

2m

[
ψ∗ψ′′ − (ψ∗)′′ψ

]
= − ∂

∂x

(
1

2im

[
ψ∗ψ′ − ψ(ψ∗)′

])
, (A.8)

which demonstrates that the probability current defined by (A.1) indeed
solves the continuity equation (A.5).

It will also be useful to consider an analogy between an approximate
general relativistic probability current (derived in the next section) and the
probability current for a (nonrelativistic) charged scalar particle in (3 + 1)
dimensional flat spacetime. Suppose we have this charged scalar particle in
an electromagnetic field defined by a vector potential A(r, t) and a scalar
potential φ(r, t). In this case the effect of the potentials on our particle
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Hamiltonian is to replace the momentum p by the kinetic momentum P =
p−qA(r, t), with q being the particle charge. The total Hamiltonian is then
given by

Ĥ =
1

2m

(
p̂− qÂ

)2
+ qφ̂ =

P̂
2

2m
+ qφ̂, (A.9)

and a calculation analogous to (A.8) proceeds as

∂

∂t
|ψ|2 =

∂ψ∗

∂t
ψ + ψ∗

∂ψ

∂t

= i〈ψ|Ĥ†|r〉〈r|ψ〉 − i〈ψ|r〉〈r|Ĥ|ψ〉

= i

(
1

2m
〈ψ|(P̂2)†|r〉+ q〈ψ|φ̂†|r〉

)
〈r|ψ〉

−i〈ψ|r〉
(

1

2m
〈r|P̂2|ψ〉+ q〈r|φ̂|ψ〉

)
=

1

2im

(
ψ∗〈r|P̂2|ψ〉 − 〈ψ|(P̂2)†|r〉ψ

)
. (A.10)

In the coordinate basis, we can represent the operator P̂ by −i(∇ − iqA),
and the calculation continues as

∂

∂t
|ψ|2 = − 1

2im

(
ψ∗
[
(∇− iqA)2 ψ

]
−
[
(∇+ iqA∗)2 ψ∗

]
ψ
)

= −∇ ·
(

1

2im
[ψ∗∇ψ − ψ∇ (ψ∗)]

)
+

q

2m
ψ∗ [∇ · (Aψ) + A · ∇ψ]

+
q

2m
[∇ · (A∗ψ∗) + A∗ · ∇ψ∗]ψ. (A.11)

At this point it is common to simplify the expressions by working in a
particular gauge. We will be most interested in the Coulomb gauge, ∇·A =
0, which for real A leads to

∂

∂t
|ψ|2 = −∇ ·

(
1

2im
[ψ∗∇ψ − ψ∇ (ψ∗)]

)
+
q

m
(ψ∗A · ∇ψ + ψA · ∇ψ∗)

= −∇ ·
[
Js −

q

m
A|ψ|2

]
, (A.12)

where we have denoted the standard (3+1)-dimensional nonrelativistic prob-
ability current by

Js =
1

2im
[ψ∗∇ψ − ψ∇ (ψ∗)] . (A.13)
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The total probability current operator is therefore given by

Ĵ(r) =
1

2m

(
|r〉〈r|p̂ + p̂†|r〉〈r|

)
− q

m
|r〉Â〈r|

=
1

2m

(
|r〉〈r|P̂ + P̂†|r〉〈r|

)
, (A.14)

and the associated continuity equation takes the form

∂ρ(r, t)

∂t
+∇ · J(r, t) = 0. (A.15)

A.2 General Systems Quadratic in Momenta

Now suppose our system is effectively (1+1)-dimensional, and has a Hamil-
tonian given by

H = H0(x) +H1(x)p+H2(x)p2, (A.16)

where {Hi(x)} are (for now) arbitrary functions of x. We will order the
operators in the quantum Hamiltonian as in Section 2.3.2, in an attempt to
enforce Hermiticity. For this Hamiltonian, calculation of the time derivative
of the probability density becomes

∂

∂t
|ψ|2 = i〈ψ|Ĥ†|x〉〈x|ψ〉 − i〈ψ|x〉〈x|Ĥ|ψ〉

= i〈ψ|[(1/2)(Ĥ1p̂+ p̂Ĥ1) + p̂Ĥ2p̂]
†|x〉ψ

−iψ∗〈x|[(1/2)(Ĥ1p̂+ p̂Ĥ1) + p̂Ĥ2p̂]|ψ〉

= iψ

[
i

2

∂

∂x
(H1ψ

∗) +
i

2
H1

∂ψ∗

∂x
− ∂

∂x

(
H2

∂ψ∗

∂x

)]
−iψ∗

[
− i

2
H1

∂ψ

∂x
− i

2

∂

∂x
(H1ψ)− ∂

∂x

(
H2

∂ψ

∂x

)]
= − ∂

∂x

(
H1|ψ|2

)
− ∂

∂x

(
1

i
H2

[
ψ∗ψ′ − ψ (ψ∗)′

])
. (A.17)

Thus, our system possesses a probability current of the same form as (A.12),
given by

J(x, t) = H1|ψ|2 +
1

i
H2

[
ψ∗ψ′ − ψ (ψ∗)′

]
, (A.18)

from which we can deduce the probability current operator

Ĵ(x) = |x〉Ĥ1〈x|+ Ĥ2|x〉〈x|p̂+ p̂†|x〉〈x|Ĥ2. (A.19)
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We can gain a different perspective on the result (A.19) by considering
the Hamiltonian (A.16) to be the second-order truncation of a Taylor series
expansion of a general Hamiltonian in powers of p (provided such a thing
exists for a given Hamiltonian). Indeed, this is the context in which (A.16)
is used in this thesis. The coefficient functions that multiply powers of p
can then be interpreted as

H0(x) = H|p=0 , H1(x) =

(
∂H

∂p

)∣∣∣∣
p=0

, H2(x) =
1

2

(
∂2H

∂p2

)∣∣∣∣
p=0

. (A.20)

This enables us to express the probability current as

J(x, t) = ψ∗
(
∂H

∂p

)
0

ψ+
1

2
ψ∗
(
∂2H

∂p2

)
0

(p̂ψ) +
1

2
(p̂ψ)∗

(
∂2H

∂p2

)
0

ψ, (A.21)

where the subscript 0 indicates an evaluation at p = 0, and it is understood
that the action of the operator p̂ on the coordinate-space wavefunction ψ
is given by p̂ψ = −i∂ψ/∂x. Since the general p-derivative of the truncated
Hamiltonian (A.16) is(

∂H

∂p

)
=

(
∂H

∂p

)∣∣∣∣
p=0

+

(
∂2H

∂p2

)∣∣∣∣
p=0

p, (A.22)

we can re-express the probability current operator (A.19) as

Ĵ(x) = |x〉

(
∂̂H

∂p

)
〈x|, (A.23)

as long as we make sure to symmetrize the term linear in momentum, to
maintain consistency with (A.21). Keeping in mind Hamilton’s equation
for the time evolution of x (i.e. dx/dt = ∂H/∂p), we arrive at an intuitive
expression for the probability current operator:

Ĵ(x) = |x〉v̂〈x|, (A.24)

with v̂ being an operator version of the velocity v = dx/dt. Taking the
expectation value yields the corresponding probability current,

J(x, t) = ψ∗v̂ψ, (A.25)

with the action of the operator v̂ understood to be in the coordinate basis.
This has the same form as the current for a charged scalar particle (A.14),
since the kinetic momentum is connected to the particle velocity via P =
mv.
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Appendix B

Multi-mode Interferometry

B.1 General Relativistic Wave-packets

Here we consider the properties of our self-gravitating interferometer with
multi-mode input states, to explore whether or not having a superposition
of ADM masses could affect the conclusions of the single-mode analysis. We
will form localized wave-packets as initial states by taking a Gaussian distri-
bution of energies as weighting factors of the previously introduced ingoing
WKB modes. We emphasize that since we are superposing WKB modes
with different energies, we are actually superposing states that correspond
to spacetime geometries with different ADM masses (recall that the classical
value of our Hamiltonian was found to be equal to the ADM mass of the
associated geometry). We are not, then, merely doing quantum mechan-
ics on a fixed curved spacetime; even in the single-mode analysis we were
working with a superposition of geometries, because each path through the
interferometer (classically) defined a different geometry. For single-mode in-
put states, however, the corresponding spacetimes had the same ADM mass,
and therefore beyond the outer reflector of the interferometer the spacetimes
we superposed were equivalent. With multi-mode input states, this will no
longer be the case. The purpose of this appendix is to identify possible ways
that evidence of intrinsic gravitational decoherence could manifest itself in
the behaviour of the multi-mode system.

Suppose that our wave-packets are much narrower than the interferom-
eter arm lengths - this allows us to treat each element of the interferometer
separately, mode by mode, as we did in the single-mode analysis. The initial
wave-packet will first encounter the splitter, at which point each mode in
the wave-packet will transform into a reflected mode with a factor R← and
a transmitted mode with a factor T←. We remind the reader that subscripts
are used here because the reflection/transmission coefficients depend on the
direction each mode of the wave-packet encounters the splitter from.

The split wave-packets will then perfectly reflect off of the outer/inner
reflectors, and travel back towards one another at the beam-splitter. Upon
recombination there will be splitting of each set of modes coming from each
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B.1. General Relativistic Wave-packets

direction of the splitter, which produces two outputs (one going in each
direction from the splitter) that are themselves composed of two parts.

It is clear that we will not observe interference in the multi-mode inter-
ferometer unless the wave-packets travelling on each of the interferometer
arms reach the splitter for recombination at approximately the same time;
there must be sufficient overlap of the parts of the output states associated
with the two paths through the interferometer in order for cancellation of
either of the final outputs to be possible. There is some parameter freedom
left in this system, so let us attempt to make use of this freedom to make
the (classical) travel times along the interferometer arms be the same. From
equation (2.56), we find that the time can be found as a function of H and
X:

t =

∫
dX

(
dt

dX

)
=

∫
dX

(
Ẋ−1

)
=

∫
dX


√

2H
X

f
± h

f

√
h2 − M̂2f

 , (B.1)

with h = H − M̂2/2X and f = 1− 2H/X. The first term is independent of
whether the shell is outgoing or ingoing, and can be integrated exactly as∫

dX

√
2H
X

f
= 4H

(√
X

2H
− arctanh

√
X

2H

)

= 4H

√ X

2H
− 1

2
ln

∣∣∣∣∣∣
1 +

√
X
2H

1−
√

X
2H

∣∣∣∣∣∣
 . (B.2)

Let us denote the term (B.2) by t0. The second term in (B.1), which gives a
contribution that we will denote by t±, depends both on whether the shell
is outgoing or ingoing as well as on the mass function M̂ . For weak-field
regions of constant M̂ , we can expand the integrand in inverse powers of√
X and integrate term-by-term to obtain the asymptotic contribution

t± ∼ ±
1√

H2 − M̂2

HX +

(
4H4 + M̂4 − 6M̂2H2

)
2
(
H2 − M̂2

) ln

(
X

2H

)

+
H
(

9M̂6 − 60H2M̂4 + 80H2M̂4 − 32H6
)

8X
(
H2 − M̂2

)2

 . (B.3)
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The total travel time for the path through the interferometer that ini-
tially reflects from the beam-splitter is given by t++ + t−+, and the time for
the path that initially transmits is t−− + t+−. We then have

t++ + t−+ = t+(X+)− t+(Xδ+) + t−(Xδ+)− t−(X+)

= 2t+(X+)− 2t+(Xδ+), (B.4)

as well as

t−− + t+− = t−(X−)− t−(Xδ−) + t+(Xδ−)− t+(X−)

= 2t+(X−)− 2t+(Xδ−), (B.5)

with Xδ± = limε→0 (Xδ ± ε). The difference in travel times can then be
expressed as

∆t =
1

2
((t++ + t−+)− (t−− + t+−))

= t+(X+)− t+(Xδ+)− t+(X−) + t+(Xδ−). (B.6)

In the flat spacetime, nonrelativistic limit, we have

Ẋ±±̃ =
P±±̃
M±̃

= ±

√
2M±̃

(
E −M±̃

)
M±̃

, (B.7)

and so equating the travel times (∆t = 0) gives us the following condition
for the lengths of the interferometer arms:

L+

√
M+

E −M+
= L−

√
M−

E −M−
. (B.8)

Here, the interferometer arm lengths are defined such that L± ≡ ±(X± −
Xδ), and the use of ± and ±̃ above is to remind us that the signs can be
chosen independently.

The arm length condition (B.8) (or its relativistic generalization) can be
applied for a single mode, but for a wave-packet all we can do is apply the
condition for the peak energy (or expectation value, perhaps), and try to
keep the energy variance small enough that the deviations from equal travel
times for different energy modes will be negligible. We also want to keep the
energy variance small so that the travel time will be less than the coherence
time for the wave-packet, to make sure that dispersion will not significantly
affect the interference pattern.

103



B.2. Localize, Normalize, Propagate

B.2 Localize, Normalize, Propagate

We imagine an initial state for the shell to be a superposition of ingoing
WKB modes, with a Gaussian distribution in energy:

Ψ0 = N

∫
dE eiX̃(E−E0)e

−(E−E0)
2

4σ2
E ψ−+. (B.9)

Here the parameter X̃ has been used to control the peak location in X-space.
Before propagating the initial state through the interferometer, we should

determine the relationship between the peak location parameter X̃ and the
true peak location in X-space. Since the relevant mode function is given by

ψ−+ = (E,−+ )−1/2 ei
∫
dX P−+ , (B.10)

the integral in (B.9) is no longer just a Gaussian. However, if we suppose that
the Gaussian prefactor to the mode function varies on a broader energy scale
than the mode function itself, we can approximate the integral by evaluating
the square root term at the peak energy E0 and expanding the WKB phase
to linear order in (E−E0). The resulting Gaussian can be easily integrated,
and in flat spacetime one obtains

Ψ0 = 2σE

√
πM+

P+
Ñe
− (X−X0)

2

4σ2
X , (B.11)

with X-variance σ2
X and peak location X0 given by

σ2
X =

√
2(E0 −M+)

M+

1

4σ2
E

, (B.12)

X0 =

√
2(E0 −M+)

M+
X̃ − i(E0 −M+)

σ2
E

. (B.13)

Note that the “physical” peak location in X-space is given by the real part
of X0, and we have absorbed irrelevant factors into Ñ coming from constants
of integration. If we normalize the state such that 〈Ψ0 |Ψ0〉 = 1, the factor
Ñ is found to be given by

∣∣∣Ñ ∣∣∣−2
=
√

2πσXe

√
2M+(E0−M+)3/2

σ2
E . (B.14)

The general relativistic initial state can be similarly analyzed. It simpli-
fies matters to further approximate the WKB phase by expanding in inverse
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powers of
√
X. Performing the X-integration term by term then leads to

terms that diverge as X →∞, so at this point we can safely neglect inverse
powers of

√
X when we evaluate the Gaussian energy integral. The fully in-

tegrated initial state then has an exponential with a bi-quadratic structure
in
√
X,9 so we can complete the square to obtain the peak location

X̃0 ∼
2
(
E2

0 −M2
+

)
E0

1 +

√√√√1 +
X̂

2
√
E2

0 −M2
+


2

, (B.15)

with

X̂ ≡ X̃ − lnX
∂

∂E0

(E2
0 −M2

+/2
)
E0√

E2
0 −M2

+

 . (B.16)

In the flat spacetime limit, this reduces to the real part of the previous
result:

X0 =

√
E2

0 −M2
+X̃

E0
. (B.17)

Let us use our initial wave-packet to calculate the initial probability
current. For simplicity, we will work in the flat spacetime, nonrelativis-
tic limit. Using the standard expression (2.91), as well as the definition
X̃0 ≡ X̃

√
2(E0 −M+)/M+, one can express the current associated with the

approximate X-Gaussian (B.11) as

J0 = −σE

√
2

π

(
2(E0 −M+)

M+

)1/4

e
−(X−X̃0)

2

2σ2
X . (B.18)

Actually, we can simplify things more than that for arbitrary peak widths
by taking advantage of the fact that we only care about what happens as
X → Xδ: if we take the lower integration boundary for X-integrals to be
X = Xδ, then as X ↘ Xδ, we have

Ψ0 = N

∫
dE

eiX̃(E−E0)e
−(E−E0)

2

4σ2
E√∣∣∣ ∂E

∂P−+

∣∣∣ . (B.19)

9Actually, there is a term logarithmic in X, but for the purpose of finding an approx-
imate peak location we ignore the variation of this logarithm compared to

√
X and X,

since we work in the weak-field (X →∞) limit.
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Let us change variables to z = (1/2σE)(E − E0 − 2iσ2
EX̃). We can then

express the initial state as

Ψ0 = 2NσE
√
πe−σ

2
EX̃

2
e

1
4
d2

dz2

[∣∣∣∣ ∂E∂P−+

∣∣∣∣−1/2
]
, (B.20)

evaluated at z = 0. We can similarly express the initial derivative (with
respect to X) as

Ψ′0 = 2iNσEe
−σ2

EX̃
2

∫
dzP−+

∣∣∣∣ ∂E∂P−+

∣∣∣∣−1/2

e−z
2

= iN0e
1
4
d2

dz2

[
P−+

∣∣∣∣ ∂E∂P−+

∣∣∣∣−1/2
]
, (B.21)

for N0 ≡ 2NσE
√
πe−σ

2
EX̃

2
.

We are then led to the probability current J0 as X ↘ Xδ given by

J0 =
|N0|2

M+
<
(
N∗+Ñ+

)
, (B.22)

where < indicates the real part and we have made the definitions

N+ ≡ e
1
4
d2

dz2

∣∣∣∣ ∂E∂P−+

∣∣∣∣−1/2

(B.23)

and

Ñ+ ≡ e
1
4
d2

dz2

(
P−+

∣∣∣∣ ∂E∂P−+

∣∣∣∣−1/2
)
. (B.24)

The initial current expression (B.22) is valid for arbitrary wave-packet widths,
and can be generalized easily to include gravity. If our wave-packet is highly-
peaked about a particular energy E0, then the probability current takes the
simpler form

J00 = −|N0|2. (B.25)

Now that we have parametric control over the localization of the initial
state, we can propagate this state mode by mode through the interferometer.
Each mode transforms in the same way as described in Chapter 2, and so
one finds the final output states(

Ψ
(v)
+

Ψ
(v)
−

)
=

∫
dE NE

(
ψ

(v)
+

ψ
(v)
−

)
, (B.26)
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with the definitions

NE = Nei(E−E0)X̃e
−(E−E0)

2

4σ2
E , (B.27)

ψ
(v)
+ = ψ++

(
R←e

iΦ++R→eiΦ−+R←

+ T←e
iΦ−−R←eiΦ+−T→

)
, (B.28)

ψ
(v)
− = ψ−−

(
R←e

iΦ++R→eiΦ−+T←

+ T←e
iΦ−−R←eiΦ+−R→

)
. (B.29)

Here, the mode functions are evaluated at Xδ.
How do the probability currents transform at the beam-splitter? The

reflected and transmitted probability currents for the initial split can be
calculated in the same way as the initial current, and the reflection and
transmission coefficients can be written as∣∣∣∣∣J

(i)
+

J0

∣∣∣∣∣ =
<
(
N

(i)∗
+ Ñ+

(i)
)

<
(
N∗+Ñ+

) (B.30)

and ∣∣∣∣∣J
(i)
−
J0

∣∣∣∣∣ =
M+

M−

<
(
N

(i)∗
− Ñ−

(i)
)

<
(
N∗+Ñ+

) , (B.31)

using the definitions

N
(i)
+ ≡ e

1
4
d2

dz2

(
R←

∣∣∣∣ ∂E∂P++

∣∣∣∣−1/2
)

(B.32)

Ñ+
(i) ≡ e

1
4
d2

dz2

(
R←P++

∣∣∣∣ ∂E∂P++

∣∣∣∣−1/2
)

(B.33)

N
(i)
− ≡ e

1
4
d2

dz2

(
T←

∣∣∣∣ ∂E∂P−−

∣∣∣∣−1/2
)

(B.34)

Ñ−
(i) ≡ e

1
4
d2

dz2

(
T←P−−

∣∣∣∣ ∂E∂P−−

∣∣∣∣−1/2
)
. (B.35)

In the limit that our initial wave-packet is highly-peaked about an energy
E0, the reflection and transmission coefficients take the simpler forms∣∣∣∣∣J

(i)
+

J0

∣∣∣∣∣
0

= R2
←,

∣∣∣∣∣J
(i)
−
J0

∣∣∣∣∣
0

= T 2
←. (B.36)
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It is then easy to demonstrate that R2
← + T 2

← = 1.
For arbitrary peak widths, things are not so simple. The time depen-

dence of the probability currents implies that the output currents do not
balance at each point in time, as they did in the stationary (single-mode)
case. Thus, the continuity equation does not imply probability current con-
servation, and this makes our single-mode analysis inappropriate for the
multi-mode system.

B.3 Fringe Visibility and Path Retrodiction

Unlike the probability current, the total probability is still conserved (in
principle), even if our approximations break down in some regions of the
parameter space and indicate otherwise. What will prove useful, then, in this
time-dependent setting, are the “inner” and “outer” output probabilities,
which are defined in the obvious way: the inner output probability (denoted
by P−) is the probability of finding the shell on the inner side of the splitter
(X− < X < Xδ) after recombination, and the outer output probability
(denoted by P+) is the probability of finding the shell on the outer side of
the splitter (Xδ < X < X+). To calculate P− and P+, we can use the
output states (B.26), except rather than evaluating the mode functions in
the outputs at Xδ, we will need to integrate the magnitude-squared outputs
in their respective regions:

P± = ±
∫ X±

Xδ

dX
∣∣∣Ψ(v)
±

∣∣∣2 . (B.37)

One must be careful, of course, to make sure enough time has elapsed af-
ter recombination so that all of the wave that will eventually transmit has
transmitted, and similarly for the final reflected part.

How can we extract information about the coherence of the multi-mode
system from these output probabilities? A simple approach is to use an
analogy with a Mach-Zehnder interferometer: as we vary a system parameter
(outer arm length, for instance), there is a phase shift induced between
the different interferometric paths, and this affects how the waves interfere
upon recombination [14]. Let us call this (generalized) phase shift δΦ. We
can then quantify the coherence in the system with a quantity V, which is
defined as the amplitude of the oscillation of P+ (or, equivalently, P−) as
δΦ is varied. The quantity V is referred to as the “fringe visibility” (or just
“visibility”) of the interference pattern. Since the inner and outer output
probabilities P± necessarily take values between 0 and 1, the visibility V is
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bounded from below by 0 (no visibility of the interference fringes) and from
above by 1 (full visibility of the interference fringes).

In the version of the Mach-Zehnder described in [14], an internal degree
of freedom is added to the particle used in the interferometer. Just as in
Chapter 4, the evolution of the internal degree of freedom is defined with
respect to the proper time of the particle, and therefore serves as a local
clock. Without the internal degree of freedom, the standard Mach-Zehnder
has maximal visibility (V = 1), but after the internal degree of freedom is
added the visibility is reduced due to the proper time evolution accumulating
information about which path was taken through the interferometer. As the
proper time evolutions of different interferometer paths become more and
more dissimilar, the visibility goes down; however, another quantity, called
the “distinguishability” and denoted by D, goes up. The distinguishability
quantifies the “which-way” information known about a system, in the sense
of providing a measure of the probability of correctly predicting which path
was taken through the interferometer (i.e. path retrodiction). Hence, there
is a natural trade-off between path retrodictability and visibility of the in-
terference pattern, and this is generally considered to be a manifestation of
wave-particle duality.

For the Mach-Zehnder with an added internal degree of freedom, for
instance, one can demonstrate that a duality relation holds, of the form
V2 + D2 = 1. Duality relations like this one have been around at least as
far back as the 1970s [84], and there have been various extensions, such as
broadening the applicability to include asymmetric beam-splitting [85]. Still,
even though some work has gone into quantifying coherence in a unified way
(for a recent analysis, see [86]), there has been much confusion on the true
meaning of the duality relations, and their connections to different forms
of uncertainty principles. In particular, it is often claimed that the duality
between visibility and distinguishability is conceptually distinct from the
Heisenberg uncertainty principle (HUP), since several derivations of such
duality relations existed in the literature that did not assume that the HUP
holds.

Very recently, however, it was demonstrated that there was indeed a
common conceptual origin of both the duality relations and the HUP [87],
[88]. It was discovered that one can derive the various duality relations, as
well the HUP, from a generalized uncertainty relation defined in terms of
entropies. This so-called “entropic uncertainty” relation provides the con-
ceptual link between the duality relations and the HUP that was previously
absent in the literature.

A possible implication of this link is that it could potentially fill in the
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gap in Penrose’s argument between the time uncertainty induced by super-
posing geometries and the resulting decoherence, since it is currently unclear
exactly how they are connected. An in-depth analysis of this possibility is
beyond the scope of this appendix, and is the subject of future work.
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Appendix C

The Exact WKB Phase

To facilitate the approximation schemes used in this thesis, it was neces-
sary to use several asymptotic forms of the reduced phase space canonical
momentum. The exact expression,

P±±̃ = −
√

2HX −X ln

(
1−

√
2H

X
+
β±±̃
X

)
, (C.1)

with the definitions

β±±̃ =
h±̃ ∓

√
h2
±̃ −M

2
±̃f

1 +
√

2H
X

, (C.2)

h±̃ = H −
M2
±̃

2X , and f = 1 − 2H/X, is often difficult to work with. For
instance, the WKB state we make use of,

ψ±±̃ =
eiI±±̃√∣∣∣ ∂H
∂P±±̃

∣∣∣ , (C.3)

has a phase (the “WKB phase”) that involves the integral of the reduced
canonical momentum:

I±±̃ =

∫
dX P±±̃. (C.4)

We remind the reader that the first set ± indicates outgoing (for +) or
ingoing (for −), whereas the second set ±̃ indicates which side of the splitter
location Xδ one is considering.

Rather than finding asymptotic expressions for the WKB phase, let us
see how far we can get towards a more explicit exact expression. After
integrating the square root term in (C.1) and applying some simple algebraic
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manipulations we can write the WKB phase (C.4) as

I±±̃ = −2

3
X
√

2HX +

∫
dX X ln

(
1 +

√
2H

X

)

−
∫
dX X ln

1− 2H

X
+

(
h±̃ ∓

√
h2
±̃ −M

2
±̃f
)

X

 . (C.5)

One can notice that the first two terms on the right hand side of this equation
are independent of the shell mass, and represent non-perturbative contribu-
tions to the WKB phase. The second of these two terms can be straightfor-
wardly integrated to obtain∫

dX X ln

(
1 +

√
2H

X

)
=

(
1

2
X2 − 2H2

)
ln
(√

X +
√

2H
)
− 1

2
XH

+

(
H +

1

6
X

)√
2HX − 1

4
X2 lnX, (C.6)

but the last term in expression (C.5) requires a bit more work. First we
will separate out some factors of X in the argument of the logarithm, to
get rid of inverse powers of X; then we can separate the logarithms and
integrate the part that came from the factors of X. Suppressing indices for
the moment, the remaining part involves the integral∫

dX X ln
(
X2f +X

(
h∓

√
h2 −M2f

))
. (C.7)

If we integrate by parts, this becomes

1

2
X2 lnF − 1

2

∫
dX

X2 dF
dX

F
, (C.8)

for a function F defined by

F = X2f +X
(
h∓

√
h2 −M2f

)
. (C.9)

Putting all the pieces together, we are led to the following expression for the
WKB phase:

I =
√

2HX

(
H − X

2

)
− 1

2
XH − 1

4
X2 +

(
1

2
X2 − 2H2

)
ln
(√

X +
√

2H
)

+
1

2
X2 ln

(
X3/2

F

)
+

1

2

∫
dX

X2 dF
dX

F
. (C.10)
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The terms are arranged such that the first line of (C.10) contributes to the
phase in the same way as a massless dust shell, whereas the second line
completely encodes the information about the special equation of state we
make use of for the interferometry presented in several chapters of this thesis.

In the flat spacetime limit, the function F simplifies to

F → X2 +X (H − P ) , (C.11)

with P = ±
√
H2 −M2, and the last unevaluated integral in the WKB phase

(C.10) is found to be∫
dX

X2 dF
dX

F
→ X2 + (H − P ) [(H − P ) ln (X +H − P )−X] . (C.12)

Of course, if we only care about the flat spacetime limit, we can start
from the momentum P = ±

√
H2 −M2, which immediately yields the phase

I = ±
√
H2 −M2X, or, for nonrelativistic speeds, I ≈ ±

√
2M(H −M)X.

The utility of (C.12) presents itself when we search for approximations to
the WKB phase that are more accurate than the usual perturbative ap-
proximations we were forced to use in this thesis for practical reasons; in
other words, using our previous perturbation approach to correct (C.12) and
inserting it into (C.10) provides us with a better approximation to the ex-
act behaviour than would be obtained by exclusively using the perturbation
approach.

If we really wish to be accurate, we can go one step further and perform
the (somewhat challenging) integral (C.12) exactly. This is possible, and
has been done (by the author), but will not be presented here due to the
lengthy and unenlightening form of the result.10

10“I have discovered a truly remarkable proof of this proposition that this margin is too
small to contain.” [89]

113


	Abstract
	Preface
	Table of Contents
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Preliminary Considerations
	The Universe of this Nutshell
	Outline

	Self-gravitating Interferometry
	Introduction
	Theory of Self-gravitating Spherical Shells
	Action Principle
	Hamiltonianization
	Equations of Motion
	Phase Space Reduction
	Boundary Terms
	Constructing Classical Spacetime

	Single-mode Interferometry
	Equation of State Determination
	The WKB Approximation
	Flat Spacetime Limit
	General Relativistic Picture

	Discussion

	The Meaning of Time in Reduced Phase Space
	Coordinate Generalizations and Time Transformations
	Phase Space Reduction in a Family of Coordinate Systems
	Boundary Terms
	Reduced Equations of Motion
	Transcendental Hamiltonian Approximations
	Interferometry in the Painlevé-Gullstrand Family
	Flat Spacetime Limit
	General Relativistic Corrections

	Discussion

	Superpositions of Clocks and Intrinsic Decoherence
	Introduction
	Classical Action
	Hamiltonianization
	Reduced Phase Space Quantization
	Time Dilation Decoherence
	Discussion

	Denouement
	Reflections and Resolutions

	Bibliography
	Probability Current Conservation
	Standard Nonrelativistic Quantum Mechanics
	General Systems Quadratic in Momenta

	Multi-mode Interferometry
	General Relativistic Wave-packets
	Localize, Normalize, Propagate
	Fringe Visibility and Path Retrodiction

	The Exact WKB Phase

