
Leveraging distributed explicit-state model checking for

practical verification of liveness in hardware protocols

by

Brad Bingham

M.Sc., The University of British Columbia, 2007

B.Sc., The University of Victoria, 2005

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

April 2015

c⃝ Brad Bingham, 2015

Abstract

Protocol verification is a key component to hardware and software design. The prolifera-

tion of concurrency in modern designs stresses the need for accurate protocol models and

scalable verification tools. Model checking is an approach for automatically verifying prop-

erties of designs, the main limitation of which is state-space explosion. As such, automatic

verification of these designs can quickly exhaust the memory of a single computer.

This thesis presents PReach, a distributed explicit-state model checker, designed

to robustly harness the aggregate computing power of large clusters. The initial version

verified safety properties, which hold if no error states can be reached. PReach has been

demonstrated to run on hundreds of machines and explore state space sizes up to 90 billion,

the largest published to date.

Liveness is an important class of properties for hardware system correctness which,

unlike safety, expresses more elaborate temporal reasoning. However, model checking of

liveness is more computationally complex, and exacerbates scalability issues as compared

with safety. The main thesis contribution is the extension of PReach to verify two key

liveness-like properties of practical interest: deadlock-freedom and response. Our methods

leverage the scalability and robustness of PReach and strike a balance between tractable

verification for large models and catching liveness violations.

Deadlock-freedom holds if from all reachable system states, there exists a sequence

of actions that will complete all pending transactions. We find that checking this property

is only a small overhead as compared to safety checking. We also provide a technique for

ii

establishing that deadlock-freedom holds of a parameterized system — a system with a

variable number of entities.

Response is a stronger property than deadlock-freedom and is the most common

liveness property of interest. In practical cases, fairness must be imposed on system mod-

els when model checking response to exclude those execution traces deemed inconsistent

with the expected underlying hardware. We implemented a novel twist on established

model checking algorithms, to target response properties with action-based fairness. This

implementation vastly out-performs competing tools.

This thesis shows that tractable verification of interesting liveness properties in large

protocol models is possible.

iii

Preface

The work of this thesis was mostly conducted at the Integrated Systems Design Lab at the

University of British Columbia, Point Grey campus. Some development of the PReach

tool and experiments were done at Intel Corporation (Ronler Acres), in Hillsboro, Oregon.

Chapters 3 – 6 are based on publications that have already appeared. Accordingly, some

of the text and figures are based upon material written or drawn by my co-authors. These

publications, along with my role in the research and writing are described in detail below.

1. Chapter 3 is based on: Brad Bingham, Jesse Bingham, Flavio M. de Paula, John

Erickson, Gaurav Singh, and Mark Reitblatt. Industrial strength distributed explicit

state model checking. In Parallel and Distributed Model Checking (PDMC), pages

28–36, IEEE Computer Society, 2010.

2. Chapter 5 is based on: Brad Bingham, Mark Greenstreet, and Jesse Bingham. Pa-

rameterized verification of deadlock freedom in symmetric cache coherence protocols.

In Formal Methods in Computer-Aided Design (FMCAD), pages 186–195, FMCAD

Inc., 2011.

3. Chapter 4 is based on: Brad Bingham, Jesse Bingham, John Erickson, and Mark

Greenstreet. Distributed explicit state model checking of deadlock freedom. In Com-

puter Aided Verification (CAV), volume 8044 of Lecture Notes in Computer Science,

pages 235–241, Springer-Verlag, 2013.

iv

4. Chapter 6 is based on: Brad Bingham and Mark Greenstreet. Response property

checking via distributed state space exploration. In Formal Methods in Computer

Aided Design (FMCAD), pages 15–22, FMCAD Inc., 2014.

In addition, Chapter 2 has small portions that originated from the above publica-

tions. My individual contributions to publication 1 include

• Created the initial prototype of the distributed model checking algorithm.

• Implemented and evaluated various approaches to load balancing to address both

performance and thread crashes.

• Gathered statistics on Erlang communication throughput and latency relative to

message size, motivating state-batching optimizations.

For the other publications, I performed the bulk of the research, with co-authors

contributing with brain-storming discussions, manuscript writing and feedback. While

they are not co-authors on publication 4, Jesse Bingham helped by running our tool on

proprietary Intel models, and Jim Grundy provided some models he authored which we

used as benchmarks.

v

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . vi

List of Tables . x

List of Figures . xi

List of Algorithms . xiii

List of Acronyms . xiv

Acknowledgments . xvi

Dedication .xvii

Chapter 1 Introduction . 1

1.1 Formalized Problem . 5

1.2 The Explicit-State Approach . 10

1.3 Verification Methods of this Thesis . 12

1.4 Thesis Statement . 15

1.4.1 Contributions . 16

vi

1.4.2 Roadmap . 17

Chapter 2 Related Work . 18

2.1 Preliminaries . 18

2.1.1 Temporal Logic . 19

2.1.2 The Murφ Description Language . 20

2.2 Parallel and Distributed Model Checking 24

2.2.1 Model Checking Deadlock Freedom 29

2.3 Parameterized Verification . 30

2.4 Model Checking LTL Formulas . 32

2.5 Summary . 39

Chapter 3 The PReach Model Checker . 41

3.1 Algorithm . 42

3.2 Crediting . 45

3.3 Light Weight Load Balancing . 46

3.4 Batching of States . 50

3.5 PReach Pseudocode . 52

3.6 Results . 54

Chapter 4 Model Checking of Deadlock Freedom 57

4.1 Overview . 58

4.1.1 Specification Syntax . 61

4.2 Algorithms . 62

4.2.1 Local Search . 63

4.2.2 Pass-the-Path . 64

4.2.3 Outstanding Search Table . 64

4.2.4 Implementation Notes . 66

4.3 Performance . 67

vii

4.4 Summary . 68

Chapter 5 Parameterized Deadlock Freedom 73

5.1 A Simple Example . 75

5.2 Formal Framework . 80

5.2.1 Mixed Abstractions . 81

5.2.2 Insufficiency . 85

5.2.3 Parameterized Systems . 86

5.2.4 Undecidability . 88

5.3 Syntactical Abstraction . 89

5.3.1 Syntax and Restrictions . 89

5.3.2 Abstraction . 91

5.4 Verifying Universal Quiescence . 94

5.4.1 Universally Quantified Quiescence 94

5.4.2 Abstract Rule Tags . 96

5.4.3 Heuristics . 98

5.5 Case Studies . 102

5.5.1 Automatic Deadlock Freedom Predicates 103

5.5.2 The German Protocol . 104

5.5.3 The FLASH Protocol . 106

5.6 Discussion . 107

5.6.1 Permutations on More than One Abstracted Node 107

5.6.2 Local Rule Generalizations . 108

5.6.3 Automatic Strengthening . 109

Chapter 6 Distributed Response Property Checking111

6.1 Introduction . 112

6.2 Overview . 114

viii

6.2.1 Preliminaries . 114

6.2.2 A Note about Stuttering . 116

6.3 Algorithm . 118

6.3.1 Worst-Case Time Complexity for OWCTY 121

6.4 Distributed Implementation . 123

6.5 Optimizations . 128

6.5.1 Saved Expansions . 128

6.5.2 Dynamic Kernel . 129

6.5.3 Deletion by Predecessor Counting 130

6.6 Results . 130

6.7 Comparison with DiVinE . 135

6.8 Conclusions and Future Work . 136

Chapter 7 Conclusions .138

7.1 Contributions Recap . 140

7.2 Future Work . 141

Bibliography .146

Appendix A German’s Protocol .159

Appendix B HIR Proofs .164

Appendix C Heuristic Examples .168

C.1 Discharging AEG . 168

C.2 Discharging AUG . 170

ix

List of Tables

1.1 Verification methods . 9

3.1 Large model experiments . 55

4.1 Performance of DF checking algorithms . 70

5.1 Mapping of types from concrete system to mixed abstraction 92

5.2 Heuristics for ruleset tag/property pairs . 99

5.3 List of chapter symbols . 110

6.1 PReach-Resp benchmark results . 132

x

List of Figures

2.1 Stern-Dill DEMC flow-chart . 26

3.1 Kumar/Mercer load balancing . 47

3.2 Light weight load balancing . 47

3.3 Load balancing effect on work queues . 49

3.4 LDash model load balancing . 50

3.5 SCI model load balancing . 50

3.6 State batching effect . 52

3.7 Speed up experimental results . 56

4.1 Illustration of deadlock freedom . 58

4.2 Outcomes of a witness search . 60

4.3 A subgraph that does not satisfy DF . 63

4.4 PtP/OST example . 65

4.5 Histograms of path lengths in PtP mode . 71

4.6 Path length histogram for intel in PtP mode 72

4.7 Memory usage of ST . 72

5.1 Program turn (mutual exclusion by turn setting) 76

5.2 The Murφ system for program turn . 77

5.3 Murφ system for the mixed abstraction of turn 78

5.4 Finding paths through permutation . 80

xi

5.5 Simulation of S1 by S2 . 82

5.6 Illustration of Lemma 1 . 84

5.7 Illustration of Aℓ(i) |= AG (A→ EFr̂B) . 100

6.1 Sets of interest when checking □(p→ ♢q) 116

6.2 Example of PTFA updates . 120

6.3 Response property MC plots for German6 134

6.4 Response property MC plots for peterson6 wf 134

6.5 Response property MC plots for snoop2 . 135

C.1 Schema for proving ruleset ABS SendGntS2 is underapproximate 171

C.2 Schema for proving ruleset ABS SendGntE1 is underapproximate 173

xii

List of Algorithms

2.1 Basic distributed cycle detection . 34

2.2 One-Way-Catch-Them-Young (OWCTY) 35

2.3 Maximum Accepting Predecessor (MAP) 36

2.4 A LTL DEMC algorithm . 39

3.1 Stern-Dill DEMC . 44

3.2 PReach DEMC . 53

6.1 OWCTY at a high level . 117

6.2 PReach-Resp root process . 124

6.3 PReach-Resp worker process . 126

6.4 PReach-Resp ExpandAndSend subroutine 127

xiii

List of Acronyms

BDD Binary Decision Diagram

CEGAR Counter-Example Guided Abstraction Refinement

CMP Chou-Mannava-Park

CTL Computation Tree Logic

DEMC Distributed Explicit-state Model Checking

DF Deadlock-Freedom

DFS Depth-First Search

EMC Explicit-state Model Checking

FSCC Fair Strongly Connected Component

HIR Heuristic Inference Rule

LTL Linear Time Logic

OA Over-Approximate

OST Outstanding-Search Table

OWCTY One-Way-Catch-Them-Young

xiv

PTFA Predecessor Trace Fair Actions

PtP Pass-the-Path

SCC Strongly Connected Components

ST Search Table

UA Under-Approximate

WHT Witness Hash Table

xv

Acknowledgments

Thanks to Mark Greenstreet for his supervision. His patience, advice and enthusiasm have

been a constant inspiration. My supervisory committee of Alan Hu, John Harrison and

Karthik Pattabiraman have all been helpful sources with regard to my studies. Thanks

to Flavio M. de Paula, Jesse Bingham and John Erickson for all their hard work on the

PReach project — without them this thesis would not exist. Flemming Andersen also

provided invaluable support on this project, which included guidance during two internships

with his group. I thank John Erickson and Jim Grundy for their mentorship during these

work terms. I appreciate the kindness and support from the ISD lab students over the

years, and my good friends at UBC and beyond. Finally, I thank my family members for

their deep interest in my education, and for always lending a hand.

xvi

For my parents, Rosemary and Paul, my role models in life.

xvii

Chapter 1

Introduction

Concurrency pervades modern hardware and software. From instruction-level parallelism

exploited in CPU execution pipelines, to multiple threads running on a multicore ma-

chine, to a fully distributed computation on a compute cluster, concurrency is critical to

performance. Modern CPU designs are becoming increasingly parallel. Energy and tem-

perature considerations with current technologies prohibit faster clock speeds [97]. Because

single-core performance has reached its limit, multicore architectures are proliferating [3].

Such hardware designs require careful considerations for the protocols that support this

concurrency through inter-core and inter-cache communication.

These hardware protocols are often devised and described at a high level by com-

puter architects. The concurrent nature of these protocols make them particularly prone

to subtle design bugs, as it is difficult for the human to consider all possible interleavings

of concurrent events. Unchecked, any fundamental bugs or mistakes may not be exposed

until the protocol has been implemented in a hardware description language, amid many

other details, and simulations are run. But as simulation is almost necessarily incomplete

with respect the the possible inputs, these bugs may escape to later stages of design and

ultimately persist into fabricated chips and sold to customers. Errors that are discovered

late in this design, implementation and production process can have extremely expensive

1

consequences. Economically, we wish to catch these bugs as early in the design cycle as

possible, for example, before a hardware description exists. This drives the effort known

as formal verification — the attempt to prove formal properties of a computer chip design.

Automated methods are easiest to use, but can require massive computational resources.

To harness the required resources, we seek to scale our verification capabilities and make

use of clusters of commodity machines.

Let’s consider a simple example protocol that controls a traffic light. Suppose the

light controls 4 directions: north, south, east, west, and has the standard green, yellow

and red signals. A controller will dictate which signals are on when the traffic light is

first powered on, and then how they change over time from there. The controller uses a

timer to measure how long to stay in the current state before changing. It may also use

additional information such as the time of day or sensory data that indicates the presence

of a waiting vehicle. At the protocol level, we omit this timing information and consider

what the controller allows as far as changes to the signals. For example, we wouldn’t expect

a good controller to allow a light to transition from green directly to red; we would expect

a yellow light in between. For a simple controller, the state of the traffic light is precisely

the signals that are turned on in the 4 directions.

How do we check if our controller is correct? One approach is to simply test it out

and see if any accidents occur. Perhaps this is done in a controlled environment where no

moving cars are involved. But how much of this testing is sufficient? Ideally we would like

to exhaustively check every possible configuration and make sure all of them are okay. We

need a formal notion of which states are “bad states”; such a description is called a safety

property. A safety property of this system could be “if north is green then east is red”,

as we can all agree that violating this statement is indeed quite unsafe. But establishing

safety isn’t enough for a traffic light. Indeed, a light that has all 4 signals turned red

forever is safe, but not very functional. This motivates the notion of liveness properties,

that reason about events that will eventually occur. A liveness property of this system

2

could be “north will eventually be green”, because otherwise the southbound cars could

wait indefinitely.

Once we decide on safety and liveness properties, we can use verification tools to

automatically verify them. To show safety, we need to exhaustively list all states that the

system allows, and check that none of them meet the “bad” criteria. Liveness is more

difficult, as this reasons about sequences of states that may be of unbounded length. The

computational cost of both of these checks is mainly determined by the number of reachable

states, that is states that could occur in the controller. Unfortunately, this number tends

to increase rapidly as more detail is added to the system. In this example, determining the

number of reachable states of this system would require a more formal description, but in

practice it is often proportional to the number of possible states. Assuming that exactly

one signal is always on in every direction, the number of possible states for this system

(recalling there are 4 directions and 3 signals), is 3 × 3 × 3× 3 = 34 = 81. How does this

change if more detail is added to the system? Suppose that instead of 4 directions we have

an addition direction to consider (say, from the north-west), and in addition there’s a left

turn arrow, i.e. there’s now 5 directions and 4 signals. Now the number of possible states

is 45 = 1024, a huge increase. This is an example of combinatorial explosion.

In order to deal with state-explosion, many ideas have been proposed. One of

our main approaches is to distribute the exhaustive check among many computers, to

leverage their aggregate memory and computing power. Such techniques are incentivized by

modern computers, as commodity multicore machines connected via commodity networks

are sufficient to drastically increase our verification capabilities.

Much of this thesis focuses on the liveness problem. But with most verification

research, it’s best to address safety first, as it is easier to deal with. Thus we present

our tool called PReach, which lists all possible states of a system and checks them for

safety. The motivation for this model checker was straightforward, as we had colleagues in

industry with large model checking problems, and existing tools lacked the robustness and

3

scalability they needed. PReach can handle systems with enormous numbers of states —

on the order of billions — using a hundred machines or more. While the original PReach

was very effective for verifying safety properties, it highlighted the need to check liveness

properties, which are generally harder to deal with. Because it involves reasoning about

sequences of states, model checking of liveness is susceptible to a much more severe form of

the combinatorial explosion problem than safety. Furthermore, reasoning about sequences

introduces mathematical technicalities that can make the properties to be checked incom-

prehensible to the architects. To address both the computational and the psychological

complexity of liveness checking, we consider three special cases that both simplify the prob-

lem and address a large number of the liveness issues that arise in practice. In particular,

we extend PReach to check for deadlock-freedom and response properties.

In the context of the traffic light example, a deadlock freedom property could be

“if new cars stop arriving at the intersection, all waiting cars will eventually face a green

light”. This is important for hardware designs as it can demonstrate that the system

will not get “stuck” in a state where pending operations cannot complete. An example

response property is “every car that arrives will eventually face a green light”. This is

a stronger statement than the deadlock freedom property, as it says something about

liveness of the intersection even when there’s a steady stream of traffic. In practice, this

is a more difficult property to specify and verify. Finally, we also give a method for

proving parameterized deadlock freedom properties. This means that we could show that

an intersection with any number of directions satisfies a deadlock freedom property. Such

techniques are of particular importance when combinatorial explosion exhausts the capacity

of our verification tools.

In summary, this dissertation attacks the problem of automatically proving live-

ness properties of real industrial hardware protocols. We proceed in the next section by

formalizing the problem and our contributions using standard verification terminology.

4

1.1 Formalized Problem

Consider the problem of verifying correctness of a hardware design. Often, a verification

engineer will formally express some key aspects of the design in a specification language,

which implicitly describes a directed graph called a transition system (or simply a system).

This is typically achieved by stating system variables, initial conditions on their values,

and conditions for changes to their values. Such descriptions vary in detail, ranging from

the protocol level, which models event-based nondeterministic behavior, to cycle-accurate

models to bit-accurate models. The properties we would like to prove about the system

are often categorized as safety properties and liveness properties. These are formally dis-

tinguished below, but a commonly used intuitive taxonomy quotes Lamport: “something

will not happen” for the former and “something must happen” for the latter [80]. Model

checking [44] refers to algorithms and tools for automatically verifying these properties. In

this thesis, we focus on explicit-state model checking (EMC), which represents each state

(a valuation of the system variables) as a distinct object in memory. The state-space ex-

plosion problem limits the effectiveness of model checking; as more detail is added to the

model the number of possible states grows exponentially. Typically the number of reach-

able states grows in proportion to the number of possible states, which places increasing

demands on computational resources.

Each vertex of the system corresponds to a state; the arcs of the system are called

transitions. If p is a predicate over the system variables, then the set of states with a

variable valuation that satisfies p are called p-states. The transition system includes a

predicate for the initial states. State s is called reachable if there is a path from an initial

state to s. A trace is a walk of possibly infinite length that begins at an initial state. Except

in highly degenerate transition systems, there are an uncountably infinite number of traces.

We define a safety property as an assertion over all traces for which a counterexample trace

has finite length. An example is “Always p”, which means that every reachable state is

a p-state. Verifying a safety property using EMC amounts to enumerating the reachable

5

states and checking something “local” to each state. A liveness property is an assertion over

all traces for which a counterexample trace has infinite length. An example is “Eventually

Always p”, which means that every infinite trace has an infinite postfix of p-states. Liveness

properties are more computationally intensive to verify because they require reasoning over

traces rather than reachable states; liveness verification calls for algorithms that detect and

analyze strongly connected components of the state transition graph [47, Section 22.5].

To cope with state-space explosion and computers with limited memory, judicious

choices must be made when deciding which aspects of the design are included in the model.

If a model checking procedure exhausts memory resources, then removing details from the

model will usually reduce the size of the reachable state space. Suppose the model in

question has is parameterized by an integer that monotonically increases the reachable

state space size. Then, reducing the value of this parameter may render model checking

tractable. For example, a cache coherence protocol description may be parameterized by

the number of caches; clearly increasing this number leads to a greater number of variables

and concurrent transitions, and a larger reachable state-space. Perhaps the design of

interest has 32 caches, but we can only model check the protocol model with 4 caches. The

expectation is that safety or liveness violations in the smaller model will have analogous

violations in the real design, thus increasing our confidence when model checking succeeds.

Of course, this is does not rule out the possibility that 32 cache design allows violations that

are only present with more than 4 caches. Two different approaches for further improving

confidence are: (1) using tools and techniques to increase our model checking capacity, and

(2) using a parameterized verification technique, which proves something about the cache

design for any parameter value, including 32. Both approaches are explored in this thesis.

Despite the complementary nature of safety and liveness, the majority of verification

research and practice focuses on the former. This is due to safety being easier conceptually,

theoretically and computationally. Our view is that liveness checking is a crucial component

of the verification task. Not only is liveness usually a desirable property for systems to

6

adhere to, but liveness checking can also catch modeling errors. Suppose the user intends

to specify a system that will have reachable states S, but the user makes a mistake when

writing the model and the resulting system only reaches a subset of the intended states

Ŝ ⊂ S. If all states of Ŝ satisfy safety but some state of S \ Ŝ does not, then the safety

violation will be obscured by the user error. However, simple liveness checks can reveal

errors that were hidden by a modelling mistake and give the user confidence that the

corrected model faithfully captures the system as intended.

In this thesis we focus on two specific classes of properties of finite state systems.

Because we emphasize industrial application, we choose properties that practicing designers

will find easy to interpret. Likewise, our emphasis on large-scale problems leads us to choose

properties that are both useful to the designer and computationally tractable for automatic

verification.

The first liveness property that we consider is deadlock-freedom (DF). The basic idea

is that given a system model, we identify some actions as injecting new transactions into

the system (for example, requesting a read to or write from memory); other actions make

progress on some pending transaction; and some actions complete one or more pending

transactions. Let q denote quiesence, a description of states in which there are no pending

transactions.DF states that from any reachable state, the model can reach a q-state; in

other words, all pending tasks can be completed. In CTL (computational tree logic —

described in more detail in Section 2.1), we can express DF as AGEF q. AG means “along

all paths (i.e. at all reachable states), and EF q means “there exists a path to a q state”.

Thus, AGEF q is CTL for “from every reachable state, there is a path to a state that

satisfies q.” We present efficient approaches for verifying DF, which can also be applied

to the more general version AG (p → EF q) which means “from any reachable state that

satisfies p, there exists a path to a state that satisfies q.” Note that the existence of a path

does not guarantee that the path is taken. For example, an unending sequence of new tasks

that pre-empt some older task might continue to arrive; or the model may allow the system

7

to make non-deterministic choices, only some of which lead to completing all pending tasks.

To show that every task is eventually completed, we need a stronger property than DF.

Intuitively, a response property says that every request for some service is eventually

granted. Let p-states be those in which the service has been requested, and q-states be those

in which the service has been completed. A response property specifies that every trace

that reaches a p-state will later reach a q-state. In CTL we write this as AG (p → AF q);

this means that from all reachable p-states (AGp), all paths eventually reach a q-state. In

contrast, the E in EF q (as used to describe DF) says that there exists a path along which

q is eventually satisfied.

Adding a bit more notation, well note that there are two commonly used logics for

reasoning about liveness: CTL and LTL (linear-time logic). The differences are described

in Section 2.1 — neither is strictly more expressive than the other. In LTL, □ indicates

“henceforth” (i.e. the property holds for all subsequent states) and ♢ denotes “eventually”

(i.e. the property holds for some subsequent state). The CTL formula AG (p → AF q)

is equivalent to the LTL formula □(p → ♢q). When describing response properties, the

LTL notation is more commonly used in the research literature, and we will use the LTL

notation here1.

In practice, it is necessary to impose fairness assumptions on the system that for-

mally express which traces are deemed to be realistically allowed by the expected underlying

implementation. For example, an arbiter that always grants to one requester and not the

other could be viewed as unrealistic and ruled out using fairness. More generally, most

models consist of many concurrently operating subsystems. It is common to have a sce-

nario with entities a, b, and c where a makes a request of b while c can continue indefinitely

working on its own. Without fairness, we must consider traces where a makes a request

and all subsequent actions are those of c. For many models, it is unrealistic to consider

scenarios where c performs an arbitrary number of actions while b does nothing. We need

1Some authors use G instead of □ and F instead of ♢ in LTL formulas. We use □ and ♢ notation
as it will not be confused with the CTL notation that describes DF properties.

8

Property Type Increasing Capacity Parameterized

Safety PReach MC [22] CMP Method [40]
Deadlock-Freedom PReach-DF MC, CTL MC [23]
Response Properties LTL MC, PReach-Resp MC [93, 18, 56]

Table 1.1: Verification methods

a way to exclude these unrealistic, also referred to as unfair, traces. If Fair is a predicate

over traces expressing these assumptions, then Fair → □(p→ ♢q) says that every fair trace

that includes a p-state will include a q-state in the future, or equivalently, that any trace

that visits a p-state and then cycles forever without visiting a q-state necessarily violates

fairness.

We expect designers are more interested in response properties than DF because it

guarantees something good will happen as opposed to it merely being possible. However,

DF avoids the technical and conceptual difficulties associated with specifying fairness, is

less computationally complex, and we believe many real protocols that violate response in

fact also violate DF. Intuitively, DF can express that pending transactions in the system can

complete if new transactions stop being injected. On the other hand, response properties

can reason about a particular kind of transaction always eventually completing regardless

of other activities.

The cross product of the property types {Safety, Deadlock-Freedom, Response Prop-

erty} and the goals of {increasing capacity, parameterized verification} gives 6 pairs, as

summarized in Table 1.1. We briefly cover this table and expand on each entry in Sec-

tion 1.3.

The work of this thesis is formulated using the specification language of the Murφ

model checker [52], a guarded command language [50] for finite state transition systems.

However, we believe the methods are general to the languages used by other model check-

ers [65, 41, 5].

Model checking of safety properties has several well-understood enhancements that

9

aim to increase capacity, including abstraction, symmetry reduction and partial order re-

duction. Our contribution in this area is the distributed explicit-state model checking

(DEMC) tool called PReach, which utilizes the aggregate memory of hundreds of ma-

chines and is entirely compatible2 with these other techniques. We have extended PReach

to check both DF (PReach-DF) and response properties (PReach-Resp) in a distributed

environment.

Parameterized verification is known to be an undecidable problem, so human guid-

ance is usually a key ingredient. There are a number of previous works for both safety and

liveness properties in this area. The Chou-Mannava-Park (CMP) method [40] for safety

properties has been demonstrated as an effective approach when applied to Murφ models

with a symmetric parameter. We built upon this method and developed a theory for prov-

ing parameterized DF properties, also using Murφ models with a symmetric parameter,

that relies on PReach support for MC-DF checks [23]. See Chapter 2 for a survey of

techniques that deal with proving that LTL formulas hold in parameterized systems.

To summarize, this thesis addresses the following problem.

The ubiquity of highly concurrent hardware and software designs calls for veri-

fication tools that support both safety and liveness. Given the conceptual and

computational complexity of specifying and verifying liveness, we need verifica-

tion methods that support straightfoward liveness properties and that can be

applied to industrial-scale problems.

1.2 The Explicit-State Approach

Before I discuss our contributions that utilize explicit-state model checking, it is important

to justify the use of this old and simple method. Indeed, landmark contributions have

2Abstraction can be performed to generate the input model, and symmetry reduction is built in
to the Murφ front-end. Partial order reduction, on the other hand, is not supported by PReach
but it has been investigated in a parallel model checking setting [100].

10

been made with symbolic model checking techniques that represent a set of states (or

approximation thereof) with a boolean formula over system variables, and the next-state

function with boolean formula over primed and unprimed variables. The first widespread

symbolic model checkers used binary decision diagrams (BDD) [35] and demonstrated that

the state-space explosion can be curbed for many systems of practical importance [90].

Since then, other symbolic approaches have been employed, including those that utilize

SAT queries and interpolants [95, 33]. These methods are necessary for what is referred

to as hardware model checking, where a sequential circuit is modeled as an and-inverter

graph with some modest number of input wires. Explicit-state model checking (EMC) is

often infeasible for these kinds of models as the number of input combinations blows up

exponentially. However, we note that while symbolic approaches are essential for certain

problem domains, there is no “silver bullet” to dealing with state-space explosion. As

noted by Hu [67, Section 1.2.3], there are 22
n
boolean functions on n variables, and any

representation scheme that uses a polynomial number of bits O(P (n)) can represent at

most 2O(P (n)) of these functions.

EMC tends to be appropriate when the reachable state space features sufficient

non-uniformity. In such cases, symbolic expressions may degenerate to a large formula

that resembles a disjunction of conjuncts, where each conjunct describes only a small

number of states. Then, symbolic operations will in a sense require just as much work

as explicit-state, but with a larger constant factor in terms of time and memory cost.

The aforementioned work by Chou et al. [40] suggests that EMC is the right choice when

checking cache coherence protocols. To paraphrase:

1. BDD performance is more sensitive to the data structures used to describe the pro-

tocol;

2. EMC can take advantage of symmetry reduction [70];

3. EMC is better suited for disk-based techniques;

11

4. SAT-based methods are not known to outperform BDD-based methods on cache

coherence protocols.

In addition, EMC seems to be better suited for distributed implementations, at

least compared with BDDs. Existing approaches involve maintaning the BDD on a single

machine until it is about to exceed the memory capacity, and then carefully split the BDD

in order to balance memory usage among two machines and minimize duplication [61, 60].

In contrast, distributing the reachable state space among machines is trivially achieved by

using a uniform random hash mapping [104]. We note that Bradley’s original IC3 model

checking paper involves experiments that use multiple cores and machines, but appears to

saturate in performance at 8 to 12 threads [33]. There are also promising IC3 methods

for showing liveness [34], but to our knowledge the parallel performance has not been

investigated.

1.3 Verification Methods of this Thesis

PReach (Parallel REACH ability) is a distributed explicit-state model checker based on

Murφ [22]. It is designed to be scalable and harness the aggregate computing power of

clusters of machines. PReach verifies Murφ models and borrows Murφ’s C++ imple-

mentations of key model checking components, such as a hash table to store states and

compilation of Murφ models to C++ code for the efficient computation of state successors.

The main module that handles communication and coordination of threads is written in

the functional language Erlang [2] and is roughly 1000 lines of code. This separation of the

distributed algorithm from model checking details offers both efficiency and simplicity. Our

experiments have shown that in addition to linear speedups, PReach can utilize hundreds

of compute nodes to explore the state space of the largest Murφ models ever checked —

on the order of 100 billion states. The clean code and extensibility of PReach has been

leveraged in subsequent projects [23, 26, 27].

12

First, we implemented a sequential DF checking procedure as part of a method for

parameterized verification of DF [23]. For a symmetric system S described in a guarded

command language and parameterized by n, we seek to show that for any n, each reachable

state of S(n) has a path to some q-state, i.e., S(n) |= AGEF q, where q is a predicate3.

Our approach is inspired by, and builds upon the CMP method [40] which establishes

properties of the form S(n) |= AGp for predicate p, which may include universal quantifiers

over the parameterized set. They use a counter example guided abstraction refinement

(CEGAR) approach [45]. First, an abstraction A of S(n) for every n > k is computed,

which essentially keeps k fixed parameter entities fully modeled, and overapproximates

the behavior of all others. Next, a trace of A is found via model checker that reaches a

¬p-state. The user examines the trace and devises a non-interference lemma ϕ1 which is

the abstraction of an assumed invariant of S(n). The intention is that if ϕ1 holds of S(n)

for all n > k, then the spurious trace cannot occur. This is achieved by strengthening A

with ϕ1 by restricting when actions of the abstracted parameter entities may occur, and

model checking is used again to verify AG (p∧ϕ1). The user continues this process until the

abstraction satisfies AG (p∧ϕ1 ∧ ...∧ϕm), a counterexample is found, or the user is unable

to find the next useful ϕi. If AG (p ∧ ϕ1 ∧ ... ∧ ϕm) is established, the assumed invariants

along with p are actual invariants of S(n) because A simulates S(n) for n > k.

Adapting this method to proving parameterized DF presents challenges. We need

to show that every reachable state in S(n) has a “witness” — a path to some q-state. In

order to find such paths, it’s often necessary to include the actions of abstracted parameter

entities. However, because the abstraction overapproximates these actions, it is unsound

to assume that they may occur as there’s no guarantee that corresponding actions exist in

the concrete system.

Suppose we have used the CMP method to verify some safety properties of param-

3Typically, q is universally quantified over the parameterized set, and is interpreted by to the
set of quiescent states. In cache coherence protocols, this corresponds to states where there are no
pending messages.

13

eterized system S(n) via abstract system A. As the transitions of A are overapproximate,

there could exist reachable states for which no concrete analogue is reachable in S(n) (for

any n). In our method, we employ a mixed abstraction which augments A with underap-

proximate transitions U ; denote the overapproximate transitions with O. Transitions of

U are guaranteed to have a concrete analogue, and thus soundly imply existential path

properties in S(n). To check such properties, we use state space enumeration to explore

states reached through O-transitions, and for each reachable state a path is found com-

posed of U -transitions to a q-state. PReach implements this model checking procedure.

If there exists a reachable state s̃ for which there is no U -path to a q-state, a counterex-

ample trace is generated. Following an analogous CEGAR procedure to that of the CMP

method, the user must either prove that s̃ is unreachable by strengthening O, or that such

a path should exist from s̃ by weakening U . The latter is done by using inference rules

that we refer to as “heuristics” [23]; see Chapter 5. The proof obligations of heuristics are

discharged by model checking the mixed abstraction as described above. We applied this

method to both the German and FLASH cache coherence protocols as case studies where

DF for any number of caches was established.

Following up on this work we designed and implemented two distributed algorithms

for verifying DF of systems. The user provides both the quiescent predicate q, along with

a set of helpful transitions H that are expected to be a sufficient set to form a path from

every reachable state to some q-state. Similar to the paths formed using U -transitions

above, both algorithms perform a directed search using only H-transitions. Identifying

these transitions provides an expression of designer intent. This approach allowed us to

discover a bug in the Peterson mutual exclusion model that had persisted in the Murφ

distribution for about 20 years. We found that in most cases the average search path

is short and PReach can perform this lightweight liveness check for a small additional

overhead as compared to safety checking.

To attack the verification of a response properties, we implemented a variant of

14

the One-Way-Catch-Them-Young (OWCTY) algorithm [73, 38] in PReach, capable of

checking response properties on systems augmented with fairness on actions. Previous

OWCTY algorithm descriptions were aimed at checking arbitrary LTL formulas, used data

structures that respresented states sets with full state descriptors, and generally did not

include fairness assumptions. In PReach, states are hashed to 40 bit descriptors, so that

checking membership of a set is easy but member states cannot easily be reconstructed.

Our approach uses forward reachability only, and augments the hash table entries with

various bookkeeping bits to emulate membership in the various sets. We have found this

implementation to be capable of checking response properties on fair systems with hundreds

of millions of reachable states.

1.4 Thesis Statement

Given some hardware design model, the class of properties that can be described as DF or

response are of practical interest. Capacity constraints limit the effectiveness of automatic,

sequential model checking approaches, especially for protocol level descriptions. Many

designs can be modeled as a system that is parameterized, for example by number of caches

or addresses. Two approaches are to set the parameter as large as our model checking tools

and hardware resources allow, or to employ a parameterized verification method. These

approaches trade-off human effort with strength of the verification result with respect

to the original design. Another trade-off is verifying response properties versus DF; the

former is a stronger result, but the latter is easier both from a computational and human

effort perspective. Regardless of the approach, there is particular importance to mitigate

the burden on the user. By leveraging the stable, tested and large scale distribution of

the state-space provided by the PReach model checker, we are able to achieve scalable

methods for liveness verification.

This brings us to the thesis statement:

15

This thesis develops and demonstrates tractable, practical and scalable dis-

tributed explicit-state model checking methods for establishing liveness prop-

erties of practical importance for large-scale models of hardware protocols.

1.4.1 Contributions

1. PReach: an industrial strength parallel, explicit-state model checker capable of

checking the largest published Murφ models by distributing the computation across

hundreds of machines. My contributions include:

(a) Created the initial prototype of the distributed model checking algorithm.

(b) Implemented and evaluated various approaches to load balancing to address

both performance and thread crashes.

(c) Gathered statistics on Erlang communication throughput and latency relative

to message size, motivating state-batching, load balancing, and other optimiza-

tions.

2. Parameterized DF: A novel method for establishing DF properties in symmetric

parameterized systems. This is the first work in parameterized DF, and complements

the CMP method for parameterized safety properties.

3. PReach-DF: Two approaches for DEMC of DF. Shows that given simple and eas-

ily available user input, can model check DF on large models for a small overhead

compared with state-space enumeration.

4. PReach-Resp: A novel algorithm implementation for distributed explicit-state model

checking of response properties on fair systems. Demonstrated that in practice the

OWCTY algorithm takes only a modest constant number of expansions per state —

far less than the worst-case performance.

16

1.4.2 Roadmap

The rest of the thesis is organized as follows. Chapter 2 is related work, comparing and

contrasting our contributions with literature in DEMC, parameterized verification, and

LTL model checking. The Section 2.1 provides technical background and some definitions

used throughout the thesis. Chapter 3 summarizes the PReach model checker. Chapter 5

explains our approach to parameterized DF proofs. Chapter 6 covers the implementation

of the distributed OWCTY-like algorithm. Finally, Chapter 7 summarizes the thesis and

points to areas of future work.

17

Chapter 2

Related Work

Here, we survey the related research from the literature and compare it with our work.

First, Section 2.1 provides some definitions, notation for CTL and LTL temporal logics and

background for the Murφ description language. These are used throughout the rest of this

thesis and are relevant to related work. The next three sections divide the previous work

into categories. Section 2.2 describes parallel and distributed explicit-state model checking

with a focus on tools. Section 2.3 examines parameterized verification with an emphasis

on techniques. Section 2.4 describes LTL model checking with a focus on algorithms. We

conclude with a summary in Section 2.5 that puts the contributions of this thesis into

context.

2.1 Preliminaries

A system S is a triple (S, I, T) where S is a set of states, I ⊆ S are the initial states, and

T ⊆ S × S is the transition relation. System S may be viewed as a digraph G = (S, T).

The reachable states of a system are the states s for which a path exists in G from an

initial state to s. A trace is a walk of possibly infinite length in G from an initial state. If

S′ ⊆ S, let ⟨S′⟩ be the subgraph of G induced by the vertices of S′.

A system has a set of variables each with finite range that each state is a valuation

18

of. If p is a predicate on state variables, then we say that s is a p-state if p(s) is true. We

sometimes overload this terminology; if A is a set of states, then an A-state is a member

of A. If v is a variable of S and s is a state, then v(s) is the value of v in s.

2.1.1 Temporal Logic

Here we give a brief explanation of CTL and LTL. For a formal description, see [68].

CTL is a logic over paths of G, and are meaningful in any state of G. Symbols

A and E are branching quantifiers, where A means “for all paths from the current state”

and E means “at least one path from the current state”. Each branching quantifier is

immediately followed by a path-specific quantifier:

• X ϕ means ϕ holds in the next state on the path.

• F ϕ means ϕ holds eventually on the path.

• G ϕ means ϕ holds everywhere on the path.

• [ϕ U ψ] means that ϕ holds at least until some state where ψ holds, and that ψ

eventually holds.

• [ϕ W ψ] means that ϕ holds at least until some state where ψ holds. If ϕ holds

everywhere on the path then ϕ U ψ holds for any ψ.

Here, ϕ and ψ are CTL formulas consisting of braching/path-specific quantfier pairs

or state predicates. CTL formulas may be combined with the usual logic connectives: ¬,

∧, ∨ and →.

Unless otherwise stated, when we say that CTL formula ψ holds in S, it means that

ψ holds in every initial state. As examples,

• AGp means “always-globally p”, or p holds in all states along all paths;

• AGAFp means “always-globally, always-eventually p”, or in all states along all paths,

p holds eventually’

19

• AGEF p means “always-globally, exists-eventually p”, or in all states along all paths,

there exists a path to a state where p holds.

LTL is a logic over all infinite traces the system allows. As with CTL, the logical

connectives have the usual meaning and p is a state predicate. As LTL reasons over a set

of traces, there is no notion of branching quantifiers, only path-specific quantifiers:

• □ ϕ means ϕ holds everywhere along the trace.

• ♢ ϕ means ϕ holds eventually along the trace.

• ⃝ ϕ means ϕ holds in the next state on the trace.

• ϕ U ψ means that ϕ holds at least until ψ holds, and ϕ eventually holds along the

trace.

• ϕ R ψ means that ϕ holds at least until ψ holds, but ϕ need not eventually hold

along the trace.

• p means that p holds in the first state of the trace.

We use both CTL and LTL in this thesis. Neither is strictly more expressive than

the other. For example, the CTL formula AGEF p cannot be expressed in LTL, and the LTL

formula ♢□p cannot be expressed in CTL. Even though response properties are expressible

in both CTL and LTL, we choose standard LTL notation as it is consistent with the

literature on response properties.

2.1.2 The Murφ Description Language

Here we give an overview of the Murφ description language which is the input language

of the Murφ model checker [52] and PReach. For the Murφ user manual and a tutorial,

see [98, Murphi 3.1]. Examples of full Murφ models can be found in Figures 5.2 and 5.3,

as well as Appendix A.

20

A Murφ system gives the variables that dictate the state space, a predicate for the

initial states, and implicitly describe the transition graph through a sequence of guarded

commands, or rules. It also contains a list of state invariants. When model checking

commences, initial states are constructed and then their successors computed according

to the list of rules. Each rule has a guard, which is a predicate on states. If the guard

holds true in state s, the rule is said to fire and the command part of the rule specifies an

atomic update to apply to s to generate successor state s′. If all reachable states satisfy all

invariants, model checking completes once all reachable states have been visited. If some

reachable state does not satisfy an invariant, checking halts and a counterexample trace is

printed.

We will construct a traffic light controller model as an example, to highlight the

various syntactic elements.

The keyword const is used to specify constants.

const NUM_DIRECTIONS 4;

The keyword type is used for type definitions. Some built-in types include boolean

and num (for integer values). In order to exploit symmetry reduction, a scalarset type

must be used.

type DIR : scalarset(NUM_DIRECTIONS);

This indicates an index set of symmetric entities. The values of the indices cannot

be compared with less-than or greater-than, only for equality. Enumerated, record and

array types can be defined.

COLOR: enum green, yellow, red;

SIGNAL: record color : COLOR; waiting_car: boolean; end;

The system variables come next, using the keyword var. In our example, the only

variable is an symmetric array of type SIGNAL:

var intersection: array[DIR] of SIGNAL;

21

The startstate keyword precedes a command for the initial states. These assign-

ments are atomic, and take the form variable := value;. For loops may be used to

range over index sets such as scalarsets. The initial assignment may be given a name —

here we choose the Init.

startstate "Init"

for d : DIR do

intersection[d].color := red;

intersection[d].waiting_car := false;

end;

end;

This will initialize each direction’s color to red and set the waiting car flag to false.

Note that any uninitialized variables will be set to the special value undefined, regardless

of type. It is a Murφ runtime error to read a variable with value undefined unless it is

with the special function isundefined.

A ruleset is a group of rules generated from an index set. For example, we could

use the following to allow green to yellow transitions for all directions.

ruleset d: DIR do

rule "green_to_yellow"

intersection[d].color = green

==>

intersection[d].color := yellow;

end;

end;

Murφ predicates (and guards) may include the symbols &, |, !, ->, = and != for

logical and, or, not, implication, and comparing for equality and inequality, respectively.

Some other rules we might want:

ruleset d: DIR do

rule "yellow_to_red"

22

intersection[d].color = yellow

==>

intersection[d].color := red;

end;

rule "red_to_green"

intersection[d].color = red

==>

intersection[d].color := green;

end;

rule "car_arrives"

!intersection[d].car_waiting

==>

intersection[d].car_waiting := true;

end;

rule "car_proceeds"

intersection[d].car_waiting & intersection[d].color = green

==>

intersection[d].car_waiting := false;

end;

Finally, we include invariants that all states must satisfy, otherwise Murφ will halt

with a counterexample trace. This also introduced forall expressions that form a conjunct

of predicates depending on values from an index set.

invariant "No_Collision"

forall d1 : DIR do forall d2 : DIR do

i != j ->

((intersection[d1].color = green & intersection[d1].car_waiting) ->

!(intersection[d1].color = green & intersection[d1].car_waiting))

end end;

This invariant says that at most one direction will have a car waiting and a green

signal at a time. But this invariant doesn’t hold of our current system, as all 4 directions

23

might be green with a car waiting. We could address this by only allowing a change from

red to green when all lights are red, changing the guard of rule red to green.

rule "red_to_green"

forall d1: DIR do intersection[d1].color = red end

==>

...

This new system satisfies the invariant, but probably isn’t a good traffic light since

at most one direction can be green at a time. In order to allow opposing directions to both

be green at once would likely require us to rethink the types and symmetry. We won’t go

into this level of detail, as what we have presented is enough to follow the Murφ code of

this thesis.

2.2 Parallel and Distributed Model Checking

The two most common methods of performing model checking are explicit-state space enu-

meration and the use of symbolic representations. For some industrial protocols, explicit-

state model checking is considered to be the more effective verification technique [104], and

hence is employed by numerous tools such as Murφ [52], SPIN [65], TLC [114] and Java

PathFinder [63]. Most of these model checkers explore the state space in a sequential man-

ner which can be a hindrance in terms of both memory usage and runtime when verifying

systems with a large state space. This motivates the use of distributed explicit-state model

checking (DEMC) tools. These tools may be categorized into those that handle safety

only [104, 82, 96, 32] and those that handle some form of liveness [13]. DEMC for safety

properties has received more attention. Generally, liveness checking is more complex both

computationally and conceptually, yet it remains of industrial importance. To address this

need, the main focus of this thesis is to design scalable solutions for interesting liveness

properties of real models.

24

The PReachmodel checker [22] is an implementation of the Stern-Dill algorithm for

DEMC [106]. It reuses back-end computation components of the Murφ model checker [52]

and reads models written in the Murφ language, which has become the de facto industry

standard for modelling hardware protocols. This algorithm statically partitions the state

space among processing nodes according to a uniform hash function, where each node is said

to own a set of states. When a state is expanded, the successors are sent to their respective

owners where they are stored and subsequently queued for expansion, and duplicate states

are ignored. Thus, state ownership specifies the compute node that is responsible for

storing a given state. In PReach, a hash table implementation borrowed from Murφ [103]

is used for each node to record the states it has encountered. See Figure 2.1 for a flow-chart

overview of Stern-Dill DEMC.

The fact that state ownership is independent of which compute node performs the

expansion leads to load balancing schemes on the states that are queued for expansion (the

work queue). That is, as long as a given state is initially sent to its owner to check for hash

table membership, any compute node may perform the state expansion step. The need

for load balancing in DEMC has previously been identified by Behrmann in the context of

timed automata model checking [19], and later by Kumar and Mercer [77]. We contrast the

latter scheme with that of PReach in Section 3.3. Also, when the work queue becomes

long, we may store most of its states on disk [105] to keep the majority of main memory

dedicated to the hash table. Because the work queue is written and read sequentially with

large blocks of states per disk access, using disk storage has minimal impact on performance

compared with using memory only. States are batched into messages with typically 100 to

1000 states before sending between compute nodes. This batching method has been used

by others in the context of DEMC [106, 96].

The closest tool to PReach is a model checking tool that has been extensively

described in the literature called DiVinE [111, 12, 10, 4, 6, 7, 13]. The tool originated in

Jǐŕı Barnat’s PhD work [15], and the project has been ongoing since. Initially the tool was

25

Insert state in

hash table and

work queue

Root Process

Initial States

Worker Processes

to owners

Send initial states

(a) (b)

Remove state from

work queue

Compute successor states

Send successor states

to owners

LOOP

Report result
Detect termination

Receive a state

LOOP

NO YES

in hash table?

Figure 2.1: Stern-Dill DEMC flow-chart. Initial states are computed by a designated root
process and then sent to their respective owners. These worker processes receive incoming
states and check them for membership in a hash table. If the state is present, it is ignored.
Otherwise, the state is inserted into the hash table and queued for expansion. Worker
processes alternate between threads (a) and (b), where the former receives states and the
later computes state successors and sends them off to owners. Termination is detected
by the root process when all reachable states have been expanded or a state that violates
safety is found.

intended to take advantage of distributed memory for model checking LTL formulas, and

served as a platform for algorithm evaluation and comparison. This led to further research

of algorithms and computing environments. Barant, Brim, and Ročkai [8] investigated the

restricted problem of model checking weak LTL formulas using DiVinE. An LTL formula

is weak if the product automaton of the formula and system that accepts counterexamples

has the property that in a given SCC every state is either accepting or none of them are

accepting. The same authors wrote an insightful paper on the challenge of applying partial

order reduction in a parallel setting [10]. On the compute environment side, DiVinE

was extended to run on CUDA enabled graphics cards [4]. They were able to utilize

two graphics cards to speed up the model checking computation, the only work I am

26

aware of to do so. This work was for LTL model checking using the MAP Algorithm (see

Algorithm 2.3). The initial state space is enumerated on a single multicore machine, and

then the reachable state graph is converted to a sparse matrix representation. This graph

representation is partitioned into at most two pieces and copied to the memory of the

CUDA devices where the MAP algorithm runs. DiVinE has also been used to evaluate the

benefit of exploiting Flash memory for model checking algorithms that formerly utilized

magnetic disk to store states [6]. Recently, DiVinE 3.0 was released with features aimed

at software model checking [7]. Taking as input LLVM bytecode, it is capable of model

checking C/C++ programs, along with other languages that compile to LLVM.

While the DiVinE tool has explored many aspects of parallel and distributed LTL

model checking, its scalability and applicability to industrial problems is unconfirmed. One

publication reports it handling state spaces consisting of as many as 419 million states [11].

However, another researcher has reported scalability issues when running DiVinE on 16

machines [54]. The developers of DiVinE state that it is likely to crash when the compute

nodes are heterogenous, as it is targeted towards homogeneous clusters [13]. DiVinE has no

explicit algorithms for dealing with strong fairness assumptions, and model checking with

more than a handful of these assumptions renders the computation intractable (more details

provided in Section 6.7). While DiVinE has optimizations for models with weak fairness

assumptions [16], it is only possible to attach weak fairness to all rules, not a subset. Thus,

DiVinE cannot catch the Murφ Peterson bug explained in Chapter 4. DiVinE is unable

to verify our notion of deadlock-freedom, as it cannot be specified in LTL. As far as I am

aware, the benchmarks used to measure performance of DiVinE are substantially smaller

than the problems arising from real, industrial coherence and communication protocols

considered in this dissertation.

LTSmin [32] is a model checking tool that handles a variety of model inputs and sup-

ports (sequential) explicit-state, symbolic BDD-based, and DEMC of safety. It is designed

in a modular fashion where input models are translated into an internal representation

27

that the model checking algorithms use, so it is straightforward to add new modelling

languages. The Murφ language is not currently supported, nor is DEMC of liveness prop-

erties. The majority of work surrounding LTSmin appears to focus on multicore, shared

memory model checking [85]. One paper that deals specifically with DEMC attacks the

problem of model checking models with unbounded recursive data types [31]. In these

models, states are not restricted to a fixed size, which leads to difficulties when hashing,

distributing and comparing for equality. The largest model verified with LTSmin’s DEMC

approach is about 570 million states [32].

Some other examples of well-known explicit-state parallel model checkers are adap-

tations of Murφ and SPIN. “Parallel Murφ” [104] is a parallel version of the Murφ model

checker [52] based on parallel and distributed programming paradigms. Eddy Murφ [96]

has improved speed over Parallel Murφ by the separation of concerns between next-state

generation and communication during distributed model checking. It was intended to be a

distributed model checker for Murφ. Unlike previous work, Eddy Murφ was implemented

to take advantage of emerging multicore CPUs by using two MPI threads per compute

node (one for computation and one for communication). As of this date, there is no active

maintainer of Eddy Murφ. We have found that a recent version the software reports incon-

sistent numbers of reachable states on multiple runs for the same, simple models. Thus,

we do not believe that Eddy Murφ is trustworthy in its current form. The 4500+ lines of

C++ code that comprise Eddy make it more complicated than PReach. The simplicity

and stability of PReach make it the obvious foundation for our investigation of DEMC

for liveness properties.

PSpin has also been used for performing distributed model checking with the ca-

pability of handling up to 2.8 million states [82]. A distributed version of the Spin model

checker [65] for checking safety only, PSpin departs somewhat from the Stern-Dill approach

by allowing the hash function to be less uniform. Using a hash function that only depends

on subset of the system variables can in some cases improve performance. In particular,

28

this non-uniform hashing exploits the structure of models written in Spin’s specification

language, Promela. These models describe the system through processes with some in-

dependence between them. Therefore, if many transitions only change variables that the

hash function does not depend on, successor states need not be communicated to another

worker and remain locally owned. The PSpin work shows that with ratios between the

worker with the least states and the worker with the most states of as low as 0.71, large

performance gains are possible when compared with uniform hashing. DEMC has also

been studied for models described by Petri nets [75, 20].

2.2.1 Model Checking Deadlock Freedom

Our approach for verifying the deadlock freedom property AGEF q involves firing helpful

transitions provided by the user. This essentially finds paths that follow pending system

transactions (say, servicing a cache-miss) to completion, and q-states describe states with no

pending transaction. This is reminiscent of techniques used in other verification contexts.

Pipeline flushing used by Burch and Dill in their seminal paper [37] shows refinement of

processor pipelines by completing in-flight instructions that are beyond a commit point as

part of the refinement map. The idea of iteratively firing certain commands to complete

in-flight transactions is also similar to the completion functions used by Park and Dill [101],

though again their goal was to verify refinement. Neither DiVinE [12] nor Eddy [96] are

capable of checking CTL properties such as AGEF q, and as mentioned above, neither has

been applied to large scale problems as has been done with PReach [22]. Our approach

differs from the classical CTL model checking algorithm [44], which performs a pre-image

fix-point computation from q to compute the set of states that satisfy EFq, and then

checks that the reachable states are contained in this set. With an explicit-state algorithm

computing the pre-image fixpoint of q can be expensive. Suppose a Murφ rule has an

update of the form var := expr , where the rule guard and expr is independent of var .

Then, var could have any type-consistent value in a previous state, many of which could

29

be unreachable states in the system. By using a forward search, we ensure that the space

and time complexity is proportional to that of doing (explicit) state-space exploration.

Doing CTL model checking only using forward searches has been investigated for symbolic

model checking, e.g. the work of Iwashita et al. [72]. They show that using forward search

only offers performance improvements for many CTL properties.

2.3 Parameterized Verification

Our work in verifying parameterized deadlock-freedom builds upon the CMP method [40]

for verifying parameterized safety properties. The CMP method has motivated other

works, including its formalization [76], automation [28], and application to industrial pro-

tocols [107, 99].

There have been many previous efforts to extend compositional techniques to pa-

rameterized safety property verification [42, 92, 93, 40, 76, 86, 28, 83, 99]. Pioneering work

by Clarke et al. [42] showed that a mutual exclusion scheme with n nodes arranged in a

ring that passed around a token was correct for all n. This was established by means of a

bisimulation between a system with k nodes and one with k + 1 nodes for all k > 1. The

logic to describe parameterized properties was Indexed CTL* (or ICTL*), which is CTL*

without the next-time operator1, and indexed formulas of the form
∧

i f(i) or
∨

i f(i) where

i ranges over the nodes and f is a predicate over variables local to that node. More recently,

the work of Lv et al. [86] gives a technique for automatic strengthening of a CMP-like ab-

straction of symmetric systems. If the abstraction has m concrete nodes, they instantiate

a system with m + 1 nodes and use invariants of this system as proposed variants of the

abstraction.

As for liveness-like properties, there are several notable works. McMillan’s work on

using compositional methods for LTL liveness properties [91] was applied to parametric

liveness verification of the FLASH coherence protocol [93]. Using SMV, the user can

1CTL* is a logic that is a superset of both CTL and LTL.

30

automatically generate a sound abstraction, and then use lightweight theorem-proving

commands for concretizing additional caches or proposing user-devised noninterference

lemmas, based on counter example analysis. Although [93] focuses on a proof of safety, the

same framework was used to show that whenever the directory is in the pending state, it

is eventually not pending [94]. McMillan’s proof relies on a handful of lemmas and fairness

assumptions, designed and proven within SMV.

Fang et al. proposed an interesting technique called invisible ranking [56] which

attempts to automatically guess ranking functions to prove response properties. The as-

sociated proof obligations (from [88]) are decided using some small-model theorems (con-

ditions under which it is sufficient to check some property on only a small instantiation

of the parameterized system) and BDD based methods for proposing invariants for the

parameterized system. The authors have previously use what they refer to as counter

abstraction for parameterized liveness verification [102]. Here, liveness of parameterized

mutual exclusion protocols is established by an abstraction that maps counter variables to

have a range of {0, 1,∞}.

Baukus et al. employWS1S (Weak Second-order theory of 1 successor — a decidable

second-order logic) to perform liveness verification of parameterized systems [17], and verify

response properties for the German protocol as a case study [18]. Like our approach,

human effort is required, to select both abstract predicates and ranking predicates needed

to create an appropriate abstraction. The complexity of deciding WS1S is well-known to

be super-exponential, hence scalability of this approach seems unlikely. It is unclear if

WS1S is expressive enough to model array variables indexed by the parametric type and

with values over the parametric type. Such variables appear in the Murφ description of

the Flash protocol.

The earliest example we could find where both over-approximative and under-

approximative abstractions of a transition system are employed for verification is the

work of Larsen and Thomsen [81]. They distinguish between necessary and admissible

31

transitions; for a process to refine another it must over-approximate the former and under-

approximate the latter. Of course our interests are in abstraction rather than refinement,

which are in a sense inverses of each other. Later the work of Dams et al. [48] and in-

dependently Cleaveland et al. [46] used mixed transition systems which are defined with

two transition relations to formulate abstractions that preserve both universal and exis-

tential properties of the modal µ-calculus. Our mixed-abstractions are similar, but these

authors focus on the problem of curbing state-space explosion of a fixed system using an

abstraction that preserves certain properties, and we utilize abstractions for parameterized

verification.

2.4 Model Checking LTL Formulas

The standard approach to LTL model checking [110] involves constructing the product

automaton that is the synchronous cross product of the Büchi automaton2 that accepts

the negation of the property in question, and the Büchi automaton for the system itself. If

the language accepted by the product automaton is empty, then the LTL property holds;

otherwise, a counterexample trace is found. Counterexamples correspond to reachable

cycles of the product automaton that do not include an accepting state (where all system

states are accepting). LTL model checking suffers from state-space explosion and this

approach takes time and space O(n2|ϕ|), where n is the number of states in the original

system, ϕ is the LTL formula and | · | is formula size, i.e., the number operators and state-

predicates. In this standard approach, including the algorithms we will present shortly

(Algorithms 2.1, 2.2 and 2.3), fairness assumptions are handled implicitly, i.e., by adding

them as antecedents on the formula to check.

Explicit-state methods for LTL model checking must utilize some method of decom-

posing graph (V,E) into its strongly connected components (SCCs). Using a sequential

2A Büchi automaton is similar to a nondeterministic finite automaton with accepting states F ,
but accepts traces of infinite length — those that visit an F -state infinitely often.

32

algorithm for accepting cycle detection such as Tarjan’s [108], SCCs may be found in

O(|V |+ |E|) time. This, along with several other algorithms for the same problem rely on

a depth-first search (DFS) to compute SCCs, however, DFS is known to be P-complete

and therefore is not easily parallelizable. However, such DFS-based algorithms are un-

suited to parallelization unless3 P = NC [9]. In comparison, the time complexity of our

approach using PReach for proving response properties differs by a factor of r/s where

s is the speedup of using multiple threads. Manna and Pnueli presented a sequential al-

gorithm for model checking response properties of fair transitions systems [89], but this

not easily parallelizable and thus scalability is limited. Recently, Holzmann implemented

some interesting liveness checking algorithms in a multicore version of SPIN [66]; however

this approach will only find counterexamples of bounded length. Other work related to

ours includes that of the authors of the LTSmin model checking tool, most notably their

algorithms for parallel SCC decomposition on multicore machines [79, 55].

BFS-based algorithms, on the other hand, are amendable to parallel implementa-

tions. We present below (Algorithm 2.1) a simple such algorithm, referred to as Basic

Distributed Cycle Detection4; but first some definitions.

A Büchi automata (S, I, T, F) is a digraph with vertices S and arcs T ⊆ S × S.

Initial states I are a subset of S, as are the accepting states F . In our presentation, we

typically express a Büchi automata as a graph G = (S, I, T) and associated accepting state

predicate F , so that different notions of trace acceptance are easy to write. Given X ⊆ S,

Reachable(G,X) computes the set of states reachable in G in zero or more transitions

starting from states of X. Reachable+(G,X) computes the set of states reachable in G

in one transition or more, starting from states of X.

Each time around the loop, line 9 will remove from Cur all F -states that are un-

3P is the complexity class of problems that are decidable in polynomial time. NC, known as
“Nick’s Class”, is the set of problems decidable in polylogarithmic time on a parallel computer with
a polynomial number of processors.

4While variants of this approach are common in the literature, we are not aware of this particular
formulation having been previously published.

33

Algorithm 2.1 Basic distributed cycle detection

1: procedure Basic(G = (S, I, T), F)
2: ▷ find accepting states reachable from themselves
3: Cur : set of states
4: Old : set of states
5: Cur ← Reachable(G, I) ∩ F ▷ All reachable F -states
6: Old ← ∅
7: while Cur ̸= Old do
8: Old ← Cur
9: Cur ← Cur ∩ Reachable+(G,Cur) ∩ F
10: end while
11: if Cur = ∅ then
12: property holds
13: else
14: Cur contains a cycle with an accepting state
15: end if
16: end procedure

reachable from another F -state in S. Since any F -state on a cycle is reachable from itself,

it will never be removed from S.

The DiVinE model checker supports a number of SCC detection algorithms [14].

We summarize their two main algorithms: One-Way-Catch-Them-Young and Maximum-

Accepting-Predecessor. OWCTY was first described in [57] and a parallel implementation

was considered in [38]. It is similar to Algorithm 2.1, but tags states of Cur with a counter

of the number of predecessors each state currently has in Cur . The reachability compu-

tation determines the counters for each state reachable from the given set, and function

EliminateNoPreds utilizes these counters to removes any states from Cur without a

predecessor in Cur , until a fixpoint is reached. This approach can result in fewer loop

iterations than in Algorithm 2.1, as it can pre-emptively remove states. For example, if

⟨Cur⟩ includes a long path of states that each have one incoming and one outgoing arc,

except for the start of the path which has no incoming arcs, this entire path will be removed

by the EliminateNoPreds operation. The MAP algorithm tags states of Cur with an

F -state (or null), called its maximum accepting predecessor. The F -states are statically

34

assigned an ordering ≺, where the null value is ≺ any F -state. Before entering the loop,

Cur contains all states that can be reached from some (reachable) F -state, all tagged with

null. The MAPs of are updated by finding, for each state of s ∈ Cur , the ≺-greatest state

that has a path to s within ⟨Cur⟩. The while loop checks if there exists a state of Cur

that is its own MAP; if so, this F -state necessarily lies on a cycle. Otherwise, any state

appearing as a MAP of some state of Cur does not lie on a cycle and is thus removed.

Likewise, any state with a MAP of null can be removed as well, as such states cannot lie

on an accepting cycle.

While the high-level pseudocode appearing in Algorithms 2.1, 2.2 and 2.3, were

presented as sequential, they have direct parallel and distributed message passing imple-

mentations by using parallel methods for the breadth-first search [14].

Algorithm 2.2 One-Way-Catch-Them-Young (OWCTY)

1: procedure OWCTY(G = (S, I, T), F)
2: Cur : set of (state, integer) pairs ▷ states tagged with ints
3: Old : set of (state, integer) pairs
4: Cur ← (Reachable(G, I) ∩ F)× {0}
5: Old ← ∅
6: while Cur ̸= Old do
7: Old ← Cur
8: Cur ← ReachableCountPreds(G,Cur)
9: Cur ← EliminateNoPreds(G,Cur)
10: end while
11: if Cur = ∅ then
12: property holds
13: else
14: Cur contains accepting states on cycle
15: end if
16: end procedure

A model checking algorithm is considered to be “on-the-fly”, if it may find a counter-

example before constructing the entire graph. In [59], an on-the-fly algorithm for LTL

model checking is given that attempts to use as little memory as possible by performing a

DFS when checking the product automaton. This algorithm, utilized by the SPIN model

35

Algorithm 2.3 Maximum Accepting Predecessor (MAP)

1: procedure MAP(G = (S, I, T), F)
2: Accepting : set of states
3: Cur : set of (state, state or null) pairs
4: ≺: ordering on F -states
5: Accepting ← Reachable(G, I) ∩ F
6: Cur ← Reachable(G,Accepting)× {null}
7: Cur ← FindMAPs(G,Cur) ▷ compute MAP fixpoint
8: while Cur ̸= ∅ ∧ ∀(s,m) ∈ Cur . s ̸= m do ▷ terminate if a state is its own MAP
9: Cur ← EliminateMAPs(Cur) ▷ remove all states that are MAPs
10: Cur ← FindMAPs(G,Cur) ▷ compute MAP fixpoint
11: end while
12: if Cur = ∅ then
13: property holds
14: else
15: Cur contains accepting state on a cycle
16: end if
17: end procedure

checker, generates a Büchi automaton for the negated property called the tableau graph by

recursively breaking down the formula in question, creating nodes tagged with a formula

holding presently, and with another formula that it’s successors will satisfy. For example, if

the formula µ U ψ holds presently in a node, the key identity µ U ψ ≡ ψ∨ (µ∧⃝ (µ U ψ))

is applied. The node is split into 2 nodes, one with present formula µ and successor

formula µ U ψ and another with present formula ψ and an empty successor formula. Once

all present formulas have been processed in node u, a successor node v is created with a

present formula set to the successor formula of u. The appeal of this approach is that

when paired with an on-the-fly method of exploring the model, this tableau graph may

also be explored on-the-fly with parts of it generated on-demand. This avoids generating

the entire product automaton in cases where the model does not satisfy the property.

LTL model checking can also be performed using symbolic methods and BDDs [36].

The nuSMV model checker [41] handles LTL formulas by translating them to CTL formulas

with fairness constraints [43]. Unlike our work, this model checker is symbolic and not

36

implemented to run on a distributed cluster of machines.

Recent work includes that of Kesten et al. [74], where a symbolic LTL model check-

ing algorithm is presented that explicitly integrates fairness in terms of compassion and

justice [88, 89]. In general, fairness assumptions are properties of “interesting” execu-

tion traces, and traces that do not satisfy fairness are considered unrealistic and should

be ignored as potential counterexamples. Compassion, also known as strong fairness, as-

sumes that some event occurring infinitely often will be followed by another event occurring

infinitely often. Justice, also known as weak fairness, assumes that some event occurs in-

finitely often. The key idea is to find the set of feasible states, that is the set of states

that lie on some fair trace of the product automata. If this set is empty for a negated LTL

formula, then the original LTL formula holds. Let the predecessor closure of a set of states

A be the reachable states via reversed transition arcs, starting from A. Let J be a set of

predicates Ji, where a fair trace visits a Ji-state infinitely often for all i. Let C be a set of

ordered pairs of predicates (pi, qi), where a fair trace visits a qi-state infinitely often if it

visits a pi-state infinitely often for all i.

The algorithm of Kesten et al. first symbolically computes the reachable states S

of the system. Then, the following three steps are iterated until a fixpoint is reached.

1. Remove from S all states without a successor in S.

2. For each Ji ∈ J , remove from S all states that are not in the predecessor closure of

the J-states.

3. For each (pi, qi) ∈ C, remove from S all p-states that are not in the predecessor closure

of the q-states.

Finally, return the predecessor closure of S.

Previous symbolic algorithms dealt with compassion by adding the conditions as

an antecedent to the LTL formula to check. Another approach is to transform a compas-

sion constraint (p, q) into a justice constraint, which involves adding an auxiliary boolean

37

variable b to the system. This variable is initialized to false and every transition may

nondeterministically set it to true, from which point it remains true with each subsequent

transition. Intuitively, this flag is “guessing” a point in the computation trace at which no

further p-states will be visited. Thus, any (b ∧ p)-state is considered an error state where

computation halts, and cannot be on any accepting fair trace. The additional justice con-

straint is b ∨ q; either a q-state is visited infinitely often, or b holds infinitely often (and

persistently), indicating that p cannot hold infinitely often.

The authors of [74] compare the performance of these 3 approaches for dealing with

compassion (algorithmically, as an antecedent, transform to justice), and conclude that

handling both compassion and justice algorithmically has the best performance. This paper

also gives a clear and concise overview of the development of LTL tools and techniques.

Like nuSMV, the approach here is symbolic and not distributed.

Černá and Pelánek made the important observation that the sequential symbolic

algorithms of Kesten et al. are easily adapted to DEMC algorithms [38]. One such algorithm

is Streett-Detect-Cycle (Algorithm 2.4). Input G = (S, I, T) is a transition graph C

is the set of compassion constraints as above. The algorithm returns false if the contains

a reachable fair cycle, and true otherwise. Although this algorithm does not take a Büchi

automata as input and does not technically solve the LTL model checking problem, it

demonstrates how to check if any trace satisfies strong, state-based fairness.

For set X ⊆ S, Elimination(G,A) is the set of states obtained by removing any

state from X without a predecessor in ⟨X⟩ until a fixpoint is reached. The algorithm is

distributed by assigning each state an owner thread with a random uniform hash func-

tion. Each thread is responsible for the bookkeeping of all states it owns, including which

reachable states are currently members of S. As with Algorithms 2.1, 2.2 and 2.3, all

computations Reachability and Elimination can be implemented with BFS and mes-

sage passing between threads, similar to the Stern-Dill DEMC algorithm used by PReach

(see Algorithm 3.1). Our adaptation of Algorithm 2.4 that deals specifically with response

38

properties is given in Chapter 6.

Algorithm 2.4 A LTL DEMC Algorithm with Strong Fairness [38], slightly adapted

1: procedure Streett-Detect-Cycle(G = (S, I, T), C)
2: Cur ← Reachable(G, I)
3: Old ← ∅
4: while Cur ̸= Old do
5: Old ← Cur
6: for all (pi, qi) ∈ C do
7: Cur ← (Cur − pi) ∪Reachable(G,Cur ∩ qi)
8: end for
9: Cur ← Elimination(Cur)
10: end while
11: Cur ̸= ∅
12: end procedure

2.5 Summary

This survey of the literature puts our contributions into context. We build directly on Stern

and Dill’s parallel Murφ tool [52, 106], this making the PReach tool a peer to Eddy [96].

The CMP method for parameterized safety verification is the foundation of our contribu-

tion in proving parameterized DF. Our approach of distributed model checking of DF is

a new model checking technique. The directed search and utilization of “helpful rules” is

inspired by previous verification methods [37, 101] that involved flushing of transactions.

The earlier work verified safety properties via refinement and was domain specific. Our

technique provide a simple but useful and computationally tractable verification of DF that

can be applied to a wide range of models. Finally, we leveraged previous model checking

observations about handling fairness algorithmically [74] and the high level OWCTY al-

gorithm for LTL model checking [57, 38] to devise a new algorithm for distributed model

checking of response properties.

We bring these insights and ideas together in the PReach model checker. PReach

is a robust, scalable, distributed explicit-state model checker that has been applied to real-

39

world verification problems for hardware protocols. This tool was leveraged to prototype

efficient DEMC of response properties with fairness, a problem of practical interest. Our

parameterized verification work is novel in the space of parameterized liveness as it extends

the successful CMP method to support deadlock freedom properties. In practice, the

additional effort to show DF is small once CMP has been used to show safety. Together,

our algorithms and their implementation in PReach demonstrate that DEMC is a practical

way to automatically verify liveness properties that are of real-world significance and that

have previously been beyond the capability of model checking tools.

40

Chapter 3

The PReach Model Checker

PReach is a distributed explicit-state model checker based on Murφ. It was designed

to be a reliable, easy to maintain, scalable model checker that was compatible with the

Murφ specification language and suitable for industrial protocols. PReach uses legacy

Murφ C++ code to handle the CPU and memory intensive aspects of the model checking

computation. The communication and coordination for the parallel/distributed part is

implemented in the concurrent functional language Erlang, chosen for its parallel program-

ming elegance. This leverages the complementary strengths of C++ and Erlang and offers

compatability with existing Murφ models.1

We used the original Murφ front-end to parse the model description, and borrow

Murφ’s back-end code for maintaining local hash tables and performing state expansions.

The Erlang layer handles communication, load balancing, termination detection and other

aspects of the parallel algorithm. This approach offers a clean and simple implementation,

with the core parallel algorithms written in under 1000 lines of code. This chapter describes

the high level algorithm, including the various features that are necessary for the large

models we target. To date, the PReach model checker has verified an industrial cache

coherence protocol with approximately 90 billion states. To our knowledge, this is larger

1This chapter is based on the first PReach model checker publication [22].

41

than any published model verified with an explicit-state model checker. PReach is in

ongoing development has been released to the public under an open source BSD license [30].

3.1 Algorithm

PReach is based on the Stern and Dill distributed explicit-state model checking (DEMC)

algorithm [104], a distributed breadth-first search2 that partitions the space across the

compute workers (a.k.a. nodes)3. A message passing environment is assumed, as well as a

uniform random hash function that associates an owner node with each state. Pseudocode

for Stern-Dill is given in Algorithm 3.1; details such as termination detection, error trace

generation, as well as all PReach-specific features have been omitted for simplicity. We

have also done some minor code reformatting compared to the original paper.

Each worker has two main data structures T and WQ , which are a set of states

and a list of states, respectively (declared on lines 1 and 2). We say a state has been

visited if it has been received by its owner, and a state is expanded if its successors have

been computed. Set T is maintained to contain the states owned by the worker that have

been visited, while WQ are those states that have been visited but not yet expanded. The

computation begins with each worker executing the main routine Search. After initializing

T and WQ as empty and synchronizing with a barrier, Search sends the initial states to

their respective owners in lines 8 to 12. Next each worker enters a while loop (line 13) that

iterates until termination has been detected. Termination detection checks that each node

has an empty work queue and no messages are in flight by comparing that total number

of messages sent to the total number received. We use the same termination detection

algorithm as in [106]; details are presented in that paper.

2Strictly speaking, the search order is not breadth-first because the timing of communication
actions results in various visitation interleavings. However, the algorithm is “breadth-first” in that
each worker operates on a FIFO of states.

3The workers can run on distinct hosts or some can seamlessly sit on the same host, e.g. on a
multicore machine.

42

In the body of the while loop, procedure GetStates is invoked on line 25, which

iteratively pulls incoming states from the mailbox (or message queue), that is, the runtime

queue of messages sent to this node but not yet received by the thread. Each state s in

GetStates that is not in T is inserted into T and appended to the tail of WQ . Once

there are no more states to receive from the mailbox, control returns to line 15 where WQ

is checked for emptiness. If it is nonempty, we pop a state s from WQ and compute its

successors. Each successor is first canonicalized for symmetry reduction [70] on line 18,

and then the resulting state s′c is sent to its owner.

We now discuss PReach’s implementation. To harness fast and reliable code,

PReach uses existing Murφ code for many key functions involved in explicit-state model

checking, such as:

• front end parsing of Murφ models,

• state expansion and initial state generation,

• symmetry reduction,

• state hash table T look-ups and insertions,

• invariant and assertion violation detection,

• pretty printing of states (for counter-example traces).

To facilitate Erlang calls to Murφ functions, we wrote a light-weight wrapper on top of

existing Murφ C code, which we call theMurφ Engine. We also employ the Murφ front-end

that compiles the Murφ model into a C++ library.

Aside from space and time efficiency during model checking, using the Murφ Engine

has another clear benefit: the Erlang code need only handle management of the distributed

aspects of the algorithm, while the Murφ Engine handles key computations that pre-

existing Murφ code can do quickly and correctly. The Erlang code, at a high level, resembles

Algorithm 3.1 with key functions such as Successors(), Canonicalize(), and Insert() calling

43

into the Murφ Engine. One notable exception to this paradigm is the work queue WQ ; this

is handled in Erlang code and uses an optimized disk-file to allow for efficient processing

of very long queues.

Algorithm 3.1 Stern-Dill DEMC

1: T : set of states
2: WQ : list of states
3:

4: procedure Search()
5: T ← ∅
6: WQ ← []
7: barrier()
8: if I am the root then
9: for each start state s do
10: Send s to Owner(s)
11: end for
12: end if
13: while ¬Terminated() do
14: GetStates()
15: if WQ ̸= [] then
16: s← Pop(WQ)
17: for all s′ ∈ Successors(s) do
18: s′c ← Canonicalize(s′)
19: Send s′c to Owner(s′c)
20: end for
21: end if
22: end while
23: end procedure
24:

25: procedure GetStates()
26: while there is an incoming state s do
27: Receive(s)
28: if s ̸∈ T then
29: Insert(s, T)
30: Append(s,WQ)
31: end if
32: end while
33: end procedure

44

Stern and Dill’s distributed model checking algorithm [106] partitions the state

space among processes with a uniform random hash function. Processes are said to own

states that hash to their process IDs. Once a state has been visited, its owner process is

responsible for storing it locally. In PReach this is done with the Murφ model checker’s

hash table [103] which uses a predetermined number of bits4 to represent each state. The

use of hash compaction and bloom filters in explicit-state model checking is a thoroughly

studied area [113, 53] and lends itself to practical approaches. Hash table compression

admits a small probability that some state will erroneously be viewed as visited when it

actually hasn’t been. In our experience this probability is tiny; for example, a very large

model checking experiment with about 100 billion states had only a 0.03% chance of a

missed state [22]. The experiments in this chapter admit a much smaller probability than

this; the German6 model with over 316 million states had a probability of a missed state of

less than 7.36 × 10−5. If this probability were of practical concern, the user could simply

re-run the tool using a different seed for randomization and reduce the probability of a

missed state in both runs to less than (7.36× 10−5)2 < 5.42× 10−9.

3.2 Crediting

An important problem encountered when running large models with early versions of

PReach was that some workers would slow in state expansion rate or completely crash. In

a naive implementation of DEMC, each node sends all the successors of a state to the own-

ers of the successors immediately upon expanding a state. After analyzing Erlang mailbox5

size statistics, we found that the problematic nodes were accumulating a disproportionate

number of messages in the mailbox. Simple tests of producer-consumer code written in

Erlang have revealed that the time for an Erlang process to receive a single message in-

4This number is a configuration parameter. The results in this chapter use the default value of
40 bits.

5The mailbox stores the incoming messages in the Erlang runtime that have yet to be received
by the Erlang program. We also write message queue when referring to mailbox.

45

creases in the number of mailbox messages. Once a worker falls behind the others for any

reason, (such as one worker receiving many states at once or OS scheduling) it tends to

permanently fall behind the others. As these mailbox messages piled up, the node would

eventually allocate more memory and this would result in slower processing of messages.

This effect cascaded until the node started paging and was unable to do anything at a

reasonable speed.

Our remedy was to introduce a crediting mechanism. Each node is initially granted a

number of credits C per peer node; each credit allows one unacknowledged message from the

peer. When a message containing states is received by another node, an acknowledgment

is returned. This provides a hard bound on the total number of messages a node may have

in its message queue at any one time, i.e., nC where n is the number of nodes. We note

that no performance penalty was observed due the additional acknowledgment messages.

When no credits are available to send states to a particular node p, the states are locally

queued in an outbox. A round-robin scheduler ensures that periodically, the number of

credits for p is checked and states waiting in the outbox are sent. In cases when the outbox

for p grows large, this queue of messages is temporarily written to disk to avoid running

out of memory.

3.3 Light Weight Load Balancing

When a distributed program runs in a heterogeneous computing environment, the total

runtime is determined by the runtime of the slowest node. If one node takes much longer

than the others to finish its work, it does not matter how fast the others were. This can be

caused by some nodes being intrinsically slower than others, or dynamically assigned more

work than others. In the context of DEMC, the notion of “work” is typically measured

as the number of states awaiting expansion, which is the length of WQ . Load balancing

therefore plays an important role in efficiency, and as explained below, can prevent extreme

slowdowns and crashes. Previous work by Behrmann [19] and Kumar and Mercer [77]

46

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 500 1000 1500 2000 2500 3000

W
or

k
Q

ue
ue

 S
ta

te
s

Seconds

Figure 3.1: Load balancing with Kumar and Mercer’s algorithm

 0

 0.2e+06

 0.4e+06

 0.6e+06

 0.8e+06

 1e+06

 1.2e+06

 0 500 1000 1500 2000 2500

W
o
rk

 Q
u
e
u
e
 S

ta
te

s

Seconds

Figure 3.2: Light weight load balancing

observed the problem of an unbalanced work load in the context of DEMC. Surprisingly,

although at the end of the computation all nodes have expanded roughly the same number

of states (due to uniform hashing) [104], the dynamic work queue sizes during model

47

checking can vary wildly between workers.

To address this problem, Kumar and Mercer proposed a rebalancing scheme that

attempts to keep the work queues of all nodes similar in length throughout the computation

[77]. This is achieved by comparing work queue sizes between hypercube adjacent nodes

and passing states to neighboring nodes with smaller work queues. This is done in an

aggressive manner, with the goal of keeping all work queues roughly the same lengths.

In PReach, work queues are kept on disk and we are not concerned about minimizing

the maximum work queue size (as Kumar and Mercer achieve). Rather, we seek to avoid

nodes sitting idle with an empty work queue. Our scheme, which we call light weight

load balancing, reduces the overhead of work queue balancing. Each node tracks the sizes

of all other nodes’ work queues by sending work queue size information along with state

messages. When one node notices that a peer node has a work queue that is LBFactor

times smaller than its own (for a fixed parameter LBFactor), it sends some of its states

to the peer. Empirically, we found LBFactor = 5 to be a good choice; it allows enough

load balancing to occur so that nodes complete around the same time without doing too

much unnecessary rebalancing. If disk usage were an issue, one could use a smaller factor

to keep the maximum work queues smaller at the expense of some extra load balancing.

To show the difference between the two schemes, we ran a simple 107 state counter

model using PReach with both schemes. In Figure 3.1 we see strict balancing that keeps

the work queue sizes of all nodes identical. In Figure 3.2 we see light weight load balancing,

which allows the work queues to vary somewhat. In both cases, however, all nodes complete

around the same time. The benefit of the light weight scheme is that it is able to process

states faster because it is doing less load balancing and it completes sooner, at 2404 seconds

as opposed to the stricter scheme which finishes in 2768 seconds. Also notice that the

longest work queue in Figure 3.2 is about half the length of all work queues in Figure 3.1.

This is due to more work piling up as more computational resources are used for load

balancing states, as opposed to the light weight scheme.

48

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 200 400 600 800 1000 1200

W
o
rk

 Q
u
e
u
e
 S

ta
te

s

Seconds

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 200 400 600 800 1000 1200

W
o
rk

 Q
u
e
u
e
 S

ta
te

s

Seconds

Figure 3.3: Load balancing effect on work queues. German model with 9 caches using 20
workers – load balancing enabled (top) and disabled (bottom).

To show the improvement between a load balanced run and a non-load balanced

run, we ran several well known protocols: SCI, LDASH and German. These protocols are

included in the Murφ distribution. We ran them on 60, 40, and 20 nodes, respectively. The

results for the German protocol are in Figure 3.3, which clearly demonstrate the benefit of

light weight load balancing. The comparisons for the LDASH and SCI protocols exhibit

similar speedup and graph characteristics; see Figures 3.4 and 3.5.

49

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 50 100 150 200 250

W
o

rk
 Q

u
e
u

e
 S

ta
te

s

Seconds

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 50 100 150 200 250

W
o

rk
 Q

u
e
u

e
 S

ta
te

s

Seconds

Figure 3.4: LDash model load balancing (60 workers); load balancing on (left) and off
(right)

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0 2000 4000 6000 8000 10000 12000

W
o

rk
 Q

u
e
u

e
 S

ta
te

s

Seconds

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0 2000 4000 6000 8000 10000 12000

W
o

rk
 Q

u
e
u

e
 S

ta
te

s

Seconds

Figure 3.5: SCI model load balancing (40 workers); load balancing on (left) and off (right)

3.4 Batching of States

Stern and Dill’s algorithm, and consequently PReach, involves communicating successor

states to their respective owners (see line 19 in Algorithm 3.1). The number of reachable

transitions is typically at least a factor of 4 larger than the number of reachable states; thus,

we could easily end up communicating hundreds of billions of states in the large models we

target. This motivates us to look at reducing the number of messages sent, which reduces

the number of calls to Erlang’s Send and Receive communication primitives, along with

utilizing the network bandwidth more efficiently. Indeed, in simple producer-consumer

Erlang benchmarking tests we have observed a factor of 10 to 20 speedup by sending states

50

in batched lists of length 100 to 1000 as opposed to sending the states individually.

A simple batching variant of the Stern-Dill algorithm, which was implemented in an

early PReach prototype is as follows. Each worker batches generated states in separate out

queue for each peer node before sending. This mechanism is controlled by two parameters:

MaxBatch and FlushInterval . A batch of states for a peer node is sent when MaxBatch

states have accumulated for the peer, or of FlushInterval seconds have passed since the

last batch to the peer, whichever happens earlier. Furthermore, the out queues will neglect

waiting for a full batch of states before sending whenever the work queue is short. This

typically occurs only near the start and near the end of the entire computation. We found

that setting MaxBatch = 1000 and FlushInterval = 1 second achieved good performance.

However, for very large models it is possible that different values would be needed, or

an adaptive scheme where their values vary between nodes and over time. This was not

explored in depth because while batching helps reduce runtime, some models suffered

serious performance issues where a small number of nodes would become overwhelmed

with states; this problem was described in Sect. 3.2. Fortunately, batching of states is

compatible with both methods that alleviate this problem: load balancing and crediting.

When load balancing is activated, it is known a priori how many states will be sent from

one node’s work queue to the other node’s work queue, so the states can be trivially batched

into one message. With crediting, we must choose a value for MaxBatch, but the timeout

FlushInterval is unnecessary because MaxBatch states are sent to node p whenever a credit

is available for p and the round-robin scheduler selects p. Thus, our batching approach

involves only the parameter MaxBatch, which bounds the maximum number of states

aggregated into one message.

Figure 3.6 shows the benefit of varying the MaxBatch parameter in conjunction

with crediting.

51

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250 300 350 400 450

W
or

k
Q

ue
ue

 S
ta

te
s

Seconds

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 20 40 60 80 100 120 140

W
or

k
Q

ue
ue

 S
ta

te
s

Seconds

Figure 3.6: State batching effect on the counter model with 105 states using 2 workers.
Message queue lengths with MaxBatch = 1 (left) and MaxBatch = 100 (right).

3.5 PReach Pseudocode

In Algorithm 3.2 we show pseudocode for the PReach algorithm. The basic outline of the

code follows closely the original Stern-Dill algorithm. However, the key features of batching,

crediting, and load balancing all require changes. First, in order to implement batching,

the outgoing states are placed in the queue OutQ (line 22) instead of being sent directly

to their destination. These states are actually sent out later, in line 25, for the current

destination. We visit the outgoing queues in a round robin manner and attempt to send

to one node after each state is expanded. Next, for crediting, we return acknowledgments

(line 33) from states sent to us in GetStates. Each node keeps track of the credits it

has for sending to every other node with Cred . (Note: not shown is the increment and

decrement of Cred [p] when sending states to or receiving states from p, respectively). The

SendQ function contains the rest of the changes. It implements the logic that decides

when we should send to a particular peer, using its estimate WQEst of how large the other

node’s WQ is. It checks to see that credits are available in Cred , and ensures that we

do not send states to a node that is currently sending us load balancing states (line 43).

Next, we check to see if the node is eligible to receive load balancing states (line 44; note

that load balancing is only enabled if the worker’s work queue length is greater than some

52

Algorithm 3.2 PReach DEMC

1: T : set of states
2: WQ : list of states
3: OutQ [n] : array of list of states ▷ n is number of nodes
4: Cred [n] : array of int ▷ C is number of credits
5: WQEst [n] : array of int
6:

7: procedure Search
8: T ← ∅; WQ ← []; Cred ← [C, ..., C]
9: OutQ ← [[], ..., []]; WQEst [n]← [0, ..., 0]
10: CurDest ← 0
11: if I am the root then
12: for each start state s do
13: Send s to Owner(s)
14: end for
15: end if
16: while ¬Terminated() do
17: GetStates()
18: if WQ ̸= [] then
19: s← Pop(WQ)
20: for all s′ ∈ Successors(s) do
21: s′c ← Canonicalize(s′)
22: Enqueue(s′c,OutQ [Owner(s′c)])
23: end for
24: end if
25: SendQ(CurDest)
26: CurDest ← (CurDest + 1) (mod n)
27: end while
28: end procedure

threshold WQminLB). Following any load balanced messages we check to see if we should

send states owned by the current peer from the outbox. We try to wait until there are at

least MaxBatch messages in a batch (typically MaxBatch = 100), but if the destination’s

work queue is low or if we don’t have any work ourselves, then we will send smaller batches

(line 51).

53

29: function GetStates()
30: while there is an incoming state-message M do
31: ▷ S list of states, p sender ID, L sender WQ length
32: {S, p, L} ← Receive(M)
33: SendAck(p)
34: WQEst [p]← L
35: for all s ∈ S such that s /∈ T do
36: Insert(s, T)
37: Enqueue(s,WQ)
38: end for
39: end while
40: end function
41:

42: function SendQ(dest)
43: if Cred [dest] > 0 ∧ WQEst [dest] < LBFactor ∗ length(WQ) then
44: if length(WQ) ≥WQminLB ∧ LBFactor ∗WQEst [dest] < length(WQ) then
45: NumStates ← min{length(WQ),MaxBatch}
46: Dequeue NumStates states from WQ and send to dest
47: end if
48: if OutQ [dest] ≥ MaxBatch ∨
49: (OutQ [dest] > 0 ∧ (length(WQ) = 0 ∨ WQEst [dest] < MaxBatch)) then
50: NumStates ← min{length(OutQ [dest]),MaxBatch}
51: Dequeue NumStates states from OutQ [dest] and send to dest
52: end if
53: end if
54: end function

3.6 Results

Here we present a number of experiments detailing the performance of PReach. Most

of these experiments were run on machines from a heterogeneous computing pool consist-

ing primarily of 2.5-3.5GHz Core 2 and Nehalem class Intel machines. Typically 4-8GB

of memory was available per worker, although most experiments did not use all of this.

Table 3.1 presents a few of the larger models we have verified with PReach.

Though previous implementations of the Stern-Dill DEMC algorithm report linear

speed-up [96, 104], it is important to show that such speed up is also achieved in our imple-

54

Model States Nodes Time States per
(×109) (hours) Sec per Node

Pet8 15.3 100 29.6 1493

Intel3 5 10.1 61 24.7 1860

Intel3 7 28.2 92 90.2 945

Table 3.1: Large model experiments. Here Pet8 is Peterson’s mutual exclusion algorithm
over 8 clients (with no symmetry reduction), and Intel3 is an Intel proprietary cache proto-
col (with symmetry reduction enabled). The last two rows are for Intel3 with respectively
5 and 7 transaction types enabled.

mentation, especially given that a high level language (Erlang) is handling communication

details. Figure 3.7 shows the speed-up for n nodes against Murφ for a few public domain

models. In all cases except german7 (German’s protocol [58] over 7 caches) we see near

linear speed-up. The diminishing returns of german7 is expected for smaller models; the

number of reachable states (after symmetry reduction) is less than 2 × 106, and Murφ

completes checking it in only 315 seconds. In contrast, Murφ took an hour or more for

the three other protocols (german9: 6242 seconds, mcslock2: 8386 seconds, ldash: 3583

seconds). The slope of the speedups of Figure 3.7 are all less than 0.3, where the slope of

the mcslock2 speedup is especially underwhelming. This slope is determined by the ratio of

runtime spent in the Erlang code versus the Murφ engine. For these models, the Murφ en-

gine time (for state expansions, checking invariants, etc.) is relatively small. However, for

the industrial Intel models in Table 3.1 the Murφ Engine takes longer for these operations,

and we estimate the slope of the speedup for these models to be about 0.5.

55

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80

ti
m

e(
m

u
rp

h
i)

/t
im

e(
n
)

n (Node Count)

ldash
mcslock2
german7
german9

Figure 3.7: Speed up experimental results

56

Chapter 4

Model Checking of Deadlock

Freedom

This chapter presents a practical method for verifying Deadlock Freedom (DF) properties

in guarded command systems. Such properties are expressed in CTL as AGEF q where q is

a set of quiescent states. We require the user to provide transitions of the system that are

“helpful” in reaching quiescent states. The distributed search constructs a path consisting

of helpful transitions from each reachable state s to some state that is either quiescent or

is known to have a path to a quiescent state, thereby demonstrating that such a path for

s exists. We extended the PReach model-checker with these algorithms. Performance

measurements on both academic and industrial large-scale models shows that the overhead

of checking deadlock-freedom compared with state-space enumeration alone is small.1

DF properties are a weak form of liveness. A system could satisfy DF and yet

contain cycles of non-q-states, and thus some executions may visit an infinite sequence of

non-q-states. However, DF properties provide a necessary but not sufficient condition for

appropriate liveness properties to hold. We show that DF is straightforward to formalize,

in particular it avoids the specification of fairness conditions. It is also less computationally

1This chapter is based on a published tool paper [26].

57

intensive to model check when compared with even simple liveness properties. We explore

one such liveness property called response in Chapter 6.

4.1 Overview

reachable

quiescent

init

Figure 4.1: Illustration of deadlock freedom

Automatic checking of liveness properties is a challenging task. Approaches to ad-

dress this generally require the user to carefully specify system fairness assumptions that

are necessary for liveness to hold. Furthermore, checking liveness is computationally ex-

pensive, being more sensitive to the state-space explosion problem than simple state-space

enumeration. A broad class of liveness failures of practical importance is deadlock, wherein

one or more transactions are blocked, for example, due to a cyclic resource dependency [64].

In such a state, there exists no path to a state where all transactions have completed. This is

58

our motivation for characterizing deadlock-freedom by a property AGEF q.2 This property

is illustrated in Figure 4.1, where some reachable states are highlighted and shown to have

paths to a quiescent state. Notice that a system may have a cycle of non-quiescent states

and still satisfy deadlock freedom. There only need be a path from all states, including

those in such cycles, to some quiescent state.

A feature added to the PReach tool of the previous chapter and the focus of

this chapter is an explicit state model checking technique to verify the CTL [44] property

AGEF q. This property (of recent interest [62]) says “for all reachable states, there exists

a path to some q-state”. In our approach to verifying AGEF q, the system is modeled

using guarded commands, and the user identifies a subset H of these commands as helpful.

These commands are the ones that the user expects will cause the system to make progress

towards q. If s is a state and s′ ̸= s can be reached from s by performing a helpful

command, then we say that s′ is a helpful successor of s. Thus, from any reachable state

s1,
3 we seek a witness – a path to some q state. If s1 is a q-state, then the path is trivial;

otherwise, PReach computes s2, a helpful successor of s1. If s2 is a q-state then we have

found a witness path for s1; otherwise, s3, a helpful successor of s2 is computed. This

process iterates, building a witness ρ = s1, s2, . . . until a state si is found where either

• si is a q-state (Figure 4.2a), or

• si has no helpful successor (referred to as H-stuck ; Figure 4.2b), or

• si already appears in ρ (Figure 4.2c).

In the first case, ρ is a witness for s1 and PReach continues with its standard state-

space exploration algorithm. If a witness is found for every reachable state then we say

that AGEFH q holds, since the “EF” paths consist entirely of transitions from H. Clearly
2Some literature and tools identify deadlock with the much weaker property that all reachable

states have at least one (possibly unique) successor. We use the stronger form, AGEF q throughout
this chapter.

3 PReach can also verify the more general property AG (p→ EF q), but for this paper we assume
for brevity that p is true.

59

h1 h2 hks s’
(q−state)

(a) A path is found to some q-state s′

h1 h2 hks
(no helpful transition enabled)

s’

(b) A path is found to some state s′ with no helpful transition enabled

h1 h2 hks s’
(cycle)

(c) A path is found that cycles

Figure 4.2: Outcomes of a witness search

AGEFH q is sufficient for AGEF q. In the other two cases, PReach halts and reports the

path ρ to the user. These cases do not imply ¬AGEF q. For example, if the helpful rule list

is empty and there exists a reachable state that is not a q-state, then nontrivial witnesses

will never be found. Likewise, PReach may choose a sequence of transitions that leads to

a cycle even though a path to a q-state exists. While either error could be a false negative,

as we report in Section 4.4, in practice such failures can show that behaviors of the model

are not those intended by the designer and thereby reveal real errors.

In our experience, many guarded command models have a clear partition between

commands that inject a new request and those that service existing ones. Therefore, it

is not difficult to identify a suitable set of rules H and a quiescent state predicate q. We

show through experiments that using only helpful commands to form paths is sufficient

60

in practice to verify AGEF q. Assuming that EMC has already enumerated the reachable

states as part of safety property verification, the additional time to verify deadlock freedom

is usually a small fraction of the time as compared with state-space enumeration.

It is critical for performance to leverage the known witnesses during subsequent

searches. Suppose a witness path ρ1 has been found for state s, and s is encountered

on path ρ2 while searching for witness path for s′. Clearly, the concatenation of paths

ρ1 and ρ2 is a witness path for s′. PReach uses a dedicated state hash table for this

purpose, called WHT (witness hash table). Each time a witness path is found for some

state, it is added to the WHT; when we check if some state si is a q-state, we also check

for membership of WHT. Henceforth, we use q ∨WHT to denote states that are either

q-states or members of WHT.

4.1.1 Specification Syntax

The Murφ syntax is extended to specify these deadlock freedom (DF) properties. The

basic structure is

liveness "<Property Name>"

<P-predicate>

CANGETTO

<Q-predicate>

where liveness and CANGETTO are keywords, <Property Name> is a string that names the

property, and P-predicate and Q-predicate are predicates describing p and q, written in

the same way as guard predicates are written in Murφ programs. For example, the Ger-

man cache coherence protocol Murφ code contains a flag ExGntd that indicates if exclusive

access has been granted to the (single) cache line. Suppose we wanted to check that if

exclusive access is granted, there exists a sequence of actions that removes this access. In

61

Murφ syntax, this is written as

liveness "ExSurrendered"

ExGntd = true

CANGETTO

ExGntd = false

The set of helpful rules H are specified in terms of Murφ rules. Each rule, which

defines a set of transitions, is expressed in Murφ as

rule "<Rule Name>"

<Guard>

==>

<Command>

The helpful rules are determined by passing nonhelpful rules flag -nhr R1 ... Rk

to PReach4. Any rule with a name that contains any of the strings R1 ... Rk will be

excluded from H, and all other rules are included.

4.2 Algorithms

This section describes our algorithms that extend the general Stern-Dill paradigm of stat-

ically partitioning the state-space and assigning states to owner workers, as covered in

Chapter 3. The data structure WHT is assumed to only store states that are owned by

a given worker. In a sequential implementation, states could be inserted into WHT when

the search for a witness path begins, since WHT is not consulted by subsequent searches

until a witness path is found. The prefix of the search path must be maintained in order

4For our benchmarks, there are more helpful rules than nonhelpful ones, so it is easier to provide
the latter.

62

to detect a cycle, but can be discarded once a witness path is confirmed. In a parallel

implementation we assume state ownership is distributed across workers, i.e., a worker will

only insert owned states into WHT.

Under this paradigm, it is unsound to insert states into WHT while it may be

consulted by other workers until it is confirmed that a witness path exists. This is due

to searching for witnesses for states that query one another. Consider Figure 4.3, where

worker 1 owns state a and worker 2 owns state b, and transitions (a, b) and (b, a) are helpful.

Assuming that neither a or b are quiescent, then DF does not hold since neither state has

a witness. To find a witness path for a, worker 1 might query worker 2 to check if b is a

member of q ∨ WHT, and vice-versa. In a distributed setting, these two queries might

occur at the same time. If (say) worker 1 reports a witness exists for a (rather than a search

is pending), then worker 2 may erroneously conclude that a witness exists for b. Therefore,

our algorithms must be wait for a confirmation of a witness path before inserting states

into WHT.

a b

Figure 4.3: A subgraph that does not satisfy DF

4.2.1 Local Search

This search involves no communication to other workers during a witness search. When

a worker in the distributed reachability algorithm encounters a new state s, the worker

computes a path ρ as described in Section 4.1. That is, starting with [s], the path ρ is

constructed by iteratively computing a helpful successor of the current head of ρ. Once

some state s′ ∈ q ∨WHT is encountered, all states of ρ that are owned by this worker will

63

be added to WHT, which necessarily includes s. This path computation is not distributed

across workers, and thus, redundant path computations occur. While this approach scales

poorly when the reachability analysis is run on a large number of machines, it provides a

baseline that is free from communication overhead.

4.2.2 Pass-the-Path

Pass-the-path (PtP) distributes the witness path searches by forwarding the current path

prefix to the owner of the next state. When a state s is found in the reachability analysis,

if it is already in q ∨WHT then a witness path is known to exist and no further work is

needed. Otherwise, an enabled helpful rule is chosen; the successor state, s′ is computed,

and the search message ([s], s′) is sent to the owner of s′. Here, [s] is a list of states

representing the current prefix path. This process continues constructing a prefix path ρ,

communicating search messages of the form (ρ, scur) to the owner of scur, until a member

of q ∨ WHT is reached, a cycle is encountered, or no helpful commands are enabled. In

the first case, the owners of all states along the path are notified and they update their

WHTs, and otherwise a failure is reported. See Figure 4.4a for an example.

Notice that PtP allows redundant searches and acknowledgments to occur because

workers keep no record of which states have pending searches for witness paths.

4.2.3 Outstanding Search Table

These redundant searches can be avoided if workers keep track of which states have out-

standing witness searches. We have implemented such an approach where each worker

maintains the pending searches in local table of states pairs ST (search table). This ap-

proach called OST has the benefit of search messages containing only a pair of states (s, s′).

If such a message arrives and there is a pending search for s′ in the table, then s is added

to a list of states that must be acknowledged as having a witness once s′ is acknowledged.

When starting a witness search for owned state s, if there is no element (s, ·) in ST,

64

quiescent

init

a b

c

d

[a,b]
[a,b,c]

[a,b,c,d]

(a) PtP example. When state d is encountered by the witness search, the owner of d sends a message
confirming the witness to for all states in the path.

quiescent

init

a b

c

d

(a,b)
(b,c)

(c,d)

(b) OST example. When state d is encountered by the witness search, states in the path are
confirmed to have a witness in reverse order, chaining through entries in the OST tables.

path in transition graph

helpful transition

WP acknowledgement

(c) Legend

Figure 4.4: PtP/OST example, assuming that d is in WHT, but a, b and c are not.

then store (s, null) in ST; find s′, a helpful successor of s; and send (s, s′) to the owner of

s′. Otherwise, if (s, ·) exists in ST, it signals that a witness search is already pending for

s. When the owner of s′ receives (s, s′) and s′ is not H-stuck, then

• If s′ is a member of q ∨WHT, send an (WAck , s) message to the owner of s′.

65

• Else, if ST contains an entry (s′, ·), then insert (s′, s) into ST. There is a pending

witness search for s′ and the witness search for s is blocked from propagating.

• Otherwise, insert (s′, s) into ST; find s′′, a helpful successor of s′; and send the

message (s′, s′′) to the owner(s′′).

In the case that s′ isH-stuck, a counterexample trace may be generated by sending message

(cex, [s, s′]) to owner(s) and chaining these messages backwards through the path until the

state that started the search is found. When the owner of s receives message (WAck , s),

insert s into WHT and send message (WAck , si) to the owner of non-null si for every entry

(s, si) in ST, and delete these entries.

Notice that witness searches that cycle are not immediately detected, but will result

in ST entries that are never removed. When state-space exploration completes and all sent

messages have been received, the termination detection of PReach will observe that each

node has an empty work queue and no messages are in-flight, but there are non-empty STs.

At this point a counterexample cycle can be generated similar to the H-stuck case above,

starting with some ST entry (si, si−1). Thus OST has the disadvantage of not detecting

these cycles until all states have been visited, although heuristics could be designed that

try to discover cycles earlier. Counterexample trace generation in this mode is not yet

implemented.

4.2.4 Implementation Notes

For ease of implementation and for repeatable experiments, we restrict the helpful successor

of a given state to be fixed but arbitrary. Thus, there is exactly one helpful successor of

each state provided that at least one exists.

The Murφ-based hash table described in Chapter 3 is once again utilized to store

explored states. However, we “tag” each hash table entry with two bits – one to indicate

if the state has been visited in the state enumeration and one to indicate if a witness has

66

been confirmed. These bits are a small memory overhead as the hash table uses a 40 bit

value to store each state.

The deadlock freedom algorithms can take advantage of load balancing similar to

the standard PReach algorithm. Recall that PReach sends a large batch of states owned

by a worker with a long WQ to a worker with a shorter one for expansion. In PtP and OST

mode, there are two additional kinds of messages, witness search and witness acknowledge,

are sent in large numbers between workers. These message types each have a designated

outbox, and messages are batched in the same way as Basic PReach (Chapter 3). Thus,

during a typical round of sending, a worker will send 3 messages to every other worker,

one containing states for expansion, one containing witness searches, and one containing

witness acknowledgments. When a worker receives a non-owned state s via load balancing,

a witness search will be initiated for s regardless of s existing in the WHT of its owner.

The possibility of redundant witness searches could be avoided by adding extra information

about witnesses for load balanced states, but this was not implemented.

We have experimented with a heuristic to avoid sending search messages to workers

that are running slowly. The main idea is to leverage PReach’s flow control mechanism

to detect when a worker is slow to acknowledge received messages. Then, a worker may

avoid sending (ρ, s) to owner(s) for s /∈ q by locally computing helpful successor s′ of s,

and sending ([s] ◦ ρ, s′) to owner(s′). The trade-off here is if s ∈WHT at owner(s), then

this local computation is redundant as is the eventual witness acknowledge message sent

to owner(s).

4.3 Performance

We ran PReach-DF on a variety of combinations of Murφ models and hardware con-

figurations, summarized in Table 4.1. For each, we measured the performance of regular

state-space enumeration (no EF), local search mode (Section 4.2.1), Pass-the-Path mode

(Section 4.2.2) and Outstanding-Search-Table mode (Section 4.2.3). Local search mode

67

takes an impractical amount of time for a few of these so we omit it from the results.

The Murφ models used are the German and Flash cache coherence protocols, the Peterson

mutual exclusion algorithm, the MCS lock mutual exclusion algorithm and an Intel pro-

prietary cache coherence protocol. We use GermanX and flashX to denote these models

configured with X caches and two data values; peterson12 is Peterson’s algorithm with 12

workers and mcslock6 is the MCS Lock algorithm with 6 workers. All benchmarks and the

PReach-DF source code is available online[25]. The compute server farms are as follows:

• multicore: 8 PReach workers on a 2 socket server machine, each processor is a Intel R⃝

Xeon R⃝ E5520 at 2.26 GHz with 4 cores.

• small cluster: 80 PReach workers on a homogenous cluster of 20 Intel Core i7-2600K

at 3.40 GHz with 4 cores.

• large cluster: 100 PReach workers on a heterogenous network of contemporary

Intel R⃝ Xeon R⃝ machines.

The column “runtime” is the mean runtime of three trials, with the exception of the

large cluster runs which are based on one trial (marked with †). The “overhead” columns

are the additional runtime relative to that of the “no EF” mode run of the same model

run on the same hardware. In PtP mode, column “avg. path” is the number of helpful

transitions needed to reach a state that is a member of q ∨ WHT, averaged over the

searches launched for each non-q-state. This number is also the average number of times

each non-q-state is acknowledged for insertion to WHT.

4.4 Summary

We have shown an efficient distributed algorithm and implementation for checking deadlock

freedom properties. The simpler approach of PtP does some redundant work, but performs

well on models of cache coherence where paths to q-states tend to be relatively short (see

68

Figures 4.5 and 4.6). The approach is intolerably slow for the Peterson mutual exclusion

algorithm where these paths are much longer. In this case, our more involved OST algo-

rithm has a favorable runtime and manageable memory overhead (as shown in Figure 4.7).

In fact, our experiments reveal that the memory usage of OST is typically small relative

to the amount dedicated to the WHT, and has a small performance gain over PtP for the

benchmarks where it does not timeout. We find that using OST to check deadlock freedom

is inexpensive – at most a 109% runtime penalty but typically much smaller. While we

believe OST is generally a better choice, a closer comparison with PtP is a topic of future

work. We hypothesize that the performance gap between them is a function of the average

path length of a witness search; this could be verified by constructing a toy model where

this average can be tuned.

The utility of our approach to model checking deadlock freedom was underscored

when a counterexample trace was generated on the peterson12 benchmark. After carefully

checking our definitions of q and H, we found a critical typo in the Murφ model, which

despite being an example model in the popular Murφ distribution, has persisted for nearly

20 years. Interestingly, the bug in question was not revealed by checking the safety property

mutual exclusion, or by “Murφ deadlock” (states with no successors) or even by checking

AGEF q. With the bug, there exists a state where a worker attempting to enter the critical

section may not do so until another worker makes an attempt. Thus, the model does not

satisfy AGEFH q.

Checking AGEFH q has a “buy-one, get-one free” appeal. Once model checking

has been done for safety properties, a small amount of human effort is needed to identify

helpful rules and write a quiescence predicate, q. While this approach cannot check for

subtle liveness errors, especially ones that rely on fairness constraints, AGEFH q can be

very effective at finding deadlocks and violations of designer intent as illustrated by the

Peterson example.

69

model hardware
no EF local PtP OST

runtime overhead overhead avg. path overhead
German9 multicore 1365.12 0.76 0.16 1.005 0.21
flash5 multicore 752.75 1.07 0.30 1.005 0.39

peterson12 multicore 4018.34 1.11 timeout - 0.38
mcslock6 multicore 230.09 1.12 0.43 1.093 0.67
German9 small cluster 85.91 3.43 0.24 1.642 0.35
flash5 small cluster 57.46 1.52 0.32 1.307 0.52
flash6 small cluster 1854.42 1.56 0.23 1.021 0.29

peterson12 small cluster 254.27 9.50 timeout - 0.50
mcslock6 small cluster 22.04 1.45 2.73 4.763 1.09

intel small† large cluster 1025.20 7.10 0.84 2.242 0.55
intel large† large cluster 49041.70 timeout 0.35 1.309 0.44

Table 4.1: Performance of DF checking algorithms. Model sizes in states: German9 –
19844513, flash5 – 24063542, flash6 – 609827554, peterson12 – 116039964, mcslock6 –
12838266, intel – 22738573, intel large – 906695343.

70

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

C
o
u
n
t

Path Length

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

C
o
u
n
t

Path Length

Figure 4.5: Semi-log histograms of path lengths in PtP mode, as defined in Table 4.1. The
top is from German9/multicore, the bottom is from flash6/small cluster.

71

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

C
o
u
n
t

Path Length

Figure 4.6: Semi-log path length histogram for intel /large cluster in PtP mode

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 50 100 150 200 250 300 350 400

S
T

 W
o
rd

s

Seconds

Figure 4.7: Memory usage of ST for peterson12/small cluster in OST mode. Here,
“words” are 8 bytes; the maximum memory usage reached over all workers is about 233
MB.

72

Chapter 5

Parameterized Deadlock Freedom

Classical model checking assumes that the system under consideration is finite-state. Many

researchers have explored techniques to generalize model checking to verify various classes

of parameterized systems. A parameterized system P is a function that yields a finite-state

system P(n) for all naturals n ≥ 1. Here n indicates the number of values involved in

some type P (called the parametric type) used by the system, for example client IDs or

memory addresses. A parameterized model checking problem asks if P(n) satisfies some

given specification for all1 n. Unless one puts severe restrictions on the class of systems,

parameterized model checking is undecidable [1]. The systems we consider are symmetric,

a restriction on those for the undecidable proof. However, in Section 5.2.4 we provide a

proof that model checking symmetric paramaterized systems is also undecidable.2

A promising approach to parameterized model checking is based on abstraction

and compositional reasoning [92, 93, 40, 76, 86, 28, 83, 99] and is typically used to verify

universally-quantified (over P) state assertions roughly as follows. An initial abstraction A0

is created from the syntax of P. By construction, the transitions of A0 over-approximate

those of P(n) for arbitrary n > k (typically for some small k). If the safety property φ

1Many approaches, including ours, only verify P(n) for all n ≥ n0, where n0 is a small constant.
This is not a shortcoming since the P(n) where n < n0 are either “uninteresting” or can be
dispatched by finite-state model checking.

2This chapter is based on [23].

73

holds of A0, then we can soundly conclude it holds for P(n). However, often this is not

the case and we must strengthen the transitions of A0 using a conjectured state invariant

φ1, yielding a tighter abstraction A1. This process iterates until we obtain a Aj wherein

φ along with all of φ1, . . . , φj hold. At this point our parametric verification goal has been

achieved. If φ is not invariant of P(n), then eventually the user will either give up or notice

a real counter-example. This approach is sound, in that if φ does not hold of P(n) then φ

will not hold of A0, regardless of the strengthening applied.

Our contribution is an extension of the approach described above to handle Dead-

lock Freedom (DF) properties of the form of the CTL formula AGEF q for a state predicate

q (more generally, we also consider AG (p → EF q)). The key idea is to construct abstract

transition relations that not only over-approximate those of P(n), but also transition rela-

tions that under-approximate P(n). The resulting verification framework is formalized in

term of mixed abstractions [48], which are systems having two transition relations O and U ,

which are respectively over-approximative (OA) and under-approximative (UA). As in the

traditional approaches, O is used to explore the reachable abstract states, which represent

an over-approximation of the reachable states of P(n). During this exploration, paths of

U are explored to check that the existential CTL formula EFq holds for each reachable

abstract state. If so, it is safe to conclude DF of P(n); the existence of a path in U implies

that of a corresponding path in P(n). Like O, it is straightforward to algorithmically con-

struct an initial U ; however, analogous to how O might be too weak, we might find that U

is too strong.

One of our key contributions is a set of heuristic methods that allow the user to

soundly weaken U . This is achieved by exploiting syntactic comparisons between the

guarded-command transitions (i.e. Murφ rules) of the parameterized system and those of

the OA transitions. If rule’s guard is not weakened by the overapproximation, then we

conclude the rule is UA. In cases when the guard has been weakened, we provide heuristic

inference rules (HIRs) that allow us to conclude the rule is UA if some DF property

74

holds of the mixed abstraction. These properties can be decided by DF model checking.

Determining which HIR to apply for a particular rule is straightforward, and generating

the relevant DF property for a heuristic is automatable. When a DF property for the mixed

abstraction fails to hold, the required human insight is similar to that the method of Chou

et al. [40], which is used to prove parameterized saftey properties. Another contribution is

a theorem that supports DF verification when q involves universal quantification over the

parametric type.

Note that this is an incomplete method for solving the problem of parameterized

DF for symmetric systems. The presented HIRs provide tools for the user to weaken the

underapproximation and, in our experience with case studies, are sufficient to establish a

proof. They are heuristic in that they may or may not be successful in proving deadlock

freedom, but they are sound in that model checking certain side conditions is justification

to add transitions to the underapproximation.

This chapter is organized as follows. We begin with a simple example of showing

DF in a mutual exclusion scheme. Next, mixed abstractions are defined and some key

lemmas are stated. In Section 5.3, we describe how mixed abstractions are modeled and

computed in Murφ. Section 5.4 discusses our approach for weakening U by employing

HIRs. Section 5.5 outlines the DF verification of the German and FLASH cache coherence

protocols, and Section 5.6 concludes the chapter. For convenience, a list of chapter symbols

is provided in Table 5.3. Appendix Sections C.1 and C.2 give specific examples of applying

two kinds of HIRs.

5.1 A Simple Example

To keep this example simple, we have glossed over some technical details. These are

addressed in footnotes that are collected at the end of this section on page 80. Sections

5.2–5.4 give a more detailed an formal description of our approach.

Consider the parameterized program of Figure 5.1 that describes a mutual exclusion

75

in n : integer where n > 1
local t: integer where t = 0

n

∥
i=1

P [i] ::



ℓ0 : loop forever do

ℓ1 : noncritical
ℓ2 : while t ̸= i do
ℓ3 : ⟨if t = 0 then t := i end if⟩
ℓ4 : if t = i then

ℓ5 : critical
end if


end while
ℓ6 : t := 0


end loop



Figure 5.1: Program turn (mutual exclusion by turn setting) [89, Fig. 2.8]

algorithm. This program can be described with the Murφ system of Figure 5.2. For brevity,

the lines ℓ2 and ℓ3 are combined (modeled as L3, waiting to enter the critical section) as are

the lines ℓ4 and ℓ5 (modeled as L5, the critical section). Line ℓ0 is not modeled; the system

begins with all threads at L1. Instead of the value 0 for t, we use the built-in Murφ value

undefined. In order to be a valid Murφ system, we must provide a specific parameter

value for n. Any value greater than 1 will suffice; for this example, we arbitrarily choose 5.

The Murφ system of Figure 5.3 is the corresponding abstract system with 1 thread ex-

plicitly modeled. The rest are subsumed into a new value called Other. This abstraction

overapproximates the behavior of the concrete system any n > 2 threads, essentially by

assuming that these “other” threads 2, ..., n could be at any line.

Some of these rules have identical syntax and names as their concrete counterparts.

Since nothing about the state is assumed or overapproximated in the guards of such rules,

the following rules are in fact underapproximate: L1 to L3, L3 to L5, L5 to L6, L6 to L1,

and Stutter. However, the rules with ABS prefixes in the name do not meet this criteria.

For example, compare the guard of the concrete rule L5 to L6 with the abstract rule

76

-- a mutual exclusion protocol

const NUM THREADS : 5; -- assume 5 threads

type THREAD : scalarset(THREAD NUM); -- a symmetric set

LINE NUM : enum L1, L3, L5, L6; -- enumerated type representing the line number

var Line : array [THREAD] of LINE NUM;

t : THREAD;

startstate "Init" -- initial state

for i : THREAD do Line[i] := L1; end;

end;

ruleset i : THREAD do

rule "L1 to L3" Line[i] = L1

==> Line[i] := L3; end;

rule "L3 to L5" Line[i] = L3 & isundefined(t) -- & is logical AND

==> Line[i] := L5; t := i; end;

rule "L5 to L6" Line[i] = L5 & t = i

==> Line[i] := L6; end;

rule "L6 to L1" Line[i] = L6

==> Line[i] := L1; undefine t; end;

end; -- ruleset

rule "Stutter" true

==>

end;

Figure 5.2: The Murφ system for program turn

ABS L5 to L6. The guard of the latter rule assumes that there exists some i > 1 such that

Line[i] = L5. Every rule of the abstraction contributes to the set of overapproximate

transitions O, and the list of UA rules contribute to the set of UA rules U . The above

abstraction, augmented with the set of UA rules U , is in fact a mixed-abstraction A.

We seek to show that for any n, every reachable state s of the concrete system P(n)

has a path to some state s′ where t is undefined. These are states where no thread is in the

critical section. We use model checking of the mixed abstraction to check A |= AGEF q,

77

-- abstract system

const THREAD NUM : 1;

type THREAD : scalarset(THREAD NUM);

ABS THREAD : union {THREAD, enum{Other}}; -- new value "Other" abstracts threads > 1

LINE NUM : enum {L1, L3, L5, L6};
var Line : array [THREAD] of LINE NUM;

t : ABS THREAD;

startstate "Init"

for i : THREAD do Line[i] := L1; end;

end;

ruleset i : THREAD do

-- underapproximate rules

rule "L1 to L3" Line[i] = L1

==> Line[i] := L3; end;

rule "L3 to L5" Line[i] = L3 & isundefined(t)

==> Line[i] := L5; t := i; end;

rule "L5 to L6" Line[i] = L5 & t = i

==> Line[i] := L6; end;

rule "L6 to L1" Line[i] = L6

==> Line[i] := L1; undefine t; end;

end; -- ruleset

rule "Stutter" true

==>

end;

-- overapproximate rules

rule "ABS L3 to L5" isundefined(t)

==> t := Other; end;

rule "ABS L5 to L6" t = Other

==> undefine t; end;

Figure 5.3: Murφ system for the mixed abstraction of turn

where q is isundefined(t). This DF property is expressed in Murφ syntax using new

keywords liveness and CANGETTO as understood by PReach. Here, the property is:

liveness "NoCrit"

78

true CANGETTO isundefined(t)

This DF property holds if for every state reachable by O transitions, there exists a path of

U transitions to a state where t is undefined.

When executed, a counterexample reveals that the underapproximate transition

relation U is too strong. The counterexample path begins with ABS L3 to L5 firing from

the initial state, reaching a state where Line[1] = L1 and t = Other. Then, L1 to L3

fires, updating Line[1] with the value L3. At this state none of the UA rules are enabled,

but non-UA rule ABS L5 to L6 is enabled. We do not consider this rule UA because it

assumes that whatever node t refers to in some concretization, call it j > 1, has Line[j]

= L5. Of course, it is easy to see in this example that in any concrete system, t = j if

and only if Line[j] = L5. However, for illustration we show how this can be proven using

permutation. For any state where t = Other, consider swapping the “actual” value held

by t with thread 1. This permutation exploits the symmetry of the system to force the

thread value of t to be visible in the mixed abstraction; see Figure 5.4. The resulting

states are described by the predicate isdefined(t) & t != Other3. We show that all

reachable states satisfying this predicate have a path to some state that satisfies the guard

of L3 to L5, written as exists i : THREAD do t = i & Line[i] = L5 end4. Thus, we

check the following property5:

liveness "H1"

isdefined(t) & t != Other

CANGETTO

exists i : THREAD do t = i & Line[i] = L5 end

This DF property holds, which proves ABS L3 to L5 is UA. Now, with this rule

added to U , the property NoDeadlock is checked again and now holds. This completes the

proof parameterized DF, i.e., that for any n > 1, every reachable state of P(n) has a path

to some state where no thread is in the critical section.

79

s

π

π(s) π(s′)observed

implied

π
−1

s
′

Figure 5.4: Finding paths through permutation. The path from s to s′ is implied by finding
a path from their permuted counterparts, π(s) and π(s′).

Notes

3The function isdefined does not exist in Murφ, but we use it as shorthand for !isundefined,

where ! is logical NOT. The operator != means “not equal to”, i.e., t != Other is the same as

!(t = Other).

4We would prefer to write something like t = 1 instead of isdefined(t) & t != Other, and t

= 1 & Line[1] = L5 instead of exists i : THREAD do t = i & Line[i] = L5 end. However,

Murφ will complain because the set of nodes are symmetric, and we therefore cannot refer to a

particular value directly.

5For this check, instead of using all UA rules to find the requisite path, only rules that are

“local” to t are used. These are rules that only change the ith index of array variables when t =

i. This is to ensure that the changes of this path remain hidden when the inverse permutation is

taken. In this example, rules L1 to L3 and L6 to L1 when i = 1, as well as Stutter are local to

t when t = i.

5.2 Formal Framework

This section presents the formal framework that we use to verify quiescence properties of

parameterized systems. Section 5.2.1 introduces mixed abstractions that have two tran-

sition relations: one that under-approximates the behaviors of the concrete systems and

80

another that provides an over-approximation. Section 5.2.2 presents the idea of insuffi-

ciency – a mixed abstraction may have an under-approximation that is too strong to verify

the desired quiescence property or an over-approximation that is too weak. Section 5.2.3

describes the parameterized systems that we consider. These are less general than those

of [1]. Section 5.2.4 shows that safety property checking (and hence DF checking) remains

undecidable even with our restrictions.

5.2.1 Mixed Abstractions

A system S is a tuple (S, I, T) where S is a set of states, I ⊆ S is the set of the initial states,

and T ⊆ S×S is the transition relation. We write s1 ⇝T s2 to denote that (s1, s2) ∈ T ∗. A

state s is said to be S-reachable (or simply reachable if S is understood) if s0 ⇝T s for some

s0 ∈ I. A state predicate p is simply a subset of S; if s ∈ p we call s a p-state. Following

standard CTL syntax, for state predicates p and q, we write: S ⊨ AGp if all reachable

states are p-states; AG (p → EF q), if for all reachable p-states s there exists a q-state s′

such that s ⇝T s′; and AGEF q to mean AG (true → EF q), i.e., from any reachable state

there is a path to some q-state.

To show that AG (p→ EF q) can be inferred for a concrete system S by establishing

properties of an abstraction A we employ Lynch and Vaandrager’s notion of forward simu-

lation [87]. Let S1 = (S1, I1, T1) and S2 = (S2, I2, T2) be two systems and θ ∈ S1×S2 be an

abstraction relation. With respect to θ, we say that T2 forward simulates (or “simulates”

for short) T1 if for every (s1, s
′
1) ∈ T1 and for all s2 such that (s1, s2) ∈ θ, there is some

s′2 ∈ S2 such that s2 ⇝T2 s
′
2 and (s′1, s

′
2) ∈ θ. This allows system S2 to take multiple

steps that may be invisible in S1 including possibly steps that have no “explanation” in

S1. This general sense of simulation is motivated by our goal of showing the existence

of trajectories. See Figure 5.5. The domain of θ may be a subset of S1, in particular,

restricted to the reachable subset of S1. We say T2 simulates T1 when θ is clear from

context. Now let s1, . . . , sℓ be a T1-path, and suppose T2 simulates T1 with respect to

81

θ. By induction on ℓ, there exists an T2-path s′1, . . . , s
′
k and a non-decreasing surjection

f : {1, . . . , ℓ} → {1, . . . , k} such that (si, s
′
f(i)) ∈ θ for all 1 ≤ i ≤ ℓ.

S1

s1 s
′
1

θ

s
′
2

θ

S2

s2

Figure 5.5: Simulation of S1 by S2

To show AG (p→ EF q) using abstraction, the abstract system must, for soundness,

over-approximate the set of reachable p-states, and under-approximate the set of paths

from p-states to q-states. Thus, we introduce a mixed abstraction as defined below. Note

that unlike Lynch and Vaandrager, we require θ to be a function.

Definition 1. Let S = (S, I, T) be a system and let Reach be the S-reachable states. A

mixed abstraction of S (relative to θ : S → SA) is a quadruple A = (SA, IA, U,O) such

that

• SA is a set of abstract states,

• IA ⊆ SA are the initial abstract states and satisfy θ(I) ⊆ IA,

82

• O ⊆ SA × SA simulates T with respect to θ ∩ (Reach × SA), and

• T simulates U ⊆ SA × SA with respect to (θ ∩ (Reach × SA))−1.

Here U andO are respectively called the under-approximate (UA) and over-approximate

(OA) transition relations of the mixed abstraction. When discussing mixed abstractions,

we will often refer to S = (S, I, T) as the concrete system, to S as the concrete states, etc.

The following serves as the basis for our approach to proving deadlock freedom for

a class of parameterized systems. Let p and q be state predicates over SA, and suppose for

all (SA, IA, O)-reachable p-states s there exists a q-state r such that s ⇝U r. We assert

this by writing

A ⊨ AG (p→ EF q) (5.1)

Hence, (5.1) holds of a mixed abstraction if for all p-states reachable using the over-

approximative transition relation, there exists a path through the under-approximative

transition relation to a q state. See Figure 5.6 for a schematic of this relationship between

the mixed abstraction and a concrete system.

Lemma 1. Let A be a mixed abstraction of S relative to θ and let p and q be state predicates

on SA. If A ⊨ AG (p→ EF q) then S ⊨ AG (θ−1(p)→ EF θ−1(q)).

Proof. Let Reach be the set of S-reachable states. Let w be any θ−1(p)-state in Reach.

Because O simulates T with respect to θ ∩ (Reach × SA), θ(w) is (SA, IA, O)-reachable,

and furthermore θ(w) is clearly a p-state. Let a0, . . . , am be a U -path from θ(w) = a0 to a

q-state am. Because T simulates U with respect to (θ∩ (Reach ×SA))−1, for all 0 ≤ i < m

and all wi ∈ θ−1(ai) there exists wi+1 ∈ θ−1(ai+1) such that wi ⇝T wi+1. Therefore,

taking w0 = w, there is a path w ⇝T wm where wm ∈ θ−1(q).

Note that the definition of mixed abstraction explicitly mentions the reachable states

of S (in the involved simulation relations), this is just our means of formalizing the minimal

requirements a mixed abstraction must satisfy in order to prove Lemma 1. In other words,

83

s′

S

p q

s̃

ψ−1

Reach

O-path U -path

SA

IA

ψ−1(s)

ψ−1(s′)

s

∀w

∃w′

Figure 5.6: Illustration of Lemma 1. Suppose that for each s ∈ p that is reachable from
an initial state through O transitions, there exists s′ ∈ q reachable from s through U
transitions. Then every reachable w of S that is a concretization of s has a path to some
state in the concretization of s′.

any methodology that aims to construct mixed abstractions must guarantee at least these

simulations. We emphasize that this is different than asking the user of such a methodology

to precisely characterize Reach (indeed our methodology does not make such a demand).

We conclude this section by stating a connection between S and the transitions of

U and O.

Lemma 2. Suppose S = (S, I, T), SA, IA, and θ : S → SA are as in Def. 1. If U,O ⊆

SA × SA satisfy

1. for all (w,w′) ∈ T such that w is S-reachable we have (θ(w), θ(w′)) ∈ O, and

2. (s, s′) ∈ U implies for all S-reachable w ∈ θ−1(s) there exists w′ ∈ θ−1(s′) such that

w ⇝T w
′,

then (SA, IA, O, U) is a mixed abstraction for S.

84

Proof: Follows directly from Def. 1.

When performing reasoning that allows us to add (or remove) transitions from U and

O in a mixed abstraction, we employ sufficient conditions of Lemma 2. This essentially

restricts the definition of mixed abstractions to those where each transition of T has a

corresponding transition in O, and each transition of U has a corresponding path in T .

5.2.2 Insufficiency

Lemma 1 allows us to infer S ⊨ AG (θ−1(p) → EF θ−1(q)) if model checking (or any other

means) verifies A ⊨ AG (p → EF q). However, the converse of the lemma does not hold

in general (or even in common cases). Let us call the mixed abstraction A insufficient if

S ⊨ AG (θ−1(p) → EF θ−1(q)) holds but A ̸⊨ AG (p → EF q). If A is insufficient, it follows

that there exists a p-state ap such that a0 ⇝O ap for some a0 ∈ IA but there is no q-state

aq such that ap ⇝U aq. There are two common causes for insufficiency:

• OA Insufficiency. There is no (S, I, T)-reachable sp ∈ S such that θ(sp) = ap.

Hence ap does not abstract any reachable state of S. This is often caused by O being

too weak, i.e. there exists a proper subset O′ ⊂ O such that (SA, IA, O
′, U) is a mixed

abstraction of S wherein ap becomes unreachable. Thus the CMP method should be

applied to strengthen the overapproximation.

• UA Insufficiency. There is (S, I, T)-reachable s ∈ S such that θ(s) = a, however

none of the T -paths s = s0, . . . , sℓ where sℓ ∈ θ−1(q) (at least one such T -path

must exist), are simulations of any U -paths. In practice, this is often caused by U

being too strong. In this case, there may exist a proper superset U ′ ⊃ U such that

(SA, IA, O, U
′) is a mixed abstraction of S.

For the mixed abstractions we use to verify our parameterized systems, we will

observe that OA insufficiency is addressed in previous literature [40], however UA insuffi-

ciency is not. Our basic approach is to identify UA insufficiency from a counter-example

85

trace. In practice, the transitions from O that are needed in U are often apparent from this

counter-example. The basic idea is to show that for each such transition (s, s′) of O, there

is a corresponding set of paths in the concrete system, i.e., each state of θ−1(s) has a path

to some state of θ−1(s′). Sections 5.3 and 5.4 present how this can be done by syntactic

pattern matching and model checking of the abstract system for properties with the form

shown by Formula (5.1).

There is also a third flavor of insufficiency,

• Abstract Quiescence Insufficiency. Note that in Lemma 1, the quiescent pred-

icate actually verified is of the form θ−1(q), where q is a predicate on the abstract

states. Suppose, however that there does not exist a q such that θ−1(q) characterizes

the desired set of quiescent concrete states. We experience this for our case studies:

the desired quiescence predicate involves a universal quantification over the paramet-

ric type that the underlying simulation relation cannot precisely characterize. That

is, if the concrete quiescent states are characterized by a predicate of the form ∀i. ϕ(i),

then there is no abstract predicate q such that θ−1(q) = ∀i. ϕ(i). We deal with this

form of insufficiency via Theorem 1 in Section 5.4.1.

5.2.3 Parameterized Systems

For the approach presented in this chapter, a parameterized system P is a function mapping

natural numbers to systems. We write P(n) = (S(n), I(n), T (n)) to denote the components

of P(n) for an arbitrary n. The states S(n) are the type-consistent assignments to a set of

state variables. For a state w of a parameterized system and a state variable v, we write

v(w) to denote the value w assigns to v. We allow four types of variables:

• finite types that are independent of n, such as booleans and enumerations; for sim-

plicity, we denote all such types as B

• a type which has cardinality n, denoted Pn

86

• arrays indexed by Pn with elements in B, denoted array [Pn] of B

• arrays indexed by Pn with elements in Pn, denoted array [Pn] of Pn

We identify the set Pn with the numbers {1, . . . , n} called nodes; the only operations

supported on nodes are equality comparison, assignment, and nondeterministic choice.6

This ensures that for all n, P(n) is fully symmetric [69] in Pn; here we give a brief review

of this notion. Let us write λi.e to denote the array a indexed by Pn where a[i] = e and e

is an expression of the appropriate type. Let π be a permutation on Pn. We overload π to

act on w ∈ S(n) by defining π(w) ∈ S(n) to be the state such that for each state variable

v, v(π(w)) is equal to:

• v(w), if v has type B

• π(v(w)), if v has type Pn

• λi.(v(w)[π−1(i)], if v has type array [Pn] of B

• λi.π(v(w))[π−1(i)]), if v has type array [Pn] of Pn

Then (S(n), I(n), T (n)) is called fully symmetric if for all w,w′ ∈ S(n) and all permutations

π on Pn we have both that w ∈ I(n) iff π(w) ∈ I(n), and (w,w′) ∈ T (n) iff (π(w), π(w′)) ∈

T (n). The following lemma has a simple inductive proof using the latter.

Lemma 3 (Path Symmetry). For w,w′ ∈ S(n) we have w ⇝T (n) w′ if and only if

π(w)⇝T (n) π(w
′).

The method presented in this chapter is applicable to fully symmetric models. Sec-

tion 5.3.1 gives the restrictions on parameterized systems that ensure our approach can be

applied. We refer to such system as admissible.

6If i and j are nodes, a parameterized system is not allowed to perform a comparison such as
i < j or increment a variable i := i+ 1.

87

5.2.4 Undecidability

Here we sketch a proof that model checking symmetric parameterized systems is undecid-

able. Given a Turing machine M with no input, we simulate M using at most i tape cells

with S(i). Each node of S(i) represents a tape cell. The description of M can be encoded

using boolean variables in S(i). Two phases of the parameterized system occur. First,

nodes are chosen to represent tape cells in some order. Initially, all cells are unused. Each

step nondeterministically chooses some unused cell and marks it as used. The first node

selected holds the symbol for the leftmost tape cell. The second node selected holds the

symbol for the second tape cell to the left and so on. Each node has two variables of type

node that act as pointers to the left and right, so the ordering of cells is maintained through

a doubly linked-list. Note that the tape cells are represented by nodes, and the state of

the Turing machine is stored in global (i.e. non-parameterized) variables. We include an

additional boolean variable halts which is initialized to false. Second, M is simulated

using the tape as represented by the doubly linked-list of nodes. If M halts using at most

i cells, then our simulation will eventually reach a halting state and halts will be set true.

Otherwise, simulation ofM on a tape with i cells will eventually run off the right end of the

tape, at which point the simulation enters a TapeOut state and remains there forever. Or,

M runs forever without using more than i cells. In either case, halts remains false. If M

halts when run on empty input, then it uses some bounded number of cells before halting.

If our simulation runs with at least that many nodes, then our simulation will reach a

state where halts is set, so AG¬halts is not satisfied. Therefore, ∀i. S(i) |= AG¬halts.

is satisfied iff M does not halt when run on empty input. Note that deadlock-freedom is

a more general property than safety, as AG (¬p→ EF false)⇒ AGp. Since model checking

deadlock-freedom of a symmetric parameterized system solves the co-halting problem, it is

undecidable.

88

5.3 Syntactical Abstraction

We assume that the parameterized system is modeled by Murφ [51] or a similar guarded-

command notation. Given a program P to describe the parameterized system, we use

well-established techniques [92, 93, 40, 76, 86, 28, 83, 99] to obtain an abstraction of P .

Our formulation is inspired by the Krstic’s “syntactic” approach [76]; Section 5.3.1 states

restrictions that we assume on the form of P , and Section 5.3.2 summarizes the abstraction

technique. In Section 5.4, we show how the abstraction can be generalized to produce an

under-approximate transition relation, U , and how U can be soundly weakened to prove

quiescence properties.

5.3.1 Syntax and Restrictions

We assume that the guarded-command program that models the parameterized system

satisfies certain syntactic restrictions described in this section. These restrictions ease the

syntactical abstraction process and simplify reasoning about the program because many

useful properties are guaranteed by construction. We say that such a program is admissible.

From the case studies reported in Section 5.5, we’ve found that these restrictions are not

problematic in practice.

An admissible program has a set of variables of the types indicated in Table 5.1. A

state of the admissible program is a type-consistent assignment of values to these variables.

If e is a term, we write e(s) to denote the value of e in state s. In Murφ, a guarded command

is called a rule and has the form: guard _ action, where the guard is a boolean-valued

expression, and the action is a sequence of one or more assignments. We write r : ρ _ a

to denote rule r with guard ρ and action a.

The denotation JrK of r is the set of tuples (s, s′) ∈ S × S such that ρ(s), and s′ is

the state reached by performing action a from state s. Murφ has rulesets of the form:

ruleset i : Pn do r(i) end;

where r(i) is a rule (or a ruleset, as they may be nested). Here, i ∈ Pn is called the ruleset

89

parameter. If rs is the ruleset indicated above, then

JrsK = {(s, s′) | ∃i ∈ Pn. (s, s′) ∈ Jr(i)K} (5.2)

A local boolean predicate L is a propositional formula over the variables of type

array [Pn] of B. For node i, we say L[i] holds of a state if L evaluates to true when its

variables are assigned according to the ith array entries of the state. An admissible program

must satisfy the following syntactic restrictions. Rulesets have guards that are a conjunct

of:

• Boolean terms, composed of variables of type B or array [Pn] of B indexed by a ruleset

parameter, and the logical connectives AND, OR and NOT.

• At most one forall condition, appearing positively, of the form ∀i ∈ Pn. C[i] where C

is a local boolean predicate.

• Any number of P-comparisons, of the form v1 = v2 or v1 ̸= v2, where v1 and v2

are each either a ruleset parameter, a variable of type Pn, or a variable of type

array [Pn] of Pn indexed by a ruleset parameter. Without loss of generality, we

restrict each ruleset parameter to appear in at most one P-comparison of equality.

The initial states and ruleset commands given by a sequence assignments of the

following forms:

• Assignments of the form b1 := b2, a
1
B[i] := b2, a

1
B[i] := a2B[i], where b1 and b2 are

variables of type B, a1B and a2B are variables of type array [Pn] of B, and i is a ruleset

parameter. RHS values may also be the constants true and false.

• Assignments of the form p1 := p2, a
1
P[i] := p2, a

1
P[i] := a2P[i], where p1 and p2 are

variables of type Pn, a1P and a2P are variables of type array [Pn] of Pn, and i is a ruleset

parameter.

90

• Forall updates of the form ∀i ∈ Pn. aB[i] := ℓ(i), where ℓ is a boolean function

depending on variables of type B, Pn and on the ith index of array variables.

The general form of the rulesets are as follows.

ruleset i1 : Type1 do

ruleset i2 : Type2 do

...

ruleset iN : TypeN do

rule "Rule1" guard1 ==> command1;

...

rule "RuleK" guardK ==> commandK;

end;

...

end;

end;

These restrictions ensure that guards in admissible programs do not contain dis-

junctions of comparisons between variables of type P and have no existentially quantified

terms; updates in admissible programs do not contain if-then-else clauses. These constructs

can be handled by a straightforward splitting into multiple rulesets. The Murφ systems for

German and FLASH are admissible, and from this experience, we believe that the systems

for many other symmetric protocols will be admissible or easily modified to produce an

admissible equivalent.

5.3.2 Abstraction

Let P(n) = (S(n), I(n), T (n)) be the denotation of an admissible program P . We want

to construct a mixed abstraction, A = (SA, IA, O, U). In this section, we show how SA,

IA, and O can be readily found by syntactic transformations of the source-code of P .

Section 5.4 extends this approach to the construction of U . To create these abstractions,

we introduce a new type to represent type Pn from the concrete system; this type requires

91

concrete type abstract type abstraction ψ

B B v(ψ(s)) = v(s)
Pn Pk ∪ {Other} v(ψ(s)) = αk(v(s))
array [Pn] of B array

[
Pk

]
of B ∀i ∈ Pk : v(ψ(s))[i] = v(s)[i]

array [Pn] of Pn array
[
Pk

]
of Pk ∪ {Other} ∀i ∈ Pk : v(ψ(s))[i] = αk(v(s)[i])

Table 5.1: Mapping of types from concrete system to mixed abstraction. The abstract
state space is SA and the abstraction function is ψ : S(n) → SA. For a system variable v
and s ∈ S(n), the leftmost column gives the type of v in the concrete domain, the second
column gives the type of v in SA, and the third column specifies the value v is assigned by
ψ(s) in terms of v(s). Function αk : Pn → Pk ∪ {Other} is defined as αk(v) = v for v ≤ k;
αk(v) = Other otherwise.

the user to choose a constant k. It is assumed throughout that k is at least the greatest

number of ruleset parameters for any ruleset in P (typically, k ≤ 3). Table 5.1 specifies how

each variable of P is typed in A and how the abstraction function ψ acts on v. Intuitively,

ψ(s) preserves B variable values, replaces values of type Pn greater than k with Other , and

restricts arrays to the indices Pk (hence all array entries v[i] for i > k are deleted by ψ).

Although ψ is a function, we will treat it as a relation, ψ ⊆ S(n)× SA, and freely employ

its inverse ψ−1 ⊆ SA×S(n). We call elements of Pk non-abstracted and elements of Pn\Pk

abstracted. For every ruleset parameter i interpreted as abstracted, all updates with aB[i]

or aP[i] appearing on the LHS are deleted. All instances aB[i] or comparisons depending on

aP[i] appearing positively in the guard are replaced with true; those appearing negatively

are replaced with false. Instances of i appearing on the RHS of assignments are replaced

with Other . Finally, equality comparisons with i appearing positively in the guard are

replaced with true. The state variables of A have the same names as those of P, with the

types changed as shown in Table 5.1.

We now overload ψ to map rules of P system to rules that generate the state

transitions of O. Rules of P that are not in rulesets are copied without change of syntax

(therefore, with the implied change of types), to O. If ruleset r : ρ _ a depends on m

ruleset parameters, consider the set of rule instantiations, obtained from assigning each

92

ruleset parameter a value in Pn. This set is partitioned as r0, ..., r2m−1, where all rule

instantiations of Rj have the same partitioning of ruleset parameters into Pk and Pn \ Pk

(since there are m ruleset parameters, there are 2m possible partitions). Each set rj

abstracts to an abstract ruleset r̂j according to the described syntactic transformation.

We denote the set of corresponding abstract rulesets to concrete ruleset r by ψ(r) =

{r̂0, ..., r̂2m−1}. Let r̂0 : ρ̂0 _ â0 denote the unique element of ψ(r) such that all ruleset

parameters are non-abstracted. Note that although the set of rule instantiations differ

depending on the value of n, the set ψ(r) does not, for any n > k, hence we can fix

n = k + 1 to perform this abstraction.

In this chapter I will use the German cache coherence protocol [58] as an example;

a Murφ model for the protocol appears in Appendix A. The SendGntE ruleset sends a

message to inform a cache/node that it has been granted exclusive access to a cache line.

Example: The concrete rule from German SendGntE is

ruleset i : NODE do rule "SendGntE"

CurCmd = ReqE ∧ CurPtr = i ∧ Chan2[i].Cmd = Empty

∧ ¬ExGntd ∧ forall j : NODE do ¬ShrSet[j] end ==>

Chan2[i].Cmd := GntE; ShrSet[i] := true;

ExGntd := true; CurCmd := Empty;

The abstraction contains two corresponding rulesets, one where i is non-abstracted

and one where i is abstracted, with the former corresponding to r̂0:

ruleset i : NODE A do rule "ABS SendGntE1"

CurCmd = ReqE ∧ CurPtr = i ∧ Chan2[i].Cmd = Empty

∧ ¬ExGntd ∧ forall j : NODE A do ¬ShrSet[j] end ==>

Chan2[i].Cmd := GntE; ShrSet[i] := true;

ExGntd := true; CurCmd := Empty;

rule "ABS SendGntE2"

CurCmd = ReqE ∧ CurPtr = Other ∧ ¬ExGntd

∧ forall j : NODE A do ¬ShrSet[j] end ==>

ExGntd := true; CurCmd := Empty;

93

Notice the difference between the forall condition of SendGntE and the weaker one

of ABS SendGntE1, despite the identical syntax. The type NODE in the concrete system

ranges over values from 1 to n, where as NODE A in the abstract system ranges from 1 to

k < n.

5.4 Verifying Universal Quiescence

We want to verify properties of the form

P(n) |= AGEFQn , (5.3)

where P(n) is a parameterized system and

Qn = G ∧
∧

i∈Pn L[i] (5.4)

is the quiescence property to be verified. Here, G is a boolean predicate, meaning G only

depends on variables of type B, while L is a local boolean predicate (defined in Sect. 5.3.1).

To verify (5.3), we construct a mixed abstraction, A = (SA, IA, O, U), and show that for

all O-reachable states, there exists a U -path to a state that satisfies Qn. To do so, we

must address two key issues. First, Qn cannot be established directly from A, as Qn refers

to variables of the concrete system that do not appear in the abstraction. This is the

“abstract quiescence insufficiency” defined in Section 5.2.2; Section 5.4.1 shows how it can

be addressed. Second, U may omit transitions that are required to reach states that satisfy

Qn. This is the UA insufficiency from Section 5.2.2, and we address it in Sections 5.4.2

and 5.4.3.

5.4.1 Universally Quantified Quiescence

To show (5.3), we need to show that L[i] holds for all i, not just non-abstracted i. Intu-

itively, we show that A can reach a state where L[i] holds for all non-abstracted i, then

use Lemma 3 (Path Symmetry) to exchange any abstracted j for which L[j] might not

94

hold with a non-abstracted i and find a path that establishes L[i]. We then establish (5.3)

by induction. For this approach to be valid, we must show that if G holds, then for each

non-abstracted node i, there is a U -path to a state that satisfies L[i] whose concretization

in P(n) does not falsify L[j] for any abstracted node j. To do this, we introduce the no-

tion of L-preserving transitions. For the remainder of this chapter, let Reach denote the

reachable states of S(n).

Definition 2. For local boolean predicate L, abstract transition (s, s′) is L-preserving if

∀w ∈ ψ−1(s) ∩ Reach. ∃w′ ∈ ψ−1(s′). w ⇝T w
′

∧ ∀i ∈ Pn \ Pk. w ∈ L[i]⇒ w′ ∈ L[i] .

Abstract ruleset r̂ is L-preserving if all transitions in Jr̂K are L-preserving. A mixed

abstraction is called L-preserving if its UA transitions contain only L-preserving rules.

Let us fix a mixed abstraction A = (SA, IA, U,OA) for P(n), where n > k. We

also use L to denote a local boolean predicate, and B = (SA, IA, UB, OA) to denote a

mixed abstraction with only L-preserving transitions for UB. Note that the same set OA

is used for overapproximate transitions of both A and B. For i, j ∈ Pn, define Pj
i ⊆ Pn as

{h ∈ Pn : i ≤ h ≤ j}.

Let permutation πj↔h map elements of Pn according to

πj↔h(i) =


j for i = h,

h for i = j,

i otherwise.

(5.5)

Let T be shorthand for T (n). We can now state our main theorem for showing universally

quantified quiescence.

Theorem 1 (Universally Quantified Quiescence). Let G denote a boolean predicate, L a

local boolean predicate, and let A and B be mixed abstractions of P(n), and assume that B

is L-preserving. If

95

1. A |= AGEF (G), and

2. B |= AG (G→ EF (G ∧
∧

i∈Pk L[i]))

then P(n) |= AGEF (G ∧
∧

i∈Pn L[i]).

Proof. For 1 ≤ h ≤ n, let Jh denote the property ∀w ∈ G ∧ Reach. ∃w′ ∈ (G ∧
∧

i∈Ph L[i])

where w ⇝T w′, and ∀i ∈ Pn
k+1. w ∈ L[i] → w′ ∈ L[i]. Antecedent 2 implies Jk. Assume

Jh holds for k ≤ h < n. Applying permutation π1↔h+1 to Jk gives ∀w ∈ G ∧Reach. ∃w′ ∈

(G ∧
∧

i∈Ph+1
2

L[i]) where w ⇝T w′, and ∀i ∈ Pn
k+1. w ∈ L[i] → w′ ∈ L[i]. This property

with Antecedent 2 implies Jh+1 by transitivity. Thus, property Jn follows by induction.

The paths implied by Antecedent 1 composed with those of Jn complete the proof by

transitivity.

5.4.2 Abstract Rule Tags

Given a program P , we use the syntactical abstraction technique to produce an abstract

program P̂ . In the remainder of this paper, we use the term “ruleset” to refer to Murφ-

style rulesets with any degree of ruleset nesting including no such quantification – e.g. a

“ruleset” could be a simple rule. We want to identify which rulesets of P̂ have denotations

that are UA, and which are L-preserving, for a given local boolean predicate L. We use

r : ρ _ a and r̂0 as defined in Section 5.3.2, and use r̂j to denote an arbitrary element of

ψ(r).

We tag abstract rulesets with tags from the set {AUG,AEG,AUC,AEC}; the first two

elements are called guard tags, and the last two are called command tags. These indicate

reasons (in the guard and command, respectively) why the abstract ruleset is not trivially

UA or L-preserving. An abstract ruleset can be tagged with any of the 16 subsets of these

tags. AUG and AUC indicate that a universal quantifier has been abstracted; similarly AEG

and AEC indicate that existential information has been abstracted.7

7 Note that AEG and AEC are not indication of explicit existential quantifiers in the concrete

96

We call ρ and ρ̂j syntactically equivalent if they are expressed with identical syntax,

and ρ contains no forall conditions. In this case, we attach no guard tags to r̂j . Likewise, if

a and âj have identical syntax and contain no forall updates, then we attach no command

tags. If a ruleset r has no guard or command tags, then it is simple to show that r is both

UA and L-preserving for any local predicate L. Typically, the set of all such rulesets is

insufficient to establish the desired quiescence property.

The elements of ψ(r)\ r̂0 may not have syntatically equivalent guards because some

ruleset parameter i is abstracted, so the abstraction will syntactically change the guard

(except for degenerate cases). These rulesets have guards that optimistically abstract

away references to abstracted i; this is safe when constructing the OA but not the UA.

Such rulesets are tagged with AEG (abstract existential in guard)7. For example, rule

ABS SendGntE2 in Section 5.3.2 is tagged with AEG due to the CurPtr = Other conjunct.

When ρ contains a forall condition, it is necessarily weakened in every rule of ψ(r). In this

case, every ruleset of ψ(r) including r̂0 is tagged with AUG (abstract universal in guard).

Similarly, existential or universal updates may be missing from the command of an

abstract ruleset, relative to the concrete version. If local update ab[i] := eb appears in a

for ruleset parameter i, then any ruleset of ψ(r) where i is abstracted (that is, where the

update ab[i] := eb vanishes), is tagged with AEC (abstract existential command).7 If a

contains a forall update, then every ruleset of ψ(r) is tagged with AUC (abstract universal

command).

Examples: Referring to the example in Section 5.3.2, abstract ruleset ABS SendGntE1

is tagged with AUG because the forall condition only ranges over concrete nodes. Ab-

stract rule ABS SendGntE2 is tagged with AUG for the same reason, AEG because the guard

conjunct Chan2[i].Cmd = Empty is removed, and AEC because the updates Chan2[i].Cmd

:= GntE and ShrSet[i] := true are abstracted away.

The concrete rule RecvReqS from the German protocol (Appendix A) is

system syntax; existential refers to the quantifier in the ruleset denotation, which ranges over the
ruleset parameter.

97

ruleset i : NODE do rule "SendGntE"

CurCmd = ReqE ∧ CurPtr = i ∧ Chan2[i].Cmd = Empty

∧ ¬ExGntd ∧ forall j : NODE do ¬ShrSet[j] end ==>

Chan2[i].Cmd := GntE; ShrSet[i] := true;

ExGntd := true; CurCmd := Empty;

ruleset i : NODE do rule "RecvReqS"

CurCmd = Empty & Chan1[i].Cmd = ReqS ==>

CurCmd := ReqS; CurPtr := i; Chan1[i].Cmd := Empty;

for j : NODE do InvSet[j] := ShrSet[j] end;

end end;

The abstraction contains two corresponding rulesets, one where i is non-abstracted

and one where i is abstracted.

ruleset i : NODE A do rule "ABS RecvReqS1"

CurCmd = Empty & Chan1[i].Cmd = ReqS ==>

CurCmd := ReqS; CurPtr := i; Chan1[i].Cmd := Empty;

for j : NODE A do InvSet[j] := ShrSet[j] end;

end end;

rule "ABS RecvReqS2"

CurCmd = Empty ==>

CurCmd := ReqS; CurPtr := Other;

for j : NODE A do InvSet[j] := ShrSet[j] end;

end;

Both rules ABS RecvReqS1 and ABS RecvReqs2 are tagged with AUC, as the for

update only ranges over concrete nodes.

5.4.3 Heuristics

Each tag assigned to a ruleset corresponds to a set of proof obligations for showing it is

UA or L-preserving (for some local boolean predicate L). Either of these properties can

98

Property
Tag UA L-preserving

AEG (Abstracted Existential Guard) Heuristic 1 Heuristic 2
AUG (Abstracted Universal Guard) Heuristic 3 Heuristic 4
AEC (Abstracted Existential Command) None Heuristic 2
AUC (Abstracted Universal Command) None Heuristic 4

Table 5.2: Heuristics for ruleset tag/property pairs and associated obligations. “None”
means there is no obligation to show. A ruleset with no tags is L-preserving, while one
with no guard tags is UA.

be established by discharging through the corresponding heuristic according to Table 5.2.

Once a tag is discharged we may safely ignore it as a potential reason why the desired

property does not hold. Each of the heuristics involves model checking a mixed abstraction.

In this section, the various heuristics are stated.

An abstract ruleset is called local to i (as a special case of having no tags) when the

guard only depends on variables of type B, P, and the ith index array variables aB, and

the command only updates the local state of non-abstracted i. Here, given an abstract

or concrete state, the local state of i is simply the values of all array variables at index i.

The transitions that compose such rules are called local transitions. A mixed abstraction

with UA set U composed only of rulesets local to i is denoted Aℓ(i). Assuming ruleset r̂

is UA, we write Aℓ(i) |= AG (A → EFr̂B) when every O-reachable A-state has a path to

some B-state consisting of transitions of rules local to i and necessarily a single transition

of ruleset r̂. See Figure 5.7.

When showing rulesets are UA (Heuristics 1 and 3), note that the tags AEG or

AUG indicate guards that are OA because they have abstracted away information about

abstracted nodes. Our heuristics compute O-reachable states and exploit Lemma 3 (Path

Symmetry) to find the possible local state of abstracted nodes under some boolean predi-

cate. Then, if the local state of node i does not have a required property, we find “hidden

paths” composed entirely of rulesets local to i that reach a state that does have the prop-

erty. This assures that although some states in the concretization of abstract guard ρ̂j

99

O-reachable

A Br̂

r̂

r̂

ℓ(i)

ℓ(i) ℓ(i)

ℓ(i)

Figure 5.7: Illustration of Aℓ(i) |= AG (A→ EFr̂B). Paths labeled ℓ(i) are paths composed
of transitions local to i, and transitions labeled r̂ are transitions for that rule.

do not satisfy the corresponding concrete guard ρ, there is a guaranteed path that is not

observable in the abstract system from every ψ−1(ρ̂j) to a ρ-state. For simplicity, we

present our heuristics for rulesets with at most one abstracted ruleset parameter; however,

generalizing these heuristics to rulesets with more parameters is straightforward.

When showing rulesets are L-preserving, it must be checked that aspects of the

guard and update that have been abstracted away do not affect L-preservation in the

abstracted nodes; Heuristics 2 and 4 pertain to this check. The obligations for these

heuristics require that a certain transition must fire on each path that justifies the deadlock

freedom property. Intuitively, when the heuristic obligation holds, the concrete paths that

justify the tagged ruleset in question r̂ to be UA must have a certain form. For abstracted

node i, each path is

• a (possibly empty) path composed of transitions of rules local to i, followed by

• a transition of concrete rule r (possibly changing non-local variables), followed by

• a (possibly empty) path composed of transitions of rules local to i.

Furthermore, we only seek a path when the starting state is an L[i]-state, and the final

state must also be a L[i]-state. The i for which this is shown depends on the heuristic.

100

Heuristic 2 reasons about those abstracted nodes that are abstracted ruleset parameters

in r̂. Heuristic 4 reasons about those abstracted nodes that are not abstracted ruleset

parameters in r̂. Note that we assume a ruleset has been proven UA before it is proven

L-preserving.

A few definitions are needed for the heuristic statements. If r̂ is an abstract ruleset

with ruleset parameter i, let r̂|i=1 : ρ̂|i=1 _ â|i=1 be the ruleset where all instances of i

are replaced with the constant value 1. Also, let relax (ρ̂, i) be the guard ρ̂ but with the

values of variables aB[i] and aP[i] unconstrained. If A ⊆ SA, let Γ(A) denote the strongest

boolean predicate implied by A.

We include proofs for all heuristics in Appendix B, and sketch the proof of Heuris-

tic 1 here. are similar, and are omitted. Throughout these proofs, we fix a mixed abstrac-

tion A = (SA, IA, U,O) for P(n), where n > k.

Heuristic 1. For ruleset r̂j tagged with AEG and with abstracted ruleset parameter i,

suppose that r̂0 is UA. If Aℓ(1) |= AG (relax (ρ̂0, i)|i=1 → EF (ρ̂0|i=1)) then tag AEG is

discharged for showing r̂j to be UA.

Proof. (Sketch)

This Heuristic handles the case where we aim to show that an abstracted node eventually

performs some action r̂j . The idea is to consider any concrete state that when abstracted,

satisfies the guard of r̂0. Some of these concrete states may not satisfy the guard of the

concrete rule rv due to the values of local variables of the abstracted node. We use a

permutation to “swap” the abstracted node with the non-abstracted node 1. Because

the values of local variables of the abstracted node are unknown (other than that they

satisfy any safety properties that have been shown by suitable methods), we get that the

state reached by the permutation satisfies relax (ρ̂0, i)|i=1. We construct a local path to

a state that satisfies ρ̂0|i=1 and then perform action r̂j . Details of the proof are given in

Appendix B.

101

Heuristic 2. For ruleset r̂j tagged with AEG and/or AEC with abstracted ruleset parameter

i, suppose that r̂0 is UA. If Aℓ(1) |= AG ((relax (ρ̂0, i)|i=1 ∧ L[1]) → EFr̂0 (L[1])) then AEG

and AEC are discharged for showing r̂j to be L-preserving.

Heuristic 3. For ruleset r̂j tagged with AUG and not AEG, let ∀i ∈ Pn. C[i] be the forall

condition of ρ. If Aℓ(1) |= AG (Γ(ρ̂j)→ EF (C[1])), then tag AUG is discharged for showing

r̂j to be UA.

Heuristic 4. For ruleset r̂j tagged with AUG and/or AUC, let r̂2m−1 ∈ ψ(r) be the abstract

ruleset where all ruleset parameters of r are abstracted. If Aℓ(1) |= AG ((Γ(ρ̂j) ∧ L[1]) →

EFr̂2m−1
(L[1])), then tags AUG and AUC are discharged for showing r̂j to be L-preserving.

We apply each of these heuristics by performing model checking using a mixed ab-

straction that uses only local rules for U . As local rules are identified entirely by syntax,

they are known a priori ; therefore, we could take a brute force approach that attempts to

use our heuristics to prove every abstract rule is UA and L-preserving. However, we prefer

to take a counter-example driven approach, as there are two distinct situations in which our

heuristics may not suffice that arose in our case studies. Firstly, additional auxiliary vari-

ables may be needed to capture the system state with a slightly finer-grained abstraction.

Secondly, if the ruleset is not underapproximate, manual guard strengthening or splitting

into multiple rulesets may help. These are illustrated with examples in Section 5.5. See

Appendix C for detailed examples of applying Heuristics 1 and 3.

5.5 Case Studies

Mixed abstractions are expressed as Murφ models. The OA rulesets are borrowed from

Chou et al. [40] and the (initial) UA transitions are derived manually according to tags –

those rules with no guard tags. Thus, the UA rulesets are maintained as a subset of the

OA rulesets. Rulesets with no tags at all are identified as L-preserving, and the relevant

subset of these are identified as local.

102

We used PReach [22] for the mixed abstraction checks. As described in Chapter 3,

PReach was originally designed to check state-invariants. We added a feature to check

CTL properties of the form AG (p → EF q). The search algorithm is simple: for every

(p ∧ ¬q)-state s visited during the forward reachability computation, choose an enabled

rule of U and fire it to reach a new state. Firing rules of U continues until one of the

following occurs.

1. a q-state is found,

2. a U -dead-end state is found, or

3. a cycle is detected.

In the first case, a path from s to a q-state exists and we proceed with the forward reach-

ability computation. In the second case, there might not exist such a path (although we

believe that in practice this is strong evidence that no path exists). If a cycle is found,

this is usually an indication that U contains rules that do not help us reach q-states, so we

might as well exclude them and try again8. For example, there are several easily identifi-

able rules in both German and FLASH that initiate requests by injecting messages, and

are not useful transitions in finding a quiescent state where all messages are consumed.

Notice that deadlock freedom properties can be verified by a CTL model checker, but for

our case studies we chose PReach because it was straightforward to implement the notion

of UA rulesets and counterexample generation.

This section contains a brief overview of the case studies. For a more detailed

report, the reader may refer to supplementary material [21] including the Murφ sources.

5.5.1 Automatic Deadlock Freedom Predicates

As mentioned above, it is common when checking antecedent 1 of Theorem 1 to reach a

U -dead-end state š where no further progress can be made toward the goal. When this

8Clearly, if U is an underapproximate transition relation and U ′ ⊂ U then U ′ is underapproxi-
mate as well. Accordingly, removing transitions from U produces a mixed abstraction.

103

occurs, the model checker reports a failure and prints the rules of O that are enabled in

š, as a guide to the user of which rules could be useful to prove UA and add to U . These

enabled rulesets necessarily have tags AEG or AUG or both. We have written a simple tool

that, given a particular rule/ruleset name, will determine the tags and generate the model

checking obligation to prove it is UA through Heuristics 1 and 3.

Example: Suppose we seek to show ruleset r̂2 = ABS SendGntE2 is UA, and suppose

it is already known by Heuristic 3 that associated r̂1 = r̂0 = ABS SendGntE1 is UA. Ruleset

ABS SendGntE2 is tagged with AEG because ruleset parameter i is abstracted. The guard

ρ̂0|i=1 is

CurCmd = ReqE ∧ CurPtr = 1 ∧ Chan2[1].Cmd = Empty ∧ ¬ExGntd

∧ forall j : NODE do ¬ShrSet[j] end

and relax (ρ̂0, i)|i=1 is

CurCmd = ReqE ∧ CurPtr = 1 ∧ ¬ExGntd ∧ forall j : NODE do ¬ShrSet[j] end

As implemented, our tool does not support automatic generation of the properties

to check for Heuristics 2 and 4. However, this is generally straightforward to do by hand,

and could be automated as well. In cases when the deadlock freedom property for some

heuristic when applied to ruleset r̂j fails the verification attempt, the user may use the

counterexample trace as a guide for strengthening ρ̂j manually. Any ruleset of O may be

duplicated and strengthened with some predicate, which is trivially sound because the O

transitions are not changed. The resulting strengthened ruleset might satisfy the heuristic

deadlock freedom property and be proven UA or L-preserving. Such manual strengthening

is required in the verification of both German and FLASH.

5.5.2 The German Protocol

The system used for O is the abstract Murφ model for German of Chou et al., instantiated

with a single non-abstracted node (k = 1). The initial set of UA transitions U0 includes

all rulesets with no guard tags and the local subset of these are also identified.

104

The property we verify is (5.4), where G states that that the directory is not cur-

rently processing a transaction (CurCmd = Empty) and L[i] states that all communication

channels associated with the ith cache are empty:

Chan1[i].Cmd = Empty ∧ Chan2[i].Cmd = Empty ∧ Chan3[i].Cmd = Empty

Antecedent 1 of Theorem 1 requires A |= AGEF (G) for a mixed abstraction A. Check-

ing this property, the model-checker gets stuck at a U -dead-end state where the rule

ABS SendGntE1 is enabled (see Section 5.3.2). Our tool recognizes this as an AUG-tagged

rule and generates the obligations to according to Heuristic 1 so the rule can be soundly

added to U . The model checker discharges the obligation, and ABS SendGntE1 is added to

U .

Checking Antecedent 1 is repeated with the weakened U and gets stuck three more

times: once where ABS SendGntE2 is enabled (tagged with AEG and AUG), and twice where

other AEG-tagged rulesets are enabled. The Heuristic 3 obligation for ABS SendGntE2 is

identical to the one previously shown for ABS SendGntE1, so there is no need to repeat its

verification. The tool generates the Heuristic 1 obligation and it is discharged by model

checking. In the other two, AEG cases, the corresponding rulesets r̂0 are already known to

be in U , so we proceed directly with the tool, and obligations for Heuristic 1 are generated.

One is discharged automatically; the other requires human guidance because the generated

deadlock freedom property fails to verify. An examination of the counterexample reveals

that when exclusive access has been granted to an abstracted node, there is no pointer

indicating which node has been granted (only a flag to indicate that it has indeed been

granted, ExGntd). Without this pointer, the permutation of Heuristic 1 is not applied to the

proper abstract node actually holding exclusive access. Although manual, the solution is

straightforward: add a new system variable EPtr of type P that points to the node holding

exclusive access; and strengthen the guard of the ruleset. This is done in a sound manner

where only the ruleset version we prove is UA is strengthened in this way; the original

ruleset belonging to O is not modified. After this modification, the relevant property is

105

verified.

Having added these four rules to U of mixed abstraction A, Antecedent 1 of The-

orem 1 is established by model checking. We now describe the procedure to show An-

tecedent 2. Initially, all rulesets that have no tags are known to be L-preserving, and

these are added to U for mixed abstraction B. Model checking then reveals that two ad-

ditional rules are needed to establish the Antecedent: ABS SendGntE1 (tagged AUG) and

ABS RecvInvAck2 (tagged AEG and AEC). These tags are discharged by automatically

generating and checking the obligations of Heuristics 4 and 2, respectively. Adding these

two rules to U for mixed abstraction B allows Antecedent 2 to hold and completes the

verification of the German protocol.

5.5.3 The FLASH Protocol

The quiescence property verified of FLASH is of the same form as (5.4), and states that all

channels are clear and the directory is not waiting to perform a write-back9. Antecedent 1

of Theorem 1 holds immediately using the initial set of UA rulesets having no guard tags.

To show Antecedent 2 of Theorem 1, we start with the set U of L-preserving states

provided by tag examination and use model checking as with the German protocol. Four

rules, each tagged with AEG and AEC, must be shown L-preserving. We first show that

they are UA, by applying Heuristic 1. For two of these rulesets, model checking the

obligations for Heuristic 1 succeeds. For the other two, model checking fails upon reaching

a dead-end state š′ where no local rules fpr node 1 are enabled. The manual strengthening

needed for these two rulesets is identical. Without loss of generality let the ruleset be

r̂j . Inspecting the counter example reveals that the state s ∈ relax (r̂0, i)|i=1 that led to

š′ has different values for some B-type variables than those in š, the original dead-end

9Although the Murφ system for the mixed abstraction of FLASH contains rules where two index
variables have been instantiated as Other , none of these must be shown UA/L-preserving to prove
our example property. Some such rules are needed to be shown UA if the conjunct ¬Pending is
added to the quiescent property. We omit these from this paper for ease of presentation, but note
that similar reasoning to Heuristic 1, which assumes only one such index variable, is sufficient.

106

state revealed when checking Antecedent 2, where r̂j is enabled. This indicates that the

guard r̂j is too weak and must be strengthened with a predicate on these variables. We

duplicated the ruleset for the aforementioned reasons of soundness, and strengthened the

guard with a predicate requiring these variables to match their value in š. Then, the

automated procedure completed successfully and the four rules are established as UA. To

show they are L-preserving, Heuristic 2 is applied to each ruleset and the obligations are

discharged automatically; this establishes the quiescence property by Theorem 1. With

regard to the manual strengthening step, we note that in principle the model checker could

classify the reachable states of relax (r̂0, i)|i=1 for which a path to r̂0|i=1 is found versus

those where no such path is found. Thus, the strengthening predicate could be generated

automatically.

5.6 Discussion

Much of the theory is restricted for ease of presentation and because it is sufficient for

the case studies. However, there are a number of generalizations and further directions

to consider. As this work has been guided by example protocols, in the future we may

apply these methods to a real-world protocol that requires one or more of the following

extensions.

5.6.1 Permutations on More than One Abstracted Node

As mentioned, the current method for dealing with the AEG tag focuses on permuting at

most a single abstracted node with some non-abstracted node. The same principle may

be applied to multiple abstracted nodes, where they are each swapped with a distinct

non-abstracted node. The local state of such nodes are unknown, and furthermore it is

unknown if they are equal or not. Regardless, the reachability of the OA transitions may

be strong enough to show they must be equal or unequal, and may have highly constrained

107

local states10. This technique is also applicable to array variables. Suppose the guard of

some concrete ruleset with parameter i contains the condition i = Ptr1 & MyArray[i] =

Ptr2, where MyArray is of type array [P] of P, and Ptr1 and Ptr2 are of type P. An abstract

ruleset where i is abstracted will overapproximate this condition as Other = Ptr1, but a

permutation can be designed that swaps in both i and MyArray[i], with isdefined(Ptr1)

& Ptr1 != Other & (isdefined(Ptr2) -> Ptr2 != Other). This is the start predicate

of the DF property to check for proving the abstract ruleset is UA (the end predicate is,

exists i : NODE do i = Ptr1 & MyArray[i] = Ptr2 end).

5.6.2 Local Rule Generalizations

Our approach has a restricted view of what constitutes a “local” rule; the local state of at

most one node may change in the update, and the global state, the variables of type B or P,

may not change. Indeed, if a protocol description contains no such rules, then the heuristic

methods cannot be applied to find “hidden paths”, the paths found by model checking that

establish a DF property and composed of local rules. One could imagine generalizing the

definition of local rules to depend on and/or update the local state of (say) two nodes i1

and i2. However, this complicates the reasoning about hidden paths because it may be

necessary to show that for some local state of i1, there always exists a node i2 such that a

local rule depending on i1 and i2 can fire.

An orthogonal generalization is to allow local rules to change the global state. If

every hidden path changes the global state in an identical manner, then the ruleset that

is shown to be underapproximate must respect these changes in it’s update. Such side-

effects of these hidden paths could easily be incorporated to our method, but this was not

10As a side note, notice that if m is the number of nodes that are swapped from the set of ab-
stracted nodes to the set of non-abstracted nodes, then the number of equivalence class realizations
is exactly the number of partitions of a set with m elements. This is known as the mth Bell number
Bm, which can be expressed as a sum of Stirling numbers of the second kind:

∑m
i=0

{
m
i

}
. The values

of Bm’s for 1 ≤ m ≤ 10 are 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975. Thus, this generalization to
more than one abstracted node seems reasonable for small m and intractable for m ≥ 10.

108

necessary for our case studies.

5.6.3 Automatic Strengthening

In the case study of the FLASH protocol, one of the abstract rulesets of O that we wanted to

prove was UA had a guard that was too weak for the heuristic method to handle. Instead,

we were able to show that a strengthened version of this rule was UA. The strengthening

predicate, expressed in terms of variables of type B, was deduced by comparing the global

state of s̃ (the dead-end state found when checking an antecedent of Theorem 1) with s̃′

(the dead-end state found when checking the DF property of the heuristic). In the current

implementation, PReach will halt as soon as the constructed path from a state satisfying

the heuristic start predicate pstart reaches a dead-end. Instead, we could categorize all

reachable pstart -states for which a path is found, ppath , and those for which a path is

not found, pno-path . Then, then a strengthening predicate over B-typed variables could

be determined that includes every ppath -state but none of the pno-path -states. With this

approach, human intervention is only necessary when key auxiliary variables are absent

from the system.

109

Symbol Meaning

P parameterized system
n natural number
k small fixed natural number
P parametric type
S a system (S, I, T)
S set of system states
I system initial states
T system transition relation
A,B mixed abstraction
θ, ψ abstraction relation
SA set of abstract states
IA set of abstract initial states
w,w′ a concrete state
s, s′ an abstract state

w ⇝T w
′ T -path from w to w′

B boolean type
Pn parametric type with n values
π permutation on Pn

r a rule
ρ a rule guard
a a rule updateJrK transitions corresponding to r
L a local boolean predicate
ψ(r) abstract rulesets corresponding to r
r̂0 abstract ruleset with all ruleset parameters non-abstracted

r̂2m−1 abstract ruleset all ruleset parameters abstracted
Qn parameterized quiescent property; see (5.4)
G global boolean predicate

Pj
i {h ∈ Pn : i ≤ h ≤ j}

πj↔h permutation that exchanges j and h; see (5.5)
r̂j an element of ψ(r)
Aℓ(i) mixed abstraction with all UA transitions local to node i

EFr̂ exists a path along which r̂ fires
r̂|i=1 r̂ with instances of ruleset parameter i replaced with 1

relax (ρ̂, i) guard ρ̂ with constraints local to i removed
Γ(A) strongest boolean predicate implied by A

Table 5.3: List of chapter symbols

110

Chapter 6

Distributed Response Property

Checking

A response property is a simple liveness property that, given state predicates p and q,

asserts “whenever a p-state is visited, a q-state will be visited in the future”. This chap-

ter presents an efficient and scalable implementation for explicit-state model checking of

response properties on systems with strongly- and weakly-fair actions, using a network of

machines. Our approach is a novel twist on the One-Way-Catch-Them-Young (OWCTY)

algorithm. Although OWCTY has a worst-case time complexity of O(n2m) where n is

the number of states of the model, and m is the number of fair actions, we show that in

practice, the run-time is a very small multiple of n. This allows our approach to handle

large models with a large number of fairness constraints. Implemented with the PReach

distributed, explicit-state model checker introduced in Chapter 3, we demonstrate the ef-

fectiveness of our approach by applying it to several standard benchmarks and on some

real-world, proprietary, architectural models.1

1This chapter is based on [27].

111

6.1 Introduction

Response properties are liveness properties of the form “From any state in which proposi-

tion p is satisfied, execution will eventually reach a state in which proposition q is satisfied.”

In LTL such properties are expressed as □(p→ ♢q); the corresponding CTL specification

is AG (p → AF q). Specifications of cache protocols and high-level architectural models

often include response properties — e.g. if a processor attempts to write to a memory

location, the processor will eventually have an exclusive copy of that location in its cache;

or, if an instruction is fetched, eventually either it will be executed and committed or that

(speculative) path will be aborted. In comparison with the previous two chapters, response

properties are stronger than the corresponding deadlock-freedom property AG (p→ EF q),

but verification is harder. By providing methods to verify both properties, we allow the

user a choice in trading property strength versus model accuracy.

The standard approach to explicit state model checking of LTL properties in-

volves constructing a product automaton. This automaton is the synchronous product

of the Büchi automaton for the specification, and the Büchi automaton for the system

itself [110, 59]. The specification automaton accepts the negation (i.e. violations) of the

property, while the automaton with for system accepts traces that the system allows. By

this construction, if the language accepted by the product automaton is empty, then the

LTL property holds; otherwise, a counterexample trace is found. Counterexamples cor-

respond to reachable cycles of the product automaton that do not include an accepting

state. All model checking approaches are vulnerable to state-explosion problems, and the

product-automaton construction for LTL model checking exacerbates this problem. If the

original system has n reachble states, and the LTL specification, ϕ, consists of |ϕ| symbols

and operators, then constructing the product automaton takes O(n2|ϕ|) time and space.

Response properties for models without fairness assumptions can be expressed with

a Büchi automaton with only 2 states [110], and thus the blowup from the formula size is

curbed. Essentially, this Büchi automaton has one state where the system is waiting for a

112

response, and the other state where no request is pending. Unfortunately, only contrived

systems that contain no cycles along any path from a p-state to a q-state will satisfy such

response properties. In practice, response is verified subject to fairness assumptions that

attempt to characterize realistic traces. Response may be verified under those fairness

assumptions that can be written as the LTL formula Fair , by using LTL model checking

to verify the formula Fair → □(p → ♢q). The Büchi automaton for this formula grows

exponentially in |Fair |, which in turn causes the number of states of the product automaton

to explode.

Instead of expressing fairness as an antecedent to the LTL property of interest,

fairness can be expressed in terms of how the original system is defined or as a specially

handled input to the model checking algorithm. Kesten et al. [74] compare expressing fair-

ness as a property antecedent with a “fair-aware” approach and show that latter achieves

better performance. Manna and Pnueli [88, 89] present a model-checking algorithm prop-

erty checking for response properties that takes advantage of two notions of action-based

fairness. We build upon these ideas and implemented a fair-aware version of OWCTY

for response properties in the PReach model checker. Our approach uses Manna and

Pneuli’s notions of strong and weak fairness. In the worst-case, the algorithm could per-

form O(n2|Fair |) state expansions, where n is the number of reachable system states. In

the typical scenario where |Fair | is much smaller than log(n), this far exceeds the number

of worst-case expansions of the Büchi automaton approach which is O(n2|Fair |). However,

our results for benchmark models vastly outperform the worst-case, even though the worst

case is achievable on a contrived example (see Section 6.3.1). In contrast, we also report

results in Section 6.7 for a tool that implements the Büchi automaton approach and uses

time and memory as one would expect from the worst-case analysis.

Our contributions are as follows.

1. We present a novel, efficient, parallel approach for model checking response proper-

ties.

113

2. The algorithm is implemented as an extension of the PReach [22, 30] model checker.

3. Demonstration that verifying liveness for large, realistic systems augmented with

both strong and weak fairness is tractable using a modest network of machines.

4. We show that the time requirements for One-Way-Catch-Them-Young style algo-

rithms are far better in practice than would be expected from the worst case analysis.

In practice, we observe that each state is visited a small number of times (typically

less than 30).

6.2 Overview

To check response properties, we implemented an algorithm inspired by the set-based One-

Way-Catch-Them-Young algorithm described in [73, 38]. We focus on systems with both

strongly fair actions (a.k.a. compassion), denoted C and weakly fair actions (a.k.a. justice),

denoted J .

6.2.1 Preliminaries

A fair transition system (FTS) is a tuple (S, I, T,J , C) where

• S is a finite set of states;

• I ⊆ S is the set of initial states;

• transition relation T ⊆ S × S;

• weakly fair actions J ⊆ 2T ;

• strongly fair actions C ⊆ 2T .

An action is a subset of T . For example, the set of transitions corresponding to a

Murφ rule could be an action. The rule guard _ action describes the set of transitions,

114

(s, s′) where s satisfies the state predicate guard and s′ is the state reached by performing

update action starting from state s. Our implementation of action-based fairness associates

weak- and strong-fairness constraints with Murφ rules.

Function En : S → 2C∪J gives the set of actions enabled at state s, i.e. En(s) =

{a ∈ C∪J : ∃s′. (s, s′) ∈ a}. State s enables action a if a ∈ En(s). Given state s we use the

shorthand notations Cs and Js to refer to the sets of enabled actions that are strongly and

weakly fair, respectively. Formally, Js = J ∩ En(s) and Cs = C ∩ En(s). For convenience

we assume transitions that are not members of any element of J ∪ C are members of the

non-fair set, i.e. NF = T \
(∪

a∈J∪C a
)
. For A ⊆ S, ⟨A⟩ denotes the subgraph of the

digraph (S, T) induced by A.

A trace is a finite sequence of states s0 ◦ s1 ◦ . . . ◦ sℓ where so ∈ I, and (si, si+1) ∈ T

for 0 ≤ i < ℓ. A predecessor trace for state s is any trace where sℓ = s.

An execution is an infinite sequence of states, s0 ◦ s1 ◦ . . ., where s0 ∈ I, and

∀i ≥ 0. (si, si+1) ∈ T . For a given trace, action a satisfies

• InfOftenTaken(a), if ∀i ≥ 0. ∃k ≥ i. (sk, sk+1) ∈ a,

• InfOftenEn(a), if ∀i ≥ 0. ∃k ≥ i. a ∈ En(sk), and

• InfOftenDisabled(a), if ∀i ≥ 0. ∃k ≥ i. a /∈ En(sk).

An execution is called fair if

∀a ∈ C. InfOftenEn(a)⇒ InfOftenTaken(a)

∧ ∀a ∈ J . InfOftenTaken(a) ∨ InfOftenDisabled(a).

In other words, an execution is fair if both of the following hold of any suffix of the

execution.

1. If action a ∈ C is enabled in an infinite number of suffix states then a transition in a

must eventually occur.

115

2. If action a ∈ J is enabled in all suffix states then a transition in a must eventually

occur.

A strongly connected component (SCC) is called fair (a FSCC) if all strongly fair actions

enabled within the SCC are taken within the SCC, and all weakly fair action enabled within

in the SCC are either taken within the SCC or disabled at some state within the SCC.

Section 6.3 presents an algorithm that detects FSCCs within the subgraph of reachable

states that can be reached on a path from some p-state without visiting a q-state along the

way (this subset is referred to as pending ; see Figure 6.1). Such FSCCs are counterexamples

to the response property □(p → ♢q), as traces are infinite and the system is finite state.

Furthermore, every counterexample execution has an infinite suffix that only visits states

in a FSCC. Note that p is a subset of pending , and q is disjoint with pending . The initial

states are usually disjoint from both p and pending , but this need not be the case.

reachable

init p
q

pending

Figure 6.1: Sets of interest when checking a system adheres to □(p→ ♢q).

6.2.2 A Note about Stuttering

We note that fair systems may be defined with or without inherent stuttering, the former

assuming that every state has a transition to itself and the latter does not. For simplicity

in the following presentation, we assume that stuttering is possible in all states, thereby

requiring a fair “reason” why indefinite stuttering cannot occur. This assumption implies

that T is reflexive. Including stuttering simplifies the presentation; for example, it ensures

that all traces can be extended to infinite executions.

116

Algorithm 6.1 High level algorithm

1: function FindFairCycle(I ⊆ S, T ⊆ S × S, C ⊆ A,J ⊆ A, p ⊆ S, q ⊆ S)
2: ▷ A is the power set of the power set of S × S
3: pending ,MaybeFair ,Prev ,ToExpand ⊆ S
4: ▷ Compute the pending states
5: pending ← Reachability(S, I, T, p, q)
6: ptfa ← new bit [pending][J ∪ C] ▷ array of bit-strings
7: Clear(ptfa) ▷ initialize to all 0s
8: MaybeFair ← pending
9: Prev ← ∅
10: while MaybeFair ̸= Prev do
11: Prev ← MaybeFair
12: ToExpand ← MaybeFair
13: while ToExpand ̸= ∅ do
14: s← RemoveSomeElement(ToExpand)
15: for all a ∈ J \ Js do ▷ Weakly fair actions not enabled at s
16: ptfa[s][a]← 1
17: end for
18: Next ← Successors(s) \ q ▷ Ignore q-states to remain within pending
19: for all s′ ∈ Next do
20: OldActions ← ptfa[s′]
21: for all a ∈WhatActionsTaken(s, s′) do
22: if a ∈ J ∪ C then
23: ptfa[s′][a]← 1 ▷ Record action taken
24: end if
25: end for
26: ptfa[s′]← BitwiseOr(ptfa[s], ptfa[s′]) ▷ Actions preceeding s also

preceed s′

27: if (ptfa[s′] ̸= OldActions) then
28: ToExpand ← ToExpand ∪ {s′}
29: end if
30: end for
31: end while
32: for all s ∈ MaybeFair do
33: if ∃a ∈ Js ∪ Cs : ptfa[s][a] = 0 then
34: MaybeFair ← MaybeFair \ {s}
35: end if
36: end for
37: Clear(ptfa)
38: end while
39: return MaybeFair ̸= ∅
40: end function

117

6.3 Algorithm

Our distributed response checking algorithm is based on the One-Way-Catch-Them-Young

(OWCTY) [73] approach. The key idea of the algorithm is to eliminate all states that

do not belong to an FSCC and are unreachable from an FSCC. If all reachable states

are eliminated, then no counterexample exists; otherwise an FSCC is contained within the

remaining states. Observe that if a state is part of some FSCC, then any fairness constraints

associated with that state must be satisfied by an (infinite length) path within the FSCC. In

particular, there will be an incoming path to the state that satisfies the fairness constraints

of the state. OWCTY propagates the satisfaction of fairness constraints forward, thus

marking each state with the fairness constraints that are satisfied by incoming paths.

When this process reaches a fixpoint, states whose fairness constraints are not satisfied

cannot be part of a FSCC. These states are eliminated. This process is repeated until a

fixpoint is reached. If all reachable states are eliminated, then no counterexample exists;

otherwise an FSCC is contained within the remaining states.

This computation is implemented by first initializing a set MaybeFair with the

pending states, and then iteratively removing states from MaybeFair that cannot belong

to a FSCC. State s is removed when it is discovered that there is no predecessor trace

of s in ⟨MaybeFair⟩ along which action a ∈ C is taken, where a ∈ Cs. Similarly, s is

removed if it is found that there is no predecessor trace of s in ⟨MaybeFair⟩ along which

action a ∈ Js is either taken or disabled at some state s′ of the trace, where a ∈ Js. The

response property holds iff MaybeFair is empty when the algorithm terminates. To see

this, note that any state that is removed from MaybeFair cannot belong to a FSCC; thus,

⟨MaybeFair⟩ contains all of the FSCCs of ⟨pending⟩.

Furthermore, the SCCs of ⟨pending⟩ form a DAG. Consider an SCC C that does not

have any incoming edges. If C is not an FSCC, then it contains state s with some fairness

constraint that is not satisfied by any transition within C. Because there are no incoming

edges to C from other SCCs, there is no incoming path to s that satisfies the fairness

118

constraint under consideration, and s will be eliminated. Thus, if ⟨pending⟩ contains no

FSCCs, then OWCTY will eventually eliminate all of its states.

The FSCCs of ⟨MaybeFair⟩ form a DAG. Let F be any FSCC of ⟨MaybeFair⟩ that

has no predecessor FSCCs. It is straightforward to construct a cycle in F that satisfies all

fairness constraints. By construction, this cycle is reachable from some initial state.

The description of OWCTY from [38] for model checking LTL formulas with strong

and weak state-based fairness operates on sets of states performing union and disjunction

operations, as well as deleting all members from a set which have no predecessor within the

set until a fixed point is reached2. As described in Section 3.1, PReach uses lossy com-

pression when hashing states; thus, we cannot reconstruct states from hashtable entries.

To retain the efficiency advantages of the Murφ hashtables, we avoid the explicit represen-

tation of large sets of states, and replace the union and intersection operations of OWCTY

with tag bit manipulations, where each hash table entry includes one such tag bit per fair

action. In Algorithm 6.1, these bits are stored in ptfa (predecessor trace fair actions) table,

which is a two-dimensional array of bits (line 6) initialized to all 0s (line 7. The two indices

correspond to the elements of pending (i.e. the hash table index), and the fair actions (i.e.

which tag bit in the hash table entry). For any action a ∈ J ∪ C and state s ∈ MaybeFair ,

bit ptfa[s][a] is set if a is taken in some predecessor trace of s in ⟨MaybeFair⟩, or if b ∈ J is

disabled at some state of a predecessor trace of s in ⟨MaybeFair⟩. The set pending stores

the states of interest for response, those that can be reached on a path from a p-state

without visiting a q-state.

Each iteration of the outer while-loop (lines 10–38) is called a round, and involves

two phases.

Action Propagation Phase (AP):

This step is the while-loop from lines 13 to 31. Some state s is removed from ToExpand

and the tag bits are set for each weakly fair action that is disabled at s; this is because

2To the best of our knowledge, the algorithm from [38] not been implemented.

119

any eventual successor of s within ⟨pending⟩ may be part of an SCC with s. If so, this

SCC is fair with respect to these weakly fair actions. Then, the successors of s within

⟨pending⟩ are computed. For each of these, the current tag bits are saved in OldActions. If

the transition that is taken from s to reach a successor s′ is a member of some a ∈ J ∪ C,

the ptfa[s′][a] is set (line 23). Then, the bit-string ptfa[s] is ORed with the ptfa[s′], as

any predecessor trace ρ for s implies a predecessor trace for s′, namely ρ ◦ s′. If any of

these operations have set new bits for s′, it must be added to ToExpand so the bits are

propagated along. Otherwise, the s′ is discarded. This loop continues until a fixed point

is reached for the contents of ptfa.

Figure 6.2 illustrates some operations of AP with an example. For this example,

J = {a0, a1, a2, a3} and C = {a4, a5, a6, a7}, and PTFAs are represented as a7 . . . a0, as

seen below each state. Assume that En(b) = {a0, a2, a3, a4}, En(c) = {a0, a1, a7}, and

En(d) = {a0, a1, a3, a5}. When b is expanded, the PTFA on the arc is passed to state e

which changes the PTFA for e and requires e to be expanded. Subsequently, c is expanded

and the PTFA for e is again updated and another e expansion is needed to communication

the new PTFA to successors. Finally, when d is expanded the PTFA sent to e contains no

new actions, so e does not need another expansion.

c

d

e

b

{a2, a7}

{a2, a3, a5, a7}

{a1
, a2

, a7
}

{a
1 , a

4 , a
5}

a7 taken

a
4 taken

{a2, a3, a5, a7}

{a1, a5}

a1
ta
ke
n

{a1, a4, a5}
{a1, a2, a3, a4, a5, a7}

∅

Figure 6.2: Example of PTFA updates as states are expanded

120

State Deletion Phase (SD):

This phase appears from lines 32 to 37. Any states that enabled a fair action a but with the

corresponding tag bit cleared cannot be part of a FSCC and are removed from MaybeFair .

Soundness for the algorithm was described at the beginning of this section. To

see that the algorithm terminates, we first note that the while-loop at lines 13–31 must

terminate because the flag bits in ptfa are strictly increasing with successive iterations of

the loop. The while-loop at lines 10–38 terminates because the loop body adds no new

elements to MaybeFair . Thus the number of elements in MaybeFair strictly decreases with

successive executions of the loop body.

6.3.1 Worst-Case Time Complexity for OWCTY

Here we present worst-case time-complexity bounds for the One-Way-Catch-Them-Young

algorithm. The analysis is reasonably straightforward, but we are not aware of previously

published bounds for the algorithm. We include the analysis here for completeness and

to show that the run-times for OWCTY in practice are much smaller than the worst-case

values.

First, consider the problem of finding all states reachable from some set of initial

states, V0. Let VR denote the set of reachable states (graph vertices), n = |VR|, and ER

the reachable transitions (graph edges). An explicit-state model checker must visit all

edges, which provides an Ω(|ER|) time bound for a sequential algorithm. Standard graph-

traversal algorithms achieve this bound. Thus, the time complexity for finding the set of

reachable states is Θ(|ER|). For a dense graph, |ER| ∈ Θ(n2), and the time complexity

for reachability is O(n2). In practice, reachability graphs are often quite sparse, with an

average in-degree (or out-degree) per state less than 10. If we assume |ER| ∈ Θ(dn) where

d is the average in- (or out-) degree for a state, then the time complexity for such sparse

models is O(dn).

Now consider OWCTY with m fairness constraints. The worst-case would be if

121

each round eliminated one node, there were Ω(n) such rounds, and each round required m

passes to propagate fairness bits to Ω(n) vertices over Ω(n2) edges (again, a dense reachable

state graph). We now describe such a graph. Typically, the number of fairness constraints

will be much smaller than the number of reachable stages, so we assume m ≪ n. Let nX

and nZ be Θ(n), such that nX +(m+1)+nZ = n. The vertices are partitioned into three

sets as described below:

X = {xi | 0 ≤ i < nX}

Y = {yi | 0 ≤ i ≤ m}

Z = {zi | 0 ≤ i < nZ}

VR = X ∪ Y ∪ Z

EX1 = {(xi, xi) | 0 ≤ i < nX}

EX2 = {(xi, xi+1) | 0 ≤ i < nX − 1}

EX = EX1 ∪ EX2 ∪ {(xnX−1, y0)}

EY 1 = {(yi, yi+1) | 0 ≤ i < m}

EY 2 = {(ym, zi) | 0 ≤ i < nZ}

EY = EY 1 ∪ EY 2

EZ = {(zi, zj) | 0 ≤ i, j < |Z|}

ER = EX ∪ EY ∪ EZ

The graph vertices are VR; transitions are ER; and the initial states are {x0} ∪ Y . There

are m strongly fair actions a0, ..., am−1 with

aj = {(xi, xi) | xi ∈ X, i+ 1 (modm) = j} ∪

{(xi, xi+1 | 0 ≤ i ≤ nX − 1, i (modm) = j} ∪

{(yj , yj+1)}

Number iterations of the while-loop at lines 10–38 of Algorithm 6.1 starting at

0. In round 0, there is no path into x0 satisfying the fairness constraint for a0, so x0 is

deleted. In round 1, there is no path into x1 satisfying the fairness constraint for a1, so

122

x1 is deleted. For round 0 ≤ i < nX , vertex xi is deleted. Thus, OWCTY requires Ω(n)

rounds for this example. Now, suppose that in each round the initial states are processed

in order according to ym, ym−1, ..., y0, x0. In each round, each z ∈ Z will be expanded m

times, and all outgoing edges from z will be explored. Thus, the total time for each round

is Ω(m|EZ |) = Ω(mn2). There are at least |X| ∈ Ω(n) rounds, and the total runtime is

Ω(mn3). It is straightforward to show an upper-bound of O(mn3). Thus, the worst-case

runtime for OWCTY with dense reachability graphs is Θ(mn3).

Typical models do not have the dense reachability graphs described above. For

example, if a Murφ model had d rules, then each state has at most d successors. Typically,

d ≪ n. If the reachability graph is sparse with maximum out-degree d, we can partition

the vertices of Z into Θ(n/d) separate cliques of d states each, reserving Θ(n/d) vertices to

build a fan-out tree from vertex ym−1 to the Z vertices. This shows a worst-case runtime

in Θ(mdn2).

Comparing these bounds with those for reachability, we find that OWCTY has a

worst-case run-time that is Θ(mn) times greater than that of reachability alone. If the

run-times for real problems resembled these bounds, then OWCTY would be unusable. As

seen in Table 6.1, the actual number of rounds of the algorithm appears to be quite small

for realistic examples. For our examples, at most 23 rounds were needed, and the “average”

state was visited even fewer times. This enormous gap between the worst-case performance

and the observed performance makes the OWCTY algorithm useful in practice.

6.4 Distributed Implementation

The distributed version of this algorithm starts with a Stern-Dill style reachability compu-

tation that identifies all p- and pending-states. Each worker process stores its p-states on

disk, and pending-states are marked with tag bits in the hash-table. Initially, the PTFA for

pending-states are set to all fair actions, J ∪ C. The distributed algorithm then performs

rounds that correspond to those of the sequential version, Algorithm 6.1. As described in

123

more detail below, each round propagates PTFA tags according to the next state relation

until a fix point is reached. At the boundary between rounds, states are identified whose

PTFAs do not satisfy the fairness constraints for the state. Such states cannot be part of

an FSCC and are marked as “dead” (i.e., removed from MaybeFair). The number of live,

MaybeFair states is non-increasing. The algorithm terminates when this number no-longer

decreases. If at this point, all MaybeFair states have been eliminated, then the response

property is satisfied. Otherwise, a counter-example is generated. The remainder of this

section describes this algorithm in more detail.

Algorithm 6.2 Root Process

1: function RootStart(I, p, q)
2: ▷ Tags for initial states
3: for all s ∈ I do
4: SendState((s, ∅))
5: end for
6: CurMaybeFairCount ← Tally(nstates)
7: PrevMaybeFairCount ← 0
8: while CurMaybeFairCount ̸= PrevMaybeFairCount do
9: Broadcast(doRound)
10: PrevMaybeFairCount ← CurMaybeFairCount
11: CurMaybeFairCount ← Tally(nstates)
12: end while
13: Broadcast(stop)
14: if CurMaybeFairCount > 0 then
15: return GenerateCounterexampleTrace(. . .)
16: else
17: return verified
18: end if
19: end function

Algorithm 6.2 shows pseudo-code for the root process. It initiates the initial reach-

ability computation to identify p- and pending-states, by sending each initial state to their

owners via SendState. It then initiates rounds of propagating PTFA tags and eliminat-

ing pending-states until no further states can be eliminated. The termination detection

algorithm from the original Stern and Dill approach is used to identify the end of each

124

round and compute the total number of MaybeFair -states. Function Tally sums the

MaybeFair -states owned by each worker. This provides a barrier separating the compu-

tations of successive rounds. After the final round, the root process notifies the workers

that the computation is complete and reports either that the response property has been

verified or provides a counter-example.

Algorithm 6.3 shows pseudo-code for the worker processes. Like the reachability

computation, each worker has two main activities: receiving incoming states and checking

if they have been “seen” previously, and expanding states to send their successors to their

owners. Algorithm 6.3 augments each of these activities to maintain the tags for PTFA.

First, the set of owned and reachable p-states is found and stored via ComputePStates.

This is similar to Stern-Dill reachability. Then, at the beginning of each round, each process

checks its subset of the p-states to determine which ones satisfied their associated fairness

constraints in the previous round. Those that do not are marked as dead. All p-states are

added to the work-queue, ToExpand , even if they are dead to ensure that their successors

are examined in this round. When a state is received, the algorithm first checks to see

if this is the first time the state has been seen for the current round. If so, the state’s

PTFA is checked to see if the state should be marked as dead, and all states are entered

into ToExpand the first time they are visited in each round. If the state has been seen

before, then if the new PTFA indicates incoming paths for fairness constraints that haven’t

already been satisfied, these constraints are added to the state’s PTFA, and the state is

enqueued in ToExpand to propagate this information to its successors. Notice that each

state may be expanded multiple times in a given round; at most m times.

When a worker removes a state from its work queue, ToExpand , it computes all

successor states as in the original reachability algorithm. Because the incoming paths to

this state are prefixes of incoming paths for its successors, the PTFA of the successor must

contain the PTFA for this state. Furthermore, if the transition to the new state correspond

to a fair action, then this action is added to the PTFA. These updates are made to the

125

Algorithm 6.3 Worker Process

1: function Worker(S, I, T,J , C, p, q, rootPid)
2: PS← ComputePStates(S, I, T,J , C, p, q) ▷ Global queue for p-states
3: RoundCount ← 0
4: while true do
5: case Receive() of ▷ Blocking receive
6: doRound → ok
7: stop → break while loop

8: end case
9: RoundCount ← RoundCount + 1
10: for all s ∈ PS do
11: WQ← initStateForRound(s, ∅,RoundCount)
12: end for
13: while round not terminated do ▷ Stern and Dill’s termination alg
14: while (s, thisPTFA)← Receive() do ▷ Nonblocking receive
15: T ← HT.GetTags(s)
16: if T.round ̸= RoundCount then
17: initStateForRound(s, thisPTFA,RoundCount)
18: else if ¬T.dead ∧ (thisPTFA ⊈ T.PTFA) then
19: T.PTFA← T.PTFA ∪ thisPTFA
20: WQ.Insert((s, T))
21: HT.UpdateTags(s, T)
22: end if
23: end while
24: ExpandAndSend(J , C) ▷ See Algorithm 6.4
25: end while
26: send (nstates,MyMaybeFairCount) to rootPid
27: end while
28: end function
29:

30: function initStateForRound(S, thisPTFA,RoundCount)
31: T ← HT.GetTags(S)
32: if Enabled(S) ⊈ T.PTFA then
33: T.dead ← true
34: thisPTFA← ∅
35: end if
36: T.round ← RoundCount
37: T.PTFA← thisPTFA
38: WQ.Insert((S, T))
39: HT.UpdateTags(S, T)
40: end function

126

Algorithm 6.4 Dequeues a WQ state and sends next states with tags to their owners.

1: function ExpandAndSend(J , C)
2: if IsEmpty(WQ) then
3: return done
4: end if
5: (X,Tags)← Dequeue(WQ)
6: NextStates ← ComputeSuccessors(X)
7: if Tags.dead then
8: for all s′ ∈ NextStates do
9: SendState((s′, ∅))
10: end for
11: return
12: end if
13: PTFA← Tags.PTFA
14: PTFA← PTFA ∪ (J − Enabled(X))
15: for all s′ ∈ NextStates do
16: ActionTaken ← whatActionTaken(X, s′)
17: ▷ Successor PTFA is current state PTFA with the fair action taken
18: if ActionTaken ∈ NF then
19: NextPTFA← PTFA
20: else
21: NextPTFA← PTFA ∪ActionTaken
22: end if
23: SendState((s′,NextPTFA))
24: end for
25: return
26: end function

127

PTFA for the successor, and the successor with this PTFA set is sent to the successor’s

owner.

Every operation either marks a state as dead or adds a fair action to some state’s

PTFA. Thus, the activities for updating fairness information eventually reach a fixpoint

and the round terminates. Many optimizations are possible to improve the performance of

this algorithm. These are described in the next section.

6.5 Optimizations

Early experiments with a prototype implementation revealed several opportunities to im-

prove performance. We aim to address the average number of state expansions during a

phase, the number of states visited during a phase, the number of rounds. A key observa-

tion is that for many examples, the number of states in the pending set decreases rapidly

with successive rounds. Thus, it is important to avoid touching “dead” states so that the

work done in later rounds decreases with the smaller size of pending . This also means that

typically most of the time is spent in the initial reachability computation and the first two

or three rounds of the liveness computation. Thus, optimizations should focus on these

early rounds. Furthermore, the same state can be updated several times during a single

round. Consolidating these updates was simple and led to significant performance gains.

The remainder of this section presents three methods of reducing each of these metrics

in turn. In addition, various optimizations are inherited from PReach’s state space ex-

ploration technique. Namely, load balancing of states offers modest speedups even in a

homogeneous network of machines. Batching of states into messages containing hundreds

or thousands is also of benefit. See Chapter 3 for details regarding these optimizations.

6.5.1 Saved Expansions

The description in the algorithms and implementations presented so far have states paired

with their tags, including PTFA, when enqueued to the WQ. When the WQ grows large,

128

state s may arrive tagged with PTFA b2 while the same state is waiting for expansion in

the WQ while paired with PTFA b1, which matches the PTFA at the HT entry for s.

When b2 has at least one bit set that b1 does not, s is enqueued for expansion in WQ

paired with PTFA b1 ∪ b2. This renders the earlier WQ entry of (s, b1) redundant and

unnecessary.

To avoid this scenario, the HT is used to maintain PTFA information, and WQ

entries do not contain a PTFA. When a state s is enqueued, a new HT tag bit InWQ

is set; when s is dequeued, InWQ is cleared and the current HT value for PTFA is used

when computing the PTFA for s’s successors. If state s with PTFA b2 arrives when the

HT entry has InWQ set, then HT PTFA bHT is set to bHT ∪ b2 and the just-arrived state

s is discarded. This approach reduces the number of state expansions at the cost of an

additional bit in HT per state, and one additional HT lookup.

6.5.2 Dynamic Kernel

The algorithm implementation above uses the reachable p-states as the kernel, defined as

follows.

Definition 3. Given a FTS, K ⊆ S is a kernel for A ⊆ S if A is a subset of the reachable

states from K in the digraph (S, T).

Note that the set of initial states I is a kernel for any subset of the reachable states.

In the code presented in Section 6.4, we used the reachable p-states Kp as a kernel for

MaybeFair to initiate each phase because Kp is a kernel for every subset of pending . Our

experiments showed that for typical examples, the number of states in MaybeFair drops

rapidly with each SD phase. The expansion of such deleted states can be avoided by

modifying K after each SD phase, using an extra HT tag bit InK and additional disk

space.

During the initial phase, only the p-states have InK set to true, and these states are

saved to disk in the kernel-queue. When a state s is removed from MaybeFair during SD

129

that has InK set, this flag is cleared. When a process receives state s′ tagged with mode

delete pred (signaling that a predecessor of s′ has just been removed from MaybeFair), then

if s′ has its InK flag cleared, it is set to true and s′ is added to the kernel-queue. Finally, at

the start of an AP phase the kernel-queue is copied to the WQ to serve as the set of initial

states, but any state encountered that has its InK flag cleared is ignored and removed from

the kernel-queue.

While this approach does not necessarily maintain the smallest possible kernel for

MaybeFair , its simple implementation and low overhead lead to large performance gains.

6.5.3 Deletion by Predecessor Counting

There are performance advantages when storing the number of predecessors each state has

in ⟨MaybeFair⟩. Under the assumption of stuttering and ensuring the safety property that

every state s ∈ pending has |Js ∪ Cs| ≥ 1, any state with 0 predecessors in ⟨MaybeFair⟩

will be deleted from MaybeFair in the next SD phase. However, storing the number of

predecessors in HT allows detection of this case in order to preemptively remove such

states. We choose to add 8 bits to the HT tags to store the predecessor count. This

additional bookkeeping complicates Algorithms 6.3 and 6.4 somewhat (details omitted).

In particular, a state may be expanded more than once during an SD. This occurs when the

first time a state is visited the condition on line 32 of Algorithm 6.3 holds, but subsequently

all of its predecessors are deleted. However, this turns out to be a rare occurrence in the

benchmarks, and this strategy can reduce the number of phases. Note that the impact

of this optimization is omitted from the Results section as it was inherent to our early

implementation versions.

6.6 Results

We ran PReach on a variety of combinations of Murφ models with all optimizations of

section 6.5 enabled, summarized in Table 6.1. For each, we chose a suitable response

130

property such as “requests for exclusive access to a cache line are eventually granted”, or

“processes waiting to enter the critical section will eventually do so”. The Murφ models

used are the German cache coherence protocol, the Peterson mutual exclusion algorithm,

the MCS lock mutual exclusion algorithm, a snoopy protocol used as a benchmark in

previous verification work [39] and an Intel proprietary protocol. GermanX is the German

model with X caches; petersonY is Peterson’s algorithm with Y processes and mcslock5

is the MCS Lock algorithm with 5 processes; snoop2 is the snoopy protocol with 2 L1

caches and 2 clusters. Models saw, gbn and swp are various sliding window communication

protocols, with the response property that the sender can always eventually accept new

data to transmit. All models and the PReach code is provided online [24]. Each Murφ

“rule” (a.k.a. guarded command) is considered a separate action; we attached suitable

fairness assumptions specific to the model. The network of machines used for experiments

are as follows:

• UBC cluster: 40 PReach processes on a homogeneous cluster of 20 Intel Core i7-

2600K at 3.40 GHz with 8 GB of memory (non-intel * models).

• Intel cluster: 16 PReach processes on a heterogeneous network of contemporary

Intel R⃝ Xeon R⃝ machines, each with at least 8 GB of memory (intel * models).

Not included in the table, but worth noting, is an Intel proprietary sliding window

protocol model. With over 450 million states and tens of fairness (both strong and weak),

we were able to verify response in about 5 and a half hours using 32 cores.

131

model runtime states p-states pending-states q-states rounds exp/state no -ko no -se no opt.
German5 sf 189 15,836,445 3,699,486 4,858,596 5,103 1 3.48 0.98 2.42 2.86
German6 sf 4,253 316,542,087 74,465,244 95,266,520 18,225 1 3.33 1.01 3.30 3.52
peterson6 wf 820 13,817,679 2,947,800 12,111,713 45,209 14 12.91 1.65 1.30 1.95
peterson6 sf 423 13,817,679 2,947,800 12,111,713 45,209 5 9.03 1.36 1.73 2.12
peterson7 wf 26,957 380,268,668 79,029,594 340,549,743 775,138 17 14.19 1.65 1.66 2.16
peterson7 sf 14,613 380,268,668 79,029,594 340,549,743 775,138 6 10.11 1.27 2.26 -
mcslock5 wf 1415 59,318,541 27,785,789 51,474,427 2,780,517 3 5.09 1.17 1.10 1.25
snoop2 sf 160 2,648,763 670,689 1,313,100 1,335,663 3 12.71 1.07 4.57 5.00
saw20 sf 323 314,183 309,140 309,140 5,043 23 44.06 1.04 1.09 1.15
gbn3 2 sf 369 12,753,395 7,859,200 7,859,200 4894195 6 6.44 1.60 1.95 2.56
swp4 2 sf 503 18,595,425 11,715,440 11,715,440 6,879,985 6 6.58 1.59 1.63 2.22
intel small sf 285 476,778 268,078 268,078 164,057 4 6.36 - - -
intel med sf 1,015 2,696,059 1,944,360 1,944,360 635,672 4 8.59 - - -
intel big sf 13,872 51,791,350 29,899,694 29,899,694 19,855,989 8 11.92 - - -

Table 6.1: PReach-Resp benchmark results. Column “runtime” is given in seconds; “exp/state” is the average
number of times each pending-state was expanded. Model peterson6 sf is peterson6 with all actions strongly fair,
as opposed to peterson6 wf where some rules were weakly fair and the rest as not fair (for example, the rule that
initiates the move from the noncritical section to requesting to enter the critical section needs no fairness assumption).
These two models have the same number of states of each type but perform a different number of expansions, and
illustrate the benefit of only using more fairness than required for the response property to hold. All other models
require strong fairness.

132

The rightmost three columns of Table 6.1 show the slowdown when benchmarks

are run without the kernel optimization, without the saved expansions optimization and

without either, respectively. The kernel optimization is of most benefit when the number

of rounds is large3. In particular, it is of no benefit for those benchmarks that only require

a single round, as the kernel states are only used during subsequent rounds. The saved

expansion optimization offers large performance gains in many cases. Typically, only 5 to

10% of the total state expansions are explicitly avoided by detecting that a just-received

state state is present in the WQ. However, avoiding these redundant expansions can in

turn save many expansions of successor states which in turn saves expansions of states that

are two transitions away. This cascading effect decreases the total number of expansions

by a significant factor.

A few modifications were required when checking the snoop protocol. This model

was created to represent a cache-coherence protocol in a realistic processor. The protocol

appears to have been designed with an emphasis on safety, and liveness does not appear to

have been primary concern. For example, requests for cache lines are clearly not responsive

as they may be negatively acknowledged (Nackd) an arbitrary number of times. To avoid

this, we changed the protocol so that Nacks of this type are simply ignored, and the

request persists. This turned out to also not be responsive, although less obviously so –

the counterexample trace included 72 transitions. Therefore, not all of the pending states

were deleted. Figure 6.5 shows that about 65% of the the pending-states remained in the

MaybeFair set when the algorithm terminated.

Figures 6.3 through 6.5 show the length of the work queues and the size ofMaybeFair

for each process during model checking of some of the benchmarks. The work queue plots

clearly demonstrate the effective load balancing used by PReach. The difference between

the shortest and longest work queue is at most a factor of 5. Notice that the WQ plots

clearly indicate the start and end of phases. Recall that the start of each phase, except for

3One exception is saw 20 sf where a large proportion of the runtime is spent coordinating
threads between rounds.

133

the first one, initializes the work queue to be the owned p-states for that process, causing

the rapid uptick at the start of each phase. Also recall that even numbered phases are

SD – comparing the two plots for the same model shows the decline of MaybeFair -states

during SD and plateaus during AP, as well as the initial discovery of the pending states

during the first phase.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

W
o

rk
 Q

u
e
u
e
 S

ta
te

s

Seconds

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

M
ay

b
eF

ai
r

S
ta

te
s

Seconds

Figure 6.3: Response property model checking plots for German6: WQ length (left) and
|MaybeFair | (right) for each process

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 100 200 300 400 500 600 700 800

W
o
rk

 Q
u
e
u

e
 S

ta
te

s

Seconds

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 100 200 300 400 500 600 700 800

M
ay

b
eF

ai
r

S
ta

te
s

Seconds

Figure 6.4: Response property model checking plots for peterson6 wf: WQ length (left)
and |MaybeFair | (right) for each process

134

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140 160

W
o
rk

 Q
u
e
u
e
 S

ta
te

s

Seconds

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 20 40 60 80 100 120 140 160

C
u

r
S

ta
te

s

Seconds

Figure 6.5: Response property model checking plots for snoop2: WQ length (left) and
|MaybeFair | (right) for each process.

6.7 Comparison with DiVinE

DiVinE is a parallel and distributed LTL model checker that is the closest tool to ours [7].

DiVinE constructs a product Büchi automaton to check liveness properties; thus, we ex-

pect DiVinE’s space requirement to grow as the product of the number of states in the

system model and the number in the system automaton. Applying DiVinE to the exam-

ples from Section 6.6, we observed that it ran out of memory for all examples except for

those with no or a small number of strong fairness constraints. DiVinE provides a mode

for models where all transitions are weakly fair. Using this feature, DiVinE performed

well for the Peterson example for which weak fairness constraints are sufficient to ensure

responsiveness. Note that the error found in the Murφ model for Peterson is not detected

when all transitions are assumed to be weakly fair. The error arises because there are

no fairness assumptions for the action where clients make requests, i.e. clients are not re-

quired to make requests. Furthermore, many problems require strong fairness; for example

cache coherence protocols often include states where taking one action disables another.

We found that for an encoding of the German protocol with 4 caches, the reachable state

space of DiVinE’s product automaton doubled with each additional fair action included.

For only 6 fair rules, DiVinE on a multicore machine took 17 minutes to construct the

135

system automata, 13 minutes to perform the model checking task and used over 16 GB of

main memory. In our experiments, adding one more fair rule exhausted the main memory

of our 32 GB machine and rendered the computation time infeasible. The protocol in

question has on the order of 20 strongly fair actions.

Our algorithm has a worst-case time complexity that is at least O(mn3) where n

is the number of reachable states and m is the number of fair actions. Section 6.3.1 gives

an example where the transition relation has O(n2) edges, and for which Algorithm 6.1

removes one state per iteration of the outer while-loop. In practice, we observe that the

transition relation is sparse and Algorithm 6.1 converges in far fewer than n rounds –

the most extreme case in Table 6.1 has 23 rounds. If |E| is the number of reachable

transitions, then the number of computed sucessor states is O(r(n+ |E|)). The worst-case

time complexity of DiVinE is better, O(n2|ϕ|) — DiVinE replaces a factor of the system

model size with the number of states for the checking Büchi automaton. However, our

experiments show that the actual time and memory requirements for DiVinE’s algorithm

are fairly close to what one would expect from the worst-case bounds, while our approach,

in practice, scales much more efficiently. We see this gap between worst-case and actual

performance as a promising area for further investigation.

6.8 Conclusions and Future Work

We have extended the PReach explicit-state, distributed model-checking tool to support

verification of response properties under both strong and weak fairness of actions. Our

approach uses multiple rounds of reachability computation to implement a variation of

the OWCTY algorithm. For a model with n states, m fairness constraints, OWCTY

could expand states O(nm) times on average. This would be prohibitively expensive.

Our implementation shows that for practical examples, the number of rounds is small

— typically less than 10, with a maximum of 23. Thus, OWCTY appears to provide

a practical approach to checking response properties for real-world problems. For these

136

examples, liveness checking is slower than safety checking, but not prohibitively so.

Implementing our algorithm on top of the PReach distributed model checker allows

it to exploit the aggregate memory of large compute clusters. This enabled verification of

response properties for a sliding-window protocol with over 450 million states in about 51
2

hours.

We compared our approach with a tool that uses the standard product-automaton

formulation, with one automaton for the system model, and the other for the LTL liveness

property. As predicted by the worst-case analysis, we observed that the size of the property

automaton grew exponentially with the number of fairness constraints. The product-

automaton approach was significantly faster than PReach for the problems that it could

complete. However, it ran out of memory for all but the smallest examples.

This approach can be generalized in a number of directions. One is to handle other

simple liveness properties such as reactivity, expressed in LTL as □♢p∨♢□q, where p and

q are state predicates. This says that either p holds infinitely often, or eventually q holds

forever. Reactivity can express, for example, a strong-fairness condition. Futhermore,

a conjunction of reactivity properties is as expressive as full LTL [84, 88], and so would

enable model checking of a much wider class of properties. We hope to combine these model

checking methods with the decompositional inference rules of Manna and Pnueli [88, 89].

Such decompositions establish that a response property is implied by a handful of safety

properties and “smaller” response properties, i.e. depending on a smaller fraction of the

state space. Adapting our algorithm to verify multiple such response properties in the

same model checking run would leverage human insight to improve scalability to enable

verification of more detailed models with more expressive specifications.

137

Chapter 7

Conclusions

This thesis work successfully demonstrates that explicit-state model checking can be lever-

aged for practical verification of liveness of hardware protocol models. With PReach,

we were able to scale safety verification to new levels of model sizes. Our two extentions

of PReach to liveness checking utilized this achievement to verify more interesting prop-

erties of like-sized models. All three of these tools have been applied to real, industrial

examples. Our approach for parameterized proofs of deadlock freedom was not applied

to an industrial example; this could require significant human effort. For the simple ex-

amples we considered, German and FLASH, very little additional effort was required to

show deadlock-freedom given the non-interference lemmas inherited from the CMP method

for safety verification. This is in stark contrast to previous approaches for parameterized

liveness verification, which are quite technical and likely require an expert user. We expect

that we would observe a similar outcome if our approach were applied to real, industrial

problems following the CMP method, but this is a topic for future work.

The PReach model checker operates on Murφ models, a widely adopted format

for hardware protocols. Our liveness extensions have the benefit of straightforward use and

interpretation to verification engineers and hardware designers alike. PReach-DF requires

the user to partition actions (i.e., Murφ rules) into those that progress some transaction

138

and those that do not, and give a predicate describing “no transactions in flight”. PReach-

Resp calls for the specification of weakly- and strongly-fair actions, notions that are often

intuitively clear to architects. While the distributed scalability of PReach was not needed

for our parameterized deadlock freedom work, we do not view parameterized methods and

scalable model checking tools as mutually exclusive. Indeed, during a recent internship

with Intel, a parameterized abstraction model of an industrial sliding window protocol

was on the order of hundreds of millions of states — large enough that distributed model

checking was necessary for this abstraction.

The contributions of this thesis touch on different points in the trade-off between

effort and strength of the result in verification of protocols. PReach can automatically

check safety properties in Murφ models, and can scale to tens of billions of states. With

some human guidance in the form of helpful rules and a quiescent state predicate, PReach-

DF can automatically check a DF property of like-sized models at the cost of a small time

overhead (about 30%). If the user is willing to provide adequate fairness assumptions,

PReach-Resp will verify the much stronger response properties, but with a memory

overhead of roughly a factor of 5 and a time overhead that is typically a factor of 30 when

compared with safety verification. where n is the number of reachable states and m the

number of fair actions. Finally, our contributions in parameterized DF require moderate

human effort, but we expect it is proportional to the effort needed to apply the CMP

method for parameterized safety, thus establishing a parameterized liveness-like result.

Distributed explicit-state model checking allows one to exploit the aggregate mem-

ory of many machines. PReach provides a platform for developing various practical DEMC

based methods. We have used this to address some liveness properties that were chosen

based on their usefulness and significance in practice. These are deadlock-freedom, param-

eterized deadlock-freedom and response properties. This thesis enables the verification of

a new class of properties for real, industrial problems — especially for hardware protocols.

139

7.1 Contributions Recap

Restating my thesis statement Chapter 1:

This thesis develops and demonstrates tractable, practical and scalable dis-

tributed explicit-state model checking methods for establishing liveness prop-

erties of practical importance for large-scale models of hardware protocols.

I have demonstrated this with the following, concrete contributions (also listed in

Chapter 1:

1. PReach is an industrial strength distributed explicit-state model checker that has

verified properties of larger Murφ models than any other published explicit-state

methods by distributing the computation across hundreds of machines. The PReach

software architecture achieves efficiency by building on the C++ code base from the

Murφ model checker and simplicity by using a layer of Erlang code to implement

the communication aspects. We have found this approach to be robust and exten-

sible. PReach has been used extensively by our collaborators at Intel. Detailed in

Chapter 3.

2. Chapter 4 presented two algorithms for verifying deadlock-freedom using DEMC.

This property ensures that from all reachable states, the system has a path to some

quiescent state, which is a state with no pending transactions. DF has the advantage

that it is easily understood by computer architects and hardware protocol designers.

Our algorithms are computationally efficient, typically requiring a factor of 1.2 to 2

of the time taken by safety property checking. We implemented these algorithms by

extending PReach, and found an error in the Peterson model included in the Murφ

distribution, which had persisted for about twenty years.

3. Chapter 5 extended our DF checks to include symmetric, parameterized systems.

We showed how a mixed abstraction can be used, and sound techniques for weak-

140

ening the underapproximate transitions. This complements the CMP method [40]

for strengthening overapproximate abstractions in an effort to prove parameterized

safety properties. In practice, our approach appears to require only small additional

human effort once the CMP method has been used.

4. PReach-Resp is our explicit-state approach to verifying response properties. These

properties are much stronger than DF, as they show that all requests are eventually

granted. Similar to DF, they have the advantage of being intuitive to the non-expert.

In practice, response property verification requires fairness assumptions that ignore

unrealistic counterexamples. We demonstrated that integrating fairness assumptions

into the state space exploration of PReach produces a practical tool. In particular,

our twist on the OWCTY algorithm [73, 38] takes only a modest constant number of

expansions per state — far less than the theoretical worst-case. Detailed in Chapter 6.

7.2 Future Work

This work has opened the door for a number of future directions. The choice of Erlang

as the chief programming language for PReach allows rapid development and testing of

new approaches in the context of DEMC. While other tools have a codebase that would

be vexing for a new researcher to digest, PReach and its derivatives require only a fa-

miliarity with Erlang, and the time to read 1000 to 1500 lines of code1. For example,

other researchers have proposed heuristics for partial order reduction in DEMC [10, 78],

but to the best of our knowledge, these methods have neither been implementation nor

experimentally evaluated. Such experiments ought to be easy in PReach.

As performance has not been a primary concern, I have not spent very much time

searching for bottlenecks. However, we suspect that as the number of threads assigned to

a single multi-core machine exceeds 2 or 3, the disk IO becomes a limiting factor. This is

1Certain modifications may also require tweaks to the Murφ engine or the Murφ compiler, but
these changes are typically local to a few C/C++ functions.

141

likely due to the fact that each worker reads and writes states from a different large disk

file. In many of our DEMC algorithms, the worker process that expands a state need not

be the state’s owner, thus we are eager to experiment with a dedicated Erlang process to

manage disk accesses and coalesce states into a single file. Another PReach limitation is

crash recovery; if a single worker crashes for any reason (such as Murφ errors, running out

of disk space, Erlang runtime errors) then all workers will die and model checking progress

is lost. A recent master’s thesis [71] considered using a database to store the Stern-Dill

algorithm data structures, but it is too slow to be practical. We believe that snapshots of

these data structures taken at infrequent intervals will offer minimal performance impact

while providing a rollback point in case of a crash. Another idea in this space is to store

states redundantly, say by assigning multiple owners to each state. This would allow crash

recovery even if a snapshot for a given worker is lost.

The modular design of the Erlang communication layer and Murφ computation

engines opens the door for PReach-like DEMC applied to other modelling languages.

The Erlang code is agnostic to the specifics of a “state”; all queries regarding if a state

adheres to a predicate or which states are successors are calls through an interface to the

Murφ Engine. Indeed, during a recent Intel internship I was able to replace the Murφ

Engine with a custom C++ based modelling language and use the Erlang layer for model

checking. A potential drawback of using the Erlang runtime is its inherent distribution

limits. I have not tested PReach using more than 200 workers and typically use about

50. It would be interesting to try a very large PReach experiment using hundreds of

workers using WestGrid [112] or a similar large-scale cluster and see if and where things

break down.

There are a handful of technical aspects of PReach-DF and PReach-Resp that

should be addressed. Unlike the original PReach, which has active users and a group of

maintainers, PReach-Resp and PReach-DF have been implemented as research proto-

types and they have not been made as easily available to a wider community. First and

142

foremost, the bitbucket online repositories for PReach, PReach-DF and PReach-Resp

should be merged. The latter two were branches of PReach for research purposes, but

clearly we shouldn’t expect users to manage three different installations. PReach-Resp

could easily be extended to enforce state-based (as opposed to action-based) fairness as-

sumptions. Some users may have Murφ models that more naturally fit with this kind

of fairness. Finally, the action-based fairness of PReach-Resp should be generalized to

possibly range over an entire Murφ ruleset, rather than considering each rule as a distinct

action. One case where these missing features cause problems occurs with rulesets whose

parameters do not appear in the rule’s guard, but only in the command. This is sometimes

done to express update assignments of nondeterministically chosen values. Taking each

rule as a different action often leads to excessively long counterexamples that are confusing

to interpret and time consuming for the tool to generate.

There are a number of directions for longer term future work. The usefulness of

model checking response properties with fairness would be expanded if we could also show

refinement from a high level Murφ model to an RTL implementation. In particular, we

would need to show that

1. the RTL is a refinement of the high level model, and

2. the RTL adheres to the fairness assumptions of the high level model

While there is a number of researchers that have considered the first problem [109, 29, 49],

I am unaware of work that deals with the second problem. To expand on the kinds of LTL

properties that PReach-Resp can handle, I am looking forward to considering reactivity

properties, which are a generalization of response properties and are expressive enough that

any LTL formula can be written as reactivity properties with conjunction and disjunction.

Finally, the originally proposed idea of using Manna and Pnueli’s inference rules [88, 89]

for decomposing response properties into simpler ones and dispatching to PReach for

model checking would increase our model checking performance through human insight.

143

Currently PReach-Resp does not support the checking of multiple response properties at

once, which needs to be implemented before this approach would see performance gains.

We expect that checking multiple response properties within a single PReach-

Resp run would be a straightforward feature to add, especially if we assume that the

multiple response properties take a special form. Suppose the response properties to show

are r0, ..., rn−1, where ri ≡ □(ϕi → ♢
∨n

j=i+1 ϕj). If each ri holds, then it is trivial to

show that □(ϕ0 → ♢ϕn) also holds. The extra bookkeeping would require an additional

⌈log (n− 1)⌉ bits per state, to tag each pending-state with an index value. This index for

states in MaybeFair is the greatest i < n such that some ϕi-state lies on a predecessor path

within ⟨MaybeFair⟩. This approach does not exploit the full generality afforded by Manna

and Pnueli’s inference rules, but I hypothesize it will reduce the runtime of PReach-Resp

if the user is willing to provide the ϕi predicates.

As an example of a decomposed response property, consider German’s simple cache

coherence protocol, appearing in Appendix A. Suppose we aim to verify a response property

(subject to fairness) where p is “ cache 1 has requested exclusive access”, and q is “cache 1

has been granted exclusive access”. One way to decompose this property is to let ϕ0 = p,

ϕ2 = q and ϕ1 be “the request for exclusive access has been received by the directory”. The

response property □(ϕ0 → ♢ϕ1 ∨ ϕ2) is nontrivial to verify, as the directory cannot accept

the request for exclusive access from cache 1 until it is finished servicing other requests.

Likewise, the response property □(ϕ1 → ♢ϕ2) is nontrivial as requests for exclusive access

may involve invalidating the line in other caches. Splitting the original response property

in this way results in a partitioned pending set, and only some of the fairness assumptions

are relevant to each sub-response property. This ought to lead to fewer state expansions

for our OWCTY adaptation, which is the chief contributor of runtime.

Our work in parameterized DF in symmetric protocols could be extended to show

parameterized response properties. Consider a parameterized system that has fairness at-

tached to parameterized actions. In the standard CMP-style overapproximate abstraction,

144

fairness assumptions on concrete actions will soundly persist, but it is unsound to assume

fairness on actions that undergo abstraction and have weakened guards. Model checking a

response property on the abstract system will almost certainly fail because such abstract

rules are not obligated to fire. However, I believe that similar permutation/model checking

methods as established in this thesis may be applied to prove that abstract traces where

a given abstract rule is persistently enabled have no concretization. Thus, the abstraction

may be strengthened by attaching a fairness assumption to this abstract rule that avoids

such executions. As with the parameterized DF work, this method could be applied after

the standard CMP method has been used and strengthening steps already applied to the

abstraction.

This thesis has shown that tractable verification of interesting liveness properties

in large protocol models is possible. The proposed extensions above build upon this result

and give different ways of widening the applicability and scalability further. While model

checking of arbitrary LTL liveness properties is difficult, this thesis lends itself to techniques

that are tailored to specific properties and fairness assumptions. Proceeding with future

work with this idea in mind will lend itself to tractable verification of stronger results.

In particular, using inference rules to decompose response properties will allow modest

human insight to dramatically reduce the time needed for model checking and proving

responsiveness.

145

Bibliography

[1] K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent

systems. Information Processing Letters, 15:307–309, 1986.

[2] Joe Armstrong. Programming Erlang: software for a concurrent world. Pragmatic

Bookshelf, 2007.

[3] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Kurt

Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb

Williams, Katherine A. Yelick, Meetings Jim Demmel, William Plishker, John Shalf,

Samuel Williams, and Katherine Yelick. The landscape of parallel computing re-

search: A view from berkeley. Technical report, TECHNICAL REPORT, UC

BERKELEY, 2006.

[4] J. Barnat, P. Bauch, L. Brim, and M. Češka. Employing Multiple CUDA Devices to

Accelerate LTL Model Checking. In 16th International Conference on Parallel and

Distributed Systems (ICPADS 2010), pages 259–266. IEEE Computer Society, 2010.

[5] J. Barnat, L. Brim, I. Cerna, P. Moravec, P. Rockai, and P. Simecek. DiVinE – a tool

for distributed verification. In Computer Aided Verification, pages 278–281, 2006.

[6] J. Barnat, L. Brim, S. Edelkamp, D. Sulewski, and P. Šimeček. Can Flash Memory

Help in Model Checking. In Formal Methods for Industrial Critical Systems (FMICS

2008), volume 5596 of LNCS, pages 150–165. Springer-Verlag, 2008.

146

[7] J. Barnat, L. Brim, V. Havel, J. Havĺıček, J. Kriho, M. Lenčo, P. Ročkai, Vladimı́r

Štill, and J. Weiser. DiVinE 3.0 – An Explicit-State Model Checker for Multithreaded

C & C++ Programs. In Computer Aided Verification (CAV 2013), volume 8044 of

LNCS, pages 863–868. Springer, 2013.

[8] J. Barnat, L. Brim, and P. Ročkai. A Time-Optimal On-the-Fly Parallel Algorithm

for Model Checking of Weak LTL Properties. In Formal Methods and Software En-

gineering (ICFEM 2009), volume 5885 of LNCS, pages 407–425. Springer, 2009.

[9] J. Barnat, L. Brim, and P. Ročkai. A Time-Optimal On-the-Fly Parallel Algorithm

for Model Checking of Weak LTL Properties. In Formal Methods and Software En-

gineering (ICFEM 2009), volume 5885 of LNCS, pages 407–425. Springer, 2009.

[10] J. Barnat, L. Brim, and P. Ročkai. Parallel Partial Order Reduction with Topological

Sort Proviso. In Software Engineering and Formal Methods (SEFM 2010), pages 222–

231. IEEE Computer Society Press, 2010.

[11] J. Barnat, L. Brim, P. Simecek, and M. Weber. Revisiting resistance speeds up

I/O-efficient LTL model checking. In Tools and Algorithms for the Construction and

Analysis of Systems (TACAS), pages 48–62. Springer, 2008.

[12] J. Barnat, L. Brim, M. Češka, and T. Lamr. CUDA accelerated LTL model checking.

In ICPADS. IEEE, 2009.

[13] J. Barnat, L. Brim, M. Češka, and P. Ročkai. DiVinE: Parallel Distributed Model

Checker (Tool paper). In Parallel and Distributed Methods in Verification and High

Performance Computational Systems Biology (HiBi/PDMC 2010), pages 4–7. IEEE,

2010.

[14] J. Barnat, J. Chaloupka, and J. Van De Pol. Distributed Algorithms for SCC De-

composition. Journal of Logic and Computation, 21(1):23–44, 2011.

147

[15] Jiri Barnat. Distributed Memory LTL Model Checking. PhD thesis, Masaryk Uni-

versity Brno, Faculty of Informatics, 2004.

[16] Jǐŕı Barnat, Jan Havĺıček, and Petr Ročkai. Distributed LTL Model Checking with

Hash Compaction. Electr. Notes Theor. Comput. Sci., 296:79–93, 2013.

[17] K. Baukus, S. Bensalem, Y. Lakhnech, and K. Stahl. Abstracting WS1S systems to

verify parameterized networks. In International Conference on Tools and Algorithms

for Construction and Analysis of Systems (TACAS), pages 188–203, 2000.

[18] K. Baukus, Y. Lakhnech, and K. Stahl. Parameterized verification of a cache co-

herence protocol: Safety and liveness. In Verification, Model Checking, and Abstract

Interpretation (VMCAI), pages 317–330, 2002.

[19] G. Behrmann. A performance study of distributed timed automata reachability

analysis. Electr. Notes Theor. Comput. Sci., 68(4), 2002.

[20] Alexander Bell, Er Bell, and Boudewijn R. Haverkort. Sequential and distributed

model checking of petri net specifications. STTT, 7:43–60, 2002.

[21] B. Bingham. Murphi sources for this chapter.

http://www.cs.ubc.ca/~binghamb/cav2011.html. Accessed: July 13, 2013.

[22] B. Bingham, J. Bingham, F. M. de Paula, J. Erickson, G. Singh, and M. Reitblatt.

Industrial strength distributed explicit state model checking. In Parallel and Dis-

tributed Model Checking, 2010.

[23] B. Bingham, M. Greenstreet, and J. Bingham. Parameterized verification of deadlock

freedom in symmetric cache coherence protocols. In Formal Methods in Computer-

Aided Design (FMCAD), 2011, pages 186–195, Oct 2011.

[24] Brad Bingham. Preach response. https://bitbucket.org/binghamb/

preach-response. Accessed: October 21, 2014.

148

https://bitbucket.org/binghamb/preach-response
https://bitbucket.org/binghamb/preach-response

[25] Brad Bingham, Jesse Bingham, and John Erickson. Preach-df online. https://

bitbucket.org/binghamb/preach-brads-fork. Accessed: July 13, 2013.

[26] Brad Bingham, Jesse Bingham, John Erickson, and Mark Greenstreet. Distributed

explicit state model checking of deadlock freedom. In Natasha Sharygina and Hel-

mut Veith, editors, Computer Aided Verification, volume 8044 of Lecture Notes in

Computer Science, pages 235–241. Springer Berlin Heidelberg, 2013.

[27] Brad Bingham and Mark Greenstreet. Response property checking via distributed

state space exploration. Formal Methods in Computer Aided Design (FMCAD), 2014.

[28] J. Bingham. Automatic non-interference lemmas for parameterized model checking.

In Formal Methods in Computer Aided Design (FMCAD), 2008.

[29] J. Bingham, J. Erickson, G. Singh, and F. Andersen. Industrial strength refinement

checking. In Formal Methods in Computer-Aided Design, 2009. FMCAD 2009, pages

180 –183, nov. 2009.

[30] Jesse Bingham, John Erickson, Brad Bingham, and Flavio M. de Paula. Open-source

PReach. http://bitbucket.org/jderick/preach. Accessed: July 14, 2011.

[31] Stefan Blom, Bert Lisser, Jaco Van De Pol, and Michael Weber. A database approach

to distributed state-space generation. Journal of Logic and Computation, 21(1):45–

62, 2011.

[32] Stefan Blom, Jaco van de Pol, and Michael Weber. LTSmin: Distributed and sym-

bolic reachability. In CAV’10, pages 354–359, 2010.

[33] AaronR. Bradley. Sat-based model checking without unrolling. In Ranjit Jhala and

David Schmidt, editors, Verification, Model Checking, and Abstract Interpretation,

volume 6538 of Lecture Notes in Computer Science, pages 70–87. Springer Berlin

Heidelberg, 2011.

149

https://bitbucket.org/binghamb/preach-brads-fork
https://bitbucket.org/binghamb/preach-brads-fork
http://bitbucket.org/jderick/preach

[34] A.R. Bradley, F. Somenzi, Z. Hassan, and Yan Zhang. An incremental approach to

model checking progress properties. In Formal Methods in Computer-Aided Design

(FMCAD), 2011, pages 144–153, 2011.

[35] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision

diagrams. ACM Comput. Surv., 24(3):293–318, September 1992.

[36] J. R. Burch, E. M. Clarke, K. L. Mcmillan, D. L. Dill, and L. J. Hwang. Symbolic

model checking: 1020 states and beyond, 1990.

[37] Jerry Burch and David Dill. Automatic verification of pipelined microprocessor con-

trol. pages 68–80. Springer-Verlag, 1994.

[38] I. Černá and R. Pelánek. Distributed explicit fair cycle detection. In Proc. SPIN

workshop, volume 2648 of LNCS, pages 49–74. Springer, 2003.

[39] Xiaofang Chen, Yu Yang, M. Delisi, G. Gopalakrishnan, and Ching-Tsun Chou.

Hierarchical cache coherence protocol verification one level at a time through assume

guarantee. In High Level Design Validation and Test Workshop, 2007. HLVDT 2007.

IEEE International, pages 107–114, 2007.

[40] C.-T. Chou, P. K. Mannava, and S. Park. A simple method for parameterized veri-

fication of cache coherence protocols. In FMCAD, pages 382–398, 2004.

[41] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic

model verifier. In N. Halbwachs and D. Peled, editors, Proceedings Eleventh Con-

ference on Computer-Aided Verification (CAV’99), number 1633 in Lecture Notes in

Computer Science, pages 495–499, Trento, Italy, July 1999. Springer.

[42] E. M. Clarke, O. Grumberg, and M. C. Browne. Reasoning about networks with many

identical finite-state processes. In Proceedings of the fifth annual ACM symposium

150

on Principles of distributed computing, PODC ’86, pages 240–248, New York, NY,

USA, 1986. ACM.

[43] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM

Trans. Program. Lang. Syst., 16(5):1512–1542, 1994.

[44] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[45] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement. In Computer aided verification,

pages 154–169. Springer, 2000.

[46] R. Cleaveland, S. P. Iyer, and D. Yankelevich. Abstractions for preserving all CTL*

formulae. Technical report, 1994. Tech. Rep. 9403, Dept. of Comp. Sc., North

Carolina State University, Raleigh, NC.

[47] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[48] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.

ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.

[49] N. Dave, M. C. Ng, and Arvind. Automatic synthesis of cache-coherence proto-

col processors using bluespec. In Proceedings of the 2Nd ACM/IEEE International

Conference on Formal Methods and Models for Co-Design, MEMOCODE ’05, pages

25–34, Washington, DC, USA, 2005. IEEE Computer Society.

[50] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of

programs. Commun. ACM, 18(8):453–457, August 1975.

[51] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification as a

hardware design aid. In IEEE International Conference on Computer Design: VLSI

in Computers and Processors, pages 522–525, 1992.

151

[52] David L. Dill. The murphi verification system. In International Conference on

Computer Aided Verification, pages 390–393, London, UK, 1996.

[53] Peter C Dillinger and Panagiotis Manolios. Bloom filters in probabilistic verification.

In Formal Methods in Computer-Aided Design, pages 367–381. Springer, 2004.

[54] John Erickson. Personal communication, 2010.

[55] S. Evangelista, A. W. Laarman, L. Petrucci, and J. C. van de Pol. Improved multi-

core nested depth-first search. In S. Ramesh, editor, Proceedings of the 10th Inter-

national Symposium on Automated Technology for Verification and Analysis, ATVA

2012, Thiruvananthapuram (Trivandrum), Kerala, Lecture Notes in Computer Sci-

ence, pages 269–283, London, October 2012. Springer Verlag.

[56] Y. Fang, N. Piterman, A. Pnueli, and L. Zuck. Liveness with invisible ranking. Int.

J. Software Tools for Technology Transfer, 8(3):261–279, June 2006.

[57] Kathi Fisler, Ranan Fraer, Gila Kamhi, Moshe Y. Vardi, and Zijiang Yang. Is there

a best symbolic cycle-detection algorithm? In Proceedings of the 7th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems,

TACAS 2001, pages 420–434, London, UK, 2001. Springer-Verlag.

[58] Steven German. Personal communication, 2000.

[59] Rob Gerth, Doron Peled, Moshe Y. Vardi, R. Gerth, Den Dolech Eindhoven, D. Peled,

M. Y. Vardi, and Pierre Wolper. Simple on-the-fly automatic verification of linear

temporal logic. In In Protocol Specification Testing and Verification, pages 3–18.

Chapman & Hall, 1995.

[60] Orna Grumberg, Tamir Heyman, Nili Ifergan, and Assaf Schuster. Achieving

speedups in distributed symbolic reachability analysis through asynchronous com-

putation. In In CHARME, pages 129–145. Springer, 2005.

152

[61] Orna Grumberg, Tamir Heyman, and Assaf Schuster. A work-efficient distributed al-

gorithm for reachability analysis. In Jr. Hunt, WarrenA. and Fabio Somenzi, editors,

Computer Aided Verification, volume 2725 of Lecture Notes in Computer Science,

pages 54–66. Springer Berlin Heidelberg, 2003.

[62] Z. Hassan, A. R. Bradley, and F. Somenzi. Incremental, inductive CTL model check-

ing. In Proc. of Int’l. Conf. on Computer Aided Verification, pages 532–547, 2012.

[63] Klaus Havelund and Thomas Pressburger. Model checking JAVA programs using

JAVA PathFinder. In International Journal on Software Tools for Technology Trans-

fer (STTT), volume 2(4), pages 366–381. Springer-Verlag, March 2000.

[64] R. C. Holt. Some deadlock properties of computer systems. ACM Computing Surveys,

4(3):179–196, 1972.

[65] G. J. Holzmann. The model checker SPIN. IEEE Trans. Softw. Eng., 23(5):279–295,

1997.

[66] Gerard J. Holzmann. Parallelizing the spin model checker. In Proceedings of the

19th international conference on Model Checking Software, SPIN’12, pages 155–171,

Berlin, Heidelberg, 2012. Springer-Verlag.

[67] A. Hu. Techniques for Efficient Formal Verification Using Binary Decision Diagrams.

PhD thesis, Stanford University, 1995.

[68] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning

About Systems. Cambridge University Press, New York, NY, USA, 2004.

[69] C. N. Ip and D. L. Dill. Better verification through symmetry. In 11th IFIP WG10.2

International Conference on Computer Hardware Description Languages and their

Applications, pages 97–111, 1993.

153

[70] C. N. Ip and D. L. Dill. Better verification through symmetry. Formal Methods in

System Design, 9(1/2):41–75, 1996.

[71] Valerie L. Ishida. Fault tolerance for distributed explicit state model checking. Mas-

ter’s thesis, University of British Columbia, Department of Computer Science, 2014.

[72] Hiroaki Iwashita, Tsuneo Nakata, and Fumiyasu Hirose. CTL model checking based

on forward state traversal. In Proc. Int’l. Conf. Computer-Aided Design, pages 82–87,

1996.

[73] Yonit Kesten, Amir Pnueli, and Li on Raviv. Algorithmic verification of linear tem-

poral logic specifications. In Proc. 25th Int. Colloq. Aut. Lang. Prog., volume 1443

of Lect. Notes in Com p. Sci, pages 1–16. Springer-Verlag, 1998.

[74] Yonit Kesten, Amir Pnueli, Li-On Raviv, and Elad Shahar. Model checking with

strong fairness. Form. Methods Syst. Des., 28:57–84, January 2006.

[75] W. J. Knottenbelt, P. G. Harrison, M. A. Mestern, and P. S. Kritzinger. A proba-

bilistic dynamic technique for the distributed generation of very large state spaces.

Perform. Eval., 39(1-4):127–148, 2000.

[76] S. Krstić. Parameterized system verification with guard strengthening and parameter

abstraction. In Automated Verification of Infinite-State Systems, 2005.

[77] R. Kumar and E. G. Mercer. Load balancing parallel explicit state model checking.

In Parallel and Distributed Model Checking, 2004.

[78] A. W. Laarman and D. Faragó. Improved on-the-fly livelock detection: Combining

partial order reduction and parallelism for dfsFIFO. In G. P. Brat, N. Rungta, and

A. J. Venet , editors, Proceedings of the Fifth NASA Formal Methods Symposium,

NFM 2013, Moffett Field, CA, USA, Lecture Notes in Computer Science, London,

May 2013. Springer Verlag.

154

[79] A. W. Laarman, R. Langerak, J. C. van de Pol, M. Weber, and A. Wijs. Multi-

core nested depth-first search. In T. Bultan and P-A. Hsiung, editors, Proceedings

of the 9th International Symposium on Automated Technology for Verification and

Analysis, ATVA 2011, Tapei, Taiwan, volume 6996 of Lecture Notes in Computer

Science, pages 321–335, London, July 2011. Springer Verlag.

[80] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Softw.

Eng., 3:125–143, March 1977.

[81] K. G. Larsen and B. Thomsen. A modal process logic. In Third Annual Symposium

on Logic in Computer Science (LICS), pages 203–210, 1988.

[82] F. Lerda and R. Sisto. Distributed-memory model checking with SPIN. In Proc. of

SPIN 1999, volume 1680 of LNCS., pages 22–39. Springer-Verlag, 1999.

[83] Y. Li. Mechanized proofs for the parameter abstraction and guard strengthening

principle in parameterized verification of cache coherence protocols. In Proceedings

of the 2007 ACM symposium on Applied computing, pages 1534–1535, 2007.

[84] Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. The glory of the past. In Rohit

Parikh, editor, Logics of Programs, volume 193 of Lecture Notes in Computer Science,

pages 196–218. Springer Berlin Heidelberg, 1985.

[85] LTSmin. Ltsmin related papers. fmt.cs.utwente.nl/tools/ltsmin/#sec2. Ac-

cessed: December 1, 2015.

[86] Y. Lv, H. Lin, and H. Pan. Computing invariants for parameter abstraction. In

MEMOCODE ’07: Proceedings of the 5th IEEE/ACM International Conference on

Formal Methods and Models for Codesign, pages 29–38, 2007.

[87] N. Lynch and F. Vaandrager. Forward and backward simulations – part I: Untimed

systems. Information and Computation, 121(2):214–233, 1995.

155

[88] Zohar Manna and Amir Pnueli. Completing the temporal picture. Theor. Comput.

Sci., 83:97–130, June 1991.

[89] Zohar Manna and Amir Pnueli. Temporal verification of reactive systems: Progress

(draft). http://theory.stanford.edu/~zm/tvors3.html, 1996.

[90] K. L. McMillan. Symbolic model checking. In PhD thesis, Carnegie Mellon Univer-

sity, Pittsburgh, May 1992.

[91] K. L. McMillan. Circular compositional reasoning about liveness. In Correct Hard-

ware Design and Verification Methods (CHARME), pages 342–345, 1999. An ex-

tended version appeared as a Cadence technical report.

[92] K. L. McMillan. Verification of infinite state systems by compositional model check-

ing. In in CHARME, pages 219–233. Springer, 1999.

[93] K. L. McMillan. Parameterized verification of the FLASH cache coherence proto-

col by compositional model checking. In Correct Hardware Design and Verification

Methods (CHARME), pages 179–195, 2001.

[94] Ken McMillan. Personal communication, 2011.

[95] K.L. McMillan. Interpolation and sat-based model checking. In Jr. Hunt, WarrenA.

and Fabio Somenzi, editors, Computer Aided Verification, volume 2725 of Lecture

Notes in Computer Science, pages 1–13. Springer Berlin Heidelberg, 2003.

[96] I. Melatti, R. Palmer, G. Sawaya, Y. Yang, R. M. Kirby, and G. Gopalakrishnan.

Parallel and distributed model checking in eddy. Int. J. Softw. Tools Technol. Transf.,

11(1):13–25, 2009.

[97] S. Naffziger, J. Warnock, and H. Knapp. Se2 when processors hit the power wall (or

”when the cpu hits the fan”). In Solid-State Circuits Conference, 2005. Digest of

Technical Papers. ISSCC. 2005 IEEE International, pages 16–17, Feb 2005.

156

http://theory.stanford.edu/~zm/tvors3.html

[98] University of Utah School of Computing. Murphi model checker web page. http:

//www.cs.utah.edu/formal_verification/Murphi/. Accessed: December 1, 2014.

[99] J. O’Leary, M. Talupur, and M. R. Tuttle. Parameterized verification using message

flows: An industrial experience. In International Conference on Formal Methods in

Computer Aided Design (FMCAD), 2009.

[100] R. Palmer and G. Gopalakrishnan. Partial order reduction assisted parallel model

checking. In Proc. Parallel and Distributed Model Checking (PDMC) Workshop, 2002.

[101] Seungjoon Park and David L. Dill. Protocol verification by aggregation of distributed

transactions. In Proc. 8th Int’l. Conf. on Computer Aided Verification, pages 300–

310, 1996.

[102] A. Pnueli, J. Xu, and L. D. Zuck. Liveness with (0, 1, infinity)-counter abstraction.

In Proceedings of the 14th International Conference on Computer Aided Verification

(CAV), pages 107–122, 2002.

[103] U. Stern and D. L. Dill. Improved probabilistic verification by hash compaction. In

Correct Hardware Design and Verification Methods, IFIP WG 10.5 Advanced Re-

search Working Conference, CHARME ’95, pages 206–224, 1995.

[104] U. Stern and D. L. Dill. Parallelizing the murphi verifier. In International Conference

on Computer Aided Verification, pages 256–278, 1997.

[105] U. Stern and D. L. Dill. Using magnetic disk instead of main memory in the murphi

verifier. In 10th International Conference on Computer Aided Verification (CAV),

1998.

[106] U. Stern and D. L. Dill. Parallelizing the murphi verifier. Formal Methods in System

Design, 18(2):117–129, 2001.

157

http://www.cs.utah.edu/formal_verification/Murphi/
http://www.cs.utah.edu/formal_verification/Murphi/

[107] Murali Talupur and Mark R. Tuttle. Going with the flow: parameterized verification

using message flows. In Proceedings of the 2008 International Conference on Formal

Methods in Computer-Aided Design, FMCAD ’08, pages 10:1–10:8, Piscataway, NJ,

USA, 2008. IEEE Press.

[108] Robert Endre Tarjan. Depth-first search and linear graph algorithms. Siam Journal

on Computing, 1:146–160, 1972.

[109] S. Tasiran, Yuan Yu, and B. Batson. Linking simulation with formal verification at

a higher level. Design Test of Computers, IEEE, 21(6):472–482, Nov 2004.

[110] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic

program verification. In Proceedings of the 1st Annual Symposium on Logic in Com-

puter Science (LICS’86), pages 332–344. IEEE Comp. Soc. Press, June 1986.

[111] K. Verstoep, H. Bal, J. Barnat, and L. Brim. Efficient large-scale model checking. In

International Parallel and Distributed Processing Symposium, 2009.

[112] WestGrid. Western canada research grid. http://www.westgrid.ca. Accessed:

January 28, 2015.

[113] Pierre Wolper and Denis Leroy. Reliable hashing without collision detection. In IN

COMPUTER AIDED VERIFICATION. 5TH INTERNATIONAL CONFERENCE,

pages 59–70. Springer-Verlag, 1993.

[114] Y. Yu, P. Manolios, and L. Lamport. Model checking TLA+ specifications. In Correct

Hardware Design and Verification Methods (CHARME), pages 54–66, 1999.

158

Appendix A

German’s Protocol

--

-- German’s Protocol

--

-- A caching protocol proposed by Steven German of IBM as a challenge for

-- parameterized verification.

--

const ---- Configuration parameters ----

NODE_NUM : 2;

DATA_NUM : 2;

type ---- Type declarations ----

NODE : scalarset(NODE_NUM);

DATA : scalarset(DATA_NUM);

CACHE_STATE : enum I, S, E;

CACHE : record State : CACHE_STATE; Data : DATA; end;

159

MSG_CMD : enum Empty, ReqS, ReqE, Inv, InvAck, GntS, GntE;

MSG : record Cmd : MSG_CMD; Data : DATA; end;

var ---- State variables ----

Cache : array [NODE] of CACHE; -- Caches

Chan1 : array [NODE] of MSG; -- Channels for Req*

Chan2 : array [NODE] of MSG; -- Channels for Gnt* and Inv

Chan3 : array [NODE] of MSG; -- Channels for InvAck

InvSet : array [NODE] of boolean; -- Set of nodes to be invalidated

ShrSet : array [NODE] of boolean; -- Set of nodes having S or E copies

ExGntd : boolean; -- E copy has been granted

CurCmd : MSG_CMD; -- Current request command

CurPtr : NODE; -- Current request node

MemData : DATA; -- Memory data

AuxData : DATA; -- Auxiliary variable for latest data

---- Initial states ----

ruleset d : DATA do startstate "Init"

for i : NODE do

Chan1[i].Cmd := Empty; Chan2[i].Cmd := Empty; Chan3[i].Cmd := Empty;

Cache[i].State := I; InvSet[i] := false; ShrSet[i] := false;

end;

ExGntd := false; CurCmd := Empty; MemData := d; AuxData := d;

end end;

---- State transitions ----

ruleset i : NODE; d : DATA do rule "Store"

160

Cache[i].State = E

==>

Cache[i].Data := d; AuxData := d;

end end;

ruleset i : NODE do rule "SendReqS"

Chan1[i].Cmd = Empty & Cache[i].State = I

==>

Chan1[i].Cmd := ReqS;

end end;

ruleset i : NODE do rule "SendReqE"

Chan1[i].Cmd = Empty & (Cache[i].State = I | Cache[i].State = S)

==>

Chan1[i].Cmd := ReqE;

end end;

ruleset i : NODE do rule "RecvReqS"

CurCmd = Empty & Chan1[i].Cmd = ReqS

==>

CurCmd := ReqS; CurPtr := i; Chan1[i].Cmd := Empty;

for j : NODE do InvSet[j] := ShrSet[j] end;

end end;

ruleset i : NODE do rule "RecvReqE"

CurCmd = Empty & Chan1[i].Cmd = ReqE

==>

CurCmd := ReqE; CurPtr := i; Chan1[i].Cmd := Empty;

for j : NODE do InvSet[j] := ShrSet[j] end;

end end;

161

ruleset i : NODE do rule "SendInv"

Chan2[i].Cmd = Empty & InvSet[i] = true &

(CurCmd = ReqE | CurCmd = ReqS & ExGntd = true)

==>

Chan2[i].Cmd := Inv; InvSet[i] := false;

end end;

ruleset i : NODE do rule "SendInvAck"

Chan2[i].Cmd = Inv & Chan3[i].Cmd = Empty

==>

Chan2[i].Cmd := Empty; Chan3[i].Cmd := InvAck;

if (Cache[i].State = E) then Chan3[i].Data := Cache[i].Data end;

Cache[i].State := I; undefine Cache[i].Data;

end end;

ruleset i : NODE do rule "RecvInvAck"

Chan3[i].Cmd = InvAck & CurCmd != Empty

==>

Chan3[i].Cmd := Empty; ShrSet[i] := false;

if (ExGntd = true)

then ExGntd := false; MemData := Chan3[i].Data; undefine Chan3[i].Data end;

end end;

ruleset i : NODE do rule "SendGntS"

CurCmd = ReqS & CurPtr = i & Chan2[i].Cmd = Empty & ExGntd = false

==>

Chan2[i].Cmd := GntS; Chan2[i].Data := MemData; ShrSet[i] := true;

CurCmd := Empty; undefine CurPtr;

end end;

ruleset i : NODE do rule "SendGntE"

162

CurCmd = ReqE & CurPtr = i & Chan2[i].Cmd = Empty & ExGntd = false &

forall j : NODE do ShrSet[j] = false end

==>

Chan2[i].Cmd := GntE; Chan2[i].Data := MemData; ShrSet[i] := true;

ExGntd := true; CurCmd := Empty; undefine CurPtr;

end end;

ruleset i : NODE do rule "RecvGntS"

Chan2[i].Cmd = GntS

==>

Cache[i].State := S; Cache[i].Data := Chan2[i].Data;

Chan2[i].Cmd := Empty; undefine Chan2[i].Data;

end end;

ruleset i : NODE do rule "RecvGntE"

Chan2[i].Cmd = GntE

==>

Cache[i].State := E; Cache[i].Data := Chan2[i].Data;

Chan2[i].Cmd := Empty; undefine Chan2[i].Data;

end end;

163

Appendix B

HIR Proofs

Refer to equation (5.5) for the definition of πj↔h and let T be shorthand for T (n).

Heuristic 1. For ruleset r̂j tagged with AEG and with abstracted ruleset parameter i,

suppose that r̂0 is UA. If Aℓ(1) |= AG (relax (ρ̂0, i)|i=1 → EF (ρ̂0|i=1)) then tag AEG is

discharged for showing r̂j to be UA.

Proof. Without loss of generality, consider only states of ψ−1(ρ̂j) where the ruleset pa-

rameters different from i have values in {2, ..., k}; denote the set of such states that are

O-reachable with A. We claim that for any w ∈ ψ−1(A), there exists some h ∈ Pn \Pk and

state w′ where πh↔1(w
′) ∈ ψ−1(relax (ρ̂0, i)|i=1) and either

1. w = w′, or

2. w ⇝T w
′ and w′ only differs from w in the local state of node 1.

Assume first that ρ̂0 contains no forall condition, i.e., r̂0 has no guard tags. Comparing

ψ−1(relax (ρ̂0, i)|i=1) with ρ, comparisons depending on i syntactically replace i with 1, and

comparisons depending on array variables indexed by i, a[i], are removed. If ρ contains the

P-comparison i = eP (at most one such condition exists by definition of admissible guard),

then ρ̂j contains the condition Other = eP if eP is not abstracted away, and thus there is

164

some h ∈ Pn \ Pk such that h = eP in w. If ρ does not contain i = eP, then choose any

h ∈ Pn \ Pk. In either case, πh↔1(w) ∈ ψ−1(relax (ρ̂0, i)|i=1), i.e. w = w′.

On the other hand, suppose r̂ is tagged with AUG. Since r̂0 is UA, it must have been

established UA through Heuristic 3, i.e., Aℓ(1) |= AG (Γ(ρ̂0) → EFC[1]). Thus, although

πh↔1(w) may not satisfy C[1], there exists a path to state πh↔1(w
′) ∈ C[1] that only

differs from πh↔1(w) in the local state of node 1. Now, πh↔1(w
′) ∈ ψ−1(relax (ρ̂0, i)|i=1)

by a similar argument as above, and the claim is established.

The mixed abstraction property implies that πh↔1(w
′)⇝T πh↔1(w

′′), where πh↔1(w
′)

and πh↔1(w
′′) only differ in the local state of node 1, and πh↔1(w

′′) ∈ ψ−1(ρ̂0|i=1). Case

split on whether or not r̂0 is tagged with AUG.

Case no AUG: This implies that πh↔1(w
′′) ∈ ρ. Fire concrete rule r to transition from

πh↔1(w
′′) to πh↔1(w

′′′). Notice that the local state of h does not change between πh↔1(w)

and πh↔1(w
′′′) if r̂0 has no command tags. Otherwise, if it is tagged with AUC, then some

update is performed on the local state of h. Thus, in the path from w to w′′′ the local state

of 1 is updated identically, and this update is performed by âj . This implies state w′′′ is

in the preimage of the post-state of r̂j , i.e., {ψ(w′′′)} = â ◦ {ψ(w)} (the state obtained by

applying update â to ψ(w)).

Case AUG: Similar to the previous case, with the difference that the local state of nodes

Pn\(Pk∪{h}) must satisfy C before r fires. Again, since r̂0 is UA, it must have been estab-

lished UA through Heuristic 3, i.e., Aℓ(1) |= AG (Γ(ρ̂0)→ EFC[1]). Since πh↔1(w
′′) ∈ Γ(ρ̂0),

path symmetry implies the path πh↔1(w
′′)⇝T πh↔1(w

′′′) where πh↔1(w
′′′) ∈ ρ. Fire con-

crete rule r to transition from πh↔1(w
′′′) to πh↔1(w

(4)). Using a similar case split on r̂0

no command tags or AUC as above, state w(4) is in the preimage of the post-state of r̂j .

In either case, by path symmetry and noting that any changes to the local state of node h

between w and w′ are not observable in the abstract system (ψ(w) = ψ(w′)), the proof is

completed. □

Heuristic 2. For ruleset r̂j tagged with AEG and/or AEC with abstracted ruleset parameter

165

i, suppose that r̂0 is UA. If Aℓ(1) |= AG ((relax (ρ̂0, i)|i=1 ∧ L[1]) → EFr̂0 (L[1])) then AEG

and AEC are discharged for showing r̂j to be L-preserving.

Proof. To show the claim, suffices to show that for each reachable (s, s′) ∈ r̂j ,

∀w ∈ ψ−1(s). ∃w′ ∈ ψ−1(s′). ∀j ∈ Pn
k+1. w ⇝T w

′ ∧ L[j]⇒ w′ ∈ L[j] (B.1)

Let h ∈ Pn
k+1 be the concrete ruleset parameter in these w. We first show the weaker

property that

∀w ∈ ψ−1(s). ∃w′ ∈ ψ−1(s′). w ⇝T w
′ ∧ L[h]⇒ w′ ∈ L[h] (B.2)

noting that h here depends on w. Let Aj = relax (ρ̂0, i)|i=j ∧ L[j] ∧ Reach. By the mixed

abstraction property,

∀w ∈ ψ−1(A1). ∃w′ ∈ ψ−1(L[1]). w ⇝T w
′

where some transition from r with ruleset parameter value 1 is taken along the w ⇝T w′

path. Applying permutation π1↔ h to these path for each h ∈ Pn
k+1 gives

∀w ∈ ψ−1(Ah). ∃w′ ∈ ψ−1(L[h]). w ⇝T w
′

where some transition from r with ruleset parameter value h is taken along the w ⇝T w′

path. This implies the property (B.2). To see that the strongly property (B.1) also holds,

observe that if the ruleset is tagged with AUG or AUC then Heuristic 4 will imply the

locality property for nodes indexed with Pn
k+1 \{h}. On the other hand, if the rulset is not

tagged in this way then the local state of such nodes is unchanged because only local rules

fired on the w ⇝T w
′ paths.

Heuristic 3. For ruleset r̂j tagged with AUG and not AEG, let ∀i ∈ Pn. C[i] be the forall

condition of ρ. If Aℓ(1) |= AG (Γ(ρ̂j)→ EF (C[1])), then tag AUG is discharged for showing

r̂j to be UA.

166

Proof. Let A = Γ(ρ̂j) ∧ Reach. By the mixed abstraction property,

∀w ∈ A. ∃w′ ∈ C[1]. w ⇝T w
′ (B.3)

where w and w′ only differ in the local state of node 1. For k + 1 ≤ h ≤ n, let Ih denote

the property

∀w ∈ A. ∃w′ ∈

 ∧
i∈Ph

k+1

C[i]

 . w ⇝T w
′

where w and w′ only differ in the local state of i ∈ Ph
k+1. Applying permutation π1↔k+1

to (B.3) gives property Ik+1. This is the base case for induction on h, assuming Ih holds.

Apply permutation π1↔h+1 to (B.3) and use transitivity to establish property Ih+1. Thus,

In holds which implies the UA property.

Heuristic 4. For ruleset r̂j tagged with AUG and/or AUC, let r̂2m−1 ∈ ψ(r) be the abstract

ruleset where all ruleset parameters of r are abstracted. If Aℓ(1) |= AG ((Γ(ρ̂j) ∧ L[1]) →

EFr̂2m−1
(L[1])), then tags AUG and AUC are discharged for showing r̂j to be L-preserving.

Proof. Let Ah = Γ(ρ̂j) ∧ L[h] ∧ Reach. By the mixed abstraction property,

∀w ∈ A1. ∃w′ ∈ L[1]. w ⇝T w
′ (B.4)

where each path w ⇝T w′ includes a transition from ruleset r where 1 is nota ruleset

parameter value. For k + 1 ≤ h ≤ n, let Ih denote the property

∀w ∈ Ah. ∃w′ ∈ L[h]. w ⇝T w
′

where each path w ⇝T w′ includes a transition from ruleset r where i is not a rulset

parameter value. Applying permutation π1↔h to (B.4) gives property Ih. The set of

properties Ih imply the claim, because each path is independent with respect to local

variables of h, with the exception of the transition t from ruleset r. For a given h, transition

t is agnostic to the local variables of other nodes, thus a t exists that satisfies all paths for

each property Ih.

167

Appendix C

Heuristic Examples

C.1 Discharging AEG

When the only guard tag is AEG, at least one ruleset parameter has been abstracted.

Our presentation makes the simplifying assumption that there is at most one such ruleset

parameter when AEG is discharged, but the same approach generalizes to the case of more

than one. If an automatically generated DF property on the mixed abstraction holds, this

tag is discharged, and the ruleset is proven UA, and thus may be added to the set of U

transitions. This property is based on a permutation of the guard predicate of the ruleset

in question, and also the guard of the related ruleset where none of the ruleset parameters

are abstracted.

Consider the following concrete ruleset from the German protocol:

ruleset i : NODE do rule "SendGntS"

CurCmd = ReqS & CurPtr = i & Chan2[i].Cmd = Empty & ExGntd = false

==>

Chan2[i].Cmd := GntS; Chan2[i].Data := MemData; ShrSet[i] := true;

CurCmd := Empty; undefine CurPtr;

end end;

This ruleset abstracts to two rulesets in the mixed abstraction:

168

ruleset i : NODE do rule "ABS SendGntS1"

CurCmd = ReqS & CurPtr = i & Chan2[i].Cmd = Empty & ExGntd = false

==>

Chan2[i].Cmd := GntS; Chan2[i].Data := MemData; ShrSet[i] := true;

CurCmd := Empty; undefine CurPtr;

end end;

rule "ABS SendGntS2"

CurCmd = ReqS & CurPtr = Other & ExGntd = false

==>

CurCmd := Empty; undefine CurPtr;

end;

In ABS SendGntS1, the ruleset parameter i is non-abstracted, and the concrete rule

SendGntS contains no forall conditions in the guard. Thus, ABS SendGntS1 has no guard

tags. Ruleset ABS SendGntS2, on the other hand, has i abstracted and is therefore tagged

with AEG. The generated DF property considers all reachable states satisfying the guard of

ABS SendGntS2, but with CurPtr permuted to be some non-abstracted node. From these

states, we seek a path composed of only local transitions to the value of CurPtr1 to a state

satisfying the guard of ABS SendGntS1. This is expressed in Murφ as

-- using only rules local to 1

liveness "H1"

-- the "start predicate"

CurCmd = ReqS & (isdefined(CurPtr) & CurPtr != Other) & ExGntd = false

CANGETTO

-- the "end predicate"

CurCmd = ReqS & (exists i : NODE do CurPtr = i & Chan2[i].Cmd = Empty end)

& ExGntd = false

end;

1Due to symmetry we can assume this value is 1 without loss of generality.

169

It turns out that every reachable state satisfying the start predicate either

1. also satisfies the end predicate, or

2. requires local rule RecvGntS to fire, which clears a “grant shared access” message

from channel 2, and the resulting state satisfies the end predicate.

This proves ABS SendGntS2 is UA. To understand why, consider the proof schema in Fig-

ure C.1. In this example, r̂2 is the rule ABS SendGntS2, and ρ̂2 is its guard predicate.

Permutation π is specific to the given state w; it exchanges the value of CurPtr in w with

1. Ruleset r refers to the concrete ruleset SendGntS, where r|CurPtr=1 is the rule when the

ruleset parameter i is 1, and r|CurPtr>1 is the set of rules when i is some other value.

It is unknown if Chan2[CurPtr].Cmd = Empty for an arbitrary, reachable w ∈

ψ−1(s) (i.e., a reachable concretization of s) because CurPtr = Other in s. Since CurPtr >

1 in w, there exists some permutation π such that CurPtr = 1 in π(w). The output printed

by PReach when DF property H1 is model checked indicates that in π(w) either r|CurPtr=1

is enabled or the concrete rule RecvGntS is enabled, and when fired reaches a state where

r|CurPtr=1 is enabled. In either case, there is a path from π(w) to some state π(w′) that

enables r|CurPtr=1, and when this rule fires reaches state π(w′′); by symmetry, there is an

analogous path from w to some state w′′ resulting from some rule of r|CurPtr>1 firing. Since

w was chosen arbitrarily, it follows that ABS SendGntS2 is UA.

C.2 Discharging AUG

Referring to the rulesets of the example in Section 5.3.2, suppose we wish to show ABS SendGntE1

is UA. Notice that although its guard is syntactically identical to that of the concrete rule-

set SendGntE, it is not assumed underapproximate because the forall condition weakens

the guard. Thus, this rule is tagged with AUG. To discharge the tag, we show that in the

concrete system each abstracted node j can take a local path to some C[j]-state, where

C[j] is !ShrSet[j]. That is, we check

170

SA

π−1

ψ

ψ−1(s)

s′ ∈ post(r̂2)

path local to 1
π(w′) r|CurPtr=

1
fires π(w′′)

π(w)

s ∈ ρ̂2

w w′′

S(n)

ψ−1

post(r|CurPtr>1)

π

r̂2 fires

Figure C.1: Schema for proving ABS SendGntS2 is UA, which follows a similar flow for
handling any rule tagged with AEG. For arbitrary reachable w ∈ ψ−1(s), the path from
π(w) to π(w′′), by symmetry, implies a path exists from w to some w′′ ∈ ψ−1(s′). This
satisfies the definition for the transition (s, s′) to be UA. The path from π(w) to π(w′) is
implied by model checking the DF property H1 in the mixed abstraction.

liveness "H2" -- using only rules local to 1

CurCmd = ReqE & isdefined(CurPtr) & !ExGntd -- the "start predicate"

CANGETTO

(forall j : NODE do !ShrSet[j] end) -- the "end predicate" (j = 1)

end;

This DF property holds in the mixed abstraction. For every reachable state s

satisfying the start predicate, one of the following cases applies.

171

1. State s satisfies the end predicate.

2. A sequence of 4 local rules fire, starting from s, to reach some state satisfying the

end predicate. This sequence begins at s where a pending message in channel 2 of

cache 1 that grants shared access; the first rule consumes this message. The second

rule sends invalidate message to cache 1 from the directory. The third rule consumes

this message and response with an invalidation acknowledgment message on channel

3, and the fourth rule consumes this message at the directory and sets the sharer flag

of cache 1 to false.

3. Some post-fix of this sequence of rules is taken, starting from s to reach some state

satisfying the end predicate. That is, either the latter 3 rules above fires, or the latter

2 rules, or the final rule.

This establishes that for any local state of some cache in a reachable state satisfying

the start predicate, there is a local path to some state where the sharer flag is false.

Intuitively, although the local state of abstracted nodes are unknown when the guard of

ABS SendGntE1 is enabled, the above check verifies the existence of an abstracted path to

a state where the sharer flag is cleared for all abstracted caches. See Figure C.2.

172

w

w′′

SA

s′ ∈ post(r̂1)s ∈ ρ̂1

path local to 1

w1 w′
1

path local to i

C[1]

C[i]wi
w′
i

w′ψ−1(s)
∧

allj C[j]

Γ(ρ̂1) ⊆ S(n)

ψ−1

r fires

ππ

ψ

Figure C.2: Schema for proving ruleset ABS SendGntE1 is UA. For any reachable concrete
state w1 satisfying the boolean predicate implied by ρ̂1, there is a path to w′

1 ∈ C[1] that
only changes the local state of 1. By symmetry, there is a path from any reachable wi ∈
Γ(ρ̂1) to w

′
i ∈ C[i] that only changes the local state of i, for 1 ≤ i ≤ n. Concatenating these

paths together over all i, there is a path from any w ∈ Γ(ρ̂1) to w
′ satisfying

∧
1≤i≤nC[i].

In particular, if w ∈ ψ−1(s), then w′ satisfies the guard of r, and this rule fires to reach
w′′. The path from w to w′′ satisfies the definition of the transition (s, s′) to be UA. The
path from w1 to w′

1 is implied by model checking a DF property in the mixed abstraction.

173

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of Acronyms
	Acknowledgments
	Dedication
	Chapter Introduction
	Formalized Problem
	The Explicit-State Approach
	Verification Methods of this Thesis
	Thesis Statement
	Contributions
	Roadmap

	Chapter Related Work
	Preliminaries
	Temporal Logic
	The Mur Description Language

	Parallel and Distributed Model Checking
	Model Checking Deadlock Freedom

	Parameterized Verification
	Model Checking LTL Formulas
	Summary

	Chapter The PReach Model Checker
	Algorithm
	Crediting
	Light Weight Load Balancing
	Batching of States
	PReach Pseudocode
	Results

	Chapter Model Checking of Deadlock Freedom
	Overview
	Specification Syntax

	Algorithms
	Local Search
	Pass-the-Path
	Outstanding Search Table
	Implementation Notes

	Performance
	Summary

	Chapter Parameterized Deadlock Freedom
	A Simple Example
	Formal Framework
	Mixed Abstractions
	Insufficiency
	Parameterized Systems
	Undecidability

	Syntactical Abstraction
	Syntax and Restrictions
	Abstraction

	Verifying Universal Quiescence
	Universally Quantified Quiescence
	Abstract Rule Tags
	Heuristics

	Case Studies
	Automatic Deadlock Freedom Predicates
	The German Protocol
	The FLASH Protocol

	Discussion
	Permutations on More than One Abstracted Node
	Local Rule Generalizations
	Automatic Strengthening

	Chapter Distributed Response Property Checking
	Introduction
	Overview
	Preliminaries
	A Note about Stuttering

	Algorithm
	Worst-Case Time Complexity for OWCTY

	Distributed Implementation
	Optimizations
	Saved Expansions
	Dynamic Kernel
	Deletion by Predecessor Counting

	Results
	Comparison with DiVinE
	Conclusions and Future Work

	Chapter Conclusions
	Contributions Recap
	Future Work

	Bibliography
	Appendix German's Protocol
	Appendix HIR Proofs
	Appendix Heuristic Examples
	Discharging AEG
	Discharging AUG

