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Abstract

Graphics Processing Units (GPUs) run thousands of parallel threads and achieve high Mem-

ory Level Parallelism (MLP). To support high MLP, a structure called a Miss-Status Hold-

ing Register (MSHR) handles multiple in-flight miss requests. When multiple cores send re-

quests to the same cache line, the requests are merged into one last level cache MSHR entry

and only one memory request is sent to the Dynamic Random-Access Memory (DRAM).

We call this inter-core locality. The main reason for inter-core locality is that multiple

cores access shared read-only data within the same cache line. By prioritizing memory

requests that have high inter-core locality, more threads resume execution. Many memory

access scheduling policies have been proposed for general-purpose multi-core processors

and GPUs. However, some of these policies do not consider the characteristic of GPUs and

others do not utilize inter-core locality information.

In this thesis, we analyze the reasons that inter-core locality exists and show that re-

quests with more inter-core locality have a higher impact performance. To exploit inter-

core locality, we enable the GPU DRAM controller to be aware of inter-core locality by

using Level 2 (L2) cache MSHR information. We propose a memory scheduling policy to

coordinate the last level cache MSHR and the DRAM controller. 1) We introduce a struc-

ture to enable the DRAM to be aware of L2 cache MSHR information. 2) We propose a
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Abstract

memory scheduling policy to use L2 cache MSHR information. 3) To prevent starvation,

we introduce age information to the scheduling policy.

Our evaluation shows a 28% memory request latency reduction and an 11% perfor-

mance improvement on the average for high inter-core locality benchmarks.
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Chapter 1

Introduction

Graphics Processing Units (GPUs) enable general-purpose computing via programming

interfaces like Open Computing Language (OpenCL) [21] and Compute Unified Device

Architecture (CUDA) [1]. The general-purpose computing ability broadens the range of

applications on GPUs. For example, machine learning algorithms like the neural network is

accelerated by GPU using CUDA [17, 23, 31, 41]. GPU is also used for big data analysis in

data science research. Stanford AI Lab accelerated deep learning algorithm using a cluster

of GPU servers [11]. Engineering and mathematic tools such like Matlab and Mathematica

use GPU to accelerate numerical computation [3]. Bioinformatics and life science use

GPU to improve throughput of the DNA sequencing alignment [38]. The extensive use

of GPU described above shows the importance of GPUs. In the light of this, researchers

are motivated to do research on GPUs to exploit the potential power of GPUs. There are

numbers of works on different aspects of GPU architectures.

Memory system is an important part of GPUs. The applications described above re-

quire a large volume of data resulting in many memory accesses. Today’s GPU architec-
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Chapter 1: Introduction

tures typically employ a Single-Instruction, Multiple-Thread (SIMT) [26] architecture that

runs thousands of parallel threads. Unlike threads in the Central Processing Units (CPUs),

each of which runs different instructions, the GPU has a group of parallel threads, known

as a warp in NVIDIA terminology, that run the same instruction in lockstep. On a load

instruction, a number of memory requests are issued by these warps. A warp will stall in

the pipeline if it reaches an instruction that needs the data that has not yet been returned

from a previous load instruction. We show it is important to resolve such pending memory

requests quickly to reduce the number of stalled warps and maintain high throughput for the

GPU and hence high performance. However, the performance of Dynamic Random-Access

Memory (DRAM) is lower than SIMT cores resulting in a memory bandwidth wall. Since

thousands of threads are running in parallel, there are a large number of memory requests

which aggravate this problem.

Researchers proposed a number of methods to alleviate the memory bandwidth wall

from different aspects for both multicore CPU and GPU-like many-core processors. A

number of memory controller designs have been proposed to improve DRAM bandwidth

utilization based on out-of-order scheduling [27, 32, 34, 36]. To reduce contention of mem-

ory requests, Cheng et al. [10] proposed an analytical model to estimate next phase system

performance based on the computation to memory ratio. From the computation to mem-

ory ratio, the system can decide if it needs to suspend a thread to avoid memory requests

congestion. Mutlu and Moscibroda [29, 30] proposed two memory access schedulers to

avoid memory requests interference and ensure memory requests fairness between threads

for multicore CPUs. Chatterjee et al. [7] proposed a memory access scheduler to balance

memory access latency between all memory accesses for GPUs. Yuan et al. [42] proposed

modifications to the on-chip network between processors and memory partitions to reserve

2



Chapter 1: Introduction

row locality of the requests. Using this modified on-chip network, the memory controller

can use simple First-In First-Out (FIFO) policy to reduce hardware complexity. Ghose et al.

[14] observed that history requests latency in the Reorder-Buffer (ROB) can be used to pre-

dict criticality of the next request. They proposed a predictor to prioritize the critical request

from the processor side. We will discuss other related works in Chapter 7.

All of the above works tackle the memory bandwidth wall problem. However, there are

two problems with these works. First, some of them do not apply to GPUs since they do

not scale to thousands of threads. Second, some of these works do not consider criticality

of requests. The state-of-art GPUs use a large number of threads to hide memory access

latency. While some threads are waiting for the data from the memory, other threads can

occupy the computation resources. Thus, memory access latency is not as critical in GPUs.

Modern GPUs also exploit several techniques to improve memory bandwidth utilization.

Within an SIMT core, a coalescing unit is used to reduce the number of memory requests

generated by a warp. On-chip scratch pad and Level 1 (L1) caches are used to reduce

long latency memory accesses. Between SIMT cores, a unified last level cache is used

to capture locality that is not captured by the L1 caches and/or scratch pads. Memory

requests accessing the same cache line issued by a single core are merged into one L1

cache Miss-Status Holding Register (MSHR) entry. Such memory requests exhibit what

we call intra-core locality. When warps from different cores issue requests that access the

same cache line within a short timeframe, they can be merged into one Level 2 (L2) cache

MSHR entry and only one request is sent to the DRAM controller. Our experiments show

that for a single memory request in the DRAM controller, there are often multiple requests

issued from different cores merged together in the L2 cache MSHRs. We call this inter-core

locality.
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1.1. Motivation

1.1 Motivation

We will describe the reason for inter-core locality in this section. Figure 1.1a shows a

CUDA code example for which inter-core locality occurs. The code is Breadth-First-

Search (BFS) from the Rodinia benchmark [8, 9]. Each graph node in the BFS is repre-

sented by a single thread. Multiple nodes can be assigned to a single core. Assume node

0 is currently running on Core 0, node 1024 is running on Core 1 and they connect to a

common node X which is nextNodeID in Figure 1.1a. In line 3, they both want to access

g_graph_visited[X]. Because they are running on different cores, neither coalesc-

ing unit nor L1 cache can help. The memory request to g_graph_visited[X] will be

merged into one last level MSHR entry and only one memory request is sent to DRAM

controller. Inter-core locality occurs in this situation. However, this request may not be pri-

oritized as the DRAM controller is not aware of how many warps are waiting for the request.

This problem cannot be avoided by changing threads scheduling policy since common node

information cannot be predicted.

As illustrated by the above example, inter-core locality can occur in General-Purpose

computing on Graphics Processing Unit (GPGPU) applications when they access large

shared data structures. To help quantifying the potential presented by inter-core locality,

we analyze five different kinds of applications by delaying 1000 requests either with or

without inter-core locality. Figure 1.1b shows the performance impact, which shows that

delaying requests with inter-core locality has more performance impact than delaying re-

quests without inter-core locality. We evaluate the impact when the memory scheduling

policy takes inter-core locality into account. Section 3.2 will show more analysis on this

result.

Modern GPU memory controllers employ an First-Ready First-Come First-Serve (FR-FCFS)

4
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Node 
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0: int nodeID = blockIdx.x*MAX_THREADS_PER_BLOCK + threadIdx.x;
1: for(i in all edges connected to current nodeID) {
2:   int nextNodeID = g_graph_edges[i];
3:   if(!g_graph_visited[nextNodeID]) {
4:     g_cost[nextNodeID]=g_cost[nodeID]+1;
5:     g_updating_graph_mask[nextNodeID]=true;
6:   }
7: }

Running on core 0 Running on core 1

(a) BFS code in Rodinia benchmark shows the inter-core locality
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Figure 1.1: The source of inter-core locality and the effects of delaying inter-core lo-
cality requests
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[13, 35, 36] scheduling policy to reorder memory requests to achieve maximum DRAM

bandwidth utilization. However, a FR-FCFS scheduler may delay a request with high inter-

core locality in favor of greedily optimizing for bandwidth. By exploiting inter-core lo-

cality, the DRAM system can reduce the overall warp stalling time, causing additional

memory requests to be generated and thereby increasing future opportunities for bandwidth

optimizations.

In this thesis, we propose an inter-core locality aware memory access scheduling policy

and hardware. Inter-core locality can be represented using L2 MSHR merge length which

is defined as the number of outstanding requests within one MSHR entry in this thesis. We

enable the DRAM to be aware of this information. Our inter-core locality aware scheduler

uses L2 MSHR merge information to schedule requests with high inter-core locality first.

1.2 Contributions

This thesis makes following contributions:

• We make a key observation with a concrete example to show that performance can

be improved by prioritizing requests with high inter-core locality. We also show that

performance is impacted if we delay requests with inter-core locality.

• We quantify inter-core locality across 24 benchmarks from three benchmark suites.

We first classify 24 benchmarks into memory insensitive and memory sensitive bench-

marks using a perfect DRAM model. We further classify memory sensitive bench-

marks into low inter-core locality and high inter-core locality benchmarks.

• We propose an inter-core locality aware scheduler. We show that inter-core locality

can be captured by utilizing L2 MSHR merge information. We explored two policies

6



1.3. Organization

that consider DRAM row-buffer locality along with age information to reduce star-

vation. We propose a hardware structure to enable the DRAM controller to be aware

of L2 cache MSHR merge information.

In the following sections, all MSHRs are L2 cache MSHRs unless specified otherwise.

1.3 Organization

• Chapter 2 describes the background on baseline GPU architecture, cache and MSHR

structure and memory system in this thesis.

• Chapter 3 gives a key observation on inter-core locality using a concrete example. It

shows that by utilizing inter-core locality information on memory access scheduling,

we can improve performance.

• Chapter 4 describes details about inter-core locality aware memory access scheduling

policy. Two types of DRAM row score selection policies are explored in this chapter.

A structure is proposed to support proposed policy. Hardware overhead is estimated

in this chapter.

• Chapter 5 describes the methodology used in this thesis. A detailed GPU configura-

tion is presented. This chapter also classifies benchmarks into different categories for

experiments.

• Chapter 6 describes the experiments in this thesis. An overall performance of our

inter-core locality memory access scheduling policy is presented. A detailed analysis

of memory requests latency, L2 cache reservation and data dependency stall is given

to have a comprehensive understanding of our proposed policy. A sensitivity study
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is presented to show the effects of different configurations that affects our scheduling

policy.

• Chapter 7 describes related work on memory access scheduling.

• Chapter 8 describes future work.

• Chapter 9 concludes inter-core locality memory access scheduling presented in this

thesis.
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Chapter 2

Background

In this chapter, we describe our baseline architecture. Section 2.1 describes our baseline

GPU architecture. Section 2.2 describes the MSHR structure and how it handles multiple

outstanding requests. Section 2.3 describes the DRAM model and DRAM controller in

detail.

2.1 Baseline GPU Architecture

In this work, we study a GPU-like many-core architecture. Figure 2.1 shows our baseline

architecture. A GPU is composed of a number of SIMT cores (Streaming Multiprocessor in

NVIDIA terminology and Computing Unit in AMD terminology) and a number of memory

partitions. There is an on-chip interconnection network connecting SIMT cores and mem-

ory partitions [12, 19]. Each SIMT core consists of a number of Thread Blocks (TBs). A

function runs on the GPU called a kernel. When a kernel is launched, a number of warps

are assigned to the TBs. Similar to NVIDIA, each warp consists of 32 threads in our model.

Threads in a warp run in lockstep. When a warp executes a load instruction, a number of

9
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Figure 2.1: Baseline GPU architecture

memory requests are generated from the warp. A coalescing unit is introduced to reduce

the number of memory requests sent from a warp. The coalescing unit tries to coalesce

requests issued by a warp into as few requests as possible if there are consecutive addresses

in these requests. For example, if all threads in a warp access the address within 128 bytes,

only a single memory request will be generated. However, if the threads access memory

address which has gaps larger than 128 bytes, 32 requests will be generated. This can create

significant pressure on the memory system.

In the following sections, we will use cores to represent SIMT cores for simplicity.
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2.2. Cache and Miss Status Holding Registers

2.2 Cache and Miss Status Holding Registers

There are two levels of caches in our baseline GPU architecture. Each SIMT core has its

own private L1 cache to capture locality within it. For the locality between SIMT cores,

there is a last level cache bank located in the memory partition. When requests miss in

the cache, multiple outstanding memory requests are sent to lower memory levels. To keep

track of multiple outstanding memory requests, an MSHR is added to the cache [24, 40] .

Block Addr. Dest. RegV Dest. RegV=

Miss Block Address

Data

Block Addr.
…

Dest. RegV Dest. RegV=

Miss Block Address

Data

… ……

Figure 2.2: MSHR structure

Figure 2.2 shows the structure of the MSHR assumed in this work. When a request

misses a cache line, the MSHR compares the address of the request to each entry of its

block address. If there is no MSHR entry that matches the block address of the request,

the request is stored into a new MSHR entry and a miss request is sent to the next lower

level of the memory hierarchy to acquire data for the whole cache line. The MSHR keeps

information regarding the waiting requests, such as the destination register to store the data

11



2.3. DRAM Controller and DRAM

once it returns from the lower memory level. If the address of the request matches the block

address of an MSHR entry, it indicates that there is already an outstanding request for this

cache line. This request is merged into the matched MSHR entry, and no additional request

needs to be sent.

When multiple memory requests are issued by warps from the same core miss to the

same cache line, they are merged into the L1 cache MSHR. Memory requests for the same

cache line from different cores are merged into the last level cache MSHR. Thus, the last

level cache MSHR captures inter-core locality. In this thesis, we use this information to

improve memory access scheduling in Chapter 4.

2.3 DRAM Controller and DRAM

Figure 2.3 shows our baseline DRAM controller and DRAM model. When a request

reaches the DRAM controller, it will be buffered in either the Read Request Queue or the

Write Request Queue depending on its type. A scheduler inside the DRAM controller is

responsible for the memory access scheduling. The scheduler chooses a request either from

the read request queue or the write request queue based on the read-write scheduling pol-

icy. After a request is chosen, the scheduler translates the request into DRAM commands

(Precharge, Active, Read and Write) and the request is transferred to the Command Queue.

Each DRAM bank has its own command queue. The command queue is scheduled using a

round-robin policy [16]. When a DRAM command is sent, the priority pointer points to the

next bank. For each bank, the commands in the command queue are scheduled in-order to

preserve scheduling decisions by the request scheduler.

In each DRAM bank, there is a row-buffer. The reason for the row-buffer is to reduce

access latency to the same DRAM row due to the timing constrains of the DRAM. When a
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Figure 2.3: Baseline DRAM controller structure
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row in the DRAM is activated, data in a DRAM row is transferred to the row-buffer. This

row is known as the open row for the bank. While a row is buffered in a row-buffer, requests

access this row are called a row-hit. When a DRAM controller issues a request that accesses

a different row, the DRAM needs to close the current open row and activate a new row. This

is known as a row-miss.

Command Bus

Data Bus

Address Bus

PRE RDACTRD

CLOCK

R1 R2R1 R2

tCL

D2D2D1D1

tRP tRCD

tCL

Row-hit latency Row-miss latency

(a) DRAM timing illustration for row-hit and row-miss

Command Bus

Data Bus

Address Bus

WR RD

CLOCK

R1R1

tCL

D1 D1D1D1

tWTR tCL

Read-Write latency

(b) DRAM timing illustration for write to read latency

Figure 2.4: DRAM timing constrains, we assume row 1 is the current open-row at the
beginning of the clock. (RD = Read, PRE = Precharge, ACT = Activate, WR =
Write, R1 = Row 1, R2 = Row 2, D1 = Data for Row 1, D2 = Data for Row 2)
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2.3. DRAM Controller and DRAM

Figure 2.4 shows the DRAM timing constrains. The command bus sends DRAM com-

mands like Read, Write, Precharge and Activate to the DRAM. The address bus indicates

which bank, row and column to access. For simplicity, we do not show bank and column

address in the Figure 2.4. We assume the read and write commands access the same bank

but different columns. After a read or a write command is sent, the data bus output the data

after the timing constraint is satisfied.

Figure 2.4a shows the timing constrains of row-hit and row-miss. When there is a

row-hit, data will be available at the output port after Column Address Strobe Latency

(tCL). When a row-miss occur, two additional latencies are introduced which are Row

Precharge Time (tRP) and Row Address to Column Address Delay (tRCD). The row-miss la-

tency (tRP+tRCD+tCL) is much higher than row-hit latency (tCL). To achieve high bandwidth

utilization, our baseline Scheduler uses an FR-FCFS policy. It schedules requests accessing

the current open row first. When there is no memory requests to the current open row, the

request scheduler schedules the oldest request to prevent starvation.

Write requests are not critical to performance. Because after a write request is sent, a

thread does not block for the write request. There is a minimal delay (tWTR) to switch the

bus between read and write. Figure 2.4b shows the timing constrain of the tWTR. To reduce

the tWTR penalty, write requests are buffered in write request queue. When the DRAM

controller accumulates a high number of write requests in the write request queue, the

request scheduler drains the write request queue to prevent the write queue from reaching

its maximum capacity. This number is the high-watermark. The write request queue will

also be drained when the read request queue is empty. The request scheduler stops draining

the write request queue and switch to schedule the read requests until it reaches a low

number which is the low-watermark [39].
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Chapter 3

Inter-core Locality Benefits

Performance

As described above, the coalescing unit is used to increase overall memory bandwidth.

However, the coalescing unit can only help in combining requests from one warp. Requests

issued by different warps within a single core are combined in the L1 cache MSHR. Mem-

ory requests from different cores cannot be combined by the coalescing units or by the L1

cache MSHRs. While memory requests issued by the multiple cores accessing data in the

same cache line, they are merged into a single L2 cache MSHR entry. The L2 cache MSHRs

keep track of outstanding memory requests sent to DRAM. We show that the number of

merges in an L2 cache MSHR entry can be used to represent inter-core locality.

In this thesis, row locality is defined as the average number of requests to access an

open DRAM row before it is closed. Row locality is important to DRAM bandwidth uti-

lization. High row locality means a low row-miss rate and high bandwidth utilization. Since

row-miss overhead (tRP+tRCD+tCL) is much larger than row-hit overhead (tCL), it is impor-
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tant to improve row locality to maximize DRAM bandwidth utilization. Modern DRAM

controllers use an FR-FCFS scheduling policy to reorder memory requests to maximize the

row access locality. FR-FCFS searches the request queue to find if there is any request

accessing the open row. If there is no request accessing the open row, a row-miss occur. In

this case, FR-FCFS schedules the oldest request to prevent starvation. This can lead to high

DRAM bandwidth utilization but does not always benefit the overall performance. In the

next section, we will describe an alternative scheduling policy to utilize inter-core locality

to get better performance.

3.1 A Key Observation

As mentioned in Chapter 2, memory requests from different cores accessing the same data

are merged into the L2 cache MSHR. Only one memory request is sent the to the DRAM

controller. In this case, multiple warps from different cores are virtually waiting for one

memory request in the DRAM controller. By servicing the request with the maximum

number of waiting warps, the total waiting time of these warps is reduced. These warps can

resume execution earlier and increase overall performance. Since memory requests that are

issued by different cores to the same cache line are merged into the same L2 MSHR entry,

we can use L2 cache MSHR merge length to measure the number of warps waiting for their

memory requests. In this thesis, we only focus on memory requests issued by different

cores. In the Chapter 8, we will discuss memory requests issued by the same core in future

work.

The MSHR merge information can be used to help with the DRAM controller schedul-

ing decision. For a request in the DRAM controller, if the merge length of its correspond-

ing MSHR entry is greater than one, this indicates that by serving this request will benefit
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3.1. A Key Observation

multiple warps from multiple cores. We call this inter-core locality aware memory access

scheduling.

Figure 3.1 shows an example to illustrate how inter-core locality aware memory access

scheduling can improve performance. Assume Warp 0 and Warp 1 belong to Core 0 and

Warp 2 and Warp 3 belong to Core 2. During Cycle 0, they are all currently stalling on

the pending load instructions. Memory requests from Warp 0 and Warp 2 are merged into

one MSHR entry, which is the first row of the L2 cache MSHR, as illustrated in Figure 3.1.

Four memory requests (R0 to R3) are sent to the DRAM. For simplicity, in this example,

we assume that after DRAM services a request, the core can receive this request the next

cycle.

Figure 3.1a shows the FR-FCFS scheduling policy described in Section 2.3. Because

the FR-FCFS scheduling policy cannot make use of inter-core locality information, it is

possible that the DRAM controller schedules requests with high inter-core locality last. We

assume the DRAM serves requests in an order R1→R3→R0. After R1 is served, Warp 1

can continue to execute the next independent instruction while other warps are still stalling.

This is also the same for R3. After R0 is served, two requests (R0, R2) will be received

by Core 0 and Core 1. Thus in the next cycle, Warp 0 and Warp 2 can execute the next

instructions concurrently.

After 4 cycles, Warp 1 executed 3 instructions because its request is returned from cycle

0. Warp 3 executes 2 instructions after cycle 1. Warp 0 and Warp 2 execute 1 instruction

because their requests returned on the cycle 2. The total number of instructions executed

by Warp 0 to Warp 3 is 7 = 1+3+1+2. In this case, the Instructions Per Cycle (IPC) within

these 4 cycles is:
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Cycle 0 Cycle 1 Cycle 2 Cycle 3
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(a) Example of FR-FCFS memory scheduling policy
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(b) Example of inter-core locality aware memory scheduling policy

Figure 3.1: Example of using inter-core locality aware scheduling generates more
∆IPC. Wx represents warp x, Rx represents the memory requests that are sent
by warp x. Wx+y indicates that warp x has executed next y instructions.
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3.2. Critical Path Analysis

∆IPCa =
1+3+1+2

4
= 1.75 (3.1)

Figure 3.1b shows the same example with inter-core locality aware scheduling. The

memory controller schedules requests with high inter-core locality first. When multiple

cores send memory requests to access the same L2 cache line, they will be merged into L2

cache MSHR. In this case, the DRAM serves R0 first because R0 has highest MSHR merge

length (length = 2). By serving this request, both Warp 0 and Warp 2 can execute the next

instructions from cycle 1. After 4 cycles, the IPC is:

∆IPCb =
3+3+2+1

4
= 2.25 (3.2)

This example shows that we can improve performance by scheduling high inter-core

locality memory requests first. In the next chapter, we will describe our inter-core locality

aware scheduling policy in detail. In Chapter 5, we will show how L2 cache MSHR merge

length is distributed across benchmarks.

3.2 Critical Path Analysis

Since we prioritize memory requests with inter-core locality, the request with no inter-core

locality will be delayed. In Chapter 1, we have already given a brief overview on the ef-

fects of delaying memory requests either with or without inter-core locality. We design two

separate experiments by delaying 1000 requests. One is delaying requests with inter-core

locality. The other one is delaying requests without inter-core locality. The 1000 requests

occupy different percentages of total requests in these applications. The performance im-

pact varies from 1% to 39%. However, delaying requests with inter-core locality always
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3.2. Critical Path Analysis

has 2X to 10X more performance impact than delaying requests without inter-core locality

as shown in Figure 1.1b. This data indicates that requests with inter-core locality are more

critical than requests without inter-core locality. Prioritizing inter-core locality requests

will benefit performance because if the memory controller delays them, the impact on the

performance is higher than requests without inter-core locality.
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Chapter 4

Inter-core Locality Aware Memory

Access Scheduling

This chapter describes our memory scheduling policy in detail. We first start with basic

scheduling rules of an inter-core locality aware scheduler. We use the MSHR information

to generate scores for each request and each DRAM row. Two types of row score selection

policies are proposed. The score is used to help our scheduling policy making decisions. In

order to handle starvation of the requests, we added an age information to our scheduling

policy.

4.1 Overview of Inter-core Locality Aware Memory Access
Scheduling

As describe in Chapter 3, inter-core locality can be represented by the number of merges

of an L2 cache MSHR entry. Figure 4.1 shows an overview of inter-core locality aware

memory access scheduling. When a request misses an L2 cache line, if there is no MSHR
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Figure 4.1: Overview of inter-core locality aware memory access scheduling. R0 to
R8 represents request 0 to request 8. Red numbers beside requests are request
scores

entry for this cache line, this means this is the first request for this cache line. A new MSHR

entry will be allocated, and this request will be sent to the DRAM controller to get the data

for the whole cache line. Because only one core sends the request to access the cache line,

this request has no inter-core locality right now. On the other hand, if there is already an

MSHR entry for the cache line, the inter-core locality occurs. There is no need to send this

request to DRAM controller since there is already a request getting the data. This request
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4.1. Overview of Inter-core Locality Aware Memory Access Scheduling

only needs to merge into the already exist MSHR entry. However, in our inter-core locality

aware scheduling policy, we still send a new request called a dummy request that only brings

the MSHR information. When the dummy request reaches the DRAM controller, we update

the score with MSHR information and make scheduling decisions based on the new score.

Rule 1: Scheduling Rules

1. Largest request score for row-hit: When there are requests to access current

opened row, schedule the one with largest request score first among all row-

hit requests.

2. Largest row score for row-miss: When a row-miss occurs, choose the new

row based on the row score. A row with the largest score is chosen. This

row is opened, and policy 1 is used to choose a request.

A request score is assigned to each request in the DRAM read request queue. For each

DRAM row, a row score is assigned based on the all request scores for this row. For example

in Figure 4.1, There are three requests in the DRAM controller. R0 has a request score as

4 since there are four requests waiting for the same cache line in the L2 cache MSHR. For

the same reason, R7 and R4 has a request score as 2 and 4, respectively. For each DRAM

row, there is a row score. In the example, we use the summation of all requests score as the

row score. For the row 1, the score is 5 which is the summation of request score R7 and R4.

The request score is used to select requests and the row score is used to select rows. The

scheduler first searches the request queue to see if there are any row-hit requests. Among all

row-hit requests, the request with the maximum score is chosen first. If there are no row-hit
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4.2. Row Score Types

requests, the row with the maximum score is selected. Rule 1 shows our scheduling policy.

Write requests do not have a corresponding MSHR entry. The write request queue is

drained when it reaches a high-watermark or when the read request queue is empty. The

FR-FCFS policy is used on the write queue.

In the following section, we discuss two row score types.

4.2 Row Score Types

We first use the MSHR merge length as the request score. The row score is calculated based

on the request score for the row. We explore two types of row score types for a DRAM row:

1. MSHR-M: Row score is defined as the largest request score in this row.

2. MSHR-S: Row score is defined as the summation of all requests’ score in this row.

MSHR-M policy always schedules a request with the maximum MSHR merge length.

This policy aggressively use make use of inter-core locality. When the DRAM controller

selects a row, only one request that with the maximum L2 cache MSHR length is consid-

ered. But it ignores other requests in the same row. It is possible that other requests with

selected row have low inter-core locality.

We improve MSHR-M policy to consider the inter-core locality of all requests in a

DRAM row. We propose MSHR-S policy that augments the row score by using the sum-

mation of all requests’ score in the same row as the row score. This policy can benefit the

most memory requests in the MSHR by opening a row. The overhead of serving row-hit

requests is low. The interval between two successive row-hit requests in the same bank

is tCCDL, which is three DRAM clock cycles with the bank group enabled in our GDDR5

configuration [15]. This is relatively small compared to the time to open a new row, which

25



4.3. Reduce Latency by Age Information

needs tens of cycles. Thus, requests within the same row can be served in a short time. So

even though every request in a DRAM row is not the one with highest inter-core locality,

MSHR-S can still serve the maximum inter-core locality in the short time by opening a row.

4.3 Reduce Latency by Age Information

A DRAM row with a low score will starve because the proposed scheduler chooses the

largest row score which is defined by the MSHR merge length. These requests can hurt

performance if they have been waiting in the DRAM controller for a prolonged period

of time. In order to prevent starvation, we propose a MSHR-S+A policy. MSHR-S+A

augments MSHR-S by including age in addition to merge information from the L2 cache

MSHR. Age in this thesis is defined as the life time of a memory request. When a request

is generated, the age is 0. The age will increase by one each cycle. There is a latency for a

memory request reaching the DRAM controller. When the memory request reaches the L2

cache, the age is the latency from the time it is generated. When a memory request arrives at

the MSHR, the age is calculated for this request. By employing the MSHR-S+A policy, the

request’s score and row score now is defined using age, instead of solely the merge length

as described in the previous section. The age of a request is defined as:

AgeReq =Current Time−Request Creation Timestamp (4.1)

Only the first outstanding memory request within an MSHR entry is sent to the DRAM.

To represent an age of all memory requests within an MSHR entry, the age of an MSHR

entry is the summation of all request ages in this MSHR entry:

AgeMSHR = ∑AgeReq (4.2)
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When we pass the MSHR information, we pass AgeMSHR along with merge length.

After the DRAM controller receives the MSHR merge information, which contains merge

length and age, the age needs to be updated every cycle to represent the real age. This is

because while a request is waiting in the DRAM controller, the age of this request is still

increasing as time passes. Notice that a request in the DRAM controller may represent a

number of requests in the MSHR. Upon each cycle, the age of each request in MSHR is

incremented by one. In total, the age of an MSHR entry is incremented by the MSHR merge

length every cycle. So instead of incrementing by one each cycle, the age of a request in

the DRAM controller needs to be incremented by the number of MSHR merge requests.

4.4 Implementation Details

Figure 4.2 shows a detailed implementation of the inter-core locality aware memory access

scheduler. We introduced a buffer called the Merge Information Buffer (MIB) in the L2

cache and the DRAM controller. The MIB records MSHR block addresses, merge length

and age information. There is also a valid field to indicate whether an entry has already been

sent to the DRAM controller. When a request misses an L2 cache line, if this request is the

first one that misses the cache line, a new MSHR entry is allocated and a new request is

pushed into the miss queue. If there is already an outstanding request for the cache line, the

request is merged into an MSHR entry. At this time, the MIB is updated with a new merge

length, the new age is calculated, and the valid bit is set to one. A multiplexer is introduced

after the MIB and the miss queue to determine which request to send in each cycle. If the

MIB has valid entries, this indicates there are requests that have not been returned from

DRAM yet. It is important to update the DRAM controller with the latest information to

prevent it to make a decision based upon the stale information. When the MIB has a valid
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entry, the multiplexer will send this entry first to inform the latest information. A dummy

request with the maximum request score is generated and sent to the DRAM controller

first. The dummy request includes the MSHR block address, merge length, age and a bit to

indicate that it is a dummy request. After an MIB entry is sent, the valid bit is set to zero.

This entry will be set to valid again if there is another outstanding request to the entry. If

there is no valid entry in the MIB, requests from the miss queue are sent.

A demultiplexer is introduced to determine which structure a memory request should

go to when arriving at the DRAM controller. Normal requests are pushed into the requests

queue and dummy requests are used to update the MIB in the DRAM controller. When a

dummy request reaches the DRAM controller, the merge length field in the dummy request

is used to overwrite the merge length field in the DRAM controller and the age field in

the dummy request adds to the age filed in the DRAM controller. Each entry in the MIB

requires an adder to update the age each cycle. The adder takes age and merge length

as the input and outputs the added result back to the age. Information in the MIB in the

DRAM controller is used to help scheduling decisions as described above. When there is

no corresponding information in the MIB, it means the merge length is one and the age can

be obtained from the current request.

4.5 Hardware Overhead

In this section, we will analyze the hardware overhead of our proposed structure. For each

MSHR entry, we need a corresponding MIB entry. In each MIB entry, an additional 20 bits

are required to store the MSHR merge information. These 20 bits break down as follows.

The merge length requires 4 bits for an MSHR entry with a maximum merge capacity of 16.

We use 15 bits for the age field. When all 16 MSHR merges are occupied, each can record

29



4.5. Hardware Overhead

a maximum age of 215/16 = 2048 cycles in the memory controller clock domain. There is a

chance that age exceeds 215. In this case, we saturate the counter at 215. The valid bit only

requires a single bit. Each MSHR entry already has a block address field, which we can

reuse in the MIB. Given that we have 64 MSHR entries in our baseline configuration (see

Table 5.1), the total hardware cost added to an L2 cache is 160 bytes. This is 0.2% of total

L2 cache.

The MIB in the DRAM needs to record an MSHR block address so that memory re-

quests in the DRAM request queue can locate its corresponding MSHR entry. For a 32 bit

address and 128 byte cache line, the block address requires 24 bits. Merge length and age

require the same amount of bits as MIB in MSHR (4 bits and 15 bits, respectively). For

each request in the DRAM read request queue, we need an MIB entry for it. The DRAM

read request queue contains 64 entries from Table 5.1, requiring a total of 344 bytes. Also,

each row in every bank needs to record the row score. In our baseline architecture, we have

16 banks and 4096 rows. To record banks and rows, we need 4 bits and 12 bits, respec-

tively. Also, age and merge length require 19 bits in total. So for each DRAM row, we

need 4+12+19=35bits. If each request in the DRAM read queue accesses different rows,

the number of rows can be as many as the number of requests in the DRAM read queue.

We need the number of row score entries to be the same as the DRAM read queue capacity

which is 64. The row score requires a total of 280 bytes. We also need 128 15-bit adders

for the DRAM row score and MIB. Given that 1-bit full adder needs 34 transistors, 15-bit

adder needs 510 transistors. 1-bit SRAM needs 6 transistors, 510 transistors are 85 bits in

storage. 128 15-bit full adders needs 1360 bytes. So the total overhead added to the DRAM

is 344 + 280 + 1360 = 1984 bytes.
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Chapter 5

Methodology

5.1 Configuration

To evaluate our proposed inter-core locality aware memory access scheduling policy, we

use a modified version of GPGPU-Sim 3.2.2 [4]. The DRAM model in GPGPU-Sim 3.2.2

does not support separate read and write queues. There is a bus turnaround latency to switch

between read requests and write requests. In order to minimize this latency, we add separate

read and write queues in the DRAM controller as stated in Chapter 2. Table 5.1 shows our

configuration. We use a GPU model similar to NVIDIA GTX480. To model the DRAM,

we use Hynix 1Gb GDDR5 [15] as our DRAM timing model. The warp scheduling policy

we use is Greedy-then-Oldest (GTO). This policy will switch to another warp only if the

current warp stalls.

We perform the evaluation using a set of benchmarks from Rodinia [8, 9], CUDA Soft-

ware Development Kit (SDK) [2], GPGPU-Sim [4] and LonestarGPU [5]. Table 5.2 shows

the benchmarks used in this study. For LonestarGPU benchmarks, they use CUDA 5 but

our simulator only supports CUDA 4.2. We tried to fix the problem and only get two of
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Table 5.1: Baseline Configuration

Configuration Parameter
Number of Cores 15

Warp size 32

Max Threads / Core 1536

Warp Scheduling Policy Greedy-then-oldest (GTO) [37]

L1 Data Cache / Core 16KB total size, 128B line, 4-way associative

L2 Unified Cache 64KB / Memory Sub-partition

128B line, 16-way associative

L2 MSHR 64 entries / Memory Sub-partition

16 merges / Entry

Number of Memory Partitions 6

Memory Sub-partitions 12, 2 / Memory Partition

L2 to DRAM Latency 20

DRAM Read Queue Capacity 64

DRAM Write Queue Capacity 128

High/Low Watermarks 96/80

Core Frequency 1400 MHz

Interconnect Frequency 1400 MHz

DRAM Frequency 924 MHz

Number of DRAM Channels 6

Number of DRAM Banks 16, 4 / Bank Group

Number of DRAM Rows 4096

GDDR5 Memory Timing Hynix H5GQ1H24AFR

tRCD = 12, tRAS = 28, tRP = 12,

tRC = 40, tCCDS = 2, tRRD = 6,

tCL = 12, tWL = 4, tCDLR = 5,

tWR = 12, tCCDL = 3, tRTPL = 2

(Unit in DRAM cycle)
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them running. Not all the benchmarks are memory sensitive. We classify our benchmarks

in the following section.
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Table 5.2: Benchmarks

Memory Insensitive
Name Abbr. Suite

Back Propagation BACKP Rodinia

HotSpot HOTSP Rodinia

Heart Wall HRTWL Rodinia

Kmeans KMN Rodinia

Leukocyte LKYT Rodinia

LU Decomposition LUD Rodinia

Nearest Neighbour NNC Rodinia

Speckle Reducing Anisotropic Diffusion SRAD Rodinia

Similarity Score SS Rodinia

convolutionSeparable CONV CUDA SDK

histogram HIS CUDA SDK

reduction REDU CUDA SDK

scalarProd SCP CUDA SDK

Memory Sensitive, Low Inter-Core Locality
Name Abbr. Suite

BlackScholes BS CUDA SDK

CFD Solver CFD Rodinia

Needleman-Wunsch NDL Rodinia

Streamcluster STMCL Rodinia

Points-to Analysis PTA LonestarGPU

VectorAdd VADD CUDA SDK

Memory Sensitive, High Inter-Core Locality
Name Abbr. Suite

Breadth-First Search BFS Rodinia

Single Source Shortest Path SSSP GPGPU-Sim

Matrix Transpose TRANS CUDA SDK

Merge Sort MGST Rodinia

Survey Propagation SP LonestarGPU
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5.2 Classification of Benchmarks
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(b) Memory sensitive applications

Figure 5.1: Speedup using perfect DRAM

In order to know which applications are memory sensitive applications, we implement

a perfect DRAM model which has a zero-cycle latency. When a memory request arrives

at the memory controller, it is immediately ready at the DRAM return queue. Figure 5.1
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Figure 5.2: Cycle distribution of inter-core locality across benchmarks. We use the
L2 MSHR merge length to represent inter-core locality.

shows the speedup when using perfect DRAM.

In Figure 5.1, we classify our benchmarks into two categories: 1) Memory insensitive

applications. These benchmarks do not speedup much using perfect memory (speedup <

20%). The main reasons are 1) The application is compute intensive and 2) L1 or L2 cache

miss rate is too low. While for some applications, we can increase input data size to get

rid of low L1 or L2 cache miss rate. However, this can take a very long time to finish

in the simulation environment. From our estimation, applications run 1s on hardware will

run 10 days in the simulation environment. Applications in Figure 5.1a fall into this cate-

gory. 2) Figure 5.1b shows all memory sensitive applications. These applications benefit

significantly when using perfect memory. We focus on these applications only.

Our scheduler uses the L2 MSHR merge length to prioritize requests. Figure 5.2 shows

a cycle distribution of the L2 MSHR merge length. When all MSHR entries are empty,
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5.2. Classification of Benchmarks

the MSHR is idle. The bar at the top indicates the percentage of cycles that MSHR is idle.

When there are requests in the MSHR, if all MSHR entries’ merge length is 1, this cycle has

no inter-core locality. If any of the MSHR entries’ merge length is larger than 1, it means

there is inter-core locality. The black bar at the bottom indicates the percentages when this

happens.

From Figure 5.2, we further classify applications based on the percentage of MSHR

merge length. Memory sensitive applications with low inter-core locality (LIL) and memory

sensitive application with high inter-core locality (HIL). Applications with MSHR merge

length less than 10% are classified as Low Inter-core Locality (LIL). Applications with

more than 10% MSHR merge length are classified as High Inter-core Locality (HIL).
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Chapter 6

Experimental Results

In this chapter, we present the result of our inter-core locality memory access scheduling

policy. Section 6.1 evaluates the performance of the inter-core locality aware DRAM sched-

uler for all applications. Section 6.2 gives a detail analysis on our scheduler. The analysis

on memory request related stalls on L2 cache, memory access latency, data dependency

stall, row locality and DRAM bandwidth is given to depth understand the inter-core local-

ity scheduling policy. Section 6.3 gives an analysis on sensitivity of the DRAM request

queue size and L2 cache to DRAM latency. We use the harmonic mean when computing

average results.
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Figure 6.1: IPC for the memory sensitive, high inter-core locality applications
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Figure 6.2: IPC for the memory sensitive, low inter-core locality applications
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6.1. Performance

Figure 6.1 illustrates that the MSHR-S+A scheduler achieves an average 10.9% perfor-

mance improvement over the FR-FCFS scheduler for the memory sensitive benchmarks

with high inter-core locality. For the memory sensitive with low inter-core locality bench-

marks, Figure 6.2 shows that MSHR-S+A scheduler has the best performance with an av-

erage 2.6% performance improvement and no benchmarks show performance degradation.

If the inter-core locality is low, MSHR-S still does improve performance. This is because

MSHR-S chooses a row with the most pending requests. Rixner et al. [36] use a similar

technique called most pending policy. By serving the most pending row, other rows have a

chance to wait for more requests thus improve overall row locality. Figure 6.8 shows this in

detail.
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Figure 6.3: IPC for memory insensitive application

In summary, for memory insensitive applications, the average performance of the mem-
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6.2. Detailed Analysis

ory insensitive applications is improved by 0.7%. Only KMN shows less than 1% perfor-

mance degradation which is negligible.

The following sections discuss the performance improvements when using the locality

aware DRAM scheduler in more detail. In following section, we will only focus on memory

sensitive applications.

6.2 Detailed Analysis
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Figure 6.4: L2 reservation fails

Figure 6.4 shows the L2 cache reservation fails reduction normalized to FR-FCFS. The

L2 cache reservation fails happens when there is a request trying to require the cache re-

source, but it cannot. There are three reasons that a missing request fails the L2 cache

reservation. 1) The cache line requested by a request has been reserved by another request
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6.2. Detailed Analysis

but has not been filled. 2) The cache miss queue is full. 3) All MSHR entries are occupied.

Our inter-core locality aware scheduler reduces L2 cache reservation fails because of

the third reason. Our scheduler releases MSHR entries to make room for other requests.

For LIL and HIL benchmarks, we show 10.5% and 35% L2 reservation fails reduction,

respectively.
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Figure 6.5: Maximum memory request latency

MSHR-M and MSHR-S scheduling policies do not concern about request latency. A

DRAM row with low MSRH-S score is stalled for a very long time, which increases the

maximum request latency. MSHR-S+A is proposed to reduce maximum memory request

latency to prevent starvation. Figure 6.5 illustrate how our three scheduling policies impact

maximum memory request latency. Our proposed scheduling policies all increase the max-

imum memory request latency. But MSHR-S+A has a better maximum memory request
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latency by combining age information.
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Figure 6.6: Average memory request latency

Figure 6.6 shows the average memory latency reduction of our proposed scheduler nor-

malized to FR-FCFS. Memory latency reduction comes from releasing more memory re-

quests in the L2 cache MSHR. MSHR-S reduces the total waiting time for all requests in

the L2 cache MSHR. While MSHR-S+A reduces memory latency further by preventing a

memory request from waiting for too long in the DRAM controller, it still serves requests

with high L2 cache MSHR merge length. This is because AgeMSHR is the summation of

all memory requests within an MSHR entry. If an MSHR entry has a very high MSHR

merge length, the accumulation feature of AgeMSHR will ensure that this request still has

high priority.

Scoreboard is a commonly used structure to keep track of data dependency between
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Figure 6.7: Data dependency stall, normalized to FR-FCFS

instructions. Write After Write (WAW) and Read After Write (RAW) hazards are reasons

that make the scoreboard stall a warp. When a load instruction is issued, it usually takes

tens to hundreds of cycles to get the data from memory. This is one important reason that

the scoreboard fails. Our inter-core locality aware scheduler resumes more warps from

stalling to reduce data dependency stall. Figure 6.7 illustrates an average reduction of data

dependency stalls by 2% for LIL and 18% for HIL respectively, comparing to FR-FCFS.

For HIL applications, MSHR-S has the largest impact on reducing scoreboard stalls. This is

because MSHR-S reduces memory accesses waiting time in L2 cache MSHR, thus releasing

the most warps that are currently waiting for the scoreboard.

Applications with low inter-core locality benefit from the MSHR-S scheduler because

it improves row locality by choosing a row with most pending requests. When the MSHR
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Figure 6.8: Row locality, the y-axis indicates average row-hit of all memory requests

merge length of all entries are one, MSHR-S chooses a row with most-pending requests.

While a row with the most-pending requests is being serviced, the DRAM accumulates re-

quests for other rows. Other rows will have a high average row access before the current

open row is switching. Figure 6.8 shows row locality improvement. VADD and PTA have

a high row locality improvement which turn into performance benefits as discussed in sec-

tion 6.1. Other applications do not show a big row locality difference because the inter-core

locality aware DRAM scheduler still uses row-hit first policy as in baseline FR-FCFS to

improve DRAM bandwidth utilization. Figure 6.9 shows the DRAM bandwidth utilization

improvement. The DRAM bandwidth is defined as total percentage of DRAM cycles that

serves read or write requests. For all applications, our inter-core locality scheduler achieves

similar DRAM bandwidth utilization. Because inter-core locality actually focus on proces-
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Figure 6.9: DRAM bandwidth utilizaiton

sor side efficiency, even with the small DRAM bandwidth improvement, the performance

can have a big improvement.

6.3 Sensitivity Analysis

6.3.1 L2 Cache to DRAM Latency

The inter-core locality aware scheduler needs to send the MSHR information from the on-

chip L2 cache MSHR to the DRAM controller. There is a latency between the L2 and

the DRAM controller. Figure 6.10 shows different L2 to DRAM latency that affects the

inter-core locality aware scheduler. In the baseline, we assume a 20 cycle L2 to DRAM

latency. We evaluate the performance from 0 to 100 cycle latency. As latency increases, it

takes longer for MSHR information to arrive at DRAM. This causes inaccurate scheduling
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Figure 6.10: IPC normalized to FR-FCFS for different L2 to DRAM latency with
MSHR-S+A scheduling policy

decision on inter-core locality.

From the Figure 6.10, the performance of VADD fluctuates as the L2 to DRAM latency

increases. Since there is no inter-core locality in VADD, no L2 MSHR information is sent

to DRAM. The L2 to DRAM latency does not affect the accuracy of scheduling. The

MSHR-S+A scheduling policy now using a row with the oldest age which may benefit

performance.

The overall performance improvement with our largest L2 to DRAM latency with

MSHR-S+A scheduling policy is 6% for HIL applications and 2% for LIL applications(normalized

to FR-FCFS).
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6.3.2 DRAM Queue Size
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Figure 6.11: IPC normalized to FR-FCFS for different read request queue size with
MSHR-S+A scheduling policy

Figure 6.11 shows the performance of our MSHR-S+A scheduler across HIL applica-

tions with different DRAM controller request queue sizes. The performance is better with a

larger queue size. This is because with a larger queue size, inter-core locality aware sched-

uler can accumulate more memory requests in DRAM controller while waiting for their

MSHR information. Since the DRAM controller has to wait at least for the L2 to DRAM

latency to receive the MSHR information, if a request in the DRAM controller queue has

not received its MSHR information, the inter-core locality aware scheduler will assume the

merge length as 1 and the age as the request’s age. This is inaccurate if there is another

request in L2 that has been merged into the same MSHR entry but the information of this
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6.3. Sensitivity Analysis

MSHR entry has not been received by the DRAM controller. With large DRAM controller

queue size, we can buffer the requests while waiting for its MSHR merge information to

cover the long L2 to DRAM latency.

With the smallest configuration of the DRAM controller (queue size=16), MSHR-S+A

achieves an average improvement in IPC of 4% with HIL applications and 1% with LIL

applications, comparing to FR-FCFS. For HIL applications, a queue size of 128 shows

a small performance improvement comparing to queue size 64. The reason is these ap-

plications have the largest MSHR merge length. A queue size of 64 entries has already

accumulated enough requests waiting for its MSHR information. With our largest queue

size of 128 entries using the MSHR-S+A scheduling policy, HIL shows 11% performance

improvement and LIL shows 4% performance improvement with MSHR-S+A scheduling

policy comparing to FR-FCFS.
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Chapter 7

Related Work

In this chapter, we are going to present related works on memory access scheduling. We

classify all these works into three parts: 1) Early explorations on memory access scheduling,

2) Memory access scheduling policies that focus on memory requests fairness and through-

put, 3) Using criticality information to prioritize memory requests, 4) Hardware complexity

effective memory access scheduling policies.

7.1 Early Memory Access Scheduling Explorations

Researchers already pay attention to memory access scheduling a long time ago. McKee

et al. [27] observe an important problem for memory access in stream applications. Stream

applications usually use a loop to access vectors. Within a loop, two memory references on

two vectors are accessed. The addresses of the two references have a large gap so that two

DRAM rows need to be accessed. Since the latency of row-hit access is much smaller than

row-miss access, it is not efficient to serve these two references in a sequence. Instead, they

propose a combined compiler and hardware technique to solve this problem. The compiler
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7.2. Fairness and Throughput Memory Access Scheduling

is responsible to detecting the streams and unroll the loop so the consecutive references can

be sent together. They propose a hardware called stream memory controller between the

processor and the DRAM to interleave the references that can use DRAM efficiently.

The above work is for single processor. McKee and Wulf [28] further extend the above

technique to multiprocessor. To choose memory requests that are sent by multiprocessor,

they add two scheduling policies to schedule between multiprocessors. The first is cyclic

scheduling to do round-robin like scheduling. The second is block scheduling that divides

the input vector into blocks. The scheduler switch to another processor when current pro-

cessor finishes the block.

Rixner et al. [36] exploit several memory access scheduling policies. All these memory

access scheduling policies consider different aspect of the DRAM characteristic. FR-FCFS

is proposed in the paper and is the most popular memory access scheduling policies today.

Almost all of the commercial processors use the FR-FCFS today. The idea is to prioritize

row-hit requests over row-miss requests to achieve maximum DRAM bandwidth utilization

and high performance. We use the FR-FCFS as the baseline scheduler for the comparisons

in this work.

7.2 Fairness and Throughput Memory Access Scheduling

There are a number of memory access schedulers proposed for multi-core systems recently

[6, 25, 29, 30]. The primary focuses of these works are providing fairness among threads

while keeping high bandwidth utilization. Mutlu and Moscibroda propose two memory

scheduling policies, Stall-Time Fair Memory-Scheduling (STFM) [29] and Parallelism-

Aware Batch Scheduling (PARBS) [30]. STFM provides quality of service to a shared

DRAM memory system among all threads. The paper observes that a memory request from
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7.2. Fairness and Throughput Memory Access Scheduling

one thread can be slowed down by memory requests from other threads due to interference

between their memory requests. STFM balances all memory service time by scheduling

memory request with the high slow down first. PARBS maintains quality of service from

STFM while improving memory system throughput. PARBS groups memory requests into

a batch and schedules them together to reduce memory latency across all threads. These

techniques work on the multicore CPU but have not been tested on the GPU with thousands

of threads.

Jog et al. [20] proposed a scheme to schedule memory requests between kernels. They

use a First-Ready Round-robin First-Come First-Serve (FR-RR-FCFS) policy. The pol-

icy considers fairness between kernels using round robin scheduling and overall system

throughput using FR-FCFS. This techniques ensures memory access fairness between GPU

kernels. This is scheduling policy focuses on kernel level granularity while we focus on

warp level granularity.

Lakshminarayana et al. [25] consider three aspects of GPU memory scheduling. They

propose a memory scheduling policy to switch between Shortest-Job-First (SJF) and FR-FCFS

to balance tolerance, SIMD-execution and row-buffer locality. This policy prioritizes a warp

based on smallest memory request count to resume a warp as soon as possible. But it does

not consider multiple warps. If multiple warps wait for a memory request, the memory

request with smallest count is not benefit these warps. We consider memory requests that

can resume largest warps from different cores.

Chatterjee et al. [7] exploit memory latency divergence within a warp. From the experi-

ment they present, after a warp sends multiple memory requests, the latency among all these

memory requests has a large divergence because of inter-warp interference. They proposed

a memory scheduling policy to balance this latency divergence. They added an intercon-
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nection network between all memory controllers for exchanging memory access latency

divergency information. By using this information, the memory access latency divergence

is reduced. Their work and our work solve the memory access latency problem from dif-

ferent aspects. Their work focuses on one warp that issues divergence memory requests.

We focus on reducing the memory accesses latency of all warps form different cores that

accessing the same data. Both techniques can improve performance on the GPU.

7.3 Memory Requests Prioritization

Ghose et al. [14] propose a scheme that assigns criticality information to memory requests.

Memory request criticality in this scheme is defined as number of consumer instructions and

historical stall time when a memory request reaches the head of ROB. This information is

sent to the memory controllers to help memory controllers prioritizing threads that have the

most criticality. Prieto et al. [33] use a similar technique by using request distance to head

of the ROB as criticality information. They reduce a single thread stall time by using ROB

which cannot reuse on the GPU architecture. Instead, we consider all threads on the GPU

architecture. To do this, we use the L2 MSHR to reduce stall time of all threads.

Jia et al. [18] propose a scheme to reduce memory requests contentions between threads.

This scheme focuses on efficiency of the L1 cache. To achieve this goal, they propose a

memory prioritization buffer to reorder memory requests and bypass cache when necessary.

To reduce cross-warp contention, the scheme reorders memory requests to avoid cache

thrashing. To reduce intra-warp contention, the scheme by passes L1 cache and sends

memory requests directly to lower level memory system. This work focuses on warp-level

and L1 cache optimization to reduce memory access latency. Our work focuses on the

last-level cache and the DRAM controller to improve overall memory system bandwidth.
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7.4 Complexity Effective Memory Access Scheduling

The FR-FCFS is the most commonly used scheduling policies in GPU as mentioned previ-

ously. However, the hardware complexity of the FR-FCFS is high because it needs a large

number of full-associative comparisons to exploit row-buffer locality. To reduce complex-

ity design of memory controller, there are works on scheduling memory requests at early

stages.

Yuan et al. [42] propose an interconnection network arbitration scheme to reserve row

locality to replace complexity circuit design of FR-FCFS DRAM controller. They observe

that the interconnection network which is between cores and memory controllers can de-

stroy memory access row-buffer locality. To preserve the memory access row-buffer local-

ity, they use an interconnection arbitration scheme to prioritize memory requests accessing

the same row first. Using this scheme, they achieve a performance similar to FR-FCFS only

using a simple FIFO memory controller.

Kim et al. [22] consider interconnection network congestion and row-buffer locality. To

avoid network congestions, they use a local congestion aware function to control injection

rate from each core. To prevent interconnection network interleaving memory requests,

they use a technique similar to the scheme in Yuan et al. [42]. They introduce a superpacket

that group packets in the interconnect using two configurations. The superpacket is grouped

when there are consecutive requests accessing the same DRAM row from the same core or

there are any requests accessing the same DRAM row from the same core.

But these scheduling policies do not outperforms FR-FCFS. They concern the hardware

complexity rather than the performance. Our memory access scheduling policy outperforms

FR-FCFS scheduling policy with little hardware overhead.
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Chapter 8

Future Work

In this thesis, we use inter-core locality to schedule memory access. In the future, we plan

to explore intra-core locality to improve performance further. Intra-core locality is cap-

tured by the L1 cache MSHR that is also a potential metric which can benefit performance.

By utilizing the intra-core locality, we can make a warp-level fine-grained memory access

scheduling policy. The L1 cache MSHR can be used for intra-core locality. The DRAM

controller can get information about number of warps a memory request is representing.

There are two problems need to be solved by using intra-core locality. The first problem is

to handle large amount of on-chip network traffic because we need to send extra requests to

inform the DRAM controller about L1 MSHR information. This will put a heavy pressure

on the on-chip network. If we do not deal with it carefully, the on-chip network will con-

gestion result in a bad performance. The second problem is long latency and low accuracy.

Because there are a few hundred cycles to send a normal request from the processor side

to the DRAM controller. When a request that carries intra-locality information reached the

DRAM controller, a hundreds of cycles already passed. It is high chance that the intra-

55



Chapter 8: Future Work

core locality information in L1 cache has been changed. This result in a low accuracy of

intra-core locality in the DRAM controller side. To help with these two problems, a pos-

sible solution is to redesign current interconnection networks to handle intra-core locality

requests.

56



Chapter 9

Conclusion

In this thesis, we introduce inter-core locality for GPUs. Inter-core locality can be captured

by L2 cache MSHR merge length. We quantify inter-core locality for GPU applications

with thousands of threads. To exploit the inter-core locality, we introduce an inter-core

locality aware memory scheduling policy by using L2 cache MSHR merge information.

We propose three scheduling policies. MSHR-M schedules a request with largest inter-

core locality but does not consider other requests within the same row. MSHR-S uses the

summation of request scores as a row score to choose a row that benefits most inter-core lo-

cality. MSHR-S+A further improves performance by preventing starvation of requests with

low scores. We show a harmonic mean performance improvement of 11% with applications

with high inter-core locality and 3% performance improvement with applications with low

inter-core locality.
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