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Abstract

Given a Cantor-type subset Ω of a smooth curve in Rd+1, we construct random

examples of Euclidean sets that contain unit line segments with directions from Ω and

enjoy analytical features similar to those of traditional Kakeya sets of infinitesimal

Lebesgue measure. We also develop a notion of finite order lacunarity for direction

sets in Rd+1, and use it to extend our construction to direction sets Ω that are

sublacunary according to this definition. This generalizes to higher dimensions a pair

of planar results due to Bateman and Katz [4], [3]. In particular, the existence of

such sets implies that the directional maximal operator associated with the direction

set Ω is unbounded on Lp(Rd+1) for all 1 ≤ p <∞.
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Preface

Much of the proceeding document is adapted from two research papers authored by

myself and Malabika Pramanik, currently unpublished. These materials are used

with permission. Chapters 6 through 11 form the main content of [31], Kakeya-type

sets over Cantor sets of directions in Rd+1, while Chapters 2, 3.7, and 12 through

19 are adapted from [32], Lacunarity, Kakeya-type sets and directional maximal op-

erators. The first of these two manuscripts has recently been conditionally accepted

for publication in the Journal of Fourier Analysis and Applications.
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Chapter 1

Introduction

The main focus of this document is a study of Kakeya-type sets in Euclidean space of

general dimensions. Such sets have much in common with the now classic Besicovitch

construction of Kakeya sets with zero Lebesgue measure [6]. Interest in the analytical

properties of these sets arises in both the traditional study of Kakeya sets in Euclidean

space, as well as from a well-known connection between the existence of such sets

and the boundedness properties of various maximal operators over Lp-space, notably

the generalized one-dimensional Hardy-Littlewood maximal operator; see (1.8) and

(1.2).

Definition 1.1. Fix a set of directions Ω ⊆ Sd. We say a cylindrical tube is oriented

in direction ω ∈ Ω if the principal axis of the cylinder is parallel to ω. If for some

fixed constant A0 ≥ 1 and any choice of integer N ≥ 1, there exist

- a number 0 < δN ≪ 1, δN ↘ 0 as N ↗ ∞, and

- a collection of tubes {P (N)
t } with orientations in Ω, length at least 1 and cross-

sectional radius at most δN

obeying

lim
N→∞

|E∗
N(A0)|
|EN |

= ∞, with EN :=
∪
t

P
(N)
t , E∗

N(A0) :=
∪
t

A0P
(N)
t , (1.1)

1



then we say that Ω admits Kakeya-type sets. Here, | · | denotes (d+ 1)-dimensional

Lebesgue measure, and A0P
(N)
t denotes the tube with the same centre, orientation

and cross-sectional radius as P
(N)
t but A0 times its length. The tubes that constitute

EN may have variable dimensions subject to the restrictions mentioned above. We

refer to {EN : N ≥ 1} as sets of Kakeya type.

We will explore the motivations and the history behind this definition in Sec-

tion 1.5, but for now it suffices to reiterate that sets of Kakeya type, according to

this Definition 1.1, share a critical feature with known constructions of zero measure

Kakeya sets. This feature is intimately related to the notion of stickiness, arising

from the study of classical Kakeya sets (see e.g. [46], [27]). We will describe these

connections and discuss their history in Sections 1.3–1.5, but roughly speaking stick-

iness means the following: the tubes {P (N)
t } have considerable overlap, while their

dilates {A0P
(N)
t } are comparatively disjoint.

1.1 Summary of results

In brief, the new results contained in this document generalize the work of Bateman

and Katz [4] and of Bateman [3] in the plane to an arbitrary number of dimensions.

Our main body of work is devoted to establishing the existence of Kakeya-type sets,

as defined in Definition 1.1, for certain direction sets Ω ⊆ Sd. These results will

have immediate consequences for the Lp-boundedness of two often studied maximal

operators (see (1.2) and (1.3) below). Indeed, as we will explain in Section 1.4, if

Ω ⊂ Sd admits Kakeya-type sets, then both of these operators are unbounded on

Lp(Rd+1) for all p ∈ [1,∞).

Given a set of directions Ω, the directional maximal operator DΩ is defined by

DΩf(x) := sup
ω∈Ω

sup
h>0

1

2h

∫ h

−h
|f(x+ ωt)|dt, (1.2)

where f : Rd+1 → C is a function that is locally integrable along lines. Also, for

any locally integrable function f on Rd+1, we consider the Kakeya-Nikodym maximal

2



operator MΩ defined by

MΩf(x) := sup
ω∈Ω

sup
P∋x
P∥ω

1

|P |

∫
P

|f(y)|dy, (1.3)

where the inner supremum is taken over all cylindrical tubes P containing the point

x, oriented in the direction ω. The tubes are taken to be of arbitrary length l and

have circular cross-section of arbitrary radius r, with r ≤ l.

Bateman and Katz [4] show that Ω ⊂ S1 admits Kakeya-type sets when Ω =

{(cos θ, sin θ) : θ ∈ C1/3} and C1/3 is the ordinary middle-third Cantor set on [0, 1].

We extend this result to a general (d + 1)-dimensional setting, using the following

notion of a Cantor set of directions in (d+ 1) dimensions.

Fix some integer M ≥ 3. Construct an arbitrary Cantor-type subset of [0, 1) as

follows.

• Partition [0, 1] into M subintervals of the form [a, b], all of equal length M−1.

Among these M subintervals, choose any two that are not adjacent (i.e., do

not share a common endpoint); define C[1]
M to be the union of these chosen

subintervals, called first stage basic intervals.

• Partition each first stage basic interval into M further (second stage) subin-

tervals of the form [a, b], all of equal length M−2. Choose two non-adjacent

second stage subintervals from each first stage basic one, and define C[2]
M to be

the union of the four chosen second stage (basic) intervals.

• Repeat this procedure ad infinitum, obtaining a nested, non-increasing se-

quence of sets. Denote the limiting set by CM :

CM =
∞∩
k=1

C[k]
M .

We call CM a generalized Cantor-type set (with base M).

While conventional uniform Cantor sets, such as the Cantor middle-third set, are

special cases of generalized Cantor-type sets, the latter may not in general look

3



like the former. In particular, sets of the form CM need not be self-similar. It is

well-known (see [16, Chapter 4]) that such sets have Hausdorff dimension at most

log 2/ logM . By choosing M large enough, we can thus construct generalized Cantor-

type sets of arbitrarily small dimension.

In Chapters 8–11, we prove the following [31].

Theorem 1.2. (Kroc, Pramanik) Let CM ⊂ [0, 1] be a generalized Cantor-type set

described above. Let γ : [0, 1] → {1} × [−1, 1]d be an injective map that satisfies a

bi-Lipschitz condition

∀ x, y, c|x− y| ≤ |γ(x) − γ(y)| ≤ C|x− y|, (1.4)

for some absolute constants 0 < c < 1 < C <∞. Set Ω = {γ(t) : t ∈ CM}. Then

(i) the set Ω admits Kakeya-type sets;

(ii) the operators DΩ and MΩ are unbounded on Lp(Rd+1) for all 1 ≤ p <∞.

Part (ii) of the theorem follows directly from part (i) as we will see shortly in

Section 1.3. The condition in Theorem 1.2 that γ satisfies a bi-Lipschitz condition can

be weakened, but it will help in establishing some relevant geometry. It is instructive

to envision γ as a smooth curve on the plane {x1 = 1}, and we recommend the reader

does this to aid in visualization. Our underlying direction set of interest Ω = γ(CM)

is essentially a Cantor-type subset of this curve.

After working through the details of Theorem 1.2, we generalize many of the

ideas considerably to establish the following [32].

Theorem 1.3. (Kroc, Pramanik) Let d ≥ 1. If the direction set Ω ⊆ Rd+1 is

sublacunary in the sense of Definition 2.7, then

(i) Ω admits Kakeya-type sets;

(ii) the operators DΩ and MΩ are unbounded on Lp(Rd+1) for all 1 ≤ p <∞.

4



Again, part (ii) of the theorem follows from part (i) by the same mechanism to be

described in Section 1.3. Precise definitions of lacunarity and sublacunarity needed in

this document are deferred to Chapter 2, but the general idea is easy to describe. In

one dimension, a relatively compact set {ai} is lacunary of order 1 if there is a point

a ∈ R and some positive λ < 1 such that |ai+1 − a| ≤ λ|ai − a| for all i. Such a set

has traditionally been referred to as a lacunary sequence with lacunarity constant

(at most) λ. A lacunary set of order 2 consists of a single (first-level) lacunary

sequence {ai}, along with a collection of disjoint (second-level) lacunary sequences;

a second-level sequence is squeezed between two adjacent elements of {ai}. The

lacunarity constants of all sequences are uniformly bounded by some positive λ < 1.

See Figure 1.1 for an illustration of a lacunary set of directions in the plane of order

2.

Roughly speaking, a set on the real line is lacunary of finite order if there is a

decomposition of the real line by points of a lacunary sequence such that the restric-

tion of the set to each of the resulting subintervals is lacunary of lower order. All

lacunarity constants implicit in the definition are assumed to be uniformly bounded

away from unity. A set is then said to be sublacunary if it does not admit a finite

covering by lacunary sets of finite order. A Cantor-like set is a particular kind of

sublacunary set according to these definitions.

As noted before, we will devise a formal definition of sublacunarity in Chapter 2.

However, for analytical purposes, we will see that it is in fact more convenient to

recast the lacunarity (or lack therof) of a set in terms of its encoded tree structure.

This idea was first formally noted in the work of Bateman and Katz [4], and sub-

sequently played a role in the later work of Bateman [3]. We will discuss the tree

structure of sets in Chapter 3, and see that the inherent tree structure of a sublacu-

nary (in particular, Cantor-like) subset of Euclidean space is, in a quantifiable sense,

as full as that of any nonzero Lebesgue measure Euclidean set; see Propositions 3.2

and 3.6. In the meantime, it is recommended that the reader keep in mind that

sublacunary sets are, in a rather fundamental sense to be explored in Section 3.6,

fully generalized Cantor-like subsets of Euclidean space.

5



λ3

λ2

λ

λ + γk1

λ + γk1+1

λ + γk1+2

λ2 + γk2

λ2 + γk2+1

λ2 + γk2+2

λ3 + γk3

λ3 + γk3+1

λ3 + γk3+2

Figure 1.1: A direction set in the plane, represented as a collection of unit vectors,
with parameters 0 < γ < λ < 1/2. The set of angles made by these vectors with the
positive horizontal axis is {(λj + γk) : k ≥ j}, which is lacunary of order 2.

1.2 Notations, conventions, and structure of the

document

Unless otherwise stated, for A ⊆ Rd, with d minimal, the notation |A| will always be

used to denote the d-dimensional Lebesgue measure of A. For a countable, possibly

infinite set Q, the notation #(Q) will denote cardinality of the set Q. If XN and

YN are quantities depending on N , then we will write XN ≲ YN to mean that there

exists a constant C independent of N such that XN ≤ CYN . If both XN ≲ YN and

YN ≲ XN hold, then we will write XN ∼ YN .

As in Definition 1.1, if P is a tube with some arbitrary centre, orientation, cross-

sectional radius, and length l, and if C0 is a positive constant, then C0P will denote

the tube with the same centre, orientation, and cross-sectional radius as P , but with

length C0l.
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This document is divided into twenty main chapters, and each chapter falls in

one of four expository groups, each with a single, broad goal. Chapters 1–5 set

definitions and discuss the necessary background, Chapters 6–11 form the proof of

Theorem 1.2, and Chapters 12–19 deal with the proof of Theorem 1.3; the final

Chapter 20 discuss potential future work that could arise from this document. The

flow charts below diagram the logical ordering of the individual chapters contained

within this document.

§1

§3

§2

§4

§3.6

§5

A

B

Theorem 1.2

Theorem 1.3

Figure 1.2: Diagram illustrating the approximate dependence structure between
chapters in this paper, with respect to the proofs of Theorems 1.2 and 1.3. The
chapter structure of groups A and B are detailed in the two maps below.

Chapter 1 is introductory and discusses the history of the problems considered

in this document, as well as the motivation for their study. Chapter 2 discusses the

notion of lacunarity. We lay out precise definitions, check for consistency with the

established literature, and are able to properly state Theorem 1.3 with respect to

these definitions. This chapter does not directly pertain to the proof of Theorem 1.2

and can be skipped until the reader begins the chapters of group B.

Chapter 3 introduces the critical idea of a tree encoding a set in Euclidean space,

and Section 3.7 discusses the idea of lacunarity on trees (not needed until the chapters

of group B). The so-called splitting number of a tree, as defined in [3], is then shown

to be the critical concept that allows us to recast the notion of (admissible) finite

order lacunarity of a set into an equivalent and more tractable form for the purposes

of our proof. Chapter 4 reviews the relevant literature pertaining to percolation on

trees. Chapter 5 describes the known results about Kakeya-type sets in the plane,
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A

§6

§7

§8

§11

§9

§10

Theorem 1.2

B

§12

§13

§14

§18

§17

§16

§15

§19

Theorem 1.3

Figure 1.3: Diagram illustrating the approximate dependence structure between
chapters in groups A and B of Figure 1.2. The chapters in group A detail the proof
of Theorem 1.2, while the chapters in group B constitute the proof of Theorem 1.3.
Dotted arrows indicate a dependence in terms of definitions and notation only.

and presents the proof of Bateman and Katz [4] in detail. The material in this

chapter is not directly required in subsequent chapters and can be skipped if desired.

Chapters 6–11 form the proof of Theorem 1.2. Chapter 6 sets up the construction

of Kakeya-type sets over a Cantor set of directions, and presents a probabilistic

version of our main theorems. Chapter 7 explores the relevant geometry of the

intersection of two tubes in Euclidean space, recording facts for later use. Chapter 8

combines results of the previous two chapters to explicitly describe the probabilistic

mechanism in play. We also reformulate Theorem 1.2 in terms of quantitative upper

and lower bounds on the sizes of a typical Kakeya-type set EN and its principal

dilate E∗
N(A0) as described in Definition 1.1 (see Proposition 8.4). From here, the
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remaining chapters in group A split into more or less two disjoint expositions, each

one charged with establishing one of these two probabilistic and quantitative bounds.

Chapters 9 and 10 combine to establish the quantitative lower bound. Chapter 9

in particular explores the analytical implications of the structure imposed on the

position and slope trees of a collection of two, three, or four δ-tubes, certain pairs of

which are required to intersect at a given location in space. In Chapter 11 we prove

the quantitative upper bound using an argument similar to [4].

Chapter 12 begins the program of proving Theorem 1.3; i.e., of constructing

Kakeya-type sets over sublacunary direction sets. The structure of the chapters of

group B mirrors that of group A just described.

We use the language of trees developed in Chapter 3 to extract a convenient sub-

set of an arbitrary sublacunary direction set, denoted by ΩN . Chapter 13 expands on

the geometry of the intersection of two tubes as initiated in Chapter 7 and the im-

plications of this geometry for the structure of trees encoding the sets of orientations

and positions of a given collection of thin δ-tubes.

Chapter 14 combines results from the previous two chapters to describe the ac-

tual mechanism we use to assign slopes in ΩN to δ-tubes affixed to a prescribed set

of points in Euclidean space. Again, we reformulate Theorem 1.3 in terms of quanti-

tative upper and lower bounds on the sizes of a typical Kakeya-type set EN and its

principal dilate E∗
N(A0) (see Proposition 14.2).

In Chapter 15 we prove the quantitative upper bound previously prescribed.

Chapters 16–19 combine to establish the corresponding lower bound. Chapter 19

details the actual estimation, utilizing all the smaller pieces developed in Chap-

ters 16–18. These three chapters revolve around a central theme of ideas, notably

the structure imposed on the position and slope trees of a collection of two, three,

or four δ-tubes, certain pairs of which are required to intersect at a given location in

space.
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1.3 Early history of Kakeya sets

A Kakeya set (also called a Besicovitch set) in Rd is a set that contains a unit line

segment in every direction. The study of such sets spans nearly one hundred years,

originating independently from the works of Abram Besicovitch and Soichi Kakeya.

Besicovitch was originally interested in the question of whether or not for any given

Riemann integrable function in R2, an orthogonal coordinate system always exists

such that the two-dimensional integral is equal to the iterated integral, which must

thus be well-defined. Kakeya meanwhile was concerned with determining the smallest

area of a planar region in which a unit line segment (a “needle”) could be continuously

rotated through 180◦, the so-called Kakeya needle problem. Surprisingly, the answers

to these questions were not so disparate and provided the genesis of a long line of

inquiry that continues to this day.

Besicovitch realized that his question could be answered (in the negative) if it was

possible to construct a zero Lebesgue measure planar set containing a line segment

in every direction [33]. Indeed, suppose such a set E exists and fix a coordinate

system in R2. Define a function f so that f(x, y) = 1 if (x, y) ∈ E and if at least

one of x or y is rational, and f(x, y) = 0 otherwise. The function f is clearly

Riemann-integrable in two dimensions since its points of discontinuity comprise a

set of two-dimensional Lebesgue measure zero. However, after possibly translating

E so that the x- and y-coordinates of the line segments in E parallel to the fixed

coordinate axes are irrational, we see that f is not Riemann-integrable as a function

of one variable regardless of the direction along which we choose to integrate. In

fact, by the structure of E, we are guaranteed that for any direction in the plane,

there is a cross-section of the function f that behaves like the characteristic function

of the rationals along the real line.

The main body of Besicovitch’s work in [5] was to actually construct the required

set E. The idea is summarized in Figure 1.4 below; in words, the idea is as follows.

Begin with an equilateral triangle ABC and notice that it contains line segments of

all slopes between those of AB and AC. Now, fix some large integer n and subdivide

the base BC into 2n equispaced pieces. Cut ABC into 2n thin, tall triangles with
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one vertex at A and the others at subsequent points resulting from the previous

subdivision of BC. Slide these triangles along their bases to create a new figure with

smaller area, yet that still contains line segments with all the slopes of the original

ABC triangle.

Figure 1.4: Diagram of the first iteration of a Besicovitch-style construction of a
zero measure Kakeya set in the plane.

Besicovitch optimized the number of cuts and the resultant reconfiguration pro-

cess to show that for any ε > 0, this procedure can produce a set with area less

than ε, while retaining all the requisite slopes from the original ABC triangle. It-

erating the construction and taking the limit, Besicovitch produced a set with zero

(planar) Lebesgue measure. Applying this construction individually to the union of

six appropriately rotated copies of the original equilateral triangle results in a zero
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Lebesgue measure set containing a line segment in every direction.

Once such a construction is complete in the plane, it is easy to produce a zero

Lebesgue measure set containing a line segment in every direction in Rd, for any

d ≥ 3. Indeed, if E denotes the zero measure planar set constructed previously, then

simply considering the set E × [0, 1]d−2 yields a valid example. Observe that such

a set is compact, and in fact always containable in a ball centred at the origin of

radius, say, 2.

Besicovitch’s original construction has been simplified over the years, and the

typical construction is now quite streamlined (see Stein [42] for example). Several

alternate constructions have also been developed, most notably one by Kahane [23]

which utilizes Cantor sets in the plane, and another by Besicovitch himself [7].

Besicovitch did not connect the construction of his set to the Kakeya needle

problem until nearly a decade after his initial paper on the subject appeared. In fact,

he was unaware of the problem due to the 1917 civil war taking place around him in

Russia at the time, which effectively silenced all communication between scientists

inside the country and the rest of the scientific community [33]. In this meantime,

Kakeya [24] and Fujiwara and Kakeya [18] worked on the needle problem in Japan

without knowledge of Besicovitch’s work. They conjectured that the smallest convex

planar set within which a unit line segment could be rotated continuously through

180◦ was the equilateral triangle of height 1; they also realized that one could do

better by removing the convexity assumption. Their conjecture was soon verified by

Pál [38].

In fact, it was Pál who pointed Besicovitch to Kakeya’s needle problem and who

also noted how Besicovitch’s original construction could be modified to solve it [33].

This lead to Besicovitch publishing the surprising solution in 1928 [6]:

- For any ε > 0, there is a planar region of area less than ε within which a unit

line segment can be rotated through a full 180◦.

To construct such a set given an ε > 0, simply iterate Besicovitch’s original

construction enough times so that the resulting set E has area less than ε/2. Notice
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that any tall, thin translated triangle at any iteration of the construction has at least

one side parallel to another “partner” triangle from the same stage of the construction

(refer to Figure 1.4). Denote these two triangles by A1B1C1 and A2B2C2, as in

Figure 1.5. Since A1B1 and A2B2 are parallel, we can take two radii D1A1 and

D2A2 which form an arbitrarily small angle. Where these radii intersect, we take a

sector OR1R2 of radius 1. Then we can continuously move a unit line segment from

inside the triangle A1B1C1, along the line D1O, through the sector OR1R2, along

the line D2O, and through the triangle A2B2C2. Choosing a small enough angle for

the two radii D1O and D2O, we can add enough sectors to the original Besicovitch

construction to ensure continuous movement of a needle throughout the full range

of slopes, while retaining a total area of no more than ε.

B1

A1

C1

D1

B2

A2

C2

D2

R1

R2

O

Figure 1.5: The needle sliding component of Besicovitch’s solution to the Kakeya
needle problem [6], as noted by Pál.

After the publication of Besicovitch’s 1928 paper, the study of Kakeya sets fo-

cused on their geometry and on the construction of similar pathological objects; for

example, sets of measure zero containing translates of all circles were constructed

by Besicovitch and Rado [8], and independently by Kinney [29]. The subject was

developed over the next forty-odd years by these and other mathematicians, notably
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Perron, Ward, and Marstrand.

Then in 1971, two seminal results appeared almost concurrently. One, due to

Cunningham [13], provided the most economic Kakeya-type construction and refined

Besicovitch’s answer to the original Kakeya needle problem. He showed that it was

possible to rotate a unit line segment 180◦ inside a simply connected subset of the

unit circle of arbitrarily small measure. This provided a remarkable strengthening of

Besicovitch’s solution to the Kakeya needle problem, as Cunningham’s construction

did not require the use of the needle sliding components depicted in Figure 1.5, which

result in sets of increasingly large diameter. The other result, due to Davies [14],

showed that any Kakeya set in the plane must have full Hausdorff dimension, a

natural conjecture that had existed in the research community for some time. In

higher dimensions, the analogous conjecture remains open to this day. This well-

known conjecture is still most often dubbed the Kakeya conjecture.

Davies’ proof of the Kakeya conjecture in the plane relied strictly on geomet-

ric considerations. Soon though, it was realized that this conjecture and related

problems could be attacked via more analytical means, most notably by proving

certain Lp estimates on suitably defined maximal operators. Inspired largely by the

work of Fefferman, notably [17], Córdoba reproved Davies’ result using just such a

method [11], deriving an L2(R2) estimate on an appropriate maximal operator. His

result hinged critically on the following geometric property (see [11] page 7, the proof

of Proposition 1.2).

Fact 1.4 (Córdoba). Let T δe (a) denote the tube of length 1 and cross-sectional radius

δ, centred at a and oriented parallel to e. For any pair of directions ek, el ∈ Sd−1,

and any pair of points a, b ∈ Rd, we have the estimates

diam(T δek(a) ∩ T δel(b)) ≲
δ

|ek − el|
,

and

|T δek(a) ∩ T δel(b)| ≲
δn

|ek − el|
. (1.5)

This property has seen repeated application in the subsequent literature (see [9],
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[46], [4], [3], for example), and has since become known colloquially as the Córdoba

estimate.

The maximal operator Córdoba considered was equivalent to the two-dimensional

version of the following operator:

Mδf(x) = sup
x∈P
P∈Pδ

1

|P |

∫
P

|f(y)|dy, (1.6)

where f is locally integrable, and Pδ is the collection of all tubes in Rd with length

1 and cross-sectional radius δ. This function has gone by many different names in

the literature over the years, including both the Kakeya maximal function and the

Nikodym maximal function. In the interest of compromise and historical accuracy,

this function will be referred to as the restricted Kakeya-Nikodym maximal function

in the remainder. It is instructive to compare this function with the more general

form of the Kakeya-Nikodym maximal function introduced in (1.3).

The study of these kinds of maximal functions, where one considers the average

of an arbitrary, locally-integrable function f over a certain set of geometric objects,

dates back at least to the now classical Lebesgue differentiation theorem:

Theorem 1.5. (Lebesgue) If f : Rd → R is integrable, then for almost every x we

have

lim
r→0

1

|B(x, r)|

∫
B(x,r)

f(y)dy = f(x), (1.7)

where B(x, r) denotes the ball of radius r centred at x ∈ Rd.

This result is of paramount significance, since it is both analogous to and a

generalization of the Fundamental Theorem of Calculus. Closely related to this, the

idea of studying a maximal average of locally integrable functions over a certain

set of geometric objects dates back at least to the canonical work of Hardy and

Littlewood [21], near the time of Besicovitch and Kakeya’s original works previously

discussed. Their eponymous operator, the Hardy-Littlewood maximal function, is

defined as

MHLf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy. (1.8)
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Hardy and Littlewood’s inaugural result established that this operator was bounded

on Lp(R) for all 1 < p ≤ ∞, and was also of weak-type (1,1) on R. This result

was extended to any dimension by Wiener in a seminal 1939 work [45]; i.e. Wiener

proved, among other things, that ||MHLf ||p ≤ Cp,d||f ||p for all 1 < p ≤ ∞, and

that |{x ∈ Rd : |MHLf(x)| > λ}| ≤ Cdλ
−1||f ||1. These estimates can be used

to deduce the Lebesgue differentation theorem with little additional work. The

argument justifying this transition is quite robust; with minor modifications, Lp

estimates on a suitably defined maximal operator can lead to differentiation theorems

over a prescribed set of geometric objects.

Indeed, the balls in (1.7) and (1.8) can be replaced by cubes, by parallelopipeds

with sides parallel to the coordinate axes, or any other suitably symmetric class of

objects without changing the Lp-boundedness properties of the analogous maximal

functions. The existence of zero measure Kakeya sets however implies that no such

bounds can hold for the Kakeya-Nikodym maximal function defined in (1.3) when

Ω is a set of directions with nonempty interior, for p < ∞. Moreover, the existence

of zero measure Kakeya sets also implies that no differentiation theorem analogous

to Theorem 1.5 can hold over the collection of cylindrical tubes in Rd with arbitrary

orientations and cross-sectional radius smaller than their given length L.

To see this, let 0 < ε < L, and let Eε be an ε-neighbourhood of a zero measure

Kakeya set E ⊂ Rd constructed as the limit of sets in Besicovitch’s procedure. This

type of Kakeya set exhibits a property called stickiness, and we say that the set E

is sticky. We will return to this concept in detail later, but for now we attempt to

give just an impression of the idea.

Observe that if l is any unit line segment in E, say oriented along the direction

ω, then if we extend l along its direction ω by at least 4 units, then this extended

segment l̃ will fall outside the ball of radius 2 centred at the origin (recall that E

could be constructed to be entirely contained within such a ball). Moreover, if l and

l′ are two different unit line segments in E with different orientations ω and ω′, then

their analogous extensions l̃ and l̃′ along these directions must be disjoint. Denote

by Ẽ the extended Kakeya set created by applying this extension procedure to every

unit line segment l ⊂ E, and let Ẽε denote its ε-neighbourhood.
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Now, for any x ∈ Ẽε, note that

MΩ1Eε(x) ≥ 1

8εd−1

∫ 4

−4

∫
(−ε,ε)d−1

1Eε(x+ tω + sω⊥)dsdt ≳ 1

8
,

where the implicit constant is allowed to depend on L. Therefore,

||MΩ||p→p ≳
||1Ẽε

||p
8||1Eε ||p

≳


∣∣∣Ẽε∣∣∣
|Eε|


1
p

, (1.9)

and this holds for any 0 < ε < L. Now, Besicovitch’s construction yields |Eε| < ε,

while at the same time
∣∣∣Ẽε∣∣∣ ≥ c0 for some c0 > 0 independent of ε. Thus, if p < ∞

and Ω = Sd−1, the Kakeya-Nikodym operator MΩ is unbounded on Lp(Rd) by (1.9).

A vast amount of work has been poured into finding δ-dependent Lp bounds for

the restricted Kakeya-Nikodym maximal operator. Such estimates have provided

myriad applications to all sorts of analytical problems; most notably, these bounds

can have implications for the Kakeya conjecture, see [9], [46], [28], [27] for example.

We will not explore this deep and exciting work here, but our work does focus on

another set of problems that were born out of the study of Kakeya sets and the

maximal operators in (1.3) and (1.6).

1.4 Background: maximal averages over lines with

prescribed directions

Consider the restricted Kakeya-Nikodym maximal function, given by (1.6). What if

we were to let δ → 0? Clearly, the limit would not make immediate sense, but notice

what this operation tries to accomplish. Instead of averaging a function over a thin

tube with length 1 and cross-sectional radius δ, we would be wanting to consider

averages simply over line segments of length 1. Our object of study is then a “lower

dimensional” maximal function, the so-called directional maximal operator, defined

in (1.2).
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The directional maximal function is a natural generalization of the classic Hardy-

Littlewood function. In fact, when d = 1, the directional maximal function reduces

to (1.8). The boundedness of DΩ for finite Ω, in any dimension, follows directly

from the boundedness of the Hardy-Littlewood maximal operator on Lp, 1 < p ≤ ∞.

Considerable work has been done on the size of the corresponding norms when Ω

is a finite but otherwise arbitrary set, especially when d = 2, p = 2, most notably

in [11], [44], [15], [25], [26]. In the mid and late 1990’s, Katz showed [26] that DΩ

is bounded on L2(R2) with the bound ≲
√

1 + logN , where N is the cardinality of

Ω, while at the same time the lower bound ≳
√

log logN holds [25], where N = 3n

and Ω is the nth iterate of the Cantor set on [0, 1]. These results establish that Lp-

bounds independent of the cardinality of Ω cannot be expected to hold in general.

Furthermore, these bounds together imply the unboundedness of DΩ as an operator

on L2(R2) when Ω contains a Cantor set by the same argument employed immediately

preceding and within (1.9). This result was later generalized by Hare [22] to include

sets Ω containing any Cantor set of positive Hausdorff dimension. These results

came as somewhat of a surprise, as it had already been conjectured that cardinality

independent bounds on DΩ should exist for Cantor sets [44]. This belief seems to

have been motivated by the fact that such cardinality independent bounds do in fact

exist for certain subsets of L2-functions, notably positive radial functions with weak

Fourier decay [44].

Additionally, two famous results establish that DΩ is bounded as an operator on

any Lp(Rd), 1 < p ≤ ∞, in arbitrary dimension d, for certain sets of directions Ω

with infinite cardinality. As to be expected from our discussion in Section 1.1, these

sets are required to exhibit a certain degree of lacunarity. The original results in this

direction came from Córdoba and Fefferman [12], Stromberg [43], and the classic

work of Nagel, Stein, and Wainger [37]. The latter authors considered lacunary sets

of the form Ω = {(θm1
j , . . . , θmd

j ) : j ≥ 1}, where 0 < m1 < · · · < md are fixed

constants and {θj} is a lacunary sequence with lacunarity constant 0 < λ < 1; i.e.,

0 < θj+1 ≤ λθj. For such sets Ω, they showed in their 1978 paper that DΩ is bounded

on all Lp(Rd), 1 < p ≤ ∞. In addition to the usual Littlewood-Paley theory, a main

feature of their proof is the use of an almost-orthogonality principle that allows them
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to control the degree of overlap between a group of averages in Fourier space (see

Lemma 1, [37]). Such almost-orthogonality results reappear as a crucial part of the

analysis in all subsequent work on the subject of boundedness of these operators.

In 1988, Carbery [10] utilized similar methods, substantially generalized, to show

that directional maximal operators arising from coordinate-wise lacunary sets of the

form Ω = {(rk1 , . . . , rkd) : k1, . . . , kd ∈ Z+} for some 0 < r < 1 are bounded on all

Lp(Rd), 1 < p ≤ ∞. This result paired with the one due to Nagel, Stein, and Wainger

seemed to decide the question of Lp-boundedness of the directional maximal operator

in Rd over sets Ω adhering to a certain intuitive notion of lacunarity. Extending these

ideas to their limit however requires a more formal notion of generalized lacunarity,

in addition to the appropriate almost-orthogonality results.

In the plane, this notion was sufficiently generalized by Sjögren and Sjölin [41] in

1981, establishing that so-called lacunary sets of finite order gave rise to bounded

directional maximal operators on Lp(R2)-space, 1 < p ≤ ∞. On the real line, they

defined a lacunary set of order 0 as a singleton, and a lacunary set of order N ≥ 1 as

a successor of a lacunary set of order N − 1, where the successor of a set is defined

as follows. For any closed sets A,A′ ⊂ R of Lebesgue measure zero, A′ is a successor

of A if there exists a constant c > 0 such that x, y ∈ A′, with x ̸= y, implies that

|x − y| ≥ c · distA(x). Here, distA(x) denotes the usual distance between two sets.

Using such a definition, sets of the form{
N∑
k=1

λikk : ik ∈ Z, 1 ≤ k ≤ N

}
∪ {0} (1.10)

are lacunary of order N . Once this notion is defined on the real line, it may be

lifted and applied directly to sets of directions in the plane, Ω ⊆ S1. In this way,

Sjögren and Sjölin were able to generalize the results of [37], as well as to prove that

L2-boundedness cannot be expected to hold for direction sets Ω ⊂ S1 corresponding

to a classical Cantor set.

In 2003, Alfonseca, Soria, and Vargas published an L2-almost-orthogonality result

for directional maximal operators in the plane [2], shortly thereafter generalized by
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Alfonseca to any Lp-space [1]. Essentially, what was recognized was that if Ω0 ⊂
Ω ⊆ [0, π

4
) is an ordered subset of angles,

π

4
= θ0 > θ1 > θ2 > . . . ,

then the Lp-norm of the directional maximal operator over Ω is controlled by the

Lp-norm of DΩ0 and the supremum of the Lp-norms of DΩj
, where for each j ≥ 1,

one defines Ωj = Ω ∩ [θj, θj−1). These results substantially generalized the original

almost-orthogonality principle proved by Nagel, Stein, and Wainger and played a

critical role in the work of Bateman [3].

These almost-orthogonality results and the study of lacunarity were not the only

foci of research on directional maximal operators. As previously mentioned, concur-

rent work had been taking place that studied the behaviour of the Lp-norms of DΩ

when Ω is given by a Cantor subset of directions [15], [44], [25], [26]. This research

aimed to uncover the middle ground between lacunary directional maximal opera-

tors, and those arising from a set of directions Ω with nonempty interior. Indeed, due

to the existence of zero measure Kakeya sets, and by the same argument that appears

in and preceding inequality (1.9), it is an immediate consequence that all operators

DΩ arising from Ω with nonempty interior are unbounded on Lp(Rd), p ̸= ∞.

In the plane, Bateman and Katz finally settled the issue of Lp-boundedness of

directional maximal operators arising from a Cantor set of directions Ω for a generic

p ∈ [1,∞) in their 2008 publication [4]. They showed that not only is such an

operator DΩ unbounded on Lp(R2), p ̸= ∞, but more strongly that such a set of

directions Ω admits Kakeya-type sets. Precisely, they showed that for any n ≥ 1,

there is a union of n parallelograms in R2 of dimensions 1 × 1
n
, and with slopes of

the longest sides contained in the standard middle-thirds Cantor set, so that∣∣∣∣∣
n∪
j=1

Pj

∣∣∣∣∣ ≲ 1

log n
, while

∣∣∣∣∣
n∪
j=1

2Pj

∣∣∣∣∣ ≳ log log n

log n
. (1.11)

Notice that a set that obeys (1.11) is indeed of Kakeya-type according to our Defi-

nition 1.1.
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Bateman and Katz’s construction is probabilistic. In particular, they show that

the first inequality in (1.11) holds for a typical collection of suitable parallelograms

with respect to a certain uniformly distributed probability measure. This result relies

on an ingenious application of a seminal theorem from the theory of percolation on

tree structures due to Russ Lyons [34], [35]. Their work represents the first time such

an idea has been applied to the study of Kakeya-type sets and related objects. The

new results that appear in this document will rely critically on the same idea (see

Chapters 11 and 15).

Shortly after [4] appeared, Bateman published a generalization of their result [3]

that provided a complete characterization of the Lp-boundedness of directional max-

imal operators in the plane for an arbitrary set of directions Ω ⊆ S1. The proof

utilized the same techinques as in [4], with the addition of some necessary complex-

ities to account for the totally general structure of the direction set Ω. Introduced

originally perhaps as a convenient way to formally apply Lyons’ percolation result,

the inherent “tree structure” naturally associated to an arbitrary set of directions

played a more vital role in Bateman’s work. This type of encoding allows for a

rich and flexible structure capable of accommodating both the generic nature of the

problem and the specific combinatorics and analysis required to establish (1.11) in

the general context.

1.5 Kakeya-type sets and the property of sticki-

ness

If we consider once again Besicovitch’s construction of a zero measure Kakeya set,

described near the beginning of Section 1.3 and partially depicted in Figure 1.4, an

interesting observation can be made; indeed, we have already appealed to this obser-

vation when proving the unboundedness of the Kakeya-Nikodym maximal operator

over Sd. Although the many thin triangles in that construction are translated as to

overlap near a common core, by virtue of the disparate directions they each contain,

these triangles are disjoint sufficiently far away from that core. Put more generically,
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if many thin tubes with distinct directions intersect at a common locus, then these

tubes will become mutually disjoint outside a large enough ball surrounding this lo-

cus. The necessary size of such a ball is dependent on both the cross-sectional width

of these tubes, and the amount of separation between their directions. A collection

of tubes that exhibits this property are said to be sticky, referring to the idea that

they should all “stick together” near a common core. Such a collection is pictured

in Figure 1.6.

small measure

large measure

Figure 1.6: A sticky collection of tubes
∪
Pt, along with their extensions

∪
A0Pt in

R3.

Wolff was the first to formally recognize that zero measure Kakeya sets must

enjoy this property; see Property (∗) in [46]. More specifically, if Kakeya sets are to

have small measure, then a δ-thickening of the set must contain many pieces that

look like the “small measure,” right hand side of Figure 1.6; i.e., contain many tubes

that overlap for much of their length. This can only be so if both the centres of these

tubes and their orientations are nearly the same. In this case, as long as the tubes

are given distinct orientations, an extension of these tubes by an appropriate amount

must result in a set of relatively large measure, as in the left hand side of Figure 1.6.

Indeed, if we again consider the Besicovitch construction in Figure 1.4, although

the original triangle can be chosen to have, say, unit area, the resulting set after

n iterations of the construction can be made to have area less than about 1/ log n.

However, extending each subdivided triangle along their respective diameters will

result in a set with approximately unit area, independent of n.

The reader will recognize that the phenomenon we have been describing has
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already been laid down in quantitative terms in Definition 1.1, and exploited ana-

lytically to show why the existence of Kakeya-type sets implies unboundedness of

various associated maximal operators, as in the argument leading to (1.9). Indeeed,

the condition (1.1) is a generic formulation of the idea of stickiness for a family of

tubes with orientations arising from a given set of directions Ω. We see then that

the idea of a Kakeya-type set is motivated by the property of stickiness exhibited

by traditional Kakeya sets of zero measure; Kakeya-type sets in fact preserve this

property as their defining feature.

The idea of stickiness is not restricted to collections of tubes. Although similar

notions can be defined for essentially any collection of common, thickened lower di-

mensional objects in Euclidean space, sticky collections of curves, circles, and spheres

have been of particular interest [8], [29], [40], [30]. We will discuss further the idea

of stickiness and its interplay with work developed in this document in Chapter 20.
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Chapter 2

Finite order lacunarity

As noted in Section 1.4, the concept of finite order lacunarity plays a fundamental

role in the study of planar Kakeya-type sets and associated directional maximal

operators. The results of Nagel, Stein, Wainger [37], and Carbery [10] suggest that it

continues to play a similar role in higher dimensional space. The existing literature

on the subject embodies several different notions of Euclidean lacunarity both in

single and general dimensions, see in particular [3, 10, 39, 41]. The present chapter

is devoted to a discussion of the definitions to be used in the remainder of the paper.

The concepts introduced here will be revisited in Section 3.7, using the language of

trees. The interplay of these two perspectives is essential to the proof of Theorem

1.3.

2.1 Lacunarity on the real line

Definition 2.1 (Lacunary sequence). Let A = {a1, a2, . . .} be an infinite sequence of

points contained in a compact subset of R. Given a constant 0 < λ < 1, we say that

A is a lacunary sequence converging to α with constant of lacunarity at most λ, if

|aj+1 − α| ≤ λ|aj − α| for all j ≥ 1.

Definition 2.2 (Lacunary sets). In R, a lacunary set of order 0 is a set of cardinality
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at most 1; i.e., either empty or a singleton. Recursively, given a constant 0 < λ < 1

and an integer N ≥ 1, we say that a relatively compact subset U of R is a lacunary

set of order at most N with lacunarity constant at most λ, and write U ∈ Λ(N, λ),

if there exists a lacunary sequence A with lacunarity constant ≤ λ with the following

properties:

- U ∩ [sup(A),∞) = ∅, U ∩ (−∞, inf(A)] = ∅,

- For any two elements a, b ∈ A, a < b such that (a, b) ∩ A = ∅, the set U ∩ [a, b) ∈
Λ(N − 1, λ).

The order of lacunarity of U is exactly N if U ∈ Λ(N, λ) \ Λ(N − 1, λ). A lacunary

sequence A obeying the conditions above will be called a special sequence and its limit

will be termed a special point for U .

For any fixed N and λ, the class Λ(N, λ) is closed under containment, scalar

addition and multiplication; these properties, summarized in the following lemma,

are easy to verify.

Lemma 2.3. Let U ∈ Λ(N, λ). Then

(i) V ∈ Λ(N, λ) for any V ⊆ U .

(ii) c1U + c2 ∈ Λ(N, λ) for any c1 ̸= 0, c2 ∈ R.

Proof. For (i), U ∈ Λ(N, λ) means that there exists a lacunary sequence A with

lacunarity constant ≤ λ such that U ∩ [sup(A),∞) = ∅, U ∩ (−∞, inf(A)] = ∅, and

U ∩ [a, b) ∈ Λ(N − 1, λ) for any a, b ∈ A with a < b and (a, b)∩A = ∅. Since V ⊆ U ,

the same set of conditions is satisfied exactly with U replaced by V .

To prove (ii), we note that c1A + c2 can serve as special sequence for c1U + c2,

if A is a special sequence for U . Since U ∩ [a, b) ∈ Λ(N − 1, λ) if and only if

(c1U + c2)∩ [c1a+ c2, c1b+ c2) ∈ Λ(N − 1, λ) with a, b ∈ A, a < b, (a, b)∩A = ∅, the

lemma follows.

The sets of interest to us are those that are generated by finite unions of sets of

the form described in Definition 2.2.
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Definition 2.4 (Admissible lacunarity of finite order and sublacunarity). We say

that a relatively compact set U ⊆ R is an admissible lacunary set of finite order if

there exist a constant 0 < λ < 1 and integers 1 ≤ N1, N2 < ∞ such that U can be

covered by N1 lacunary sets of order ≤ N2, each with lacunarity constant ≤ λ. If U

does not satisfy this criterion, we call it sublacunary.

2.1.1 Examples

(a) A standard example of a lacunary set of order 1 and lacunarity constant λ ∈ (0, 1)

is U = {λj : j ≥ 1}, or any nontrivial subsequence thereof. Indeed U is itself a

lacunary sequence, and hence its own special sequence.

A general lacunary set of order 1 need not always be a lacunary sequence. For ex-

ample {2−2j±4−2j : j ≥ 1} is lacunary of order 1 relative to the special sequence

{2−j : j ≥ 1}. Despite this, lacunary sequences are in a sense representative of

the class Λ(1, λ), since any set in Λ(1, λ) can be written as the union of at most

four lacunary sequences with lacunarity constant ≤ λ. By Lemma 2.3, the set

{aλj + b : j ≥ 1} is lacunary of order at most 1 for any unit vector (a, b).

(b) In general, given an integer k ≥ 1 and constants M1 ≤ M2 ≤ · · · ≤ Mk with

M1 ≥ max(2, k − 1), the set

U =
{
M−j1

1 +M−j2
2 + · · · +M−jk

k : 0 ≤ j1 ≤ j2 ≤ · · · ≤ jk
}

is lacunary of order k and has lacunarity constant ≤M−1
1 . The special sequence

can be chosen to be A = {M−j
1 : j ≥ 1}.

(c) A set that is dense in some nontrivial interval, however small, is sublacunary.

For example, dyadic rationals of the form { k
2m

: 0 ≤ k < 2m} for a fixed m can

be written as a finite union of lacunary sequences with a given lacunarity λ, but

the number of sequences in the union grows without bound as m → ∞. By

Lemma 2.3, a set that contains an affine copy of { k
2m

: 0 ≤ k < 2m} for every m

is sublacunary.
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(d) The set U = {2−j + 3−k : j, k ≥ 0} can be covered by a finite union of sets

in Λ(2, 1
2
). For instance the two subsets of U where k ln 3 ≤ (j − 1) ln 2 and

k ln 3 ≥ j ln 2 respectively are each lacunary of order 2, with {3−k} and {2−j}
being their respective special sequences. The complement, where (j − 1) ln 2 ≤
k ln 3 ≤ j ln 2, contains at most one k per j, and is a finite union of lacunary sets

of order 1.

(e) A slight variation of the above example: {2−j + (qj − 2−j)3−k : j, k ≥ 0}, where

{qj} is an enumeration of the rationals in [ 9
10
, 1], leads to a very different con-

clusion. This set contains {qj}, and is hence sublacunary, even though the set

may be viewed as a special sequence {2−j} with collections of lacunary sequences

converging to every point of it. This example illustrates the relevance of the re-

quirement that the lower order components of Λ(N, λ) lie in disjoint intervals of

R.

(f) Given any 0 < λ < 1 and m > 0, there is a constant C = C(λ,m) such that

for any unit vector (a, b), the set Ua,b = {aλj + bλmj : j ≥ 1} can be covered by

C sets in Λ(1, λ). We prove an analogous statement along these lines in Section

2.2.1, see example (a).

(g) Given any 0 < λ < 1, m ∈ Q ∩ (0,∞), there is a constant C = C(λ,m) such

that for any unit vector (a, b), the set

Ua,b = {ujk = aλj + bλmk : j, k ≥ 1}

can be covered by at most C lacunary sets of order at most 2. This is clear for

(a, b) = (1, 0) or (0, 1), with the order of lacunarity being 1. For ab ̸= 0, there

are four possibilities concerning the signs of a and b. We deal with a > 0 and

b < 0, the treatment of which is representative of the general case. The set Ua,b

is decomposed into three parts:

Va,b =
{
ujk ∈ U : aλj + bλmk ≥ aλj+1

}
,

Wa,b =
{
ujk ∈ U : aλj + bλmk < bλm(k+1)

}
,
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Za,b = Ua,b \
[
Va,b ∪Wa,b

]
.

Then for every fixed j, the set Va,b∩[aλj+1, aλj) is an increasing lacunary sequence

with constant ≤ λm, converging to aλj. An analogous conclusion holds for

Wa,b ∩ [bλmk, bλm(k+1)). Thus Va,b and Wa,b are both lacunary of order 2, with

their special sequences being A = {aλj} and A = {bλmk} respectively. For

ujk ∈ Za,b, the indices j and k obey the inequality

−a
b

(1 − λ) < λmk−j ≤ −a
b

(1 − λm)−1.

Since m is rational, the values of mk − j range over rationals of a fixed demon-

imator (same as that of m). The inequality above therefore permits at most C

solutions of mk − j, the constant C depending on λ and m, but independent

of (a, b). Thus Za,b is covered by a C-fold union of subsets, each consisting of

elements ujk = λj(a + bλmk−j) for which mk − j is held fixed at one of these

solutions. Each such set is lacunary of order 1 with lacunarity ≤ λ.

2.1.2 Non-closure of finite order lacunarity under algebraic

sums

An important aspect of the class of admissible lacunary sets of finite order is that it

is not closed under set-algebraic operations, as we establish in the example furnished

below. This feature, perhaps initially counterintuitive, is the main inspiration for

the definition of higher dimensional lacunarity provided in the next subsection.

Example: Let Nj ↗ ∞ be a fast growing sequence, and Mj = 2mj a slower

growing one, so that

Mj < Nj −Nj−1. (2.1)
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For instance, Nj = 2j
2

and Mj = 2j will do. For every j ≥ 1 and 1 ≤ k ≤Mj = 2mj ,

set qjk = 2−Nj(1 + k2−mj), and define

Uj = {2−Nj+k + qjk : 1 ≤ k ≤Mj}, U =
∞∪
j=1

Uj, V = {−2−j : j ≥ 1}.

An element of Uj of the form 2−Nj+k+qjk lies in the dyadic interval [2−Nj+k, 2−Nj+k+1),

and for a given k, is the only element of Uj in this interval. Further, Uj ⊆ [2−Nj+1, 2−Nj+Mj+1),

hence by the relation (2.1), Uj ∩ Uj′ = ∅ if j ̸= j′. Thus U ∈ Λ(1, 1
2
), since for any

i ≥ 1, the set U∩[2−i, 2−i+1) is either empty or a single point. Clearly V is a lacunary

sequence, hence V ∈ Λ(1, 1
2
) as well, being its own special sequence. On the other

hand,

U + V ⊇
∞∪
j=1

{
qjk : 1 ≤ k ≤Mj

}
.

In other words, U + V contains an affine copy of the dyadic rationals of the form

{k2−mj : 1 ≤ k ≤ 2mj} in [0, 1], for every j. As discussed in example (c) in Section

2.1.1, U + V is sublacunary.

The counterexample above illustrates the sensitivity of lacunarity on ambient

coordinates, and precludes a higher dimensional generalization of this notion that

relies on componentwise extension. For instance, the two-dimensional set U × V

(with U , V as above) has lacunary coordinate projections in the current system of

coordinates, but there are other directions of projection, for instance the line of unit

slope, along which the projection of this set is much more dense.

2.2 Finite order lacunarity in general dimensions

Let V be a d-dimensional affine subspace of an Euclidean space Rn, n ≥ d. Given a

base point a of V and an orthonormal basis B = {v1, . . . ,vd} of the linear subspace
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V− a, we define the projection maps

πj = πj[a,B] : V → R, via x = a +
d∑
i=1

xivi → xi = πi(x), 1 ≤ i ≤ d. (2.2)

Definition 2.5 (Admissible lacunarity and sublacunarity of Euclidean sets). Let U

be a relatively compact subset of V.

(i) We say that the set U is admissible lacunary of order at most N (as an Eu-

clidean subset of V) with lacunarity constant at most λ < 1 if there exists an

integer R ≥ 1 satisfying the following property: for any choice of basis B and

base point a, and each 1 ≤ j ≤ d, the projected set

πj(U) = {πj(x) : x ∈ U} ⊆ R

can be covered by R members of Λ(N, λ), with the class Λ(N, λ) as described in

Definition 2.2. The projection πj depends on a and B via (2.2). The collection

of sets U that obey these conditions for a given choice of N, λ and R will be

denoted by Λd(N, λ,R;V).

(ii) The set U is called sublacunary in V if it is not admissible lacunary of finite

order; i.e., if for any λ < 1 and integers N,R ≥ 1 there exists a choice of

basis B and an index 1 ≤ j ≤ d such that πj(U) cannot be covered by any R-

fold union of one-dimensional lacunary sets of order at most N and lacunarity

constant at most λ.

Remarks:

- An equivalent formulation of the definition of U ∈ Λd(N,R, λ;V) is that for any

line L in V (and indeed in Rd+1 as we will soon see in Lemma 2.6), the projection

of U onto L is coverable by at most R sets in Λ(N, λ).

- The choice of base point in V is not important in this definition, since πj[a,B](U)

is a translate of πj[a
′,B](U) for any a, a′ ∈ V. Thus πj[a,B](U) ∈ Λ(N, λ) if and

only if πj[a
′,B](U) ∈ Λ(N, λ).
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- The definition is also invariant under rotation in Rn; if O is an orthogonal trans-

formation of Rn, then U ∈ Λd(N, λ,R;V) if and only if O(U) ∈ Λd(N, λ,R;O(V)).

- The choice of rotation B within V is however critical. It is not possible to have

necessary and sufficient implications like the ones above for two arbitrary choices

of bases B and B′. We provide examples below. Henceforth, we will refer to the

choice of a pair φ = (a,B) as a system of coordinates, with the main focus on B.

- Loosely speaking, the order of lacunarity N may be viewed as the number of

independent parameters required to describe Ω. The examples in the next section

will substantiate this statement.

- If U ∈ Λd(N, λ,R;V), then the order of lacunarity of πLU cannot exceed N for

generic lines L, where πL denotes the projection onto L. However, there may exist

many lines onto which the projections are much sparser than what the order of

lacunarity suggests, see for example (2.8).

Before proceeding to examples, we check the definition for consistency if U is a subset

of several affine subspaces.

Lemma 2.6. Let U ⊆ V be as above. Then for any choice of N,R, λ, the set

U ∈ Λd(N,R, λ;V) if and only if U ∈ Λn(N,R, λ;Rn).

Proof. The “if” implication is clear, so we consider the converse. Without loss of

generality, we may choose V = {1}×Rn−1. Given any unit vector ω = (ω1, · · · , ωn) ∈
Rn with 0 < |ω1| < 1, let L denote the line through the origin in Rn pointing in the

direction of ω. Let L′ denote the projection of L on V, so that L′ = {e1+sω′ : s ∈ R},

where e1 is the first canonical basis vector in Rn, and ω′ = (0, ω2, · · · , ωn). The

desired conclusion follows from the claim that

the sets π(U) and π′(U) are affine copies of each other, (2.3)

where π(U) and π′(U) denote the scalar projections onto L and L′, measured from

the origin and from (1, 0, · · · , 0) respectively. Indeed, Lemma 2.3 then permits us to

extend known lacunarity features of the former directly to the latter.
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To establish (2.3), it suffices to note that for any x ∈ Rn,

π(x) = (x · ω)ω, and π′(x) =
x · ω′

|ω′|2
ω′.

The choice of V, ω and ω′ yield the relations (x−y) ·ω = (x−y) ·ω′ for any x, y ∈ U ,

hence the above expressions imply that

|π(x) − π(y)| = |ω′||π′(x) − π′(y)|,

which is the desired conclusion.

2.2.1 Examples of admissible lacunary and sublacunary sets

in Rd

(a) A set of the form considered by Nagel, Stein and Wainger [37], such as

U = {γ(θj) : j ≥ 1}, where γ(t) = (tm1 , · · · , tmd) (2.4)

is admissible lacunary of order 1. Here 0 < m1 < · · · < md are fixed constants,

and 0 < θj+1 ≤ λθj, for some 0 < λ < 1 and all j. Critical to this verification

are the following two properties of U appearing in [37, Lemma 4]:

- There is a constant C1 = C1(m1, · · · ,md) obeying the following requirement.

For any unit vector ξ = (ξ1, · · · , ξd) in Rd, the set N of positive integers can

be decomposed into C1 disjoint consecutive intervals {Ns}; for every s, there

exists r(s) ∈ {1, · · · , d} such that

max
1≤r≤d

|θmr
j ξr| =

∣∣θmr(s)

j ξr(s)
∣∣ for all j ∈ Ns. (2.5)

The composition of Ns depends on ξ.

- Further for any c > 0, there is a constant C2 = C2(c,m1, · · · ,md) independent
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of ξ and Ns so that

max
r∈{1,··· ,d}
r ̸=r(s)

∣∣θmr
j ξr

∣∣ < c
∣∣θmr(s)

j ξr(s)
∣∣ (2.6)

for all but C2 integers j ∈ Ns.

Assuming these two facts, the claim of lacunarity is established as follows. Using

the definition of Ns in (2.5), the set U can be decomposed into C1 pieces Us, where

Us = {γ(θj) : j ∈ Ns}. Fix a constant R such that 2dλm1R−1 < 1. If j′ > j

are two integers in Ns that are at least R-separated and for both of which (2.6)

holds with c = 1
2d

, then

∣∣ d∑
r=1

ξrθ
mr

j′

∣∣ ≤ d
∣∣ξr(s)θmr(s)

j′

∣∣ ≤ d
(
λj

′−j)mr(s)
∣∣ξr(s)θmr(s)

j

∣∣
≤ 2d

(
λR)m1

∣∣ d∑
r=1

ξrθ
mr
j

∣∣ < λ
∣∣ d∑
r=1

ξrθ
mr
j

∣∣. (2.7)

Thus each Us is the union of at most R lacunary sequences of lacunarity < λ,

together with the C2 points where (2.6) fails.

(b) A set of the form considered by Carbery [10], i.e.,

U = {Γk = (λk1 , · · · , λkd) : k = (k1, · · · , kd) ∈ Nd} (2.8)

is admissible lacunary of order d. We prove this by induction on d. The initializ-

ing step for d = 2 has been covered in example (g) of Section 2.1.1. For a general

d and after splitting U into d! pieces, we may assume that k1 ≤ k2 ≤ · · · ≤ kd.

Given any unit vector ξ = (ξ1, · · · , ξd) ∈ Rd, we write

U =
d∪
s=1

Us with Us = {Γk : k ∈ Nd
s}, where

Nd
s =

{
k ∈ Nd :

∣∣λksξs∣∣ = max
1≤r≤d

∣∣λkrξr∣∣}.
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Depending on the signs of λksξs and Γk · ξ − λksξs, each Nd
s can be decomposed

into four parts. Their treatments are similar with trivial adjustments, so we

focus on the subset of Nd
s where

λksξs > 0 and
∑
r ̸=s

λkrξr ≥ 0,

continuing to call this subset Nd
s to ease notational burden. One last splitting is

needed; for a constant A to be specified shortly, we write

Nd
s = Nd

s,1 ∪ Nd
s,2, where Nd

s,1 = {k ∈ Nd
s : λksξs > A|λkrξr| for all r ̸= s}.

For k ∈ Nd
s,1,

λksξs ≤ Γk · ξ < λksξs
(
1 + dA−1

)
< λks−1ξs, (2.9)

where the last inequality follows for a suitable choice of A. We argue that

{ξsλks : ks ≥ 1} may be viewed as a special sequence for {Γk · ξ : k ∈ Nd
s,1}.

Indeed, if ks is fixed, then (2.9) shows that

{Γr · ξ : r ∈ Nd
s,1} ∩ [ξsλ

ks , ξsλ
ks−1) = {Γr · ξ : r ∈ Nd

s,1, rs = ks}

⊆ ξsλ
ks +

{∑
r ̸=s

λkrξr : kr ∈ N, r ̸= s
}
.

By the induction hypothesis, there is a constant R independent of ξ such that

the set on the right hand side above is coverable by at most R sets in Λ(d−1;λ).

Hence {Γk : k ∈ Nd
s,1} is admissible lacunary of order d.

We turn to the complementary set Nd
s,2. After decomposing Nd

s,2 into (d − 1)

subsets, we may fix an index ℓ such that

|λkℓξℓ| ≤ λksξs ≤ A|λkℓξℓ| (2.10)

on Nd
s,2. Without loss of generality let ℓ ≥ s. The number of possible values of

kℓ − ks obeying (2.10) is at most a fixed constant C depending on A (hence λ
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and d), but independent of ξ. Thus Nd
s,2 may be written as the C-fold union of

subsets indexed by c, where the subset identified by c contains all k ∈ Nd
s,2 with

the property that kℓ − ks = c ≥ 0. For k in such a subset,

Γk · ξ = (ξs + λcξℓ)λ
ks +

∑
r ̸=ℓ,s

λkrξr.

Since the number of summands in the linear combination above is (d − 1), the

induction hypothesis dictates that {Γk : k ∈ Nd
s,2} is admissible lacunary of order

(d− 1), completing the proof.

(c) A curve in Rd is sublacunary. So is a Cantor-like subset of it, by Theorem 1.2.

(d) If U and V are the lacunary sets of order 1 constructed in Section 2.1.2, the set

U × V is sublacunary. Indeed, after a rotation of angle π
4

one of the coordinate

projections turns out to be a constant multiple of U+V . We have seen in Section

2.1.2 that this last set is sublacunary on R.

2.3 Finite order lacunarity for direction sets

Given two sets Ω1,Ω2 ⊆ Rd+1 \ {0}, we say that Ω1 ∼ Ω2 if{
ω

|ω|
: ω ∈ Ω1

}
=

{
ω

|ω|
: ω ∈ Ω2

}
.

The binary relation ∼ is clearly an equivalence relation among sets in Rd+1 \ {0}.

An equivalence class of ∼ is, by definition, a direction set. By a slight abuse of

nomenclature, we will refer to a set Ω ⊆ Rd+1 \ {0} as a direction set to mean the

equivalence class of ∼ that contains Ω. Clearly the maximal operators DΩ and MΩ, as

well as the admittance of Kakeya-type sets (as in Definition 1.1), remain unchanged

for all members of this equivalence class.

Certain modifications are necessary to extend the notion of lacunarity from Eu-

clidean sets to direction sets, in view of the latter’s scale invariance. Given a direction
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set Ω ⊆ Rd+1 \ {0}, we denote by CΩ the cone generated by this set of directions,

namely

CΩ := {rω : r > 0, ω ∈ Ω}. (2.11)

Definition 2.7. Let Ω ⊆ Rd+1 \ {0} be a direction set, with CΩ as in (2.11).

(i) Given an integer N and a positive constant λ < 1, we say that Ω is admissible

lacunary as a direction set with order at most N and lacunarity at most λ if

there exists an integer R such that U ∈ Λd(N, λ,R;V) in the sense of Definition

2.5, for every hyperplane V at unit distance from the origin and every relatively

compact subset U of CΩ ∩ V. The collection of direction sets that obey these

conditions for a given N, λ and R will be denoted by ∆d(N, λ,R).

(ii) A direction set Ω ⊆ Ω0 failing this property is termed a sublacunary direction

set. Thus Ω is sublacunary as a direction set if for any choice of integers

N,R and positive constant λ < 1 there is a tangential hyperplane V of the unit

sphere, a relatively compact subset U of CΩ ∩ V and a line L in V such that

the projection of U along L cannot be covered by any R-fold union of sets in

Λ(N, λ).

2.3.1 Examples of admissible lacunary and sublacunary di-

rection sets

(a) A direction set Ω of the form considered by Nagel, Stein and Wainger [37],

Ω = {uj = (γ(θj), 1) : j ≥ J}

is admissible lacunary of order 1. Here the function γ and the sequence θj are

as described in example (a) of Section 2.2.1. Thus Ω is parameterized by the

positive constants m1 < m2 < · · · < md. We set md+1 = 0. To verify the claim,

we choose V = {x ∈ Rd+1 : x · η = 1} for some unit vector η, so that

CΩ ∩ V =

{
vj =

uj
uj · η

: uj ∈ Ω

}
.
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Fix a unit vector ω = (ω′, ωd+1) ∈ Rd+1, and let πω denote the scalar projection

onto ω; i.e., πω(v) = v · ω. As required by Definitions 2.7 and 2.5 and in view of

Lemma 2.6, we aim to show that that there is a large constant R (independent

of V) for which any relatively compact subset of πω(CΩ∩V) can be covered by R

members of Λ(1;λ). By the property (2.5) of Ω, we first decompose the integers

into a bounded number C1 of disjoint intervals (C1 independent of ω and η), on

each of which there exists an index 1 ≤ r ≤ d+ 1 such that

max
1≤i≤d+1

|θmi
j ηi| = |θmr

j ηr|. (2.12)

Let us denote by Nr[η] one of the subintervals for which (2.12) holds. For j ∈
Nr[η],

πω(vj) −
ωr
ηr

=
ξ · uj

ηr (η · uj)
, where ξ = (ξ1, · · · , ξd+1) ∈ Rd+1 (2.13)

with ξk = ωkηr − ωrηk, so that ξr = 0. Our goal is to show that for j ∈ Nr[η],

the sequence on the right hand side above can be covered by an R-fold union of

lacunary sequences converging to 0.

Using (2.5) again, we decompose Nr[η] into at most C1 pieces, of the form

Nrs[η, ξ] = Nr[η] ∩ Ns[ξ]. Since ξr = 0, we conclude that Nr[ξ] = ∅; hence

s ̸= r. By property (2.6), for every c > 0, there are at most a bounded number

C2 = C2(c) indices j ∈ Nrs[η, ξ] for which at least one of the inequalities

max
i̸=r

|θmi
j ηi| < c|θmr

j ηr|, max
i̸=s

|θmi
j ξi| < c|θms

j ξs| (2.14)

fails.

First suppose s > r. Choosing two integers j, j′ ∈ Nrs[η, ξ] with j′ − j ≥ R for

both of which the constraints in (2.14) hold, we follow the steps laid out in (2.7),
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obtaining from (2.13)[∣∣∣∣πω(vj′) −
ωr
ηr

∣∣∣∣] [∣∣∣∣πω(vj) −
ωr
ηr

∣∣∣∣]−1

=
ξ · uj′
ξ · uj

· η · uj
η · uj′

≤

[
d|ξs|θms

j′

1
2
|ξs|θms

j

]
·

[
d|ηr|θmr

j

1
2
|ηr|θmr

j′

]

≤ 4d2
(
θj′

θj

)ms−mr

≤ 4d2λR(ms−mr).

If R is selected large enough to satisfy 4d2λR(ms−mr) < λ, then for j ∈ Nrs[η, ξ]

the sequence on the right hand side of (2.13) can be covered by the union of

R lacunary sequences converging to zero, excluding the C2 points where (2.14)

fails. For s < r, the same calculation above can be replicated for j′ < j with

j′ − j < −R. Thus in this case the sequence in (2.13) grows as j increases, and

hence has to be finite by the assumption of relative compactness. Nonetheless,

this finite sequence is still coverable by a lacunary sequence going to zero, this

time in reverse order of j. In either event, we have decomposed the set {πω(vj) :

j ∈ Nrs[η, ξ]} into R lacunary sequences of lacunarity λ, proving the claim.

(b) A direction set of the type studied in [10], namely

Ω = {(Γk, 1) : 0 ≤ k1 ≤ k2 ≤ · · · ≤ kd},

(with Γk as in (2.8)) is admissible lacunary of order d. This is proved along lines

similar to the example above, using methods already explained in examples (g)

and (b) of Section 2.1.1 and 2.2.1 respectively; we omit the details here.

(c) A curve in Rd+1 is sublacunary as a direction set.

(d) For sets U , V as constructed in Section 2.1.2, the direction set Ω = {1}×U ×V

is sublacunary, since U × V is sublacunary as an Euclidean set (see example (d)

in Section 2.2.1).

(e) Let {qℓ : ℓ ≥ 1} be an enumeration of the rationals on any nontrivial interval,
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say on [1
2
, 2
3
]. A direction set of the type considered by Parcet and Rogers [39,

Example 1 on page 4], such as

Ω = {(qℓ2
−ℓ, 2−ℓ, 1) : ℓ ≥ 1}

is sublacunary, even though the one-dimensional coordinate projections in the

current coordinate system are lacunary of order at most 1. Choosing V = {x2 =

1}, we find that

CΩ ∩ V = {(qℓ, 1, 2
ℓ) : ℓ ≥ 1}.

The order of lacunarity of the x1-projection grows without bound as we choose

increasingly large compact subsets of CΩ ∩ V.

(f) We also mention another example considered by Parcet and Rogers [39, Example

2 on page 4]. Given the canonical orthonormal basis {e1, e2, e3} of R3, let us fix

another orthonormal basis {e1, e′2, e′3} with span{e2, e3} = span{e′2, e′3} and e′3

lying in the first quadrant determined by e2 and e3. The direction set under

consideration is Ω = {uℓ : ℓ ≥ 1}, where uℓ is a sequence of vectors satisfying

uℓ · e′2 = qℓuℓ · e1 for some enumeration of rationals {qℓ} in an interval. The

last condition does not completely specify uℓ, hence the direction set so defined

is not unique (further restrictions are imposed in [39]), but regardless of any

subsequent choice Ω is sublacunary. Choosing V = {x1 = 1}, we observe that

CΩ ∩ V =

{
uℓ

uℓ · e1
: ℓ ≥ 1

}
.

Projecting CΩ∩V in the direction e′2, we find that the projected set is {qℓ : ℓ ≥ 1},

which is not lacunary of finite order.
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Chapter 3

Rooted, labelled trees

As in Bateman and Katz’s work [4], [3], the language of rooted, labelled trees remains

the vehicle of choice for construction of Kakeya-type sets. We explore the basic

terminology of trees and state the relevant facts in Sections 3.1 and 3.6 below. This

constitutes only a very small part of the literature on such objects, but will suffice

for our purposes. These objects are treated comprehensively in the text by Lyons

and Peres [36].

3.1 The terminology of trees

An undirected graph G := (V , E) is a pair, where V is a set of vertices and E is a

symmetric, nonreflexive subset of V ×V , called the edge set. By symmetric, here we

mean that the pair (u, v) ∈ E is unordered; i.e. the pair (u, v) is identical to the pair

(v, u). By nonreflexive, we mean E does not contain the pair (v, v) for any v ∈ V .

A path in a graph is a sequence of vertices such that each successive pair of

vertices is a distinct edge in the graph. A finite path (with at least one edge) whose

first and last vertices are the same is called a cycle. A graph is connected if for each

pair of vertices v ̸= u, there is a path in G containing v and u. We define a tree to

be a connected undirected graph with no cycles.

All our trees will be of a specific structure. A rooted, labelled tree T is one whose
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vertex set is a nonempty collection of finite sequences of nonnegative integers such

that if ⟨i1, . . . , in⟩ ∈ T , then

(i.) for any k, 0 ≤ k ≤ n, ⟨i1, . . . , ik⟩ ∈ T , where k = 0 corresponds to the empty

sequence, and

(ii.) for every j ∈ {0, 1, . . . , in}, we have ⟨i1, . . . , in−1, j⟩ ∈ T .

We say that ⟨i1, . . . , in−1⟩ is the parent of ⟨i1, . . . , in−1, j⟩ and that ⟨i1, . . . , in−1, j⟩ is

the (j + 1)th child of ⟨i1, . . . , in−1⟩. If u and v are two sequences in T such that u

is a child of v, or a child’s child of v, or a child’s child’s child of v, etc., then we say

that u is a descendant of v (or that v is an ancestor of u), and we write u ⊂ v (see

the remark below). If u = ⟨i1, . . . , im⟩ ∈ T , v = ⟨j1, . . . , jn⟩ ∈ T , m ≤ n, then the

youngest common ancestor of u and v is the vertex in T defined by

D(u, v) = D(v, u) :=

∅, if i1 ̸= j1

⟨i1, . . . , ik⟩ if k = max{l : il = jl}.
(3.1)

One can similarly define the youngest common ancestor for any finite collection of

vertices.

Remark: At first glance, using the notation u ⊂ v to denote when u is a descendant

of v may seem counterintuitive, since u is a descendant of v precisely when v is a

subsequence of u. However, we will soon be identifying vertices of rooted labelled

trees with certain nested families of cubes in Rd. Consequently, as will become ap-

parent in the next two sections, u will be a descendant of v precisely when the cube

associated with u is contained within the cube associated with v.

We designate the empty sequence ∅ as the root of the tree T . The sequence

⟨i1, . . . , in⟩ should be thought of as the vertex in T that is the (in + 1)th child of

the (in−1 + 1)th child,. . ., of the (i1 + 1)th child of the root. All unordered pairs of

the form (⟨i1, . . . , in−1⟩, ⟨i1, . . . , in−1, in⟩) describe the edges of the tree T . We say

that the edge originates at the vertex ⟨i1, . . . , in−1⟩ and that it terminates at the
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vertex ⟨i1, . . . , in−1, in⟩. Note that every vertex in the tree that is not the root is

uniquely identified by the edge terminating at that vertex. Consequently, given an

edge e ∈ E , we define v(e) to be the vertex in V at which e terminates. The vertex

⟨i1, . . . , in⟩ ∈ T also prescribes a unique path, or ray, from the root to this vertex:

∅ → ⟨i1⟩ → ⟨i1, i2⟩ → · · · → ⟨i1, i2, . . . , in⟩.

We let ∂T denote the collection of all rays in T of maximal (possibly infinite) length.

For a fixed vertex v = ⟨i1, . . . , im⟩ ∈ T , we also define the subtree (of T ) generated by

the vertex v to be the maximal subtree of T with v as the root, i.e. it is the subtree

{⟨i1, . . . , im, j1, . . . , jk⟩ ∈ T : k ≥ 0}.

The height of the tree is taken to be the supremum of the lengths of all the se-

quences in the tree. Further, we define the height h(·), or level, of a vertex ⟨i1, . . . , in⟩
in the tree to be n, the length of its identifying sequence. All vertices of height n are

said to be members of the nth generation of the root, or interchangeably, of the tree.

More explicitly, a member vertex of the nth generation has exactly n edges joining

it to the root. The height of the root is always taken to be zero.

If T is a tree and n ∈ Z+, we write the truncation of T to its first n levels as

Tn = {⟨i1, . . . , ik⟩ ∈ T : 0 ≤ k ≤ n}. This subtree is a tree of height at most n.

A tree is called locally finite if its truncation to every level is finite, i.e. consists of

finitely many vertices. All of our trees will have this property. In the remainder of

this document, when we speak of a tree we will always mean a locally finite, rooted

labelled tree.

Roughly speaking, two trees are isomorphic if they have the same collection of

rays. To make this precise we define a special kind of map between trees; this

definition will be very important for us later.

Definition 3.1. Let T and T ′ be two trees with equal (possibly infinite) heights. A

map σ : T → T ′ is called sticky if

• for all v ∈ T , h(v) = h(σ(v)), and
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• u ⊂ v implies σ(u) ⊂ σ(v) for all u, v ∈ T .

We often say that σ is sticky if it preserves heights and lineages.

A one-to-one and onto sticky map between two trees, when it exists, is said to be

an isomorphism and the two trees are said to be isomorphic. Two isomorphic trees

can and will be treated as essentially identical objects.

Comparing this definition of stickiness with the one described in Section 1.5, the

two notions do not immediately appear compatible. Indeed, the notion of stickiness

described here in Definition 3.1 is, in some ways, far more restrictive than the ge-

ometric one discussed in Section 1.5. We will return to these observations shortly,

in Section 3.4, after we have established how to encode Euclidean sets by trees in

general.

3.2 Encoding bounded subsets of the unit interval

by trees

The language of rooted labelled trees is especially convenient for representing bounded

sets in Euclidean spaces. This connection is well-studied in the literature [36].

We start with [0, 1) ⊂ R. Fix any positive integer M ≥ 2. We define an M -adic

rational as a number of the form i/Mk for some i ∈ Z, k ∈ Z+, and an M -adic

interval as [i ·M−k, (i+ 1) ·M−k). For any nonnegative integer i and positive integer

k such that i < Mk, there exists a unique representation

i = i1M
k−1 + i2M

k−2 + · · · + ik−1M + ik, (3.2)

where the integers i1, . . . , ik take values in ZM := {0, 1, . . . ,M − 1}. These integers

should be thought of as the “digits” of i with respect to its base M expansion.

An easy consequence of (3.2) is that there is a one-to-one and onto correspondence

between M -adic rationals in [0, 1) of the form i/Mk and finite integer sequences

⟨i1, . . . , ik⟩ of length k with ij ∈ ZM for each j. Naturally then, we define the tree of
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infinite height

T ([0, 1);M) = {⟨i1, . . . , ik⟩ : k ≥ 0, ij ∈ ZM}. (3.3)

The tree thus defined depends of course on the base M ; however, once the base M

has been fixed, we will omit its usage in our notation, denoting the tree T ([0, 1);M)

by T ([0, 1)) instead.

Identifying the root of the tree defined in (3.3) with the interval [0, 1) and the

vertex ⟨i1, . . . , ik⟩ with the interval [i ·M−k, (i + 1) ·M−k), where i and ⟨i1, . . . , ik⟩
are related by (3.2), we observe that the vertices of T ([0, 1);M) at height k yield a

partition of [0, 1) into M -adic subintervals of length M−k. This tree has a self-similar

structure: every vertex of T ([0, 1);M) has M children and the subtree generated by

any vertex as the root is isomorphic to T ([0, 1);M). In the sequel, we will refer to

such a tree as a full M-adic tree.

Any x ∈ [0, 1) can be realized as the intersection of a nested sequence of M -adic

intervals, namely

{x} =
∞∩
k=0

Ik(x),

where Ik(x) = [ik(x) ·M−k, (ik(x)+1) ·M−k) is the unique M -adic interval in the kth

M -adic partition of [0, 1) containing the point x. The point x should be visualized

as the destination of the infinite ray

∅ → ⟨i1(x)⟩ → ⟨i1(x), i2(x)⟩ → · · · → ⟨i1(x), i2(x), . . . , ik(x)⟩ → · · ·

in T ([0, 1);M). Conversely, every infinite ray

∅ → ⟨i1⟩ → ⟨i1, i2⟩ → ⟨i1, i2, i3⟩ · · ·

identifies a unique x ∈ [0, 1) given by the convergent sum

x =
∞∑
j=1

ij
M j

.
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Thus the tree T ([0, 1);M) can be identified with the interval [0, 1) exactly. Any

subset E ⊆ [0, 1) is then given by a subtree T (E;M) of T ([0, 1);M) consisting of all

infinite rays that identify some x ∈ E. As before, we will drop the notation for the

base M in T (E;M) once this base has been fixed.

Any truncation of T (E;M), say up to height k, will be denoted by Tk(E;M) and

should be visualized as a covering of E by M -adic intervals of length M−k. More

precisely, ⟨i1, . . . , ik⟩ ∈ Tk(E;M) if and only if E ∩ [i ·M−k, (i+ 1) ·M−k) ̸= ∅, where

i and ⟨i1, . . . , ik⟩ are related via (3.2).

3.3 Encoding higher dimensional bounded subsets

of Euclidean space by trees

The approach to encoding a bounded subset of Euclidean space by a tree extends

readily to higher dimensions. For any i = ⟨j1, . . . , jd⟩ ∈ Zd such that i ·M−k ∈ [0, 1)d,

we can apply (3.2) to each component of i to obtain

i

Mk
=

i1
M

+
i2
M2

+ · · · +
ik
Mk

,

with ij ∈ ZdM for all j. As before, we identify i with ⟨i1, . . . , ik⟩.
Let ϕ : ZdM → {0, 1, . . . ,Md − 1} be an enumeration of ZdM . Define the full

Md-adic tree

T ([0, 1)d;M,ϕ) =
{
⟨ϕ(i1), . . . , ϕ(ik)⟩ : k ≥ 0, ij ∈ ZdM

}
. (3.4)

The collection of kth generation vertices of this tree may be thought of as the d-fold

Cartesian product of the kth generation vertices of T ([0, 1);M). For our purposes, it

will suffice to fix ϕ to be the lexicographic ordering, and so we will omit the notation

for ϕ in (3.4), writing simply, and with a slight abuse of notation,

T ([0, 1)d;M) =
{
⟨i1, . . . , ik⟩ : k ≥ 0, ij ∈ ZdM

}
. (3.5)
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As before, we will refer to the tree in (3.5) by the notation T ([0, 1)d) once the base

M has been fixed.

By a direct generalization of our one-dimensional results, each vertex ⟨i1, . . . , ik⟩
of T ([0, 1)d;M) at height k represents the unique M -adic cube in [0, 1)d of sidelength

M−k, containing i ·M−k, of the form[
j1
Mk

,
j1 + 1

Mk

)
× · · · ×

[
jd
Mk

,
jd + 1

Mk

)
.

As in the one-dimensional setting, any x ∈ [0, 1)d can be realized as the intersection

of a nested sequence of M -adic cubes. Thus, we view the tree in (3.5) as an encoding

of the set [0, 1)d with respect to base M . As before, any subset E ⊆ [0, 1)d then

corresponds to a subtree of T ([0, 1)d;M).

3.4 Stickiness as a kind of mapping between trees

Throughout this document, we will be concerned with studying certain mappings

between pairs of given trees of equal height and comparable base. The first tree T
will represent a set in Euclidean space that roots a collection of thin tubes; i.e. each

point in the set will identify the location in Euclidean space of one particular tube

in this collection. The second tree S, to which we will map, will encode a set of

directions or slopes, one for each tube in our collection.

Let σ : T → S be a height-preserving transformation that maps full-length rays

in T into full-length rays in S, and let

Kσ :=
∪
t∈T

Pt,σ,

where Pt,σ is a thin tube rooted at t and oriented in the direction σ(t). If σ is sticky

in the sense of Definition 3.1, then the collection of tubes Kσ is, on average, sticky in

the geometric sense of the term discussed in Section 1.5. This will be made precise

later in Section 5.1, but for now it suffices to imagine the following heuristic.
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Fix a pair of trees T and S with the same height H and base M . Consider a pair

of tubes rooted at t1, t2 ∈ T respectively. By our work in the previous two sections,

we know that |t1−t2| ≲M−h(u), where u = D(t1, t2) is the youngest common ancestor

of t1 and t2 in T .

Suppose σ : T → S is sticky in the sense of Definition 3.1. Then since sticky

mappings preserve heights and lineages, we must have that h(w) ≥ h(u) where

w = D(σ(t1), σ(t2)). Naturally then, we have |σ(t1)− σ(t2)| ≤M−h(w) ≤M−h(u). In

this way, we see that if in fact |t1− t2| ∼M−h(u), then the separation in the slopes of

Pt1,σ and Pt2,σ can be no greater than the separation in their roots. Geometrically,

what this means is that if, say, |t1 − t2| ∼ M−H , and if the tubes Pt1,σ, Pt2,σ are to

intersect, then that intersection must occur about a unit distance from their roots.

Such a collection of tubes exhibits the geometric quality of stickiness illustrated in

Figure 1.6.

It turns out that this notion of stickiness as a mapping between trees is sufficient

to construct Kakeya-type sets over Cantor sets of directions, both in the plane [4]

and in general dimensions [31]; see Chapters 5 and 6–11. However, this notion is a

bit too restrictive when our set of directions is chosen to simply be sublacunary.

To see why, note that it is often the case that two points may lie close together in

Euclidean space, while their M-adic separation as members of a tree is quite large.

To take a concrete example, consider the set D of dyadic rationals on [0, 1] and its

corresponding tree encoding S = S(D; 2). Fix ε > 0. Since D is dense in [0, 1], we

may find d1, d2 ∈ D such that d1 ∈ (1
2
− ε, 1

2
) and d2 ∈ (1

2
, 1
2

+ ε). Then we see that

the dyadic separation between d1 and d2 is 2−h(D(d1,d2)) = 1, while their Euclidean

separation is |d1 − d2| ≤ 2ε.

Now consider a sticky mapping σ of a collection of root vertices T = T ([0, 1
2
) ∪

{1}; 2) into the slope tree S. Suppose |t1 − t2| ∼ ε. Then it is impossible to have

σ(t1) = d1, σ(t2) = d2, else we would require h(D(d1, d2)) ≥ h(D(t1, t2)). But

h(D(t1, t2)) ≥ 1, so this is not possible by the definition of d1 and d2. Thus, any

sticky mapping between T and S cannot make the pair of tubes Pt1,σ, Pt2,σ sticky in

the sense of Figure 1.6. Of course, the sticky slope assignment σ may generate other

sticky pairs of tubes, but the fact remains that we are undoubtedly neglecting many
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other pairs. Clearly, such an assignment is not optimal, in the sense of exploiting

the geometry of stickiness.

The notion of tree stickiness is sufficient to establish the theorem of Bateman

and Katz (see Chapter 5), as well as our Theorem 1.2. However, once we turn our

attention to Theorem 1.3, we will require a more flexible notion that takes fuller

advantage of the geometric idea of sticky tubes. This will motivate us to define

the notion of a weakly sticky mapping between trees (see Definition 13.6). Such

a mapping will turn out to sufficiently capture the geometric essence of stickiness

for the purposes of constructing Kakeya-type sets over generic sublacunary sets of

directions.

3.5 The tree structure of Cantor-type and subla-

cunary sets

We now state and prove a key structural result about our sets of interest for Theo-

rem 1.2, the generalized Cantor sets CM .

Proposition 3.2. Fix any integer M ≥ 3. Define CM as in Section 1.1. Then

T (CM ;M) ∼= T ([0, 1); 2).

That is, the M-adic tree representation of CM is isomorphic to the full binary tree,

illustrated in Figure 3.1.

Proof. Denote T = T (CM ;M) and T ′ = T ([0, 1); 2). We must construct a bijective

sticky map ψ : T → T ′. First, define ψ(v0) = v′0, where v0 is the root of T and v′0 is

the root of T ′.

Now, for any k ≥ 1, consider the vertex ⟨i1, i2, . . . , ik⟩ ∈ T . We know that

ij ∈ ZM for all j. Furthermore, for any fixed j, this vertex corresponds to a kth

level subinterval of C [k]
M . Every such k-th level interval is replaced by exactly two

arbitrary (k + 1)-th level subintervals in the construction of C[k+1]
M . Therefore, there
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Figure 3.1: A pictorial depiction of the isomorphism between a standard middle-
thirds Cantor set and its representation as a full binary subtree of the full base
M = 3 tree.

exists N1 := N1(⟨i1, . . . , ik⟩), N2 := N2(⟨i1, . . . , ik⟩) ∈ ZM , with N1 < N2, such that

⟨i1, . . . , ik, ik+1⟩ ∈ T if and only if ik+1 = N1 or N2. Consequently, we define

ψ(⟨i1, i2, . . . , ik⟩) = ⟨l1, l2, . . . , lk⟩ ∈ T ′, (3.6)

where

lj+1 =

0 if ij+1 = N1(⟨i1, . . . , ij⟩),

1 if ij+1 = N2(⟨i1, . . . , ij⟩).

The mapping ψ is injective by construction and surjectivity follows from the binary

selection of subintervals at each stage in the construction of CM . Moreover, ψ is

sticky by (3.6).

The tree structure of a Cantor-type set is easy to quantify via the above iso-

morphism. However, as will soon see, the key properties of this structure are not

dependent on the heights of the vertices in the tree, but rather upon the lineages

of those vertices. Imagine we consider some tree T , possibly infinite, and define

D∗ ⊆ T to be the collection of all splitting vertices of T . Then if every vertex v ∈ T
of height J for some J > 0 contains at least N splitting vertices along its lineage,
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i.e., #({d ∈ D∗ : v ⊂ d}) ≥ N , the tree TJ has essentially as rich of structure as the

full binary tree of height N . Heuristically, sublacunary sets exhibit this feature for

any choice of N > 0. This idea will be rigorously developed in terms of a quantity

called the splitting number of a tree in the next section. It plays a critical role in

both the proof of our Theorem 1.3 and Bateman’s planar analogue [3].

3.6 The splitting number of a tree

There are many ways to quantify the “size” or “spread” of a tree (see [36]). Of

these, the concept of a splitting number proved to be the most relevant in the planar

characterization of directions that admit Kakeya-type sets [3]. Not surprisingly, it

will turn out to be equally important for us. As we will see in Section 3.7, this notion

actually provides a way of encoding the lacunarity, or lack thereof, of a Euclidean or

direction set. As such, its importance in establishing the results of Section 1.1 will

prove critical.

We say that a vertex v ∈ T splits in T if it has at least two children in T . When

it is clear to which tree we are referring, we will just say that v splits, and we will

call v a splitting vertex. Define splitT (R), the splitting number of a ray R in T to

be the number of splitting vertices in T along that ray. The splitting number of a

vertex v with respect to a tree T is defined to be

splitT (v) := max
Sv⊆T

min
Rv∈∂Sv

splitSv
(Rv), (3.7)

where the maximum is taken over all subtrees Sv ⊆ T rooted at v, and the minimum

is taken over all rays Rv in Sv that originate at the vertex v. Finally, the splitting

number of the tree T is defined as

split(T ) := max
v∈T

splitT (v). (3.8)

To take an easy example, consider the set Ω = {2−j : j ≥ 1}. Then, as is clear

from Figure 3.2 below, we can quickly observe that split(T (Ω; 2)) = 1. Similarly,
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if we consider Ωm = { k
2m

: 0 ≤ k < 2m}, then we have split(T (Ωm; 2)) = m (see

Figure 3.2). Consequently, the tree depicting all dyadic rationals must have infinite

splitting number, at least when encoded using a base of 2. In fact, this claim holds

true regardless of the base M chosen to encode the tree. Indeed, consider Ωκm for

any integer κ ≥ 1. Then split(T (Ωκm; 2)) = κm, while split(T (Ωκm; 2κ)) = m.

Thus, the tree depicting all dyadic rationals with base M = 2κ must have infinite

splitting number. For any base M ̸= 2κ for some integer κ ≥ 1, note that M

must still be on the order of some 2κ̃. Consequently, every M -adic interval on [0, 1)

encoded by each vertex of T (Ωm;M) at height j contains and is contained in a fixed

number of 2κ̃-adic intervals of length 2−κ̃j, independent of the height j. This implies

split(T (Ωm;M)) ∼ split(T (Ωm; 2κ̃)).

T3(Ω3; 2)T3(Ω; 2)

Figure 3.2: A diagram of the trees representing the Euclidean sets Ω = {2−j : j ≥ 1}
and Ωm = { k

2m
: 0 ≤ k < 2m} for m = 3, up to height 3. Notice that both trees

exhibit a kind of self-similar structure, making the calculation of their respective
splitting numbers particularly easy. The tree encoding Ω is self-similar with respect
to the full subtree rooted at any one of the vertices on the leftmost ray. The tree
encoding Ωm is self-similar with respect to the full subtree rooted at any vertex of
the tree.
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3.6.1 Preliminary facts about splitting numbers

The calculation of the splitting number of a tree was not particularly difficult for the

two special examples above. However, given an arbitrary tree, it is not immediately

obvious how to best go about calculating its corresponding splitting number. The

following lemmas will provide the necessary facts to simplify this calculation.

Lemma 3.3. Let u, v ∈ T with u ⊆ v. Then splitT (u) ≤ splitT (v).

Proof. Let Su be a subtree of T rooted at u. Define Sv→u to be the union of the tree

Su with the path in T connecting v to u. This is a subtree of T rooted at v. Since v

does not split in Sv→u and there are no splitting vertices in Sv→u between v and u,

we find that for any ray R in Su,

splitSu
(R) = splitSv→u

(Rv), (3.9)

where Rv is the ray in Sv→u rooted at v obtained by extending R to v. Conversely, if

Rv is a ray in Sv→u, then (3.9) holds for R = Rv ∩ Su. Maximizing over all subtrees

S ⊆ T rooted at u, we have that

splitT (u) = max
Su⊆T

min
R∈∂Su

splitSu
(R)

= max
Sv→u⊆T

min
Rv∈∂Sv→u

splitSv→u
(Rv)

≤ splitT (v).

The last inequality is a consequence of (3.7), since the class of subtrees of the form

Sv→u is a subcollection of trees rooted at v.

Lemma 3.3 says that splitting numbers (of vertices) are monotone nonincreasing

in lineages. An immediate consequence of this fact is that split(T ) = splitT (v0),

where v0 is the root of T . Our next result says that splitting numbers of trees are

also monotonic in an appropriate sense.

Lemma 3.4. Let S ⊆ T . Then split(S) ≤ split(T ).
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Proof. By Lemma 3.3, split(S) = splitS(v0), where v0 is the root of S. Since v0 ∈
S ⊆ T and any subtree of S is also a subtree of T , we find that

splitS(v0) = max
Sv0⊆S

min
Rv0∈∂Sv0

splitSv0
(Rv0)

≤ max
Sv0⊆T

min
Rv0∈∂Sv0

splitSv0
(Rv0)

≤ splitT (v0)

≤ split(T ),

where the last two inequalities are implied by (3.7) and (3.8) respectively. Lemma 3.4

follows.

A feature of trees with finite splitting number, originally observed in [3, Lemma

5], is that all vertices with largest split occur along a single ray. This specialized ray

will turn out to be critical in the detection of lacunary limits.

Lemma 3.5. Let T be a tree with split(T ) = N . Then there exists a ray R in T (of

finite or infinite length) such that a vertex v lies on R if and only if splitT (v) = N ,

provided the latter collection contains more than one element.

Proof. We prove by contradiction. Suppose there are two vertices u, v ∈ T with

splitT (u) = splitT (v) = N , u ̸⊆ v, v ̸⊆ u. Then their youngest common ancestor

D(u, v) is neither u nor v. By Lemma 3.3, we know that splitT (D(u, v)) ≥ N . Since

u ̸= v, the vertex D(u, v) is actually a splitting vertex. Therefore, splitT (D(u, v)) ≥
N + 1. But this contradicts the requirement that split(T ) = N , establishing our

claim.

3.6.2 A reformulation of Theorem 1.3

The dichotomy between trees with finite versus infinite splitting number will prove

to be our main distinction of interest. Roughly speaking, a tree that has infinite

splitting number in some coordinate system must encode a “large” subset of Eu-

clidean space, the threshold of size being determined by sublacunarity. However,
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the splitting number of a tree encoding a set is sensitive to the coordinates used to

represent the set. For example, let U and V be the sets constructed in Section 2.1.2.

Then split(T (U × V ); 2) = 2, while split(T (φ(U × V ); 2)) = ∞ for the coordinate

transformation φ(u, v) = (u+v, u−v). More strongly, notice that even the finiteness

of the splitting number could be affected by the choice. This consideration features

prominently in the following proposition which, when taken together with Proposi-

tion 3.7, furnishes a restatement of Theorem 1.3 that we will exploit in subsequent

chapters.

Our proof of Theorem 1.3 will follow a two-step route.

Proposition 3.6. Fix a dimension d ≥ 2 and an integer M ≥ 2. If a direction set

Ω ⊆ Rd+1 \ {0} is sublacunary (in the sense of Definition 2.7), then

sup
V

sup
WΩ

sup
φ

split(T (φ(WΩ);M)) = ∞. (3.10)

Here V ranges over the collection of all hyperplanes at unit distance from the origin.

For a fixed V, the set WΩ ranges over all relatively compact subsets of CΩ ∩ V, and
the innermost supremum is taken over all coordinate choices φ = (a,B) on V, where
a ∈ V is the point closest to the origin and B = {v1, · · · ,vd} is any orthonormal

basis of V− a. In other words, φ represents a rotation in V centred at a, with

φ(CΩ ∩ V) =
{

(x1, · · · , xd) : x = a +
d∑
j=1

xjvj ∈ CΩ ∩ V
}
.

Thus for every N ≥ 1, there exists a hyperplane VN , a relatively compact subset

WN of CΩ ∩ VN , and a coordinate system φN on VN such that

split(T (φN(WN);M)) > N. (3.11)

Proposition 3.7. If a direction set Ω obeys (3.10) for some M ≥ 2, then Ω admits

Kakeya-type sets.

Proposition 3.7 will be the subject of Chapters 15 – 19. We prove Proposition 3.6
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in Section 3.7 below.

3.7 Lacunarity on trees

A distinctive feature in the planar characterization of Kakeya-type sets [3] is the

observation that the lacunarity of a set is reflected in the structure of its tree. Fol-

lowing the ideas developed there, we recast the concept of finite order lacunarity of

a one-dimensional set using the structure of the splitting vertices of its tree. This

provides a tool of convenience in the proof of Proposition 3.6, the main objective of

this section.

Lemma 3.8. For any M ≥ 2, N ≥ 1, there is a constant C = C(N,M) with the

following property. If a relatively compact set U ⊆ R is such that split(T (U ;M)) =

N , then U can be covered by the C-fold union of sets in Λ(N,M−1) as described in

Definition 2.2.

The proof of this lemma will be presented later in this section. Assuming this,

the proof of the proposition is completed as follows.

Proof of Proposition 3.6. We prove the contrapositive, starting with the assumption

that

sup
V

sup
WΩ

sup
φ

split(T (φ(WΩ;M)) = N <∞. (3.12)

Fix an arbitrary coordinate system φ = (a,B) of V and let πj denote the projection

maps defined in (2.2) with respect to this choice. For the remainder of this proof, we

will assume that V is represented in these coordinates, so that πj may be thought

of as the coordinate projections. Let W = WΩ be an arbitrary relatively compact

subset of CΩ ∩ V. Since the tree encoding a set matches that of its closure, we may

suppose without loss of generality that W = WΩ is compact in V.

For any 1 ≤ j ≤ d + 1, we create a subset Wj ⊆ W that contains for every

xj ∈ πj(W ) a unique point x ∈ W with πj(x) = xj. For concreteness, x could be

chosen to be minimal in π−1
j (xj) ∩W with respect to the lexicographic ordering. In
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other words, πj restricted to Wj is a bijection onto πj(W ). We claim that

split(T (πj(W );M)) ≤ split(T (Wj;M)). (3.13)

Assuming this for the moment, we obtain from the hypothesis (3.12) and Lemma

3.4 that split(T (πj(W );M) ≤ split(T (W ;M)) ≤ N . Applying Lemma 3.8 to U =

πj(W ), we see that there is a constant C (uniform in V, φ, j and W ) such that the

projections πj(W ) can be covered by the C-fold union of one-dimensional lacunary

sets of order ≤ N and lacunarity ≤ M−1. Thus, W = WΩ is admissible lacunary of

order at most N according to Definition 2.5. Hence Ω is admissible lacunary of finite

order as a direction set by Definition 2.7.

It remains to establish (3.13). Any infinite ray R = R(xj) in ∂T (πj(W );M)

corresponds to a point xj ∈ πj(W ). Let R∗ = R∗(x) ∈ ∂T (Wj;M) denote the ray

that represents π−1
j (xj) = x. This establishes a bijection between the collection of

rays in the two trees. Let v0 and v∗0 denote the roots of the trees T (πj(W );M) and

T (W ;M) respectively, so that πj(v
∗
0) = v0. If S is a subtree of T (πj(W );M) rooted

at v0, let us denote by S∗ the subtree of T (Wj;M) rooted at v∗0 generated by all rays

R∗ such that R is a ray of S. It is clear that if a vertex v on R(xj) splits in S, then

there are two points xj ̸= x′j in πj(W ) lying in distinct children of v. This implies

that x = π−1
j (xj) and x′ = π−1

j (x′j) lie in distinct children of v∗, which denotes the

vertex of height h(v) on R∗(x). This makes v∗ a splitting vertex of S∗. Thus every

splitting vertex of S lying on R generates a splitting vertex of S∗ lying on R∗ at the

same height. As a result, splitS(R) ≤ splitS∗(R∗). Combining these facts with the

definition of the splitting number of a tree, we obtain

split(T (πj(W );M)) = max
S

min
R∈∂S

splitS(R)

≤ max
S∗

min
R∗∈∂S∗

splitS∗(R∗)

≤ split(T (Wj;M)).

In view of Lemma 3.3, the maxima in the first and second lines above are taken over

all subtrees S and S∗ rooted at v0 and v∗0 respectively. This completes the proof of

56



(3.13) and hence of Proposition 3.6.

We now turn to the proof of the lemma on which the argument above was pred-

icated.

Proof of Lemma 3.8. We apply induction on N . The base case N = 1 will be treated

momentarily in Lemma 3.9. Proceeding to the induction step, let R∗ denote an

infinite ray of the tree T = T (U ;M) that contains all the vertices {v∗ : splitT (v∗) =

N}. The existence of such a ray has been established in Lemma 3.5. For every

vertex v in T (U ;M) which does not lie on R∗ but whose parent does, we define

a set Uv as follows: Tv = T (Uv;M), where Tv denotes the maximal subtree of T
rooted at v. The definition of the ray R∗ dictates that each Uv has the property

that split(T (Uv;M)) ≤ N − 1. By the induction hypothesis, there exists a constant

C = C(N − 1,M) such that each Uv is covered by the C-fold union of sets in

Λ(N − 1;M−1). The set U can therefore be covered by the C-fold union of sets U [i],

where each U [i] shares a tree structure similar to U : it contains the point identified

by R∗, with the additional feature that now U
[i]
v ∈ Λ(N − 1;M−1) for every v ∈ V [i],

where

V [i] :=
{
v ∈ T (U [i];M) : v /∈ R∗ but parent of v is in R∗}.

For every vertex v ∈ V [i], let av denote the left hand endpoint of the M -adic

interval represented by v. The tree encoding the collection of points A = {av : v ∈
V [i]} contains the ray R∗; indeed the only splitting vertices of T (A;M) lie on R∗.

Therefore split(T (A;M)) = 1. Hence, by Lemma 3.9, A is at most a C-fold union

of monotone lacunary sequences with lacunarity M−1, each converging to the point

identifying R∗. Let us continue to denote by A one such monotone (say decreasing)

sequence. If a = av and b are two successive elements of this sequence with a < b,

then U [i] ∩ [a, b) = U
[i]
v , which is in Λ(N − 1;M−1). Thus U [i] is in Λ(N ;M−1)

according to Definition 2.2, completing the proof.

Lemma 3.9. Fix M ≥ 2, and let A ⊆ R be a relatively compact set with the property

that split(T (A;M)) = 1. Then A can be written as the union of at most 6M lacunary

sequences (defined in Definition 2.1) each with lacunarity constant ≤M−1.
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Proof. The argument here closely follows the line of reasoning in [3, Remark 2, page

60]. By Lemma 3.5, there is a ray R∗ in T (A;M) of infinite length such that all the

splitting vertices of T (A;M) lie on it. The ray R∗ uniquely identifies a point in R,

say a∗ = α(R∗). Any ray that is not R∗ but is rooted at a vertex of R∗ is therefore

non-splitting. Thus for every j = 0, 1, 2, · · · there exists at most M − 1 rays Rj in

T (A;M) whose M -adic distance from R∗ is j. In other words, if aj = α(Rj) is the

point in A identified by Rj, then there are at most M − 1 distinct points aj ̸= a∗

such that

h(D(a∗, aj)) = h(D(α(R∗), α(Rj))) = j. (3.14)

We define two subsets A± of A, containing respectively points a ≥ a∗ and a ≤ a∗.

This decomposes T (A;M) into two subtrees T (A±;M). Let us focus on T (A+;M),

the treatment for the other tree being identical. We decompose T (A+;M) as the

union of at most M trees T (Ai+;M), i ∈ ZM , constructed as follows. The tree

T (Ai+;M) contains the ray R∗, and for every vertex v in R∗ the ray in T (A+;M),

if any, descended from the ith child of v. In view of the discussion in the preceding

paragraph, if there exists an integer j for which a ray Rj in T (Ai+;M) obeys (3.14),

then such a ray must be unique.

We now fix i ∈ ZM and proceed to cover Ai+ by a threefold union of lacunary

sequences converging to a∗. Let {n1 < n2 < · · · } be the subsequence of integers with

the property that Rj ∈ T (Ai+;M) if and only if j = nk for some k. The important

observation is that if nk+2 is a member of this subsequence, then

ank
− a∗ ≥ 1

Mnk+2
. (3.15)

We will return to the proof of this statement in a moment, but a consequence of it

and (3.14) is that for any k ≥ 0 and fixed ℓ = 0, 1, 2,

an3(k+1)+ℓ
− a∗ ≤M−n3k+3+ℓ = M−n3k+3+ℓ+n3k+2+ℓM−n3k+2+ℓ ≤M−1(an3k+ℓ

− a∗).

Thus for every fixed ℓ = 0, 1, 2, the sequence Aℓ = {an3k+ℓ
: k ≥ 0} is covered by a

lacunary sequence with constant ≤M−1 converging to a∗. Since Ai+ is the union of
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{Aℓ : ℓ = 0, 1, 2}, the result follows.

It remains to settle (3.15), which is best explained by Figure 3.3. If Ij is the M -

a∗ ank+2
ank+1

ank

|J | = M−nk+2

ank
− a∗

Ik+2
Ik+1 Ik

Figure 3.3: A figure explaining inequality (3.15) when M = 2 and nk = k.

adic interval of length M−nj containing a∗, then Ik+2 cannot share a right endpoint

with Ik+1, since this would prevent the existence of a point ank+1
≥ a∗ obeying (3.14)

with j = nk+1. Thus a∗ (in Ik+2) and ank
(which is to the right of Ik+1) must lie on

opposite sides of J , the rightmost M -adic subinterval of length M−nk+2 in Ik+1. This

implies ank
− a∗ ≥ |J |, which is the conclusion of (3.15).
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Chapter 4

Electrical circuits and percolation

on trees

As mentioned in Sections 1.4 and 1.5, a key component in the work of Bateman and

Katz [4], [3], as well as in the work that forms the backbone of this document [31],

[32], is a rather famous estimate from the theory of percolation processes on trees.

The literature on this and related percolation items is massive; e.g. see [20], [36].

We will discuss only a very small piece of this vast topic, sufficient for our purposes.

4.1 The percolation process associated to a tree

The special probabilistic process of interest to us is called a bond percolation on

trees. Imagine a liquid that is poured on top of some porous material. How will the

liquid flow - or percolate - through the holes of the material? How likely is it that

the liquid will flow from hole to hole in at least one uninterrupted path all the way

to the bottom? The first question forms the intuition behind a formal percolation

process, whereas the second question turns out to be of critical importance to the

proof of Theorems 1.2 and 1.3.

Although it is possible to speak of percolation processes in far more general terms

(see [20]), we will only be concerned with a percolation process on a tree. Accordingly,
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given some tree T with vertex set V and edge set E , we define an edge-dependent

Bernoulli (bond) percolation process to be any collection of random variables {Xe :

e ∈ E}, where Xe is Bernoulli(pe) with pe < 1. The parameter pe is called the

survival probability of the edge e. We will always be concerned with a particular type

of percolation on our trees: we define a standard Bernoulli(p) percolation to be one

where the random variables {Xe : e ∈ E} are mutually independent and identically

distributed Bernoulli(p) random variables, for some p < 1. In fact, for our purposes,

it will suffice to consider only standard Bernoulli(1
2
) percolations.

Rather than imagining a tree with a percolation process as the behaviour of a

liquid acted upon by gravity in a porous material, it will be useful to think of the

percolation process as acting more directly on the mathematical object of the tree

itself. Given some percolation process on a tree T , we will think of the event {Xe = 0}
as the event that we remove the edge e from the edge set E , and the event {Xe = 1}
as the event that we retain this edge; denote the random set of retained edges by

E∗. Notice that with this interpretation, after percolation there is no guarantee that

E∗, the subset of edges that remain after percolation, defines a subtree of T . In fact,

it can be quite likely that the subgraph that remains after percolation is a union of

many disconnected subgraphs of T .

For a given edge e ∈ E , we think of p = Pr(Xe = 1) as the probability that we

retain this edge after percolation. The probability that at least one uninterrupted

path remains from the root of the tree to its bottommost level is given by the sur-

vival probability of the corresponding percolation process. More explicitly, given a

percolation on a tree T , the survival probability after percolation is the probability

that the random variables associated to all edges of at least one ray in T take the

value 1; i.e.

Pr (survival after percolation on T ) := Pr

( ∪
R∈∂T

∩
e∈E∩R

{Xe = 1}

)
. (4.1)

Estimation of this probability is what will be utilized in the proofs of Theorems 1.2

and 1.3. This estimation will require reimagining a tree as an electrical network.
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4.2 Trees as electrical networks

Formally, an electrical network is a particular kind of weighted graph. The weights

of the edges are called conductances and their reciprocals are called resistances. In

his seminal works on the subject, Lyons visualizes percolation on a tree as a certain

electrical network. In [34], he lays the groundwork for this correspondence. While

his results hold in great generality, we describe his results in the context of standard

Bernoulli percolation on a locally finite, rooted labelled tree only.

A percolation process on the truncation of any given tree T is naturally associated

to a particular electrical network. To see this, we truncate the tree T at height N

and place the positive node of a battery at the root of TN . Then, for every ray

in ∂TN , there is a unique terminating vertex; we connect each of these vertices to

the negative node of the battery. A resistor is placed on every edge e of TN with

resistance Re defined by
1

Re

=
1

1 − pe

∏
∅⊃v(e′)⊇v(e)

pe′ . (4.2)

Notice that the resistance for the edge e is essentially the reciprocal of the probability

that a path remains from the root of the tree to the vertex v(e) after percolation.

For standard Bernoulli(1
2
) percolation, we have

Re = 2h(v(e))−1. (4.3)

One fact that will prove useful for us later is that connecting any two vertices at

a given height by an ideal conductor (i.e. one with zero resistance) only decreases

the overall resistance of the circuit. This will allow us to more easily estimate the

total resistance of a generic tree.

Proposition 4.1. Let TN be a truncated tree of height N with corresponding electrical

network generated by a standard Bernoulli(1
2
) percolation process. Suppose at height

k < N we connect two vertices by a conductor with zero resistance. Then the resulting

electrical network has a total resistance no greater than that of the original network.

Proof. Let u and v be the two vertices at height k that we will connect with an
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ideal conductor. Let R1 denote the resistance between u and D(u, v), the youngest

common ancestor of u and v; let R2 denote the resistance between v and D(u, v).

Let R3 denote the total resistance of the subtree of TN generated by the root u

and let R4 denote the total resistance of the subtree of TN generated by the root v.

These four connections define a subnetwork of our tree, depicted in Figure 4.1(a).

The connection of u and v by an ideal conductor, as pictured in Figure 4.1(b), can

only change the total resistance of this subnetwork, as that action leaves all other

connections unaltered. It therefore suffices to prove that the total resistance of the

subnetwork comprised of the resistors R1, R2, R3 and R4 can only decrease if u and

v are joined by an ideal conductor.

(a)

D(u, v)

u v

+

−

R1 R2

R3 R4

(b)

D(u, v)

u ∼ v

+

−

R1 R2

R3 R4

Figure 4.1: (a) The original subnetwork with the resistors R1, R3 and R2, R4 in
series; (b) the new subnetwork obtained by connecting vertices u and v by an ideal
conductor.

In the original subnetwork, the resistors R1 and R3 are in series, as are the

resistors R2 and R4. These pairs of resistors are also in parallel with each other.

Thus, we calculate the total resistance of this subnetwork, Roriginal:

Roriginal =

(
1

R1 +R3

+
1

R2 +R4

)−1
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=
(R1 +R3)(R2 +R4)

R1 +R2 +R3 +R4

. (4.4)

After connecting vertices u and v by an ideal conductor, the structure of our sub-

network is inverted as follows. The resistors R1 and R2 are in parallel, as are the

resistors R3 and R4, and these pairs of resistors are also in series with each other.

Therefore, we calculate the new total resistance of this subnetwork, Rnew, as

Rnew =

(
1

R1

+
1

R2

)−1

+

(
1

R3

+
1

R4

)−1

=
R1R2(R3 +R4) +R3R4(R1 +R2)

(R1 +R2)(R3 +R4)
. (4.5)

We claim that (4.4) is greater than or equal to (4.5). To see this, simply cross-

multiply these expressions. After cancellation of common terms, our claim reduces

to

R2
1R

2
4 +R2

2R
2
3 ≥ 2R1R2R3R4.

But this is trivially satisfied since (a− b)2 ≥ 0 for any real numbers a and b.

The main consequence of this observation that we draw upon in Lemmas 15.4

and 11.3 is given by the following corollary.

Corollary 4.2. Given a subtree TN of height N contained in the full d-dimensional

M-adic tree, let R(TN) denote the total resistance of the electrical network that corre-

sponds to standard Bernoulli(1
2
) percolation on this tree, in the sense of the theorem

of Lyons as given in Theorem 4.3. Then

R(TN) ≥
N∑
k=1

2k−1

nk
, (4.6)

where nk denote the number of its kth generation vertices in TN .

Proof. To show this, we construct an auxiliary electrical network from the one nat-

urally associated to our tree TN , as follows. For every k ≥ 1, we connect all vertices

at height k by an ideal conductor to make one node Vk. Call this new circuit E.
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The resistance of E cannot be greater than the resistance of the original circuit, by

Proposition 4.1.

Fix k, 1 ≤ k ≤ N , and let Rk denote the resistance in E between Vk−1 and

Vk. The number of edges between Vk−1 and Vk is equal to the number nk of kth

generation vertices in TN , and each edge is endowed with resistance 2k−1 by (4.3).

Since these resistors are in parallel, we obtain

1

Rk

=

nk∑
1

1

2k−1
=

nk
2k−1

.

This holds for every 1 ≤ k ≤ N . Since the resistors {Rk}Nk=1 are in series, R(TN) ≥
R(E) =

∑N
k=1Rk, establishing inequality (11.8).

4.3 Estimating the survival probability after per-

colation

We now present Lyons’ pivotal result linking the total resistance of an electrical

network and the survival probability under the associated percolation process.

Theorem 4.3 (Lyons, Theorem 2.1 of [35]). Let T be a tree with mutually associated

percolation process and electrical network, and let R(T ) denote the total resistance

of this network. If the percolation is Bernoulli, then

1

1 +R(T )
≤ Pr(T ) ≤ 2

1 +R(T )
,

where Pr(T ) denotes the survival probability after percolation on T .

We will not require the full strength of this theorem. A reasonable upper bound

on the survival probability coupled with the result of Proposition 4.1 will suffice for

our applications. The sufficient simpler version of Theorem 4.3 that we state and

prove below was essentially formulated by Bateman and Katz [4].
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Proposition 4.4. Let M ≥ 2 and let T be a subtree of a full M-adic tree. Let R(T )

and Pr(T ) be as in Theorem 4.3. Then under Bernoulli percolation, we have

Pr(T ) ≤ 2

1 +R(T )
. (4.7)

Proof. We will only focus on the case when R(T ) ≥ 1, since otherwise (4.7) holds

trivially. We prove this by induction on the height of the tree N . When N = 0, then

(4.7) is trivially satisfied. Now suppose that up to height N − 1, we have

Pr(T ) ≤ 2

1 +R(T )
.

Suppose T is of height N . We can view the tree T as its root together with

at most M edges connecting the root to the subtrees T1, . . . , TM of height N − 1

generated by the terminating vertices of these edges. If there are k < M edges

originating from the root, then we take M − k of these subtrees to be empty. Note

that by the induction hypothesis, (4.7) holds for each Tj. To simplify notation, we

denote

Pr(Tj) = Pj and R(Tj) = Rj,

taking Pj = 0 and Rj = ∞ if Tj is empty.

Using independence and recasting Pr(T ) as one minus the probability of not

surviving after percolation on T , we have the formula:

Pr(T ) = 1 −
M∏
k=1

(
1 − 1

2
Pk

)
.

Note that the function F (x1, . . . , xM) = 1 − (1 − x1/2)(1 − x2/2) · · · (1 − xM/2) is

monotone increasing in each variable on [0, 2]M . Now define

Qj :=
2

1 +Rj

.
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Since resistances are nonnegative, we know that Qj ≤ 2 for all j. Therefore,

Pr(T ) = F (P1, . . . , PM)

≤ F (Q1, . . . , QM)

≤ 1

2

M∑
k=1

Qk.

Here, the first inequality follows by monotonicity and the induction hypothesis. Plug-

ging in the definition of Qk, we find that

Pr(T ) ≤
M∑
k=1

1

1 +Rk

.

But since each resistor Rj is in parallel, we know that

1

R(T )
=

M∑
k=1

1

1 +Rk

.

Combining this formula with the previous inequality and recalling that R(T ) ≥ 1,

we have

Pr(T ) ≤ 1

R(T )
≤ 2

1 +R(T )
,

as required.

67



Chapter 5

Kakeya-type sets over a Cantor set

of directions in the plane

The construction of Kakeya-type sets over a Cantor set of directions Ω = CM is con-

siderably easier than the general case, due to the very particular and fixed structure

of the corresponding slope tree, T (CM ;M), as established in Proposition 3.2. This

statement holds true regardless of dimension considered, and as such we will begin

our discussion in this simplified setting. Starting with the work of Bateman and

Katz [4], we will outline their construction in the plane and point out the additional

challenges that appear in the higher dimensional case. We will proceed into a discus-

sion of the added difficulties that arise when the set of directions is generalized to a

sublacunary set. In Chapter 6, we will begin the details of our general construction

in any dimension. The framework of the analysis in all subsequent chapters will have

its foundation in the arguments of the present chapter.

5.1 The result of Bateman and Katz

In [4], Bateman and Katz consider what happens when thin tubes in the plane

are assigned directions that arise in a natural way from the standard middle-third

Cantor set on [0, 1), denoted here by C. For every n ≥ 1, they define a random sticky
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mapping

σn : Tn([0, 1); 3) → Tn(C; 3). (5.1)

Recall that such a mapping between trees is set to preserve heights and lineages,

per Definition 3.1. Note that as an immediate consequence of Proposition 3.2, we

have

Tn(C; 3) ∼= Tn([0, 1); 2) for all n ≥ 1. (5.2)

The random mechanism of the mapping σn then assigns one edge in Tn([0, 1); 3) to

one edge in Tn(C; 3), independently and with equal probability. The collection of all

sticky mappings is thus uniformly distributed on the edge set of Tn([0, 1); 3).

Now fix n ≥ 1; for each t ∈ Tn([0, 1); 3), we define a random tube Pt,σn in R2 with

principal axis given by the line segment from (0, t) to (1, t+σn(t)) and cross-sectional

diameter 3−(n+1). Here, as in the sequel, we abuse notation slightly and identify

t ∈ Tn([0, 1); 3) and σn(t) ∈ Tn(C; 3) with their naturally associated real numbers on

[0, 1), via (3.2) and (3.3). Consequently, we consider the random collection of tubes

Kσn :=
∪

t∈Tn([0,1);3)
h(t)=n

Pt,σn , (5.3)

with the slope of each tube a member of the standard middle-third Cantor set at its

nth stage of construction.

Bateman and Katz prove the following two estimates on the random sets Kσn :

for any sticky map σn, |Kσn | ≳
log n

n
, (5.4)

and

there exists a sticky σn such that

∣∣∣∣Kσn ∩
([

1

3
, 1

]
× R

)∣∣∣∣ ≲ 1

n
. (5.5)

Notice that these estimates provide precisely the Kakeya-type set condition (1.1) for

any n ≥ 1. More precisely, in the notation of Definition 1.1, we set Kσn = E∗
n(A0)

and Kσn ∩
[
1
3
, 2
3

]
= En, where A0 = 3. (Note that the tubes Pt,σn just defined in

(5.3) are not the same tubes P
(n)
t referred to in Definition 1.1.) Then the estimates
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(5.4) and (5.5) yield

lim
n→∞

|E∗
n(A0)|
|EN |

= ∞,

which is the requirement of (1.1). Consequently, we conclude that the set of directions

Ω = {ω ∈ S1 : tanω ∈ C} admits Kakeya-type sets.

5.1.1 Proof of inequality (5.4)

Estimate (5.4) is proven by combining a general observation about intersections of

like sets with the Córdoba estimate (1.5) applied on a proper partition of the random

set Kσn . The estimate (5.5) follows from a probabilistic argument that relies on

Lyons’ theorem about percolation on trees, (see Theorem 4.3). We will sketch these

proofs in a bit more detail, as they will provide the analytical foundation for the

more general cases to follow. Since n is fixed in what follows, to simplify notation

we will write σ in place of σn; we will also write Tn in place of Tn([0, 1); 3) and Cn
instead of Tn(C; 3).

For the lower bound estimate (5.4), we begin with the following lemma.

Lemma 5.1 (Bateman and Katz). Suppose (X,M, µ) is a measure space and A1, . . . , Am

are sets with µ(Ai) = α for every i. Let L > 0, and suppose that

m∑
j=1

m∑
i=1

µ(Ai ∩ Aj) ≤ L.

Then

µ

(
m∪
i=1

Ai

)
≥ m2α2

16L
.

Proof. By the pigeonhole principle, there exists a set M ⊂ {1, . . . ,m} with #(M) ≥
m
2

such that whenever i ∈M , we have

m∑
j=1

µ(Ai ∩ Aj) ≤
2L

m
.
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For any such i, we rewrite this inequality as

1

α

∫
Ai

m∑
j=1

1Aj
(x)dµ(x) ≤ 2L

mα
.

Since
∑

1Aj
(x) is a nonnegative function, the only way its average value over Ai can

be bounded by 2L
mα

is if there exists a subset Bi ⊆ Ai with µ(Bi) ≥ α
2

such that for

every x ∈ Bi,
m∑
j=1

1Aj
(x) ≤ 4L

mα
.

Now we divide through by the quantity on the right-hand side and integrate over∪
i∈M

Bi:

mα

4L

∫
∪

i∈M Bi

m∑
j=1

1Aj
(x)dµ(x) ≤ µ

(∪
i∈M

Bi

)
.

Remembering that Bi ⊆ Ai for all i ∈M , and interchanging the sum and the integral

on the left-hand side, we conclude

µ

(
m∪
i=1

Ai

)
≥ mα

4L

∑
i∈M

µ(Bi) ≥
m2α2

16L
,

using the trivial bounds µ(Bi) ≥ α
2

and #(M) ≥ m
2

.

Proof of (5.4). For 0 ≤ j < 1
2

log n, we define Pt,σ,j := Pt,σ ∩ [3−j, 3−(j−1)], and note

that |Pt,σ,j| ∼ 3−(j+n). Then the collection {Pt,σ,j}j is disjoint over j. In light of

Lemma 5.1, we would like to show that the measure of the union of these pieces is

smaller than some appropriate quantity for all j < 1
2

log n. Consequently, it suffices

to show that ∑
t1∈Tn
h(t1)=n

∑
t2∈Tn
h(t2)=n

|Pt1,σ,j ∩ Pt2,σ,j| ≲
n

32j
. (5.6)

The height restrictions h(t1) = h(t2) = n will hold throughout this section, but we

will henceforth suppress this in the notation to save on clutter. Once we have (5.6)
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for every 0 ≤ j < 1
2

log n, using Lemma 5.1, we calculate∣∣∣∣∣ ∪
t∈Tn

Pt,σ,j

∣∣∣∣∣ ≳ 1

n

for each j < 1
2

log n. Thus,

∣∣Kσ ∩ [n−c, 1)
∣∣ ≳ log n

n
,

which implies (5.4).

Notice that the diagonal term of the sum in (5.6) satisfies the proper bound

since j < 1
2

log n, and that in fact this is the best we can do. Now if t1 ̸= t2 and

Pt1,σ,j ∩ Pt2,σ,j ̸= ∅, then

|σ(t1) − σ(t2)| ≳ 3j|t1 − t2|, (5.7)

since θ ≳ sin θ for θ small. Pairing this bound on the difference in the slopes σ(t1)

and σ(t2) with the Córdoba estimate (1.5), we have

|Pt1,σ,j ∩ Pt2,σ,j| ≲
1

32n+j|t1 − t2|
. (5.8)

Recall that the notation D(t1, t2) represents the youngest common ancestor of t1

and t2 in the tree Tn. Now, the stickiness of σ and (5.7) imply that

|ID(t1,t2)| ≳ 3j|t1 − t2|, (5.9)

where Iu denotes the unique triadic interval corresponding to the vertex u (see Sec-

tion 3.2). We will shortly prove the following useful counting lemma.

Lemma 5.2. Let t1, t2 ∈ Tn([0, 1); 3) and set u = D(t1, t2). Suppose |Iu| ≳ 3j|t1−t2|,
and define the set Ak,j(u) := {(t1, t2) ∈ D−1(u) : |t1 − t2| ∼ 3−j−k|Iu|}. Then

#(Ak,j(u)) ≲ 32n−2j−2k−2h(u).
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Note that by definition each pair (t1, t2) belongs to exactly one Ak,j(u). Thus,

after plugging in the bound (5.8), we rewrite the off-diagonal part of the sum in (5.6)

as ∑
t1∈Tn

∑
t2∈Tn
t2 ̸=t1

|Pt1,σ,j ∩ Pt2,σ,j| ≲
∑
u∈Tn

∑
(t1,t2)∈D−1(u)
3j |t1−t2|≲|Iu|

1

32n+j|t1 − t2|

≲
∑
u∈Tn

∑
k≥0

∑
(t1,t2)∈Ak,j(u)

1

32n+j|t1 − t2|

≲
∑
u∈Tn

∑
k≥0

∑
(t1,t2)∈Ak,j(u)

1

32n−k|Iu|
.

Using Lemma 5.2, we complete the estimation as

∑
u∈Tn

∑
k≥0

32n−2j−2k−2h(u)

32n−k|Iu|
≲
∑
u∈Tn

∑
k≥0

3−k|Iu|
32j

≲ n

32j
,

where we have used the fact that 3−k is summable, and that the intervals Iu form

a partition of the unit interval over all u of fixed height; since Tn has n + 1 distinct

heights, (5.6) follows.

It remains to prove Lemma 5.2. We will accomplish this by counting the number

of permissible vertices t2 at height n after fixing a vertex t1. Then we will count the

number of t1.

Proof of Lemma 5.2. If (t1, t2) ∈ Ak,j(u), then the lineages of t1 and t2 split at height

h(u), yet remain close enough in the tree Tn([0, 1); 3) so that |t1−t2| ∼ 3−j−k−h(u). To

count the number of permissible pairs (t1, t2), let ul denote the lth child of u. We will

restrict attention to the pairs (t1, t2) that are descendants of u1 and u2 respectively.

Counting over all options will introduce no more than a constant factor of
(
3
2

)
to the

final count.

Fix t1 ⊆ u1. Notice that the only permissible t2 now lie in the intersection of the

interval associated to u2 with an interval of length 3−j−k−h(u) containing t1. Thus,

to bound the number of t2 with such a t1 fixed, it suffices to simply 3−n-separate the
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interval of length 3−j−k−h(u). Similarly, if we now let t1 vary, t1 can only be chosen to

lie no more than a distance of ≲ 3−j−k−h(u) from the triadic interval associated to u2;

hence, we again 3−n-separate the interval of length 3−j−k−h(u) to bound the number

of t1. Thus, we have the size estimate #(Ak,j(u)) ≲ 32n−2j−2k−2h(u) as claimed.

The lower bound (5.4) holds for any sticky collection of tubes, but notice that the

only time we require the fact that σ is sticky is for the estimate (5.9). Without such an

estimate, there would be no restriction placed on the height of the youngest common

ancestor of the two points t1 and t2 that generate intersecting tubes. As in our

generic discussion in Section 1.5, stickiness is a property that provides a quantitative

connection between the location of tubes in space and their orientations. By requiring

Pt1,σ,j ∩ Pt2,σ,j ̸= ∅ in the proof above, we are fixing a region in space where these

tubes can overlap. This naturally places a restriction on the permissible slopes that

can be assigned to any two base points t1 and t2 in order for a nonempty intersection

to occur in the [3−j, 3−(j−1)] × R strip. But it is our enforced notion of stickiness,

formulated in the context of a mapping between trees, that provides the necessary

quantitative information to effectively exploit the geometry and establish (5.4). This

will prove to be sufficient for the purposes of our Theorem 1.2, but Theorem 1.3 will

require a more flexible notion of stickiness between root and slope trees to yield to

these methods.

5.1.2 Proof of inequality (5.5)

In contrast to (5.4), it is quite clear that estimate (5.5) cannot be expected to hold

for an arbitrary sticky σ; for example, consider the sticky map that assigns to every

base point t ∈ Tn the same slope, say 0 ∈ Cn. However, the percolation argument

exploited by Bateman and Katz shows that (5.5) does hold for a typical sticky σ, as

we shall now see.

Proof of (5.5). Fix a point (x, y) ∈ (1
3
, 1)×R. We begin by observing that for every

base point t ∈ Tn, there is at most one slope c(x,y)(t) ∈ Cn such that (x, y) ∈ Pt,c(x,y)(t)

(here, we have abused notation slightly and let Pt,c represent the tube with principal
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axis given by the line segment (0, t) to (1, t+c) with cross-sectional diameter 3−(n+1)).

Indeed, suppose two distinct slopes c1 ̸= c2 existed such that (x, y) ∈ Pt,c1 ∩ Pt,c2 .

Then there must exist a1, a2 ∈ R with |a1|, |a2| ≤ 1
2
·3−(n+1), the cross-sectional radius

of a tube, such that

y = t+ a1 + c1x = t+ a2 + c2x.

But since |c2− c1| ≥ 3−n by construction, it must follow that x ≤ 1
3
, a contradiction.

Let Poss(x, y) denote the subtree of Tn where t ∈ Poss(x, y) if and only if c(x,y)(t)

exists. This is a deterministic object, dependent only on the choice of (x, y). Now

notice that the event (x, y) ∈ Kσ happens only if σ(t) = c(x,y)(t) for some t ∈
Possn(x, y); i.e. for some t ∈ Poss(x, y) with h(t) = n. Equivalently, this can only

happen if σ(tk) = c(x,y)(tk) for every ancestor tk of t ∈ Possn(x, y), 0 ≤ k ≤ n.

Recall the definition of σ as given by (5.1). By the structure of the slope tree given

in (5.2), we see that defining a random sticky map σ is equivalent to defining a

collection of 3n+1 − 1 independent Bernoulli(1
2
) random variables {Xe : e ∈ E(Tn)},

one corresponding to each edge in the tree Tn. More precisely, by (5.2), and in order

to preserve stickiness, each edge e ∈ E(Tn) can be mapped to only one of two possible

edges in Cn. We declare that e maps to the first of these two possibilities if Xe = 0,

and that e maps to the second otherwise.

Now, if (x, y) ∈ Kσ, then we have already seen that there must exist a t ∈
Possn(x, y) so that σ(tk) = c(x,y)(tk) for every ancestor tk ⊇ t, 0 ≤ k ≤ n. As in

Section 4.1, we will equate the event {Xe = 0} with the action of removing the edge

e from the edge set E(Tn), and the event {Xe = 1} with the action of retaining this

edge. Thus, we see that the event (x, y) ∈ Kσ occurs only if a path from the root

to the bottommost level remains after percolation on the tree Poss(x, y). Letting

Pr(Poss(x, y)) denote the probability of this event, Lyons’ Theorem 4.3 tells us that

Pr(Poss(x, y)) ≤ 2

1 +R(Poss(x, y))
, (5.10)

where R(Poss(x, y)) is the resistance of the electrical network associated to the tree

Poss(x, y), as defined in Section 4.2.
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We claim that R(Poss(x, y)) ≳ n. Notice that the number of vertices at height

k in Poss(x, y) is bounded above by ≲ 2k. Indeed, there are exactly 2k different

vertices at height k in the slope tree Cn; thus, using a similar argument as the one

presented in the first paragraph of this proof, for any fixed c ∈ Cn at height k, there

are a finite number of t ∈ Tn of height k that could possibly yield c(x,y)(t) = c.

Now consider the electrical network associated to Poss(x, y). By Proposition 4.1,

connecting all vertices in Poss(x, y) at height k with an ideal conductor can only

reduce the total resistance of the circuit; make this transformation at each height

k > 0 and denote the resulting tree by T (x, y). Thus, there are ≲ 2k resistors, each

with resistance ∼ 2k, connected in parallel between height k − 1 and height k in

T (x, y). This gives a resistance ≳ 1 between heights k − 1 and k, and consequently

a total resistance of the circuit ≳ n. This paired with (5.10) establishes the bound

Pr((x, y) ∈ Kσ) ≲ 1
n
.

Finally, we use this bound to estimate the expected measure of Kσ ∩ ([1
3
, 1]×R).

Observing that we must have y ∈ [0, 2] if (x, y) ∈ Kσ, we calculate

Eσ
(∣∣∣∣Kσ ∩

([
1

3
, 1

]
× R

)∣∣∣∣) =

∫ (∫ 1

1
3

∫ 2

0

1Kσ(x, y)dydx

)
dσ

=

∫ 1

1
3

∫ 2

0

Pr((x, y) ∈ Kσ)dydx

≲ 1

n
.

Thus, there is a choice of sticky map σ such that (5.5) holds. Moreover, since the

random variable σ is distributed uniformly over all sticky maps (this is by definition

of our random slope assignment), this argument shows that in fact most sticky σ

must satisfy (5.5).
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5.2 Points of distinction between the construction

of Kakeya-type sets over Cantor directions in

the plane and over arbitrary sublacunary sets

in any dimension

We have already pointed out some of the added difficulties that arise when trying to

use similar arguments to the ones outlined in the previous section in a more general

setting. We summarize these points here and draw the readers attention to several

others.

The proof of Theorem 1.2 is modeled on the proof of Bateman and Katz’s theorem

presented in Section 5.1, with several important distinctions. Overall, our goal in

Theorem 1.2 remains essentially the same: to construct a family of tubes rooted

on the hyperplane {0} × [0, 1)d, the union of which will eventually give rise to a

Kakeya-type set. The slopes of the constituent tubes will be assigned from Ω via a

random mechanism involving stickiness akin to the one developed by Bateman and

Katz and described in Section 5.1.2. We develop this random mechanism in detail

in Chapter 8, with the requisite geometric considerations collected in Chapter 7.

As we have already noted, the notion of Bernoulli percolation on trees plays an

important role in the proof of our Theorem 1.2, as it did in the two-dimensional

setting. The higher-dimensional structure of Ω does however result in minor changes

to the argument, as we will see in Chapter 9. But of the two estimates analogous

to (5.4) and (5.5) necessary for the Kakeya-type construction, the first is where

the greatest amount of new work is to be done. The bound (5.4) used in [4] is

deterministic, providing a bound on the size of any sticky collection of tubes as

defined in (5.3). However, the counting argument that led to this bound fails to

produce a tight enough estimate in higher dimensions; instead, we replace it by a

probabilistic statement that suffices for our purposes.

More precisely, the issue is the following. A large lower bound on a union of

tubes follows if they do not have significant pairwise overlap amongst themselves;

i.e. if the total size of pairwise intersections is small. In dimension two, a good upper
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bound on the size of this intersection was available uniformly in every sticky slope

assignment. Although the argument that provided this bound is not transferable

to general dimensions, it is still possible to obtain the desired bound with large

probability. A probabilistic statement similar to but not as strong as (5.4) can be

derived relatively easily via an estimate on the first moment of the total size of

random pairwise intersections. Unfortunately, this is still not sharp enough to yield

the disparity in the sizes of the tubes and their translated counterparts necessary to

claim the existence of a Kakeya-type set. Indeed, since we prove the straight analogue

of the already probabilistic bound (5.5), in order to claim the existence of a single

set satisfying both probabilistic estimates simulatenously, we will need knowledge of

the variance in sizes of collections of tubes over a not necessarily uniform probability

space of sticky maps. Thus, for our higher dimensional setting of Theorem 1.2, we

need a second moment estimate on the pairwise intersections of tubes.

Both moment estimates share some common features. For instance, they both ex-

ploit Euclidean distance relations between roots and slopes of two intersecting tubes,

and combine this knowledge with the relative positions of the roots and slopes within

the respective trees in which they live, which affects the slope assignments. However,

the technicalities are far greater for the second moment compared to the first. In

particular, for the second moment we are naturally led to consider not just pairs, but

triples and quadruples of tubes, and need to evaluate the probability of obtaining

pairwise intersections among these. Not surprisingly, this probability depends on the

structure of the root tuple within its ambient tree. It is the classification of these

root configurations, computation of the relevant probabilities and their subsequent

application to the estimation of expected intersections that form the novel pieces of

the proof of Theorem 1.2 and distinguish it from the planar case.

These added complications remain present in the general treatment when we

prove Theorem 1.3. However, in this more general setting, we have to adjust our

notion of a sticky mapping between root and slope trees to take better advantage

of the potentially very sparse structure of the given sublacunary slope tree. This

will lead naturally to a type of mapping between trees that we call weakly sticky ;

see Section 13.2. It is this more flexible notion of stickiness between trees that will
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allow us to exploit the same general methods developed in the proof of Bateman and

Katz’s result presented in this chapter, as well as the methods that we will develop

during the proof of Theorem 1.2.
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Chapter 6

Setup of construction of

Kakeya-type sets in Rd+1 over a

Cantor set of directions: a

reformulation of Theorem 1.2

With this chapter, we begin the program of directly proving our Theorems 1.2 and

1.3. Chapter 6 through Chapter 11 cover the construction of Kakeya-type sets over

a Cantor set of directions in an arbitrary number of dimensions, Theorem 1.2, while

Chapters 12 through 19 treat the general case of Theorem 1.3.

To begin, we choose some integer M ≥ 3 and a generalized Cantor-type set

CM ⊆ [0, 1) as described in Section 1.1, and fix these items for the remainder. We

also fix an injective map γ : [0, 1] → {1}×[−1, 1]d satisfying the bi-Lipschitz condition

in (1.4). These objects then define a fixed set of directions Ω = {γ(t) : t ∈ CM} ⊆
{1} × [−1, 1]d.

Next, we define the collection of tubes that will comprise our Kakeya-type set.

Let

Q(n) := {t ∈ T ({0} × [0, 1)d;M) : h(t) = n}, (6.1)

be the collection of disjoint d-dimensional cubes of sidelength M−n generated by the
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lattice M−nZd in the set {0}× [0, 1)d. More specifically, each t ∈ Q(n) is of the form

t = {0} ×
d∏
l=1

[
jl
Mn

,
jl + 1

Mn

)
, (6.2)

for some j = (j1, . . . , jd) ∈ {0, 1, · · · ,Mn − 1}d, so that #(Q(n)) = Mnd. For

technical reasons, we also define Qt to be the cd-dilation of t about its center point,

where cd is a small, positive, dimension-dependent constant. The reason for this

technicality, as well as possible values of cd, will soon emerge in the sequel, but for

concreteness choosing cd = d−2d will suffice.

Fix an arbitrarily large integer N ≥ 1, typically much bigger than M . For the

sake of establishing Theorem 1.2, we will set n = N in most of what follows, through

Chapter 11. We will however prove some more generic facts along the way, for

example in Chapter 7; thus, in these instances we will work with an arbitrary integer

n. This will allow us to easily apply these facts when we treat the general case of

Theorem 1.3.

Recall that the Nth iterate C [N ]
M of the Cantor construction is the union of 2N

disjoint intervals each of length M−N . We choose a representative element of CM
from each of these intervals, calling the resulting finite collection D[N ]

M . Clearly

dist(x,D[N ]
M ) ≤M−N for every x ∈ CM . Set

ΩN := γ(D[N ]
M ), (6.3)

so that dist(ω,ΩN) ≤ CM−N for any ω ∈ Ω, with C as in (1.4). The following

fact is an immediate corollary of Proposition 3.2 that will naturally prove vital in

establishing Theorem 1.2.

Fact 6.1. With the set D[N ]
M defined as above, TN(D[N ]

M ;M) ∼= TN([0, 1); 2).

For any t ∈ Q(N) and any ω ∈ ΩN , we define

Pt,ω := {r + sω : r ∈ Qt, 0 ≤ s ≤ 10C0} , (6.4)
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where C0 is a large constant to be determined shortly (for instance, C0 = ddc−1

will work, with c as in (1.4)). Thus the set Pt,ω is a cylinder oriented along ω. Its

(vertical) cross-section in the plane x1 = 0 is the cube Qt. We say that Pt,ω is rooted

at t. While Pt,ω is not strictly speaking a tube as defined in the introduction, the

distinction is negligible, since Pt,ω contains and is contained in constant multiples of

δ-tubes with δ = cd ·M−N . By a slight abuse of terminology but no loss of generality,

we will henceforth refer to Pt,ω as a tube.

If a slope assignment σ : Q(N) → ΩN has been specified, we set Pt,σ := Pt,σ(t).
Thus {Pt,σ : t ∈ Q(N)} is a family of tubes rooted at the elements of an M−N -fine

grid in {0} × [0, 1)d, with essentially uniform length in t that is bounded above and

below by fixed absolute constants. Two such tubes are illustrated in Figure 6.1. For

the remainder, we set

KN(σ) :=
∪

t∈Q(N)

Pt,σ. (6.5)

t1 Pt1,σ

Pt2,σt2

Figure 6.1: Two typical tubes Pt1,σ and Pt2,σ rooted respectively at t1 and t2 in the
{x1 = 0}–coordinate plane.

For a certain choice of sticky slope assignment σ, this collection of tubes will be
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shown to generate a Kakeya-type set in the sense of Definition 1.1. This particu-

lar slope assignment will not be explicitly described, but rather inferred from the

contents of the following proposition.

Proposition 6.2. For any N ≥ 1, let ΣN be a finite collection of slope assignments

from the lattice Q(N) to the direction set ΩN . Every σ ∈ ΣN generates a set KN(σ)

as defined in (6.5). Denote the power set of ΣN by P(ΣN).

Suppose that (ΣN ,P(ΣN),Pr) is a discrete probability space equipped with the

probability measure Pr, for which the random sets KN(σ) obey the following esti-

mates:

Pr
(
{σ : |KN(σ) ∩ [0, 1] × Rd| ≥ aN}

)
≥ 3

4
, (6.6)

and

Eσ|KN(σ) ∩ [C0, C0 + 1] × Rd| ≤ bN , (6.7)

where C0 ≥ 1 is a fixed constant, and {aN}, {bN} are deterministic sequences satis-

fying
aN
bN

→ ∞, as N → ∞.

Then Ω admits Kakeya-type sets.

Proof. Fix any integer N ≥ 1. Applying Markov’s Inequality to (6.7), we see that

Pr
(
{σ : |KN(σ) ∩ [C0, C0 + 1] × Rd| ≥ 4bN}

)
≤ Eσ|KN(σ) ∩ [C0, C0 + 1] × Rd|

4bN
≤ 1

4
,

so,

Pr
(
{σ : |KN(σ) ∩ [C0, C0 + 1] × Rd| ≤ 4bN}

)
≥ 3

4
. (6.8)

Combining this estimate with (6.6), we find that

Pr
({
σ : |KN(σ) ∩ [0, 1] × Rd| ≥ aN

}∩{
σ : |KN(σ) ∩ [C0, C0 + 1] × Rd| ≤ 4bN

})
≥ Pr

({
|KN(σ) ∩ [0, 1] × Rd| ≥ aN

})
+ Pr

({
|KN(σ) ∩ [C0, C0 + 1] × Rd| ≤ 4bN

})
− 1

≥ 3

4
+

3

4
− 1 =

1

2
.
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We may therefore choose a particular σ ∈ ΣN for which the size estimates on KN(σ)

given by (6.6) and (6.8) hold simultaneously. Set

EN := KN(σ) ∩ [C0, C0 + 1] × Rd, so that E∗
N(2C0 + 1) ⊇ KN(σ) ∩ [0, 1] × Rd.

Then EN is a union of δ-tubes oriented along directions in ΩN ⊂ Ω for which

|E∗
N(2C0 + 1)|

|EN |
≥ aN

4bN
→ ∞, as N → ∞,

by hypothesis. This shows that Ω admits Kakeya-type sets, per condition (1.1).

Proposition 6.2 proves our Theorem 1.2. The following five chapters are devoted

to establishing a proper randomization over slope assignments ΣN that will then

allow us to verify the hypotheses of Proposition 6.2 for suitable sequences {aN}
and {bN}. We return to a more concrete formulation of the required estimates in

Proposition 8.4.

84



Chapter 7

Families of intersecting tubes

In this chapter, we will take the opportunity to establish some geometric facts about

two intersecting tubes in Euclidean space. These facts will be used in several in-

stances within the proof of Theorem 1.2, as well as in our more general Theorem 1.3.

Nonetheless they are really general observations that are not limited to our specific

arrangement or description of tubes.

Lemma 7.1. For v1, v2 ∈ ΩN and t1, t2 ∈ Q(n), t1 ̸= t2, let Pt1,v1 and Pt2,v2 be the

tubes defined as in (6.4). If there exists x = (x1, · · · , xd+1) ∈ Pt1,v1 ∩ Pt2,v2, then the

inequality ∣∣cen(t2) − cen(t1) + x1(v2 − v1)
∣∣ ≤ 2cd

√
dM−N , (7.1)

holds, where cen(t) denotes the centre of the cube t.

Proof. The proof is described in the diagram below. If x ∈ Pt1,v1 ∩Pt2,v2 , then there

exist y1 ∈ Qt1 , y2 ∈ Qt2 such that x = y1+x1v1 = y2+x1v2; i.e., x1(v2−v1) = y1−y2.
The inequality (7.1) follows since |yi − cen(ti)| ≤ cd

√
dM−n for i = 1, 2.

The inequality in (7.1) provides a valuable tool whenever an intersection takes

place. For the reader who would like to look ahead, Lemma 7.1 will be used along

with Corollary 7.2 to establish Lemma 10.4. The following Corollary 7.3 will be

needed for the proofs of Lemmas 10.5 and 10.9.
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y1
Pt1,v1

Pt2,v2

y2

x

Figure 7.1: A simple triangle is defined by two rooted tubes, Pt1,v1 and Pt2,v2 , and
any point x in their intersection.

Corollary 7.2. Under the hypotheses of Lemma 7.1 and for cd > 0 suitably small,

|x1(v2 − v1)| ≥
1

2
·M−n. (7.2)

Proof. Since t1 ̸= t2, we must have |cen(t1) − cen(t2)| ≥ M−n. Thus an intersection

is possible only if

x1|v2 − v1| ≥ |cen(t2) − cen(t1)| − 2cd
√
dM−n ≥ (1 − 2cd

√
d)M−n ≥ 1

2
·M−n,

where the first inequality follows from (7.1) and the last inequality holds provided

cd is chosen to satisfy 2cd
√
d ≤ 1

2
.

Corollary 7.3. If t1 ∈ Q(n), v1, v2 ∈ ΩN and a cube Q ⊆ Rd+1 of sidelength

C1M
−n with sides parallel to the coordinate axes are given, then there exists at most

C2 = C2(C1) choices of t2 ∈ Q(n) such that Pt1,v1 ∩ Pt2,v2 ∩Q ̸= ∅.

Proof. As x = (x1, · · · , xd+1) ranges in Q, x1 ranges over an interval I of length

C1M
−n. If x ∈ Pt1,v1 ∩ Pt2,v2 ∩ Q, the inequality (7.1) and the fact diam(Ω) ≤
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diam({1} × [−1, 1]d) = 2
√
d implies

∣∣cen(t2) − cen(t1) + cen(I)(v2 − v1)
∣∣ ≤ |(x1 − cen(I))(v2 − v1)| + 2cd

√
dM−n

≤ 2
√
d(C1 + cd)M

−n,

restricting cen(t2) to lie in a cube of sidelength 2
√
d(C1+cd)M

−n centred at cen(t1)−
cen(I)(v2 − v1). Such a cube contains at most C2 subcubes of the form (6.2), and

the result follows.

A recurring theme in the proof of Theorem 1.2 is the identification of a criterion

that ensures that a specified point lies in the Kakeya-type set KN(σ) defined in (6.5).

With this in mind, we introduce for any x = (x1, x2, · · · , xd+1) ∈ [0, 10C0]×Rd a set

Poss(x) :=
{
t ∈ Q(N) : there exists v ∈ ΩN such that x ∈ Pt,v

}
. (7.3)

This set captures all the possible M−N -cubes of the form (6.2) in {0} × [0, 1)d such

that a tube rooted at one of these cubes has the potential to contain x, provided

it is given the correct orientation. Note that Poss(x) is independent of any slope

assignment σ. Depending on the location of x, Poss(x) could be empty. This would

be the case if x lies outside a large enough compact subset of [0, 10C0] × Rd, for

example. Even if Poss(x) is not empty, an arbitrary slope assignment σ may not

endow any t in Poss(x) with the correct orientation.

In the next lemma, we list a few easy properties of Poss(x) that will be helpful

later, particularly during the proof of Lemma 11.3. Lemma 7.4 establishes the main

intuition behind the Poss(x) set, as we give a more geometric description of Poss(x)

in terms of an affine copy of the direction set ΩN . This is illustrated in Figure 7.2

for a particular choice of directions ΩN .

Lemma 7.4. Suppose a slope assignment σ : Q(n) → Ω has been specified.

(a) Then we have the containment

{
t ∈ Q(n) : x ∈ Pt,σ

}
⊆ Poss(x).
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(a)

x

(b)

Figure 7.2: Figure (a) depicts the cone generated by a second stage Cantor construc-
tion, Ω2, on the set of directions given by the curve {(1, s, s2) : 0 ≤ s ≤ C} in the
{1}×R2 plane. In Figure (b), a point x = (x1, x2, x3) has been fixed and the cone of
directions has been projected backward from x onto the coordinate plane, x− x1Ω2.
The resulting Poss(x) set is thus given by all cubes t ∈ Q(N) such that Qt intersects
a subset of the curve {(0, x2 − x1s, x3 − x1s

2) : 0 ≤ s ≤ C}.

(b) Further, for any x ∈ [0, 10C0] × Rd,

Poss(x) =
{
t ∈ Q(n) : Qt ∩ (x− x1Ω) ̸= ∅

}
(7.4)

⊆ {t ∈ Q(n) : t ∩ (x− x1Ω) ̸= ∅}. (7.5)

Note that the set in (7.4) could be empty, but the one in (7.5) is not.

Proof. If x ∈ Pt,σ, then x ∈ Pt,σ(t) with σ(t) equal to some v ∈ Ω. Thus Pt,v contains

x and hence t ∈ Poss(x), proving part (a). For part (b), we observe that x ∈ Pt,v for

some v ∈ Ω if and only if x − x1v ∈ Qt; i.e., Qt ∩ (x − x1Ω) ̸= ∅. This proves the
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relation (7.4). The containment in (7.5) is obvious.

We will also need a bound on the cardinality of Poss(x) within a given cube, and

on the cardinality of possible slopes that give rise to indistinguishable tubes passing

through a given point x sufficiently far away from the root hyperplane. Contained

in Lemma 7.5, these results will prove critical throughout Chapter 11, specifically in

the proofs of Lemmas 11.1 and 11.2. We will also have need to formulate a version of

this lemma in the language of trees: see Lemma 8.3. Not surprisingly, the Cantor-like

construction of Ω plays a role in all these estimates.

Lemma 7.5. There exists a constant C0 ≥ 1 with the following properties.

(a) For any x ∈ [C0, C0 + 1] × Rd and t ∈ Q(N), there exists at most one v ∈ ΩN

such that p ∈ Pt,v. In other words, for every Qt in Poss(p), there is exactly one

δ-tube rooted at t that contains p.

(b) For any p as in (a), and Qt, Qt′ ∈ Poss(p), let v = γ(α), v′ = γ(α′) be the two

unique slopes in ΩN guaranteed by (a) such that p ∈ Pt,v∩Pt′,v′. If k is the largest

integer such that Qt and Qt′ are both contained in the same cube Q ⊆ {0}×[0, 1)d

of sidelength M−k whose corners lie in M−kZd, then α and α′ belong to the same

kth stage basic interval in the Cantor construction.

Proof. (a) Suppose v, v′ ∈ ΩN are such that p ∈ Pt,v ∩ Pt,v′ . Then p − p1v and

p− p1v
′ both lie in Qt, so that p1|v − v′| ≤ cd

√
dM−N . Since p1 ≥ C0 and (1.4)

holds, we find that

|α− α′| ≤ cd
√
d

cC0

M−N < M−N ,

where the last inequality holds if C0 is chosen large enough. Let us recall from

the description of the Cantor-like construction in Section 1.1 that any two basic

rth stage intervals are non-adjacent, and hence any two points in CM lying in

distinct basic rth stage intervals are separated by at least M−r. Therefore the

inequality above implies that both α and α′ belong to the same basic Nth stage

interval in C[N ]
M . But D[N ]

M contains exactly one element from each such interval.

So α = α′ and hence v = v′.
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(b) If p ∈ Pt,v∩Pt′,v′ , then p1|v−v′| ≤ diam(Q̃t∪Q̃t′) ≤ diam(Q) =
√
dM−k. Apply-

ing (1.4) again combined with p1 ≥ C0, we find that |α− α′| ≤
√
d

cC0
M−k < M−k,

for C0 chosen large enough. By the same property of the Cantor construction as

used in (a), we obtain that α and α′ lie in the same kth stage basic interval in

C[k]
M .

We should point out that we will require a direct analogue of Lemma 7.5 when

treating the general case of sublacunary direction sets in Theorem 1.3. We defer

the statement and proof of this analogue until Section 13.1, Lemma 13.1, as it is

instructive to first understand the pruning mechanism that defines our direction set

ΩN . While a general lemma could easily be stated that encompasses both Lemma 7.5

and Lemma 13.1, keeping them separate avoids some unhelpful abstraction.
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Chapter 8

The random mechanism and sticky

collections of tubes in Rd+1 over a

Cantor set of directions

As we have seen in the planar context, the construction of a Kakeya-type set with

orientations given by Ω will require a certain random mechanism. We now describe

this mechanism in detail when Ω arises from a Cantor set of directions in an arbitrary

number of dimensions.

In order to assign a slope σ(·) to the tubes Pt,σ := Pt,σ(t) given by (6.4), we want

to define a collection of random variables {X⟨i1,...,ik⟩ : ⟨i1, . . . , ik⟩ ∈ T ([0, 1)d;M)},

one on each edge of the tree used to identify the roots of these tubes. The tree

T1([0, 1)d) consists of all first generation edges of T ([0, 1)d). It has exactly Md many

edges and we place (independently) a Bernoulli(1
2
) random variable on each edge:

X⟨0⟩, X⟨1⟩, . . . , X⟨Md−1⟩. Now, the tree T2([0, 1)d) consists of all first and second gen-

eration edges of T ([0, 1)d). It has Md+M2d many edges and we place (independently)

a new Bernoulli(1
2
) random variable on each of the M2d second generation edges. We

label these X⟨i1,i2⟩ where 0 ≤ i1, i2 < Md. We proceed in this way, eventually assign-

ing an ordered collection of independent Bernoulli(1
2
) random variables to the tree
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TN([0, 1)d):

XN :=
{
X⟨i1,...,ik⟩ : ⟨i1, . . . , ik⟩ ∈ TN([0, 1)d), 1 ≤ k ≤ N

}
,

where X⟨i1,...,ik⟩ is assigned to the unique edge identifying ⟨i1, i2, · · · , ik⟩, namely the

edge joining ⟨i1, i2, · · · , ik−1⟩ to ⟨i1, i2, . . . , ik⟩. Each realization of XN is a finite

ordered collection of cardinality Md +M2d + · · · +MNd with entries either 0 or 1.

We will now establish that every realization of the random variable XN defines a

sticky map between the truncated position tree TN([0, 1)d) and the truncated binary

tree TN([0, 1); 2), as defined in Definition 3.1. Fix a particular realization XN = x =

{x⟨i1,··· ,ik⟩}. Define a map τx : TN([0, 1)d) → TN([0, 1); 2), where

τx(⟨i1, i2, . . . , ik⟩) =
⟨
x⟨i1⟩, x⟨i1,i2⟩, . . . , x⟨i1,i2,...,ik⟩

⟩
. (8.1)

We then have the following key proposition.

Proposition 8.1. The map τx just defined is sticky for every realization x of XN .

Conversely, any sticky map τ between TN([0, 1)d) and TN([0, 1); 2) can be written as

τ = τx for some realization x of XN .

Proof. Recalling Definition 3.1, we need to verify that τx preserves heights and lin-

eages. By (8.1), any finite sequence v = ⟨i1, i2, · · · , ik⟩ in T ([0, 1)d) is mapped to

a sequence of the same length in T ([0, 1); 2). Therefore h(v) = h(τx(v)) for every

v ∈ T ([0, 1)d).

Next suppose u ⊃ v. Then u = ⟨i1, . . . , ih(u)⟩, with h(u) ≤ k. So again by (8.1),

τx(u) =
⟨
x⟨i1⟩, . . . , x⟨i1,...,ih(u)⟩

⟩
⊃
⟨
x⟨i1⟩, . . . , x⟨i1,...,ih(u)⟩, . . . , x⟨i1,...,ik⟩

⟩
= τx(v).

Thus, τx preserves lineages, establishing the first claim in Proposition 8.1.

For the second, fix a sticky map τ : TN([0, 1)d) → TN([0, 1); 2). Define x⟨i1⟩ :=

τ(⟨i1⟩), x⟨i1,i2⟩ := π2 ◦ τ(⟨i1, i2⟩), and in general

x⟨i1,··· ,ik⟩ := πk ◦ τ(⟨i1, i2, · · · , ik⟩), k ≥ 1,
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where πk denotes the projection map whose image is the kth coordinate of the input

sequence. The collection x = {x⟨i1,i2,··· ,ik⟩} is the unique realization of XN that verifies

the second claim.

8.1 Slope assignment algorithm

Recall from Section 1.1 and Chapter 6 that Ω := γ(CM) and ΩN := γ(D[N ]
M ), where

CM is the generalized Cantor-type set and D[N ]
M a finitary version of it. In order

to exploit the binary structure of the trees T (CM) := T (CM ;M) and T (D[N ]
M ) :=

T (D[N ]
M ;M) advanced in Proposition 3.2 and Fact 6.1, we need to map traditional

binary sequences onto the subsequences of {0, . . . ,M − 1}∞ defined by CM or D[N ]
M .

Proposition 8.2. Every sticky map τ as in (8.1) that maps TN([0, 1)d;M) to TN([0, 1); 2)

induces a natural mapping σ = στ from TN([0, 1)d) into ΩN . The maps στ obey a

uniform Lipschitz-type condition: for any t, t′ ∈ TN([0, 1)d), t ̸= t′,

∣∣στ (t) − στ (t
′)
∣∣ ≤ CM−h(D(τ(t),τ(t′))), (8.2)

where C is as in (1.4).

Remark: While the choice of D[N ]
M for a given C[N ]

M is not unique, the mapping τ 7→ στ

is unique given a specific choice. Moreover, if D[N ]
M and D[N ]

M are two selections of

finitary direction sets at scale M−N , then the corresponding maps στ and στ must

obey ∣∣στ (v) − στ (v)
∣∣ ≤ CM−h(v) for every v ∈ TN([0, 1)d), (8.3)

where C is as in (1.4). Thus given τ , the slope in Ω that is assigned by στ to an

M -adic cube in {0}× [0, 1)d of sidelength M−N is unique up to an error of O(M−N).

As a consequence Pt,στ and Pt,στ are comparable, in the sense that each is contained

in a O(M−N)-thickening of the other.

Proof. There are two links that allow passage of τ to σ. The first of these is the

isomorphism ψ constructed in Proposition 3.2 that maps T (CM ;M) onto T ([0, 1); 2).
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Under this isomorphism, the pre-image of any k-long sequence of 0’s and 1’s is a

vertex w of height k in T (CM ;M), in other words one of the 2k chosen M -adic

intervals of length M−k that constitute C[k]
M . The second link is a mapping Φ :

TN(CM ;M) → D[N ]
M that sends every vertex w to a point in CM ∩w, where, as usual,

we have also let w denote the particular M -adic interval that it identifies. While the

choice of the image point, i.e., D[N ]
M is not unique, any two candidates Φ, Φ satisfy

|Φ(w) − Φ(w)
∣∣ ≤ diam(w) = M−h(w) for every w ∈ TN(CM ;M). (8.4)

We are now ready to describe the assignment τ 7→ σ = στ . Given a sticky map

τ : TN([0, 1)d;M) → TN([0, 1); 2) such that

τ(⟨i1, i2, · · · , ik⟩) = ⟨X⟨i1⟩, · · · , X⟨i1,i2,··· ,ik⟩⟩,

the transformed random variable

Y⟨i1,i2...,ik⟩ := γ ◦ Φ ◦ ψ−1
(
⟨X⟨i1⟩, X⟨i1,i2⟩, . . . , X⟨i1,i2,...,ik⟩⟩

)
associates a random direction in ΩN = γ(D[N ]

M ) to the sequence t = ⟨i1, . . . , ik⟩
identified with a unique vertex t ∈ TN([0, 1)d). Thus, defining

σ := γ ◦ Φ ◦ ψ−1 ◦ τ (8.5)

gives the appropriate (random) mapping claimed by the proposition. The weak

Lipschitz condition (8.2) is verified as follows,

∣∣στ (t) − στ (t
′)
∣∣ =

∣∣γ ◦ Φ ◦ ψ−1 ◦ τ(t) − γ ◦ Φ ◦ ψ−1 ◦ τ(t′)
∣∣

≤ C
∣∣Φ ◦ ψ−1 ◦ τ(t) − Φ ◦ ψ−1 ◦ τ(t′)

∣∣
≤ CM−h(D(ψ−1◦τ(t),ψ−1◦τ(t′)))

= CM−h(D(τ(t),τ(t′))).

Here the first inequality follows from (1.4), the second from the definition of Φ.
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The third step uses the fact that ψ is an isomorphism, so that h(D(τ(t), τ(t′))) =

h(D(ψ−1 ◦τ(t), ψ−1 ◦τ(t′))). Finally, any non-uniqueness in the definition of σ comes

from Φ, hence (8.3) follows from (8.4) and (1.4).

The stickiness of the maps τx is built into their definition (8.1). The reader may

be interested in observing that there is a naturally sticky map that we have already

introduced, which should be viewed as the inspiration for the construction of τ and

στ . We refer to the geometric content of Lemma 7.5, which in the language of trees

has a particularly succinct reformulation. We record this below.

Lemma 8.3. For C0 obeying the requirement of Lemma 7.5 and x ∈ [C0, C0+1]×Rd,

let Poss(x) be as in (7.3). Let Φ and ψ be the maps used in Proposition 8.2. Then

the map t 7→ β(t) which maps every t ∈ Poss(x) to the unique β(t) ∈ [0, 1) such that

x ∈ Pt,v(t) where v(t) = γ ◦ Φ ◦ ψ−1 ◦ β(t), (8.6)

extends as a well-defined sticky map from TN(Poss(x);M) to TN([0, 1); 2).

Proof. By Lemma 7.5(a), there exists for every t ∈ Poss(x) a unique v(t) ∈ ΩN such

that x ∈ Pt,v(t). Let us therefore define for 1 ≤ k ≤ N ,

β(π1(t), · · · , πk(t)) = (π1 ◦ β(t), · · · , πk ◦ β(t)) (8.7)

where β(t) is as in (8.6) and as always πk denotes the projection to the kth coordinate

of an input sequence. More precisely, πk(t) represents the unique kth level M -adic

cube that contains t. Similarly πk(β(t)) is the kth component of the N -long binary

sequence that identifies β(t). The function β defined in (8.7) maps TN(Poss(x);M)

to TN([0, 1); 2), and agrees with β as in (8.6) if k = N .

To check that the map is consistently defined, we pick t ̸= t′ in Poss(x) with

u = D(t, t′) and aim to show that β(π1(t), · · · , πk(t)) = β(π1(t
′), · · · , πk(t′)) for all

k such that k ≤ h(u). But by definition (8.6), v(t) and v(t′) have the property that

x ∈ Pt,v(t) ∩ Pt′,v(t′). Hence Lemma 7.5(b) asserts that α(t) = γ−1(v(t)) and α(t′) =

γ−1(v(t′)) share the same basic interval at step h(u) of the Cantor construction.
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Thus β(t) = ψ ◦ Φ−1 ◦ α(t) and β(t′) = ψ ◦ Φ−1 ◦ α(t′) have a common ancestor

in TN([0, 1); 2) at height h(u), and hence πk(β(t)) = πk(β(t′)) for all k ≤ h(u), as

claimed. Preservation of heights and lineages is a consequence of the definition (8.7),

and stickiness follows.

8.2 Construction of Kakeya-type sets revisited

As τ ranges over all sticky maps τx : TN([0, 1)d) → TN([0, 1); 2) with x ∈ XN , we now

have for every vertex t ∈ TN([0, 1)d) with h(t) = N a random sticky slope assignment

σ(t) ∈ ΩN defined as above. For all such t, this generates a randomly oriented tube

Pt,σ given by (6.4) rooted at the M -adic cube identified by t, with sidelength cd ·M−N

in the {x1 = 0} plane. We may rewrite the collection of such tubes from (6.5) as

KN(σ) :=
∪

t∈TN ([0,1)d)
h(t)=N

Pt,σ. (8.8)

On average, a random collection of tubes with the above described sticky slope

assignment will comprise a Kakeya-type set, as per (1.1). Specifically, we will show

in the next chapter that the following proposition holds. In view of Proposition 6.2,

this will suffice to prove Theorem 1.2.

Proposition 8.4. Suppose (ΣN ,P(ΣN),Pr) is the probability space of sticky maps

described above, equipped with the uniform probability measure. For every σ ∈ ΣN ,

there exists a set KN(σ) as defined in (8.8), with tubes oriented in directions from

ΩN = γ(D[N ]
M ). Then these random sets obey the hypotheses of Proposition 6.2 with

aN = cM

√
logN

N
and bN =

CM
N

, (8.9)

where cM and CM are fixed positive constants depending only on M and d. The

content of Proposition 6.2 allows us to conclude that Ω admits Kakeya-type sets.
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Chapter 9

Slope probabilities and root

configurations, Cantor case

Having established the randomization method for assigning slopes to tubes, we are

now in a position to apply this toward the estimation of probabilities of certain events

that will be of interest in the next chapter. Roughly speaking, we wish to compute

conditional probabilities that one or more cubes on the root hyperplane are assigned

prescribed slopes, provided similar information is available for other cubes.

Lemma 9.1. Let us fix v1, v2 ∈ ΩN , so that v1 = γ(α1) and v2 = γ(α2) for unique

α1, α2 ∈ D[N ]
M . We also fix t1, t2 ∈ TN([0, 1)d), h(t1) = h(t2) = N , t1 ̸= t2. Let

us denote by u ∈ TN([0, 1)d) and α ∈ TN(D[N ]
M ) the youngest common ancestors of

(t1, t2) and (α1, α2) respectively; i.e., u = D(t1, t2), α = D(α1, α2). Then

Pr
(
σ(t2) = v2

∣∣σ(t1) = v1
)

=

2−(N−h(u)) if h(u) ≤ h(α),

0 otherwise.
(9.1)

Proof. Keeping in mind the slope assignment as described in (8.5), and the sticki-

ness of the map τ as given in Proposition 8.1, the proof can be summarized as in

Figure 9.1. Since t1 and t2 must map to v1 = γ(α1) and v2 = γ(α2) under σ = στ ,

the sticky map ψ−1 ◦ τ must map t1 and t2 to the Nth stage basic intervals in the
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Cantor construction containing α1 and α2 respectively. Since sticky maps preserve

heights and lineages, we must have h(α) ≥ h(u). Assuming this, we simply count the

number of distinct edges on the ray defining t2 that are not common with t1. The

map τ generating σ = στ is defined by a binary choice on every edge in TN([0, 1)d),

and the rays given by t1 and t2 agree on their first h(u) edges, so we have exactly

N − h(u) binary choices to make. This is precisely (9.1).

D(t1, t2)

t2t1

D(α1, α2)

α2α1

Φ ◦ ψ−1 ◦ τ

Figure 9.1: Diagram of the sticky assignment between the two rays defining t1, t2 ∈
TN([0, 1)d) and the two rays defining their assigned slopes α1, α2 ∈ D[N ]

M . The bold
edges defining t1 are fixed to map to the corresponding bold edges at the same height
defining α1. This leaves a binary choice to be made at each of the dotted edges along
the path between D(t1, t2) and t2. We see that t2 is assigned the slope v2 under σ
if and only if these dotted edges are assigned via Φ ◦ ψ−1 ◦ τ to the dotted edges on
the ray defining α2.

More explicitly, if t1 = ⟨i1, i2, · · · , iN⟩ and t2 = ⟨j1, · · · , jN⟩, then

⟨i1, · · · , ih(u)⟩ = ⟨j1, · · · , jh(u)⟩. (9.2)

The event of interest may therefore be recast as

{
σ(t2) = v2

∣∣σ(t1) = v1
}

=
{
τ(j1, · · · , jN) = ψ ◦ Φ−1(α2)

∣∣∣τ(i1, · · · , iN) = ψ ◦ Φ−1(α1)
}
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=
{
⟨X⟨j1⟩, · · · , X⟨j1,··· ,jN ⟩⟩ = ψ ◦ Φ−1(α2)

∣∣∣⟨X⟨i1⟩, · · · , X⟨i1,··· ,iN ⟩⟩ = ψ ◦ Φ−1(α1)
}

=
{
X⟨j1,··· ,jk⟩ = πk ◦ ψ ◦ Φ−1(α2) for h(u) + 1 ≤ k ≤ N

}
,

where πk denotes the kth component of the input sequence. At the second step

above we have used (8.1) and Proposition 8.2, and the third step uses (9.2). The

last event then amounts to the agreement of two (N − h(u))-long binary sequences,

with an independent, 1/2 chance of agreement at each sequential component. The

probability of such an event is 2−(N−h(u)), as claimed.

The same idea can be iterated to compute more general probabilities. To exclude

configurations that are not compatible with stickiness, let us agree to call a collection

{(t, αt) : t ∈ A, h(t) = h(αt) = N} ⊆ TN([0, 1)d) ×D[N ]
M (9.3)

of point-slope combinations sticky-admissible if there exists a sticky map τ such that

ψ−1 ◦ τ maps t to αt for every t ∈ A. Notice that existence of a sticky τ imposes

certain consistency requirements on a sticky-admissible collection (9.3); for example

h(D(αt, αt′)) ≥ h(D(t, t′)), and more generally h(D(αt : t ∈ A′)) ≥ h(D(A′)) for any

finite subset A′ ⊆ A.

For sticky-admissible configurations, we summarize the main conditional proba-

bility of interest below.

Lemma 9.2. Let A and B be finite disjoint collections of vertices in TN([0, 1)d) of

height N . Then for any choice of slopes {vt = γ(αt) : t ∈ A ∪ B} ⊆ ΩN such that

the collection {(t, αt) : t ∈ A ∪B} is sticky-admissible, the following equation holds:

Pr
(
σ(t) = vt for all t ∈ B

∣∣ σ(t) = vt for all t ∈ A
)

=

(
1

2

)k(A,B)

,

where k(A,B) is the number of distinct edges in the tree identifying B that are not

common with the tree identifying A. If {(t, αt) : t ∈ A ∪B} is not sticky-admissible,

then the probability is zero.
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For the remainder of this chapter, we focus on some special events of the form

dealt with in Lemma 9.2 that will be critical to the proof of (6.6). In all these cases

of interest #(A),#(B) ≤ 2. As is reasonable to expect, the configuration of the root

cubes within the tree TN([0, 1)d) plays a role in determining k(A,B). While there is

a large number of possible configurations, we isolate certain structures that will turn

out to be generic enough for our purposes.

9.1 Four point root configurations

Definition 9.3. Let I = {(t1, t2); (t′1, t
′
2)} be an ordered tuple of four distinct points

in TN([0, 1)d) of height N such that

h(u) ≤ h(u′) where u = D(t1, t2), u
′ = D(t′1, t

′
2). (9.4)

We say that I is in type 1 configuration if exactly one of the following conditions is

satisfied:

(a) either u ∩ u′ = ∅, or

(b) u′ ⊊ u, or

(c) u = u′ = D(ti, t
′
j) for all i, j = 1, 2

If I satisfying (9.4) is not of type 1, we call it of type 2. An ordered tuple I not

satisfying the inequality in (9.4) is said to be of type j = 1, 2 if I′ = {(t′1, t
′
2); (t1, t2)}

is of the same type.

The different structural possibilities are listed in Figure 9.2. The advantage

of a type 1 configuration is that, in addition to being overwhelmingly popular, it

allows (up to permutations) an easy computation of the quantity k(A,B) described

in Lemma 9.2 if #(A) = #(B) = 2, A ∪ B = {t1, t′1, t2, t′2} and #(A ∩ {t1, t2}) =

#(B ∩ {t1, t2}) = 1.
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Type 1 Configurations

u
u′

t1 t2 t′1 t′2

(a)

u

u′

t2t1 t′1 t′2

(c)

u

u′

t2 t′2 t′1 t1

(f)

u

u′

t2 t1 t′1 t′2

(d)

u = u′

t1 t′1 t2 t′2

(b)

u

u′

t2 t1 t′1 t′2

(e)

Figure 9.2: All possible four point configurations of type 1, up to permutations.

Lemma 9.4. Let I = {(t1, t2); (t′1, t
′
2)} obeying (9.4) be in type 1 configuration. Let

vi = γ(αi), v
′
i = γ(α′

i), i = 1, 2, be (not necessarily distinct) points in ΩN . Then

there exist two permutations {i1, i2} and {j1, j2} of {1, 2} such that

Pr
(
σ(ti2) = vi2 , σ(t′j2) = v′j2

∣∣σ(ti1) = vi1 , σ(t′j1) = v′j1
)

=

(
1

2

)2N−h(u)−h(u′)

.

provided the collection {(ti, αi), (t
′
i, α

′
i); i = 1, 2} is sticky-admissible. If the admissi-

bility requirement is not met, then the probability is zero.

Proof. The proof is best illustrated by referring to the above diagram, Figure 9.2.

If u ∩ u′ = ∅, then any two permutations will satisfy the conclusion of the lemma,

Figure 9.2(a). In particular, choosing i1 = j1 = 1, i2 = j2 = 2, we see that the

number of edges in B = {t2, t′2} not shared by A = {t1, t′1} is k(A,B) = (N−h(u))+

(N − h(u′)) = 2N − h(u) − h(u′). The same argument applies if u = u′ = D(ti, t
′
j)

for all i, j = 1, 2, Figure 9.2(b).
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We turn to the remaining case where u′ ⊊ u. Here there are several possiblities

for the relative positions of t1, t2. Suppose first that there is no vertex w on the

ray joining u and u′ with h(u) < h(w) < h(u′) such that w is an ancestor of t1 or

t2. This means that the rays of t1, t2 and u′ follow disjoint paths starting from u,

so any choice of permutation suffices, Figure 9.2(c). Suppose next that there is a

vertex w on the ray joining u and u′ with h(u) < h(w) < h(u′) such that w is an

ancestor of exactly one of t1, t2, but no descendant of w on this path is an ancestor

of either t1 or t2, Figure 9.2(d). In this case, we choose ti1 to be the unique element

of {t1, t2} whose ancestor is w. Note that the ray for ti2 must have split off from u

in this case. Any permutation of {t′1, t′2} will then give rise to the desired estimate.

If neither of the previous two cases hold, then exactly one of {t1, t2}, say ti1 , is a

descendant of u′. If u′ = D(ti1 , t
′
j) for both j = 1, 2, then again any permutation of

{t′1, t′2} works, Figure 9.2(e). Thus the only remaining scenario is where there exists

exactly one element in {t′1, t′2}, call it t′j1 , such that h(D(ti1 , t
′
j1

)) > h(u′). In this

case, we choose A = {ti1 , t′j1} and B = {ti2 , t′j2}, Figure 9.2(f). All cases now result

in k(A,B) = 2N − h(u) − h(u′), completing the proof.

Lemma 9.5. Let I = {(t1, t2); (t′1, t
′
2)} obeying (9.4) be in type 2 configuration. Then

there exist permutations {i1, i2} and {j1, j2} of {1, 2} for which we have the relations

u1 ⊆ u, u2 ⊊ u with h(u) ≤ h(u1) ≤ h(u2), where

u1 = D(ti1 , t
′
j1

), u2 = D(ti2 , t
′
j2

),

and for which the following equality holds:

Pr
(
σ(ti1) = vi1 , σ(t′j1) = v′j1

∣∣ σ(ti2) = vi2 , σ(t′j2) = v′j2
)

=

(
1

2

)2N−h(u)−h(u1)

for any choice of slopes v1, v
′
1, v2, v

′
2 ∈ ΩN for which {(ti, αi), (t

′
i, α

′
i); i = 1, 2} is

sticky-admissible.

Proof. Since I is of type 2, we know that u = u′, and hence all pairwise youngest

common ancestors of {t1, t′1, t2, t′2} must lie within u, but that there exist i, j ∈ {1, 2}
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Type 2 Configurations

u = u′

u1
u2

t1 t′1 t2 t′2

(b)

u = u′

u1 u2

t1 t′1 t2 t′2

(a)

u = u′u1
u2

t1 t′1 t2 t′2

(c)

Figure 9.3: All possible four point configurations of type 2, up to permutations.

such that h(D(ti, t
′
j)) > h(u). Let us set (i2, j2) to be a tuple for which h(D(ti2 , t

′
j2

))

is maximal. The height inequalities and containment relations are now obvious, and

Figure 9.3 shows that k(A,B) = (N − h(u)) + (N − h(u1)) if A = {ti2 , t′j2} and

B = {ti1 , t′j1}.

9.2 Three point root configurations

The arguments in the previous section simplify considerably when there are three

root cubes instead of four. Since the proofs here are essentially identical to those

presented in Lemmas 9.4 and 9.5, we simply record the necessary facts with the

accompanying diagram of Figure 9.4.

Definition 9.6. Let I = {(t1, t2); (t1, t
′
2)} be an ordered tuple of three distinct points

in TN([0, 1)d) of height N such that h(u) ≤ h(u′), where u = D(t1, t2), u
′ = D(t1, t

′
2).

We say that I is in type 1 configuration if exactly one of the following two conditions

holds:

(a) u′ ⊊ u, or

(b) u = u′ = D(t2, t
′
2).

Else I is of type 2, in which case one necessarily has u = u′ and u2 = D(t2, t
′
2) obeys

u2 ⊊ u. If h(u) > h(u′), then the type I is the same as that of I′ = {(t1, t
′
2); (t1, t2)}.
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Type 1 Type 2

u

u′

t1 t′2 t2

u = u′

t′2t1 t2

u = u′

u2

t1 t2 t′2

Figure 9.4: Structural possibilities for three point root configurations

Lemma 9.7. Let I = {(t1, t2); (t1, t
′
2)} be any three-point configuration with h(u) ≤

h(u′) in the notation of Definition 9.6, and let v1 = γ(α1), v2 = γ(α2) v
′
2 = γ(α′

2) be

slopes in ΩN . Then

Pr
(
σ(t2) = v2, σ(t′2) = v′2

∣∣σ(t1) = v1
)

=


(
1
2

)2N−h(u)−h(u′)
if I is of type 1,(

1
2

)2N−h(u)−h(u2) if I is of type 2,

provided the point-slope combination {(t1, α1), (t2, α2), (t
′
2, α

′
2)} is sticky-admissible.
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Chapter 10

Proposition 8.4: proof of the lower

bound (6.6)

To establish the appropriate lower bound (6.6), we will exploit the general measure

theoretic fact introduced by Bateman and Katz in the planar case (see Lemma 5.1

of this document). Recall that this fact quantifies the notion that if a collection

of many thin tubes is to have a large volume, then the intersection of most pairs

of tubes should be small. In light of this fact, we will see that the derivation of

inequality (6.6) with the aN specified in (8.9) reduces to the following proposition.

Throughout this chapter, all probability statements are understood to take place

on the probability space (ΣN ,P(ΣN),Pr) identified in Proposition 8.4.

Proposition 10.1. Fix integers N and R with N ≫ M and N − 1
10

logM N ≤
R ≤ N − 10. Define P ∗

t,σ,R to be the portion of Pt,σ contained in the vertical slab

[MR−N ,MR+1−N ] × Rd. Then

Eσ
[∑
t1 ̸=t2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣] ≲ NM−2N+2R, (10.1)

where the implicit constant depends only on M and d.

If one can show that with large probability and for all R specified in Proposition

10.1, the quantity
∑

t1 ̸=t2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣ is bounded above by the right hand side
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of (10.1), then Lemma 5.1 would imply (6.6) with aN =
√

logN/N . Unfortunately,

(10.1) only shows this on average for every R, and hence is too weak a statement to

permit such a conclusion. However, with some additional work we are able to upgrade

the statement in Proposition 10.1 to a second moment estimate, given below. While

still not as strong as the statement mentioned above, this suffices for our purposes

with a smaller choice of aN .

Proposition 10.2. Under the same hypotheses as Proposition 10.1, there exists a

constant CM,d > 0 such that

Eσ
[(∑

t1 ̸=t2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣)2] ≤ C2
M,d

(
NM−2N+2R

)2
. (10.2)

Corollary 10.3. Proposition 10.2 implies (6.6) with aN as in (8.9).

Proof. Fix a small constant c1 > 0 such that 2c1 <
1
10

. By Chebyshev’s inequality,

(10.2) implies that there exists a large constant CM,d > 0 such that for every R with

c1 logN ≤ N −R ≤ 2c1 logN ,

Pr
({
σ :
∑
t1 ̸=t2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣ ≥ 2CM,dN
√

logNM−2N+2R
})

≤
Eσ
[(∑

t1 ̸=t2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣)2](
2CM,dN

√
logNM−2N+2R

)2
≤ 1

4 logN
.

Therefore,

Pr
( 2c1 logN∪
N−R=c1 logN

{
σ :
∑
t1 ̸=t2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣ ≥ CM,dN
√

logNM−2N+2R
})

≤ c1 logN

4 logN
<

1

4
.

106



In other words, for a class of σ with probability at least 3
4
,∑

t1 ̸=t2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣ ≤ CM,dN
√

logNM−2N+2R

for every N − R ∈
[
c1 logN, 2c1 logN

]
. For such σ and the chosen range of R, we

apply Lemma 5.1 with At = P ∗
t,σ,R, m = MNd, for which α = CdM

R−NM−Nd, and

∑
t1,t2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣ =
[∑
t1=t2

+
∑
t1 ̸=t2

]∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣
≤ αn+ CM,dN

√
logNM−2N+2R

≲MR−N +N
√

logNM−2N+2R

≲ N
√

logNM−2N+2R =: L.

The last step above uses the specified range of R. Lemma 5.1 now yields that∣∣∣∪
t

P ∗
t,σ,R

∣∣∣ ≳ (MR−N)2

L
∼ 1

N
√

logN

for every N − R ∈
[
c1 logN, 2c1 logN

]
. Since {∪tP ∗

t,σ,R : R ≥ 0} is a disjoint

collection, we obtain

∣∣KN(σ) ∩ [0, 1] × Rd
∣∣ ≥ N−c1 logN∑

R=N−2c1 logN

∣∣∣∪
t

P ∗
t,σ,R

∣∣∣ ≳ logN
1

N
√

logN
= aN ,

which is the desired conclusion (6.6).

10.1 Proof of Proposition 10.1

Thus, we are charged with proving Proposition 10.2. We will prove Proposition 10.1

first, since it involves many of the same ideas as in the proof of the main proposition,

but in a simpler setting. We will need to take advantage of several geometric facts,

counting arguments and probability estimates prepared in Chapters 7 and 9 that
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will be described shortly. For now, we prescribe the main issues in establishing the

bound in (10.1).

Proof. Given N and R as in the statement of the proposition, we decompose the slab

[MR−N ,MR+1−N ] × Rd into thinner slices Zk, where

Zk :=

[
k

MN
,
k + 1

MN

]
× Rd, MR ≤ k ≤MR+1 − 1.

Setting Pt,σ,k := Pt,σ ∩ Zk, we observe that P ∗
t,σ,R is an essentially disjoint union of

{Pt,σ,k}. Since P ∗
t,σ,R is transverse to Zk, we arrive at the estimate∑

t1 ̸=t2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣ =
∑

MR≤k<MR+1

∑
t1 ̸=t2

|Pt1,σ,k ∩ Pt2,σ,k|

≲M−(d+1)N
∑

MR≤k<MR+1

∑
t1 ̸=t2

Tt1t2(k) (10.3)

≲M−(d+1)N
∑

MR≤k<MR+1

∑
u∈TN ([0,1)d)
h(u)<N

∑
(t1,t2)∈Su

Tt1t2(k), (10.4)

where Tt1t2(k) is a random variable that equals one if Pt1,σ,k ∩ Pt2,σ,k ̸= ∅, and is

zero otherwise. At the last step in the above string of inequalities, we have further

stratified the sum in (t1, t2) in terms of their youngest common ancestor u = D(t1, t2)

in the tree TN([0, 1)d), with the index set Su of the innermost sum being defined by

Su :=
{

(t1, t2) : t1, t2 ∈ TN([0, 1)d), h(t1) = h(t2) = N, D(t1, t2) = u
}
.

We will prove below in Lemma 10.7 that

Eσ
[ ∑
(t1,t2)∈Su

Tt1t2(k)
]
≲MR−NM−dh(u)+Nd = MR−dh(u)+N(d−1). (10.5)

Plugging this expected count into the last step of (10.4) and simplifying, we
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obtain

Eσ
[∑
t1 ̸=t2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣] ≲ ∑
MR≤k<MR+1−1

MR−2N
∑

u∈TN ([0,1)d)
h(u)<N

M−dh(u)

≲
∑

MR≤k<MR+1−1

MR−2NN ≲ NM2R−2N ,

which is the estimate claimed by Proposition 10.1. At the penultimate step, we have

used the fact that there are Mdr vertices u in TN([0, 1)d) of height r, resulting in∑
u

M−dh(u) =
∑

0≤r<N

M−drMdr = N. (10.6)

10.2 Proof of Proposition 10.2

Proof. To establish (10.2), we take a similar route, with some extra care in summing

over the (now more numerous) indices. Squaring the expression in (10.3), we obtain[∑
t1 ̸=t2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣]2 ≤M−2(d+1)N
∑

k,k′∈[MR,MR+1)

∑
t1 ̸=t2
t′1 ̸=t′2

Tt1t2(k)Tt′1t′2(k
′)

≤ S2 + S3 + S4,

where the index i in Si corresponds to the number of distinct points in the tuple

{(t1, t2); (t′1, t
′
2)}. More precisely, for i = 2, 3, 4,

Si := M−2(d+1)N
∑
k,k′

∑
I∈Ii

Tt1t2(k)Tt′1t′2(k
′), where (10.7)

Ii :=

{
I = {(t1, t2); (t′1, t

′
2)}

∣∣∣∣∣ tj, t
′
j ∈ TN([0, 1)d), h(tj) = h(t′j) = N ∀j = 1, 2,

t1 ̸= t2, t
′
1 ̸= t′2, #({t1, t′1, t2, t′2}) = i

}
.
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The main contribution to the left hand side of (10.2) will be from Eσ(S4), and we

will discuss its estimation in detail. The other terms, whose treatment will be briefly

sketched, will turn out to be of smaller size.

We decompose I4 = I41 ∪ I42, where I4j is the collection of 4-tuples of distinct

points {(t1, t2); (t′1, t
′
2)} that are in configuration of type j = 1, 2, as explained in

Definition 9.3. This results in a corresponding decomposition S4 = S41 + S42. For

S41, we further stratify the sum in terms of u = D(t1, t2) and u′ = D(t′1, t
′
2), where

we may assume without loss of generality that h(u) ≤ h(u′). Thus,

Eσ
(
S41

)
=
∑
k,k′

∑
u,u′∈TN ([0,1)d)
h(u)≤h(u′)<N

Eσ
(
S41(u, u

′; k, k′)
)

where (10.8)

S41(u, u
′; k, k′) := M−2(d+1)N

∑
I∈I41(u,u′)

Tt1t2(k)Tt′1t′2(k
′), and

I41(u, u
′) := {I ∈ I41 : u = D(t1, t2), u

′ = D(t′1, t
′
2)}.

In Lemma 10.8 below, we will show that

Eσ
[
S41(u, u

′; k, k′)
]
≲M−2(d+1)NM2R−d(h(u)+h(u′))+2N(d−1)

= M2R−4N−d(h(u)+h(u′)).
(10.9)

Inserting this back into (10.8), we now follow the same summation steps that led to

(10.1) from (10.5). Specifically, applying (10.6) twice, we obtain

Eσ(S41) ≲M2R−4N
∑
k,k′

∑
u,u′

M−d(h(u)+h(u′))

≲
∑
k,k′

N2M2R−4N ≲ N2M4R−4N ,

which is the right hand side of (10.2).

Next we turn to S42. Motivated by the configuration type, and after permutations

of {t1, t2} and of {t′1, t′2} if necessary (so that the conclusion of Lemma 9.5 holds),

we stratify this sum in terms of u = u′ = D(t1, t2) = D(t′1, t
′
2), u1 = D(t1, t

′
1),

110



u2 = D(t2, t
′
2), writing

S42 =
∑
k,k′

∑
u,u1,u2∈TN ([0,1)d)

u1,u2⊆u

S42(u, u1, u2; k, k
′), where

S42(u, u1, u2; k, k
′) := M−2(d+1)N

∑
I∈I42(u,u1,u2)

Tt1t2(k)Tt′1t′2(k
′), and

I42(u, u1, u2) :=

{
I ∈ I42

∣∣∣u = D(t1, t2) = D(t′1t
′
2),

u1 = D(t1, t
′
1), u2 = D(t2, t

′
2)

}
(10.10)

for given u1, u2 ⊆ u with h(u) ≤ h(u1) ≤ h(u2). For such u, u1, u2, we will prove in

Lemma 10.9 below that

Eσ
(
S42(u, u1, u2; k, k

′)
)
≲M−2N−2dh(u2). (10.11)

Accepting this estimate for the time being, we complete the estimation of Eσ(S42)

as follows,

Eσ(S42) ≲
∑
k,k′

∑
u,u1,u2

M−2N−2dh(u2)

≲M−2N
∑
k,k′

∑
u

∑
u2⊆u

M−2dh(u2)
∑
u1⊆u

h(u1)≤h(u2)

1

≲M−2N
∑
k,k′

∑
u

∑
u2⊆u

M−2dh(u2)
[
Md(h(u2)−h(u))

]
(10.12)

≲M−2N
∑
k,k′

∑
u

M−dh(u)
∑
u2⊆u

M−dh(u2)

≲ NM−2N
∑
k,k′

∑
u

M−2dh(u) (10.13)

≲ NM2R−2N . (10.14)

For the range N − R ≤ 1
2

logM N assured by Proposition 10.2, the last quantity

above is smaller than (NM2R−2N)2. The string of inequalities displayed above involve

repeated applications of the fact used to prove (10.6), namely that there are Mdj−dh(u)
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cubes of sidelength M−j contained in u. Thus the estimates

∑
u1⊆u

h(u1)≤h(u2)

1 ≲
h(u2)∑
j=h(u)

Md(j−h(u)) ≲Md(h(u2)−h(u)),

∑
u2⊆u

M−dh(u2) ≲
∑

N≥j≥h(u)

M−djMd(j−h(u)) ≲ NM−dh(u), and

∑
u

M−2dh(u) =
N∑
j=0

MdjM−2dj =
N∑
j=0

M−dj ≲ 1

were used in (10.12) (10.13) and (10.14) respectively, completing the estimation of

E(S4).

Arguments similar to and in fact simpler than those above lead to the following

estimates for E(S3) and E(S2), where S3 and S2 are as defined in (10.7):

E(S3) = E(S31) + E(S32)

≲ NM3R−3N +M3R−3N ≲ NM3R−3N , and (10.15)

E(S2) ≲ NM3R−(d+3)N . (10.16)

Here without loss of generality and after a permutation if necessary, we have assumed

that I = {(t1, t2); (t1, t
′
2)} ∈ I3, with h(D(t1, t2)) ≤ h(D(t1, t

′
2)). The subsum S3i

then corresponds to tuples I that are in type i configuration in the sense of Definition

9.6. There is only one possible configuration of pairs in I2. The derivation of the

expectation estimates (10.15) and (10.16) closely follow the estimation of S4, with

appropriate adjustments in the probability counts; for instance, (10.15) uses Lemma

9.7 and (10.16) uses Lemma 9.1. To avoid repetition, we leave the details of (10.15)

and (10.16) to the reader, noting that the right hand term in each case is dominated

by (NM2R−2N)2 by our conditions on R.
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10.3 Expected intersection counts

It remains to establish (10.5), (10.9) and (10.11). The necessary steps for this are

laid out in the following sequence of lemmas. Unless otherwise stated, we will be

using the notation introduced in the proofs of Propositions 10.1 and 10.2.

Lemma 10.4. Fix Zk. Let us define Au = Au(k) to be the (deterministic) collection

of all t1 ∈ TN([0, 1)d), h(t1) = N that are contained in the cube u and whose distance

from the boundary of some child of u is ≲ kM−N−h(u).

For t1 ∈ Au, let Bt1 = Bt1(k) denote the (also deterministic) collection of t2 ∈
TN([0, 1)d) with h(t2) = N and D(t1, t2) = u such that the distance between the

centres of t1 and t2 is ≲ kM−N−h(u).

(a) Then for any slope assignment σ, the random variable Tt1t2(k) = 0 unless t1 ∈ Au

and t2 ∈ Bt1. In other words,∑
(t1,t2)∈Su

Tt1t2(k) =
∑
t1∈Au

∑
t2∈Bt1

Tt1t2(k), so that

Eσ
[ ∑
(t1,t2)∈Su

Tt1t2(k)
]

=
∑
t1∈Au

Eσ
[ ∑
t2∈Bt1

Tt1t2(k)
]
. (10.17)

(b) The description of Au yields the following bound on its cardinality:

#(Au) ≲
( k

MN

)
Md(N−h(u)) ≲MR−dh(u)+(d−1)N .

Proof. We observe that Tt1t2(k) = 1 if and only if there exists a point p = (p1, · · · , pd+1) ∈
Zk and v1, v2 ∈ ΩN such that p ∈ Pt1,v1∩Pt2,v2 , and σ(t1) = v1, σ(t2) = v2. By Lemma

7.1, this implies that

|cen(t1) − cen(t2) + p1(σ(t1) − σ(t2))| ≤ 2cd
√
dM−N , (10.18)
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M−h(u)

kM−N−h(u)

Figure 10.1: A diagram of Au when d = 2, M = 3. Here the largest square is u.
The thatched area depicts Au. The finest squares are the root cubes contained in
Au.

where cen(ti) denotes the centre of the cube ti. For p ∈ Zk, (10.18) yields

|cen(t1) − cen(t2)| ≤ p1|σ(t1) − σ(t2)| + 2cd
√
dM−N ≲ p1|σ(t1) − σ(t2)|

≲
(k + 1

MN

)
|σ(t1) − σ(t2)| ≲

( k

MN

)
M−h(D(τ(t1),τ(t2)))

≲ kM−N−h(u). (10.19)

The second inequality in the steps above follows from Corollary 7.2, the third from

the definition of Zk and the fourth from the property (8.2) of the slope assignment.

Here τ is the unique sticky map that generates σ, as specified in Proposition 8.2.

Since τ preserves heights and lineages, h(D(τ(t1), τ(t2))) ≥ h(D(t1, t2)) = h(u), and

the last step follows.

The inequality in (10.19) implies that Tt1t2(k) = 0 unless t2 ∈ Bt1 . Further, t1, t2

114



lie in distinct children of u, so t1 must satisfy

dist(t1, ∂u
′) ≲ k

MN
M−h(u) for some child u′ of u,

to allow for the existence of some t2 obeying (10.19). This means t1 ∈ Au, proving

(a).

For (b) we observe that u has Md children. The Lebesgue measure of the set∪
u′

{
x ∈ u′ : dist(x, ∂u′) ≲ kM−N−h(u), u′ is a child of u

}
(10.20)

is therefore ≲ (Md)kM−N−h(u)M−(d−1)h(u). The cardinality of Au is comparable to

the number of M−N -separated points in the set (10.20), and (b) follows.

Our next task is to make further reductions to the expression on the right hand

side of (10.17) that will enable us to invoke the probability estimates from Chapter

9. To this end, let us fix Zk, t1 ∈ Au(k), v1 = γ(α1) ∈ ΩN , and define a collection of

point-slope pairs

Eu(t1, v1; k) :=

(t2, v2)

∣∣∣∣∣
t2 ∈ TN([0, 1)d) ∩ Bt1 , v2 = γ(α2) ∈ ΩN ,

h(t2) = h(α2) = N, u = D(t1, t2),

Pt1,v1 ∩ Pt2,v2 ∩ Zk ̸= ∅, h(D(α1, α2)) ≥ h(u)

 . (10.21)

Thus Eu(t1, v1; k) is non-random as well. The significance of this collection is clarified

in the next lemma.

Lemma 10.5. For (t2, v2) ∈ Eu(t1, v1; k) described as in (10.21), define a random

variable T t2v2(t1, v1; k) as follows:

T t2v2(t1, v1; k) :=

1 if σ(t2) = v2,

0 otherwise.
(10.22)
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(a) The random variables Tt1t2(k) and T t2v2(t1, v1; k) are related as follows: given

σ(t1) = v1,

Tt1t2(k) = sup
{
T t2v2(t1, v1; k) : (t2, v2) ∈ Eu(t1, v1; k)

}
. (10.23)

In particular under the same conditional hypothesis σ(t1) = v1, one obtains the

bound

Tt1t2(k) ≤
∑
v2∈ΩN

(t2,v2)∈Eu(t1,v1;k)

T t2v2(t1, v1; k), (10.24)

which in turn implies

Eσ
[ ∑
t2∈Bt1

Tt1t2(k)
∣∣∣σ(t1) = v1

]
≤

∑
(t2,v2)∈Eu(t1,v1;k)

Pr(σ(t2) = v2
∣∣σ(t1) = v1

)
.

(10.25)

(b) The cardinality of Eu(t1, v1; k) is ≲ 2N−h(u).

Proof. We already know from Lemma 10.4 that Tt1t2(k) = 0 unless t2 ∈ Bt1 . Further,

if σ(t1) = v1 is known, then it is clear that Tt1t2(k) = 1 if and only if there exists

v2 ∈ ΩN such that Pt1,v1 ∩ Pt2,v2 ∩ Zk ̸= ∅ and σ(t2) = v2. But this means that the

sticky map τ that generates σ must map t2 to the N -long binary sequence that iden-

tifies α2. Stickiness dictates that h(D(α1, α2)) = h(D(τ(t1), τ(t2))) ≥ h(D(t1, t2)) =

h(u), explaining the constraints that define Eu(t1, v1; k). Rephrasing the discussion

above, given σ(t1) = v1, the event Tt1t2(k) = 1 holds if and only if there exists

v2 ∈ ΩN such that (t2, v2) ∈ Eu(t1, v1; k) and σ(t2) = v2. This is the identity claimed

in (10.23) of part (a). The bound in (10.24) follows easily from (10.23) since the

supremum is dominated by the sum. The final estimate (10.25) in part (a) fol-

lows by taking conditional expectation of both sides of (10.24), and observing that

Eσ(T t2v2(t1, v1; k)|σ(t1) = v1) = Pr(σ(t2) = v2
∣∣σ(t1) = v1

)
.

We turn to (b). If v2 ∈ ΩN is fixed, then it follows from Corollary 7.3 (taking Q

in that corollary to be the cube of sidelength O(M−N) containing Pt1,v1 ∩ Zk) that

there exist at most a constant number of choices of t2 such that (t2, v2) ∈ Eu(t1, v1; k).
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But by Fact 6.1 the number of points α2 ∈ D[N ]
M (and hence slopes v2 ∈ ΩN) that

obey h(D(α1, α2)) ≥ h(u) is no more than 2N−h(u), proving the claim.

The same argument above applied twice yields the following conclusion, the ver-

ification of which is left to the reader.

Corollary 10.6. Given t1 ∈ Au(k), t′1 ∈ Au′(k
′), v1, v

′
1 ∈ ΩN , define Eu(t1, v1; k) and

Eu′(t′1, v′1; k′) as in (10.21) and the random variables T t2v2(t1, v1; k), T t′2v′2(t
′
1, v

′
1; k

′)

as in (10.22). Then given σ(t1) = v1 and σ(t′1) = v′1,

∑
t2∈Bt1
t′2∈Bt′1

Tt1t2(k)Tt′1t′2(k
′) ≤

∗∑
T t2v2(t1, v1; k)T t′2v′2(t

′
1, v

′
1; k

′),

where the notation
∗∑
represents the sum over all indices {(t2, v2); (t′2, v

′
2)} ∈ Eu(t1, v1; k)×

Eu′(t′1, v′1; k′).

We are now ready to establish the key estimates in the proofs of Propositions

10.1 and 10.2.

Lemma 10.7. The estimate in (10.5) holds.

Proof. We combine the steps outlined in Lemmas 10.4, 10.5 and 9.1. By Lemma

10.4(a),

Eσ
[ ∑
(t1,t2)∈Su

Tt1t2(k)
]

=
∑
t1∈Au

Eσ
[ ∑
t2∈Bt1

Tt1t2(k)
]

=
∑
t1∈Au

Ev1Eσ
[ ∑
t2∈Bt1

Tt1t2(k)
∣∣∣σ(t1) = v1

]
.

(10.26)

Applying (10.25) from Lemma 10.5 followed by Lemma 9.1, we find that the inner

expectation above obeys the bound

Eσ
[ ∑
t2∈Bt1

Tt1t2(k)
∣∣σ(t1) = v1

]
≤

∑
(t2,v2)∈Eu(t1,v1;k)

Pr(σ(t2) = v2|σ(t1) = v1)
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≤ #(Eu(t1, v1; k)) × 2−N+h(u)︸ ︷︷ ︸
Lemma 9.1

≲ 2N−h(u)︸ ︷︷ ︸
Lemma 10.5(b)

×2−N+h(u) ≲ 1,

uniformly in v1. Inserting this back into (10.26), we arrive at

Eσ
[ ∑
(t1,t2)∈Su

Tt1t2(k)
]
≲ #(Au),

which according to Lemma 10.4(b) is the bound claimed in (10.5).

Lemma 10.8. The estimate in (10.9) holds.

Proof. The proof of (10.9) shares many similarities with that of Lemma 10.7, except

that there are now two copies of each of the objects appearing in the proof of (10.5)

and the probability estimate comes from Lemma 9.4 instead of Lemma 9.1. We

outline the main steps below.

In view of Lemma 9.4 and after a permutation of (t1, t2) and of (t′1, t
′
2) if necessary,

we may assume that for every I = {(t1, t2); (t′1, t
′
2)} ∈ I41(u, u

′),

Pr
(
σ(t2) = v2, σ(t′2) = v′2|σ(t1) = v1, σ(t′1) = v′1

)
=

(
1

2

)2N−h(u)−h(u′)

. (10.27)

Now,

Eσ
(
S41(u, u

′; k, k′)
)

≤M−2(d+1)NEσ
[ ∑
I∈I41(u,u′)

Tt1t2(k)Tt′1t′2(k
′)
]

= M−2(d+1)N
∑

t1∈Au(k)
t′1∈Au′ (k

′)

Ev1,v′1Eσ
[ ∑
t2∈Bt1
t′2∈Bt′1

Tt1t2(k)Tt′1t′2(k
′)
∣∣∣σ(t1) = v1, σ(t′1) = v′1

]

≲M−2(d+1)N

(
kk′

M2N
Md(2N−h(u)−h(u′))

)
︸ ︷︷ ︸

#(t1,t′1) from Lemma 10.4

≲M2R−4N−d(h(u)+h(u′)),
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since according to Corollary 10.6

Eσ
[ ∑
(t2,t′2)∈Bt1×Bt′1

Tt1t2(k)Tt′1t′2(k
′)
∣∣∣σ(t1) = v1, σ(t′1) = v′1

]

≤ Eσ
[ ∗∑

T t2v2(t1, v1; k)T t′2,v′2(t
′
1, v

′
1; k

′)
∣∣∣σ(t1) = v1, σ(t′1) = v′1

]
≲

∗∑
Pr(σ(t2) = v2, σ(t′2) = v′2 | σ(t1) = v1, σ(t′1) = v′1)

≲ (2N−h(u))︸ ︷︷ ︸
#(Eu(t1,v1;k))

× (2N−h(u′))︸ ︷︷ ︸
#(Eu′ (t′1,v′1;k′))

× (2−2N+h(u)+h(u′))︸ ︷︷ ︸
(10.27) via Lemma 9.4

≲ 1, uniformly in v1, v
′
1.

The proof is therefore complete.

Lemma 10.9. The estimate in (10.11) holds.

Proof. The proof of (10.11) is similar to (10.9), and in certain respects simpler. But

the configuration type dictates that we set up a different class E∗ of point-slope tuples

that will play a role analogous to Eu(t1, v1; k) in the preceding lemmas. Recall the

structure of a type 2 configuration from Figure 9.3 and the definition of I42(u, u1, u2)

from (10.10). Given root cubes t2, t
′
2, and u, u1, u2 ∈ TN([0, 1)d) with the property

that

u1 ⊆ u, u2 ⊊ u, u2 = D(t2, t
′
2), h(u) ≤ h(u1) ≤ h(u2) ≤ N = h(t2) = h(t′2),

and slopes v2 = γ(α2), v
′
2 = γ(α′

2) ∈ ΩN , we define E∗ (depending on all these

objects) to be the following collection of root-slope tuples:

E∗ :=


{(t1, v1); (t′1, v

′
1)}

∣∣∣∣∣
I = {(t1, t2); (t′1, t

′
2)} ∈ I42(u, u1, u2),

v1 = γ(α1), v
′
1 = γ(α′

1) for some α1, α
′
1 ∈ D[N ]

M ,

Pt1,v1 ∩ Pt2,v2 ∩ Zk ̸= ∅, Pt′1,v′1 ∩ Pt′2,v′2 ∩ Zk′ ̸= ∅,

{(ti, αi), (t
′
i, α

′
i) : i = 1, 2} is sticky-admissible .


(10.28)
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The relevance of E∗ is this: if σ(t2) = v2 and σ(t′2) = v′2 are given, then Tt1t2(k)Tt′1t′2(k
′) =

0 unless there exist v1, v
′
1 ∈ ΩN with {(t1, v1); (t′1, v

′
1)} ∈ E∗ and σ(t1) = v1, σ(t′1) =

v′1.

We first set about obtaining a bound on the size of E∗ that we will need mo-

mentarily. Stickiness dictates that h(D(α1, α2)) ≥ h(u), and that α1 is an Nth level

descendant of α, the ancestor of α2 at height h(u). Thus the number of possible α1

(and hence v1) is ≤ 2N−h(u), by Fact 6.1. Again by stickiness, h(D(α1, α
′
1)) ≥ h(u1),

so for a given α1, the number of α′
1 (hence v′1) is no more than the number of possible

descendants of α∗, the ancestor of α1 at height h(u1). This number is thus ≤ 2N−h(u1).

Once v1, v
′
1 have been fixed (recall that v2, v

′
2, t2, t

′
2 are already fixed), it follows from

Corollary 7.3 that the number of t1, t
′
1 obeying the intersection conditions in (10.28)

is ≲ 1. Combining these, we arrive at the following bound on the cardinality of E∗:

#(E∗) ≲
(
2N−h(u))(2N−h(u1)

)
= 22N−h(u)−h(u1). (10.29)

We use this bound on the size of E∗ to estimate a conditional expectation, essen-

tially the same way as in the previous two lemmas.

Eσ
[ ∑

t1,t′1
I∈I42(u,u1,u2)

Tt1t2(k)Tt′1t′2(k
′)
∣∣σ(t2) = v2, σ(t′2) = v′2

]

=
∑
E∗

Pr(σ(t1) = v1, σ(t′1) = v′1|σ(t2) = v2, σ(t′2) = v′2)

≲ #(E∗)

(
1

2

)2N−h(u)−h(u1)

≲ 1, (10.30)

where the last step follows by combining Lemma 9.5 with (10.29). As a result, we

obtain

Eσ
(
S42(u, u1, u2; k, k

′)
)

= M−2(d+1)NEσ
[ ∑
I∈I42(u,u1,u2)

Tt1t2(k)Tt′1t′2(k
′)
]
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≤M−2(d+1)N
∑

t2,t′2⊆u2

Ev2,v′2Eσ
[ ∑

t1,t′1
I∈I42(u,u1,u2)

Tt1t2(k)Tt′1t′2(k
′)
∣∣σ(t2) = v2, σ(t′2) = v′2

]

≲M−2(d+1)N
∑

t2,t′2⊆u2

1

≲M−2(d+1)N
(
M−dh(u2)+Nd

)2
,

where the estimate from (10.30) has been inserted in the third step above. The final

expression is the bound claimed in (10.11).
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Chapter 11

Proposition 8.4: proof of the

upper bound (6.7)

Using the theory developed in Chapter 4, we can establish inequality (6.7) with

bN = CM/N as in Proposition 8.4 with relative ease. For x ∈ Rd+1, we write

x = (x1, x), where x = (x2, . . . , xd+1). Since the Kakeya-type set defined by (8.8) is

contained in the parallelepiped [C0, C0 + 1] × [−2C0, 2C0]
d , we may write

Eσ
∣∣KN(σ) ∩ [C0, C0 + 1] × Rd

∣∣ = Eσ
(∫ C0+1

C0

∫
[−2C0,2C0]d

1KN (σ)(x1, x)dxdx1

)
=

∫ C0+1

C0

∫
[−2C0,2C0]d

Eσ
(
1KN (σ)(x1, x)

)
dxdx1

=

∫ C0+1

C0

∫
[−2C0,2C0]d

Pr(x) dxdx1, (11.1)

where Pr(x) denotes the probability that the point (x1, x) is contained in the set

KN(σ). To establish inequality (6.7) then, it suffices to show that this probability is

bounded by a constant multiple of 1/N , the constant being uniform in x ∈ [C0, C0 +

1] × Rd.

Let us recall the definition of Poss(x) from (7.3). We would like to define a

certain percolation process on the tree TN(Poss(x)) whose probability of survival can
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majorize Pr(x). By Lemma 7.5(a), there corresponds to every t ∈ Poss(x) exactly

one v(t) ∈ ΩN such that Pt,v(t) contains x. Let us also recall that v(t) = γ(α(t))

for some α(t) ∈ D[N ]
M . By Fact 6.1, α(t) is uniquely identified by β(t) := ψ(α(t)),

which is a deterministic sequence of length N with entries 0 or 1. Here ψ is the tree

isomorphism described in Lemma 3.2.

Given a slope assignment σ = στ generated by a sticky map τ : TN([0, 1)d) →
TN([0, 1); 2) as defined in Proposition 8.2 and a vertex t = ⟨i1, · · · , iN⟩ ∈ TN(Poss(x))

with h(t) = N , we assign a value of 0 or 1 to each edge of the ray identifying t as

follows. Let e be the edge identified by the vertex ⟨i1, i2, · · · , ik⟩. Set

Ye :=

{
1 if πk(τ(t)) = πk(β(t)),

0 if πk(τ(t)) ̸= πk(β(t)).
(11.2)

To clarify the notation above, recall that both τ(t) and β(t) are N -long binary

sequences, and πk denotes the kth component of the input. Though the definition

of Ye suggests a potential conflict for different choices of t, our next lemma confirms

that this is not the case.

Lemma 11.1. The description in (11.2) is consistent in t; i.e., it assigns a uniquely

defined binary random variable Ye to each edge of TN(Poss(x)). The collection {Ye}
is independent and identically distributed as Bernoulli(1

2
) random variables.

Proof. Let t, t′ ∈ TN(Poss(x)), h(t) = h(t′) = N . Set u = D(t, t′), the youngest

common ancestor of t and t′. In order to verify consistency, we need to ascertain

that for every edge e in TN(Poss(x)) leading up to u and for every sticky map τ , the

prescription (11.2) yields the same value of Ye whether we use t or t′. Rephrasing

this, it suffices to establish that

πk(τ(t)) = πk(τ(t′)) and πk(β(t)) = πk(β(t′)) for all 0 ≤ k ≤ h(u). (11.3)

Both equalities are consequences of the height and lineage-preserving property of
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sticky maps, by virtue of which

h(D(t, t′)) ≤ min
[
h(D(τ(t), τ(t′))), h(D(β(t), β(t′)))

]
.

Of these, stickiness of τ has been proven in Proposition 8.1. The unambiguous

definition and stickiness of β has been verified in Lemma 8.3.

For the remainder, we recall from Chapter 8 (see the discussion preceding Propo-

sition 8.1) that for t = ⟨i1, i2, · · · , iN⟩, the projection πk(τ(t)) = X⟨i1,··· ,ik⟩ is a

Bernoulli(1
2
) random variable, so Pr(Ye = 1) = 1

2
. Further the random variables Ye

associated with distinct edges e in TN(Poss(x)) are determined by distinct Bernoulli

random variables of the form X⟨i1,··· ,ik⟩. The stated independence of the latter col-

lection implies the same for the former.

Thus the collection YN = {Ye}e∈E defines a Bernoulli percolation on TN(Poss(x)),

where E is the edge set of TN(Poss(x)). As described in Section 4.1, the event

{Ye = 0} corresponds to the removal of the edge e from E , and the event {Ye = 1}
corresponds to retaining this edge.

Lemma 11.2. Let Pr(x) = Pr{τ : x ∈ KN(στ )} be as in (11.1), and {Ye} as in

(11.2).

(a) For any x ∈ [C0, C0 + 1] × Rd, the event {τ : x ∈ KN(στ )} is contained in

{τ : ∃ a full-length ray in TN(Poss(x)) that survives percolation via {Ye}}.
(11.4)

(b) As a result,

Pr(x) ≤ Pr
(
survival after percolation on TN(Poss(x))

)
.

Proof. It is clear that x ∈ KN(στ ) if and only if there exists t ∈ Poss(x) such that

στ (t) = v(t), where v(t) is the unique slope in ΩN prescribed by Lemma 7.5(a) for
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which x ∈ Pt,v(t). In other words, we have

{τ : x ∈ KN(στ )} =
∪

{σ(t) = v(t) : t ∈ Poss(x)}

=
∪

{τ(t) = β(t) : t ∈ Poss(x)}, (11.5)

where the last step follows from the preceding one by unraveling the string of bijective

mappings γ−1, Φ−1 and ψ (described in Proposition 8.2) that leads from σ(t) to τ(t),

and which incidentally also generates β(t) = ⟨j1, · · · , jN⟩ ∈ T ([0, 1); 2) from v(t).

Since t is identified by some sequence ⟨i1, i2, . . . , iN⟩, we have its associated random

binary sequence

τ(t) = ⟨X⟨i1⟩, X⟨i1,i2⟩, . . . , X⟨i1,i2,...,iN ⟩⟩ ∈ TN([0, 1); 2).

Using this, we can rewrite (11.5) as follows:∪
t∈Poss(x)

{σ(t) = v(t)}

=
∪

t∈Poss(x)

{
⟨X⟨i1⟩, X⟨i1,i2⟩, . . . , X⟨i1,i2,...,iN ⟩⟩ = ⟨j1, j2, . . . , jN⟩

}
=

∪
t∈Poss(x)

N∩
k=1

{X⟨i1,...,ik⟩ = jk}

=
∪

R↔⟨i1,··· ,iN ⟩∈∂T

∩
e↔⟨i1,...,ik⟩∈E∩R

{X⟨i1,...,ik⟩ − jk = 0}

=
∪

R∈∂T

∩
e∈E∩R

{Ye = 1}. (11.6)

In the above steps we have set T := TN(Poss(x)) for brevity and let E be the edge

set of T . The last step uses (11.2), and the final event is the same as the one in

(11.4). Using (11.6), we have

Pr(x) ≤ Pr

( ∪
R∈∂T

∩
e∈E∩R

{Ye = 1}

)
. (11.7)
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This last expression is obviously equivalent to the right hand side of (4.1), verifying

the second part of the lemma.

Our next task is therefore to estimate the survival probability of TN(Poss(x))

under Bernoulli(1
2
) percolation. For this purpose and in view of the discussion in

Section 4.3, we should visualize TN(Poss(x)) as an electrical circuit, the resistance of

an edge terminating at a vertex of height k being 2k−1, per equation (4.2). Let us

denote by R(Poss(x)) the resistance of the entire circuit. In light of the theorem of

Lyons, restated in the form of Proposition 4.4, it suffices to establish the following

lemma.

Lemma 11.3. With the resistance of Poss(x) defined as above, we have

R(Poss(x)) ≳ N. (11.8)

Proof. We follow the same argument as Bateman and Katz [4]. Recalling the con-

tainment (7.5) from Lemma 7.4, we find that Nk, the number of kth generation

vertices of TN(Poss(x)), is bounded above by Nk, the number of kth level vertices

in TN({0} × [0, 1)d ∩ (x − x1ΩN)). We will shortly prove in Lemma 11.4(b) that

Nk ≲ 2k, where the implicit constant is uniform in x ∈ [C0, C0 + 1] × [−2C0, 2C0]
d.

Thus, by Corollary 4.2,

R(Poss(x)) ≥
N∑
k=1

2k−1

Nk

≳
N∑
k=1

2k

NK

≳ N,

establishing inequality (11.8).

The remaining Lemma 11.4 is an easy observation that follows simply from the

connection between sets and the trees used to encode them.

Lemma 11.4. Let ΩN be the set defined in (6.3).

(a) Given ΩN , there is a constant C1 > 0 (depending only on d and C, c from (1.4))

such that for any 1 ≤ k ≤ N , the number of kth generation vertices in TN(ΩN ;M)

is ≤ C12
k.
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(b) For any compact set K ⊆ Rd+1, there exists a constant C(K) > 0 with the

following property. For any x = (x1, · · · , xd+1) ∈ K, and 1 ≤ k ≤ N , the

number of kth generation vertices in TN(E(x);M) is ≤ C(K)2k, where E(x) :=

(x− x1ΩN) ∩ {0} × [0, 1)d.

Proof. There are exactly 2k basic intervals of level k that comprise C[k]
M . Under γ,

each such basic interval maps into a set of diameter at most CM−k. Since ΩN =

γ(D[N ]
M ) ⊆ γ(C[k]

M ), the number of kth generation vertices in TN(ΩN ;M), which is also

the number of kth level M -adic cubes needed to cover ΩN , is at most C12
k. This

proves (a).

Let Q be any kth generation M -adic cube such that Q ∩ ΩN ̸= ∅. Then on one

hand, (x−x1Q)∩(x−x1ΩN) ̸= ∅; on the other hand, the number of kth level M -adic

cubes covering (x− x1Q) is ≤ C(K), and part (b) follows.

Combining Lemmas 11.2 and 11.3 with Proposition 4.4 gives us the desired bound

of ≲ 1/N on (11.1). This completes the proof of inequality (6.7), and so too Propo-

sition 8.4. Our first Theorem 1.2 is therefore established.
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Chapter 12

Construction of Kakeya-type sets

in Rd+1 over an arbitrary

sublacunary set of directions

With Theorem 1.2 proven, we turn our attention to the more general Theorem 1.3.

Recall that this means we will be occupied with an arbitrary set of sublacunary direc-

tions, of which a Cantor-type set of directions is a particular example, as described

in Definition 2.7.

The method of proof will be analogous to that of the Cantor case, although many

of the details will require a necessarily more technical treatment. Most notably, it

will require substantially more work to define a coherent and flexible enough random

mechanism on the slope assignments for a collection of root cubes. We will naturally

want to exploit the geometric idea of stickiness, but to get the full strength of our

Theorem 1.3, we will have to weaken the notion of tree stickiness that was so integral

to the proof of Theorem 1.2.

It will be convenient to work with a pruned subset of a sublacunary direction set,

one that is guaranteed to have certain useful structural properties that we can then

exploit in our subsequent calculations.

128



12.1 Pruning of the slope tree

Recall that to establish Theorem 1.3 it suffices to prove Proposition 3.7; we focus

our attention thusly. Fix a base integer M ≥ 2 and a sublacunary direction set

Ω ⊆ Rd+1 (obeying the conclusion of Proposition 3.6). We also fix an absolute

constant C0 ≥ 1, which will remain unchanged for the rest of the proof, and whose

value will be specified later (C0 = 10 will do). Given any integer N , however large,

Proposition 3.6 (see (3.11)) supplies a hyperplane VN at unit distance from the origin,

a coordinate system φN on VN , and a relatively compact subset WN ⊆ CΩ ∩ VN for

which split(T (φN(WN);M)) > (N + 1)(2C0 + 1)d. The choice of N , and hence VN ,

WN and φN will stay fixed during the analysis in Chapters 13–19. The existence of

Kakeya-type sets, which is the goal of Proposition 3.7, relies on the ability to conduct

this analysis for arbitrarily large N . The constant C0, on the other hand, does not

change with N .

Without loss of generality we will assume that VN = {1}×Rd and that φN is the

ambient coordinate system in VN (and hence in all hyperplanes parallel to VN). The

use of φN will be dropped in the sequel, and we will simply write split(T (WN ;M)) >

(N + 1)(2C0 + 1)d. We will also assume that WN ⊆ {1} × [0, 1)d; indeed if WN ⊆
{1} × [0,ML)d for some large L, then we scale by a factor of M−L in directions

perpendicular to e1 = (1, 0, · · · , 0), leaving the direction e1 unchanged. The tree

corresponding to the scaled version of WN has the same splitting number as the

original tree. Further, a union EN of tubes pointing in the scaled directions can

be rescaled back to tubes with orientations in WN , with the ratio |E∗
N |/|EN | (as

explained in (1.1)) unchanged. From this point onwards, our direction set will be an

appropriately chosen subset of WN ⊆ {1} × [0, 1)d for a fixed N . We rename WN as

Ω, since this will not cause any confusion in the sequel.

We now prune our direction set Ω down to a representative tree enjoying special

structural properties, in terms of M -adic and Euclidean distances between certain

vertices. The essential features of this trimming process and the modified direction

set are summarized below in the main result of this section.

Proposition 12.1. LetM ≥ 2 be a base integer, C0 ≥ 1 a fixed constant, and N ≫ 1
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a large parameter as described above. Let Ω ⊆ {1}× [0, 1)d be a direction set obeying

the hypothesis split(T (Ω;M)) > (N + 1)(2C0 + 1)d. Then there exist

• a finite subset ΩN ⊆ Ω of cardinality 2N , and

• an integer J = J(Ω, N) ≥ N

such that the following properties hold for the tree TJ(ΩN ;M) of height J encoding

ΩN :

(i) Every ray in TJ(ΩN ;M) splits exactly N times.

(ii) Every splitting vertex in TJ(ΩN ;M) has exactly two children.

(iii) For any splitting vertex v of TJ(ΩN ;M), there exists an integer h∗v > h(v)

obeying the following constraints:

- None of the descendants of the two children of v specified in part (ii) split

at any height strictly smaller than h∗v.

- If w1(v), w2(v) are the two descendants of v at height h∗v, then the Eu-

clidean distance between the cubes w1 and w2 obeys the relation

C0M
−h∗v ≤ dist(w1(v), w2(v)) ≤ (2C0 +

√
d)M−h∗v+1. (12.1)

In fact, h∗v is the smallest integer exceeding h(v) with this property.

The integer J can be chosen to ensure that the following additional condition is met:

(iv) C0M
−J ≤ min{|ω − ω′| : ω ̸= ω′, ω, ω′ ∈ ΩN}.

Notice that the tree TN(D[N ]
M ;M) encoding a Cantor-type set of directions that we

considered in Chapters 6 to 11 already satisfies the requirements of Proposition 12.1

by virtue of Fact 6.1; i.e. the slope tree TN(D[N ]
M ;M) is already pruned. In this way,

we see in what sense a pruned tree behaves like a full binary tree of height N .

The pruning process leading to the outcome claimed in the proposition is based

on an iterative algorithm. The building block of the iteration is contained in Lemma

12.3 below, with Lemma 12.2 supplying an easy but necessary intermediate step.
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Lemma 12.2. Fix integers r ≥ 0 and C0 ≥ 1. A collection of cubes of cardinality

≥ (2C0 + 1)d + 1 consisting of M-adic cubes of sidelength M−r and must contain at

least two cubes whose Euclidean separation is ≥ C0M
−r.

Proof. We first treat the case r = 0. The cube Q0 = [0, 2C0 + 1)d contains exactly

(2C0 + 1)d subcubes of unit sidelength with vertices in Zd. The central subcube Q

maintains a minimum distance of C0 from the boundary of Q0. Rephrasing this after

a translation, any cube Q with vertices in Zd and of sidelength 1 admits at most

(2C0 + 1)d similar cubes whose distance from itself is ≤ C0. The case of a general

r ≥ 0 follows by scaling Q0 by a factor of M−r.

Lemma 12.3. Fix a constant integer C0 ≥ 1, an integer N0 ≥ (2C0 + 1)d and a

vertex v0 of the full M
d-adic tree T ({1}× [0, 1)d;M). Let T[0] rooted at v0 be a subtree

with the property that every ray in T[0] splits at least N0 times. Then there exist an

integer K∗ = K∗(v0) ≥ 1 and a subtree T[1] of T[0] rooted at v0 and of height K∗ such

that:

(i) The root v0 has exactly two descendants v1 and v2 of height K∗ in T[1]. Thus

T[1] has exactly one splitting vertex.

(ii) The integerK∗ is the smallest with the property that dist(v1, v2) ≥ C0M
−K∗−h(v0).

In particular, dist(v1, v2) ≤ (C0 + 2
√
d)M−K∗−h(v0)+1.

(iii) If T[0](vi) is the maximal subtree of T[0] rooted at vi then each ray in T[0](vi)

splits at least N0 − (2C0 + 1)d times.

Proof. Each ray in T[0] splits at least N0 times, so there exists a generation in this

tree consisting of at least 2N0 vertices. Since 2N0 ≫ (2C0 + 1)d, let us define K0 to

be the smallest height in T[0] such that the number of vertices at that height exceeds

(2C0 + 1)d. Choose K∗ to be the smallest integer with the property that there exist

vertices v1 and v2 of T[0] at height K∗ + h(v0) obeying the relation dist(v1, v2) ≥
C0M

−K∗−h(v0). By Lemma 12.2, this property holds at height K0, hence K∗ exists

and is at most K0.
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The subtree T1 of height K∗ rooted at v0 and generated by v1, v2 clearly obeys

conditions (i) stated in Lemma 12.3. The lower bound on dist(v1, v2) required in part

(ii) is built into the construction; see Figure 12.1. To obtain the upper bound, let

v′i denote the parent of vi. It follows from the minimality of K∗ that dist(v′1, v
′
2) <

C0M
−K∗−h(v0)+1. Thus,

dist(v1, v2) ≤ diam(v′1) + diam(v′2) + dist(v′1, v
′
2) ≤ (2

√
d+ C0)M

−K∗−h(v0)+1.

It remains to complete the proof of part (iii). Let us recall from the definition of

K0 that the number of elements of T[0] at height K∗ − 1 is ≤ (2C0 + 1)d. Thus any

ray of T[0] rooted at v0 contains at most (2C0 + 1)d − 1 splitting vertices of height

≤ K∗ − 2, since each splitting vertex of height ≤ K∗ − 2 gives rise to at least one

new element (different among themselves and distinct from the terminating vertex

of the ray) at height K∗ − 1. Since every ray of T[0] contained at least N0 splitting

vertices to begin with, at most (2C0 + 1)d of which may be lost by height K∗− 1, we

are left with at least N0 − (2C0 + 1)d splitting vertices per ray rooted at vi, which is

the conclusion claimed in (iii).

With the preliminary steps out of the way, we are ready to prove the main

proposition.

Proof of Proposition 12.1. We know that split(T (Ω;M)) > (N+1)(2C0+1)d. Given

any N ≥ 1, we can therefore fix a subtree T of T (Ω;M) of infinite height in which

every ray splits at least (N + 1)(2C0 + 1)d times. The pruning is executed on the

subtree T as follows.

In the first step we apply Lemma 12.3 with

T[0] = T , v0 = {1} × [0, 1)d and N0 = (N + 1)(2C0 + 1)d.

This yields a subtree T[1] rooted at {1} × [0, 1)d of height K∗(v0) = i0 consisting

of two vertices w1 and w2 at the bottom-most level. Let us denote by T (wi) the

maximal subtree of T rooted at wi. By Lemma 12.3 any ray of T (wi) splits at least
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Figure 12.1: An illustration of the procedure generating the forced Euclidean sepa-
ration between the descendants v1 and v2 of v ∈ T , in R2 when M = 2.

N(2C0+1)d times. There is exactly one splitting vertex v in T[1], and its descendants

w1, w2 obey C0M
−i0 ≤ dist(w1, w2) ≤ (C0 + 2

√
d)M−i0 . Set W1 := {w1, w2}.

At the second step we invoke Lemma 12.3 twice, resetting the parameters in that

lemma to be

T[0] = T (wi), v0 = wi, N0 = N(2C0 + 1)d

for i = 1, 2 respectively, and obtaining two subtrees as a consequence. Appending

these two newly pruned subtrees of T (wi) to T[1] from the previous step, we arrive

at a tree T[2] rooted at {1}× [0, 1)d of finite height but with rays of possibly variable

length, in which every ray splits exactly twice, and every splitting vertex has exactly

two children. If v is a splitting vertex of T[2] not already considered in the first step,

then v must either be equal to or a descendant of some w ∈ W1. Suppose that
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w1(v) and w2(v) are the two descendants of w of maximal height in T[2]. Then part

(ii) of Lemma 12.3 implies that (12.1) holds with h∗v = i0 + K∗(w). This verifies

the requirements (i)-(iii) of Proposition 12.1 for N = 2. Let us denote by W2 the

collection of four vertices of maximal lineage in T[2] obtained at the conclusion of this

step.

In general at the end of the kth step we have a tree T[k] of finite height, but

with rays of potentially variable length, obeying the requirements (i)-(iii) for N = k.

The collection of vertices of highest lineage in T[k] is termed Wk. We have that

#(Wk) = 2k. The collection Wk can be decomposed as

Wk =
∪

{Wk(v) : v is a splitting descendant of some w ∈ Wk−1},

where Wk(v) = {w1(v), w2(v)} consists of the two descendants of v that lie in Wk. In

the (k+1)th step, Lemma 12.3 is applied 2k times in succession. In each application,

the values of T[0], v0, N0 are reset to

T[0] = T (w), v0 = w, N0 = (N − k + 1)(2C0 + 1)d

respectively for some w ∈ Wk. The resulting tree T[k+1], obtained by appending the

2k newly constructed trees to T[k] at the appropriate roots w, clearly obeys (ii) and

also (i) with N = k + 1. Part (iii) only needs to be verified for the splitting vertices

v descended from some w ∈ Wk, since the splitting vertices of older generations have

been dealt with in previous steps. But this follows from part (ii) of Lemma 12.3,

with h∗v = K∗(w) + h(w), which is a maximal height in the tree T[k+1].

In view of the number of splitting vertices per ray in the original subtree T ,

the process described above can be continued at least N steps. The tree T[N ] of

finite height but variable ray lengths obtained at the conclusion of the Nth step

satisfies the conditions (i)-(iii). We pick from every vertex of maximal lineage in T[N ]

exactly one point of Ω, calling the resulting collection of 2N chosen points ΩN . Set

δ := min{|ω − ω′| : ω, ω′ ∈ ΩN , ω ̸= ω′} > 0. The rays in T[N ] are now extended as

rays representing the points in ΩN (and hence without introducing any further splits)
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to a uniform height J that satisfies M−J ≤ C−1
0 δ, thereby meeting the criterion in

part (iv).

{1} × [0, 1)d

w1

v1

w2

v2

height = i0

Figure 12.2: An illustration of a pruned tree at the second step of pruning. Note
that, in general, we may have v1 = w1 and/or v2 = w2.

12.2 Splitting and basic slope cubes

The pruned slope tree TJ(ΩN ;M) produced by Proposition 12.1 looks like an elon-

gated version of the full binary tree of height N . Rays in this tree may have long

segments with no splits. However only the splitting vertices of TJ(ΩN ;M) and certain

other vertices related to these are of central importance to the subsequent analysis.

With this in mind and to aid in quantification later on, we introduce the class of

splitting vertices

G = G(ΩN) :=
N∪
j=1

Gj(ΩN), where for every 1 ≤ j ≤ N (12.2)

Gj(ΩN) :=

{
γ :

there exists v ∈ ΩN such that γ is the jth splitting

vertex on the ray identifying v in TJ(ΩN ;M)

}
. (12.3)
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The vertices in Gj(ΩN) will be termed the jth splitting vertices. As dictated by

the pruning mechanism, such vertices γ may occur at different heights of the tree

TJ(ΩN ;M), and hence could represent M -adic cubes of varying sizes. Thus the

index j, which encodes the number of splitting vertices on the ray leading up to

and including γ, should not be confused with the height of γ in TJ(ΩN ;M). Given

γ ∈ G(ΩN), we write

ν(γ) = j if γ ∈ Gj(ΩN), (12.4)

and refer to ν(γ) as the splitting index of γ. Indeed N − ν(γ) is the splitting number

of γ with respect to TJ(ΩN ;M), defined as in (3.7). Note that G1(ΩN) consists of a

single element, namely the unique splitting vertex of T (ΩN ;M) of minimal height.

In general #(Gj(ΩN)) = 2j−1; i.e., there are exactly 2j−1 splitting vertices of index

j. We declare GN+1(ΩN) ≡ ΩN .

Another related quantity of importance is the one mentioned in part (iii) of

Proposition 12.1. In view of its ubiquitous occurrence in the sequel, we set up the

following notation. For γ ∈ Gj(ΩN), 1 ≤ j ≤ N − 1, we denote

λ(γ) = λj(γ) := h∗γ defined as in Proposition 12.1. (12.5)

Thus λj(γ) > h(γ) is the smallest height for which the Euclidean separation condition

(12.1) can be ensured for the two descendants of γ. We refer to an element of

{λj(γ) : γ ∈ Gj(ΩN)} as a jth fundamental height of ΩN . There could be at most

2j−1 such heights. The collection of all fundamental heights will be denoted by R;

it will play a vital role in the remainder of the article, specifically in the random

construction outlined in Chapter 14. The two descendants of γ ∈ Gj(ΩN) at height

λj(γ), are called the jth basic slope cubes. The entirety of jth basic slope cubes as γ

ranges over Gj(ΩN) is termed Hj(ΩN). More precisely,

Hj(ΩN) :=

{
θ :

there exists ω ∈ ΩN and γj ∈ Gj(ΩN)

such that ω ∈ θ ⊊ γj and h(θ) = λ(γj)

}
. (12.6)

Note that every jth basic slope cube θ is either itself a (j + 1)th splitting vertex
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γj+1 ∈ Gj+1(ΩN), or uniquely identifies such a vertex in the sense that there exists a

non-splitting ray in the slope tree rooted at θ that terminates at γj+1. In either event,

we say that γj+1 ∈ Gj+1(ΩN) is identified by θ ∈ Hj(ΩN). Since every γ ∈ Gj(ΩN)

contributes exactly two cubes to Hj(ΩN), it follows that #(Hj(ΩN)) = 2j. We de-

clare H0(ΩN) = G1(ΩN) and HN(ΩN) = ΩN .

γ ∈ Gj(ΩN)

γj+1

θ1 θ2

γ′j+1

λj(γ)

Figure 12.3: Two basic slope cubes θ1, θ2 ∈ Hj(ΩN) and their parent vertex γ ∈
Gj(ΩN). Notice that γj+1 = θ1 and γ′j+1 are both members of Gj+1(ΩN).

The following implication of the Euclidean separation condition (12.1) will be

convenient for later use.

Corollary 12.4. Given a splitting vertex γ of TJ(ΩN), define

ργ := sup{|a− b| : a ∈ γ1 ∩ ΩN , b ∈ γ2 ∩ ΩN}, (12.7)

δγ := inf{|a− b| : a ∈ γ1 ∩ ΩN , b ∈ γ2 ∩ ΩN}, (12.8)

where γ1 and γ2 are the two children of γ in TJ(ΩN ;M). Then, the two quantities ργ

and δγ are comparable; i.e., δγ ≤ ργ ≤ (1 + 2
√
dC−1

0 )δγ. Moreover, ργ ≤ C1M
−λ(γ)

for some constant C1 depending only on C0 and d.
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Proof. Using part (iii) of Proposition 12.1 and the notation set up in (12.5), we

observe that γi ∩ ΩN ⊆ wi where wi is the only descendant of γi at height λ(γ), so

that δγ = dist(w1, w2) ≥ C0M
−λ(γ). Let ai, bi be points in the closures of γi ∩ ΩN ,

i = 1, 2 such that δγ = |a1 − a2|, ργ = |b1 − b2|. Then

ργ = |b1 − b2| ≤ |a1 − b1| + |a2 − a1| + |a2 − b2|

≤ |a2 − a1| + diam(w1) + diam(w2)

≤ |a2 − a1| + 2
√
dM−λ(γ)

≤ δγ + 2
√
dC−1

0 δγ,

where the third inequality above follows from the fact that wi is itself a cube of

sidelength M−λ(γ). This shows that ργ and δγ are comparable. In order to obtain the

stated upper bound on ργ, we observe that δγ ≤ (C0 + 2
√
d)M−λ(γ)+1 by (12.1).

12.3 Binary representation of ΩN

The classes of basic slope cubes Hj(ΩN) allow us to represent each element in ΩN in

terms of a unique N -long binary sequence as follows. Since every splitting vertex of

TJ(ΩN) has exactly two children, one of them must be larger (or older) than the other

in the lexicographic ordering. Let us agree to call the older (respectively younger)

child of a vertex v its 0th (respectively 1st) offspring. For 1 ≤ j ≤ N , we define a

bijective map Ψj : {0, 1}j → Hj(ΩN) inductively as follows. For j = 1,

Ψ1(i) :=

{
the unique element of H1(ΩN)

descended from the ith child of γ1 ,
(12.9)

where i = 0, 1, and γ1 is the single element in H0(ΩN) = G1(ΩN). In general if Ψj

has been defined, then for ϵ̄ ∈ {0, 1}j and i = 0, 1, we set

Ψj+1(ϵ̄, i) :=

{
the unique element of Hj+1(ΩN)

descended from the ith child of γj+1,
(12.10)
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where γj+1 is the unique element of Gj+1(ΩN) identified by Ψj(ϵ̄).

The map ΨN provides the claimed bijection of {0, 1}N onto ΩN . In fact, the

discussion above yields the following stronger conclusion, the verification of which is

straightforward.

Proposition 12.5. Let Hj(ΩN) be as in (12.6).

(i) The collection of vertices

H(ΩN) :=
N∪
j=1

{
(θ1, · · · , θj)

∣∣∣ ∃ ω ∈ ΩN , such that ω ∈ θk,

θk ∈ Hk(ΩN), 1 ≤ k ≤ j

}∪
{γ1} (12.11)

is a tree rooted at γ1 ∈ H0(ΩN) of height N , in which (θ1, · · · , θj, θj+1) is a

vertex of height (j + 1) and a child of (θ1, · · · , θj). Every element θj ∈ Hj(ΩN)

identifies a vertex (θ1, · · · , θj) of the jth generation in this tree.

(ii) Let BN denote the full binary tree of height N , namely the tree TN([0, 1); 2).

The map Ψ : BN → H(ΩN) defined by

Ψ(∅) = the unique element γ1 ∈ H0(ΩN),

Ψ(ϵ̄) = Ψj(ϵ̄) if ϵ̄ ∈ {0, 1}j, 1 ≤ j ≤ N,
(12.12)

with Ψj as in (12.10) is a tree isomorphism in the sense of Definition 3.1.

Although we will not need to use it, an analogous argument shows that the class

of splitting vertices G(ΩN) is isomorphic to BN−1.
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Chapter 13

Families of intersecting tubes,

revisited

The finite set of directions ΩN created in Proposition 12.1 forms the basis of the

construction of Kakeya-type sets. Predictably, the sets of interest that verify the

conclusion of Theorem 1.3 will be the union of a family of tubes, with each tube

assigned a slope from ΩN . Each tube is based on a suitably fine subcube of the

d-dimensional root hyperplane, {0}× [0, 1)d. The tree depicting the root hyperplane,

more precisely the full M -adic tree of dimension d and height J will be termed the

root tree.

As in Chapter 6, for 0 ≤ k ≤ J , let Q(k) be the collection of all vertices of height

k in the root tree; i.e.,

Q(k) :=
{
Q : Q ∈ T ({0} × [0, 1)d;M), h(Q) = k

}
. (13.1)

Geometrically, and in view of the discussion in Section 3.4, a member Q of Q(k) is

an M -adic cube of sidelength M−k of the form

Q = {0} ×
d∏
ℓ=1

[
jℓ
Mk

,
jℓ+1

Mk

)
, where (j1, j2, · · · jd) ∈ {0, 1, · · · ,Mk − 1}d, (13.2)
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so that #(Q(k)) = Mkd. In view of the above, and for the purpose of distinguishing

vertices of the root and the slope trees, a vertex in the root tree is termed a spatial

cube. For reasons to be made clear in a moment, an element of Q(J) (i.e., a youngest

vertex of the root tree) is of added significance and will be called a root cube.

Given a fixed constant A0 ≥ 1, and for t ∈ Q(J), ω ∈ ΩN , we define a tube rooted

at t with orientation ω to be the set

Pt,ω := Q̃t + [0, 10A0]ω =
{
s+ rω : s ∈ Q̃t, 0 ≤ r ≤ 10A0

}
. (13.3)

Here Q̃t denotes the cd-dilate of the cube t; i.e., the cube with the same centre

as t but with cd times its sidelength, for a small positive constant cd specified in

Corollary 7.2. For instance, the choice cd = d−2d will suffice. Thus Pt,ω is essentially

a (d + 1)-dimensional cylinder of constant length and with cubical cross-section of

sidelength cdM
−J perpendicular to the x1-axis. An algorithm σ that assigns to every

root t ∈ Q(J) a slope σ(t) ∈ ΩN produces, according to the prescription (13.3), a

family of tubes of cardinality MJd, and a corresponding set

K(σ) = K(σ;N, J) :=
∪

{Pt,σ(t) : t ∈ Q(J)}. (13.4)

While this definition is quite general, in our applications the slope assignment map

σ will be chosen to be weakly sticky in the sense of Definition 13.6 and as a mapping

between the trees representing roots and slopes respectively; specifically,

σ : TJ({0} × [0, 1)d;M) → TJ(ΩN ;M).

Random slope assignment algorithms will be prescribed in the next section, but for

now we record some properties of general sets of the form K(σ) generated by an

arbitrary σ.
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13.1 Tubes and a point

A crucial component of the proof of Proposition 3.7, amplified in Chapter 15, is to

identify when a given point x belongs to a union of tubes of the form (13.4). In our

applications, the set K(σ) in (13.4) will be probabilistically generated by random

weakly sticky maps, and we will need to estimate the likelihood of such an inclusion.

But many major ingredients of the argument pertain to general sets K(σ) generated

by an arbitrary weakly sticky σ. We discuss these features here.

Directly analogous to Lemma 7.5 (a), we have the following lemma.

Lemma 13.1. Let x ∈ Rd+1, A0 ≤ x1 ≤ 10A0. If the parameter C0 used in the

pruning of the slope tree T (Ω;M) (see Proposition 12.1) is chosen sufficiently large

relative to the constant A0 in (13.3), then the following property holds: for any

t ∈ Q(J), there exists at most one v(t) ∈ ΩN such that x ∈ Pt,v(t).

Proof. If there exist slopes v, v′ ∈ ΩN such that x ∈ Pt,v ∩ Pt,v′ , then the points

x− x1v and x− x1v
′ must both lie in t. In other words,

|x1(v − v′)| = |(x− x1v) − (x− x1v
′)| ≤

√
dM−J .

Since x1 ≥ A0, this implies that |v − v′| ≤ A−1
0

√
dM−J , which is ≤ C0

2
M−J for a

choice of C0 sufficiently large. Comparing with part (iv) of Proposition 12.1, we find

this is possible in ΩN only if v = v′.

The lemma above motivates the following familiar definition: for x ∈ Rd+1 with

A0 ≤ x1 ≤ 10A0,

Poss(x) :=

{
t ∈ Q(J) :

there exists v(t) = v(t;x) ∈ ΩN

such that x ∈ Pt,v(t)

}
. (13.5)

Lemma 13.2. The set Poss(x) introduced in (13.5) can also be characterized as

follows:

Poss(x) = {t ∈ Q(J) : t ∩ (x− x1ΩN) ̸= ∅}. (13.6)
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Thus Poss(x) is contained in an O(M−J)-neighborhood of an affine copy of ΩN in

the root hyperplane {0} × [0, 1)d.

Proof. This lemma is just a restatement of Lemma 7.4, whose proof goes through

without alteration.

The mapping

v : Poss(x) → ΩN which sends t 7→ v(t) with x ∈ Pt,v(t) (13.7)

is uniquely defined by Lemma 13.1. It captures for every t ∈ Poss(x) the “correct

slope” that ensures that a tube rooted at t with that slope contains x. A purely

deterministic object driven by ΩN , this map has a certain structure that is critical

to the subsequent analysis. To formalize this property, let us recall the definitions

of Gj(ΩN) and Hj(ΩN) from (12.3) and (12.6). We denote for every ω ∈ ΩN and

1 ≤ j ≤ N ,

ηj(ω) := h(θ) where ω ⊆ θ ∈ Hj(ΩN). (13.8)

In other words, ηj(ω) is the height of the jth basic slope cube on the ray identifying

ω in TJ(ΩN ;M). We note that ηN(ω) ≡ J for all ω ∈ HN(ΩN) = ΩN .

The quantity ηj is used to define the following objects:

Nx := {Φj(t) : t ∈ Poss(x), 0 ≤ j ≤ N} , (13.9)

Mx := {Θj(t) : t ∈ Poss(x), 0 ≤ j ≤ N} , where (13.10)

Φj(t) :=

{0} × [0, 1)d for j = 0(
Q∗

1(t), · · · , Q∗
j(t)
)

for j ≥ 1, and
(13.11)

Θj(t) :=

{1} × [0, 1)d for j = 0(
θ1(t), · · · , θj(t)

)
for j ≥ 1.

(13.12)

Here for j ≥ 1, the cube Q∗
j(t) is a cube in the root hyperplane containing t. In

contrast, θj(t) is a vertex in Hj(ΩN), hence a cube in {1} × [0, 1)d, containing the

point v(t) ∈ ΩN . Furthermore, both cubes are located at the same height in their
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respective trees and obey the defining properties

t ⊆ Q∗
j(t), v(t) ∈ θj(t), and h(Q∗

j(t)) = h(θj(t)) = ηj(v(t)). (13.13)

We pause briefly to clarify the definitions (13.11) and (13.12) (see Figure 13.1).

Given any t ∈ Poss(x), we pick on the ray identifying t the vertices that lie at the

same height as the basic slope cubes of v(t). The entries of the vector Φj(t) are the

first j chosen vertices on this ray. On the other hand, Θj(t) consists of the first j

basic slope cubes containing v(t). The vectors ΦN(t) and ΘN(t) identify t and v(t)

respectively. For reasons to emerge shortly in Lemma 13.4, we view the collection

Nx as a tree, in which Φj(t) is a vertex of height j, and Φj+1(t) is a child of Φj(t).

As we have already noted, the set Poss(x), and hence the youngest generation of Nx,

contains all possible roots that could support tubes with directions in ΩN containing

x. For an arbitrary σ, it is therefore natural to phrase a necessary criterion for the

inclusion x ∈ K(σ) in terms of Nx. For this reason we choose to call Nx the reference

tree, and its defining cubes Q∗
j(t) as reference cubes. The collection Mx should be

thought of as the “image” of Nx on the slope side, and hence a tree as well, with

Θj(t) being a vertex of the jth generation and the parent of Θj+1(t). In fact, Mx

is a subtree of H(ΩN) defined as in (12.11). In view of Proposition 12.5, any vertex

Θj(t) of height j ≥ 1 in Mx is identified with the j-long binary sequence Ψ−1(Θj(t)).

Given the constraints of our pruning mechanism in Proposition 12.1, the “cor-

rect slope” map t 7→ v(t) need not be sticky as a mapping from TJ(Poss(x);M) to

TJ(ΩN ;M). It does however possess a weak variant of the stickiness property that

we specify in the next lemma. As we will see in Lemma 13.4, this milder substitute

is able to achieve two goals that are of fundamental relevance to this study. First,

it assigns a tree structure to Nx and Mx. Second, it is strong enough to lift v as a

sticky map from Nx → Mx.

Lemma 13.3. There is a sufficiently large choice of the parameter C0 in Proposition

12.1 for which the following conclusion holds. Let x ∈ Rd+1 with A0 ≤ x1 ≤ 10A0,

t, t′ ∈ Poss(x) and u = D(t, t′). Set w = D(v(t), v(t′)), so that w ∈ G(ΩN), the class
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Figure 13.1: The pull-back mechanism used to define Nx, for M = d = 2.

of splitting vertices defined in (12.2). Then

h(u) < λ(w), (13.14)

with λ defined as in (12.5).

Remark: If v defined in (13.7) was indeed a sticky map, one would have access to

the inequality h(u) ≤ h(w). We know however that λ(w) > h(w), and hence (13.14)

should be viewed as a weak version of stickiness.

Proof. If x ∈ Pt,v(t) ∩ Pt′,v(t′), then by the inequality (7.1) in Lemma 7.1,

A0|v(t) − v(t′)| ≤ |x1||v(t) − v(t′)|

≤ |cen(t′) − cen(t)| + 2
√
dM−J

≤ 2
√
dM−h(u) + 2

√
dM−J ≤ 4

√
dM−h(u),

and thus |v(t) − v(t′)| ≤ 4
√
dA−1

0 M−h(u). (13.15)
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On the other hand, v(t) and v(t′) each lie in distinct children of w, which must be

a splitting vertex of TJ(ΩN ;M). If w ∈ Gj(ΩN) and if γ, γ′ denote the (j + 1)th

splitting vertices descended from w, then each of γ and γ′ contains exactly one of

v(t) and v(t′). By Proposition 12.1(iii),

|v(t) − v(t′)| ≥ dist(γ, γ′) ≥ C0M
−λj(w). (13.16)

Combining (13.15) and (13.16) we obtain

C0M
−λj(w) ≤ 4

√
dA−1

0 M−h(u).

If the constant C0 is chosen larger than 4
√
dA−1

0 , then the inequality above implies

(13.14), as claimed.

Lemma 13.4. The collection of vertex tuples Nx, Mx defined in (13.9), (13.10) are

well-defined as trees rooted at {0} × [0, 1)d and {1} × [0, 1)d respectively, with the

ancestry relation as described in the discussion leading up to Lemma 13.3. More

precisely, the map v defined in (13.7) meets the following consistency requirements:

(i) Let t, t′ ∈ Poss(x), u = D(t, t′). If the index j satisfies ηj(v(t)) ≤ h(u) then we

also have ηj(v(t′)) ≤ h(u), in which case Φj(t) = Φj(t
′) and Θj(t) = Θj(t

′).

(ii) The map from Nx → Mx that sends Φj(t) 7→ Θj(t) is well-defined and sticky.

Proof. Let γj(t) ∈ Gj(ΩN) denote the jth splitting vertex on the ray identifying

v(t). Then ηj(v(t)) = λj(γj(t)). If ηj(v(t)) = λj(γj(t)) ≤ h(u), then Lemma 13.3

implies that ηj(v(t)) = λj(γj(t)) < λ(w), where w = D(v(t), v(t′)). Unravelling the

implication of this inequality, we see that the height of the first splitting descendant

of γj(t) is strictly smaller than the corresponding quantity for w. Since both γj(t)

and w are splitting vertices lying on the ray of v(t), this means that γj(t) is an

ancestor of w of strictly lesser height. In other words, w ⊆ γj+1(t). Since the rays

for v(t) and v(t′) agree up to and including height h(w), we conclude that their first

(j + 1) splitting vertices are identical; i.e.,

γk(t) = γk(t
′) for k ≤ j + 1. (13.17)
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Hence ηk(v(t)) = λk(γk(t)) = λk(γk(t
′)) = ηk(v(t′)) for all such k, implying one of

the desired conclusions in part (i). Since

h(w) ≥ h(γj+1(t)) = h(γj+1(t
′)) ≥ ηj(v(t)) = ηj(v(t′)),

the vectors v(t) and v(t′) must agree at height ηj. Thus Θj(t) = Θj(t
′). Of course

if ηj(v(t)) = ηj(v(t′)) ≤ h(u), then Φj(t) = Φj(t
′). This completes the proof of the

first part of the lemma.

Part (ii) is essentially a restatement of the result in part (i). To ascertain that

the map is well-defined we choose t, t′ ∈ Poss(x) with u = D(t, t′) and Φj(t) = Φj(t
′)

and aim to show that Θj(t) = Θj(t
′). The hypothesis Φj(t) = Φj(t

′) implies that

ηj(v(t)) = ηj(v(t′)) ≤ h(u), and part (i) implies that the images match. Stickiness is

a by-product of the definitions.

Lemma 13.4 permits the unambiguous assignment of an “ideal image” (namely

an edge in Mx) to every edge of the tree Nx, in the following sense: if every edge

in the ray leading up to ΦN(t) receives its ideal image, then x ∈ Pt,v(t). To make

this quantitatively precise, let us define the reference slope function κ as follows: for

every edge e in Nx joining the vertices Φj(t) to Φj+1(t), we define a binary counter

κ(e) through the defining equation

Ψ−1 ◦ Θj+1(t) = (Ψ−1 ◦ Θj(t), κ(e)) (13.18)

where Ψ is the tree isomorphism defined in Proposition 12.5. In other words, κ(e)

is zero (respectively one) if and only if the ray identifying Θj+1(t) in TJ(ΩN) passes

through the 0th (respectively 1st) child of the (j+ 1)th splitting vertex identified by

Θj(t).

Corollary 13.5. The reference slope function κ described in (13.18) is well-defined,

and assigns to each edge of Nx a unique value of 0 or 1.

Proof. If there exist t ̸= t′ in Poss(x) such that the terminating vertex of e could

be represented either as Φj+1(t) or as Φj+1(t
′), then Lemma 13.4 guarantees that
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Θk(t) = Θk(t
′) for all k ≤ j + 1, proving that κ(e) given by (13.18) is a well-defined

function on the edge set of Nx.

The reader may find it helpful to visualize the edges of the reference tree Nx

with an overlay of model binary values assigned by κ, against which any other slope

assignment will be tested. This intuition is made precise below.

13.2 Weakly sticky maps

Motivated by Lemma 13.3, we introduce a general notion of weak stickiness. This is

a property that each random slope assignment σ prescribed in Chapter 14 will enjoy

(see Lemma 14.1).

Definition 13.6. Let σ be a height-preserving function that maps every full-length

ray of TJ({0} × [0, 1)d;M) to a full-length ray in TJ(ΩN ;M). We say that σ is

weakly sticky if for any t, t′ ∈ Q(J), t ̸= t′, one has the relation h(u) < λ(w), where

u = D(t, t′) and w = D(σ(t), σ(t′)).

Given a fixed point x and a union of tubes K(σ) of the form (13.4) generated by

a weakly sticky slope map σ, we obtain in Lemma 13.7 below a criterion governed by

the reference slope function κ for verifying whether x ∈ K(σ). Indeed for such σ, we

can define Nx(σ) and Mx(σ) akin to (13.9) and (13.10), but using the given slope

map t 7→ σ(t) instead of the naturally generated v given by (13.7). More precisely,

we set

Nx(σ) := {Φj(t; σ) : t ∈ Poss(x), 0 ≤ j ≤ N}, (13.19)

Mx(σ) := {Θj(t; σ) : t ∈ Poss(x), 0 ≤ j ≤ N}, (13.20)

where for j ≥ 1, both Φj(t; σ) and Θj(t;σ) are j-long vectors whose ith components

are M -adic cubes of identical size, containing t in the root hyperplane and σ(t) in the

slope tree respectively. For Θj(t;σ), the ith entry is required to lie in Hi(ΩN), which

uniquely specifies both vectors. In light of the preceding results in this chapter, it is
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not surprising that the collections (13.19) and (13.20) are trees and that σ extends

to a map between these trees.

Lemma 13.7. The following conclusions hold:

(i) The collections Nx(σ) and Mx(σ) as in (13.19) and (13.20) are well-defined as

trees rooted respectively at {0} × [0, 1)d and {1} × [0, 1)d. The tuples Φj(t;σ)

and Θj(t;σ) are deemed vertices of generation j, and parents of Φj+1(t;σ) and

Θj+1(t;σ) respectively. The map Φj(t;σ) 7→ Θj(t; σ) from Nx(σ) → Mx(σ) is

well-defined and sticky.

(ii) If e denotes the edge connecting Φj(t;σ) and Φj+1(t;σ) in Nx(σ), then the

quantity ισ(e) defined by

Ψ−1 ◦ Θj+1(t; σ) = (Ψ−1 ◦ Θj(t; σ), ισ(e)) (13.21)

gives rise to a well-defined binary function on the edge set of Nx(σ).

(iii) If x ∈ K(σ), then there exists t ∈ Poss(x) such that ΘN(t; σ) = ΘN(t). In

particular, this implies that

Φj(t; σ) = Φj(t) for all 1 ≤ j ≤ N, (13.22)

and hence that Nx and Nx(σ) share a common ray R identifying t with the

property

ισ(e) = κ(e) for every edge e in R. (13.23)

Proof. Not surprisingly, the proof of part (i) is a verbatim reproduction of the proof

of Lemma 13.4 with v replaced by σ. The relation (13.14) which played a critical

role in the proof of Lemma 13.4 is now ensured by the assumption of weak stickiness

of σ. Part (ii) is an easy consequence of part (i) and follows exactly the same way

as Corollary 13.5 was deduced from Lemma 13.4. Finally, if x ∈ K(σ), then there

is some t ∈ Poss(x) such that σ(t) = v(t). Since the chain of basic slope cubes

containing any v ∈ ΩN is unique, this implies that ΘN(t;σ) = ΘN(t), and hence
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Φj(t;σ) = Φj(t) for all 1 ≤ j ≤ N . The last equality says that t is identified by

the same sequence of vertices and hence the same ray in both Nx and Nx(σ). If

e1, e2, · · · eN are the successive edges in this ray, with ej+1 connecting Φj(t) with

Φj+1(t), then a consequence of the definitions (13.18), (13.21) of κ and ισ is that

(ισ(e1), · · · , ισ(eN)) = Ψ−1 ◦ σ(t) = Ψ−1 ◦ v(t) = (κ(e1), · · · , κ(eN)),

where Ψ is the tree isomorphism defined in Proposition 12.5, and part (iii) follows.

We end this section with a bound on the number of vertices of the reference tree at

a given height, a result that will be useful for probability computations later. In view

of the characterization (13.6) of Poss(x) given in Lemma 13.2, and our construction

of ΩN , this is intuitively clear.

Lemma 13.8. There exists a positive constant C depending on d and A0, but uniform

in x ∈ [A0, A0+1]×Rd, such that the number of vertices of height j in Nx is bounded

above by C2j.

Proof. Let nj(x) denote the number of vertices of height j in Nx. In view of the

relations (13.9) and (13.13) defining Nx, the cardinality nj(x) equals the number of

spatial cubes in the collection

{Q∗
j(t) : t ∈ Poss(x), t ⊆ Q∗

j(t), h(Q∗
j(t)) = ηj(v(t))}, (13.24)

so we proceed to count the number of such cubes Q∗
j(t). Let us recall from the

definition (13.5) of Poss(x) that x ∈ Pt,v(t). This implies that x − x1v(t) ∈ t, and

hence for θj(t) as in (13.13),

|cen(Q∗
j(t))−x+ x1cen(θj(t))|

≤ |cen(Q∗
j(t)) − cen(t)| + |x1||cen(θj(t)) − v(t)| + |cen(t) − x+ x1v(t)|

≤
√
dM−ηj(v(t)) + (A0 + 1)

√
dM−ηj(v(t)) +

√
dM−J

≤ 4A0

√
dM−ηj(v(t)).
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Let us unravel the geometric implications of the inequality above. For a given θj(t)

containing v(t), there are at most a constant number C(d,A0) of M -adic cubes

of sidelength same as θj(t) (hence candidates for Q∗
j(t)) whose centres are within

distance 4A0

√
dM−ηj(v(t)) of x − x1cen(θj(t)). On the other hand, each θj(t) ∈

Hj(ΩN), and hence the total number of possible θj(t) as t ranges over Poss(x) is at

most #(Hj(ΩN)) = 2j, by Proposition 12.5. Since nj(x) is the cardinality of the

collection in (13.24), the observations above lead to the bound nj(x) = O(2j) as

claimed.

151



Chapter 14

Random construction of

Kakeya-type sets

Motivated by the generalities laid out in the previous chapter, specifically Lemmas

13.4 and 13.7, we now proceed to describe a randomized algorithm for generating a

class of weakly sticky slope assignments σ. Let us recall the class R of fundamental

heights of ΩN defined in (12.5) and the discussion thereafter.

We start with a collection of independent and identically distributed Bernoulli(1
2
)

random variables

X := {XQ : Q ∈ Q(k), k ∈ R} , (14.1)

with Q(k) defined as in (13.1). The collection X therefore assigns, for every fun-

damental height k an independent binary random variable to every M -adic cube of

sidelength M−k in the root hyperplane. We use X as the randomization source for

our construction.

Let h0 denote the height of the single element θ0 ∈ G1(ΩN) = H0(ΩN), in

other words, the first splitting vertex of TJ(ΩN ;M). We define σ(Q0) ≡ θ0 for

all Q0 ∈ Q(h0). At the first step of the randomization process, each Q0 ∈ Q(h0) is

decomposed into subcubes Q1 of sidelength M−h1 where h1 = λ1(θ0) > h0. We call

these subcubes the first basic spatial cubes. Each first basic spatial cube Q1 receives

from the Bernoulli collection X defined in (14.1) a value of XQ1 , which is either zero
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or one. Recalling from (12.9) that

Ψ1(XQ1) ∈ H1(ΩN), and that h(Ψ1(XQ1)) = h1,

we define

σ(Q1) = σX(Q1) = Ψ1(XQ1)

for any first basic spatial cube Q1. Each element of H1(ΩN), and hence each σ(Q1),

is either a second splitting vertex of ΩN or the identifier of one. If the root cube Q1

already maps into a second splitting vertex under σ, no further action is needed for

it in step one. Now, suppose there exists γ ∈ G2(ΩN) such that h(γ) > h1. Then

for any cube Q1 for which Ψ1(XQ1) is the unique ancestor of γ at height h1, we

decompose Q1 into subcubes Q′
1 of sidelength M−h(γ) and set σ(Q′

1) = γ for all such

Q′
1 ⊊ Q1. Thus, at the end of the first step,

(a) we have obtained a partition of the root hyperplane into first basic spatial cubes,

and randomly assigned each such cube a first basic slope cube in H1(ΩN) of the

same height, namely λ1(θ0) = h1.

(b) If the vertices in G2(ΩN) occur at different heights, then predicated on the ran-

dom assignment in part (a) certain first basic spatial cubes could subdivide

further to generate a different partition of the root hyperplane, say {Q1(γ) : γ ∈
G2(ΩN)}. Each cube Q′

1 ∈ Q1(γ) is of height h(γ) and is mapped to γ. We will

refer to Q′
1 as a spatial cube of second splitting height. Thus a first basic spa-

tial cube is either itself a spatial cube of second splitting height, or is uniformly

partitioned into a disjoint union of such cubes.

In general, the jth step of the construction generates a random and possibly non-

uniform partition of the root hyperplane into spatial cubes Q′
j of (j + 1)th splitting

height. Each Q′
j is the terminal member of a descending chain

Q′
j ⊆ Qj ⊊ Q′

j−1 ⊆ Qj−1 ⊊ · · · ⊊ Q′
1 ⊆ Q1, (14.2)

where for every k ≤ j, Qk is a kth basic spatial cube, and Q′
k is a spatial cube
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γ ∈ Gj(ΩN)

γj+1 = θ1 θ2

γ̃j+1

Q′
j−1 ∈ Qj−1(γ)

Qj

Q′
j

Figure 14.1: A pictorial representation of the basic slope and root cubes and a
typical slope assignment. Vertices Qj for which XQj

= 0 are indicated by a circle
and assigned θ1; others are indicated by squares and assigned θ2. For the squared
vertices, a further slope assignment is made at a finer level.

of (k + 1)th splitting height. Each Qk is mapped by σ to a kth basic slope cube

in Hk(ΩN), whereas Q′
k is mapped to a splitting vertex in Gk+1(ΩN). All such

assignments preserve heights and satisfy the following relation for a sequence of

cubes as in (14.2),

σ(Q′
j) ⊆ σ(Qj) ⊊ σ(Q′

j−1) ⊆ · · · ⊊ σ(Q′
1). (14.3)

In this way, lineages of sequences of basic spatial cubes and spatial cubes of successive

splitting heights are preserved. However, notice that the full lineage of an arbitrary

vertex in the root tree need not be preserved under σ.

We may classify the spatial cubes at (j + 1)th splitting height as follows:

Qj(γ) := {Q′
j : σ(Q′

j) = γ}, γ ∈ Gj+1(ΩN). (14.4)

At the (j + 1)th step each Q′
j from the collection Qj(γ) is decomposed into sub-

cubes Qj+1 of height λj+1(γ) > h(γ). These are the (j + 1)th basic spatial cubes.
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Each spatial cube Qj+1 is assigned the binary value XQj+1
from the Bernoulli collec-

tion X in (14.1). Combined with the random assignments that the basic ancestors

of Qj+1 have received, this produces an image of Qj+1 under σ:

σX(Qj+1) := Ψj+1(XQ1 , · · · , XQj+1
) ∈ Hj+1(ΩN), Qj+1 ⊊ · · · ⊊ Q1. (14.5)

Each σ(Qj+1) is the unique identifier of some γ ∈ Gj+2(ΩN). We decompose Qj+1

into subcubes Q′
j+1 of height h(γ) (in some cases no further decomposition may be

needed) and set σ(Q′
j+1) = γ. This results in a newer and finer partition of the

root hyperplane into spatial cubes Q′
j+1 of (j + 1)th splitting height, producing an

analogue of (14.4) for the (j + 2)th step and allowing us to carry the induction

forward.

Continuing the procedure described above for N steps, we obtain a decomposition

of the root hyperplane into a family of basic cubes of order N , each of which is of

sidelength M−J , and hence is by definition a root cube. Every such cube t = QN(t)

is contained in a unique chain of basic spatial cubes of lower order:

t = QN(t) ⊊ QN−1(t) ⊊ · · ·Q2(t) ⊊ Q1(t) (14.6)

and is assigned a slope σX(t) = ΨN(XQ1 , · · · , XQN
) in HN(ΩN) = ΩN . We will

shortly expand on further structural properties of the slope map t 7→ σX(t), but first

observe that it gives rise to a random set

KN(X) := K(σX;N, J) (14.7)

according to the prescription (13.4).

14.1 Features of the construction

We pause briefly to summarize the important features of the construction above:

- Randomization only occurs for cubes in the root hyperplane that correspond to
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the fundamental heights, though all cubes of a given fundamental height need not

receive a random assignment.

- The only cubes that receive a random binary assignment from X are by definition

the basic spatial cubes. Unlike the basic slope cubes that constitute Hj(ΩN), a basic

spatial cube Qj is a random quantity. For instance, the size of a jth basic spatial

cube Qj always ranges in the set {h(θ) : θ ∈ Hj(ΩN)} ⊆ R, but the exact value

of the size depends on the binary assignment XQ1 , · · · , XQj−1
received by its basic

ancestors. Similarly, a spatial cube Q′
j of jth splitting height is random, though of

course a splitting vertex in Gj(ΩN) is not.

- On the other hand, the random variable XQj
that a basic spatial cube Qj receives

is independent of all random variables used in previous or concurrent steps of the

process, by virtue of our choice of (14.1). In other words,

The collection of random variables
{
XQj

: Qj basic
}

is independent. (14.8)

This fact is vital in computing slope assignment probabilities in Chapters 15 and

16.

- Thus far, σ has been prescribed only for basic cubes and their subcubes of splitting

heights. Having achieved this, it is not difficult to extend σ as a weakly sticky map

between the root tree and the slope tree. We address this in the next lemma.

Lemma 14.1. For every realization of X, there exists a weakly sticky map

σX : TJ({0} × [0, 1)d;M) → TJ(ΩN ;M)

in the sense of Definition 13.6 that agrees with the slope assignment algorithm pre-

scribed in (14.5).

Proof. The prescriptions made in (14.5) show that σX assigns a full ray in TJ({0} ×
[0, 1)d;M) to one in TJ(ΩN ;M). We aim to show that h(u) < λ(w) for u = D(t, t′)

and w = D(σX(t), σX(t′)). Since w is by definition a splitting vertex in TJ(ΩN ;M),
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let j denote the index such that w ∈ Gj(ΩN). Indeed, if h(u) ≥ λ(w), let Q be the

common ancestor of t and t′ at height λ(w). Then Q is a jth basic spatial cube,

which is mapped under σX to a jth basic slope cube θ. Thus θ is a common ancestor

of σX(t) and σX(t′) at height λ(w) > h(w), contradicting the definition of w.

14.2 Theorem 1.3 revisited

We will now invest our efforts into proving that with positive probability the sets

KN(X) just created in (14.7) are of Kakeya type.

Proposition 14.2. There exist positive absolute constants c = c(d,M) and C =

C(d,M) obeying the property described below. For every N ≥ 1 and ΩN as in

Proposition 12.1, the random set KN(X) defined in (14.7) satisfies the following

inequalities:

Pr
({

X : |KN(X) ∩ [0, 1] × Rd| ≥ c

√
logN

N

})
≥ 3

4
, (14.9)

EX
∣∣KN(X) ∩ [A0, A0 + 1] × Rd

∣∣ ≤ C

N
. (14.10)

The proof of the proposition will occupy the remainder of the main document,

with the estimates (14.10) and (14.9) established in Chapters 15 and 19 respectively.

Before launching into them, let us observe that these two estimates combine to gener-

ate the Kakeya-type set whose existence is claimed in Theorem 1.3 and subsequently

reformulated in Proposition 3.7.

Corollary 14.3. Given Proposition 14.2, the statement of Proposition 3.7 follows.

Specifically, for every N ≥ 1 there exists a realization of X for which the union of

tubes defined by

EN := KN(X) ∩ [A0, A0 + 1] × Rd obeys
|E∗

N(2A0 + 1)|
|EN |

−→
N→∞

∞. (14.11)

In other words, Ω admits Kakeya-type sets.
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Proof. The proof is identical to that of Proposition 6.2, where we set aN = c
√
logn
N

and bN = C
N

.
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Chapter 15

Proof of the upper bound (14.10)

Proposition 15.1. There exists a positive constant C possibly depending on d andM

but uniform in x ∈ [A0, A0+1]×Rd such that the probability Pr(x) := Pr(x ∈ KN(X))

obeys the estimate

Pr(x) ≤ C

N
. (15.1)

As a consequence, (14.10) holds.

Proof. The proof of (15.1) is a consequence of the three lemmas stated and proved

below in this chapter. In Lemma 15.3 and following the direction laid out in [4, 3],

we establish that Pr(x) is bounded above by the probability that the reference tree

Nx survives a Bernoulli(1
2
) percolation, as described in Chapter 4. The details of the

specific percolation criterion that permit this correspondence are described in Lemma

15.2. Using general facts about percolation collected in Chapter 4 and information

on Nx observed in Chapter 13, we compute in Lemma 15.4 a bound on the survival

probability that is uniform in x to obtain the claimed estimate (15.1).

Given (15.1), the upper bound in (14.10) follows easily. Since ΩN ⊆ {1}× [0, 1)d,

any tube, and hence KN(X), is contained in the compact set [0, 10A0]
d+1. Thus

KN(X) ∩ [A0, A0 + 1] × Rd = KN(X) ∩ [A0, A0 + 1] × [0, 10A0]
d,
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and hence

EX
∣∣KN(X) ∩ [A0, A0 + 1] × Rd

∣∣ = EX

∫
[A0,A0+1]×[0,10A0]d

1KN (X)(x) dx

=

∫
[A0,A0+1]×[0,10A0]d

EX
(
1KN (X)(x)

)
dx

=

∫
[A0,A0+1]×[0,10A0]d

Pr(x) dx

≤ C

N
,

completing the proof.

Much of the groundwork for Lemma 15.3 has already been established in Section

13.1. In particular, let us recall the definition of the reference tree Nx and reference

cubes Q∗
j(t) from (13.9), (13.11), and (13.13). We will also need the reference slope

function κ as in (13.18) defined on the edges of Nx. Motivated by Lemma 13.7(iii),

we define a random variable for each edge of Nx:

Ye = Ye(X) :=

1 if XQ∗
j+1(t)

= κ(e),

0 otherwise,
(15.2)

where as usual e denotes the edge in Nx joining Φj(t) and Φj+1(t). As described

in Chapter 4, we use Ye to determine whether to retain or to remove the edge e in

Nx, the value zero corresponding to removal. We emphasize that a reference cube

Q∗
j+1(t) is a deterministic vertex of the tree representing the root hyperplane, and

need not in general coincide with the (j + 1)th basic spatial cube Qj+1(t) described

in (14.6). The important point, as we will see in Lemma 15.3, is that if x ∈ KN(X),

then these two cubes do match for some t and for every j.

Lemma 15.2. The retention-removal criterion described in (15.2) gives rise to a

well-defined Bernoulli(1
2
) percolation on Nx.

Proof. Since Q∗
j+1(t) identifies the terminating vertex of the edge e, any two rep-

resentations Φj+1(t) = Φj+1(t
′) of this vertex gives rise to Q∗

j+1(t) = Q∗
j+1(t

′). So

160



XQ∗
j+1(t)

is consistently defined on the edges. We have already seen in Corollary 13.5

that κ is a well-defined function on the edge set of Nx, hence so is Ye. The probability

that Ye equals one is clearly 1/2 since it is given by the Bernoulli(1
2
) random variable

XQ∗
j+1(t)

. Finally, any two distinct edges e and e′ must have distinct terminating

vertices, and therefore end in distinct reference cubes. The random variable assign-

ments for such cubes are independent by our assumption on X. Hence the events of

retention and removal are independent for different edges, and the result follows.

Lemma 15.3. Let x be a point in [A0, A0 + 1] ×Rd. If x ∈ KN(X), then there is at

least one ray of full length in Nx all of whose edges are retained after the percolation

described by Ye(X). As a result, the probability Pr(x) defined in Proposition 15.1

admits the bound

Pr(x) ≤ p∗(x), (15.3)

where p∗(x) denotes the survival probability of Nx under the Bernoulli(1
2
) percolation

given in (15.2).

Proof. If x ∈ KN(X), then by Lemma 13.7(iii) there exists t ∈ Poss(x) such that the

ray identifying t is common to Nx and Nx(σX). Restating (13.22), this means that

Φj(t) = Φj(t;σ) for all 1 ≤ j ≤ N . But the left hand side of the preceding equality

identifies the (deterministic) jth reference cube containing t, whereas the right hand

side represents the (random) jth basic spatial cube containing t. In other words, we

find that Qj(t;X) = Q∗
j(t) for all 1 ≤ j ≤ N , and hence

ισ(e) = XQj+1(t;X) = XQ∗
j+1(t)

.

Combined with (15.2) and (13.23), this implies the existence of an entire ray in Nx

(namely the one identifying t) that survives the percolation given by Ye. Summariz-

ing, we obtain that

{X : x ∈ KN(X)} ⊆

{
X :

Nx survives the Bernoulli
(
1/2
)

percolation dictated by Ye(X)

}
,

from which (15.3) follows.
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Lemma 15.4. There is a positive constant C that is uniform in x ∈ [A0, A0+1]×Rd

such that the survival probability p∗(x) of Nx under Bernoulli(1
2
) percolation is ≤ C

N
.

Proof. In view of Corollary 4.2, p∗(x) is bounded above by[
N∑
j=1

2j

nj(x)

]−1

where nj(x) = number of vertices in Nx of height j.

But Lemma 13.8 gives that nj(x) ≤ C2j, which leads to the stated bound.
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Chapter 16

Probability estimates for slope

assignments

We now turn to (14.9), where we need to establish that with high probability, the

volume of space close to the root hyperplane is much more widely populated by the

random set KN(X) than away from it. As we have already seen in Section 9 during

the Cantor directions case, the proof requires detailed knowledge of the probability

that a given subset of root cubes receives prescribed slope assignments. We establish

the necessary probabilistic estimates in this section for easy reference in the proof of

(14.9), which is presented in Chapter 19.

16.1 A general rule

To get started, let us recall from Chapter 14 that a slope assigned to a root is not

completely arbitrary and has to obey the requirement of weak stickiness. The defi-

nition below, introduced to avoid vacuous root-slope combinations, draws attention

to this constraint.

Definition 16.1. Let A be a collection of root cubes and ΓA = {α(t) : t ∈ A} ⊆ ΩN
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a collection of slopes indexed by A. We say that the collection of root-slope pairs

{(t, α(t)) : t ∈ A ⊆ Q(J), α(t) ∈ ΓA ⊆ ΩN} (16.1)

is sticky-admissible if there exists a realization of X as in (14.1) for which the weakly

sticky map σX described in Chapter 14 has the property that

σX(t) = α(t) for all t ∈ A. (16.2)

Given a sticky-admissible collection (16.1), we first prescribe a general algorithm

for computing the probability of the event (16.2). Preparatory to stating the result,

let us define two collections consisting of tuples of vertices from the root tree and

the slope tree respectively:

N(A;α) := {Φj(t;α) : t ∈ A, 0 ≤ j ≤ N}, (16.3)

M(A;α) := {Θj(t;α) : t ∈ A, 0 ≤ j ≤ N}. (16.4)

These objects are analogous to the trees (13.19) and (13.20) introduced earlier, with

the usual interpretation of Φj(t;α) and Θj(t;α) following those definitions. Namely,

for j ≥ 1, the element Θj(t;α) is a vector with j entries, whose ith component

represents the ith basic slope cube in TJ(ΩN) containing α(t). The vector Φj(t;α) is

also a j-long sequence. Its ith entry represents the unique cube containing t located

at the same height as the ith entry of Θj(t;α). This common height is ηi(α(t))

defined as in (13.8). Not surprisingly, for a choice A and α that gives rise to a

sticky-admissible collection (16.1), the collections N(A;α) and M(A;α) are indeed

trees (with the 0th generations removed) that contain the information required for

computing the probability of the event (16.2). This is the content of Lemma 16.2

below, which forms the computational framework for all the probability estimates in

this section.

Lemma 16.2. Let A ⊆ Q(J) and ΓA = {α(t) : t ∈ A} ⊆ ΩN be sets for which the

collection given in (16.1) is sticky-admissible. Then the following conclusions hold.
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(i) The collections N(A;α) and M(A;α) defined in (16.3) and (16.4) are well-

defined trees in which Φj(t;α) and Θj(t;α) are deemed vertices of height j, and

parents of Φj+1(t;α) and Θj+1(t;α) respectively.

(ii) If n(A;α) denotes the total number of vertices in N(A;α) not counting the root,

then

Pr(σX(t) = α(t) for all t ∈ A) = 2−n(A;α). (16.5)

Proof. The proof of the first claim follows the same line of reasoning as in Lemmas

13.3 and 13.7 and is hence omitted. We turn to the proof of (16.5). Let us write

Φj(t;α) =
(
Q∗

1(t;α), · · · , Q∗
j(t;α)

)
and Θj(t;α) =

(
θ1(t;α), · · · , θj(t;α)

)
.

(16.6)

In order to describe the event of interest, we need to recall from (14.6) the definition

of basic spatial cubes Qj(t) containing t, their role in the random construction as

explained in Chapter 14, and also the definition of the maps Ψj and Ψ from (12.10)

and Proposition 12.5. Putting these together we find that

{
σX(t) = α(t) for all t ∈ A

}
=
{
σX(Qj(t)) = θj(t;α) for all 1 ≤ j ≤ N and all t ∈ A

}
=
{

ΨN(XQ1(t), · · · , XQN (t)) = α(t) for all t ∈ A
}

=
N∩
j=1

∩
t∈A

{
XQj(t) = πj ◦ Ψ−1 ◦ α(t)

}
=

N∩
j=1

∩
t∈A

{
Qj(t) = Q∗

j(t;α) and XQ∗
j (t;α)

= πj ◦ Ψ−1 ◦ α(t)
}
. (16.7)

Here πj denotes the projection onto the jth component of an input sequence. In the

first two steps of the string of equations above, we have used the definition (14.5) of σ

and its weak stickiness as ensured by Lemma 14.1. To justify the last step we observe

that Q1(t) = Q∗
1(t;α) is non-random; further if it is given that Qℓ(t) = Q∗

ℓ(t;α) for
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all ℓ ≤ j, then the additional requirement

XQj(t) = πj ◦ Ψ−1 ◦ α(t) implies Qj+1(t) = Q∗
j+1(t;α),

leading to the conclusion in (16.7). By virtue of our assumption of sticky-admissibility,

the event described above is of positive probability; in particular the value assignment

to the random variables in X as prescribed in (16.7) is consistent; i.e., for t ̸= t′,

πj ◦ Ψ−1 ◦ α(t) = πj ◦ Ψ−1 ◦ α(t′) whenever Q∗
j(t;α) = Q∗

j(t
′;α).

In view of our assumption (14.1) on the distribution of X, the probability of the

event in (16.7) is half raised to a power that equals the number of distinct cubes in

the collection {Q∗
j(t;α); 1 ≤ j ≤ N, t ∈ A}, in other words n(A;α).

16.2 Root configurations

Application of Lemma 16.2 requires explicit knowledge of the structure of the trees

N(A;α) and M(A;α), from which n(A;α) can be computed. These objects depend

in turn on the trees depicting A and ΓA. We now proceed to compute n(A;α) in

some simple situations where #(A) ≤ 4. On one hand, the small size of A permits

the classification of possible root configurations into relatively few categories, each

of which gives rise to a specific n(A;α). On the other hand, these cases cover all the

probabilistic estimates that we will need in Chapter 19.

While each root configuration requires distinct consideration, it is recommended

that the reader focus on the cases when #(A) = 2, and when #(A) = 4 with the four

roots in what we call a type 1 configuration (see Definition 16.7). These cases contain

many of the main ideas needed to push through the proof of the lower bound on the

size of a typical KN(X) claimed in (14.9), Proposition 14.2. A thorough treatment of

all distinct cases when #(A) ≤ 4 is needed to completely establish Proposition 14.2,

but focusing on the two recommended cases should make the arguments far easier

to absorb upon a first reading. When #(A) = 2 in particular, the reader may focus
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attention on Lemmas 16.3, 17.3, 18.1 and 18.2, and the application of these lemmas

in the proof of Proposition 19.1. The treatment of the case of four distinct roots in

type 1 configuration has been carried out on Lemmas 16.8, 17.6, 18.1 and 18.2, with

the application of these lemmas occurring in the proof of Proposition 19.2, for which

this is the generic case.

16.3 Notation

Throughout this chapter the following notation will be used, in conjunction with the

terminology of root hyperplane, root tree and root cube already set up in Chapter

13, page 140. Since any vertex Φj(t;α) in N(A;α) is uniquely identified by its last

component Q∗
j(t;α) defined as in (16.6), we write

Φj(t;α) ∼= Q∗
j(t;α), (16.8)

often opting to describe the left hand side by the right. In particular if j = N , then

ΦN(t;α) ∼= Q∗
N(t;α) = t, in which case the latter notation is used instead of the

(more cumbersome) former.

Given a vertex u in the root tree, a vertex ω ∈ TJ(ΩN) and a positive integer k

such that k ≤ h(u) ≤ λ(w), we also define

θ(ω, k) := the basic slope cube containing ω of maximal height ≤ k, and (16.9)

µ(ω, k) := j if θ(ω, k) ∈ Hj(ΩN)

= number of basic slope cubes of height ≤ k that contain ω, and

(16.10)

Qu[ω, k] := ancestor of u in the root tree at height h(θ(ω, k)). (16.11)

Figure 16.1 on page 168 depicts these quantities. If ω′ ⊆ ω and/or u′ ⊆ u, then it

follows from the definitions above that

θ(ω, k) = θ(ω′, k), µ(ω, k) = µ(ω′, k), and
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Qu[ω, k] = Qu′ [ω, k] = Qu[ω
′, k] = Qu′ [ω

′, k].

These facts will be frequently used in the sequel without further reference.

ωj ∈ Gj(ΩN)

θ(ω, k1) = θ(ω, k2) ∈ Hj(ΩN)

θ(ω, k3) ∈ Hj+1(ΩN)
height = k2

height = k1

height = k3

ω ∈ TJ(ΩN)
Figure 16.1: Given ω ∈ ΩN and a set of heights ki, i = 1, 2, 3, the basic slope cubes
θ(ω, ki) are identified. Here µ(ω, k1) = µ(ω, k2) = j and µ(ω, k3) = j+1. All vertices
depicting basic slope cubes are circled.

16.4 The case of two roots

We start with the simplest case when A consists of two root cubes.

Lemma 16.3. Let A = {t1, t2} be two distinct root cubes and ΓA = {α(t1) =

v1, α(t2) = v2} ⊆ ΩN be a subset of (not necessarily distinct) slopes such that

{(t1, v1), (t2, v2)} is sticky-admissible. If u = D(t1, t2), ω = D(v1, v2) and k = h(u),
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then k < λ(ω), and

Pr
(
σ(t1) = v1, σ(t2) = v2

)
=

(
1

2

)2N−µ(ω,k)

. (16.12)

Proof. Since there exists a weakly sticky map σ such that σ(ti) = vi for i = 1, 2, we

see that

λ(ω) = λ
(
D(v1, v2)

)
= λ

(
D(σ(t1), σ(t2))

)
≥ h

(
D(t1, t2)

)
= h(u) = k. (16.13)

In order to establish (16.12) we invoke Lemma 16.2. The tree N(A;α) consists of

two rays terminating at ΦN(t1;α) ∼= t1 and ΦN(t2;α) ∼= t2 respectively, according to

the notational rule prescribed in (16.8). Letting uN = DN(t1, t2) denote the youngest

common ancestor of t1 and t2 in N(A;α), we observe that uN ∼= Qu[ω, k], with Qu[ω, k]

defined as in (16.11). Thus uN lies at height µ(ω, k) in N(A;α). This allows us to

compute n(A;α) as follows: n(A;α) = µ(ω, k) + 2(N − µ(ω, k)) = 2N − µ(ω, k).

16.5 The case of three roots

Next we turn to the slightly more complex event where three distinct root cubes

receive prescribed slopes. Here for the first time we observe the dependence of slope

assignment probabilities on configuration types of the roots.

Definition 16.4. Let t1, t2, t
′
2 be three distinct root cubes. We say that the ordered

tuple I = {(t1, t2); (t1, t
′
2)} with

u = D(t1, t2), u′ = D(t1, t
′
2), u′ ⊆ u (16.14)

is in type 1 configuration if exactly one of the following conditions hold:

(a) u′ ⊊ u, or

(b) u = u′ = D(t2, t
′
2).
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A tuple I that obeys (16.14) but is not of type 1 is said to be of type 2. Thus for

I of type 2, one must have u = u′ and additionally t = D(t2, t
′
2) satisfies t ⊊ u.

If I = {(t1, t2); (t1, t
′
2)} with the same definitions of u and u′ does not meet the

containment relation required by (16.14), i.e., if u ⊊ u′, then we declare I to be of

the same type as I′ = {(t1, t
′
2); (t1, t2)}.

The different structural possibilities are shown in Figure 16.2.

3 Point Configurations

Type 1 Type 2

u

u′

t1 t′2 t2

u = u′

t′2t1 t2

u = u′

t1 t2 t′2

Figure 16.2: All possible configurations of three distinct root cubes.

As in Lemma 16.3, the quantity µ defined in (16.10) when evaluated at certain

vertices of the slope tree dictated by A = {t1, t2, t′2} provides the value of n(A;α)

necessary for estimating the probability in (16.5).

Lemma 16.5. Let A = {t1, t2, t′2} be three distinct root cubes such that the ordered

tuple I = {(t1, t2); (t1, t
′
2)} obeys (16.14) and is of type 1. Set

k = h(u), k′ = h(u′).

Suppose that ΓA = {α(t1) = v1, α(t2) = v2, α(t′2) = v′2} ⊆ ΩN is a subset of

(not necessarily distinct) directions such that the collection {(t1, v1); (t2, v2); (t′2, v
′
2)}

is sticky-admissible. Then the vertices defined by

ω = D(v1, v2), ω′ = D(v1, v
′
2)
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must satisfy the height relations

k ≤ λ(ω), k′ ≤ λ(ω′) (16.15)

and the following equality holds:

Pr
(
σ(t1) = v1, σ(t2) = v2, σ(t′2) = v′2

)
=

(
1

2

)3N−µ(ω,k)−µ(ω′,k′)

.

Proof. The inequalities in (16.15) are proved exactly as in Lemma 16.3; we omit

these. The probability is again computed using Lemma 16.2, via counting n(A;α).

The tree N = N(A;α) now consists of three rays, terminating at ΦN(t1;α), ΦN(t2;α)

and ΦN(t′2;α), which are identified with t1, t2 and t′2 respectively. Let us recall from

the proof of Lemma 16.3 that uN = DN(t1, t2) denotes the M -adic cube specifying

the youngest common ancestor of t1 and t2 in N(A;α). The vertex u′N = DN(t1, t
′
2)

is defined similarly. Then using the notation (16.8),

u′N
∼= Qu′ [ω

′, k′] = Qt1 [v1, k
′], and uN ∼= Qu[ω, k] = Qt1 [v1, k]. (16.16)

Since k ≤ k′, it follows from (16.16) above that u′N ⊆ uN. If hN(·) denotes the height

of a vertex within the tree N(A;α), then (16.16) also yields

hN
(
uN
)

= µ(ω, k) and hN
(
u′N
)

= µ(ω′, k′), so that µ(ω, k) ≤ µ(ω′, k′).

Using these relations and referring to Figure 16.2, we compute n(A;α) as follows,

n(A;α) = hN
(
uN
)

+
[
N − hN

(
uN
)]︸ ︷︷ ︸

vertices on the ray of t2 in N

+
[
hN
(
u′N
)
− hN

(
uN
)]︸ ︷︷ ︸

vertices between uN and u′N

+ 2
[
N − hN(u′N)

]︸ ︷︷ ︸
vertices below u′N

= µ(ω, k) +
[
N − µ(ω, k)

]
+
[
µ(ω′, k′) − µ(ω, k)

]
+ 2
[
N − µ(ω′, k′)

]
= 3N − µ(ω, k) − µ(ω′, k′),

which leads to the desired probability estimate by Lemma 16.2.
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Lemma 16.6. Let A = {t1, t2, t′2} be three distinct root cubes such that the ordered

tuple I = {(t1, t2); (t1, t
′
2)} obeys (16.14) and is of type 2. Set

k = h(u) = h(u′), and ℓ = h(t) where t = D(t2, t
′
2) ⊊ u = u′.

If {(t1, v1); (t2, v2); (t′2, v
′
2)} is a sticky-admissible collection, then the vertices

ω = D(v1, v2), ω′ = D(v1, v
′
2), ϑ = D(v2, v

′
2)

must satisfy the relations

k ≤ min{λ(ω), λ(ω′)}, ℓ ≤ λ(ϑ), µ(ω, k) = µ(ω′, k), (16.17)

and the following equality holds:

Pr
(
σ(t1) = v1, σ(t2) = v2, σ(t′2) = v′2

)
=

(
1

2

)3N−µ(ω,k)−µ(ϑ,ℓ)

. (16.18)

Proof. The first two inequalities in (16.17) are consequences of weak stickiness, since

there exists a weakly sticky map σ that assigns σ(t1) = v1, σ(t2) = v2, σ(t′2) = v′2.

Thus the first inequality in (16.17) is proved as in (16.13), while the second one also

follows a similar route:

λ(ϑ) = λ(D(v2, v
′
2)) = λ

(
D(σ(t2), σ(t′2))

)
≥ h(D(t2, t

′
2)) = h(t) = ℓ.

For the last identity in (16.17), we observe that both ω and ω′ lie on the ray identi-

fying v1. Thus θ(ω, k) = θ(ω′, k) and hence µ(ω, k) = µ(ω′, k) by the first inequality

in (16.17).

We now turn to the counting of n(A;α), which leads to the probability estimate

(16.18) via Lemma 16.2. Using the notation introduced in the proof of Lemma 16.5,

the pairwise youngest common ancestors of the last generation vertices in N(A;α)
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are seen to satisfy the following:

uN = DN(t1, t2) ∼= Qu[ω, k] = Qt2 [v2, k],

tN = DN(t2, t
′
2)

∼= Qt[ϑ, ℓ] = Qt2 [v2, ℓ].

Since the type of I guarantees that k < ℓ, the relations above imply

tN ⊆ uN and hence hN(uN) = µ(ω, k) ≤ hN(tN) = µ(ϑ, ℓ).

This enables us to compute, with the aid of Figure 16.2,

n(A;α) = µ(ω, k) +
[
N − µ(ω, k)

]︸ ︷︷ ︸
vertices on the ray of t1 in N

+
[
µ(ϑ, ℓ) − µ(ω, k)

]︸ ︷︷ ︸
vertices between uN and tN

+ 2
[
N − µ(ϑ, ℓ)

]︸ ︷︷ ︸
vertices below tN

= 3N − µ(ω, k) − µ(ϑ, ℓ).

This is the exponent claimed in (16.18).

16.6 The case of four roots

Finally we turn our attention to four point root configurations. Depending on the

relative positions of root cubes within the root tree, we can classify the configuration

types as follows. Let I = {(t1, t2); (t′1, t
′
2)} be an ordered tuple of four distinct root

cubes, for which

u = D(t1, t2) and u′ = D(t′1, t
′
2) obey h(u) ≤ h(u′). (16.19)

Then exactly one of the following conditions must hold:

u ∩ u′ = ∅, (16.20)

u = u′ = D(ti, t
′
j) for all i, j = 1, 2, (16.21)

u′ ⊊ u, (16.22)
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u = u′, and ∃ indices 1 ≤ i, j ≤ 2 such that D(ti, t
′
j) ⊊ u. (16.23)

Definition 16.7. For an ordered tuple I = {(t1, t2); (t′1, t
′
2)} of four distinct root

cubes meeting the requirement of (16.19), we say that I is of

(a) type 1 if exactly one of (16.20) or (16.21) holds,

(b) type 2 if (16.22) holds, and

(c) type 3 if (16.23) holds.

If I does not meet the height relation in (16.19), then I′ = {(t′1, t
′
2); (t1, t2)} does, and

the type of I is said to be the same as that of I′.

Several different structural possibilities for the root quadruple exist within the

confines of a single type, excluding permutations within and between the pairs {t1, t2}
and {t′1, t′2}. These have been listed in Figure 16.3. We note in passing that the

type definition above is slightly different from the Cantor case of Chapter 9. Here,

the main motivation for the nomenclature is the classification of the unconditional

probabilities of slope assignment as exemplified in (16.5), whereas in Chapter 9 a

simpler analysis involving conditional probabilities only was possible.

We now proceed to analyze how the configuration types affect the slope assign-

ment probabilities.

Lemma 16.8. Let A = {t1, t2, t′1, t′2} be a collection of four distinct root cubes such

that I = {(t1, t2); (t′1, t
′
2)} obeys (16.19) and is of type 1. Let ΓA = {v1, v2, v′1, v′2} =

{α(ti) = vi, α(t′i) = v′i, i = 1, 2} ⊆ ΩN be a choice of slopes such that the collection

{(ti, vi); (t′i, v
′
i); i = 1, 2} is sticky-admissible. Set

z = D(u, u′), k = h(u), k′ = h(u′), ℓ = h(z),

so that u, u′ ⊊ z, and hence ℓ < k ≤ k′ if (16.20) holds,

u = u′ = z, and hence ℓ = k = k′ if (16.21) holds.
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Type 1
Configurations

u
u′

t1 t2 t′1 t′2

u = u′

t1 t′1 t2 t′2

Type 2
Configurations

u

u′

t2t1 t′1 t′2

u

u′

t1 t′1 t′2 t2

u

u′

t1 t2 t′1 t′2

Type 3
Configurations

u = u′

t1 t′1 t2 t′2

u = u′

t1 t2 t′2 t′1

Figure 16.3: Configurations of four root cubes, up to permutations.

Then the vertices

ω = D(v1, v2), ω′ = D(v′1, v
′
2), v = D(ω, ω′),

175



must satisfy k ≤ λ(ω), k′ ≤ λ(ω′) and ℓ ≤ λ(v), and the following equality holds:

Pr
(
σ(ti) = vi, σ(t′i) = v′i, i = 1, 2

)
=

(
1

2

)4N−µ(ω,k)−µ(ω′,k′)−µ(v,ℓ)

. (16.24)

Proof. The proofs of the height relations may be reproduced verbatim from the

previous lemmas in this chapter, so we focus only on the probability estimate. As

before,

uN = DN(t1, t2) ∼= Qu[ω, k], u′N = DN(t′1, t
′
2)

∼= Qu′ [ω
′, k′]

zN = DN(uN, u
′
N) ∼= Qz[v, ℓ] = Qu[w, ℓ] = Qu′ [ω

′, ℓ], and hence (16.25)

hN(uN) = µ(ω, k), hN(u′N) = µ(ω′, k′), hN(zN) = µ(v, ℓ).

Since ℓ ≤ k ≤ k′, (16.25) implies

uN ∪ u′N ⊆ zN, and thus µ(v, ℓ) ≤ min
[
µ(ω, k), µ(ω′, k′)

]
.

It is important to keep in mind that N(A;α) need not inherit the same type of

structure as A. For example, if (16.20) holds, it need not be true that uN ∩ u′N = ∅;

indeed the vertices uN, u′N and zN could be distinct or (partially) coincident depending

on the structure of the slope tree. Nonetheless the information collected above is

sufficient to compute the number of vertices in N(A;α) (see Figure 16.3):

n(A;α) = µ(v, ℓ)︸ ︷︷ ︸
vertices above zN

+
[
µ(ω, k) − µ(v, ℓ)

]︸ ︷︷ ︸
vertices between zN and uN

+
[
µ(ω′, k′) − µ(v, ℓ)

]︸ ︷︷ ︸
vertices between zN and u′N

+ 2
[
N − µ(ω, k)

]︸ ︷︷ ︸
ancestors of t1 and t2

in N descended from uN

+ 2
[
N − µ(ω′, k′)

]︸ ︷︷ ︸
ancestors of t′1 and t′2

in N descended from u′N

= 4N − µ(ω, k) − µ(ω′, k′) − µ(v, ℓ).

Combined with Lemma 16.2, this leads to (16.24).

Lemma 16.9. Let A = {ti, t′i; i = 1, 2} be a collection of four distinct root cubes
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such that I = {(t1, t2); (t′1, t
′
2)} obeys (16.19) and is of type 2. Suppose that ΓA =

{α(ti) = vi, α(t′i) = v′i ; i = 1, 2} is a choice of slopes such that the collection

{(ti, vi); (t′i, v
′
i); i = 1, 2} is sticky-admissible. Set

ω = D(v1, v2), ω′ = D(v′1, v
′
2), k = h(u), k′ = h(u′),

so that k < k′. Then the following inequalities hold: k ≤ λ(ω), k′ ≤ λ(ω′). Further,

there exist permutations {i1, i2} and {j1, j2} of {1, 2} for which the quantities

ϑ = D(vi2 , v
′
j2

), t = D(ti2 , t
′
j2

), ℓ = h(t)

obey the relation ℓ ≤ λ(ϑ), and for which the probability of slope assignment can be

computed as follows:

Pr
(
σ(ti) = vi, σ(t′i) = v′i for i = 1, 2

)
=

(
1

2

)4N−µ(ω,k)−µ(ω′,k′)−µ(ϑ,ℓ)

. (16.26)

Proof. The definition of the configuration type dictates that u′ is strictly contained

in u, but depending on other properties of the ray joining u and u′ we are led to

consider several cases. If there does not exist any vertex in the root tree that is strictly

contained in u and also contains ti for some i = 1, 2, then any permutation of the

root pairs {t1, t2} and {t′1, t′2} works. In particular, it suffices to choose i1 = j1 = 1,

i2 = j2 = 2. In this case t = u, hence ℓ = k. In particular this implies

θ(ω, k) = θ(v2, k) = θ(v2, ℓ) = θ(ϑ, ℓ), hence µ(ω, k) = µ(ϑ, ℓ). (16.27)

Further

u′N = Qu′ [ω
′, k′] = Qt′1

[v′1, k
′] ⊆ Qt′1

[v′1, k] = Qu[ω, k] = uN, and

hN(uN) = µ(ω, k), hN(u′N) = µ(ω′, k′).
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Referring to Figure 16.3 we find that

n(A;α) = µ(ω, k) + 2
[
N − µ(ω, k)

]
+
[
µ(ω′, k′) − µ(ω, k)

]
+ 2
[
N − µ(ω′, k′)

]
= 4N − 2µ(ω, k) − µ(ω′, k′)

= 4N − µ(ω, k) − µ(ω′, k′) − µ(ϑ, ℓ),

where the last step uses one of the equalities in (16.27).

Suppose next that the previous case does not hold, and also that none of the

descendants of u′ lying on the rays of t′1, t
′
2 is an ancestor of t1 or t2. Then there is a

vertex, let us call it t, such that u′ ⊆ t ⊊ u, and t is of maximal height in this class

subject to the restriction that it is an ancestor of some ti, which we call ti2 . Thus

ti1 is the unique element in {t1, t2} that is not a descendant of t. In this case, any

permutation of {t′1, t′2} works, and we can keep j1 = 1, j2 = 2. Then t = D(ti2 , t
′
j2

),

k < ℓ ≤ k′, and

u′N = DN(t′1, t
′
2)

∼= Qu′ [ω
′, k′] = Qu′ [v

′
j2
, k′],

tN = DN(ti2 , t
′
j2

) ∼= Qt[ϑ, ℓ] = Qu′ [v
′
j2
, ℓ], and

uN = DN(t1, t2) ∼= Qu[ω, k] = Qu[ω0, k] = Qu′ [v
′
j2
, k],

where the last line uses the fact that u = D(t1, t2, t
′
1, t

′
2), so that the second equality

in that line holds ω0 = D(v1, v2, v
′
1, v

′
2). These relations imply that

u′N ⊆ tN ⊆ uN with hN(uN) = µ(ω, k), hN(u′N) = µ(ω′, k′), hN(tN) = µ(ϑ, ℓ). (16.28)

Using this, we compute n(A;α) as follows,

n(A;α) = µ(ω, k) +
[
N − µ(ω, k)

]︸ ︷︷ ︸
vertices of ti1 in N

+
[
µ(ϑ, ℓ) − µ(ω, k)

]
+
[
N − µ(ϑ, ℓ)

]︸ ︷︷ ︸
vertices of ti2 in N below uN

+
[
µ(ω′, k′) − µ(ϑ, ℓ)

]︸ ︷︷ ︸
vertices between tN and u′N

+ 2
[
N − µ(ω′, k′)

]︸ ︷︷ ︸
vertices of t′1 and t′2

in N below u′N
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= 4N − µ(ω, k) − µ(ω′, k′) − µ(ϑ, ℓ),

which is the required exponent.

The last case, complementary to the ones already considered is when there exists

a pair of indices, denoted i2, j2 ∈ {1, 2} such that t = D(ti2 , t
′
j2

) ⊊ u′. In this case

we leave the reader to verify by the usual means that

tN ⊆ u′N ⊆ uN,

with their heights given by the same expressions as in (16.28). Accordingly,

n(A;α) = N︸︷︷︸
vertices of ti1

in N

+
[
N − µ(ω, k)

]︸ ︷︷ ︸
vertices on t′j1
in N below uN

+
[
µ(ϑ, ℓ) − µ(ω′, k′)

]︸ ︷︷ ︸
vertices between tN and u′N

+ 2
[
N − µ(ϑ, ℓ)

]︸ ︷︷ ︸
vertices of ti2 and t′j2

in N below tN

= 4N − µ(ω, k) − µ(ω′, k′) − µ(ϑ, ℓ).

Thus, despite structural differences, all the cases give rise to the same value of n(A;α)

that agrees with the exponent in (16.26), completing the proof.

We pause for a moment to record a few properties of the youngest common

ancestors of the roots and slopes that emerged in the proof of Lemma 16.9.

Corollary 16.10. Let A and ΓA be as in Lemma 16.9.

(i) The possibly distinct vertices u, u′ and t, as described in Lemma 16.9, are

linearly ordered in terms of ancestry, i.e., there is some ray of the root tree that

they all lie on. Depending on A, the vertex t may lie above or below u′, but

always in u.

(ii) The splitting vertices ω, ω′, ϑ in the slope tree also obey certain inclusions;

namely, for each of the pairs (ω, ϑ) and (ω′, ϑ), one member of the pair is

contained in the other.

Proof. Both u′ and t lie on the ray identifying t′j2 by definition, and u lies on the ray

of u′ by the assumption on the type of the root configuration. This establishes the
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first claim. The definitions also imply that vi2 ⊆ ω ∩ ϑ and v′j2 ⊆ ω′ ∩ ϑ, hence both

intersections are non-empty. The second conclusion then follows from the nesting

property of M -adic cubes.

Lemma 16.11. Let A = {ti, t′i; i = 1, 2} be a collection of four distinct root cubes

such that I = {(t1, t2); (t′1, t
′
2)} is of type 3. Suppose that ΓA = {α(ti) = vi, α(t′i) =

v′i ; i = 1, 2} is a choice of slopes such that the collection {(ti, vi); (ti, v
′
i); i = 1, 2} is

sticky-admissible. Set

ω = D(v1, v2), ω′ = D(v′1, v
′
2), k = h(u) = h(u′).

Then the following relations must hold: k ≤ λ(ω), k ≤ λ(ω′), µ(ω, k) = µ(ω′, k).

Further, there exist permutations {i1, i2} and {j1, j2} of {1, 2} such that the quantities

s1 = D(ti1 , t
′
j1

), s2 = D(ti2 , t
′
j2

), ℓ1 = h(s1),

ϑ1 = D(vi1 , v
′
j1

), ϑ2 = D(vi2 , v
′
j2

), ℓ2 = h(s2)

satisfy

s1 ⊆ u, s2 ⊊ u, k ≤ ℓ1 ≤ ℓ2, ℓi ≤ λ(ϑi) for i = 1, 2, (16.29)

and for which

Pr
(
σ(ti) = vi, σ(t′i) = v′i for i = 1, 2

)
=

(
1

2

)4N−µ(ω,k)−µ(ϑ1,ℓ1)−µ(ϑ2,ℓ2)

. (16.30)

Proof. Since I is of type 3, u = u′ is the youngest common ancestor of the four

elements in I. If ω0 is the youngest common ancestor of the slopes {vi, v′i : i = 1, 2},

then λ(ω0) ≥ h(u) = k by sticky admissibility. Thus θ(ω, k) = θ(ω0, k) = θ(ω′, k),

and therefore µ(ω, k) = µ(ω′, k), as claimed.

We turn to (16.29) and the probability estimate. The configuration type dictates

that there exist indices (i, j) ∈ {1, 2}2 such that D(ti, t
′
j) ⊊ u. Among all such pairs

(i, j), we pick one for which D(ti, t
′
j) is of maximal height. Let us call this pair (i2, j2),
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so that h(D(ti2 , t
′
j2

)) ≥ h(D(ti, t
′
j)) for all 1 ≤ i, j ≤ 2. The first three relations in

(16.29) are now immediate. The last one follows from sticky admissibility and is left

to the reader.

It remains to compute n(A;α). The structure of N(A;α) gives that

uN = u′N = DN(t1, t2) = DN(t′1, t
′
2)

uN = Qu[ω, k] = Qu′ [ω
′, k] = Qt1 [v1, k] = Qt2 [v2, k],

siN = DN(ti, t
′
i) = Qsi [ϑi, ℓi] = Qti [vi, ℓi],

siN ⊆ uN = DN(s1N, s2N) for i = 1, 2, so that

hN(uN) = µ(ω, k) ≤ hN(siN) = µ(ϑi, ℓi), i = 1, 2.

Putting these together, the number of vertices in N(A;α) is obtained as follows,

n(A;α) = µ(ω, k)︸ ︷︷ ︸
vertices up to uN

+
2∑
i=1

[
µ(ϑi, ℓi) − µ(ω, k)

]︸ ︷︷ ︸
vertices between uN and siN

+
2∑
i=1

2
[
N − µ(ϑi, ℓi)

]︸ ︷︷ ︸
vertices below siN

= 4N − µ(ϑ1, ℓ1) − µ(ϑ2, ℓ2) − µ(ω, k).

The probability estimate claimed in (16.30) now follows from Lemma 16.2.

Corollary 16.12. Let ω, ω′, ϑ1, ϑ2 be as in Lemma 16.9. Then each of the pairs

(ω, ϑ1), (ω, ϑ2), (ω′, ϑ1) and (ω′, ϑ2) has the property that one member of the pair is

contained in the other.

Proof. Since vi1 ⊆ ω ∩ ϑ1, vi2 ⊆ ω ∩ ϑ2, v
′
j1

⊆ ω′ ∩ ϑ1 and v′j2 ⊆ ω′ ∩ ϑ2, all

four intersections are nonempty, and the desired conclusion follows from the nesting

property of M -adic cubes.

As the reader has noticed, the classification of probability estimates in this section

is predicated on the configuration types of the roots, not the slopes. Of course, such

definitions of type apply equally well to slope tuples {(v1, v2); (v′1, v
′
2)}. Indeed, a

point worth noting is that configuration types are not preserved under even sticky

maps; see for example the diagram in Figure 16.4 below, where a four tuple of roots
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of type 1 maps to a sticky image of type 3. In view of these considerations, we

shall refrain for the most part from using any type properties of slopes. In the rare

instances where structural properties of slopes are relevant, a case in point being

Section 19.2.3, we need to consider all possible configurations.

D(t1, t2)
D(t′1, t

′
2)

t2t1 t′1 t′2 σ(t2)σ(t′1) σ(t1)σ(t
′
2)

σ

Figure 16.4: An example of a four tuple of roots of type 1 mapping to a sticky image
of type 3. Notice that D(σ(t1), σ(t2)) = D(σ(t′1), σ(t′2)).
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Chapter 17

Tube counts

A question of considerable import, the full significance of which will emerge in

Chapter 19, is the following: what is the maximum possible cardinality of a sticky-

admissible collection of tube tuples that admit certain pairwise intersections in a

pre-fixed segment of space? The answer depends, among other things, on the size

and configuration type of the roots of the tubes. In this section, we discuss these

size counts for collections that are simple enough in the sense that an element in

the collection is either a pair, a triple or at most a quadruple of tubes, so that the

configuration type of the roots has to fall in one of the categories described in Section

16.2.

17.1 Collections of two intersecting tubes

Let us start with the case where the collection consists of pairs of tubes. To phrase

the question above in more refined terms we define a collection of root-slope tuples

E2[u, ω; ϱ], where u is a vertex of the root tree, ω is a splitting vertex of the slope tree,

and ϱ ∈ [M−J , 10A0] is a constant that represents the (horizontal) distance from the
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root hyperplane to where the intersection takes place.

E2[u, ω; ϱ] :=

{(t1, v1), (t2, v2)}
sticky-admissible

∣∣∣∣∣
t1, t2 ∈ Q(J), u = D(t1, t2), t1 ̸= t2,

v1, v2 ∈ ΩN , ω = D(v1, v2),

Pt1,v1 ∩ Pt2,v2 ∩ [ϱ, C1ϱ] × Rd ̸= ∅

 . (17.1)

In this context the question at the beginning of this section can be restated as: what is

the cardinality of E2[u, ω; ϱ]? We answer this question in Lemma 17.3 of this chapter,

splitting the necessary work between two intermediate lemmas whose content will

also be used in later counting arguments. To be specific, Lemma 17.1 obtains a

uniform bound on a t2-slice of E2[u, ω; ϱ] for fixed t1, v1 and v2. The cardinality of

the projection of E2[u, ω; ϱ] onto the t1 coordinate is obtained in Lemma 17.2.

Lemma 17.1. Let E2[u, ω; ϱ] be the collection defined in (17.1), and let ρω = sup{|a−
b| : a, b ∈ ΩN , D(a, b) = ω} be the quantity defined in (12.7).

(i) If E2[u, ω; ϱ] is nonempty, then 2C1ϱρω ≥M−J .

(ii) Given a constant C1 > 0 used to define E2[u, ω; ϱ], there exists a constant

C2 = C2(d,M,C0, A0, C1) > 0 with the following property. For any fixed choice

of t1 ∈ Q(J) and v1, v2 ∈ ΩN the following estimate holds:

#
{
t2 ∈ Q(J) : {(t1, v1), (t2, v2)} ∈ E2[u, ω; ϱ]

}
≤ C2ϱρωM

J . (17.2)

Proof. The proof is illustrated in Figure 17.1. If {(t1, v1), (t2, v2)} is a tuple that

lies in E2[u, ω; ϱ], then there exists x ∈ [ϱ, C1ϱ] × Rd such that x also belongs to

Pt1,v1 ∩ Pt2,v2 . By Lemma 7.1, an appropriate version of inequality (7.1) must hold,

i.e., there exists x1 ∈ [ϱ, C1ϱ] such that

|cen(t2) − cen(t1) + x1(v2 − v1)| ≤ 2cd
√
dM−J . (17.3)

In conjunction with Corollary 7.2, this leads to the inequality

M−J ≤ |cen(t2) − cen(t1)| ≤ |x1||v2 − v1| + 2cd
√
dM−J
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≤ 2|x1||v2 − v1| ≤ 2C1ϱρω,

which is the conclusion of part (i). The inequality (17.3) also implies that cen(t2) is

constrained to lie in a O(M−J) neighborhood of the line segment

cen(t1) − s(v2 − v1), ϱ ≤ s ≤ C1ϱ. (17.4)

The length of this segment is at most C1ϱ|v2 − v1| ≤ C1ϱρω, since v1 and v2 must

lie in distinct children on ω. In view of part (i), the number of possible choices for

M−J -separated points cen(t2), and hence for t2, lying within this neighborhood is

O(ϱρωM
J), as claimed in part (ii).

x1

Rd

cen(t1)

ϱ C1ϱ

v1

v2

possible
cen(t2)

Figure 17.1: An illustration of the proof of Lemma 17.1.

Lemma 17.2. Given C1 > 0, there exists a positive constant C2 = C2(d,M,A0, C1)

with the following property. For any E2[u, ω; ϱ] defined as in (17.1), the following
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estimate holds:

#

{
t1 ∈ Q(J)

∣∣∣∃t2 ∈ Q(J) and v1, v2 ∈ ΩN such

that {(t1, v1); (t2, v2)} ∈ E2[u, ω; ϱ]

}
≤ C2ϱρωM

−(d−1)h(u)+dJ ,

(17.5)

where ρω is as in (12.7).

Proof. The proof is illustrated in Figure 17.2. If {(t1, v1), (t2, v2)} ∈ E2[u, ω; ϱ], then

there exists x = (x1, · · · , xd+1) ∈ Pt1,v1 ∩ Pt2,v2 with ϱ ≤ x1 ≤ C1ϱ. Combining

inequality (17.3) obtained from Lemma 7.1 along with Corollary 7.2 as we did in

Lemma 17.1, we obtain

|cen(t2) − cen(t1)| ≤ |x1||v2 − v1| + 2cd
√
dM−J

≤ (1 + 4cd
√
d)|x1||v1 − v2|

≤ C1(1 + 4cd
√
d)ϱρω = Cϱρω,

(17.6)

where the last step follows from the definition of ω. This means that cen(t1) and

cen(t2) must be within distance Cϱρω of each other. On the other hand, it is known

as part of the definition of E2[u, ω; ϱ] that u = D(t1, t2), so cen(t1) and cen(t2) must

lie in distinct children of u. This forces the location of cen(t1) to be within distance

Cϱρω of the boundary of some child of u, to allow for the existence of a point cen(t2)

contained in a different child and obeying the constraint of (17.6). In other words,

cen(t1) belongs to the set

Au =
{
s ∈ u : dist(s, bdry(u′)) ≤ Cϱρω for some child u′ of u

}
, (17.7)

which is the union of at most dM parallelepipeds of dimension d, with length M−h(u)

in (d − 1) “long” directions and Cϱρω in the remaining “short” direction. Note

that ρω ≤ M−h(ω) ≤ M−h(u) by sticky-admissibility, hence ϱρω = O(M−h(u)), which

justifies this description.

Since Cϱρω ≥ M−J by Lemma 17.1(i), the constituent parallelpipeds of Au as

described above are thick relative to the finest scale M−J in all directions. The
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volume of Au is then easily computed as

|Au| ≤ CϱρωM
−(d−1)h(u).

Therefore the number of M−J separated points cen(t1), and hence the number of

possible root cubes t1, contained in Au is at most C2ϱρωM
−(d−1)h(u)+dJ , as claimed.

M−h(u)

Cϱρω

Figure 17.2: Proof of Lemma 17.2 illustrated, with d = 2 and M = 3. The outermost
square is u, and the smallest squares depict the root cubes in Au.

Lemma 17.3. Let E2[u, ω; ϱ] be the collection of pairs of tubes defined in (17.1).

Then

#(E2[u, ω; ϱ]) ≤ C
(
ϱρω
)2

22(N−ν(ω))M−(d−1)h(u)+(d+1)J .

Here ν(ω) denotes the index of the splitting vertex ω, as defined in (12.4).
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Proof. We combine the counts from Lemmas 17.1 and 17.2. For fixed t1, v1 and v2,

the number of possible t2 such that {(t1, v1), (t2, v2)} ∈ E2[u, ω; ϱ] is bounded above

by the quantity on the right hand side of (17.2). The number of possible t1 is at most

the right hand side of (17.5), whereas the number of possible v1, hence also v2, is

2N−ν(ω) due to the binary nature of ΩN as discussed in Section 12.3. The claimed size

estimate of E2[u, ω; ϱ] is simply the product of all the quantities mentioned above.

17.2 Counting slope tuples

Variations of the arguments presented in Section 17.1 also apply to more general

collections. For the proof of the lower bound (14.9), we will need to estimate, in

addition to the above, the sizes of collections consisting of tube triples and tube

quadruples with certain pairwise intersections. The collections of tube tuples whose

cardinalities are of interest are analogues of E2[u, ω; ϱ] of greater complexity, and their

constructions share the common feature that the probability of slope assignment for

any tube tuple within a collection is constant and falls into one of the categories

classified in Chapter 16. As we have seen in that chapter, the probability depends,

among other things, on certain splitting vertices of the slope tree occurring as pair-

wise youngest common ancestors. In particular, which subset of pairwise youngest

common ancestors has to be considered, whether for root or slope, is dictated by the

root configuration type. An important component of tube-counting is therefore to

estimate how many possible slope tuples can be generated from a given set of such

splitting vertices. Before moving on to the main counting arguments in this chapter

presented in Sections 17.3 and 17.4, we observe a few facts that help in counting

tuples of slopes, given some information about their ancestry.

Lemma 17.4. (i) Given any Γ ⊆ ΩN , #(Γ) ≤ 4, there exist at most three distinct

vertices {ϖi : i = 1, 2, 3} ⊆ G(ΩN) with the properties

h(ϖ1) ≤ h(ϖ2) ≤ h(ϖ3), ϖ2, ϖ3 ⊆ ϖ1, (17.8)

such that D(w,w′) ∈ {ϖi : i = 1, 2, 3} for any w ̸= w′, w,w′ ∈ Γ. Of course,
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the containment relations in (17.8) imply that λ(ϖ2), λ(ϖ3) ≤ λ(ϖ1).

(ii) Suppose now that we are given {ϖi : i = 1, 2, 3}, possibly distinct splitting

vertices of the slope tree obeying (17.8). Define

m = m[ϖ1, ϖ2, ϖ3] :=

2(ν(ϖ3) + ν(ϖ2)) if ϖ3 ̸⊆ ϖ2,

2ν(ϖ3) + ν(ϖ2) + ν(ϖ1) if ϖ3 ⊆ ϖ2.
(17.9)

Fix three distinct pairs of indices {(ik, jk) : ik ̸= jk, 1 ≤ k ≤ 3} ⊆ {1, 2, 3, 4}2

with the property that
∪
{ik, jk : k = 1, 2, 3} = {1, 2, 3, 4}. Then

#
{

(w1, w2, w3, w4) ∈ Ω4
N : D(wik , wjk) = ϖk, 1 ≤ k ≤ 3

}
≤ C24N−m.

Proof. If Γ is given, we arrange all the pairwise youngest common ancestors of Γ, i.e,

the vertices in DΓ := {D(w,w′) : w ̸= w′, w, w′ ∈ Γ}, in increasing order of height,

where distinct vertices of the same height can be arranged in any way, say according

to the lexicographic ordering. We define ϖ3 to be a vertex of maximal height in

DΓ, and ϖ2 to be a vertex of maximal height in DΓ \ {ϖ3}. Due to maximality of

height and the binary nature of the slope tree as ensured by Proposition 12.1, ϖ3

has exactly two descendants in Γ, say w1 and w2.

If ϖ3 ̸⊆ ϖ2, then there is no overlap among the descendants of these two vertices.

Thus the two descendants w3 and w4 of ϖ2 must be distinct from w1, w2, thus

accounting for all the elements of Γ. In this case the conclusion of the lemma holds

with ϖ1 = D(ϖ2, ϖ3). If ϖ3 ⊊ ϖ2, then again by maximality of height ϖ2 can

contribute exactly one member of Γ that is neither w1 nor w2. Let us call this new

member w3. If #(Γ) = 3, then the proof is completed by setting ϖ1 = D(ϖ2, ϖ3) =

ϖ2. If #(Γ) = 4, we call the remaining child w4, which is not descended from ϖ2,

and set ϖ1 = D(ϖ2, w4). This selection meets (17.8), and also accounts for all the

pairwise youngest common ancestors of Γ, as required by part (i) of the lemma.

A very similar argument can be used to prove part (ii). Since the total number of

slopes in ΩN generated by ϖ3 is exactly 2N−ν(ϖ3)+1, this is the maximum number of

possible choices for each of wi3 and wj3 . If ϖ3 ̸⊆ ϖ2, then {i2, j2}∩{i3, j3} = ∅. Since
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each of wi2 and wj2 admits at most 2N−ν(ϖ2)+1 possibilities by the same reasoning,

the size of possible four tuples (w1, w2, w3, w4) in this case is at most 2 raised to the

power 2(N−ν(ϖ3)+1)+2(N−ν(ϖ2)+1), which gives the claimed estimate. If ϖ3 ⊆
ϖ2 ⊆ ϖ1, then by our assumptions on ik, jk, there exist indices ℓ2 ∈ {i2, j2} \ {i3, j3}
and ℓ1 ∈ {i1, j1} \ {i3, j3, ℓ2}. Since i3, j3, ℓ1, ℓ2 are distinct indices and the number

of possible choices of wi3 , wj3 , wℓ1 and wℓ2 are at most 2N−ν(ϖ3), 2N−ν(ϖ3), 2N−ν(ϖ1)

and 2N−ν(ϖ2) respectively, the result follows.

Minor modifications of the argument above yield the following analogue for slope

triples. The proof is left to the reader.

Lemma 17.5. (i) Given a collection Γ ⊆ ΩN , #(Γ) ≤ 3, it is possible to rearrange

the collection of vertices {D(w,w′);w ̸= w′, w, w′ ∈ Γ} as {ϖ1, ϖ2} with

ϖ2 ⊆ ϖ1.

(ii) Given a pair {ϖ1, ϖ2} ⊆ G(ΩN) with ϖ2 ⊆ ϖ1, define

m̂ = m̂[ϖ1, ϖ2] := 2ν(ϖ2) + ν(ϖ1). (17.10)

Let (i1, j1) ̸= (i2, j2) be two pairs of indices such that {i1, j1, i2, j2} = {1, 2, 3}.
Then the following estimate holds:

#{(w1, w2, w3) : D(wi1 , wj1) = ϖ1, D(wi2 , wj2) = ϖ2} ≤ 23N−m̂.

17.3 Collections of four tubes with at least two

pairwise intersections

17.3.1 Four roots of type 1

We start with the simplest and generic situation, when the root quadruple is of type 1.

Motivated by the expression of the probability obtained in (16.24), let us first fix two

vertex triples (u, u′, z) and (ω, ω′, v) in the root tree and slope tree respectively that

satisfy the height and containment relations prescribed in Lemma 16.8. For such a
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selection and with ϱ ∈ [M−J , 10A0], we define a collection E41 = E41[u, u′, z;ω, ω′, v; ϱ]

of sticky-admissible tube quadruples of the form {(t1, v1), (t2, v2), (t
′
1, v

′
1), (t

′
2, v

′
2)},

obeying the following restrictions:
I = {(t1, t2); (t′1, t

′
2)} is of type 1, t1 ̸= t2, t

′
1 ̸= t′2, u = D(t1, t2),

u′ = D(t′1, t
′
2), z = D(u, u′), ω = D(v1, v2), ω

′ = D(v′1, v
′
2), v = D(ω, ω′),

Pt1,v1 ∩ Pt2,v2 ∩ [ϱ, C1ϱ] × Rd ̸= ∅, Pt′1,v′1 ∩ Pt′2,v′2 ∩ [ϱ, C1ϱ] × Rd ̸= ∅.


(17.11)

The result below provides a bound on the size of E41.

Lemma 17.6. There exists a constant C > 0 such that

#
(
E41
)
≤ C

(
ϱ2ρωρω′

)2
24N−2

(
ν(ω)+ν(ω′)

)
M−(d−1)

[
h(u)+h(u′)

]
+2(d+1)J .

Proof. Since the intersection and ancestry conditions imply that

E41[u, u′, z;ω, ω′, v] ⊆ E2[u, ω; ϱ] × E2[u′, ω′; ϱ],

the stated size bound for E41 is the product of the sizes of the two factors on the

right. These are obtained from Lemma 17.3 in Section 17.1, applied twice.

17.3.2 Four roots of type 2

The treatment of this case follows a similar route, though with certain important

variations. The main distinction from Section 17.3.1 is that the intersection and type

requirements place greater constraints on the selection of the roots and slopes, and

hence on the number of tube quadruples. Thus better bounds are possible, compared

to the trivial ones exploited in Lemma 17.3.

Let (u, u′, t) and (ω, ω′, ϑ) be vertex triples in the root tree and slope tree respec-

tively that meet the requirement of Corollary 16.10. In other words, the vertices

u, u′, t are linearly ordered in terms of ancestry, and obey u′ ⊊ u, while ω ∩ ϑ ̸= ∅
and ω′ ∩ ϑ ̸= ∅. Holding these fixed, define E42 = E42[u, u′, t;ω, ω′, ϑ; ϱ] to be the col-

lection of all sticky-admissible tuples of the form {(ti, vi), (t
′
i, v

′
i) : i = 1, 2} obeying
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the properties:
I = {(t1, t2); (t′1, t

′
2)} is of type 2, u′ = D(t′1, t

′
2) ⊊ u = D(t1, t2),

t = D(t2, t
′
2), ω = D(v1, v2), ω

′ = D(v′1, v
′
2), ϑ = D(v2, v

′
2),

Pt1,v1 ∩ Pt2,v2 ∩ [ϱ, C1ϱ] × Rd ̸= ∅, Pt′1,v′1 ∩ Pt′2,v′2 ∩ [ϱ, C1ϱ] × Rd ̸= ∅.

 (17.12)

The vertex triple (ω, ω′, ϑ) obeys the hypothesis of Lemma 17.4(ii), permitting the

application of this lemma in the counting argument presented in Lemma 17.8.

Lemma 17.7. If the vertex pairs (ω, ϑ) and (ω′, ϑ) both have the property that one

member of the pair is contained in the other, then there exists a rearrangement of

{ω, ω′, ϑ} as {ϖ1, ϖ2, ϖ3} that meets the requirement (17.8).

Proof. If ω ∩ ω′ = ∅, then ϑ must contain both ω and ω′. In this case, we rename

ϑ as ϖ1 and call ϖ3 the element of {ω, ω′} with greater height. If ω ∩ ω′ ̸= ∅, then

the inclusion requirements imply that there must be a ray which contains all three

vertices. Since the vertices are linearly ordered, we rename them based on height.

Lemma 17.7 above allows us to define the quantity m as in (17.9), which by a

slight abuse of notation we denote by m[ω, ω′, ϑ]. We are now in a position to state

the main result of this subsection, namely the size estimate for E42. The location of

t relative to u, u′ affects the size estimate of E42, even though we have seen that the

probability estimate in (16.26) remains unchanged with respect to this property.

Lemma 17.8. The following conclusions hold:

(i) If u′ ⊆ t ⊆ u, then E42 is non-empty only if dist(t, bdry(u∗)) ≤ Cϱρω. Here u∗

is defined to be the unique child of u containing t if t ⊊ u and is set to be equal

to u if t = u. In either case,

#
(
E42) ≤ C

(
ϱ3ρ2ω′ρω

)
min

[
ϱρω,M

−h(t)]24N−m[ω,ω′,ϑ]

×M−(d−1)
(
h(t)+h(u′)

)
+2(d+1)J .
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(ii) If t ⊊ u′ ⊊ u, then E42 is non-empty only if

dist(t, bdry(u∗)) ≤ Cϱρω and dist(t, bdry(u′∗)) ≤ Cϱρω′ ,

where u∗, u
′
∗ are the children of u, u′ respectively that contain t. In this case,

#
(
E42
)
≤ C

(
ϱ2ρωρω′

)
24N−m[ω,ω′,ϑ] min

[
ϱρω,M

−h(t)]
× min

[
ϱρω′ ,M−h(t)]M−2(d−1)h(t)+2(d+1)J .

Proof. Both statements in the lemma involve similar arguments. We only prove part

(i) in detail, and leave a brief sketch for the other part. The argument here follows

the basic structure of Lemma 17.3, since we still have the trivial containment

E42[u, u′, t;ω, ω′, ϑ; ϱ] ⊆ E2[u, ω; ϱ] × E2[u′, ω′; ϱ], (17.13)

but with a few modifications resulting from the more refined information about

the roots and slopes available from t and ϑ. For instance, combining the defining

assumptions that t2 ⊆ t and u = D(t1, t2) with the intersection inequality |cen(t2)−
cen(t1)| ≤ 2C1ϱρω derived from (17.3) in Lemma 17.1, we deduce that t has to lie

within distance 2C1ϱρω of the boundary of u∗. This is the first conclusion of part

(i). For the size bound, we reason as follows. By Lemma 17.1(ii), the number of t1

and t′1, if everything else is held fixed, is ≤ C(ϱρωM
J)(ϱρω′MJ) ≤ Cϱ2ρωρω′M2J .

Turning to slope counts, we apply Lemma 17.4(ii), the use of which has already been

justified in Lemma 17.7, to deduce that the number of possible slope quadruples

(v1, v2, v
′
1, v

′
2) is 24N−m. It remains to compute the size of the t2 and t′2 projections of

E42. In view of (17.13), a bound on the size of the t′2 projection is given by the right

hand side of (17.5) with u replaced by u′. On the other hand, t2 is restricted to lie

within t and within distance 2C1ϱρω from the boundary of t if t ⊊ u. This places a

nontrivial spatial restriction on t2 only if 2C1ϱρω < M−h(t). If t = u, the argument

leading up to (17.5) shows that t2 lies in Au defined in (17.7). In either event the

volume of the region where t2 can range is at most C min(ϱρω,M
−h(t))M−(d−1)h(t),

hence the cardinality of the t2 projection is at most MdJ times this quantity (see
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Figure 17.3). Combining all these counts yields the bound on the size of E42 given

in part (i).

u

t
u′

M−h(t)

2C1ϱρω

Figure 17.3: Illustration of the spatial restriction on t2 imposed by the conditions
u′ ⊂ t ⊂ u, t2 ⊂ t, dist(t1, t2) ≤ 2C1ϱρω < M−h(t). Here, t2 must lie within the
shaded region along the boundary of t, with t1 falling just outside this boundary in
the unshaded thatched region.

For part (ii), the size estimate of E42 is a product of a number of factors analogous

to the ones already considered, the origins of which are indicated below.

#(t1 given v1, v2, t2) ≤ CϱρωM
J ,

#(t′1 given v′1, v
′
2, t

′
2) ≤ Cϱρω′MJ ,

}
(Lemma 17.1(ii))

#(t2) ≤ C min
[
ϱρω,M

−h(t)]M−(d−1)h(t)+dJ ,

#(t′2) ≤ C min
[
ϱρω′ ,M−h(t)]M−(d−1)h(t)+dJ ,

}
(arguments similar to part (i)),

#(v1, v2, v
′
1, v

′
2) ≤ 24N−m[ω,ω′,ϑ] (from Lemma 17.4(ii)).

We omit the details.

17.3.3 Four roots of type 3

To complete the discussion of size for collections consisting of intersecting tube

quadruples, it remains to consider the case where the root configuration is of type 3.
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Motivated by the conclusions of Lemma 16.11 and Corollary 16.12, we fix two vertex

tuples (u, s1, s2) and (ω, ω′, ϑ1, ϑ2) in the root tree and the slope tree respectively,

with the properties that s1, s2 ⊆ u, h(u) ≤ h(s1) ≤ h(s2), ω∩ϑi ̸= ∅, and ω′∩ϑi ̸= ∅
for i = 1, 2. For such a selection, we define E43[u, s1, s2;ω, ω′, ϑ1, ϑ2; ϱ] to be the

collection of all sticky-admissible tuples {(ti, vi), (t
′
i, v

′
i) : i = 1, 2} that satisfy the list

of conditions below:
I = {(t1, t2); (t′1, t

′
2)} is of type 3, u = D(t1, t2) = D(t′1, t

′
2),

ω′ = D(v′1, v
′
2) ⊆ ω = D(v1, v2), si = D(ti, t

′
i), ϑi = D(vi, v

′
i), i = 1, 2,

Pt1,v1 ∩ Pt2,v2 ∩ [ϱ, C1ϱ] × Rd ̸= ∅, Pt′1,v′1 ∩ Pt′2,v′2 ∩ [ϱ, C1ϱ] × Rd ̸= ∅.

 (17.14)

Since I is of type 3, interchanging (t1, t2) and (t′1, t
′
2) leaves u unchanged. Hence we

may assume without loss of generality that ρω ≤ ρω′ . Further, Lemma 17.4(i) dictates

that for E43 to be non-empty, at most three out of the four vertices ω, ω′, ϑ1, ϑ2 can

be distinct. We leave the reader to verify that Lemma 17.7 can be applied to any

triple of these four vertices. Thus for any choice of an eligible tuple {ω, ω′, ϑ1, ϑ2},

there exists a rearrangement of its entries as {ϖ1, ϖ2, ϖ3} obeying the hypothesis

and hence the conclusion of Lemma 17.4(ii). This permits a consistent definition of

the quantity m[ω, ω′, ϑ1, ϑ2] as in (17.9), which we use in the statement of the lemma

below. (Note that #({ω, ω′, ϑ1, ϑ2}) ≤ 3.)

Lemma 17.9. If si ⊊ u, let ui denote the child of u that contains si. Set ∆ :=

min[ϱρω, ϱρω′ ].

(i) The collection E43 is nonempty only if

2∑
i=1

dist
(
si, bdry(ui)

)
≤ C∆, (17.15)

where dist(s1, bdry(u1)) is defined to be zero if u = s1.

(ii) If ∆ ≤ M−h(s1) and E43 is nonempty, then in addition to (17.15), one of the

following two conditions must hold:
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1. s2 ⊊ s1 = u, in which case s2 lies within distance C∆ of the boundary of

some child of s1 = u.

2. s2 ∩ s1 = ∅, in which case dist(s2, bdry(s1)) ≤ C∆.

In either case, s2 is constrained to lie in the union of at most 2dM slab-like

parallepipeds, each with (d− 1) “long” directions of sidelength M−h(s1) and one

“short” direction of sidelength ∆.

(iii) If ∆ ≥ M−h(s1) and E43 is nonempty, then in addition to (17.15), s2 has to

lie within a thin tube-like parallelepiped of length ϱmin(M−h(ω),M−h(ω′)) in

one “long” direction and thickness CM−h(s1) in the remaining (d− 1) “short”

directions; more precisely, both the following inequalities must hold:

|cen(s2) − cen(s1) + x1(cen(ω ∩ ϑ2) − cen(ω ∩ ϑ1))| ≤ CM−h(s1), and

(17.16)

|cen(s2) − cen(s1) + x′1(cen(ω′ ∩ ϑ2) − cen(ω′ ∩ ϑ1))| ≤ CM−h(s1) (17.17)

for some x1, x
′
1 ∈ [ϱ, C1ϱ]. Here cen(t) denotes the centre of the cube t.

(iv) In all cases, if E43 is nonempty,

#(E43) ≤ C24N−m[ω,ω′,ϑ1,ϑ2]M−2(d−1)h(s2)+2(d+1)J

×
2∏
i=1

[
min

[
ϱρω,M

−h(si)
]

min
[
ϱρω′ ,M−h(si)

]]
.

Proof. Let us fix a tuple {(ti, vi); (t′i, v
′
i) : i = 1, 2} in E43. As in previous proofs such

as Lemma 17.2 (applications of which have appeared in the counting arguments of

Lemma 17.3 and 17.8), the key elements are the inequalities

|cen(t2) − cen(t1)| ≤ Cϱρω and |cen(t′2) − cen(t′1)| ≤ Cϱρω′ . (17.18)

They are proved exactly in the same way as (17.6) follows from (17.3), resulting

from the nontrivial intersection conditions that define E43. Combined with the set

196



inclusion relations u = D(t1, t2) = D(t′1, t
′
2) and t1, t

′
1 ⊆ s1 and t2, t

′
2 ⊆ s2 that are

guaranteed by the type assumption on the roots, this yields that

dist(si, bdry(ui)) ≤ inf
[
dist(ti, bdry(ui)), dist(t′i, bdry(ui))

]
= inf

[
dist(ti, u

c
i), dist(t′i, u

c
i)
]

≤ inf
[
dist(t1, t2), dist(t′1, t

′
2)
]

≤ C min[ϱρω, ϱρω′ ] = C∆,

leading to the distance constraints in (17.15). Incidentally, the inequalities (17.18)

also prove the relation in part (ii) if s2 ∩ s1 = ∅. On the other hand, if s2 ⊆ s1, then

s1 = u and the desired inequality is simply a restatement of the one in (17.15). For

part (iii), we refer again to the intersection inequality (17.3), using it to deduce that

∣∣cen(s2) − cen(s1) + x1
(
cen(ω ∩ ϑ2) − cen(ω ∩ ϑ1)

)∣∣
≤

2∑
i=1

|cen(si) − cen(ti)| + |x1|
2∑
i=1

∣∣cen(ω ∩ ϑi) − vi
∣∣+ |cen(t2) − cen(t1) + x1(v2 − v1)|

≤
√
d

2∑
i=1

M−h(si) + C1ϱ
√
d

2∑
i=1

M−h(ϑi) + 2cd
√
dM−J ≤ CM−h(s1).

Here we have also used the height and inclusion relations associated with the root

configuration type established in Lemma 16.11; namely,

ti ⊆ si, vi ∈ ω ∩ ϑi, h(si) ≤ h(ϑi), h(s1) ≤ h(s2), i = 1, 2.

The inequality above implies that s2 has to lie within distance O(M−h(s1)) of a line

segment of length at most ϱ|cen(ω ∩ ϑ2) − cen(ω ∩ ϑ1)| ≤ ϱM−h(ω). The inequality

(17.17) is proved in an identical manner, using t′i, v
′
i, ω

′ instead of ti, vi, ω. The first

statement in part (iii) is a consequence of both these inequalities.

The bound on the size of E43 uses the same machinery as in the proof of Lemma

17.8, so we simply indicate the breakdown of the contributions from the different
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sources:

#(E43) ≤ C min
[
ϱρω,M

−h(s1)
]
MJ︸ ︷︷ ︸

#(t1) with t2, v1, v2 fixed

× C min
[
ϱρω′ ,M−h(s1)

]
MJ︸ ︷︷ ︸

#(t′1) with t′2, v
′
1, v

′
2 fixed

× 24N−m[ω,ω′,ϑ1,ϑ2]︸ ︷︷ ︸
#(v1, v2, v′1, v

′
2)

from Lemma 17.4(ii)

× C min
[
ϱρω,M

−h(s2)
]
M−(d−1)h(s2)+dJ︸ ︷︷ ︸

#(t2-projection)

× min
[
ϱρω′ ,M−h(s2)

]
M−(d−1)h(s2)+dJ︸ ︷︷ ︸

#(t′2-projection)

,

which leads to the stated estimate.

17.4 Collections of three tubes with at least two

pairwise intersections

For the sake of completeness and book-keeping, we record in this section the cardi-

nality of collections consisting of intersecting tube triples. No new ideas are involved

in the proofs, which are in fact simpler than the ones in Section 17.3. These are left

to the interested reader.

Using the notation set up in Lemmas 16.5 and 16.6, we define the collections E31 =

E31[u, u′;ω, ω′; ϱ] and E32 = E32[u, t;ω, ω′, ϑ; ϱ] in exactly the same way E4i were de-

fined. Namely, E3i consists of all sticky-admissible tuples of the form {(t1, v1), (t2, v2), (t
′
2, v

′
2)}

such that I = {t1, t2, t′2} is of type i and

Pt1,v1 ∩ Pt2,v2 ∩ [ϱ, C1ϱ] × Rd ̸= ∅, Pt1,v1 ∩ Pt′2,v′2 ∩ [ϱ, C1ϱ] × Rd ̸= ∅.

In addition, the members of E3i must satisfy

u = D(t1, t2), u′ = D(t1, t
′
2), ω = D(v1, v2), ω′ = D(v1, v

′
2),

with u = u′, t = D(t2, t
′
2) and ϑ = D(v2, v

′
2) if i = 2. We also define the quantities

m̂[ω, ω′] for E31 and m̂[ω, ω′, ϑ] for E32; both are expressed using the formula (17.10),

where {ϖ1, ϖ2} with ϖ2 ⊆ ϖ1 is a rearrangement of {ω, ω′} for E31 and of {ω, ω′, ϑ}
for E32, by virtue of Lemma 17.5. With this notation in place, the size estimates on
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E3i are as follows.

Lemma 17.10. (i) Set ∆ := min(ϱρω, ϱρω′). Then

#(E31) ≤ C∆ϱ2ρωρω′23N−m̂[ω,ω′]M−(d−1)(h(u)+h(u′))+(2d+1)J .

(ii) With the same definition of ∆ as in part (i),

#(E32) ≤ C∆ min[ϱρω,M
−h(t)] min[ϱρω′ ,M−h(t)]23N−m̂[ω,ω′,ϑ]M−2(d−1)h(t)+(2d+1)J .
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Chapter 18

Sums over root and slope vertices

A recurrent feature of the proof of (14.9), as we will soon see in Chapter 19, is the

use of certain sums over specific subsets of vertices in the root and slope trees. We

record the outcomes of these summation procedures in this section for easy reference

later.

Lemma 18.1. Fix a vertex ϖ0 ∈ G(ΩN), i.e. ϖ0 is a splitting vertex of the slope

tree. Then the following estimates hold.

(i) For any α ∈ R,

∑
ϖ∈G(ΩN )
ϖ⊆ϖ0

2−αν(ϖ) ≤


Cα2−αν(ϖ0) if α > 1,

N2−ν(ϖ0) if α = 1,

Cα2−αν(ϖ0)+N(1−α) if α < 1.

(ii) For M ≥ 2, β > 0 and α ≥ 1,∑
ϖ∈G(ΩN )
ϖ⊆ϖ0

M−βλ(ϖ)2−αν(ϖ) ≤ Cα,βM
−βλ(ϖ0)2−αν(ϖ0).

Proof. By Proposition 12.5, the number of splitting vertices descended from ϖ0 with
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the property that ν(ϖ) = ν(ϖ0) + j is 2j. Since j can be at most N , we see that

∑
ϖ∈G(ΩN )
ϖ⊆ϖ0

2−αν(ϖ) ≤
∑
j

2−α(ν(ϖ0)+j)2j ≤ 2−αν(ϖ0)

N∑
j=1

2j(1−α),

from which part (i) follows. On the other hand, if ν(ϖ) = ν(ϖ0) + j, then λ(ϖ) −
λ(ϖ0) ≥ ν(ϖ) − ν(ϖ0) = j. Thus, a similar computation shows that

∑
ϖ∈G(ΩN )
ϖ⊆ϖ0

M−βλ(ϖ)2−αν(ϖ) =
∑
j

M−β
(
λ(ϖ0)+j

)
2−α
(
ν(ϖ0)+j

)
2j

≤M−βλ(ϖ0)2−αν(ϖ0)

∞∑
j=1

M−βj2−(α−1)j.

The last sum in the displayed expression is convergent, establishing the desired con-

clusion in part (ii).

Lemma 18.2. Fix a vertex y in the root tree and a splitting vertex ϖ in the slope

tree such that h(y) ≤ h(ϖ). Given a constant β, one of the following estimates holds

for

s(β) :=
′∑
z

M−βh(z)2µ(ϖ,h(z)),

where the sum
∑′ takes place over all vertices z of the root tree such that z ⊆ y and

h(z) ≤ λ(ϖ).

(i) If β < d, then s(β) ≤ Cβ2ν(ϖ)M (d−β)λ(ϖ)−dh(y).

(ii) If β = d, then s(d) ≤ C2ν(ϖ)h(ϖ)M−dh(y).

(iii) If β > d, then s(β) ≤ Cβ2ν(ϖ)M−βh(y).

(iv) If β > d is large enough so that 2Md < Mβ, then s(β) ≤ CβM
−dh(y).

Proof. Since ϖ is a splitting vertex of the slope tree, there exists an integer j ∈ [1, N ]

such that ϖ ∈ Gj(ΩN), i.e., ν(ϖ) = j. By definition, every jth splitting vertex is
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either itself a (j − 1)th basic slope cube or is contained in one. Let ϖℓ ∈ Hℓ(ΩN) be

the ℓth slope cube that contains ϖ, so that

ϖ1 ⊋ ϖ2 ⊋ · · · ⊋ ϖj−1 ⊇ ϖ.

If z is a vertex of the root tree such that h(ϖℓ−1) ≤ h(z) < h(ϖℓ) for some ℓ ≤ j−1,

then µ(ϖ, h(z)) = ℓ − 1; on the other hand, if h(ϖj−1) ≤ h(z) ≤ λ(ϖ), then

µ(ϖ, h(z)) = j − 1. This suggests decomposing the sum defining s(β) according to

the heights of the slope cubes containing ϖ. Implementing this and recalling that

#{z : z ⊆ y, h(z) = k} = Mdk−dh(y), we obtain

s(β) =

j−1∑
ℓ=1

h(ϖℓ)−1∑
k=h(ϖℓ−1)

2ℓ−1

′∑
z:h(z)=k

M−βk +

λ(ϖ)∑
k=h(ϖj−1)

2j−1

′∑
z:h(z)=k

M−βk

≤ C
[ j∑
ℓ=1

λ(ϖ)∑
k=h(y)

2ℓ−1M−βkMdk−dh(y)
]

≤ CM−dh(y)
j∑
ℓ=1

2ℓ−1

λ(ϖ)∑
k=h(y)

M (d−β)k

≤ CM−dh(y)2j
λ(ϖ)∑
k=h(y)

M (d−β)k

≤ C2ν(ϖ)M−dh(y)


M (d−β)λ(ϖ) if β < d,

λ(ϖ) if β = d,

M−(β−d)h(y) if β > d.

Upon simplification, these are the estimates claimed in parts (i)-(iii) of the lemma.

Part (iv) follows from the observation that µ(ϖ, h(z)) ≤ h(z), hence

s(β) ≤
′∑
z

M−βh(z)2h(z) ≤
∑
k

2kM−βk+d(k−h(y))
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≤M−dh(y)
∑
k

(
2Md

Mβ

)k
≤ CβM

−dh(y).

In view of spatial constraints on the ancestors of root cubes as encountered in

Lemmas 17.8 and 17.9, occasionally the sums that we consider take place over more

restricted ranges of vertices than the one in Lemma 18.2, even though the summands

may retain the same form. The next result makes this quantitatively precise. Let

ϖ be a splitting vertex of the slope tree, and R a fixed parallelepiped in the root

hyperplane with sidelength β in (d−r) directions and γ in the remaining r directions,

where 1 ≤ r ≤ d − 1 and β ≥ γ ≥ M−J . Given constants ϵ ≥ M−λ(ϖ) and α ∈ R,

we define

s± = s±(α, ϵ,R, ϖ) :=
∑
z∈Z±

M−αh(z)2µ(ω,h(z)), (18.1)

where the index sets Z± are collections of vertices of the root tree defined as follows:

Z := {z ⊆ R : h(z) ≤ λ(ϖ), M−h(z) ≤ ϵ},

Z+ := Z ∩ {z : M−h(z) ≥ γ},

Z− := Z ∩ {z : M−h(z) ≤ γ}.

Lemma 18.3. The following estimates hold for s± defined in (18.1).

(i) If α > d− r and ϵ ≥ γ then s+ ≤ C2ν(ϖ)βd−rϵα−d+r.

(ii) If α > d, then s− ≤ C2ν(ϖ)βd−rγr min(ϵ, γ)α−d.

Proof. We have already established in the proof of Lemma 18.2 that µ(ϖ, h(z)) ≤
ν(ϖ) − 1. Further if M−k ≥ γ, then there can be at most a constant number

of possible choices of kth generation M -adic cubes z that are contained in R and

intersect with a slice of R that fixes coordinates in the (d− r) long directions. Thus

we only need to count the number of possible z in the long directions, obtaining

#{z ∈ Q(k) : z ⊆ R} ≤ Crβ
d−rM (d−r)k. (18.2)
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Taking this into account, we obtain

s+ ≤ 2ν(ϖ)
∑

k:γ≤M−k≤ϵ

M−αkβd−rM (d−r)k ≤ C2ν(ϖ)βd−rϵα−d+r,

as claimed in part (i). Part (ii) follows in an identical manner; the only difference is

that now all directions of R are thick relative to the scale of z, hence (18.2) has to

be replaced by

#{z ∈ Q(k) : z ⊆ R} ≤ Cγrβd−rMdk.
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Chapter 19

Proof of the lower bound (14.9)

We are now in a position to complete the proof of Proposition 14.2 by verifying the

probabilistic statement on the lower bound of KN(X) claimed in (14.9). The two

propositions stated below are the main results of this chapter and allow passage to

this final step.

Proposition 19.1. Fix integers N and R with N ≫ M and 10 ≤ R ≤ 1
10

logM N .

Define

P ∗
t,σ,R := Pt,σ(t) ∩ [M−R,M−R+1] × Rd,

where σ = σX is the randomized weakly sticky map described in Section 14. Then

there exists a constant C = C(M,d) > 0 such that

EX

[∑
t1 ̸=t2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣] ≤ CNM−2R. (19.1)

Proposition 19.2. Under the same hypotheses as Proposition 19.1,

EX

[(∑
t1 ̸=t2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣)2] ≤ C
(
NM−2R

)2
. (19.2)

Propositions 19.1 and 19.2 should be viewed as the direct generalizations of

Propositions 10.1 and 10.2 for arbitrary direction sets. These are proved below

in Sections 19.1 and 19.2 respectively. Of the two results, Proposition 19.2 is of
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direct interest, since it leads to (14.9), as we will see momentarily in Corollary 19.3.

Proposition 19.1, while not strictly speaking relevant to (14.9), nevertheless provides

a context for presenting the core arguments within a simpler framework.

Corollary 19.3. Proposition 19.2 implies (14.9).

Proof. The argument here is identical to Corollary 10.3, and is omitted.

19.1 Proof of Proposition 19.1

Proof. We first recast the sum on the left hand side of (19.1) in a form that brings

into focus its connections with the material in Chapters 16 and 17. By the Córdoba

estimate, inequality (1.5),

∑
t1 ̸=t2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣ ≤∑
1

CdM
−(d+1)J

|σ(t1) − σ(t2)| +M−J , (19.3)

where
∑

1 denotes the sum over all root pairs (t1, t2) such that t1 ̸= t2 and P ∗
t1,σ,R

∩
P ∗
t2,σ,R

̸= ∅. Unravelling the implications of the intersection we find that

{
(t1, t2) : t1 ̸= t2, P

∗
t1,σ,R

∩ P ∗
t2,σ,R

̸= ∅
}

⊆

(t1, t2)

∣∣∣∣∣
∃ a unique pair (v1, v2) ∈ Ω2

N such that

Pt1,v1 ∩ Pt2,v2 ∩ [M−R,M−R+1] × Rd ̸= ∅,

and σ(t1) = v1, σ(t2) = v2, t1 ̸= t2

 . (19.4)

For a given root pair (t1, t2), there may exist more than one slope pair (v1, v2) that

meets the intersection criterion in (19.4). But only one pair will also satisfy, for a

given σ, the requirement σ(t1) = v1, σ(t2) = v2, which explains the uniqueness claim

in (19.4). Using this, the expression on the right hand side of (19.3) can be expanded

as follows,

∑
t1 ̸=t2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣ ≤∑
1

CdM
−(d+1)J

|σ(t1) − σ(t2)|
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≤
∑
2

CdM
−(d+1)J

|v1 − v2|
T ((t1, v1), (t2, v2))

≤
∑
u,ω

CdM
−(d+1)J

δω

∑
3

T ((t1, v1), (t2, v2)), (19.5)

where the notation
∑

2 in the second step denotes summation over the collection in

(19.4), and T ((t1, v1), (t2, v2)) is a binary (random) counter given by

T ((t1, v1), (t2, v2)) =

1 if σ(t1) = v1 and σ(t2) = v2,

0 otherwise.
(19.6)

In the last step (19.5) of the string of inequalities above, we have rearranged the

sum in terms of the youngest common ancestors u = D(t1, t2) and ω = D(v1, v2)

in the root tree and in the slope tree respectively. The summation
∑

3 takes place

over all sticky-admissible tube pairs {(t1, v1), (t2, v2)} in the deterministic collection

E2[u, ω; ϱ] defined in (17.1), with ϱ = ϱR = M−R and C1 = M . Incidentally, the

requirement of sticky-admissibility restricts u and ω to obey the height relation

h(u) < λ(ω). The quantity δω has been defined in (12.8), and is therefore ≤ |v1−v2|.
With this preliminary simplification out of the way, we proceed to compute the

expected value of the expression in (19.5), combining the geometric facts and counting

arguments from Chapter 17 with appropriate probability estimates from Chapter 16.

Accordingly, we get

EX

[∑
t1 ̸=t2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣] ≤∑
u,ω

CdM
−(d+1)J

δω

∑
E2[u,ω;ϱ]

EX
[
T ((t1, v1), (t2, v2))

]
≤
∑
u,ω

CdM
−(d+1)J

C2ρω︸ ︷︷ ︸
Corollary 12.4

∑
E2[u,ω;ϱ]

Pr
(
σ(t1) = v1, σ(t2) = v2

)

≤ CM−(d+1)J
∑
u,ω

ρ−1
ω #(E2[u, ω; ϱ])

(
1

2

)2N−µ(ω,h(u))

︸ ︷︷ ︸
Lemma 16.3
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≤ CM−(d+1)J
∑
u,ω

ρ−1
ω (ϱρω)222(N−ν(ω))M−(d−1)h(u)+(d+1)J︸ ︷︷ ︸

Lemma 17.3

×
(

1

2

)2N−µ(ω,h(u))

≤ CM−2R
∑
u,ω

M−λ(ω)−(d−1)h(u)2µ(ω,h(u))−2ν(ω),

where the last step uses the fact that ρω ≤ C1M
−λ(ω). To establish the conclusion

claimed in (19.1), it remains to show that the last expression in the displayed steps

above is bounded by CN . This follows from a judicious use of the summation results

proved in Chapter 18; namely,∑
u,ω

M−λ(ω)−(d−1)h(u)2µ(ω,h(u))−2ν(ω) =
∑
ω∈G

M−λ(ω)2−2ν(ω)
∑
u

M−(d−1)h(u)2µ(ω,h(u))

≤ C
∑
ω∈G

M−λ(ω)2−2ν(ω)
[
2ν(ω)Mλ(ω)

]
≤ C

∑
ω∈G

2−ν(ω) ≤ CN,

where the second and last steps are consequences, respectively, of Lemma 18.2(i)

with ϖ = ω and β = d− 1 and of Lemma 18.1(i) with α = 1. In both applications,

y and ϖ0 have been chosen to be the unit cube, in the root tree and the slope tree

respectively.

19.2 Proof of Proposition 19.2

We are now ready to prove the main Proposition 19.2.

Proof. As in the proof of Proposition 19.1, an initial processing of the sum on the left

hand side of (19.2) is needed before embarking on the evaluation of the expectation.

208



Accordingly, we decompose and simplify the quantity of interest as follows,[∑
t1 ̸=t2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣]2 =
∑
t1 ̸=t2
t′1 ̸=t′2

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣× ∣∣P ∗
t′1,σ,R

∩ P ∗
t′2,σ,R

∣∣
= S2 + S3 + S4,

where for i = 2, 3, 4,

Si :=
∑
Ii

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣× ∣∣P ∗
t′1,σ,R

∩ P ∗
t′2,σ,R

∣∣, and

Ii :=

{
I = {(t1, t2); (t′1, t

′
2)}
∣∣∣ t1, t2, t′1, t′2 ∈ Q(J), t1 ̸= t2, t

′
1 ̸= t′2,

i = number of distinct elements in I

}
.

Without loss of generality, by interchanging the pairs (t1, t2) and (t′1, t
′
2) if necessary,

we may assume that h(D(t1, t2)) ≤ h(D(t′1, t
′
2)) for all quadruples I ∈ Ii. We will

continue to make this assumption for the treatment of all three terms Si.

The claimed inequality in (19.2) is a consequence of the three main estimates

below:

EX(S2) ≤ CNM−2R−dJ , (19.7)

EX(S3) ≤ CNM−3R−J , and (19.8)

EX(S4) ≤ CN2M−4R. (19.9)

We will prove (19.9) in full detail, since this clearly makes the primary contribution

among the three terms mentioned above. The other two estimates follow analogous

and in fact simpler routes using the machinery developed in Chapters 16 and 17. We

leave their verification to the reader.

The configuration type of the quadruple I = {(t1, t2); (t′1, t
′
2)} of distinct roots, as

introduced in Section 16.6, plays a decisive role in the estimation of (19.9). Recalling
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the type definitions from that section, we decompose I4 as

I4 =
3⊔
i=1

I4i where I4i :=

{
I ∈ I4

∣∣∣ I is of type i in the

sense of Definition 16.7

}
.

This results in a corresponding decomposition of S4:

S4 = S41 + S42 + S43, where S4i =
∑
I4i

∣∣P ∗
t1,σ,R

∩ P ∗
t2,σ,R

∣∣× ∣∣P ∗
t′1,σ,R

∩ P ∗
t′2,σ,R

∣∣.
We will prove in Sections 19.2.1–19.2.3 below that

EX
[
S4i

]
≤ CN2M−4R for i = 1, 2, 3. (19.10)

19.2.1 Expected value of S41

We start with S41, simplifying it initially along the same lines as in Proposition 19.1.

As before, a summand in S41 is nonzero if and only if the tuple {(t1, t2); (t′1, t
′
2)} lies

in the set {
{(t1, t2); (t′1, t

′
2)} ∈ I41

∣∣∣ P ∗
t1,σ,R

∩ P ∗
t2,σ,R

̸= ∅

P ∗
t′1,σ,R

∩ P ∗
t′2,σ,R

̸= ∅

}
, (19.11)

which in turn is contained in
{(t1, t2); (t′1, t

′
2)} ∈ I41

∣∣∣∣∣
∃ a unique tuple (v1, v2, v

′
1, v

′
2) ∈ Ω4

N ∋

Pt1,v1 ∩ Pt2,v2 ∩ [M−R,M−R+1] × Rd ̸= ∅,

Pt′1,v′1 ∩ Pt′2,v′2 ∩ [M−R,M−R+1] × Rd ̸= ∅,

σ(ti) = vi, σ(t′i) = v′i, i = 1, 2


. (19.12)
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Incorporating this information into the simplification of the sum, we obtain

S41 ≤
∑
1

CdM
−(d+1)J

|σ(t1) − σ(t2)|
× CdM

−(d+1)J

|σ(t′1) − σ(t′2)|︸ ︷︷ ︸
Lemma 1.5

≤ CM−2(d+1)J
∑
2

T ((t1, v1), (t2, v2))

|v1 − v2|
× T ((t′1, v

′
1), (t

′
2, v

′
2))

|v′1 − v′2|

≤ CM−2(d+1)J
∑
u,u′,z
ω,ω′,v

1

δωδω′

∑
3

T ((t1, v1), (t2, v2))T ((t′1, v
′
1), (t

′
2, v

′
2)), (19.13)

:= S41

where the summations
∑

1 and
∑

2 range over the root quadruples in (19.11) and

(19.12) respectively. The notation T ((t1, v1), (t2, v2)) and δω represent the same quan-

tities as they did in Proposition 19.1, with their definitions in (19.6) and (12.8)

respectively. Following the same reasoning that led to (19.4), in the last step we

have stratified the sum in terms of the root vertices u = D(t1, t2), u
′ = D(t′1, t

′
2),

z = D(u, u′) and the (splitting) slope vertices ω = D(v1, v2), ω
′ = D(v′1, v

′
2),

v = D(ω, ω′), so that the summation
∑

3 takes place over the tube tuples in the

collection E41 = E41[u, u′, z;ω, ω, v; ϱ] defined in (17.11), with ϱ = M−R, C1 = M .

We are now in a position to compute the expected value of S41.

Lemma 19.4. The estimate in (19.10) holds for i = 1.

Proof. Let us refer to the bound S41 on S41 defined by (19.13) that we obtained from

the preliminary simplification. Assembling the various components of the estimation

from the previous chapters, the expected value of S41 is estimated as follows,

EX
(
S41

)
≤ EX

(
S41

)
≤ CM−2(d+1)J

∑
u,u′,z
ω,ω′,v

1

ρωρω′︸ ︷︷ ︸
Corollary 12.4

∑
3

Pr
(
σ(ti) = vi, σ(t′i) = v′i, i = 1, 2

)
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≤ CM−2(d+1)J
∑
u,u′,z
ω,ω′,v

#
(
E41
)

ρωρω′

(
1

2

)4N−µ(ω,h(u))−µ(ω′,h(u′))−µ(v,h(z))

︸ ︷︷ ︸
(16.24) from Lemma 16.8

≤ CM−2(d+1)J
∑
u,u′,z
ω,ω′,v

(
ϱ2ρωρω′

)2
24N−2(ν(ω)+ν(ω′))M−(d−1)(h(u)+h(u′))+2(d+1)J︸ ︷︷ ︸
bound on the size of E41 from Lemma 17.6

× 1

ρωρω′
× 2−4N+µ(ω,h(u))+µ(ω′,h(u′))+µ(v,h(z))

≤ CM−4RS∗
41, where

S∗
41 :=

∑
ω,ω′,v

2−2(ν(ω)+ν(ω′))M−[λ(ω)+λ(ω′)]
∑
u,u′,z

2µ(ω,h(u))+µ(ω
′,h(u′))+µ(v,h(z))

×M−(d−1)[h(u)+h(u′)].

(19.14)

It remains to use the appropriate summation results in Chapter 18 to show that S∗
41

is bounded above by a constant multiple of N2. We start with the inner sum.∑
u,u′,z

M−(d−1)(h(u)+h(u′))2µ(ω,h(u))+µ(ω
′,h(u′))+µ(v,h(z))

≤
∑
z

2µ(v,h(z))
[∑
u⊆z

M−(d−1)h(u)2µ(ω,h(u))
]

︸ ︷︷ ︸
apply Lemma 18.2(i), β = d− 1

[∑
u′⊆z

M−(d−1)h(u′)2µ(ω
′,h(u′))

]
︸ ︷︷ ︸

apply the same lemma again

≤
∑
z

2µ(v,h(z))
[
M−dh(z)+λ(ω)2ν(ω)

][
M−dh(z)+λ(ω′)2ν(ω

′)
]

≤ CMλ(ω)+λ(ω′)2ν(ω)+ν(ω
′)
[∑

z

2µ(v,h(z))M−2dh(z)
]

︸ ︷︷ ︸
apply Lemma 18.2(iv), h(y)=0

≤ CMh(ω)+h(ω′)2ν(ω)+ν(ω
′). (19.15)

Note that Lemma 18.2(iv) applies with β = 2d since 2Md < M2d for M ≥ 2 and

d ≥ 2. Inserting the expression in (19.15) into the inner sum of (19.14), we proceed
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to complete the outer sum in S∗
41.

S∗
41 ≤ C

∑
ω,ω′,v∈G

M−λ(ω)−λ(ω′)2−2(ν(ω)+ν(ω′))
[
Mλ(ω)+λ(ω′)2ν(ω)+ν(ω

′)
]

≤ C
∑

ω,ω′,v∈G

2−ν(ω)−ν(ω′)

≤ C
∑
v∈G

[ ∑
ω∈G,ω⊆v

2−ν(ω)
]

︸ ︷︷ ︸
apply Lemma 18.1(i), α = 1

×
[ ∑
ω′∈G,ω′⊆v

2−ν(ω′)
]

︸ ︷︷ ︸
same lemma again

≤ C
∑
v∈G

[
N2−ν(v)]2 ≤ CN2

∑
v∈G

2−2ν(v) ≤ CN2,

where at the last step we have again used Lemma 18.1 (i) with α = 2, and ν(ϖ0) = 0.

This completes the proof of the lemma.

19.2.2 Expected value of S42

We turn to S42 next. After the usual preliminary simplification similar to that of

S41, we find that S42 is bounded by a sum S42 of the form (19.13), where

S42 := CM−2(d+1)J

′∑ 1

δωδω′

∑
3

T ((t1, v1), (t2, v2))T ((t′1, v
′
1), (t

′
2, v

′
2)). (19.16)

In view of Lemma 16.9 we may assume, after a permutation of (t1, t2) and of (t′1, t
′
2)

if necessary, that the outer sum
∑′ in (19.16) is over all vertex tuples (u, u′, t) and

(ω, ω′, ϑ) in the root tree and the slope tree respectively, such that u, u′, t lies on a

single ray with u′ ⊊ u, while ω, ω′, ϑ ∈ G(ΩN), ω ∩ ϑ ̸= ∅, ω′ ∩ ϑ ̸= ∅. The inner sum∑
3 in S42 ranges over the collection E42 = E42[u, u′, t;ω, ω′, ϑ; ϱ] defined in (17.12)

with the usual ϱ = M−R and C1 = M .

Lemma 19.5. The estimate in (19.10) holds for i = 2.

Proof. As in Lemma 19.4, the evaluation of the expectation requires a combination

of the appropriate probabilistic estimate from Section 16.2 (specifically Lemma 16.9),
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size estimate of E42 from Section 17.3.2 (specifically Lemma 17.8) and the summation

results from Chapter 18. Putting these together, we obtain

EX
(
S42

)
≤ EX

(
S42

)
≤ CM−2(d+1)J

′∑ 1

ρωρω′

∑
3

Pr
(
σ(ti) = vi, σ(t′i) = v′i, i = 1, 2

)
≤ CM−2(d+1)J

′∑ #
(
E42
)

ρωρω′

(
1

2

)4N−µ(ω,h(u))−µ(ω′,h(u′))−µ(ϑ,h(t))

︸ ︷︷ ︸
(16.26) from Lemma 16.9

≤ CM−4R
[
S∗

42 + S◦
42

]
,

where the closed form expressions for S∗
42 and S◦

42 at the last step are obtained from

the count on the size of E42 from Lemma 17.8, and reflect the two complementary

cases considered therein. To be precise,

S∗
42 := ϱ−1

′∑
u′⊆t⊆u

ρω′ min
[
ϱρω,M

−h(t)]M−(d−1)
(
h(t)+h(u′)

)
(19.17)

× 2µ(ω,h(u))+µ(ω
′,h(u′))+µ(ϑ,h(t))−m[ω,ω′,ϑ], and

S◦
42 := ϱ−2

′∑
t⊊u′⊊u

min
[
ϱρω,M

−h(t)]min
[
ϱρω′ ,M−h(t)]M−2(d−1)h(t) (19.18)

× 2µ(ω,h(u))+µ(ω
′,h(u′))+µ(ϑ,h(t))−m[ω,ω′,ϑ],

where the notation
∑′

P indicates the subsum of
∑′ subject to the additional re-

quirement P . These two quantities are estimated via the usual channels. Lemma

17.8 places certain restrictions on the spatial location of t, but for a large part of the

proof the full strength of these statements will not be needed. For instance, replacing

min(ϱρω,M
−h(t)) in (19.17) by ϱρω, we arrive at the following bound for S∗

42:

S∗
42 ≤

′∑
u′⊆t⊆u

ρωρω′M−(d−1)
(
h(t)+h(u′)

)
2µ(ω,h(u))+µ(ω

′,h(u′))+µ(ϑ,h(t))−m[ω,ω′,ϑ]
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≤
∑
ω,ω′,ϑ

ρωρω′2−m[ω,ω′,ϑ]S∗
42(inner), (19.19)

where the inner expression S∗
42(inner) is a sequence of three summations in root

vertices, the computation of each requiring a suitable form of Lemma 18.2. Precisely,

S∗
42(inner) :=

∑
u,u′,t
u′⊆t⊆u

M−(d−1)
(
h(t)+h(u′)

)
2µ(ω,h(u))+µ(ω

′,h(u′))+µ(ϑ,h(t))

=
∑
(t,u)
t⊆u

M−(d−1)h(t)2µ(ω,h(u))+µ(ϑ,h(t))
[∑
u′⊆t

M−(d−1)h(u′)2µ(ω
′,h(u′))

]

≤ C
∑
(t,u)
t⊆u

M−(d−1)h(t)2µ(ω,h(u))+µ(ϑ,h(t))
[
2ν(ω

′)M−dh(t)+λ(ω′)
]

︸ ︷︷ ︸
from Lemma 18.2(i), β = d− 1

≤ C2ν(ω
′)Mλ(ω′)

∑
u

2µ(ω,h(u))
∑
t:t⊆u

M−(2d−1)h(t)2µ(ϑ,h(t))

≤ C2ν(ω
′)Mλ(ω′)

∑
u

2µ(ω,h(u))
[
M−(2d−1)h(u)2ν(ϑ)

]
︸ ︷︷ ︸

from Lemma 18.2(iii), β = 2d− 1

≤ C2ν(ω
′)+ν(ϑ)Mλ(ω′)

∑
u

2µ(ω,h(u))M−(2d−1)h(u)

≤ C2ν(ω
′)+ν(ϑ)+ν(ω)Mλ(ω′), (19.20)

where the summation in u in the last step also follows from Lemma 18.2(iii), since

β = 2d−1 > d. Inserting the estimate (19.20) of S∗
42(inner) into (19.19), we proceed

to simplify the outer sum. Let us recall from Lemma 17.7 that {ω, ω′, ϑ} can be

rearranged as {ϖ1, ϖ2, ϖ3} satisfying (17.8), and that m[ω, ω′, ϑ] is defined as in

(17.9). Since the definition of m involves two possibilities, we write
∑[a] and

∑[b]

to denote the sum over vertex triples (ω, ω′, ϑ) for which ϖ3 ̸⊆ ϖ2 and ϖ3 ⊆ ϖ2

respectively. This means that

S∗
42 ≤ C

∑
ω,ω′,ϑ

ρωρω′2−m[ω,ω′,ϑ]
[
2ν(ω

′)+ν(ϑ)+ν(ω)Mλ(ω′)
]
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≤ C
[ [a]∑

+

[b]∑]
ρωρω′2−m[ω,ω′,ϑ]

[
2ν(ω

′)+ν(ϑ)+ν(ω)Mλ(ω′)
]
.

Using the bounds

ρω′Mλ(ω′) ≤ C and ρω ≤ CM−λ(ω) ≤ CM−λ(ϖ1),

the estimation is completed as follows,

[a]∑
ρωρω′2−m[ω,ω′,ϑ]

[
2ν(ω

′)+ν(ϑ)+ν(ω)Mλ(ω′)
]

≤ C
∑
ϖ1

M−λ(ϖ1)2ν(ϖ1)
[ ∑

ϖ2
ϖ2⊆ϖ1

2−ν(ϖ2)
]
×
[ ∑

ϖ3
ϖ3⊆ϖ1

2−ν(ϖ3)
]

≤ C
∑
ϖ1

M−λ(ϖ1)2ν(ϖ1)
(
N2−ν(ϖ1)

)2︸ ︷︷ ︸
Lemma 18.1 (i) twice

≤ CN2
∑
ϖ1

M−λ(ϖ1)2−ν(ϖ1)

︸ ︷︷ ︸
apply Lemma 18.1(ii)

≤ CN2.

The same bound holds for
∑[b], and is proved along similar lines:

[b]∑
ρωρω′2−m[ω,ω′,ϑ]

[
2ν(ω

′)+ν(ϑ)+ν(ω)Mλ(ω′)
]

≤ C
∑
ϖ1,ϖ2
ϖ2⊆ϖ1

M−λ(ϖ1)
∑
ϖ3

ϖ3⊆ϖ2

2−ν(ϖ3) ≤ C
∑
ϖ1,ϖ2
ϖ2⊆ϖ1

M−λ(ϖ1)
[
N2−ν(ϖ2)

]︸ ︷︷ ︸
Lemma 18.1 (i)

≤ CN
∑
ϖ1

M−λ(ϖ1)
∑

ϖ2⊆ϖ1

2−ν(ϖ2) ≤ CN
∑
ϖ1

M−λ(ϖ1)
[
N2−ν(ϖ1)

]︸ ︷︷ ︸
Lemma 18.1 (i)

≤ CN2
∑
ϖ1

M−λ(ϖ1)2−ν(ϖ1)

︸ ︷︷ ︸
apply Lemma 18.1(ii)

≤ CN2.

This completes the estimation of S∗
42.

We briefly remark on the analysis of S◦
42. For d ≥ 3, replacing the minima in
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(19.18) by the trivial bounds ϱρω and ϱρω′ results in an expression analogous to that

of S∗
42:

S◦
42 ≤

′∑
t⊊u′⊊u

ρωρω′M−2(d−1)h(t)2µ(ω,h(u))+µ(ω
′,h(u′))+µ(ϑ,h(t))−m[ω,ω′,ϑ].

This term is estimated exactly the same way as S∗
42, since Lemma 18.2(iii) applies

as before with β = 2(d − 1) > d per our choice of d. The bound obtained is a

constant multiple of N . These details are omitted to avoid repetition. We only

present the case d = 2, where Lemma 18.2 does not give the desired consequence,

and the treatment of which exhibits a slight departure from the norm so far. For

d = 2, inserting the bound min(ϱρω,M
−h(t)) ≤ ϱρω into (19.18) yields

S◦
42 ≤

′∑
t⊊u′⊊u

2µ(ω,h(u))+µ(ω
′,h(u′))+µ(ϑ,h(t))−m[ω,ω′,ϑ]

×

ρωρω′M−2h(t) if M−h(t) ≥ ϱρω′ ,

ϱ−1ρωM
−3h(t) if M−h(t) < ϱρω′ .

(19.21)

Further, Lemma 17.8(ii) prescribes that t cannot be arbitrarily placed inside u′, but

must lie within the union of at most 2M thin rectangles of dimension ϱρω′ ×M−h(u′)

each. Using this information, we sum the expression (19.21) in t as follows: if
∑

1

and
∑

2 denote the summations in t with t ⊆ u′ and E42 ̸= ∅ subject to the conditions

M−h(t) ≥ ϱρω′ and M−h(t) < ϱρω′ respectively, then

ρωρω′

∑
1

M−2h(t)2µ(ϑ,h(t)) + ϱ−1ρω
∑
2

M−3h(t)2µ(ϑ,h(t))

≤ Cρωρω′

[
2ν(ϑ)M−2h(u′)

]
+ Cϱ−1ρω

[
2ν(ϑ)M−h(u′)(ϱρω′

)
min

[
ϱρω′ ,M−h(u′)]]

≤ Cρωρω′2ν(ϑ)M−2h(u′),

where both sums have been evaluated using Lemma 18.3 with d = 2, r = 1, ϖ = ϑ,

β = ϵ = M−h(u′) and γ = ϱρω′ . In particular,
∑

1 appeals to part (i) of this lemma
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with α = 2 while
∑

2 uses part (ii) with α = 3. Incorporating this into (19.21), we

find that

S◦
42 ≤

∑
ω,ω′,ϑ

ρωρω′2ν(ϑ)−m[ω,ω′,ϑ]S◦
42(inner), where (19.22)

S◦
42(inner) :=

∑
u

2µ(ω,h(u))
∑
u′⊆u

M−2h(u′)2µ(ω
′,h(u′))

︸ ︷︷ ︸
apply Lemma 18.2(ii)

(19.23)

≤ C2ν(ϖ2)λ(ϖ2)
∑
u

M−2h(u)2µ(ω,h(u))︸ ︷︷ ︸
apply the same lemma again

(19.24)

≤ C2ν(ϖ2)+ν(ϖ1)λ(ϖ2)λ(ϖ1), (19.25)

We pause for a moment to explain these steps. In the first application of Lemma

18.2(ii) in (19.23) above we have used, in addition to h(u′) ≤ λ(ω′), the fact that

h(u′) = h(D(t′1, t
′
2)) ≤ h(t) = h(D(t2, t

′
2)) ≤ λ(D(v2, v

′
2)) = λ(ϑ),

which is a consequence of weak stickiness. Since one of ω′ and ϑ is contained in the

other, this implies that µ(ω′, h(u′)) = µ(ϑ, h(u′)). Hence Lemma 18.2(ii), applied

once with ϖ = ω′ and again with ϖ = ϑ, yields∑
u′⊆u

M−2h(u′)2µ(ω
′,h(u′)) ≤ CM−2h(u) min

[
2ν(ϑ)λ(ϑ), 2ν(ω

′)λ(ω′)
]

≤ Cλ(ϖ2)2
ν(ϖ2)M−2h(u).

The second application of Lemma 18.2(ii) in (19.24) uses a similar argument relying

on the fact that h(u) ≤ λ(ϖ1). Inserting (19.25) into (19.22), the estimation of S◦
42

can now be completed in the same way as for S∗
42:

S◦
42 ≤ C

∑
ω,ω′,ϑ

ρωρω′λ(ϖ2)λ(ϖ1)2
ν(ϑ)+ν(ϖ1)+ν(ϖ2)−m[ω,ω′,ϑ]
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≤ C
∑
ω,ω′,ϑ

M−λ(ϖ1)−λ(ϖ2)λ(ϖ1)λ(ϖ2)2
ν(ϑ)+ν(ϖ1)+ν(ϖ2)−m[ω,ω′,ϑ]

≤ C

[a]∑
M− 1

2
λ(ϖ1)− 1

2
λ(ϖ2)2−ν(ϖ3)−ν(ϖ2)+ν(ϖ1) +

[b]∑
M− 1

2
λ(ϖ1)− 1

2
λ(ϖ2)2−ν(ϖ3)

≤ CN,

where the symbols
∑[a] and

∑[b] carry the same meaning as they did in the esti-

mation of S∗
42 and the last step involves several summations all of which have used

appropriate parts of Lemma 18.1. The estimation of S42 is complete.

19.2.3 Expected value of S43

Lemma 19.6. The estimate in (19.10) holds for i = 3.

Proof. After the usual initial processing of S43 which we omit, we reduce to the

following estimate:

EX
(
S43

)
≤ CM−2(d+1)J

′∑ #(E43)
ρωρω′

(
1

2

)4N−µ(ω,h(u))−µ(ϑ,h(s1))−µ(ϑ2,h(s2))

≤ C

′∑(
ρωρω′)−1

(
ϱρω′

)2
M−2(d−1)h(s2)

2∏
i=1

[
min[ϱρω,M

−h(si)]
]

× 2−m[ω,ω′,ϑ1,ϑ2]+µ(ω,h(u))+µ(ϑ1,h(s1))+µ(ϑ2,h(s2))

≤ CM−4R
[
S∗

43 + S◦
43

]
,

where
∑′ denotes the sum over all tuples (u, s1, s2) in the root tree and (ω, ω′, ϑ1, ϑ2)

in the slope tree such that s1, s2 ⊆ u, h(u) ≤ h(s1) ≤ h(s2), ρω ≤ ρω′ and for

which E43 is nonempty. The second inequality displayed above uses the estimate

on #(E43) obtained in Lemma 17.9, with an additional simplification resulting from

min(ϱρω′ ,M−h(si)) ≤ ϱρω′ . The quantities S∗
43 and S◦

43 refer to the subsum of
∑′

under the additional constraints of M−h(s1) ≥ ϱρω and M−h(s1) < ϱρω respectively.
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Thus

S∗
43 = ϱ−1

′∑
M−h(s1)≥ϱρω

ρω′ min[ϱρω,M
−h(s2)]M−2(d−1)h(s2)

× 2−m[ω,ω′,ϑ1,ϑ2]+µ(ω,h(u))+µ(ϑ1,h(s1))+µ(ϑ2,h(s2))

=: ϱ−1
∑

ω,ω′,ϑ1,ϑ2

ρω′2−m[ω,ω′,ϑ1,ϑ2]S∗
43(inner), and (19.26)

S◦
43 = ϱ−2

′∑
M−h(s1)<ϱρω

ρω′

ρω
min[ϱρω,M

−h(s2)]M−2(d−1)h(s2)−h(s1)

× 2−m[ω,ω′,ϑ1,ϑ2]+µ(ω,h(u))+µ(ϑ1,h(s1))+µ(ϑ2,h(s2))

=: ϱ−2
∑

ω,ω′,ϑ1,ϑ2

ρω′

ρω
2−m[ω,ω′,ϑ1,ϑ2]S◦

43(inner). (19.27)

For the purpose of simplifying S∗
43(inner), we recall from Lemma 17.9(ii) that s2 ⊊ u

has sidelength no more than M−h(s1), and moreover, is constrained to lie in the union

of at most 2dM parallelepipeds with (d− 1) long directions and one short direction,

of dimensions M−h(s1) and ϱρω respectively. Denoting by
∑∗

s2
the summation over

all such cubes s2, we find that

∗∑
s2

2µ(ϑ2,h(s2))M−2(d−1)h(s2) min
[
ϱρω,M

−h(s2)
]

≤ ϱρω

∗∑
M−h(s2)≥ϱρω

M−2(d−1)h(s2)2µ(ϑ2,h(s2)) +
∗∑

M−h(s2)<ϱρω

M−(2d−1)h(s2)2µ(ϑ2,h(s2))

≤ ϱρωs+ + s−

≤ C
[
ϱρω2ν(ϑ2)M−2(d−1)h(s1) + 2ν(ϑ2)

(
ϱρω
)d
M−(d−1)h(s1)

]
≤ Cϱρω2ν(ϑ2)M−2(d−1)h(s1), (19.28)

where s± are defined as in (18.1), and estimated according to Lemma 18.3, with the

parameters being set at ϵ = β = M−h(s1), γ = ϱρω, ϖ = ϑ2 for both. The value of α

is 2(d− 1) for s+ and (2d− 1) for s−. A similar argument applies for the summation

220



in s1 with M−h(s1) ≥ ϱρω. According to Lemma 17.9(i), s1 has to lie in u and within

a distance at most C∆ from the boundary of some child of u. Hence the range of

s1 lies within the union of at most dM parallelepipeds, each of dimension M−h(u) in

(d− 1) directions and C∆ in the remaining one. Denoting by
∑∗

s1
the relevant sum,

and applying Lemma 18.3 again with α = 2(d− 1), r = 1, ϵ = β = M−h(u), γ = ϱρω,

ϖ = ϑ1,
∗∑
s1

M−2(d−1)h(s1)2µ(ϑ1,h(s1)) ≤ s+ ≤ 2ν(ϑ1)M−2(d−1)h(u). (19.29)

Inserting the estimates (19.28) and (19.29), we arrive at the following bound on

S∗
43(inner):

S∗
43(inner) =

∑
u

∗∑
s1

2µ(ω,h(u))+µ(ϑ1,h(s1))

×
[ ∗∑
s2

2µ(ϑ2,h(s2))M−2(d−1)h(s2) min
[
ϱρω,M

−h(s2)
]]

≤ C
∑
u,s1

2µ(ω,h(u))+µ(ϑ1,h(s1))
[
2ν(ϑ2)ϱρωM

−2(d−1)h(s1)
]

≤ ϱρω2ν(ϑ2)
∑
u

2µ(ω,h(u))
∗∑
s1

M−2(d−1)h(s1)2µ(ϑ1,h(s1))

≤ ϱρω2ν(ϑ2)
∑
u

2µ(ω,h(u))
[
M−2(d−1)h(u)2ν(ϑ1)

]
≤ ϱρω2ν(ϑ2)+ν(ϑ1)

∑
u

2µ(ω,h(u))M−2(d−1)h(u)

≤ ϱρω2ν(ϑ2)+ν(ϑ1)+ν(ϖ1)λ(ϖ1), (19.30)

where ϖ1 is the youngest common ancestor of ω, ω′, ϑ1, ϑ2, and hence λ(ϖ1) ≥ h(u).

The last estimate follows from Lemma 18.2, invoking part (iii) if d ≥ 3 and part(i)

if d = 2. An analogous sequence of steps, the details of which are left to the reader,

can be executed to estimate S◦
43(inner), the only distinction being that the space

restrictions are now dictated by Lemma 17.9(iii), so that the summation in s2 invokes

Lemma 18.3 with r = d−1, β = ϱmin(M−λ(ω),M−λ(ω′)), γ = M−h(s1). The outcome
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of this is that

S◦
43(inner) ≤ ϱ2ρω min(M−λ(ω),M−λ(ω′))2ν(ϑ2)+ν(ϑ1)+ν(ϖ1)λ(ϖ1). (19.31)

Substituting (19.30) into (19.26) and (19.31) into (19.27) leads to the following sim-

pler sum over slope vertices:

S∗
43 + S◦

43 ≤ C
∑

ω,ω′,ϑ1,ϑ2

M−λ(ω)−λ(ω′)2−m[ω,ω′,ϑ1,ϑ2]+ν(ϖ1)+ν(ϑ1)+ν(ϑ2).

In order to complete the summation, let us recall that the sum, ostensibly over

four parameters, in fact ranges over at most three vertices {ϖ1, ϖ2, ϖ3}, which is a

rearrangement of the quadruple {ω, ω′, ϑ1, ϑ2} satisfying (17.8). However, it is not

apriori possible to assign a unique correspondence between these two sets of vertices.

Indeed, as already indicated in the last paragraph of Chapter 16, the configuration

type of the slopes (which does not in general mimic the configuration type of the

roots) dictates which vertex or vertices of the quadruple {ω, ω′, ϑ1, ϑ2} represents ϖi

after the rearrangement. A careful analysis of the possible structures of ω, ω′, ϑ1, ϑ2,

as depicted in Figure 19.1, shows that

M−λ(ω)−λ(ω′)λ(ϖ1)2
−m[ω,ω′,ϑ1,ϑ2]+ν(ϖ1)+ν(ϑ1)+ν(ϑ2)

≤M−2λ(ϖ1)λ(ϖ1) ×

2−ν(ϖ3)−ν(ϖ2)+ν(ϖ1) if ϖ3 ̸⊆ ϖ2

2−ν(ϖ3) if ϖ3 ⊆ ϖ2.

The expression on the right hand side is of the type already considered in the esti-

mation of S∗
42 and S◦

42. In particular, it is summable in ϖ1, ϖ2, ϖ3 using repeated

applications of Lemma 18.1 and yields the desired bound of CN2.
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ϑ1 = ϑ2 = ϖ1

ω = ϖ2

ω′ = ϖ3

v1 v2 v′
1 v′

2

(1)

ω = ϑ1 = ϖ1

ω′ = ϖ2

ϑ2 = ϖ3

v1 v′
1 v′

2 v2

(3)

ω = ϑ1 = ϖ1

ϑ2 = ϖ2

ω′ = ϖ3

v1 v2 v′
1 v′

2

(2)

Figure 19.1: A partial list of 4-slope configurations for 4 roots of type 3, with
distinct {ϖ1, ϖ2, ϖ3}. Other configurations (where partial coincidences may arise)
are possible after permutation of {v1, v′1, v2, v′2} in these diagrams.
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Chapter 20

Future work

In this final chapter, we discuss some potential ideas for future work to come more or

less directly out of the work presented in the current document. Some of these ideas

have yet to be seriously considered, while others, specifically those in Section 20.2

are presently being developed in collaboration with Dimitrios Karslidis and Malabika

Pramanik. All material presented in this chapter should be considered work in

progress and not established fact.

20.1 Maximal functions over other collections of

sticky objects

We briefly mentioned at the end of Section 1.5 that the notion of stickiness is not

unique to collections of tubes. Indeed, curves and spheres are among two of the

most well studied objects that can also be grouped into sticky collections; see [8],

[29], [40], [30] for example. Besicovitch and Rado [8] proved that there exist measure

zero sets in Rd that contain a sphere of every radius (Kinney [29] proved the same

concurrently in two dimensions). Following the same argument used to deduce the

unboundedness of the Kakeya-Nikodym maximal operator, presented in Section 1.3,
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the existence of such sets means that the circular maximal function defined as

M circf(x) := sup
r∈R+

1

|C(x, r)|

∫
C(x,r)

|f(y)|dy, (20.1)

must be unbounded as an operator on Lp(Rd) for p ∈ [1,∞). Here, C(x, r) denotes

the sphere centred at x with radius r. Naturally, we then consider the restricted

circular maximal function defined as

M circ
δ f(x) := sup

r∈R+

1

|Cδ(x, r)|

∫
Cδ(x,r)

|f(y)|dy, (20.2)

where Cδ(x, r) denotes the δ-thickening of the circle C(x, r). Kolasa and Wolff derived

δ-dependent bounds on the size of the norm of an equivalent operator. Interestingly,

their bounds turn out to be optimal in dimensions d ≥ 3 [30].

Like their classical counterparts, zero measure circular Kakeya sets seem to ex-

hibit a stickiness quality in that many spheres positioned close to each other in space

must have comparable radii. This motivates the notion of circular Kakeya-type sets.

Definition 20.1. Fix a set of radii Φ ⊆ R+. If for some fixed constant A0 ≥ 1 and

any choice of integer N ≥ 1, there exist

- a number 0 < δN ≪ 1, δN ↘ 0 as N ↗ ∞, and

- a collection of spheres {S(N)
t } with radii in Φ and thickness at most δN

obeying

lim
N→∞

|E∗
N(A0)|
|EN |

= ∞, with EN :=
∪
t

S
(N)
t , E∗

N(A0) :=
∪
t

A0S
(N)
t , (20.3)

then we say that Φ admits circular Kakeya-type sets. Here, A0S
(N)
t denotes the

sphere with the same centre and thickness as S
(N)
t but A0 times the radius.

The existence of such sets for a given Φ ⊆ R+ should imply the Lp-unboundedness

of a corresponding maximal operator analogous to (20.1), where the supremum is
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now taken over all radii r ∈ Φ. While the geometry is considerably different in this

context, it is perhaps reasonable to hope that the construction of circular Kakeya-

type sets could be approached using some of the ideas developed in the work of

Bateman and Katz, as well as in this document.

Beside for spheres, it may also be worthwhile to consider if the techniques de-

veloped in this document can be applied to the construction of Kakeya-type sets

over flat slabs. Flat slabs are essentially thickened circles and can be defined as the

intersection of a hyperplane with a circular cylinder whose principal axis sits normal

to the hyperplane. We say that such a slab is oriented in the direction given by this

normal vector.

Definition 20.2. Fix a set of directions Ω ⊆ Sd. If for some fixed constant A0 ≥ 1

and any choice of integer N ≥ 1, there exist

- a number 0 < δN ≪ 1, δN ↘ 0 as N ↗ ∞, and

- a collection of δN -thickened slabs {R(N)
t } with orientations lying inside Ω and di-

ameter at least 1

obeying

lim
N→∞

|E∗
N(A0)|
|EN |

= ∞, with EN :=
∪
t

R
(N)
t , E∗

N(A0) :=
∪
t

A0R
(N)
t , (20.4)

then we say that Ω admits Kakeya-type sets over slabs. Here, A0R
(N)
t denotes the slab

with the same centre, orientation and thickness as R
(N)
t but A0 times its diameter.

Again, the existence of such sets would have implications for the Lp behaviour

of a corresponding maximal operator. How much the techniques discussed in this

document can be used to study these and other like sets is not currently known, but

the potential for further applications appears viable.
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20.2 A characterization of the Lp(Rd+1)-boundedness

of directional maximal operators over an ar-

bitrary set of directions

Ultimately, one would like to establish a necessary and sufficient condition for the

boundedness of directional maximal operators in general Euclidean space. One would

hope that this goal could be recast to completely characterize those direction sets

Ω that admit Kakeya-type sets according to Definition 1.1. We aim to combine the

result of Theorem 1.3 with others from the literature, most notably [3], [1], [39], to

obtain the following necessary and sufficient conditions for Kakeya-type sets to exist.

Conjecture 20.3. (Kroc, Pramanik) For any d ≥ 1, the following are equivalent:

(1) The direction set Ω ⊆ Sd is sublacunary in the sense of Definition 2.7.

(2) The set of directions Ω admits Kakeya-type sets in the sense of Definition 1.1.

(3) The maximal operators DΩ and MΩ defined in (1.2) and (1.3) respectively are

unbounded on Lp(Rd+1) for every p ∈ (1,∞).

To clarify, the implication (3) =⇒ (1) for d = 1 is in [1], expanding on the

work started in [37], [41], [10], [2]. For d ≥ 2, our notion of lacunarity paired with

the result of Parcet and Rogers [39] suggests a possible bridge, although substantial

details remain to be resolved to fully connect their work with ours; see below. The

proof of (1) =⇒ (2) is sketched in [3] for d = 1. Theorem 1.3 is exactly the

implication (1) =⇒ (2) for all d ≥ 1. The implication (2) =⇒ (3) is easy and is

established in the argument presented in the paragraph of (1.9) in all dimensions.

Some of the implications above are known to admit stronger variants. For in-

stance, (2) implies (3) even when p = 1, as the argument leading to (1.9) shows.

Further, it does not appear to be necessary to know that the operator DΩ is un-

bounded on all Lp(Rd+1), p ∈ (1,∞), in order to conclude that Ω is sublacunary. We

will sketch a possible path next in Section 20.2.1 toward the weaker requirement

(3’) The maximal operator DΩ is unbounded on Lp(Rd+1) for some p ∈ (1,∞),

227



which suffices to establish (1). Thus DΩ enjoys an interesting dichotomy in that it

is either bounded on all or none of the Lebesgue spaces Lp with p ∈ (1,∞).

20.2.1 Boundedness of directional maximal operators, sketch

In this subsection, we provide a sketch of the implication (3) =⇒ (1) of Theo-

rem 20.3, relying heavily on the result of Parcet and Rogers [39]. Let us recall from

(1.2) and (1.3) the relevant definitions.

Conjecture 20.4. Given positive integers N,R, a positive constant λ < 1 and any

exponent p ∈ (1,∞], there exists a positive finite constant Cp = Cp(N, λ,R) with the

following property. Any admissible lacunary direction set Ω ⊆ Rd+1 of finite order

that obeys Definition 2.7(i) with the prescribed values of N , λ and R also satisfies

||MΩ||p→p ≤ Cp and ||DΩ||p→p ≤ Cp. (20.5)

Proof. (Sketch) We first argue that the boundedness of DΩ on any Lp(Rd+1) implies

the same for MΩ. Without loss of generality, we may assume that Ω ⊆ (−ϵ, ϵ)d×{1}
for some small constant ϵ > 0. Let us define for any x ∈ Rd+1 the vectors

vj(x) = xd+1ej − xjed+1, 1 ≤ j ≤ d,

where {e1, · · · ed+1} denotes the canonical orthonormal basis in Rd+1. For ω =

(ω1, · · · , ωd, 1) ∈ Ω, the collection {v1(ω), · · · , vd(ω)} spans ω⊥. Then

MΩf(x) ≤ Cd sup
ω∈Ω

sup
0<r≤h

1

rdh

∫
|t|≤h
|s|≤r

∣∣f(x− tω −
d∑
j=1

sjvj(ω)
)∣∣ dt ds

≤ Cd sup
ω∈Ω

sup
r>0

1

rd

∫
DΩf

(
x−

d∑
j=1

sjvj(ω)
)
ds

≤ Cd sup
ω∈Ω

sup
r>0

1

rd−1

∫
DΩ1 ◦DΩf

(
x−

d∑
j=2

sjvj(ω)
)
ds2 · · · , dsd

≤ · · · ≤ CdDΩd
◦DΩd−1

◦ · · · ◦DΩ1 ◦DΩf(x),
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where Ωj = {vj(ω) : ω ∈ Ω}, 1 ≤ j ≤ d. The relation

vj(ω) · ξ
vj(ω) · η

=
ω · vj(ξ)
ω · vj(η)

for all ξ, η ∈ R

implies that if Ω is admissible lacunary of order at most N as a direction set, then

so is Ωj for every j. Thus a bound on the Lp operator norm of MΩ would follow if

the second conclusion (for directional maximal operators) in (20.5) is known to hold

for all such direction sets. We will henceforth concentrate only on DΩ, with Ω being

admissible lacunary of finite order N .

As mentioned before, the Lp-boundedness of DΩ can be seen to follow from the

main result in [39], modulo considerable connecting detail. We sketch these details

now and then indicate where more rigour is required.

The proof is by induction on the order of lacunarity N . The initializing step

N = 0 is a consequence of the one-dimensional Hardy-Littlewood maximal theorem.

To set up the induction step, we observe that

||DΩ||p→p = ||DT (Ω)||p→p for all p ∈ [1,∞]

if T (Ω) is one of the following two types:

- T (Ω) = {Aω : ω ∈ Ω} for any nonsingular linear transformation A, or

- T (Ω) = {cωω : ω ∈ Ω} for any collection on nonzero scalars {cω}.

Clearly, Ω and T (Ω) also have the same order of lacunarity as direction sets. We say

that Ω′ is a representative of Ω if there is a finite sequence of transformations T of

the types described above that maps Ω to Ω′.

Set Σ := {(j, k) : 1 ≤ j < k ≤ d + 1}. We will prove in Lemma 20.5 below that

after a decomposition into at most C(d,R) pieces, it is possible to find a represen-

tative Ω′ of the direction set Ω obeying certain desirable properties. Specifically, for

any σ = (j, k) ∈ Σ, define

πσ(Ω′) :=

{
ωk
ωj

: (ω1, · · · , ωd+1) ∈ Ω′
}
,
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which is the projection of CΩ′ ∩ {ωj = 1} onto the kth coordinate axis. Then there

exists an integer 0 ≤ Nσ ≤ N such that πσ(Ω′) ∈ Λ(Nσ;λ) \ Λ(Nσ − 1;λ). Set

Σ∗ = Σ∗(Ω′) := {σ ∈ Σ : Nσ ≥ 1}. In order to apply the main result of [39], we

require that for any σ ∈ Σ∗,

the special point of πσ(Ω′), as defined in Definition 2.1, is 0. (20.6)

For σ ∈ Σ∗, let {θσ,i : i ∈ Z} denote a monotone decreasing non-negative lacunary

sequence with lacunary constant ≤ λ that converges to 0 and ∞ as i → ∞ and

i→ −∞ respectively, and which serves as a special sequence for πσ(Ω′). Define

Ω′
σ,i :=

{
ω = (ω1, · · · , ωd+1) ∈ Ω′ : θσ,i+1 <

∣∣∣∣ωkωj
∣∣∣∣ ≤ θσ,i

}
. (20.7)

This puts us in the framework of [39], where the authors prove that

||DΩ||p→p = ||DΩ′||p→p ≤ C sup
σ∈Σ∗

sup
i≥1

||DΩ′
σ,i
||p→p.

(In fact, [39] addresses the generic and nontrivial case of Σ∗ = Σ, but the proof goes

through with trivial modifications after a reduction to lower dimensions even when

Σ∗ ⊊ Σ). Lemma 20.5 ensures that each set Ω′
σ,i is lacunary of order N − 1 as a

direction set, allowing us to carry the induction forward.

Lemma 20.5. Given integers N,R ≥ 1, and a constant 0 < λ < 1, let Ω0 be

a direction set that is admissible lacunary of finite order, obeying Definition 2.7(i)

with these values of N,R, λ. Then there exists a decomposition of Ω0 into at most

C(d,R) subsets of directions {Ω}, each of which has the following property: there

exists a representative Ω′ of Ω such that

(i) Ω′ is contained in a hyperplane at unit distance from the origin,

(ii) the condition (20.6) holds,

(iii) for any choice of σ ∈ Σ∗ and i ∈ Z, the direction set Ω′
σ,i given by (20.7) is

lacunary of order at most N − 1.
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Proof. (Sketch) We use a generic linear transformation A0 of Rd+1 to fix an ambient

coordinate system, in which we represent Ω0. By decomposing Ω0 into at most

Rd(d−1)/2pieces {Ω} if necessary, we may assume that πσ(Ω) ∈ Λ(N ;λ) for every

σ ∈ Σ. We now fix such a direction set Ω, and aim to apply on it a sequence of

transformations of the types mentioned in the proof of Theorem 20.2.1, eventually

reaching a representative that meets the specified criteria.

After a splitting into d! subsets and permuting coordinates so that Ω ⊆ {|x1| ≥
|x2| ≥ · · · ≥ |xd+1|}, we start with the representative Ω[0] = CΩ∩{x1 = 1} of Ω. If ak

denotes the special point of π(1,k)(Ω
[0]), we set Ω[1] = T (Ω[0]), where T is the linear

transformation

T (x1, · · · , xd+1) = (x1, x2 − a2x1, · · · , xd+1 − ad+1x1).

Then πσ(Ω[1]) has 0 as its special point for all σ of the form σ = (1, k). We set

Γ
[1]
g = {1} and Γ

[1]
b = {2, 3, · · · , (d + 1)}. These collections represent the subsets of

“good” and “bad” coordinates respectively at the end of the first step.

Inductively, we define representatives Ω[m] of Ω such that for each 1 ≤ m ≤ d,

the disjoint collections of good and bad indices

Γ[m]
g = {1, · · · ,m} and Γ

[m]
b = {m+ 1, · · · , d+ 1}

have the following significance:

- Ω[m] ⊆ {ω ∈ Rd+1 : ωm = 1}.

- For any σ = (j, k) ∈ Σ with j, k ∈ Γ
[m]
g , the special point of the set πσ(Ω[m]) is 0.

- For σ = (j, k) ∈ Σ with j ∈ Γ
[m]
g , k ∈ Γ

[m]
b , the set πσ(Ω[m]) has 0 as its special

point as well.

Given a representative Ω[m] with these properties, we permute coordinates so that

after a finite decomposition Ω[m] ⊆ {|ωm+1| ≥ · · · ≥ |ωd+1|}. The scaling transfor-
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mation

(ω1, · · · , ωm = 1, · · · , ωd+1) ∈ Ω[m] 7→ (ζ1, · · · , ζd+1) ∈ Θ, where ζj =
ωj
ωm+1

,

leads to the inclusion Θ ⊆ {ζm+1 = 1}. On the other hand, by the induction

hypothesis πσ(Θ) = πσ(Ω[m]) has 0 as its special point for every σ = (j, k) ∈ Σ,

1 ≤ j, k ≤ m + 1. We next apply the linear transformation Ω[m+1] = T (Θ) where

η = T (ζ) is given by

ηk =

ζk if k ≤ m+ 1,

ζk − bkζm+1 if k > m+ 1,

and bk denotes the special point of πσ(Θ) for σ = (m + 1, k) ∈ Σ. For 1 ≤ j ≤
m + 1 < k ≤ d + 1, the induction hypothesis again yields that the sets {η−1

j :

(η1, · · · , ηd+1) ∈ Ω[m+1]} and {ηk : (η1, · · · , ηd+1) ∈ Ω[m+1]} both have their special

point at zero. The definition of finite order lacunarity of Ω then implies that the

same conclusion continues to hold true for πσ(Ω[m+1]), with σ = (j, k). Thus Ω[m+1]

satisfies the requirements listed above with m replaced by (m+ 1).

Proceeding in this manner for d steps, we arrive at a representation Ω′ = Ω[d] of

Ω, for which Γ
[d]
g = {1, · · · , d}, and which therefore verifies the requirements (i) and

(ii) of the lemma. For Ω′
σ,i defined as in (20.7), we claim that πσ(Ω′

σ,i) ∈ Λ(N −1;λ).

Let us recall that Ω′
σ,i is lacunary of finite order as a direction set (being the subset

of a representative of Ω), and that πσ(Ω′
σ,i) is the projection of CΩ′

σ,i
∩ {ζj = 1} onto

the ζk-axis. Hence for a generic choice of coordinates based on the selection of A0 at

the beginning of this proof (see also the last remark on page 31), Ω′
σ,i is lacunary as

a direction set of order at most N − 1.
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20.2.2 Boundedness of directional maximal operators, a de-

tailed example

The main gap that remains to be filled in the previous subsection’s sketch is the

claim that the projections onto the coordinate axes of any hyperplane {xj = 1}
of the sets Ω′

σ,i are lacunary of order strictly less than N . Such a statement is

absolutely necessary if we hope to verify boundedness via an inductive argument.

In this subsection, we will indicate how to justify such a claim in three dimensions

when N = 2. This will already indicate where much of the additional work lies.

Suppose Ω is admissible lacunary of order 2 as a direction set in R3; denote this

by Ω ∈ ∆(2, λ;R) so that Ω is coverable by R lacunary direction sets of order 2.

Furthermore, suppose that CΩ∩{x1 = 1} has the property that ∃ a ∈ {x1 = 1} such

that if L is a line in {x1 = 1} passing through a, then πL(CΩ ∩ {x1 = 1}) =
∪R
i=1 Ui,

with Ui ∈ Λ(2, λ) and special point a for all i. Without loss of generality, we may

assume a = (1, 0, 0). We will say that such a projection obeying the above property

is a member of Λ(2, λ;R) relative to the origin.

Write CΩ ∩ {x1 = 1} = {(1, ω2, ω3) ∈ Ω}. Then using the projection notation

of the previous subsection, we see that πσ(CΩ ∩ {x1 = 1}) ∈ Λ(2, λ;R) relative to

the origin for σ = (1, 2) and σ = (1, 3). In order to apply the result of Parcet and

Rogers, we must also be able to conclude the same when σ = (3, 2). It is true that

π(3,2)(CΩ ∩ {x1 = 1}) =

{
ω2

ω3

: (1, ω2, ω3) ∈ Ω

}
∈ Λ(2, λ;R)

since Ω ∈ ∆(2, λ;R) by hypothesis, but the lacunarity of this projection is not

necessarily relative to a single point. That is, a priori, there is nothing to rule out

the possibility that the projection is only coverable by R different Euclidean sets,

lacunary of order 2, all with potentially different special points.

This requires a decomposition of the original direction set Ω. We have that

{
ω2

ω3

: (1, ω2, ω3) ∈ Ω

}
=

R∪
i=1

Vi,
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with Vi ∈ Λ(2, λ) and ci the special point of Vi. Split Ω into R pieces Ωi such that

CΩi
∩ {x1 = 1} =

{
(1, ω2, ω3) ∈ Ωi :

ω2

ω3

∈ Vi

}
.

Henceforth, we fix i (which fixes Vi and ci) and rename Ωi as Ω.

Now we apply a linear transformation T to Ω, T (Ω) := {(1, ω2 − cω3, ω3) :

(1, ω2, ω3) ∈ Ω}. By hypothesis, we have {ω2 − cω3} ∈ Λ(2, λ;R). Consequently,

πσ(T (Ω)) ∈ Λ(2, λ;R) relative to the origin for all σ ∈ {(1, 2), (1, 3), (3, 2)}.

We are now in a position to apply the result of [39]:

||MΩ||p→p = ||MT (Ω)||p→p ≲ sup
σ

sup
i≥1

||MΩ′
σ,i
||p→p, (20.8)

where Ω′
σ,i is as defined in (20.7). The symmetry of the following argument will allow

us to fix σ = (1, 2) and concentrate on the quantity supi≥1 ||MΩ′
σ,i
||p→p. We claim

the following:

∃ C = C(R) <∞ such that Ω′
(1,2),i ∈ Λ(1, λ;C) ∀ i as a Euclidean set. (20.9)

What we want of course is for the angular sectors Ω′
(1,2),i to actually be admissible

lacunary of order 1 as direction sets, but it seems that this is too much to hope for

after only a single application of the inequality in [39]. However, there is nothing

to prevent us from decomposing these sectors further and applying inequality (20.8)

again.

Fix i ≥ 1. Assuming (20.9), we note that both {ω′
2} ∈ Λ(1, λ;C) and {ω′

3} ∈
Λ(1, λ;C) where Ω′

(1,2),i = {(1, ω′
2, ω

′
3)}. By decomposing Ω′

(1,2),i into at most C2

many pieces {Ω′′
(1,2),i}, we can ensure that {ω′

2} ∈ Λ(1, λ) with special point αi, and

{ω′
3} ∈ Λ(1, λ) with special point βi. Applying another linear transformation, we

have the set

Ω′′′
(1,2),i = {(1, ω′

2 − αi, ω
′
3 − βi) : (1, ω′

2, ω
′
3) ∈ Ω′′

(1,2),i}.

This allows us to conclude that the projections have lower order lacunarity with
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special points at the origin for σ = (1, 2) and σ = (1, 3), but when σ = (3, 2) we

know only that
ω′
2 − αi
ω′
3 − βi

∈ Λ(2, λ;R).

Decompose Ω′′′
(1,2),i into at most R pieces to ensure that

ω′
2 − αi
ω′
3 − βi

has a unique special

point γi. After another linear transformation, we define the following set:

Ω̃(1,2),i := {(1, (ω′
2 − αi) − γi(ω

′
3 − βi), ω

′
3 − βi) : (1, ω′

2, ω
′
3) ∈ Ω′′

(1,2),i}. (20.10)

Now by construction, we see that πσ(Ω̃(1,2),i) ∈ Λ(2, λ;R) relative to the origin for

all σ ∈ {(1, 2), (1, 3), (3, 2)}. Thus, the result of Parcet and Rogers applies and we

once again apply inequality (20.8):

||MΩ̃(1,2),i
||p→p ≲ sup

σ
sup
j≥1

||MΩ̃σ,j
||p→p,

where we have suppressed the fixed subscripts (1, 2) and i on the right hand side and

once again Ω̃σ,j is defined as in (20.7).

Now for σ = (1, 2), the dimension of the direction set Ω̃σ,j drops, allowing us to

then induct on the dimension. Indeed, writing Ω̃(1,2),j = {(1, x2, x3)}, we see that

there can exist no more than R many distinct values of x2. Of course, there may

exist many values of x3 so that (1, x2, x3) ∈ Ω̃(1,2),j for one particular x2, but then

the dimension of the overall set drops. The same holds if σ = (1, 3).

For σ = (3, 2), we claim that since {x2}, {x3} ∈ Λ(1, λ) with special point the

origin, and

{
x2
x3

}
∈ Λ(1, λ), possibly after a finite decomposition, then Ω̃(3,2),j ∈

∆(1, λ;R). This allows us to then induct on the lacunarity order of the direction set.

Clearly, many details remain to be fleshed out, most notably in the claim of the

preceding paragraph and of (20.9). Additionally, the simplifying assumption with

which we began this example, that the projection of CΩ ∩ {x1 = 1} onto every line

passing through the origin in {x1 = 1} must be coverable by R many lacunary sets

of order 2 relative to the origin, must be relaxed. Such a simplification is rather
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immediate in the base case when N = 1, but more work is required to reduce

matters in this way for higher order lacunary sets. These details and many others

are currently being explored in collaboration with Dimitrios Karslidis and Malabika

Pramanik.
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[11] A. Córdoba. The Kakeya maximal function and spherical summation multipliers.

Amer. J. Math. 99, No. 1, 1-22 (1977).
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