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Abstract

This thesis explores new ways with which to utilize molecular spectroscopic data

in both the time and frequency domain. Operating within the Born-Oppenheimer

approximation (BOA), we show how to obtain the signs of transition-dipole ampli-

tudes from fluorescence line intensities. Using the amplitudes thus obtained we give

a method to extract highly accurate excited state potential(s) and the transition-

dipole(s) as a function of the nuclear displacements. The procedure, illustrated here

for the diatomic and triatomic molecules, is in principle applicable to any polyatomic

system. We, also, extend this approach beyond the BOA and demonstrate applica-

tions involving bound-continuum transition, and double-minimum potentials.

Furthermore, by using as input these measured energy level positions and the

transition dipole moments (TDMs), we derive a scheme that completely determines

the non-adiabatic coupling matrix between potential energy surfaces and the coor-

dinate dependence of the coupling functions. We demonstrate results in a diatomic

system with two spin-orbit coupled potentials, whereby experimentally measured in-

formation along with TDMs computed for two corresponding diabatic potentials to

the fully spin-orbit coupled set of eigenstates, are used to extract the diagonal and

off-diagonal spin-orbit coupling functions.

Using time-resolved spectra, we show that bi-chromatic coherent control (BCC)

enables the determination of the amplitudes (=magnitudes+phases) of individual

transition-dipole matrix elements (TDMs) in these non-adiabatic coupling situation.

The present use of BCC induces quantum interferences using two external laser fields

to coherently deplete the population of different pairs of excited energy eigenstates.

The BCC induced depletion is supplemented by the computation of the Fourier

integral of the time-resolved fluorescence at the beat frequencies of the two states

involved. The combination of BCC and Fourier transform enables the determination

of the complex expansion coefficients of the wave packet in a basis of vibrational

energy eigenstates, from simple spontaneous fluorescence data.
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Chapter 1

Introduction

1.1 Motivation

Molecules are an exciting platform for fundamental and applied research due to their

complex quantum mechanical structure. In addition to the degrees of freedom of an

atom, a molecule also possesses vibrational and rotational motions that can be har-

nessed [20–22]. This added complexity gives molecules interesting characteristics

and behaviors, and opens the door for widespread applications, particularly in the

new field of ultracold chemistry [23]. In this regime, molecular systems would be-

come good candidates for performing large scale quantum information processing,

and acting as quantum simulations machines. Ultracold molecules would allow for

the realization of spin-lattice models and the study of exotic few- and many-body

quantum mechanics. In addition, they could become a test bed for fundamental

physics, including parity violation, time variation of constants, and the search for

a permanent electric dipole moment of the electron [24]. Speculatively, molecules

may even allow for the development of quantum sensors, cloaking devices, and novel

lasers [25].

All of the above hoopla assumes that we have very accurate knowledge of the

structure and coherence properties of the molecules in our system. Acquiring this in-

formation, which requires observing the interactions between photons and molecules,

concerns the field of molecular spectroscopy. The laser, as a monochromatic, intense

and coherent light source, has made possible high-resolution spectroscopic (HRS)

measurements from which molecular constants and discrete energies levels can be

determined. The absorption/emission spectra tools such as observing the fluores-

cence of electromagnetic radiation from molecules, typically in their gas phase, leads

to information about the internal molecular structure (electronic distributions, nu-

clear vibrations and rotations). Combining the ability of light to be used as probe

with the richness of molecular spectroscopy data in both the frequency and time

domains, we constantly seek to improve on and develop new methods for extract-

1



1.1. Motivation

ing information from the spectroscopic data in order to better deduce the physical

or chemical properties of a molecular species. A recent quote from a 2013 review

article in Molecular Physics titled Manipulation of Molecules with Electromagnetic

Fields states: “Theoretical simulations of experiments at ultracold temperatures are

impeded by the lack of numerical methods to produce intermolecular potentials with

sufficient accuracy. It is necessary to develop approaches for inverting the scattering

problem in order to fit intermolecular potentials,...” [24].

Alkali-metal diatomics are the simplest molecules consisting of two atoms having

only one valence electron and thus serve as excellent test objects to probe differ-

ent theoretical approaches that extract spectroscopic information. Experimentally,

alkali-metal diatomics are also relatively easy to produce and can be addressed us-

ing conventional laser sources (Ar+,He-Ne,dye laser, etc.). The research of diatomic

molecule spectroscopy is very old but still active and innovative [26], since under-

standing the structure of these diatomic molecules is an essential step in the move

from atoms to larger molecules. Central to the study of diatomic molecules is the

concept of electronic potential energy surface (PES) which represents an effective

potential energy function for the nuclear degrees of freedom due to the electronic

motion. The electronic PES’s are key to our current understanding of the structure

and dynamics of molecules, especially that of collisional phenomena and chemical

reactivity. Currently, there is an additional motivation for obtaining highly accu-

rate diatomic potentials due to our emerging ability to synthesize ultracold diatomic

molecules from ultracold atoms [27–29]. This can be done by, e.g., photoassociation

[30], which provides a highly accurate ground potential close to the dissociation limit

[31–33].

So far, knowledge of PES with many degree of freedoms has relied mainly on

ab initio [34] or semiempirical [35–38] quantum chemistry computations. Despite

the simple structure of alkali-metal dimers, ab initio (fully-theoretical) calculations

are not sufficient, their results don’t match spectroscopically derived information

of the PES, electronic transition dipole moments or lifetimes, etc. This is because

the Schrödinger equation cannot be solved analytically, and approximations must

be used, leading to discrepancies between the empirical and theoretical PES for

heteronuclear dimers that can reach several hundred cm−1 while experimental er-

rors in the energy eigenvalues are only 0.1cm−1. The accuracy of computational

techniques is still limited relative to the accuracy of measurements of spectroscopic

line positions. Thus, a direct procedure for the extraction (“inversion”) of PES
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from spectroscopic data is highly desirable. Though the semiclassical method (the

Rydberg-Klein-Rees (RKR) method) exists for (one-dimensional) diatomic systems,

no direct inversion method has so far been developed for higher dimensional sys-

tems. Although many approximate schemes do exist, they only extract potentials

when the BO approximation is valid (Sec. (4.1)). Fortunately, a lot of effort has

been put towards determining the lowest (ground) singlet and triplet PES, since all

molecules typically reside in these states, and thus these states will serve as known

structure on which any new method can be based. We have developed a fully quan-

tum mechanical inversion procedure, based on both frequencies and intensities, that

is really remarkable, valuable, unique and builds a solid foundation. The PES are

extracted from experimental observations by elevating relative intensity information

to the status of primary input to the spectrum-to-potential inversion alongside en-

ergy level information need for assignment of observed spectra. Implementations are

performed on some of the best studied homonuclear (e.g. Na2) and heteronuclear

(e.g. NaK) alkali dimers. This molecular spectroscopic technique looks to fill the

void where accuracy is limited in regards to knowledge about structure and prop-

erties of many other diatomic species. The exact quantum procedure is valid for

polyatomics and may also be generalized to liquid systems in terms of mean force

potentials.

Spectroscopy in the frequency domain produces energy spectral lines which, how-

ever, yield no dynamical information. A complementary picture to HRS, is obtained

with time-resolved spectra which records total absorption/emission intensity as a

function of time. Time-resolved spectroscopy (TRS) has been used to determine

lifetimes of excited states (related to transition probabilities and line intensities)

used for the study of chemical reactions [39], radiative lifetimes and orbital mix-

ing coefficients [40]. Moreover, these measurements allow one to observe quantum

state dynamics operating on short time scales, in which vibrations (100s of fs) and

rotations (1-1000 picoseconds (ps)) occur [41]. In particular, modern experimental

studies have been made possible with the recent developments in ultrafast laser tech-

nology (e.g. 10 fs pulse in the visible) capable of exciting molecular rovibrational

wavepackets (WP) consisting of a superposition of a set of stationary eigenstates

each with a given phase. Unlike stationary wavefunctions, the molecular WP has a

well defined position and group velocity within the uncertainty principle and requires

a coherent excitation to instantiate phase relation between states (using a broadband

femtosecond pulse). The vibrational WP in diatomics represents the probability of
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the system having a given internuclear distance and typical oscillates with a period

of a few hundred fs. Thus the time-dependent spectrum is governed by the motion

of the WP and reveals information about the internal molecular dynamics.

A lot of effort has been put toward the active control of molecular quantum

dynamics, especially in regards to state-selective control schemes and for realizing

molecular quantum computations. In addition to developing realistic logic gates

and controlling long-range dipole interactions, it will be imperative to extract state

information without loss of amplitude or phase information. In the quantum infor-

mation community the issue of phase reconstruction of an unknown quantum state

is recognized as a crucial problem, and the ability to do so in spite of the non-cloning

theorem lies in the multi-replicas generation of a given quantum state as found in

a gaseous ensemble. In this work we present a scheme capable of reading out a

molecular ensembles state properties, however the approach is reliant on accurate

knowledge of the phases of the electronic transition dipole moments.

For homonuclear diatomics with no permanent dipole moment, electronic dipole

transitions between rovibrational states are induced by electric fields and their strength

are thus governed by this induced electric dipole moment. This is also true for polar

(or heteronuclear) dimers in field-free environment, because the permanent dipole

moment from the non-uniform distribution of charge does not play a role in tran-

sitions between different electronic states. Well-known to scattering theory is the

“phase problem”, where the objective is the inversion of experimental atomic colli-

sion cross sections to yield the interaction potential or repulsive behavior (see review

in Ref. [42]) by determining the phases of the complex-valued scattering amplitudes

[43, 44]. In bound-bound spectroscopy this phase problem is less severe as compared

to the scattering case because here we deal with real electronic transition dipole

matrix elements so we only need to determine their signs. Nevertheless, these signs

affect experimental observations, for example, in the short pulse excitation of a wave

packet, the fluorescence signal is composed of the beatings between many transitions,

any change in whose signs fundamentally affecting the observations. Researchers,

such as J. Tellinghuisen [45, 46], have detailed what determines the magnitudes of

the Franck-Condon factors (not overall signs), and shows where and why vibrational

overlap integrals accumulate. However, lacking a potential, Tellingheusen’s work

does not solve for the signs of the FC factors, since accumulation of overlap inte-

grals does not affect the sign of the integral itself because the wavefunction itself can

possess an undetermined global phase in coordinate space. For instance, when the
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wavefunction of some state |v′ > is unknown, it is not trivial to draw lines between

basis wavefunctions |v′′ > and the Frank-Condon factors, < v′′|v′ >. We argue that

this consistency is important in any theoretical/experimental study when both the

wavefunction and the Frank-Condon factors are used: in short pulse excitation of

a wavepacket, both the wavefunction and the Frank-Condon factors influence the

propagation of the system and thus the quantum echo phenomena.

Nowhere do these relative phases (or signs) play a greater role than in coher-

ent control, whereby one can tailor the amplitude and phase of an electric field at

specific spectral components of the optical field to manipulate the desired complex

coefficients of the eigenstates. This interference between quantum routes involving

different vibrational states are very important to understand/control the quantum

dynamics, and we harness this technique to extract relative transition dipole phase

information between select states.

A fundamental property of molecular electronic states is that they have an asso-

ciated spin angular momentum quantum number, S. Similar to most operators in

quantum mechanics, the transition probabilities are diagonal in S, when working in

the diabatic representation of the Born-Oppenheimer approximation. Thus, to first

order, electronic transition between different spin states is forbidden. For example,

a diatomic molecule residing in a singlet (S = 0) electronic state would not be able

to access a triplet (S = 1) electronic state to first order. However, we find that ex-

tensive mixing between different spin states does occur and its effects on both HRS

and TRS can be described by a spin-orbit coupling (SOC) Hamiltonian. This SOC

mixing of singlet-triplet bare states is one of the most important mechanisms for

extending radiative lifetime of a molecule in a collision free environment. Moreover,

it allows for direct access from the scattering continuum to the ground PES; this

has been utilized in approaches geared towards the generation of ultracold molecules

[23]. Understanding and describing this coupling mechanism is possible by analyz-

ing differences in the HRS (or perhaps TRS) data and gives vital information into a

molecule’s behavior.

1.2 Thesis Outline

The following (and last) section of this chapter will mention the units and numerical

methods used in the simulations throughout this work. The next chapter will then

provide a basic review of the background theory necessary for understanding the
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subsequent research. For completeness, we cover fundamental molecular structure

including the Born-Oppenheimer approximation, and an introduction to diatomic

and polyatomic molecules. Light-matter interaction from a semi-classical perspective

follows with application to molecular transitions. Next, we present laser excitation

and control schemes directed at diatomic molecules in an ensemble, before covering

molecule spectroscopy in the frequency and time domains.

In Chapter 3, we first discuss currently existing methods for determining poten-

tial energy surface from spectroscopic data. Then, we develop an inversion scheme

for obtaining the signs of transition-dipole amplitudes from fluorescence line inten-

sities. Using the amplitudes thus obtained we show how to extract highly accurate

excited state potential(s) and the transition-dipole(s) as a function of inter-nuclear

displacements. The same dipole amplitudes can also be used to extract the phase

and amplitude of unknown time-evolving wave packets, in essentially a quantum

non-demolition manner. The procedure, which is demonstrated for the A(1Σ+
u ) and

B(1Πu) states of the Na2 molecule, is shown to yield reliable results even when we

are given incomplete or uncertain data.

Next, we present an extension to the bound-continuum cases of our bound-bound

inversion scheme for extracting excited state potentials and transition-dipoles from

fluorescence data. The procedure involves the discretization of the continuous spec-

trum using box-normalization. The addition of the continuous spectrum guarantees

completeness of the basis set used in the implicit expansion of the unknown excited

state vibrational wave functions. The method, which is found to be robust with

respect to missing data or uncertainties in the line strengths, is also capable of in-

verting polyatomic fluorescence data. We demonstrate the viability of the method by

successfully generating the potential energy curve (PEC) for the C(1Πu) state of the

Na2 molecule using a fraction of the total transitions to/from the X(1Σ+
g ) ground

state, and by extracting the double-well 21Σ+
u (3s+4s) curve of Na2, assuming no

prior knowledge of its structure.

Lastly, we present two extensions of this work. First, we demonstrate a success-

ful extraction of a model two-dimenionsal (2D) PES using our inversion procedure.

This follows along the same route as in the one-dimensional (1D) case, by using the

magnitudes and positions of a set of frequency-resolved fluorescence (or absorption)

lines we extract the relative phases of the transition-dipole matrix elements. With

this information together with the (ground) PES to (from) which emission (absorp-

tion) occurs, we reconstruction a point by point two dimensional excited state PES.
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The method is applied to 2D PES with multiple minima and many missing lines, and

achieves typical (root-mean-square) RMS errors of < 0.002 cm−1 in the classically

allowed region, and < 0.02 cm−1 in the classically forbidden region.

Next we present a new (“dipole correction”) inversion scheme for the accurate ex-

traction of excited state potentials from fluorescence line positions and line strengths

which does not require the Franck Condon Approximation (FCA). The accuracy of

the potential energy surfaces (PES) thus extracted is much higher than that of the

FCA derived PES because we make use of the coordinate dependence of the electronic

transition-dipoles. Using Na2 we find the A→ X electronic transition dipole function

to accuracies better than 1 × 10−3 Debye. Then we use the A(1Σ+
u )→X(1Σ+

g ) P-

branch emission to extract the excited state potential to global errors of less than 0.1

cm−1, Moreover, we demonstrate that using emissions data from only the s = 0− 5

low-lying levels or the s = 20 − 23 states of the Na2 B(1Πu) PES, we can obtain

inversion results with global errors as small as 0.08 cm−1.

In Chapter 4, we describe methods that one can use to image molecular wave-

functions and discuss their associated drawbacks. Then, we present a reference-free

robust method for the non-destructive imaging of complex time-evolving molecular

wave functions using as input the time-resolved fluorescence signal. The method is

based on expanding the evolving wave function in a set of bound stationary states,

and determining the set of complex expansion coefficients by calculating a series of

Fourier integrals of the signal. As illustrated for the A1Σ+
u electronic state of Na2,

the method faithfully reconstructs the time-dependent complex wave function of

the nuclear motion. Moreover, using perturbation theory to connect the excitation

pulse and the material expansion coefficients, our method is used to determine the

electromagnetic field of the excitation pulse. Thus providing a simple technique for

pulse characterization which obviates the additional measurements and/or iterative

solutions that beset other techniques. The approach, which is found to be quite

robust against errors in the experimental data, can be readily generalized to the

reconstruction of polyatomic vibrational wave functions.

To address the “phase problem”, to which no direct approach exist, in Chapter 5

we develop an imaging method which uses Bi-chromatic Coherent Control (BCC) in

conjunction with time-resolved fluorescence to extract the complex amplitudes (mag-

nitudes and phases) of individual Transition Dipole matrix elements (TDM’s) as well

as the amplitude of time-evolving wave packets. The method relies on determining

the phase relation between the BCC fields, which look to deplete the population of
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different pairs of excited energy eigenstates, through the computation of a Fourier

integral of the time-resolved fluorescence at the beat frequencies of these pairs of

states. We illustrate our procedure by determining the amplitudes of the TDM’s

linking the vibrational states of the A1Σ+
u and those of the X1Σ+

u electronic states of

Na2. Furthermore, we demonstrate its broad applicability to systems in which there

exist interacting potential energy surfaces by extracting the expansion coefficients of

a wave packet in the basis of vibrational energy eigenstates in the strong spin-orbit

coupling potentials in RbCs.

In addition, we illustrate our method by determining the amplitudes of the TDMs

linking the vibrational states of the A1Σ+
u ∼ b3Π spin-orbit coupled potentials to

both the singlet X1Σ+
u and triplet a3Σ+

u electronic ground states in LiRb. The ap-

proach, which is found to be quite robust against errors in the BCC procedure and

experimental data, can be readily generalized to the imaging of wave packets of

polyatomic molecules.

Lastly, Chapter 6 develops the first direct extraction of non-adiabatic couplings

from HRS data. We show that it is possible to extract spin-orbit and non-adiabatic

(non Born Oppenheimer) coupling terms, as well as potential curves and transition

dipole moments from fluorescence line positions and line strengths. We demonstrate

the viability of our method by extracting the spin orbit couplings of the weakly cou-

pled D(3)1Π and d(3)3Π electronic states of NaK, and the strongly coupled A1Σ+

and b3Π electronic states of RbCs. The method can be applied to the extraction of

non-adiabatic couplings in multi-dimensional systems and for more than two inter-

acting electronic states.

To end we provide a final conclusion summarizing the key results of this thesis,

and their applicability. The bibliography can be found thereafter.

1.3 Units and Numerical Simulations

Throughout the theoretical work of this thesis we will be using atomic units, namely,

a0 = me = e = ~ =
1

4πǫ0
= 1 (1.1)

where a0 is the Bohr radius, me and e is the mass and elementary charge of the

electron respectively. ~ represents Dirac’s constant and Coulomb’s constant includes

the permittivity of free space ǫ0. The energy in these units is given by Hartrees
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(labelled as H or a.u.) and the speed of light c ≈ 137.

Atomic units were used in all numerical calculations, however, for presentation

purposes the final units were occasionally converted to a more recognized form.

Spectroscopist typically use units of wavenumber (cm−1) and Angstroms (Å) for

energies and distances, with conversions as follows:

1 H ≈ 21947 cm−1 1 Bohr ≈ 0.5292 Å . (1.2)

Time is always converted back to the SI units of seconds.

The simulations themselves were generally done using very well known diatomic

molecules. One of the most explored molecules and theoretically simplest after H2,

due to small number of valence electrons, may be Na2 (after Li2). References will

show that Na2 has thoroughly explored low-lying single and double well electronic

states, including spectroscopically measured adiabatic curves and ab initio diabatic

potentials and non-adiabatic (spin-orbit) couplings functions. For each method, the

“experimental” data has been simulated from the given electronic structure. It will be

shown how this information can be easily attained from laser fluorescence via high-

resolution Fourier transform spectroscopy or time-resolved upconversion techniques.

It will be assumed that the frequency-resolved spectra can be correctly assigned to

eigenenergies of electronic PES (e.g. via combination differences or LoomisWood

diagrams).

Numerical solution to the time independent Schrödinger were found using a ba-

sic finite difference approach. Typical higher order methods for solving ordinary

differential equations, such as 4th-order Runge-Kunta or Numerov’s method, were

found to be unnecessary. Using a finite difference grid by discretizing space into

N distinct points, Ri, for i = {1, N}, allows for simply evaluation of functions and

their derivatives. For example using a one-dimensional (1D) Taylor expansion of the

second derivative operator about a point Ri, we get

d2

dR2
ψ(R) ≈ ψ(Ri + h)− 2ψ(Ri) + ψ(Ri − h)

h2
(1.3)

where h = Ri+1 − Ri represents the distance between adjacent points. A 1D treat-

ment of Schrödinger equation can now solved as

ψ(Ri + h)− 2[1 + h2V (Ri)]ψ(Ri) + ψ(Ri − h) = Eψ(Ri) (1.4)
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for eigenvalues E with eigenstates ψ(R) at each point Ri. The N above equations

can be succinctly expressed as a tridiagonal matrix containing the kinetic and po-

tential energy terms, with column vectors ψ(R) solving the equality for some given

energy E. Using common matrix diagonalization routines, either from LAPACK in

FORTRAN or eigen3 in C++, a set of N eigensolutions can be found matching the

grid dimensions.

An alternative approach used to solve Eq. (1.4) for large grid sizes, when the

diagonalization becomes cumbersome, is known as the shooting method. We treat

the Schrödinger equation as a two-points boundary value problem where ψ(R)→ 0

at the ends of the range (for bound states) and re-express Eq. (1.4) as

ψ(Ri + h) = 2[1 + h2(V (Ri) + E)]ψ(Ri) + ψ(Ri − h) . (1.5)

Using two initial values ψ(R0) = 0 and ψ(R1) = 1 and starting at the minimum

possible energy, E = 0 or E = −De, where De is the dissociation limit of a PES,

we can propagate the solution to ψ(Ri) along the range until reaching the end.

Our objective is to increment E until we find ψ(RN ) ≈ 0, which yields a solution

satisfying the two boundary conditions. This convergent solution gives the eigenvalue

E and corresponding eigenvectors one at a time without large computational expense.

10



Chapter 2

Background Theory

Here we provide an introduction to molecular structure based on the time-independent

Schrödinger equation (TISE). We wish to understand the basic principles govern-

ing molecules, especially diatomics, and the origin of their spectroscopic properties.

This theoretical background of their energy structure will be necessary for the under-

standing of molecular excitations, wavepackets, and light-matter interactions. For a

more detailed review of the physics of diatomic molecules please see Refs. [47, 48].

A directly computational approach to the TISE for molecular system will be

found to be unfeasible, and several approximations will be discussed. Most impor-

tantly, is the assumptions that the electrons adiabatically follow motion of nuclei

and the nuclei rotate and vibrate within effective field of electrons. This allows for a

definition of the potential energy surface, however, breakdowns of this approximation

will become important, particularly when considering non-adiabatic couplings.

2.1 Molecular Structure

In order to describe a molecular system we look towards solving the TISE

H(q,R)Ψ(q,R) = EΨ(q,R) (2.1)

where H(q,R) is the quantum mechanical Hamiltonian for the molecule, E and

Ψ(q,R) are the eigenvalues and corresponding eigenstates with q and R represent-

ing the collective electronic and nuclear coordinates, respectively. The molecular

Hamiltonian H(q,R) can be written as a sum of its electronic and nuclear parts

H(q,R) = He(q,R) + HN (R) , (2.2)

with

He(q,R) = Te(q) + Vee(q) + VeN (q,R) (2.3)

11



2.1. Molecular Structure

and

HN (R) = TN (R) + VNN (R) , (2.4)

where Te(R) and TN (R) are the kinetic energy operators for the electronic and

nuclei respectively. The V terms are the electrostatic potential energies representing:

the sum of all electron-electron repulsions

Vee(q) =
1

2

∑

i 6=j

1

|qi − qj |
,

the sum of all nuclear-nuclear interactions

VNN (R) =
1

2

∑

α 6=β

ZαZβ

|Rα −Rβ |
,

and the sum of all electron-nuclei attractions

VeN (R) = −
∑

α 6=i

Zα

|Rα − qi|
.

The coordinate vectors Rα designates the position of a nucleus α and qi are the elec-

tronic coordinate of the ith electron. The strength of these Coulombic interactions

are quantified by the nuclear charges Zα of the α nucleus and the elementary charge

of the electrons (e = 1).

2.1.1 Born-Oppenheimer Approximation

Even for small molecules, treated non-relativistically, it is not possible to obtain an

exact solution to the Schrödinger equation in Eq. (2.1). The complexity of the Hamil-

tonian even prevents one from performing direct numerical (ab initio) molecular

structure calculation. As a result, progress must be made through approximations,

the most fundamental of which, known as the Born-Oppenheimer approximation

(BOA), enables one to separate the nuclear from the electronic coordinates. Based

on the large mass difference between the electrons (m = 1) and nuclei (µ ' 1836),

it is assumed that the electronic motion occurs on a much faster timescale than the

nuclear motion, therefore the electronic configuration quickly adjusts itself to any

nuclear motion. By assuming that this adjustment occurs instantaneously we may

12



2.1. Molecular Structure

write the total wavefunction as

Ψ(q,R) = Ψe(q;R) · ψN (R) (2.5)

where Ψe(q;R) are the electronic eigenstates of the electronic Hamiltonian in Eq.

(2.3)

He(q;R)Ψe(q;R) = Ee(R)Ψe(q;R) , (2.6)

and ψN (R) are the nuclear wavefunctions for the corresponding Hamiltonian in Eq.

(2.4)

HN (R)ψN (R) = ENψN (R) . (2.7)

Notice in Eq. (2.6) that under the BOA it was assumed that Te ≫ TN (by a factor of

m/µ), thus the effect of the nuclear kinetic energy operator TN (R) on the electronic

wavefunctions Ψe(q;R) has been ignored. Corrections to this approximation will be

addressed in Sec. (2.1.2).

By omitting the couplings between the nuclear and electronic parts, the full

Schrödinger equation can be written in terms of the nuclear wavefunctions

(TN (R) + VNN (R) +Ee(R))ψN (R) = EψN (R) , (2.8)

where the electronic wavefunctions, Ψe(q;R), normalized to unity (〈Ψe |Ψe 〉 = 1),

have dropped out upon integration over q. The sum of the electronic energy and

Coulomb potential terms of the nuclei in Eq. (2.8),

V (R) = VNN (R) +Ee(R) , (2.9)

represent the effective (or averaged) potential on which the the nuclei move, and are

referred to as (electronic) potential curves (or surfaces). In other words, it represents

the potential energy governing the dynamical equations of nuclear motion. These

potential energy surfaces (PESs) of a molecule, V (R), do not represent any physical

observable, but are merely convenient mathematical constructions derived from a

specific set of assumptions, namely the separation of variables (Eq. (2.5)) and that

〈Ψe |TN |Ψe 〉 ∼ TN 〈Ψe |Ψe 〉. When the eigenvalues of the full Hamiltonian, Eq.

(2.1), which are now a sum of the nuclear-coordinate dependent electronic eigenvalue,

13



2.1. Molecular Structure

Ee(R), and the nuclear energy EN

E = Ee + EN (2.10)

do not exactly match observed energy levels, it points to a failure in one of these ap-

proximations (see discussion in Sec. (2.1.2)). By treating molecules in this way, the

electronic Schrödinger equation, Eq. (2.6), can be solved for various electronic con-

figuration at different values of the inter-nuclear separation R. Then each electronic

eigenenergy defines a different Born-Oppenheimer potential energy surface (PES)

which defines the allowable vibrational and rotational motions and energy states of

the nuclei.

2.1.2 Diatomic Molecules

We now continue the discussion with an emphasis on diatomic molecules, though

many of the following concepts extend to polyatomic systems (see Sec. (2.1.3)).

A diatomic can easily be cast into a central-potential problem, where the frame

of reference of the nuclear Schrödinger equation of Eq. (2.8) is moved into the

center-of-mass (CM) coordinates and the variables are separated into radial and

angular spherical components. Namely, the nuclear wavefunction is expressed as

ψN (R) = R−1ψν,l(R)Yl,m(θ, φ) where ψν,l represents the radial wavefunction and

Yl,m are the spherical harmonic functions. By omitting the CM motion, the problem

reduces to the familiar radial Schrödinger equation (with ~ = 1), whose eigenstates

represent the possible vibrational and rotation (i.e. rovibrational) states available to

the molecule under the influence of the central potential,

(

− 1

2µ

d2

dR2
+ V (R) +

l(l + 1)

2µR2

)

ψν,l(R) = Eν,lψν,l(R) , (2.11)

where µ is the reduced mass, ν and l label the vibrational and rotation quantum

numbers respectively, and R is a scalar parameter representing the separation be-

tween the atoms. One should see that the form of the above equation is identical to

that for a single particle in a one dimensional (1D) effective potential given by

V eff
l (R) = V (R) +

l(l + 1)

2µR2
(2.12)
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2.1. Molecular Structure

where the second (centrifugal) term gives the energy associated with the rotational

motion, and V (R) represents the radial dependent potential curve (or PES). As

expected, when values of l, the quantized amount of spatial angular momentum, get

larger, the atoms experience a stronger repulsive force that stretches the bond, thus

also affecting the vibrational modes of the molecule. This behavior is a manifestation

of rotational-vibrational coupling. For an extensive description of diatomic molecules

please refer to Ref. [47].

Electronic States

The electronic eigenstates or PESs in the Born-Oppenheimer approximation can

either be obtained from direct ab initio calculations of the electronic Schrödinger

equation (Eq. (2.6)), or from inversion techniques based on the analysis of exper-

imental data (Sec. (3.1)). The classification of these molecular electronic states is

done according to the quantum numbers of the angular momenta operators that

commute with the electronic Hamiltonian (He(q,R)). In diatomic molecules there

exist angular momenta associated with the electron orbital motion (L), the electron

spin (S), the nuclear rotation (R), and the nuclear spin (I). Ignoring the small nu-

clear spin component, the total angular momentum is written as J = L+S+R, and

the total exclusive of spin as N = J − S. However, not all these angular momenta

are conserved and they may interact together in various combinations. In particular,

there are five idealized coupling cases which may occur between these angular mo-

menta [1, 49], and the choice of which coupling pair (i.e. {L,S}) dominates defines

a given basis set of H(q,R) (Eq. (2.2)).

The preferred basis throughout this thesis will be that of Hund’s case (a) (see

Fig.2.1) in which the strongest coupling occurs between the two angular momenta

L and S and the inter-nuclear axis (A), namely the energies associated with the

{L,A} and {S,A} interactions are much larger than the other pairs. This is the

most common choice in most diatomic molecules and allows for the definition of

two new “good” quantum numbers (i.e. operators that commute with He(q,R)).

We define the L and S projections onto the inter-nuclear axis, A, by Λ and Σ

respectively. In addition, this defines another conserved quantity known as the total

molecular angular momentum given by Ω = Λ + Σ. The set of good quantum

numbers {J, S,Λ,Σ,Ω} now define a molecular basis set, and can be used to label
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2.1. Molecular Structure

electronic eigenstates as follows:

(n)2S+1Λ±
Ω,g/u, (2.13)

where S = {0, 12 , 1, ...} is the electronic spin quantum number and we describe the

corresponding molecular state as either a singlet, doublet, triplet,... respectively. The

electronic label n denotes the eigenstate of He(q,R) similar to the atomic principle

quantum number. These are typically labelled, in terms of increasing energy, n =

X,A,B,C, ... (for experimentalist) or n = 0, 1, 2, 3, ... (for theorist), while excited

states of different spin multiplicity to that of the ground electronic state use lower

cases letters n = a, b, c, .... The states corresponding to the value of the projection of

Figure 2.1: Hund’s case (a) angular momentum and good quantum numbers.[1].

the orbital angular momentum on the molecular axis Λ = 0,±1,±2, ... are designated

as Σ, Π, ∆,... respectively. The double degeneracy of these states (whenever Λ 6=
0) may be lifted through the interaction of R and L (Λ-doubling), however this

only becomes important for high rotational speeds (large J values), and will not

be encountered in this thesis. The ± and g/u in Eq. (2.13) specifies symmetries
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2.1. Molecular Structure

of the electronic wavefunction. For Λ = 0 (i.e. Σ states), the + (even) or −
(odd) represent the symmetry with respect to a reflection in the plane containing

the inter-nuclear axis. Then for homonuclear diatomics, there exist a symmetry

of the wavefunction about the inversion center which can either be gerade (g,even)

or ungerade (u,odd). These symmetries will become important when considering

transitions between different electronic states (in Sec. (2.2.2)).

Another important basis set which will be encountered arises from Hund’s case

(c). In this situation the spin-orbit interaction, {L,S}, is stronger than their indi-

vidual interactions with the internuclear axis (A). The projections, Λ and Σ, can

not longer be defined, and it is the projection of the Jα = L+ S vector onto A that

defines Ω. Just as in case (a), the doubly degenerate Ω 6= 0 states are split with

the inclusion of rotation (Ω-doubling), though these effects won’t be considered here.

Most notable, is that these electronic states now exhibit avoided-crossings, a fact

which will be returned to in Sec. (2.1.2).

Lastly, it should be mentioned that because the couplings associated with the nu-

clear spin angular momentum (I), which give rise to hyperfine structure in molecules,

are much smaller than all other couplings, they will be ignored throughout this work.

See Ref. [1] for more details and a descriptions of the Hund’s cases.

Vibrational and Rotational Energies

Each distinct electronic eigenenergy, (n)2S+1Λ±
Ω,g/u, defines a PES in the nuclear

coordinates for a molecule’s vibrations and rotations. In order to study these vibra-

tional and rotational states we begin with two further approximations. Assuming

that there exist a minimum to the electronic PES (V(Re)), instead of an unstable

electronic state in which the two atoms repel each other for all values of R, then one

can Taylor expand about this equilibrium distance (Re) to second order giving

V (R) ≈ V (Re) +
ke
2
(R−Re)

2 . (2.14)

This is known as the harmonic approximation where ke is the force constant of the

molecular bond which relates to the oscillation frequency through ωe = (ke/µ)
1/2.

Then using the centrifugal potential term (Eq. (2.12)) the rotational frequency

of the molecule can also be estimated as ωr ≈ 1/(µR2). Therefore, we find that for

a typical molecule the ratio between these frequencies is ωe/ωr ∼ O(102− 103), so it

can be assumed that a molecule generally rotates at the midpoint of its vibrational
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2.1. Molecular Structure

oscillation, namely at the internuclear distance Re. This allows us to apply the

rigid rotor approximation, replacing R with Re in the centrifugal potential. Now by

solving the radial Schrödinger equation (Eq. (2.11)) with these simplified potentials

we find the rovibrational energies

Eν,l = V (Re) +Bel(l + 1) + ωe(ν + 1/2) , (2.15)

where Be ≡ 1/(2µR2
e) is known as the rotational constant, l = {0, 1, 2, ...} is the

rotation quantum number, and ν = {0, 1, 2, ...} is the vibrational quantum number.

Higher order corrections in both the vibrational and rotational potentials can be

used to improve the above result, namely,

Eν,l = V (Re) +G(ν) +Bν l(l + 1)−Dν [l(l + 1)]2 +Hν [l(l + 1)]3 − ...(2.16)

where G(ν) = ωe(ν + 1/2)− ωexe(ν + 1/2)2 + ωeye(ν + 1/2)3 + ... (2.17)

The unfamiliar coefficients in Eν,l are the so-called band constants which account for

centrifugal distortions in the rotational motion. The additional coefficients in G(ν),

called the vibrational constants, provide anharmonic corrections to the quadratic

approximation. Together these series of constants which can be obtained from ex-

perimental measurements are known as the spectroscopic constants. In Sec. (3.1)

this model will be further discussed in the context of determining electronic potential

energy surfaces.

Another common approach to account for the anharmonicity of a molecular PESs

is through modeling the electronic potential using a Morse function

V (R) = De

(

e−2β(R−Re) − 2e−β(R−R2)
)

+De (2.18)

where the (Morse) parameters β =
√
2µωeχe and De = ωe/(4ωeχe) control the width

and depth of the well, respectively. In Fig. (2.2) ([2]), a typical Morse potential

(dashed-curve) is shown together with a realistic PES of Be2. As expected, the curves

agree very well about the equilibrium position (minimum of the potential) and along

the repulsive wall but diverge at longer range. Alternatives to the Morse functions for

describing PESs will be discussed in Secs. (2.4,3.1). However, this form captures the

effect of the anharmonicity of the PES, whereby rovibrational levels get increasingly

closer together as the vibrational quantum number ν increases. Eventually, when

the potential energy function reaches zero (at the dissociation energy), the molecule

18



2.1. Molecular Structure

Figure 2.2: Ground electronic state potential energy curve of the beryllium dimer.
The vibrational wave functions for ν = 0, 3 are also shown for reference. The dashed
curve is a Morse potential constructed to reproduce the experimental dissociation
energy and harmonic vibrational constant [2].
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2.1. Molecular Structure

is no longer bound and the difference in energy between successive quantum states

vanishes forming an energy continuum. Note that the dissociation energy may be

measured either from the bottom of the potential (De, as in Eq. (2.18)), or from the

zero point vibrational energy, in which case it is called D0.

Continuum States

Above the dissociation limit the vibrational energy of the continuum state(s) are

no longer quantized; consequently, these vibrational wave functions (ψE,l(R)) are

labeled by the quantum number, E (for energy). Unlike the bound state eigenstates

which can be “space-normalized” since ψν,l(R)
R→{0,∞}−−−−−−→ 0, the continuum function

must be “energy-normalized” because ψE,l(R) 6= 0 for R → ∞. A general treat-

ment of continuum (scattering) states is beyond the scope of this work (see Ref.

[50] on Scattering Theory), instead these states will be approximated in terms of

quasi-continuum states using the method of Box-Normalization. By adding a verti-

cal and infinite barrier at large internuclear distance above the dissociation energy

the continuous spectrum can be artificially discretized into a set of quasi-continuous

levels. These quasi-continuous states, now “bound” within a region of space, can now

be space-normalized to unity. However, notice that the location of this outer wall

would affect the amplitude and density of these discrete levels, thereby influencing

their behaviors and couplings within the system. So care must be taken in charac-

terizing these states if they are to be treated as ordinary vibrational bound states.

In particular, note that the product of the amplitude times the density of states

remains a constant, finite value as the barrier goes to infinite internuclear distance;

even when the amplitude of each wavefunction goes to zero, and the density of states

becomes infinite, thereby returning to a continuous spectrum. See Sec. (2.4.3) for

a comparison of the transition dipole couplings between bound–continuum states

derived using the artificial channel method [51–53], and the bound–quasi-continuum

states.

Diabatic and Adiabatic Curves

In this section we will go beyond the Born-Oppenheimer(BO) approximation and

discuss the perturbations that arise from the off-diagonal elements of the molecular

Hamiltonian H(q,R) in the BO basis. The exact eigenvalues and eigenfunction of

H(q,R) can always be expressed as an infinite linear combination of any set of basis
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2.1. Molecular Structure

states, however, as Lefebvre-Brion and Field state: the BO wavefunctions of Eq.

(2.5) are the “only available type of complete, rigorously definable basis set” [48].

There are two different representations of the BO basis that will be most useful.

We have already encountered one, known as the diabatic basis, in which the electronic

wavefunctions, |Ψd
e,i 〉, are defined such that

〈Ψd
e,j |TN |Ψd

e,i 〉 = 0 (2.19)

In this case, the off-diagonal elements of He give rise to either electrostatic perturba-

tions from Vee for states with identical electronic symmetry (equal Λ,Σ, S), or spin-

orbit couplings, upon inclusion of a relativistic perturbative operator, HSO(q,R), to

the non-relativistic Hamiltonian He, between states of different Λ, S, but the same

Ω = Λ + Σ. Because the diabatic functions are not exact solutions of the electronic

Hamiltonian (i.e. 〈Ψd
e,j |He|Ψd

e,i 〉 6= 0), these PESs are able to exhibit crossings.

Figure 2.3: Diabatic (crossing) potential energy curves cross at Rc as a result of
neglecting the part of He that causes the adiabatic (non-crossing) curves’ avoided-
crossing by 2He [3].

Alternatively, the adiabatic functions, |Ψad
e,i 〉, which are defined as the exact
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solutions to He,

〈Ψad
e,j |He|Ψad

e,i 〉 = 0, (2.20)

take into account the electronic couplings between the diabatic functions and lead

to PESs with an avoided-crossing proportional to the strength of the interaction (see

Fig.2.3). This occurs due to the non-crossing rule of von Neumann and Wigner [54]

(initially proposed by Hund [55]), which states that for diatomic molecules there

cannot exist a degeneracy in the electronic states (which would occur at a crossing

point). The perturbations in the adiabatic basis, known as non-adiabatic inter-

actions, now arise due to the off-diagonal elements of the nuclear kinetic energy

operator, TN (R).

We leave this discussion here (see Ref. [3] for more details), noting, as in Fig.2.3,

how PES with double minima may arise. Unless stated otherwise, this thesis will

work in the diabatic picture in which interactions between curves (when they oc-

cur) are introduced as off-diagonal elements in the electronic Hamiltonian in the

unperturbed basis. However, the diabatic states are not unique, unlike in the adia-

batic case, their form can change along with the interaction terms yielding the same

electronic Hamiltonian. Lastly, because this presentation will focus on rotationless

states (J = 0), the rotational and spin-rotation perturbations will not be addressed.

In addition, the matrix elements associated with spin-spin couplings will be ignored

due to their relative weakness to those of the spin-orbit terms.

2.1.3 Polyatomic Molecules

Determining the molecular structure of polyatomic molecules becomes increasingly

more difficult as one increases the number of constituent atoms. This is a conse-

quence of the many more nuclear degrees of freedom (DOF) that become available

such as additional stretching, bending, and torsional motions. In general, the po-

tential energy of a polyatomic molecule is given as a function in 3N − 3 dimensions,

where 3N defines the number of independent coordinates available to N ≥ 3 num-

ber of atoms in free space, and, three coordinates are required to specify the center

of mass of the body. By solving separately for the rotational motion through in-

troducing constants for the angular momentum, the DOF of the effective potential

(potential plus centrifugal terms) reduces to 3N − 6 since three more DOF are used

to define the object’s orientation in space. The remaining coordinates for specify-

ing the molecular structure will now consist of internuclear distances and/or bond
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angles, and it should be evident that for molecules with more than three atoms (or

those triatomics in which the bond lengths and angles are independent), it will not

be possible to plot and fully visualize the potential energy surface (PES).

Another complication in the description of polyatomics is that the internal co-

ordinates (distances, angles) do not generally form an orthogonal set. This implies

that there exist non-zero off-diagonal terms in the Hamiltonian for the kinetic energy,

i.e. couplings between the normal modes. However, it is possible to abandon the

normal modes picture and define a new set of coordinates which are linear combina-

tions of the internal coordinates where the kinetic energy operator becomes diagonal

[56] (although there exist an infinite number of these sets). The only polyatomic

molecules with a reasonable simple form of the kinetic energy operator are the linear

triatomics, which can be described by a set of three coordinates.

As we saw for diatomic molecules, with a single vibrational DOF, when two elec-

tronic states possess the same symmetry, we encounter an avoided crossing. However,

for polyatomic molecules, which have multiple vibrational DOF, the crossing of such

electronic states is possible, and leads to a structure known as a conical intersection

(CI). The CI is a 3N − 8 dimensional subspace in which the two electronic states

of the same spatial/spin symmetry are allowed to cross, because their energies re-

main degenerate. The two-dimensional space that lifts this degeneracy is spanned

by two vectors relating the two intersecting electronic states: namely, the difference

of their energy gradient vectors, and their non-adiabatic coupling vectors. When

the PES is plotted as a function of these two vectors, we observe a pair of cones

meeting at the degeneracy point, and separated by the branching plane that lifts

the degeneracy, leading to the name “conical intersection”. The occurrence of conical

intersections is often a result of the Jahn-Teller theorem [57] which states that a

nonlinear molecular with a spatially degenerate electronic state will spontaneously

distort its configuration to that of a reduced symmetry in order to lower its overall

energy.

When two adiabatic PES come close to each other, as they do in the vicinity of

conical intersections, the vibronic coupling becomes large leading to a breakdown of

the BOA (and giving rise to such non-adiabatic phenomena as radiationless decay).

The coupling of different electronic states through nuclear vibration occurs often in

polyatomics due to the many nuclear DOF and large number of energetically close

electronic states.

Now we begin to appreciate the complexity of performing spectroscopic studies
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on polyatomic systems. Even for the simplest case of linear triatomics, there ex-

ist three internal DOF, and many of the electronic states are two fold degenerate,

leading to the Renner-Teller effect [58] in which strong mixing occurs between Born-

Oppenheimer terms. In lieu of the difficulties associated with polyatomic molecules,

this thesis will proceed with diatomics in mind. However, the work to come, will, in

principle, be application to both diatomic and polyatomic systems.

2.2 Light-Matter Interaction

In this section we provide a basic overview of the theory of light-matter interactions,

in particular, as it pertains to diatomic molecules. The most general approach uses

the quantum electrodynamics Hamiltonian

H = H0 +Hf +Hint (2.21)

where the system, H0, the electromagnetic (EM) field, Hf , and their interaction,

Hint Hamiltonians are all treated quantum mechanically. However, the majority of

molecular experiments involve high photon densities and thus it can be assumed

that the EM Hamiltonian can be described classically (i.e. by Maxwell’s equations).

This opens the door for a semi-classical treatment of the light-matter interactions,

in which the matter is treated as an unperturbed quantum mechanical (QM) system

(e.g. the Born-Oppenheimer rovibrational Hamiltonian HN (R)) and the influence

of the classical EM field becomes a QM perturbation.

2.2.1 Semi-Classical Theory

The semi-classical approach provides use with the ability to develop an intuitive

picture of the light-matter interaction, and allows use to develop a theory necessary

for manipulating and studying the internal structure of molecules. For our purposes

we will use only the first (and in our cases dominate) term of the dipole expansion

of Hint (e.g. ignoring higher multipole terms such as the electric-quadrupole or

magnetic-dipole); this is known as the electric-dipole approximation. Moreover, we

will make use of the large-wavelength approximation, assuming that our EM field is

homogeneous field over the molecular dimensions, and thus the spatial variation of

field can be ignored. With these simplifications, the interaction Hamiltonian can

be written as a scalar product of the electric transition dipole moment operator,
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µe = −
∑

j eqj , and the time-dependent electric field, ε(t),

Hint(q, t) = µe(q) · ε(t) , (2.22)

where qi specifies the position of the jth electron and t represents time. Here we

have ignored the nuclear contribution to the dipole moment because it drops out of

the molecular transition matrix

H i,f (t) = 〈Ψf (q,R) |µe(q) · ε(t)|Ψi(q,R) 〉 , (2.23)

which quantifies the transition amplitude between some initial, Ψi(q,R), and some

final, Ψf (q,R), eigenstate of the full molecular Hamiltonian H0. Upon applying the

BOA, we can simplify Eq. (2.23) to

H i,f (t) = 〈ψf
N (R) |µi,f

e (R) · ε(t)|ψi
N (R) 〉 (2.24)

where the electronic transition dipole surface, µi,f
e (R), is defined as

µi,f
e (R) = 〈Ψf

e (q;R) |µe(q)|Ψi
e(q;R) 〉 (2.25)

The series of approximations leading to this expression of the probability ampli-

tude for a transition from an initial state | i 〉 to a final state | f 〉 is known as the

Franck-Condon (FC) principle. In regards to the interaction, this assumes that the

transition time is short relative to changes in the nuclear configuration, thus the

amplitude of the transition is related to the degree with which both the initial and

final electronic (Ψi
e(q;R)) and nuclear (ψi

N (R)) wavefunctions overlap respectively.

As a result, electronic transition are more likely to occur at the classical turning

points where the momentum is zero, and where the nuclei spend most of their time.

In addition, it is often assumed (in the Condon approximation) that the nuclear

coordinate dependence of transition dipole surface (TDS) is rather smooth, thus it

can be written as an average value over the nuclear coordinates R, µi,f
e (R) ≈ µ

i,f
e ).

Then, the strength of a transition within molecules becomes modulated by only the

FC factor 〈ψf
N (R) |ψi

N (R) 〉 (up to O(1)). However, the largest determinant of the

transition probability is found through molecular selection rules (see Sec. (2.2.2)),

though we will find that these selection rules are not always valid, either due to the

breakdown of the BOA or due to contributions from weaker multipole moments.
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2.2.2 Molecular Transitions

Before presenting the selection rules that largely govern molecular transitions, we

will first review the internal transitions available within molecules. These can be

divided into two main groups: radiationless transitions resulting from collisions or

couplings to the physical environment, and radiative transitions which evolve an

interaction of electromagnetic (EM) fields with the eigenstates of a molecule.

Radiationless Transitions

A radiationless transition can occur as a result of an inelastic collision of a molecule

with its surroundings. Often this is a de-excitation process in which internal molec-

ular energy (electronic, vibrational or rotational) is transferred into kinetic energy.

An excited electronic state of a molecule in a given vibrational level (rotational states

are not considered for simplicity) may undergo three sorts of transitions. These are

conveniently represented in the Jablonski diagram Fig. (2.4) as internal conversion

(IC), intersystem crossing (ISC), and vibrational relaxation (VR), where the Si and

Ti represents the ith singlet and triplet electronic states respectively. Within a given

electronic state, Si or Ti, a molecule’s vibrational energy will gradually decrease

over time as a result of thermal collisions causing VR. Once either in the ground

vibrational state or before of a given Si (Ti) state, collisional energy transfer may

result in a change of the electronic state to one of the same spin multiplicity Si−1

(Ti−1) for IC, or one of a different spin multiplicity Tj (Sk) as in ISC. As a result, a

dense ensemble of excited molecules, uninfluenced, will usually decay by a series of

radiationless transitions from excited electronic and vibrational states to a ground

state Boltzmann distribution (see Sec. (2.3.1)). Note that nearly any energetically

allowed transition is possible between electronic, vibrational and rotational states

as a result of an inelastic collision. The well-known molecular selection rules which

limit allowed transitions, occur due to electric-dipole couplings in the BOA, this

discussed in Sec. (2.2.2).

Because these nonradiative processes cannot be quantified or measured, they are

detrimental to molecular spectroscopist or those designing quantum control schemes

(See Sec. (2.3.1) on dephasing). Fortunately, the mean time between collisions of

particles in a gas can be controlled via the pressure, density, and temperature, and

in this work we will assume that the collisions occur on a nanosecond (ns) timescale

for the small molecular species of interest [59, 60].

26



2.2. Light-Matter Interaction

Figure 2.4: Jablonski diagram where: S = single state, T = triplet state, A =
absorbance, F = fluorescence, P = phosphorescence, IC = internal conversion, ISC
= intersystem crossing, and VR = vibrational relaxation.

Radiative Transitions and Selection Rules

Radiative transitions result from the absorption or emission of one (or more) pho-

tons, these are shown in Fig. (2.4) as: absorption(A), fluorescence(F) and phospho-

rescence(P). The mathematical details of these transitions will be discussed in Sec.

(2.4).

At the moment our interest will be in estimating which transitions are permitted

within a diatomic molecule interacting with an EM field in the dipole approximation.

From Eq. (2.23), we write the probability amplitude for a transition in the BOA as

A ∝ 〈Ψf
eψ

f
N |µe · ǫ̂|Ψi

eψ
i
N 〉 (2.26)

A ≈ 〈ψf
eχ

f
sψ

f
rotψ

f
vib |µe · ǫ̂|ψi

eχ
i
sψ

i
rotψ

i
vib 〉 (2.27)

where we have expanded the electronic wave function, Ψe, to include both the spatial,

ψe, and the electron spin, χs, components. And, the nuclear wave function, ψN ,

has been separated into rotational, ψi
rot, and vibrational, ψi

vib, parts. The canonical

selection rules are expressed from the point of view of the Hund’s case (a) basis which
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exclude spin-orbit coupling, thus we can separate the electronic wavefunction into

the orbital and spin terms (|nΛ 〉|Σ, S 〉). By omitting the rotational-vibrational

coupling we can specify the vibrational and rotation eigenstates in terms of their

quantum numbers ν and J respectively (i.e. ψvib = | ν 〉 and ψrot = | J 〉), where J

should not be confused with the total electronic angular, but equals the l rotational

quantum number from earlier (following convention).

Thus we rewrite Eq. (2.26) in terms of these quantum numbers corresponding

to their appropriate wavefunctions

A ≈ 〈ψf
e |µe|ψi

e 〉〈χf
s |χi

s 〉〈ψf
rot |µ̂e · ǫ̂|ψi

rot 〉〈ψf
vib |ψi

vib 〉
= 〈nfΛf |µe|niΛi 〉〈Σf , Sf |Σi, Si 〉〈 Jf ,mf

J |µ̂e · ǫ̂| J i,mi
J 〉〈 νf | νi 〉 ,(2.28)

where we have included the quantum number mJ = {−J, ..., J} labelling the rota-

tional sublevels.

The first term in Eq. (2.28) yields the electronic orbital selection rules associated

with transitions between nΛ±
g/u states:

∆n 6= 0 ∆Λ = 0,±1 ± ↔ ± g ↔ u . (2.29)

Recall that the ± refer to the reflection symmetry of Λ = Σ state, and g/u rep-

resents a symmetry with respect to inversion for homonuclear diatomics. For the

spin component of the electronic wavefunction we have the simple requirement that

∆S = 0, since operators governing transitions are diagonal in S in the absence of

spin-orbit coupling. The third term, known as the Hönl-London factor, involving

the rotational wavefunctions gives rise to the rules:

∆J = ±1(∆Λ = 0) ∆J = 0,±1(∆Λ = ±1) . (2.30)

Moreover, there is a dependence of the mJ sublevel couplings on the polarization

of the electric field ǫ̂. Linear polarized light (e.g. ǫ̂ = ẑ), which we will used

throughout this thesis, requires that ∆mJ = 0, whereas a circularly polarized field

(e.g. ǫ̂ = x̂ ± ŷ) permits only ∆mJ = ±1 transitions. Lastly, the inner product of

the vibrational wavefunction do not define a selection rule and simply provides the

previously discussed Franck-Condon (FC) factor.

Thus, we find that a single photon electric dipole transition will occur between

two different electronic states for all ∆ν, however if ∆Λ = 0 then there must be a
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change in the rotational state, ∆J 6= 0, as shown in Eq. (2.30). This restriction re-

sults from parity conservation, whereby the absorption or emission of a photon (with

parity -1) must change the parity of the overall wavefunction. We will refer to these

bound-bound transitions between rovibrational states where ∆J = -1, 0, or +1 as P,

Q, or R branches respectively. We must keep in mind that these selection rules, and

the concept of the Franck-Condon factor, come about from a series of assumptions,

most notably through application of the BOA which permits a factorization of the

total wavefunction into nuclear, electronic spatial and spin wavefunctions, and the

omission of vibrational and rotational coupling between states. As a result, these

rules may not always be strictly observed, however they will serve suitable well for

our investigation.

Before continuing, we make a quick comment on the phenomenon of phospho-

rescence. In particular, for phosphorescence to occur there must exist spin-orbit

coupling between some excited diabatic singlet (Si) and triplet (Tj) states (which

is not necessary for nonradiative ISC). This “singlet-triplet transition” in fact is “al-

lowed” only because the triplet state obtains some singlet character as we shall see in

Sec. (5.3.2). Together with nonradiative effects, phosphorescence can result in the

very long lifetimes (' 1s), compared to the relatively short lifetimes (100ps-10ns) of

fluorescent states. Studying this form of radiation is beyond the scope of this work,

however, it plays an important role in acting as metastable states, capable of storing

energy, for instance, where it can act as reaction intermediate in photosystem II in

electron-transfers reactions [61].

2.3 Laser Excitations in Molecules

Unless stated otherwise, for the remainder of this thesis we will assume that we are

working with a gaseous ensemble of molecules. In this section we discuss the nature

of such systems and discuss their behavior in the presence of electric fields. In

particular, we focus on the internal dynamics of molecules by looking at the origin

of coherence and the behavior of molecular wavepackets. This will set the stage

for understanding the time- and frequency-dependent molecular spectroscopy in the

section to come.
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2.3.1 Molecular Ensemble

In the BOA there exist a set of nuclear wavefunctions, ψN (R), for each electronic

PES, Ee(R). The amplitude of these quantized stationary eigenstates reflect the

probability distribution, in the coordinates R, of observing a nuclei at that posi-

tion. Under typical conditions a molecule doesn’t exist in a single eigenstate but

in a thermal ensemble of multiple internal quantum states following the Boltzmann

distribution

gie
−Ei/(kbT ), (2.31)

where gi and Ei is the degeneracy and energy of a state i relative to the overall

ground state of the molecule respectively. kb is the Boltzmann factor and T is the

temperature.

Given that for the typical diatomic molecule the spacings between vibrational

levels is O(103) Kelvin (K), and the separation between rotational levels is only a

few K, then at ordinary temperatures (100’s K), a molecule will reside in its ground

vibrational state ν = 0, and in a distribution of several rotation levels J following Eq.

(2.31). For instance, we can calculate and find the rotational state with the maximum

population as Jmax = (
√

2kbT/B − 1)/2, where B is the rotational constant.

Due to the nature of thermal excitations, such superpositions of eigenstates would

be incoherent, that is, there wouldn’t be a fixed phase relation between the individ-

ual, ψvibψrot = | ν = 0, J 〉, levels. An example is an ensemble of molecules at room

temperature in which all of the diatomic molecules will be rotating out of phase

with each other. To addresses this fundamental problem of controlling a system

having an initial state that is an incoherent thermal mixture of different states, we

can prepare a molecule in a single quantum state 〈R | ν, J 〉 ≡ ψ(ν,J)
N (R), by insuring

that the translational (kinetic) energy be reduced to below 1 K (for a relatively light

molecule) such that the thermal energy kbT is smaller than the rotational energy

spacing. In this way our ensemble of molecules will begin in a single | ν = 0, J = 0 〉
state. Note that throughout this thesis we will average over all hyperfine levels which

have spacing of O(10−2) K. From this initial state, a coherent process can be used,

such as from a laser field, to transfers coherence to the ensemble of molecules.
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2.3.2 Excitation Laser Fields

We define our laser (light amplified by stimulated emission of radiation) field as

ε(t) = ε(t)ǫ̂

= E(t) cos(ω0t)ǫ̂ , (2.32)

where E(t) represents the (complex) pulse envelope of the field, and ω0 is the carrier

frequency. Unless stated otherwise the polarization of the field, ǫ̂, will be linear

and along the ẑ direction in the laboratory frame. It will be useful to represent the

complex-valued electric field also in frequency-space by its inverse Fourier integral

ε(t) =

∫ ∞

−∞
dωε(ω)e−iωt

=

∫ ∞

−∞
dω|ε(ω)|eiφ(ω)e−iωt (2.33)

where |ε(ω)| and φ(ω) are the magnitude and phase of the field at the frequency

ω, respectively. In addition, we define the time averaged intensity and the period

averaged spectral intensity of a slowly varying pulse as follows:

〈 I(t) 〉 = c

8π
|ε(t)|2 , 〈 I(ω) 〉 = c

16π2
|ε(ω)|2 . (2.34)

Ultrashort Pulses and Pulse Shaping

A property of the Fourier transform is that the time-bandwidth product of a Gaussian

laser pulse is approximately fixed at

∆τ∆ω ≈ 0.441 , (2.35)

where ∆τ and ∆ω are the full-width-half-maximum (FWHM) of the two intensity

profiles of Eq. (2.34) respectively. So we observe a broadening occurring to a pulse’s

frequency bandwidth upon a reduction of its temporal width, with the precise value

of Eq. (2.35) depending on the shape of the pulse envelop (e.g hyperbolic-secant-

squared = 0.315) [62].

It has become common to generate pulses of only a few femtoseconds (fs), known

as ultrashort pulses, consisting of only a few optical cycles. The standard approach

involves pumping a mode-locked oscillator with a continuous-wave (cw) laser field.
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In this case there exist a fixed phase between the modes of the optical cavity, and

the modes will periodically all constructively interfere with one another leading to

an intense pulse of light with a duration determined by the number of modes which

are oscillating in phase [63]. For more information on ultrashort laser fields refer to

Ref. [62].

Another tool which has become vital to study and observe molecular quantum

dynamics on short time scales is pulse shaping. Given a femtoseconds pulse in the

visible spectrum, the electric field can be modulated in the frequency domain like

ε(ω)mod =M(ω)ε(ω) , (2.36)

where M(ω) is the modulation function of a spatial light modulator capable of ma-

nipulating the spectral amplitude, phase or polarization, with common resolutions

of approximately 0.5 nm (or 10 cm−1) [64]. Note that this energy is at least an order

of magnitude smaller than spacing between vibrational levels. Finally, returning this

shaped pulse back into the time domain requires an inverse Fourier transform (IFT)

ε(t)mod =
1

2π

∫ ∞

−∞
M(ω)ε(ω)eiωtdω . (2.37)

These ultrashort pulses with large bandwidth allow for the simultaneous excitation

of several molecular eigenstates, and by tuning pulses’ temporal and spectral profiles

we are able to prepare a molecule in very particular electronic, vibrational, rotational

states.

Perturbation Theory

Using the assumptions and results of Sec. (2.2), we are ready to solve the time-

dependent Schrödinger equation for a molecule in the presence of an EM field

i
∂Ψ(t)

∂t
= (HN +Hint(t))Ψ(t) , (2.38)

where HN represents the nuclear Hamiltonian in the Born-Oppenheimer approxima-

tion with (rovibrational) eigenstates ψN = | ν, J 〉, and Hint is given by Eq. (2.22).

The wavefunction of the interacting system can be expanded in the unperturbed
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basis (omitting electronic spin states) as

|Ψ(t) 〉 =
∑

q

∑

j

∑

k

cq,j,k(t)e
−iEq,j,kt|nqΛqνjJk 〉 (2.39)

where Eq,j,k is the energy of the (j, k)th rovibrational level, and the square of the

coefficients cq,j,k(t) give the population in a given state | νjJk 〉, within the qth elec-

tronic state. The elements of the interaction Hamiltonian between some initial state

i and a final state f can be written as (from Eq. (2.22))

H i,f
g,e(t) ≈ ǫ(t)di,fg,e (2.40)

where we define the electronic transition dipole moment (TDM) as

di,fg,e = 〈 νf , Jf |µg,e · ǫ̂| νi, J i 〉 . (2.41)

Here we have simplified the notation by defining µg,e as the radial dependent elec-

tronic transition dipole function between a ground, g, and an excited, e, electronic

state (different n’s and Λs). In the case of electronically forbidden transitions this

dipole function will thus tend to zero. For simplicity, the initial, i, and final, f

eigenstates of these different electronic potentials will now only be specified by their

rovibrational quantum numbers ν and J . The MJ indices are not included since we

will assume that the rotational sublevels will remain approximately degenerate, and

the Σ, S labels become superfluous in the absence of spin-orbit coupling.

Now, if we take θ to be the angle between µe(q) and ε(t), where we assume that

the EM field is linearly polarized, then

H i,f
g,e(t) = ε(t) cos θ〈 νf , Jf |µg,e| νi, J i 〉 . (2.42)

In which case, if the field interacts with an ensemble of randomly oriented molecules

in the gas phase, then the angle θ between µe(q) for each molecule and the fixed

field ε(t) can be averaged (〈 cos2 θ 〉 = 1/3), and we find that the probability of an

electronic transition to be given by

Pi,f (t) = |H i,f
g,e(t)|2 ∝ |ε(t)|2|µi,fg,e|2|〈 νf , Jf | νi, J i 〉|2 , (2.43)

where first term is proportional to the intensity of the laser field, the second term
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provides us with the orbital selection rule, and the last term is known as the Franck-

Condon (FC) factor. As stated above, the coupling of an individual molecule with the

radiative field (Eq. (2.41)) is a function of the angle, cos θ, between the internuclear

axis and ẑ. Thus every molecule in the ensemble with a different spatial orientation

will experience a different overall strength of the electric field, |E(t)|. Fortunately,

our procedures are fairly robust to variations in the pulse intensity. Although, it is

possible to prepare the sample as a volume of (non-isotropically) aligned molecules

using an initial pump pulse [65]. In this way the molecular axes of all the molecules

in the ensemble can become oriented parallel to the electric field of the laser before

starting an experiment.

Molecular Wavepackets

Under perturbation theory (PT), a monochromatic or narrowband laser field will

excite a single eigenstate νj from an initial eigenstate νi according to Eq. (2.43).

However, a broadband Gaussian laser pulse, which in PT can be thought of as a

coherent sum of monochromatic light fields with varying wavelengths, can access

many different energy levels from a given initial state. It is this coherent property

of the laser field that allows for the accurately manipulation of molecular states

and the control of quantum processes (see also Sec. (2.3.3) on Coherent Control).

By using such a laser excitation we can create a coherent superposition of a set of

eigenfunctions (stationary states) known as a molecular wavepacket. Assume that

we are only dealing with vibrational states (ψvib
k (R)) in a given electronic surface,

we may write the wavepacket as

Ψ(R, t) =
∑

k

ckψ
vib
k (R)e−iEkt (2.44)

where ck are the coefficients or amplitudes of the kth vibrational state with eigenen-

ergy Ek. In first-order PT, these coefficients become [66]

ck = 2πiǫ(ωk,i)dk,i (2.45)

where ǫ(ωk,i) is the field strength at the frequency ωk,i, and dk,i is the electronic

TDM between the initial and final states. We see from Eq. (2.45) that the initial

form of the wavepacket Ψ(R, t) will be determined by the spectral width of the laser

field and the strength of the electric dipole couplings. However, because each of
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the individual stationary eigenstates evolve in time with a complex phase the initial

wavepacket will quickly delocalize. This delocalization or de-phasing of vibrational

eigenstates, is due to the interferences between the constituent eigenstates which

evolve with different periods. The wavepacket probability density,

|Ψ(R, t)|2 =
∑

k,k′

ckc
∗
k′ψ

vib
k (R)ψvib

k′ (R)
∗ cos(ωk,k′t) (2.46)

shows that the predominant frequencies in wavepacket motion are the beat frequencies

(ωk,k′ = Ek−Ek′) between individual eigenstates. To first order, ∆k = ±1, the semi-

classical vibrational period of the wavepacket is given as Tcp = 2π/ωk,k′ . Of course

all the higher order terms along with the weighting aνaν′ describing the magnitude

of the oscillations are required to fully describe a wavepacket’s behavior. Though

we can roughly state that a wave packet revivals occur with period Tr ≈ 2Tcp/ωk,k′ ,

so for example in Na2, we find Tcp ≈ 300 fs and Tr = 29 ps. In Sec. (2.4.2) we will

discuss the future of wavepackets when left untouched, particularly in the context of

molecular fluorescence (see Sec. (2.4)).

2.3.3 Quantum Control Schemes

Only upon the invention of coherent fields (lasers) have quantum control schemes

been able to accurately specify the interaction and control the final states of molec-

ular systems. In the current subsection we will briefly outline one quantum control

scheme which harnesses the complex phases inherent in electric fields and quantum

states; this has become known as coherent control (CC).

Coherent control [66, 67] of quantum systems is very active area of research

in physics and chemistry. The mechanism for control is the interference between

multiple pathways from some initial state(s) to some final state(s). The nature of

the interference is manipulated by changing the relative complex phase of the laser

fields which are exciting the different paths.

For simplicity and for our purposes, we will use weak-fields and can thus un-

derstand the process in the context of perturbation theory (PT). In general, CC

becomes more difficult in the strong field case once AC Stark shifts arise and the

perturbations of the quantum system becomes dynamical.
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Figure 2.5: Implementation
of bichromatic control (BCC)
in a three state system where
the initial population resides
in states E1 and E2. Two
continuous wave (CW) lasers
with frequencies ω1 and ω2 re-
spectively, couple these states
to a final state E. The am-
plitude and phase relation be-
tween the two laser fields will
determine the population of
the final state.

Bi-Chromatic Control

One of the simpliest implementations of coherent control is a scheme known as Bi-

Chromatic Control (BCC) [66], depicted in Fig. (2.5). In this case, there are two

ground states which are initially populated, say E1 and E2, and we wish to excite a

third state, E. Take two CW fields with frequencies ω1 and ω2 which independently

couple the two initials states to the one final state, then using perturbation theory

(or Eq. (2.45)) the amplitude of state E can be written as

cE ∝ ǫ(ω1)d1 + ǫ(ω2)d2 (2.47)

where the complex quantities, ǫ(ωk) and dk (see Sec. (2.3.2)), can be written in terms

of a real-valued amplitude and phase as: ǫ(ωk) = |ǫ(ωk)|eiδk and dk = |dk|eiφk where

φk = {0, π} for bound states {E1, E2, E}. With this representation we can write the

probability amplitude of the final state as

|cE |2 ∝ |ǫ(ω1)d1|2 + |ǫ(ω2)d2|2 + 2|ǫ(ω1)||ǫ(ω2)||d1||d2| cos(∆δ1,2 +∆φ1,2), (2.48)

where ∆δ1,2 = δ1− δ2 and ∆φ1,2 = φ1 − φ2. By varying the relative laser intensities

(ǫ(ωk)) and phases (δk) between the two pathways 1 and 2, such that |ǫ(ω1)||d1| =
|ǫ(ω2)||d2| and ∆δ1,2 + ∆φ1,2 = {0, π}, the final population residing in state E
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after the BCC process can be tuned to be anywhere between 0 and 4|ǫ(ω1)||d1|.
This process is analogous to controlling the appearance of fringes in the well-known

double slit experiment, in which two coherent beams interfere either constructively

or destructively on a particular target depending on their relative amplitude and

phase relations.

Although we have presented the BCC technique using two independent CW laser

fields, it is possible to stimulate the two excitation pathways using a single broadband

laser pulse [68–70]. By using pulse shaping techniques (Sec. (2.3.2)) to manipulate

the magnitude and phase at the two frequencies components of the field (ω1 and

ω2) corresponding to the transition energies we can apply BCC in the femtosecond

regime. In Chapter 5 we will harness this technnique for determining the relative

phases of the transition dipole matrix elements between rovibrational eigenstates.

2.4 Molecular Spectroscopy

Here we extend the discussion of the light-matter interactions to include the radiative

emissions of diatomic molecules in the gas phase. This emitted fluorescence provides

us with information about a molecules internal structure and dynamics, and the

ability to verify theoretical ideas and models.

For a single excited rovibrational state, | i 〉, with population |ci|2, we define the

radiative lifetime as τi = 1/γi where γi is the decay rate and the population after

time t is

|ci(t)|2 = |ci(t = 0)|2e−γit. (2.49)

In the absence of collisions, nonradiative decay processes or stimulated emission, the

decay rate is given as

γi =
∑

f

Af,i (2.50)

where the summation occurs over all (allowed) final states of transition, and Af,i is

the Einstein spontaneous emission coefficient. The Einstein A-coefficient is a first-

order decay constant defined (in atomic units) as

Af,i =
4ω3

f,i

3c3
|µf,i|2 , (2.51)

where ωf,i are the transition frequencies and µf,i are the transition dipole matrix

elements. Therefore, the decay of a state can be quantified by a single exponential
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despite the summation over all Einstein coefficients. Note that for rotating molecules

a sum over the mJ quantum number is implicit in |µf,i|, namely,

|µf,i|2 =
mi+1
∑

mf=mi−1

|〈 f,mf |µ| i,mi 〉| (2.52)

Experimentally, the fluorescence or phosphorescence (e.g. the decay to a triplet

state in the presence of spin-orbit coupling) emitted by molecules can be viewed in

either the frequency- or the time-domain. We will briefly discuss these two pictures

below, though for a detailed review see Ref. [71].

2.4.1 High-Resolution Rovibrational Spectroscopy

High-resolution molecular spectroscopy is principally used for determinating the in-

ternal structure of a molecule, this includes its rotational, vibrational, and electronic

energies. In this thesis we will be interested only in the visible or ultraviolet (UV)

rovibrational spectrum of, predominantly, diatomic molecules. In Fig. (2.6)(a) we

show a pair of Born-Oppenheimer potential energies curves and a few of the eigenen-

ergies associated with each. Population in the excited potential will spontaneously

decay through the emission of radiation to the levels of the ground state. A spectrum,

I(ω), shown in Fig. (2.6)(b), is a plot of of the signal strength versus frequency, where

the signal strength is often based on detection of photons recorded as an electrical

current or voltage. The difference magnitudes of the spectral lines across frequen-

cies correspond to the difference strengths of the transition dipole matrix elements

(TDMe) coupling excited and ground rovibrational eigenstates. Spectroscopist will

almost always write the frequency in units of cm−1 (or wavenumbers), however, as a

theorist, atomic units (Hartree) will be used interchangeably (1 Ha = 2.1947 × 105

cm−1).

There are many approaches that can be used for collecting such frequency-

resolved spectra, this thesis will not deal with these practical techniques but will fo-

cus on the application of this data. Common methods such as Raman-spectroscopy,

Fourier-transform interferometry and CARS spectroscopy, and others can be re-

viewed in Refs. ([71],[48]).
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(a)

(b)

Figure 2.6: (a) A schematic illustration of the emission process between two di-
atomic potentials. (b) A typical spectrum of fluorescence lines calculated between
the rovibrational states of the two electronic potentials shown in (a).
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Laser-Induced Fluorescence and Fourier Transform Spectrometry

In brief, laser-induced fluorescence (LIF) involves exciting a state or states of a

quantum system with an electromagnetic field, such that it will undergo spontaneous

de-excitation (or fluorescence), emitting radiation which can be then captured. LIF is

widely used in the spectroscopy of diatomic molecules since the lasing wavelength can

be tuned to a particular excitation, which allows for the determination of intensities

associated with a particular vibrational or rotation level. This method is applicable

to very weak transitions with Franck-Condon factors below 10−4, and capable of

resolving high values of vibrational and rotational quantum numbers. Advantages

over absorption spectroscopy are the very high signal-to-noise ratios and the ability

to capture radiation in all directions since the fluorescence signal is often isotropic.

Note that, as a result of the low excitation energies, stimulated emission processes

are typically ignored in the data analysis due to their negligible contribution to the

fluorescence.

To characterize the spectrum of the fluorescence radiation, the simplest approach

would be to use a monochromator and measure the intensity of the light at all the

relevant wavelengths. However, the full spectrum can be generated much more effi-

ciently, and with less sensitivity to noise, using a technique known as Fourier trans-

form spectroscopy (FTS) [72]. FTS is based on the principles of interferometry, in

which coherent waves from at least two sources or paths are combined and their

superposition measured. In particular, a Fourier transform spectrometer is designed

similar to a Michelson interferometer, except that one of the mirrors can move rapidly

back and forth, and the recombined beam is detected synchronously with the mo-

tion of this mirror. This allows for the temporal correlation function of the light to

be measured at each different time delay, thus converting the time domain into a

spatial coordinate. The measured outcome, known as an interferogram, is an inten-

sity measurement as a function of the retardation path length. The interferogram

recorded by the detector can be thought of as a sum over weighted monochromatic

interferograms, in which we think of each spectral component of the radiation as

producing its own interferogram with an amplitude weighted by the relative spectral

intensity. From this perspective, we can see that by making measurements of the

signal at many discrete mirror positions, we can use a Fourier transform to pick

out the intensities of each frequency and produce a spectrum. Or, in other words,

the interferogram (intensity of recombined beam as a function of path length) is
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simply the Fourier transform of the intensity of the light source. In practice, this

technique has become very reliable and can provide very high resolution (∼ 0.005

cm−1) [16, 73].

Phase of TDMe

Before continuing on we will comment on the phases of the TDMe; particularly,

since the spectral data only provides information about their magnitudes. These

matrix elements are linked to the potentials and the nuclear wave functions that are

derived from them. In bound-bound transitions, both initial and final eigenstates in

〈 ν ′′ |µ| ν ′ 〉 are real, thus this becomes a simple sign (±), unlike the usual complex

phase encountered in scattering theory. When dealing with transition between n

excited states and m ground states there will exist n×m TDMe and thus seemingly

2nm sign possibilities. However, because each individual wavefunction | ν 〉 can have

an arbitrary phase, we are free to choose the signs of n+m− 1 TDMe at will. For

example, all m TDMe of sgn(〈 ν ′′ |µ| ν ′ = 0 〉) for ν ′′ = {0,m−1} can be chosen to be

positive, where sgn is the sign function. This fixes the arbitrary phases of the final

| ν ′′ 〉 states and the one initial | ν ′ = 0 〉 state. With these states fixed, we can now

choose sgn(〈 ν ′′ |µ| ν ′ 〉) for all other ν ′ = {1, n − 1} by selecting any overall phase

for each | ν ′ 〉. This gives us the n +m − 1 arbitrary chosen phases of the TDMe,

and the rest of the (n− 1)× (m− 1) + 1 are then fixed and need to be determined

by performing the integration over the relevant wave function or extracted from the

experimental data (Chapter 3).

A basic argument towards obtaining the relative phase (sign) information involves

using a semi-classical stationary phase point approximation. Namely, it states that

whenever the observed transition intensities along a fluorescence progression (same

ν ′, series of ν ′′) depart from monotonic behavior, the phase of the transition am-

plitude has reversed. It is true that the fluorescence progression shows a trend and

the nodal structures reveals the wavefunction of the ν ′ state. However, the fixing of

phases of the transition dipole amplitudes is strictly tied to the fixing the relative

phases of wavefunctions of ν ′′ states. Let us take the simplest case: ν ′ = 0 vibra-

tional state. If one expands |ν ′ = 0 > in terms of the |ν ′′ > states, the formula will

be: φ(ν ′ = 0) =
∑

ν′′ |ν ′′ >< ν ′′|ν ′ = 0 >. The second term is the Frank-Condon

overlap while the first |ν ′′ > is the basis wavefunction for the expansion. We know

the fluorescence spectrum, | < ν ′′|ν ′ = 0 > |2, shows no nodal structures. Therefore,

one can choose to assign < ν ′′|ν ′ = 0 > to be all positive. However, this choosing
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signs fixes the relative phases of |ν ′′ > simultaneously. Therefore, one then needs to

be able to use/find these relative phases of |ν ′′ > as well, instead of blindly assigning

them inconsistently. Equivalently speaking, after choosing < ν ′′|ν ′ = 0 > to be all

positive (or all negative), there is no freedom to choose the signs for each |ν ′′ >
except for an overall sign, while the relative signs are fixed! It is, in general, very

difficult to search for the correct combination of relative signs for the basis wave-

function: it is a 2Ng−1 problem where Ng is the number of basis functions for even

just one ν ′ state (not 2Ng because of the arbitrary overall sign). Furthermore, the

choice of using the simple semi-classical wavefunction as the basis wavefunction does

not give all positive/all negative signs for < ν ′′|ν ′ = 0 >, which confirms the fact

that the solution for these relative signs are non-trivial.

Also, we need to point out that for diatomics these semi-classical methods are

at best approximate. In fact, as is well known in semi-classical theories, the single

stationary phase approximation often fails, especially in the long wavelength regime

or when the main contributions to the dipole matrix elements come from the vicinity

of the classical turning points. For any procedure to be useful it has to be completely

general and highly reliable. The fact there are some cases in which a simple argu-

ment based on a single stationary phase approximation might work is not sufficient

for a general procedure. So although fluorescence progression ’might’ indicate sign

reversal, this is certainly not the case when double minima exist, or in polyatomic

case. In particular, two or more phase reversals (nodes) can occur in the region

between the ν ′, ν ′′ and ν ′, ν ′′ + 1 transition, for example when the nodes are closely

spaced (due to high kinetic energy) or when the transition amplitudes are small.

As will be seen in Chapter 3, determination of these relative phases can be done

accurately and efficiently because, instead of searching for various combinations of

relative signs of basis wavefunctions, knowledge of the energy levels of the excited

states can be used to “guess” smartly what the signs of < ν ′′|ν ′ = 0 > are when

the relative signs of the basis wavefunctions, |ν ′′ >, are pre-chosen. This is possible

because interference effects are experimentally observable; hence the correct sign of

an interference effect can be obtained from a computation that embodies internal

consistency.

In Chapter 5, we present another approach which directly extracts the com-

plex amplitudes (magnitudes and phases) of transition dipole matrix elements. The

method uses Bi-chromatic Coherent Control (BCC) in conjunction with time-resolved

fluorescence to uniquely determine the transition properties between individual rovi-
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brational eigenstates without any a priori assumptions. See Sec. (3.1) for other

alternative approaches that use spectral information for uncovering the structure

and properties of a molecule.

2.4.2 Time-Resolved Fluorescence of Vibrational States

High-resolution measurements for gases using time-resolved picosecond Raman spec-

troscopy were first demonstrated by Graener et al. in 1984 [74]. Modern approaches

(see Ref. [71]) now include using femtosecond Four-wave Mixing Spectroscopy to-

gether with optical gating [75] and up-conversion [4, 5] techniques to achieve tem-

poral resolution of less than 60 fs. In Fig. (2.7)(a) we show an excited wavepacket

(a) (b)

Figure 2.7: (a) Wavepacket decaying from an excited PES to the ground state. The
most probable decay routes are shown for when the wavepacket is at its turning
points. Image taken from Ref. [4]. (b) Temporal fluorescence captured over several
picoseconds. This picture is taken from Ref. [5] where the number of counts are
captured after the upconversion of the raw fluorescence. The two lines capture the
results without (a) and with (b) a monochromator inserted after the crystal.

at the two end points of its oscillations in the excited PES. The two vertical lines

depict the most probable decay path for when the wavepacket is in these positions,
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namely, when the wavepacket has the greatest overlap (Franck-Condon factor) with

a vibrational state in the ground potential. Although the typical lifetimes of vi-

brational states for diatomics, which can be calculated using Eq. (2.50), are in the

nanoseconds (ns), the probabilistic behavior of the spontaneous fluorescence process

means that a measurable fraction (∼ 10−8) of the excited molecules in a gas (of say

1023 particles) will decay after a few femtoseconds (fs). Unfortunately, the fastest

electronics operate on a picosecond timescale, and thus capturing time-dependent

processes at any shorter times requires the application of alternative techniques; one

such approach is up-conversion.

Up-Conversion

This method focuses the spontaneous fluorescence captured over a fixed solid angle

(say, 0.03sr) onto a nonlinear crystal [4]. A gate-pulse (or pulse-train) is also sent

into the crystal such that whenever the radiation temporally and spatially overlaps

it leads to sum-frequency generation. The resulting radiation (often in the ultra-

violet (UV)) is sent through a double-prism monochromator and measured using a

photomultiplier [5]. For single gate-pulses, the time dependence of fluorescence oc-

curs by varying the timing of the gate pulse relative to the pulse causing the initial

excitation (in a similar manner to pump-probe absorption measurements).

In a mathematical sense we define time-dependent spectrum in terms of the

energy spectrum (S(T, ωF )) over finite-time and frequency. Following Walmsley in

Refs. ([5],[4]):

S(T, ωF ) =

∫ ∞

−∞
dt|EFB(t)|2 (2.53)

where the electric field is given as

EFB(t) =

∫ t

−∞
dt′H(t− t′, ωF )B(t′, T )E(t′) . (2.54)

The gate-pulse acts as the time gate such that

B(t, T ) = e(−|t−T |Γ) (2.55)

where Γ relates to the pulse duration, while the double monochromotor acts as a
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frequency filter and can be modeled by

H(t− t′, ωF ) = γ2[γ2 + (ω − ωF )
2]−1 . (2.56)

In this way, temporal resolutions of at least 60 fs with energy ranges of 4 nm can be

attained.

2.4.3 Bound-Continuum Transition

The discussion of molecular state emissions has so far only included bound-bound

transitions. However, as an excited bound state decays, there will also be a weak

coupling to lower continuum states. The dipole matrix elements associated with these

transitions are complex due to the nature of the continuum states. We demonstrate

in Sec. (2.1.2) how to represent these continuum states as pseudo-bound states

and calculate an effective real-valued TDMe. To be sure of the accuracy of this

approximation, the effective eigenstates and TDMe representing the continuum space

must be compared with the results of a proper calculation. One method to obtain

these complex TDMe involving continuum levels is known as the artificial channel

method.

Artificial Channel Method

The quality we are interested in determining is the matrix element

fm,i = 〈E,m− |µe|Ei 〉 (2.57)

where |Ei 〉 is the initial bound excited state, |E,m− 〉 represents an incoming (−)

scattering states with energy E and collective quantum number m, and µe is the

usual electric dipole function [51–53]. Note that we do not use the outgoing scatter-

ing states because they correspond at early times to a well-defined fragment state

|E,n0 〉 and not a molecular bound state |Ei 〉 as in our case. On the other-hand, the

incoming solutions, |E,− 〉e−iEt, approach in the infinite future a single well-defined

asymptotic state |E,n0 〉. The fm,i integral, which is often described as a photodis-

sociation amplitude, is difficult to calculate due to the highly oscillatory scattering

function 〈R |E,m− 〉.
Shapiro [51] developed an approach to calculate fm,i by treating the problem us-

ing time-independent scattering theory with a source term, namely, |Ei 〉. However,
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instead of solving a set of inhomogeneous differential equations (DEs) (with source

term), he re-expressed these as a set of coupled homogeneous DEs. This allows for

greater generality of the solution in regards to different ground state PESs, but leads

to a great difficulty in integrating over the bound wavefunction for all energies, be-

cause its solutions diverge asymptotically at all energies other than at the particular

eigenenergies. This problem can be stabilized by including one extra “artificial” con-

tinuum channel which serves as a source for the bound manifold. The final solutions

to fm,i using the artificial channel method (ACM) can be found in Ref. [52], therein

also contains several alternative approaches so such calculations. For our application

in Sec. (2.1.2) we use a FORTRAN subroutine written by M. Shapiro in 1972, en-

titled: “Program for Quantum Mechanical Solutions of Photo(Pre)dissociation and

Bound State Problems, using the Artificial Channel Method”.
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Chapter 3

Inverions of Potential Energy

Surfaces

3.1 Potential Inversion Methods

The Born-Oppenheimer approximation gives rise to the concept of molecular poten-

tial energy surfaces/curves (PES) which then governs a molecule’s behaviors and

interactions. However, even for large-scale ab initio calculation on small molecular

systems, these electronic eigenvalues are difficult to obtain within spectroscopic ac-

curacy [76, 77]. Therefore, it is necessary to determine these potentials (or PES)

empirically from experimental observations. In this section we outline several cur-

rently existing methods of extracting the PES from spectroscopic data, and mention

the drawbacks associated with each.

3.1.1 Dunham Expansion

Nearly all approaches that determine an electronic PES from experimental data use

knowledge of the rovibrational energies of the desired potential. These eigenen-

ergies can be obtained directly by analyzing the transitions appearing in a given

spectrum. By taking the differences of spectral lines relating a common state

(ωi+1,j − ωi,j = ωi+1,i = ∆Ei+1,i) and the combination of differences between two

such results ∆(∆Ek,i) = ∆Ek+1,k −∆Ei+1,i, we can use a least-squares approach to

find the spectroscopic constants {ωe, ωexe, Bν , Dν , ...} used in the expansion of the

rovibrational energies (Eq. (2.16) from Sec. (2.1.2)). Given these constants it is

then possible to obtain an expression for an ordinary single minimum PES.

In the simplest case, we found in Sec. (2.1.2) that these constants can be related

to those of a Morse function (Eq. (2.18)). In particular, the eigenvalues of the
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vibrational states for a rotationless Morse potential are given by

Eν = ωe(ν + 1/2)− ωexe(ν + 1/2)2 (3.1)

= β

√

2De

µ
(ν + 1/2)− 2µβ2(ν + 1/2)2 , (3.2)

where β and De are two of the Morse parameters. This form of the PES is usually

not sufficient for realistic applications, however, it serves very-well in providing a

rudimentary model of the PESs in a diatomic for testing purposes.

Often, a better expression can be obtained using the work of Dunham [78]. He

provided an expression for the rovibrational energies in terms of spectroscopic con-

stants

E(ν, J) =
∑

i,j

Yi,j(ν +
1

2
)i[J(J + 1)]j , (3.3)

where the Dunham coefficients, Yi,j , are given by e.g. Y1,0 ≈ ωe, Y2,0 ≈ −ωeχe,

Y0,1 ≈ Be, Y0,2 ≈ −De, etc. In his treatment, Dunham modeled a diatomic as

a vibrating rotor in which the electronic PES, U(x), is given as a Taylor series

expansion about the minimum, Re, where x = (R−Re)/Re,

U(x) = a0x
2(1 +

∑

i≥1

aix
i) , (3.4)

and the {ai} potential parameters can also be related to the Dunham coefficients

(e.g. a0 = −Y 2
1,0/(4Y0,1), a1 = Y1,1Y1,0/(6Y

2
0,1),...). In the same way as earlier,

these Dunham coefficients can be determined directly from a global fit of the ex-

perimentally assigned spectral lines to the analytical energy levels using a least-

squares fitting routine. The solution Dunham provided is found using the first-order

WKB (Wentzel-Kramers-Brillouin) approximation, thus the model suffers for light

molecules and at long-ranges where the potential function diverges. Many groups

have provided corrections using higher-order WKB and Born-Oppenheimer break-

down terms involving adiabatic and non-adiabatic effects [79, 80]. However, in the

end this approach cannot make prediction beyond the range of the available data

[81], and is complicated by the multitude of corrections necessary for reasonable

results and the strong inter-parameter correlation in the Dunham expansion.
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3.1.2 Rydberg-Klein-Rees (RKR) Method

Given knowledge of the vibrational, G(ν), and rotational, Be, constants obtained

from fitting to spectral lines there is an another approach known as the Rydberg-

Klein-Rees (RKR) method [82–85] for determining PESs. Similar to Dunham’s ap-

proach, but with the advantage that one is not fitting a given functional form (Eq.

(3.4)), this method also applies the first-order WKB (Wentzel-Kramers-Brillouin)

approximation in the form of the quantization condition

∫ R+

R−

pdR = π(ν + 1/2) (3.5)

where p = 2µ
√

E − V (r) is the momentum and R− and R+ are the classical inner

and outer turning points of the nuclear motion. However, instead of starting with a

model and finding some expression for V (r), the RKR method relies on a clever trick

which avoids creating any definition for the potential. This requires the definition

of a special function A(E, J) with partial derivatives, ∂/∂E and ∂/∂J that can be

expressed as both a function of the two turning points, R+ and R−, and as an

integral over the vibrational quantum number, ν, where the integrand depends only

on the spectroscopic functions G(ν) and Bν [86].

R±(ν) =

(

f(ν)2 +
f(ν)

g(ν)

)2

± f(ν) (3.6)

where

f(ν) =

√

1

2µ

∫ ν

− 1

2

|G(ν)−G(ν ′)|− 1

2dν ′

g(ν) =
√

2µ

∫ ν

− 1

2

Bν′ |G(ν)−G(ν ′)|−
1

2 dν ′ . (3.7)

Note that corrections to the rotational parameter Be to account for rotational-

vibrational interactions are given by the rotational function,

Bν = Be +
∑

i=1

(−1)iαe(ν + 1/2)i (3.8)

where αe are higher order constants.

Although the RKR method lacks self-consistency in the vibrational and rotational
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constants, researcher, such as Tellinghuisen [45, 46], have developed iterative schemes

to converge the results. And, standard programs such as LeRoy’s RKR1 [87] now

exist to construct RKR curves from spectral data. The procedure uses the initial

estimation of the G(ν) and Bν harmonic constants to calculation V (R) using the

RKR method. The RKR potential, V (r), is then used to calculate the centrifugal

distortion (spectroscopic) constants De and He which are then used as corrections

to the measured (raw frequencies) wavenumbers. With these adjusted wavenumbers,

we iteratively return and obtain a least-squares estimation of the two harmonic terms

to generate a new potential. This technique and many other methods [88–91] refine

and expand the use of the RKR approach, however, several drawbacks appear to be

inherent within its application. Namely, that its validity is generally restricted to

only when the BOA is valid, and its foundation in the WKB approximation limits

its accuracy for very light dimers. And similar to Dunham, the potentials can only

be constructed up to highest observed vibrational state, so it becomes unreliable at

energies near and above the dissociation limit (e.g. it cannot resolve the repulsive

barrier). Lastly, RKR cannot address exotic potentials with multiple minima and

struggles with multidimensional (polyatomic) systems.

3.1.3 Direct-Potential Fits

The most common approach for obtaining accurate PESs in diatomic molecules in

recent years [92–97] is through using direct potential fits (DPFs).

Inverted Perturbation Approach

The modern DPF technique is based on the original inverted perturbation approach

(IPA) of Kosman and Hinze [98], which is a fully quantum mechanical method (con-

trary to the semiclassical Dunham or RKR schemes) for defining diatomic PESs.

The method seeks to find a linear correction δU(R) to some initial approximation

of the potential curve U(R) such that the eigenvalues of the molecular Schrödinger

equation with a potential term U(R) + δU(R) best agree with the measured spec-

tra. Using a parametrized function for δU(R), the numerically solutions of the

Schrödinger equations can be designed to converge, in the least-squares sense, to the

experimental eigenvalues. Initially [98], a series of global Legendre polynomials were

used to describe δU(R), however, it was later found [99] that IPA gave more realistic

results when the potential energy correction term was expanded in terms of local
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distributed Gaussian functions. These local functions were evaluated directly on a

set of discrete variable representation (DVR) points and the least-square fitting to

the spectroscopic data of eigenenergies was done using singular value decomposition

(SVD). However, because the success of IPA depends strongly on the choice of basis

functions, it is difficult to guess which expansion will fit the correction better and

with less coefficients; particularly when the the real shape V (R) is quite exotic.

To avoid this functional dependence, Pashov [100] proposed a modified-IPA ap-

proach which expressed the correction to the potential curve as a set of n equidistant

points and then afterwards connected these points with a spline function. Other au-

thors [101–103] have extended this program, however more recently, the preferred

approach has been to use direct fits to determine parameters characterizing the po-

tential energy functions.

DPF Analysis

The more general DPF analysis allows one to create model Hamiltonians of molecu-

lar systems that also take into account atomic-mass-dependent radial and centrifugal

potential corrections due to the breakdown of the BOA. The unknown functions for

the PES, spin-orbit couplings or non-adiabatic corrections are parametrized using

some initial estimates. Similar to IPA, the theoretical eigenenergies from a numerical

solution of the radial Schrödinger equation are compared with the experimental spec-

tral lines, and the error between these transition energies are minimized by iteratively

optimizing the values of the parameters in the unknown functions. Researchers such

as Coxon [104, 105], Bergeman [19, 93, 95, 96, 106] and LeRoy [80] have been very

active in applying this approach. In particular, LeRoy [107] has developed and pro-

vided free publicly available computer programs (DPotFit [108]) for implementing

such routines.

However, because IPA is based on the first-order perturbation approach to itera-

tively correct the potential energy and DPF involves minimizing a multi-dimensional

nonlinear system, it becomes essential to have a good prior knowledge of the poten-

tial surface. Without starting with very good initial estimations neither method will

converge to the experimental data; often because, the system of linear equations is

usually overdetermined and it becomes difficult to find the global minimum. Un-

fortunately, such prior estimates are not always available, particularly for the cases

of double minimum potentials, and thus a lot of variables must be included in the

parametrization; greatly increasing the computational costs.
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Model Potentials

Model potentials are often used when given a set of conventional spectroscopic

constants or when fitting spectral lines from, say, FT-spectroscopy measurements

[32, 73, 109]. As mentioned earlier, to represent ordinary single minimum PES, the

simplest option is the Morse function whose vibrational eigenvalues can be related

to the spectroscopic constants

Eν = ωe(ν + 1/2)− ωexe(ν + 1/2)2 (3.9)

= β

√

2De

µ
(ν + 1/2)− 2µβ2(ν + 1/2)2 . (3.10)

These analytical energies can be used to fit the molecular spectra to find the optimum

coefficients, and thus give a Morse representation of the potential.

Other multi-parameter functions such as the Lennard-Jones, Generalized Morse,

or Morse-Lennard-Jones [110] provide more flexibility in their application, particular

for non-linear direct potential fitting [78, 80, 105, 111], however in the past several

years the Morse/long-range (MLR) model, first introduced by LeRoy [81], has proved

very successful in representing PESs of diatomic and polyatomic molecules (see Ref.

[112] and references therein). The MLR potential is a single analytical function

that accurately describes both the deep-well region and long distance behavior of

molecular PESs. Fitting experimental data to a single function avoids the problems

associated with interpolation and yields reasonable results even with vacancies in

the spectra, see the work of Madison [112] for a recent application.

Tiemann [113] also provides another expression, known as the “Hannover” form,

which has been used a lot in the DPF papers of Bergeman [19, 93, 95, 96, 106]. Their

form will be used in subsequent Chapters as a theoretical model of our PESs.

3.1.4 Reflection Method

None of the above potential inversion techniques provide reliable information about

the repulsive wall at and above the dissociation energy. In an attempt to charac-

terize this centrifugal barrier comes the reflection method, which is an approximate

procedure related to photodissociation dynamics, namely the “photofragmentation

mapping” [114]. This approach, also known as collision-induced dissociation (CID)

[115, 116], relies on collecting the kinetic energy distribution to determine repul-

sive wall of a potential. However, theoretically the approach relies on semi-classical
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assumptions and fitting restrictions; and experimentally the research has been lim-

ited to the study of ions due to the need of large molecular currents for good CID

measurements [116].

3.2 A New Approach

Given the ever increasing pool of high-quality spectroscopic and scattering data,

our understanding of intra- and inter-molecular dynamics is slowly becoming more

and more detailed. The main missing element appears to be the lack of systematic

methods for obtaining accurate potential energy surfaces and dipole moment sur-

faces (DMS) from such data. Though ab initio computational methods and more

approximate methods which are suitable for larger systems [35–38, 117–119] are

quite successful, in most cases the line positions predicted by such computations are

not yet of “spectroscopic accuracy”. Present day analysis of spectroscopic data are

invariably performed in the “forward direction”, using analytic functional forms to

represent the PES, and optimizing their parameters to replicate to the extent possible

the experimental values. Such parameter fitting methods are, however, inherently

deficient due to our rather arbitrary choice of the functional forms used and the lim-

ited number of parameters we can consider. As we saw the RKR method [82–85] is a

direct inversion approach available for diatomic molecules, but it can only generate

potentials below the dissociation energy and is limited by the range of validity of the

WKB approximation. Moreover, potentials possessing two or more minima cannot

be inverted by this method. A few modified RKR methods have been developed

for polyatomic molecules [88–91], but these methods are approximate as they are

based on the adiabatic separation of the molecular coordinates and the vibrational

self-consistent-field (SCF) approximations. Overcoming some of the restrictuions of

the RKR method are the fitting approaches such as inverse perturbation analysis

[98, 99, 120], IPA for bound-continuum [101], DPF [19, 93, 95, 96, 106], and oth-

ers [102, 103], but these methods usually rely on having a good prior knowledge of

the potential surface, which may not always be available. Other authors [121–123]

have developed procedures which determine the PES numerically using Tikhonov

regularization. Though, this requires substantial number of iterations and computer

resources to deal with slow convergence, the method is under-determined due to

the small number of data points used relative to the large number of unknowns,

resulting in multiple solutions and non-unique PES. As in other inversion schemes
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(e.g. that of scattering cross sections data[50, 124]) the stumbling block appears

to be the extraction of the relative phases of the relevant (e.g. fluorescence, photo-

absorption) amplitudes. Given these phases, it was previously shown [125, 126] that

a point-by-point extraction of the excited state PES is possible.

The inversion procedure presented herein, based upon the work of Shapiro [126],

avoids using SCF or WKB approximations and is theoretically applicable to poly-

atomic systems [6]. The non uniqueness of the associated inverse problem is solved

by introducing a priori restrictions on the form of the PES using experimental in-

formation. The method as developed so far suffers however from the need to first

solve the phase problem, namely to determine the relative phases of the transition-

dipole amplitudes from the (absolute-value) squares of these amplitudes provided by

experiments.

In the following we show how the extraction of the phases (for bound-bound

transitions - the signs) of transition-dipole amplitudes from their experimentally-

measured absolute-value-squares, can be done in an iterative manner. Concurrent

with the iterative phase extraction we generate, in an ever increasing range, the ex-

cited state potential(s) from which emission occurs. We demonstrate this procedure

for several excited states of the Na2 molecule. We are able to extract the potential(s)

below and above the dissociation threshold with accuracies that are percentage-wise

substantially better than, though proportional to, the accuracy of the experimental

data. Our results for the repulsive regions are obtained with greater accuracy and

are beyond the assumptions and fitting restrictions inherent of procedures based

upon the reflection method [115, 116].

As a by-product, we also generate the transition-dipole function and go beyond

the Franck Condon (FC) approximation[47]. We see no inherent restrictions, given

data of sufficient quality and completeness, in successfully applying this method to

any polyatomic molecule.

3.2.1 Potential Inversion

Our aim is to compute a “target” potential Ve(R), assuming that we already know the

(reference) potential Vg(R) to which emission occurs, where R ≡ (R1, R2, · · · , RN )

designates a collection of the internuclear coordinates of the (polyatomic) molecule

of interest.

The time-independent Schrödinger equations associated with the two Born Op-
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penheimer potentials are,

[

K̂(R) + Vg(R)− Ei

]

χi(R) = 0 (3.11)

and
[

K̂(R) + Ve(R)− Es

]

φs(R) = 0, (3.12)

where K̂(R) denotes the kinetic energy operator for the nuclear coordinates R, χi

and φs are, respectively, the bound (rovibrational) wave functions of the ground and

excited electronic states. Ei and Es are the energies of these rovibrational states.

We begin by assuming that we already know the transition-dipole amplitudes,

di,s ≡
∫

dRχ∗
i (R)µe,g(R)φs(R) ≈ µ

∫

dRχ∗
i (R)φs(R), (3.13)

where the last equation spells out the FC approximation [47]. We now rewrite Eq.

(3.12) as

φs(R)Ve(R) = [Es − K̂(R)]φs(R), (3.14)

and multiply both sides from the left by φ∗s. Summing over all discrete states s, and

dividing by
∑

s |φs|2, we obtain that

Ve(R) =
1

∑

s |φs(R)|2
∑

s

φ∗s(R)
[

Es − K̂(R)
]

φs(R). (3.15)

The unknown excited states φs(R) are now expanded in the basis set of ground

rovibrational wave functions χi(R),

φs(R) =
∑

i

χi(R)〈χi | φs〉, (3.16)

By employing the FC approximation we can write the 〈χi|φs〉 overlaps in terms of

the transition-dipole matrix elements,

〈χi|φs〉 =
1

µ
〈χi|µe,g(R)|φs〉 =

di,s
µ
. (3.17)

After replacing 〈χi|φs〉 of Eq. (3.15) with di,s/µ and using Eq. (3.16), we obtain
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that,

Ve(R) =
1

∑

s |
∑

i χi(R)di,s|2
∑

s

(
∑

i

χidi,s)
∗
[

Es − K̂(R)
]

(
∑

j

χjdj,s). (3.18)

Use of Eq. (3.11) allows to express the action of the K̂(R) operator on the ground

state wave function χi(R) as,

K̂(R)χj(R) = [Ej − Vg(R)]χj(R). (3.19)

Insertion into Eq. 3.18 yields,

Ve(R) =
1

∑

s |
∑

i χi(R)di,s|2
∑

s

∑

i,j

(χidi,s)
∗ [ωi,s + Vg] (χjdj,s), (3.20)

where ωi,s ≡ Es − Ej are the transition energies. Finally, by pulling Vg(R) out of

the double summation, we arrive at the expression

Ve(R) =

∑

s

∑

i,j d
∗
i,sdj,sωi,sχ

∗
i (R)χj(R)

∑

s |
∑

i χi(R)di,s|2
+ Vg(R). (3.21)

Irrespective of any experimental source of error, discussed in section 3.3.3 below,

this formula is expected to be accurate only for R values for which the expansion of

φs(R) according to Eq. (3.16) converges well. An additional source of error occurs

when the numerator and denominator of Eq. (3.21) approach zero in the far tail of

the classically forbidden region. This point is discussed further below.

3.2.2 Transition-Dipole Function

The Ve(R) potentials extracted as described above, enable us to obtain the electronic

transition dipole function µe,g(R). Starting from the definition of the transition

dipole matrix elements (Eq. (3.13)), we multiply both sides by χ∗
i (R) and perform

a summation over the index i. Assuming that the set of ground states {χi} forms a

complete basis in which we can expand φs, we apply the completeness condition

∑

i

χi(R)χ
∗
i (R

′) = δ(R−R′), (3.22)
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and obtain that
∑

i

χi(R)di,s = µe,g(R)φs(R). (3.23)

Using the redundancy of Eq. (3.23) with respect to the choice of φs, we multiply it

by φ∗s(R) on both sides and sum over the index s. Upon rearrangement, our formula

for the dipole function becomes

µe,g(R) =

∑

i,s φ
∗
s(R)χi(R)di,s

∑

s |φs(R)|2
. (3.24)

The s summation in Eq. (3.24) guarantees (as in Eq. (3.21)) that the denominator

does not vanish at the zeroes of any of the wave functions.

As in the potential extraction, the accuracy in calculating the dipole function at

a given position R depends on the completeness of the eigenstates of our reference

potential in that region and having non-vanishing excited states φs(R) amplitudes.

3.2.3 Going Beyond the FC Approximation

In deriving Eq. (3.21) we have invoked the FC approximation[125, 126], having

replaced the overlap matrix elements fis ≡ 〈χi | φs〉 that should have been used in Eq.

(3.21), by dis/µe,g. (The unknown constant µe,g is unimportant because it cancels out

in both the denominator and numerator.) We had to make this replacement because

prior to the extraction of Vex all we had were the, experimentally derived, |dis|
matrix elements. Having completed the above iteration procedure obtaining a good

representation of Vex(R) (because the FC approximation is usually well justified), we

can now go beyond the FC approximation by computing the overlap matrix elements,

fis, and using them in Eq. (3.21) instead of dis. As will be shown, this results in a

slightly improved potential, most noticeably near the Re region.

Explicitly,

φs(R) =

∑

i χi(R)di,s
µe,g(R)

. (3.25)

We can now recompute the overlap integrals as,

fi,s ≡ 〈χi | φs〉 =
∫

dR

∑

j χj(R)dj,sχi(R)

µe,g(R)
, (3.26)

and use these new values in Eq. 3.21. We will return to this approach later in

Sec. 3.7.2.
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3.3 Application

3.3.1 Bound-Bound Diatomic Model

To better explain how the phase extraction procedure works we simplify the treat-

ment by concentrating on bound-bound transitions of diatomic molecules, reporting

about the use of continuum states in a later section (Sec. 3.4). In order to “jump-

start” the inversion scheme, given that neither the signs of di,s, nor Ve(R), nor φs(R)

are initially known, we rely on the fact that the excited potential can be parametrized

near its minimum position Re as an harmonic, or better still, a Morse potential,

VM (R) = De [exp(−β(R−Re))− 1]2 −De + Te. (3.27)

We can make a rough guess as to the value of Re based on some measured intensity

ratios, such as |d0,0|2/|d1,0|2. Likewise, we can estimate De, Te, and β, based on the

three lowest transition frequencies ωs=0,1,2;i=0, to the i = 0 ground vibrational level.

It turns out that a rough initial estimate is all we need, as the final result is rather

insensitive to it. Once we make any reasonable initial guess for Ve, we can obtain

the signs of the transition-dipole matrix elements according to Eq. (3.13) (note that

the magnitudes are already known from experiment), and substitute the results in

Eq. (3.21) using only low-lying vibrational states, to obtain an improved estimate

of Ve(R) near Re. This procedure can then be iterated until convergence.

As shown in Fig. (3.1), at this stage the potential is only known over a small

[(

Re −
∆

2

)

−
(

Re +
∆

2

)]

region, since we have used data pertaining to only its lowest lying φs(R) vibrational

states. We now augment this region by smoothly extrapolating the potential using

two exponential functions, one pertaining to R < Re − ∆
2 and the other pertaining

to R > Re +
∆
2 . We then compute a few higher vibrational states of the augmented

potential, and re-calculate the signs of the di,s matrix elements for all states con-

sidered thus far. We substitute the matrix elements thus obtained in Eq. (3.21)

and iterate for Ve(R) until convergence. We repeat this procedure anew, each time

slightly increasing the ∆ range of the potential for which Eq. (3.21) is used.
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Figure 3.1: The beginning of the target potential extraction process near the mini-
mum region, using a Morse potential as an initial guess.

Figure 3.2: The simulated emission spectrum from the Na2 A(1Σ+
u ) and B(1Πu)

potentials to the X(1Σ+
g ) potential, where we display the transitions between νA =

[0− 25] (νB = [0, 25]) and νX = [0, 60] states.
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3.3.2 Na2 Single Well

As a realistic application of our procedure we now present the extraction of the

A(1Σ+
u ) and B(1Π+

u ) excited state potentials of Na2 from fluorescence data. We sim-

ulate the experimental fluorescence data by calculating |di,s|2 for various transitions

between the A(1Σ+
u ) and B(1Πu) states and the ground X(1Σ+

g ) state, using the ab

initio potentials and transition dipole functions as provided by Schmidt et al.[127].

In Fig. 3.2, we show the emission transition signals from the A(1Σ+
u ) and B(1Πu)

potentials to the X(1Σ+
g ) potential.

Figure 3.3: The A(1Σ+
u ) Na2 potential extracted piece by piece by including an ever

increasing number of excited vibrational states.

Given the above |di,s|2 and ωi,s line positions, we have computed the A(1Σ+
u )

potential from Eq. (3.21) using the νX = [0 − 60] and νA = [0 − 20] states. In

Fig. 3.3, we see that the computed potential matches the ab initio potential very

accurately, extending well beyond the turning points of the highest φs(νA = 20)

state. As we venture more and more into the classically forbidden regions, the

magnitudes of the φ(νA = 0−20) states start to diminish rapidly, eventually causing

the error in the extracted potential to be unacceptable. As the number of included

states is increased, a highly accurate excited potential appears to “spread out” to

the right and left of Re at an ever increasing ∆. At the end of the procedure,
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Region Rleft Rright RMS RMS
with FCA Beyond FCA

Deep Well LTP(0) RTP(0) 0.19 0.01
Well LTP(5) RTP(5) 0.22 0.11
Left end LTP(20) LTP(18) 1.69 1.10
Right end RTP(18) RTP(20) 0.16 0.03
Global LTP(20) RTP(20) 0.33 0.55

Table 3.1: RMS errors (in cm−1) of the A(1Σ+
u ) potential in different regions, ex-

tracted using the FC approximation and beyond, where LTP(ν) and RTP(ν) denote
the left-turning-point and right-turning-point of a given νth vibrational state.

the range for which the potential is accurate is limited only by the range of the

highest φs(R) vibrational state used. It is not possible to further increase the range

of the extracted potential by including even higher (νA > 25) states without also

including the X(1Σ+
g ) continuum states [128]. The ground continuum states are

needed to satisfy the completeness condition of Eq. (3.16) for the νA > 25 high lying

vibrational states.

We supplement the figures by providing in Table 3.1 the details about the root-

mean-square (RMS) errors of the calculated A(1Σ+
u ) potential in the FC approxima-

tion and beyond. The various regions of interest are defined via the left (LTP(ν)),

and right (RTP(ν)) turning points of a given vibrational level ν. The RMS errors are

calculated between the inverted curve and the “true” ab initio potential within these

different ranges of the potential. As expected, our accuracy decreases as we expand

the well region where we calculate the RMS error from between the turning points of

the ν = 0, to the ν = 5, to the ν = 20 states. This is due to the increasing difficultly

of expanding the higher excited states in the ground state basis of eigenstates. We

also find larger errors appearing on the left (repulsive) wall arising from the inaccu-

racies in this expansion. Although we use this RMS error between the inverted and

real curves throughout this chapter to quantify the accuracy of our inversion proce-

dure, experimentalist may be more interested in how well we reproduce the spectral

lines (i.e. how accurately do we find the energy eigenvalues). Unfortunately, there

is no direct way to compare the RMS error of the extracted potential curve to the

RMS error between the calculated and actual eigenenergies since it depends on how

the discrepancies in the curves arise. Instead, the (global) RMS curve error can be

thought of as an upper limit to the errors in line positions. In general, the latter are

found to be at least half that due to oscillations in the calculated potential about
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the “true” curve.

Figure 3.4: Number of wrong signs of transition dipole moments for the A(1Σ+
u )

Na2 potential by including an ever increasing number of excited vibrational states,
where the black circle, red square, and blue diamond lines denotes signal strength
greater than 1× 10−2, 1× 10−4, and 1× 10−6 of the peak signal, respectively. The
small inset describes the same physical argument with different uncertainties in the
measured signal strength (green: 5% uncertainty; orange: 10% uncertainty).

As shown in Fig. (3.4), the number of wrong computed signs of transition dipole

moments (TDMs) for the A(1Σ+
u ) Na2 potential decreases to zero as the number of

excited vibrational states increases. The total number of transition lines between

νA = [0 − 25] and νX = [0, 60] states is 1586. In Fig. (3.4), black circle denotes

the data for signals strength greater than 1 × 10−2 of the peak signal, for which

there are 623 transition lines. By increasing number of excited vibrational states

and extending ∆, the calculated potential and the associated wavefunctions become

more accurate, which directly improves the calculated signs of TDMs. We notice

that, in Fig. (3.4), there are a total of 908 transitions whose signals strength are

greater than 1×10−6 of the peak signal, signs for all of which are computed correctly

when all νA = [0− 25] states are included.

The results of our calculation for the B(1Πu) potential, using the same number of

states, are shown in Fig.3.5. Table 3.2 shows the RMS errors of the calculated B(1Πu)

potential in the different regions using the FC approximation and going beyond it.
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Figure 3.5: The extracted potential from Eq. (3.21) for the B(1Π+
u ) state.

Quite naturally, the FC approximation is most accurate near the equilibrium region

where the wave functions are more tightly localized.

Na2 Transition Dipole Function

As an application of the above procedure we have calculated the transition-dipole

function µe,g(R) for the X(1Σ+
g )←A(1Σ+

u ), B(1Π+
u ) transitions. Figure 3.6a shows

the dipole function µX,A(R) produced using the νX = [0 − 60] and νA = [0 − 25]

states. The extracted µX,A(R) function is in excellent agreement with the ab-initio

Region Rleft Rright RMS RMS
FCA Beyond FCA

Deep Well LTP(0) RTP(0) 0.11 0.07
Well LTP(5) RTP(5) 0.12 0.08
Left end LTP(25) LTP(23) 2.63 2.19
Right end RTP(23) RTP(25) 0.88 0.75
Global LTP(25) RTP(25) 0.33 0.29

Table 3.2: RMS errors (in cm−1) of the B(1Π+
u ) potential in different regions, ex-

tracted using the FC approximation and beyond, where LTP(ν) and RTP(ν) denote
the left-turning-point and right-turning-point of a given νth vibrational state.
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one. It starts deviating from it only in the R < 5.5 Bohr and R > 9.5 Bohr deep

tunneling regions.

Figure 3.6b shows the dipole function µX,B(R) using of the νX = [0 − 60] and

νB = [0 − 25] states, where, similarly, µX,B(R) becomes less accurate in the deep

tunneling region of the high-lying states of φs(νB).

3.3.3 Robustness

In order to test the robustness of this procedure against insufficient or inaccurate

fluorescence data, we performed several calculations. We considered the following

sources of errors:

1. Missing lines, such as those connected with the low lying excited vibrational

states.

2. Errors in the magnitudes of the measured |di,s|2 line strengths.

Missing Lines.

As described above, in order to build the potential we start with the lowest vi-

brational states, e.g. νA = 0, and construct the well region. Then, by iteratively

including higher states, we extend the range of the inverted potential in a step-

wise fashion. Note, not all transition data are required to be available because only

39.3% of the transitions are of real usefulness because the intensities of all the other

transition are less than 1% of the highest transition intensity.

If the fluorescence lines associated with the lowest states are unavailable it would

seem that this procedure might run into difficulties. This however is not the case,

as we show by performing the potential extraction of the A(1Σ+
u ) state using only

the νA = [1 − 25] or νA = [2 − 25] states. Fig. 3.7 shows the potentials extracted

with the deficient data as compared to the complete νA = [0− 25] case. Figure 3.7

clearly shows that this procedure is stable even when the fluorescence data for the

νA = 0, 1 states are unavailable.

One extreme case is that only a few emission bands from highly energetic vi-

brational states are available. In this case, it is still possible to generate a global

potential with an RMS error of a few cm−1. Table 3.3 shows the RMS error anal-

ysis for the global potential with the use of different number of transition bands,

where we assume the available emission data are from νA = [20 − 25] highly ener-

getic vibrational states. It is obvious that, even with only four vibrational states,
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(a)

(b)

Figure 3.6: (a) The extracted dipole function µX,A(R) for transitions between the
X(1Σ+

g ) and A(1Σ+
u ) potentials. (b)The extracted dipole function µX,B(R) for tran-

sitions between the X(1Σ+
g ) and B(1Π+

u ) potentials.
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Figure 3.7: Computed A 1Σ+
u potentials with νA = [0 − 25], [1 − 25] and [2 − 25]

states.

the global potential can be generated with an impressive accuracy with a 2.6 cm−1

error. This can be easily applied to experiments to locate the optimal intermediate

state, which has good Frank-Condon overlaps with both the initial and final states,

in the creation of low-vibrational states of diatomic molecules [30, 129, 130].

Errors in |di,s|2.

To address this situation we have introduced random errors to the |di,s|2 data and

repeated the extraction of the potentials in the presence of such errors. The errors

νA used RMS (cm−1)
[24− 25] 7.8
[23− 25] 4.1
[22− 25] 2.6
[21− 25] 2.0
[20− 25] 1.7

Table 3.3: Global RMS errors of the A(1Σ+
u ) potential with different number of

transition bands from only a few highly excited vibrational states νA.

66



3.3. Application

(a)

(b)

Figure 3.8: (a) The deviations of the average extracted A(1Σ+
u ) potential relative

to the true ab-initio potential as a function of R, for different RMS errors of the
simulated fluorescence line strengths. (b) Root-mean-square (RMS) errors of the
constructed B 1Π+

u potential with a varying degree of errors in the experimental
fluorescence data. |di,s|2.
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in |di,s|2 were generated in a random fashion of 1%, 2%, 5% and 10% RMS errors

relative to the average |di,s|2 values. In Fig. (3.8a) we show the deviation from the

ab-initio potential of the average A(1Σ+
u ) numerical potential at different R-values

extracted from such data for the above magnitudes of errors. In Fig. (3.4) we also

show the number of wrong calculated signs for the TDMs for the A(1Σ+
u ) potential

with 0% (black), 5% (green), and 10% (orange) RMS errors in the measured signal

strength, |di,s|2, where signs for all 623 transition lines for signals strength greater

than 1 × 10−2 of the peak signal are computed correctly! Figure (3.8a) and Fig.

(3.4) demonstrate a remarkable robustness against inaccuracies in the experimental

fluorescence data: Percentage-wise the deviations from the ab initio potential are

much smaller than the relative experimental RMS error. We note that, in addition,

no attempt was made to smoothly interpolate the numerically obtained average

extracted potential values. It stands to reason that when such interpolations are

introduced, the deviations from the true potential would be further reduced.

Similarly, in Fig. (3.8b) we show the deviation from the ab-initio potential of the

average B 1Π+
u numerical potential at different R-values extracted from such data,

for the above magnitudes of errors. Figure (3.8b) demonstrates the remarkable

robustness against inaccuracies in the experimental fluorescence data: Percentage-

wise the deviations from the “true” potential are much smaller than the relative

experimental RMS error.

3.4 Continuum States

We present an extension to the bound-continuum cases of our bound-bound inver-

sion scheme for extracting excited state potentials and transition-dipoles from fluo-

rescence data. The procedure involves the discretization of the continuous spectrum

using box-normalization. The addition of the continuous spectrum guarantees com-

pleteness of the basis set used for the implicit expansion of the unknown excited state

vibrational wave functions. Here we show how to extend these ideas by incorporat-

ing spectral information of bound-continuum transitions. We do so by discretizing

the continuum, thereby circumventing the need for solving for the general phases

associated with continuum-to-bound transitions.

We first show that the use of bound state information alone is insufficient in

many cases, including the extraction of the Na2 C(1Πu) electronic potential. In this

demonstration we use an ab initio Vg(R) potential [127], which is in agreement with
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other sources [131–133]). Given Vg(R), we generate χi, and Ei. We then use the

ab initio [127] excited state potential, Ve(R), to simulate the experimental emission

spectrum to the ground state, consisting of ωi,s and |di,s|. In order to determine

the phases (signs, in the case of bound-bound transitions) of di,s, which enter Eq.

3.21, we begin with an initial estimate of Ve(R). Given this estimate, we calculate

an initial estimate of the signs of di,s. Since near the equilibrium position Re, most

diatomic potentials can be approximated by the Morse potential,

VM (R) = De

(

e−2β(R−Re) − 2e−β(R−Re)
)

+ Te, (3.28)

we perform a least-squares fit of the Morse parameters: Te, De, and β to match a

few of the transition frequencies ωs;i=0 to the (Es−Ei)/~ analytical values generated

by VM (R).

A rough approximation as to the value of Re can be made by observing the

stationary-phase point associated with the transition intensity |ds=0,i| from the ex-

cited ground state s = 0, the flexibility allowed for in this value is shown below.

Using this method we have computed the C(1Πu) potential. The end result shown

in Fig. 3.9 matches the ab initio potential to a root-mean-squared (RMS) accuracy

of 0.1 cm−1 in the ∆ region. The potential extends well beyond the turning points of

the highest φs(νC) state, and fails only when the magnitudes of all the φ(νC = 0−32)
states have become so small in the classically forbidden region that the calculation

becomes numerically unstable.

Restrictions

In view of the above one would like to use as many φs(R) states as possible. However

the number of φs(R) states is restricted because we cannot always maintain Cs of

the following completeness condition close enough to unity

1 ≥ Cs ≡
imax
∑

i=1

|〈χi|φs〉|2, (3.29)

where imax is the highest ground vibrational state included in the expansion (Eq.

3.16).

Figure (3.9) clearly shows the limited extent for which the Na2 C(1Πu) potential

can be computed based solely on bound-bound transition data. Of the approximately

73 bound states in C(1Πu) we are only able to accuracy include up to state s = 32
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Figure 3.9: (Black line) - the ground X(1Σ+
g ) Na2 state. (Red dots) - ab initio energies

of the excited C(1Πu) potential; (Green dashed line) - the initial Morse fit. (Brown line) -
the partial Na2 C(1Πu) potential extracted using only the s = [0, 32] excited bound states
and the i = [0, 63] vibrational ground states. (Violet) - the highest vibrational states
used. (Blue) - the entire excited C(1Πu) potential extracted using the s = [0, 110] states.
(Cyan) - the highest vibrational state used. This extraction can only be done when we
incorporate transitions to the continuum of the ground X(1Σ+

g ) state. The RMS deviation
of the potential extracted in this way from the ab initio potential is 0.1 cm−1.
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(upper grey line) using the i = [0, 63] bound states of X(1Σ+
g ) in the expansion.

Thus, it is not possible to further increase the range of the extracted potential by

simply including higher (s > 32) states without first increasing the size of our basis

set for expansion. Thus the only solution is to enlarge our basis by including the

X(1Σ+
g ) continuum states. We discuss how to implement this approach and deal

with the continuous spectrum in the next section.

3.4.1 Box Normalization

As mentioned above, we wish to include the continuum states in our procedure in

order to satisfy the completeness condition [134, 135]

imax
∑

i=1

|χi(R)〉〈χi(R)|+
∫

|χ(k,R)〉〈χ(k,R)| dk = 1 (3.30)

over as large a range of R values as possible. However, dealing directly with the

continuum states is difficult because the transition dipole matrix elements, ds,k,

are complex numbers when |k〉 are scattering states. To avoid this difficulty we

replace the true scattering states, χ(k,R), with discretized box-normalized [136–

139] scattering states, χk(R). In this way we are in effect binning the continuous

spectrum into discrete intervals, each being represented by a box-normalized state.

We have that,

∫

|χ(k,R)〉〈χ(k,R)| dk ≈
kmax
∑

k

|χk(R)〉〈χk(R)| (3.31)

In order to bin ds(k), the “true” bound continuum dipole matrix-elements, we

compare dk,s, the dipole matrix elements for the box-normalized states, with integrals

over a range of continuous ds(k) values,

dk,s ≡
∫ k+δk+

k−δk
−

ds(k
′) dk′ (3.32)

where δk− = (Ek − Ek−1)/2 and δk+ = (Ek+1 − Ek)/2. In order to do that we

first compute the “true” bound-continuum ds(k) matrix elements using the artificial

channel method (ACM) [51–53], for all the transitions between the s = 1, ..., 40

vibrational states of the Na2 C(1Πu) to continuum states whose energies start at
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Figure 3.10: The ds,k/µ Franck-Condon factors from the s = 40 state of the Na2 C(1Πu)
state to the discretized continuum states of the X(1Σ+

g ) state for two different boxes: Blue
stars - the R = [0− 15] box results; black circles - the R = [0− 25] box results. The “exact”
ds(k)/µ values, as obtained using the ACM scheme, are marked by a dashed green line for
the [3.5− 15] Bohr range and as a red line for the [3.5− 25] Bohr range .

just above the dissociation limit of X(1Σ+
g ).

Using two normalization boxes, the inner wall of both of which is placed at R = 0

and the outer walls - at either R = 15 Bohr or at R = 25 Bohr, we calculate dk,s
according to Eq. (3.32) and compare them to dk,s. The results are shown in Figs.

3.10. We see that the smaller normalization box results in substantial inaccuracies

due to the very sparseness of the box-normalized levels. As we increase the size of

the box, the density of the box-normalized states increases, and so does the accuracy

of the binning, resulting in an excellent agreement for R = 25 Bohr (and even for

R = 20 Bohr) between dk,s and dk,s.

The success of the box normalization procedure allows us to use the set of dk,s
matrix elements in exactly the same way we use any set of bound-bound matrix

elements in our bound-bound inversion procedure, enabling us to use the informa-

tion contained in the bound-continuum transitions. In this way we have effectively

converted the difficult bound-continuum phase problem into the sign-determination

problem of the bound-bound case.

We can therefore extend the excited wave function expansion of Eq. (3.16) over
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3.4. Continuum States

Figure 3.11: The values of Cs of Eq. (3.29), representing the completeness condition,
for each of the φs states of the C(1Πu) potential, as more and more X(1Σ+

g ) (χi+χ(k))
vibrational states are included in the expansion. Shown are Cs values for i = 1, ..., 63
(black circles); when we add to these states all the χ(k) continuum states below 516
cm−1 (red squares); all the continuum states below 1244 cm−1 (blue triangles); and
all the continuum states below 2018 cm−1 (green x’s). The inset shows these energy
levels relative to the dissociation energy of the X(1Σ+

g ) potential.
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all available states. The quality of this expansion for each individual excited state

can be expressed via the Cs completeness parameter of Eq. (3.29), which approaches

unity when the basis becomes complete. In Fig. 3.11 we plot the value of Cs for

each of the bound states φs of C(1Πu) when we include 63 vibrational bound state in

X(1Σ+
g ) (◦), and when we add box-normalized continuum states covering an energy

range of 516 cm−1 (✷), 1244 cm−1 (△), and 2018 cm−1 (×). As expected, the number

of excited states that can be accurately represented increases with the increase in

basis set, until all the bound states of C(1Πu) can be well reproduced by the ground

states expansion.

3.4.2 Extraction of the Entire Na2 C(1Πu) Potential

In Fig. 3.9 we have shown how the inclusion of continuum state allows us to extract

the entire Na2 C(1Πu) potential curve. In order to do so we have supplemented

the bound-bound transitions (including the i = 1, ..., 70 bound states) with the box-

normalized continuum states whose energies reach 2000 cm−1 above the dissociation

limit. The box-normalized continuum state of the highest energy considered is also

shown in the figure. We have incorporated only half of the transitions (those with

probability > 0.1%) and obtained RMS deviation from the exact potential of less

than 0.1 cm−1.

3.5 Double Well

3.5.1 Morse Model

In order to show that our approach is capable of extracting potential energy curves

with several minima, we have examined a model double-Morse potentials of the form,

V (R) = f(R)V1(R) + [1− f(R)]V2(R), (3.33)

where f(R) is a smooth switching function

f(R = (1 + tanh[(R− 9.12)/0.3])/2 (3.34)

and V1 and V2 are Morse potentials whose parameters are, De1 = 8 × 10−3 a.u.,

β1 = 0.2952 a.u., Re1 = 6.94 Bohr, De2 = 6 × 10−3 a.u., β2 = 0.29 a.u., and

Re2 = 10 Bohr. By adopting the same approach and using the FCA, we extract
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3.5. Double Well

the potential by adding vibrational states ν in Eq. (3.21). Fig. 3.12 shows the

building process of the double-well potential obtained by considering the transitions

associated with the ν = [0−11] states. The reason behind the successful construction

lies in the extension of the wave function beyond the classical turning points. Thus,

though the ν = 5 vibrational state is well localized in the left well, the wave function

φ(ν = 5) spills over to the second well, thereby enabling the accurate extraction of

the second minimum.

Figure 3.12: Step-wise construction of a model double-well potential.

3.5.2 Extraction of the Na2 21
Σ

+
u (3s+4s) Double Well Potential

As a more sophisticated demonstration of the use of continuum states, we present

the extraction of a double well potential, that of the Na2 21Σ+
u (3s+4s) state [100,

127, 140]. In this Σ+
g ⇋ Σ+

u transition we use for simplicity only the rotation-

less 21Σ+
u (3s+4s) states. These states are coupled optically to the J = 1 X1Σ+

g

rovibrational levels, hence we add a centrifugal potential of 1/(MR2) to the electronic

ground state potential.

With the use of only the bound states of X(1Σ+
g ), we are restricted by the lack

of completeness to reconstructing the 21Σ+
u (3s+4s) potential at energies below Es=5
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3.5. Double Well

of the deeper well. In contrast, the addition of continuum transitions over a range

of about 2300 cm−1 above the ground state dissociation limit, allows for over 110

bound states of the 21Σ+
u (3s+4s) potential to be accurately expanded in the ground

state basis set.

In Fig. 3.13 we show how the piecewise potential re-construction proceeds. We

start with the s = 5 bound state (blue dashed line) and proceed to the s = 13

level (green dot-dashed line). This level yields the first indication that an additional

well might exist (brown colored lines): The inclusion of the s = 13 state causes the

potential to exhibit a new oscillatory behavior at a region which up till now was

smoothly increasing.

Figure 3.13: The wave functions of the fifth vibrational state (dashed) shows the maximal

energy to which we are able to re-construct the Na2 21Σ+
u (3s+4s) potential using only the

bound states of the X(1Σ+
g ) state. In contrast, the inclusion of continuum states up to the

2300 cm−1 above the dissociation threshold allows for a complete re-construction of the

potential curve. The s = 13 vibrational level (dot-dashed) exhibits the first indication that

an additional well (brown line) might exist. Using this information to smoothly extrapolate

the next potential iteration reveals more of the second well (black line). The two wells

and the barrier between them assume their fully developed forms (dotted line) when the

s = 27 state is introduced. The inset shows the complete re-construction (blue line) of the

21Σ+
u (3s+4s) potential using up to the s = 110 state (black line). The RMS deviation of

this potential from the ab initio one (red dots) is less than 1 cm−1.

We thus proceed by averaging over the highly oscillating region on the left and
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linearly extrapolating the inner and outer regions of the two wells. The new set of

eigenstates thus obtained account to some extent for the contribution of the second

well. As we introduce new eigenstates and iterate this procedure, the potential

begins to converge in the two well regions (see black line in Fig. 3.13). Upon

reaching level s = 27 (dotted-line) we have fully resolved the potential hump between

the wells due to the information contained in the tunneling tails of the vibrational

wave functions. Continuing onward, we end the construction of this potential at the

s = 110 vibrational state (E110 ∼ 0.116833 a.u.) finding that we have extracted

the repulsive wall of the double well potential nearly 1000 wave-numbers above the

known atomic asymptote of Na(3s) + Na(4s) (0.11728 Hartree at about 56.7 Bohr

[100, 140]). The blue curve in Fig. 3.13 displays the final result constituting the

extraction of the double well potential to within 1 cm−1 RMS error.

One drawback of the present inversion is that our procedure so far assumes the

FCA which is not justified in the present case because there is a substantial difference

[141, 142] between the dipole function at each well. Thus one has to go beyond the

FCA, as we will show in Sec.3.7 (see Ref. [7]). However, first, we also introduce an

approach to image diatomic potentials using different rotational bands.

3.6 Rotational States

Here we demonstrate how to image diatomic potentials using data from different

rotational bands. We will assume that we have emission spectrum for only two

excited rovibrational states exist: (s, J1) and (t, J2) where s 6= t and J1 6= J2. Recall

that we need at least two states in our fundamental expression to kill the nodal

behavior in the denominator. Thus, we wish to express the excited state electronic

PES as:

Vex(R) = f
(

Vgr(R), χi[J
′

1], χm[J
′

2], ω, J1, J2

)

(3.35)

where Vgr(R) is the ground state PES, ω is the transition frequency, and χi[J1] and

χm[J2] are ground state rovibrational wavefunction with angular momentums of J
′

1

and J
′

2, respectively. For simplicity, we will use i, j, s to denote the quantities associ-

ated with transitions from (s, J1) and use m,n, t to denote the quantities associated

with transitions from (t, J2).
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3.6.1 Inversion Formula for R and P Branches

Consider when we use only one state, (s, J1), and we take the R branch first:

(s, J1)→ (i1, J1 − 1). The previous inversion formula for the Q branch [143, 144]

Vex(R)(Q branch) =

∑

i,j d
∗
i,sdj,sωi,sχ

∗
i (R)χj(R)

|∑i χi(R)di,s|2
+ Vgr(R), (3.36)

then becomes

[

Vex(R) +
J1(J1 + 1)

2µR2

]

(R branch) =

∑

i,j d
∗
i,sdj,sωi,sχ

∗
i (R)χj(R)

|∑i χi(R)di,s|2

+

[

Vgr(R) +
J1(J1 − 1)

2µR2

]

, (3.37)

and thus

Vex(R)(R branch) =

∑

i,j d
∗
i,sdj,sωi,sχ

∗
i (R)χj(R)

|∑i χi(R)di,s|2
+ Vgr(R)−

2J1
2µR2

. (3.38)

As before, we add a summation over all s to express a more general term which

avoids nodal structure in the denominator of Eq. [3.38]

Vex(R)(R branch) =

∑

s

∑

i,j d
∗
i,sdj,sωi,sχ

∗
i (R)χj(R)

∑

s |
∑

i χi(R)di,s|2
+ Vgr(R)−

2J1
2µR2

. (3.39)

And, similarly for the P branch transition the inversion formula is given by

Vex(R)(P branch) =

∑

s

∑

i,j d
∗
i,sdj,sωi,sχ

∗
i (R)χj(R)

∑

s |
∑

i χi(R)di,s|2
+ Vgr(R) +

2J1
2µR2

. (3.40)

3.6.2 Inversion Formula for Different Rotational States, J1 and J2

Now we consider the probable scenario that there are only two sets of emission data

ready to be used: (s, J1) and (t, J2). However, with limited source of experimental

measurements, as in Ref. [145], there is often not much freedom to choose two

excited states within the same branch and the same rotational quantum number.

Let us take the case that J1 6= J2 but they both correspond to the R branches, i.e.

transitions for (s, J1)→ (i, J1 − 1) and (t, J2)→ (m,J2 − 1). The inversion formula
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using these two excited states is derived similar to before (Eq. (3.39))

Vex(R)(R branch) =

∑

i,j d
∗
i,sdj,s

(

ωi,s − 2J1
2µR2

)

χ∗
i (R)χj(R)

|∑i χi(R)di,s|2 + |
∑

m χm(R)dm,t|2

+

∑

m,n d
∗
m,tdn,t

(

ωm,t − 2J2
2µR2

)

χ∗
m(R)χn(R)

|
∑

i χi(R)di,s|2 + |
∑

m χm(R)dm,t|2
+ Vgr(R). (3.41)

Again, we use i, j, s to denote the quantities associated with transitions from (s, J1)

and use m,n, t to denote the quantities associated with transitions from (t, J2).

Again, the general form for using more vibrational states with the same J1 and/or

J2 numbers can be derived by including summations over these labels to improve

extraction accuracy:

Vex(R)(R branch) =

∑

s

∑

i,j d
∗
i,sdj,s

(

ωi,s − 2J1
2µR2

)

χ∗
i (R)χj(R)

∑

s |
∑

i χi(R)di,s|2 +
∑

t |
∑

m χm(R)dm,t|2

+

∑

t

∑

m,n d
∗
m,tdn,t

(

ωm,t − 2J2
2µR2

)

χ∗
m(R)χn(R)

∑

s |
∑

i χi(R)di,s|2 +
∑

t |
∑

m χm(R)dm,t|2
+ Vgr(R). (3.42)

Likewise, the inversion formula can be derived in a similar fashion for pure P branch

transitions as well

Vex(R)(P branch) =

∑

s

∑

i,j d
∗
i,sdj,s

(

ωi,s +
2J1
2µR2

)

χ∗
i (R)χj(R)

∑

s |
∑

i χi(R)di,s|2 +
∑

t |
∑

m χm(R)dm,t|2

+

∑

t

∑

m,n d
∗
m,tdn,t

(

ωm,t +
2J2
2µR2

)

χ∗
m(R)χn(R)

∑

s |
∑

i χi(R)di,s|2 +
∑

t |
∑

m χm(R)dm,t|2
+ Vgr(R). (3.43)

Simple extensions include finding mixed branch transitions for different rotational
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states: namely for R+P branches:

Vex(R)(R+P branches) =

∑

s

∑

i,j d
∗
i,sdj,s

(

ωi,s − 2J1
2µR2

)

χ∗
i (R)χj(R)

∑

s |
∑

i χi(R)di,s|2 +
∑

t |
∑

m χm(R)dm,t|2

+

∑

t

∑

m,n d
∗
m,tdn,t

(

ωm,t +
2J2
2µR2

)

χ∗
m(R)χn(R)

∑

s |
∑

i χi(R)di,s|2 +
∑

t |
∑

m χm(R)dm,t|2
+ Vgr(R); (3.44)

for R+Q branches:

Vex(R)(R+Q branches) =

∑

s

∑

i,j d
∗
i,sdj,s

(

ωi,s − 2J1
2µR2

)

χ∗
i (R)χj(R)

∑

s |
∑

i χi(R)di,s|2 +
∑

t |
∑

m χm(R)dm,t|2

+

∑

t

∑

m,n d
∗
m,tdn,t (ωm,t)χ

∗
m(R)χn(R)

∑

s |
∑

i χi(R)di,s|2 +
∑

t |
∑

m χm(R)dm,t|2
+ Vgr(R); (3.45)

and for Q+P branches:

Vex(R)(Q+P branches) =

∑

s

∑

i,j d
∗
i,sdj,s (ωi,s)χ

∗
i (R)χj(R)

∑

s |
∑

i χi(R)di,s|2 +
∑

t |
∑

m χm(R)dm,t|2

+

∑

t

∑

m,n d
∗
m,tdn,t

(

ωm,t +
2J2
2µR2

)

χ∗
m(R)χn(R)

∑

s |
∑

i χi(R)di,s|2 +
∑

t |
∑

m χm(R)dm,t|2
+ Vgr(R). (3.46)

Lastly, a generalized inversion formula of Eq. (3.21) using all three branches can

be given, where the R branch involves the J ′ = J1 → J ′′ = J1 +1 transitions, the Q

branch would correspond to the J ′ = J2 → J ′′ = J2 transitions, and the P branch

- to the J ′ = J3 → J ′′ = J3 − 1 transitions. Using standard spectroscopic notation

ground states are denoted by J ′′, and we use J ′ for the excited state.
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Vex(R)(R+Q+P branches) =
1

A







∑

s

∑

i,j

d∗i,sdj,s

(

ωi,s −
2J1
2µR2

)

χ∗
i (R)χj(R)

+
∑

t

∑

m,n

d∗m,tdn,t (ωm,t)χ
∗
m(R)χn(R)

+
∑

u

∑

k,l

d∗k,tdl,u

(

ωk,u +
2J3
2µR2

)

χ∗
k(R)χl(R)







+ Vgr(R), (3.47)

where A ≡∑s |
∑

i χi(R)di,s|2 +
∑

t |
∑

m χm(R)dm,t|2 +
∑

u |
∑

l χl(R)dl,u|2. Note,

a summation over J1, J2 and J3 can be made when more than one rotational excited

states exist within the same branch.

3.7 Extensions

In this section we present two works which extend our inversion method. The first

to multi-dimensional potentials [6]:

(A) X. Li and M. Shapiro, Inversion of two-dimensional potentials from frequency-

resolved spectroscopic data, J. Chem. Phys. 134, 094113 (2011) ,

and the second to obtaining solutions beyond the FCA [7]:

(B) X. Li and M. Shapiro, The Dipole Correction Method for Extracting Excited

State Potentials and Electronic Transition Dipoles from Fluorescence Data, Isr. J.

Chem. 52, 1-7 (2012) .

The author was intimately involved in the discussions and verification of the

results leading to manuscript (A), although, the writing and processing was solely

carried-out by Dr. Xuan Li with the support of Dr. Moshe Shapiro. The work

contained in (B) is an elaboration of results already presented (see Sec. (3.2.3)).

The author participated closely in discussions leading to the manuscript, which was

composed and submitted by Dr. Xuan Li and Dr. Moshe Shapiro

3.7.1 Two Dimensional Potentials

To date, the determination of multi-dimensional PESs have relied on ab initio [34]

or semiempirical [35–38, 117–119] quantum chemistry computations. Unfortunately,
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these calculations are not capable of finding the spectroscopic line positions to the

same accuracy as experimental measurements, this is in particular true for PES

with many degrees of freedom (DOF). A lot of effort [81, 89, 98, 146–149, 149, 150].

has been put forth into studying polyatomics, however, the Hamiltonians based on

internal modes becomes complicated due to distortions in the normal mode structure

due to anharmonic couplings, Duschinksy rotations [151], and rotational (Coriolis)

couplings [152]. Even though new coordinates which diagonize the kinetic energy

operator may simplify matters [56], no systematic approach exists for extracting a

PES for experimental data.

Here, we review the extension of the inversion procedure that was used to obtain

one-dimensional PES from the spectroscopic line positions and line strengths for

diatomic molecules. The model is based on representing a linear triatomic molecule

with two degrees of vibrational freedom, or, a torsion and bending mode within a

polyatomic system. For complete details see Ref. [6]

Linear Triatomic Model

For modeling a linear triatomic molecule with two vibrational DOF, we can define

two independent coordinates:

R = x1 −
m2x2 +m3x3
m2 +m3

, and,

r = r1 = |x3 − x2| , (3.48)

where mi and xi are the masses and one-dimensional positions of the three atoms

respectively. The two-dimensional potential model, V (R), will be represented as a

sum of independent, one-dimensional, potentials between each atom. For instance,

the pairwise potentials between atoms i and j will be given as Vk(rk), k 6= i, j where

rk, k 6= i, j is the distance between the two atoms i and j. Therefore, the ground

state PES will be given as

Vg(r1, r2, r3) = V g
1 (r1) + V g

2 (r2) + V g
3 (r3) , (3.49)

where the V g
k (rk), k = {1, 2, 3}, potentials can be taken as three Na2 X(1Σ+

g ) ground

state potentials [127].

The excited state potential, Vex(R), will be modeled in the same way except for

a three-body term to account for distortions, as well as, a constant term giving the
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Figure 3.14: (a) A schematic illustration of two 2D PES. (b) Fluorescence lines
associated with a typical spectrum of the system in (a). Image taken from Ref. [6]
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energy shift between the ground and excited state PES. Similar to the ground state,

Vex(r1, r2, r3) = V e
1 (r1) + V e

2 (r2) + V e
3 (r3)

+ V3b(r1, r2, r3)− Eshift, (3.50)

where the V e
k (rk) represent pairwise potential between atoms i and j, however we

now use the Na2 B(1Πu) excited state potentials ([127]) for their expression. The

three-body potential will be defined as

V3b = D3b e

[

−
∑

k(rk−req
k )

2
/∆R2

]

, (3.51)

where D3b = −0.02 a.u., req3 = req1 = 0.5req2 = 6 Bohr, and ∆R = 8 Bohr. And, the

energy shift will be equal to Eshift = E(Na3p)− E(Na3s).

Fig. (3.14a) gives a schematic illustration of the two-dimensional PES as a func-

tion of the two internal coordinates. The simulated frequency-resolved spectrum

between rovibrational eigenstates of these two surfaces is shown in Fig. (3.14b).

With our objective being to determine the excited state potential from the intensity

fluorescence data, we follow our inversion procedure, and first make an initial guess

for the excited state potential. For this we use a sum of Morse potentials,

VM
k = De

k

[

exp(−βk(rk − reqk ))− 1
]2

+ T e
k . (3.52)

where, as before, we can estimate the Morse parameters De
k, T

e
k , r

eq
k and βk using

lower transition frequencies, ωi,s, to some, say i = 1, ground vibrational level, we

hope to roughly estimate Vex about its minimum position (Req, req), as

Vex ≈ VM
1 (r1) + VM

2 (r2) + VM
3 (r3)− Eshift . (3.53)

And as before, the distribution of |di=1,s|2 for the low lying excited φs states can be

used to estimate reqk .

This approximation for Vex now allows for an initial estimate of the (unknown)

signs of the transition dipole matrix elements, di,s, using Eq. (3.13) (recall that the

magnitudes of the real bound-bound matrix elements) are already known from exper-

iment). Then, using Eq. (3.21) including only a few low-lying rovibrational excited

states, a new estimate of Vex(R, r) about (Req, req) can be calculated. Iterating this

procedure until convergence, and then extrapolating the potential in both R and r
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directions allows for the entire surface of the electronic excited state to be generated.

We show the results of the extraction in Fig. (3.15) against the “true” PES. The

Figure 3.15: A comparison between a PES extracted using Eq. (3.21), using only
the s = 1− 10 states, with E(s = 10) = 3.602× 10−2 a.u. (full lines), and the “true”
PES (points). Image taken from Ref. [6]

calculated potential, which used the ten lowest rovibrational states in the excited

potential, required 335 of the low lying ground vibrational states We find excellent

agreement between the two surfaces, with average RMS errors of approximately 0.01

cm−1. (see Ref. [6] for more details of the results).

The two dimensional inversion approach also works for more complicated excited

state potentials, Vex, such as those possessing multiple minima. Using the same

excited state PES as earlier (Eq. (3.50)), we can add an additional three body term,

V
′

3b, with parameters given by D′
3b = −0.003 a.u., req3 = req1 = 0.5req2 = 7.2 Bohr,

and ∆R = 0.5 Bohr, to generate a second local minima. Shown in Fig. (3.16a)

is this “true” potential compared with the results of the extraction using excited

rovibrational levels s = 1 − 6. First, we see that the results match very well, with

RMS errors below 0.1 cm−1 (see Ref. [6] for more details). However, it is important

to note that the energy level of the highest rovibrational state, E(s = 6) = 0.03539

a.u., is in fact lower than the energy of the local minimum (0.03554 a.u.). Thus

the ability to resolve the second local minima occurs solely due to the information

contained in the classically-forbidden region of the vibrational wavefunctions. In
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Figure 3.16: Extraction of a double-well PES: (a) A comparison between the PES
extracted using Eq. (3.21) (full lines), and the “true” PES (points), having used
only the s = 1 − 6 states, with E(s = 6) = 3.54 × 10−2 a.u.; (b) |φ6(R, r)|2 - the
probability-density for the highest state used.
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Fig. (3.16b), we plot the probability-density associated with the highest energetic

state (s = 6) used in the extraction. This illustrates that the tunneling tails of

the vibrational wave functions spread across the molecular space and allows for the

accurate determination of the PES well beyond the classical allowed region. Finally,

out of the 4800 possible emission lines of non-negligible strengths which could have

been used, only one fourth were included in the calculation. As we have encountered

earlier, weak transitions lines, particularly those with large uncertainties [143, 144]

can be removed from the computation without detrimental effects.

This inversions of a two-dimensional excited state PES from emission (or absorp-

tion) line positions and intensities opens up the door to extracting more complicated

structures, such as three-dimensional PES and those of nonlinear molecules. Also,

similar to the diatomic case [143, 144], given knowledge of the excited PES, it will

be of great interest to determine (the R coordinate dependence of) the electronic

transition dipole function. Having the transition dipole function, then permits us to

move beyond the Franck-Condon approximation (FCA) to obtain a more accurate

solution to the PES.

3.7.2 Dipole Correction Extension

As we have shown in this chapter, we are able to extract excited state electronic

potentials and the nuclear coordinate dependence of the transition dipole function

from spectroscopic data by using the Franck-Condon approximation (FCA). How-

ever, for many situations [141, 142], the FCA may not be justified because there

could be a substantial variation in the dipole function across the region spanned

by the potential. In Sec. 3.2.3, we briefly suggested an approach for extending our

inversion procedure beyond the FCA. Here, we review the work of collaborators (see

Ref. [7]) which continued on this idea and gives the specific accuracy improvements.

It should be noted that this technique is applicable to any other inversion schemes

which are based on the FCA (e.g. method of Avisar and Tannor [153, 154]).

In the following presentation, we also further address an inherent limitation often

found in experimental data, namely, that not all of the desired data is available. In

particular, it can be easier to label transition lines in a spectrum to/from low-lying

states and highly-excited states [33]. Thus, in the case when no information is

available for the majority of the intermediate states of an PES, inversion methods

such as RKR are not possible. However, as we demonstrate below by using the

Q-branch transitions from only a few low-lying states (s = 0− 5) and some highly-
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excited states (s = 20− 23) with large rotational constants (J ′ = 44), our approach

is still capable of obtaining great results.

Na2 A State

Figure 3.17: The average transition dipole moment µ̄e,g of Eq. (3.13) for transitions
from |s = 0 − 10, J ′ = 45, A 1Σu〉 to the |i = 0 − 54, J ′ = 44, X 1Σg〉 states as a
function of the transition magnitude, |di,s|. Figure and caption taken from Ref. [7].

As mentioned, the accuracy of the inverted potential using Eq. (3.21) and the

transition dipole function using Eq. (3.24) is limited by the validity of the FCA.

In order to test this assumption, we would like to look at the true variation of

the average dipole, µ̄e,g, for different vibrational quantum numbers of the ground

(g), and excited (e) state potentials. Using the |ν = 0 − 10, J ′ = 45, A 1Σu〉 to

|ν = 0 − 54, J ′ = 44, X 1Σg〉 transitions in Na2, we plot, in Fig. 3.17, µ̄e,g as a

function of the transition magnitudes, |di,s|. Instead of these plotted points for µ̄e,g
falling on a horizontal line (as would be the case when FCA is valid), we find a

standard deviation of the points from the average value of the dipole is ∼ 6.6%. To

take this variation into account, our objective will be to use the information of the
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µe,g(R) function derived in Eq. (3.24) to improve our inversion method.

By rearranging Eq. 3.13, we can get an expression for the excited state rovibra-

tional eigenstates

φs(R) =

∑

i χi(R)di,s
µe,g(R)

, (3.54)

in terms of the ground rovibrational states, χi(R), the TDMe, di,s, and the transi-

tion dipole function, µe,g(R). These eigenstates can then be used to recompute the

overlap integrals with the ground states as follows

fi,s ≡ 〈χi | φs〉 =
∫

dR

∑

j χj(R)dj,sχi(R)

µe,g(R)
. (3.55)

Then these new values allow for us to write the potential inversion formula without

employing the FCA as

Vex(R) =

∑

s

∑

i,j f
∗
i,sfj,sωi,sχ

∗
i (R)χj(R)

∑

s |
∑

i χi(R)fi,s|2
+ Vg(R). (3.56)

Now we have a dipole correction method to Eq. (3.21) which proceeds in the

following manner:

1. Compute Vex(R) and µe,g(R) using our original approach within the FCA

2. Compute the lowest eigenfunction φs=0(R) of Vex(R) and use Eq. (3.13) im-

prove µe,g(R).

3. Use the improved µe,g(R) and Eq. (3.55) to improve the fi,s overlap integrals

for s = 0, 1.

4. Finally, use the overlap integrals and Eq. (3.56) to improve the inverted po-

tential, Vex(R).

5. Iterate steps 2–4 for an increasing number of the excited states (e.g. s = 0, 1),

until all available excited rovibrational states, φs have been included.

Notice, that this iterative process uses both the intensities and frequencies of the

experimental data to improve the potential and the transition dipole function simul-

taneously.

The success of this approach is demonstrated with corrections to the extracted

A(1Σ+
u ) excited state potential of Na2 using fluorescence data to the ground X(1Σ+

g )
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state. Note that we use ab initio potentials and transition dipole functions of Schmidt

et al.[127] to simulate the experimental fluorescence data. In particular, we use the

rovibrational state s = [0−10] and i = [0−54], in the J ′ = 45→ J ′′ = 44 P-branch,

where s and i label the excited and ground states respectively. In Fig. 3.18a,

we plot the difference between the computed and the true potentials as a function

of the internuclear distance for our original procedure and after using the dipole

correction method. It can clearly be seen that going beyond the FCA improves the

accuracy of the extracted A(1Σ+
u ) potential by up to a factor of 20. As expected the

determination of the transition dipole function is improved by a similar factor, as

shown in Fig. 3.18b.

Unlike our previous FCA-based inversion schemes [143, 144], this study itera-

tive improves the signs and magnitudes of the overlap integrals, fi,s, instead of only

finding the signs of the transition dipole matrix elements. This occurs as a result of

iteratively obtaining more and more accurate representations of the excited rovibra-

tional eigenstates due to utilizing the transition dipole function. We demonstrated

this in Fig. 3.19a and Fig. 3.19b, where we plot the errors in the extracted wave

functions, φs=0(R) and φs=5(R), as a function of the radial distance, R, for the two

cases (with and without FCA). And, as anticipated a factor of 10 improvement is

seen in the wavefunction accuracy.

Na2 B State

We now demonstrate how the dipole correction procedure improves the inversion

results even when limited spectroscopic data is available. Using the excited B 1Πu

electronic potential of Na2, we consider only the Q branch transitions (J ′ = 44 →
J ′′ = 44) between the rovibrational states in the X1Σ+

g state and the six low-lying

states (s = 0 − 5) and the four most highly-excited states (s = 20 − 23) of the B

state. In Fig. 3.20 we see the same results as earlier, the differences between the

computed and the true potential (a) and transition dipole function (b) as a function

of the internuclear distance is improved by a factor of 10-20 when performing the

dipole correction. Similar to before, we obtain a global RMS error of 0.08 cm−1 over

an energy range of 2300 cm−1, and an RMS error about the minimum of 0.02 cm−1,

using only 10 rovibrational states of the B potential.

As with our original formulation, the accuracy of the inversion is reliant on the

degree with which we satisfy the completeness condition. Namely, how well can the

excited rovibrational wave functions, φs, be expressed as a linear combination of the
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(a)

(b)

Figure 3.18: A comparison of the “dipole correction” and the FCA-based inversions
of the Na2 A 1Σ+

u potential and the A 1Σ+
u → X1Σ+

g electronic transition function.
(a) Differences (in cm−1) between the inverted and the true potential; (b) Differences
(in Debye) between the inverted and the true electronic transition dipole function.
Figure and caption taken from Ref. [7].
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(a)

(b)

Figure 3.19: A comparison between the accuracies of the computed vibrational wave
functions as derived by the FCA-based inversion and the “dipole correction” inversion
for (a) φs=0(R) and (b) φs=5(R). Figure and caption taken from Ref. [7].
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(a)

(b)

Figure 3.20: A comparison between the “dipole correction” and FCA-based inversions
of the Na2 B 1Πu potential and the B 1Πu → X1Σ+

g transition dipole function. (a)
Differences (in cm−1) between the inverted and the true potential; (b) Differences
(in Debye) between the inverted and the true electronic transition dipole function.
Figure and caption taken from Ref. [7].
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ground vibrational states, χi. To this end, it may be necessary to include continuum

states to satisfy completeness [155], a point which has already been address in Sec.

3.4 (and Ref. [128]).

3.8 Summary

We have presented a way of solving the “spectroscopic phase”, namely the extrac-

tion of the signs of transition-dipole matrix elements from their measured absolute-

squared values. We have shown that given the transition-dipole amplitudes it is

possible to generate the excited state potential(s) and transition dipole moment(s)

within (to global RMS error of 0.11 cm1) and beyond (0.03− 0.1 cm−1) the FC ap-

proximation. This implies that line positions can, in general, be calculated to within

0.01 cm−1. The procedure, which was demonstrated numerically for the diatomic

(Na2) case, is in principle valid for any polyatomic molecule. It has been shown that

the inversion formula, as well as the procedure, works for a modeled two-dimensional

potential [6].

One strong requirement of our approach is the ability to correctly assign the

spectral lines to the right pair of ground and excited state eigenvalues. Otherwise,

the fundamental inversion equation (Eq. (3.21)) which includes a double summation

over the frequencies and transition dipole moments between particular ground and

excited eigenstate doesn’t make sense. Fortunately, not all lines need to be assigned.

As we have shown, only a few excited eigenstates are necessary to extract the full

potential curve. A more critical restriction is that those excited states included in

the calculation can be nicely expanded in the GS basis (e.g. that the completeness

condition is fulfilled). This is because the errors in the potential will grow quadrat-

ically with errors in the completeness condition (see Eq. (3.21)). Therefore, our

procedure works best when the electronic GS spans a similar or greater radial range

that the electronic excited state. For instance, it is preferable for the long range

behavior of the GS to be C3

R3 and that of the excited state to be C6

R6 rather than vice

versa. However, one advantage to this summation over transition dipole moments

(TDMs) in the basis set expansion is the robustness of our procedure to random

errors in the spectroscopic data. We have shown that we can achieve great results

with even 10 % random errors in the transition magnitudes, and we attribute this

to the summation averaging over the random fluctuations. Though in the general

case, the tolerable size of these random errors is difficult to define since it depends
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on the system’s characteristics such as the number of GS levels included in the basis

set. One should note that any GS eigenstates having weak TDMs to an excited

state included in the calculation can be omitted in the expansion (and thus does not

require assignment). Lastly, although we haven’t explicitly proven that our method

will converge to a unique solution, we expect this to be the case due to the unique-

ness of the expanded excited eigenstates and knowledge of their eigenvalues, which

together with a Hamiltonian of a given form fully specifies the potential term.

3.8.1 A Brief Comparison

Where our method excels over other approaches is in cases when the excited state

potential is not well represented by a standard model or when only a few energy

levels are known (but most of their TDMs have been resolved).

RKR methods perform well for heavier molecules where the WKB approximation

is most valid, and when the PES is low dimensional and simple in form. It is known

to break down for irregularly shaped PESs, such as those with a “barrier”, “shelf” or

multiple minima. RKR results are given in tabular form and defined only for regions

of the PES covered by the spectroscopic data. Moreover, the RKR approach doesn’t

provide any information in how to extrapolate beyond regions lacking experimental

data. Determining all the energy levels can be a cumbersome task which requires a

relatively large number of empirical molecular constants with most of them having

little physical significance.

DPF approaches require a well-behaved analytical potential model that can be

used in the fitting procedure. Poorly chosen functions result in nonphysical behavior

occurring in either the short-range or long-range regions. To accurately describe non-

standard potential curves with irregular portions, higher order polynomials must be

used, which leads to greater difficultly in converging the results. This high degree

of parametrization, which is also necessary as the dimensionality of the system in-

creases, tends to become very computationally expensive. In contrast, our inversion

procedure performs equally well for irregularly shaped potentials, and scales much

better for multidimensional cases. Our results typically converge for each iteration

in the construction after a few cycles, independent of the potential form or dimen-

sionality. Thus we require far fewer time-consuming diagonalizations of the system

before converging.

Ab-initio quantum chemistry calculations which have begun to yield reasonable

results for small molecular systems, are limited in their availability and are difficult
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to implement individually for a case of interest. Also, they tend to struggle either

at short or large interatomic distances due to the balance between accounting for

the electron exchange and charge overlap at short ranges, and the effects of weak

long-range forces which should be treated perturbatively. These calculation become

greatly complicated as the number of atoms in polyatomic molecules increases and

require significant computer resources. In contrast, our procedure is simple to im-

plement and can reproduce equally accurate results at all ranges of the potential,

given that the excited states can be well described in the ground state basis. The

computational time for the FCA approach is estimated to scale as Nb× tdiag, where

Nb is the total number of excited rovibrational states used in Eq. [3.47], and tdiag
is the time required to calculate the eigenstates from the constructed PES. The

dipole correction method requires additional effort which is estimated to scale as

Nb ×Nb/2× tdiag. Thus, for the one dimensional diatomic case, where the value of

tdiag is on the order of seconds, the required computational time is rather short. For

multi-dimensional case, past work (see Ref. [38]) involving the realistic calculation

of several hundred eigenstates, has required computational times on the order of

hours, making the inversion process more expensive, yet more efficient than other

approaches which require a greater number of diagonalizations.
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Chapter 4

Molecular Wavefunction Imaging

4.1 Introduction

As the field of quantum information processing progresses into the experimental do-

main, it becomes increasingly necessary to develop techniques for the non-destructive

detection and reconstruction of (complex) wave functions. Such reconstruction is

needed for the verification of the initial preparation; the detection of errors due to

decoherence and noise; the determination of the fidelity of the logical operations and

for the read-out of the final state. In the last few years, molecules have emerged as

promising media for large-scale quantum computations, partly due to the existence

of strong dipole-dipole interactions that serve as a resource for two-qubit operations

[156–161]. A number of theoretical and experimental publications demonstrating

feasible read/write operations [75, 162–166] and logic gates [167–173] have been

published, with the read-out amounting to the retrieval of both the amplitude and

the phase of a molecular wave packet [125, 174–177]. There have been several tech-

niques for imaging molecular wave packets, each with their own drawbacks, already

suggested.

4.1.1 Quantum State Tomography

One such technique based on quantum state tomography, [75, 174, 175, 178] which

has been mainly applied to photonic states, uses a sequence of identical measure-

ments within a series of different bases to completely reconstruct the quantum wave-

function.

Developed by Walmsley [8], molecular emission tomography measures the spec-

trum of fluorescence from a molecule at many different times for many different

orientations of the phase space coordinates. For an excited vibrational wavepacket,

this measurement obtains a quasi-probability distribution of the vibrational mode of

a molecule.

97



4.1. Introduction

Figure 4.1: Gating fluorescence of an excited vibrational wavepacket in Na2 for the
gate positions t = O, 37, 75, 112, and 150 fs relatively to the pump pulse. Taken
from Ref. [8]

In Fig. (4.1), the spectra of the gated fluorescence, calculated using the up-

conversion technique (Sec. (2.4.2)), is shown for an excited wavepacket in Na2 [8].

Semi-classically we would expect that a molecule will emit a photon at time T of

energy equal to the difference between potential energy at an internuclear distance,

R(T ), of the position of the initial wavepacket and the final electronic state. Thus,

as the wavepacket oscillates in the potential, the fluorescence intensity as a function

of wavelength should change correspondingly in time. Assuming, for a molecular

ensemble, that the total fluorescence intensity is constant in time (i.e the Franck-

Condon approximation where value of the transition dipole moment is constant),

then the results of Fig. (4.1) should be a good representation of the shape of the

wavepacket as a function of internuclear distance at different times. As can be seen,

the wavepacket only samples a small range of difference potential when near the

turning points leading to the narrow spectrum. Whereas, when the the wavepacket

has a higher velocity it traverses over a wider range of potential energies causing

the broader spectrum. By assuming that the wave packet propagates in a harmonic

potential it is possible to use these probability distributions to generate the Wigner

function of the state of the molecule [174]. Unfortunately, molecular imaging tomog-
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raphy requires a very large number of measurements, such as different phase-space

orientations, and is restricted to working well only in the harmonic approximation.

4.1.2 Algebraic-Inversion

Another technique [125, 176, 177] involves the (algebraic) inversion of the time-

dependent fluorescence intensity. It is also possible[125, 126] to reconstruct an un-

known excited state Ψ(R, t) by assuming that it can be expanded in terms of N of

the excited vibrational eigenstates,

Ψ(R, t) =
N
∑

s=1

asφs(R) exp(−iEst),

using the fluorescence signal F (t), given[125, 126] as,

F (t) =
∑

i

∑

s,s′

(

ωi,sωi,s′
)

3

2 ds,idi,s′a
∗
sas′e

−i(Es−Es′ )t,

provided we know the di,s amplitudes (including their signs). According to Eq.

(3.21) this knowledge is enough to determine Vex(R), which in turn determines

φs. The expansion coefficients as can then be determined by “strobing” the fluo-

rescence at N(N − 1)/2 time points and solving a set of quadratic[125, 126] or

linear, “holographic”[179], equations. Under conditions pertinent to most electronic

transitions, namely, when the Franck-Condon approximation is justified, the previ-

ous procedure of extracting the dipole moment phases [126] did not work well. The

main limitation of this method is that the conversion of the bi-linear a∗s′as products

to individual as coefficients is very sensitive to experimental errors.

4.1.3 Interferometric Approaches

This inordinate sensitivity to experimental errors can be overcome by linearizing the

problem, as done in the “quantum state holography” method [179, 180] and other

linear interferometric approaches [165, 166, 181–183]. However, these linear wave-

packet interferometry (WPI) techniques encounter limitations related to evolving the

target and reference wave packets on similar potential energy surfaces (PES) [184].

In addition, they are insensitive to any target probability amplitudes resulting from

nonlinear excitation process involving eigenstates with small Frank-Condon factors

to the initial states [184]. Using a non-linear WPI approach [185, 186], Cina and
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Humble proposed a remedy to these problems and a resolution to the hindrance

of linear-WPI methods associated with the reconstruction of unknown target wave

packets on ill-characterized high-lying potentials. Their approach is based on using

a pair of phase-related pulse pairs which produce a signal that is quadrilinear in the

incident field amplitudes. Though, success of their approach relies on the existence,

and detailed information, of an auxiliary intermediate electronic state used for the

propagation of the reference wave packet. Moreover, it is not clear how uncertainties

in this reference wave packet affect the fidelity of their reconstruction. Thus, we

find that hampering all wave-packet interferometry (WPI) approaches remains the

necessity, and accurate characterization, of some reference electronic state.

4.1.4 CARS Imaging

Correlation functions and/or wave-packet overlaps have also been accessed without

the need of reference wave packets, instead through the use of Coherent Anti-Stokes

Raman Scattering (CARS) spectroscopy [153, 154, 187–190].

The CARS process is a third-order nonlinear optical process involving three laser

beams which interact with molecular (vibrational) states in much the same way as in

Raman spectroscopy. However, unlike Raman whose signal relies on a spontaneous

transition, CARS provides a coherently driven transition giving rise to a signal that

is quadratically stronger and can be collected much faster in practical situations

(∼ 105) than that of Raman transitions. Moreover, because CARS uses two laser

frequencies to interact resonantly with a specific molecular vibration the signal is

relatively high frequency (thus minimal fluorescence interference) and provides better

resolutions. A good review of CARS can be found in Ref. [191].

Milner et. al. [192, 193] developed a technique for characterizing the molecular

vibrations of polyatomic molecules by performing a cross-correlation frequency re-

solved optical gating (XFROG) of the CARS signal. XFROG is an extension, based

off the original FROG method of Trebino [194], which was initial designed for the

complete temporal and spectral characterization of ultrashort laser pulses. The pro-

cedure measures the cross-correlation between a known and unknown electric field

by focusing the two (pulses) together in a nonlinear medium. The spectrum of the

nonlinear signal, which manifest itself as nonresonant sum frequency generation in

a non-linear crystal, is then measured with a spectrometer for many delay points.

Using the data from both the frequency and time domains, XFROG is capable of pro-

viding accurate spectral intensity and phase retrieval of the unknown electric field.
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The combined XFROG CARS approach thus allows for the extraction of the ampli-

tude and phase information of molecular vibrations in a iterative process. However,

the technique has only been demonstrated from ground electronic state vibrations,

and is sensitive to one-photon resonances effecting the reference field.

Recently, Avisar and Tannor [153, 154, 190] have also applied a CARS scheme

to imaging multi-dimensional wave packets. In their approach the first of the CARS

pulses acts as the excitation field, creating wavepacket in an excited PES. Then, the

second pulse dumps the population back into the ground state, before the third pulse

returns that population to the excited state again. By performing a Fourier transform

along the time delay of the second field, the excited wave packet’s cross-correlation

function with the vibrational eigenfunction of the ground state PES can be related

to the third order polarization given as the CARS signal. Since their relations

involves a direct correspondence with elements of the raw CARS signal, significant

discrepancies arises once reasonable errors are included in the experimentally data

[195]. In addition, their method has so far been applied only to the special case of

a δ(t − t0) pulse, where the wavepacket Ψ(r, t0) is known at t0 as being a simple

replica of the ground energy eigenstate, χg(r). This is only reasonable once a large

number of excited states have been included, which is at odds with the solution they

provide to the unknown phase problem of the dipole matrix elements that requires

exponential time with the number of states.

4.1.5 Kinetic Energy Distribution and Coulomb Explosion

Lastly, kinetic energy distributions of nuclei and photo-electrons or coulomb ex-

plosion [196–200] techniques provide a good basis for wave function reconstruction

[201, 202]. These methods are however destructive, as they involve the ionization

and/or the break-up of molecules.

4.1.6 Preamble

In many approaches the stumbling block appears to be the extraction of the phases of

the relevant (e.g. fluorescence, photo-absorption) amplitudes. This problem is also

related to the reconstruction of unknown time-evolving quantum states [125, 126,

179, 184–186, 203]. Given that such states can be prepared (e.g., by photo-excitation

with an ultrashort pulse of light) in multiplicity of replicas, then the relatively tiny

fraction of the replicas that manage to fluoresce during the 100fsec-1psec time scales
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of interest ought to yield information about the state of the majority of the (non-

fluorescing) replicas in an essentially quantum-non-demolition manner. Tomographic

methods that have been tried [8, 75, 204] appear to be inaccurate far from the

harmonic limit. Again, the crux to such state reconstruction is the extraction of the

phases of the fundamental transition-dipole amplitudes that mediate the information

from the few fluorescing replicas of the unknown state to the observer.

We describe a method that extracts the excited wave packet amplitudes and

phases from the time dependent intensity of fluorescence. The method works by

taking a series of finite time Fourier transforms at the (ωs′,s) beat frequencies of

the data [48]. In this way one performs a one-by-one extraction of the expansion

coefficients of the unknown wave packet. The method requires no reference state,

yet because of the relatively long time averaging, it is extremely robust and is much

less sensitive to experimental errors compared to the other mentioned schemes. Our

approach also avoid the application of the Franck-Condon approximation, which is

a necessary assumption in nearly all tomographic, interferometric and CARS imag-

ing proposals. In contrast to destructive methods, because, typically spontaneous

emission lifetimes are relatively long (10−8− 10−6 seconds), only 10−6− 10−5 of the

excited molecules fluoresce over the 1 - 10 ps time span of interest, thus making

fluorescence based methods essentially non-destructive over such short time spans.

In addition to molecular wave packet imaging, by using the well known perturba-

tive regime connection between the field and the material expansion coefficients, our

method (following a single calibration run), can be used to extract any electromag-

netic (e.m.) field whose time dependent intensity function is known. The problem of

extracting the phases of the e.m. fields has received much attention in recent years.

There now exist a panoply of methods [205–208] which can be roughly categorized

as interferometric [194, 209–211] and non-interferometric [212–215]. These methods

which involve non-trivial non-linear mixing and iterative solutions of integral equa-

tions, work best for ultrashort laser pulses of large bandwidths. They do not work

as well for relatively longer (10−11 − 10−10 seconds) pulses of narrower bandwidths,

where our method remains successful.
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4.2 Theory

4.2.1 Imaging Method

We consider the short laser pulse excitation of χg(r), a rovibrational energy eigenstate

belonging to the ground electronic state, where r is a (collective) nuclear coordinate,

to form a wave packet Ψ(r, t) moving on an excited electronic state, given as

Ψ(r, t) =
∑

s

asφs(r) exp(−iEst/~− γst/2). (4.1)

In the above, φs(r) are the excited rovibrational eigenstates of energies Es, as, are

the expansion coefficients of Ψ in terms φs, and γs are the (spontaneous emission)

decay rate of each φs state, which are expressed as [125]

γs =
∑

f

Af,s (4.2)

where Af,s are Einstein A-coefficients, given, in atomic units, as

Af,s =
4ω3

f,s

3c3
|µf,s|2 , (4.3)

and µf,s ≡ 〈χf |µ|φs〉 are the dipole matrix elements between the electronically ex-

cited energy eigenstates, φs, and the ground energy eigenstates, χf .

We have shown in the past [6, 128, 143, 144] that knowledge of |µf,s|2, the

magnitude-squared of the dipole matrix elements, which can be determined directly

from the frequency-resolved fluorescence (absorption) spectrum, coupled with knowl-

edge of the ground state potential to (from) which emission (absorption) occurs,

enables the extraction of the phases of µf,s. Thus, the only remaining unknowns are

the amplitudes |as| and phases δs of the as expansion coefficients. As shown below,

these quantities can be extracted from the time-dependent fluorescence of Ψ(t) into

various rovibrational ground states.

Following Ref. [125] we write the rate of the time dependent fluorescence as

R(t) =
∑

s,s′

a∗sas′Cs,s′ exp(−iωs,s′t− (γs + γs′)t/2) (4.4)

where ωs,s′ are “beat” frequencies [48], defined as, ωs,s′ = (Es − Es′)/~, and Cs,s′ is
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a time-independent molecular matrix, given as

Cs,s′ =
2

3c3

∑

f

(ω3
f,s + ω3

f,s′)〈φs|µ|χf 〉〈χf |µ|φs′〉. (4.5)

Over typical short time scales of interest (e.g., ∼ 1 ps) the decline in population

due to fluorescence is negligible, allowing us to disregard γs. Writing as explicitly as

as = |as| exp(iδs) we obtain that

R(t) =
∑

s,s′

Cs,s′ |as||as′ | exp
(

iωs,s′t+ iδs,s′
)

(4.6)

where δs,s′ = δs−δ′s. We now select a specific (s, s′) component of the R(t) signal by

calculating at each beat frequency its “fFT” - the ωs,s′ Fourier integral calculated over

long finite time T. The filtering method works because all the ω 6= ωs,s′ components

decay as 1/T. Explicitly,
1
T

∫ T
0 dtR(t) exp(−iωt) = 1

T

∫ T
0 dt

∑

s,s′ Cs,s′ |as||as′ | exp(iδs,s′) exp(i(ωs,s′ − ω)t)

=







Cs,s′ |as||as′ | exp(iδs,s′), for ωs,s′ = ω

i
Cs,s′ |as||as′ | exp(iδs,s′ )

(ωs,s′−ω)T

(

exp[i(ωs,s′ − ω)T ]− 1
)

, for ωs,s′ 6= ω .
(4.7)

Thus, by choosing sufficiently long integration times T , satisfying T ≫ 1/min |ωs,s′−
ω| for ωs,s′ 6= ω, our method amplifies just one pre-chosen (s, s′) beat term out of the

R(t) signal, while eliminating all others. The absolute value of each (s, s′) term can

be taken together with the knowledge of Cs,s′ to generate a set of equations containing

products of the unknown amplitudes |as||as′ |, which can then be solved, in the least-

squares sense, to obtain the coefficient amplitudes |as|. Using Eq. (4.7) we determine

δs,s′ for all s and s′, given which, we extract the individual state phases δs (up to

an arbitrary overall phase). For diatomic vibrational spacings of ∼ 1000 cm−1, the

integration time must be at least 1 ps to ensure a filtering accuracy of ∼ 1%. We find

that the long integration times tend to wash out measurement errors in the time-

dependent fluorescence, rendering the method, as we show in detail below, quite

robust against such errors. Because most systems will be over-determined (having

roughly s2/2 equations for s unknowns), it is possible to increase the accuracy and

reduce the integration time by using as many redundant equations as possible. In

addition, by subtracting out of R(t) the (s, s′) terms whose values have already
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been determined, we highlight the remaining (possibly weakly contributing) terms,

thereby increasing their accuracy.

4.2.2 Electromagnetic Field Determination

Our ability to determine (the amplitude and phase of) excited state coefficients makes

it possible to use the same setup to extract the excitation pulse’s electric field. We

again envision a molecule, initially in one of the electronically ground vibrational

states χg, with energy Eg, being excited by an electric field

~ε(t) = ǫ̂ Re {E(t) exp(−iωt)} (4.8)

where ǫ̂ is the polarization direction. Our aim here is to determine E(t) - the (com-

plex) pulse envelope, and ω - the carrier frequency of the pulse. Provided that the

Rabi angle θ =
∫

dtΩ(t) << π, where the Rabi frequency Ω(t) = ~µ · ǫ̂ E(t)/~,

the light-matter interaction can be treated perturbatively. Thus, a time-dependent

wave packet will be created in the excited state as in Eq. (4.1) with excited state

coefficients given by

as = 2πif(ωs,g)µs,g, (4.9)

where µs,g = 〈φs|µ|χg〉 are the known dipole matrix elements between the ground χg

and excited φs rovibrational states and f(ωs,g) ≡
∫

dtE(t) exp[i(ωs,g − ω)t]. Using

the method of the previous section to determine the excited state coefficients as, we

obtain the complex values of the frequency spectrum f(ωs,g) from Eq. (4.9) as,

f(ωs,g) =
as

2πiµs,g
. (4.10)

By tuning the pulse to excite multiple vibrational (or rotational) excited states, we

have devised a complex-valued spectrometer with a resolution given by the spacing

between energy levels. For pulses within the limit set by one over the sampling

interval (up to several picosecond for rotational spacing) we can perform a discrete

Fourier transform to obtain an image of its temporal profile. The bandwidth of the

pulses must, of course, be restricted by the energy span of the optically accessible

excited states.
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4.3 Results

The wave packet imaging and pulse characterization techniques are demonstrated by

performing numerical simulations on sodium dimer (Na2) wave packets. We assume

that a molecules, initially in the X1Σ+
g ground rovibrational state (v = 0; J = 0)

gets excited by a short laser pulse to a J = 1 wave packet of vibrational eigenstates

belonging to the A1Σ+
u electronic state. These states decay to either J = 0 or

J = 2 (the P- and R-branches), generating fluorescence to all the vibrational states

of X1Σ+
g that enter the summation implicit in Cs,s′ of Eq. (4.5). Below we present

the results for two types of (“transform-limited” and “non-trivial linearly chirped”)

excitation pulses, omitting from the results excited states with populations < 0.1%

because their effect on the fluorescence intensity is negligible.

4.3.1 Transform-Limited Pulse

We first consider the case in which a 50fs Gaussian pulse of ∼ 1012 W/cm2 with

carrier frequency of 15802 cm−1 excites the v = (2− 12); J = 1 rovibrational states

of the A state. The time-resolved fluorescence, shown in Fig. 4.2a, is generated

by time-averaging the output of Eq. (4.4) over 70 fs intervals, providing a temporal

resolution that has been experimentally demonstrated using both optical gating [75]

and up-conversion [4, 5] techniques. In Fig. 4.2b, displaying two different times,

t = 0 (red circles) and t = 1ps (blue squares), we demonstrate that the imaged

wave packet (solid lines) reproduces perfectly the “true” wave packet. Even when

a random 10% Gaussian noise is introduced into the fluorescence data, the imaged

wave packet is seen to coincide to better than 1% root-mean squared (rms) with

the “true” one. This robustness is likely due to the averaging over by the long time

integration of error-generated signal fluctuations.

Using Eq. (4.10) we can now deduce the frequency spectrum of the pulse at

a discrete set of frequencies corresponding to the location of the absorption lines.

Figure 4.2c exhibits excellent agreement between the “true” real part (blue circle),

imaginary part (green squares) and absolute value (black bars) relative to the cor-

responding values of the imaged pulse. The displayed temporal pulse was generated

from the discrete Fourier components as obtained by our method by performing dis-

crete Fourier transforms at the discrete frequencies. Figure 4.2d shows the amplitude

(solid line) and real part (dashed-line) of the result against that of the “true” electric

field (red circles and green crosses, respectively).
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Figure 4.2: (a) Temporal fluorescence captured over 10 ps. (b) Actual and imaged
excited state wave packets on A1Σ+

u potential of Na2 at t=0 and 1 ps. (c) Spectrum
of the initial excitation pulse, showing absorption lines corresponding to the excited
rovibrational eigenstates. (d) Temporal pulse profile of 50 fs width. The displayed
real part of the electric field demonstrates good phase extraction.
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4.3.2 Linearly-Chirped Pulse
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Figure 4.3: (a) Temporal fluorescence captured over 10 ps. (b) “True” (circles)
and imaged (full lines) excited state wave packets moving on the A1Σ+

u potential
of Na2 at t = 0 and t = 1 ps. (c) The spectrum of the initial excitation pulse,
showing absorption lines corresponding to the excited rovibrational eigenstates. (d)
Temporal pulse amplitude and the -π and π phase of the field at each instant.

We have performed calculations similar to those of the previous section for lin-

early chirped pulses. The results are shown in Fig. 4.3d. The frequency pro-

file, seen in Fig. 4.3c, has sufficient bandwidth to excite ∼ 18 rovibrational states

(v = (2− 19), J = 1) with population > 0.1%. We have computed the time-resolved

fluorescence signal, adding 5% of random Gaussian noise to each time-averaged (∼ 70

fs) data point, from which, using our method, we have extracted the excited state

coefficients. The results of the wave packet imaging are found to be within 1% rms

of the “true” values. Figure 4.3b compares the “true” (discrete points) wave function

at the pulse center (t = 0) and at some later time (t = 1 ps), with the imaged values
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(solid lines).

The f(ωs,g) discrete frequency components of the laser field, extracted from the

as coefficients via Eq. (4.10), are displayed in Fig. 4.3c. The Fourier transform

of these points gives us the temporal shape of the pulse. Figure 4.3d exhibits an

excellent agreement between the “true” and imaged time dependent pulse amplitude

and phase, correctly identifying the linear chirp of the field.

4.4 Summary

We have presented a method which reconstructs excited-state molecular wave pack-

ets (and e.m. field amplitudes) by selecting each beat component of the fluorescence

signal using finite-time Fourier transforms calculated at each beat frequency. The

procedure requires a pre-calibration involving the frequency resolved spectrum from

which we extract the relevant dipole matrix elements to the final states. The inte-

grating time over the temporal fluorescence is bound between two limits: It must be

longer than the inverse of the energy splitting between adjacent vibrational states

(∼ 50fs); and it must be shorter than the average decay time of the rovibrational

levels (∼ 10ns). Within this range our method exhibits impressive robustness to

random errors in the experimental signal.

Using the acquired knowledge of the excited coefficients to characterize the exci-

tation pulse is a novel approach especially suitable for femtosecond pulses. Contrary

to currently available methods, the experimental procedure and mathematical anal-

ysis needed to reconstruct the pulse is simple and straightforward.
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Chapter 5

Extraction of Transition Dipole

Moments

5.1 Introduction

Molecules interact with light via their electric (or magnetic) multipole moments,

however largely we may use the dipole approximation, and only consider their

transition dipole moments (TDM). Whereas the |〈χf |µ|ψs〉|2 between |χf 〉 and

|ψs 〉 energy eigenstates can be deduced from the strength of frequency-resolved

spectral lines, it is much more difficult to use such data to determine the phases

of the TDMs. Knowledge of these signs is however vital in many applications

[125, 163, 164, 168, 170, 172, 173, 216]. For example, in the short pulse produc-

tions of wave packets [125, 216], the fluorescence signal is composed of the beat-

ings between many transitions whose signs fundamentally affect the observations.

The determination of the TDM’s phases is highly desirable for such applications

as these wave packet dynamics[125, 216] and quantum computation operations on

atomic/molecular systems [163, 164, 168, 170, 172, 173].

The well-known “inverse scattering” problem [50] involves determining the phase

of the complex-valued scattering amplitudes [43, 44] from (differential) cross section

measurements. In bound-bound molecular spectroscopy the analogous “phase prob-

lem” is less daunting because the relevant amplitudes are 〈χf |µ|ψs〉 - the transition-

dipole matrix elements (TDMs) which are real. The “phase problem” is thus reduced

to a sign determination.

We have previously shown [128, 143, 144] in Chapter 3, that given the squares of

the TDMs, we are able to derive the TDMs amplitudes and perform a point-by-point

construction of the excited Born-Oppenheimer potential energy surface (PES) from

which the emission occurs. In Chapter 4, we have also shown [176, 177, 217] that we

can image time-evolving wave packets. However, the use of frequency resolved data

entails satisfying certain “completeness conditions” [128, 143, 144]. Operationally,
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this means that we need to know the magnitudes of spectral lines linked to a large

number of final (electronically-ground) rovibrational states. At present such exten-

sive data is not yet available.

An alternative method for TDM sign determination proposed in the past is based

on the semi-classical stationary phase approximation. It assumes that 〈χf |µ|ψs〉
in a progression of |χf 〉 states, must go through zero and change sign whenever

|〈χf |µ|ψs〉|2 hits a minimum (node) as s is varied. Unfortunately, this approach is

often unreliable because the nodes can be very closely spaced (due to high kinetic

energy or small transition amplitudes). In addition, the single stationary phase

approximation fails for many cases, especially in the long wavelength regime, or

when the main contributions to the TDMs come from the vicinity of the classical

turning points.

In the present work we consider using time-resolved data [216], containing in prin-

ciple information about many spectral transitions, as an effective way of overcoming

the dearth of frequency resolved data noted above. We show that it is possible to

use such data to derive the phases of individual TDMs between energy eigenstates.

The method uses Bi-chromatic Coherent Control (BCC) [218] in conjunction with

the performance of a finite-time Fourier transform [217] at various (ωs′,s) beat com-

ponents [48] of time-resolved fluorescence data. In the present use of BCC, one

interferes between the stimulated emissions to a pre-determined ground state of a

chosen pair of states that are part of the wave packet. When the relative phase

between the two external light fields matches the relative phase of the two TDMs

linked to a common ground state, the depletion of the Fourier transform of the signal

at the ωs,s′ beat frequency, giving the (ψs, ψs′) pair contribution, is maximal.

One advantage of this method is that it does not require explicit knowledge of the

χf (r) or ψs(r) eigenfunctions. Another advantage is that the method is essentially

non-destructive: Typically, spontaneous emission lifetimes are 10−8 − 10−6 seconds

[48], hence, over the 1 - 10 ps time span of interest only 10−6 − 10−5 of the excited

state molecules are destroyed via their decay.

In contrast to frequency-resolved experiments, time resolved experiments[216]

that might in principle contain information about many spectral transitions, appear

to be available. In the present paper we show how to use such data to derive the phase

information for individual transitions between energy eigenstates. The method uses

an approach developed for the imaging of molecular wave packets whose constituent

energy eigenstates are known[217], in conjunction with Bi-chromatic Coherent Con-
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trol (BCC)[218], thereby obviating the need to know the energy eigenstates. In this

approach[217], one extracts the excited wave packet amplitudes and phases by taking

a series of finite time Fourier transforms at the various (ωs′,s) beat frequencies[48]

contained in the time resolved fluorescence of the entire wave packet.

The way BCC helps obviate the need to know the constituents energy eigenstates

is by inducing stimulated emission from a chosen pair of states comprising the wave

packet to a pre-determined ground state. By tuning the relative phase between two

external light fields to match the relative phase of two TDM’s linked to a common

ground state, one can attain maximum depletion of the population of the pair of

states (s, s′) whose Fourier transform at the beat frequency ωs,s′ is being computed.

5.2 Theory

We consider exciting χg(r), a vibrational energy eigenstate belonging to the ground

electronic state, with r being a (collective) nuclear coordinate, by a short laser pulse

to form a wave packet Ψ(r, t) moving on an unknown excited potential energy surface

(PES), given as

Ψ(r, t) =
∑

s

asψs(r) exp(−iEst/~− γst/2). (5.1)

Our objective is to determine as, the expansion coefficients of Ψ in terms of ψs(r),

the excited vibrational eigenstates. Using frequency-resolved spectroscopic data, we

may assume that we know the energy Es, and the (spontaneous emission) decay rate,

γs, for each ψs state, written as [125]

γs =
∑

f

Af,s (5.2)

where Af,s are Einstein A-coefficients, given, in atomic units, as

Af,s =
4ω3

f,s

3c3
|µf,s|2 , (5.3)

with |µf,s| ≡ |〈χf |µ|ψs〉| being a set of transition dipole matrix elements (TDM’s)

linking the electronically excited energy eigenstates and the ground energy eigen-

states, χf .

In the past we have shown [6, 128, 143, 144] that knowledge of |µf,s|2 and the

ground PES, enable the extraction of the phases of µf,s as well as the excited PES,
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knowing which, we can calculate the excited state eigenstates ψs(r). This infor-

mation, together with knowledge of the excitation laser field, is sufficient for the

determination of the expansion coefficients as, from which we can obtain the entire

excited state wave packet Ψ(r, t). There are however difficulties in implementing this

procedure in practice due to the scarcity of frequency-resolved studies that record

all the transitions mandated by the completeness requirement of the method.

For this reason we now introduce an alternative approach that uses time-resolved

data for the determination of the phases of µf,s. The method, which by its very

nature requires a less complete set of measurements, harnesses a technique recently

developed by us for the imaging of excited wave packets moving on known PES[217].

It is based on writing the rate of the time-resolved fluorescence from the excited

state wave packet of Eq. (5.1) as[125]

R(t) =
∑

s,s′

a∗sa
∗
s′Cs,s′ exp(−iωs,s′t) (5.4)

where ωs,s′ = (Es−Es′)/~ are “beat” frequencies [48], and Cs,s′ is a time-independent

molecular matrix, given as

Cs,s′ =
2

3c3

∑

f

(ω3
f,s + ω3

f,s′)〈ψs|µ|χf 〉〈χf |µ|ψs′〉. (5.5)

In the above we have neglected the decay due to spontaneous emission because for τ

(the time scale of interest) of ∼ 1 ps, γsτ << 1. In other words, due to the relatively

long spontaneous emission lifetimes of 10−8− 10−6 seconds, only 10−6− 10−5 of the

excited molecules decay over the 1 - 10 ps time span of interest.

We now select[217] a specific (s, s′) component of the R(t) signal by calculating

over time T the finite time Fourier transform (fFT) of R(t) at each ωs,s′ beat fre-

quency. In this way we filter out all other ω 6= ωs,s′ components, which decay as

1/T. We have that,

R(ω) ≡ 1

T

∫ T

0
dtR(t) exp(iωt) ≈ |Cs,s′ ||as||as′ | exp

[

i(δs,s′ + ξs,s′)
]

for ω = ωs,s′ ,

(5.6)

where ξs,s′(= 0, π) is the phase of the real matrix Cs,s′ , and δs,s′ = δs− δ′s is a result
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of expressing as as as = |as| exp(iδs). In contrast, for ω 6= ωs,s′ ,

R(ω) =
i

T

∑

s,s′

Cs,s′asa
∗
s′(exp[i(ωs,s′ − ω)T ]− 1)

ωs,s′ − ω
= O(1/T ) for ω 6= ωs,s′ .

Thus, in order to filter out all the Fourier components save for the ωs,s′ one, we need

to choose T ≫ 1/min |ωs,s′−ωt,t′ | where ωt,t′ 6= ωs,s′ . The relatively long integration

times (typically T ∼ 1 ps) tend to average out random measurement errors in the

time-resolved fluorescence, rendering the method quite robust.

Since only the exponential contributes to the complex nature of R(ω), we can use

the outcome of Eq. (5.6) to determine δs,s′ for all states s and s′ up to ξs,s′ = 0, π.

In order to fix the sign of Cs,s′ , (or ξs,s′) thereby resolving the π uncertainty in

the phase of as, we use BCC[218] to extract the individual TDM’s, from which we

can, using Eq. (5.5), calculate Cs,s′ . With knowledge of both Cs,s′ and δs,s′ we have

already shown[217] how to determine the magnitudes of as through solving a series

of equations for each set of states (s, s′).

The present application of BCC[68, 219, 220] consists of applying shortly after

the formation of the excited wave packet of Eq. (5.1), a single broadband laser

pulse ǫ(ω), containing the ǫ(ωs,f ) and ǫ(ωs′,f ) Fourier components that couple a

pair of excited states ψs and ψs′ to a single ground state |f〉. By manipulating the

magnitudes |ǫ(ωs,f )| and phases φ(ωs,f ) of these two components we can coherently

control the population transferred from the ψs and ψs′ components of Ψ(t) to | f 〉.
The maximum effect will occur when the ǫ(ωs,f )asµs,f product will be identical to

the ǫ(ωs′,f )as′µs′,f product which will then interfere constructively. Under these

conditions knowledge of µs,f will enable us to extract µs′,f according to,

µs′,f =
asǫ(ωs,f )

as′ǫ(ωs′,f )
µs,f =

∣

∣

∣

∣

asǫ(ωs,f )

as′ǫ(ωs′,f )

∣

∣

∣

∣

exp
[

i(δs,s′ + φs,s′;f )
]

µs,f . (5.7)

Due to the reality of µs′,f , φs,s′;f = φ(ωs,f ) − φ(ωs′,f ) must be equal to −δs,s′
or to π − δs,s′ , depending on the sign of µs′,f relative to µs,f . Although at this

point we do not know the magnitudes |as| and |as′ |, provided that neither |as| >>
|as′ | nor |as| << |as′ |, the population transfer resulting from complete constructive

interference will be distinguishable from the case of destructive interference occurring

when φs,s′;f → φs,s′;f + π.

Noting that we are allowed to choose the phases of all (Nf ) | f 〉 states and the
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phases of all (Ns) |ψs 〉 states at will, then of the Ns × Nf transitions, we are free

to choose the phases (or signs) of Ns + Nf − 1 of the TDM’s. Therefore, we take

all the µs,f1 associated with one, | f1 〉, state and all the µs1,f associated with one,

|ψs1 〉, state to be positive. The phases of the remaining TDM’s depend, in addition

to the overall phase factor multiplying each individual |ψs 〉 or | f 〉 wavefunction, on

their detailed shape (e.g. nodal structure). Given this choice, it follows from Eq.

(5.7) that the sign of every µs,f TDM’s relative to the sign of µs,f1 is determined by

whether φs,s1;f1 − φs,s1;f is 0 or π.

Once the relative TDM signs are obtained in this manner, we use Eq. (4.5)

to compute the Cs,s′ amplitudes. This allows us to use Eq. (5.6) to lift the π

ambiguity in δs,s′ and obtain the complex as amplitudes. We have thus chartered

a way, using BCC and fFT, of obtaining both the amplitudes of the TDM’s and

the characterization of the time evolving wave packet Ψ(t), without ever having

computed the basis wavefunctions ψs!

The maximum in the population depletion resulting from the above application

of BCC is detected as a minimum in |R(ωs,s′)| - the fluorescence Fourier component

of Eq. (5.6). We choose this method in preference to other experimental techniques

for population detection, such as laser-induced fluorescence(LIF) [221], resonantly

enhanced multiphoton ionization (REMPI) [222], or, cross-correlation frequency-

resolved optical coherent anti-Stokes Raman scattering (XFROG CARS) [192, 193],

because each of the latter approaches requires additional laser fields and might be

further complicated by other excitation pathways.

One possible complication that might result is that due to its large bandwidth

the BCC pulse might affect other states that are close in energy to the targeted ones.

If the BCC Fourier components couple (s, s+1)→ f , then they might also stimulate,

although to a lesser extent, the (s+ 1, s+ 2)→ f + 1, and (s− 1, s)→ f − 1 tran-

sitions. In practice however, as we show below, these ancillary stimulated emission

processes, which occur at different frequencies of the pulse, (ωs+1,f+1, ωs+2,f+1) and

(ωs,f−1, ωs−1,f−1) respectively, do not affect the signs of the µs,f derived from the

maximal depletion in |R(ωs,s′)|.
If cases arise where we find that the integrated signal for the two relative phase

case of the BCC field are too similar, and thus indistinguishable, we may addi-

tionally tailor the ancillary components of the BCC field. This involves tuning the

magnitude and phase of the pulse at the known frequencies {ws+1,f+1, ws+2,f+1}
and {, ws,f−1, ws−1,f−1} in order to reduce the effects of the adjacent BCC processes
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on the two excited states ψs and ψs+1 of interest. Again, the field magnitudes at

their components will be determined from the spectroscopic values of |µs,f | while the

relative phases between the pairs of frequencies that minimize the coupling will be

found to be either −δs+1,s+2 or π − δs+1,s+2 and −δs−1,s or π − δs−1,s respectively.

5.3 Simulations

5.3.1 Isolated Potential

We demonstrate our imaging procedure using time-resolved fluorescence for an ex-

cited sodium dimer (Na2) wave packet, in a process depicted schematically in Fig.5.1,

according to which a molecule, initially in the X1Σ+
g ground rovibrational state (|0〉

= |v = 0; J = 0〉) gets excited by a short (δt ∼ 20fs) laser pulse to a wave packet

of vibrational eigenstates belonging to the A1Σ+
u electronic state. As illustrated in

the inset of Fig.5.1, after the excitation pulse is over (at t ∼ 300fs) we activate a

weaker and longer “bichromatic coherent control”(BCC) pulse, dominated by two

distinct frequencies that mainly couple two vibrational levels (|s〉, |s′〉) in A1Σ+
u to

the vibrational state |f〉 of X1Σ+
g .

After the BCC pulse, which we take to be a Gaussian of time-averaged intensity

of 3 × 1010W/cm2 and bandwidth of 88cm−1, is over (at t ∼ 500fs), we collect the

time-resolved fluorescence resulting from the decay of the population still residing in

the excited states.The fluorescence is recorded every ∼ 60fs over a period of ∼ 10ps, a

resolution that is attainable experimentally using up-conversion techniques [4, 5, 75].

As an example we choose a particular case of {s = 3, s′ = 4, f = 5}, and

µ3,5µ4,5 > 0. In this case φ3,4;5 = −δ3,4 corresponds to constructive interference,

thereby maximizes the |R(ω3,4)| fluorescence depletion rate, whereas φ3,4;5 = π−δ3,4
minimizes the fluorescence depletion. In Fig.5.2a we compare the time-resolved R(t)

fluorescence rate of Eq. (5.4) with BCC relative phase of φ3,4;5 = −δ3,4, to the

φ3,4;5 = π − δ3,4 case. As shown in the Fig.5.2a, the result is a small (∼ 5%)

reduction in the fluorescence signal which would be difficult to detect experimentally.

In contrast, as shown in the Fig.5.2b, the variation of |R(ω3,4)| of Eq. (5.6) with

φ3,4;5 is very significant. When we ignore the ancillary transitions (black line), the

fluorescence minimum, occurring exactly at φ3,4;5 = −δ3,4, is 250% smaller than the

fluorescence maximum, occurring at φ3,4;5 = π−δ3,4. The relative difference remains

high even when we do take into account the ancillary transitions (blue dashed line),
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Figure 5.1: (Main drawing) The ground, X1Σ+
g , and first excited, A1Σ+

u , potential
energy surfaces of Na2 and a schematic description of the light pulses. Marked as
(1) is the pulse exciting the ground vibrational eigenstates |0〉 to a set of excited
vibrational eigenstates |s〉; (2) the BCC pulse coupling two excited state |s〉 and |s′〉
to a ground state |f〉; (3) the spontaneous emission from the |s〉 vibrational states of
A1Σ+

u to the |f〉 vibrational states of X1Σ+
g . (Inset) The BCC stimulated emission

process which couples states |s〉 and |s′〉 to |f〉. Some ancillary couplings of adjacent
|s′ + 1〉 and |s− 1〉 states to different final states |f〉 may also result.
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although the maximum gets shifted slightly to the left. In order to quantify the

effect we plot in Fig. 5.2c the contrast ratio

C(0, π) =
|R(ωs,s′)0 −R(ωs,s′)π|
|R(ωs,s′)0 +R(ωs,s′)π|

, (5.8)

where subscript 0 denotes the φ3,4;5 = −δ3,4 phase choice, and subscript π denotes

the φ3,4;5 = π − δ3,4 phase choice. In Fig.5.2c, we display the contrast C(0, π)

as a function of the |ǫ(ωs,f )/ǫ(ωs′,f )| ratio. Since we know from Eq. (5.7) that the

constructive interference occurs when ǫ(ωs,f1)asµs,f1 = ǫ(ωs′,f1)as′µs′,f1 , the contrast

maximum as a function of |ǫ(ωs,f1)/ǫ(ωs′,f1)| immediately yields the |as/as′ | ratio

(relative to |µs,f1/µs′,f1 |). Once the |as/as′ | ratios are known, we can, by varying

the state |f〉, obtain all other |µs,f/µs′,f | TDM ratios.

This procedure is illustrated in Fig.5.2d where we present |R(ω3,4)0 − R(ω3,4)π|
for various final states |f〉, for a fixed |ǫ(ω3,5)/ǫ(ω4,5)| ratio. The variation in the

contrast with |f〉 yields the variation in the |µs,f/µs′,f | TDM ratios.

5.3.2 Coupled Excited State Potentials

A case of great importance and much greater complexity is a wave packet evolving

on two coupled electronic states. Here the frequency-resolved methods used by us

in the past to extract the TDM’s[128, 143, 144], do not work because they rely on

the existence of only one excited PES. In this section we demonstrate the viability

of the present time-resolved method for such a case by determining the TDM’s for

the spin-orbit (SO) coupled RbCs system. Here the coupling occurs between the two

lowest excited electronic states [223–225].

We simulate the intersystem dynamics assuming that we know the PES of the

excited A1Σ+ singlet state and the b3Π excited triplet state[17]. In addition we

assume that the electronic transition-dipole[226] and the A1Σ+/b3Π spin-orbit (SO)

coupling [18, 19] functions are known. The above information allows us to calculate

the frequency-resolved fluorescence line strengths |µs,f |2 of RbCs, where s denotes

the vibrational states of the SO coupled A1Σ+/b3Π excited states, and f denotes the

vibrational states of the X1Σ+ ground state[16] (or possibly the a3Σ+ lowest triplet

state).

In order to produce the input time-resolved fluorescence we envision using an

ultrashort broad-band pulse to excite the X1Σ+(|v = 0〉) state to a wave packet

composed of the |s = 24− 33〉 vibrational eigenstates of the SO-coupled A1Σ+/b3Π
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Figure 5.2: (a) R(t) captured over 10 ps and strobed every 60 fs in the presence
and absence of the BCC field which removes populations from the excited state.
(b) |R(ω3,4)| as a function of the relative phase φ3,4;5 ranging over −π to π. Full
black line - f including only states |3〉 and |4〉; dashed blue line - the result of includ-
ing in addition to states |3〉 and |4〉 all ancillary states. (c) The contrast, C(0, π),
of Eq.(5.8), as a function of |ǫ(ω3,5)/ǫ(ω4,5)| - the ratio between the two interfer-
ing components of the BCC field, for fixed |ǫ(ω3,5)|2 + |ǫ(ω4,5)|2 sum of intensities.
The line codes are as in (b). The maximum contrast marks the point at which
|ǫ(ωs,f )/ǫ(ωs′,f )| = |as′µs′,f/asµs,f |, allowing us to extract |as′/as| and (by varying
|f〉) |µs′,f/µs,f |. (d) |R(ω3,4)| at different φ3,4;0 - φ3,4;f phase differences for various
final states |f〉.
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Figure 5.3: (a) Schematic of the RbCs system showing the four PES and the location
of some vibrational eigenstates. (b) The resulting temporal fluorescence captures
over several picoseconds for when the spin-orbit coupling (SOC) is excluded (blue-
square) and included (black-circle).

electronic states. As shown in Fig. 5.3a, these eigenstates straddle the region of

crossing between the A1Σ+ and b3Π PES, and in Fig. 5.3b we see the effect of

the spin-orbit coupling (SOC) on the time-dependent fluorescence (black-circle) in

contrast to the outcome when this coupling is omitted (blue-squares). We next

simulate applying a BCC pulse whose φs,s′;f phase differences between the ωs,f

and ωs′,f frequency components affect the fluorescence to one of the |f = 20 − 29〉
vibrational states of the X1Σ+ PES.

In Fig. 5.4a we display as blue circles the BCC pulse bandwidth (ranging over

∼ 14 − 22cm−1), and as black bars - the intensities (ranging between 106 − 1012

W/cm2) used for each |s〉 and |s′〉 excited pair and the |f = 20−29〉 final vibrational

states for which we extract the TDM’s.

We demonstrate, in Fig. 5.4b, a very successful extraction of the SO-coupled

singlet/triplet components (as) of the excited wave packet for two time points at the

excitation pulse center t = 0 (blue points), and after 10 ps (red points). The imaged

values (thick black line) appear to faithfully reproduce the ”true” values, where we

have assumed knowledge of the SO-coupled eigenfunctions for presentational pur-

poses. Figure 5.4b exhibits a transition, taking place over the 10 ps time span, from

a wave packet (blue curve) centered about the singlet potential minimum, to a wave

packet centered about the triplet potential minimum (red curve). A behavior of this

sort is only possible if the blue curve is mostly singlet and the red curve is mostly
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Figure 5.4: (a) The BCC pulse intensity (black bars) and bandwidth (blue circles)
used to achieve sufficient C(0, π) contrast (of at least 20%). The range of the pulse
intensity used was varied as a function of the final X1Σ+ state (f = 20−29) probed.
(b) Extraction of the singlet and the triplet components of an excited wave packet
Ψ(r, t) at t = 0, the excitation pulse center (“true” wave packet - blue points) and
after 10 ps (“true” wave packet - red points). The imaged wave packet, given at both
times as a thick black line, faithfully reproduces the ”true” values. Shown also are
the A1Σ+

u (thin black line) and b3Π (dashed line) PES.

triplet. The wave packet, composed of the SO coupled eigenstates, starts out as a

singlet because the selection rules of the optical transition from the ground singlet

create at t=0 only the singlet part of the wave packet. The temporal evolution of

the wave packet which changes the extracted as expansion coefficients to asexp(iEst)

gradually builds up a triplet component which, as shown in Fig. 5.4b, becomes very

prominent at t=10 ps.

5.3.3 LiRb Coupled Potentials

In this section, we demonstrate our TDM extraction procedure using time-resolved

fluorescence for an excited lithium-rubidium dimer (LiRb) wave packet evolving on

the spin-orbit (SO) coupled A1Σ+
u and b3Π electronic states [33, 227–229]. In Fig.

5.5a, we depict the ground state singlet, X1Σ+
g , and triplet a3Σ+, and two lowest

excited PES of LiRb. We also schematically present the light pulses. Marked as

(1) is a short (δt ∼ 20fs) pulse exciting the ground vibrational eigenstates |0〉 =

|v = 0; J = 0〉 to a set of SO-coupled excited vibrational eigenstates |ψs〉. Marked

as (2) is the BCC pulse, dominated by two distinct frequencies, coupling two excited

state |ψs〉 and |ψs′〉 to a ground state |χf 〉 in X1Σ+
g (or a3Σ+). Marked as (3) is the
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Figure 5.5: (a) (Main) Schematics of the LiRb system showing four PES’s and
select rovibrational eigenstates. (Inset) The BCC stimulated emission process which
couples states |ψs〉 and |ψs′〉 to |χf 〉. Some ancillary couplings of adjacent |ψs′+1〉 and
|ψs−1〉 states to different final states |χf 〉 may also result. (b) Temporal fluorescence
captured over 10 ps and strobed every 60 fs for two different relative phase choices
of the BCC field which either leaves or removes populations from two (or more) of
the excited states.
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fluorescence of the molecules remaining in the |ψs〉 vibrational states of A1Σ+
u ∼b3Π.

The fluorescence is to the |χf 〉 vibrational states of the X1Σ+
g and a3Σ+ states. The

fluorescence is collected every∼ 60fs over a period of∼ 10ps. This degree of temporal

resolution is possible due to the use of up conversion techniques [4, 5, 75].

BCC to a3Σ State

As an example we choose a particular case of {ψ17, ψ18, χ10}, where µ17,10µ18,10 > 0,

and |χf 〉 lies in a3Σ. In this case φ17,18;10 = −δ17,18 corresponds to constructive

interference, thereby minimizing the fluorescence depletion rate (appearing as a

maximum in |R(ω17,18)|), whereas φ17,18;10 = π − δ17,18 maximizes the fluorescence

depletion (reducing the signal |R(ω17,18)|). In Fig. 5.2a we compare R(t), the time-

resolved fluorescence rate of Eq. (5.4) after a BCC pulse (time-averaged intensity of

1×1010W/cm2 and bandwidth of 36cm−1,) with relative phase of φ17,18;10 = −δ17,18,
to the case when φ17,18;10 = π − δ17,18. As shown in the Fig. 5.2a, there is ∼ 20%

reduction in the fluorescence signal between the two cases. For such large differences

that can confidently be distinguished experimentally, we immediately know which

BCC phases choice lead to constructive (and which to destructive) interference, and

therefore have determined the relative phase (or sign) between two TDMs (µ17,10
and µ18,10).

Often the primary time-dependent signals may not be so easily discriminated

due to different TDM magnitudes. In this case we turn to the Fourier transform

filtering technique. As shown in the Fig. 5.2b, the variation of |R(ω17,18)| of Eq.

(5.6) with φ17,18;10 is very significant. We find the minima and maxima occurring at

the expected values of φ17,18;10, the ancillary BCC processes having the minor effect

of narrowing the range or slightly shifting the extrema points. When we ignore the

ancillary transitions (black line), the fluorescence maximum, occurring exactly at

φ17,18;10 = −δ17,18, is several times larger than the fluorescence minimum, occurring

at φ17,18;10 = π − δ17,18. This difference remains high even when we do take into

account the ancillary transitions (blue dashed line). In order to quantify this effect

we plot in Fig. 5.2c the contrast ratio

C(0, π) =
|R(ωs,s′)0 −R(ωs,s′)π|
|R(ωs,s′)0 +R(ωs,s′)π|

, (5.9)

where subscript 0 denotes the φ17,18;10 = −δ17,18 phase choice, and subscript π de-

notes the φ17,18;10 = π − δ17,18 phase choice. In Fig. 5.6b, we display the contrast
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Figure 5.6: (a) |R(ω17,18)| as a function of the relative phase φ17,18;10 ranging over
−π to π. Full black line - including only states |17〉 and |18〉; dashed blue line - the
result of including in addition to states |17〉 and |18〉 all ancillary states. (b) The
contrast, C(0, π), of Eq.(5.9), as a function of |ǫ(ω17,10)/ǫ(ω18,10)| - the ratio between
the two interfering components of the BCC field, for fixed |ǫ(ω17,10)|2 + |ǫ(ω18,10)|2
sum of intensities. The line codes are as in (a). The maximum contrast marks the
point at which |ǫ(ωs,f )/ǫ(ωs′,f )| = |as′µs′,f/asµs,f |, allowing us to extract |as′/as|
and (by varying |χf 〉) |µs′,f/µs,f |. (c) |R(ω17,18)0 −R(ω17,18)π| values at different
φ17,18;0 - φ17,18;f phase differences for various final states |χf 〉. (d) The BCC pulse
intensity (line-points) and bandwidth (blue circles) used to achieve sufficient C(0, π)
contrast (of at least 20%). The range of the pulse intensity used is shown for three
final a3Π state (χf ) probed as a function of the lower A1Σ+

u ∼b3Π coupled excited
state (ψs). The red diamonds (black squares) depict what happens when µs,f and
µs+1,f have identical (opposite) signs.
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C(0, π) as a function of the |ǫ(ωs,f )/ǫ(ωs′,f )| ratio. Since we know from Eq. (5.7)

that the constructive interference occurs when ǫ(ωs,f1)asµs,f1 = ǫ(ωs′,f1)as′µs′,f1 , the

contrast maximum as a function of |ǫ(ωs,f1)/ǫ(ωs′,f1)| roughly yields the |as/as′ | ratio

(relative to |µs,f1/µs′,f1 |). This should be in agreement with the |as/as′ | ratios ob-

tained from the finite time Fourier transform after we have compute the Cs,s′ ampli-

tudes using Eq. (4.5). Recall, that we first lift the π ambiguity in δs,s′ by extracting a

series of µs,fµs′,f relations for fixed (ψs, ψs′) over a range of final states f . This proce-

dure is illustrated in Fig. 5.6c where we present |R(ω17,18)0−R(ω17,18)π|/R(ω17,18)|
for various final states |χf 〉 in a3Σ, for a fixed |ǫ(ω17,f )/ǫ(ω18,f )| ratio. The vari-

ation in the contrast with |χf 〉 is related to the variation in the |asµs,f/as′µs′,f |
TDM ratios and the BCC field intensity. Due to the nature of the PES, we find

µs,fµs′,f > 0 for nearly all lower levels in a3Σ, with exception to the ambiguous

cases where |µs,f | becomes very small (<5% of the average of the TDMs) and we

cannot resolve the sign relation with greater than 10% difference (shown in Fig. 5.6c

for f = {0, 15, 16, 23, 24, 30}). The effect of including the ancillary states, which is

generally unpredictable without complete knowledge of the system, does not greatly

alter the behavior of the integrated fluorescence signal.

In Fig. 5.6d we display as blue circles – the BCC pulse bandwidth (ranging

over ∼ 14 − 65cm−1), and line-points – the intensities (ranging between 109 − 1012

W/cm2) used to achieve sufficient C(0, π) contrast (of at least 20%). For each |ψs〉
and |s′ = s + 1〉 excited pair and three |f = 5, 10, 20〉 final vibrational states for

which we extract the TDMs, we label the phase relation between the µs,f and µs+1,f

terms as black squares (same sign) or red diamonds (opposite sign). All phases were

extracted using experimentally reasonable parameters and found to be in agreement

with actual values.

BCC to X1Σ State

Similar to the previous example, we produce the input time-resolved fluorescence

by using an ultrashort broad-band pulse to excite the X1Σ+(|χ0〉) state to a wave

packet composed of the |ψs=11−23〉 vibrational states of the SO-coupled A1Σ+ ∼b3Π

electronic states. As shown in Fig. 5.5a, these eigenstates straddle the region of

crossing between the A1Σ+ and b3Π PES. We next simulate applying a BCC pulse

whose φs,s′;f phase differences between the ωs,f and ωs′,f frequency components

affect the fluorescence to one of the |f = 0 − 20〉 vibrational states of the X1Σ+

PES. In Fig.5.7a we demonstrate the same calculation as that shown in Fig. 5.6c,
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Figure 5.7: (a) Absolute difference of |R(ω17,18)| values for 0 and π cases at different
φ17,18;0 - φ17,18;f phase differences for various final states |χf 〉 in X1Σ. (b) The BCC
pulse intensity (line-points) and bandwidth (blue circles) used to achieve sufficient
C(0, π) contrast (of at least 20%). The range of the pulse intensity used is shown
for four final X1Σ state (χf ) probed as a function of the lower A1Σ+

u ∼b3Π coupled
excited state (ψs). The black squares (red diamonds) represent when µs,f and µs+1,f

have similar (opposite) signs.

though now, with the BCC fields coupling rovibrational levels (χf ) in the ground

singlet state X1Σ. We observe that the relative difference between the |R(ω17,18)0

and R(ω17,18)π| values is generally significant enough for reliable differentiation at a

fixed field intensity of 1010 W/cm2. That is until the magnitudes of the TDM become

very small when as f becomes large (f & 20). The location of the points relative

to the zero line indicate the phase relation between the µs,f and µs+1,f values. Our

results are in complete agreement with the expected signs for µs,fµs+1,f , and these

do not change noticeably with the inclusion of ancillary BCC processes.

Similar to Fig. 5.6d, we provide Fig. 5.7b which depicts the BCC pulse band-

widths (blue circles) and intensities (points) required to achieve sufficient C(0, π)

contrast (of at least 20%). The pulse parameters are shown for the ψs and ψs′=s+1

excited pairs coupling to four consecutive final vibrational states χf=8,9,10,21 in the

X1Σ PES. We label the phase relation between the TDMs, sgn(µs,fµs+1,f ), as before

(black square – same, red diamond – opposite), and find complete agreement with

the expected signs. Only in the cases in which these magnitudes are very small (e.g.

µ13,10, µ18,9, µ23,9), and thus negligible, is the BCC pulse intensity, which is directly

related to the strength of the TDMs, beyond that of our perturbative approach.

With knowledge of the magnitude and signs of the TDMs from rovibrational

levels in X1Σ to the A1Σ+ ∼b3Π spin-orbit coupled states, we can extract the as
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Figure 5.8: Extraction of the singlet and the triplet components of an excited wave
packet Ψ(r, t) at t = 2 ps, the excitation pulse centre (“true” wave packet - red points)
and after 10 ps (“true” wave packet - blue points). The imaged wave packet, given
at both times as a thick black line, faithfully reproduces the ”true” values. Shown
also are the A1Σ+

u (thin black line) and b3Π (dashed line) PES.
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excited state coefficients of a time-evolving wave packet [176, 177, 217]. In Fig. 5.8 we

show results for our wave function imaging performed in this way. We demonstrate

a very successful extraction of the complex amplitudes (with average error ≈0.2%)

at two time points, when t = 2 ps (red points), and after 10 ps (blue points). The

imaged values (thick black line) appear to faithfully reproduce the ”true” values. We

see very clearly how a wave packet predominately in the singlet state region leaks

into the triplet state after several picoseconds.

5.4 Conclusion

We have shown how time-resolved fluorescence data in conjunction with Bi-chromatic

Coherent Control (BCC) can be used to derive the phases as well as the amplitudes

of the as expansion coefficients of a wave packet Ψ(r, t) =
∑

s asψs(r) exp(−iEst/~),

where ψs(r) are vibrational eigenfunctions. The method can also be used to extract

the magnitudes and phases of µs,f , the individual transition dipole matrix-elements

(TDM’s) between energy eigenstates, ψs and ψf . The extraction of as and µs,f does

not necessitate having prior knowledge of the PES and/or SO-coupling terms, nor do

we need to know the ψs(r) functions. Imaging of Ψ(r, t) in coordinate space, would

appear to necessitate knowledge the PES because it necessitates knowing ψs(r), but

as we showed in the past [128, 143, 144, 176, 177, 217], it is possible, using the |µs,f |
magnitudes, to extract the excited states PES from which we can calculate ψs(r).
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Chapter 6

Extraction of Non-Adiabatic

Couplings

Recent advances in chemical reaction dynamics [230, 231]; the imaging of electronic

wave functions [232]; the creation of ultracold molecules [25, 233, 234]; and the use

of molecules for quantum information applications [156–159, 161, 161, 167, 169],

have stimulated a drive towards a better (preferably representation free) quantifica-

tion of molecular properties beyond the Born Oppenheimer approximation (BOA).

In particular, one would like to develop methods for a point-by-point extraction

(“inversion”) of excited state potential energy surfaces (PES) and the non-Born-

Oppenheimer terms that couple them. So far, such inversion efforts [6, 7, 125, 128,

128, 143] have been applicable only to isolated electronic states where the BOA is

valid. The above methods are inapplicable when electronic states interact, giving

rise to “avoided crossings” or “conical intersections”.

One of the simplest mechanisms for electronic state interactions is that of spin-

orbit coupling (SOC) [235, 236]. SOC has been intensely studied in alkali-metal

diatomic molecules and has been found to give rise to interesting phenomena such

as inter-system crossing [235], “window” states [236], and Feshbach resonances [237–

239]. An accurate description of the SOC in a molecule is of vital importance, as it

allows for better understanding the internal dynamics and for developing accurate

quantum control schemes within these systems.

Traditional ab initio methods are not effective at providing this information, since

they often ignore the diagonal and off-diagonal corrections to the BOA. Although

modern ab initio calculations are beginning to reach higher levels of accuracy (within

5 cm−1) [76, 77], many spectroscopic experiments require knowledge of the relevant

energies to a much greater precision in order to practically perform the desired

measurements [112, 240] (especially in the case of [112] where the measurements were

made in a regime where no prior experimental knowledge existed). An alternative,

is to iteratively construct a multi-parameter fit of the SOC term to accommodate

129
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experimental data, such as, from laser-induced fluorescence and Fourier-transform

spectroscopy. Considerable progress in executing this strategy has been made by

Bergeman and others [92–97], however the SOC term obtained in this manner is non-

unique. Moreover, the procedure is very difficult to execute because one must obtain

the line positions by diagonalizing a large set of differential or (even larger set of)

algebraic equations, in each iteration step. Bussery and Aubert-Frécon have derived

the full SOC matrix, analytically, for alkali dimers at long-range where SOC effects

emerge [112, 241]. Their approach has been used by Le Roy and company [107, 242]

to determine for certain states of Li2, the resonance dipole-dipole interaction term

C3 which is the leading long-range contribution to the spin-orbit coupling matrix.

Unfortunately, their method suffers from requiring a great amount of spectroscopic

information in order to compute the non-adiabatic (spin-orbit) couplings.

The present chapter attempts to remedy many of these drawbacks: We derive

a strict inversion procedure which extracts the radial dependence of the SOC from

experimental data via an analytic formula which directly ties the SOC terms with

the observed line positions and their transition-dipole matrix elements (TDMs).

6.1 Theory

We first consider two non-interacting singlet and triplet excited PES within the

BOA. The time-independent Schödinger equation for each potential is written as

HS |ES 〉 = ES |ES 〉 and HT |ET 〉 = ET |ET 〉 , (6.1)

where HS , ES and |ES 〉 represent the decoupled singlet Hamiltonian, its respective

energy eigenvalues, and their corresponding eigenstates. An analogous definition ap-

plies to HT , ET and |ET 〉 for the triplet state. Each of the HS or HT Hamiltonians

are given as

HS = TN +WS , HT = TN +W T , (6.2)

where TN is the nuclear kinetic energy operator and WS(T ) are the singlet (triplet)

diabatic, or decoupled, potentials. The interaction between these potentials is as-

sumed to arise from the SO term, HSO [235]; similar to Bergeman el al. [17, 19] we

have neglected other, smaller, non-adiabatic effects such as: hyperfine, Zeeman, spin-

spin, etc. In the diabatic representation this SO term results in diagonal, V D(R),

and off-diagonal, V OD(R), SO functions of the nuclear coordinate, R.
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6.1. Theory

Following other authors [17, 19, 106, 243], we write the full SOC Hamiltonian in

the decoupled singlet and triplet diabatic basis as

H =

(

Ê
S

V
OD

V
OD†

Ê
T
+ V

D

)

(6.3)

where Ê
S

and Ê
T

are diagonal matrices of the rovibrational eigenvalues for the singlet

and triplet potentials. The dimensions of these matrices are determined by the

number of singlet (NS) and triplet (NT ) eigenvalues, namely, Ê
S

is NS × NS , Ê
T

is NT × NT , and V
OD is NS × NT . The rovibrational matrix elements of the SO

components are defined as

(V OD)i,j = 〈ES
i |V OD(R)|ET

j 〉 , and (V D)i,j = −〈ET
i |V D(R)|ET

j 〉 , (6.4)

where the integration over the radial-dependent SOC functions, V OD(R) and V D(R),

is taken over R. We diagonalize the full SOC Hamiltonian as

Ê = U
†
HU (6.5)

where Ê is an N × N diagonal matrix composed of the full N = NS + NT SOC

eigenvalues. The unitary matrix, U, is constructed from the corresponding fully

interacting eigenstates, in the given basis, arranged in columns. Multiplying the two

sides of Eq. (6.5) by U we represent Eq. (6.5) in a 2× 2 block form as

(

U
S
u U

S
l

U
T
u U

T
l

)

·
(

Êu 0

0 Êl

)

=

(

Ê
S

V
OD

V
OD†

Ê
T
+ V

D

)

·
(

U
S
u U

S
l

U
T
u U

T
l

)

(6.6)

where the subscripts u and l denote respectively the the upper and lower elements

of the diagonal matrix Ê. Writing two equations for the upper portion of Eq. (6.6)

gives

U
S
u · Êu = Ê

S · US
u + V

OD · UT
u and U

S
l · Êl = Ê

S · US
l + V

OD · UT
l , (6.7)

either of which could be solved directly for the off-diagonal SOC matrix, VOD, assum-

ing that we know the U’s and E’s. Note that the dimensions of the first equations are

NS×NS , which can be seen from the dimensions of the sub-matrices US
u (NS×NS),

Êu (NS × NS), and U
T
u (NT × NS). On the other-hand, the second equation has
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6.1. Theory

dimensions of NS × NT since its constituent sub-matrices are U
S
l (NS × NT ), Êl

(NT ×NT ), and U
T
l (NT ×NT ). Consider the case in which the dimensions of these

two equations are the same, namely, that the number of singlet (NS) and triplet

(NT ) eigenvalues are equal, where the total number of SOC states N = 2NS = 2NT .

Now, we may sum the matrix equation in Eqs. (6.7) and rearrange to yield

V
OD =

{

U
S
u · Êu + U

S
l · Êl − Ê

S ·
(

U
S
u + U

S
l

)

}

·
{

U
T
u + U

T
l

}−1
. (6.8)

This expression now has the advantages of averaging the result for V
OD over more

data, and improving the condition number of the matrix targeted for inversion,

which would otherwise suffer when a particular SOC state doesn’t contain much

triplet character (if the columns of Uu or Ul were nearly zero, there may be trouble

solving by the use of a matrix inverse). Once V OD is known, we can solve for V D

by using the lower portion of Eq. (6.6), yielding two similar equations,

U
T
u ·Êu = V

OD† ·US
u+Ê

T ·UT
u−VD ·UT

u and U
T
l ·Êl = V

OD† ·US
l +Ê

T ·UT
l −VD ·UT

l ,

(6.9)

with dimensions NT ×NS and NT ×NT respectively. These can easily be combined

(when NS = NT ) to give

V
D =

{

V
OD† ·

(

U
S
u + U

S
l

)

+ Ê
T ·
(

U
T
u + U

T
l

)

− U
T
u · Êu − U

T
l · Êl

}

·
{

U
T
u + U

T
l

}−1
.

(6.10)

It follows from Eq. (6.8) and Eq. (6.10) that we can extract the SO matrices

using the diabatic singlet energies Ê
S

and the set of fully interacting eigenvalues Êu

and Êl, along with their corresponding eigenvectors in the diabatic basis (arranged

in U
S
u , U

S
l , U

T
u and U

T
l ). We now show how to obtain the latter quantities from

photo-absorption or photo-emission data. We start by assuming: (i) that WS and

W T , the “zero-order” decoupled singlet and triplet PES of Eq. (6.2), are known to

us, and (ii) that we know the TDMs between the physical (fully interacting) excited

manifold to some set of Ns lower singlet (s) and Nt lower triplet (t) states that are

physically decoupled from one another. The TDMs between the excited, coupled

system and the lower states, |Es 〉 and |Et 〉, are given as

(ds)k,i = 〈Es
k |d · ǫ̂|Ei 〉 and (dt)m,i = 〈Et

m |d · ǫ̂|Ei 〉 , (6.11)

where d is the electric dipole operator and ǫ̂ is the polarization direction of the
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emitted radiation. Using the definition of U, we can write each fully interacting

eigenstates as a sum of excited singlet (S) and excited triplet (T ) states

|Ei 〉 =
NS
∑

j=1

(US)j,i|ES
j 〉+

NT
∑

j=1

(UT )j,i|ET
j 〉 , (6.12)

where the summation is over the row (j) index of each i column (here we have

dropped the superfluous u and l labeling) in the U matrix. Using Eq. (6.12), we can

rewrite Eq. (6.11) as

(ds)k,i =

NS
∑

j=1

(ds,S)k,j(U
S)j,i and (dt)m,i =

NT
∑

j=1

(dt,T )m,j(U
T )j,i (6.13)

where (ds,S)k,j = 〈Es
k |d · ǫ̂|ES

j 〉 and (dt,T )m,j = 〈Et
m |d · ǫ̂|ET

j 〉, are the TDMs

between the excited and lower singlet, and triplet, states, respectively. The diago-

nalizing transformation U, can now be expressed in terms of the TDMs as

U
S =

(

d
s,S
)−1 · ds and U

T =
(

d
t,T
)−1 · dt . (6.14)

Note that these equations hold true for both the upper (u) and lower (l) labelled

blocks. For example, when solving for US
u , which has dimensions of Ns × NS , it is

best to take Ns = NS to ensure that ds,S is square. In fact, the initial partition into

four blocks need not be symmetric, as it is simply a convenient tool. The matrices in

the two sets of equation in Eq. (6.7) will initially be of different dimensions, however,

we can still proceed with their summation provided that we first expand the vector

space of the smaller dimensioned equation to the same size as the large one, placing

zeros in its new elements. In determining the “inverses” of non-square matrices,

the system will be either over- or under-determined, and we must use mathematical

optimization methods to find their pseudo-inverse [244–246] (where only the left (or

right) inverse may be defined). This will yield reasonable results provided that the

asymmetry of the matrices isn’t too great and that their dimensionality is sufficiently

large (i.e. NS ≈ NT ≈ Ns ≈ Nt ≫ 1).

Substituting the above form of U (Eq. (6.14)) lets us express Eq. (6.8) in terms of

the physical, fully interacting, energies and the TDMs, note that the superscripts Su
and Sl will denote singlet states corresponding to their arrangement in the original
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U matrix given in Eq. (6.6),

V
OD =

{

(

d
s,Su
)−1 · ds · Êu +

(

d
s,Sl
)−1 · ds · Êl − Ê

S ·
[

(

d
s,Su
)−1

+
(

d
s,Sl
)−1
]

· ds
}

·
{[

(

d
t,Tu
)−1

+
(

d
t,Tl
)−1
]

· dt
}−1

. (6.15)

Similar to the off-diagonal case, we can substitute the expressions for the U’s in

terms of dipole matrices for the case of the diagonal SO matrix into Eq. (6.10) to

obtain

V
D =

{

V
OD† ·

[

(

d
s,Su
)−1

+
(

d
s,Sl
)−1
]

· ds + Ê
T ·
[

(

d
t,Tu
)−1

+
(

d
t,Tl
)−1
]

· dt

−
(

d
t,Tu
)−1 · dt · Êu −

(

d
t,T
)−1 · dt · Êl

}

·
{[

(

d
t,Tu
)−1

+
(

d
t,Tl
)−1
]

· dt
}−1

.

(6.16)

These expressions are the desired solution for the SO matrix, given in terms of

Ek and (d)k,i. The energy levels, Ek, and |(d)k,i|2 are routinely measured in high

resolution spectroscopy. As we have shown [247, 248], knowledge of these quantities

allows us to extract the desired (d)k,i amplitudes. The remaining information needed

for Eq. (6.15) is the diabatic energy levels, (Ê
S

and Ê
T
), and the TDMs of the

decoupled states (ds,S and d
t,T ). This information can be computed from the excited,

decoupled, diabatic singlet and triplet PES.

In the case of weak SOC, these potentials could be obtained from the ground

electronic state and the measured |(d)k,i|2 values for vibrational states which are

sufficiently removed from the (near) crossing regions [7, 125, 128, 128, 143]. Since

such states will not be as affected by the SO-coupling and retain mostly their singlet

or triplet character, their dipole couplings to either the ground singlet or triplet

states can be used to reconstruct an accurate representation of the corresponding

diabatic potential. As demonstrated by Li et al. [7], one is able to extract an excited

PES using dipole data from only a few (≈ 5) highly excited rovibrational states of

the unknown PES. After determining these PES we can calculate the singlet state

rovibrational energies (ÊS) and, within the Franck-Condon approximation, the d
s,S

and d
t,T TDMs. When the SOC is strong, and the above inversion does not work,

we can either obtain diabatic singlet and triplet potentials from traditional ab initio

calculations or use those calculated by spectroscopic methods [104, 107, 242].

Lastly, using our calculated results of the two sets of diabatic eigenstates (after
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having found their potentials), we may solve Eq. (6.4) in the least-squares sense to

obtain a polynomial form for the V
OD(D)(R) function. Or alternatively, we can use

completeness (for details see derivation of Eq. (16) in Ref. [144]) to write Eq. (6.4)

as

V OD(D)(R) =
∑

i,k

φ∗Si (R)V
OD(D)
i,k φTk (R)

/

∑

j

|φTj (R)|2, (6.17)

where φSj (R) ≡ 〈R|ES
j 〉 and φTj (R) ≡ 〈R|ET

j 〉. The resulting SOC function and the

known eigenvalues thus lead to the extraction of the full SOC Hamiltonian.

6.2 Results

6.2.1 Weak Coupling - NaK

In this section we describe a set of calculations where we determine the SO coupling

function between low-lying electronic states of NaK [249]. We use data from Ref.

[11], where it was demonstrated that for the weakly coupled D(3)1Π and d(3)3Π

electronic states, the Rydberg-Klein-Rees (RKR) curves are in good agreement with

experimental data and can thus be used to define our excited decoupled potentials

in the diabatic representation. We have used the ground state singlet(X1Σ+) and

triplet(a3Σ+) states of Ref. [9, 10], together with the transition dipole moments [250,

251] and the SO function [12–15] to produce realistic spectroscopic line-positions and

amplitudes, (|dsk,i| and |dtm,i|), shown in Fig. 6.1a.

We first use the decoupled potentials in the diabatic representation of Ref. [11],

to calculate d
s,S , the TDM matrix between the two decoupled singlets, X1Σ+ and

D(3)1Π, and d
t,T the TDM matrix between the two decoupled triplets, a3Σ+ and

d(3)3Π. Armed with these matrix elements and using a recent development (from

Chap. 5 and Refs. [247, 248]) in which we have shown how to extract the signs

of the d
s and d

t TDMs from their experimentally derived magnitudes, we can use

Eq. (6.14) to extract the SOC eigenstates in the diabatic basis, thus leading us

to determine the SOC functions. We illustrate this procedure here by extracting

the SOC functions using simulated TDMs between 40 SOC excited eigenstates and

two sets of low lying rovibrational eigenstates of the X1Σ+ and the a3Σ+ electronic

manifolds. With all the ingredients in place, we now use Eq. (6.15), Eq. (6.16) and

Eq. (6.17) to perform a point-by-point extraction of the two SOC terms. We have

verified that 40 is the smallest number of states needed to maintain an accuracy of
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(a)

(b)

Figure 6.1: (a) (Main) Four NaK potentials in the diabatic representation: Solid
lines - the X1Σ+ and D(3)1Π singlet states; dashed lines - the a3Σ+ and d(3)3Π
triplet states [9–11]. (Inset) The dispersed emission spectrum from the coupled
D(3)1Π/d(3)3Π state to the lowest singlet and triplet states. (b) The “true” (Ref.
[12–15]) and extracted SO functions in NaK, exhibiting good agreement for the off-
diagonal (VOD(R)) term as well as for the diagonal (VD(R)) term.
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6.2. Results

< 1% in the extracted SOC functions in the (avoided-)crossing region.

The SOC extracted terms, fitted in Eq. (6.4) by a 5th order polynomial, are

shown in Fig. 6.1b where excellent agreement between the “true” and extracted

SOC terms is clearly in evidence. As expected, the accuracy of the extraction begins

to decrease outside the region spanned by the spatial extension of the eigenfunctions

included in the calculation.

6.2.2 Strong Coupling - RbCs

We now address the situation of strong SO-coupling between electronic states, oc-

curring for example in the RbCs molecule [223–225]. To simulate the rotationless

fluorescence spectrum of RbCs, we use the X1Σ+ and a3Σ+ low lying PES of Ref.

[16], the A1Σ+ and b3Π excited PES in the diabatic representation of Ref. [17],

the transition dipole moments of Ref. [226], and the SO functions of Ref. [18, 19]

(see Fig.6.2a for diagram). Due to the strong coupling between the A1Σ+ and b3Π

states, the RKR method or other inversion schemes [6, 7, 125, 128, 128, 143] fail to

generate reasonable candidates for the excited potentials, so instead we use the ab

initio diabatic potentials from Ref. [17] for this demonstration.

As in the weak coupling case we extract the SOC functions, V OD(R) and V D(R),

from Eq. (6.15), Eq. (6.16) and Eq. (6.17), using the simulated and computed TDMs

and eigenenergies. Then, we take these determined SOC functions and the diabatic

eigenstates, |ES 〉 and |ET 〉, to re-generate the SO-coupling matrix, VOD and V
D

using Eq. (6.4). This allows us to re-create the full SOC Hamiltonian (Eq. (6.3))

from the extracted information and thus compare the calculated SOC energies (i.e.

the eigenvalues of Eq. (6.3)) obtained through the extraction of the SOC coupling

functions with those computed directly from the ab initio data.

In Fig. 6.2b we plot the percentage difference between the eigenvalues obtained in

these two cases when the total number of SO eigenstates included in the calculation is

varied. The comparison is performed over the SO eigenvalues that would experience

the greatest energy shifts due to the coupling – those about the (avoided)-crossing

region of A1Σ+ and b3Π states. We see that when too few states (NSO = {60, 80})
are included in the calculation, the coupling between the potentials is not fully

characterized and large errors arise in the extracted eigenvalues. However, with 120

SO eigenstates the accuracy becomes quite good (≈ 1-2 cm−1), and the inclusion

of more functions doesn’t significantly improve the results, which is good news for

experimentalists who often don’t have all the transition data. The oscillations seen
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Figure 6.2: (a) (Main) Solid black lines - the Morse RbCs PES in the diabatic
representation [16, 17]; (Inset) The off-diagonal (V OD(R)) and diagonal (V D(R))
SO functions between the diabatic potentials [18, 19]. (b) Percentage difference
between the true and computed SOC eigenvalues calculated in the A1Σ+ and b3Π
diabatic crossing region, for a different number of total included eigenvalues.
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in the results are due to changes in the singlet-triplet composition of the different SO-

eigenstates. We suspect that those states comprising of more triplet character have

greater errors due to the additional diagonal coupling term, VD, being computed in

the extraction.

This demonstrates that we can accurately characterized the coupling between

the WS(R) (A1Σ+) and W T (R) (b3Π) potentials such that we can express the SO

coupled eigenstates in the WS/T (R) basis states, enabling the accurate imaging of

excited wave packets in non-adiabatically coupled systems [217].

6.3 Conclusion

We have performed a point-by-point extraction of the SO-coupling as a function of

the nuclear coordinates R using experimental data. Knowledge of the R dependence

of these coupling terms enables the generation of the eigenstates of the coupled

system and the reconstruction of excited wave packets generated in ultrashort pulse

excitation experiments [217]. The procedure uses a formula that expresses the spin

orbit coupling matrix in terms of the TDMs and the fully interacting energy levels.

Our method is not limited to this type of interaction: any interaction between

electronic states can be extracted in a similar manner. We intend to apply this

method to the mapping of non-adiabatic effects, including conical intersections, in

polyatomic molecules.
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Chapter 7

Final Conclusions

We have outlined several original approaches for extracting molecular information

from spectroscopic data. With the increasing breadth of spectral information and

improvements in temporal and spatial resolutions, original techniques such as those

presented here, may help to better characterize a molecule’s structure and behav-

ior. There are now many avenues of research in the molecular sciences, all of which

however, require as detailed information as possible on the molecular species at

hand. For instances, the formation of ultracold molecules (e.g. via the photoas-

sociation of ultracold atoms) relies on accurate molecular information and internal

level structure and dynamics. In particular, this requires very good information near

the dissociation limit for Feshbach resonances, and accurate knowledge of strongly

mixed (singlet-triplet) complexes for transferring molecules to bound states via Ra-

man process. A good description of a system would facilitate studying the properties

of molecules such as in: Bose-Einstein condensates and Fermi degenerate gases [25],

controlling chemical reactions and collisions [252], and, the quantum computation

on aligned molecular dipoles [157]. There has been even been renewed interest in

the usage of heteronuclear diatomics for sensitive non-contact probing and mapping

of external electric field distribution via changes in LIF [253, 254] to which precise

state information would be essential.

The first method involves determining one of the most important concepts of

molecular physics [48], the potential energy surface (PES). These structures are fun-

damental to spectroscopy, chemical kinetics and to the study of the bulk properties

of matter. It is used as a concept for both qualitative and quantitative description

of molecular properties. Our approach is capable of extracting excited diatomic

potentials over energy ranges spanning thousands of wave numbers using only tran-

sition spectral data from a few (∼ 10) excited rovibrational states. We developed

our procedure to include transition information to/from continuum states, address

multidimensional surfaces and operate beyond the Franck-Condon approximation

(FCA). The ten-fold improvements in accuracy observed when including a dipole
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correction is also applicable to any other inversion scheme which are based on the

FCA (such as those of Avisar and Tanner [153, 154]). The key requirements for

a successful PES construction are, first, sufficient data with reasonably small error

bars of relative intensities (∼ 5%) Ref. [143], and next, fulfillment of the complete-

ness condition in order to expand the excited state rovibrational wave function in

terms of the ground state wave functions (Ref. [128]). Recently, there have been

interesting studies measuring the transition dipole moments over a wide range of

transition frequencies to very high accuracy (e.g. Ref. [33] by Dutta et al). These

studies would serve as a good source for future work to validate our method using

experimental data.

On route to inverting the PESs we solved the spectroscopic phase problem.

Whereas the magnitudes of the transition dipole matrix elements (TDMe) between

energy eigenstates can be deduced from the strength of frequency-resolved spectral

lines, yielding the absolute-value-squared of the TDMs, it has much more difficult

to use such data to determine the phases of the TDMs. This current approach,

however, fails when there exist couplings between the unknown potentials, for in-

stance, due to spin-orbit coupling (SOC). In molecules, SOC causes inter-system

crossings (ISC), the nonradiative transition between different spin (e.g., singlet and

triplet) states [235]. SOC also gives rise to the formation of “doorway” or “window”

states [236], called such, because they enable electric-dipole-induced optical transi-

tions between different spin states. Its determination is vital for many applications,

such as the laser cooling of molecular species, which leads towards the formation

of Bose-Einstein condensates. In RbCs, SOC is known to promote Feshbach type

resonances [237–239] and to affect the “permanent” dipole moment of this molecule,

allowing for the tuning of the (dipole-dipole) interactions between trapped RbCs

molecules, potentially enabling the performance of quantum simulations in such sys-

tems. Using a simulated frequency spectrum of a spin-coupled diatomic system, we

have demonstrated the extraction of these coupling matrix elements, as well as, their

radial functional dependence. This work opens the door for extracting PESs in the

presense of non-adiabatic couplings.

We have also shown how the amplitudes of the electronic TDMs linking the ex-

cited and ground rovibrational states, in addition, to the amplitude of time-evolving

wave packets can be found from time resolved fluorescence data. By assuming that

the time-dependent decay signal is given as R(t) =
∑

s′,s a
∗
s′asCs′,s exp(−iωs′,st),

where as are the desired expansion coefficients, ωs′,s are (known) beat frequencies,
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and Cs′,s are molecular response matrix elements, we have shown how a finite time

Fourier transform over the fluorescence data at a given beat frequency will extract

out the component of the signal pertaining to the bi-linear a∗s′as product. Using

this result which assumes knowledge of the amplitudes and phases of µs,f (the indi-

vidual transition-dipole matrix-elements (TDMs) between energy eigenstates), one

can derive the phases as well as the amplitudes of the as expansion coefficients of a

wave packet Ψ(r, t) =
∑

s asψs(r) exp(−iEst/~), where ψs(r) are vibrational eigen-

functions. We have demonstrated these imaging results in basic diatomic systems,

and also applied this technique to SOC systems where we have seen very clearly how

a wave packet, which starts out in the singlet state region, leaks out to the triplet

state after several picoseconds.

Although we have shown that for an electronic transition between two Born-

Oppenheimer potential energy surfaces (PES), knowledge of one PES allows one to

derive the other PES, and the TDM’s phases [128, 143, 144], as well as imaging of

unknown time-evolving wave packets [176, 177, 217], the method requires data of a

large number of spectral lines and of sufficient quality and completeness, which at

this stage is only slowly becoming available [33]. Since obtaining the amplitudes of

the electronic TDMs linking the excited and ground vibrational states, is the crucial

step in both the PES inversion and wavepacket imaging procedures, we developed an

alternative approach for their determination. First, we discussed how a semiclassical

stationary phase calculation does not give the unknown phases of the TDMs when

the wavefunction of the excited state is unknown. Then, we presented an original

approach using ultrashort pulses in the molecule-field interaction. The method is

based on using bichromatic coherent control (BCC), which uses quantum interfer-

ences between different pairs of transitions induced by two external laser fields to

coherently deplete the population of (hence the fluorescence from) different pairs of

the excited energy eigenstates. The BCC induced depletion is supplemented by the

Fourier transform technique on the time-dependent spontaneously emission data to

obtain the sign relation between pair of TDMs. Armed with this combined informa-

tion, of all pairs of sign relations between TDMs, one can conclusively extract the

individual phases of the TDMs.

Our various methods, which in general, are found to be quite robust against er-

rors can be readily generalized to other systems, such as polyatomic molecules. It

would be interesting to apply our work to multi-dimensional problems and to use

our procedures to obtained a detailed image of nuclear motions associated with “in-
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ternal conversions” (transitions between different electronic states of the same spin

multiplicity), and “intersystem crossings” (transitions between electronic states of

different spins). More effort can be put towards the treatment of curve crossing situ-

ations, particularly in the case of singlet/triplet interactions. These coupled systems

greatly alter structure of both high-resolution and time-resolved spectroscopy, and

play a central role in exciting topics such as photosynthesis, where phosphorescence

decay times occur on the order of minutes to hours.
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