
Automatic Vertebrae Localization, Identification, and
Segmentation Using Deep Learning and Statistical Models

by

Amin Suzani

B.Sc. Computer Engineering, Sharif University of Technology, 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Applied Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Electrical and Computer Engineering)

The University Of British Columbia

(Vancouver)

October 2014

c© Amin Suzani, 2014

Abstract

Automatic localization and identification of vertebrae in medical images of the

spine are core requirements for building computer-aided systems for spine diagno-

sis. Automated algorithms for segmentation of vertebral structures can also ben-

efit these systems for diagnosis of a range of spine pathologies. The fundamental

challenges associated with the above-stated tasks arise from the repetitive nature

of vertebral structures, restrictions in field of view, presence of spine pathologies

or surgical implants, and poor contrast of the target structures in some imaging

modalities.

This thesis presents an automatic method for localization, identification, and

segmentation of vertebrae in volumetric computed tomography (CT) scans and

magnetic resonance (MR) images of the spine. The method makes no assumptions

about which section of the vertebral column is visible in the image. An efficient

deep learning approach is used to predict the location of each vertebra based on its

contextual information in the image. Then, a statistical multi-vertebrae model is

initialized by the localized vertebrae from the previous step. An iterative expecta-

tion maximization technique is used to register the statistical multi-vertebrae model

to the edge points of the image in order to achieve a fast and reliable segmentation

of vertebral bodies. State-of-the-art results are obtained for vertebrae localization

in a public dataset of 224 arbitrary-field-of-view CT scans of pathological cases.

Promising results are also obtained from quantitative evaluation of the automated

segmentation method on volumetric MR images of the spine.

ii

Preface

This thesis is primarily based on several manuscripts, resulting from the collabora-

tion between multiple researchers. All publications have been modified to make the

thesis coherent. Ethical approval for conducting this research has been provided by

the UBC Research Ethics Board, certificate numbers: H13-02361.

A version of Chapter 2 has been published in:

• Amin Suzani, Abtin Rasoulian, Sidney Fells, Robert N. Rohling, and Purang

Abolmaesumi. Semi-automatic segmentation of vertebral bodies in volumet-

ric MR images using a statistical shape+pose model. In SPIE Medical Imag-

ing, pages 90360P–90360P. International Society for Optics and Photonics,

2014.

The contribution of the author was in developing, implementing, and evaluating

the presented framework. The statistical model of the vertebral bodies along with

the implementation of the model registration was provided by Dr. Rasoulian.

Profs. Abolmaesumi, Rohling, and Fels helped with their valuable suggestions

for improving the methodology. All co-authors contributed to the editing of the

manuscript.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . viii

List of Figures . x

Glossary . xv

Acknowledgments . xvii

1 Introduction . 1
1.1 Clinical Background . 1

1.2 Thesis Objectives . 3

1.3 Thesis Structure . 3

2 Semi-automatic Segmentation in MRI 5
2.1 Introduction . 5

2.2 Materials . 7

2.3 Methods . 8

2.3.1 Intensity Correction . 8

2.3.2 Anisotropic Diffusion 8

2.3.3 Canny Edge Detection 8

iv

2.3.4 Segmentation Using the Multi-vertebrae Model 9

2.4 Results and Discussions . 9

2.5 Summary . 15

3 Deep Learning for Automatic Vertebrae Localization in CT 16
3.1 Introduction . 16

3.2 Materials . 17

3.3 Simultaneous Localization and Labeling 19

3.3.1 Intensity-based Features 19

3.3.2 Parametrizing Localization Problem As a Regression . . . 21

3.3.3 Deep Neural Networks for Regression 21

Network structure . 22

Cost function . 24

Layerwise pre-training 26

Second neural network for the z coordinates of outputs . . 27

3.3.4 Kernel Density Estimation for Vote Aggregation 28

Procedure on a test image 28

Kernel density estimation 29

3.4 Hyper-Parameters Optimization 31

3.4.1 Parameters in Feature Extraction 31

Downsample rate . 31

Size and displacement of feature boxes 32

PCA whitening . 33

3.4.2 Parameters in Training Deep Neural Network 35

Neural network structure 35

Activation function . 36

Optimization method . 37

3.4.3 Parameters in Aggregating Votes 39

3.5 Results and Discussion . 40

3.5.1 Separate Network for Z Coordinate 41

3.5.2 Point Selection Using Canny Edge Detector 41

3.5.3 Refinement by Local Vote Aggregation 42

3.5.4 Capability of Our Shape+pose Model for Further Refinement 44

v

3.5.5 Final Results . 45

3.5.6 Comparison to State-of-the-art 45

3.6 Summary . 48

4 Automated Localization, Identification, and Segmentation in MRI . 49
4.1 Introduction . 49

4.2 Materials . 50

4.3 Methods . 51

4.3.1 Automatic Localization and Identification 51

Pre-processing: bias field correction 51

Localization and identification by deep learning 52

Refinement by local thresholding 52

4.3.2 Segmentation . 54

Pre-processing: anisotropic diffusion 54

Statistical model registration 54

4.4 Results and Discussion . 54

4.5 Summary . 60

5 Speedup by Vectorization and GPU Acceleration 61
5.1 Vectorized Feature Extraction . 61

5.1.1 Description of Features 62

5.1.2 Sequential Implementation 62

5.1.3 Vectorized Implementation 63

5.1.4 Comparison and Computation Analysis 64

5.2 GPU-accelerated Model Registration 65

5.2.1 Spine Segmentation Method 66

Computationally intensive part 67

5.2.2 Parallel Computing Approach 68

GPU acceleration using CUDA 68

Multicore CPU acceleration using shared memory 68

5.2.3 Experiment . 68

Parallelization on GPU 69

Parallelization on a multicore CPU 70

vi

5.2.4 Results . 71

Block size in GPU programming 71

Speedup gain from GPU-acceleration 71

Speedup gain from multicore CPU acceleration 72

5.2.5 Discussion . 73

5.3 Summary . 74

6 Conclusion and Future Work . 75
6.1 Contributions . 76

6.2 Future Work . 77

Bibliography . 79

vii

List of Tables

Table 2.1 Mean error and maximum distance (Hausdorff) of 3D segmen-

tation in each multi-slice image are reported (in mm) for each

vertebral body. 12

Table 2.2 Mean error and maximum distance (Hausdorff) of 2D segmen-

tation in the mid-sagittal slice of each image are reported (in

mm) for each vertebral body. 13

Table 3.1 Localization errors (in mm) for using a single neural network

for all coordinates vs. using a separate neural network for the z

coordinate. 42

Table 3.2 Localization errors (in mm) for using a Canny edge detector for

point selection vs. performing the analysis on the votes of all

voxels without any type of point selection. 42

Table 3.3 Localization errors (in mm) before and after using local vote

aggregation to refine the predictions. 43

Table 3.4 Localization results for different regions of the vertebral col-

umn. Mean error and Standard Deviation (STD) are in mm. . . 46

Table 3.5 Comparison of the localization results of our method and the

method presented in [15] which uses regression forests followed

by a refinement using Hidden Markov Models. The same train-

ing and test sets are used in evaluations of both methods. Mean

error and STD are in mm. 47

viii

Table 3.6 Comparison of the localization results of our method and an-

other method based on classification forests which is considered

as state-of-the-art for this dataset [16]. The same training and

test sets are used in evaluations of both methods. Mean error

and STD are in mm. 48

Table 4.1 Localization and identification results for lumbar vertebral bod-

ies in nine volumetric Magnetic Resonance (MR) images. . . . 56

Table 4.2 Mean error and maximum distance (Hausdorff) of segmentation

error (in mm) for each vertebral body. 58

Table 5.1 Computation time and speedup of the GPU-accelerated pro-

gram for different problem sizes. 72

Table 5.2 Computation time and speedup of the multicore-accelerated pro-

gram for different problem sizes. 73

ix

List of Figures

Figure 1.1 Left: Main parts of a typical vertebra, Right: The regions of the

human vertebral column. (From http://www.compelvisuals.com,

http://www.studyblue.com) 2

Figure 2.1 Flowchart of the semi-automatic framework for segmentation

of vertebral bodies. 7

Figure 2.2 (a) Mid-sagittal slice of original image, (b) after intensity-correction,

(c) after intensity correction and anisotropic diffusion. 10

Figure 2.3 Edge extraction results in the mid-sagittal slice of three differ-

ent volumes. 10

Figure 2.4 Examples of segmentation results in three different subjects.

White contours show our segmentation results, while manual

segmentation is shown with red contours. 11

Figure 2.5 Summery of the parameters of the semi-automatic framework

for segmentation of vertebral bodies. The values of the main

parameters of each step are shown in the boxes at the rightmost

column. 14

Figure 3.1 The mid-sagittal slice of several images from the dataset. The

dataset consists of 224 three-dimensional Computed Tomogra-

phy (CT) scans of patients with varying types of pathologies.

In many cases, severe image artifacts are caused by metal im-

plants. Different regions of the spine are visible in different

images. 18

x

Figure 3.2 The value of each feature is the mean intensity over a three-

dimensional cuboid displaced with respect to the reference voxel

position. From [10]. 20

Figure 3.3 A 2D example of the integral image approach. Each pixel in

the integral image contains the sum of intensities above and

to the left of itself, inclusive. Therefore, sum of intensities

in rectangle D of the original image can be computed quickly

by two subtractions and one addition using the integral image:

II(4)− II(3)− II(2) + II(1) = ∑ I(A∪ B∪C ∪D)−∑ I(A∪
C)−∑ I(A∪B)+∑ I(A) = ∑ I(D). 20

Figure 3.4 The vertebrae localization problem is parametrized as a regres-

sion problem. The targets of the regression are the vectors

from the reference voxel to the center of each vertebral body

(The orange arrow). The reference voxel is described by 500

intensity-based features from the area around itself (Shown in

red). 22

Figure 3.5 The landmarks that are used for training and also evaluation are

the center of vertebral bodies. For the training set, we make a

rough guess of the location of the vertebrae that are not visible

in the image. Rigid registration of a simple model is used for

this purpose. 23

Figure 3.6 The deep neural networks consists of six layers that are trained

using layerwise pre-training and stochastic gradient descent.

Hidden units are shown in orange while input and output layers

are shown in blue. 25

Figure 3.7 Rectifier functions are used as the activation functions for hid-

den units. 25

Figure 3.8 Linear functions are used for the output layer activation. . . . 26

Figure 3.9 A sample visualization of the cost function with respect to two

arbitrary parameters of the network. Stochastic Gradient De-

scent (SGD) aims to converge to the global minimum while the

cost function is not guaranteed to be convex. 28

xi

Figure 3.10 Thousands of voxels of the image vote for the location of each

vertebra. The centroid of these votes are estimated using Ker-

nel Density Estimation (KDE). Based on the votes, a vertebra

may be localized inside or outside of the field of view of the

image. 29

Figure 3.11 Kernel density estimation of a sample set of points. The global

maximum of this estimation is used as the centroid of the votes.

In multimodal distributions like this sample, the estimated cen-

troid from KDE may significantly differ from mean, median, or

mode of the distribution. 30

Figure 3.12 The effect of downsample rate on accuracy, precision, and iden-

tification rate is plotted. Downsampling with the rate of 12 mm

has provided sufficient points for robust estimation. Further

decrease of the downsampling rate shows no more accuracy

gain. 32

Figure 3.13 Increasing the maximum box size up to 32 mm improved the

performance. A larger value for this parameter causes it to go

out of bound in several small images of the dataset. Going out

of bound means that all votes are disregarded and no prediction

is made. 33

Figure 3.14 Using Principal Component Analysis (PCA) whitening as an

additional preprocessing step caused overfitting. The cost func-

tion is better minimized at the training time, but poor perfor-

mance is observed on test data. The results are slightly better

in lumbar region where there has been more training examples. 35

Figure 3.15 The accuracy and identification rates obtained from using dif-

ferent numbers of hidden layers. Increasing the number of hid-

den layers from 4 to 5 did not have a large effect on the final

results. 36

Figure 3.16 The accuracy and identification rates obtained from using dif-

ferent numbers of neurons in the first hidden layer. The system

showed high sensitivity to this hyper-parameter. 37

xii

Figure 3.17 The accuracy and identification rates obtained from using dif-

ferent activation functions for hidden layers. Using Rectified

Linear Unit (RELU) was faster and also led to better results. . . 38

Figure 3.18 Convergence of the deep neural network. SGD is used along

with layerwise pre-training. Adding a layer in each step led to

further minimization of the cost function. 39

Figure 3.19 The accuracy and identification rates obtained from using dif-

ferent approaches for aggregating votes. 40

Figure 3.20 Visual results of the local vote aggregation step are shown on

the mid-sagittal plane of three example images. The localiza-

tion points before refinement are shown in red while the points

after refinement by local vote aggregation are shown in cyan.

Refined points have a better representation of the spine curva-

tures. 43

Figure 3.21 Visual results of the shape+pose model refinement step are

shown on the mid-sagittal plane of three example images. The

localization points before model refinement are shown in cyan

while the points after model refinement are shown in yellow.

The improvement is minimal and may not be worth the com-

putational expense. 44

Figure 3.22 The edge map that is obtained by Canny edge detector in the

mid-sagittal plane of three example images. Image artifacts

and unclear boundaries adversely affect the quality of the ex-

tracted edge maps. 45

Figure 4.1 Flowchart of the automatic framework for segmentation of ver-

tebral bodies. 51

Figure 4.2 The value of each feature is the difference between the mean

intensity over two cuboids displaced with respect to the refer-

ence voxel position. From [10]. 53

xiii

Figure 4.3 Refining localization points by replacing them with the center

of the closest large component, obtained from local threshold-

ing. Left: Localized points before refinement. Middle: Re-

finement using components obtained from local thresholding.

Right: Localized points after refinement. 53

Figure 4.4 Localization and labeling results on the mid-sagittal slice of

bias-field corrected images. 55

Figure 4.5 Examples of segmentation results in the mid-sagittal slice of

five different patients. Our segmentation results are shown

with white contours, while red contours show the manual seg-

mentation. 57

Figure 4.6 Summery of the parameters of the automatic framework for

segmentation of vertebral bodies. The values of the main pa-

rameters of each step are shown in the boxes at the rightmost

column. 59

Figure 5.1 The proposed vectorization approach is shown on a 2D exam-

ple. A feature box with size Si and displacement vector Di can

be computed for all pixels of an image by element-wise matrix

addition and subtraction on the integral image according to Si

(Left), and then cropping the product matrix according to Di

(Right). In the left figure, a number of element-wise matrix

operations (purple-orange-green+blue) on the integral image

results in a matrix in which each element contains the sum of

boxes with size Si started from the corresponding element in

the original image. Out-of-bound parts of the matrices can be

handled by zero-padding or cropping. 64

Figure 5.2 Computation time of the vectorized version and the sequential

version of the algorithm on a sample image in MATLAB. . . . 65

Figure 5.3 Computation time of the CUDA program for different block

sizes. M=7,000 and N=20,000. 71

Figure 5.4 Computation time of the multicore-accelerated program for

different numbers of processors. M=7,000 and N=20,000. . . 73

xiv

Glossary

CT Computed Tomography

MR Magnetic Resonance

PACS Picture Archiving and Communication System

SVM Support Vector Machine

SVD Singular Value Decomposition

PCA Principal Component Analysis

HMM Hidden Markov Model

RF Regression Forest

GPU Graphics Processing Units

SGD Stochastic Gradient Descent

RELU Rectified Linear Unit

HF Hessian-free

KDE Kernel Density Estimation

STD Standard Deviation

CF Classification Forest

CUDA Compute Unified Device Architecture

xv

CPU Central Processing Units

TP True Positive

TN True Negative

FP False Positive

FN False Negative

ROI Region Of Interest

xvi

Acknowledgments

First and foremost, I would like to thank my supervisor, Purang Abolmaesumi, for

guiding me throughout this journey. He has always been a wonderful example for

me both in research and professional behaviour.

Special thanks to Robert Rohling, Abtin Rasoulian, and Weiqi Wang for their

insightful feedback and sharing their knowledge and experience in the fields of

medical image analysis and GPU programming.

I also would like to thank all my colleagues and friends in the Robotics and

Controls Lab for providing a very friendly and pleasant working environment dur-

ing my two-year stay.

Finally, I would not be where I am today without the unconditional love and

support from my parents, Tahereh and Hasan.

xvii

Chapter 1

Introduction

1.1 Clinical Background
The human spine (also referred to as vertebral column) normally consists of 33

vertebrae. The upper 24 vertebrae are articulating and separated from each other

by intervertebral discs. The lower nine are fused in the sacrum and the coccyx. The

articulating vertebrae are grouped into three regions: 1) seven cervical vertebrae

of the neck, 2) twelve thoracic vertebrae of the middle back, and 3) five lumbar

vertebrae of the lower back. The order of the regions and also the numbering of

each region are from top to bottom. The number of vertebrae in each region are

slightly variable in the population. Figure 1.1 illustrates the regions of the vertebral

column and their conventional numbering notation [71].

The cervical region is located in the neck. It has generally smaller vertebrae

compared to other regions. The shape of the first two cervical vertebrae (called the

atlas and the axis) differs from the rest. These two vertebrae are used for rotating

the neck. The thoracic vertebrae, on the other hand, are connected to the ribs and

have limited movement. This section forms the steady mid back of the human body.

The lumbar vertebrae are generally larger than the vertebrae of other regions. This

section bears most of the weight and also movements (bending, twisting, etc.) of

the body. Lower back pain, one of the most common types of pain, usually occurs

in the lumbar region [62].

A typical vertebra includes a vertebral body in the front and a vertebral arch

1

Figure 1.1: Left: Main parts of a typical vertebra, Right: The regions of
the human vertebral column. (From http://www.compelvisuals.com,
http://www.studyblue.com)

in the back which encloses the vertebral foramen. One spinous process, two trans-

verse processes, and a pair of laminae are some remarkable parts of the vertebral

arch. Figure 1.1 shows the main parts of a typical vertebra.

The spine is commonly viewed by X-rays, Computed Tomography (CT), and

Magnetic Resonance (MR) imaging. X-rays and CT are more affordable and gener-

ally provide better contrast of bony structures. However, their capability in viewing

soft tissues is very limited. On the other hand, MR depicts much better contrast of

soft tissues like nerve roots and intervertebral discs [54]. In addition, unlike CT and

X-rays, MR imaging does not expose the patient to ionizing radiations [12, 55].

2

1.2 Thesis Objectives
The global objective of this thesis is to facilitate building of computer-aided sys-

tems for spinal disease diagnosis, surgical planning, and post-operative assess-

ments. To this end, we investigate and develop techniques for automatic vertebrae

detection, localization, identification, and segmentation within a clinically accept-

able time-frame.

Localization and identification of the vertebrae and discs are essential steps in

the analysis of spine images. Radiologists report the diagnosis after detecting and

identifying the vertebrae present in the image [1]. In particular, lower back pain,

one of the most common types of pain, can be caused by a wide range of spine

diseases and pathologies (herniated disc, degenerative disc, and spondylolisthesis

to name a few). Reliable computer-aided diagnosis systems can massively help the

physicians to find the cause of lower back pain. One of the core requirements for

building such systems is developing a reliable method for automated localization

and identification of vertebrae. Once the target vertebrae are localized, the system

will be able to perform any subsequent diagnosis on them.

Segmentation of vertebral structures in medical images of the spine can also

benefit computer aided systems for measuring the deformations caused by differ-

ent spinal pathologies and diseases. These measurements can be used for diagnosis,

pre-operative planning and also post-operative assessments. For instance, scolio-

sis is a spine pathology in which the patient’s spine is curved from side to side.

This pathology can be diagnosed from the shapes and orientations of the vertebrae.

Therefore, a reliable segmentation of vertebral structures are necessary. In addi-

tion, automatic spine segmentation as well as vertebrae localization can benefit a

Picture Archiving and Communication System (PACS) by allowing the system to

store more meaningful data than the raw images.

1.3 Thesis Structure
The rest of this thesis is subdivided into five chapters as outlined below:

Chapter 2 describes a semi-automatic method for segmenting vertebral bodies

in typical volumetric MR images of the spine, where the slice spacing is large.

Using a graphical user interface, the user clicks on each vertebra that needs to be

3

segmented. The method takes advantage of the correlation between shape and pose

of different vertebrae in the same patient by registering a statistical multi-vertebrae

model to the image.

Chapter 3 presents an automatic method based on deep learning for simulta-

neous localization and identification of vertebrae in general CT scans, where the

field-of-view is unknown and spine pathologies may be present.

Chapter 4 combines the last two chapters to propose a fully-automatic approach

for localization, labeling, and segmentation of vertebral bodies in multi-slice MR

images. The need for user interaction in Chapter 2 is replaced with a modified

version of the automatic localization method presented in Chapter 3.

Chapter 5 describes two main contributions for speeding up the methods pro-

posed in previous chapters by vectorization and GPU acceleration. A vectorization

approach for the feature extraction algorithm and a GPU-accelerated method for

the statistical model registration are proposed and compared against their sequen-

tial versions.

Chapter 6 concludes the thesis with a short summary followed by remarking

the major contributions along with the direction of future work on the subject.

4

Chapter 2

Semi-automatic Segmentation in
MRI

2.1 Introduction
Segmentation of vertebral structures in volumetric medical images of the spine is

an essential step in the design of computer aided diagnosis systems for measuring

the deformations caused by different spinal pathologies such as osteoporosis, spinal

stenosis, spondylolisthesis and scoliosis. When making decisions for diagnosis and

therapy of these pathologies, physicians often use MR images for the assessment

of soft spinal structures such as inter-vertebral discs and nerve roots. However,

the established methods for segmentation of vertebral structures have been mainly

developed for CT. On the other hand, CT requires radiation exposure and does not

depict soft tissue as well as MR images. The availability of a fast and reliable spine

segmentation of MR images may eliminate the need for CT and benefit patient care.

Segmentation of vertebral structures in MR images is challenging, mainly due

to poor contrast between bone surfaces and surrounding soft tissue. Another chal-

lenge is relatively large inter-slice gap (more than 3 mm) in typical clinical MR

images compared to CT, which is normally sub-millimeter in recent generation

of scanners. In addition, spatial variations in surrounding soft tissue contrast and

magnetic field inhomogeneities increase the complexity of the segmentation task

in MR images.

5

For spine segmentation in MR images, several methods have been proposed

in the literature. Most of them are 2D approaches that are applied on manually

identified cross-sections which contain the target vertebrae [8, 12, 23, 60]. Peng

et al. [48] search for the best slice automatically and then perform a 2D segmen-

tation approach. A smaller number of methods have been proposed for MR seg-

mentation of vertebral structures in 3D. The method from Hoad et al. [22] has a

labour-intensive initialization step and also a post-processing step for correcting

the segmentation. Štern et al. [64, 65] perform the segmentation by optimizing the

parameters of a geometrical model of vertebral bodies. The method from Neu-

bert et al. [41] uses statistical shape models and registration of grey level intensity

profiles for vertebral body segmentation. Zukic et al. [78] use multiple-feature

boundary classification and mesh inflation. Methods from Hoad et al. and Štern et

al. have long execution times (at least more than five minutes for high-resolution

volumetric images). All above-stated 3D approaches segment each vertebra inde-

pendently. Consequently, the correlation between shapes of different vertebrae in

a patient is disregarded. In addition, the methods from Hoad et al., Štern et al.,

and Neubert et al. are evaluated on volumetric images with an inter-slice gap of at

most 1.2 mm which is not commonly used in clinical practice. Recently, a method

was proposed by Kadoury et al. [28] for spine segmentation using manifold em-

beddings. Multiple vertebrae are treated as a whole shape in this work. However,

it is still evaluated on MR images with less than 1.2 mm slice spacing, and no com-

putation time was reported.

In a previous work of our research group [50], we have successfully segmented

lumbar vertebrae in volumetric CT scans using a statistical multi-vertebrae anatom-

ical shape+pose model. In this thesis, we aim to find simple and fast pre-processing

steps to overcome the MR segmentation challenges explained above, and conse-

quently obtain edge points of vertebral bodies from widely spaced slices of rou-

tine volumetric MR images. Thereafter, we register our multi-vertebrae anatomical

model to the extracted edge points with the goal of achieving a fast and reliable

segmentation of lumbar vertebral bodies in MR images.

6

Intensity Correction

User Interaction

Specifying Region
of Interest (ROI)

Anisotropic Diffusion

Edge Detection

Model Registration

Figure 2.1: Flowchart of the semi-automatic framework for segmentation of
vertebral bodies.

2.2 Materials
The performance of the proposed method was evaluated on T1-weighted MR im-

ages of nine patients (via SpineWeb [72]). The in-plane resolution is 0.5× 0.5

mm2 with a slice spacing between 3.3 to 4.4 mm. Each series of images consists of

slices with 512×512 pixels. The number of slices from each patient ranges from

12 to 18. The multi-vertebrae anatomical model was constructed from manually

segmented volumetric CT scans of an independent group of 32 subjects [50, 52].

Ground truth segmentations were obtained manually from raw images using ITK-

SNAP [74].

7

2.3 Methods

2.3.1 Intensity Correction

The presence of intensity inhomogeneity in spinal MR images can adversely in-

fluence the ability to extract edges. Hence, we first apply an intensity correction

algorithm on MR images to reduce this inhomogeneity. The bias field correction

function provided in Statistical Parametric Mapping software package (SPM12b,

Wellcome Department of Cognitive Neurology, London, UK) is used for this pur-

pose. Figures 2.2(a) and 2.2(b), respectively, show the mid-sagittal slice of a

sample MR image before and after intensity correction.

2.3.2 Anisotropic Diffusion

We then apply a conventional 3D anisotropic diffusion [49] filter to the intensity-

corrected image. Anisotropic diffusion is an image smoothing algorithm that at-

tempts to preserve edges. Figures 2.2(b) and 2.2(c), respectively, show the image

before and after this step. The function below (proposed by Perona and Malik [49])

is used for the diffusion coefficient in order to privilege high-contrast edges over

low-contrast ones.

c(x,y,z, t) = e−(||∇I||/κ)2
, (2.1)

∇I denotes the image gradient, and the conductance parameter, κ , controls the

sensitivity to edges. Weak edges can block the conductance when κ is too low, and

strong edges may not be preserved when κ is too high. In all experiments κ and

the integration constant, ∆t, were set to 50 and 1/7, respectively. The variables x,

y, and z represent the spatial coordinates, while the variable t enumerates iteration

steps. The algorithm was run with 20 iterations for each volumetric image.

2.3.3 Canny Edge Detection

At this step, the intensity-corrected mid-sagittal slice of the image is shown to the

user. The user clicks on each of the lumbar vertebrae (L1 to L5) in the image

(five points in total). For some irregular image acquisitions where those vertebrae

are not visible in the mid-sagittal slice, the user could select a slice manually to

8

be able to click on the vertebrae. However, we do not observe any sensitivity to

the slice selection. Only the clicked points are used for the rest of the procedure.

After user interaction, a 2D Canny edge detection algorithm [7] is applied to each

sagittal slice to find the edge map of vertebral bodies in potential regions of the

volumetric image. These regions are five cubic bounding boxes centered at the

clicked points. The scales of the cubes are obtained from the average distance of

consecutive user clicks. The sensitivity threshold of the Canny edge detector is

obtained automatically based on the maximum value of the gradient magnitude of

the region. Figure 2.3 shows the result of edge detection in mid-sagittal slice of

three different volumetric MR images. The statistical model is registered to the

edge map obtained from this step.

2.3.4 Segmentation Using the Multi-vertebrae Model

Variations of shapes and poses of lumbar vertebrae were independently extracted

from previously acquired 32 manually-segmented volumetric CT images [50]. This

analysis was performed on all five lumbar vertebrae combined, taking into account

the correlation between shapes of different vertebrae. The extracted variations are

then represented in a statistical model. An iterative expectation maximization reg-

istration technique presented by Rasoulian et al. [50] is used for aligning the model

to the edge points extracted from MR images in the previous step. The structure of

the model and the registration technique are described in more detail in [50].

2.4 Results and Discussions
Our segmentation results are quantitatively evaluated by using the manual segmen-

tation as the ground truth. The mean error and Hausdorff distance are reported for

each vertebra in a volumetric image (Table 2.1). For each point of the 3D surface

mesh of manual segmentation we find its distance to the closest point in the reg-

istered model. The average of these distances is considered as the mean error and

the maximum of them is considered as the Hausdorff distance. In order to make

our results comparable with other approaches that only focus on 2D segmenta-

tion [8, 12, 23, 60], we also report the segmentation errors for the 2D mid-sagittal

slice of each image in Table 2.2. Some examples of our segmentation results are

9

Figure 2.2: (a) Mid-sagittal slice of original image, (b) after intensity-
correction, (c) after intensity correction and anisotropic diffusion.

Figure 2.3: Edge extraction results in the mid-sagittal slice of three different
volumes. 10

Figure 2.4: Examples of segmentation results in three different subjects.
White contours show our segmentation results, while manual segmen-
tation is shown with red contours.

shown in Figure 2.4. Although the slice spacing in our MR images is relatively high

(between 3.3 and 4.4 mm), the quantitative results show that our method can seg-

ment the lumbar vertebral bodies in MR images with a mean error of ∼ 3 mm and

standard deviation of ∼ 0.8 mm. The overall segmentation for each image takes

less than 2 minutes using our implementation in MATLAB (The MathWorks, Inc.,

Natick, MA) on a 2.5 GHz Intel core i5 machine.

11

Table 2.1: Mean error and maximum distance (Hausdorff) of 3D segmentation in each multi-slice image are reported
(in mm) for each vertebral body.

Subject
L1 L2 L3 L4 L5 All lumbar vertebrae

Mean Max Mean Max Mean Max Mean Max Mean Max Mean ± std Max
1 2.6 6.5 2.2 6.7 2.1 5.9 2.2 7.7 2.6 8.3 2.3 ± 0.2 8.3
2 2.9 9.8 2.8 8.1 2.4 7.3 3.1 11.3 2.9 9.1 2.8 ± 0.3 11.3
3 2.8 7.1 2.1 5.7 2.0 6.5 2.8 6.0 3.0 8.5 2.5 ± 0.4 8.5
4 2.7 7.5 3.7 9.6 3.8 9.6 4.0 10.3 3.7 12.4 3.6 ± 0.5 12.4
5 2.6 7.4 2.4 8.5 2.5 8.8 2.6 9.3 3.3 11.1 2.7 ± 0.4 11.1
6 1.9 6.4 2.3 7.0 2.9 10.2 3.2 12.3 3.0 12.1 2.7 ± 0.5 12.3
7 3.6 11.6 4.1 12.0 3.7 11.1 4.4 11.4 5.1 13.2 4.2 ± 0.6 13.2
8 2.5 6.7 3.3 11.7 5.9 16.3 4.0 12.8 2.6 7.2 3.7 ± 1.4 16.3
9 2.0 6.3 2.3 6.6 3.0 9.5 3.3 11.7 2.7 8.9 2.7 ± 0.5 11.7

Average 2.6 7.7 2.8 8.4 3.1 9.4 3.3 10.3 3.2 10.1 3.0 ± 0.8 11.7

12

Table 2.2: Mean error and maximum distance (Hausdorff) of 2D segmentation in the mid-sagittal slice of each image
are reported (in mm) for each vertebral body.

Subject
L1 L2 L3 L4 L5 All lumbar vertebrae

Mean Max Mean Max Mean Max Mean Max Mean Max Mean ± std Max
1 1.6 3.7 1.6 4.2 1.4 2.9 1.6 2.8 1.3 2.5 1.5 ± 0.1 4.2
2 1.6 3.6 2.1 4.3 1.7 3.5 2.3 4.2 2.0 4.1 2.0 ± 0.3 4.3
3 1.4 2.5 1.4 2.4 1.6 2.6 2.1 4.4 3.0 5.8 1.9 ± 0.7 5.8
4 1.7 4.4 1.8 4.3 1.7 4.6 2.1 4.8 2.3 5.3 1.9 ± 0.3 5.3
5 2.2 5.4 2.4 5.3 2.3 7.2 2.7 9.5 2.8 7.1 2.5 ± 0.3 9.5
6 1.6 4.0 1.5 2.6 1.5 3.6 1.8 5.0 1.7 3.6 1.6 ± 0.1 5.0
7 2.1 4.1 1.7 4.6 1.6 3.6 1.9 4.7 2.5 7.1 2.0 ± 0.3 7.1
8 1.9 4.9 2.3 5.7 1.9 5.2 2.8 7.4 2.2 5.1 2.2 ± 0.4 7.4
9 1.9 4.5 1.5 2.7 1.5 3.1 2.5 5.5 1.5 2.7 1.8 ± 0.4 5.5

Average 1.8 4.1 1.8 4.0 1.7 4.0 2.2 5.4 2.2 4.8 1.9 ± 0.4 6.0

13

Intensity Correction

User Interaction - One click per vertebra

Specifying Region

of Interest (ROI)

- ROI size= mean(D)+3std(D),

where D = distances between con-

secutive clicks

Anisotropic Diffusion
- Conductance κ = 50
- Integration constant ∆t = 1/7
- Number of iterations n = 20

Edge Detection - Algorithm: Canny

Model Registration

- Only vertebral body points

- Number of vertebrae = 5
- Number of registered points = 104

- Oulier rate = 0.01

Figure 2.5: Summery of the parameters of the semi-automatic framework for
segmentation of vertebral bodies. The values of the main parameters of
each step are shown in the boxes at the rightmost column.

14

2.5 Summary
A semi-automatic segmentation algorithm based on registering a statistical model

is applied on nine 3D MR images of the spine. Adding simple MR pre-processing

steps allows the multi-vertebrae shape+pose model developed previously for CT

scans to work on volumetric MR images. The statistical model can accommodate

large inter-slice gaps (about 4 mm). In addition, it is fast because it exploits the

fact that neighbouring vertebrae have similar shapes and poses. The segmentation

error will determine the range of clinical applications of this method.

15

Chapter 3

Deep Learning for Automatic
Vertebrae Localization in CT

3.1 Introduction
Automatic vertebra localization and identification (sometimes referred to as label-

ing) in spinal imaging is a crucial component for image-guided diagnosis, surgical

planning, and follow-up assessment of spine disorders such as disc/vertebra degen-

eration, vertebral fractures, scoliosis, and spinal stenosis.

The main challenges associated with building an automated system for robust

localization and identification of vertebrae in spine images arise from: 1) restric-

tions in field of view; 2) repetitive nature of spinal column; 3) high inter-subject

variability in spine curvature and shape due to spine disorders and pathologies; and

4) image artifacts caused by metal implants.

Several methods have been proposed in the literature for automatic vertebra

localization and labeling in CT [15, 16, 20, 32, 36, 39, 53], MR [1, 44, 48, 58],

and X-ray [63, 75] images. Most of the previous works either concentrate on spe-

cific region or make an assumption about the visible part of vertebral column in

the image. A few studies claimed handling arbitrary-field-of-view scans in a fully-

automatic system [15, 16, 32, 53]. The methods proposed in [15] and [53] rely

on a generative model of shape and/or appearance of vertebrae. This may cause

these methods to struggle with pathological subjects, especially when metal im-

16

plants produce artifacts in the image. The computational cost for handling general

scans is high in [32] and [53]. The recently proposed method in [16] has led to

state-of-the-art results in the dataset we are using in this work. The key idea in

that work is that the points of the image are probabilistically classified as being a

particular vertebra centroid. Based on predicted probabilities, the centroid of these

points are obtained using mean-shift. Although promising results are obtained on

a challenging dataset, their method requires an additional post-processing step for

removing false positives. This step adds up to the computation time and may not be

robust when the spine images are not tightly cropped. In addition, their approach

for centroid estimation approach based on mean-shift requires certain parameters

and thresholds which may require manual tuning. Most importantly, the fastest of

the above-stated methods [16] have a computation time of about a minute. This

computation time limits the application of these methods to be used as preprocess-

ing steps for wide range of image-guided tasks in clinical basis.

In this work, we aim to find a faster and more robust solution to the problem of

vertebra localization in general clinical CT scans by using deep neural networks [3,

57]. No assumptions are made about which and how many vertebrae are visible in

images. Our method is extensively evaluated on a public dataset, which consists

of 224 three-dimensional CT scans, and is compared to recently proposed state-of-

the-art approaches.

3.2 Materials
The performance of our method is evaluated on a publicly-available large dataset

consists of 224 spine-focused three-dimensional CT scans of patients with varying

types of pathologies. The pathologies include fractures, high-grade scoliosis, and

kyphosis. Many cases are post-operative scans where severe image artifacts are

caused by surgical implants. Different sections of spine are visible in different

images. The field-of-view is mostly limited to 5-15 vertebrae while the whole

spine is visible in a few cases. It is the same dataset used in [16]. Figure 3.1

illustrates several cases of this challenging dataset.

Statistical multi-vertebrae shape+pose model mentioned in Section 3.5 was

constructed from manually segmented three-dimensional segmented CT images of

17

Figure 3.1: The mid-sagittal slice of several images from the dataset. The
dataset consists of 224 three-dimensional CT scans of patients with
varying types of pathologies. In many cases, severe image artifacts are
caused by metal implants. Different regions of the spine are visible in
different images.

an independent group of 32 subjects which were mostly non-pathological [50]. The

manual segmentation is done using ITK-SNAP [74].

18

3.3 Simultaneous Localization and Labeling

3.3.1 Intensity-based Features

Hundreds of intensity-based features are extracted from each voxel of the volumet-

ric image. The value of each feature is the mean intensity over a three-dimensional

cuboid displaced with respect to the reference voxel position. The cuboid dimen-

sions and the displacement of each feature are chosen randomly. For the reference

voxel p, the feature vector v(p) = (v1, ...,v j, ...,vn) is computed as follows:

v j =
1
|Fp; j| ∑

q∈Fp; j

I(q), (3.1)

where I(q) is the image intensity at position q in the image, and q ∈ Fp; j are the

image voxels within the cuboid. Fp; j denotes the feature cuboid i displaced in

respect to pixel p. Figure 3.2 shows a visualization of our intensity-based features.

Similar types of featuers are used in [9, 10, 14, 61].

Extracting mean intensity over cuboidal regions can be computed very quickly

by using the idea of the integral image (introduced in [69]). The integral image is

an intermediate representation for the original image. By definition

ii(x,y,z) = ∑
x′≤x,y′≤y,z′≤z

i(x′,y′,z′), (3.2)

where i(x,y,z) is the original image and ii(x,y,z) is the integral image. A 2D rep-

resentation of the integral image is shown in Figure 3.3. Each pixel in this in-

tegral image contains the sum of intensities above and to the left of itself, inclu-

sive. For computing the sum of intensities in the box D, we only need to compute

II4− II2− II3 + II1 which is only three operations (in 3D it will be seven opera-

tions). The integral image can be constructed recursively from the original image

using a few operations per voxel. Once constructed, any of our cuboidal features

(regardless of location and size) can be computed in constant time.

Extracting hundreds of above-mentioned features from an image voxel pro-

vides a meaningful description of the area around the reference voxel. This de-

scription is then used to train a learning system for vertebra localization.

19

Figure 3.2: The value of each feature is the mean intensity over a three-
dimensional cuboid displaced with respect to the reference voxel po-
sition. From [10].

Figure 3.3: A 2D example of the integral image approach. Each pixel in
the integral image contains the sum of intensities above and to the left
of itself, inclusive. Therefore, sum of intensities in rectangle D of
the original image can be computed quickly by two subtractions and
one addition using the integral image: II(4)− II(3)− II(2)+ II(1) =
∑ I(A∪B∪C∪D)−∑ I(A∪C)−∑ I(A∪B)+∑ I(A) = ∑ I(D).

20

Before training, we randomly generate the parameters of hundreds of random

features. Then the same parameters are used in all steps of training and testing.

Generating feature parameters involves randomly choosing the values of cuboid

dimensions vector S and displacement vector D, where 0 < Si ≤ max size and 0≤
Di ≤ max displace for i ∈ {1,2,3}. For the experiments of this chapter, we used

max size= 32 mm, max displace= 12 mm to extract 500 features from each voxel.

3.3.2 Parametrizing Localization Problem As a Regression

Vertebra localization problem is parametrized as a multi-variate non-linear regres-

sion. As explained above, hundreds of the cuboidal intensity-based features are

extracted from each voxel. The targets of the regression are the relative distance

between the center of each vertebral body and the reference voxel. In other words,

the vector from the reference voxel to the center of the vertebral body is considered

as one target in the regression.

The number of observations (samples) in our regression problem is equal to the

number of voxels that are present in the image. The number of features are equal

to 500 for the experiments of this chapter. Since the images of our CT dataset are

labeled with 26 landmarks (26 vertebral bodies), the target vector of our regression

includes 26 three-dimensional vectors per observation. Therefore, the vertebra lo-

calization problem is parametrized as multi-variate regression with 500 features

and 26×3 = 78 targets.

For the vertebrae that are not present in an image in training set, we make a

rough guess of the location of them outside of the field of view of the image. This

rough guess is made by rigid registration of simple model to the last three present

landmarks in the image. The model is build by averaging the position of the same

vertebrae from all images of the dataset when they are rigidly registered together.

Figure 3.5 shows a rough guess of the location of the non-visible cervical vertebral

bodies in an image in training set.

3.3.3 Deep Neural Networks for Regression

For decades, shallow neural networks (with zero or one hidden layers) have been

used for machine learning. In 1990s, introduction of newer machine learning mod-

21

Figure 3.4: The vertebrae localization problem is parametrized as a regres-
sion problem. The targets of the regression are the vectors from the
reference voxel to the center of each vertebral body (The orange arrow).
The reference voxel is described by 500 intensity-based features from
the area around itself (Shown in red).

els such as Support Vector Machine (SVM) and Random Forests caused loss of

popularity for neural networks among researchers. However, Since 2006 some

techniques have been developed that enables effective training of deep neural net-

work (with multiple hidden layers). Recent research shows that these deep net-

works can outperform other learning models in several applications. During last

few years, state-of-the-art results have been produced by applying deep learning to

various tasks in computer vision [33, 67].

Network structure

In the experiments of this chapter, a deep feed-forward neural network with six

layers is used for solving the multi-variate non-linear regression problem. The

structure of our neural network is demonstrated in Figure 3.6. The intensity-based

22

Figure 3.5: The landmarks that are used for training and also evaluation are
the center of vertebral bodies. For the training set, we make a rough
guess of the location of the vertebrae that are not visible in the image.
Rigid registration of a simple model is used for this purpose.

23

features are given to the network via the first layer (input layer). Then, layers

are activated consecutively from left to right. After activation of all units in the

network, the outputs will be present in the last layer (output layer). Any layer

between input layer and output layer is called a hidden layer. Training a neural

network involves using training data to assign values to the connection weights be-

tween layers. Once the weights are determined, units of each layer can be activated

for test data as follows:

a(l+1)
i = g(

Nl

∑
j=0

Θ
(l)
i j al

j), (3.3)

where a(l)i denotes the activation of unit i in layer l, and Θ
(l)
i j is the weight of

connection from unit j of layer l to unit i of layer l + 1. g(x) is the activation

function. We have used Rectified Linear Unit, ghidden(x) = max(0,x), for hidden

layers and linear function, gout put(x) = x, for output layer. A visualization of these

functions is brought in Figures 3.7 and 3.8.

Cost function

For training the network, we define a cost function as a measure of how far away

our solution is from the optimal solution. Our cost function is defined as:

J(Θ) =− 1
m

[
m

∑
i=1

K

∑
k=1

y(i)k loghΘ(x(i))k +(1− y(i)k) log(1−hΘ(x(i))k)

]
, (3.4)

where hΘ(x(i))k is the hypothesis for the kth output using the input x from sample i

of the training data. y(i)k denotes the ground truth for kth output for the ith sample. K

is the number of outputs (equal to 78 in experiments of this chapter). m is the num-

ber of training samples in the mini-batch that we are computing the cost function.

In particular, the cost function is a measure that how far each hypothesis hΘ(x(i))

is from its corresponding ground truth y(i)k . The above-stated function is preferred

over possible trivial cost functions like− 1
m

[
∑

m
i=1 ∑

K
k=1(hΘ(x(i))k− y(i)k)2

]
, because

it is known to be more convex and consequently less prone to falling into local

minima during the optimization process. However, the cost function is still not

guaranteed to be a pure convex function. Figure 3.9 illustrates a sample of cost

function with respect of two parameters (two connection weights of the network).

24

Figure 3.6: The deep neural networks consists of six layers that are trained
using layerwise pre-training and stochastic gradient descent. Hidden
units are shown in orange while input and output layers are shown in
blue.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

Figure 3.7: Rectifier functions are used as the activation functions for hidden
units.

25

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

Figure 3.8: Linear functions are used for the output layer activation.

A typical approach for training neural networks is to iteratively use back-

propagation algorithm [34, 70] to compute partial derivatives of cost function with

respect to each connection weight of all layers, δ

δΘ
(l)
i j

J(Θ), and then use Stochastic

Gradient Descent (SGD) to optimize the cost function by changing the connec-

tion weights. Nevertheless, this approach may lose effectiveness when we have

a deep network with two or more hidden layers. The main reason is the signifi-

cant propagation of error in computing partial derivatives using conventional back-

propagation over the whole network.

Layerwise pre-training

In recent years, it has been shown that deep neural networks can be trained much

more effectively using layerwise pre-training [4, 17]. This method involves break-

ing down the deep network into several shallow networks and training each of them

greedily.

Assume that we have K hidden layers (K = 4, in the experiments of this chap-

ter). First, we disregard all hidden layers except the first one. It means that we

build a network including the input layer, first hidden layer, and the output layer.

We train this shallow network using conventional back-propagation and stochastic

26

gradient descent. Once the weights of the first hidden layer are trained, we add the

next layer. Therefore, second network is built using the input layer, first hidden

layer, second hidden layer, and the output layer. We train the weights of the second

hidden layer re-using the trained weights of the previous layer, and so forth. We

continue this approach until all hidden layers 1 to K− 1 are trained. The output

layer is present in all steps because we need to compare it against the ground truth

and compute the cost function. Once the hidden layers 1 to K− 1 are trained, we

use back-propagation and SGD over the whole network to determine the weights of

the last hidden layer as well as fine-tuning the pre-trained weights of the previous

layers.

Second neural network for the z coordinates of outputs

As mentioned earlier, the outputs of our network are the relative distance vector

between the center of vertebral bodies and the the reference voxel. As we have

26 landmarks, 26 out of all 26× 3 = 78 outputs are the z coordinates of these

distance vectors. Due to asymmetric structure of the spine (tall and thin structure)

the range of the Z outputs is much wider than the range of x and y outputs. The

Z outputs vary in range [−800,800] mm which is the order of the spine height,

whereas the x and y outputs vary in rage [−200,200] mm which is the order of

maximum width of the CT images of spine. However, all these outputs are scaled

linearly to the same range [−1,1]. This means that the network will emphasize

more on optimizing x and y outputs than the z outputs, while the z outputs are more

important to us for vertebra identification (adjacent vertebrae have similar x and y

coordinates, but different z coordinate). To alleviate this issue, we train a separate

feed-forward neural network for only z outputs. The structure of this additional

network is similar to the main network except that it has only 26 units in its output

layer.

27

Figure 3.9: A sample visualization of the cost function with respect to two
arbitrary parameters of the network. SGD aims to converge to the global
minimum while the cost function is not guaranteed to be convex.

3.3.4 Kernel Density Estimation for Vote Aggregation

Procedure on a test image

On a 3D test image, we first extract hundreds of features from each voxel. Then, we

use the deep neural network to predict the relative distance vector of each vertebral

body with respect to the reference voxel. Knowing the location of the reference

voxel and the relative distance vector to the center of a specific vertebral body,

we can compute the predicted absolute location of the vertebral body on the test

image. This absolute location is considered the vote of that specific voxel for the

location of that specific vertebral body. Note that these votes might be either inside

or outside of the scope of image. Each voxel in the image votes for the location of

each vertebral body, so for each specific vertebral body (say L1) we end up with

thousands of votes acquired from different voxels. We need to aggregate these

votes to obtain a single prediction for the location of the vertebral body. Mean,

median, or histogram mode of the votes can be used for aggregation, but a more

robust and accurate method is using Kernel Density Estimation (KDE).

28

Figure 3.10: Thousands of voxels of the image vote for the location of each
vertebra. The centroid of these votes are estimated using KDE. Based
on the votes, a vertebra may be localized inside or outside of the field
of view of the image.

Kernel density estimation

Kernel Density Estimation (KDE) is a non-parametric approach to estimate the

probability density function of a random variable. The simplest, most familiar

non-parametric density estimator is a histogram. However, there are several is-

sues with the histograms to be used in certain applications: 1) Histograms are not

smooth; 2) They depend on end points of bins; 3) They depend on the width of bins.

On the other hand, kernel density estimators are smooth, and have no end points.

Figure 3.11 shows an example of a Kernel density estimation versus a histogram.

Kernel density estimators still depend on a parameter called bandwidth. A den-

sity estimation is said to be undersmoothed when we choose a bandwidth that is

too small. Conversely, an overly large value for the bandwidth will cause over-

smoothing. An automatic data-driven bandwidth selection approach as well as an

adaptive kernel density estimator based on linear diffusion processes is presented

29

10 20 30 40 50 60 70
0.00

0.05

0.10

0.15

0.20

x

D
en

si
ty

Figure 3.11: Kernel density estimation of a sample set of points. The global
maximum of this estimation is used as the centroid of the votes. In
multimodal distributions like this sample, the estimated centroid from
KDE may significantly differ from mean, median, or mode of the dis-
tribution.

by Botev et al. in [6]. Their approach is less sensitive to outliers than the popular

Gaussian kernel density estimator because it is locally adaptive. It also has shown

better performance in terms of speed and reliability than most of other adaptive ap-

proaches [19, 26, 47, 68]. The advantage of their automatic data-driven bandwidth

selection over the other most popular approaches [25, 59] is that it does not use

reference rules [27] and consequently does not make assumptions about normality

of the input data.

In our experiments, we used the kernel density estimation method presented by

Botev et al. to obtain a fast and reliable density function for the voxel votes for

each vertebral body. The global maximum of this density function is considered as

the predicted location of the vertebral body on the image.

30

3.4 Hyper-Parameters Optimization
One of the main challenges of building a deep learning system is the presence of

plenty of hyper-parameters which need to be adjusted. Since the training time for

deep networks is usually high (several hours to several weeks), extensive evaluation

on all parameters can be impractical. Consequently, the learning system may end

up being a sub-optimal solution. In this section, we briefly discuss the effect of

some of the most important parameters in each phase of our deep learning system

in the context of vertebra localization and identification.

3.4.1 Parameters in Feature Extraction

Downsample rate

When we described the method in Section 3.3, we explained how we extract fea-

tures from all voxels of the image. While it is possible to do this for all voxels,

it would need a training time in the order of weeks, and testing time in the order

of a few minutes. However, we desire to decrease the testing time of the deep

network to less than a second. In our experiments, we extract these features from

all over the 3D image with a downsample rate of 12 mm in each direction. Note

that it is different from downsampling the image with this rate and then extracting

features from all voxels. In the experiments of this chapter, we first downsample

the images with the rate of 1 mm in each direction. Then, we extract high-quality

features from the voxels that have the distance of 12 mm to each other in each di-

rection. The number of these voxels is still over a thousand on average for each

image. This approach brings down the training time from weeks to two days, and

the testing time from a few minutes to less than a second. The feature extraction

implementation is explained in more detail in Chapter 5. Figure 3.12 shows that

smaller downsample rates do not improve the localization results. In other words,

it shows that the number of voxels obtained from downsampling rate of 12 mm are

sufficient for the localization framework.

31

6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

Downsample rate (mm)

%
Accuracy
Precision

Identification

Figure 3.12: The effect of downsample rate on accuracy, precision, and iden-
tification rate is plotted. Downsampling with the rate of 12 mm has
provided sufficient points for robust estimation. Further decrease of
the downsampling rate shows no more accuracy gain.

Size and displacement of feature boxes

As explained in Section 3.3, each feature is a 3D box with a displacement from

the reference voxel. Each dimension of the box is randomly chosen from the inter-

val [1,max size]. Each dimension of the displacement vector is randomly chosen

from the interval [−max displace,max displace]. The parameters max size and

max displace need to be large enough to provide meaningful description of the

area around the reference voxel. On the other hand, the value of the feature will

be undefined when the distance of the voxel to the edge of the image is less than

max displace+max size/2. We disregard the votes of these voxels that have some

meaningless feature values. Hence, too large values for these parameters may cause

meaningless feature values for significant number of voxels. In our experiments,

we used max displace = 12 mm, and max size = 32 mm. The values are obtained

experimentally. Figure 3.13 shows the effect of maximum box size on the perfor-

32

10 15 20 25 30

20

40

60

80

100

Maximum box size

%
Accuracy
Precision

Identification

Figure 3.13: Increasing the maximum box size up to 32 mm improved the
performance. A larger value for this parameter causes it to go out
of bound in several small images of the dataset. Going out of bound
means that all votes are disregarded and no prediction is made.

mance of the system.

PCA whitening

Principal Component Analysis (PCA) is a dimensionality reduction algorithm that

aims to convert a set of possibly correlated variables into a set of linearly uncor-

related variables [24]. In machine learning, PCA is widely used for enhancing

unsupervised feature learning by reducing the dimension and also removing the

correlation between features [2, 30, 56]. There is a closely related step called

whitening that aims to reduce redundancy of the input data. More formally, PCA

uses Singular Value Decomposition (SVD) of the data and keeps the most signifi-

cant singular vectors to project the data to a lower dimensional space. When we use

PCA whitening the principal components are divided by the singular values to en-

sure uncorrelated outputs with unit variance. It has been shown that whitening can

improve the accuracy of the downstream estimator in several applications [35, 42].

33

In our experiments, using PCA whitening for removing correlation and redun-

dancy among the features caused better convergence of the training (better mini-

mization of the cost function). However, on test data it showed poor performance.

This observation may be a sign of overfitting. In machine learning, overfitting oc-

curs when a function is too closely fit to a limited set of data points. It means that

the model is describing the noise and random error of the training set instead of

the underlying relationship that is expected to be seen in the test data. Figure 3.14

demonstrates the performance of the deep neural network for different regions of

spine when using whitening as a preprocessing step. The results show slightly bet-

ter identification rate for lumbar region (where we have more training examples),

but poor performance in other sections.

Deep neural networks are prone to overfitting because of their complex struc-

ture and their high number of parameters. However, several methods such as reg-

ularization and dropouts, are proposed to alleviate the overfitting issue in deep

learning [11, 21, 73]. A future work may involve trying to improve the localization

results by using PCA whitening along with regularization or dropouts techniques

which avoid overfitting.

34

All Cervical Thoracic Lumbar
0

20

40

60

80

100

39

45

37

41

27

7

28

44

Id
en

tifi
ca

tio
n

ra
te

(%
)

Raw features
Whitened

Figure 3.14: Using PCA whitening as an additional preprocessing step caused
overfitting. The cost function is better minimized at the training time,
but poor performance is observed on test data. The results are slightly
better in lumbar region where there has been more training examples.

3.4.2 Parameters in Training Deep Neural Network

Neural network structure

One of the main challenges of training a deep neural network is to optimize the

number of hidden layers, and the number of hidden units in each layer. More layers

and more hidden units increase the ability of the network to estimate more complex

relationships in the data, while make the network more prone to overfitting. Our

network structure (shown in Figure 3.6) is obtained experimentally. Because of

the long training time (about two days in our experiments) sweeping through all

parameters was not feasible. Other than trial and error, no reliable shortcuts were

found in the literature for this purpose. Informal tutorials suggest that one should

start with one hidden layer with a number of units in the order of the number

35

3 4 5
0

20

40

60

80

100

Number of layers

%
Accuracy

Identification

Figure 3.15: The accuracy and identification rates obtained from using differ-
ent numbers of hidden layers. Increasing the number of hidden layers
from 4 to 5 did not have a large effect on the final results.

of inputs, and then use trial and error to optimize these parameters. Figure 3.15

and 3.16 illustrate the effect of number of layers and neurons per layer in our

experiments, respectively.

Activation function

Logistic sigmoid, and hyperbolic tangent were widely used as the activation func-

tion of the hidden units in traditional neural networks [34]. In recent years, it has

been shown that rectifier functions can perform better than conventional functions

in terms of estimation accuracy and the speed of convergence [11, 40, 76]. A rec-

tifier function is simply defined as f (x) = max(0,x) where x is the input of the

hidden unit. A neuron that uses this function for activation is called a rectified

linear unit. training a neural network of rectified linear units is computationally

efficient because of: 1) the simplicity of the function 2) the sparse activation (in a

randomly initialized network about half of the hidden units have zero output). It is

argued in [18] that this sparsity also makes these units more biologically plausible.

36

150 200 250 300
0

20

40

60

80

100

Number of units in first hidden layer

%

Accuracy
Identification

Figure 3.16: The accuracy and identification rates obtained from using differ-
ent numbers of neurons in the first hidden layer. The system showed
high sensitivity to this hyper-parameter.

Using rectified linear units in our deep neural networks led to higher accuracy

and also faster convergence. Figures 3.17 shows a comparison of the activations

functions in the context of experiments of this chapter.

Optimization method

Stochastic Gradient Descent (SGD) [31] is widely used for optimizing the cost

function in training neural networks. In our experiments, cost function is defined

as in Equation 3.4 for each sub-network that are trained greedily (explained in Sec-

tion 3.3). The gradient of cost function with respect to each connection weight is

computed using backpropagation algorithm [70], and SGD is used for optimization.

In early experiments, when not using layerwise pre-training, Hessian-free (HF)

optimization [37] performed significantly better than SGD for training the whole

network altogether on a small subset of data. However, this approach was too time-

consuming and consequently impractical for training on a large training set. On the

37

ReLU Tanh Sigmoid
0

20

40

60

80

100

85 81 83

36

31 31

%

Accuracy
Identification

Figure 3.17: The accuracy and identification rates obtained from using dif-
ferent activation functions for hidden layers. Using RELU was faster
and also led to better results.

other hand, SGD led to desirable convergence along with layerwise pre-training on

larger datasets.

Stochastic gradient descent has several parameters that need to be tuned for best

convergence. Learning rate is the step size when changing parameters. Momentum

is used to increase speed when the surface of cost function is highly non-spherical.

Batch size is the size of the subset of training data that used to optimize the cost

function at each iteration. Above-stated hyper-parameters are obtained empirically.

A typical approach is to plot the cost function versus SGD iterations, and choose

the parameters that lead to rough consistency in decreasing the cost function over

time. Figure 3.18 plots the convergence of SGD over time for each steps of the deep

network training.

38

0 5 10 15 20 25

2

4

6

8

10

12

14

time(h)

J(
Θ
)

Hidden layer 1
Hidden layer 2
Hidden layer 3

All layers

Figure 3.18: Convergence of the deep neural network. SGD is used along
with layerwise pre-training. Adding a layer in each step led to further
minimization of the cost function.

3.4.3 Parameters in Aggregating Votes

Once we have the votes of thousands of voxels of the image for a location of a

specific vertebra, we aggregate them using the Kernel Density Estimation (KDE)

approach presented in [6] to obtain a single prediction for the location of the ver-

tebra. Figure 3.19 demonstrate the importance of vote aggregation by comparing

the accuracy of the KDE approach against the basic measures of central tendency

like mean, trim-mean, and median. Trim-mean means that we remove first and last

20% of data and then get the mean over the rest.

39

KDE Mean Trim-mean Median
0

20

40

60

80

100 96

88 92 93

45

23

34 36

%
Accuracy Identification

Figure 3.19: The accuracy and identification rates obtained from using dif-
ferent approaches for aggregating votes.

3.5 Results and Discussion
Two-fold cross-validation is performed on two non-overlapping sets of volumetric

CT scans with 112 images each. The results on data from fold 1 were obtained after

training the deep neural network on fold 2, and vice versa. The folds are selected

exactly as in [16] to enable comparing the results.

After aggregating the votes of the voxels, we may conclude that a specific

vertebra is outside of the scope of the image. If expert annotation (ground truth)

confirms that the vertebra is not visible in the image, we consider it as a True

Negative (TN). Otherwise, if the image contains the vertebra it will be a False

Negative (FN). Similarly, if our system concludes that the vertebra in inside the

scope of the image and the expert annotations confirm, it is considered as a True

Positive (TP). Otherwise, it will be a False Positive (FP). Based on these observa-

tions the predictions are evaluated in terms of accuracy, precision, sensitivity, and

40

specificity which are defined as follows:

Accuracy =
T P+T N

T P+FP+T N +FN
, (3.5)

Precision =
T P

T P+FP
, (3.6)

Sensitivity =
T P

T P+FN
, (3.7)

Speci f icity =
T N

T N +FP
. (3.8)

Localization error is defined as Euclidean distance between the estimated centroid

of a vertebral body and its expert annotation. A vertebra is defined as correctly

identified if the localization error for that vertebra is less than 2 cm, and the closest

expert annotation to its predicted vertebra location is the correct one. The same

evaluation criteria are used in [16] and [15].

3.5.1 Separate Network for Z Coordinate

In the coordinate system of our experiments, the z coordinate is the direction of the

length of vertebral column. In a single image, centroid of adjacent vertebrae have

almost similar x and y, but different z coordinate. Therefore, the range for the z co-

ordinate of the distance vectors (which are the targets of the deep neural network)

is much larger than x and y coordinates. On the other hand, for an efficient opti-

mization, we need to scale all the targets of the neural network to the same range.

This will cause the optimization approach to concentrate more on minimizing the

error in x and y coordinates whereas the z coordinate is more important for vertebra

identification. Hence, we added another deep neural network for predicting only

the z coordinate of the targets. The effect of adding this additional neural network

is summarized in Table 3.1.

3.5.2 Point Selection Using Canny Edge Detector

In our method, each voxel of the image equally contribute to the predicted location

of a certain vertebra. However, some images have some dark area that no infor-

mation about the vertebrae can be obtained from the area around them. Presence

of these points in an image may reduce the accuracy of the method. Hence, we

41

Table 3.1: Localization errors (in mm) for using a single neural network for
all coordinates vs. using a separate neural network for the z coordinate.

Region
Single neural network Separate network for z coord.

Mean Std Id. rates Mean Std Id. rates
All 23.0 12.6 37.1% 20.7 11.9 44.8%

Cervical 22.6 11.2 26.7% 17.9 9.3 41.4%
Thoracic 22.9 13.2 37.3% 20.8 12.5 45.3%
Lumbar 23.4 13.0 46.3% 23.2 12.3 44.9%

Table 3.2: Localization errors (in mm) for using a Canny edge detector for
point selection vs. performing the analysis on the votes of all voxels
without any type of point selection.

Region
With point selection Without point selection

Mean Std Id. rates Mean Std Id. rates
All 20.7 11.9 44.8% 21.5 12.5 40.1%

Cervical 17.9 9.3 41.4% 19.3 9.9 35.0 %
Thoracic 20.8 12.5 45.3% 20.8 12.9 45.1 %
Lumbar 23.2 12.3 44.9% 23.8 12.4 41.6 %

attempt to alleviate this issue by only using the voxels that are close to detected

edges. Only the votes of these voxels are aggregated for predicting the location

of vertebrae. Table 3.2 summarizes the capability of this point selection step in

improving the localization results. We expect this step to be more effective when

the images are not tightly cropped.

3.5.3 Refinement by Local Vote Aggregation

Once we have the predictions for each vertebra in the image, we refine the predic-

tions by aggregating only the votes which are close to the predicted location. For

each visible (according to the prediction) vertebra in the image, the points around

itself and its adjacent vertebra are aggregated using Kernel Density Estimation.

The previous predicted point is then replaced by the point that is obtained from

42

Table 3.3: Localization errors (in mm) before and after using local vote ag-
gregation to refine the predictions.

Region
Before Refinement After Refinement

Mean Std Id. rates Mean Std Id. rates
All 20.7 11.9 44.8% 18.2 11.4 54%

Cervical 17.9 9.3 41.4% 17.1 8.7 43.1%
Thoracic 20.8 12.5 45.3% 17.2 11.8 55.3%
Lumbar 23.2 12.3 44.9% 20.3 12.2 56.9%

Figure 3.20: Visual results of the local vote aggregation step are shown on
the mid-sagittal plane of three example images. The localization points
before refinement are shown in red while the points after refinement by
local vote aggregation are shown in cyan. Refined points have a better
representation of the spine curvatures.

this step. Table 3.3 and Figure 3.20 demonstrate the effect of this refinement step

on our results. The visual results show that after this step the predictions are usu-

ally fit better to the curvature of spinal column. It is mostly because of the fact that

the curvature in one part of spine cannot be predicted from the points on other parts

of the column.

43

Figure 3.21: Visual results of the shape+pose model refinement step are
shown on the mid-sagittal plane of three example images. The lo-
calization points before model refinement are shown in cyan while the
points after model refinement are shown in yellow. The improvement
is minimal and may not be worth the computational expense.

3.5.4 Capability of Our Shape+pose Model for Further Refinement

In this step, we attempt to initialize our shape+pose model of lumbar spine by the

predictions of our method, register the model to the edges of the image in order

to refine the localization and also provide a vertebrae segmentation. Although this

approach improved the identification rate by 1%, the results were not satisfactory

(See Figure 3.21). The main reason is that the presence of image artifacts (mostly

caused by surgical implants) do not allow us to obtain a high-quality edge map for

model registration. Due to presence of these artifacts, the method fails to automat-

ically find a suitable sensitivity threshold for the Canny edge detector. Figure 3.22

illustrates three examples of Canny edge detector output. The other reason is that

the model (trained on mostly healthy subjects [50]) cannot accommodate patho-

logical spines in this dataset.

We do not include this step in our final results, since it causes little improve-

ment with the expense of high computation cost (about two minutes per image).

44

Figure 3.22: The edge map that is obtained by Canny edge detector in the
mid-sagittal plane of three example images. Image artifacts and un-
clear boundaries adversely affect the quality of the extracted edge
maps.

3.5.5 Final Results

Our final localization and identification results are presented in Table 3.4. The re-

sults show the capability of our method for determining the visible part of spine and

also identifying each visible vertebra. Since the width of vertebrae are generally

smaller in the cervical region, similar mean error may cause lower identification

rate in this region. Because our method is computationally fast (Potentially less

than 3 seconds on a desktop computer), it can be used as a preprocessing step in a

wide range of clinical procedures.

3.5.6 Comparison to State-of-the-art

Our results are compared to [15] and [16] which are the state-of-the-art methods

for vertebra localization and identification in CT scans. All three approaches are

evaluated on the same dataset with a two-fold cross validation with exactly the

same fold separation.

Our approach is the most similar to [15]. In this work, they first use a voting

45

Table 3.4: Localization results for different regions of the vertebral column.
Mean error and STD are in mm.

Region Accuracy Precision Sensitivity Specificity Mean STD Id. rates
All 96.0% 94.4% 97.2% 95.0% 18.2 11.4 53.6%

Cervical 96.0% 91.2% 97.8% 95.0% 17.1 8.7 43.1%
Thoracic 95.1% 93.9% 95.9% 94.5% 17.2 11.8 55.3%
Lumbar 98.1% 97.5% 99.4% 96.1% 20.3 12.2 56.9%

framework based on a Regression Forest (RF) to obtain a rough localization, and

then they use a graphical model based on a Hidden Markov Model (HMM) to re-

fine the predictions. The results of their method on this public dataset is provided

in [16]. They achieved state-of-the-art results on a dataset of non-pathological

cases. However, the performance of their method degrades significantly in this

public pathological dataset (which we also used). A possible reason is that the

graphical model cannot accommodate high variations in pathological cases and

consequently fails to refine the predictions in this dataset. The results of our method

is compared to theirs in Table 3.5. The comparison demonstrates that using deep

learning can eliminate the need for model-refinement which has relatively high

computational cost and is not as robust in pathological cases.

On this dataset, the state-of-the-art localization results are recently presented

in [16] using a method based on a Classification Forest (CF). A comparison be-

tween our results and theirs is summarized in Table 3.6. While their approach has

a higher identification rate, our method outperforms theirs in terms of accuracy,

precision, sensitivity, and specificity. In addition, our algorithm can be computa-

tionally faster.

The algorithms presented in [15] and [16] take about 2 minutes and 1 minute

per image, respectively. In [15] a joint shape and appearance model in several

scales is used to refine the predictions. In [16] centroid density estimates based

on vertebra appearance are combined with a shape support term to remove the

false positive predictions from all over the image. Our method does not require

above-stated computationally-intensive steps. Our reported results are generated

using a vectorized MATLAB implementation for feature extraction which takes

46

Table 3.5: Comparison of the localization results of our method and the
method presented in [15] which uses regression forests followed by a
refinement using Hidden Markov Models. The same training and test
sets are used in evaluations of both methods. Mean error and STD are in
mm.

Region
Mean STD Identification

Ours RF+HMM Ours RF+HMM Ours RF+HMM

All 18.2 20.9 11.4 20.0 54% 51%
Cervical 17.1 17.0 8.7 17.7 43% 54%
Thoracic 17.2 19.0 11.8 20.5 55% 56%
Lumbar 20.3 26.6 12.2 19.7 57% 42%

about 1 minute per image. However, an efficient version of the feature extraction

step is recently implemented in C++ (Bill Liu, Vancouver, BC) which works in

a fraction of a second per image. The descriptions and complexity analyses of

both implementations are provided in Section 5.1. After integration with the C++

implementation of the feature extraction step, the computation time for our method

will be reduced to less than 3 seconds per image. This makes our method a better

candidate than the methods proposed in [15] and [16] for a range of image-guided

procedures that cannot tolerate long execution time.

For deep neural network part, we used Theano-nets package (Leif Johnson,

Austin, TX) built on top of Theano library [5] in Python. The other parts of the al-

gorithm are implemented in MATLAB. Testing time for two deep neural networks

is less than a second per image. Two levels of vote aggregation (first prediction

and then local refinement) take about one second per image. Feature extraction

takes about one minute using the MATLAB implementation. However, the C++

implementation of the feature extraction step works in less than one second.

47

Table 3.6: Comparison of the localization results of our method and another
method based on classification forests which is considered as state-of-
the-art for this dataset [16]. The same training and test sets are used in
evaluations of both methods. Mean error and STD are in mm.

Accuracy Precision Sensitivity Specificity Mean STD Id. rate
Ours 96.0% 94.4% 97.2% 95.0% 18.2 11.4 53.6%

CF 93.9% 93.7% 92.9% 94.7% 12.5 12.6 70.6%

3.6 Summary
A fully-automatic method based on deep learning is developed for simultaneous

localization and identification of vertebrae in three-dimensional CT scans. The

results show that the method can handle arbitrary-field-of-view scans where it is

initially unknown that which part of vertebral column is visible in the image and

to what extent. State-of-the-art results are achieved on a large public dataset of

pathological cases. The fact that the proposed method is computationally faster

than the previous work make it potentially more appealing to be used in computer-

aided systems for spine diagnosis and therapy.

48

Chapter 4

Automated Localization,
Identification, and Segmentation
in MRI

4.1 Introduction
Localization and labeling of vertebrae is a crucial step in diagnosis and therapy

of spinal diseases such as slipped vertebra, disk/vertebra degeneration, and spinal

stenosis. Vertebra segmentation is also a pre-processing step in diagnosis of spine

pathologies like scoliosis and osteoporosis. Hence, building a computer-based sys-

tem for spine diagnosis and therapy requires automatic localization, labeling and

segmentation of vertebral structures.

Lower back pain, one of the most common types of pain, is usually caused

by lumbar region of the spine. Lumbar vertebrae are mostly viewed by X-rays,

MR , or CT. Among these three, MR imaging shows the soft tissue better and also

does not expose the patient to ionizing radiations. This has led to increased inter-

est in MR technologies for imaging the spine in recent years. Automatic labeling

and segmentation of vertebral bodies in MR images is challenging because of: 1)

variation among images in terms of field-of-view, 2) repetitive nature of vertebral

column, 3) lower contrast between bony structures and soft tissue compared to CT,

49

4) larger inter-slice gap in clinical MR images compared to CT, and 5) presence of

field inhomogeneities in MR images.

Several researchers have investigated the localization and labeling problem in

CT [15, 20, 32, 36, 39, 51] and MR [1, 44, 48, 58] images. Most methods make as-

sumptions about which vertebrae are visible in the scan. Alomari et al. [1] assumed

approximate alignment between scans. Klinder et al. [32], Glocker et al. [15], and

Rasoulian et al. [53] claimed handling general scans. However, all three of these

methods are applied on CT scans and not MR images. In addition, Glocker et al.

only provide labeling and do not provide segmentation. Klinder et. al. and Rasou-

lian et al. provide segmenation, but their algorithms have high computation time

for arbitrary-field-of-view scans.

In Chapter 2 [66], we proposed a semi-automatic segmentation approach for

MR images based on a multi-vertebrae statistical shape+pose model. It required one

user click for each vertebra to be segmented. In this work, we propose a method

based on deep learning for simultaneous localization and identification of vertebral

bodies in MR images. Then, we initialize our previous segmentation method with

the localized points in order to obtain a fully-automatic segmentation.

4.2 Materials
The proposed method was evaluated on the same dataset that is used in Chapter 2.

The dataset consists of nine T1-weighted multi-slice MR images. All images con-

tain lumbar region, but the extent of visibility of thoracic and sacrum regions varies.

No pathology was observed in this dataset. Slice thickness ranges between 3.3 to

4.4 mm among images. The size of all slices are 512× 512 pixels with in-plane

resolution of 0.5 mm. The number of slices of each volumetric image varies from

12 to 18. The statistical model (used for segmentation) was constructed from man-

ually segmented multi-slice CT scans of 32 patients [50]. Segmentation ground

truth meshes (also the same as Chapter 2) were prepared manually using ITK-

SNAP [74] from raw images. The center of gravity of each manually segmented

vertebral body is used as localization landmarks.

50

Intensity Correction

Automatic vertebrae local-
ization and identification

Specifying Region
of Interest (ROI)

Anisotropic Diffusion

Edge Detection

Model Registration

Figure 4.1: Flowchart of the automatic framework for segmentation of verte-
bral bodies.

4.3 Methods

4.3.1 Automatic Localization and Identification

Pre-processing: bias field correction

The presence of intensity inhomogeneities in MR images can adversely influence

the quality of intensity-based feature extraction. Hence, we first apply a bias field

correction algorithm on MR images to reduce this inhomogeneity. Statistical Para-

metric Mapping package is used for bias field correction (SPM12b, Wellcome De-

partment of Cognitive Neurology, London, UK).

51

Localization and identification by deep learning

The localization task is parametrized as a multi-variate regression problem. Each

voxel of the image is described by hundreds of intensity-based features. Each

feature is the difference between the mean intensity over two cuboids displaced

with respect to the reference voxel position. Dimensions and displacement of each

feature are generated randomly. These features are fast to compute using the in-

tegral image idea proposed by Viola et al. [69]. The targets of the multi-variate

regression are the relative distances between the reference voxel and the centers of

lumbar vertebral bodies (Parametrization of image localization task as a regression

problem, and also randomly generated cubic features are explained in more detail

by Criminisi et al. [10]). A feed-forward neural network with three hidden layers

is trained for solving the multi-variate regression problem. Stochastic gradient de-

scent along with layerwise pre-training is used for optimization. On a test image,

we first extract features from all voxels, then we use the neural network to predict

the relative distance of the labels with the respect to each voxel. Each of these

relative distances are converted to absolute positions of the labels and considered

as the vote of that specific voxel for the position of each vertebral body. The votes

of all pixels are aggregated using Kernel Density Estimation [6] to obtain a robust

prediction of the center of each lumbar vertebral body. No assumptions are made

about presence of the target vertebrae in the volumetric image. The voxels may

vote outside of the scope of the image if the target vertebrae are not visible.

Refinement by local thresholding

In most of the cases, the predicted points from the deep learning approach are lo-

cated inside of the target vertebral bodies, but not exactly centered. We attempt a

simple approach to bring the predicted points to the center of vertebral bodies in

order to improve identification and initialization of our statistical model for seg-

mentation. By Otsu thresholding [46] in the region of predicted points, we find

the large components that may be vertebral bodies. If a large component is found

close to the prediction, we refine the prediction by replacing it with the center of

that component. Figure 4.3 illustrates an example of the refinement step.

52

Figure 4.2: The value of each feature is the difference between the mean in-
tensity over two cuboids displaced with respect to the reference voxel
position. From [10].

Figure 4.3: Refining localization points by replacing them with the center of
the closest large component, obtained from local thresholding. Left:
Localized points before refinement. Middle: Refinement using compo-
nents obtained from local thresholding. Right: Localized points after
refinement.

53

4.3.2 Segmentation

Pre-processing: anisotropic diffusion

A three-dimensional anisotropic diffusion [49] filter is applied to the bias-field cor-

rected image for image smoothing while preserving edges. This pre-processing

step highly improves the quality of edge detection. For speed optimization, we

only apply the filter to the region of spinal column detected by previous steps.

More details of the pre-processing steps are described in Section 2.3.

Statistical model registration

We use Canny edge detection algorithm to obtain the edges in the detected spinal

column region. The maximum value of the gradient magnitude of the region is

used to automatically obtain the sensitivity threshold of the edge detector algo-

rithm. Then, we use an iterative Expectation Maximization registration method

(introduced by Rasoulian et al. [50]) to register a statistical model to Canny edges

in order to obtain a robust segmentation. The statistical multi-vertebrae model

integrates variations of shapes and poses of lumbar vertebrae that are separately

extracted from 32 manually-segmented 3D CT scans [50]. The multi-vertebrae

registration of the model allows us to avoid mis-segmentation in the area between

vertebrae by simultaneous registration of all visible vertebrae and taking into ac-

count the correlation between shapes and poses of different vertebral bodies.

4.4 Results and Discussion
Localization and identification results on nine subjects are reported in Table 4.1.

The centroids of five lumbar vertebral bodies (L1 to L5) are predicted using leave-

one-out cross validation. The distance to the ground truth landmarks are computed.

The average and standard deviation of these distances as well as identification rate

are reported. We consider a vertebral body to be identified when its distance to

ground truth landmark is less than 2 mm and the closest landmark is the correct

one. The results illustrate 100% identification after refinement step for 45 lumbar

vertebral bodies.

Three-dimensional segmentation results are shown in Table 4.2. The closest

54

Figure 4.4: Localization and labeling results on the mid-sagittal slice of bias-
field corrected images.

55

Table 4.1: Localization and identification results for lumbar vertebral bodies
in nine volumetric MR images.

Mean error Standard deviation Identification
Deep Learning Localization 11.9 mm 6.3 mm 91%

After Refinement 3.0 mm 2.4 mm 100%

distance to the registered model is found for each point in the manual segmenta-

tion. The average and maximum of these distances are reported as respectively

mean error and Hausdorff distance. These results demonstrate that we can au-

tomatically segment the lumbar vertebral bodies in volumetric MR images with

mean error of below 2.8 mm which shows improvement over our previous semi-

automatic method. Some examples of our identification and segmentation results

are shown in Figures 4.4 and 4.5.

The localization and identification step (including refinement) takes less than

20 seconds on a desktop computer. The whole process takes less than 3 minutes

using an inefficient MATLAB (The MathWorks, Inc., Natick, MA) implementation

for segmentation. Training a deep neural network takes about one day which can be

adjustable by downsampling the training data. Deep learning part is implemented

in Python using Theano-nets package (Leif Johnson, Austin, TX) built on top of

the Theano library [5].

56

Figure 4.5: Examples of segmentation results in the mid-sagittal slice of five different patients. Our segmentation
results are shown with white contours, while red contours show the manual segmentation.

57

Table 4.2: Mean error and maximum distance (Hausdorff) of segmentation error (in mm) for each vertebral body.

Subject
L1 L2 L3 L4 L5 All lumbar vertebrae

Mean Max Mean Max Mean Max Mean Max Mean Max Mean ± std Max
1 2.0 6.1 1.7 5.2 2.8 9.5 4.4 15.7 4.2 16.4 3.0 ± 1.2 16.4
2 2.2 6.5 2.2 8.0 2.0 7.3 1.8 9.6 3.4 16.6 2.3 ± 0.6 16.6
3 3.7 8.6 3.4 8.7 3.6 9.6 4.0 13.6 5.8 19.9 4.1 ± 1.0 19.9
4 2.6 8.1 1.9 7.1 2.6 10.5 1.6 8.3 2.0 9.1 2.1 ± 0.4 10.5
5 2.2 8.0 1.6 5.5 1.6 6.4 2.2 11.0 4.6 17.7 2.5 ± 1.2 17.7
6 2.7 10.3 2.6 9.7 2.8 9.3 2.5 10.4 4.0 16.1 2.9 ± 0.6 16.1
7 1.8 5.5 1.7 5.6 2.2 7.9 2.7 11.9 3.5 15.2 2.3 ± 0.7 15.2
8 3.2 8.4 3.3 9.5 3.2 10.4 3.6 12.7 2.6 11.0 3.2 ± 0.4 12.7
9 2.3 7.3 1.7 6.5 2.0 8.0 1.9 8.8 3.1 12.4 2.2 ± 0.5 12.4

Average 2.5 7.7 2.2 7.3 2.5 8.8 2.7 11.3 3.7 14.9 2.7 ± 0.9 19.9

58

Intensity Correction

Automatic vertebrae local-

ization and identification

- Described in previous chapter.

- Type of features: Two cuboids

- Number of features = 500
- Number of layers = 5

Specifying Region

of Interest (ROI)

- ROI size= mean(D)+3std(D),

where D = distances between con-

secutive clicks.

Anisotropic Diffusion
- Conductance κ = 50
- Integration constant ∆t = 1/7
- Number of iterations n = 20

Edge Detection - Algorithm: Canny

Model Registration

- Only vertebral body points

- Number of vertebrae = 5
- Number of registered points = 104

- Oulier rate = 0.01

Figure 4.6: Summery of the parameters of the automatic framework for seg-
mentation of vertebral bodies. The values of the main parameters of
each step are shown in the boxes at the rightmost column.

59

4.5 Summary
A fully-automatic approach based on deep learning and statistical models is pro-

posed for localization, labeling and segmentation of vertebral bodies in multi-slice

MR images. Although the experiments are done only on the lumbar region, no

assumptions are made about presence of specific vertebrae in the method. The

multi-vertebrae model can handle large inter-slice gap (about 4 mm) in clinical MR

images with low computation cost. Results demonstrate that our method can au-

tomatically localize, label, and segment the vertebral bodies in MR images with

sufficient accuracy and speed for a wide range of clinical applications.

60

Chapter 5

Speedup by Vectorization and
GPU Acceleration

5.1 Vectorized Feature Extraction
While compiled programming languages like C/C++ are widely used for software

release, interpreted languages like MATLAB and Python are more popular in re-

search. It is mainly because their tools and built-in math functions enable the re-

searcher to explore multiple approaches and reach a solution faster than traditional

compiled languages. MATLAB, in particular, is optimized for operations involving

matrices and vectors. On the other hand, it performs much slower than compiled

language in executing loops over multi-dimensional data. This is one of the rea-

sons that code vectorization is highly recommended when using such languages.

In this context, vectorization means revising loop-based, scalar-oriented code to

vector and matrix operations. Other than better performance, a vectorized code is

easier to read and less error prone.

As explained in Chapters 3 and 4, for the task of vertebrae localization, we

extract a set of features from image voxels to feed our deep learning system. In

this section, we explain the key points of our contribution in providing a vector-

ized implementation of this feature extraction step. The research and development

benefits of this approach is analyzed by a comparison against a basic sequential

implementation.

61

5.1.1 Description of Features

For vertebrae localization methods presented in Chapters 3 and 4, hundreds of

intensity-based features are extracted from each voxel of the image (with some

downsampling for computational speedup). The features describe a short-range

area around the reference voxel.

In CT scans, the value of each feature is the mean intensity over a three-

dimensional cuboid displaced with respect to the reference voxel position. In MR

images, because of the presence of intensity inhomogeneities, the mean intensity

over two cuboids are subtracted and used as the value of each feature (See Fig-

ures 3.2 and 4.2). The features used in CT and MR are explained in more detail in

Sections 3.3 and 4.3. For simplicity, in this section we focus on the implementation

alternatives for CT features. MR features are implemented similarly by using two

cuboids instead of one.

Computing the sum of intensities over cuboids can be done efficiently using an

intermediate representation of the image, called the integral image [69]. Mathe-

matical definition is brought in Equation 3.2 and a 2D representation is shown in

Figure 3.3. Having the integral image, the sum of intensities over a cuboid in the

original image can be computed in constant time.

The first step is to generate specifications for M features. Each feature box Fi is

defined by its displacement Di ∈R3 and its dimensions Si ∈R3. The displacement

is defined as the center of the feature box in respect with the reference voxel posi-

tion. Di and Si are selected randomly from the ranges [−max displace,max displace]

and [1 mm,max size], respectively. The integral image, IIN1×N2×N3 has the same

size of the original image denoted as IN1×N2×N3 . In our experiments, M = 500 fea-

tures are specified. Note that this number of features need to be extracted for each

image voxel. Therefore, for the whole image we may extract billions of features.

5.1.2 Sequential Implementation

In the sequential approach, we simply iterate over image voxels for each feature.

Using the integral image, extracting the mean intensity of a feature box can be done

in constant time . Assuming M features and an N×N×N image, the computational

cost for feature extraction per image will be MN3.

62

Algorithm 1 Sequential feature extraction

1: for i = 1→M do . Loop over all features

2: for x = 1→ N1 do . Loop over x axis

3: for y = 1→ N2 do . Loop over y axis

4: for z = 1→ N3 do . Loop over z axis

5: Fi← mean intensity of the feature box . Constant time

5.1.3 Vectorized Implementation

In the vectorized version, we quantize the range of allowed box sizes and displace-

ments, respectively, in sets

S = {{2,2,2}{2,2,7}{2,2,12} , ...,{max size,max size,max size}} , (5.1)

and

D = {−max displace, ...,−8,−4,0,4,8, ...,max displace} . (5.2)

The values in the above sets are in mm. For each Si ∈ S , we extract the mean

intensity of feature boxes with size Si from all voxels of the image. Using element-

wise matrix operations on the integral image, we create a 3D matrix with the same

size of the original image, where the value of each element of this matrix equals the

mean intensity of the box with size Si centred on the corresponding voxel on the

original image. Quantizing displacements allow us to downsample these computed

matrices for memory efficiency. Thereafter, the value of each feature Fj for all

voxels, can be obtained rapidly by picking the already-computed 3D matrix for S j

and reshaping it according to D j. Figure 5.1 visually illustrates the steps of this

algorithm on a 2D example.

Algorithm 2 Vectorized feature extraction

1: for all Si ∈ S do
2: Bi← mean intensity of box sizes Si centred on all pixels

3: for j = 1→M do . Loop over all features

4: Fj← cropped B j according to D j

63

Figure 5.1: The proposed vectorization approach is shown on a 2D example.
A feature box with size Si and displacement vector Di can be computed
for all pixels of an image by element-wise matrix addition and subtrac-
tion on the integral image according to Si (Left), and then cropping the
product matrix according to Di (Right). In the left figure, a number
of element-wise matrix operations (purple-orange-green+blue) on the
integral image results in a matrix in which each element contains the
sum of boxes with size Si started from the corresponding element in the
original image. Out-of-bound parts of the matrices can be handled by
zero-padding or cropping.

5.1.4 Comparison and Computation Analysis

In the experiments of Chapter 4, the number of features, M, equals 500. Consid-

ering downsampling rate of [4 mm,4 mm,4 mm] which is used in Chapter 4, the

dimension of images in each direction, N, is mostly less than 80 pixels. The pro-

posed sequential algorithm is O(MN3) which we expect it to be executed using

a compiled programming language like C++ in the order of 500× 803 = 4× 106

cycles, which should take less than a second on a desktop machine (with a com-

monplace 3-GHz processor).

Nevertheless, MATLAB is mostly an interpreted language and is relatively

slow in running loops over multi-dimensional data. On the other hand, MATLAB

is optimized for matrix operations. In our vectorized implementation instead of

for-loops over dimensions of the image, we used element-wise matrix operations

(addition, subtraction, and reshape). Figure 5.2 illustrates the substantial speedup

64

0 0.5 1 1.5 2 2.5 3 3.5

Sequential

Vectorized

3 minutes

15 seconds

Minutes

Computation time

Figure 5.2: Computation time of the vectorized version and the sequential
version of the algorithm on a sample image in MATLAB.

that we get from using the vectorized feature extraction algorithm in MATLAB

with the setting of the experiments of Chapter 4. Note that the computational time

reported for vectorized version is not affected by downsampling. Features are com-

puted for all voxels and the downsampling rate is considered at the end to disregard

the significant number of computed features. On the other hand, the computation

time of the sequential approach is exponentially affected by downsampling rate

(O(N3) when M is constant). Other than the performance gain, the vectorized

implementation also makes the code easier to be read, maintained, and modified.

Not being affected by downsample rate also let the researcher explore the effect of

different downsample rates without recomputing the features.

5.2 GPU-accelerated Model Registration
The computation time of algorithms is a principal factor in the area of medical

image analysis. Algorithms need to meet clinical time requirements to be used in

clinics and operating rooms. Many algorithms with high accuracy and robustness

cannot be used in clinical setting, because they do not meet clinical requirements in

terms of speed. If a method does not work within clinically acceptable time-frame,

it would not be valuable in clinical basis and cannot be used in practice. Parallel

65

computing can be used to make the algorithms to meet these time requirements.

In recent years, there has been a significant surge of interest in parallelizing

medical image analysis algorithms on Graphics Processing Units (GPU) [29, 45,

77]. A GPU, typically, has a much higher number of processing elements than tradi-

tional single-core or multicore machines. Unlike conventional Central Processing

Units (CPU), which did not have more than a handful of cores, GPUs include mas-

sively parallel arrays of processing units that can greatly increase the throughput

of parallel programming. Using this technology may allow a wide range of image

processing algorithms, which previously did not meet hard time requirements of

clinical usage, to fit in these constraints.

The work presented in this section, in particular, aims to parallelize a statisti-

cal model registration method on processing units of a GPU. The method, proposed

in [50] , is used in Chapters 2 and 4 for spine segmentation. This algorithm is paral-

lelized by two different methods: 1) Compute Unified Device Architecture (CUDA)

programming on a GPU, and 2) Multicore programming using shared memory. In

first method, we take advantage of hundreds of processing elements available in a

GPU for parallelizing, while in second method parallelizing is based on a 32 pro-

cessing units available in a multicore machine.

5.2.1 Spine Segmentation Method

Our segmentation algorithm aims to find boundaries of each vertebra in spinal col-

umn in CT or MR images. For this purpose, first, a statistical shape model of spine

is generated based on a number of manually segmented images. Then, given a new

not-segmented image, we register our previously generated model to the new im-

age to obtain a spine segmentation. In other words, the boundaries of each vertebra

in the input image is found by aligning a statistical model to the detected edge

points [50]. The concept of statistical models is described in detail in [13].

Improving the performance of this method up to real-time limits can massively

expand its application for spine segmentation in CT, MR, and ultrasound images.

To this end, we select the most computationally intensive portion of the algorithm

and aim to efficiently parallelize its execution.

66

Computationally intensive part

In the most computationally intensive part of the algorithm, we have a set of N

points in D dimensions, XN×D. We also have M Gaussian distributions with stan-

dard deviation of σ and different means. The means of these M Gaussian distribu-

tions are gathered in each row of matrix YM×D. We need to build the probability

matrix PM×N . The element Pmn in this matrix should be set to the probability that

point n in XN×D is generated by the mth Gaussian distribution that its mean is rep-

resented in mth row of YM×D. Each element of P can be computed as follows:

Pmn =
exp(−1

2 ||(Ym−Xn)/σ ||2)
(∑M

k=1 exp(−1
2 ||(Yk−Xn)/σ ||2))+ ε

, (5.3)

where Ym is the mth row of Y , Xn is the nth row of X , ε is a constant and the operator

||A|| is defined as follows:

||A||=
√

AAT . (5.4)

The next step is to find the best transformation that aligns the model (above-

mentioned Gaussian distributions) to the data points (matrix XN×D). In order to

solve this optimization problem, a loss function is defined. And the goal is to

minimize this loss function. This function will be different for different types of

transformations (e.g. rigid, rotation, affine, etc.). These different types of loss

functions are described in [38]. In all cases, when we get the derivative of the loss

function (for minimizing), terms PX , PIc and PT Ic are produced, where Ic is a col-

umn matrix that all of its elements are ones. PX is P multiplied by X . PIc means

sum of each row of P, and PT Ic is sum of each column of P. The final outputs of

this portion are these three matrices.

In each run of the algorithm, this portion is called about 120 times. In all

calls M = 7000, but N may vary in the range between 5,000 and 20,000. The

computation time of each call in the sequential C++ implementation is about 7

seconds for N = 20,000. Our goal is to reduce this computation time to below 0.5

seconds in order to meet clinical requirements.

67

5.2.2 Parallel Computing Approach

Two different parallel computing approaches are used: (1) GPU acceleration using

CUDA programming, and (2) multicore CPU acceleration using shared memory. In

CUDA programming, we take advantage of the parallel nature of GPU architectures

which have hundreds of cores capable of running thousands of parallel threads,

while in the shared memory implementation a multicore CPU architecture is used

with 32 cores and at most 32 threads. Our objective is to efficiently parallelize the

method in each of these platforms and compare the results.

GPU acceleration using CUDA

CUDA is a parallel computing platform created by NVIDIA. It gives the program-

mer access to instruction set and memory of the parallel computational elements

in NVIDIA GPUs. When programming in CUDA, one can use many thread blocks

that are scheduled independently. A thread block contains a number of threads

(usually between 32 and 512). A kernel function is run in all threads. The threads

in each block are executed in parallel, but multiple blocks may be executed in par-

allel or one after another depending on the resources of the GPU. Threads of each

block can have a fast access to a shared memory and can also get synchronized

with a low cost. The number of blocks and number of threads in each block should

be adjusted based on the data dependency of the program and available hardware

resources to achieve the highest possible performance.

Multicore CPU acceleration using shared memory

Pthreads library is used to parallelize our algorithm on a multicore CPU. This

library defines a set of C programming language types, functions and constants

for parallelizing tasks over multiple cores of a CPU. This enables us to evaluate the

effectiveness of GPU acceleration by comparing its speedup gains against multicore

CPU parallelization.

5.2.3 Experiment

In this subsection, we explain how the program is parallelized and how tasks are

distributed among the processing elements in each platform.

68

Parallelization on GPU

The most computationally intensive part of the algorithm is parallelized over the

processing elements of a GPU. In this part, XN×D and YM×D are given. We would

like to build the probability matrix PM×N using Eq. 5.3 and derive the outputs PX ,

PIc and PT Ic. For building the probability matrix P, we need to allocate an M×N

matrix in the GPU’s memory. A kernel function needs to be executed on each

processing element for computing the numerator of Eq. 5.3. We assign M×N

threads to execute this kernel function for each m and n, where 0 ≤ m < M and

0≤ n < N. After this step, the numerator matrix will be as follows:

numeratormn = exp(
−1
2
||(Ym−Xn)/σ ||2), (5.5)

where each Pmn is computed by an independent thread in parallel. Thereafter,

we need to compute the denumerator of Eq. 5.3. Note that the denumerator has

the same value for all elements of each column of P. Also note that the first

term of the denumerator of each column is the sum of the corresponding col-

umn in numeratorM×N that we have already computed. Hence, for computing

the denumerator value of column i, we need to sum up the values of column i in

numeratorM×N and then add the constant ε to the sum. Since numeratorM×N has

N columns, this can be done by using n parallel threads. After this step, the vector

denumerator with size N is built, where:

denumeratorn = (∑
M
k=1 exp(

−1
2
||(Yk−Xn)/σ ||2))+ ε. (5.6)

Now we need to again use M×N threads to divide each element of numeratorM×N

by the corresponding element in denumeratorN :

Pmn =
numeratormn

denumeratorn
. (5.7)

Once PM×N is built, we can obtain PX , PIc and PT Ic, where PIc is the vector of the

sum of each row of P and PT Ic is the vector of the sum of each column of P. Based

on this description, we point out that PIc and PT Ic can be implemented as PIN×1

and PT IM×1 where all elements of IN×1 and IM×1 are set to one. Therefore, each of

69

output matrices PX , PIc and PT Ic can be computed with one matrix multiplication.

An efficient parallel matrix multiplication procedure is implemented in a library in

CUDA called CUBLAS [43]. Matrix multiplication routine of this library is used

for computing above-stated matrix products.

Parallelization on a multicore CPU

The computationally intensive part of the algorithm is also implemented using

shared memory on a multicore machine. Assume that we use K parallel processing

cores, in which K is at most 32, based on available resources. For building the

probability matrix PM×N , we distribute N columns of P between K processors. In

other words, each processor is assigned to compute N/K columns of P. And the

processors work in parallel until all elements of P are computed. Consider column

j as one of the columns that is assigned to processor i. This processor traverses

over each element of column j and computes the numerator value (Eq. 5.5) of each

element. It also sums up the elements while traversing over the column. This way,

when it reaches the bottom of the column, all numerator values of the column as

well as their summation are computed. We obtain the denumerator of that column

(Eq. 5.6) by adding the constant ε to the sum of numerators. At this step, we have

both the numerators and the denumerator of the column. Hence, the processor

needs to traverse over the column again to divide the numerator of each element by

the denumerator of the column. During this traverse, it also sums up the products

to obtain the jth element of PT Ic. Now, jth column of PM×N as well as jth element

of vector PT Ic is computed. Then, processor i moves on to its next assigned col-

umn (possibly j+1) to repeat these steps. The processors work in parallel until all

elements of P and PT Ic are computed. At this point, a synchronization using a bar-

rier is necessary to make sure all processes are done before moving on to the next

step. For obtaining PX , we distribute the rows of P among processors to perform

a parallelized matrix multiplication. This procedure includes traversing over each

row of the first matrix P. During this traverse, we also sum up the elements of the

row to obtain each element of PIc. By the end of this step, when all processors are

done we will have all outputs PX , PIc and PT Ic.

70

16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

Number of threads per block

se
c

Execution time

Figure 5.3: Computation time of the CUDA program for different block
sizes. M=7,000 and N=20,000.

5.2.4 Results

Block size in GPU programming

Deciding on the optimal number of threads for each block is a challenging step in

GPU acceleration. In this experiment, we have changed the block size for the prob-

lem size of N=20,000 and reported the observed performance. Results are shown

in Figure 5.3. The results illustrate that the best performance is obtained with the

block size of 64 threads. Following this observation, all further experiments are

performed with the block size of 64 threads.

Speedup gain from GPU-acceleration

The parallelized program is called in each run of the segmentation algorithm about

120 times. In all these calls M = 7,000, but N can be varied between 5,000 and

20,000. For this reason, we tested our GPU accelerated program for different prob-

lem sizes in this range. The results are compared with a sequential efficient pro-

71

Table 5.1: Computation time and speedup of the GPU-accelerated program
for different problem sizes.

Problem size N=5,000 N=10,000 N=15,000 N=20,000
Sequential program 1400 ms 3700 ms 4900 ms 7200 ms

CUDA program 81 ms 163 ms 241 ms 317 ms
Speedup 17× 22× 20× 22×

gram which has been run on the same machine. Computational times and speedups

are reported in Table 5.1. All the timings are obtained from a 2.67 GHz Intel Xeron

machine with an NVIDIA Tesla C2050 GPU.

The GPU-accelerated part of the algorithm is integrated in the implementation

of the whole statistical model registration which is used in Chapters 2 and 4. The

processing time on a sample CT scan is reduced from 15 minutes to 76 seconds.

The timing reported for model registration in Chapters 2 and 4 used an approxi-

mate implementation of the algorithm. On the same sample CT scan, Our GPU-

accelerated method performed 1.45× faster than the approximate implementation.

The accuracy of this approach is also not affected by approximation.

Speedup gain from multicore CPU acceleration

For each problem size, we have tested the multicore-accelerated program with dif-

ferent number of cores. Figure 5.4 shows the execution times for the problem size

N = 20,000 when using different numbers of cores. The results demonstrate that

increasing the number of cores up to 8 may improve the performance, but increas-

ing further will reduce the performance due to the overhead of accessing shared

memory and synchronization. Table 5.2 shows the execution times and obtained

speedups of our shared memory implementation for different problem sizes. Re-

ported results for the sequential program are obtained from using only one core

when running the same shared memory implementation. Reported results for the

multicore-accelerated program are the best results that are obtained by varying the

number of cores for each problem size.

72

0 5 10 15 20 25 30
10

15

20

25

30

Number of processors

Se
co

nd
s

Execution time

Figure 5.4: Computation time of the multicore-accelerated program for dif-
ferent numbers of processors. M=7,000 and N=20,000.

Table 5.2: Computation time and speedup of the multicore-accelerated pro-
gram for different problem sizes.

Problem size N=5,000 N=10,000 N=15,000 N=20,000
Sequential 7 s 14 s 21 s 26 s

Multicore accelerated 5 s 11 s 16 s 19 s
Speedup 1.4× 1.3× 1.3× 1.3×

5.2.5 Discussion

The speedup gain results from the GPU accelerated program (more than 17× in

all cases) is much more than the speedup gain from the conventional multicore-

accelerated one (less than 1.5× in all cases). This observation shows that the

highly parallel structure of GPUs makes them more effective than general-purpose

multicore CPUs for our spine segmentation algorithm. This speedup makes the

registration algorithm more acceptable for clinical settings.

73

5.3 Summary
In the first section of this chapter, a vectorized algorithm is proposed for extracting

the intensity-based features used in previous chapters, in parallel, from all voxels

of a 3D image. Quantitative results showed about 12× speedup over a sequential

approach in MATLAB.

In the second section of this chapter, we parallelized our segmentation ap-

proach, used in previous chapters, over processing elements of a GPU. The speedup

gain from this approach is compared against a conventional multicore-accelerated

approach. A speedup around 17× was obtained from the GPU-accelerated method

which was significantly higher than the speedup gain from multicore acceleration.

This speedup can determine the potential of GPU-acceleration for fitting the pro-

posed automatic segmentation method in the acceptable time-frame of various clin-

ical tasks.

74

Chapter 6

Conclusion and Future Work

Designing an effective computer-aided system for spine diagnosis and therapy re-

quires a method for automatic vertebra localization and identification. An auto-

matic segmentation method can also directly benefit such system for diagnosing

spine pathologies. To be accepted in clinical practice, these methods need to be

fast, accurate, and robust.

In this thesis, we proposed and evaluated several methods for vertebra local-

ization, identification, and segmentation. In Chapter 2, we successfully adapted

a semi-automatic segmentation approach, which was previously proposed for CT

scans, to volumetric MR images. We showed that this method can handle intrinsic

MR segmentation challenges such as intensity inhomogeneities and large inter-slice

gaps. In Chapter 3, we introduced a method for automatic localization, and label-

ing of vertebrae in three-dimensional CT scans. An extensive evaluation showed

that this method can efficiently solve the localization problem in general scans

where the field of view is restricted and spine pathologies may be present. The

methods from Chapters 2 and 3 are combined in Chapter 4 to build an integrated

automatic system for all tasks of vertebra localization, labeling, and segmentation.

Evaluation on MR images of the lumbar region shows promising performance for

the integrated system. In Chapter 5, the potential of some parallel computing ap-

proaches is evaluated for improving the performance of the methods presented in

previous chapters.

75

6.1 Contributions
The major contributions of this thesis are summarized as follows:

• A semi-automatic method is developed for extracting the edges of verte-

bral bodies in volumetric MR images of the spine. A bias-field correction

algorithm is applied to reduce the intensity inhomogeneities. Then, a sim-

ple user interaction is used for determining the Region Of Interest (ROI). A

3D anisotropic diffusion filter is applied to the ROI for smoothing the image

while preserving the edges. Then, a Canny edge detector is used to extract

the desired edges. The edge map is then used for statistical model registra-

tion in order to segment the vertebral bodies.

• A novel technique is developed for automatic vertebra localization and iden-

tification based on training deep neural networks. Separate estimators are

used for different coordinates. The voxels of the image that are far from

Canny edges are disregarded in the estimation. A recently proposed Kernel

Density Estimation [6] method is used for fast and robust vote aggregation.

• A novel localization refinement approach is proposed and integrated in the

automatic localization system. The initial prediction for location of a ver-

tebra is obtained from the votes of voxels from all over the image. At this

point, the prediction is refined by aggregating the votes of the voxels around

the initial prediction. The votes that are far from the initial prediction are

considered as outliers and disregarded. This additional step improves the

results of the method on a large dataset of pathological cases, where unpre-

dicted curvatures may be present in different parts of the spine, while it does

not add significant computation time to the localization system.

• A fully-automatic system is developed by integrating an automatic verte-

brae localization algorithm and a semi-automatic segmentation approach. A

novel technique, based on local thresholding, is developed for refining the

vertebrae localization predictions in MR images. This technique is used as

an intermediate step for integrating the above-stated systems.

76

• The registration of a multi-vertebrae statistical model of the spine is paral-

lelized over the computing elements of a Graphical Processing Unit (GPU).

The computational time is compared against the pre-existing sequential im-

plementation.

• A vectorization technique is developed for computing the mean intensity of

hundreds of displaced cuboids for all pixels of a 3D image in parallel. These

values are used as features for building an automatic vertebrae localization

system for CT scans and MR images.

6.2 Future Work
As a continuation of the work presented in this thesis, a number of interesting

research projects can be suggested as follows:

• In Chapters 2 and 4, we focused on segmenting the vertebral body part of

each vertebra in MR images. Because of the large slice spacing in typical

MR images of the spine, the other parts such as transverse processes are not

depicted as well as vertebral bodies. However, a sub-anatomical labeling

of vertebral arch may be possible by registering the statistical model of the

whole vertebrae after convergence of the vertebral body parts.

• The segmentation methods presented in Chapters 2 and 4 are evaluated on

a small dataset of MR images. In addition, the ground truth meshes are

provided by a single non-expert. Future work may involve better evaluation

of the method by applying it to a larger dataset that are manually segmented

by multiple experts. Since the manual segmentation task on MR images is

a subjective task, considering the variability of manually segmented meshes

provided by multiple experts can significantly increase the reliability of the

reported segmentation results.

• The vertebrae localization approach presented in Chapter 3 is extensively

evaluated on a large dataset of arbitrary-field-of-view CT scans that most of

them have spine pathologies. However, the evaluation on MR images has

77

been done on a small set of images that are all captured from lumbar region.

Future work may involve a more extensive evaluation on MR images.

• In the vertebrae localization approach proposed in Chapter 3, we used hun-

dreds of intensity-based features to feed deep neural networks. A future

work may involve including the feature extraction step in the deep network,

using convolutional neural networks or Boltzmann machines.

• The vertebrae localization approach proposed in Chapter 3, does not rely

on the image modality or the nature of the spine anatomy. Future work may

involve using this method for localizing other anatomies like prostate or liver

in different image modalities such as CT scans, MR images, and ultrasound

images.

78

Bibliography

[1] R. S. Alomari, J. J. Corso, and V. Chaudhary. Labeling of lumbar discs using
both pixel-and object-level features with a two-level probabilistic model.
Medical Imaging, IEEE Transactions on, 30(1):1–10, 2011. → pages 3, 16,
50

[2] P. Baldi and K. Hornik. Neural networks and principal component analysis:
Learning from examples without local minima. Neural Networks, 2(1):
53–58, 1989. → pages 33

[3] Y. Bengio. Learning deep architectures for AI. Foundations and Trends R© in
Machine Learning, 2(1):1–127, 2009. → pages 17

[4] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise
training of deep networks. Advances in Neural Information Processing
Systems, 19:153–168, 2007. → pages 26

[5] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,
J. Turian, D. Warde-Farley, and Y. Bengio. Theano: a CPU and GPU math
expression compiler. In Proceedings of the Python for Scientific Computing
Conference (SciPy), 2010. → pages 47, 56

[6] Z. Botev, J. Grotowski, D. Kroese, et al. Kernel density estimation via
diffusion. The Annals of Statistics, 38(5):2916–2957, 2010. → pages 30, 39,
52, 76

[7] J. Canny. A computational approach to edge detection. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, (6):679–698, 1986. → pages 9

[8] J. Carballido-Gamio, S. J. Belongie, and S. Majumdar. Normalized cuts in
3-D for spinal MRI segmentation. Medical Imaging, IEEE Transactions on,
23(1):36–44, 2004. → pages 6, 9

79

[9] A. Criminisi, J. Shotton, and S. Bucciarelli. Decision forests with
long-range spatial context for organ localization in CT volumes. Proc
MICCAI Workshop on Probabilistic Models for Medical Image Analysis,
pages 69–80, 2009. → pages 19

[10] A. Criminisi, D. Robertson, O. Pauly, B. Glocker, E. Konukoglu, J. Shotton,
D. Mateus, A. M. Möller, S. Nekolla, and N. Navab. Anatomy detection and
localization in 3D medical images. In Decision Forests for Computer Vision
and Medical Image Analysis, pages 193–209. Springer, 2013. → pages xi,
xiii, 19, 20, 52, 53

[11] G. E. Dahl, T. N. Sainath, and G. E. Hinton. Improving deep neural
networks for LVCSR using rectified linear units and dropout. In Acoustics,
Speech and Signal Processing, IEEE International Conference on, pages
8609–8613. IEEE, 2013. → pages 34, 36

[12] J. Egger, T. Kapur, T. Dukatz, M. Kolodziej, D. Zukić, B. Freisleben, and
C. Nimsky. Square-cut: a segmentation algorithm on the basis of a rectangle
shape. PloS One, 7(2):e31064, 2012. → pages 2, 6, 9

[13] A. Field. Discovering statistics using SPSS. Sage Publications Limited,
2009. → pages 66

[14] J. Gall and V. Lempitsky. Class-specific hough forests for object detection.
In Decision Forests for Computer Vision and Medical Image Analysis, pages
143–157. Springer, 2013. → pages 19

[15] B. Glocker, J. Feulner, A. Criminisi, D. R. Haynor, and E. Konukoglu.
Automatic localization and identification of vertebrae in arbitrary
field-of-view CT scans. In Medical Image Computing and
Computer-Assisted Intervention, pages 590–598. Springer, 2012. → pages
viii, 16, 41, 45, 46, 47, 50

[16] B. Glocker, D. Zikic, E. Konukoglu, D. R. Haynor, and A. Criminisi.
Vertebrae localization in pathological spine ct via dense classification from
sparse annotations. In Medical Image Computing and Computer-Assisted
Intervention, pages 262–270. Springer, 2013. → pages ix, 16, 17, 40, 41, 45,
46, 47, 48

[17] X. Glorot and Y. Bengio. Understanding the difficulty of training deep
feedforward neural networks. In International Conference on Artificial
Intelligence and Statistics, pages 249–256, 2010. → pages 26

80

[18] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier networks. In
Proceedings of the 14th International Conference on Artificial Intelligence
and Statistics, volume 15, pages 315–323, 2011. → pages 36

[19] P. Hall, T. C. Hu, and J. S. Marron. Improved variable window kernel
estimates of probability densities. The Annals of Statistics, pages 1–10,
1995. → pages 30

[20] S. Hanaoka, K. Fritscher, B. Schuler, Y. Masutani, N. Hayashi, K. Ohtomo,
and R. Schubert. Whole vertebral bone segmentation method with a
statistical intensity-shape model based approach. In SPIE Medical Imaging,
pages 796242–796242. International Society for Optics and Photonics,
2011. → pages 16, 50

[21] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov. Improving neural networks by preventing co-adaptation of
feature detectors. arXiv preprint arXiv:1207.0580, 2012. → pages 34

[22] C. Hoad and A. Martel. Segmentation of MR images for computer-assisted
surgery of the lumbar spine. Physics in Medicine and Biology, 47(19):3503,
2002. → pages 6

[23] S.-H. Huang, Y.-H. Chu, S.-H. Lai, and C. L. Novak. Learning-based
vertebra detection and iterative normalized-cut segmentation for spinal MRI.
Medical Imaging, IEEE Transactions on, 28(10):1595–1605, 2009. → pages
6, 9

[24] I. Jolliffe. Principal component analysis. Wiley Online Library, 2005. →
pages 33

[25] C. Jones, J. Marron, and S. Sheather. Progress in data-based bandwidth
selection for kernel density estimation. Computational Statistics, (11):
337–381, 1996. → pages 30

[26] M. Jones, I. McKay, and T.-C. Hu. Variable location and scale kernel density
estimation. Annals of the Institute of Statistical Mathematics, 46(3):
521–535, 1994. → pages 30

[27] M. C. Jones, J. S. Marron, and S. J. Sheather. A brief survey of bandwidth
selection for density estimation. Journal of the American Statistical
Association, 91(433):401–407, 1996. → pages 30

81

[28] S. Kadoury, H. Labelle, and N. Paragios. Spine segmentation in medical
images using manifold embeddings and higher-order MRFs. Medical
Imaging, IEEE Transactions on, 32(7):1227–1238, 2013. → pages 6

[29] S. Khallaghi, P. Abolmaesumi, R. H. Gong, E. Chen, S. Gill, J. Boisvert,
D. Pichora, D. Borschneck, G. Fichtinger, and P. Mousavi. GPU accelerated
registration of a statistical shape model of the lumbar spine to 3D ultrasound
images. In SPIE Medical Imaging, pages 79642W–79642W. International
Society for Optics and Photonics, 2011. → pages 66

[30] K. I. Kim, K. Jung, and H. J. Kim. Face recognition using kernel principal
component analysis. Signal Processing Letters, IEEE, 9(2):40–42, 2002. →
pages 33

[31] K. C. Kiwiel. Convergence and efficiency of subgradient methods for
quasiconvex minimization. Mathematical Programming, 90(1):1–25, 2001.
→ pages 37

[32] T. Klinder, J. Ostermann, M. Ehm, A. Franz, R. Kneser, and C. Lorenz.
Automated model-based vertebra detection, identification, and segmentation
in CT images. Medical Image Analysis, 13(3):471–482, 2009. → pages 16,
17, 50

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012. → pages 22

[34] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In
Neural Networks: Tricks of The Trade, pages 9–48. Springer, 2012. → pages
26, 36

[35] H. Lee, P. Pham, Y. Largman, and A. Y. Ng. Unsupervised feature learning
for audio classification using convolutional deep belief networks. In
Advances in Neural Information Processing Systems, pages 1096–1104,
2009. → pages 33

[36] J. Ma, L. Lu, Y. Zhan, X. Zhou, M. Salganicoff, and A. Krishnan.
Hierarchical segmentation and identification of thoracic vertebra using
learning-based edge detection and coarse-to-fine deformable model. In
Medical Image Computing and Computer-Assisted Intervention, pages
19–27. Springer, 2010. → pages 16, 50

82

[37] J. Martens. Deep learning via hessian-free optimization. In Proceedings of
the 27th International Conference on Machine Learning, pages 735–742,
2010. → pages 37

[38] A. Myronenko and X. Song. Point set registration: coherent point drift.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(12):
2262–2275, 2010. → pages 67

[39] B. Naegel. Using mathematical morphology for the anatomical labeling of
vertebrae from 3D CT-scan images. Computerized Medical Imaging and
Graphics, 31(3):141–156, 2007. → pages 16, 50

[40] V. Nair and G. E. Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th International Conference
on Machine Learning, pages 807–814, 2010. → pages 36

[41] A. Neubert, J. Fripp, C. Engstrom, R. Schwarz, L. Lauer, O. Salvado, and
S. Crozier. Automated detection, 3D segmentation and analysis of high
resolution spine MR images using statistical shape models. Physics in
Medicine and Biology, 57(24):8357–8376, 2012. → pages 6

[42] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. Multimodal
deep learning. In Proceedings of the 28th International Conference on
Machine Learning, pages 689–696, 2011. → pages 33

[43] C. Nvidia. Cublas library. NVIDIA Corporation, Santa Clara, California,
15, 2008. → pages 70

[44] A. B. Oktay and Y. S. Akgul. Simultaneous localization of lumbar vertebrae
and intervertebral discs with SVM-based MRF. Biomedical Engineering,
IEEE Transactions on, 60(9):2375–2383, 2013. → pages 16, 50

[45] Y. Otake, M. Armand, R. S. Armiger, M. D. Kutzer, E. Basafa,
P. Kazanzides, and R. H. Taylor. Intraoperative image-based multiview
2D/3D registration for image-guided orthopaedic surgery: incorporation of
fiducial-based C-arm tracking and GPU-acceleration. Medical Imaging,
IEEE Transactions on, 31(4):948–962, 2012. → pages 66

[46] N. Otsu. A threshold selection method from gray-level histograms.
Automatica, 11(285-296):23–27, 1975. → pages 52

[47] B. Park, S.-O. Jeong, M. Jones, and K.-H. Kang. Adaptive variable location
kernel density estimators with good performance at boundaries. Journal of
Nonparametric Statistics, 15(1):61–75, 2003. → pages 30

83

[48] Z. Peng, J. Zhong, W. Wee, and J.-h. Lee. Automated vertebra detection and
segmentation from the whole spine MR images. In Engineering in Medicine
and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International
Conference of the, pages 2527–2530. IEEE, 2006. → pages 6, 16, 50

[49] P. Perona and J. Malik. Scale-space and edge detection using anisotropic
diffusion. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
12(7):629–639, 1990. → pages 8, 54

[50] A. Rasoulian, R. Rohling, and P. Abolmaesumi. Lumbar spine segmentation
using a statistical multi-vertebrae anatomical shape+pose model. Medical
Imaging, IEEE Transactions on, 32(10):1890–1900, 2013. → pages 6, 7, 9,
18, 44, 50, 54, 66

[51] A. Rasoulian, R. Rohling, and P. Abolmaesumi. A statistical multi-vertebrae
shape+pose model for segmentation of CT images. In SPIE Medical
Imaging, volume 8671, 2013. → pages 50

[52] A. Rasoulian, R. N. Rohling, and P. Abolmaesumi. A statistical
multi-vertebrae shape+ pose model for segmentation of CT images. In SPIE
Medical Imaging, pages 86710P–86710P. International Society for Optics
and Photonics, 2013. → pages 7

[53] A. Rasoulian, R. N. Rohling, and P. Abolmaesumi. Automatic labeling and
segmentation of vertebrae in ct images. In SPIE Medical Imaging, pages
903623–903623. International Society for Optics and Photonics, 2014. →
pages 16, 17, 50

[54] L. Remonda, A. Lukes, and G. Schroth. [spinal stenosis: current aspects of
imaging diagnosis and therapy]. Schweizerische Medizinische
Wochenschrift, 126(6):220–229, 1996. → pages 2

[55] P. J. Richards, J. George, M. Metelko, and M. Brown. Spine computed
tomography doses and cancer induction. Spine, 35(4):430–433, 2010. →
pages 2

[56] T. D. Sanger. Optimal unsupervised learning in a single-layer linear
feedforward neural network. Neural Networks, 2(6):459–473, 1989. →
pages 33

[57] J. Schmidhuber. Deep learning in neural networks: An overview. arXiv
preprint arXiv:1404.7828, 2014. → pages 17

84

[58] S. Schmidt, J. Kappes, M. Bergtholdt, V. Pekar, S. Dries, D. Bystrov, and
C. Schnörr. Spine detection and labeling using a parts-based graphical
model. In Information Processing in Medical Imaging, pages 122–133.
Springer, 2007. → pages 16, 50

[59] S. J. Sheather and M. C. Jones. A reliable data-based bandwidth selection
method for kernel density estimation. Journal of the Royal Statistical
Society, pages 683–690, 1991. → pages 30

[60] R. Shi, D. Sun, Z. Qiu, and K. L. Weiss. An efficient method for
segmentation of MRI spine images. In Complex Medical Engineering,
IEEE/ICME International Conference on, pages 713–717. IEEE, 2007. →
pages 6, 9

[61] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost for image
understanding: Multi-class object recognition and segmentation by jointly
modeling texture, layout, and context. International Journal of Computer
Vision, 81(1):2–23, 2009. → pages 19

[62] P. Shwaluk. Clinical anatomy and management of low back pain.
Australasian Chiropractic & Osteopathy, 6(1):24, 1997. → pages 1

[63] P. P. Smyth, C. J. Taylor, and J. E. Adams. Automatic measurement of
vertebral shape using active shape models. Image and Vision Computing, 15
(8):575–581, 1997. → pages 16

[64] D. Štern, B. Likar, F. Pernuš, and T. Vrtovec. Parametric modelling and
segmentation of vertebral bodies in 3D CT and MR spine images. Physics in
Medicine and Biology, 56(23):7505, 2011. → pages 6

[65] D. Štern, T. Vrtovec, F. Pernuš, and B. Likar. Segmentation of vertebral
bodies in CT and MR images based on 3D deterministic models. In SPIE
Medical Imaging, pages 79620D–79620D. International Society for Optics
and Photonics, 2011. → pages 6

[66] A. Suzani, A. Rasoulian, S. Fels, R. N. Rohling, and P. Abolmaesumi.
Semi-automatic segmentation of vertebral bodies in volumetric MR images
using a statistical shape+ pose model. In SPIE Medical Imaging, pages
90360P–90360P. International Society for Optics and Photonics, 2014. →
pages 50

[67] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object
detection. In Advances in Neural Information Processing Systems, pages
2553–2561, 2013. → pages 22

85

[68] G. R. Terrell and D. W. Scott. Variable kernel density estimation. The
Annals of Statistics, pages 1236–1265, 1992. → pages 30

[69] P. Viola and M. J. Jones. Robust real-time face detection. International
Journal of Computer Vision, 57(2):137–154, 2004. → pages 19, 52, 62

[70] P. J. Werbos. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560, 1990. → pages 26, 37

[71] P. L. Williams, M. Dyson, L. Bannister, P. Collins, M. Berry, M. Ferguson,
and J. Dussek. Gray’s anatomy: The anatomical basis of medicine and
surgery. 1995. → pages 1

[72] J. Yao, J. E. Burns, H. Munoz, and R. M. Summers. Detection of vertebral
body fractures based on cortical shell unwrapping. In Medical Image
Computing and Computer-Assisted Intervention, pages 509–516. Springer,
2012. → pages 7

[73] K. Yu, W. Xu, and Y. Gong. Deep learning with kernel regularization for
visual recognition. In Advances in Neural Information Processing Systems,
pages 1889–1896, 2009. → pages 34

[74] P. A. Yushkevich, J. Piven, H. Cody Hazlett, R. Gimpel Smith, S. Ho, J. C.
Gee, and G. Gerig. User-guided 3D active contour segmentation of
anatomical structures: Significantly improved efficiency and reliability.
Neuroimage, 31(3):1116–1128, 2006. → pages 7, 18, 50

[75] G. Zamora, H. Sari-Sarraf, and L. R. Long. Hierarchical segmentation of
vertebrae from x-ray images. In Medical Imaging 2003, pages 631–642.
International Society for Optics and Photonics, 2003. → pages 16

[76] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le,
P. Nguyen, A. Senior, V. Vanhoucke, J. Dean, et al. On rectified linear units
for speech processing. In Acoustics, Speech and Signal Processing, IEEE
International Conference on, pages 3517–3521. IEEE, 2013. → pages 36

[77] J. Zhang, L. Lv, X. Shi, F. Guo, Y. Zhang, and H. Li. Hough
transform-based approach for estimating 3D rotation angles of vertebrae
from biplanar radiographs using GPU-acceleration. International Journal of
Imaging Systems and Technology, 23(3):272–279, 2013. → pages 66

[78] D. Zukic, A. Vlasák, T. Dukatz, J. Egger, D. Horı́nek, C. Nimsky, and
A. Kolb. Segmentation of vertebral bodies in MR images. In Vision,

86

Modeling & Visualization, pages 135–142. The Eurographics Association,
2012. → pages 6

87

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	1 Introduction
	1.1 Clinical Background
	1.2 Thesis Objectives
	1.3 Thesis Structure

	2 Semi-automatic Segmentation in MRI
	2.1 Introduction
	2.2 Materials
	2.3 Methods
	2.3.1 Intensity Correction
	2.3.2 Anisotropic Diffusion
	2.3.3 Canny Edge Detection
	2.3.4 Segmentation Using the Multi-vertebrae Model

	2.4 Results and Discussions
	2.5 Summary

	3 Deep Learning for Automatic Vertebrae Localization in CT
	3.1 Introduction
	3.2 Materials
	3.3 Simultaneous Localization and Labeling
	3.3.1 Intensity-based Features
	3.3.2 Parametrizing Localization Problem As a Regression
	3.3.3 Deep Neural Networks for Regression
	Network structure
	Cost function
	Layerwise pre-training
	Second neural network for the z coordinates of outputs

	3.3.4 Kernel Density Estimation for Vote Aggregation
	Procedure on a test image
	Kernel density estimation

	3.4 Hyper-Parameters Optimization
	3.4.1 Parameters in Feature Extraction
	Downsample rate
	Size and displacement of feature boxes
	PCA whitening

	3.4.2 Parameters in Training Deep Neural Network
	Neural network structure
	Activation function
	Optimization method

	3.4.3 Parameters in Aggregating Votes

	3.5 Results and Discussion
	3.5.1 Separate Network for Z Coordinate
	3.5.2 Point Selection Using Canny Edge Detector
	3.5.3 Refinement by Local Vote Aggregation
	3.5.4 Capability of Our Shape+pose Model for Further Refinement
	3.5.5 Final Results
	3.5.6 Comparison to State-of-the-art

	3.6 Summary

	4 Automated Localization, Identification, and Segmentation in MRI
	4.1 Introduction
	4.2 Materials
	4.3 Methods
	4.3.1 Automatic Localization and Identification
	Pre-processing: bias field correction
	Localization and identification by deep learning
	Refinement by local thresholding

	4.3.2 Segmentation
	Pre-processing: anisotropic diffusion
	Statistical model registration

	4.4 Results and Discussion
	4.5 Summary

	5 Speedup by Vectorization and GPU Acceleration
	5.1 Vectorized Feature Extraction
	5.1.1 Description of Features
	5.1.2 Sequential Implementation
	5.1.3 Vectorized Implementation
	5.1.4 Comparison and Computation Analysis

	5.2 GPU-accelerated Model Registration
	5.2.1 Spine Segmentation Method
	Computationally intensive part

	5.2.2 Parallel Computing Approach
	GPU acceleration using CUDA
	Multicore CPU acceleration using shared memory

	5.2.3 Experiment
	Parallelization on GPU
	Parallelization on a multicore CPU

	5.2.4 Results
	Block size in GPU programming
	Speedup gain from GPU-acceleration
	Speedup gain from multicore CPU acceleration

	5.2.5 Discussion

	5.3 Summary

	6 Conclusion and Future Work
	6.1 Contributions
	6.2 Future Work

	Bibliography

