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Abstract

Local architecture of qubits in two dimensional lattices is known as one of the can-

didates to run fault tolerant quantum computation with high threshold. Topological

quantum error correcting codes, such as surface codes, are used to make this archi-

tecture robust against various quantum error models. In this research we present

a fast, concise, operationally inexpensive and highly parallelizable decoding algo-

rithm for surface codes without using concatenation which has a threshold range of

8.6% to 10.5% varying based on a parameter called OMSS. Thanks to paralleliza-

tion of the proposed algorithm, the time complexity scales logarithmically in the

lattice size for small OMSS. This can be compared to the work of [9, 10] which has

a threshold of 8% for the bit-flip error channel within the same complexity order.
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Chapter 1

Introduction

If I have seen farther it is by standing on the shoulders of Giants.
— Sir Isaac Newton (1642 - 1727)

1.1 Plan of the Thesis
Quantum computers have shown promising results solving problems which are cur-

rently computationally hard for classical computers [19][36][25]. Although there

has been groundbreaking progress in realizing such devices [2][20][26][21][27],

scaling them to a size that can handle real world problems is still a high-tech chal-

lenge. This is because quantum computers use the quantum mechanical properties

of certain physical systems which are very fragile and can be distorted by the envi-

ronmental noise. Accumulation of this noise makes it hard to scale these systems

up. However, threshold theorem proved that fault tolerant quantum computation

with noisy devices is possible with arbitrary accuracy provided that the noise level

of the subsystems are below a threshold [1]. So quantum computation in its large

size meaning is impossible without considering the effect of noisy systems.

Fault tolerance is the idea of using error correction to protect a quantum state

from quantum noise. There are various proposed methods for fault tolerant quan-

tum computation using different error correcting approaches. Different error cor-

recting schemes are mostly compared by the error threshold they can achieve and

the complexity of their encoding/decoding algorithms.We will discuss error thresh-
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old in more detail in section 1.4.2. Among all these error correction schemes,

surface codes with their simple architecture and high error threshold value 1 are so

far one of the best candidates to be the chosen protocol for fault tolerant quantum

computation.

As it will be more elaborated in the remainder of this thesis, certain classical

processing is involved in the quantum error correction with surface codes. The

error threshold of a decoding scheme is closely related to this classical process-

ing step. In the case of surface codes this classical post processing boils down to

finding the minimum weight perfect matching on a complete graph. This post pro-

cessing is essential to fault tolerant quantum computation and the quantum speed

up advantage can be lost if we need to spend a lot of time on the classical post

processing. Therefore, we need to reduce the time complexity of these classical

algorithms as much as we can in order not to delay the quantum computation with

slow classical processing. There is also a trade of between the complexity and the

threshold gained using these algorithms. So an ultimate goal would be to devise a

low complexity post processing algorithm which maintains a high threshold. There

has been different approaches in the literature to either reduce the complexity of the

classical processing or gain a higher error threshold [11, 12, 24]. We used a greedy

algorithm with a weight adjustment step to both reduce the complexity to that of

[9]. Then we have also shown that a hybrid approach using our greedy approxima-

tion and Edmonds matching algorithm [12] can achieve an error threshold higher

than [9] while keeping the complexity at the same level. Our proposed algorithm

and it’s numerical results and comparisons are explained in detail in chapter 3.

In the remainder of the thesis, first we discuss the importance and significance

of using quantum computers along with a short summery of quantum mechanics

background. Then we introduce the idea of fault tolerant quantum computation

and its use of error correction. A whole section is dedicated to fundamentals of

error correcting codes. Then with a definition of quantum error models in section

1.3.3, we initiate the discussion on quantum error correcting codes. A series of ex-

amples on quantum error correcting codes will help us establish a formal analogy

between linear classical codes and quantum codes. Surface codes are a subclass

1Due to their robustness against local errors
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of a more general family of quantum error correcting codes, which are called sta-

bilizer codes. So in section 1.3.10, we introduce the stabilizer formalism and then

we conclude the first chapter by an introduction to Surface codes in section 1.4,

which are the main target of this research. This introduction includes the formal

definition of surface codes, the geometric picture and how the topology plays a role

in the robustness of these codes against errors, and then we explain how the actual

error correction is done using surface codes in section 1.4.2. A formal definition of

error threshold as a measure of the quality of an error correcting code is given in

the same section.

In chapter 2 we review the steps of error correction with surface codes in more

detail and in an algorithmic fashion. Then we introduce our numerical analysis

method and how the simulator is developed. We conclude this chapter by a nu-

merical test example to show that our developed numerical simulation engine is

consistent with the literature. Then in chapter 3 we propose our algorithm along

with different ways to improve it and its numerical results along with the bench

markings with the current methods in the literature. Finally we conclude the thesis

in chapter 4 along with a number of proposed challenges for future works.

1.2 Quantum Computers

1.2.1 Motivation

It’s easy to imagine how the birth of computers changed our lives. Smaller yet

faster processors were rapidly manufactured one after another enabling us to do

more sophisticated calculations in shorter time and using less resources. It opened

a wider area of problems that we can tackle efficiently. Despite all this rapid pro-

gresses, there are classes of problems which are generically very hard to solve [17].

What do we mean by hardness of a problem? Each paradigm of calculation brings

a complexity theory with itself. If you have a universal paradigm of computation,

then there has to be a mapping between any arbitrary operation on an input and

the set of instructions in your computer. Complexity theory looks at the number

of instructions you need to employ in order to run a certain operation. The more

instructions you need to run a certain operation, the harder it will be for the com-
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puter to handle that operation. Looking at the classical gate model paradigm of

computation, the complexity theory classifies problems into certain groups based

on their hardness:

P problems The set of problems which can be solved with a Turing machine in

polynomial time.

NP problems Class of computational problems for which solutions can be com-

puted by a non-deterministic Turing machine in polynomial time.

NP-hard Class of problems at least as hard as hardest problems in NP.

NP-complete class of problems which are NP and any NP problem can be reduced

to them in polynomial time.

Figure 1.1 illustrates these problem classes and their relation in a Venn dia-

gram. Some problems are computationally intensive to be solved on a classical

computer. Although you might be able to check whether a potential answer is cor-

rect or not, finding the solution may not happen in a polynomial time. [17] has

a long list of famous Np-complete problems. The most important fact is that all

this complexity discussion is coming from our notion of computation, the classical

Turing machine. If a problem is hard to solve in a Turing machine model, it does

not mean that it is also hard to solve in another computation paradigm. And this is

exactly where an alternative notion of computation becomes important, especially

to tackle these hard problems.

Quantum computers are proven to have computational resources for an alter-

native paradigm of computation in which classically challenging problems can be

solved faster (in some cases the speed-up is even exponential). A list of many

NP-Complete problems can be found in [25] which can be tackled by current re-

alizations of quantum computers [2]. As another example, we can point to Shor’s

factoring algorithm [36] and Grover’s search algorithm [19] as the most famous

quantum algorithms in the literature.

Quantum computation as a general notion is the idea of using systems which

are governed with quantum physic rules and has special properties like tunneling,

4



Figure 1.1: Classes of problems based on their complexity.

entanglement, superposition, and to harvest these properties as computation re-

sources. There are several different ways to realize these quantum systems in a

small scale. Photons, ion traps [21], cold atoms in optical lattices [26], supercon-

ducting charge (or flux) qubits [20, 38], are all examples of potential experimental

realization of quantum systems. Although the theory of quantum computation for

any of these approaches is rapidly progressing, scientists still have technological

limitations to scale these systems up to a size able to handle real world challenging

problems. In spite of these engineering challenges, some approaches to quantum

computation have shown promising results in terms of scalability.

1.2.2 A Glimpse of Quantum Mechanics

In physics, a system is explained by the Hamiltonian. Hamiltonian is an operator

that relates the total energy of the system to the energies and forces applied to the

particles in the system either as a result of an external source (exp. a potential due

to a magnetic field) or due the existence of the particles themselves. A Quantum

system is a physical system in which its Hamiltonian is an operator with quantized

5



eigenvalues (energies) acting on a very special vector space called a Hilbert space.

By diagonalizing the Hamiltonian operator we can get all information about the

energy levels of a physical system. Equation 1.1 shows the Hamiltonian opera-

tor for a one-particle quantum system where V (r, t) is the potential applied to the

particle and ∇2 is just
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 operator.

H =− h̄2

2m
∇

2 +V (r, t) (1.1)

The quantized eigenvalues are the possible energies that a quantum system can

acquire and eigenvectors are the state of the system corresponding to a specific

energy (eigenvalue). Since states are vectors on the Hilbert space we can use dirac

bra-ket notation to show a state with a ket |ψ〉 or its complex conjugate with a bra

〈ψ|.

H|ψ〉= Eψ |ψ〉 (1.2)

Equation 1.2 is showing that Hamiltonian as an operator, has eigenstate |ψ〉
with corresponding eigenvalue Eψ which is the energy of that state and can be

measured. The lowest possible energy eigenvalue and eigenstate is of significant

importance and it’s called the ground state of the system. All other energy states

whit larger energies are called excited states.2 Although solving a Hamiltonian

and finding the ground state of a quantum system can be a hard problem itself and

needs a more detailed discussion, but it’s outside the scope of this introduction so

for now we assume we are working with systems in which we are aware of their

energy eigenstates.

As an example we can go through details of a quantum system consisting of one

particle with two energy levels. These two level systems are called qubits. They

are either systems with only two energy levels or systems with many energy levels

2This particular naming convention is coming from the fact that naturally a system tends to get to
the configuration which has the lowest possible energy. In order to move a system out of its lowest
energy state we have to do work and literally excite the system in order to put it in a configuration
with higher energy. A very simple example is the potential energy stored in a ball hanging from a
certain distance of the ground. When we drop the ball it moves toward the ground to lose potential
energy. if we want the ball to move in opposite direction we have to excite it and apply force to it.
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but only the two smallest energies are taken in account. Let’s call the lowest energy

state (often called ground state), state 0 or |0〉 and the second energy state (often

called as first excited state) state 1, |1〉. Right here an intuitive analogy between bits

( binary number either 0 and 1) and qubits ( Quantum system in either 0 or 1 state)

can be established. The first and hence the most fundamental difference is that a

qubit (two level quantum system) can also exist in a superposition of its eigenstates.

If |ψ〉 is denoting the state of a qubit, superposition means the following is a valid

state of this system:

|ψ〉= α|0〉+β |1〉 (1.3)

where α and β are complex numbers in general. Although this quantum system

exists in a superposition of states, when it’s measured in σz basis, it collapses to one

of the eigenstates of that basis (|0〉 or |1〉) with a certain probability proportional to

the square of the constants in the superposition relation 1.3 . Unlike this situation,

an energy eigenvalue can be degenerate. Degeneracy happens when an eigenvalue

corresponds to more than one eigenstate of the observable (measurement operator).

In general an eigenvalue corresponds to a subspace of the Hilbert space, called the

eigenspace of that eigenvalue. The number of eigenstates in the eigenspace defines

the degree of the degeneracy. When each eigenvalue of the system corresponds to

only one eigenstate, the system is non-degenerate under that observable and the

eigenstates of the observable form a basis for the Hilbert space, i.e. each state of

the Hilbert space can be represented as a superposition of the eigen states of that

specific observable. Later in this section, we will talk more about measurements

and the probabilistic nature of observing a certain energy eigenvalue and eigenstate

in a quantum system.

All quantum properties of two level quantum systems (qubits) can be under-

stood using the Algebra of Pauli Operators σx, σy, σz and the Identity operator I

[16]. The Hilbert space of a qubit is two dimensional and all operators defined on

this space have a 2 by 2 matrix representation. The Pauli operators can be repre-

sented as follows:

σx =

(
0 1

1 0

)
,σy =

(
0 −i

i 0

)
,σz =

(
1 0

0 −1

)
, I =

(
1 0

0 1

)
. (1.4)
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In fact the equation 1.3 we saw earlier, is a general expression for a two level

quantum system diagonalized in σz basis. σz is often called the computational

basis, and its eigen vectors are written as |0〉 and |1〉. Each of the Pauli operators

has two eigenvalues +1 and -1 and the following eigen-vectors corresponding to +

and - eigenvalues:

ψx+ =
1√
2

(
1

1

)
,ψx− =

1√
2

(
1

−1

)
, (1.5)

ψy+ =
1√
2

(
1

i

)
,ψy− =

1√
2

(
1

−i

)
, (1.6)

ψz+ =

(
1

0

)
,ψz− =

(
0

1

)
. (1.7)

The commutation relations between these operators is really important when

studying their application to a quantum state:

[σx,σy] = 2iσz, (1.8)

[σy,σz] = 2iσx, (1.9)

[σy,σx] =−2iσz (1.10)

Each operator commutes with itself, so [σx,σx] = 0 and two different operators

anticommute {σx,σy}= 0. In general:

{σi,σ j}= 2δi j i, j ∈ {x,y,z} (1.11)
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If we have a qubit prepared in state |ψ〉 of equation 1.3, then

σz|ψ〉= σz(α|0〉+β |1〉) (1.12)

= α(σz|0〉)+β (σz|1〉) (1.13)

= α(+1|0〉)+β (−1|1〉) (1.14)

= α|0〉−β |1〉 (1.15)

The third line holds since |0〉 and |1〉 are eigenvalues of σz Pauli operator with

eigenvalues +1 and -1 respectively. In fact, applying the σz operator can be a very

simple, yet important example of a quantum error occurring on a two level quantum

system, changing our qubit state.

So far we have been talking about a closed quantum system. However, we

know that in order to use a quantum system, manipulate it, or get information

about it we need interact with that system. One way that a closed quantum system

can interact with its environment is through measurement.

Quantum measurements are also operators applied to a quantum state. It’s a

postulate in quantum mechanics that an observable M (measurement operator) is

an operator that maps the Hilbert space of a quantum system to a subspace of that

Hilbert space. As we discussed earlier, if the system is not degenerate under an

observable, the eigen vectors of the observable form a basis for the Hilbert space

of the quantum system under measurement. In fact, the result of a measurement

(i.e. what we can expect to see in a lab) can be any of the eigenvalues of the

observable. Since they are measurement values the eigenvalues have to be real and

thus the observable must be Hermitian (self-adjoint) operators. A quantum state

living in a Hilbert space can be represented as a superposition of the eigen-vectors

of that observable defined on the same Hilbert space. The Born rule named after

Max Born states that if an observable M is measured in a quantum system in a

normalized state |ψ〉 then:

• The measurement results is one of the eigenvalues m of the hermitian opera-

tor M with a certain probability.

• The probability of observing an specific eigenvalue m is Pr(m)= 〈ψ|P†
mPm|ψ〉

where Pm = |Vm〉〈Vm| is the projection operator for the eigen vector Vm cor-

9



responding to the eigenvalue m if the eigenspace of m is 1 dimensional (i.e.

non-degenerate eigenvalue), and P†
m is its complex conjugate.

If eigenvalue m is degenerate of degree gm, then its eigenspace forms a gm-

dimensional subspace of the Hilbert space. All possible degenerate eigen

states of this eigenvalue are vectors in this space and can be written as the

linear combination of its orthonormal basis |Emi〉. In this case we can also

define a similar projection operator Pm =
gm

∑
i=1
|Emi〉〈Emi|.

• After the measurement the state of the system is projected to
Pm|ψ〉√
〈ψ|P†

mPm|ψ〉
.

• The Vm eigen vectors satisfy the completeness equation, ∑
m

P†
mPm = 1. The

completeness equation shows the fact that the probabilities of observing the

eigenvalues add up to 1:

1 = ∑
m

Pr(m) = ∑
m
〈ψ|P†

mPm|ψ〉 (1.16)

To summarize these points, when we measure an observable of a quantum sys-

tem, the state of the system is projected to a subspace of the system’s Hilbert space.

In fact, if the eigenvalue is non-degenerate, the system is being projected to an

eigen vector of that observable and the real value we measure and see in the lab is

the eigenvalue corresponding to that eigen-vector. Observing each eigenvalue has

its own probability and all these probabilities add up to 1 [28]. As an example we

suppose a quantum system initially in state |ψ〉= α|0〉+β |1〉. If we measure this

system in the σz basis, the system will be projected to either state |0〉 or state |1〉
which are the eigen-vectors of observable σz. Please note that σz is indeed a her-

mitian operator and the state of the system ψ is already written as a superposition

of eigen-vectors of σz operator. Now according to the Born Rule:

• The measurement outcome can be either +1 or -1 which are the eigen-values

of operator σz and:

V+1 = |0〉 and V−1 = |1〉 (1.17)

10



with projection operators:

P+1 = |0〉〈0| and P−1 = |1〉〈1| (1.18)

• The probability of each measurement outcome and finding the system in the

corresponding eigen-vector is:

Pr(m =+1) = 〈ψ|P†
+1P+1|ψ〉 (1.19)

= 〈ψ|P+1|ψ〉 (1.20)

= 〈ψ|0〉〈0|ψ〉 (1.21)

= (α∗〈0|+β
∗〈1|)|0〉〈0|(α|0〉+β |1〉) (1.22)

= (α∗ 〈0|0〉︸︷︷︸
=1

+β
∗ 〈1|0〉︸︷︷︸

=0

)(α∗ 〈0|0〉︸︷︷︸
=1

+β
∗ 〈0|1〉︸︷︷︸

=0

) (1.23)

= α
∗
α = |α|2 (1.24)

or (using the same steps):

Pr(m =−1) = 〈ψ|1〉〈1|ψ〉= |β |2 (1.25)

• The system is projected in to either of the following states:

P+1|ψ〉√
〈ψ|P†

+1P+1|ψ〉
,or

P−1|ψ〉√
〈ψ|P†

−1P−1|ψ〉
(1.26)

in 1.24 and 1.25 we calculated the part under the square root in the denom-

inator. So the state of the system after this measurement is either of the

following states:

11



P+1|ψ〉√
Pr(m =+1)

=
P+1|ψ〉√
|α|2

(1.27)

=
|0〉〈0|ψ〉
|α|

(1.28)

=
|0〉〈0|(α|0〉+β |1〉)

|α|
(1.29)

=
|0〉(α〈0|0〉+β 〈0|1〉)

|α|
(1.30)

=
α

|α|
|0〉 (1.31)

or :

P−1|ψ〉√
Pr(m =−1)

=
P−1|ψ〉√
|β |2

(1.32)

=
β

|β |
|1〉 (1.33)

It can be shown that the phase factors like
β

|β |
can be ignored and the states

in 1.31 and 1.33 are in fact |0〉 and |1〉 states.

These calculations are showing that measuring a quantum system in state |ψ〉
in the σz basis has two possible outcomes, +1 with probability |α|2 and -1 with

probability |β |2. The state of the system after the measurement will be projected

to either |0〉 if +1 was measured and |1〉 if -1 was measured.

Measurement is only one example of interaction between a closed quantum

system and its environment. However, it has been shown that if a system of many

qubits is prepared in a highly entangled state, we can use this system to do uni-

versal quantum computation, by only performing measurements on these qubits

[5]. This paradigm of quantum computation is called measurement-based quantum

computation (MBQC).

This was a very short high level introduction to a few postulates of quantum

mechanics. For the remainder of this thesis we suppose that the reader is comfort-

able with postulates of quantum mechanics, especially properties and definitions
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of two level quantum systems (qubits).

1.2.3 Quantum Computation

First stated by Feynman in 1982 [15], the peculiar properties of quantum physics

can be exploited as a universal resource for computation. As we discussed briefly

earlier in this chapter, there are many different ways to exploit this potential power.

This diversity brings different paradigms of computation with it, some are close to

the classical notion of computation and the idea of universal Turing machine [39]

and some of them work in a totally different manner. For example the gate-model

quantum computation is a quantum mechanical generalization of the classical com-

puters we are working with 3.

The idea behind the gate-model computation is to have a universal set of op-

erations (gates). A set of gates operating on boolean data 4 is called functionally

complete (universal) if any possible logical truth table (logical operation) can be

expressed as a combination of these gates in a boolean expression. For example,

{AND,NOT} boolean operations form a universal set for classical computation,

meaning any other operation like OR, XOR, NAND, etc. can be built combin-

ing only AND and NOT gates. Thus the notion of universality is essential for a

computer in order to run any possible operation on the provided data. The same

logic applies to the gate model approach to quantum computation. A universal

set of quantum gates is needed in order to have a functionally complete quantum

computer.

As we mentioned earlier and similar to classical computers, the qubit is the

3As an example of a completely different approach to quantum computation we can name the
Adiabatic Quantum Computation or AQC in short [14]. This approach works on the basis that a
quantum system will stay in its lowest energy state if its Hamiltonian operator evolves very slowly.
It’s proved in [13] that any operation can be decomposed to the problem of finding the ground state
of a specific Hamiltonian starting from another Hamiltonian and evolving it slow enough in to be in
an adiabatic fashion. It’s easy to see that this approach is different from the gate model approach.
Instead of encoding an operation in a combination of a limited number of gate types, AQC encodes
a problem into the desired Hamiltonian of a quantum system. The system starts from a known and
prepared Hamiltonian and evolves slowly in time. The adiabatic theorem proves that if the system
was originally in its ground state then if the evolution was slow enough with a high probability it will
remain in it’s ground state all the way through the process and what we can measure at the end of the
process is nothing but the ground state of the desired Hamiltonian.

4or bits in the notation of classical computers.
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Table 1.1: Different single and two qubit quantum gates (unitary operators)
along with their matrix representation and their application on computa-
tional basis states |ψ〉= α|0〉+β |1〉.

Gate Matrix rep. Example of Application

Pauli X gate X =

(
0 1
1 0

)
X |ψ〉= α|1〉+β |0〉

Pauli Z gate Z =

(
1 0
0 −1

)
X |ψ〉= α|0〉−β |1〉

Phase shift gate Rθ =

(
1 0
0 eiθ

)
Rθ |ψ〉= α|0〉+βeiθ |1〉

Controlled-NOT gate CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 If the first qubit is in |1〉
it applies a pauli X to
the second qubit, other-
wise leaves it as it is. For
example: |01〉→ |01〉, but
|11〉 → |10〉.

unit of quantum data, which stores the information about the state of the two-

level quantum system (the qubit). Similar to the classical gate model approach,

we manipulate these qubits by successive application of different gates from our

universal set in order to conduct a certain complex operation. These operations

are called quantum algorithms. A quantum operation in general can be any unitary

operator acting on the Hilbert state of the quantum computer. Unlike classical

boolean operations, being unitary makes quantum operations reversible. Table 1.1

includes a few examples of quantum gates along with their matrix representations.

As an example of a quantum algorithm running on a universal gate-model

quantum computer we can point to Shor’s famous factoring algorithm [36]. Having

an ideal quantum computer with its universal set of gates working on sufficiently

many qubits without any noise, Shor’s factoring algorithm makes it possible to fac-

tor a large integer N in polynomial time O(log3(N)). One should note that this is

super-polynomially faster than the best classical factoring algorithm general num-

ber field sieve [30] 5. This quantum algorithm is efficient enough to break RSA

5The complexity of this algorithm is of order O{exp(c(log
1
3 (n))(loglog(n))

2
3 )}.
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cryptography systems. The security of RSA systems is defined based on infeasi-

bility of finding prime factors of large integer numbers using classical computers.

The record for the largest number factored using Shor’s algorithm on a quantum

device was set in 2012 for factoring 21 [27] 6.

1.2.4 Fault Tolerant Quantum Computation and Threshold Theorem

Although experimental realization of ideal quantum computers are possible in pro-

totype sizes, large scale quantum computation cannot happen free of noise. This

is exactly why fault tolerance is an important factor when it comes to scalable

quantum computers. The chance of destructive correlation with environment and

quantum decoherence7 increases with the size of the quantum system. So it’s al-

most inevitable to implement a large scale quantum computer with ideal gates,

measurements and interactions in general. Now the question is whether quantum

computers can still work with faulty operations?

Due to the threshold theorem, large scale quantum computation is possible even

with noisy gates and systems provided that the noise is below a certain threshold

[1].

Threshold theorem for quantum computation: A quantum circuit con-

taining p(n) gates may be simulated with probability of error at most ε using

O(poly(
logp(n)

ε
)p(n)) (1.34)

gates on hardware whose components fail with probability at most p, provided

p is below some constant threshold, p< pth, and given reasonable assumptions

about the noise in the underlying hardware.

Fault tolerant quantum computation is only possible if there is a quantum error

correction step in the computation process which repeatedly brings the faulty sys-

tem to the valid code space and does not allow the error to propagate throughout
6The largest number factored so far with a quantum computer is 143. But this was done using

the adiabatic quantum computation paradigm, not the Shor’s algorithm on a gate-model quantum
computer.

7for a detailed formulation of decoherence refer to section 1.3.3.
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the computation process. If the error is below threshold and is controlled in this

manner then the faulty quantum system can simulate an ideal quantum system even

when the number of qubits scale up. This is the significance of quantum error cor-

rection and the reason we are interested to study error correcting codes. Different

fault tolerant quantum computation schemes together with various error correcting

codes can demonstrate different fault tolerance thresholds. High threshold fault

tolerant quantum computation is possible using the proper error correcting codes

[33].

1.3 Error Correction
Quantum Error correction plays an important role in quantum information process-

ing and quantum computation. Exactly like its classical analogue, quantum error

correction is the concept of restoring the state of a quantum system after it’s sub-

jected to noise. A quantum system can easily be disturbed by its environment if not

protected. This will cause quantum decoherence which can be modeled as an error

channel affecting quantum bits (qubits) in the system. Quantum error correction

can be understood as a generalization of error correction for classical communica-

tion through noisy channels.

1.3.1 Classical Error Correction

The best way to approach quantum error correction is to start with the basics of

classical error correction. In information theory, a word or code-word is a repre-

sentation of a particular message which is supposed be processed, communicated,

stored or etc. The unit of information is often taken to be a bit and can be rep-

resented by a vector in Galois field F1
2 which is basically the field consisting of

vectors [0] and [1]. A unit of information is defined to be the ability of distin-

guishing two opposing binary situations, 0 or 1, Yes or No, True or False. A word

or message then can be represented as a series of zeros and ones carrying bits of

information of that particular message. So from now on, a word is going to be

a vector of length n in Fn
2, as an example m1 = 1101 is a message with 4 bits of

information.

Since in a real world realization of computers and communications systems,
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we always have noisy channels and faulty gates, any processing or communication

or etc happening to message m1 can change its content with a certain probabilistic

model.

m1 = 1101 Erroneous Procedure−−−−−−−−−−−→ E (m1) = 1001 (1.35)

As you can see in 1.35, the second bit in message m1 is flipped. There are

various error models and this was only a simple example, for now we can suppose

that the erroneous procedure is a noisy communication channel over which we

want to transmit message m1. A noisy communication can be modeled as an error

channel. An error channel affects each individual bit of information independently.

Bits can change, remain the same, or be erased with different probabilities. Figure

1.2 depicts a simple symmetric bit-flip channel.

Figure 1.2: Symmetric bit-flip error channel. A bit is independently changed
with probability p, or it keeps its original value with probability 1-p.

Now we use a simple error correction to protect our message against this or any

other one bit flip error like that through the noisy channel. The very summarized

version of the classical error correction idea is to add redundancy to the represen-

tation of a given word. As the simplest example, we use the 3-bit majority code.

The encoding En is relatively simple. Make 3 copies of each logical information

bit (adding redundancy), so instead of representing each logical bit of information

with 1 physical bit, we represent each logical bit of information with 3 physical

bits:
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Table 1.2: Encoding table for the 3-bit majority code.

Logical information Physical (redundant) representation
0 000
1 111

En(m1 = 1101) = 111111000111 = M1 (1.36)

M1 = 111111000111
E (.)−−→ E (M1) = 110111010011 = E (M1) (1.37)

De(E (M1))
Error Correction−−−−−−−−→ 110︸︷︷︸

1

111︸︷︷︸
1

010︸︷︷︸
0

011︸︷︷︸
1

= 1101 = m1 (1.38)

The decoding is as simple as a majority vote. Even if an error happens to

one of the physical bits, the remaining two are still representing what the initial

logical information was. So when we receive each 3 physical bits, count 0’s and

1’s and who ever has the majority has a higher probability to be the initial bit of

information. We should note error correction relies on the probabilistic nature of

error and hence the result of an error correction has a probability to be correct. Our

goal is to maximize this success probability. The following example can be really

helpful to understand the probabilistic behavior of error correction:

m0 = 1→M0 = En(m0) = 000 (1.39)

m1 = 1→M1 = En(m1) = 111 (1.40)

E1→ Two bit flip on first and second bits (1.41)

E2→ One bit flip error on third bit. (1.42)

E1(M0 = 000) = 110

E2(M1 = 111) = 110

}
Same Syndrome. (1.43)

These two messages E1(M0) and E2(M1) are decoded to 1 because of the ma-

jority vote decoding, which is only correct for the second case. If we assume that

each bit-flip error is an independent random event with probability pe, then the
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probability of error E1 is p2
e whereas it’s only pe for E2. So the error correction

tries to guess the most probable error and correct for it, this minimizes the error

correction failure probability. Thus this code is only able to correct up to one bit

flip error and it fails in the event of more than one bit error. Consequently, the

majority vote error correction will succeed with probability 1−3p2
e +2p3

e :

Pr{Success}= 1−Pr{Failure} (1.44)

= 1− (Pr{Only 2 erros}+Pr{Only 3 errors}) (1.45)

= 1− (

(
3
2

)
p2

e(1− pe)+

(
3
3

)
p3

e) (1.46)

= 1−3p2
e +2p3

e (1.47)

More sophisticated codes with more complex encoding and decoding schemes

have been developed for various error models, however, all classical error correct-

ing codes share the fundamental ideas of the 3-bit majority-vote code.

1.3.2 Linear Codes

Linear codes are the most famous and commonly used class of classical error cor-

recting codes because the mathematical formalism makes it easier to both construct

and analyze these codes. Formal definition of a linear error correcting code is as

follows:

Definition 1. A (n,k) linear code is a k-dimensional linear subspace C of n-

dimensional vector space Fn
q, where Fq is the finite filed with q elements. For

special case q = 2 this structure will be a binary linear code.

A vector in C is called a code-word. It’s easy to show that there are in general

qk code words in a linear code. Looking back at our notation in the introductory 3-

bit repetition code example, a (n,k) binary linear code is able to encode 2k different

messages by adding n− k redundant bits to the representation of each message

(code-word).

Since code C is a linear subspace of Fn
2 of rank k, it has a basis of rank k, which

means the whole code space C can be represented as span of k code-words. The
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code generator matrix Gk×n is the row concatenation of these basis code-words.

Encoding a k bit message is now as easy as matrix multiplication on the specified

finite field. 8

M1 = En(m1) = m1.G (1.48)

H.MT
1 = H.(m1.G)T = 0 (1.49)

For each linear code there exists an H(n−k)×n matrix whose kernel is C and

it’s used for error correction and decoding. This matrix is called the parity check

matrix. Since the code basis is the kernel of H, any code-word in C will be zero.

On the other hand, if H is multiplied by an erroneous message (a vector outside the

code space) the result will be non-zero which will be used as a syndrome to guess

which family of errors might have happened and to correct them. The following

are generator and parity check matrices for our previous 3-bit repetition code also

known as the (3,1) Hamming code:

G =
[
1 1 1

]
,H =

[
1 1 0

0 1 1

]
(1.50)

This code has two code-words c0 = [0] and c1 = [1]. It’s easy to verify the

properties we mentioned on this code:

c0.G = [0]
[
1 1 1

]
= [000] =C0 (1.51)

c1.G = [1]
[
1 1 1

]
= [111] =C1 (1.52)

H.CT
1 =

[
1 1 0

0 1 1

]
.

1

1

1

= 0 (1.53)

8The reader should note that since the codes are in general vector spaces defined on finite field
Fn

q, all encoding, decoding, syndrome detection and etc. algebraic operations are carried out on the
same finite field. So in the very special case of binary codes defined on Fn

2 all arithmetic operations
are modulo 2.
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we can also apply the parity check matrix to erroneous messages in order to

observe the syndromes:

M1 =
[
0 1 0

]
(1.54)

H.MT
1 =

[
1 1 0

0 1 1

]
.

0

1

0

= 1 6= 0 (1.55)

We now detected a possible one bit-flip error on message M1 and try to correct

it by mapping it to the closest valid code-word in the code-space. This kind of

decoding is called the nearest-neighbor decoding which in this case is as simple as

the majority vote among the 3 bits.

1.3.3 Quantum Error Model and Decoherence

Before we move on to quantum error correcting codes, first we have to devise

a model for quantum errors. Any interaction between a quantum system and its

environment can cause the state of the quantum system to change. The interaction

can change a quantum system to a classical state (Like a projective measurement

in computational basis 9), or it can just end up flipping a quabit or a relative phase

in the superposition. In order to model the quantum errors which are coming from

the interaction between the system and its environment, we look at these errors as

operators acting on the state of the system. So far we have been looking at quantum

mechanical systems from a vector space point of view. However, there are other

ways to represent a quantum mechanical system. The density operator or often

called the density matrix is another way of representing a quantum system which

is mathematically equivalent to the state vector in Hilbert space approach, and it’s

mostly used when studying systems interacting with their environment.

The density operator provides a convenient way for representing quantum sys-

tems whose states are not fully known. As an example, let’s assume that the only

information we have about a quantum system is that it is in one of the states |ψi〉
9which ruins the superposition property of the quantum state, we discussed this earlier in 1.2.2
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with a corresponding probability pi. This quantum system is a statistical mixture

of subsystems in different states |ψi〉. Each subsystem is in its own state but when

we study the union of these subsystems as a whole, the only thing we can say about

it, is the statistical distribution of the states among these different subsystems. So

when this system is observed the statistical nature of the mixture makes the out-

come probabilistic. This is why we assign a probability pi to each possible state

|ψi〉 in a mixture. The {pi, |ψi〉} is called an ensemble of pure states. Pure state, in

contrast to a mixed state, is a quantum state that can not be represented as a con-

vex combination (mixture) of other states. The density operator for the mentioned

system can be written as:

ρ ≡∑
i

pi|ψi〉〈ψi| (1.56)

Now let’s study the evolution of this ensemble due to a unitary operator U .10

If the system is in state ψ j with probability p j then after the unitary evolution it is

going to be in state Uψ j with probability p j. According to this and equation 1.56

we have:

ρ
U−→∑

i
piU |ψi〉〈ψi|U† =UρU† (1.57)

The notion of measurement can also be translated to the density operator lan-

guage. If we perform a measurement with projection operators Pm and the ensem-

ble is in state |ψi〉 then the probability of observing m is:

Pr(m|system in i’th state) = 〈ψi|P†
mPm|ψi〉= tr(P†

mPm|ψi〉〈ψi|) (1.58)

Now that we calculated the measurement probability for one possible state |ψi〉,
we can generalize it to the whole ensemble:

10Operator U is unitary if and only if U† =U−1.
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Pr(m) = ∑
i

piPr(m|system in i’th state) (1.59)

= ∑
i

pitr(P†
mPm|ψi〉〈ψi|) (1.60)

= tr(P†
mPmρ) (1.61)

Using what we had in section 1.2.2 on Born’s rule and the same logic we folllowed

here we can show that the density operator for the ensemble after this measurement

is:

ρm = ∑
i

pi
Pm|ψi〉〈ψi|P†

m

tr(P†
mPmρ)

(1.62)

=
PmρP†

m

tr(P†
mPmρ)

(1.63)

All postulates of quantum mechanics can be reformulated in density operator

language [28]. The density operator also provides an easy way of looking at sub-

systems in a composite quantum system. This is exactly what we are looking for

because quantum errors are result of the quantum system having correlation with

it’s environment and make a composite system with it. If we have two physical

systems A and B interacting with each other, then the density operator of the whole

composite system of the two ρAB can be reduced to the density operator of each

system just by partial trace over the other system, for example:

ρ
B = trA(ρ

AB) (1.64)

Now suppose we have a system of interest (for example our desired qubits)

which we call the quantum computer or QC in short and we represent it with den-

sity operator ρQC. This system is interacting with its environment with density

operator ρenv resulting in a total density operator like ρ = ρQC⊗ρenv11 . From our

11This is an important assumption that the composite system of the quantum computer and its
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reduced density matrix method we saw earlier, the final result E (ρ) of a unitary

evolution of the system interacting with the environment can be written as follows:

E (ρ) = trenv[U(ρQC⊗ρ
env)U†] (1.65)

Using the orthonormal basis |ei〉 for the state space of the environment and

supposing that environment has the density operator ρenv = |e0〉〈e0| initially, we

can turn the above equation in to a new representation called the operator-sum

representation:

E (ρ) = ∑
i
〈ei|U [ρ⊗|e0〉〈e0|]U†|ei〉 (1.66)

= ∑
i

EiρE†
i (1.67)

where Ei = 〈ei|U |e0〉 is called the Kraus operator acting on the quantum computer

state space. When the sum for E (ρ) contains more than one element it shows that

quantum computer system is subject to quantum decoherence because of its cor-

relation with its environment. Coherence in a quantum state is the ability to make

interference which is a direct result of the superposition property. The environment

noise can cause a quantum system to lose coherence and become a classical state

losing all its useful quantum properties for quantum computation. Decoherence

can be modeled as lose of information from the quantum computer to its environ-

ment. Now that we developed the mathematical machinery, we can start a counter

attack to preserve the coherence of a quantum state through the quantum computa-

tion process. This is exactly what we call the quantum error correction.

A comparison between classical error models and quantum error model can

now be helpful. Like classical communication channels, the effect of environmen-

tal noise on a quantum system can be modeled as an error channel with the initial

environment are in a product state as stated above. The correlation between system and environment
can be much more general and complex but it’s reasonable to assume to have the product state since it
shows up in many practical cases. The same logic and line of thought can be applied to more general
correlations but it’s out of the scope of this thesis. We encourage the reader to look at chapter 8 of
[28] for a detailed discussion of these situations.
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state (which carries information) as the input and the noisy transmitted version of

that as the output. In classical communication, while the information is transmit-

ted through the channel, each possible error operation can act on it with a certain

probability. Errors act on individual bits and the probability distribution of error on

different bits are independent yet identical. So each bit is going through the same

error channel but it ends up with a probabilistic outcome. Using this property we

can model a communication channel as a one-bit error channel. Depending on the

channel under study, the bit might remain correct with a probability and change

due to different errors (like a bit flip) with another probability. These probabilities

should add up to 1 since eventually one of these events should occur to each bit of

information. Figure 1.2 shows an example of a classical error channel called binary

symmetric channel. It’s called symmetric because the probability of a 0 changing

to 1 or a 1 changing to 0 is the same. We can use our operator-sum representation

to build a quantum bit flip error channel. According to equation 1.67 if:

E0 =
√

pI =
√

p

[
1 0

0 1

]
E1 =

√
1− pX =

√
1− p

[
0 1

1 0

]
(1.68)

then

ρ → E (ρ) = pρ +(1− p)XρX (1.69)

will be the operator sum representation of a quantum bit flip channel. A qubit is

preserved in its state with probability p or its |0〉 and |1〉 states are flipped with

probability 1− p. Unlike classical error models that only includes bit flips, as seen

in equation 1.67 quantum noise operations can be more general than just a bit flip.

However, it’s shown that an arbitrary independent error on a single qubit can be

written as a linear combination of pauli operators σx (Bit flip), σz (Phase flip),

σy (both, σy = σxσz) and the identity operator I [28]. This reduction makes error

analysis and study of quantum error correction codes easier [8, 28]. Using example

1.15, if |ψ〉= α|0〉+β |1〉 is a general quantum state, the following is an example

of different quantum errors acting on it:
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σz|ψ〉= α|0〉−β |1〉 (Phase Flip) (1.70)

σx|ψ〉= α|1〉+β |0〉 (Bit Flip) (1.71)

σy|ψ〉= iσxσz|ψ〉= α|1〉−β |0〉 (Both errors) (1.72)

As a general purpose example, we use the density operator formalism to model

depolarizing quantum error channel. If each of the bit flip, phase flip, σy has the

occurrence probabilities p/3 and with probability 1− p the state remains with no

error (identity operator). If a quantum system is initially in a mixed state with

density matrix ρ then the following shows its evolution due to this example of a

quantum error channel:

ρ → E (ρ) = (1− p)ρ︸ ︷︷ ︸
No error

+
p
3

σxρσx︸ ︷︷ ︸
Bit Flip

+
p
3

σzρσz︸ ︷︷ ︸
Phase Flip

+
p
3

σyρσy︸ ︷︷ ︸
Both Errors

(1.73)

To conclude this part of the introduction on quantum error model, we want

to discuss the relation between quantum noise and time evolution of a quantum

system and Schrodinger equation. In order to do so, we use a pedagogical example

of a quantum system which its time evolution will give us the error model for a

depolarizing channel.

Suppose we have a 1 qubit quantum computer system ρQC which is interacting

with its environment ρenv forming the total density operator ρ . Using the following

identity:

I
2
=

ρ +XρX +Y ρY +ZρZ
4

(1.74)

we can think of the depolarizing channel acting on the quantum computer single

qubit density matrix ρQC in a way that it is either untouched with probability 1− p

or it’s replaced with a completely mixed state I/2 with probability p:
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E (ρQC) =
pI
2
+(1− p)ρQC (1.75)

in order to realize this as the time evolution of the quantum computer and its

environment, we take the environment to be a 2 qubit system and the following

Hamiltonian between the total 3 qubit, computer and environment systems. The

first and second qubits are the environment and the third qubit is the quantum

computer system:

H = J(t)|1〉〈1|(−→S 2.
−→
S 3) (1.76)

where J(t)(
−→
S 2.
−→
S 3) =

J(t)
4 (X1X2+Y2Y3+Z2Z3) is the Heisenberg Hamiltonian be-

tween the second qubit in the environment and the third qubit which is the quantum

computer system. It’s shown that the time evolution of Heisenberg Hamiltonian for

a time of π will give us the unitary evolution of a swap e
−iπ
−→
S 2 .
−→
S 3

4 between the two

qubits 2 and 3. Thus the time evolution of the whole system described in Hamil-

tonian 1.76 will give us a controlled-swap operation between 2nd and 3rd qubits,

controlled by the state of the first qubit.

Now let’s suppose the qubit of the quantum computer system, qubit number

3, is initially in an arbitrary mixture ρQC and we initialize the two qubits of the

environment, qubit 1 and qubit 2, in the following mixture (1− p)|0〉〈0|+ p|1〉〈1|
and I/2 respectively. Now if this system evolves according to the Hamiltonian

explained above, the first qubit in the environment will be in state |0〉 with proba-

bility (1− p) which leaves the ρQC untouched, or it is in state |1〉 with probability

p which swaps the state of the quantum computer system with mixture I/2. Using

the identity we saw earlier for I/2 we see that this is exactly like a depolarizing

channel acting on our 1 qubit quantum computer system:

E (ρQC) = (1− p)ρ +
p
3
(XρX +Y ρY +ZρZ) (1.77)

This shows how the time evolution of a system and its environment can cause an
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error model similar to depolarizing channel on the system in reality as we mathe-

matically modeled earlier. Similar examples can be used to show how a physical

quantum system evolving in time is exposed to errors which are modeled using the

mathematical machinery of error channels we discussed in this part. Now that we

have a good understanding of these error models, we can focus on preserving our

system from these errors using the error correction schemes.

1.3.4 Quantum Error Correction

It’s intuitive to consider the same ideas we used for classical error correction to pro-

tect quantum states against quantum noise, but as we discussed in 1.2.2, quantum

mechanics brings odd properties which makes information processing different.

For example, if we want to use the 3-bit repetition code idea to build a quantum

code we have to note the following issues:

No Cloning We can not copy Quantum states, i.e. starting from general state

|ψ〉= α|0〉+β |1〉 we can not make |ψ〉⊗3 = |ψ〉|ψ〉|ψ〉.

Measurement destroys quantum information As we discussed in 1.2.2, mea-

suring the quantum state |ψ〉 to get information about the error, will kill

the quantum state itself.

Different errors unlike classical information processing where all errors can be

expressed as bit-flips, A continuum of quantum errors can happen to a quan-

tum state.

We studied the last item earlier in the quantum error model section. Now that

we pointed out the differences between classical and quantum error correction and

defined quantum error channel we are ready to build our first simple quantum error

correcting code, the 3-qubit bit flip code, which is a generalization of the 3-bit

repetition code considering the differences mentioned here.

1.3.5 3-qubit Bit-flip Code

This code only concentrates on bit-flip (σx) errors, so the error channel is:
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ρ → E (ρ) = p0ρ +(1− p0)σxρσx︸ ︷︷ ︸
Bit Flip

(1.78)

We use the same idea of the 3-bit repetition code we studied earlier. The logical

|0〉 and |1〉 states will be |000〉 and |111〉 respectively. For a general state |ψ〉 =
α|0〉+β |1〉, we have:

|0〉 → |0〉L = |000〉 (1.79)

|1〉 → |1〉L = |111〉 (1.80)

|ψ〉 → |ψ〉L = α|0〉L +β |1〉L = α|000〉+β |111〉 (1.81)

Now according to our bit flip channel definition in 1.78 a bit-flip error can

happen on any of the three qubits involved in the code, so one of the following four

possible scenarios might happen:

|ψ〉L
I−→ α|000〉+β |111〉 (1.82)

|ψ〉L
σx1−−→ α|100〉+β |011〉 (1.83)

|ψ〉L
σx2−−→ α|010〉+β |101〉 (1.84)

|ψ〉L
σx3−−→ α|001〉+β |110〉 (1.85)

(1.86)

In this context, the underscore indexes of each Pauli operator points to the qubit

that it’s acting on. So far we have managed to decompose all different quantum

errors to a limited set of Pauli operators, and we also managed to make a 3-qubit

repetition encoding. But what happens when we want to decode and error correct?

we know that we can not measure the quantum state. If we measure the state it will

kill the quantum superposition and won’t even give us much information about

the original state since it only collapses to one of the eigenstates. So instead of

measuring the state we do what we did for linear classical codes. We use the idea

of parity check matrix H and apply another operator which acts trivially on the
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code space.

Since the |ψ〉L state is written in the computation basis, we try the σz operator.

Knowing the fact that:

σz|0〉=+1|0〉 (1.87)

σz|1〉=−1|1〉 (1.88)

We put an even number of σzi operators acting on different qubits and apply

them to the general state, for example:

σz1σz2 |ψ〉L = σz1σz2(α|000〉+β |111〉) (1.89)

= σz1σz2α|000〉+σz1σz2β |111〉 (1.90)

= α|000〉+(−1)2
β |111〉 (1.91)

= α|000〉+β |111〉 (1.92)

= |ψ〉L (1.93)

As far as the 3-qubit code is concerned we have found an operator which acts

almost like the parity check matrix in the classical case. So now let’s see the appli-

cation of this operator on an erroneous state E1|ψ〉= σx1 |ψ〉= α|100〉+β |011〉:

(σz1σz2)E1|ψ〉= σz1σz2σx1 |ψ〉 (1.94)

= σz1σx1σz2 |ψ〉 (1.95)

= (−1)σx1σz1σz2 |ψ〉 (1.96)

=−σx1 |ψ〉 (1.97)

=−E1|ψ〉 (1.98)

The second line holds since two operators on two different qubits are two operators

on two disjoint Hilbert spaces and thus they commute. The third line holds since

different Pauli operators (σx and σz) acting on one qubit anticommute. This relation

suggests that the erroneous state E1|ψ〉L is an eigenstate of the (σz1σz2) operator

with eigenvalue -1. Before we also saw that this operator acts trivially on the code

space i.e., any logical state |ψ〉L is a +1 eigenstate of this operator. Not all possible
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one bit flip error anticommute with this operator, though. In order to cover all

possible bit-flip errors we need to have a set of such operators. The set

{σz1σz2I3, I1σz2σz3} (1.99)

is the set of operators we are looking for. It’s easy to see that any one bit flip error

will anticommute with at least one of the operators in this set. The operators in the

set commute with each other and act trivially on the code space. The decoding is

as simple as applying these two operators to a possibly faulty state and measuring

the results. These two operators are basically acting as parity check row vectors in

the parity check matrix (look at example 1.50).

Now we have made our first simple quantum code to correct for one bit flip

error. The problem with this simple code is that it only corrects one bit-flip error.

However, as we discussed earlier, quantum errors are much more general than this.

We reduced the individual qubit errors to bit-flip, phase-flip and both. The nice

thing about these set of errors is that although they are fundamentally different but

they can be corrected with the same logic. This actually motivates how we want to

protect our state against phase flips using our 3 bit repetition idea again.

1.3.6 3-qubit Phase-flip Code

The operator for a single phase flip is σz Pauli operator so the error channel model

looks like the following:

ρ → E (ρ) = p0ρ +(1− p0) σzρσz︸ ︷︷ ︸
Phase Flip

(1.100)

Now we want to use the 3-qubit repetition idea to encode a general qubit state

|ψ〉=α|0〉+ |1〉 in 3 physical qubits so that it’s protected against a single phase flip

operation. The analogy between the classical 3 bit repetition and quantum 3 qubit

repetition code was simple because of the shared idea of a bit flip. but we know

that a σz acting on computational bases changes only the phase which in fact what

motivates the mind. So in order to make the analogy it’s good to find a new basis in

which the σz operator can flip states (like what σx does to the computational basis).

To acheive this let’s look at the X basis and the eigen basis of σx operator. From
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equation 1.5 we can write this basis as follows. Without loss of generality we call

these states |+〉 and |−〉:

|+〉= ψx+ =
1√
2
(|0〉+ |1〉) (1.101)

|−〉= ψx− =
1√
2
(|0〉− |1〉) (1.102)

Now let’s see what the phase flip operator does to these eigen basis:

σz|+〉=
1√
2
(σz|0〉+σz|1〉)

=
1√
2
(|0〉− |1〉) = |−〉 (1.103)

σz|−〉= |+〉 (1.104)

The second line holds because |0〉 and |1〉 states are +1 and -1 eigenstates of

the σz operator respectively. Now we see that if we prepare our qubits in the eigen-

basis of the σx operator. the phase flip operator will act like a bit flip operator

changing |+〉 to |−〉 and |−〉 to |+〉. The rest of the encoding decoding procedure

is now exactly identical to that of the 3-qubit bit flip code. We start with the log-

ical information |ψ〉L = α|+〉+ betta|−〉 and encode it in 3 copies of the logical

eigenbasis:

|+〉 → |+〉L = |+++〉 (1.105)

|−〉 → |−〉L = |−−−〉 (1.106)

|ψ〉 → |ψ〉L = α|+〉L +β |−〉L = α|+++〉+β |−−−〉 (1.107)

Since the rest of the procedure is identical we only show one example of how

the phase flip error act on this code:
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|ψ〉L
I−→ α|+++〉+β |−−−〉 (1.108)

|ψ〉L
σx2−−→ α|+−+〉+β |−+−〉 (1.109)

A majority vote decoding can then be used to decode the faulty state back into

one of the two logical states |−〉L or |+〉L. Exactly similar to the 3-qubit bit flip

code we can now have a series of check operators to give us error syndromes. error

syndrome give us information about the possible error occurred on the state without

actually disturbing the quantum state itself. Since we are working in the σx basis,

use this pauli operator as a parity check syndrome. Similar to 3-qubit bit flip code

let’s look at the implementation of even number of X pauli operators like σx1σx2

on the logical states:

σx1σx2 |ψ〉L = σx1σx2(α|+++〉+β |−−−〉) (1.110)

= σx1σx2α|+++〉+σx1σx2β |−−−〉 (1.111)

= α|+++〉+(−1)2
β |−−−〉 (1.112)

= α|+++〉+β |−−−〉 (1.113)

= |ψ〉L (1.114)

Now let’s see the application of this operator on an erroneous state E1|ψ〉 =
σz1 |ψ〉= α|−++〉+β |+−−〉:

(σx1σx2)E1|ψ〉= σx1σx2σz1 |ψ〉 (1.115)

= σx1σz1σx2 |ψ〉 (1.116)

= (−1)σz1σx1σx2 |ψ〉 (1.117)

=−σz1 |ψ〉 (1.118)

=−E1|ψ〉 (1.119)

The second line holds since two operators on two different qubits are two operators

on two disjoint Hilbert spaces and thus they commute. The third line holds since
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different Pauli operators (σx and σz) acting on one qubit anticommute. This relation

suggests that the erroneous state E1|ψ〉L is an eigenstate of the (σx1σx2) operator

with eigenvalue -1. Before we also saw that this operator acts trivially on the code

space i.e., any logical state |ψ〉L is a +1 eigenstate of this operator. This is exactly

what we had earlier for the bit flip channel. So we can construct a set of these

check operators to cover all possible phase flip positions on 3 qubits. The resulting

set is similar to that of 1.99 but with the exception that here we used σx operator in

our check syndromes.

{σx1σx2I3, I1σx2σx3} (1.120)

So far we managed to design two separate yet similar codes to correct either for

one bit flip or one phase flip error on a qubit state. However, as mentioned earlier

these errors can happen at the same time on a qubit state. So a good code should be

able to correct for all these types of errors at simultaneously. Although we need a

more complex code to achieve this, it hav been shown that the same logic for phase

flip and bit flip code can be concatenated to make the 9-qubit Shor code [8, 28],

which can correct up to one bit flip and one phase flip error simultaneously.

1.3.7 9-qubit Shor Code

Let’s take a look at the depolarizing channel as a reasonable error model where all

different single errors are possible:

ρ → E (ρ) = (1− p)ρ︸ ︷︷ ︸
No error

+
p
3

σxρσx︸ ︷︷ ︸
Bit Flip

+
p
3

σzρσz︸ ︷︷ ︸
Phase Flip

+
p
3

σyρσy︸ ︷︷ ︸
Both Errors

(1.121)

The concatenation of idea of the 9-qubit shor code to protect against both phase

flip and bit flip errors is simple. Let’s start with the 3-qubit phase flip code and it’s

encoding to logical states:
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|+〉 → |+〉L = |+++〉 (1.122)

|−〉 → |−〉L = |−−−〉 (1.123)

|ψ〉 → |ψ〉L = α|+〉L +β |−〉L = α|+++〉+β |−−−〉 (1.124)

This encoding protects against one phase flip on any of the 3 qubits involved

but no protection for bit flip errors. Now let’s write this logical basis in the compu-

tational basis:

|+〉L = |+++〉= |0〉+ |1〉√
2
⊗ |0〉+ |1〉√

2
⊗ |0〉+ |1〉√

2
(1.125)

|−〉L = |−−−〉= |0〉− |1〉√
2︸ ︷︷ ︸

Phase qubit 1

⊗ |0〉− |1〉√
2︸ ︷︷ ︸

Phase qubit 2

⊗ |0〉− |1〉√
2︸ ︷︷ ︸

Phase qubit 3

(1.126)

Now that we have the logical states in computational basis, let’s protect each

of the 3 qubits involved with a 3-qubit bit flip repetition code:

|0〉+ |1〉√
2︸ ︷︷ ︸

Phase qubit i

=
|000〉+ |111〉√

2
(1.127)

If we repeat this for all 3 phase protected qubits then we will end up with the

following 9-qubit logical state:

|0〉Shor =
1

2
√

2
(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉) (1.128)

|1〉Shor =
1

2
√

2
(|000〉− |111〉)︸ ︷︷ ︸

qubits 1 to 3

⊗(|000〉− |111〉)︸ ︷︷ ︸
qubits 4 to 6

⊗(|000〉− |111〉)︸ ︷︷ ︸
qubits 7 to 9

(1.129)

Now that we have the logical states the encoding is simple. A general 1 qubit

state |ψ〉 = α|0〉+β |1〉 can be encoded to these logical states |ψ〉L = α|0〉Shor +
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β |1〉Shor. The error correction and decoding is also similar to the 3-qubit phase flip

and bit flip codes. We have to follow the same idea of check operators to detect

and locate errors (either phase or bit flip errors) on these 9 physical qubits. It’s

important to note that these 9 physical qubits are used to protect only 1 logical qubit

state against all single quantum errors. Equation 1.129 shows that consecutive 3

qubit groups (qubit 1 to 3 , 4 to 6, and 7 to 9) each represent one bit flip repetition

code. So the check operators for bit flip error syndromes should be extended on the

physical qubits of these groups. In a simple analogy with the 3-qubit bit flip check

operators we had earlier in equation 1.99 we can devise the bit flip check operators

for these 9 qubit code:

phase qubit 1 :
Z1 Z2 I3 I4 I5 I6 I7 I8 I9

I1 Z2 Z3 I4 I5 I6 I7 I8 I9

phase qubit 2 :
I1 I2 I3 Z4 Z5 I6 I7 I8 I9

I1 I2 I3 I4 Z5 Z6 I7 I8 I9

phase qubit 3 :
I1 I2 I3 I4 I5 I6 Z7 Z8 I9

I1 I2 I3 I4 I5 I6 I7 Z8 Z9
(1.130)

The same logic can be used to derive the phase flip check operators (error

syndrome operators) but with a difference. Since the phase flip code was the first

layer of oue two layer concatanated encdoing, as stated earlier now groups of three

qubits (1,2,3), (4,5,6) and (7,8,9) represents 3 phase flip repetition qubits. So using

equation 1.131 we can now derive the 9 qubit phase flip check operators:

{σx1σx2σx3︸ ︷︷ ︸
Phase qubit 1

σx4σx5σx6︸ ︷︷ ︸
Phase qubit 2

I7 I8 I9︸ ︷︷ ︸
Phase qubit 3

, I1 I2 I3︸ ︷︷ ︸
phase qubit 1

σx4σx5σx6︸ ︷︷ ︸
phase qubit 2

σx7σx8σx9}︸ ︷︷ ︸
phase qubit 3

(1.131)

We can summarize all these check operators in a big matrix of pauli operators:
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Z1 Z2 I3

I1 Z2 Z3
I I

I
Z4 Z5 I3

I1 Z5 Z6
I

I I
Z7 Z8 I3

I1 Z8 Z9

X1 X2 X3 X4 X5 X6 I7 I8 I9

I1 I2 I3 X4 X5 X6 X7 X8 X9


(1.132)

Now the error correction and decoding is simple. we repeat what we did for

the 3-qubit bit flip and phase flip codes. First we apply all these check operators to

the physical qubits. if the logical state of these 9 physical qubits is a +1 eigenvalue

of all these 8 check operators, it means that there is no error that we can correct

for and the state is one of the logical possible |0〉Shor or |1〉Shor states. Otherwise,

if any of these operators syndrome is -1 instead of a +1 then we detect and locate

the error exactly like how we did this for the repetition codes.

There a couple of important final remarks on what we saw about the 9-qubit

Shor code. First of all, this code can only encode 1 qubit state into a group of

physical qubits. So one actually needs 9 qubits in order to protect the state of 1

qubit carrying quantum information. Second, the 9-quibt Shor code is only able to

correct for single qubit errors and it fails on the event of two simultaneous errors

or more. So we need more sophisticated codes in order to correct for more number

of errors and also maintain the redundancy in a reasonable level.

Third point is that this code is able to correct for both bit flip and phase flip

errors by using two different codes concatenated together. As you can see from the

table of check operators, we can perfectly divide these operators to two sets of X-

check operators and Z-check operators for phase flip and bit flip codes respectively.

The idea of using two codes in parallel one for phase flip and one for bit flip errors is

an important and practical trick which made us able to build quantum codes which

are actually able to correct for all possible quantum error types in our model.

The final remark is the relation between these quantum codes and classical
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codes. The idea of check operators and error syndromes is very similar and ana-

logue to parity check matrices and syndromes in linear classical codes we saw

earlier. Although these quantum codes we studied so far were simple generaliza-

tion for pedagogical purposes actual complex and applied quantum codes are also

made of classical codes. As an example Calderbank, Shor and Stean showed a sys-

tematic way of building a family of quantum error correcting codes directly from

classical error correcting codes [28] called CSS codes. Similar to what we pointed

here CSS codes also consist of two classical codes in parallel to make a quantum

error correction code robust against both bit flip and phase flip errors.

1.3.8 CSS Codes

The analogy we build up between quantum and classical error correction by various

simple examples gives rise to an important family of quantum codes generated out

of classical linear codes we studied earlier. CSS codes named by initials of its

inventors are the structured realization of quantum codes based on classical codes.

These codes are a subclass of quantum stabilizer codes which we’ll study later in

this chapter. Their structured construction makes it easier to look for a quantum

code with desired properties.

The CSS code is built of two [n,k1] and [n,k2] linear classical codes C1 and C2

respectively with the condition that C2 ⊂ C1 and C1 and C⊥1 can both correct up to

t errors. The resulting code will be a [n,k2− k1] quantum code which can correct

up to t qubit errors. Now we have to focus on the logical states and their encoding

for a CSS(C1,C2) quantum code. If x is a codeword in C1 the following will define

our logical states12:

|x+C2〉=
1√
|C2|

∑
y∈C2

|x+ y〉 (1.133)

This code will encode k1− k2 qubits in n qubits, so it has 2k1−k2 such logical

encoded states. As we mentioned earlier this code is able to correct for both bit

flip and phase flip errors. We choose E1 and E2 to be binary vectors of size n and

12All the arithmetic operations between classical codewords x and y are binary and done in Z2.
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their i’th element is 1 if there is a bit flip happening on i’th qubit for E1 and a

phase flip on i’th qubit for E2 and 0 otherwise. In this way we have two vectors

that can model the random errors happening on the n physical qubits, and then the

following will be an erroneous state.

E1E2|CSS〉= 1√
|C2|

∑
y∈C2

(−1)(x+y).E2 |x+ y+E1〉 (1.134)

where E1 and E2 are the corresponding quantum error operators acting on a logical

CSS code state to cause bit flip and phase flip errors located at the support of E1

and E2. Exactly similar to classical error correction we use the parity check matrix

to detect bit flip or phase flip errors. Let’s try the C1 code parity check matrix H1

to detect bit flip errors. Since we can not apply that directly to the physical qubits

we suppose we have enough ancilla qubits prepared in |0〉 and in a product state

with our actual data storing qubits. Since the parity check matrix acts trivially on

the code space we’ll have the following result using it:

|x+ y+E1〉|0〉
H1−→ |x+ y+E1〉|H1(x+ y+E1)〉= |x+ y+E1〉|H1E1〉 (1.135)

H1(E1E2|CSS〉) |0〉︸︷︷︸
Ancilla

=
1√
|C2|

∑
y∈C2

(−1)(x+y).E2 |x+ y+E1〉|H1E1〉 (1.136)

= (E1E2|CSS〉)|H1E1〉 (1.137)

The last line shows that application of the parity check matrix will keep the

data qubits in the state they were before and gives us a syndrome of bit flip errors

happened on the ancilla qubit. We can now measure the ancilla qubit without

disturbing the quantum system and get information about the bit flip errors. After

we learned which qubits had been exposed to bit flip errors we simply apply a NOT

gate to correct for the bit flip error happened on them. This will bring the state to a

CSS code state only with phase flip errors:
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E2|CSS〉= 1√
|C2|

∑
y∈C2

(−1)(x+y).E2 |x+ y〉 (1.138)

The same logic with a slightly different implementation uses the C2 code parity

check matrix H2 to get information about phase flip errors and then we correct for

those errors in the same fashion to bring the erroneous codeword back to its code

space.

A simple example of a CSS code is the [7,1] Steane code whcih uses the linear

classical [7,4,3] Hamming code to generate a [7,4] code as C1 and a [7,3] code as

C2. This CSS code encodes 1 logical qubit in 7 physical qubits and it can correct

1 phase flip and bit flip error. One can compare this new quantum code with the

9-qubit Shor code which used 9 qubits to achieve the same goal, and understand

how this new construction can help design better codes. The [7,1] Steane code can

protect 1 logical qubit state so it only has two logical codewords |0〉L and |1〉L:

|0〉L =
1√
8
(|0000000〉+ |1010101〉+ |0110011〉+ |1100110〉

+ |0001111〉+ |1011010〉+ |0111100〉+ |1101001〉) (1.139)

|1〉L =
1√
8
(|1111111〉+ |0101010〉+ |1001100〉+ |0011001〉

+ |1110000〉+ |0100101〉+ |1000011〉+ |0010110〉) (1.140)

This gave us an understanding of how our knowledge of classical error correct-

ing codes can be used to build good quantum error correcting codes. We also learn

why we always need two codes running in parallel to be able to correct for both

quantum bit flip and phase flip errors.

The heart of error detection procedure in a classical linear code is its parity

check matrix H. During the last few sections on error correction we have seen how

intuitively this useful notion is generalized to quantum error correcting codes as

check operators. These check operators work very similar to parity check matrices

to give us syndromes about errors without disturbing the state carrying information.
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In the case of CSS codes is easier to establish this relation since these codes are

directly made of classical linear codes with their parity check matrices serving as

check operators. Now let’s have a more close look at check operators for [7,1]

Steane code:



I1 I2 I3 X4 X5 X6 X7

I1 X2 X3 I4 I5 X6 X7

X1 I2 X3 I4 X5 I6 X7

I

I
I1 I2 I3 Z4 Z5 Z6 Z7

I1 Z2 Z3 I4 I5 Z6 Z7

Z1 I2 Z3 I4 Z5 I6 Z7


(1.141)

As we discussed earlier, the two linear codes work at the same time to provide

resilience against both bit flip and phase flip errors. The check operators due to

each linear code looks similar except the that one is a product of Pauli X operators

to detect phase flips and the other is a product of Z operators to detect bit flips. This

similarity between the two codes suggests a new regrouping and representation

of these check operators as it can be seen in 1.142. In general, for a CSS code

CSS(C1,C2) with H1 and H2 as the parity check matrices for linear codes C1 and

C2 respectively, we can write the quantum error correcting check operator matrix in

the following format by replacing 1’s in the first parity check matrix by X operators

and 1’s in the second parity check matrix by Z operators.

[
HX

1 I

I HZ
2

]
(1.142)

We can test the application of these check operators on the logical states of the

Steane code, let’s pick the first check operator and apply it to the |0〉L. First we

investigate the application of this operator on each term in the superposition:
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term 1: X4X5X6X7|0000000〉= |0001111〉 → term 5

term 2: X4X5X6X7|1010101〉= |1011010〉 → term 6

term 3: X4X5X6X7|0110011〉= |0111100〉 → term 7

term 4: X4X5X6X7|1100110〉= |1101001〉 → term 8

term 5: X4X5X6X7|0001111〉= |0000000〉 → term 1

term 6: X4X5X6X7|1011010〉= |1010101〉 → term 2

term 7: X4X5X6X7|0111100〉= |0110011〉 → term 3

term 8: X4X5X6X7|1101001〉= |1100110〉 → term 4 (1.143)

→ X4X5X6X7|0〉L = |0〉L (1.144)

This shows how the check operators act like identity operator on logical encoded

states. In other words, the encoded states are the +1 eigenstates of check operators.

These check operators form a group called stabilizer group. Each of these operators

are called one stabilizer of the code because they stabilize the encoded states to

itself, while any other state out of the encoded space is a -1 eigenstate of at least

one of these stabilizers. This group theoretic understanding of check operators

gave birth to an important family of error correcting codes called stabilizers codes

which we will discuss in more detail in the remainder of this chapter. Before that,

in the next short subsection we review a list of common steps shared between all

different quantum error correcting codes, specially to address what the similarities

and the differences are between classical and quantum error correction.

1.3.9 General QEC Picture and Concatenated Codes

Although various families of quantum error correcting codes have been developed

for various error models and properties, There are certain fundamental items which

are shared between all quantum error correcting schemes. The following list can

be both a take away summery of what we mentioned about quantum error correc-

tion and it also serves as a list of common facts shared among all quantum error

correcting codes:
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1. The unit of quantum information is the state of a qubit, which is a vector in

a two dimensional vector space (Hilbert space) in C2.

2. Quantum noise acts like error operators on a qubit states. These errors can

be discretized into bit flip and phase flip errors acting on qubits.

3. In order to protect the qubits against these quantum errors we need quantum

error correction. We can not make copies of quantum information but we can

make copies of the known eigenbasis in which these states are represented.

to encode a quantum state one only needs to represent the state in the logical

basis instead of the actual physical basis.

4. Using this we encode the state of a set of qubits in the states of a bigger set

of physical qubits. the information we want to protect is called the logical

state or encoded state and the set of redundant qubits we use to encode this

information to is called the physical qubits.

5. Classical error correcting codes with special conditions can be used to build

quantum error correcting codes. CSS codes are an example of an easy struc-

ture that can be used to make quantum codes out of existing classical codes.

These codes consists of two separate error correcting codes, one for bit flips

and one for phase flip errors.

6. Exactly like parity check matrix in classical linear codes, quantum codes

also have a set of check operators. these operators act trivially on the states

in the code space but they leave error syndrome in ancilla qubits when they

hit the error operators.

7. The error syndromes on ancilla qubits can be measured to detect and locate

the errors without disturbing the encoded quantum information.

8. After detecting the erroneous physical qubits we apply the proper operation

to the erroneous state to recover it and undo the effect of errors bringing it

back to the code space.

9. Exactly similar to classical codes, each quantum code has its own properties,

the number of logical qubit states that it can encode, the number of physical
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qubits that it needs, the number of phase flip and bit flip errors that it can

correct and ...

Figure 1.3: A schamatic representation of a two level concatanated codes.
The logical qubits are encoded into a seris of qubits in the first layer.
Then a second code ise used to encode each individual qubit in the first
layer to even more physical qubits in the second layer. [28]

Now that we have a general understanding of quantum error correction and

its relation with classical error correcting codes, we can discuss the idea of con-

catenated coding and explain the threshold theorem in more depth. As the name

suggests the concatanated coding is the idea of using error correcting codes repeat-

edly. As we mentioned in previous sections we can encode quantum information

in the state of physical qubits by using a quantum code. However, each of those

physical qubits used in the first encoding carries a certain quantum state and noth-

ing stops us to use another quantum code to encode those states in a bigger group of

physical qubits. Figure 1.3 illustrates a two level concatenation of quantum codes

in general. This repetition can go on and we can always add another layer of en-

coding. any quantum code can correct up to a certain number of quantum errors.
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The 9 qubit and the 7 qubit codes are both able to only correct up to a single ar-

bitrary error, which means they fail to protect the state if more than two or more

errors occur on the physical qubits. We actually calculated the success probability

of the 3 qubit code which was 1−3p2
e +2p3

e where pe is the probability of a single

error on the physical qubit. Thus by one encoding layer we were able to reduce the

error probability from pe to less than 3p2
e . With the same logic we can show that

each quantum code based on its detection/correction capacity can reduce the initial

individual error probability pe to at most cpt
e where c is a constant and t depends

on the code distance. Without loss of generality let’s work with a code which can

correct up to one error and add another layer of error correction. This time the

failure probability is reduced to at most c(cp2
e)

2. This concatenated repetition can

go on and on up to an arbitrary k number of layers. In that case, the final failure

probability is reduced to at most (cpe)
2k

c . Now if we want this concatenated code to

have a certain accuracy ε , the failure probability should be less than ε:

(cpe)
2k

c
< ε (1.145)

If we choose k large enough this inequality can hold provided that cpe < 1 or

pe <
1
c . This argument shows that arbitrary accuracy on a quantum memory is

possible by using enough layers of concatenation provided that the individual error

probability is lower than a certain threshold pth =
1
c

. A similar argument can be

used to generalize this result to the case when we want to have faulty gates and do

quantum computation. Figure 1.4 illustrates how adding more layers of concate-

nation can help decreasing the failure error provided that the initial error value is

below a threshold. This is a brief explanation of how threshold theorem is proved

and helps us to have fault tolerant quantum computation using concatenation of

error correcting schemes.

This summery is a good motivation to start our next section on Stabilizer codes.

One of the significance of stabilizer codes is the very well structured formalism to

represent a code. All the vague analogies we made between classical and quantum

codes are rigorously formalized in the stabilizer formalism.
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Figure 1.4: The residual error after n’th encoding layer versus the initial error
for a concatenated 3qubit bit flip code. Below a certain threshold as we
increase the encoding layers the residual error drops down to the desired
value.

1.3.10 Stabilizer Codes

Stabilizer codes introduced by Daniel Gottesman [18], are a family of quantum

codes with special group theoretical structures. This structure makes them eas-

ier to find and to analyze. Stabilizer formalism is the powerful group theoretical

framework in which these codes are discussed.

Let’s assume a subspace C and error operators Ei in a way that an erroneous

state E1|ψ〉 is orthogonal to |ψ〉 for any state |ψ〉 in C . A measurement can be

conducted to show whether the system is in state |ψ〉 or E1|ψ〉 to detect if error E1

has happened. In order to distinguish errors we can generalize this condition to any

two errors on an arbitrary state on the code space:

〈φ |E1E2|ψ〉= 0 (1.146)
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If this relation holds for any two states in subspace C and any two possible

single qubit errors, then C is a valid quantum error correcting code. Now one way

to build such a subspace C with these properties is to fill C with +1 eigenstates of

an operator G such that any error pair will anticommute with G:

〈φ |E1E2|ψ〉= 〈φ |E1E2G|ψ〉 (1.147)

=−〈φ |GE1E2|ψ〉=−〈φ |E1E2|ψ〉= 0 (1.148)

The second line holds because G and E1E2 anticommute. Note that since C is a +1

eigen space of operator G then:

∀ψ ∈ C ,G|ψ〉= |ψ〉 (1.149)

G fixes (acts as an identity operator on) all code-words in C . The set of all operators

like G which fix the code-words form a group S, called the stabilizer of the code

[18]. The stabilizer group S of a [n,k] stabilizer code has a minimal representation

in terms of n− k independent generators. In order to describe a code in stabilizer

formalism one only needs to find the generators of group S, all other operators that

fix the code can be written as products of these generators. In fact what we had in

equation 1.99 was the generator for the stabilizer group of the 3-qubit bit-flip code.

The generators of the stabilizer group S are quantum operators on the physical

qubits of the code. These operators consist of combinations of the Pauli operators

σx to anticommute with phase flip errors, σZ operators to anticommute with bit flip

errors, and Identity operators. These operators act trivially on the code space while

they leave error syndromes when acting on an erroneous state. This is exactly

the formal definition of what we called a check operator so far. Like all other

quantum codes, each stabilizer code can encode a specific number of logical qubits

in a specific umber of physical qubits and it’s able to correct for a specific number

of single qubit errors happening on the physical qubits. Now what are the error

operators that a stabilizer ocde can correct. Before mentioning the error correction

condition we need a couple of well-known definitions and the following theorem13:

13For the proof of the following two theorems we encourage the reader to refer to [18]
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Theorem 1. The set of tensor products of Pauli operators σx, σy, σz and I with a

possible overall factor of −1 or ±i forms a group G under multiplication.

We use the notation Gn when we want to refer to the group of tensor products

of the Pauli operators on n qubits. For example XIZII is an element of G5 which

applies a σx to the first qubit and a σz to the third one, and act trivially on the rest

of the qubits. As we used earlier, we put indecies for each Pauli operator to show

which qubit it is acting on, so for the same example we write: X1I2Z3I4I5. For every

group like Gn we have a notion of group normalizer which is defined as follows:

Definition 2. The normalizer of a subgroup S in the group G is defined to be

NG (S) = {g ∈ G | gS = Sg}.

The stabilizer group S is a subgroup of the bigger Pauli group Gn. With this

definition the normalizer of this subgroup consists of all elemtns in Gn which com-

mute with all elements in stabilizer group S. In other words, The normalizer of the

stabilizer group consists of all combinations of Pauli operators in Gn on the phys-

ical qubits which commute with all stabilizers in S. The following theorem now

tells us which errors we can correct using a stabilizer code:

Theorem 2. Error-correction conditions for stabilizer codes Let S be the stabi-

lizer group for a stabilizer code C(S). Suppose {E j} is a set of operators in Gn

such that E†
j Ek /∈ N(S)−S for all j and k. Then {E j} is a correctable set of errors

for a stabilizer code C(S).

When using a stabilizer code, we encode the quantum state we want using the

logical eigenbasis defined by the codewords of the code. In order to correct for

errors, we apply all elements of the stabilizer group to the system and measure the

error syndromes on ancilla qubits which are interacting with the physical qubits

affected by the stabilizer. The collected error syndromes gives us information to

detect and locate the errors. Then we apply proper operations to undo those errors

and preserve the logical quantum state encoded in the physical qubits.

The following is the stabilizer group of a [5,1] stabilizer code which encodes

one logical qubit state in 5 physical qubits and can correct up to 1 arbitrary single

qubit error. This code has 5-1=4 stabilizer generators:
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G1 = X1Z2Z3X4I5

G2 = I1X2Z3Z4X5

G3 = X1I2X3Z4Z5

G4 = Z1X2I3X4Z5 (1.150)

1.4 Surface Codes
Quantum surface codes are a family of stabilizer codes ( [18]) and were introduced

by Bravyi and Kitaev [4] as an improved planar version of Alexi Kitaev’s toric

codes [7]. Fault tolerant quantum computation is possible with high threshold

using the surface code as the error correcting code [33]. The main purpose of

this research is to study the classical post processing in the error correction step of

fault tolerant quantum computation using surface codes [35] [7]. A thorough and

nicely written review of surface codes can be found in Fowler et al. [16].

The underlying principles of quantum error correction is exactly the same for

surface codes. However, surface codes have additional advantages because they

also make use of the especial geometric positioning of the physical qubits. So far

what we have learned about quantum coding was purely theoretical. We never

mentioned how the physical qubits will put together interact and etc. Surface code

is an example that not only demonstrates the principles of quantum error correction

for pedagogical purposes but it also illustrates how a physical system can exploit

these theoretical principles to make a robust quantum memory. Another advantage

of surface codes is that not only they are good codes to prevent quantum informa-

tion from quantum noise, but they also make quantum operations possible. The

especial physical geometry and interaction of qubits with each other makes us able

to realize quantum gates. Raussendorf and colleagues [33] show how we can use

surface codes not only for protecting quantum states but also doing fault tolerant

quantum computation with them.
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Figure 1.5: Lattice definitions. X and Z stabilizers and Logical X and Z op-
erators.

1.4.1 Geometric Picture

Surface codes are formed from a two dimensional lattice architecture of qubits on

a surface of nontrivial topology. The data qubits (physical qubits which store infor-

mation about the encoded state) are placed on the edges of the 2D lattice of linear

size L, having 2L2 qubits in total. Ancilla qubits are placed on the plaquettes and

vertices of the lattice and there is a nearest neighbor Ising interaction between each

ancilla qubit and its neighboring data qubits. The ancila qubits can be measured to

get error syndromes about the data qubits adjacent to them.

The two dimensional lattice architecture, the local nearest neighbor interaction,

and high tolerance of surface codes to errors (as high as 1% per operation error)
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14, makes it one of the most realistic methods of building a solid-state quantum

computer (Fowler et al. [16]). We use the stabilizer formalism to discuss the error

correction on surface codes.

The stabilizer formalism suggests us to introduce the stabilizers of this code

first. In order to have an easier notation, we use X and Z instead of σx and σz

operators, respectively. The following defines the stabilizers on the surface code

and their commutation relations:

ZP =
⊗
l∈P

Zl (1.151)

Xs =
⊗
l∈s

Xl (1.152)

[ZPi ,XPj ] = 0,∀i, j ≤ L (1.153)

The ZP stabilizers are called the plaquette stabilizer and Xs stabilizer are called

site stabilizers. As we can see in the equations 1.151-1.153 these operators are de-

fined on all sites and plaquette of the lattice. The commutation condition between

stabilizer operators is satisfied because as it can be seen in figure 1.5 they are ei-

ther applied to 4 different qubits or if they share qubits they always share an even

number of them. This is the first time we see how the geometry of defining the the

lattice and the square or star like shape of stabilizer operators is playing a role in

the code definition.

Now let’s study this geometry more. Applying stabilizers to the data qubits will

not change the encoded information, because the quantum state of the system is a

+1 eigenstate of the stabilizer operators. How can we interpret this in a geometric

picture. Without loss of generality let’s focus on plaquette stabilizers. From 1.2.2

we know that Pauli operators are both unitary and hermitian because of that two

consecutive application of a Pauli operators is the same as the Identity operator or

σ2
i = I for i ∈ x,y,z. Combining this fact with the geometric picture of a group of

plaquette stabilizers in figure 1.6 shows that the net effect of the stabilizer operators

14Just as a simple comparison, a two dimensional lattice implementation of Steane and Bacon-
shor codes with nearest neighbor interactions has an error threshold of 2×10−5 compared to 0.01 of
surface codes. [37]
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Figure 1.6: A trivial cycle of Pauli Z operators shown in solid dark blue lines
as a multiplication of the Z stabilizer operators on a group of plaquettes
on the lattice. Each plaquette applies a pauli Z operator on each of
the 4 data qubits adjacent to it. Now, two adjacent plaquettes share
exactly one data qubit because of the square arcitecture of the lattice.
Two adjacent plaquette operators apply the Z Pauli operator twice on the
shared qubit. Since σ2

i = I a group of adjacent plaquettes act trivially
on the data qubits inside and only apply Pauli operator on a closed loop
of data qubits forming the boundary of the plaquettes. This cycle is a
trivial cycle on this lattice. The lattice boundaries with the same dashed
line color are identified which forms a troric topology in this case.

z

z z z

z z

z z

z

on the lattice of qubits is equal to a closed loop of Pauli Z operators. Their effect

on qubit inside the loop is canceled because each qubit inside the closed loop is

hit twice and σ2
z = I. On the other hand we know that the encoded quantum state

in this surface code is the +1 eigenstate of all stabilizer operators. So this closed

loop of Pauli operators is also an stabilizer of the code since it can be written as

multiplication of the stabilizer group generators of the surface code. So the result

of the special geometric picture of surface codes is that any closed loop of Pauli

operators 15 which can be written as multiplication of stabilizer generators16, acts

15Either they are random noise or applied by us as the controllers of the quantum computer.
16Or in this geometric picture, any closed loop of Pauli operators which can be tiled with stabilizer

generators.
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trivially on the code space. In order to formally define what we just discussed we

need a couple of definitions:

Definition 3. A 1-chain is a mapping from Z2 = {0,1} to each edge on the lattice.

The set of all 1-chains form a vector space over Z2. The sum of two 1-chains

is disjoint union of edges with a non-zero value in each 1-chain. a 0-chain is then

a similar assignment of Z2 values to the sites and a 2-chain is the assignment of

such values to the plaquettes of the lattice. A boundary operator σ is then defined

to take 2-chains to 1-chains and 1-chains to 0 chins. The boundary of a 2-chain

(plaquette) is the sum of 4 edges (1-chians) surrounding it and the boundary of a

1-chain is the two sites (0-chians) at its ends. This brings us to the notion of trivial

cycle on a surface code.

Definition 4. A chain with trivial boundary is called a cycle.

Pauli operators can be a expressed as tensor products of X and I operators times

a tensor product of Z and I operators. The tensor product of Z and I operators can

define a 1-chain where edges acted on by Z operators are mapped to 1 and the rest

of the edges are mapped to 0. As we discussed earlier, such a 1-chain commutes

with all plaquette operators. However, it only commutes with site operators where

an even number of Z operators act on the edges adjacent to that specific site. Thus

the 1-chain should have a trivial boundary and consequently it is a cycle.17

Definition 5. A cycle is homologically trivial if it is the boundary of a 2-chain.

So a tensor product of Z or X Pauli operators on the lattice which forms a closed

loop an can be tiled by stabilizer generators is a trivial cycle as it’s shown in figure

1.6. There also exists homologically nontrivial cycles on the lattice topology.

Definition 6. A cycle is homologically nontrivial if it can not be expressed as the

boundary of any 2-chain.

Whether a combination of Pauli operators make a trivial cycle on a surface or

not depends on the boundaries of the surface. Figure 1.5 illustrates a group of Pauli

17A similar argument can be made on the dual lattice to show that tensor products of X and I
operators are also cycles on the dual lattice. The dual lattice is the lattice obtained by changing all
plaquette to sites, site to plaquettes, vertical edges to horizontal edges and vice versa.
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Z operators named as logical Z operator. If the two horizontal boundaries of the

surface are identified together and the two vertical boundaries are also identified

together, then this operator can also make a closed loop (a cycle). However, this

closed loop can not be tiled with Plaquette operators. So a series of Pauli operators

on data qubits which connects two identical boundaries of the surface code will also

make a loop in definition but this loop of operators can not be written as multipli-

cation of stabilizer operators. This operator commutes trivially with the stabilizers

so it does not generate an error syndrome. However, it acts non-trivially on the

code space which affects the logical quantum information stored in the lattice.

Let’s rephrase what we just discussed a take a closer look at it. A non-trivial

cycle of operators will not act trivially on the quantum state of the lattice, or in

other words the encoded logical state of the system is not a +1 eigenstate of this

operator. So applying this loop of Pauli operators not only will change the state

of the individual physical qubits on the lattice but it will also change the logical

encoded state of the system. 18 This is in fact the reason we call these operators

”Logical” operators, because they act on the system and change the logical state

of the system which we wanted to protect from changing. Similar to the classical

case of a bit flip, if we know which logical operator has happened on the lattice

we can simple apply the same operator again and cancel its effect. However, the

problem with the non-trivial cycles is that they commute with stabilizer operators.

As we discussed earlier in 1.3.10, stabilizers act like parity check matrices and

give us syndromes about the errors. They key idea behind the stabilizers is in their

commutation relation. Stabilizers commute with each other and they can detect

error operators which do not commute with them. This is how a stabilizer give us

an error syndrome. Now if an operators occurs on the qubits which changes the

state of physical qubits and it can not be detected by the stabilizers it will act as

an un-correctable error on the logical information. So if we apply a series of Pauli

operators which make a non-trivial cycle on the code surface,it means we have

applied a logical operator on the encoded state. However, If these operators happen

due to a random event (like a random noise) they change the logical information

and can not be detected. Thus they act as un-correctable errors.

18Remember that the logical encoded state can remain the same if the state of physical qubits
change up to trivial cycle of Pauli operators.
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This discussion of trivial and non-trivial cycles shows how the geometry of

physical qubits, the shape 19 of stabilizer operators and also the topology of the

surface of the lattice form the unique proprieties of the surface code.

1.4.2 Surface Codes, Error Correction and Threshold

When we realize the surface code, the physical data qubits on the lattice are subject

to quantum noise. According to our earlier discussion in section 1.3.3, we can dis-

cretize quantum noise as combinations of bit flip and phase flip errors on physical

qubits. Errors can happen on a single qubit or they can happen on adjacent qubits

and form a longer chain of error operators20. Figure 1.7 illustrates how single ran-

dom errors on adjacanet qubits on the lattice can form long chains of Pauli phase

or Bit flip operators.

The key to detect an error is to use error syndromes provided by the stabilizer

generators. As we studied so far, stabilizer generators are like check operators. On

repeated cycles, we measure the error syndrome of all plaquette and site stabiliz-

ers. As it was mentioned in section 1.3.10 if an error operator anticommutes with

a stabilizer operator we see a -1 eigenvalue of that stabilizer which is an error syn-

drome. However, as it’s illustrated in figure 1.8 chains of error operators commute

with both plaquette and site stabilizers except at their boundaries. So the only in-

formation we detect about errors is the location of the boundaries of those errors

on the lattice 1.9.

The next is to correct for detected errors. If we knew which qubits were subject

to random error operators we could apply the same operator to those qubits again

and eliminate the error bringing back the system into its encoded state. However,

we showed previously that the only information we can get from error syndrome

is the location of the boundaries of chains of error operators. Although we do not

know the exact position of each chain of errors occurred, but we also showed that

19While we are interested to keep the geometric intuition, the reader should note that what we
explain is exactly in line with the abstract definition in stabilizer formalism. For example, by talking
about the shape of the stabilizer we focus on the data qubits where a certain stabilizer acts non-
trivially. As it was mentioned in section 1.3.10 each stabilizer generator acts on a subset of physical
qubits by Pauli operators σz or σx and it leaves the rest of the qubits untouched (Acts like an Identity
operator on them).

20The reader should remember that in this context by error chain we mean a chain of Pauli opera-
tors σx, σy and σz on the data qubits.
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Figure 1.7: The gray edges are the physical data qubits on the lattice. Each
black solid line on an edge shows one Pauli Z operator (Phase flip) on
that specific data qubit. When these errors occur on adjacent qubits they
make longer chains of errors.

Figure 1.8: How error chains commute with all stabilizers except at their
boundaries. The black lines show Pauli Z errors, the blue crosses show
X stabilizers at various sites on the lattice and the green and red lines
show where the stabilizer commutes and anticommutes with errors re-
spectively. The commutation relations depends on the parity of qubits
shared between error chains and stabilizers.
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Figure 1.9: Stabilizer syndromes only reveal information about the bound-
aries of the chains of errors.

the trivial cycles of Pauli operators act trivially on the code space. In other words

a trivial cycle of Pauli operators is a multiplication of stabilizer generators which

fixes the encoded state. Thus it does not matter where exactly the error chain is.

We can guess what the error chain was and connect the boundaries by a new chain

called the recovery chain which is just our guess of what the original chain was.

Since the boundaries of the recovery chain and the original error chain are identical

they will form a cycle of Pauli operators on the lattice. If this cycle is a trivial cycle

then we have successfully eliminated that error chain. Figure 1.10 illustrates how

the original unknown error chain and our guess for the recovery chain can make a

trivial cycle eliminating the effect of the error chain.

Since the single qubit errors are random variables which are independent and

has identical error probability distributions. The probability of an error chain de-

creases when it lengths become longer. Using a taylor expansion of the probability

of error chains of a certain length and looking at the dominating factor in the large

size limit we can see that this probability is in fact exponential in the length of the

error and it’s proportional to pl
error. So the shortest possible recovery chain be-

tween two error boundaries has the most probability to be the actual error. On the

other hand since we do not want to generate non-trivial cycles, we want to avoid
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Figure 1.10: An example of an error chain with our guess for a recovery chain
only having information about the boundaries of that error chain. The
black line is the error chain and the blue dashed line is the recovery
chain. The Pauli Z plaquette operators inside the loop are emphasized
to show how a combination of stabilizers on the lattice can generate a
trivial cycle.

long chains as much as we can. Therefore the criteria for the recovery path is to

find the shortest path we want to connect. Then we apply the same Pauli operator

to the data qubits on this path and by making the trivial cycle we get rid of that

error.21

Now if we have a lot of these error chains on the surface, after measuring all

stabilizers, we will see an even number of these defective boundaries which we

call defects. We do not know which two defects are coming from the same chain

because we don’t know the chains. Now by globalizing the argument we had ear-

lier, the best guess of the error correction process is to pair up these defects and

put recovery chains between each pair in such a way that we globally minimize

the length of these recovery paths. The task of finding a disjoint pairing of ver-

tices in a graph is called perfect matching and if we want to do this task in a way

21A more sophisticated interpretation of error correction on surface codes is that boundaries of
error chains can be thought as electric and magnetic quasi-particles which are created at a point and
then drift apart by an error chain. The error correcting procedure must find a recovery chain between
each pair of quasi-particles of the same type, to bring them back together and annihilate them [23].
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that we minimize the length of the paths we chose to pair the vertices, it becomes

an optimization problem called minimum weight perfect matching problem. The

classical post processing part of the error correction is exactly where we solve this

optimization problem to make the best guess pairing up the defects. This is the

exact statement of the problem we want to address in this research. Chapter 3 of

the thesis is a detailed discussion of an idea of how to improve the complexity of

this post processing step in the error correction on surface codes.

We will have a detailed algorithmic study of the error correction on surface

codes in section 2.1 , and we will discuss how the probability of failure exponen-

tially decays as we make the lattice larger if the error probability is below a certain

critical point called the error threshold. The existence of this critical point relies

on the probabilistic nature of the error correction. We expect that when the error

probability becomes higher, longer chains become more probable and thus we will

have more chance of making the wrong guess and generating a non-trivial cycle on

code surface. This will result in the failure of the error correction. So intuitively we

expect that when we increase the error probability above a certain value the error

correction is more probable to fail. This threshold shows the robustness of an error

correction algorithm and this is one factor to compare different approaches.

Theorem 3. Success probability of error correction with surface codes can be

arbitrarily close to 1 by making the lattice size large enough provided that the

error probability is below a certain threshold.[7]

This threshold is calculated numerically using Monte Carlo simulation. for a

fixed error rate as we enlarge the lattice size the success probability increases and

it approaches 1 in the large size limit.

The advantage of this syndrome measurement and classical post processing is

that the post processing and recovery chain generation can be postponed as far as

we collect syndrome results with a proper pace. The idea is that for example if

a physical bit is flipped we can continue keeping the quantum memory and then

when we need the quantum information reverse the bit flip and process the data.

Likewise, we can keep the error syndromes at discrete times and then when we

need to use the quantum information stored in our lattice we look at the error

syndromes we have accumulated and do the post processing accordingly. Errors
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Figure 1.11: Error chains and their boundaries as quasi particles. These
chains can be recognized as logical operators on the surface code.

can accumulate through time, but because of this discussion we just had that is

fine. However, we still need to collect syndrome measurements with a frequency

that does not allow errors to accumulate and pass the threshold. We know that in

the large size limit the error correction will most likely fail if the error probability

is bigger than the threshold. This argument only applies when we want to have a

quantum memory. 22 What if we want to do a certain computation on this quantum

data by applying quantum gates? for a group of gates called the Clifford gates
23 it is still possible to trace the error syndromes and do the post processing later.

However, This family of gates is not enough to have a universal gate set. In order to

make universal quantum computation we need to add non-Clifford gates. The post

processing can not be postponed to a point after a non-Clifford gate. So when we

are doing actual quantum gates with our surface codes. we can only post pone the

22A quantum memory is a devise that can store and preserve some quantum information for a
desired amount of time and then one can read off that information from it.

23The clifford group consists of the Hadamard, Controlled-z and the π

2 rotation gates.
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postprocessing untill we hit a non-clifford quantum gate in the circuit of quantum

gates we want to apply. Section 1.4.4 briefly explains how we construct a universal

set of quantum gates for fault tolerant quantum computation with surface codes.

For a more detailed study of how quantum gates can be done with surface codes

we encourage the reader to look at [33].

1.4.3 Defects, Holes and Scaling

As we discussed earlier the topology and geometry of the lattice defines the shape

of stabilizers and the error correction properties of this code. in the simple case

of a torus topology where the horizontal boundaries of the surface are identified

and the vertical boundaries are also identified we will have the toric code with

two different types of non-trivial cycles which means we can encode two logical

encoded quantum states in this architecture of 2L2 physical qubits. This simple

version is called the toric code. The number of logical qubit states that we can

encode is dependent on the topology of the surface. By changing this topology we

can change the encoding properties of the code. In case of the toric topology the

number of non-trivial cycles and hence the number of logical encoded states is two

times the number of genus in the torus.

Defects are used to add non-trivial boundary conditions to the topology of the

cluster. Defects can be carved out of the cluster by local Z-measurements of all

qubits in the region of a defect.

We can add encoded information by adding more defects but the problem is that

short cycles wrapping around a defect are homologically nontrivial cycles which

cannot be detected nor corrected, hence error correction fails in those cases. So we

have to re-scale the surface to have thicker defects and hence bigger logical cells.

The logical cell is re-scaled from elementary cell of the lattice by a factor of λ

and defects are thickened by a factor of d, figure 1.12.

1.4.4 Fault Tolerant Quantum Computation with Surface Codes

The surface code so far we were studying can act as a memory that can preserve

the logical quantum state from certain quantum errors. However, it’s proven that

these codes can be used for quantum computation too Raussendorf and Harrington
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Figure 1.12: Scaling factors on a lattice and time evolution of a moving de-
fect. An elementary cell is shown for reference on the top left of the
front lattice.

[33]. Initially the CNOT gate could be conducted with surface code using a 3D

architecture of stacked surface layers. Later, Raussendorf showed that the CNOT

gate can be carried out on the surface code by braid transformations on a single

surface [33–35]. This is a great improvement. However, in order to have universal

computation resource we need to be able to carry out a universal set of gates. All

other complicated quantum computations can be carried out by composing them

out of the universal gate set. If we add two single qubit rotations to our two qubit

gate CNOT, this will make a universal gate:

CNOT Controlled NOT gate.

S Gate Rotation by
π

4
along the Z axis

T Gate Rotation by
π

8
along the Z axis
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The two rotations are not easy to accomplish. They need special states prepared

on ancilla qubits and injected to the surface in order to happen. These special states

are called magic states and since they’re hard to prepare it’s easier to start with a

noisy version and then distill a state with higher fidelity through an iterative process

called magic state distillation [3]. The following ancilla states must be prepared

with high fidelity in order to realize the rotation gates:

|Y 〉= |0〉+ |1〉√
2

(1.154)

|A〉= |0〉+ e
iπ
4 |1〉√

2
(1.155)

Applying the magic state distillation each time will increase the fidelity in the

output states and in this fashion it is expected that it will lower the overall opera-

tional cost of fault tolerance but that is generally not the case, since it also increases

the number of distillation operations and noisy input states exponentially. Each

level of magic state distillation has its own scaling factors.

The operational overhead for each gate type is a function of

1. Circuit size

2. Scaling factors

3. Circuit layout

As is shown in the figure 1.14 as the circuit becomes bigger, after a certain

point it iss beneficial to add another level of magic state distillation rather than

continuing with the same old noisy states. The bumps on certain curves in this

figure is exactly when the overhead with an extra distillation level is less than the

overhead of continuing with the same level.
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Figure 1.13: Implementing a Controlled-NOT gate by twisting a pair of pri-
mal and dual holes representing the control and target qubits.
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Figure 1.14: The operational overhead of building fault tolerant gates as a
function of circuit size for various gates, at error probability perror =
10−4.
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Chapter 2

Surface Code Simulation

It doesn’t matter how beautiful your theory is, it doesn’t matter how
smart you are. If it doesn’t agree with experiment, it’s wrong.

— Richard P. Feynman (1918 - 1988)

In this chapter we try to develop a simulator engine for surface codes in order

to carry out numerical analysis on the error correcting procedure. This chapter

starts with a brief explanation of different modules in the error correcting procedure

which both helps to understand the classical algorithm and also the topological

robustness of surface codes against quantum errors.

2.1 Overview of the Error Correcting Algorithm
The toric code and the planar surface code have the same accuracy threshold [16],

so I started my simulations with the toric code model which was simpler to work

with. Since we are only considering the memory error I assumed that our measure-

ments are perfect and thus used the Random-Bond Ising Model (RBIM) to compute

the accuracy threshold. In order to build the algorithm, first I start with a simpler

error channel which has only Z errors.

ρ −→ (1− pz)ρ + pzσzρσ
†
z (2.1)

Generalizing the result to the real depolarizing channel in equation (2) is straight

forward since the X errors are assumed to be independent from Z errors and they’re
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treated in the exactly same manner but on the dual lattice. The only important thing

here is to note that Y errors introduce error correlations on the primal and dual

lattices.

ρ −→ (1− p)ρ +
p
3
(σzρσ

†
z +σxρσ

†
x +σyρσ

†
y ) (2.2)

A random error generator is used to generate an error sample on an L×L lattice.

The Chain E is the set of links (qubits) on the lattice which suffered the Z error. As

we know, the only important point is to know the boundary ∂E of the one-chain to

locate the Ising vortices. We can imagine Ising vortices as defects which nucleates

in pairs and then drift apart on the links of the one-chain. To recover from the

errors, we have to generate another one-chain as a recovery chain bounded by the

boundary of a one chain (the position of the defects). It’s like bringing the two

defects together again in order to re-annihilate.

Figure 2.1: The error chain E and the recovery chain E ′. This image is taken
from Dennis et al. [7]

So if we consider a complete graph with the Ising vortices as its vertices, then

the problem of finding a chain to re-annihilate the defects is translated to finding

the set of edges in the mentioned graph, in which every vertex has one and only one

adjacent. Considering a complete graph there are lots of such sets called match-

ings of a graph. If we compute the physical distance between two defects in the

lattice and assume it as the weight of the edge linking these two together, then our

problem is to find the minimum weight matching of the mentioned graph. I used

Edmonds perfect matching algorithm to find the minimum weight matching, which

is our minimum cost recovery chain to overcome the errors.

The recovery is successful only if the chain D = E +E ′ has a trivial homology
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class. Otherwise, A homologically non-trivial cycle has happened on the lattice

and hence the recovery fails. I repeat this procedure for many randomly generated

error samples to estimate the failure probability with respect to the error rate.

For p< pth the failure probability approaches 0 exponentially as L→∞, a more de-

tailed discussion in section ?? justifies the following relation between the residual

topological error e f ailure and the linear size of the lattice size L:

e f ailure ∼ e−κ(p)L (2.3)

If we use Monte Carlo simulation to estimate the failure probability for differ-

ent L, we expect to observe that for p < pth the failure probability decreases if L

increases while for p > pth the failure probability grows with lattice size L. So if

we have failure probability versus p for different L, There would be a unique point

where all lines cross each other, which is the estimated value for threshold pth.

2.1.1 Error Channel and Random Generator

In order to generate random errors on the lattice we used boost library which in-

cludes MT19937, a variant of the Mersene Twister, a famous random number gen-

erator with a period of 219937−1≈ 106000.

2.1.2 Finding Ising Vorticies

If we turn the lattice into a giant graph with lattice sites as the vertices and the error

chain as the edges of the graph then Ising vortices or defects will be the nodes with

odd degree.

2.1.3 Edmonds Perfect Matching Algorithm

As I mentioned before, the problem of finding the recovery chain can be trans-

lated to the problem of finding the minimum weight matching on a complete graph

showing defects as its vertices and E chain links as its edges. Here the weight of a

chain is the sum of the vertical and horizontal distance of its boundary (defect pair)

in the lattice.

The most complex part of our simulation is the perfect matching algorithm with a
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complexity of O(l6) [12]. As was mentioned before, this complexity makes it hard

for us to do numerical analysis for larger lattice sizes and smaller error probabili-

ties. So we want to address this problem and by adding heuristics to the matching

algorithm make the post processing error correction (decoding step) faster. The

entire chapter 3 of this research will be dedicated to this new idea along with its

numerical results. In the simulator we used an implementation of the Edmonds

matching algorithm called Blossom [24].

2.1.4 Path Generator

After we found which sites are going to be linked with an E ′ chain, we have to

generate paths on the lattice from each defect to its pair.

Figure 2.2: L=5 Lattice. Error chain is shown with red solid lines and the
recovery chain is shown in blue stripped line.

2.1.5 Homologically Non-trivial Cycles

In order to see whether we can successfully preserve the lattice from memory errors

we have to check if D = E+E ′ chain builds a homologically non-trivial cycle. The

existence of a non-trivial cycle is checked by a simple algorithm which looks for

rows or columns of qubits in the lattice which includes an odd number of error

chains.
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Figure 2.3: D = E+E ′ builds a homologically non trivial cycle in this lattice.
The solid black lines are the Error chains E’s and dotted blue lines are
recovery chains E ′. The vertices are the ancilla qubits on the sites of the
lattice and edges (lines) are the data qubits affected by either the error
or the recovery chains.

2.2 Monte Carlo Simulation
Putting all these blocks together we’ll have a toric code failure probability simula-

tor:

1. Generate an error sample on the lattice (E chain)

2. Locate defects (Ising Vortices)

3. Find the minimum-weight matching for defects (E’ recovery chain)

4. Examine the homology class of D = E +E ′ cycle

5. Declare a success or a failure
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The following is a sample result of running the simulator for L = 3, p = 0.1:

Error sample matrix:

τm,n =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −1 0


Location of defects (Ising Vortices):

ξm,n =



0 0 0 0 1 0

0 0 0 0 0 0

0 0 1 0 1 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0


weighted adjacency matrix for a graph with defects as vertices:

Gi, j =


0 4 2 2

4 0 2 4

2 2 0 2

2 4 2 0


This matrix is fed into the Edmonds perfect matching algorithm to find the mini-

mum cost matching between defects. The result is a matrix which clarifies which

pair of defects should be matched:

Mi, j =


5 5

3 5

3 3

1 5
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which says that for example the defect on ξ5,5 must be matched to the defect on

ξ3,5 and so on ... The result is a lattice including both E chains and E’ chains:

χm,n =



0 0 0 −1 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 0

0 0 0 0 −1 0


then the whole lattice is translated to adjacency matrix of a giant graph with sites

of the lattice as its vertices and the E or E ′ chains as the edges:

χm,n =



0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0

0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0


This matrix is used to check the homology class of the cycle. There is a non-trivial

cycle in this example and the simulator returns +1 as a failure:

Total Failure = 1

A graph of the code is also provided in simulation; for clarification, a schematic

sample of this output is shown in figure 2.4.

2.2.1 Numerical Results

The key point to find the pth is to repeat the simulation for a lot of error samples

and for different lattice sizes L. After error analysis we figured out that 105 error
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Figure 2.4: Simulator illustrates the lattice graph including E and E’ chains.

samples gives us reliable results. The detailed error analysis can be found in section

2.5.

The architecture in this numerical simulation is exactly that of [7] for the bit-

flip error channel. Section 2.5 discuss the slight difference between this study and

the literature. This can be immediately compared with that of [9] which is also

introducing a new decoding algorithm with threshold 8.2% for bit-flip error chan-

nel below the 10.5% but with an advantage of operational complexity L2log(L)

compared to L6 of Edmonds perfect matching algorithm.

From figure 2.5 : pth ≈ 0.1 = %10

2.3 Larger Lattice Sizes
Although higher threshold is an advantage for a decoding algorithm, it’s important

to note that none of the quantum computations are going to happen with error

probabilities close to threshold. On the other hand, in order to conduct a real world

fault tolerant computation we will be working with lattices of size 100 to 1000 and

probably bigger than that based on different parameters in the computation such as

tolerable error, type of gates, number of gates , error level, etc. So what we actually

need to do is to study the behavior of these codes for small error probabilities

(where they really would operate) and for large lattice size limit.

Both of these studies are computationally unfeasible. The number of qubits

grows quadraticaly with the lattice size and the perfect matching algorithm is
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Figure 2.5: Error threshold averaging 105 error samples
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O(L6) which really slows the process down as we go to larger lattice sizes. In the

smaller errors case, we need more random samples in order to observe less prob-

able error chains, a couple of orders of magnitude more random samples will also

dramatically slow down the Monte Carlo simulation process. These two reasons

make it challenging to gather high quality numerical results. We use several differ-

ent methods and approaches to make the simulation faster and the general purpose

of this research is also to design a matching algorithm which is less complex than

the Edmonds matching algorithm.
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2.4 Crossing Points
The simulation results for L = 3,5, . . . ,11 gives us a threshold of 10% while we

found a 10.5% threshold in the literature [7] for the same error channel. The first

step is to investigate the crossing points of curves for different lattice sizes. As you

can see in figure 2.6, there is an asymptotic approach toward the 0.105 value for

threshold mentioned in previous works, as we go to larger lattice sizes.

Figure 2.6: Investigating the crossing point with larger lattice sizes
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The next important thing is to compare the results with the numerical error in

the Monte Carlo simulation.

2.5 Error bars
After a random noise occurred on our lattice there might be only two different

outcomes: either the topological memory can survive the errors and preserve the

quantum information or it may fail to correct the errors and the information is lost.

When there’s only the possibility of a failure or a success we can model our system

by a Bernoulli trial. If we repeat a Bernoulli trial for Nmax times, then one can

easily deduce that the Bernoulli distribution approaches a Gaussian distribution as

Nmax goes to infinity. Like any other random variable with a specific distribution

we expect a mean and variance for this experiment. Our Monte Carlo simulations
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in this research can be modeled as a chain of Bernoulli trials for Nmax times, and

the numerical error ENumericalin the resulting data is the standard deviation σ of this

Bernoulli distribution.

ENumerical =
σ

µ
(2.4)

For a Bernoulli trial with failure probability Pf ailure and Nmax repetitions:

µ = Nmax×Pf ailure (2.5)

σ
2 = Nmax×Pf ailure× (1−Pf ailure) (2.6)

Using these relations together:

ENumerical =

√
Nmax×Pf ailure× (1−Pf ailure)

Nmax×Pf ailure
=

√
(1−Pf ailure)

Nmax×Pf ailure
(2.7)

Now we apply the numerical results at the Perror = Pthreshold in the relation above,

the number of repetitions is 105 and the failure probability Pf ailure = 0.22 around

the threshold point:

ENumerical =

√
(1−0.22)
0.22×105 = 0.5954% (2.8)

As we can see the numerical error is the main reason behind the 0.5% between our

results and the previous ones obtained from the literature [7, 35].

Numerical error for 105 samples ≈ 0.6%
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Chapter 3

Fast and Simple Error Correction
Post Processing

Be Fearful When Others Are Greedy and Greedy When Others Are
Fearful. — Warren Buffett

Although the complexity of the post processing algorithm for Fault Tolerant

Quantum Error Correction (FTQEC) is polynomial in the linear size of the lattice,

since this is just a step in a quantum computation process, it has to be comparably

fast otherwise the speed up using a quantum processor won’t be observed by the

long delay due to the classical post processing algorithms. The other reason that

we need a fairly fast and simple post processing step is that a lot of theoretical

studies on these quantum architectures involves a lot of Monte Carlo numerical

calculations which needs millions of runs of these algorithms with large lattice

sizes. So the computational cost of these algorithms are very important and even a

small speed up accumulates and shows up a great advantage in terms of time.

This is basically the motivation behind the study of post processing algorithms.

In this following chapter we propose a very simple greedy heuristic algorithm

which serves as the post processing engine. Using parallelising techniques it has a

time complexity logarithmic in the lattice size with high threshold. The results can

be compared to the re-normalization group approach of Duclos-Cianci and Poulin

[9, 10]. Using the idea of concatenating codes they are able to get to a threshold
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of almost 8% with a logarithmic time complexity in terms of the lattice size. Our

work, however, results in a family of hybrid algorithms with an adjustable thresh-

old varying from 8.6 to 10.5 % with a time complexity that can be asymptotically

as low as that of Duclos-Cianci and Poulin [9]. The implementation of our algo-

rithm is much easier due to the simple heuristic we used and it’s expected to work

more efficiently on low error regimes compared to [10]. Another advantage of our

work is that it can make use of approximation algorithms to lower the operational

complexity when the threshold is adjusted to be higher than 8.6%.

3.1 Minimum Weight Perfect Matching (MWPM)
Algorithm

As we discussed earlier the error correction step on the lattice is reduced to pairing

defects and then having proper operations on a path between them to annihilate

those defects. Pairing defects has to happen in such a way that the paths between

each pair is the best guess for the error chain that actually happened between them.

Since the error probability distribution is i.i.d (independent and identically dis-

tributed) the probability of a path is inversely proportional to it’s length. So our

guess will have the highest probability to be the actually error chain occurred if we

choose the shortest path possible between the two defective qubits. This means that

defects should be paired in such a way that the distance between each two paired

defects is a minimum.

This pairing problem is reduced exactly to a weighted perfect matching prob-

lem on a graph where it’s vertices are the defects. There is an edge between two

vertices (defects) if there is a path between them on the lattice. There might be

several paths between two defects on the lattice but we are interested in the short-

est path between nodes. Hence, The weight of each edge will be the lengths of the

shortest path between those two defects.

Although a WPM always has an optimal answer on a complete graph, due to

topological properties of the surface code, the decoding process is really robust

according to this pairing process. As we mentioned earlier only nontrivial cycles

will make the code fail so even if a pairing is not the optimal possible matching of

defects it will still correctly compensate for errors if there is no nontrivial cycle,
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and the error correction will succeed. This is exactly the robustness that we employ

to build a sub-optimal matching algorithm without any dramatic reduction in the

threshold.

3.2 A Simple Heuristic
Thus we can easily see that the whole post processing step is translated to a finding

a minimum cost perfect matching on a graph where vertices are the defects and the

weight of each edge between these vertices is the length of the shortest distance

between those two defects. Such a minimum cost perfect matching will cover all

vertices , so all defects will be annihilated and since it has a generic optimization

of the cost (length of the paths) it always matches vertices in such a way that the

global length of all paths is the minimum it can be. Literally it tries to match

defects which are closer to each other to reduce the length of the paths.

But the resulting defect graph on which we want to apply the perfect matching

algorithm has a very nice property that can be used as a heuristic added to our

post processing algorithm to dramatically lower the complexity of matching step.

Since the defects are on a lattice (a connected graph) there is at least one path

between each random defect. So the graph that we build based on defects and

paths between them will be a complete graph since as I mentioned there is at least

one path between each two defects on a lattice.

Finding a perfect matching on a complete graph with even number of vertices

is simpler than finding a perfect matching on a random graph. In fact since there

exists an edge between any two vertices on a complete graph , any random pairing

of the vertices will be a perfect matching. So we almost have no difficulty finding

a perfect matching on a complete graph.

Simple perfect matching algorithm on a complete graph is written in pseudo-

code in 3.1.

However as we discussed earlier we are not just interested in a perfect matching-

more precisely we are interested in finding a minimum cost perfect matching where

the cost is the length of the paths between matched vertices.

This assumption can make the problem a lot more complex because now it’s

mixed with an optimization problem of minimizing the cost. However, we will use

79



Figure 3.1: Random matchings on a complete graph with 8 vertices
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Algorithm 3.1 Simple random perfect matching algorithm on a complete graph.

Initialize G a complete graph of size n
Gvertices← vector of vertices in G
Gedges← vector of edges (vector of pairs of vertices)
while number of vertices in G is not zero do

x1,x2← random pair of vertices from Gvertices

append [x1,x2] to the matching list
delete x1 and x2 from the Gvertices

delete all edges adjacent to x1 and x2 except the one between them
end while

a simple heuristic to apply a very small modification to the simple algorithm we

discussed above to change it to a minimum cost perfect matching algorithm.

By adding a greedy heuristic to the simple matching algorithm on a complete

graph, the program tries to minimize the cost of matching. The heuristic is as

follows: since we want to minimize the cost of the perfect matching, instead of

choosing a random pair of vertices each time, we pick the pair with the lowest cost

for the edge between them.

In terms of the error correction on the lattice of qubits, this heuristic means that

when starting the error correction, look at all defects and calculates their mutual

distances, then match the two defects which are closer to each other than any other

pair. Apply the most trivial chain of Pauli operators between them and annihilate

them. Then we can assume that these two defects have disappeared and go to the

next pair with the shortest distance and repeat this procedure until all defects are

paired up.

So the only thing we need to change in the previous trivial algorithm is to sort

the list of edges according to their weights, this will help us find the lowest cost

pair in each iteration.

3.3 Sub-optimality and Adjustment of Weights
As we discussed earlier, like other approaches to finding the simplest post pro-

cessing algorithm, our proposed method is also a sub-optimal approach. All these

sub-optimal approaches are then compared based on the highest threshold that they
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Algorithm 3.2 Perfect matching algorithm on a complete graph with sorted
weights.

Initialize G a complete graph of size n
Gvertices← vector of vertices in G
Gedges← vector of edges (vector of pairs of vertices)
Gedges← Sort Gedges in ascending order
while number of vertices in G is not zero do

[x1,x2]← The left-most edge in Gedges
append [x1,x2] to the matching list
delete x1 and x2 from the Gvertices

delete all edges adjacent to x1 and x2 except the one between them
end while

can get and the distance of their threshold to the optimal matching threshold. So as

it’s expected there is a trade of between the complexity of the algorithm and how

close it is to the the optimal threshold.

Although the sorting algorithm with all its simplicity gives us a relatively good

threshold which is comparable to other approaches, but we can study why this

simple algorithm is sub optimal and maybe manage to apply minor modifications to

get a slightly more complex algorithm with a significant gain in terms of threshold.

Figure 3.2 shows a simple random example where sorting the list of weights of

edges fails to give us the optimal matching. As we can see the sorted list of weights

is [1,2,2,100]. Applying our simple greedy matching algorithm, the first edge to be

picked up will be (0,1) with weight 1. After that we have to erase all other adjacent

edges to vertices 0 and 1. So the only edge remained in the graph will be (2,3) with

cost 100. The total cost of this matching is 101, but we can simply observe that

if we pick edges (0,3) and (1,2) we’ll cover all vertices of the graph in a matching

with cost 4.

This example shows that optimizing the cost of the perfect matching is a global

optimization problem. If we use divide and conquer methods to break it into

smaller sub-problems over subsets of vertices, optimizing those sub-problems doesn’t

guarantee that the global problem will also be optimized.

We add a simple step to redefine the weights of each edge in the defect graph

in order to partially tackle this problem. The idea behind this weight modification
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Figure 3.2: A simple not realistic and extreme example of the situation when
sorting fails in minimizing the matching cost.
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is to consider the edges that we are left with after choosing a specific edge in the

matching and removing its ends from the defect graph.

We iterate over all edges of the graph and we check what remains if this edge

is chosen in the matching. Then we look at the remaining edges and add a penalty

inversely proportional to the sum of their weights to the weight of that specific

chosen edge. In this way if choosing an edge removes a lot of small weight edges

it gets more penalty than an edge which removes a lot of higher weight edges when

it’s chosen in the matching.

3.4 Complexity of the Algorithm
The motivation behind this study was to design and develop a simpler and faster

algorithm for the post processing step. Thus, it is really important to evaluate the

complexity of the proposed algorithm. Going through the operations, one can see

that the complexity is dominated by the sorting algorithm which is the heart of this

heuristic.
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Table 3.1: List of selected comparison-based sorting algorithms

Name Best Average Worst Memory

Quick sort n log(n) n log(n) n2 average: log(n), worst case: n
Merge sort n log(n) n log(n) n log(n) worst case n
In-place Merge sort - - n(log(n))2 1
Insertion sort n n2 n2 1
Bubble sort n n2 n2 1
Selection sort n2 n2 n2 1

Sorting is perhaps the most well-known and oldest computer algorithm. In fact

almost all computer algorithm text books start with a chapter on sorting. These

algorithms are often classified based on their computational complexity.

Different sorting algorithms are designed for different sorting scenarios. Oper-

ation complexity, use of memory, stability and etc., are the parameters which be-

come important when choosing a proper sorting algorithm for a certain situation.

Our goal is to reduce the complexity of the matching algorithm so the memory is

not a problem here and we want to run the algorithm with the least complexity

possible.

As we can observe having sorting as the bottleneck of our algorithm we intro-

duce a lot of freedom in choosing our sorting scheme that best fits the needs and

requirements of a specific application. But the advantage is not only in a wide va-

riety of choices when it comes to sorting algorithms. In fact sorting algorithms are

very well studied for paralleling and multi-threading, and there were great achieve-

ments in reducing their time complexity using paralleling ideas. In the next section

we’ll explain more how we will benefit from this advantage.

3.4.1 Parallel Processing

Parallel processing is the idea of dividing the tasks in an algorithm and running

them at the same time step on many different processing devices. In this way the

operational complexity of an algorithm is divided by the number of parallel devices

which are running different parts of the code and then the overall time complexity

of the parallel algorithm will be reduced proportional to the number of parallel
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devices.

Among all different algorithms those which are designed based on a divide

and conquer method have a great potential to be parallelized since they are already

designed for divided work load. For example merge sort is a great example where

different levels of multi-threading and paralleling can be applied to reduce its time

complexity from n log(n) to log3(n). There is a detailed study of the operational

complexity of merge sort in section 2.3.1 of Cormen et al. [6]. on page 803 of the

same reference, you can find a detailed implementation of a multi-threaded parallel

merge sort and its complexity analysis.

There are other sophisticated parallel and multi-threaded implementations of

sorting algorithms, even combining a couple of them as a hybrid sorting engine

that show much better time complexity performance. David Powers used CRCW

PRAM with n processors to develop an implementation of quick sort which works

with a time complexity of log(n) [31] [32]. There are lots of other similar studies

published in the last 20 years.

As a conclusion of this section, sorting algorithm are a well studied subject

in computer science and there are lots of resources on how to optimize them in

terms of their time complexity. Using multi-threading and paralleling techniques

it’s possible to get a random list of n elements sorted in time log(n).

3.4.2 Complexity Analysis

As discussed earlier the complexity of matching algorithm is reduced to the com-

plexity of the sorting steps which is dependent on the size of the list we want to

sort. This list consists of all possible edges in a complete graph where it’s vertices

are the defects on the two dimensional qubit lattice. If N is the number of edges:

N =

(
v
2

)
=

v(v−1)
2

(3.1)

where v is the number of defects on the lattice. Now that we have the relation

between elements in the sorting list and defects on the lattice, we have to count the

number of defects. But as we discussed in chapter 1, defects are drawn from a set

of independent and identically distributed (i.i.d) random variables. So we have to

find the expected value (average) of the number of defects on a lattice.
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Each qubit can have an error with probability perror or stay as it is with proba-

bility (1− perror). A lattice of linear size L has exactly 2L2 qubits on it, so if X is a

random variable with its value equal to the total number of defects on an instance

of a lattice with size L:

v = E[X ] = perror× (total number of qubits) = 2perrorL2 (3.2)

Combining equation 3.1 and 3.2, we will get the final relation between the size

of the sorted list and the inputs of the matching algorithm. We can easily write N

as a function of input parameters L and perror:

N(L, perror) =

(
2perrorL2

2

)
=

2perrorL2(2perrorL2−1)
2

≈ L4 (3.3)

Equation 3.3 suggests that the matching algorithm has to sort a list of size

proportional to L4. Using techniques that we discussed in previous sections the

sorting can be then operated in log(L) time. So the overall time complexity of this

algorithm is logarithmic in L.

3.5 Numerical Results: Threshold
As we discussed in the introduction section, since the analytic study of the thresh-

old is unfeasible it’s common in the literature to use Monte Carlo methods to get

statistical information about the the error profile and the threshold.

As we discussed in error bars analysis in chapter 1, the uncertainty in random

sample results in Monte Carlo simulation dictates the minimum number of samples

we need in order to have a meaningful distance between our data points. For the

following study of threshold each data point is the average of 105 random samples

having an uncertainty close to 0.05 for the e f ailure.

The numerical results state a threshold of 7.6% for our pure sorting-based per-

fect matching algorithm. So far we have designed a very simple greedy heuristic

which improves the time complexity of post processing from almost L6 to log(L)

with only decreasing the threshold from 10.5% to 7.6%. But this is not the end of

story.

Although the performance of the proposed algorithm is close to the optimal
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Figure 3.3: The threshold calculation for the refined sorting based matching
algorithm.
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case with a lot of improvement in terms of time complexity and simplicity, we

want to push this forward and implement a hybrid matching engine to reach for

even closer to optimal thresholds while maintaining the simplicity of the algorithm.

This idea is explained in detail in the next section.

3.5.1 3 Dimensional Topological Memory

So far we have assumed that our measurements are ideal, but in a noisy environ-

ment measurement has an error probability qe. It’s shown that the 2 dimensional

surface code and faulty measurements can be modeled as a three dimensional archi-

tecture of qubits using surface codes plus the third dimension where measurements

happen through time. The error correction can be mapped to a random plaquette

Z2-gauge model in 3 dimensions, Dennis et al. [7].

As you can see in figure 3.4 our method has a threshold of 1% for the 3 dimensional

surface code and the bit flip channel. The RPGM fault tolerance error threshold for

a depolarizing channel is shown to be %3.2 [29], The minimum weight perfect

matching decoding algorithm has a lower threshold of %2.9 [35]. Unfortunately

there is no study of 3D surface code for re-normalization group decoder in Duclos-
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Figure 3.4: Threshold calculations for the 3 dimensional topological quan-
tum memory architecture using surface codes.
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Cianci and Poulin [11] to compare with.

3.6 A Family of Hybrid Algorithms and Improved
Threshold

Now that we have a very fast and straight forward greedy algorithm to do the

matching let’s take a step back and look at what’s exactly happening in the real

world when we are matching defects.

As we discussed 2.1, chains of errors will introduce defects at their boundaries.

When we want to eliminate these defects, we need to guess what the error chain was

and undo the Pauli operations due to error. But thanks to the stabilizers we can only

see the boundaries of the chains (defects) not the exact error chain itself. Again the

stabilizer code and the topology of the surface will come to our help. Since a trivial

cycle of Pauli operators on the surface will not act as a logical operator and keeps

the system in its encoded state, we do not need to guess the exact path of the error

chains. Having the boundaries the only thing we need to do is to try making trivial

cycles with the defects. The defects are already chained together by a chain of

error, and so the only thing we need to do is to find a path between two defects and
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apply the specific Pauli operator to it. This path in addition to the chain of errors

will make a homologically trivial cycle on the code surface and eliminate those

defects.

While doing this defect pairing and getting rid of them we have to be careful

about one thing. This process will succeed if we manage to build trivial cycles with

the error chains. A non-trivial cycle will apply a logical operation to the surface

and change the logical data that we’re storing on the surface.

Another way of looking at this is to study the length of the error chains. A

non-trivial cycle on a torus for example has to wrap around the surface of the code,

which means the non-trivial cycle has to be of length L. This is a very long chain of

errors and its probability of occurrence will decrease when we go to larger lattice

sizes.

So the idea is to avoid generating large chains because they have higher proba-

bility of becoming a non-trivial cycle. Since we do not know what exactly the error

chains are, we try to choose the shortest path between the two for error correction,

so that the error correcting path added to the real error chain will make the small-

est possible cycle and in this way try to minimize the probability of generating a

non-trivial cycle.

This argument has two important meanings for us:

1. First, we always have to pick the shortest path between two paired qubits

to make sure we minimize the probability of building a non-trivial cycle

along with the error chain between those two. This leads to the idea of

minimum cost perfect matching. Minimizing the cost means always trying

to pair the qubits in sush a way so as to have the minimum overall length of

path between all qubits with each other and avoiding building long chains

on the lattice. A more local, hence sub-optimal version of the same idea will

be trying to do it in a greedy way and always tries to pair the two nearest

defects, which we used to build our simple algorithm with it.

2. The second point is the building block of the idea behind this section. In

addition to the first point what we can get from this is that the physical system

doesn’t care how you pair up the defects as far as you don’t make a non-

trivial cycle. On the other hand non-trivial cycles are chains of length L
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which has less probability to occur and their probability is reduced as we go

to larger lattice sizes. These two points together suggest that we only need to

be careful when we are dealing with a long chain of errors. In other words,

when defects are closer than
L
2

to each other we do not need to be pairing

them in the most optimal way. But when we are dealing with defects far

from each other, if we pick a wrong pair then there is a high probability that

we end up generating non-trivial cycle on the lattice.

These two points will lead us to the general idea behind a hybrid decoding

engine for surface codes which has the highest threshold among all sub-optimal

approaches, while maintaining the time complexity of operations logarithmic in

size of the lattice.

3.6.1 The General Idea

Combining the two facts discussed in the previous section we use branch and cut

techniques to build a hybrid matching algorithm of the defect graph. As we dis-

cussed before, when we face long error chains we really need to be careful in

matching but when it comes to defects which are closer to each other even a simple

sorting and matching the defects greedily won’t harm the overall performance of

the surface code. So we try a branch and cut approach to find a perfect matching

on the complete defects graph.

The general idea is to apply the perfect matching in it’s simplest way until we

remain with defects which are all distanced from each other. At that stage we need

to be careful because picking a sub-optimal matching might cause a long chain and

consequently a non-trivial cycle on the surface. This is where we stop the greedy

algorithm and we apply the optimal Edmonds matching algorithm to pair up the

rest of the defects.

Please note that shorter chains are more probable to happen on a lattice and

since they are short in comparison to the length of the lattice they have less prob-

ability to make a non-trivial cycle, even if they are matched sub-optimally. On the

other hand longer chains are less probable and since they are long and close to the

size of the lattice they have higher probability of making a non-trivial cycle. So

the idea is to apply the sub-optimal and fast algorithm to the bigger portion of the
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defects (which have short distance from each other) and then apply the optimal and

slow algorithm to the remaining small number of defects which are far from each

other. In this way we act fast where we can and act optimally and slow where we

should be careful and in this way both maintain a high threshold (probability of

successful decoding) and a low time complexity.

When we start our greedy sort based matching algorithm, we choose the short-

est edges and we pair the defects at their ends. We have to note that we do the

matching process step by step so each time one edge is picked, it’s added to the

matching list, it’s vertices and all edges adjacent to those vertices are removed

from the original graph and then the same procedure is repeated for the remaining

graph. But there is an important fact we have to remember: each time we are done

with one step, the remaining graph is still a complete graph. In fact it is a complete

graph with 2 fewer vertices compared to the complete graph before that step.

Now we define a parameter called the Optimal Matching Subgraph relative

Size (OMSS) as a barrier. We continue repeating the greedy algorithm until we

match OMSS percent of the total number of defects on the lattice. Then we turn off

the greedy algorithm and apply the optimal Edmonds perfect matching algorithm

to the rest of the defects in order to minimize the risk of building non-trivial cycles

between vertices which have a long distance.

The OMSS parameter defines what portion of the matching problem is solved

with the simple greedy algorithm and what portion is solved with the slower yet

optimal Edmonds matching. So this parameter controls a trade off between time

complexity and threshold. A bigger OMSS means optimal Edmonds is applied to

a bigger subgraph so the threshold will be closer to the optimal with the cost that

the overall algorithm becomes slower. The two extreme cases are when OMSS =

0% and OMSS = 100%. The first one means all defects are matched using the

simple fast greedy algorithm. It gives us the sub-optimal 7.6% threshold and time

complexity of order log(L). The second case OMSS = 100% where all defects

are matched using Edmonds algorithm gives us the optimal 10.5% threshold and

well the high complexity of the Edmonds matching of order at least L6. Varying the

OMSS parameter between 0 and 100 % will result in a gradual increase of threshold

from 7.6% to 10.5% with the cost of adding complexity.

The next step is to see the behavior of this trade off. We need to study the
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change in threshold with respect to increasing OMSS.

3.6.2 Numerical Results: Spectrum of Thresholds

We calculated the threshold for various OMSS around a fixed lattice size to see how

the threshold is improved by increasing the parameter.

As we can see in figure 3.5, the threshold strictly increases non-linearly with

OMSS increased. The other behavior that we observe is the overall shift in the

threshold graphs when we move toward larger lattice size. It seems from figure

3.5 that the threshold is approaching a large-size limit for a fixed OMSS as we

increase the size of the lattice. This observation is well studied in the next section.

Figure 3.5: Threshold values vs. OMSS, for different lattice sizes.
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3.6.3 Large Lattice Size Limit

In order to investigate the large lattice size limit behavior of the threshold with

varying OMSS we try to plot fixed OMSS graphs for threshold versus
1
L

. This

helps us to extrapolate the infinite size limit of the threshold for a fixed OMSS.

Figure 3.6 shows a sample of the extrapolation method to obtain the numerical
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Figure 3.6: Extrapolating the large size limit thresholds for a 2% portion of
the Edmonds matching algorithm.
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results for a fixed OMSS = 2%. We get an extreme extrapolated threshold for each

fixed OMSS.

Putting all large size limit thresholds we got via extrapolation and drawing

them versus their OMSS we will get the large size limit behavior of the threshold

by varying the size of the optimal matching sub-graph. Figure 3.7 shows this large

size limit behavior. The large size limit graph has two important parts. The first

rapid step-like jump from 7.6% to 8.6% threshold at the beginning and then the

parabolic behavior from 8.6% to 10.5% threshold.

The second part of the figure with parabolic behavior suggests the non-linear

increase in threshold when we change OMSS. Although this is interesting enough

to understand that the threshold grows faster than OMSS, but the most interesting

part of the graph is the step like jump at the beginning.

In order to study the jump, let’s look at the complexity more carefully. OMSS

is a constant multiplied to the total number of defects. So in the large size limit

when we are calculating the order of complexity it doesn’t really matter whether

we are applying Edmonds matching to the whole system or only a fraction of it i. e.

O((OMSS×L)6) = O((c.L)6) = O(L6), with c being a constant. Still the Edmonds

matching will dominate the complexity and hence the overall time complexity of

the algorithm will be as bad as the Edmonds matching itself. This argument shows

that if OMSS is a linear function of the lattice size then the time complexity will
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not dramatically change from that of the Edmonds matching. But the good result

is that the threshold increases non-linearly when we change OMSS linearly and

the most non-linearity is observed in the beginning of the figure. We can conclude

from the jump in figure 3.7 that OMSS does not need to be a linear function of the

lattice size for us to get to a threshold of 8.6%.

Since the jump suggests that as far as OMSS is non-zero, in the large size

limit we will get to 8.6% threshold, we can choose OMSS as low as possible so

that the complexity of that instance of algorithm will be dominated by the sorting

algorithm not the Edmonds perfect matching. Now we need to study how the

threshold increases with increasing the lattice size to prove the conjecture.

Figure 3.7: Asymptotic large size limit curve
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In conclusion, we have designed an algorithm that has a time complexity of

order log(L) and a large size limit threshold of 8.6% for a bit-flip error channel on

a lattice of qubits. This result can be compared to that of [9] and [10].

The only thing that we have to note before we start using this is that the hy-
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brid algorithm makes sense where the size of the remaining complete graph for

Edmonds matching is at least 4 because the lower complete graph will be of size

2 which has only one possible perfect matching. So different algorithms will have

the same result. This leads to the following calculation which suggests a lower

bound on the size of the large lattice:

OMSS× (2perrorL2)≥ 4 (3.4)

Llarge ≥ d

√
2

OMSS× perror
e (3.5)

3.6.4 The Threshold Jump

As it is illustrated in figure 3.7, there is a very steep increase in threshold when we

go to OMSS greater than zero. It intuitively suggests that by turning the Edmonds

perfect matching on over a very small defect subgraph we can have a significant

increase in the lattice size. Now we need to study the size of this small subgraph

as we increase the lattice size. We conjecture that by increasing the lattice size

this small subgraph size decays exponentially and hence in the large size limit, the

sorting-based matching is dominating the complexity of the whole algorithm, not

the Edmonds matching.

Figure 3.8 shows the way we studied our conjecture. We fixed the error prob-

ability right in the middle of the steep jump at perror = 8.1%, then observed how

the success probability of the code changes with the lattice size as we go from

OMSS = 0% to OMSS = 2% where the jump ends. For the configurations where

perror = 8.1% is above their threshold we expect to get a success probability close

to .5 and for the cases where perror = 8.1% is below their threshold we expect to

get a success probability close to 1. The exponential decay in the transition from

below to above threshold in figure 3.8 proves our conjecture. However, we need to

go to larger lattice sizes in order to have a better estimation of the curve fitted on

the transition line.

This basically means that, at a large size limit the OMSS needed to get to a

threshold of 8.6% decays exponentially, thus the complexity of the algorithm is
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dominated by the sorting-heuristic.

Figure 3.8: The success probability of surface code error correction is classi-
fied in 3 groups, close to 1 (black), which happens when we are below
threshold, close to .5 (white) when we are above the threshold and close
to .75 (gray) when we are really close to the threshold itself. Data is
gathered for a fixed error probability of perror = 8.1%
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3.7 Approximations to WPM Algorithms and Improved
Complexity

As discussed in [12] matching is one of those applied problems for which there ex-

ists a polynomial time solution but all trivial algorithms will take exponential time

to solve it. One of the steps that computer scientists take to reduce the computa-

tional complexity of hard optimization problems is to try approximation methods.

Approximations become very important when you can tolerate an answer close

enough to the optimal answer in order to get a gain in terms of speed. Sometimes

an exact algorithm to solve a problem cannot be parallelized while an approxi-

mation of it will be easily parallelised and saves a lot of time. This is another
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motivation behind approximation algorithms.

In our case, through various experiments done in this study and other studies

in the literature, it’s easy to see that the fault tolerant quantum computation with

cluster states is robust to the change of decoding algorithm and even the simplest

heuristic will maintain a highly comparable threshold to that of the optimal case.

This suggests that maybe there is room for improving the time complexity of de-

coding algorithm using the approximation methods to the Edmonds MWPM.

A super fast approximation to the matching algorithm is introduced in Hol-

loway et al. [22] for minimum weight perfect matching in a complete graph satis-

fying the triangle inequality between its weights. This algorithm is highly paral-

lelisable and has a time complexity of O(log3(n)) where n is the number of vertices

in the complete graph. With our complexity calculations in part 3.4.2 this means

a time complexity of O(log3(L)) where L is the linear size of the lattice.

As a future work, it would be great to run the Monte Carlo simulations with

an implementation of Holloway’s Algorithm and see the behavior of the threshold.

But what we can conjecture is that the threshold is definitely bigger than 8.6%

because this algorithm is supposed to act at least as well as the simple sorting

heuristic. The result will be a poly-logarithmic algorithm with a threshold even

higher than 8.6%.
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Chapter 4

Conclusions

To be an error and to be cast out is a part of God’s design.
— William Blake (1757 - 1827)

In summary we used the following ideas and heuristics to improve the post

processing algorithm for FTQEC using surface codes:

Complete Graph The graph which is made of defects as its vertices and edges be-

tween them weighted by the length of the shortest path between two defects

forms a complete graph. Finding a perfect matching on a complete graph is

easier than a general random graph because all vertices are connected.

Sorting and approximating Because of the above, finding a minimum weight

perfect matching on a complete graph can be approximated by heuristics

as simple as sorting all the edges and always picking the shortest one.

Parallelising These approximation algorithms are highly parallelisable which can

help us get a much lower time complexity.

Hybrid Algorithms Because of the robustness of the lattice against trivial cycles

we only need to be careful when we are decoding long range defects. So

we can apply our approximation to the bigger chunk of defects which are

numerically proven to be close to each other and then apply the slow opti-

mal algorithm to the remaining long range defects which are again proven
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numerically to form a small portion of the defects, particularly for the large

lattice sizes.

Using all these ideas we proposed a family of decoding algorithms with a

sliding parameter OMSS which can give you any threshold between 8.6% to the

optimal 10.5% by adding more complexity. The complexity of getting the 8.6%

threshold is log(L) for large lattice sizes. Please note that the same idea of hybrid

algorithms can be used for other approximation algorithms like [10] or it can be

implemented with [22] to both improve complexity and threshold.

The most important fact about our proposed approach is its compatibility with

the nature of fault tolerant quantum computation with surface codes. Although

threshold is a parameter to compare different methods, but the surface codes are

not expected to operate anywhere close to the threshold. In a real scenario the

surface code will run on a large lattice and for very small error probabilities. Our

heuristic fails where long and short chains are close to each other on the surface.

However, in a lower-error regime we expect most of the error chains to be very

short (almost 1 or 2 errors) and distanced from each other (almost no long chains

and well-distanced). Thanks to this and topological robustness of the surface codes,

our sorting-based matching is expected to work really well even without hybrid or

approximation methods considered. In fact, this is part of the study we want to

propose as a very important future work. we can extend and continue this research

in certain directions including but not limited to the following:

• Simulate and compare the behavior of the proposed algorithm in low-error

regimes, especially compare the quantum resources needed for each of the

different error correcting methods.

• Develop the complete graph MWPM approximation algorithm to measure the

potential improvement in threshold and complexity.

• Reduce the operational complexity of the algorithm by doing the error match-

ing on the lattice data structure instead of extracting a new graph out of it.
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