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Abstract 

Chronic obstructive pulmonary disease (COPD) is a progressive, inflammatory lung disease 

associated with a 10-fold increased risk of lung cancer (LC), independent of smoking-status. 

Together these diseases contribute tremendously to morbidity and mortality worldwide. 

While COPD and lung cancer share common etiologies including genetic susceptibilities and 

risk factors, the biology driving COPD and LC is largely unknown. No effective treatments 

exist for either disease, thus a better understanding of the molecular biology underlying these 

diseases is urgently needed. 

 

The overarching hypothesis of this thesis is that specific risk factors, such as smoking and 

chronic inflammation lead to selective disruption of genes in exposed tissues and that these 

selectively disrupted genes contribute directly to COPD and lung cancer pathogenesis. Since 

selection occurs at the DNA level, and tumour and disease systems may be altered at multiple 

genetic and epigenetic levels; a major hypothesis of this thesis is that loci which sustain high-

level concerted genetic, epigenetic and/or transcriptional disruptions in tissues involved in 

disease pathology are likely indicative of strong selection and may be identified by applying 

an integrative multi-omics analysis of these tissues. 

  

Background pertaining to the rationale, objectives and specific aims of this work are 

described in Chapter 1. Chapters 2-4 detail the main findings of this thesis, which are that: 1) 

DNA is altered at the main sites of airflow obstruction in COPD patients (Chapter 2), 2) 

smoking status impacts miRNA lung tumour biology and patient prognosis (Chapter 3), 3) 

lung tumours from patients with COPD are molecularly distinct at the genetic and epigenetic 

levels (Chapter 4) and 4) genes preferentially altered in COPD-related lung tumours are 

aberrantly methylated in non-malignant airway cells from patients with COPD and lung 

cancer (Chapter 4). Taken together, this work provides sufficient rationale to explore the 

clinical application of these findings as potential targets for novel COPD treatments and 

markers for early lung cancer detection, treatment or targeted chemoprevention. A summary 

of these key findings, significance, caveats and future directions are discussed in Chapter 5.
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1    Chapter: Introduction 

 

1.1 COPD and lung cancer disease burden 

Chronic obstructive pulmonary disease (COPD) is a highly prevalent progressive 

inflammatory lung disease affecting one million Canadians and 300 million people 

worldwide [1-3]. Globally, COPD kills 3 million people every year and by 2030, this disease 

will be responsible for over 7 million deaths annually, making it the 3rd leading cause of 

mortality (currently 4th) and the 5th leading cause of disability in the world (currently 12th) 

[1, 4, 5]. Nationally, 1 in 5 Canadians 40 years and older have COPD and 10,000 Canadians 

each year die from it [6]. The accelerated prevalence, morbidity, and mortality of COPD 

around the world is largely due to: a growing aging population in the developed world, the 

continued rising prevalence of tobacco smokers worldwide (currently estimated at 1 billion 

men and 250 million women [7]), and increased exposure to risk factors such as pollution 

[3].   

 

Lung cancer is the leading cause of cancer mortality worldwide, resulting in 1.37 

million deaths each year [8, 9]. By 2030, lung cancer is estimated to be the 5
th

 leading cause 

of death in the world [10]. In 2012 alone, 1.8 million people were diagnosed with lung 

cancer, of which 1.6 million people died, representing 20% of all cancer deaths worldwide 

[10]. While cigarette smoke is the number one risk factor for both COPD and lung cancer; 

COPD is associated with an up to 10-fold increased risk of lung cancer, independent of 

smoking-status [11]. The combination of the most common chronic disease and cancer type 

is alarming and places an enormous burden on patients and the healthcare system.  

 

Relative to the incredible burden of COPD and lung cancer, there exists a gross 

disparity in funding resources directed towards an improved understanding of these diseases 

[12]. As such, little is known about i) the molecular biology underlying COPD pathogenesis, 

ii) how lung cancer develops in the context of different cancer promoting environments (e.g., 

chronic inflammation and different smoking or non-smoking histories), or iii) how to identify 

and treat patients at highest cancer risk. As a result there are currently no markers or 

therapies to predict, treat or prevent COPD or lung cancer progression. There exists an urgent 
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need for an improved understanding of the molecular mechanisms underlying lung cancer 

biology specifically in the context of smoking and COPD. 

 

1.2 COPD: definition and disease etiology 

COPD is diagnosed based on spirometry measures which assess the amount of air an 

individual can exhale with force after inhaling as deeply as possible (Forced Vital Capacity 

(FVC)) and the amount of air an individual can exhale with force in one breath at 1 second 

(Forced Expiratory Volume, (FEV1)). A diagnosis of COPD is made as per guidelines set by 

the Global Initiative for Chronic Obstructive Lung Disease (GOLD), on the basis of a post-

bronchodilator irreversible airflow obstruction reading of FEV1/FVC < 0.70, that is not due 

to bronchiectiasis, cystic fibrosis, or previous tuberculosis [5]. FEV1% predicted measure 

classifies patients into stages of COPD severity. 

 

Table 1.1   Classification of severity of airflow obstruction in COPD 

In patients with FEV1/FVC < 0.70: 

GOLD 1 Mild FEV1  ≥  80% predicted 

GOLD 2 Moderate 50%  ≤  FEV1  ≤ 80% predicted 

GOLD 3 Severe 30%  ≤  FEV1  ≤ 50% predicted 

GOLD 4 Very Severe FEV1  ≤ 30% predicted 
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COPD is characterized by chronic inflammation, progressive decline in lung function 

and extensive remodeling of pulmonary tissues including airway walls and lung parenchyma 

tissues in the form of small airway disease and emphysema [13, 14]. Substantial 

heterogeneity exists among COPD patients with respect to extent and distribution of 

emphysema or small airway disease [15, 16]. Airflow obstruction and progressive decline in 

lung function characteristic of COPD is largely attributed to extensive remodeling of small 

airways [17-20], which precedes emphysematous destruction of lung parenchyma in COPD 

patients. Airway wall thickening and obliteration of the number of terminal bronchioles 

occurs increasingly with increased disease severity [21]. Elucidating the molecular 

mechanisms underlying airway remodeling in COPD is thus highly relevant to the design of 

therapeutic and prevention regimes. 

 

1.2.1 COPD susceptibility 

Collectively, results from large genome-wide association studies (GWAS) indicate 

that genetic factors contribute to COPD. For example, COPD risk and spirometry measures 

have been shown to be heritable [22-25], and genotypes associated with lung function 

(FAM13A and HHIP on 4q31) and genes involved in processes integral to COPD pathology 

including protease/anti-protease balance (MMP1, MMP12), inflammation, nicotine response 

(CHRNA3), antioxidant response (SOD3, EPHX1) and xenobiotic metabolism (GSTP1, 

CYP1A1, EPHX1, CYP2A1) [26-29] have been described in multiple studies [30-33]. 

 

Severe alpha-1-antitrypsin deficiency due to homozygous mutations of the 

SERPINA1 gene is a documented cause of hereditary and early onset COPD [34, 35]. 

SERPINA1 codes for alpha-1 antitrypsin (A1AT) -- a serine peptidase inhibitor critical to 

protecting lung tissue from enzymatic degradation by proteolytic enzymes released from 

neutrophils. Based on a family-based linkage analysis in the Boston Early-Onset COPD 

Study, combined with human gene expression and animal model findings, SNP haplotypes in 

another serine peptidase inhibitor, SERPINE2, were also discovered to be associated with 

COPD phenotypes [36]. 

 

1.2.2 Molecular profiling of tissues involved in COPD 
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To date, molecular characterization of COPD related tissues has largely focused on 

correlating array-based mRNA expression profiles of large and small airways and lung 

parenchymal tissues with various COPD clinical phenotypes, such as COPD severity [37-45]. 

Collectively, this work provides substantial evidence that impaired oxidative stress response 

is an important factor in COPD pathology. 

 

Increased oxidative stress and the generation of free radicals (e.g., from cigarette 

smoke or inflammatory cells), affects nearly all aspects of COPD pathology and 

pathogenesis. Increased levels of reactive oxidative species (ROS) in airways of COPD 

patients and smokers is reflected by increased markers of oxidative stress in sputum, breath, 

lungs, and blood in patients with COPD (reviewed in [46]). Associated damage due to free 

radicals affects inflammatory, immune and epithelial cells of the airways, resulting in: 

oxidative inactivation of anti-proteases and surfactants, mucus hypersecretion, membrane 

lipid peroxidation, mitochondrial respiration, alveolar epithelial injury, remodeling of 

extracellular matrix and blood vessels, necrosis, apoptosis, and inflammation [46]. Based on 

its presence and relevance to COPD biology and progression, the development of anti-

oxidant based pharmacological strategies for COPD therapeutics is an active area of research 

[46]. 

 

1.3 Lung cancer epidemiology and etiology 

Broadly, lung cancer can be subdivided into two major histological groups based on 

cell type of origin, growth patterns and location in the lung; small cell lung cancer (SCLC) 

and non small cell lung cancer (NSCLC) account for 15% and 85% of lung cancer cases, 

respectively [47]. NSCLC can be further subdivided into squamous cell carcinoma (SqCC) 

which occurs predominantly in the central airways, adenocarcinoma (AC) and large cell 

carcinoma which occur predominantly in the peripheral airways or lung parenchyma. SqCC 

and AC account for the vast majority of NSCLC cases. This thesis will focus on AC, which 

arise in the lung peripheries from type II pneumocytes or clara cells and account for over 

40% of all lung cancers overall [7].  
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Different smoking histories and lung cancer subtypes are associated with distinct and 

highly clinically relevant histological and molecular pathology [48-54]. Lung cancer 

incidence, patient demographics and mortality rates closely mirror a population‟s smoking 

behaviour including smoking duration, amount of tobacco smoked and duration of smoking 

cessation (for former smokers) [7]. Thus consideration of smoking history and tumour 

histology in molecular lung cancer studies is an important consideration to lung cancer 

research. 

 

Other factors modulating lung cancer risk include: airflow obstruction (specifically 

low FEV1% predicted, i.e., severe COPD), a family history of lung cancer, exposure to 

asbestos, crystalline silica, and chronic exposure to high levels of arsenic, radon gas, heavy 

metals, second hand smoke and infection by certain viruses (HPV and Epstein Barr Virus) 

[7]. 

  

1.3.1 Lung cancer genetics and targeted therapies 

Traditionally, treatment decisions for NSCLC were based solely on histology, but 

there has been a shift in recent years to incorporate molecular subtype information into 

treatment paradigms, specifically genetic alterations that are causative or “drive” lung 

tumourigenesis [55]. Lung cancer driver mutations have been identified for multiple 

oncogenes and tumour suppressor genes (Table 1.2) [48, 55-58].  

 

These genes map to several common pathways which are frequently deregulated in 

lung cancer at the mRNA and protein levels, including: EGFR, PI3K-AKT, P53, RB/E2F, 

and WNT signalling pathways which regulate cellular proliferation, death, cell cycle check-

points, angiogenesis, invasion and DNA repair. Therapies targeting several of the alterations 

are shown (Table 1.2) [58-63]. 
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Table 1.2   Non small cell lung cancer onco- and tumour suppressor genes  

  
      

Gene Oncogenes Alteration Frequency Drug 

KRAS  v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog  m,A 10-30 
Tipifarnib, 

lonafarnib 

EGFR  epidermal growth factor receptor  m,A 10-25 
Gefitinib, 
erlotinib, 

cetuximab 

mTOR mechanistic target of rapamycin (serine/threonine kinase) A 70-75 
Rapamycin, 
RAD001, CCL-

779 

MYC v-myc avian myelocytomatosis viral oncogene homolog  A 5-20 

 
EML/ALK 

echinoderm microtubule associated protein like 4/anaplastic 

lymphoma receptor tyrosine kinase 
fusion 5-13 Crizotinib 

HER2  human epidermal growth factor receptor 2  m,A 5-10 Trastuzumab 

BRAF  v-raf murine sarcoma viral oncogene homolog B1  m 2-3 Sorafenib 

PIK3CA  phosphoinositide-3-kinase, catalytic, α polypeptide  m 1-3 
BEZ235, 
LY294002 

AKT1  v-akt murine thymoma viral oncogene homolog 1  m 0.3 
 

MAP2K1 mitogen-activated protein kinase kinase 1 m 1-2 

Trametinib, 

salumetinib 

NRAS  neuroblastoma RAS viral (v-ras) oncogene homolog m 0.5 
 ROS1  c-ros oncogene 1 , receptor tyrosine kinase fusion 1 

 RET ret proto-oncogene fusion 1.3   

  Tumour suppressor genes (TSG)       

CDKN2A cyclin-dependent kinase inhibitor 2A  m,D,HM >50 

 LKB1 serine/threonine kinase 11 m,D,HM >30 

 RARB retinoic acid receptor, beta HM 40 
 TP53 tumour protein p53  m,D >50 

 RASSF1A Ras association (RalGDS/AF-6) domain family member 1 m,D,HM 50-80 
 FHIT fragile histidine triad  m,D,HM 50-70 

 RB1 retinoblastoma 1 D  >50   

m: mutated; A: amplified; fusion: gene fusion; D: deleted; HM: hypermethylated 

 

 

1.4 Rationale for studying the biological links between COPD and lung cancer 

Epidemiological and genetic evidence suggests a mechanistic link between COPD 

and lung cancer [64]. Cigarette smoke is the greatest risk factor for both diseases, accounting 

for 90% of COPD and 75-80% of lung cancer cases. Chronic inflammation -- which can be 

defined as an abnormally prolonged protective response to a loss of tissue homeostasis [65, 

66], is associated with cancer in almost all affected organs and tissues, including the lung 

[64]. The association between chronic inflammation and cancer was first described by 

Virchow over 150 years ago [67, 68]. Today inflammation is a hallmark of cancer [69, 70]. 

Cellular and systemic responses to cigarette smoke and inflammation are tightly linked.  

 

Cigarette smoke contains over 5000 chemicals, 73 of which have been classified by 

the International Agency for Research on Cancer (IARC) as carcinogenic [8]. These 
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chemicals can be broken down into the following classes: polycyclic aromatic hydrocarbons 

(PAHs), aza-arenes, N-nitrosamines, aromatic amines, heterocyclic aromatic amines, 

aldehydes, volatile hydrocarbons and nitro compounds (as well as metals and various organic 

and inorganic compounds) [71, 72]. The metabolism of these compounds by phase I 

(cytochrome P450 monooxygenase, also called CYPs) and II (e.g., glutathione S-transferases 

(GSTs)) xenobiotic metabolizing enzymes results in formation of reactive diol epoxides, 

which can bind directly to DNA, are geno- and cytotoxic, and strong inducers of the cell‟s 

ROS response and pro-inflammatory pathways. Inflammation is itself a major source of 

ROS. Under normal conditions, pro-inflammatory cascades are inhibited by wound-

healing/anti-inflammatory signals. However, prolonged exposure to toxic onslaughts from 

cigarette smoke and ROS leads to abnormal activation of this normal immune response, 

resulting in COPD pathology and lung tumourigenesis. 

 

The precise mechanisms mediating this abnormal response and that confer increased 

COPD and cancer risks are largely unknown. Evidence from multiple large scale GWAS 

linking COPD and lung cancer points to the involvement of genetic variants which modulate 

activity of xenobiotic enzymes (GSPT1, CYP1A1) affecting rate of production of damaging 

reactive metabolites, ROS response (EPHX1, SOD3) and DNA damage repair (XRRC1) 

[73]-[74, 75]. 

 

Given the i) strong association between smoking, lung cancer and COPD, ii) 

relevance of smoking history to lung tumour biology and patient outcomes, iii) shared 

genetic risk variants and iv) strong association of inflammation with increased cancer risk in 

multiple organs; it is plausible that the mechanisms underlying lung tumourigenesis in COPD 

patients overlaps with the biology of smoking response and COPD pathology. Studying lung 

tumourigenesis in the context of smoking and chronic inflammation is necessary to elucidate 

these mechanisms and for informing development of prevention, early detection and 

treatment strategies of these deadly and highly prevalent diseases. 
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1.5 Genomic mechanisms disrupted in tumour systems 

Cancer genomics refers to the study of tumour genomes using various profiling 

strategies to obtain sequence, structural, quantitative, qualitative, functional or chemical 

information about: DNA, non-coding RNA (nc-RNA), mRNA and protein -- molecular 

levels which may be referred to collectively as „omics. Background relating to genetic and 

epigenetic mechanisms interrogated in this thesis is summarized below. 

 

1.5.1 Copy number 

Tumour genomes sustain structural aberrations to genome architecture [76, 77]. 

Structural alterations can result in balanced genomic exchanges, where equal genomic 

material is exchanged between two genomic regions, or unbalanced alterations, where the 

number of copies of genomic portions are gained, amplified, lost or homozygously deleted 

[76]. In tumours, copy number alterations, occur commonly as 1) double minutes-- small 

amplified acentric DNA fragments, 2) contiguous homogeneously staining regions which are 

incorporated directly into chromosomes or 3) distributed sporadically throughout the 

genome. Copy number variation in the normal population and in tumour genomes is due to 

with high recombination rates between stretches of non allelic homologous flanking repeats 

[78]. The probability of misalignment between non allelic homologous regions in the genome 

appears to be strongly influenced by factors such as sequence homology, length, and 

orientation [78]. In tumours, recombination rates are exaggerated due to impaired DNA 

damage surveillance and repair mechanisms; thus copy number disruptions in tumour 

genomes are highly prominent. In tumours, copy number alterations affect genomic stability, 

mRNA and protein expression and function, particularly that of oncogenes and tumour 

suppressor genes (TSG) thereby contributing directly to many key aspects of tumour biology 

[77, 79-82].  

  

1.5.2 DNA methylation  

DNA methylation occurs at the 5 carbon position of cytosine in CpG dinucleotide 

sequences, creating 5‟-methylcytosine (5mC). DNA methylation marks are mitotically 

inherited [83]. These enzymes are instrumental in establishing methylation patterns during 

normal gastrulation, and are found to be active in cancer cells and throughout establishment 
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of immortalized cell lines [84, 85]. Short regions enriched for CpG dinucleotides form areas 

called CpG islands that are often conserved through evolution [86]. CpG islands are 

generally associated with gene promoter regions where they are usually unmethylated, 

however promoters without CpG islands are frequently methylated [87]. The majority of 

5mC is located in repetitive DNA sequences, such as retrotransposons and satellite DNA, 

where it is believed to be important in transcriptional silencing. Methylation also serves as a 

level of transcriptional regulation specific to tissue type [87, 88]. DNA methyl transferase 

(DNMT) enzymes catalyze the transfer of the methyl group from S-adenosyl L-methionine 

(SAM) to the cytosine in CpG dinucleotides. The maintenance of methylation patterns in 

somatic tissue is achieved by DNMT1[89], while de novo methylation involves DNMT3a, 

DNMT3b, and DNMT3L.  

 

CpG dinucleotides are under-represented in the human genome, due to spontaneous 

deamination of 5mC which results in the conversion of 5mC to thymidine, which is not 

recognized by repair machinery. Thus methylated CpGs are mutation hotspots [90]. 

Transcription involves the recruitment of RNA polymerase II (Pol II), and the recruitment of 

additional cofactors, including histone modifying enzymes. Methylation can directly inhibit 

transcription by impeding binding of transcription factors to promoters, or indirectly through 

the recruitment of regulatory proteins, such as histone modifying enzymes or transcriptional 

repressors and the promotion of chromatin configurations unfavorable to transcription [83]. 

Disruption to normal patterns of DNA methylation, adversely affects genomic stability and 

gene expression, and has been described in  many developmental diseases and nearly all 

cancer types [83, 91]. 

 

1.5.3 Micro-RNA 

MicroRNAs (miRNAs) are small (18 to 25 bps) non-coding RNAs (ncRNA) that 

negatively regulate translation of mRNA via direct inhibition of translation or induction of 

mRNA degradation [92]. Genes encoding miRNA-- which are much larger than mature 

miRNA, are transcribed by RNA polymerase II as large primary transcripts (pri-microRNA) 

[93]. Pri-miRNAs are processed to double stranded, ~70 nucleotide imperfect hairpin loop 

precursor microRNAs (pre-microRNAs) by a protein complex containing the RNase III 
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enzyme Drosha and the double-stranded-RNA-binding protein, Pasha/DGCR8 [94]. Pre-

miRNAs are transported to the cytoplasm where they are processed by a second RNase III 

enzyme, DICER, which forms mature miRNAs. Dicer contains multiple functional domains 

including two catalytic RNAse III domains (IIIa and IIIb) which independently cut one of the 

pre-miRNA strands forming single stranded miRNA, one of which (the guide strand) is 

incorporated into the RNA-induced silencing (RISC) complex. RISC mediates gene silencing 

by i) translational repression or ii) mediating mRNA cleavage [93, 95]. Translational 

repression occurs if sequence homology between miRNA and mRNA are low. Conversely, 

mRNA cleavage occurs when sequence homology between miRNA and mRNA are very high 

[93].  

 

The ability of miRNAs to exert repressive translational functions through low 

sequence homology is the more common scenario, and is attributed to the ability of a single 

miRNA to target up to hundreds of unique mRNAs [93, 95]. Unsurprisingly, miRNAs are 

involved in almost all biological processes [96]. In nearly all human malignancies, miRNAs 

have been shown to contribute to tumorigenesis, progression and treatment response, thereby 

representing promising biologically relevant biomarkers [97-99]. 

 

1.6 Rationale for multi-omics approach to analyzing tumour systems 

The broad goal of cancer genomics is to survey 'omics data to identify genes and 

pathways deregulated in cancer that may be useful for the detection and management of 

disease. Towards this aim, two large international research efforts: the International Cancer 

Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), have publically 

released such multi-omics data for thousands of tumours from dozens of cancer types [100-

102]. To date, this type of work has improved our understanding of cancer as a disease and 

revealed clinically relevant diagnostic, prognostic and druggable targets. However, it has also 

unveiled the immense genomic complexity, and striking inter- and intra- tumour 

heterogeneity that occurs at most „omics levels and even exists between histologically similar 

tumours [103-107].  
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As with lung and other cancers, it is now appreciated that the molecular profiles of 

histologically similar tumours are varied and this is relevant to treatment response [59]. 

These findings have had immediate implications to the translation of cancer genomics 

research, particularly to the design and interpretation of clinical drug trials. For example, in 

the absence of "a genetically simple disease addicted to a single pathway and relatively 

nontoxic drug", individual biomarkers cannot always predict clinical response to therapeutics 

[108]. Therefore, for genetically complex tumours, matching a single target in a patient's 

tumour with a targeted therapy may not be sufficient to predict whether they will do better or 

worse on targeted vs. standard therapy [108]. This is evident in lung cancer, where there 

exists a stark contrast between treatment response statistics [109] and the number of 

targetable tumour driver mutations thought to explain biology in a large proportion (> 60%) 

of lung tumours (Table 1.2) [48]. The necessity to assess where, and by what mechanisms, 

components of a targeted pathway are disrupted is highly critical to rational therapy design, 

evaluation and application.  

 

Presently, the field of cancer „omics research is tasked with distinguishing key genes 

and pathways driving tumour biology and drug response from a bewildering background of 

genomic variability. Genomic alterations driving cancer phenotypes, as opposed to those that 

are reactive or incidental to causative changes, theoretically make ideal candidates for 

therapeutic intervention. Identifying these causal alterations from backgrounds of immense 

genomic complexity is challenging but a critical step in the successful translation of 'omics 

findings, specifically for: design of therapeutics aimed at specific cancer phenotypes, 

predicting patient response to traditional modalities, and expanding the pool of patients likely 

to benefit from existing treatments [77, 102, 110]. 

 

A promising strategy to identify genes important to clinical phenotypes, is the 

collective interrogation of multiple 'omics dimensions on appropriate and well annotated 

tumour specimens, and the interpretation of these molecular data in a biologically meaningful 

context [111-116]. Availability of multi-omics tumour cohorts with rich clinical annotations 

is becoming increasingly common in the public domain. However, for many practical and 

logistic factors, there exists a scarcity of non-tumour (i.e. histologically “normal”) tissues 
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from cancer patients associated with these cohorts. These non-cancerous tissues are a 

particularly useful reference group for identifying tumour-specific alterations for „omics 

levels that are tissue specific (e.g., DNA methylation, miRNA and mRNA expression). The 

inclusion of patient-matched non-tumour samples is also useful for addressing confounding 

inter-individual variance associated with all „omics levels that is not related to disease 

phenotypes. However, depending on the objective and analytical approach, one caveat of 

using non-malignant tissues as control or reference relates to the masking of “field effect” or 

“field cancerization” changes which refer to a “molecular field of injury” in non-malignant 

tissues that are involved in initiation of frank disease, first described by Slaughter et al. in 

oral lesions [117] and expanded upon by many others since, including Spira et al. in relation 

to COPD and lung cancer susceptibility [118-120].  

 

1.7 Overarching hypotheses of thesis work 

The overarching hypothesis of this thesis is that specific risk factors, such as smoking 

and chronic inflammation lead to selective DNA level disruption of genes in exposed tissues 

and that these selectively disrupted genes contribute directly to COPD and lung cancer 

pathogenesis.  

 

1.8 Thesis objectives and specific hypotheses 

Primary objective: develop and apply an integrative and multi-omic approach to the 

identification of genes and pathways that contribute to the biology of both COPD and lung 

cancer, and assess the clinical utility of these findings in the context of patient survival and 

detection in surrogate tissues. 

 

Specific hypotheses: 

(1) Selection occurs at the DNA level and tumour and disease systems can be altered 

at multiple genetic and epigenetic levels; therefore loci sustaining high-level concerted 

genetic, epigenetic and/or transcriptional disruptions in tissues involved in disease pathology 

are indicative of strong selection.  
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(2) Integration of multi-omics information from patient tissues involved in disease is 

informative to uncovering mechanisms driving disease biology and clinical phenotypes. 

 

(3) Assessment of epigenetic changes (DNA methylation, miRNA) in non-malignant 

tissues (airway epithelial cells, lung parenchyma) of diseased and non-diseased subjects may 

indicate biology associated with disease and inform feasibility of using these tissues as 

surrogate markers for disease phenotypes. 

 

(4) Chronic inflammation in the lung functions as a pro-tumourigenic pressure 

leading to selective disruption of distinct genes and pathways in lung tumours from COPD 

patients. 

 

1.9 Specific aims and thesis outline 

 

Aim 1: Evaluate the potential impact of aberrant DNA methylation on the biology of 

COPD (Chapter 2). DNA methylation is a heritable, tissue-specific, and reversible gene 

regulatory mark involved in mediating cellular response to environmental stimuli including 

cigarette smoke and inflammation, and directly involved in development and progression of a 

myriad of diverse diseases. Small airways are the primary sites of airflow obstruction in 

COPD; however a genome-wide characterization of DNA methylation events in these highly 

relevant tissues had not been previously assessed. We sought to identify genes and pathways 

affected at level of DNA methylation in small airways by applying an integrated, genome-

wide DNA and RNA level characterization to small airway epithelia collected from 

individuals with and without COPD.  

 

Aim 2: Investigate the effect of smoking on microRNA expression in lung tumour and 

adjacent non-tumour tissues (Chapter 3). Cigarette smoke is the greatest risk factor and 

number one cause of lung cancer, however half of all newly diagnosed lung cancer patients 

are former smokers, and up to 25% have never smoked. Distinct smoking and non-smoking 

environments are associated with disparate and clinically relevant molecular, epidemiological 

and clinical features. microRNAs mediate biological responses to smoking, have extensive 
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functions in tumourigenesis, and clinical implications as drug targets and diagnostic markers. 

Patterns of miRNA disruption in lung tumours and non-tumour lung tissues at genome-wide 

sequence based level in the context of smoking have not been previously performed. We 

sought to apply such an approach to the interrogation of lung tumour and patient matched 

non-malignant lung tissues to investigate the effect of smoking on miRNA expression and 

prognosis in the context of smoking-status.     

 

Aim 3: Identify genes and pathways altered in lung adenocarcinoma tumours from 

patients with and without COPD and assess presence of alterations in non-malignant 

airway tissues of COPD patients with lung cancer (Chapter 4). Chronic inflammation is 

associated with increased cancer risk in many organs, including the lung. Chronic 

inflammation in the lungs may function as a pro-tumourigenic pressure leading to selective 

disruption of distinct genes and pathways in COPD-related lung tumours. There exists 

substantial epidemiological and genetic evidence to posit a mechanistic link between COPD 

and lung cancer. Genes involved in COPD-tumour biology, altered in non-malignant airway 

tissues may serve as useful epigenetic-based biomarkers informing screening or treatment 

strategies. We sought to identify genes important to lung tumour biology in COPD patients 

using a novel integrative bioinformatics approach based on biological principles governing 

gene selection in tumour systems. To evaluate the potential clinical application of our 

findings, we also sought to assess whether COPD-related tumour genes were also disrupted 

at the level of DNA methylation in small airways from patients with COPD and non small 

cell lung cancer (NSCLC).  
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2    Chapter: Evaluation of DNA methylation and gene expression patterns 

in COPD small airways 

 

2.1 Introduction 

Small airways are critically important sites for the maintenance of normal lung 

function. This is exemplified in COPD patients, where chronic inflammation leads to 

extensive small airway remodeling or thickening of the airway walls which occurs at the 

expense of the lumen, resulting in airflow obstruction. Airflow obstruction in COPD patients 

is also associated with a reduction in the numbers of small airways and airways per 

generation of branching. Increased wall thickening and loss of small airways per generation 

are directly correlated with reduced lung function and increasing COPD severity [21]. 

Importantly, small airway remodeling is thought to precede emphysematous destruction of 

lung parenchyma [21]. A better understanding of the molecular mechanisms underlying small 

airway remodeling is thus relevant to the design of therapeutic and prevention regimes 

targeting COPD pathogenesis. 

 

To date, efforts to molecularly characterize COPD or identify biomarkers of COPD-

predisposition and progression, have largely focused on genome-wide association studies 

(GWAS) [30, 32, 121, 122], transcriptome profiling of parenchymal lung tissues [37-40, 45] 

or large and small airways [41-44] and recently studies which integrate genotype (GWAS) 

and gene expression data for the purpose of identifying expression quantitative trait loci 

(eQTLs) [123-126]. GWAS have revealed a significant inter-individual genetic variance 

underlying lung function and response to major COPD risk factors. Transcriptome studies 

support the hypothesis that impaired protective mechanisms in response to reactive oxidative 

species (ROS) from cigarette smoke and inflammatory cells result in damage to small airway 

epithelia (SAE) and promote inflammation in COPD airways that persist years after smoking 

cessation. eQTL studies are beginning to unravel the functional impact of many disease-

related genetic variants in COPD biology, lung function and smoking-response. 

 

Epigenetic mechanisms, including histone modification, DNA methylation and non-

coding RNA mediate cellular responses to systemic and environmental stimuli including 
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those important to COPD, such as inflammation and smoking [127]. Epigenetic changes, 

which yield somatically heritable changes in gene expression patterns, are important 

mediators of environmental exposures related to chronic disease. DNA methylation is a 

heritable, tissue-specific, and reversible gene regulatory mark that is highly modified in 

response to cigarette smoke and involved in the development and progression of a wide 

spectrum of diseases (recently reviewed [91]). DNA methylation patterns are established and 

maintained by DNA methyltransferase enzymes (DNMTs), which methylate the 5‟ position 

carbon in the pyrimidine ring of cytosines at cytosine guanine (CpG) dinucleotides. 

Methylation of CpG dinucleotides often occurs in ~200 bp stretches of CpGs known as CpG 

islands. Hypermethylation of CpG islands, especially those proximal to gene promoters, are 

associated with gene silencing whereas hypomethylation of normally methylated promoters 

is associated with gene activation in some cancers. Globally, methylation functions to silence 

repetitive elements, a pattern that is often reversed and associated with genomic instability in 

disease and aging. 

 

While DNA methylation has been explored in the context of COPD in clinically 

relevant tissues such as sputum and blood [123, 128, 129], like other epigenetic marks, DNA 

methylation is highly tissue specific therefore exploration of tissues involved in COPD 

pathology may yield insight into the molecular mechanisms underlying disease pathology. 

Since DNA methylation is a reversible gene regulatory modification, the exploration of 

epigenetic drugs to treat inflammatory and malignant disease is an enormous field of study 

[127, 130].  

 

Whole genome assessment of these marks in small airways of COPD patients has not 

been previously performed. Given i) the importance of small airways to COPD pathology, ii) 

the knowledge that epigenetic mechanisms mediate cellular responses to systemic and 

environmental stimuli such as inflammation and smoking [127] and iii) the highly tissue 

specific nature of DNA methylation patterns, we hypothesized assessment of these marks in 

small airway epithelia from individuals with COPD would provide insight into DNA level 

disruptions associated with small airway remodeling. In this study, we use an integrative 

multi-omics approach on patient-matched small airway DNA and RNA to evaluate the 
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potential impact of aberrant DNA methylation on the biology of COPD. Since disruption of 

epigenetic events may underlie disease-specific gene-expression changes, characterization of 

DNA methylation is a critical first step towards the development of epigenetic markers and 

novel epigenetic therapeutic interventions for COPD. 

 

2.2 Methods 

 

2.2.1 Description of cohort and clinical samples 

COPD subjects were defined by post-bronchodilator FEV1 lung function tests as per 

the 2011 Global Initiative for Chronic Obstructive Lung Disease (GOLD) (Table 3.1) [5]. 

Small airway epithelia (SAE) were collected as described in Section 2.2.2, from former 

smokers (FS) with (n = 15) and without (n = 23) COPD (Table 2.1). FS are defined as one 

who has stopped smoking for ≥ 1 year. Two-tailed Student's t-tests found no significant 

difference in age, pack years or years since quitting smoking between COPD and non-COPD 

groups. All COPD subjects were GOLD stage II (n = 9) or III (n = 6) (as per Table 1.1).  

 

Table 2.1   Summary demographics and clinical information for COPD small airway study 

  COPD Normal p value 

n = 15 23 

 Age 65±5.76 64±4.8 0.44 

Female:Male 5:10 8:15 1 

Pack Years 54.77±30.43 46.64±20.53 0.37 

Years Quit 10±9.55 14±5.44 0.2 

FEV1act  1.79±0.63 3.06±0.68 5.59E-06 

FEV1%Pred 58±15.59 98±9.84 2.10E-08 

FEV1/ FVC% 58±9.57 75±5.38 4.92E-06 

 

 

 

2.2.2 Collection of small airway epithelia 

Bronchial small airway epithelial (SAE) specimens were obtained during routine 

auto-fluorescent bronchoscopy and under local anesthesia and conscious sedation by Dr. 

Stephen Lam at the British Columbia Cancer Agency. A 1.5-mm Teflon bronchial brush with 

a sheath is inserted into a peripheral airway with the same luminal diameter as the outer 



18 

 

diameter of the bronchial brush and the brush is gently pushed out from the sheath to collect 

the bronchial cells as previously described [131, 132]. RNA brushes that were taken from the 

same patients, on the same day and from the same lobe as DNA brushes, were considered 

"patient matched". Representative light microscopy images of cells collected using this 

approach from one patient is shown at 20X and 40X magnifications (Figure 2.1).  

 

 

Figure 2.1 

 

20 X 40 X
 

 

Figure 2.1   Light microscopy images of cells collected with brush from small airways during 

bronchoscopy 

Cytological composition of collected cells described previously reveals these cells are primarily (over 95%) 

bronchial epithelial cells, with the remainder leukocytes and alveolar macrophages. 

 

 

 

2.2.3 Preparation of bronchial epithelial cells for processing 

Brushes were removed from -80°C and thawed on ice. Vials were spun at 13000 rpm 

at 4°C for 10 min. Supernatant was gently removed, followed by a pulse spin and removal of 

residual supernatant. Brushes and walls of vials were washed twice with 1ml ice cold PBS 

(made with DEPC water), and spun at 13000 rpm at 4°C for 10 min. Supernatant is removed 

as described above. Vials were then stored at -80°C. 
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2.2.4 Extraction of bronchial epithelia DNA from brushings 

Brushes stored and frozen in CytoLyt (Holologic Inc., Bedford, MA) were thawed on 

ice. Vials containing brushes were spun at full speed for 10 min and all supernatant removed. 

Cells were then lysed in a total of 500 µl of lysis buffer (10 mM Tris pH 8, 100 mM EDTA 

pH 8, 0.5% SDS, 50 mM NaCl) containing 5 µl of 10 mg/ml Proteinase K (Life 

Technologies, Carlsbad, CA), at 55°C for 6 hours. Every 2 hours, samples were spiked with 

5 µl of 10 mg/ml Proteinase K, and frequently and gently mixed. After cell lysis, brushes 

were discarded and samples were extracted once with phenol/chloroform extraction to 

remove Proteinase K. Supernatants from this extraction were then spiked with RNase A for a 

final concentration of 100 µg/ml, and placed at 37˚C for 1 h. RNase treatment was followed 

by standard buffered phenol/ chloroform DNA extractions and alcohol precipitation. Briefly, 

two phenol/chloroform (500 µl phenol/200 µl of chloroform) extractions were performed, 

followed by one 500 µl chloroform extraction. Each extraction was mixed for 6 min on a 

rocker, and spun at 13000 rpm for 5 min. DNA was precipitated by 1/10 volume 3 M sodium 

acetate and equal volume 100% isopronanol. Samples were gently mixed and stored at -20°C 

for 30 minutes or overnight. Samples were then spun at 13000 rpm at 4°C for 10 min and all 

supernatant discarded. Pellets were washed with 1 ml ice cold 70% ethanol, spun at 13000 

rpm at 4°C for 10 min. All supernatant was removed and pellets were allowed to air dry at 

room temperature. Pellets were then resuspended in 30 µl sterile water at 37°C overnight. 

DNA was then quantified using a ND-1000 Spectrophotometer V3.1.0 (NanoDrop 

Technologies Inc., Wilmington, DE) and stored at -20°C. 

 

2.2.5 DNA methylation profiling 

DNA methylation profiles were obtained using the Illumina Infinium Methylation 

(HM27) chip (Illumina, San Diego, CA) which assesses 27,578 CpG sites of 14,475 genes 

(GSE55454).  DNA samples were bisulfite converted using the Zymo EZ DNA Methylation 

bisulfite conversion kit (Zymo Research Corporation, Orange, CA) and processed as 

previously described (7). Methylation data is given as either β-values= Max (methy,0)/[Max 

(methy,0)+ Max (unmethy, 0) +100], or M-values= log2 ([Max (methy,0) +1] / ([Max 

(unmethy,0) +1]). Illumina probes were filtered by detection p value (p > 0.05) for quality. 
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Probes that mapped to sex chromosomes, within five base pairs (bp) of known single 

nucleotide polymorphisms (SNPs), or that contained repeat sequences ≥ 10 bp were also 

removed, as per the Cancer Genome Atlas Network protocol [133]. Probes were also retained 

if the number of informative measures (those with detection p < 0.05) were available for at 

least 50% of cases in each group. This left 21,945 probes (12,755 unique genes) for 

comparative methylation analyses between COPD and non-COPD small airways. 

 

Quantification of percent cytosine methylation for select genes was performed by 

pyrosequencing on a subset of samples for which adequate material was available from Table 

2.1 and on select differentially methylated (DM) genes of interest Table 2.2 for which 

pyrosequencing probe design was feasible [134].  Each 25 µl PCR contained 1x PCR Buffer 

(Qiagen Inc.), 0.2 mM dNTPs, 0.025 U Hot Start Taq DNA polymerase (Qiagen Inc.), 0.25 

mM forward primer, 0.25 mM reverse primer, and approximately 25 ng bisulfite-converted 

DNA. Each PCR was performed under the same cycling conditions except for the annealing 

temperature. Cycling conditions were: 95°C for 15 min, 50 cycles of 94°C for 30 seconds, 

variable annealing temperature for 30 seconds, 72°C for 60 seconds, followed by 72°C for 10 

min. Template preparation and pyrosequencing was performed according to Tost and Gut 

[135]. 
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Table 2.2   Pyrosequencing validation of Illumina HM27K probes 

     

Gene CYP4F11 EPHX1 IL17RC PTEN 

STATUS HYPER HYPER HYPER HYPER 

HM27K Probe cg03190825 cg24928687 cg07705835 cg21480743 

FC  (COPD/Norm) 1.32 1.37 1.29 1.26 

Total # CpGs examined 1 2 1 1 

% Meth Average HM27 COPD 37 55 28 11 

% Meth Average HM27 Normal 7 21 8 4 

% Meth Delta (COPD-Norm) 30 34 20 7 

% Meth Average Pyro COPD 26 57 9 7 

% Meth Average Pyro Normal 9 25 3 5 

% Meth PYRO (COPD-Norm) 17 32 6 2 

% Meth HM27K- PYRO 13 2 13 5 

Forward Primer (5‟ to 3‟) 

GTTATTTTGA

GTTGGTTTTT

TTGT 

TGGTTATTT

TTTTTGGAT

TTTGTA 

Biotin:AGG

TTTGTGG

GGTTTTA

GGA 

GGGGTTG

TAAATAG

ATTTGAT

AGG 

Reverse Primer (5‟ to 3‟) 

Biotin:TGGTTG

TTTAGGTTTG

GAAGATAT 

Biotin:TTAA

AAGAAGGG

AATTTGGG

ATAA 

AAAGGTT

TAGGGTT

TAGTTTTT

GG 

Biotin:TGG

TTGAGTT

TATAGTA

GGTGGG 

Sequencing primer (5‟ to 3‟) 

TGGTTTTTTT

GTATTTAGTT 

TTTTTGGAT

TTTGTATAG

TA 

GAAAGGT

TTAGGGT

TTAGTT 

GATAGGT

TTGTTTTG

GG 

Annealing temperature (°C) 60 50 50.7 50.7 

 

FC (COPD/Norm): methylation fold change observed in COPD compared to non-COPD small airways; %Meth 

Average HM27K COPD: average β value COPD airways; %Meth Average HM27K Normal: average β value 

non-COPD airways; %Meth Delta: average β value COPD airways minus average β value non-COPD airways; 

% Meth Average Pyro COPD: pyrosequencing percent methylation in COPD airways; % Meth Average Pyro 

non-COPD: pyrosequencing percent methylation in non-COPD airways; % Meth PYRO (COPD-Norm): 

pryosenquencing percent methylation from COPD and non-COPD substracted;  %Meth HM27K – PYRO; 

average difference between methylation levels obtained by HM27K and pyrosequencing.  

 

 

2.2.6 Gene expression profiling 

Gene expression profiles for 22 patient matched samples were generated using 

Affymetrix Human Gene 1.0 ST arrays (GSE56341) (Affymetrix, Santa Clara, CA). Probeset 

summarization and generation of numerical gene expression levels were performed using the 

makecdfenv package and RMA normalization using the HuGene-1_0-st-v1.CDF file in R: A 

language and environment for statistical computing. Genes that overlapped between both 

arrays (after Infinium probe filtering described in Section 2.2.5) resulted in the inclusion of 
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11,761 unique genes for integrative analyses, gene expression permutation and Spearman 

correlation tests.  

 

2.2.7 DNA methylation analysis 

Sequence dependent color bias correction and SSN normalization algorithms 

designed for Illumina Infinium HM27 methylation platform were applied [136]. Since 

commonly used β-values are heteroscedastic, M-values were used for all statistical tests 

where equal variance is assumed [136, 137]. β-values were used for dimensional reduction 

by unsupervised principal component analysis (PCA), as recommended [137]. The Illumina 

Infinium assay was highly reproducible, although less methylated probes were more variable 

(Figure 2.2 and 2.3). A multivariate ANOVA was used to assess variance in methylation due 

to disease, age, gender, pack years and years quit. To identify differentially methylated (DM) 

genes in COPD small airways, we applied a non parametric permutation test, using 10,000 

permutations and corrected for multiple testing using the Benjamini and Hochberg (B-H) 

method (B-H p < 0.05 was considered significant). This test is highly powerful for small 

sample sizes. We further applied standard deviation (SD) ≤ 2, and average fold change (FC) 

cutoffs of > 1.25 or < 0.75 for probes to be considered differentially hyper or hypomethylated 

in COPD airways, respectively. A PCA was performed in MatLab. Genes DM between top 

and bottom pack-year tertiles of our cohort, regardless of disease status, were deemed 

"smoking-related". 
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Figure 2.2 
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Figure 2.2   Technical reproducibility of Infinium assay using small airway epithelia 

DNA methylation profiles from bronchial epithelial cells using the Infinium platform are technically 

reproducible. Technical replicates from two brushes from the same site in one COPD patient, involving 

independent bisulfite conversion, array hybridization, color correction and normalization were found to be 

highly correlative, rho= 0.9740 (95% confidence interval 0.9734 to 9746), p < 0.0001, as determined by a non-

parametric Spearman test. M-values which = log2 [(Max (methy,0) +1) / (Max (unmethy,0) +1)] are plotted. 

Unmethylated probes (negative M values) are more variable than methylated probes (positive M values). 

 

 

2.2.8 DNA methylation and expression integration 

Non-parametric Spearman tests were applied to identify genes likely regulated 

epigenetically (Spearman's ρ <= -0.4 and p < 0.05) using patient matched methylation and 

gene expression profiles. A gene was considered significantly negatively correlated if at least 

one Illumina and corresponding Affymetrix probe on either array passed the criteria stated. 

DM genes whose expression levels in COPD airways had: i) a permutation test p value < 

0.05 and ii) an average fold change (FC) of > 1.2 or < 0.8 compared to non-COPD profiles, 

were considered differentially expressed (DE). Here, we focused on genes that sustained 

concomitant inverse methylation and expression alterations (DM and DE). Recent expression 

studies report subtle differences (i.e. small effect size) induced by cigarette-smoke in non-

malignant tissues thus we employed the same FC criteria to ensure we did not overlook 

subtle changes [138, 139].  
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2.2.9 Pathway enrichment analysis 

DM and inversely DE genes were selected for IPA (Ingenuity Pathway Analysis®, 

www.ingenuity.com), which uses a Fisher‟s exact test to calculate p values corresponding to 

the probability that enrichment of a canonical pathway is due to chance alone. 

 

 

2.3 Results 

 

2.3.1 Aberrant DNA methylation patterns affect hundreds of genes in COPD small 

airways 

We hypothesized that patterns of DNA methylation in COPD small airways would be 

distinct from subjects with normal lung function and similar smoking history. We first 

evaluated the extent to which DNA methylation was differentially altered in small airways 

epithelia (SAE) between patients with COPD compared to controls. We detected 1120 

unique genes (1260 CpG probes) as DM in COPD SAE, of which 97% were 

hypermethylated (see Digital Content Supplementary Table 2, available online [140]). 

Increased variance in lowly methylated probes in combination of our SD cut off threshold 

may also have contributed to the increased proportion of hypermethylated probes (Figures 

2.2 and 2.3). A subset of these genes was validated by pyrosequencing analysis (Figure 2.4). 

Of the 1120 DM genes, 79 were previously associated with COPD in gene expression studies 

or GWAS (see Digital Content Supplementary Table 3, available online [140])). These 

included, for example, hypermethylation of three glutathione S-transferase genes (GSTP1, 

GSTM1 and GSTT1), three cholinergic receptors (CHRNB1, CHRNB2 and CHRND), as well 

as GPR126, HTR4 and EPHX1. Hypomethylated COPD associated genes included KSR1, 

whose over-expression is indicative of increased bacterial colonization frequently associated 

with COPD phenotypes in humans and in mice [141]. 
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Figure 2.3 
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Figure 2.1   Methylation variance between technical replicates and COPD and normal groups 

Variance between technical replicates was calculated for each probe. The top 2.5% most variable probes (681 

probes), whose variance ranged from 0.93-21.52, are plotted. Most variance occurred for hypomethylated 

probes (M value ≤ -2), which accounted for >80% of the 2.5% most variable probes. Since approximately 90% 

of promoters associated with CpG islands are normally unmethylated, and the 27,253 probes we assessed reside 

primarily in promoters, we expect that many of the differentially methylated (DM) events identified in COPD 

small airways are aberrantly methylated compared to non-COPD former smoker airways. Likewise, as CpG 

island-promoters are normally unmethylated, the number of aberrant hypomethylated events is substantially 

smaller than for hypermethylated events. Increased technical variability of less methylated probes in 

conjunction with our SD criteria, is also another likely factor in the prevalence of hypermethylated DM probes 

detected in the present study. For the COPD cases, 70% of DM probes had a standard deviation from the mean 

(coefficient of variation, COV) of <50%, and for the normal group, 90% of probes had a COV <50%. 
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Figure 2.4 
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Figure 2.2   Methylation variance between technical replicates and COPD and non-COPD groups 

Methylation profiles generated using the Illumina HM27K arraywere validated for a subset of genes by 

pyrosequencing. M values were converted to Beta values by (2^Mvalue)/ (2^Mvalue + 1). Average % 

methylation values were calculated for COPD and non-COPD groups (i.e. “Normal”) for both HM27K and 

pyrosequencing results. Pyrosequencing results (dark blue and dark red bars) paralleled those of HM27K (light 

blue and light red). Average differences between the two assays ranged from 2%-13%. 

 

 

2.3.2 DNA methylation is correlated with lung function variables 

We were next interested in assessing whether methylation may be associated with 

lung function variables, as opposed to disease status. While we did not detect any significant 

methylation differences between 9 GOLD II (moderate) and 6 GOLD III (severe) COPD 

patients, a PCA using only 100 of the most DM genes between 6 severe and 6 control 

subjects, separated 15 COPD and 23 non-COPD subjects in COPD and non-COPD overall 

(Figure 2.5). When we considered methylation and lung function as continuous variables, we 

found methylation levels of 62 genes were significantly (B-H  corrected p value < 0.05) 

correlated with lung function overall, 48% of which overlapped with our 1120 DM COPD 

genes (from Digital Content Supplementary Table 4 [140]). All significantly correlated lung 
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function probes were negatively correlated with methylation (i.e. higher methylation was 

associated with lower lung function). 

 

Figure 2.5 

 

 

Figure 2.3   Principal component analysis 

The 100 most DM probes between GOLD Stage III and a subset of non-COPD cases were applied to clustering 

and dimension reduction algorithms of 38 COPD (blue dots) and non-COPD (red dots) methylation profiles (β-

values). As expected, the top 100 DM genes from severe COPD subjects compared to a subset of normal 

subjects were capable of clustering COPD and normal methylation profiles using the entire cohort. 

 

 

2.3.3 COPD related DNA methylation alterations possibly induced by smoking 

While two-tailed Student's t-tests found a significant difference in pack-years 

between our high (n= 11 cases) and low (n= 10 cases) pack-year groups (p= 0.000126); 

FEV% predicted (p= 0.042852), years quit (p= 0.01543) and age (p= 0.017821) were also 

significant, therefore we also required "smoking-related" genes to be significantly associated 

with pack-years (p< 0.05) by a MANOVA test. We detected 158 unique genes that passed 

our criteria for "smoking-related" (i.e. DM between a subset of high and low pack-year 

patients in our cohort). Of these, 45 overlapped with our 1120 DM COPD, 11 of which were 

also significantly associated with pack-years and disease status (p < 0.05) by a MANOVA in 
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the high and low pack-year sub-groups. These are: BAI2, C10orf35, CD248, CDKN2B, 

CHRNB1, LIPC, PTK9, SOX17, SUV420H2, TREM2 and ZNF323, all of which were DM in 

the same direction in COPD and high pack-year groups; 9 genes were hypermethylated and 

two (TREM2 and ZNF323) were hypomethylated (see Digital Content Supplementary Table 

5, available online [140]). 

 

We also compared our findings to a recent study by Buro-Auriemma et al. who 

describe the effects of active smoking on the SAE  methylome in current (CS) and never 

(NS) smoker subjects without COPD [142]. Of the top 50 hypomethylated and 

hypermethylated smoking associated DM genes discovered by Buro-Auriemma et al., none 

of our smoking-associated genes overlapped, but five of our DM COPD genes did, including: 

ALDH1A3 and SH3TC2 which were hypermethylated in CS and COPD FS SAE (except one 

of the two DM ALDH1A3 probes which was hypomethylated in COPD), and CYP1A1, 

GSTM1 and KCNJ15 which were hypomethylated in smokers, but hypermethylated in 

COPD SAE. 

 

 

2.3.4 Pathways affected by DNA methylation in COPD small airways 

We next examined what molecular pathways were associated with DM genes from 

COPD airways. Overall, three pathways were significantly enriched in the 1120 DM gene set 

(Benjamini-Hochberg (B-H) corrected p value < 0.05), these included: G protein coupled 

receptor signaling (31 genes), Aryl hydrocarbon receptor signaling (20 genes) and cAMP-

mediated signaling (26 genes) (Figure 2.6 and Digital Content Supplementary Table 6, 

available online [140]). These pathways are known to play a role in small airway biology 

including COPD small airway remodeling, wound healing and in mediating cellular response 

to polycyclic aromatic hydrocarbon (a component of cigarette smoke) exposure [143-146]. 
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Figure 2.6 

 

 

Figure 2.4   Differentially methylated genes in COPD small airways correspond to three significantly 

enriched pathways 

We detected 1120 differentially methylated genes in small airways of COPD patients compared to methylation 

profiles from individuals without COPD. These genes corresponded to three significantly enriched pathways: G 

protein coupled receptor signaling (31/272 genes; B-H p = 0.024), Aryl Hydrocarbon Receptor Signaling 

(20/161 genes; B-H p = 0.0276) and cAMP-mediated signaling (26/224 genes; B-H p= 0.0345). The horizontal 

axis displays -log of the B-H p value, calculated by Fisher's exact test right-tailed, representing the probability 

that pathways are enriched in a given gene set by random chance. A B-H p value = 0.05 is indicated by the 

vertical red line. B-H p: Benjamini-Hochberg corrected p value. 

 

 

2.3.5 Integration of DNA methylation and gene expression changes to reveal 

candidate genes and pathways potentially involved in COPD pathogenesis 

Epigenetic regulation of gene expression by DNA methylation is dependent upon 

location and CpG content of regulatory elements. For example, hypermethylation of gene 

promoter elements with high CpG content is associated with repression of gene expression, 

whereas hypermethylation within the first exon of gene bodies is associated with activation 

of gene expression. Since Illumina HM27 CpG probes reside primarily within promoters, we 

focused our analysis on genes whose methylation and gene expression values were 

negatively correlated across samples (where matched DNA methylation and gene expression 

profiles were available) from COPD and non-COPD subjects. We identified 141 such genes; 

however we note that methylation levels of 335 genes were positively associated with gene 

expression, 99% of which were hypermethylated and overexpressed. Of the inversely 
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correlated genes, 130 were hypermethylated and underexpressed and 11 were 

hypomethylated and overexpressed relative to non-COPD airways (Figure 2.7 and Digital 

Content Supplementary Table 7, available online [140]). Fifteen of these 141 genes (11%) 

have been previously associated with COPD, at either the DNA or mRNA level, but none 

have been previously associated with differential DNA methylation in COPD (Table 2.3). 

For example, TFF3, the trefoil factor which regulates repair of injured human respiratory 

epithelium, was hypermethylated and underexpressed in COPD SAE [147]. Similarly, the 

creatine kinase gene CKB, was hypermethylated and underexpressed in COPD airways. 

Underexpression of CKB has been previously detected in COPD bronchial epithelial cells in 

association with smoke-induced bronchial epithelial cell senescence [148]. 

 

Figure 2.7 

 

 

Figure 2.5   Methylation heat map of differentially methylated and inversely differentially expressed 

genes in COPD airways 

141 DM and inversely DE genes in COPD small airways, corresponding to 130 hypermethylated and 

underexpressed genes and 11 hypomethylated and overexpressed genes are depicted for 38 samples (COPD = 

15, purple bar; non-COPD = 23, red bar). M-values are plotted. Positive M-values correspond to more (bright 

blue) and less (black) methylation. (Genes correspond to Digital Content Supplementary Table 3, available 

online [140]). 
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Table 2.3   Differentially methylated and differentially expressed genes in COPD small airways 

previously associated with COPD 

Symbol Meth Exp Meth B-H pval Meth FC Exp pval Exp FC 

BNIP3 HYPER UNDER 7.45E-05 1.76 4.06E-03 0.5 

TTC3  HYPER UNDER 6.73E-07 1.57 3.14E-04 0.35 

SMPD3 HYPER UNDER 1.19E-05 1.42 6.43E-09 0.61 

CXCL1 HYPER UNDER 4.80E-05 1.4 2.87E-06 0.15 

EPHX1 HYPER UNDER 3.10E-05 1.37 1.67E-03 0.21 

MUC1 HYPER UNDER 3.08E-05 1.36 5.62E-11 0.55 

NFE2L2 HYPER UNDER 1.29E-04 1.36 7.61E-07 0.26 

MMP14 HYPER UNDER 3.00E-05 1.35 2.44E-02 0.27 

CD9 HYPER UNDER 2.84E-07 1.31 3.79E-04 0.11 

LGALS3 HYPER UNDER 2.25E-04 1.29 7.64E-04 0.26 

TFF3 HYPER UNDER 9.88E-04 1.26 6.07E-03 0.24 

PTEN HYPER UNDER 2.38E-05 1.26 2.25E-04 0.34 

CKB HYPER UNDER 1.04E-07 1.25 4.80E-04 0.55 

VHL HYPO OVER 4.20E-02 0.7 3.55E-03 2.63 

MUC13 HYPO OVER 3.98E-04 0.71 9.07E-10 1.18 

Meth: methylation status of gene in COPD relative to non-COPD airways; Exp: expression status of gene in 

COPD relative to non-COPD airways; Meth B-H pval: Benjamini-Hochberg corrected permutation test p value 

of COPD vs non-COPD DNA methylation comparison. Meth FC: methylation fold change of gene in COPD 

airways over non-COPD airways; Exp pval: permutation test p value of COPD vs non-COPD expression 

comparison; Exp FC: expression fold change of gene in COPD airways over non-COPD airways. 

 

2.3.6 Validation of gene expression changes in external cohorts  

Since this is the first study assessing DNA methylation patterns in small airways of 

COPD patients, validation of methylation findings in external datasets was not possible. 

Therefore, to validate our DM and DE gene set, small airway gene expression profiles were 

downloaded from GSE37147 [41]. After matching for smoking status, this cohort included 

39 FS with COPD (n= 32 GOLD II; n= 7 GOLD III) and 63 FS without COPD. We found 

that 46 out of 141 of our DM and DE genes had similarly altered expression patterns in 

COPD compared to non-COPD airways in this external dataset (Table 2.4), five of which 

(EPHX1, IGF1R, LRIG3, MUC13 and SDCBP2) showed statistically significant differential 

expression between the 39 COPD and 63 non-COPD profiles (p < 0.05 by a non-parametric 

Mann–Whitney U test). Our observation of highly methylated genes exhibiting reduced gene 

expression levels suggests that aberrant DNA methylation has a concordant effect on gene 

expression in COPD SAE cells.  
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Table 2.4   Differentially methylated genes inversely expressed in multiple cohorts 

Refseq Meth Exp Meth BH pval Meth FC Exp pval Exp FC 

ADAMTS13 HYPER UNDER 2.45E-04 1.29 2.04E-02 0.81 

ALDH3B1 HYPER UNDER 1.75E-05 1.27 3.52E-03 0.21 

ARIH1 HYPER UNDER 1.36E-05 1.30 4.47E-02 0.59 

BLVRA HYPER UNDER 1.77E-06 1.60 7.94E-03 0.49 

BNIP3 HYPER UNDER 7.45E-05 1.76 4.06E-03 0.50 

*BTG4 HYPER UNDER 1.09E-06 1.30 4.39E-02 0.72 

C10orf26 HYPER UNDER 2.83E-06 1.33 6.88E-03 0.80 

C1orf114 HYPER UNDER 1.95E-04 1.29 7.36E-03 0.75 

C3orf15 HYPER UNDER 4.57E-08 1.55 3.61E-02 0.20 

CCDC60 HYPER UNDER 6.79E-06 1.33 2.34E-03 0.26 

*CDH1 HYPER UNDER 9.89E-05 1.40 1.03E-03 0.10 

CKB HYPER UNDER 1.04E-07 1.25 4.80E-04 0.55 

CSNK1E HYPER UNDER 9.31E-06 1.49 7.69E-03 0.74 

*CYP4F11 HYPER UNDER 3.64E-04 1.37 9.69E-03 0.50 

DNAH3 HYPER UNDER 1.31E-06 1.82 9.60E-04 0.45 

†EPHX1 HYPER UNDER 3.10E-05 1.37 1.67E-03 0.21 

FARP1 HYPER UNDER 3.53E-05 1.45 2.45E-02 0.46 

FERD3L HYPER UNDER 2.49E-06 1.34 2.70E-02 0.83 

FGFR1OP HYPER UNDER 2.63E-07 1.50 1.69E-03 0.37 

FOXA1 HYPER UNDER 1.03E-04 1.29 2.19E-03 0.75 

FTH1 HYPER UNDER 2.96E-04 1.26 7.78E-03 0.09 

GLT8D1 HYPER UNDER 1.02E-04 1.27 1.47E-04 0.63 

†IGF1R HYPER UNDER 2.49E-05 1.29 3.87E-02 0.54 

JUND HYPER UNDER 6.94E-07 1.72 2.51E-02 0.75 

LGALS3 HYPER UNDER 2.25E-04 1.29 7.64E-04 0.26 

†LRIG3 HYPER UNDER 1.51E-05 1.28 2.90E-02 0.45 

MAPRE3 HYPER UNDER 1.23E-07 1.34 3.94E-02 0.64 

MLL HYPER UNDER 1.96E-04 1.40 1.17E-02 0.67 

MLLT4 HYPER UNDER 2.88E-05 1.26 1.75E-03 0.16 

†MUC13 HYPO OVER 3.98E-04 0.71 9.07E-10 1.18 

NT5DC1 HYPER UNDER 1.70E-03 1.30 3.17E-02 0.30 

*PPGB HYPER UNDER 6.35E-07 1.57 1.19E-02 0.75 

PPP1R13B HYPER UNDER 8.58E-04 1.39 5.33E-03 0.80 

PTPN6 HYPER UNDER 1.65E-04 1.45 4.91E-03 0.72 

RFX2 HYPER UNDER 1.96E-04 1.29 2.44E-03 0.48 

†SDCBP2 HYPO OVER 1.64E-03 0.72 7.27E-05 6.72 

SCGB2A2 HYPO OVER 8.52E-04 0.74 2.57E-04 17.66 

SFRS8 HYPER UNDER 5.23E-07 1.36 1.96E-03 0.52 

*SLC44A2 HYPER UNDER 2.98E-05 1.31 1.01E-02 0.44 

*SNRPN HYPER UNDER 8.70E-04 1.35 4.37E-02 0.58 

ST13 HYPER UNDER 1.07E-04 1.45 2.59E-02 0.20 

STK33 HYPER UNDER 3.14E-05 1.28 8.92E-03 0.26 

*SUMO3 HYPER UNDER 3.16E-05 1.62 3.46E-02 0.80 

VHL HYPO OVER 4.20E-02 0.70 3.55E-03 2.63 

WDR54 HYPER UNDER 1.18E-04 1.32 1.09E-02 0.64 
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Table 2.4   Differentially methylated genes inversely expressed in multiple cohorts 

† significantly differentially expressed in FS from GSE37147; *multiple methylation probes map to gene 

symbol; Meth: methylation status of gene in COPD relative to non-COPD airways; Exp: expression status of 

gene in COPD relative to non-COPD airways; Meth BH pval: Benjamini-Hochberg corrected permutation test p 

value of COPD vs non-COPD DNA methylation comparison; Meth FC: methylation fold change of gene in 

COPD airways over non-COPD airways; Exp pval: permutation test p value of COPD vs non-COPD expression 

comparison; Exp FC: expression fold change of gene in COPD airways over non-COPD airways. 

 

2.3.7 Methylated genes strongly negatively correlated with gene expression 

To identify the aberrantly methylated gene candidates most likely to be controlled by 

DNA methylation in COPD SAE, we applied a Spearman correlation cut off (ρ < -0.4, p < 

0.05) to the 141 DM and DE gene set. The most negatively correlated DM and DE gene was 

CYP4F11 (ρ= -0.866742, Spearman p = 0.000001) (Table 2.5). For these genes, the presence 

of COPD was the only significant factor (p < 0.05) responsible for the observed variance in 

methylation based on a multivariate ANOVA assessing variance due to COPD, age, gender, 

pack years and years quit, except for one of the two methylated probes for CYP4F11 

(cg24655310), which was also affected by gender (p= 0.01733). MUC13 was the gene most 

significantly associated with hypomethylation in COPD subjects (p= 0.0006442). 

 

Table 2.5   Differentially methylated and expressed genes most likely under epigenetic control in COPD 

small airways 

Symbol rho p value Meth Exp Meth BH pval Exp pval Meth FC Exp FC Chr MapInfo 

CYP4F11 -0.87 2.00E-06 HYPER UNDER 4.75E-04 9.69E-03 1.32 0.50 19 15906788 
MUC13 -0.63 1.94E-03 HYPO OVER 3.98E-04 9.07E-10 0.71 1.18 3 126135480 

SNRPN -0.50 1.88E-02 HYPER UNDER 1.09E-07 4.37E-02 1.42 0.58 15 22674380 

CYP4F11 -0.49 2.20E-02 HYPER UNDER 2.53E-04 9.69E-03 1.43 0.50 19 15906119 

EPHX1 -0.49 2.31E-02 HYPER UNDER 3.10E-05 1.67E-03 1.37 0.21 1 224079536 

BLVRA -0.48 2.61E-02 HYPER UNDER 1.77E-06 7.94E-03 1.60 0.49 7 43764312 

SDCBP2 -0.45 3.59E-02 HYPO OVER 1.64E-03 7.27E-05 0.72 6.72 20 1257722 

BTG4 -0.45 3.80E-02 HYPER UNDER 2.04E-06 4.39E-02 1.25 0.72 11 110888125 

 

rho: Spearman correlation coefficient; p value: Spearman test p value; Meth: methylation status of gene in 

COPD relative to non-COPD airways; Exp: expression status of gene in COPD relative to non-COPD airways; 

Meth BH pval: Benjamini-Hochberg corrected permutation test p value of COPD vs non-COPD DNA 

methylation comparison; Exp pval: permutation test p value of COPD vs non-COPD expression comparison; 

Meth FC: methylation fold change of gene in COPD airways over non-COPD airways; Exp FC: expression fold 

change of gene in COPD airways over non-COPD airways; Chr: chromosome location of gene; MapInfo: base 

pair location of CpG assayed. 
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2.3.8 The Nrf2 signalling pathway is strongly enriched for genes affected by both 

DNA methylation and mRNA alterations in COPD small airways 

We next applied pathway enrichment analysis to the set of 141 DM and DE genes. 

This 141 gene set was significantly enriched (p < 0.05) for three pathways: PTEN signaling, 

the Nrf2-mediated oxidative stress response pathway and the IL-17F in allergic inflammatory 

airway diseases (Figure 2.8). Two modulators of the PTEN signaling pathway: PTEN and 

CSNK2A2 were hypermethylated and underexpressed in COPD airways. Multiple upstream 

Nrf2 regulators (PKC, MEK1, Actin, PTEN, NRF2) and downstream effector molecules 

(MAF, MRP4, GST, HIP2, HSP6, EPHX1, FTH1) were found to be differentially affected at 

the level of DNA methylation and/or gene expression (Figure 2.9). Two of the most strongly 

negatively correlated genes in our entire study were EPHX1 and CYP4F11 (Table 2.5). In the 

IL-17F pathway, the upstream receptor IL17RC, along with downstream CXCL1 were found 

to be hypermethylated and underexpressed, while the pro-inflammatory CSF2, was 

hypomethylated and overexpressed. 

 

Figure 2.8 

 

 

Figure 2.6   Pathways enriched in differentially methylated and differentially expressed COPD airway 

gene set 

Three pathways were significantly (p < 0.05) enriched in the 141 DM and DE genes. These included: PTEN 

signaling (p= 0.016), the Nrf2-mediated oxidative stress response pathway (p= 0.0178) and the IL-17F in 

allergic inflammatory airway diseases (p= 0.0288). The horizontal axis displays -log of the p-value which was 

calculated by Fisher's exact test right-tailed, representing the probability that pathways are enriched in a given 

gene set by random chance. A p value = 0.05 is indicated by the vertical red line. 
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In our external validation data set, the Nrf2 signaling pathway was the most 

significantly enriched pathway (p = 0.00614) based on the 46 genes that were altered in the 

same direction and was also the only significantly enriched pathway that overlapped between 

the DM and the concomitant DM and DE gene sets. 

 

Collectively our integrative analyses indicate that i) expression levels of COPD 

associated genes are epigenetically deregulated in small airways of patients with COPD and 

ii) DNA methylation is a likely mechanism through which key pathways of importance to 

COPD pathology are disrupted. 
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Figure 2.9 

 

 

Figure 2.7   The Nrf2-mediated oxidative stress response pathway is altered at multiple levels by DNA 

methylation in COPD airways 

Increased cellular levels of reactive oxidative species (ROS), inhibit KEAP1/CUL3/RBX1 mediated NRF2 

ubiquitination and proteosomal degradation, allowing NRF2 nuclear translocation. Antioxidant response 

element (ARE) genes which are transcriptionally activated by NRF2, mediate processes involved in cellular 

protection from ROS damage. Genes in the Nrf2 pathway are aberrantly methylated and expressed at multiple 

points in COPD small airways. An impaired Nrf2 response can result in increased damage from ROS. 

Hypermethylated genes: light blue; hypermethylated and underexpressed genes: green. ARE: antioxidant 

response element genes. 
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2.4 Discussion 

DNA methylation is highly modified by inflammation and cigarette smoke in cells of 

exposed airways and lung tissues, and is directly involved in the development and 

progression of a wide spectrum of disease. In the context of COPD, DNA methylation has 

been explored in sputum and blood [123, 128, 129], but not on a genome-wide level in SAE. 

Since DNA methylation is highly tissue specific, and small airways are the primary sites of 

airflow obstruction in COPD, assessment of these marks in SAE from patients with COPD is 

of significant biological and clinical interest. We provide the first genome-wide methylation 

and integrative 'omics study applied to the analysis of SAE from individuals with COPD. To 

avoid confounding effects of active cigarette smoking which is known to affect both DNA 

methylation and gene expression in small airways [142], analyses were restricted to FS. 

 

We found that DNA methylation is widely disrupted in SAE of COPD patients, 

affecting hundreds of genes which we found predominately hypermethylated relative to SAE 

of individuals without COPD. Since the majority of gene promoters associated with CpG 

islands are normally un-methylated [149] and our assay was predominantly restricted to 

promoter CpGs [150], many of these DM events are likely abnormal. Overall, our DM 

COPD gene set was enriched for three pathways: G protein coupled receptor signaling, Aryl 

hydrocarbon receptor signaling and cAMP-mediated signaling. In the context of COPD, 

deregulation of these pathways has been implicated at the single nucleotide polymorphisms 

(SNP), mRNA and protein levels [31, 146, 151], but not previously at the level of DNA 

methylation as described here. 

 

While we did not detect any significant differences between moderate and severe 

COPD cases, we did detect genes whose methylation status was significantly correlated with 

lung function overall, all in a negative direction and almost half of which overlapped with 

our DM COPD genes (from Digital Content Supplementary Table 4 [140]). We found 

methylation of GATA4 negatively associated with lung function and DM in COPD; 

hypermethylation of GATA4 has been previously associated with lower percent predicted 

FEV₁ in wood smoke-associated COPD [129]. Methylation levels of genes not detected as 

DM in COPD but significantly correlated with lung function and of potential interest to 
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COPD, include CRABP1 a cellular retinoic acid binding protein [152], and ITPK1 which has 

been associated murine tracheal cell model of cystic fibrosis [153]. 

 

Given the overwhelming proportion of DM genes that were hypermethylated in 

COPD SAE, our results contrast those of a study that discovered DNA methylation patterns 

in blood DNA of large family-based cohorts of COPD patients, were predominantly 

hypomethylated [123]. However, DNA methylation (and gene expression) patterns are tissue 

specific, therefore discordance between these studies is expected. COPD is a systemic 

disease and results from large-scale epigenomic investigations using peripheral blood DNA 

are indeed of clinical importance given the accessibility of blood and the potential utility of 

blood based biomarkers.  

 

DNA methylation has been explored in lung and airway cells in the context of other 

chronic lung and airways diseases, including idiopathic pulmonary fibrosis (IPF) [154] and 

asthma [155]. Two hypermethylated COPD genes (GRASP and ABCA8) overlapped with 

the 16 genes discovered by Sanders et al. as DM and DE in IPF lung tissues, although only 

ABCA8 was in the same direction. Of interest, two of our hypermethylated DM COPD genes 

(CAV1 and PTEN) have been described elsewhere as IPF suppressor genes [156-158] as well 

as in COPD [159, 160], highlighting the potential importance of these genes to chronic lung 

disease, particularly in the context of cigarette smoke [159, 161]. Our COPD SAE results did 

not have any overlap with six genes described by Stafanowicz et al. as differentially 

methylated between atopic and asthmatic derived SAE [155] possibly reflecting the distinct 

biology of these diseases. 

 

In attempting to enrich identification of COPD-specific DNA methylation alterations 

by only assessing FS, we were not able to assess whether our DM COPD genes may be 

induced by smoking. Therefore, we compared our results to those of a recent study by Buro-

Auriemma et al., who assessed methylation and gene expression differences between SAE 

from CS and NS without COPD, and found the majority of DM genes hypomethylated in 

smoker SAE [142]. When we directly compared our results, 5 DM COPD genes overlapped 

with the most DM in CS SAE, although primarily in opposite directions. Interestingly, while 
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20% of Buro-Auriemma et al's top hypomethylated genes are involved in aryl hydrocarbon 

receptor signaling, we found this pathway significantly and almost entirely hypermethylated 

in COPD SAE (see Digital Content Supplementary Table 6 [140]). Given the importance of 

these genes and pathways to COPD and smoking response [162], these results could suggest 

that in individuals without disease, hypomethylation and upregulation of smoking-induced 

genes and pathways in CS SAE, such as CYP1A1, GSTM1 and genes involved in Aryl 

hydrocarbon receptor signaling occurs, but abnormally, hypermethylation of these genes may 

be related to smoking-induced damage associated with COPD. 

 

We attempted to further assess the contribution of smoking to our COPD results, by 

assessing methylation differences between the individuals with high and low pack years from 

our cohort, regardless of disease status. Of our "smoking-related" genes, none overlapped 

with the top smoking-associated methylated genes described by Buro-Auriemma et al, but 

28% overlapped with our DM COPD genes, including the cholinergic receptor, CHRNB1; 

interestingly SNPs in CHRNB1 are associated with nicotine dependence and lung cancer 

[163]. Genes which were not detected as DM in COPD, but detected as smoking-related in 

our study included CRYGD, a member of six gene products required for expression of two 

important smoking-response genes, AHR and CYP1A1 [164], and CCL26, a negative 

regulator for neutrophils in COPD and whose expression is positively associated with lung 

function in COPD (but negatively in asthma) [165]. 

 

In addition to assessing genome-wide DNA methylation patterns, we further sought to 

identify genes likely disrupted at the transcriptional level due to aberrant DNA methylation 

by integrating DNA methylation with gene expression changes using patient-matched DNA 

and RNA profiles (see Digital Content Supplementary Table 7 [140]). We identified three 

pathways disrupted at both the DNA methylation and gene expression levels, which we 

believe are potentially important in COPD pathogenesis, namely: PTEN signaling, the Nrf2-

mediated oxidative stress response and the IL-17F inflammatory response pathways. 

 

PTEN is the master inhibitor of the PI3K–AKT–mTOR pathway. Acquired mutations 

of PTEN are evident in airway epithelium of smokers and PTEN variants have previously 
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been associated with COPD [160, 166]. Activation of the PI3K pathway is an important 

therapeutic target in a wide spectrum of cancers and is increasingly implicated in COPD 

[167, 168]. In our study, two modulators of this pathway, PTEN and CSNK2A2, were 

hypermethylated and underexpressed in COPD airways, suggesting that DNA methylation 

may be an additional mechanism regulating this pathway in COPD airways. 

 

The IL-17F inflammatory response pathway is also interesting in the context of 

COPD. Cytokines are important mediators in allergic and non allergic inflammatory airway 

disease. While overexpression of IL17 is associated with many inflammatory diseases, its 

role in COPD is ambiguous, likely due to differences in biological tissue or cell type assayed 

(e.g. serum, lymphocytes, airway epithelia cells) since IL17 and IL17 receptor expression 

and function varies widely based on cellular context [169, 170]. In COPD SAE, we found the 

upstream receptor in this pathway, IL17RC, along with downstream CXCL1, 

hypermethylated and underexpressed, while the pro-inflammatory CSF2, was 

hypomethylated and overexpressed. 

 

Increased oxidative stress and generation of free radicals, such as that which occurs in 

response to cigarette smoke exposure, affect nearly all aspects of COPD pathology. The Nrf2 

pathway is the major cellular defense system against oxidative stress, mediated through 

NRF2 nuclear translocation and activation of antioxidant response element (ARE) genes. The 

Nrf2 pathway is normally up-regulated in airways of healthy smokers, but in smokers with 

severe COPD, expression of key modulators and downstream ARE genes are 

underexpressed, resulting in impaired cellular defense mechanisms and increased oxidative 

damage in airway and lung tissues [42, 44, 171, 172]. At the DNA level, multiple GWAS 

have identified functional SNPs in promoters of key genes within this pathway including 

downstream ARE and genes associated with xenobiotic metabolism to be associated with 

increased COPD and lung cancer risk [173]. 

 

Our data strongly suggest the Nrf2 pathway sustains multiple levels of epigenetic 

disruption. We detected multiple upstream Nrf2 regulators (PKC, MEK1, Actin, PTEN, 

NRF2) and downstream effector molecules (MAF, MRP4, GST, HIP2, HSP6, EPHX1, FTH1) 
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differentially affected at the level of DNA methylation alone, or by both DNA methylation 

and gene expression in COPD small airways (Figure 2.8). Two genes in this pathway, 

EPHX1 and CYP4F11 were amongst the most negatively correlated DM and DE genes 

overall, strongly suggesting that in COPD airways, reduced expression of EPHX1 and 

CYP4F11 is likely modulated epigenetically by DNA methylation. EPHX1 functions in the 

biotransformation of epoxides resulting from degradation of aromatic compounds such as 

those found in cigarette smoke. Under-expression of EPHX1 is frequently described in 

COPD airway and lung tissues, and 'Slow' EPHX1 SNPs are associated with impaired 

enzyme activity and increased COPD risk and 'Fast' SNPs potentially confer a protective 

effect [31]. Cytochrome P450 4F enzymes, such as CYP4F11, are involved in cellular 

protection, xenobiotic metabolism, detoxification, lipid synthesis and metabolic activation of 

drugs, including those used to treat chronic inflammatory disease [174, 175]. They also have 

a direct role in inhibiting inflammation through suppression of leukotriene and prostaglandin 

signals [175]. CYP4F11 contains both JNK/AP-1 and hormone response element (HRE) 

binding domains; it is positively regulated by retinoid X receptors (RXR) and JNK (through 

TNF-α activation), and is negatively regulated by retinoic acid receptors (RARs). However, 

regulation of CYP4F11 in an environment of chronic inflammation is complex. In human 

epidermal keratinocytes, while TNF-α leads to immediate activation of CYP4F11 through 

JNK, subsequent activation of NFκβ results in direct inhibition of CYP4F11 [174, 175]. 

CYP4F11 regulators are clearly important to COPD biology, although little is known about 

the function of this enzyme in respiratory tissues. Given the known functions of CYP4F11, it 

is possible that epigenetic silencing of this enzyme in small airways of COPD patients may 

lead to impaired cellular protective responses, increased inflammation or altered activation of 

inhaled steroids. 

 

The study and application of antioxidant inflammation modulators (AIMs) to target 

the Nrf2 pathway is a growing field of study particularly relevant for COPD therapeutics 

[46]. Interestingly, overactivation of this pathway through mutation of its key inhibitor, 

KEAP1 is a frequent event in lung squamous cell carcinoma (SqCC) [176]. Given that SqCC 

is more frequent in individuals with COPD [177], elucidating the role this pathway plays in 
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promoting inflammation and tumourigenesis may be critical to the rational application of 

AIMS therapy to COPD patients. 

 

Our findings suggest that in small airways of COPD patients, aberrant DNA 

methylation is a genome-wide phenomenon affecting hundreds of genes and several 

pathways important to smoking response and COPD biology. Since DNA methylation is a 

reversible gene regulatory modification, further work in this area may contribute to the 

development of novel treatment strategies or the re-appropriation of existing epigenetic based 

drugs to the treatment or prevention of COPD. 
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3    Chapter: Effect of smoking on microRNA expression in lung 

adenocarcinoma and adjacent non-tumour lung tissues 

 

3.1 Introduction 

MicroRNAs (miRNAs) negatively regulate mRNA expression through direct 

inhibition of translation or induction of mRNA degradation [92]. They are key contributors to 

smoking response, tumourigenesis, progression and treatment response, and therefore 

represent promising and biologically relevant biomarkers [97, 98, 178-182]. Cigarette smoke 

is associated with 75-80% of lung cancer cases. The molecular effects of smoking are 

widespread, and are associated with specific genetic and epigenetic modifications that alter 

transcriptional regulation of many lung cancer related genes, including those coding for 

miRNA [179, 183-185].  

 

We hypothesized that, analogous to distinct smoking-status related patterns of DNA 

and mRNA alterations, miRNAs display smoking-status specific patterns of disruption in 

both non-malignant and malignant lung tissues from lung cancer patients. To date, most lung 

cancer miRNA profiling studies have focused on i) identifying aberrantly expressed miRNA, 

ii) identifying miRNA with prognostic significance, iii) comparing histological or molecular 

subtypes and iv) detecting miRNA in blood for use as clinical biomarkers [186-191]. 

Noticeably absent from the literature is a comprehensive comparison of miRNA deregulation 

in malignant and non-malignant lung tissues of cancer patients specifically in the context of 

smoking history. We investigated the effects of smoking on the miRNA transcriptome of 

lung tumours and parenchymal tissues from current (CS), former (FS) and never (NS) 

smokers. miRNA-mRNA gene networks were built to determine the potential biological 

consequences associated with miRNA disruption in these three groups, and we evaluated the 

potential clinical significance of our findings in relation to patient survival in the context of 

smoking status. 
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3.2 Methods 

 

3.2.1 Description of cohort and clinical samples 

Fresh-frozen lung adenocarcinoma (LUAC) tumour and patient matched non-

malignant lung parenchymal tissue was collected for 94 treatment naïve patients at 

Vancouver General Hospital under informed, written patient consent and with approval from 

the University of British Columbia-BC Cancer Agency Research Ethics Board (Table 3.1). 

Non-malignant samples were collected from areas > 2 cm away from tumour. Tissue 

microdissection was guided by a lung pathologist to ensure >80% tumour cell or >80% non-

malignant cell content. Total RNA was extracted using Trizol reagent. 

 

3.2.2 MiRNA Sequencing 

MiRNA-seq transcriptome profiles were obtained using Illumina HiSeq 2000 

platform as previously described [102]. Raw miRNA sequence libraries and sample 

information have been deposited in the NCBI Gene Expression Omnibus (Accession number 

pending) (http://www.ncbi.nlm.nih.gov/geo/). Reads were aligned to NCBI GRCh37 

reference genome and miRBase v18 using the BWA algorithm [192], and multiple alignment 

locations resolved as previously described [102]. Full description of library construction, 

sequencing, read pre-processing, alignment and annotation are previously described [102]. 

MiRNA expression was quantified as reads per kilobase per million (RPKM). In total, 1372 

unique miRNAs were detected across 188 libraries. miRNAs with RPKMs < 1 were 

considered not expressed. miRNAs with RPKMs < 1 across the entire cohort of tumour or 

non-malignant samples were disregarded, resulting in 927 miRNAs for subsequent statistical 

analyses. 

 

3.2.3 The Cancer Genome Atlas (TCGA) cohort 

miRNA sequencing data were obtained from the TCGA for use as an external cohort 

for validation purposes as well as for combining with our own dataset to perform miRNA 

survival association analyses. Expression profiles from the TCGA were processed as 

described for 'Level 3 data' in the TCGA data compendium (2011 Cancer Genome Atlas 

http://www.ncbi.nlm.nih.gov/geo/
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Network). Detailed descriptions of the use of TCGA data are described in sections 3.2.4.2 

and 3.2.4.4. 

 

3.2.4 Statistical Analyses 

3.2.4.1 Unsupervised hierarchical clustering of miRNA expression profiles 

Unsupervised hierarchical clustering using Ward's method was performed on all 

samples (n=188), tumour samples only (n=94), and non-malignant samples only (n=94) using 

Partek Genomics Suite software. A Fisher's Exact test and Chi-square tests were performed 

to assess the distribution of tumour and non-malignant profiles, and distribution of the three 

smoking types within the identified clusters, respectively. A Student's t-test was used to 

assess differences in pack years and years quit for CS and FS. A multivariate analysis of 

variance (MANOVA) test was performed to determine which clinical factors were most 

strongly associated with grouping of non-malignant and tumour miRNA expression profiles 

into distinct clusters. For all statistical tests, a p-value < 0.05 was considered significant. 

3.2.4.2 MiRNAs modulated in response to smoking 

To identify miRNAs whose expression is likely modulated in response to smoking, 

we performed a non-parametric permutation test using 10,000 permutations, between non-

malignant CS and NS tissues (CSN and NSN, respectively). Permutation scores were 

corrected for multiple testing using the Benjamini and Hochberg (B-H) method. miRNAs 

that had a B-H corrected p <  0.05 and an average fold change > 2.0 or < 0.5 were considered 

differentially expressed (DE) between CSN and NSN tissues. To identify miRNAs 

recurrently, aberrantly expressed in lung tumours of each smoking group (i.e., CS, FS, and 

NS), we applied the following criteria:  i) pair wise Wilcoxon Sign Rank test B-H multiple 

testing corrected p < 0.05, and ii) tumour/normal fold change > 2 (overexpression) or < 0.5 

(underexpression) in at least 25% of the tumours for that particular smoking group. miRNA 

satisfying these criteria in only one group, were considered smoking status specific and 

subjected to validation in the TCGA cohort. Tumour tissues from 80 FS, 42 CS, and 16 NS in 

the TCGA cohort were used to investigate the reproducibility of miRNA we identified as 

disrupted in a smoking status specific manner. Low numbers of non-malignant lung 

parenchymal tissues at the time of writing for the various smoking groups (12 FS, 9 CS and 2 
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NS) precluded us from validating our non-malignant tissue findings and required us to use 

pooled non-malignant samples of matched smoking history to calculate miRNA fold change 

for each TCGA tumour. Therefore, miRNAs were considered validated if the frequency of 

over- or underexpression was found to significantly differ between smoking groups (Fisher's 

exact test, p < 0.05) and there was a minimum disruption frequency difference of 15% 

between groups. 

 

To identify smoking related miRNAs that may be reversibly expressed upon smoking 

cessation in non-malignant tissues of lung cancer patients, permutation tests were similarly 

run between FS non-malignant tissues (FSN), CSN and NSN groups. For each comparison, 

miRNAs with a B-H corrected p < 0.05 and an average fold change > 2.0 or < 0.5 were 

considered differentially expressed (DE). miRNAs were considered reversibly expressed 

upon smoking cessation, if they showed i) DE between CSN and NSN and between CSN and 

FSN, and ii) had a CSN/FSN fold change ≥ 2, but a FSN/NSN fold change < 2. Conversely, 

miRNAs were considered irreversibly expressed upon smoking cessation, if they were i) DE 

between CSN and NSN and between FSN and NSN, and ii) had a CSN/FSN fold change < 2, 

but a FSN/NSN fold change ≥ 2. 

 

3.2.4.3 Generation of predicted miRNA-transcript interaction networks 

miRNAs identified as preferentially disrupted in one smoking-status group were input 

into the microRNA Data Integration Portal ver 2 (miRDIP; http://ophid.utoronto.ca/mirDIP), 

which integrates 13 microRNA target prediction algorithms and six microRNA prediction 

databases to predict miRNA-transcript (mRNA) interactions [96]. For this study, we used 

stringent miRNA target prediction criteria by considering only predictions that were 

supported by at least six sources. Interactions between miRNAs and their predicted mRNA 

targets were then visualized as networks using NAViGaTOR ver 2.14 

(http://ophid.utoronto.ca/navigator) [193, 194]. Two interaction networks were generated:  1) 

a network based on miRNAs specifically deregulated in one smoking group using all 

significant gene targets identified by miRDIP, and 2) a network based on miRNAs 

specifically disrupted in CS, FS, or NS and miRNAs commonly disrupted between all groups 

http://ophid.utoronto.ca/navigator
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using only significant gene targets identified by miRDIP that are known to be associated with 

lung cancer patient survival [195]. Only the most highly connected miRNA were used to 

build and visualize the networks. Pathway analysis was performed on biologically validated 

mRNA targets (miRTarBase v3.5) of miRNA disrupted in a smoking-status specific manner 

using Ingenuity Pathway Analysis. 

 

3.2.4.4 MiRNA survival associations in lung cancer cohorts 

Associations between miRNA expression and patient survival were assessed using a 

log rank, Mantel-Haenszel test. Patients were divided into tertiles based on miRNA 

expression and survival for patients in the top and bottom tertiles was compared. Only 

miRNAs detectably expressed in at least two thirds of patients were assessed to ensure 

adequate separation between high and low expressing groups for statistical analysis. Mantel-

Haenszel p values reflect the probability of randomly selecting subjects whose survival 

curves are as different as actually observed. p values < 0.05 were considered significant.  To 

enable assessment of smoking status specific survival associations, we combined miRNA 

expression and outcome data for our own patient cohort (n=91; 22 FS, 42 CS, 27 NS) and the 

TCGA LUAC cohort (n=127; 80 FS, 33 CS, and 14 NS).  In total, the combined cohort 

contained 218 patients including 102 FS, 75 CS, and 41 NS. Survival analyses were 

performed on all patients and each specific smoking group. Kaplan-Meier plots were 

generated using GraphPad Prism 6 software. Expression data for 38 CS LUAC profiles used 

to calculate the association of EZH2 expression with patient survival was acquired from the 

Early Detection Research Network (EDRN, http://edrn.nci.nih.gov/science-data), and 

processed as previously described [54, 196]. EZH2 survival analysis was performed as 

described above. 
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Table 3.1   Clinical information for lung adenocarcinoma samples profiled 

 

Characteristic NS1 CS2 FS3 

Number 27 43 24 

Sex 
   

Male 7 (26%) 13 (30%) 9 (38%) 

Female 20 (74%) 30 (70%) 15 (62%) 

Average Age 71 64 71 

Stage 
   

I 16 (59%) 26 (60%) 16 (67%) 

II 6 (22%) 11 (26%) 6 (25%) 

III 5 (19%) 4  (9%) 1 (4%) 

IV 0 2  (5%) 1 (4%) 

Ethnicity 
   

Caucasian 8 (30%) 11 (26%) 1 (4%) 

Asian 16 (59%) 0 (0%) 0 (0%) 

Unknown 3 (11%) 32 (74%) 23 (96%) 

Average Pack Years 0 46 47 

Average Years Quit n/a < 1 15 

 

1
 NS: patients who smoked fewer than 100 cigarettes in their lifetime; 

2
 CS: smokers at the time of diagnosis; 

3
 

FS: patients who stopped smoking at least one year prior to diagnosis date. % in brackets refer to the proportion 

of NS, CS or FS patients represented by variable indicated. 

 

 

3.3 Results 

 

3.3.1 MiRNA expression profiles cluster based on malignancy and smoking histories 

To determine whether miRNA expression was associated with smoking status in non-

malignant and lung tumour tissues, we first performed unsupervised hierarchical clustering 

on the 927 miRNAs with detectable expression across the 188 lung tumour and non-

malignant tissues. Clustering revealed miRNA expression segregated samples based on 

malignancy and smoking status (Figure 3.1). When all profiles were considered, tumour and 

non-malignant samples clustered separately, with a significant difference between the two 

clusters (Figure 3.1A and 3.1D, Fisher's Exact test, p = 2.2 x 10
-16

). Clustering of non-

malignant profiles revealed three clusters that were significantly different in smoking status 
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composition (Figure 3.1B and 3.1E, Chi-square test, p = 5.0 x 10
-4

). A similar clustering 

pattern was observed for tumour profiles (Figure 3.1C and 3.1F, Chi-square test, p = 0.023). 

Multivariate analysis revealed smoking and the number of years following smoking cessation 

were the clinical variables most strongly associated with cluster grouping in non-malignant 

tissue (F-value = 8.84, p = 5.0 x 10
-4

, F-value = 1.89, p = 0.058, respectively), whereas in 

tumours, age was the most significant variable associated with clustering (F-value = 4.83, p = 

0.032) (Table 3.2). While no significant difference in pack-years was found in non-malignant 

tissues or CS tumours, we did observe a significant difference in pack-years for FS tumours 

among the two clusters dominated by CS and FS tumours (Student's t-test, p = 0.030). 

Collectively, these results suggest miRNA expression profiles in both tumour and non-

malignant lung tissues are dependent on smoking histories, but that heterogeneity within 

ever-smoking groups exists. 
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Figure 3.1 

 

Figure 3.1   Unsupervised hierarchical clustering of lung tumour and non-malignant miRNA expression 

profiles 
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Figure 3.1   Unsupervised hierarchical clustering of lung tumour and non-malignant miRNA expression 

profiles 

Clustering of all 188 miRNA expression profiles revealed two distinct clusters, one comprised of non-malignant 

samples (teal), and the other comprised of mostly tumours (pink) (A). The clusters identified were associated 

with malignancy, as clusters 1 and 2 were significantly enriched for non-malignant and tumour profiles, 

respectively (Fisher‟s Exact test p = 2.2 x 10
-16

) Clustering of non-malignant tissues only (B) and tumours only 

(C) revealed three clusters. (D). Assessment of the distribution of CS, FS, and NS within the clusters identified 

in non-malignant samples revealed enrichment for CS and FS in clusters 1 and 2 compared to cluster 3 (Chi-

square test p = 5.0 x 10
-4

) (E). The same trend was observed in the clusters identified based on tumour profiles 

(Chi-square test p = 0.023) (F). 

 

 

Table 3.2   MANOVA results for miRNA expression profile clustering 

Non-malignant Samples Df Sum Squares Mean Squares F-value Pr(>F) 

Stage 3 0.70 0.23 0.41 0.75 

Gender 1 0.35 0.35 0.62 0.44 

Age 1 0.95 0.95 1.67 0.20 

Smoking 2 10.05 5.03 8.84 0.00 

Race 2 2.96 1.48 2.60 0.08 

PackYears 20 11.65 0.58 1.02 0.45 

YearsQuit 12 12.87 1.07 1.89 0.06 

Residuals 52 29.57 0.57 - - 

Tumour Samples Df Sum Sq Mean Sq F value Pr(>F) 

Stage 3 2.37 0.79 1.22 0.31 

Gender 1 0.69 0.69 1.06 0.31 

Age 1 3.13 3.13 4.83 0.03 

Smoking 2 0.99 0.49 0.76 0.47 

Race 2 1.82 0.91 1.41 0.25 

PackYears 20 11.59 0.58 0.89 0.60 

YearsQuit 12 10.41 0.87 1.34 0.23 

Residuals 52 33.73 0.65 - - 

 

 

3.3.2 MiRNAs are differentially expressed between non-malignant lung tissues of CS 

and NS with lung cancer 

Based on the observed clustering patterns, we aimed to identify miRNAs 

differentially expressed in non-malignant tissues of CS (CSN) and NS (NSN), as these two 

groups represent the most extreme smoking phenotypes. 37 miRNAs were significantly 

differentially expressed between CSN and NSN; 25 of which were overexpressed and 12 that 

were underexpressed in CSN (Table 3.3). Several of these miRNAs have been previously 
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implicated in lung cancer including miR-106a, miR-107, miR-136, miR-142, miR-19a, miR-

212, miR-339, miR-34b, miR-34c, and miR-449a. 

 

Table 3.3   MiRNAs differentially expressed in non-malignant lung tissue of patients with lung 

adenocarcinoma 

miRNA 
STATUS IN 

CSN 

FC 

(CSN/NSN) 

Average               

RPKM CSN 

Average               

RPKM NSN 
B-H pval Other 

hsa-mir-378c OE 5.49 5.49 0 0.00E+00 † 

hsa-mir-509 OE 3.49 7.82 2.24 1.76E-08 † 

hsa-mir-374c OE 3.26 3.26 0 0.00E+00 
 hsa-mir-514a OE 3.18 17.4 5.47 2.12E-07 † 

hsa-mir-508 OE 3 26.58 8.85 5.07E-08 † 

hsa-mir-339 OE 2.97 120.76 40.6 5.85E-11 † 
hsa-mir-627 OE 2.96 2.96 0 5.58E-12 † 

hsa-mir-539 OE 2.95 2.95 0 4.52E-12 † 

hsa-mir-3648 OE 2.74 3.24 1.18 9.91E-05 
 hsa-mir-151b OE 2.73 2.73 0 0.00E+00 

 hsa-mir-142 OE 2.54 3723.34 1467.49 0.00E+00 † 

hsa-mir-425 OE 2.43 335.41 137.94 6.49E-11 † 
hsa-mir-3687 OE 2.37 2.37 0 1.34E-04 

 hsa-mir-628 OE 2.36 28.63 12.11 0.00E+00 † 

hsa-mir-1277 OE 2.34 2.34 0 1.22E-12 
 hsa-mir-106a OE 2.33 23.05 9.9 0.00E+00 † 

hsa-mir-19a OE 2.27 25.6 11.3 0.00E+00 † 
hsa-mir-3130 OE 2.17 5.36 2.46 1.32E-10 

 hsa-mir-378a OE 2.14 313.56 146.41 0.00E+00 † 

hsa-mir-369 OE 2.14 9.77 4.57 1.05E-13 
 hsa-mir-3613 OE 2.07 30.66 14.81 0.00E+00 

 hsa-mir-483 OE 2.06 3 1.45 8.72E-06 † 

hsa-mir-184 OE 2.06 34.36 16.66 2.91E-07 † 
hsa-mir-136 OE 2.05 29.87 14.56 3.14E-11 † 

hsa-mir-154 OE 2.05 5.14 2.51 4.72E-14 † 

hsa-mir-934 UE 0.5 2.12 4.28 2.37E-08 

 hsa-mir-592 UE 0.46 1.76 3.84 2.53E-03 † 

hsa-mir-212 UE 0.42 3.66 8.64 2.60E-02 † 

hsa-mir-326 UE 0.42 156.52 374.54 3.51E-05 † 
hsa-mir-1180 UE 0.42 13.64 32.68 6.74E-09 

 hsa-mir-34b UE 0.41 39.82 97.96 6.21E-04 † 

hsa-mir-1224 UE 0.39 0 2.56 1.54E-02 † 
hsa-mir-449a UE 0.36 1.97 5.44 2.33E-03 † 

hsa-mir-34c UE 0.34 224.8 664.81 3.99E-04 † 

hsa-mir-4423 UE 0.33 1.04 3.16 2.46E-02 
 hsa-mir-107 UE 0.32 784.26 2482.12 1.61E-10 † 

hsa-mir-320b UE 0.3 33.2 111.25 3.12E-12 † 

† previously associated with cancer; B-H p values are Benjamini-Hochberg corrected p values from a 

permutation test between 43 CS non-malignant tissues (CSN) and 27 NS non-malignant tissues (NSN) 

 

 

3.3.3 MiRNA expression in non-malignant tissue can be irreversibly altered in FS 

Protein coding genes deregulated in response to active smoking display either 

reversible or irreversible expression in FS [132, 139, 197]. Genes upregulated in response to 

smoking that remain overexpressed in lung tissues of CS and FS with lung cancer, may 

indicate those smoking-related events involved in lung tumour development. We investigated 
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this phenomenon with respect to miRNA expression in FS non-malignant tissue (FSN), and 

identified two miRNAs exhibiting patterns consistent with reversible expression and 15 with 

irreversible expression in FSN (Table 3.4). Interestingly, the majority of these miRNAs have 

been associated with cancer, and four (miR-107, 142, 339, and 34c) specifically in lung 

cancer. 

 

Table 3.4   MiRNA expression in non-malignant lung tissues can be irreversibly altered in former 

smokers 

STATUS miRNA 

FC FC FC AVG AVG AVG 

Other CSN/NSN CSN/FSN FSN/NSN CSN FSN NSN 

IRREV hsa-mir-107 0.32 0.66 0.48 784.26 1181.7 2482.1 † 

IRREV hsa-mir-1180 0.42 0.84 0.5 13.64 16.27 32.68 † 

IRREV hsa-mir-1277 2.34 1.05 2.22 2.34 2.22 0 

 IRREV hsa-mir-142 2.54 1.09 2.32 3723.3 3408.5 1467.5 † 

IRREV hsa-mir-151b 2.73 1.3 2.09 2.73 2.09 0 

 IRREV hsa-mir-3130 2.17 0.63 3.47 5.36 8.55 2.46 

 IRREV hsa-mir-339 2.97 1.39 2.14 120.76 86.98 40.6 † 

IRREV hsa-mir-34c 0.34 0.95 0.36 224.8 237.16 664.81 † 

IRREV hsa-mir-374c 3.26 1.61 2.02 3.26 2.02 0 

 IRREV hsa-mir-378c 5.49 1.52 3.61 5.49 3.61 0 † 

IRREV hsa-mir-508 3 1.27 2.37 26.58 20.96 8.85 † 

IRREV hsa-mir-509 3.49 1.21 2.87 7.82 6.44 2.24 † 

IRREV hsa-mir-514a 3.18 1.4 2.27 17.4 12.42 5.47 † 

IRREV hsa-mir-539 2.95 0.94 3.15 2.95 3.15 0 † 

IRREV hsa-mir-628 2.36 0.99 2.39 28.63 28.9 12.11 † 

REV hsa-mir-3648 2.74 3.24 0 3.24 0 1.18 

 REV hsa-mir-3687 2.37 2.37 1 2.37 0 0   

† Expression of miRNA previously associated with cancer; FC= fold change; CSN: current smoker non-

malignant tissue; FSN: former smokers non-malignant tissue; NSN: never smoker non-malignant tissue; AVG: 

average miRNA expression. Please see section 3.2.4.2 for definition of irreversibility (IRREV) and reversibility 

(REV). 

 

 

3.3.4 MiRNAs recurrently altered in tumours from CS, FS and NS patients 

To identify miRNAs recurrently differentially expressed in tumours from each 

smoking group, we compared expression profiles for tumour and patient matched non-

malignant lung tissues of CS, FS and NS. This analysis revealed 232 overexpressed (OE) and 

58 underexpressed (UE) miRNA in current smoker tumours (CST); 257 OE and 47 UE 

miRNAs in former smoker tumours (FST); and 263 OE and 41 UE miRNAs in never smoker 

tumours (NST) (Figure 3.2). Overall, the majority of miRNA were OE (304/366, 83%); 65% 
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(196/304) of OE miRNAs and 58% (36/62) of UE miRNAs were shared between CS, FS and 

NS tumours, many of which (miR-17, miR-21, miR-106a let-7a, let-7c, miR-101, and miR-

143 for example) are well known lung cancer miRNAs (Appendix A and Appendix B). The 

identification of shared patterns of miRNA deregulation within CS, FS and NS lung tumours 

suggest that miRNAs likely participate in common mechanisms of tumourigenesis in lung 

adenocarcinoma. 

 

 

Figure 3.2 

 

 

 

Figure 3.2   Venn diagram illustrating differentially expressed miRNAs in lung tumours relative to 

matched non-malignant tissues from CS, FS, and NS 

miRNAs recurrently (>25%) disrupted and significantly, differentially expressed between paired, tumour and 

patient matched non-malignant lung tissues were assessed to determine the overlap in disruption between the 

groups. Overexpressed miRNAs are depicted in (A) and underexpressed miRNAs in (B). The majority of 

miRNAs differentially expressed between tumour and non-malignant tissues were overexpressed and most of 

the miRNAs identified were deregulated in all three smoking groups. 
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66 miRNAs were frequently altered in only one smoking tumour group: 25 in CS (14 

OE and 11 UE), 27 in NS (26 OE and 1 UE) and 14 in FS (12 OE and 2 UE) (Table 3.5). We 

refer to these miRNAs, including those preferentially disrupted in NS, as smoking-status 

specific. The established cancer related functions of some of the smoking-status specific 

miRNA, such as overexpression of miR-7, miR-27a, miR-93, miR-372 and underexpression 

of miR-138, miR-381, miR-582 [198-205], suggest miRNAs are likely involved in promoting 

tumourigenesis in a smoking status dependent manner. 

 

Table 3.5   MiRNA deregulation in one smoking-status lung tumour group 

Overexpressed miRNA Underexpressed miRNA 

CS FS NS CS FS NS 

hsa-mir-129 hsa-mir-105 hsa-mir-1295a hsa-mir-135a hsa-mir-381 hsa-mir-582 

hsa-mir-18b hsa-mir-1262 hsa-mir-150 hsa-mir-138 hsa-mir-607 

 hsa-mir-215 hsa-mir-151b hsa-mir-152 hsa-mir-195 

  hsa-mir-337 hsa-mir-190b hsa-mir-185 hsa-mir-3065 

  hsa-mir-372 hsa-mir-23c hsa-mir-1976 hsa-mir-378a 

  hsa-mir-3940 hsa-mir-27a hsa-mir-2114 hsa-mir-378c 
  hsa-mir-411 hsa-mir-3187 hsa-mir-216a hsa-mir-4532 

  hsa-mir-545 hsa-mir-320a hsa-mir-217 hsa-mir-4536 
  hsa-mir-5571 hsa-mir-504 hsa-mir-3130 hsa-mir-511 

  hsa-mir-576 hsa-mir-514b hsa-mir-3150b hsa-mir-532 

  hsa-mir-592 hsa-mir-632 hsa-mir-320e hsa-mir-676 
  hsa-mir-654 hsa-mir-944 hsa-mir-329 

   hsa-mir-7 

 

hsa-mir-340 

   hsa-mir-891a 

 

hsa-mir-3609 

   

  

hsa-mir-3613 

   

  

hsa-mir-4443 

   

  

hsa-mir-4791 

   

  
hsa-mir-500a 

   

  

hsa-mir-532 

   

  
hsa-mir-5701 

   

  

hsa-mir-612 

   

  

hsa-mir-636 

   

  
hsa-mir-652 

   

  

hsa-mir-660 

   

  
hsa-mir-675 

       hsa-mir-93       

 

Of the 66 miRNA that were altered in a smoking status specific manner, 57 were 

annotated in the TCGA dataset and 12 of these 57 miRNA were not detectably expressed in 

the smoking group of interest, resulting in 45 miRNA amenable for validation testing. In 

addition to a low number of patient matched tumour and non-malignant tissues pairs, 

inspection of the TCGA data revealed lower overall RPKM counts for most miRNA detected 

in comparison with our own dataset (Figure 3.3). Therefore we applied a different analysis 
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strategy for validation (described in section 3.2.4.2), resulting in 4 of the 45 assessable 

miRNA validating as altered in a smoking specific manner (miR-129 OE in CS, miR-152 OE 

in NS, miR-3065 UE in CS, and miR-511 UE in CS) (Figure 3.4).  

 

 

Figure 3.3 

 

 

Figure 3.3   Comparison of RPKM values and miRNA detection in the TCGA and BCCA datasets. 

Normalized miRNA expression values (RPKM) are plotted for CS, FS, and NS in our BCCA cohort and the 

TCGA dataset. The four miRNA illustrated demonstrate the difference in miRNA detection between tumour 

and non-malignant samples between the two datasets; miRNA in the TCGA data have lower expression values. 

These features of the TCGA data make validation of differentially disrupted miRNA difficult. The low 

validation rate we observed (4/45 assessable miRNA) likely reflects the compressed nature of the TCGA 

expression data. The box contains the 25th and 75th percentiles of expression data and the horizontal line 

indicates the median of the data. Whiskers extending from the box indicate the highest and lowest values within 

1.5 times the interquartile range. 
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Figure 3.4 

 

 

 

Figure 3.4   Four miRNA validated as specifically disrupted in one smoking group. 

Boxplots illustrate expression values of the four miRNA we validated as disrupted in a smoking specific manner 

in the TCGA cohort. Red boxes indicate the group for which miRNA disruption (over- or underexpression) 

occurs. Frequencies of miRNA disruption in tumour relative to non-malignant samples are indicated for each 

smoking group. miRNAs were considered validated if they exhibited a significant difference in alteration 

frequency between smoking groups (Fisher's exact test, p < 0.05) and a minimum 15% frequency difference 

between smoking groups concordant with our findings (describe in section 3.2.4). CSN, FSN, NSN = CS, FS, 

NS non-malignant samples, respectively. CST, FST, NST = CS, FS, NS tumour samples, respectively. OE = 

overexpression, UE = underexpression. 

 

3.3.5 Disrupted miRNA networks in tumours indicate selection of smoking-status 

specific target genes 

To elucidate signaling pathways and biological processes disrupted by smoking-status 

specific miRNAs, mRNA target genes were identified using miRDIP with stringent filters 

(i.e., prediction by at least 6 different algorithms).  Smoking-status specific miRNAs were 

predicted to affect a large number of unique mRNA targets in CS (n= 1,162 genes), NS (n= 

927 genes) and FS (n= 770 genes), (Figure 3.5) which could indicate that distinct cellular 
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pathway selection occurs in different smoking and non-smoking environments (Figure 3.5, 

left side). Conversely, common mRNA target genes (n=1,399) (Figure 3.5, right side), may 

indicate selection of genes deregulated in lung adenocarcinoma in general. CST-specific 

miRNAs target mRNAs with numerous Gene Ontology functions, including cellular fate and 

organization, metabolism, genome maintenance, transcription, and translation. In FST and 

NST, mRNA targets largely corresponded to similar functions, including transport and 

sensing (Figure 3.5). As an independent method of assessing the potential biological 

implications of miRNA disruption, we performed pathway analysis on previously 

biologically validated targets of miRNAs (as annotated in miRTarBase v3.5) specifically 

deregulated in one smoking group. We found not only expected commonalities in known 

cancer pathways across all groups, but also biological pathways that were uniquely disrupted 

in specific smoking status groups; for example, SAPK/JNK signaling in NS and ERK5 in CS 

(Figure 3.6). 
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Figure 3.5 

 

 

 

Figure 3.5   Network interactions between miRNAs specifically deregulated in CS, FS and NS lung 

tumours and their predicted mRNA targets 
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Figure 3.5   Network interactions between miRNAs specifically deregulated in CS, FS and NS lung 

tumours and their predicted mRNA targets 

miRNAs specifically disrupted in CS, FS, or NS tumours were input into mirDIP to identify their predicted 

gene targets (i.e., mRNA transcripts predicted by at least six miRNA target prediction algorithms). The network 

of identified miRNA-mRNA interactions was then generated and visualized using NAViGaTOR. Only the most 

highly connected miRNA were used to build the network. miRNAs specifically deregulated in CS, FS, or NS 

are indicated by blue, green, and red colored square nodes, respectively. Predicted mRNA targets are 

represented as circular nodes. Edges indicate miRNA-mRNA interactions, and are color-coded to match 

smoking group specificity of miRNA deregulation. Numerous target genes were shared by miRNAs specifically 

deregulated in CS, FS, and NS, as shown to the right of the miRNAs list in the centre. Conversely, targets 

unique to specific smoking groups are indicated to the left of the list. Predicted targets uniquely mapping to 

miRNA uniquely disrupted in one smoking-status group are represented by circles on the left; 1,162 mRNA 

targets were unique to miRNA altered in CST, 927 to NST miRNA, and 770 to FST miRNA. Conversely, 1,399 

mRNA miRNA targets were shared between miRNA altered uniquely in each smoking-status group. miR-532 

was underexpressed in CST and overexpressed in NST. Gene Ontology terms associated with predicted target 

genes are indicated by target gene shading. 
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Figure 3.6 

 

Figure 3.6   Canonical pathways differentially and commonly enriched for biologically validated target 

genes of miRNA specifically deregulated in one smoking group 

Pathway analysis was performed on biologically validated gene targets (based on miRTarBase v3.5) of 

miRNAs specifically deregulated in one smoking-status group. Analyses were conducted separately for targets 

of miRNA specific to CS, FS, and NS. Pathways specific to CS, FS, and NS, and significantly across all 

smoking groups. Dotted horizontal line indicates threshold for significant pathway enrichment (Fisher‟s Exact 

test p < 0.05). 
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3.3.6 Prognostically relevant lung cancer genes are targeted by miRNAs disrupted in 

a smoking-status specific manner 

To assess the potential prognostic implications of miRNA deregulation in lung 

cancer, we used a curated list of 1,066 lung cancer prognostic genes compiled by Zhu et al. 

[195], to build a miRNA-transcript interaction network comprised of both smoking-status 

specific miRNAs (Figure 3.7, colored square nodes) and miRNAs frequently altered across 

all LUAC groups (Figure 3.7, white square nodes). Of the 1,066 prognostic genes, 358 (34%) 

were predicted targets of the most highly connected miRNAs (n=75) used to derive the 

network. Prognostic genes predicted to be targeted by four or more of the miRNA are listed 

in Table 3.6. Interestingly, the majority of miRNAs were highly connected to the same lung 

cancer prognostic genes, and vice versa. For instance, miR-372, a miRNA identified as 

specifically overexpressed in CST, was connected to 31 different lung cancer prognostic 

genes. Conversely, nuclear transcription factor I, beta (NFIB), is a predicted target of 16 

unique miRNAs, highlighting the potential importance of this gene to LUAC. Moreover, of 

the miRNAs disrupted in a smoking-status specific manner, CS (blue) and FS (green) 

miRNAs demonstrated a higher number of connections to lung cancer prognostic genes than 

NS-specific miRNAs (red). Taken together, these data re-emphasize the biological and 

prognostic relevance of miRNA disruption in lung cancer, and highlight potential clinical and 

biological differences based on smoking status. 
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Figure 3.7 

 

 

Figure 3.7   Predicted interaction between prognostic lung cancer genes and miRNAs deregulated in 

tumours from CS, FS and NS 
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Figure 3.7   Predicted interaction between prognostic lung cancer genes and miRNAs deregulated in 

tumours from CS, FS and NS  

MiRNAs specifically disrupted in CS, FS, or NS tumours as well as miRNA frequently disrupted across the 

groups were inputted into mirDIP to identify their predicted gene targets. The network of identified miRNA-

mRNA interactions was then generated and visualized using NAViGaTOR, but was restricted to predicted 

target genes that are known to have prognostic significance in lung cancer. miRNAs specifically deregulated in 

a single smoking group are indicated by colored square nodes. miRNAs disrupted in multiple groups are 

indicated by white square nodes. Connections for miRNAs commonly disrupted among the smoking groups are 

indicated by grey edges, while blue, green and red edges indicate miRNA-mRNA interactions specific to CS, 

FS, and NS, respectively. Predicted targets are depicted as circular nodes, with shading corresponding to Gene 

Ontology terms associated with gene function. The degree of connectivity for gene targets is depicted by the 

target node size, where larger circular nodes indicate genes targeted by a greater number of different miRNAs. 

In total, the network is comprised of 75 miRNAs and 385 prognostic target genes. Most miRNAs are well 

connected to prognostic genes, with more connections for CS and FS specific miRNAs and fewer connections 

for NS specific miRNAs. miR-372, miR-607, and miR-543 were among the miRNAs most highly connected to 

lung cancer prognostic gene targets. 
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Table 3.6   Prognostic lung cancer genes targeted by multiple miRNA 

 

Prognostic 

lung cancer 

gene 

Number of 

predicted 

targeting 

miRNA 

Target Gene Name 
GO Biological 

Function 

NFIB 16 Nuclear factor 1 B-type D  
DTNA 9 Dystrobrevin alpha C  

ARID2 8 AT-rich interactive domain-containing protein 2 T  

HLTF 7 Helicase-like transcription factor T  
MAP4K3 6 Mitogen-activated protein kinase kinase kinase kinase 3 C  

ABCA1 6 ATP-binding cassette sub-family A member 1 C  

CNN3 6 Calponin-3 C  
SNX16 6 Sorting nexin-16 F  

CYB5R4 6 Cytochrome b5 reductase 4 N  

RSBN1 6 Round spermatid basic protein 1 N  

JARID2 5 Protein Jumonji C  

MEF2C 5 Myocyte-specific enhancer factor 2C C  

AGFG1 5 Arf-GAP domain and FG repeats-containing protein 1 D  
WEE1 5 Wee1-like protein kinase D  

ATRX 5 Transcriptional regulator ATRX D  

TIMP3 5 Metalloproteinase inhibitor 3 F  
PLEKHA5 5 Pleckstrin homology domain-containing family A member 5 N  

RSBN1L 5 Round spermatid basic protein 1-like protein N  
MEGF9 5 Multiple epidermal growth factor-like domains protein 9 N  

GATAD2B 5 Transcriptional repressor p66-beta T  

MAF 5 Transcription factor Maf T  
MEGF10 4 Multiple epidermal growth factor-like domains protein 10 C  

RND3 4 Rho-related GTP-binding protein RhoE C  

DMD 4 Dystrophin C  
NPTN 4 Neuroplastin C  

VLDLR 4 Very low-density lipoprotein receptor C  

FGFR2 4 Fibroblast growth factor receptor 2 D  
CCNE2 4 G1/S-specific cyclin-E2 D  

CUL4B 4 Cullin-4B D  

CCND2 4 G1/S-specific cyclin-D2 D  
HMGA2 4 High mobility group protein HMGI-C D  

CDC73 4 Parafibromin D  

TANC2 4 Protein TANC2 N  
UBL3 4 Ubiquitin-like protein 3 N  

SPRED1 4 Sprouty-related, EVH1 domain-containing protein 1 N  

RUNX1T1 4 Protein CBFA2T1 T  
TBL1XR1 4 F-box-like/WD repeat-containing protein TBL1XR1 T  

ZBTB11 4 Zinc finger and BTB domain-containing protein 11 T  

HLF 4 Hepatic leukemia factor T  
MYCBP2 4 Probable E3 ubiquitin-protein ligase MYCBP2 T  

MYCN 4 N-myc proto-oncogene protein T  

Gene Ontology (GO) functions: D  -  Genome Maintenance;  C  -  Cellular Fate and Organization;  T  -  

Transcription;  F  -  Protein Fate;  N  -  Not Matched 
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3.3.7 MiRNAs disrupted specifically in CS, FS, or NS tumours are associated with 

outcome 

Due to the scarcity of publically available cohorts with smoking status large enough 

to enable statistical analysis and comparison of survival, analysis of miRNA expression in 

relation to CS, FS or NS lung cancer patient survival has to our knowledge not been 

previously assessed. By combining miRNA expression and patient survival data from our 

lung adenocarcinoma (LUAC) cohort (n=91 tumours), with the TCGA‟s LUAC cohort 

(n=127 tumours), for a total of 218 LUAC corresponding to 102 FST, 75 CST and 41 NST, 

we addressed these challenges and performed the first smoking status-specific miRNA 

survival analysis. 

 

Of the miRNAs connected to lung cancer prognostic genes (Figure 3.7), 15 were 

significantly associated with survival (Mantel Haenszel, logrank p < 0.05), including miR-1 

and miR-153 (Figure 3.8A and 3.8B and Table 3.7). Considering all miRNAs altered in a 

smoking-status specific or shared manner, when all smoking groups were combined we 

identified 76 miRNAs as significantly associated with LUAC patient survival (Mantel-

Haenszel, logrank p < 0.05), 22 of which were significant after correcting for multiple testing 

(B-H p < 0.05) (Appendix C). These included miRNAs previously associated with LUAC 

patient survival (miR-1247, let-7g, miR-146a, miR-126) [206-209] and recurrence (miR-

200b) [210]. miR-187 which has been previously associated with brain metastasis in lung 

cancer patients [206] was the most significant miRNA associated with survival and disrupted 

in that same smoking group overall (Figure 3.9). Within individual smoking groups, 71 

miRNAs were associated with patient survival in FS, 12 in NS and 11 in CS (Table 3.8 and 

Appendix C). Low expression of the CST-specific tumour suppressor miR-138 was also 

associated with poor survival in CS (p = 0.009) (Figure 3.8C). High expression of EZH2, a 

recently biologically validated target of miR-138 in LUAC cells, was concordantly 

associated with poor patient survival (p = 0.021, Figure 3.8D). Collectively, these survival 

data provide further rationale for the stratification of lung cancer patients based on detailed 

smoking histories, and the evaluation of miRNAs in LUAC biology in the context of 

smoking. 
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Figure 3.8 

 

 

Figure 3.8   MiRNAs frequently deregulated in CS, FS and NS related lung adenocarcinomas are 

associated with patient survival 

Associations between miRNA expression and LUAC patient survival were assessed for miRNAs identified as 

deregulated in LUAC using a logrank, Mantel-Haenszel test. Survival analyses were performed independently 

for tumours from all smoking status groups, CS, FS, and NS patients. Numerous miRNAs commonly disrupted 

across CS, FS, and NS were significantly associated with LUAC patient survival, including miR-1 (A) and 

miR-153 (B) (B-H p < 0.05) which were both connected to multiple lung cancer prognostic genes from Figure 

3.7. miR-138, which was preferentially underexpressed in CS tumours, was also significantly associated with 

CS LUAC patient outcome, with low expression associated with poor survival (C) (p < 0.05). High expression 

of EZH2, a biologically validated target of miR-138, showed a significant association with poorer survival in 

CS LUAC patients (D) (p < 0.05). OE, overexpressed. UE, underexpressed. NS, never smokers. CS, current 

smokers. FS, former smokers. B-H, Benjamini-Hochberg multiple test corrected. 
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Table 3.7   MiRNA associated with lung AC patient survival that target lung cancer prognostic genes 

 

                  

miRNA 
Status in Tumours Mantel-Haenszel p value 

Other 
CST FST NST All Lung AC CS FS NS 

hsa-mir-1 UE UE UE 0.0021 0.8863 0.0179 0.0565 † 

hsa-mir-1301 OE OE OE 0.0214 0.2644 0.0122 0.3624 - 

hsa-mir-133a UE UE UE 0.0096 0.6305 0.0001 0.3569 - 
hsa-mir-133b UE UE UE 0.0414 na na 0.0304 † 

hsa-mir-153 OE OE OE 0.0006 0.9752 0.0006 0.3777 - 

hsa-mir-184 UE UE 
 

0.0036 na 0.2470 0.0103 † 
hsa-mir-320d OE OE OE 0.0371 0.5347 na 0.6182 † 

hsa-mir-326 OE OE 

 

0.2404 0.0131 0.5943 0.6563 † 

hsa-mir-328 OE OE OE 0.0139 0.0520 0.0043 0.9766 † 
hsa-mir-375 OE OE OE 0.0177 0.7243 0.0387 0.2538 † 

hsa-mir-376c OE OE OE 0.0965 0.9687 0.0076 0.4326 - 

hsa-mir-429 OE OE OE 0.0107 0.7818 0.0002 0.6960 † 
hsa-mir-484 OE OE OE 0.0394 0.3633 0.0110 0.7589 † 

hsa-mir-598 UE UE UE 0.2408 0.6718 0.0447 0.0326 † 

hsa-mir-940 OE OE OE 0.0289 0.4283 0.0656 0.6866 - 

          

p values with "na" refer to miRNA that were not sufficienty variably expressed for inclusion in survival 

analysis† previously associated with cancer prognosis; OE or UE refer to frequently over- or underexpressed 

miRNA in lung tumours from current (CST), former (FST) or never (NST) smoker tumours. Survival analysis 

was performed in either all tumour as a group (All Lung AC), current smokers only (CS), former smokers only 

(FS) or never smokers only (NS). 
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Figure 3.9 

 

Figure 3.9   MiR-187 is the most significant miRNA associated with patient survival. 

Associations between miRNA expression and LUAC patient survival were assessed using a logrank, Mantel-

Haenszel test. Considering all patient samples combined, regardless of smoking histories, miR-187 was the 

disrupted miRNA most significantly associated with patient survival after multiple testing correction. 

 

Table 3.8   Top 10 miRNA significantly associated with lung adenocarcinoma patient survival in CS, FS, 

and NS 

 
      

Tumour Group Surival Assoc. miRNA p-value Status in Tumours 

CS 

hsa-mir-1287 0.0022 OE in ALL 

hsa-mir-138 0.0086 UE in CST 

hsa-mir-326 0.0131 OE in FST and NST 

hsa-mir-331 0.0146 OE in ALL 

hsa-mir-30d 0.0282 UE in ALL 

hsa-mir-204 0.0291 UE in ALL 

hsa-mir-664 0.0331 OE in FST and NST 

hsa-mir-148a 0.0429 OE in ALL 

hsa-mir-195 0.0436 UE in CST 

hsa-mir-1270 0.0462 OE in ALL 

FS 

hsa-mir-133a 0.0001 UE in ALL 

hsa-mir-429 0.0002 OE in ALL 

hsa-mir-642a 0.0005 OE in ALL 

hsa-mir-153 0.0006 OE in ALL 

hsa-mir-187 0.001 OE in ALL 

hsa-mir-21 0.0013 OE in ALL 

hsa-mir-26b 0.0018 OE in ALL 

hsa-mir-135b 0.0021 OE in ALL 

hsa-mir-3607 0.0022 OE in ALL 

hsa-mir-99b 0.0027 OE in CST and FST 

NS 

hsa-mir-338 0.0006 UE in ALL 

hsa-let-7g 0.0036 OE in ALL 

hsa-mir-184 0.0103 UE in CST and FST 

hsa-mir-150 0.0143 OE in NST 

hsa-mir-139 0.02 UE in ALL 

hsa-mir-133b 0.0304 UE in ALL 

hsa-mir-664 0.0307 OE in FST and NST 

hsa-mir-598 0.0326 UE in ALL 

hsa-mir-10a 0.0342 UE in CST and FST 

hsa-mir-92b 0.0351 OE in ALL 
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3.4 Discussion 

Cigarette smoke is associated with specific modifications to the genomic and 

epigenomic landscapes of airways and lung tissues [8, 142], affecting the transcriptional 

regulation of both genes and microRNAs (miRNAs) [179, 183-185]. Recent evidence 

suggests that histologically similar lung tumours harbour distinct molecular profiles based on 

smoking status, and that these alterations underlie observed clinical disparities between lung 

tumours in smokers and NS [50]. Since large LUAC cohorts with well annotated smoking 

histories and multi-omics data in both tumour and non-malignant tissues are only very 

recently becoming available, few studies have directly investigated the effect of smoking on 

molecular features of lung tumours on a global 'omics level, particularly for miRNAs. The 

LUAC cohort we have compiled is the largest lung tumour data set with well-defined 

smoking status annotation and matched non-malignant tissue for every patient, to date (n=94 

patients, 188 miRNA sequencing profiles).  

 

Hierarchical clustering revealed that while smoking status and malignancy were 

associated with miRNA expression patterns, heterogeneity amongst CS and FS is present 

(Figure 3.1). It is likely that in addition to other non-miRNA molecular alterations, inter-

individual genetic variants involved in the biological response to smoking may underlie this 

observed heterogeneity [211-213]. Analogous to observations for protein coding genes [132, 

139], we identified miRNAs differentially expressed between CSN and NSN and either 

irreversibly (miR-107, -378c, -142 and -34c) or reversibly (miR-3648 and miR-3687) 

expressed in FSN (Table 3.4). It is plausible that altered expression of miRNAs in CSN and 

FSN tissues may be an early event related to smoke-associated tumourigenesis, although 

without interrogation of lung tissues from CS, FS and NS individuals without lung cancer, it 

is difficult to distinguish smoking induced alterations from those that are related to lung 

cancer itself. 

 

The majority of frequently disrupted miRNAs in LUAC relative to non-malignant 

lung tissues were commonly disrupted across all tumour groups, indicating that despite 

different smoking histories, common biological mechanisms largely underlie LUAC 

tumourigenesis. However, our findings of smoking-status specific miRNAs with unique 
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mRNA targets, suggests that miRNAs may underlie LUAC tumourigenesis in distinct 

smoking environments (Figure 3.5 and 3.7). For example, gene targets unique to miRNAs 

disrupted in CST, FST or NST could be indicative of the importance of these miRNAs to 

LUAC biology in distinct smoking environments. Conversely, genes heavily targeted by 

different miRNAs distinctly altered in CST, FST or NST, may indicate the importance of 

these genes to LUAC biology, irrespective of smoking status (Figure 3.5 and 3.7). 

 

A large number of lung cancer prognostic genes were identified as predicted targets 

for both commonly disrupted and smoking-status specific miRNAs [195]. CST specific miR-

372 targeted the most lung cancer prognostic genes and is a known oncogenic miRNA 

associated with poor outcome and aggressive disease in multiple cancers, including lung 

cancer, where it is a strong candidate for use as an early detection sputum-based biomarker 

[198, 199, 214-216] (Figure 3.7). The numerous targets of miR-372 were recently described 

in a LUAC comparative proteomic analysis, further alluding to the extensive pro-

tumourigenic role of this miRNA in lung cancer [217]. However, despite being 

overexpressed in CST (26%), the low variability in its expression levels across CST 

prevented us from statistically assessing the association between miR-372 expression levels 

and lung cancer patient survival in our study. 

 

The degree of overlap between miRNAs and prognostic mRNA targets was 

particularly high for miRNAs specifically disrupted in CST or FST, a finding we suspect is 

due to the fact that the lung cancer prognostic signatures we analyzed were based primarily 

on typical lung cancer patient cohorts which contain small numbers of NST. These findings 

underscore the potential clinical significance of miRNAs frequently altered in LUAC and 

illustrate the complexity that disruption of even few miRNAs can introduce in the study of 

disease biology. 

 

In contrast to previous studies where the association of miRNA expression and 

survival has been conducted in relation to NSCLC histological subtypes, mutational status, or 

tumour stage [186, 188, 190, 191, 206], we conducted an analysis of miRNA expression 

associated with lung cancer patient survival in relation to smoking status. We identified 
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numerous miRNAs significantly associated with patient prognosis in different smoking-

status groups or in LUAC in general (Table 3.7 and 3.8). Of interest, three miRNAs, miR-

195, miR-138 and miR-150, which demonstrated recurrent, aberrant expression in a specific 

smoking-status group, were significantly associated with survival in that same smoking 

group. 

  

Low expression levels of miR-195 are associated with poor patient prognosis in 

glioblastoma and colon cancer [218, 219], consistent with the prognostic association we 

identified for this miRNA in LUAC for CST. In the context of cigarette smoke and non-

malignant lung disease, miR-138 may have a role in hypoxic pulmonary vascular 

remodelling and pulmonary arterial hypertension through its role in the negative regulation of 

pulmonary artery smooth muscle cell apoptosis [220]. A recent study by Zhang et al. not 

only validated an anti-tumourigenic role for miR-138, but also demonstrated that this action 

occurred through targeted inhibition of EZH2 by miR-138 [221]. This study provides 

independent validation of our target prediction methods and provides further biological 

evidence of the importance of miR-138 to lung cancer (Figure 3.8). 

 

miR-150 is a candidate oncogenic miRNA, although its role in lung cancer is 

ambiguous [222-224]. Sun et al. report that expression of miR-150 is significantly 

downregulated in tumour tissues and embryonic lung tissues compared to normal lung 

tissues, although preferentially in tumours from smokers [222]. Two additional studies 

however identified upregulation of miR-150 in lung tumours, demonstrating a link between 

lung cancer cell proliferation and miR-150 through targeted inhibition of TP53 [223, 224]. 

We observed frequent (40%) overexpression of miR-150 specifically in NST, and found its 

overexpression was associated with better prognosis in NS LUAC patients. Thus, the 

mechanisms contributing to prognostic significance of miR-150 in LUAC may be related to 

the biology underlying lung tumourigenesis in NS. 

 

In conclusion, our study suggests that patterns of miRNA deregulation promote 

smoking-specific LUAC biology, but also highlights shared biology underlying LUAC 

tumourigenesis across all smoking and non-smoking groups. Collectively, our results 
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reaffirm the extent to which miRNAs can contribute to the molecular complexity of cancer 

genomes and suggest that miRNA disruption may contribute to the distinct clinical features 

and outcomes observed in CS, FS, and NS lung cancer patients. 
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4    Chapter: Identification of genes and pathways disrupted in lung 

adenocarcinoma tumours from patients with and without COPD using a 

multi-omics approach 

 

4.1 Introduction 

Worldwide, the combined burden of COPD and lung cancer is staggering [1, 225, 

226]. These diseases share many of the same genetic and environmental risk factors 

including smoking. However COPD alone is associated with an up to 10 fold increased risk 

of lung cancer that is correlated with lung function decline, independent of smoking history, 

suggesting a mechanistic link between COPD progression and lung tumourigenesis [64]. 

Despite considerable efforts towards understanding lung cancer biology at the molecular 

level and the increasing availability of large multi-omics data in the public domain; lung 

tumour „omics datasets with associated lung function measurements are extremely rare, thus 

little is known about the molecular biology of lung cancer in the context of COPD. There are 

currently no therapies that prevent or inhibit COPD progression or lung cancer, and no 

clinically viable molecular markers for early detection. An improved understanding of the 

molecular biology underlying COPD-related lung cancer is thus urgently needed so that 

effective prevention, treatment and early detection regimes may be developed. 

 

Chronic inflammation is causally associated with cancer development in a variety of 

tissue types including the lung in the context of COPD. We hypothesized that lung tumours 

arising in an environment of COPD-- a chronic inflammatory lung disease, would harbour 

distinct and clinically relevant molecular alterations compared to lung tumours from non-

COPD patients. Moreover, since tumour systems are altered at multiple „omic levels, we 

posited that interrogation of integrated multi-omics datasets would be conducive to 

elucidating genes selectively altered in tumour systems. We applied such an approach to the 

identification of genes and pathways disrupted in lung adenocarcinoma tumours from 

patients with and without COPD. We present the first multi-omic interrogation of COPD-

related lung tumours using the largest COPD-associated lung tumour cohort to date. 
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To evaluate the potential clinical application of our findings, we assessed whether 

genes heavily disrupted in COPD-related lung tumours were also disrupted at the level of 

DNA methylation in small airways from patients with COPD and non small cell lung cancer 

(NSCLC). We propose that genes important to COPD-related lung tumour biology altered in 

non-malignant airway tissues of COPD patients with NSCLC warrant further exploration as 

epigenetic-based early detection biomarkers or as potential targets for chemoprevention 

therapies in COPD patients. 

 

 

4.2  Methods 

 

4.2.1 Description of cohort and clinical samples 

Fresh-frozen lung adenocarcinoma tumours and patient matched non-malignant lung 

parenchymal tissue were collected for 73 treatment naïve patients at Vancouver General 

Hospital under informed, written patient consent and with approval from the University of 

British Columbia-BC Cancer Agency Research Ethics Board (Table 4.1). Patient matched 

non-malignant control lung parenchymal tissues samples were collected > 2 cm away from 

the tumour site. Microdissection was guided by hematoxylin and eosin stained sections 

graded by a lung pathologist for > 80% tumour cell or > 80% non-malignant cell content. 

DNA was extracted using standard phenol-chloroform procedures. RNA was extracted from 

tumour and matched non-malignant normal tissue using RNeasy Mini Kits (Qiagen Inc.) or 

Trizol reagent (Invitrogen, CA). Quality and quantity of genomic material was assessed using 

a NanoDrop 1000 spectrophotometer and by gel electrophoresis and/or by Agilent 2100 

Bioanalyzer. 
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Table 4.1   Discovery lung tumour cohort patient demographics 

  COPD Non-COPD p value 

n =  29 44 

 Sex 

  

3.00E-01 

Male 11 11 
 Female 18 33 

 Average Age 69 69 9.78E-01 

Lung Function 

   FEV1 Act 1.9 2.11 8.77E-02 

FEV1% Pred 75 90 6.38E-04 

FEV1/FVC% 61 76 2.89E-15 

Smoking 

  

2.00E-03 

Current 18 15 

 Former 7 5 

 Never 4 24 
 Average Pack Years 55 28 1.09E-03 

Stage 

  
3.04E-01 

I 17 25 

 II 9 10 

 III 1 6 
 IV 2 2 

 Ethnicity 

  
2.00E-03 

Caucasian 26 24 

 Asian 3 19 

 Native American 0 1   

p values refer to two tailed students t-test or Fisher‟s exact test for continuous and categorical variables respectively 

 

4.2.2 Genome-wide multi-omics profiling 

4.2.2.1 DNA copy number platform  

The Affymetrix SNP 6.0 array was used to obtain DNA copy number status of over 

900,000 non-polymorphic probes. DNA from tumours and non-malignant parenchymal 

tissues were hybridized to this array. Raw CEL probe intensity files were processed and 

normalized using Partek Genomics Suite Software and probe sequence, fragment length, GC 

content and background adjustments were applied to correct for biases in signal intensities as 

described by Thu et al. [54].  Each matched non-malignant profile was used as a copy 

number baseline for a respective tumour and final copy number values were generated in 

Partek software using the Copy Number, Paired Analysis Workflow. 

4.2.2.2 DNA methylation platform  

DNA methylation profiles for tumour and non-malignant tissues were obtained using 

the Illumina Infinium Methylation (HM27) beadchip as detailed in Section 2.2.5. Processing 
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and filtering for quality, colour correction and quantile normalization were also performed as 

described in Section 2.2.5.  

4.2.2.3 mRNA expression platform  

The Illumina HT-12 Whole Genome 6, v3 BeadChip array was used to obtain 

expression level data for over 48,000 probes corresponding to 25,000 genes. Total RNA from 

tumour and matched non-malignant lung tissues were hybridized to separate arrays according 

to the manufacturer's instructions. Bead-level data were pre-processed using the R package 

mbcb to perform background correction and probe summarization and pre-processed data 

quantile normalized and log2 transformed [227]. 

 

4.2.3 Analytical approach: Identification of genes likely selectively activated or 

inactivated in each tumour 

Currently available informatics methods for integrating 'omics data are based on 

correlative or regression based models whereby 'omics levels are analyzed independently or 

simultaneously, and then alterations are statistically compared between tumour and normal 

groups [103, 228-233]. We have previously shown that independent analyses of „omic 

dimensions can overlook biologically relevant genes and pathways disrupted through 

different mechanisms in individual tumours [77, 110]. Therefore we developed a multi-'omic 

integrative gene prioritization algorithm to generate “Integrated Scores” for each gene based 

on the magnitude of concomitant DNA and mRNA alteration. Our algorithm simultaneously 

i) assesses multi-omic mechanisms of gene disruption, ii) weighs the impact of disruption on 

gene expression, and iii) provides an integrated score for each gene based on the extent of 

disruption within individual tumours. 

4.2.3.1 Calculation of gene scores 

Scores indicate how prominently disrupted a gene is in a tumour compared to its 

control tissue. For each data dimension scores are binned into categories based on commonly 

used thresholds for defining gene alterations in tumour systems. Each bin is assigned a 

direction (+ or -) to signify the likely putative effect on mRNA.  
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Copy number: For gene dosage, we utilized commonly applied log2 copy number ratio 

thresholds to call genes gained (ratio > 0.3) or lost (ratio < -0.3) (Table 4.2) [133, 234]. We 

specified two categories for copy number scores: low level changes (e.g. single copy gains or 

losses, log2 ±0.3-0.8) and high level changes (e.g. DNA amplifications or deletions log2 > 

±0.8) and assigned a two point difference between categories. 

 

DNA Methylation: Delta β-values (dβV) refer to the difference in percent methylation 

between a tumour and matched non-malignant sample (Table 4.2). dβV ≥ 0.2 is commonly 

considered aberrant in tumour systems [133]. Genes with dβV ≥ 0.2 are considered 

hypermethylated or dβV ≤ -0.2, hypomethylated, and binned into two categories (Bin 1: 

±0.2-0.6 and Bin 2: ±0.6-1), with a two point score difference for the dβV bins. The range of 

scores for both methylation and copy number are the same (0 to 4), as we do not assume the 

effects of copy number alterations to be more or less important than those of methylation 

alterations.  

 

mRNA Expression: We applied a minimum fold change (FC) (tumour/normal) of two for 

defining aberrant expression. A FC > 2 or < 0.5 is over or underexpression, respectively 

(Table 4.2). Four scoring bins spanning the range of fold changes observed (Bin1: 2-4, Bin2: 

4-10, Bin3: 10-50, Bin4: > 50) were specified for both over and underexpression. To limit 

the inclusion of "expression only" genes in the top ranking genes, we assigned expression 

scores such that expression changes falling within the highest magnitude bins would produce 

a total score comparable to scores for genes with simultaneous DNA and associated mRNA 

changes. However, high magnitude mRNA changes may be indicative of underlying genetic 

or epigenetic alterations we are not assessing; therefore their inclusion is warranted. 
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Table 4.2   Scoring system indicates magnitude of DNA or mRNA level change of a gene in a tumour 

 

 

4.2.3.2 Calculation of gene weights 

A gene is weighted based on whether concurrent DNA and mRNA expression 

changes occur. We calculated the weight as the average effect on mRNA of a DNA alteration 

as observed in >100 multi-omic tumour/non-malignant paired tissues. Specifically, we 

estimated “the effect” of DNA alterations (i.e. copy number and DNA methylation) on gene 

expression in 104 tumours and matched normal samples from four different cancer types, for 

which copy number, DNA methylation, and mRNA data were available for all tumour and 

normal pairs [54, 112, 196, 235, 236]. Data was acquired from the TCGA (https://tcga-

data.nci.nih.gov/tcga/) and the Early Detection Research Network (EDRN, 

http://edrn.nci.nih.gov/science-data). TCGA data were normalized and processed as 

described in the TCGA Data Primer 

(https://wiki.nci.nih.gov/display/TCGA/TCGA+Data+Primer). EDRN data were processed as 

previously described [54, 196]. The average gene expression fold change in 104 samples was 

2.77 times higher for genes with DNA disruption compared to genes without DNA 

alterations (see Appendix D).  

 

Table 4.3   Weighting system indicates effect of DNA change on mRNA of a gene in a tumour 
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4.2.3.3 Calculation of integrated scores 

For every gene (j) and tumour (i), scores (S) and weights (W) for DNA (CN, Meth) 

and expression (Exp) level alterations are combined to form an Integrated Score (I):  

 

[Formula 1]  Iij = S(Exp)ij + Wij [S(CN)ij + S(Meth)ij] 

 

This alogirthm was run in MATLAB (version R2012a, MathWorks Incorporated). Genes that 

sustain a) both high level DNA and mRNA changes or b) high mRNA change only (> 50 

fold) with no DNA level change in tumour relative to normal will have the highest Integrated 

Scores (I). Genes that sustain a) DNA but no mRNA changes, or b) < 2 fold mRNA change 

without DNA level alteration in tumour relative to normal are given a InS of 0. I  > 0 refer to 

upregulated and overexpressed genes, and I < 0 to downregulated and underexpressed genes. 

4.2.3.4 Normalization of integrated scores 

Integrated Scores (Iij) were normalized for every gene (j) by scaling to +1 to -1, by 

dividing positive scores by the maximum Integrated Score (Max Ii) and negative scores by 

the minimum Integrated Score (Min Ii) in each tumour (i): 

 

[Formula 2]   If  Iij  > 0: Iij  ÷ Max Ii ;  If  Ii  < 0; Iij  ÷ Min Ii 

 

Normalized Integrated Scores were applied to all subsequent analyses and from this point 

forward will be referred to as InS. 

 

4.2.4 Dimensional reduction and analysis of gene sets 

4.2.4.1 Clustering 

Unsupervised dimensional reduction was performed by non-negative matrix 

factorization (NMF) using the 'NMF' algorithm in R [237]. NMF finds a small number of 

metagenes, defined as a positive linear combination of genes in the input matrix. The input 

matrix consisted of absolute values of normalized InS for COPD and non-COPD related lung 

tumours. Genes with InS of „0‟ across > 80% of all samples were excluded. NMF groups 

tumours into clusters based on patterns of metagenes. NMF differs from other component 
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reduction algorithms, such as PCA, in that it allows components to overlap (as genes would 

across different signaling pathways) or other clustering algorithms such as hierarchical 

clustering which imposes a stringent tree structure on data [238]. The Kullback-Leibler 

divergence based 'brunet' algorithm was applied using the non-negative double singular value 

decomposition ('NNDSVD') method for initialization, and an optimal factorization rank (of 

k=2) as estimated by the cophenetic correlation coefficient using 50 random permutations 

(and r ranges 2:6), as recommended [237].  

4.2.4.2 Pathway and gene set enrichment analyses 

Gene set enrichment analysis (GSEA) was used to assess whether a given a priori set 

of genes (stored in Molecular Signatures Database (MSigDB) version 4.0) are randomly 

distributed or primarily found at the top or bottom of a ranked set of genes between two 

states, in this case COPD vs non-COPD related lung tumours, using InS as input (instead of 

typical gene expression matrices) [239]. Enrichment scores (ES) reflect the degree to which a 

gene set is overrepresented at the extremes (top or bottom) of the entire ranked list. A 

nominal p value (NOM p-val) is calculated by permuting (500 times) the phenotype labels 

(COPD or non-COPD) and re-computing the ES of the gene set for the permuted data based 

on a null distribution for the ES. Multiple hypothesis testing is accounted for by normalizing 

the ES gene set size to get a normalized enrichment score (NES) and then applying a 

Benjamini and Hochberg false discovery rate (FDR) correction to get an FDR q-value [239]. 

To determine which transcription factor (TF) gene sets were differentially enriched in the 

COPD tumour group, we assessed the “c3 regulatory motif gene set”, which is a database of 

conserved cis-regulatory motifs that are known or likely regulatory elements in promoters 

and 3‟-UTRs described by Xie et al. [240]. The number of genes assessed in the gene set 

after filtering out those not present in the input matrix is indicated by “Size”. 

 

Pathway enrichment analyses was performed using IPA (Ingenuity Pathway 

Analysis®, www.ingenuity.com), as described in Chapter 2 (section 2.2.9). IPA does not 

take into account gene ranks within or across groups, so the top 1
st
 percentile of up (InS > 0) 

and down (InS < 0) regulated genes altered at a frequency of > 15% uniquely in COPD or 

non-COPD tumour group were used as input for this analysis. Three such analyses were run 
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composed of genes frequently altered in 1) COPD tumours alone, 2) non-COPD tumours 

alone and 3) both COPD and non-COPD tumour groups. A cross-comparison analysis of 

these results was then performed in IPA. 

 

An enrichment analysis for targets of upstream regulators (i.e. transcription factors) 

was also performed in IPA-- a similar yet independent analysis to the transcription factor 

gene set enrichment performed in GSEA. p value scores are calculated similarly to canonical 

pathway enrichment (i.e., Fisher‟s exact test –log10(p-value)). 

 

4.2.5 Validation strategy 

External multi-omics data, including copy number (Affymetrix SNP 6.0 described in 

section 4.2.2.1), DNA methylation (Illumina HumanMethylation450 BeadChip (HM450K)) 

and gene expression data (Illumina HiSeq 2000 RNA sequencing Version 2) as well as 

associated post bronchodilator FEV1/FVC data were available for 70 lung adenocarcinoma 

tumours (Table 4.4). All data were obtained from the TCGA (https://tcga-

data.nci.nih.gov/tcga/). Molecular data were processed as described for 'Level 3 data' in the 

TCGA data compendium [133]. Copy number ratios and RPKM expression data for genes of 

interest were extracted. While the Illumina platforms used to derive whole genome DNA 

methylation profiles for TCGA tumours (HM450K) differed from the one we used in our 

discovery set (HM27K) in many respects[241], a large number of the HM27K probes (> 

90%) are present on the HM450K array (Type II probes) [242]. Therefore, we extracted from 

the TCGA methylation dataset, the same probes we were interested in validating from our 

discovery set and averaged β values within the COPD and non-COPD tumour groups.  

 

There are a scarcity of non-malignant lung tissues in the TCGA cohort (n=1 COPD 

subject, n= 10 for non-COPD subjects). However given our interest in validating genes 

specifically altered in our COPD tumour group, we reasoned that one validation approach 

would be to determine if copy number status, DNA methylation levels and expression fold 

change in TCGA COPD tumours (n= 16) were significantly different on average from those 

in non-COPD tumours (n= 54) (Table 4.4). Therefore, permutation tests and multiple 

comparisons testing correction were performed separately for each „omics dimension as 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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described in section 2.2.7. Genes with B-H corrected permutation test p values < 0.05 in i) at 

least one DNA „omics comparison (copy number and/or DNA methylation) and ii) mRNA 

level in concordant directions (as in section 4.2.3.1), were considered differentially altered 

between COPD and non-COPD tumours. 

 

Table 4.4   TCGA validation lung tumour cohort patient demographics 

 

    

  COPD Non-COPD 

n= 16 54 

Sex 

  Male 

  Female 9 31 

Average Age 66 66 

Lung Function 

  FEV1% Pred 66 86 

FEV1/FVC% 52 88 

Smoking 

  Current 8 12 

Former 8 42 

Never 0 0 

Average Pack Years 39 42 

Stage 

  I 11 40 

II 1 12 

III 3 1 

IV 1 0 

Ethnicity 

  Caucasian 15 47 

Asian 1 1 

African American 0 6 

    

 

4.2.6 DNA methylation profiling and pre-processing of small airway epithelia from 

COPD patients with and without lung cancer  

The 1
st
 percentile of up and down regulated genes in COPD-related tumours based on 

normalized InS, that were also altered at a frequency of >15% only in the COPD tumour 

group were assessed at the level of DNA methylation in small airway epithelia (SAE) from 

COPD patients with non small cell lung cancer (n=10), COPD patients without cancer (n=15) 

and subjects without COPD or lung cancer (n=23) (Table 4.5). SAE cells were collected and 

processed as described in Chapter 2 (section 2.2.2-2.2.5). Similarly, a non parametric 

permutation test, using 10,000 permutations described in Section 2.2.7 was also performed, 

correcting for multiple testing using the Benjamini and Hochberg (B-H) method (B-H p 



84 

 

value < 0.05 was considered significant) between the group with cancer (COPD + lung 

cancer) compared to each group without cancer (COPD alone and non-COPD, no lung 

cancer). Probes mapping to COPD tumour genes also had to exceed a stringent fold change 

threshold of > 4, calculated as the ratio of average M values (described in section 2.2.5) in 

SAE from COPD patients with lung cancer compared to COPD and non-COPD groups 

without lung cancer. 

 

Table 4.5   Demographics for DNA methylation small airway cohort  

   

  

  COPD + LC COPD alone non-COPD, no LC 

n = 10 15 23 

Age 61±7.80 65±5.76 64±4.8 

Female:Male 4:06 5:10 8:15 

Pack Years 48.43±14.03 54.77±30.43 46.64±20.53 

Years Quit 3.7±6.40 10±9.55 14±5.44 

FEV1act  1.88±0.47 1.79±0.63 3.06±0.68 

FEV1%Pred 60±13.00 58±15.59 98±9.84 

FEV1/ FVC% 58±5.94 58±9.57 75±5.38 
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4.3  Results 

 

4.3.1 COPD and non-COPD lung tumours cluster differentially 

Dimensional reduction by NMF using absolute value InS from all tumours was 

capable of distinguishing COPD and non-COPD tumour types (Figure 4.1A). Assessment of 

the distribution of COPD and non-COPD tumours within the largest three clusters revealed 

enrichment COPD tumours in clusters 2 and 3 compared to cluster 1 (Chi-square test p = 

3.39E-06) (4.1B).  

 

Figure 4.1 

 

Figure 4.1   NMF clustering of COPD and non-COPD tumour integration scores  

A) Absolute values of normalized Integration Scores were applied to non-negative matrix factorization 

dimensional reduction. Meta-genes with high or low integration scores are indicated by maroon or light yellow 

coloured boxes in the matrix. Red and blue boxes to right of matrix indicate COPD (blue) or non-COPD (red) 

related lung tumours. Pink and purple bars refer to meta-gene sets referred to as basis. B) Percentage of tumour 

types in each of three clusters, indicated by bold black circles on cluster plot to the left of matrix in A. 
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4.3.2 COPD and non-COPD tumours are differentially enriched for distinct 

transcription factor gene sets 

We next assessed whether gene sets corresponding to upstream transcription factors 

were enriched between COPD and non-COPD tumour groups. Five transcription factor gene 

sets were significantly (p value < 0.05) and all positively enriched in COPD tumours 

compared to non-COPD tumours (Table 4.6). Gene sets corresponded to targets of the 

following transcription factors: PITX2 (paired-like homeodomain 2), NR2F2 (nuclear 

receptor subfamily 2, group F, member 2), SP1 (Sp1 transcription factor), PPARG 

(peroxisome proliferator-activated receptor gamma) and HNF4A (hepatocyte nuclear factor 

4, alpha). 

 

 

Table 4.6   Transcription factor gene sets enriched in COPD-related lung tumours 

Headers defined in Section 4.2.4.2 

TF MSigDB TF Targets Name SIZE ES NES NOM p-val FDR q-val  

PITX2 V$COUP_DR1_Q6 211 3.58E-01 1.61E+00 0.00E+00 3.98E-01 

NR2F2 V$DR1_Q3 213 3.29E-01 1.53E+00 7.59E-03 5.94E-01 

PPARG V$PPARG_01 41 4.31E-01 1.52E+00 2.14E-02 5.37E-01 

SP1 V$SP1_Q6 231 3.23E-01 1.45E+00 2.28E-02 6.91E-01 

HNF4A V$HNF4_DR1_Q3 221 3.19E-01 1.41E+00 3.20E-02 5.32E-01 
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4.3.3 Genes recurrently altered in tumours from COPD and non-COPD patients 

We were next interested in determining which biological pathways may be enriched 

in genes uniquely, frequently and highly disrupted in COPD or non-COPD related tumours. 

For each tumour and each tumour group we first determined the top 1
st
 percentile of up and 

down regulated genes per tumour (based on normalized InS), altered at a frequency of > 15% 

in either COPD or non-COPD groups. Genes were aligned by symbol and those fulfilling the 

above criteria, altered in the same direction in each tumour group were considered “shared”. 

Genes fulfilling these criteria and only appearing in one tumour group were considered 

unique to that group (Figure 4.2).  

 

Figure 4.2 

 

 

 

Figure 4.2   Frequently up- and downregulated genes in COPD and non-COPD related tumours 

 

4.3.4 COPD and non-COPD tumours are differentially enriched for distinct 

canonical pathways involved in inflammation, DNA damage and metabolism 

To further evaluate the biological significance of these findings we assessed which 

canonical pathways were enriched in the most highly and frequently uniquely and commonly 

disrupted genes in COPD and non-COPD tumours. In COPD tumours, we observed striking 

enrichment of genes involved in inflammation including (atherosclerosis signaling, retinoic 

acid response and activation, liver fibrosis, glucocorticoid regulation, IL-17A signaling), 

DNA damage (DNA damage-induced 14-3-3σ signaling) and metabolic pathways involving 

pyrimidine (thymine, cytosine and uracil) salvage and critical to epigenetic maintenance of 
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DNA and histone methylation marks (S-adenosyl-L-methionine biosynthesis) in the most 

highly altered gene sets in COPD tumours (Figure 4.3).  

 

Figure 4.3 

 

Figure 4.3   Pathways enriched in top disrupted gene sets from COPD and non-COPD related tumours 

Canonical pathways enriched in the most highly and frequently altered genes (from figure 4.2) uniquely altered 

in COPD (navy blue bars) and non-COPD (light blue bars) tumours, as well as those enriched in genes 

commonly altered (i.e. shared) between tumour groups (aqua bars), were calculated in IPA. A p value = 0.05 is 

indicated by the horizontal red line. Bars above this line are considered significantly enriched in the 

corresponding tumour group.  
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Table 4.7   Genes highly altered in lung tumours enriched in atherosclerosis signaling 

p values for pathway enrichment are indicated next to each group header 

Total number of genes tested for each group is indicated in Figure 4.2 

Symbol Entrez Gene Name 
Dir. in 

Tumour 

COPD ONLY (p = 6.89E-07)   

CCL2 chemokine (C-C motif) ligand 2 DOWN 

CD40 CD40 molecule, TNF receptor superfamily member 5 DOWN 

IL8 interleukin 8 DOWN 

IL1A interleukin 1, alpha DOWN 

IL1B interleukin 1, beta DOWN 

PLA2G3 phospholipase A2, group III DOWN 

PLA2G2A phospholipase A2, group IIA (platelets, synovial fluid) DOWN 

RBP4 retinol binding protein 4, plasma DOWN 

SELE selectin E DOWN 

SERPINA1 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1 DOWN 

TNFSF12 tumour necrosis factor (ligand) superfamily, member 12 DOWN 

APOE apolipoprotein E UP 

PLA2G12B phospholipase A2, group XIIB UP 

NON-COPD ONLY (p = 5.35E-01)   

APOD apolipoprotein D DOWN 

MMP1 matrix metallopeptidase 1 (interstitial collagenase) UP 

SHARED (p = 1.56E-07)   

ALOX5 arachidonate 5-lipoxygenase DOWN 

ALOX15 arachidonate 15-lipoxygenase DOWN 

CD36 CD36 molecule (thrombospondin receptor) DOWN 

CXCL12 chemokine (C-X-C motif) ligand 12 DOWN 

CXCR4 chemokine (C-X-C motif) receptor 4 DOWN 

IL6 interleukin 6 (interferon, beta 2) DOWN 

IL33 interleukin 33 DOWN 

LPL lipoprotein lipase DOWN 

LYZ lysozyme DOWN 

MSR1 macrophage scavenger receptor 1 DOWN 

PLA2G1B phospholipase A2, group IB (pancreas) DOWN 

S100A8 S100 calcium binding protein A8 DOWN 

SELP selectin P (granule membrane protein 140kDa, antigen CD62) DOWN 

COL10A1 collagen, type X, alpha 1 UP 

COL1A1 collagen, type I, alpha 1 UP 

IL37 interleukin 37 UP 

MMP9 matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase) UP 

MMP13 matrix metallopeptidase 13 (collagenase 3) UP 

PLA2G2D phospholipase A2, group IID UP 

TNFSF14 tumour necrosis factor (ligand) superfamily, member 14 UP 
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One pathway enriched only in the top disrupted genes unique to COPD tumours was 

the IL-17A and F signaling pathway, which we also detected as aberrantly methylated in 

non-malignant airways in the context of COPD in the absence of cancer (Figure 2.8 and2 and 

Figure 4.4).  

 

Figure 4.4 

 

 

Figure 4.4   IL-17A and IL-17F signaling pathway is disrupted uniquely in airways of COPD patients 

without cancer and differentially in COPD and non-COPD lung tumours 

The IL-17A and F signaling pathway was significantly enriched in the most highly disrupted genes in COPD 

tumours (bright blue molecules). Genes highly altered in both tumour groups are yellow. This pathway was also 

significantly enriched in genes altered at the level of DNA methylation and mRNA expression in non-malignant 

small airway epithelia from COPD patients without lung cancer (light blue molecules).  All coloured molecules 

are downregulated in respective groups, except GM-CSF, IL-10 and LCN2. Gene symbols: IL: interleukin; IL-

17RC: interleukin 17 receptor C; IL-17RA: interleukin 17 receptor A; CCL2: chemokine (C-C motif) ligand 2; 

GM-CSF: granulate-macrophage stimulating factor; G-CSF: colony stimulating factor 3; LCN2: lipocalin 2; 

HBD1: defensin, beta 1.   
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4.3.5 COPD-related lung cancer genes associated with and without smoking status 

Since our COPD tumour cohort was heavily biased towards smokers (Table 4.1), and 

smoking is associated with distinct and clinically relevant molecular features in lung 

adenocarcinoma (Chapter 1, 3 and [50, 54]) we were interested in determining which of the 

genes we deemed uniquely and highly altered in our COPD tumour group were also 

associated with i) smoking regardless of COPD status and ii) COPD excluding never 

smokers. For each comparison, we performed a similar analysis described in section 4.2.4.3, 

except the top 1
st
 percentile of up (InS > 0) and down (InS < 0) regulated genes altered at a 

frequency of > 15% was calculated for tumours from i) ever (CS and FS) (n= 45) and never 

(NS) (n= 28) smokers, irrespective of COPD status and ii) for ever smoker COPD (n= 25) 

and ever smoker non-COPD (n= 20) subjects (i.e. excluding NS). 

4.3.5.1 Overlap of COPD and smoking associated genes 

A large number of genes fulfilled our criteria for “smoking-status specific” (Figure 

4.5), of which a large number overlapped with those we deemed “COPD and lung cancer 

related” (Table 4.8). Therefore, it is possible that cigarette smoking alone accounts for 

approximately 40% of our uniquely upregulated COPD genes, and over 50% of our uniquely 

downregulated COPD genes. Of interest, it is also possible that 55% and 50% of our unique 

up and downregulated non-COPD tumour genes are related to never smoker tumour biology. 

 

Figure 4.5 

 

Figure 4.5   Frequently up- and downregulated genes in ever and never smoker related tumours 

regardless of COPD status 
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4.3.5.2 Analysis of COPD and non-COPD tumours from ever-smokers 

We next re-analyzed our dataset after removing NS. While this greatly reduced our 

sample size, we detected a number of genes as uniquely and commonly disrupted in COPD 

and non-COPD tumours (see row 2 in Table 4.8). Of these 69% overlapped with those 

detected in the initial analysis that included NS. While only 24% of the genes identified as 

uniquely disrupted in COPD tumours in the ever smoker (ES) cohort overlapped with those 

detected as uniquely altered in COPD tumours in the analysis that included NS; the most 

significantly enriched pathways in gene sets derived from our ES COPD vs ES non-COPD 

analysis were strikingly similar to results derived from gene sets from our COPD vs non-

COPD analysis (which included NS). In each separate pathway analyses, two out of three of 

the most highly enriched pathways were atherosclerosis signaling and hepatic fibrosis. These 

pathways also displayed the same patterns of enrichment depicted in Figure 4.3: i.e., 

atherosclerosis signaling was significant in ES COPD unique (p= 5.5E-06) and ES non-

COPD unique (p= 3.94E-06) gene sets, whereas hepatic fibrosis was only significant in the 

ES COPD unique gene set (p= 1.77E-05) but not the ES non-COPD unique gene set (p= 

0.9E-02). Moreover, almost all (95%) of the genes that overlapped between our smoking 

specific and ES COPD vs ES non-COPD analysis (Table 4.8, row 5) overlapped with those 

we deemed associated with smoking in our COPD vs non-COPD analysis which included NS 

(Table 4.8, row 6). 

 

 Therefore, while our discovery cohort was biased towards ES (i.e., current and former 

smokers) in the COPD tumour group and never smokers in the non-COPD tumour group, our 

results indicate that the biology related to cigarette smoke response is likely important to both 

COPD and lung cancer biology. 
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Table 4.8   Genes frequently upregulated in COPD and non-COPD related tumours and overlap with 

smoking specific results 

 

 

Genes freq UP regulated in 

tumours 

Genes freq DOWN regulated in 

tumours 

Tumour group comparison 
COPD 
unique 

Shared 
Non-COPD 

unique 
COPD 
unique 

Shared 

Non-

COPD 

unique 

1. All COPD vs All non-COPD  275 365 114 148 514 197 

2. ES COPD vs ES non-COPD 60 77 117 76 135 123 

3. Overlap ES and All results 20 75 15 12 133 16 

4. Overlap smoking specific and All 112 (CS) 60 63 (NS) 76 (CS) 437 98 (NS) 

5. Overlap smoking specific and ES results  18 (CS) 60 1 (NS) 16 (CS) 128 1 (NS) 

6. Overlap smoking specific, All and ES results 11 (CS) 60 1 (NS) 11 (CS) 128 1 (NS) 

 

All: analysis includes current, former and never smokers; ES: analysis includes current and former smokers; All 

COPD vs All non-COPD: analysis described in methods section 4.2 using entire discovery cohort in Table 4.1 

(includes never smokers); ES COPD vs ES non-COPD: analysis described in section 4.3.5 in lung tumours from 

ever-smokers with and without COPD; Smoking specific: analysis described in section 4.3.5 in lung tumours 

from ever-smokers compared to never smokers (regardless of COPD status); Overlap: genes within top 

percentile InS, altered > 15% in associated group occurring in the same direction in all analyses indicated. 

 

 

4.3.6 Validation of findings in external datasets 

Since we were most interested in validating the 423 genes uniquely and highly 

disrupted in our COPD tumour group (275 upregulated and 148 downregulated genes 

indicated in Figure 4.2) we reasoned that one approach would be to determine if copy 

number status, methylation levels and expression fold change in TCGA COPD tumours (n= 

16) were significantly different on average from those in non-COPD tumours (n= 54) (Table 

4.4) using the strategy described in section 4.2.5. After processing of TCGA Level 3 data 

described in the TCGA data compendium, we were able to assess copy number status, DNA 

methylation and expression levels of 356 out of the 423 genes of interest. However, of these 

only 34 genes (~10%) validated as differentially altered at the expression level and by at least 

one DNA level. At the level of gene expression alone, 81 genes (23%) were differentially 

expressed between TCGA COPD and non-COPD tumours in the same direction as in our 

discovery cohort. While this emphasized the i) preliminary nature of our findings and ii) the 
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importance of validating our results in future studies, it also emphasized certain strengths of 

our cohort related to the size and availability of clinical information. 

 

4.3.7 A subset of genes disrupted in COPD related tumours are hypermethylated in 

airways of patients with COPD and lung cancer 

To assess the potential clinical relevance of genes possibly important to COPD-

related lung tumourigenesis, we assessed the methylation level of genes uniquely disrupted in 

COPD tumours, in small airway epithelia (SAE) from COPD patients with and without lung 

cancer, and non-COPD patients without lung cancer (Table 4.5). Of the 339 genes, five genes 

passed our criteria for “differentially methylated” in SAE from COPD patients with lung 

cancer, in the same direction as in COPD tumours compared to subjects with and without 

COPD, but with no lung cancer (Table 4.9). While we only assessed a small number of SAE 

tissues from COPD patients with lung cancer, and did not include profiles from lung cancer 

patients with lung cancer but without COPD, these results have intriguing clinical 

implications and highly relevant biological functions. 

 

Table 4.9   COPD-related lung tumour genes altered by DNA methylation in airways of lung cancer 

patients with COPD 

 

Symbol 

Alter. 

in 

COPD 

Tumor  

Meth 

Status 

LC+COPD 

SAE 

SAE 

LC+COPD vs  

COPD-alone      

B-H p val 

SAE Fold∆ 

LC+COPD/ 

COPD-

alone 

SAE 

LC+COPD 

vs No Disease    

B-H p val 

SAE Fold∆ 

LC+COPD/ 

No Disease 

CCNDBP1 DOWN HYPER 8.25E-05 4.58 0.00E+00 8.81 

DUT DOWN HYPER 1.42E-02 4.47 4.78E-06 39.22 

HPGD DOWN HYPER 1.48E-02 4.23 3.67E-13 5.51 

MAT2B DOWN HYPER 1.53E-03 4.97 0.00E+00 12.15 

PPARGC1A DOWN HYPER 1.04E-02 5.01 8.19E-14 14.43 

 

LC: lung cancer; SAE: small airway epithelia; B-H p val: Benjamini-Hochberg corrected p value; Alter. In 

COPD Tumour: Direction of InS in COPD tumour group; Meth Status LC+COPD SAE: direction of 

methylation difference in small airways from subjects with LC and COPD compared to COPD and non-COPD 

subjects without LC; No Disease: subjects without COPD or LC. Gene Symbols: CCNDBP1: Cyclin D-type 

binding-protein 1; DUT: Deoxyuridine triphosphatase; HPGD: Hydroxyprostaglandin dehydrogenase 15-

(NAD); MAT2B: Methionine adenosyltransferase 2B; PPARGC1A: Peroxisome proliferator-activated receptor 

gamma, coactivator 1α 
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4.1 Discussion 

Due to the scarcity of „omics tumour data from cohorts with annotated lung function 

measurements, little is known about the molecular biology of COPD-related lung tumours, or 

if these tumours differ from non-COPD related lung tumours of the same subtype. Since 

chronic inflammation is causally associated with cancer development in a variety of tissue 

types including the lung in the context of COPD, we hypothesized that lung tumours arising 

in an environment of COPD-- a chronic inflammatory lung disease, would harbour distinct 

and clinically relevant molecular alterations compared to lung tumours from non-COPD 

patients. Since tumour systems are altered at multiple „omic levels, interrogation and 

integration of multi-omics data is conducive to the elucidation of mechanisms driving cancer 

biology. We applied such an approach to the analysis of lung adenocarcinoma tumours from 

patients with and without COPD. To evaluate the potential clinical application of our 

findings, we assessed whether genes altered in COPD-related lung tumours were also 

disrupted at the level of DNA methylation in small airway epithelia from patients with COPD 

and non small cell lung cancer (NSCLC). We provide the first „omics interrogation of lung 

tumours in the context of COPD to date, as well the first study assessing the methylation 

status of COPD-related lung tumour genes in airways of COPD patients with lung cancer. 

  

Our integrative multi-omic analytical approach was based on the notion that since 

DNA is a heritable molecule propagated through cellular divisions: 1) cancer cells select 

DNA alterations that confer a clonal expansion advantage, thus genes with DNA level 

changes are more likely to be biologically relevant than genes only altered at the mRNA 

level; 2) cellular maintenance of high level events is metabolically expensive, therefore 

larger magnitude alterations may be indicative of selection; and 3) biologically relevant DNA 

level alterations will likely be accompanied by consequential mRNA expression changes. We 

applied these hypotheses to the generation of an algorithm which integrates DNA 

methylation, copy number and mRNA data for paired tumour and non-malignant tissues and 

yields an “Integration Score” (InS) for every gene on a per tumour basis based on: the i) 

magnitude of DNA level alteration relative to a matched non-malignant sample, and ii) 

presence of both DNA and mRNA level alterations within a tumour. We applied InS to the 

identification of genes and pathways important to COPD-related lung tumours. 
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Overall, InS were capable of broadly distinguishing COPD and non-COPD tumours 

by clustering. Since clustering was based on InS, and high InS are those that sustain high-

level DNA and RNA disruptions; distinct clusters based on these scores may be indicative of 

unique biological processes underlying COPD-related lung tumourigenesis. Indeed, 

enrichment analysis of transcription factor gene sets in InS matrices revealed enrichment of 

well known mediators involved in lung cancer, inflammation and other malignancies in 

COPD compared to non-COPD tumours. These included genes previously found to be 

associated with COPD (PITX2), multiple oncogenic processes in lung and other malignancies 

(NR2F2, SP1, PPARG) and inflammation-associated fibrosis and cancer of the liver 

(HNF4A), which were all positively enriched in COPD compared to non-COPD tumours 

[243-246]. Only one of these (PITX2) was significant after correcting for multiple testing. 

PITX2 is a putative methylation biomarker in lung cancer, previously associated with 

senescence gene networks in COPD [247]. 

 

At the gene level, we found that overall, more genes were commonly altered between 

COPD and non-COPD related tumours than were unique to any group suggesting that 

common biological mechanisms likely underlie lung cancer biology between these groups in 

general. However, a large number of genes, particularly upregulated genes, were uniquely 

disrupted in COPD tumours which may also be indicative of selection of biological processes 

unique to COPD-related lung cancer. We attempted to validate these findings in external lung 

datasets, however lung tumour cohorts with both „omics and patient lung function data are 

extremely rare. The TCGA consortium is the largest such dataset to date; of the 

approximately 500 lung adenocarcinoma tumours with available „omics data (copy number, 

DNA methylation and gene expression) accrued as part of this consortium, only 70 subjects 

have post-bronchodilator FEV1/FVC airflow measurements, of which only 16 have COPD 

based on GOLD guidelines outlined in Table 1.1. Even rarer are such datasets that include 

non-malignant lung tissues from lung cancer patients; TCGA includes only 1 non-malignant 

sample from a single COPD patient with lung cancer. Non-malignant „omics data is 

particularly important for assessing tissue-specific aberrant events related to DNA 

methylation and gene expression. Therefore we were only able to assess whether our genes 
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of interest were different between COPD and non-COPD TCGA tumour groups at the DNA 

and mRNA levels, but were unable to determine whether these genes were differentially 

methylated or expressed in tumours compared to non-malignant tissues in each group. Using 

this approach only 10% of the genes we found validated. The lack of tumour „omics cohorts 

with associated lung function measures highlights the uniqueness of our own cohort, 

although emphasizes the need to validate our results in future studies. 

 

There were multiple, potential confounding factors in our dataset. For example, our 

COPD tumour cohort was heavily biased towards smokers, and our non-COPD cohort 

towards never smokers (Table 4.1). We observed substantial overlap among gene sets 

derived from analyses between 1) all COPD and non-COPD related lung tumours (i.e. 

including NS subjects), 2) lung tumours from ever smokers compared to NS, regardless of 

COPD status and 3) COPD and non-COPD related tumours from ever smokers (excluding 

NS). While we note that our primary analysis is likely confounded by the biological effects 

of smoking, we also noticed overlap in gene sets and enriched pathways derived from our 

COPD and non-COPD analyses which did and did not include NS (Table 4.8), indicating that 

genes altered in response to cigarette smoke could be involved in COPD related lung cancer. 

Indeed, strong epidemiological and genetic association studies link cigarette smoke to both 

diseases [248-251], therefore we did not remove smoking-related genes from our subsequent 

analyses.  

 

Pathway enrichment analysis of the top percentile of genes altered uniquely and 

commonly in COPD and non-COPD tumour groups revealed striking enrichment of 

functions involved in inflammatory response (FXR/RXR activation, MIF-mediated 

glucocorticoid regulation, IL17-A and IL-17F signaling and TREM1 signaling), DNA 

damage (DNA damage-induced 14-3-3σ signaling) and metabolism (Pyrimidine 

ribonucleotide salvage pathways and S-adenosyl-L-methionine biosynthesis) in gene sets 

uniquely altered in COPD tumours. COPD tumour genes and genes shared between tumour 

groups were commonly associated with the most significantly enriched pathways overall 

including atherosclerosis signaling, LXR/RXR activation and hepatic fibrosis which are 

involved in chronic inflammatory disease and inflammatory response. This indicated to us 
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that while disruption to these pathways is common in both tumour groups, these processes 

may be further deregulated in COPD tumours, possibly at different levels.  

 

The most significantly enriched pathway overall in the most deregulated tumour 

genes, was atherosclerosis signaling. Atherosclerosis -- a condition in which artery walls 

thicken as the result of a build-up of fatty materials such as cholesterol, is a chronic 

inflammatory process stemming from interactions between cells (macrophages, endothelial, 

smooth muscle and T cells), plasma lipoproteins and arterial wall extracellular matrix (ECM) 

[252]. Cardiovascular disease (heart attacks, strokes and peripheral vascular disease) 

commonly caused by atherosclerosis, is the leading cause of death amongst COPD patients 

[253]. Genes uniquely and commonly altered in this pathway in each group are listed in 

Table 4.7. Multiple genes in this pathway have been well described in COPD notably, 

SERPINA1 defects which cause α1-Antitrypsin (A1AT) deficiency) -- a hereditary form of 

COPD, and among the most frequently downregulated genes unique to COPD related 

tumours. Overexpression and SNPs in matrix metallopeptidases are frequently described in 

COPD [38, 254, 255]. We detected MMP9 and MMP13 commonly disrupted among both 

tumour groups, whereas MMP1 was only disrupted in non-COPD tumours. COPD and heart 

disease share common risk factors, however airflow limitation is an independent risk factor 

for cardiovascular diseases [253]. Understanding the mechanisms linking atherosclerosis and 

COPD with the goal of reducing cardiovascular risk in COPD patients through targeted 

therapies is a major field of study [253]. An improved understanding of the molecular 

biology underlying COPD pathogenesis may contribute to this aim.  

 

The IL-17A and IL-17F signaling pathway was significantly enriched in genes highly 

disrupted uniquely in COPD tumours (Figure 4.4). This pathway was also aberrantly 

disrupted at the level of DNA methylation and gene expression in non-malignant SAE from 

COPD subjects without lung cancer (Chapter 2). In addition to the inflammatory and anti-

microbial functions indicated in Figure 4.4, polymorphisms associated with multiple effector 

molecules in this pathway are promising predictors of cancer risk in multiple cancers, 

particularly in the context of inflammation associated colorectal and gastric cancer [256, 
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257]. Further exploration of this pathway in COPD model systems may yield mechanistic 

insight into the biology underlying COPD progression and lung risk in COPD patients. 

 

Two independent analyses of our dataset indicated enrichment of genes in COPD 

tumours involved in liver cirrhosis and inflammation-related cancer of the liver; transcription 

factor gene set enrichment utilized complete gene matrices of InS from COPD and non-

COPD tumours (Table 4.6), whereas pathway enrichment was performed only on the top 

percentile of altered genes in each tumour group (Figure 4.3). HNF4A controls diverse 

metabolic functions and is highly expressed in the liver, kidney, pancreas and intestine [258]. 

A role for HNF4A has been described in alveolar differentiation where it is regulated by 

DNA methylation [259], in mucinous adenocarcinoma lung cancer [260, 261] and 

overexpression of HNF4A has recently implicated in emphysema [262]. While the 

mechanistic links between COPD and lung cancer have only recently begun to be explored, 

the tumour-promoting effects of chronic inflammation in other organs are better understood 

[263]. In the liver, viral infection and chronic, excessive exposure to alcohol, sugar, fat and 

cigarette smoke induces expression of pro-inflammatory cytokines, leading to accumulation 

of ECM proteins (mainly collagen), tissue remodeling, fibrosis and eventually liver cirrhosis 

which is associated with an up to a 55 fold increased risk of hepatocellular carcinoma (HCC). 

HNF4A is a key regulatory transcription factor involved in this process. Of note, α1-

Antitrypsin (A1AT) deficiency -- the cause of hereditary COPD, is also associated with liver 

disease, cirrhosis and HCC and accounts for a high proportion of liver transplants in children 

[264]. Our data provide further rationale for exploring this pathway in the context of COPD-

related lung cancer. 

 

 To assess the potential clinical relevance of our findings we assessed our results for 

presence in small airway epithelia (SAE) tissues from COPD patients with and without lung 

cancer. Since our cohort was small, and we did not have SAE material from lung cancer 

patients without COPD, we applied stringent criteria to our query. The biological functions 

of the five genes we detected as aberrantly methylated in SAE from lung cancer patients 

appear highly relevant to COPD and lung cancer biology. For example, CCNDBP1 is a 

tumour suppressor gene (TSG) in breast, prostate and colon cancer that interacts with the 
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class III histone deacetylase, sirtuin 6 (SIRT6) [265]. Reduced expression of sirtuins is 

implicated in aging, senescence and cancer [266]. SIRT6 is a TSG, involved in protecting 

cells from senescence, telomere dysfunction and DNA damage [267], is underexpressed in 

COPD lungs, and mediates cigarette smoke induced senescence in bronchial epithelial cells 

[268]. SNPs in HPGD are associated with colon cancer risk. Genes involved in metabolic 

processes included DUT, an essential nucleotide metabolism enzyme, and MAT2B -- the 

enzyme that catalyzes synthesis of S-adenosylmethionine (SAM) which is the cell‟s primary 

methyl donor for histone and DNA methyltransferases. Disruption of MAT2B could have 

profound implications to the maintenance of normal epigenetic patterns at both the DNA and 

histone level, in tumour and non-malignant tissues. MAT2B also interacts with SIRT1, 

another sirtuin previously implicated in aging, oxidative stress, senescence and COPD [269, 

270]. PPARGC1A is a central inducer of mitochondrial biogenesis in cells that increases 

expression of ROS-detoxifying enzymes [271], and intriguingly, decreased expression of 

PPARGC1A has been previously correlated with increased COPD severity [272]. 

 

Our results support the notion that lung tumourigenesis in COPD patients exhibit 

distinct molecular aberrations compared to lung cancer in patients without COPD, and 

intriguingly, may be related to tumour-inducing mechanisms of chronic inflammation in 

other organs. While our discovery cohort was limited in sample size and validation of these 

findings in appropriate COPD and lung tumour models [273] are necessary, lung tumour 

„omics cohorts with annotated lung function measures are extremely scarce in the public 

domain and our study represents the largest „omic survey of COPD-related lung tumours 

performed to date. Our findings provide rationale for exploring the molecular biology of 

COPD-related lung cancer in future studies. Moreover, genes altered in non-cancerous 

airway cells that are associated with lung cancer in COPD patients warrant further study as 

lung cancer risk biomarkers or as targets for novel chemoprevention therapies in this high 

risk population. Validation of this aspect is of particular clinical relevance, and may be 

performed in prospectively collected cohorts or in banked specimens with longitudinal 

sampling and monitoring. 
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5    Chapter: Conclusions 

 

5.1 Summary of thesis findings 

The goal of this thesis work was to uncover the genetic and epigenetic mechanisms 

underlying COPD biology, related to smoking response in lung tumours and non-malignant 

tissues and the mechanistic links between COPD and lung cancer. Collectively, this work 

revealed that 1) DNA methylation is a mechanism involved in processes important to COPD 

biology in small airways (Chapter 2) and 2) different smoking histories are associated with 

common and divergent miRNA expression patterns in lung tumour and non-malignant 

tissues, a subset of which are associated with patient outcome (Chapter 3). We applied an 

integrative, multi-omics strategy to the discovery of 3) genes and pathways involved in 

COPD-related lung cancer (Chapter 4), and showed that 4) a number of these genes could be 

detected in non-malignant airways of patients with lung cancer and COPD (Chapter 4). 

 

Taken together these findings provide evidence supporting our overarching 

hypothesis: that specific risk factors, such as smoking and chronic inflammation lead to 

selective DNA level disruption of genes in exposed tissues and that these selectively 

disrupted genes likely contribute to COPD and lung cancer biology. Section 5.2 states the 

potential clinical significance and summarizes these findings in the context of the research 

goals stated in Section 1.9 of this thesis. 

 

5.2 Conclusions regarding thesis hypotheses  

 

5.2.1 DNA methylation is globally disrupted and associated with expression changes 

in COPD small airways 

DNA methylation is a tissue specific, reversible gene regulatory mark, associated 

with development and progression of a wide spectrum of diseases, including malignant and 

non-malignant respiratory disease. Since small airways are the primary sites of airflow 

obstruction in COPD, we believe that an integrated DNA and RNA level characterization of 

this tissue is highly relevant to understanding how pathways underlying airflow obstruction 

are disrupted at the molecular level, and is a critical first step in the development of novel 
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therapeutic interventions for COPD. To our knowledge this is the first genome-wide 

assessment of DNA methylation disruptions in COPD small airways. 

 

In Chapter 2, we discovered disruption to normal DNA methylation patterns was 

widespread in small airway epithelia and that a subset of methylation alterations was 

associated with corresponding changes to expression of key genes and pathways important to 

COPD pathology, such as the NRF2 pathway-- the cell‟s primary oxidative response 

protective mechanism. Since DNA methylation is tissue specific, reversible and may underlie 

disease-specific gene expression changes, the characterization of these events in small 

airways may be a critical first step towards development of novel treatment strategies or re-

appropriation of existing epigenetic based drugs to treat or prevent COPD. 

 

5.2.2 Smoking status impacts miRNA mediated prognosis and lung tumour biology 

Distinct smoking and non-smoking environments are associated with disparate and 

clinically relevant molecular, epidemiological and clinical features, such that lung cancers in 

current and never smokers are widely accepted to be different diseases. Due to the success of 

smoking cessation programs in developed countries, smoking incidence continues to drop, 

and consequently the proportion of lung cancer patients who are former and never smokers is 

growing. Thus, it is increasingly imperative to understand the molecular biology of lung 

cancer in relation to distinct smoking histories.  

Given the importance of microRNAs to tumourigenesis and mediating biological 

response to tobacco smoke, in Chapter 3 we sought to investigate the contribution of 

microRNA disruption to lung tumour biology and patient outcome in the context of smoking 

status. We 1) performed miRNA transcriptome sequencing on 188 lung tissues comprised of 

94 tumours and 94 paired non-malignant samples from current, former and never smoker 

lung adenocarcinomas, 2) derived smoking-status driven miRNA-mediated gene networks, 

and 3) performed the first smoking-status specific miRNA prognostic association study. We 

discovered that miRNA expression patterns in lung tumours are dependent upon smoking 

status, consequently disrupting distinct cellular pathways and associated with patient 

prognosis in current, former and never smokers. These findings provide novel insight into 
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how smoking status affects miRNA expression and impacts lung tumour biology and patient 

prognosis. 

 

5.2.3 Lung tumours from patients with COPD are molecularly distinct at the genetic 

and epigenetic levels 

Chronic inflammation is causally associated with cancer development in a variety of 

tissue types including the lung. We hypothesized that lung tumours arising in an environment 

of COPD-- a chronic inflammatory lung disease, would harbour distinct and clinically 

relevant molecular alterations compared to lung tumours from non-COPD patients. Since 

tumour systems are altered at multiple „omic levels, interrogation and integration of multi-

omics data is conducive to the elucidation of mechanisms driving cancer biology. In Chapter 

4, we developed and applied such an approach to the analysis of lung adenocarcinoma 

tumours from patients with and without COPD. Multi-omics profiling (copy number, DNA 

methylation and gene-expression) was performed on 76 tumour and non-malignant lung 

tissues using genome-wide array platforms. To identify genes/pathways which sustain high 

DNA and RNA level changes in tumours, we applied our integrative multi-omics algorithm 

(section 4.2.3), which generated Integration Scores (InS) for each gene based on magnitude 

of concomitant DNA and mRNA alterations. InS were applied to all downstream analyses.  

 

Overall, our analysis revealed that genes frequently and differentially disrupted at 

both DNA and RNA levels in COPD tumours were differentially enriched for transcription 

factor targets involved in inflammation-related cancer, oxidative stress and smoking 

response; the most significant being PITX2-- a putative methylation biomarker in LC, 

previously associated with senescence gene networks in COPD. Pathway analysis of the top 

percentile of disrupted genes in each tumour group revealed an enrichment of pathways 

involved in chronic inflammatory disease (atherosclerosis and hepatic fibrosis), DNA 

damage and key metabolic processes involved establishment and maintenance of epigenetic 

patterns. One of the pathways (IL-17A and –F signaling) we detected as significantly 

enriched for aberrantly methylated genes in airways from COPD patients without lung cancer 

in Chapter 2 was enriched in genes exclusively and highly altered in COPD-related lung 

tumours.  Our findings also support the notion that lung tumourigenesis in COPD patients 
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share common and divergent lung tumourigenic processes. This is the first multi-omic 

characterization of lung tumours in the context of lung function. Taken together our findings 

provide mechanistic insight into lung tumour biology associated with inflammation and 

COPD biology. The further assessment of these findings in larger cohorts and in relation to 

tumours from inflammation-associated tumours in other organs (e.g. the colon or liver) may 

yield important insight in the biology underlying the link between chronic inflammation and 

cancer. This could have broad implications to the development of prevention and early 

detection regimes for multiple malignancies and chronic conditions. 

 

5.2.4 Genes preferentially altered in COPD-related lung tumours are aberrantly 

methylated in non-malignant airway cells from patients with COPD and lung cancer 

To evaluate the potential utility of our findings as diagnostic and lung-cancer-risk-

assessment biomarkers in non-surgical patients, we assessed whether genes preferentially 

disrupted in COPD lung tumours could be detected as aberrantly methylated in small airway 

cells from COPD patients with lung cancer. We detected hypermethylation of five COPD-

related lung cancer genes in these tissues. These included putative cancer epigenetic 

diagnostic biomarkers (CCNDBP1, HPGD), genes associated with oxidative response and 

COPD progression (PPARGC1A) and the enzyme (MAT2B) that catalyzes synthesis of S-

adenosylmethionine (SAM) -- the cell‟s primary methyl donor for histone and DNA 

methyltransferases.  

 

Taken together, these findings provide rationale to assess whether alterations specific 

to tumourigenic processes can be used as targets for identifying patients before the 

development of lung cancer. Such discoveries will lead to the discovery of novel diagnostic, 

prognostic, and therapeutic markers that will ultimately improve patient outcomes. The 

National Lung Screening Trial (NLST) sponsored by the National Institutes of Health (NIH) 

was a large scale trial (n= 53,454 current or heavy former smokers, across 33 centres across 

the United States) to assess the effects of two screening methods: low-dose helical computed 

tomography (CT) scans and conventional care (i.e. chest X-rays). This study found that 

amongst high risk individuals, there was a 20.6% lower risk of dying from lung cancer 

compared to conventional care, if individuals received CT scans [274, 275]. The cost of 
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screening all current and former smokers is prohibitive therefore there is a need for strategies 

to stratify individuals based on risk. This is especially true for never smokers without a 

family history of lung cancer, who are excluded from screening under standard lung cancer 

risk criteria. An improved understanding of the biology underlying lung cancer risk, and the 

detection of these markers in surrogate tissues in a minimally-invasively manner could have 

important implications to improving lung cancer survival. 

 

5.3 Strengths and limitations of thesis work  

 

5.3.1 Chapter 2 

We provided the first genome-wide methylation and integrative 'omics study applied 

to the analysis of SAE from individuals with COPD. However, this study was severely 

limited by sample size, therefore further investigation of aberrant methylation in small 

airways across a larger cohort of subjects for which COPD phenotypes are defined by both 

CT and symptoms in addition to lung function, is warranted. Moreover, it is possible that 

populations of cells obtained from small airways of COPD patients may contain more 

inflammatory cells than those from individuals without COPD, and should therefore be 

considered in the interpretation of gene expression and methylation comparisons. Our results 

provide rationale for further assessment of the involvement of DNA methylation to COPD 

biology that ideally considers functional elements beyond gene promoters, such as the 

HumanMethylation450 BeadChip  (Illumina, San Diego, CA) which assesses methylation 

status of over 450,000 CpG sites spanning 99% of RefSeq genes and 96 of all CpG islands 

[242].  

 

We also note that since DNA sequence variants can affect normal methylation 

patterns affecting gene expression [276], the integration of information from COPD GWAS 

results with methylation and expression data may help elucidate those genes and mechanisms 

contributing to COPD biology. 

 

5.3.2 Chapter 3 
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The lung adenocarcinoma cohort we have compiled is the largest lung tumour data set 

with well-defined smoking status annotation and matched non-malignant tissue for every 

patient, to date. We also applied these findings to the first smoking- status specific survival 

analyses. We acknowledge that the lack of validation of our findings in external datasets is a 

limitation of this study.  Due to i) small sample sizes, ii) lack of smoking status annotation, 

iii) lack of patient matched non-malignant tissue profiles for defining miRNAs as over- or 

under-expressed in individual tumours, and iv) use of miRNA expression arrays for profiling, 

which drastically reduces the number of measureable miRNAs, existing external miRNA 

adenocarcinoma expression datasets are not directly appropriate for validation. TCGA, which 

represents the largest public repository for lung adenocarcinoma miRNA expression data 

generated by sequencing, contains a small number of never smoker tumours (n= 16) and 

fewer than 50 cases with patient matched tumour and non-malignant profiles. We also 

noticed that the available TCGA data had lower detection sensitivity (Figure 3.3). We were 

only able to validate four smoking status specific miRNA in the TCGA cohort. Moreover, 

our NS lung tumour cohort was biased towards patients of Asian ethnicity. Thus further 

assessment of our findings in additional lung tumour and non-malignant „omic cohorts from 

ethnically balanced cohorts is necessary. Since survival analyses are not dependent on non-

malignant profiles or absolute miRNA expression values because patient outcome was 

assessed on rank based tertiles of tumour miRNA expression, the large numbers of well 

annotated tumour miRNA sequencing expression profiles from the TCGA were integral in 

increasing our sample size to enable us to perform smoking status specific survival analyses. 

 

5.3.3 Chapter 4 

We were able to conduct the first multi-omic characterization of lung tumours in the 

context of COPD. However there were multiple caveats to this study. There was a significant 

bias towards smokers in our COPD cohort and towards never smokers in our non-COPD 

cohort. While we noted substantial overlap among gene sets derived from our i) primary 

cohort and ii) “smoking- associated” analyses, we also note a substantial degree of overlap 

between both of these gene sets, with results from our COPD tumour analysis which did not 

include never smokers. Thus while results from our primary analyses are likely confounded 

by the biological effects of smoking, overlap among gene sets and enriched pathways 
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generated from these three analyses indicate to us that genes altered in response to cigarette 

smoke are likely important to COPD related lung cancer. This is supported by multiple 

epidemiological and genetic association studies that link cigarette smoke to both diseases 

[248-251]. Understanding why some current and former smokers are at increased risk of 

COPD and lung cancer, while others remain free of disease does however have important 

implications to the design of markers which stratify patients based on risk (section 5.2.4). 

The type of smoke (tobacco vs. biomass fuels) has also recently been associated with 

differences in clinical presentation of COPD [277], therefore there are further therapeutic 

implications to clarifying this interaction.  

 

Lung tumour „omics cohorts (any „omics dimension) with annotated lung function 

measures are extremely scarce in the public domain. Given the growing global burden of 

COPD and lung cancer, and the relatively recently recognized importance of clinical factors 

such as smoking status and lung function to lung cancer biology and patient outcome; this 

type of resource is sure to expand in the public domain. Larger tumour and non-malignant 

cohorts with annotated lung function measures will accord analytical strategies beyond two 

group comparisons. As mentioned in Chapter 1 (section 1.6), the inclusion of non-malignant 

tissues as references for identifying tumour-specific alterations has the potential of masking 

potentially important molecular alterations occurring in the “field of cancerization” [117-

120]. These “field effect” changes, also referred to as the “molecular field of injury” may be 

involved in initiation of frank disease and are thus potential highly relevant. Compared to the 

prominence of genomic alterations detected in tumour tissues, the magnitude of genomic 

disruptions occurring in non-malignant tissues is relatively small. Effect size-- which can be 

defined as a signal to noise ratio, where noise includes both biological and technical variation 

[137], is small in non-malignant tissues, thus large sample sizes improve discovery of 

alterations specific to the molecular field of injury. In the case of a large, annotated tumour 

and non-malignant tissue „omics cohort, an alternate analytical strategy based on the 

molecular field of injury hypothesis would be to identify „omics changes associated with 

lung function decline (as a continuous variable) in non-malignant tissues of patients with 

COPD and lung cancer compared to COPD alone, and then assess whether associated genes 
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are further deregulated in COPD-related lung tumours and/or in non- or minimally invasive 

tissues such as airway, nasal or buccal cells.  

 

We acknowledge the importance of other „omic levels known to be involved in 

COPD and lung cancer biology, that occur at the genetic (whole-genome sequence), 

epigenetic (non-coding RNA, modification to histones) and proteomic levels [278-281], 

which we did not assess in our current study. We also acknowledge that validation of our 

findings was lacking both functionally (in lung tumour and COPD models) and clinically (in 

prospectively collected cohorts).  

 

 

5.4 Future research directions and considerations 

 

5.4.1 Incorporating epidemiological evidence into cancer ‘omics research 

Chronic inflammation in different organs share common causes (e.g., chronic insult 

of cyto- and genotoxic agents), pathology (e.g., tissue remodeling) and consequences (e.g., 

high cancer risk). It is therefore plausible that inflammatory-related cancers also share 

common underlying molecular biology.  Given the increasing availability of a very large 

number of clinically annotated, high resolution (i.e. sequence level) multi-omic tumour 

profiles; a meta- multi-omic analysis of inflammatory-related tumours across different tissue 

types is one such possible approach to address this hypothesis. An improved understanding 

of the molecular events mediating the progression of chronic inflammatory states to cancer is 

required for development of targeted therapies which can halt the damaging effects of 

chronic inflammation while preserving the protective effects of the immune system, in the 

lung and other organs. 

 

5.4.2 Anticipating shifts in patient demographics 

With the success of smoking prevention and cessation campaigns, in the coming 

decades lung cancer and COPD in North America will increasingly become a disease of 

former and never smokers (Figure 5.1). Presently, in North America, half of all newly 

diagnosed lung cancer patients are FS and 25% are NS [50, 282]. Statistics for British 
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Columbia are presented in Figure 5.1. As clinically relevant molecular differences exist for 

both COPD and lung cancer in relation to duration, type and amount of smoking exposure, 

understanding the biology of these diseases in the context of different smoking environments 

is thus increasingly important. 

 

 

Figure 5.1 

 

Figure 5.1   Smoking status of lung cancer patients in British Columbia 

Data from British Columbia Cancer Agency 

 

 

Another shift relates to advances and widespread implementation of cancer screening 

and early detection programs. Currently, lung cancer patient survival after 5 years of 

diagnosis is dismal at 16%, although this is largely due to advanced stage disease at 

diagnosis; when stratified by stage, 50% of lung cancer patients who are diagnosed early 

(stage IA) survive after five years, compared to only 2% of those diagnosed late (stage IV). 

Encouragingly, early stage tumours are becoming more readily detectable and survival rates 

for many cancers are improving [283]. These advances will also bring new opportunities for 

genomic analyses on pre-invasive tumours, and with it, emphasis on the genomics of early 

disease and new strategies for detection and early intervention. A shift towards „omics 

cohorts with early stage patients will likely result in an improved understanding of cancer 

initiation and development. Translation of these studies will vastly accelerate improved gene 
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signatures or pathway disruption patterns which could for example, predict which lesions 

progress to lung cancer or whether a CT detected lung nodule would become malignant. 

Strategies to predict which nodules detected by low-dose CT will progress based on nodule 

characteristics and patient information, as described by McWilliams et al., are an 

increasingly important aspect to lung cancer patient care [284]. 

 

5.4.3 Challenges to translation of ‘omics findings 

Many of the challenges in translational 'omics can be summed up by the "cancer 

biomarker problem", which refers to the great disparity in 'omics information produced, to 

number of successfully translated diagnostic, prognostic and especially predictive biomarkers 

derived from this massive body of work [285, 286]. Translational success of a biomarker 

may be defined as a diagnostic test "that will change clinical practice and reduce costs, either 

by improving people's health or by eliminating ineffective, expensive treatments" [286, 287]. 

Practical challenges hindering translation of 'omics-generated biomarkers include: 

availability of well defined clinically characterized cohorts and lack of standardization 

regarding how specimens are collected, handled and stored. Ultimately, these roadblocks 

relate to how, or if, biomarkers are validated for cancer specificity in well controlled cohorts 

[286, 288]. As described by Liotta and Petricoin, biomarker translation has also been 

impeded by a lack of mechanistic links to the tumour itself, which the authors suggest may 

be overcome by i) initial discovery of the biomarker in animal tumour models, ii) showing a 

functional role for the biomarker in tumourigenesis or in response to treatment and iii) 

validating the marker in humans, as exemplified by a recent study by Taguchi et al.[289]. 

 

The application of high throughput 'omics techniques, particularly sequencing level 

technologies to tumour tissues or model systems to identify molecular features driving 

associated phenotypes, holds great potential to accelerate translation of 'omics research. The 

wealth of this type of data in the public domain is rapidly growing. Today, multi-omics data 

for thousands of tumours with detailed clinical information across dozens of cancer types is 

increasingly available to researchers. When these data are considered in a specific biological 

context -- for example, in relation to distinct clinical phenotypes including treatment 

response, outcome, acquired phenotypes such as drug resistance, or towards understanding 
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cancer development under unique selective pressures such as cigarette smoke or 

inflammation -- they hold potential to greatly improve discovery and accurate assessment of 

biomarkers, perhaps especially so for predictive markers informing rational application of 

targeted therapeutics [290-293].  

 

For clinical utility to be established, a biomarker must be reproducible, specific and 

sensitive [294]. However, most published biomarkers fail at the point of reproducibility. This 

can be attributed to i) small sample size of discovery cohorts, ii) assessment of relatively few 

markers or „omic levels or iii) unaccounted for confounding bias in discovery and test 

cohorts, which can be easily introduced during sample collection or processing [294]. One 

potential hazard particularly pertinent to high-dimensional data is over-fitting which occurs 

when model fitting exploits characteristics of data related to noise or experimental artifacts 

rather than biology [295]. The risk of over-fitting increases when the model has a large 

number of measurements relative to number of samples, as is the case with whole genome 

sequence and array based approaches to marker discovery.  

 

Analysis of multi-omics data, integrated on a per tumour basis, in the context of 

distinct clinical phenotypes and treatment exposure for that tumour specimen -- is an 

analytical concept in line with the fundamental goals of personalized medicine. The clinical 

utility of such information could be significant; causative DNA level events could serve as 

biologically relevant biomarkers related to COPD pathogenesis or lung cancer risk, or as 

targets for therapeutic interventions. Since some of these mechanisms are reversible (e.g., 

DNA methylation), further work in this area may contribute to the development of novel 

treatment strategies or the re-appropriation of existing epigenetic based drugs to the treatment 

or prevention of COPD. 

 

Encouragingly, the elapsed time between target discovery and clinical utilization of 

targeted therapies has decreased significantly in the past five years [296, 297]. The 

translation of ALK inhibitors, which are used to treat the ~7% of NSCLCs patients whose 

tumours harbour EML4-ALK rearrangements, was achieved in a remarkable three years [296, 

298, 299]. Speed of translation will likely increase further as classic drug development and 
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trial regimes are reshaped to include prospective characterization of patients, and collection 

and interrogation of biological materials throughout clinical trials to assess patient response 

[296, 297, 300, 301]. 

 

The central tenet of 'omics investigation is that it allows for open (not only hypothesis 

driven) discovery. The integration of „omics data with epidemiological data from well 

defined cohorts, improves our ability to associate genetic alterations with environmental 

exposures and specific clinical phenotypes. This has the potential to improve our current 

understanding of cancer biology and ultimately patient management.  Now that technological 

developments have enabled such multi-dimensional studies, much of the focus will shift to 

study design, interpretation and clinical applicability.  Crucial to furthering the goals of this 

field and to the continued support and funding of this multidisciplinary work, is the 

communication of findings to the public by the scientific community.  While translational 

success of cancer research is judged by improved survival for cancer patients, its effective 

implementation will require educating the medical establishment and the public at large 

about the power of „omics to transform medicine and improve patient outcomes. 
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Appendices 

Appendix A  miRNA frequently altered in all tumour smoking groups 

† Previously described in lung cancer 

Overexpressed in 

all tumours 

hsa-mir-187†; hsa-mir-376a; hsa-mir-376c; hsa-mir-136†; hsa-mir-196b†; hsa-mir-224†; hsa-mir-

154†; hsa-mir-370; hsa-mir-432; hsa-mir-487b; hsa-mir-494; hsa-mir-31†; hsa-mir-149†; hsa-mir-

627†; hsa-mir-95; hsa-mir-409; hsa-mir-431; hsa-mir-377†; hsa-mir-412†; hsa-mir-1180†; hsa-mir-
1277; hsa-mir-323b; hsa-mir-365b†; hsa-mir-376b; hsa-mir-493; hsa-mir-127†; hsa-mir-539†; hsa-

mir-382; hsa-mir-134†; hsa-mir-487a; hsa-mir-193b†; hsa-mir-214†; hsa-mir-1248; hsa-mir-339†; 

hsa-mir-3607; hsa-mir-3676; hsa-mir-642a; hsa-mir-503; hsa-mir-1296†; hsa-mir-551a; hsa-mir-
616; hsa-mir-320d; hsa-mir-4454; hsa-mir-485; hsa-mir-92b†; hsa-mir-205†; hsa-mir-219†; hsa-mir-

3127; hsa-mir-3200; hsa-mir-425†; hsa-mir-489; hsa-mir-19b†; hsa-mir-3651; hsa-mir-887; hsa-mir-
1269a; hsa-mir-196a†; hsa-mir-222†; hsa-mir-491; hsa-mir-500b; hsa-mir-577; hsa-mir-625; hsa-

mir-148a†; hsa-mir-192†; hsa-mir-2110†; hsa-mir-212†; hsa-mir-24†; hsa-mir-26b†; hsa-mir-3615; 

hsa-mir-483†; hsa-mir-1271†; hsa-mir-3677; hsa-mir-3909; hsa-mir-5010; hsa-mir-29a†; hsa-mir-

365a†; hsa-mir-4661; hsa-mir-4724; hsa-mir-98; hsa-mir-450b; hsa-mir-939; hsa-mir-629; hsa-mir-

130a†; hsa-mir-3157; hsa-mir-4677; hsa-mir-1251; hsa-mir-125b†; hsa-mir-210†; hsa-mir-135b†; 

hsa-mir-188; hsa-mir-96; hsa-mir-1226†; hsa-mir-130b†; hsa-mir-141†; hsa-mir-182†; hsa-mir-
200a†; hsa-mir-331†; hsa-mir-33b; hsa-mir-345†; hsa-mir-877; hsa-mir-1301†; hsa-mir-1306; hsa-

mir-183†; hsa-mir-29b†; hsa-mir-424; hsa-mir-429; hsa-mir-708; hsa-mir-874; hsa-mir-147b†; hsa-

mir-191†; hsa-mir-200b†; hsa-mir-301a†; hsa-mir-301b†; hsa-mir-324; hsa-mir-33a†; hsa-mir-3605; 
hsa-mir-423; hsa-mir-4326; hsa-mir-4728; hsa-mir-671; hsa-mir-940; hsa-mir-1307; hsa-mir-296†; 

hsa-mir-34a†; hsa-mir-450a; hsa-mir-744; hsa-mir-766; hsa-mir-937; hsa-mir-200c†; hsa-mir-3648; 

hsa-mir-3653; hsa-mir-421; hsa-mir-505; hsa-mir-1228†; hsa-mir-1249†; hsa-mir-1266; hsa-mir-
5001; hsa-mir-644b; hsa-mir-9; hsa-mir-1291†; hsa-mir-18a†; hsa-mir-197†; hsa-mir-19a†; hsa-mir-

21†; hsa-mir-2277; hsa-mir-342†; hsa-mir-375; hsa-mir-454; hsa-mir-455; hsa-mir-5698; hsa-mir-

589; hsa-mir-590; hsa-mir-628†; hsa-mir-320b†; hsa-mir-323a; hsa-mir-484; hsa-mir-574; hsa-mir-
760; hsa-mir-769; hsa-let-7i†; hsa-mir-1229†; hsa-mir-3170; hsa-mir-3194; hsa-mir-4449; hsa-mir-

4668; hsa-mir-615; hsa-mir-146a†; hsa-mir-153†; hsa-mir-199a†; hsa-mir-3189; hsa-mir-328†; hsa-

mir-3928; hsa-mir-548v; hsa-mir-106a†; hsa-mir-1287; hsa-mir-3687; hsa-mir-4787; hsa-mir-1270; 
hsa-mir-1275†; hsa-mir-148b†; hsa-mir-17†; hsa-mir-199b†; hsa-mir-5699; hsa-let-7g†; hsa-mir-

1343; hsa-mir-137†; hsa-mir-3917; hsa-mir-16†; hsa-mir-320c; hsa-mir-3617; hsa-mir-550a; hsa-

mir-106b†; hsa-mir-1254†; hsa-mir-128†; hsa-mir-2116†; hsa-mir-4638; hsa-mir-4652 

Underexpressed 

in all tumours 

hsa-mir-5683; hsa-mir-143†; hsa-mir-144†; hsa-mir-30a†; hsa-mir-451a†; hsa-mir-374a†; hsa-mir-

486; hsa-mir-584; hsa-mir-139†; hsa-mir-101†; hsa-mir-190a†; hsa-mir-100†; hsa-mir-1258†; hsa-

mir-1†; hsa-mir-218†; hsa-mir-223†; hsa-mir-1247; hsa-mir-10b†; hsa-mir-204†; hsa-let-7c†; hsa-
mir-338†; hsa-mir-5586; hsa-mir-206†; hsa-mir-4732; hsa-mir-133a†; hsa-let-7a†; hsa-mir-30d†; 

hsa-mir-4772; hsa-mir-99a†; hsa-mir-202†; hsa-mir-126†; hsa-mir-133b†; hsa-mir-598; hsa-mir-

374b; hsa-mir-4521; hsa-mir-490 
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Appendix B  miRNA frequently altered in one or more smoking tumour groups 

 

Tumour 

Subgroup 
miRNA 

Overexpressed 

CS 

hsa-mir-654; hsa-mir-891a; hsa-mir-18b†; hsa-mir-215; hsa-mir-592†; hsa-mir-129; hsa-mir-

576; hsa-mir-337; hsa-mir-411; hsa-mir-545; hsa-mir-7†; hsa-mir-372; hsa-mir-3940; hsa-mir-

5571 

CS, FS 

hsa-mir-449a†; hsa-mir-758; hsa-mir-20a†; hsa-mir-335†; hsa-mir-99b; hsa-mir-556; hsa-mir-

27b†; hsa-mir-3664; hsa-mir-579; hsa-mir-433; hsa-mir-449b; hsa-mir-570; hsa-mir-659; hsa-
mir-3136; hsa-mir-4664 

CS, NS 

hsa-mir-369; hsa-mir-496; hsa-mir-142†; hsa-mir-3913; hsa-mir-4746; hsa-mir-543; hsa-mir-

1269b 

FS 

hsa-mir-504†; hsa-mir-1262; hsa-mir-944; hsa-mir-27a†; hsa-mir-23c; hsa-mir-151b; hsa-mir-
190b†; hsa-mir-320a†; hsa-mir-3187; hsa-mir-514b; hsa-mir-105†; hsa-mir-632 

FS, NS 

hsa-mir-3614; hsa-mir-4461; hsa-mir-548b; hsa-mir-4709; hsa-mir-326†; hsa-mir-452; hsa-

mir-502; hsa-mir-125a†; hsa-mir-155†; hsa-mir-3934; hsa-mir-501; hsa-mir-1224†; hsa-mir-
146b†; hsa-mir-362; hsa-mir-181b†; hsa-mir-186†; hsa-mir-2355; hsa-mir-542; hsa-mir-221†; 

hsa-mir-4685; hsa-mir-1227†; hsa-mir-4444; hsa-mir-3064; hsa-mir-4758; hsa-mir-664; hsa-

mir-1237; hsa-mir-3610; hsa-mir-3652; hsa-mir-1292†; hsa-mir-4446; hsa-mir-4690; hsa-mir-
4742; hsa-mir-330†; hsa-mir-3620 

NS 

hsa-mir-150†; hsa-mir-185†; hsa-mir-675; hsa-mir-217†; hsa-mir-660; hsa-mir-3130; hsa-mir-

500a; hsa-mir-3150b; hsa-mir-3613; hsa-mir-1976; hsa-mir-652†; hsa-mir-152†; hsa-mir-
5701; hsa-mir-340; hsa-mir-216a†; hsa-mir-3609; hsa-mir-1295a†; hsa-mir-329†; hsa-mir-

4791; hsa-mir-636; hsa-mir-93†; hsa-mir-2114; hsa-mir-4443; hsa-mir-320e; hsa-mir-612 

Underexpressed 

CS 

hsa-mir-511; hsa-mir-135a†; hsa-mir-4532; hsa-mir-3065; hsa-mir-138†; hsa-mir-4536; hsa-

mir-378a†; hsa-mir-676; hsa-mir-195†; hsa-mir-378c† 

CS, FS 

hsa-let-7b†; hsa-mir-10a†; hsa-mir-184†; hsa-let-7f†; hsa-mir-4662a; hsa-mir-140†; hsa-mir-

5000; hsa-mir-1468†; hsa-mir-532; hsa-mir-34c†; hsa-mir-34b; hsa-mir-3926 

FS hsa-mir-381; hsa-mir-607 

FS, NS 
hsa-mir-203† 

NS 
hsa-mir-582 

 



131 

 

 

Appendix C  miRNA identified as having significant associations between miRNA 

expression and lung AC patient survival 

*B-H corrected p-value 

‡ considering uncorrected p-value for the All Lung AC group 

 
                

   Status in Tumours Mantel-Haenszel p value   

miRNA CST FST NST All Lung AC All Lung AC* CS FS NS Group‡ 

hsa-let-7a UE UE UE 0.0664 0.1901 0.1493 0.019 0.197 FS 

hsa-let-7f UE UE 
 

0.0244 0.1121 0.3043 0.0727 0.7148 ALL 
hsa-let-7g OE OE OE 0.0006 0.0335 0.1894 0.0438 0.0036 ALL+FS+NS 

hsa-let-7i OE OE OE 0.0417 0.1416 0.0887 0.4869 0.2138 ALL 

hsa-mir-1 UE UE UE 0.0021 0.0449 0.8863 0.0179 0.0565 ALL+FS 
hsa-mir-106a OE OE OE 0.1324 0.3059 0.3771 0.3858 0.0383 NS 

hsa-mir-10a UE UE 

 

0.7948 0.8639 0.4552 0.7071 0.0342 NS 

hsa-mir-1226 OE OE OE 0.1119 0.2675 0.9905 0.0493 0.7862 FS 
hsa-mir-1247 UE UE UE 0.0027 0.0498 0.2228 0.0066 0.6707 ALL+FS 

hsa-mir-1249 OE OE OE 0.0203 0.1055 0.1338 0.4165 0.16 ALL 

hsa-mir-125a OE OE 0.0136 0.0889 0.2276 0.0122 0.4137 ALL+FS 
hsa-mir-126 UE UE UE 0.0167 0.0975 0.6402 0.0902 0.2882 ALL 

hsa-mir-1270 OE OE OE 0.8638 0.8964 0.0462 na 0.854 CS 

hsa-mir-1287 OE OE OE 0.0048 0.0473 0.0022 0.169 0.4399 ALL+CS 
hsa-mir-1301 OE OE OE 0.0214 0.1051 0.2644 0.0122 0.3624 ALL+FS 

hsa-mir-1306 OE OE OE 0.1964 0.3942 0.5442 0.048 0.9494 FS 

hsa-mir-130a OE OE OE 0.0677 0.1881 0.1222 0.028 0.4554 FS 
hsa-mir-133a UE UE UE 0.0096 0.0756 0.6305 0.0001 0.3569 ALL+FS 

hsa-mir-133b UE UE UE 0.0414 0.1423 na na 0.0304 ALL+NS 

hsa-mir-135b OE OE OE 0.079 0.213 0.7256 0.0021 0.1 FS 
hsa-mir-136 OE OE OE 0.1847 0.3877 0.7652 0.0235 0.1303 FS 

hsa-mir-138 UE 

  

0.0145 0.0905 0.0086 0.2916 0.6801 ALL+CS 

hsa-mir-139 UE UE UE 0.0089 0.072 0.7048 0.0567 0.02 ALL+NS 
hsa-mir-142 OE 

 

OE 0.0247 0.1115 0.8207 0.0165 0.3855 ALL+FS 

hsa-mir-143 UE UE UE 0.0177 0.1014 0.0997 0.2432 0.906 ALL 

hsa-mir-1468 UE UE 
 

0.0031 0.0453 0.0567 0.0301 0.2268 ALL+FS 
hsa-mir-146a OE OE OE 0.0048 0.0487 0.1486 0.1216 0.2677 ALL 

hsa-mir-148a OE OE OE 0.0268 0.119 0.0429 0.1372 0.2013 ALL+CS 

hsa-mir-149 OE OE OE 0.0342 0.1305 0.2459 0.0348 0.4066 ALL+FS 
hsa-mir-150 

  

OE 0.0073 0.067 0.8039 0.0311 0.0143 ALL+FS+NS 

hsa-mir-153 OE OE OE 0.0006 0.028 0.9752 0.0006 0.3777 ALL+FS 

hsa-mir-16 OE OE OE 0.0378 0.1333 0.1836 0.0109 0.6305 ALL+FS 
hsa-mir-184 UE UE 

 

0.0036 0.0445 na 0.247 0.0103 ALL+NS 

hsa-mir-186 

 

OE OE 0.1288 0.3001 0.9525 0.02 0.0534 FS 

hsa-mir-187 OE OE OE 0.0002 0.0182 0.1882 0.001 0.7241 ALL+FS 
hsa-mir-18a OE OE OE 0.0276 0.1204 0.3858 0.5285 0.6604 ALL 

hsa-mir-191 OE OE OE 0.0338 0.1308 0.532 0.0403 0.4667 ALL+FS 

hsa-mir-195 UE 
  

0.0071 0.0671 0.0436 0.0151 0.8953 ALL+CS+FS 
hsa-mir-200a OE OE OE 0.0205 0.1045 0.4595 0.0047 0.262 ALL+FS 

hsa-mir-200b OE OE OE 0.0023 0.0461 0.5559 0.0063 0.1569 ALL+FS 
hsa-mir-204 UE UE UE 0.0035 0.0462 0.0291 0.0093 0.7435 ALL+CS+FS 

hsa-mir-21 OE OE OE 0.0082 0.0687 0.323 0.0013 0.4412 ALL+FS 

hsa-mir-2110 OE OE OE 0.003 0.0457 0.0636 0.011 0.1423 ALL+FS 
hsa-mir-212 OE OE OE 0.1104 0.2686 0.2352 0.0056 0.3233 FS 

hsa-mir-24 OE OE OE 0.0224 0.108 0.3106 0.0117 0.5308 ALL+FS 

hsa-mir-26b OE OE OE 0.0001 0.0194 0.0634 0.0018 0.5666 ALL+FS 
hsa-mir-27a 

 

OE 

 

0.0321 0.128 0.1226 0.2255 0.2672 ALL 

hsa-mir-27b OE OE 

 

0.013 0.0874 0.8206 0.011 0.1543 ALL+FS 

hsa-mir-296 OE OE OE 0.0039 0.0462 0.0854 0.0208 0.1344 ALL+FS 
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*B-H corrected p-value 

‡ considering uncorrected p-value for the All Lung AC group 

 

                

   Status in Tumours Mantel-Haenszel p value   

miRNA CST FST NST All Lung AC All Lung AC* CS FS NS Group‡ 

hsa-mir-29a OE OE OE 0.0229 0.1067 0.2196 0.0387 0.1769 ALL+FS 

hsa-mir-29b OE OE OE 0.0127 0.0874 0.1006 0.0054 0.1964 ALL+FS 
hsa-mir-301a OE OE OE 0.0647 0.1891 0.4031 0.0271 0.2524 FS 

hsa-mir-3065 UE 

  

0.0021 0.0484 0.09 0.0128 0.2516 ALL+FS 

hsa-mir-30d UE UE UE 0.4038 0.5876 0.0282 0.2891 0.2239 CS 
hsa-mir-320d OE OE OE 0.0371 0.1342 0.5347 na 0.6182 ALL 

hsa-mir-324 OE OE OE 0.2906 0.4995 0.0996 0.0069 0.2922 FS 

hsa-mir-326 
 

OE OE 0.2404 0.4497 0.0131 0.5943 0.6563 CS 
hsa-mir-328 OE OE OE 0.0139 0.0889 0.052 0.0043 0.9766 ALL+FS 

hsa-mir-331 OE OE OE 0.0007 0.0254 0.0146 0.0054 0.6023 ALL+CS+FS 

hsa-mir-338 UE UE UE 0.0332 0.1304 0.7063 0.1734 0.0006 ALL+NS 
hsa-mir-339 OE OE OE 0.0003 0.0189 0.0783 0.006 0.7159 ALL+FS 

hsa-mir-33a OE OE OE 0.0353 0.1313 0.3898 0.0667 0.885 ALL 

hsa-mir-33b OE OE OE 0.0291 0.1195 0.812 0.0054 0.9763 ALL+FS 
hsa-mir-342 OE OE OE 0.0281 0.1206 0.2682 0.0127 0.2081 ALL+FS 

hsa-mir-345 OE OE OE 0.0844 0.2149 0.6497 0.0082 0.2331 FS 

hsa-mir-34a OE OE OE 0.0029 0.0503 0.1892 0.0065 0.168 ALL+FS 
hsa-mir-34b UE 

 

UE 0.0177 0.0975 0.0849 0.0078 0.0663 ALL+FS 

hsa-mir-3607 OE OE OE 0.0013 0.0319 0.2897 0.0022 0.9309 ALL+FS 

hsa-mir-3613 
 

OE 0.0545 0.1685 0.9888 0.0052 0.6258 FS 
hsa-mir-362 

 

OE OE 0.0152 0.0931 0.4064 0.0875 0.7775 ALL 

hsa-mir-3653 OE OE OE 0.0044 0.0485 0.2089 0.0067 0.3956 ALL+FS 

hsa-mir-3676 OE OE OE 0.0047 0.0498 0.0855 0.0602 0.4167 ALL 
hsa-mir-369 OE 

 

OE 0.7974 0.8633 0.4857 0.0155 0.2601 FS 

hsa-mir-374b UE UE UE 0.008 0.0688 0.0483 0.0885 0.41 ALL+CS 

hsa-mir-375 OE OE OE 0.0177 0.0993 0.7243 0.0387 0.2538 ALL+FS 
hsa-mir-376c OE OE OE 0.0965 0.239 0.9687 0.0076 0.4326 FS 

hsa-mir-423 OE OE OE 0.0181 0.0956 0.1645 0.0476 0.6897 ALL+FS 

hsa-mir-425 OE OE OE 0.0161 0.0962 0.1765 0.0415 0.3394 ALL+FS 
hsa-mir-429 OE OE OE 0.0107 0.0796 0.7818 0.0002 0.696 ALL+FS 

hsa-mir-432 OE OE OE 0.4154 0.592 0.3711 0.0048 0.5628 FS 

hsa-mir-454 OE OE OE 0.0427 0.1413 0.3653 0.2962 0.7588 ALL 
hsa-mir-484 OE OE OE 0.0394 0.1371 0.3633 0.011 0.7589 ALL+FS 

hsa-mir-486 UE UE UE 0.03 0.1213 0.9594 0.0565 0.0457 ALL+NS 

hsa-mir-491 OE OE OE 0.0079 0.0701 0.1354 0.0137 0.2151 ALL+FS 
hsa-mir-493 OE OE OE 0.441 0.6004 0.9771 0.0344 0.1376 FS 

hsa-mir-502 

 

OE OE 0.01 0.0764 0.0883 0.1188 0.8083 ALL 

hsa-mir-505 OE OE OE 0.0661 0.1914 0.3847 0.0257 0.1765 FS 
hsa-mir-539 OE OE OE 0.4244 0.5895 0.0526 0.0056 0.3633 FS 

hsa-mir-548b OE OE 0.0363 0.1333 0.0512 0.0498 0.5446 ALL+FS 

hsa-mir-574 OE OE OE 0.0352 0.1326 0.0521 0.1069 0.8262 ALL 
hsa-mir-590 OE OE OE 0.0212 0.1058 0.3105 0.2123 0.9051 ALL 

hsa-mir-598 UE UE UE 0.2408 0.4475 0.6718 0.0447 0.0326 FS+NS 

hsa-mir-628 OE OE OE 0.018 0.0972 0.295 0.0374 0.179 ALL+FS 
hsa-mir-642a OE OE OE 0.0113 0.0816 0.8041 0.0005 0.3554 ALL+FS 

hsa-mir-664 
 

OE OE 0.0012 0.0342 0.0331 0.0128 0.0307 ALL 
hsa-mir-7 OE 

  

0.1757 0.3774 0.9604 0.0379 0.7983 FS 

hsa-mir-769 OE OE OE 0.012 0.0844 0.1469 0.0852 0.3701 ALL 

hsa-mir-887 OE OE OE 0.0433 0.1402 0.6015 0.0085 0.1952 ALL+FS 
hsa-mir-92b OE OE OE 0.6739 0.7721 0.6029 0.0378 0.0351 FS+NS 

hsa-mir-940 OE OE OE 0.0289 0.1205 0.4283 0.0656 0.6866 ALL 

hsa-mir-95 OE OE OE 0.0034 0.0463 0.4213 0.0306 0.2897 ALL+FS 
hsa-mir-96 OE OE OE 0.0428 0.1401 0.2864 0.037 0.0631 ALL+FS 

hsa-mir-99b OE OE   0.0639 0.191 0.0639 0.0027 0.8974 FS 

          



133 

 

 

Appendix D  Assessment of DNA change on expression fold change and difference in 

expression fold change between scoring bins 

CN: copy number; HypoMeth: Hypomethylation; HyperMeth: Hypermethylation; Expr OE: overexpressed; 

Expr UE: underexpressed 

 

WEIGHTS Colon Lung AC Breast Lung SQ Average 

CN Gain on Expr 1.91 2.17 2.27 2.25 2.15 

CN Loss on Expr 2.06 2.66 3.39 3.16 2.82 

HypoMeth on Expr 2.25 2.25 2.76 2.66 2.48 

HyperMeth on Expr 2.77 2.69 4.30 4.82 3.65 

SCORES Colon Lung AC Breast Lung SQ Average 

CN Gain Bin 1 1.81 2.11 2.24 2.11 2.07 

CN Gain Bin 2 2.26 2.15 2.39 2.97 2.44 

CN Loss Bin 1 1.97 2.65 3.34 3.12 2.77 

CN Loss Bin 2 2.06 2.69 4.18 4.11 3.26 

Meth Hypo Bin 1 2.23 2.25 2.74 2.64 2.47 

Meth Hypo Bin 2 2.46 2.22 3.02 4.48 3.04 

Meth Hyper Bin 1 2.69 2.68 4.23 4.79 3.60 

Meth Hyper Bin 2 2.88 3.09 9.20 6.59 5.44 

Expr OE Bin 1 2.16 2.29 2.33 2.30 2.27 

Expr OE Bin 2 4.41 4.88 4.79 4.98 4.77 

Expr OE Bin 3 13.68 13.23 13.72 18.00 14.66 

Expr OE Bin 4 66.32 80.91 69.54 107.46 81.06 

Expr UE Bin 1 2.23 2.48 2.60 2.53 2.46 

Expr UE Bin 2 4.37 4.84 5.32 5.37 4.97 

Expr UE Bin 3 12.35 13.00 14.19 16.48 14.01 

Expr UE Bin 4 78.83 63.58 71.83 91.55 76.45 

Expression Fold 

Change Between Bins 
Colon Lung AC Breast Lung SQ Average 

CN Gain Bin 1 vs 2 1.25 1.02 1.07 1.40 1.18 

CN Loss Bin 1 vs 2 1.05 1.02 1.25 1.32 1.16 

Hypomethylation Bin 1 

vs 2 
1.10 0.98 1.10 1.70 1.22 

Hypermethylation Bin 

1 vs 2 
1.07 1.15 2.17 1.38 1.44 
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