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Abstract

This thesis is devoted to the study of Mercury’s magnetic field envi-

ronment, to reveal the nature of the interaction between a weak planetary

magnetic field and the interplanetary medium. Due to the lack of orbital

spacecraft observations at Mercury prior to the MErcury Surface, Space En-

vironment, GEochemistry, and Ranging (MESSENGER) mission, work in

this thesis presents some of the first analysis and interpretation of observa-

tions in this unique and dynamic environment.

The bow shock and magnetopause define the boundary regions of the

planet’s magnetosphere, thereby representing the initial interaction of the

planetary field with the solar wind. We established the time-averaged shapes

and locations of these boundaries, and investigated their response to the

solar wind and interplanetary magnetic field (IMF). We found that the solar

wind parameters exert the dominant influence on the boundaries; we thus

derived parameterized model shapes for the magnetopause and bow shock

with solar wind ram pressure and Alfvén Mach number, respectively.

The cusp region is where solar wind plasma can gain access to the mag-

netosphere, and in Mercury’s unique case, the surface. As such, this area

is expected to experience higher than average space weathering and be a

source for the exosphere. Using magnetic field observations, we mapped the

northern cusp’s latitudinal and longitudinal extent, average plasma pressure

and observed its variation with the solar wind and IMF. From the derived

plasma pressure estimates we calculated the flux of plasma to the surface.

Mercury’s internal dipole field is not centered on the planet’s geographic

equator but has a significant northward offset. We developed the technique

of proton-reflection magnetometry to acquire the first measurements of Mer-

cury’s surface field strength. Proton loss cones are evident in both the north-
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Abstract

ern and southern hemispheres, providing confirmation of persistent proton

precipitation to the surface in these regions. We used the size of the loss

cones to estimate the surface magnetic field strength, which confirm the off-

set dipole structure of the planetary field. With additional proton-reflection

magnetometry observations, we generated a global proton flux map to Mer-

cury’s surface and searched for regional-scale surface magnetic fields in the

northern hemisphere.
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Preface

This thesis is based on four papers: three have been published and one is

in preparation for publication. Consequently, some background information

is repeated in the introductory section of each chapter.

A version of Chapter 2 has been published. I identified all bow shock

and magnetopause crossing times analyzed in the paper, which were checked

by Dr. Brian Anderson. I also performed all the calculations and analyses,

made the plots and wrote the manuscript. Dr. Catherine Johnson and

Dr. Brian Anderson provided guidance throughout and all co-authors com-

mented on the manuscript. In the Journal of Geophysical Research paper

associated with this chapter there was an error in the production of Fig-

ure 13; the figure and the associated text have been corrected in Chapter 2.

A version of Chapter 3 has been published. I identified all the cusp

crossing times in the residuals to the magnetic field data, after the mag-

netospheric model was removed; residual magnetic field files were produced

by Dr. Johnson. I conducted all the analyses, performed all the calcula-

tions, made all the plots and wrote the manuscript. I received comments

on the manuscript from all the co-authors. Dr. Johnson and Dr. Anderson

provided guidance throughout.

A version of Chapter 4 has been published. I developed the idea of using

proton-reflection magnetometry, and adapted the technique of electron re-

flectometry to protons. Normalization files for the proper analysis of FIPS

observations was provided by Dr. Dan Gershman and Dr. Jim Raines. I

performed all the analyses and calculations, and received guidance through-

out from Dr. Johnson and Dr. Anderson. I also wrote the manuscript which

received comments from all the co-authors.

A version of Chapter 5 is in preparation for publication in a major space
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physics journal. The usefulness and possibility of deriving a global proton

flux map to Mercury’s surface and establishing regional-scale surface fields

with additional proton-reflection magnetometry observations was noticed in-

dependently by Dr. Johnson and I. I developed the methods and techniques

to perform the analyses, made all the calculations and wrote up the results.

I am currently drafting the journal manuscript based on Chapter 5 of the

thesis.
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Chapter 1

Introduction

Mercury, because of its close proximity to the Sun, has long eluded direct

in situ observations due to the technical challenges of observing, navigating,

and operating so close to the Sun. Prior to 2008, our only information of

Mercury came from Earth-based radio astronomy [1–4], and three Mariner

10 flybys of the planet between 1974 and 1975 [5–9].

The first and third Mariner 10 flybys made the surprising discovery that

Mercury has a primarily dipolar intrinsic magnetic field, with a surface mag-

netic field strength of ∼ 1% of Earth’s dipole field [5, 9]. Such a predomi-

nantly dipolar internal field may imply an active dynamo process, which was

unexpected for Mercury due to predictions of early solidification of the core

(e.g., [10, 11]). The weak strength of the field was also thought to be difficult

to explain if Mercury’s dynamo is driven by thermo-chemical convection, as

is the case for Earth’s dynamo (see review in [12]). Remanent crustal mag-

netic fields were not originally favored for Mercury since crustal fields are

usually dominated by small-scale structure. However, Aharonson et al. [13]

showed that spatial variations in solar insolation on Mercury could give rise

to long-wavelength variations in the depth to the Curie isotherm for the

dominant magnetization carrier, that in turn would allow long-wavelength

structure in the crustal field.

From the limited Mariner 10 flyby observations alone it was not possible

to determine whether the dominant source of Mercury’s magnetic field was

of core or crustal origin and more observations were needed to characterize

the spatial structure of Mercury’s magnetic field, crucial for determining

the source(s) of the field. More recently, Earth-based radar observations

have provided support for a dynamo field because the measured amplitude

of Mercury’s forced librations suggests decoupling of the core and mantle,
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Chapter 1. Introduction

favoring the existence of a liquid outer core [4].

Our knowledge and understanding of the innermost planet has signifi-

cantly improved in the last few years because of the MErcury Surface, Space

Environment, GEochemistry, and Ranging (MESSENGER) mission, which

on the 18th of March 2011 became the first spacecraft to enter orbit around

Mercury. MESSENGER first reached Mercury’s orbital distances in 2008,

made three subsequent flybys of the planet, and was then inserted into or-

bit with a 200 km periapsis altitude, 82.5◦ inclination, 15,300 km apoapsis

altitude, and 12-h period (reduced to 8-h in March 2012). The highly el-

liptical orbit of the spacecraft is due to the absorption and re-emission of

solar radiation from Mercury’s surface, which if endured for too long would

increase spacecraft temperatures above safe operational limits.

MESSENGER has seven scientific instruments and a radio science ex-

periment to probe Mercury’s surface, its tenuous exosphere (a volume sur-

rounding the planet containing neutral atoms and ions that are collisionless

due to their low number density), and its magnetic field environment. Re-

cent MESSENGER results have confirmed that Mercury’s intrinsic magnetic

field is a weak, global, dynamo generated dominantly dipolar field [14–16].

They have also revealed that the dipole field is aligned with the rotation

axis but is offset northward from the planetary equator by 0.196 RM (where

RM is Mercury’s radius) [17–19]. Mathematically, such a northward offset

of the dipole means that in a spherical harmonic expansion of the field, even

though the dipole term dominates, there is a significant quadrupole term,

with a ratio of 0.4 for the quadrupole to dipole terms. A number of core

structures and dynamo regimes have been suggested for Mercury that can re-

produce its weak dipole moment (see discussion in [18]). However, dynamo

models still have difficulty reproducing all aspects of Mercury’s magnetic

field in a time-averaged sense, particularly the field’s high axial alignment,

the large value for the ratio of the quadrupole to dipole term, and the low

upper bound on the ratio between the octupole and dipole field [18]. Re-

search on this topic has shown that there is promise in models that invoke

a non-conductive layer above a deep dynamo that preferentially attenuates

the highly time-varying higher-degree components of the field [20, 21].
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Chapter 1. Introduction

Figure 1.1: Schematic diagram of Mercury’s magnetosphere. From Zur-
buchen et al. (2011), Science, 333, 1862-1865 [22]. Reprinted with permis-
sion from AAAS.

A global dipolar planetary magnetic field is capable of dominating the

space environment in its near vicinity by ordering and directing charged

particles and thereby partially shielding the region called the magnetosphere

from the solar wind. The magnetosphere is a magnetic cavity that forms

due to the interaction of the solar wind with the dipole field and is described

in more detail in Sections 1.1 and 1.4. Figure 1.1 shows a schematic dia-

gram of Mercury’s magnetosphere; here we briefly introduce aspects most

relevant to this thesis and define them in more detail in the coming sections.

Surrounding the planet and its magnetic field are the bow shock, magne-

tosheath, and magnetopause. The bow shock is a shock wave that forms

as the solar wind transitions from supersonic to subsonic speeds as it en-

counters the obstacle of the planet’s magnetic field. The magnetosheath, just

downstream of the bow shock, is the region in which the shocked solar wind,

compressed and heated at the shock, flows around the magnetopause. The
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Chapter 1. Introduction

magnetopause marks the boundary of the magnetosphere, and is a current

layer that acts to confine the planet’s magnetic field inside the magneto-

sphere. Detailed studies on Mercury’s magnetopause and bow shock will be

presented in Chapter 2. At high latitudes are the magnetic cusp regions (one

in the north, studied in detail in Chapter 3, and one in the south), where

the magnetopause currents nearly cancel the planet’s internal field, leaving

behind a weakened field region where solar wind plasma can gain access to

the magnetosphere. The plasma sheet in the nightside magnetosphere is

also a region of high plasma density, whose spatial extent largely coincides

with the tail current sheet, and separates the magnetotail’s north and south

lobes. The plasma populations found in the cusp region and in the plasma

sheet make our proton reflection magnetometry observations in Chapters 4

and 5 possible.

MESSENGER has revealed that the interaction of Mercury’s magnetic

field with the solar wind is unique in our solar system. The combination of

the weak planetary field and strong solar wind and interplanetary magnetic

field (IMF) generates a small, highly dynamic magnetosphere around Mer-

cury. At Mercury’s orbital distances from the Sun, the solar wind density is

on average an order of magnitude higher than at Earth, and the interplan-

etary magnetic field is a factor of five higher than at Earth [23]. Because

Mercury’s orbit is eccentric (0.31 AU < r < 0.47 AU, where r is heliocen-

tric distance), the planet is also subjected to different solar wind conditions

along its orbit; both the solar wind density and pressure increase signifi-

cantly near perihelion. The north-south component of the IMF, which has

a large influence on planetary magnetospheres (see Section 1.1), has been

shown to change on a timescales of a few minutes at Mercury [23]. Varia-

tions in Mercury’s magnetospheric conditions thus occur on timescales of a

few minutes to a Mercury year (88 Earth days) [24].

Mercury’s magnetosphere is strongly coupled to the exosphere and the

planet’s surface. Due to the lack of atmosphere and ionosphere (ionized up-

per atmosphere) the high-energy solar wind plasma can gain access to the

magnetosphere in regions where the shielding is incomplete and bombards

the surface of the planet. Ions sputtered from the surface move under the
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1.1. Interaction of the solar wind with Mercury’s magnetosphere

influence of magnetospheric electric and magnetic fields; some ions will be

lost through reconnection down-tail or through collision with the magne-

topause, while others will be returned back to the surface. This coupling

between the magnetosphere – exosphere – surface influences the dynamics

within the system.

This thesis is devoted to shedding light on the interaction of the in-

terplanetary medium with this magnetospheric system, particularly as it

pertains to three specific regions of the magnetosphere. We also show that

the nature of the interaction between the magnetosphere and the solar wind

can reveal information about the intrinsic planetary field at the surface and

can be used to make indirect surface field measurements. The initial interac-

tion of the solar wind with the magnetosphere occurs at the magnetospheric

boundaries, the bow shock and the magnetopause. In Chapter 2 we discuss

how we characterized these boundaries through observations and empirical

models. In the magnetic cusp regions, shielding of the magnetosphere from

the solar wind is incomplete, and so charged particles can gain access to the

magnetosphere and precipitate down to the surface. We investigated this

solar wind – magnetosphere – surface interaction in the northern cusp region

of Mercury, and we describe this in detail in Chapter 3. Finally, in Chapters

4 and 5, we develop a novel method to remotely sense the surface planetary

magnetic fields. The motion of solar wind protons, which have gained access

to the magnetosphere near the cusp and the magnetopause boundary, allows

for the measurement of the magnetic field strength at the surface of Mercury

through the technique of proton reflection magnetometry. We describe this

technique and show that this method confirms the offset dipole structure at

Mercury’s surface and particle precipitation to the surface.

1.1 Interaction of the solar wind with Mercury’s

magnetosphere

The interaction of the solar wind with a magnetized planet produces a

magnetic cavity around the planet, the magnetosphere, which confines the
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1.1. Interaction of the solar wind with Mercury’s magnetosphere

planetary magnetic field and is largely devoid of solar wind plasma. For

details on the formation of the magnetosphere, see Section 1.4.

Although the interaction between the solar wind and all magnetized

planets produces a magnetosphere, the nature of this interaction (i.e. char-

acteristics of the magnetopause current layer and of the shock wave, or bow

shock, in front of the magnetopause as well as the rate of exchange of plasma

between the solar wind and magnetosphere through reconnection) varies in

our solar system. Solar wind conditions vary significantly with heliocen-

tric distance; the solar wind density decreases as 1/r2 with distance from

the Sun on average, the magnetic field strength also decreases with distance

with a more complicated scaling law as do the solar wind electron and proton

temperatures (see Table 1.1).

At Mercury, the dominant magnetic field component of the interplane-

tary magnetic field (IMF) is parallel or anti-parallel to the +x direction in

a Mercury solar orbital (MSO) coordinate system, for which +x is sunward,

z is normal to the orbital plane and positive northward, and +y completes

the right-handed system. The angle of the IMF (also referred to as the

Parker spiral angle) with respect to the radial (−x) direction is only ∼ 20◦

for typical solar wind conditions at 0.3–0.5 AU. This is about a factor of 2

smaller than the Parker spiral angle of 45◦ at the Earth. The dominance

of the IMF Bx component on average at Mercury has a significant effect on

the magnetosphere, which will be discussed further in Chapter 3.

Other solar wind parameters that vary with heliocentric distance are the

solar wind Mach numbers, which increase with distance from the Sun. The

Mach number is defined as the solar wind flow speed divided by the speed

of a fundamental wave mode (e.g. sound waves, Alfvén waves). The solar

wind speed is approximately constant with heliocentric distance, and if the

speed of the wave mode decreases with heliocentric distance, the Mach num-

ber increases correspondingly. The Alfvén Mach number, MA, will be used

in Chapter 2 of this thesis; Alfvén waves are magnetohydrodynamic waves,

and have an associated speed of vA = B√
µ0ρ

, where µ0 is the permeability

of free space, and ρ is the plasma density. For example, MA is expected

to be ∼ 5 at Mercury and ∼ 13 at Saturn [25]. Such a large difference in
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1.1. Interaction of the solar wind with Mercury’s magnetosphere

vsw nsw BIMF Tp Te
Scaling r0 r−2 r−1(2r−2 + 2)1/2 r−2/3 r−1/3

Table 1.1: Scaling laws of solar wind speed, vsw, number density, nsw, in-
terplanetary magnetic field magnitude, BIMF , proton temperature, Tp, and
electron temperature, Te, with distance from the Sun [26].

MA implies that the bow shock in front (upstream) of Mercury’s magneto-

sphere is much weaker than the equivalent bow shock in front of Saturn’s

magnetosphere [25].

The merging of the magnetic field lines of the planet’s intrinsic magnetic

field with those of the draped IMF, through a process called reconnection,

is responsible for the circulation of flux in the magnetosphere (see Figure

1.2) and some fraction of the injection of solar wind plasma into the magne-

tosphere. This circulation of the magnetic flux and associated plasma from

the dayside to the nightside and back, called the Dungey cycle [27], is also

dependent on heliocentric distance and is much more dynamic at Mercury

than at any other planet in our solar system. The large-scale circulation

of magnetic flux and plasma in the magnetosphere is driven by the solar

wind at Mercury and Earth. However at for example, Jupiter and Saturn

the solar wind is much weaker and the magnetospheres of these planets are

influenced to a much higher degree by the planetary rotation and the large

amount of plasma originating within the magnetosphere. At Mercury, the

Dungey cycle time is ∼ 2 minutes [28, 29], whereas this time scale is much

longer at Earth, ∼ 60 minutes.

Reconnection is expected to proceed most efficiently when the IMF di-

rection is oppositely directed to the planetary field in the subsolar region; on

the dayside at Earth and Mercury this occurs when the IMF has a southward

component, i.e., a negative Bz component. The rate of reconnection has also

been shown to depend on MA and the plasma β, the ratio of the plasma

thermal pressure to the magnetic pressure [31]. Recent observations [32]

suggest that a low value of MA on the solar wind side of the magnetopause

current layer, and a low β on either side of the current layer as well as a

low value of the absolute difference in plasma β across the current layer
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1.1. Interaction of the solar wind with Mercury’s magnetosphere

Figure 1.2: Magnetospheric convection due to reconnection. The circulation
of flux proceeds from numbers 1 through 8 in the figure. At 1, the planet’s
closed field lines merge with the southward directed, open field lines of the
solar wind at the subsolar point where the fields are in opposite direction.
The newly opened field lines are convected through from the dayside to the
nightside by the flow of the shocked solar wind in the magnetosheath. At 7,
the field lines are stretched out far enough that they are in opposite direction
again and they reconnect in the tail, to close the magnetic flux circulation.
Newly connected planetary field lines in the tail move planetward due to
magnetic tension, while completely open IMF field lines move away from
the planet. Figure from Basic Space Plasma Physics, Wolfgang Baumjohann
and Rudolf A. Treumann, Copyright 1997, Imperial College Press [30]; used
with permission.

(|∆β|), promotes reconnection onset because under these conditions recon-

nection is possible over a wider range of shear angles (i.e., angle between

the magnetic field direction in the IMF and just inside the magnetopause).

Furthermore, Swisdak et al. [33] showed that a diamagnetic drift, which

is produced when a pressure gradient is present across the magnetopause
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1.2. Charged particle motion

current sheet, can disrupt the reconnection process when this drift velocity

is super-Alfvénic (i.e. the solar wind flow speed is greater than the Alfvén

speed). Thus reconnection is more likely to be suppressed for cases of high

MA, high β, and high |∆β|. The Alfvén Mach number scales approximately

as r with heliocentric distance, and the magnetosheath β has been observed

to increase with heliocentric distance [31]; they are thus expected to be

smallest at Mercury compared to other planets in the solar system. Work

by Dibraccio et al. [34] has shown that as expected, reconnection rates are

very high at Mercury, ∼ 3 times higher than at Earth, and reconnection

occurs over a much broader range of IMF orientations than at Earth. All

this implies that Mercury’s magnetosphere is more strongly driven by the

solar wind and IMF than Earth’s magnetosphere because of the interaction

of the weak planetary dynamo field with the strong solar wind environment

that it is embedded in. The dynamic nature of Mercury’s magnetosphere is

further explored in Chapters 2 and 3.

1.2 Charged particle motion

Basic insight into the motion of charged particles in electric and mag-

netic fields must be gained in order to lay the foundations for much of the

work that is presented in this thesis. Charged particle motion is well docu-

mented in a variety of textbooks in electricity and magnetism as well as in

plasma physics. We thus only present results here for scenarios most rele-

vant to the work in this thesis, and for more details the interested reader is

referred to texts such as [30, 35, 36]. We briefly describe here the motion of

a single charged particle in specified magnetic and electric fields as well as

the motion of charged particles trapped in planetary magnetospheres. Sec-

tion 1.2.1 describes the gyrational motion of charged particles in uniform

magnetic fields which applies to work presented throughout this thesis. In

Sections 1.2.2 and 1.2.3 we describe the drift motion of charged particles un-

der uniform electric fields as well as under changing magnetic fields, which

pertain to results presented in Chapters 4 and 5 of this thesis (drift motions

are responsible for populating closed magnetic field lines on the nightside
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1.2. Charged particle motion

with plasma from the plasma sheet). Finally, in Section 1.2.4 we outline

the motion of charged particles in convergent (i.e. increasing) magnetic

fields; this motion of charged particles is exploited by the proton reflection

magnetometry technique in Chapters 4 and 5.

In most plasmas the electric field and the magnetic field depend on the

positions and velocities of all the charged particles in the system, and are

thus complicated functions. Magnetohydrodynamic (MHD) equations have

been derived to deal with the plasma macroscopically as a fluid, instead

of solving the kinetic equations of motion for all the particles individually.

However, to gain physical insight into magnetospheric processes, it is in-

structive to consider the motion of a single charged particle in electric and

magnetic fields that are independent of time and that are simple functions

of position.

To determine the trajectory of a single particle in a force field as a

function of position and time we solve the equation of motion

m
dv

dt
= F(x, t), (1.1)

where in the case of a charged particle, one of the forces acting on the

particle is the Lorentz force given by

F = q(E + v ×B), (1.2)

here q is the electric charge, E is the electric field, v is the particle’s

velocity, and B is the magnetic field.

1.2.1 Uniform magnetic field (E = 0)

In a uniform magnetic field (E = 0), the equation of motion simplifies

to

m
dv

dt
= q(v ×B). (1.3)

The particle will have a motion both parallel and perpendicular to the

magnetic field, and so it is useful to separate the velocity into its components
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1.2. Charged particle motion

parallel and perpendicular to the magnetic field, v = v‖ + v⊥. By taking

the dot product of equation (1.3) with the unit vector in the direction of

B we find that the equation of motion in the parallel direction is mdv
dt =

0. The solution to this is clearly v‖ = constant, i.e. the particle has a

constant velocity along the magnetic field line direction. By subtracting the

equation of motion in the field aligned direction from equation (1.3) and

using v‖ ×B = 0, we have

m
dv⊥
dt

= mv⊥ ×Ω, (1.4)

where Ω = qB/m b̂ is the gyrofrequency, and b̂ is the magnetic field

direction. Without any loss of generality, if we let the magnetic field be in

the ẑ direction, then v⊥ will lie in the x − y plane. Then the solution to

equation (1.4) (showing only the real parts of the complex variables) is

vx = v0 cos(|Ω|t+ δ),

vy = ∓v0 sin(|Ω|t+ δ). (1.5)

v0 is the magnitude of the perpendicular velocity and is independent of

time, and the ∓ sign corresponds to positive and negative particles, respec-

tively. This equation shows that the particle follows a circular trajectory in

vx − vy space, with positively charged particles gyrating left while negative

ones gyrate in a right-handed direction. The gyroperiod, or the time it takes

the particle to complete a cycle of its circular motion is

T =
2π

|Ω|
= 2π

m

|q|B
(1.6)

The radius of the circle that the particle travels in is the gyroradius and

is given by

rg =
v⊥
|Ω|

=
mv⊥
|q|B

. (1.7)

The gyroradius of the particle represents a natural length scale in the

system; particles with small gyroradii relative to the gradient length scale
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of the magnetic field, B/∇B, are highly affected by the ambient magnetic

field and thus exhibit motions dictated by changes in the field. However,

if the gradient in the magnetic field is high compared to the field strength,

particles will have large gyroradii relative to B/∇B and are referred to as

unmagnetized, because their motion is largely unaffected by the magnetic

field and changes in it.

As we saw before, the particle has a constant velocity in the field aligned

direction, and the combination of this motion with the circular motion in the

perpendicular direction yields a helical trajectory for the particle about the

field line. The pitch angle of the helix, or the angle between the magnetic

field direction and the particle’s velocity is defined as

α = tan−1

(
v⊥
v‖

)
. (1.8)

and will be used extensively in Chapters 4 and 5 of this thesis.

1.2.2 Uniform electric and magnetic fields

The motion of charged particles in the presence of both a uniform electric

and magnetic field can be decomposed into a gyrating part about the field

line and a uniform drift velocity part. This drift motion is perpendicular to

the electric and magnetic fields and is given by

vE =
E×B

B2
. (1.9)

This E×B drift is independent of the sign of the particle’s charge, and

both electrons and ions will drift in the same direction. This drift velocity

essentially amounts to the gyroradius varying along the particle’s trajectory,

increasing it in the direction of E and decreasing it in a direction opposite

to E.

1.2.3 Nonuniform magnetic field

We now consider the motion of charged particles in a magnetic field that

is a function of position and with no applied electric field. In such a time-

12
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independent field the kinetic energy of the particle remains constant, and

the motion of the particle can be again decomposed into gyromotion plus a

drift motion.

First, we briefly discuss gradient B drift. Suppose the magnetic field

is in one direction only, B(x) = B(x)ẑ and that it has a gradient, ∇B, in

the perpendicular direction to B along the y direction. The gyroradius of a

particle in such a field configuration will be large wherever B is small, and

will be small wherever B is large. Thus the drift motion of a positive charge

will be in opposite direction to the drift of a negative charge; therefore a

current will arise under a magnetic field gradient. The expression for the

grad-B drift velocity is given by

v∇B = ±1

2
v⊥rg

B×∇B
B2

, (1.10)

where ± refers to positive and negative particles, respectively.

We will next consider particles moving along a curved magnetic field line.

These particles will experience an outward centrifugal force in the frame of

reference moving with the particle’s parallel velocity. This force is given by

Fc =
mv2
‖

Rc
R̂c, (1.11)

where Rc is the curvature vector; it has a magnitude equal to the local

radius of curvature of the field line and is pointing radially outward. This

centrifugal force gives rise to a drift motion, called the curvature drift

vcB = ±
v2
‖

|Ω|Rc
R̂c × b̂. (1.12)

A curved magnetic field cannot have a constant magnitude in a vacuum

(otherwise ∇×B = 0 would not hold), and thus the complete drift velocity

of a particle in a nonuniform magnetic field is vB = v∇B + vcB. For a

southward directed dipole field and prograde planetary rotation, positive

ions undergo gradient and curvature drift opposite to the planet’s rotation

(westward), while electrons drift in the direction of the planet’s rotation

(eastward).
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1.2.4 Motion of trapped particles: magnetic mirrors and

bottles

Magnetic fields in the near-Mercury environment are non-uniform both

spatially and temporally, but even in such fields, the proton motion is de-

scribed by the first adiabatic invariant, the magnetic moment, µm of the

particle. In general, the magnetic moment is given by the electrical current

I in a current loop multiplied by the area A of the loop: µm = IA. In the

case of a single charged particle, the current is the charge q divided by the

gyroperiod T . The gyroradius of the particle defines a circular area and so

the magnetic moment is given by

µm =
q

T
A =

q

T
πr2

g =
1
2mv

2
⊥

B
. (1.13)

The magnetic moment is invariant for slow changes in a system (such

that the process is adiabatic) and is thus very useful in interpreting certain

elements of charged particle motion. In particular, it is useful in interpreting

particle motion in magnetic mirrors and bottles.

A converging magnetic field is needed for magnetic mirroring to occur.

We start with a magnetic field increasing in the z direction in a cylindrical

coordinate system (Figure 1.3). In this scenario, the charged particle will

move in the z direction with a parallel velocity, and as long as changes

in the electric and magnetic field occur on length scales larger than the

gyroradius, the magnetic moment of the particle will be conserved. We can

see from equation (1.13) that if the magnetic field strength increases, then

the perpendicular velocity of the particle must increase to keep µm constant.

Thus the new perpendicular velocity of the particle will be given by

v2
⊥ =

(
B

B0

)
v2
⊥0, (1.14)

where the symbol “0” indicates initial value. In a static magnetic field

configuration the total energy of the particle must remain constant

v2
⊥ + v2

‖ = v2
⊥0 + v2

‖0. (1.15)
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Figure 1.3: Schematic diagram of converging magnetic fields towards the
planet’s surface.

Thus as the magnetic field strength increases more and more so does

v⊥. There will be a point along the field line when all of the particle’s

velocity is in the perpendicular direction and thus it will not be able to

penetrate further along the field line but will be reflected, or mirrored back.

We can express equation (1.14) in terms of the particle’s pitch angle, since

v⊥ = v sinα. At the point of reflection, the particle’s pitch angle is 90◦, and

so can rewrite equation (1.14) in terms of the particle’s initial pitch angle

and the ratio of the initial magnetic field to that at the reflection point,

sin2 α0 =
B0

Bm
. (1.16)

A particle with an initial pitch angle of α0 will reflect at a point where

the magnetic field is Bm, whereas a particle with a pitch angle less than α0

(i.e. more field aligned) will reflect after reaching a magnetic field magnitude

greater than Bm. The particle’s trajectory upward is a mirror image of its

trajectory downwards, and it returns to the same point with a pitch angle

180◦ − α0.

The physical explanation for the decrease in v‖ is that there will be a
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component of the Lorentz force which is directed opposite to the gradient

in B and decelerates the particles. The component of the Lorentz force in

the z direction is

F‖ = q(v ×B)z = qv⊥Bρ, (1.17)

where the field B in the scenario depicted in Figure 1.3 is given by

B = Bρρ̂+Bzẑ. (1.18)

The field is primarily in the z direction (Bρ � Bz) and the component

of the field in the ρ direction can be found from Maxwell’s equation:

∇ ·B =
1

ρ

d

dρ
(ρBρ) +

dBz

dz
= 0. (1.19)

In the case where Bρ � Bz and near the z-axis (ρ = 0) we have that

Bρ ≈ −
1

2
ρ
dBz

dz
. (1.20)

This can be substituted into equation (1.17) to yield

F‖ = −1

2
qv⊥rg

dBz

dz
, (1.21)

where we are considering the case when ρ = rg. This component of the

Lorentz force can be rewritten in terms of the magnetic moment

F = −µm∇‖B. (1.22)

This force is thus clearly directed opposite to the gradient in the magnetic

field, along ẑ, and since µm is constant, the only variable in this relation

is the magnetic field gradient. Therefore, this force will be higher as the

particle moves toward larger values of the parallel magnetic field gradient,

and will thus decelerate the particle.

In a magnetic bottle the situation is similar, except the magnetic field is

convergent on both sides, i.e. it consists of two magnetic mirrors. In such

a situation the particle bounces back and forth between the two convergent
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ends of the magnetic field, and is trapped. The maximum field strength

of the bottle determines the minimum initial pitch angle required for con-

finement, i.e. whether a particle with a given initial pitch angle, α0 will be

trapped or not. The criterion for confinement in the bottle is given by

sinα0 >

(
B0

Bmax

) 1
2

, (1.23)

where Bmax is the maximum magnetic field strength reached in the bot-

tle. Thus if initially there is an isotropic distribution of particles (i.e. equal

particle fluxes in all directions), then some time later all particles that do

not satisfy the confinement criterion above will be missing from the distri-

bution, while the ones that do satisfy the condition will be trapped inside

the bottle. The missing portion of the distribution is called the loss cone,

which is directly relevant for Chapters 4 and 5 of this thesis.

Such a bottle magnetic field configuration exists on closed magnetic field

lines of dipole fields, for example at Earth and Mercury as well. Particles

trapped on closed magnetic field lines will bounce back and forth with a

bounce period Tb given by the integral over a bounce cycle:

Tb =

∮
dz

v‖(z)
= 4

∫ zmax

z0

dz

v
[
1− B(z)

B0
sin2 α0

] 1
2

, (1.24)

where v is the total particle speed, z0 is the particle’s starting position

in the bottle while zmax is furthest the particle travels along the z direction.

The bounce period for protons (with an average proton energy of 1 keV) in

Mercury’s inner dayside magnetosphere is ∼ 30 seconds. Particles will also

have a drift motion around Mercury due to the grad-B and curvature drift.

The drift period of protons of the same energy is ∼ 40 minutes. However,

because Mercury occupies such a large fraction of its magnetosphere, most

particles are not be able to complete a full drift orbit since drift paths on

average either intersect the planet or the magnetopause, and the particles

are thus removed from the system.
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1.3. The bow shock

1.3 The bow shock

When the solar wind reaches the obstacle of Mercury’s magnetic field it

will be slowed down and deflected around it. A bow shock wave is generated

as the solar wind hits the obstacle with supersonic speed, and a substantial

fraction of the solar wind bulk flow kinetic energy is converted into thermal

energy. The shock wave, which is a nonlinear wave, is an irreversible process

that changes the state of the medium, for e.g., the temperature, pressure,

and density. At the shock, the plasma density and temperature increase,

implying a decrease in the flow speed to conserve mass and energy. Thus

the shock wave is the mechanism by which the plasma transitions from

supersonic to subsonic flow; upstream of the shock the solar wind flow speed

is supersonic, while on the downstream side it is subsonic. The region right

behind (downstream of) the bow shock where the solar wind is slowed and

compressed is called the magnetosheath.

The shock can be thought of as a discontinuity, although in reality it has

a finite thickness due to the kinetic processes at the shock. For a discon-

tinuity to be a shock, there must be plasma flow across the shock surface

accompanied by dissipation (i.e. the transformation of the kinetic energy of

the flow to random thermal energy in the particles) and compression across

the shock. Planetary bow shocks are fast shocks, corresponding to the fast

mode wave in MHD. Across a forward fast-mode shock, the plasma pressure

and magnetic field strength increase and the magnetic field bends away from

the shock normal.

The shock structure is partly dependent on the upstream magnetic field

direction relative to the shock surface. If the upstream magnetic field is per-

pendicular (or quasi-perpendicular) to the shock normal direction, particles

cannot travel far back into the upstream region because their gyrational mo-

tion brings them back into the shock. Typical perpendicular shocks (Figure

1.4) show a shock foot where the magnetic field is gradually increasing in

front of the main shock. Behind the main ramp where the magnetic field

increases significantly, there is an overshoot with field values larger than

the asymptotic downstream values. On the other hand, when the upstream
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1.3. The bow shock

Figure 1.4: Schematic diagrams showing example bow shock magnetic field
structure. Figure from Basic Space Plasma Physics, Wolfgang Baumjohann
and Rudolf A. Treumann, Copyright 1997, Imperial College Press [30]; used
with permission.

magnetic field is parallel (or quasi-parallel) to the shock normal direction,

particles can travel back up into the upstream region along the field lines.

In order for particles to outrun the shock and travel back upstream they

must have a velocity higher than the escape velocity of the shock which is

given by vesc = vnu/ cos θ, where vnu is the upstream flow velocity normal

to the shock and θ is the angle between the shock normal and the upstream

magnetic field. Particles with higher velocities will move ahead of the slower

escaping particles and thus higher energy particles will be observed further

away from the shock. These foreshock particles drive instabilities such that

the plasma and magnetic field properties both upstream and downstream
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1.3. The bow shock

Figure 1.5: Schematic diagram showing regions of parallel and perpendicu-
lar shock. Just upstream of the parallel shock region is the foreshock. Figure
from Basic Space Plasma Physics, Wolfgang Baumjohann and Rudolf A.
Treumann, Copyright 1997, Imperial College Press [30]; used with permis-
sion.

show significant oscillations. Because the bow shock is a curved surface

around the planet, for the same IMF direction the bow shock structure will

be significantly different at different locations. Figure 1.5 shows an example

bow shock schematic diagram at the Earth, where in regions where the IMF

is perpendicular to the shock normal, the conditions will not be favorable for

particles to travel back upstream and so no foreshock will form. However,

as the angle between the shock and magnetic field gets smaller, more and

more particles will be able to outrun the shock and form a foreshock region.

The shock in this region will have quasi-parallel shock structure.

Using MHD equations, it is possible to derive the conservation relations

(also known as the Rankine-Hugoniot shock-jump conditions) that prescribe

the downstream plasma state in terms of the upstream parameters. How-
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1.3. The bow shock

ever, the shock-jump conditions are a simplification because they are de-

rived using a one fluid MHD approximation, thereby ignoring microscopic

processes at the shock; thus they can be used as a guide and for comparison

with observations of the flow upstream and downstream, and can test the

assumptions that go into their derivation. These relations are derived in

the shock frame, where the shock is stationary, and all involve parameters

along the normal or transverse direction to the shock. Thus by measuring

the magnetic field, flow speed, and density along the shock normal, it is pos-

sible to estimate how much the downstream conditions in the plasma have

changed from that upstream. For the derivations of the Rankine-Hugoniot

relations the interested reader is referred to [37].

The shock jump equations are given by

[ρvn] = 0, (1.25)

[
ρv2
n + p+

B2

2µ0

]
= 0 (1.26)

[
ρvnvt −

Bn
µ0

Bt

]
= 0 (1.27)

[
ρvn

(
1

2
v2 +

γ

γ − 1

p

ρ

)
+ vn

B2

µ0
− v ·BBn

µ0

]
= 0 (1.28)

[Bn] = 0 (1.29)

[vnBt −Bnvt] = 0. (1.30)

In these equations the square brackets denote subtraction of the down-

stream quantity in brackets from the upstream equivalent, subscript n de-

notes the component normal to the shock and t transverse to the shock,

ρ is the flow density, v is the velocity, B is the magnetic field, µ0 is the

permeability of free space, γ is the polytropic index.

For the case of an exactly perpendicular shock, it is simple to derive the
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1.3. The bow shock

expected maximum compression of the magnetic field, density, and velocity

across the shock using the shock jump conditions. In such a case Bn = 0

and we examine the case where the upstream flow velocity is parallel to the

shock normal, i.e. vu = vunn̂. Across the shock, the mass flux must be

non-zero, such that

ρuvun = ρdvdn 6= 0. (1.31)

We define the compression ratio, r = ρd/ρu, which using equation 1.31

leads to the downstream velocity being defined in terms of the compression

ratio as well as vdn = (1/r)vun. We can apply the third jump condition

(equation 1.27), which due to the fact that Bn = 0 becomes

ρuvunvut − ρdvdnvdt = 0, (1.32)

implying that vdt = 0 since vut is zero and ρvn cannot be zero. We can use

the jump condition in equation 1.30 and the fact that all the magnetic field

is in the tangential component to substitute in for the compression ratio

and get that Bd = rBu. This shows that the magnetic field is compressed

by the same amount as the flow density. Using equations 1.26 and 1.28 and

substituting in for vdn, Bd and eliminating pd, it is possible to arrive at

an equation that expresses the compression ratio in terms of the upstream

parameters only:

(r − 1){r2 2− γ
M2
A

+ r

(
γ

M2
A

+
2

M2
ms

+ γ − 1

)
− (γ + 1)} = 0, (1.33)

where MA is the Alfvén Mach number as defined earlier, and Mms =

vu

(
ρu
γpu

) 1
2

is the magnetosonic Mach number. In the high Mach number

limit when MA and Mms � 1, equation 1.33 becomes r = γ+1
γ−1 . γ is not

dependent on the upstream parameters; for a monatomic gas γ = 5
3 , which

yields a maximum compression of a factor of 4 for the magnetic field, density,

and velocity. This number, although much quoted as the asymptotic limit

for the magnetic field strength increase across the shock, is dependent on
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1.4. The magnetopause and the magnetic cusps

the polytropic index in the plasma and thus on the way that the plasma is

heated. In Chapter 2, the example cases of Mercury’s bow shock that are

shown in Section 2.2 all have a compression factor of less than 4 (measured in

the magnetic field strength). The upstream Mach number of the shock also

defines the strength of the shock and is a measure of the amount of energy

being processed by the shock; the higher the Mach number, the stronger the

shock. In Chapter 2 we will explore how Mercury’s bow shock varies with

Alfvén Mach number.

1.4 The magnetopause and the magnetic cusps

The magnetopause demarcates the upper boundary of the magneto-

sphere and controls the flux of solar wind mass, energy, and momentum

into the magnetosphere. Figure 1.6 illustrates how the interaction between

the solar wind and a magnetized planet generates the magnetic cavity of

the magnetosphere, marked by the magnetopause boundary. In this exam-

ple case, in the equatorial plane of the planet the magnetic field is pointing

northward. When charged particles in the solar wind approach the plan-

etary magnetic field, the Lorentz force (see equation (1.2)) in the absence

of electric fields, given by q(v ×B), deflects ions to the right and electrons

to the left. The opposite motion of the charges produces a sheet current

from left to right in the figure (dawn to dusk). The magnetic perturbations

from this magnetopause current (or Chapman-Ferraro current as it was first

proposed by [38]) cancels the planet’s field sunward of the current and in-

creases the field planetward. Thus if the magnetopause was a plane, the field

strength just inside the boundary would be twice the dipole magnetic field.

However, because the magnetopause is curved, the field immediately inside

the near-equatorial dayside magnetopause is slightly greater than twice the

dipole field.

The return current above the pole is from dusk to dawn, because the field

points southward. Near the pole there is a singular point in the field, the

neutral point, where this current sheet completely cancels the planet’s field.

These are called the magnetic cusps because here the field comes together
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1.4. The magnetopause and the magnetic cusps

Figure 1.6: Currents on the magnetopause. By courtesy of Encyclopaedia
Britannica, Inc., copyright 1994; used with permission.

at a cusp-like geometry. (Chapter 3 of this thesis will explore in great detail

Mercury’s northern cusp region.) The magnetopause current circulates in

a sheet around the neutral point, and is symmetric about the magnetic

equator, with a corresponding circulation about the southern neutral point.

In this way the magnetopause current shields the magnetized planet from

the solar wind, confining the planet’s magnetic field to the magnetosphere.

By looking at a cross-sectional view of the magnetosphere (see Figure

1.7), more clarity can be gained about the magnetopause current, the cusps

and other features of the magnetosphere structure. Inside the magneto-

sphere, the magnetic field is divided into two regions: 1) equatorward and

2) poleward of the cusp latitude. The division between these two regions is

called the separatrix, which separates regions of closed field lines at mid-to-
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1.4. The magnetopause and the magnetic cusps

Figure 1.7: Magnetospheric current systems. From: Hughes, W.J., The
magnetopause, magnetotail, and magnetic reconnection, in Introduction to
Space Physics, Eds M.G. Kivelson and C.T. Russell, Cambridge, 1995 [37].

low latitudes and open field lines at high latitudes. “Closed” here refers to

field lines that have both ends map to the planet, whereas “open” refers to

field lines that have one end map to the planet and the other end map to

a tail lobe (or in the case of an open magnetopause, to the solar wind). In

Figure 1.7, the magnetopause current flows out of the page equatorward of

the cusps, and into the page poleward of the cusps. The magnetotail is gen-

erated by the fact that the magnetosheath flow convects open magnetic field

lines toward the planet’s nightside. In the magnetotail, the field direction is

oppositely directed between the two hemispheres, which must be supported

by the existence of a current sheet at the magnetic equator.

The location of the magnetopause around the planet corresponds to the

surface across which the pressures of the internal magnetospheric magnetic

fields and charged particles are balanced by the external solar wind particle

and magnetic field pressure [39]. Thus the magnetopause is in pressure
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1.4. The magnetopause and the magnetic cusps

balance, given by the equation[
P +

B2

2µ0

]
msh

=

[
P +

B2

2µ0

]
msp

(1.34)

where msp stands for magnetosphere, msh for magnetosheath, P is a

combination of particle thermal and dynamic pressure, and B2/2µ0 is the

magnetic pressure. On the left hand side we thus have the solar wind thermal

and dynamic pressure as well as the IMF magnetic pressure, while on the

right hand side we have the magnetic pressure of the planet’s magnetic field

and the plasma pressures. The dominant contributors to this equation are

the solar wind dynamic pressure and the magnetic pressure of the planet’s

dipole field, although the solar wind thermal pressure becomes non-negligible

at higher latitudes away from the subsolar point.

Using this pressure balance, we can obtain an estimate of the location of

Mercury’s magnetopause at the subsolar point. In Chapter 2, we describe

how we determined the actual subsolar stand-off distance of Mercury’s mag-

netopause using MESSENGER magnetic field observations as well as an

empirical model of the boundary, but for now, we illustrate how a simple

estimate can be achieved in order to build further intuition of the magne-

topause. We assume the Newtonian approximation, an empirical relation

from hypersonic flow theory [40], whereby the magnetosheath pressure at

the subsolar point is given by

Pmsh = κρswv
2
sw, (1.35)

where ρsw is the solar wind density, vsw is the solar wind velocity, and κ

is a constant that depends on how the solar wind flow is diverted around the

planet’s magnetic field. κ would be 1 in the ideal case where the bow shock

and the magnetic field obstacle are close together and parallel, but is most

often quoted as 0.88 if the flow is diverted in a more gradual manner [41].

To estimate the location of the magnetopause, we can rewrite equation
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1.4. The magnetopause and the magnetic cusps

(1.34) in a simplified form in terms of the dominant components as

Pmsh ≈ 0.88ρswv
2
sw ≈

B2
msp

2µ0
. (1.36)

We know that the magnetospheric magnetic field at the magnetopause

should be slightly higher than twice the dipole field at that distance, and so

we can express Bmsp as

Bmsp = aBdipole = aBd0

(
RM
Rss

)3

, (1.37)

where a = 2.4 has been deduced for Earth’s magnetopause, Bdipole is

the magnetic field strength of the dipole at the magnetopause, Bd0 is the

magnetic field strength of the dipole at the magnetic equator on the planet’s

surface, RM is Mercury’s radius, and Rss is the distance from the planet’s

surface to the subsolar point on the magnetopause, i.e. the subsolar stand-

off distance. Substituting this into equation (1.36) yields that Rss ∝ P
− 1

6
msh

and that

Rss ≈ RM
(

a2B2
d0

2µ0κρswv2
sw

) 1
6

. (1.38)

At the magnetic equator the magnetic field strength on the surface is

given by B = µ0MM

4πr3
and thus from having an estimate of the magnetic

moment of Mercury, MM , of 190 nT R3
M [19], we can calculate Bd0. We

use the WSA-Enlil heliospheric model [42] predictions of the solar wind at

Mercury to obtain averages of the solar wind density and speed, which are

51 cm−3 and 422 km/s, respectively. Substituting these values into equation

(1.38), we estimate that Mercury’s magnetopause stands off the solar wind

at the subsolar point 1.35 RM away from the planet’s surface. This value is

only 0.1 RM less than the average Rss established for Mercury in Chapter 2

using 3 Mercury years of observations confirming that the approximations

made above are correct to first-order.

In Chapter 2 we also determine the shape of Mercury’s magnetopause.

We can however build up some intuition and derive the first-order 2-D shape
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1.4. The magnetopause and the magnetic cusps

of the magnetopause under the simple balance of forces used above. We start

by revising the solar wind dynamic pressure relation to accommodate any

point on the magnetopause surface. Since the dynamic pressure is exerted

only in the anti-sunward direction, the magnetic pressure only needs to stand

off this component everywhere around the planet. If n̂ is the magnetopause

normal, the dynamic pressure incident on it away from the subsolar point is

reduced to

Pmsh = n̂ · x̂ρswv2
sw = cos θρswv

2
sw, (1.39)

where θ is the angle between the solar wind flow direction and the mag-

netopause normal. Using this revised dynamic pressure we arrive at the

magnetopause distance from the planet’s surface, Rmp away from the sub-

solar point

Rmp ≈ RM
(

a2B2
d0

2µ0κ cos θρswv2
sw

) 1
6

= Rss(cos θ)−
1
6 . (1.40)

We can see clearly from here that at θ = π/2, Rmp →∞, which suggests

the magnetopause extends far downtail. We can now derive a differential

length, ~dl = dxx̂+ dzẑ, tangent to the magnetopause, where dx = − sin θdl

and dz = cos θdl. This leads to the ratio between the differential change in

x and z

−dx
dz

= tan θ =

√
1− cos2 θ

cos θ
=

1

cos θ

√
1

cos θ
− cos θ =

√
sec2θ − 1. (1.41)

We can express equation (1.41) in terms of Rmp and Rss through θ be-

cause

secθ ≈
(
Rmp

Rss

)6

=

(
x2 + z2

R2
ss

)3

, (1.42)

which when substituted into equation (1.41) becomes

−dx
dz

=

√(
x2 + z2

R2
ss

)6

− 1. (1.43)
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1.5. The planetary magnetic field

We can gain some intuition about the shape by just choosing a few

different values for x and z in equation (1.43). At x = Rss and z = 0, dxdz = 0

showing that all of ~dl is in the ẑ direction as expected. For large negative x,

when Rmp > Rss we find that (Rmp/Rss) � 1 such that dx
dz ≈ (Rmp/Rss)

6.

This implies that dx � dz and thus the magnetopause shape will become

cylindrical past 2 Rss down the magnetotail. In reality, the magnetopause

tail can be more flared because the magnetic field in the tail is not dipolar

(due to the stretched-out nature of the tail), while our assumption is based

on a Newtonian approximation and a dipole field. In the far tail, the currents

that form the tail become the dominant source of the magnetic field, not

the dipole which is too far away to have the largest affect. From these

physical arguments we thus expect Mercury’s magnetopause to be curved

(approximately hemispherical) on the dayside and approximately cylindrical

on the nightside. In Chapter 2 we fit empirically motivated shape models

to Mercury’s magnetopause to establish its best-fit shape and location from

nearly a year of observations.

1.5 The planetary magnetic field

There are four terrestrial planets in our solar system, but only Earth

and Mercury have a currently active global dynamo field (although all the

outer planets do possess dynamo-generated magnetic fields). In such dy-

namo operated magnetic fields, electric currents and magnetic fields are

continuously induced by the movement of conducting fluid in the planet’s

interior. Three basic ingredients are needed for self-sustaining dynamo ac-

tion to take place: a large volume of electrically conducting fluid material,

planetary rotation, and a strong enough energy source to drive convective

motions. These characteristics are in part set during planetary formation,

but each one can change during the planet’s lifetime. The purpose of this

section is to introduce the basic idea behind planetary dynamos but not to

delve into the field of dynamo theory, as this thesis is concerned with the

results of planetary dynamos, namely the planetary magnetic field and its

interaction with the solar wind.
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1.5. The planetary magnetic field

Larmor [43] first suggested that a dynamo process is responsible for

creating and maintaining planetary magnetic fields. His hypothesis was that

an initial magnetic field can be altered via interactions through fluid flow to

amplify and regenerate the magnetic field. In 1955 Parker [44] presented the

first modern model of the dynamo process, known as the αω model. In this

model (which is still relevant today), the differential rotation of the fluid

outer and solid inner core can generate toroidal (azimuthal) magnetic fields

by stretching poloidal (non-azimuthal) magnetic fields threaded through the

core (the ω effect). In order to maintain this generation of the toroidal field,

the poloidal field must be generated through another process. The α effect

accomplishes this task by relying on turbulent fluid convection to generate

poloidal fields from the toroidal field, which closes the feedback loop.

The turbulent fluid motions and the planetary rotation act together to

stretch out the magnetic field (which is “frozen in” to the core fluid). Due

to the planetary rotation this generates magnetic field loops with approxi-

mately the same orientation and can thus give rise to a coherent global field.

In such a way the dynamo process can generate and sustain magnetic fields

of planetary bodies. Many variations on this basic dynamo model have been

proposed, most of which require both planetary rotation and turbulent con-

vection in a fluid core. Thus the fact that Mercury has a global dipole field

is an indication (independent of the evidence from forced librations [4]) that

the planet possess a liquid (or partially liquid) core in its interior.

Several dynamo models have been suggested to explain Mercury’s un-

usually weak, equatorially offset, and axisymmetric magnetic field, although

none have yet been able to closely match all aspects of the observed field.

As described earlier, models with a stable layer at the top of the outer

core [20, 21] show promise. Furthermore, a study currently in progress [45]

has found that fields that are asymmetric about the geographic equator

can be produced in dynamos driven by volumetrically-distributed buoyancy

sources. The fact that Mercury’s magnetopause lies very close to the sur-

face and the large inferred size of the core (radius of 2020 km [46]), suggests

that there may be a strong link between the internal dynamo generated field

and the external fields of the magnetosphere. A feedback-dynamo model (in

30



1.6. Relevant MESSENGER instruments

which the external fields of the magnetosphere penetrate to the core and act

to weaken the dynamo generated field) [47] has been suggested for Mercury.

However, this model predicts high odd harmonics in a spherical harmonic

expansion of the field, which are not inferred from MESSENGER observa-

tions [18]. This does not however rule out the possibility of induction in

Mercury’s core, which may act to stiffen the dayside magnetopause against

changes in solar wind pressure [48]. Better resolution of the magnetic field

strength at the surface of the planet can provide further constraints for dy-

namo models of Mercury and this is one of the underlying motivations for

Chapter 5 of this thesis.

1.6 Relevant MESSENGER instruments

In this section we summarise the details of the Magnetometer (MAG)

instrument onboard MESSENGER, from which data were used in all chap-

ters of this thesis, as well as the Fast Imaging Plasma Spectrometer (FIPS),

data from which were used in Chapters 4 and 5. For a thorough description

of MAG the reader is referred to [49], and for more details on FIPS the

reader is referred to [50].

1.6.1 The Magnetometer

The MESSENGER Magnetometer is a tri-axial fluxgate magnetometer

mounted on a 3.6-m-long boom. The MESSENGER fluxgate magnetometer

consists of a permeable ring core driven in alternative saturation states by

a toroidal winding at a frequency of 15 kHz. The ring core and winding are

surrounded by a second set of pickup windings that sense any change in net

magnetic flux. If there is a net field along the axis of the pickup winding coil

then when the ring core switches saturation polarities there will be a brief

pulse of net flux in the pickup winding since one side of the ring core will

transition polarity before the other side. The sense of this net flux pulse is in

the direction of the background field and is the same sense every half cycle of

the 15 kHz drive. Synchronous detection at 30 kHz in the pickup winding is
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used to monitor any net flux pulses and a bias current is sent to the pickup

coil to null the fluxgate response. The voltage applied to drive this nulling

current is directly proportional to the component of the ambient magnetic

field along the axis of the pickup coil. In a tri-axial fluxgate magnetometer,

three such sensors are mounted in such a way as to measure the three vector

components of the magnetic field. MAG outputs three analog signals which

are converted simultaneously to digital signals by three independent 20-bit

sigma-delta A/D converters at a rate of 20 conversions per second. Prior to

conversion these signals are low-pass filtered using a 10-Hz anti-alias low-

pass filter to limit the input bandwidth into the A/D converter.

MAG has a range of ±1530 nT full scale with a 0.047 nT resolution dur-

ing Mercury operation. In order to minimize variable and static spacecraft-

generated fields at the sensor, the MAG instrument underwent a strict mag-

netic cleanliness program prior to launch. Observations after boom deploy-

ment indicated that there is a fixed residual field, however, it is less than a

few nT at the location of the magnetometer. A variable contamination field

measured at the magnetometer is below 0.05 nT.

To meet the science objectives of the MESSENGER mission as well as

to accommodate variable telemetry rates, MAG can be operated at variable

sample rates (from 0.01 s−1 to 20 s−1) adapted to various mission phases. A

combination of digital filtering and sub-sampling is used to provide the wide

range of output rates. MAG sampling inside the magnetosphere is at the

highest rate (20 Hz) in order to resolve highly varying magnetospheric fields,

while sample rates in the interplanetary medium are at least as high as 2

samples/s. In addition to the vector magnetic field samples, the average

output amplitude of a 1-10 Hz bandpass filter is also evaluated for the z

magnetometer axis, although this can be commanded to be any of the three

axes. This is a measure of the average 1-10 Hz ambient field fluctuations,

called BAC (used in Chapters 2 and 3 of this thesis), which is made regardless

of the sample rate of the vector data in order to provide an uninterrupted

measure of the field variability. The BAC measure is also used to trigger

high-time-resolution sampling in 8-min segments to capture events of interest

when continuous high-rate sampling is not possible.
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1.6.2 The Fast Imaging Plasma Spectrometer

FIPS is part of the Energetic Particle and Plasma Spectrometer (EPPS)

package on MESSENGER, and it measures the energy, angular, and compo-

sitional distribution of low-energy ions (< 50 eV/charge to 20 keV/charge)

in Mercury’s space environment. The sensor was specifically developed and

designed for MESSENGER. It is highly compact and lightweight, and houses

a new electrostatic analyzer system geometry that enables it to have 1.4π

steradians field of view (FOV). FIPS is a time-of-flight mass spectrometer,

in which an ion’s mass-to-charge ratio is determined through a time mea-

surement.

FIPS is made up of an electrostatic analyzer (ESA), a time of flight

detector, and a compartment that houses the instrument electronics (see

Figure 1.8 for a cross-sectional view of the FIPS sensor). The electrostatic

analyzer uses an electric field to filter and focus the particles that are al-

lowed to pass through to the time of flight detector chamber: only particles

of a specific energy-per-charge range pass through the analyzer. The ESA

covers the energy-per-charge range in 64 logarithmically spaced steps. FIPS

is normally operated in one of two stepping rates, one step per second (nor-

mal mode) or one step per 100 milliseconds (burst mode), which result in

integration times of 64 s and 8 s, respectively. Inside the magnetosphere

FIPS is operated in burst mode and measures energy per charge from 0.1

to 13 keV/e [51].

Inside the ESA, the entering ion’s trajectory is bent by the deflector

plates in the analyzer, after which the collimator filters out particles with

certain trajectories. Next, the ion is post-accelerated by a potential drop

of up to −15 kV to give low energy ions sufficient energy to penetrate the

carbon foil. The ion then enters the time of flight detector and impacts the

carbon foil, which causes the foil to eject secondary electrons. The electrons

move ahead of the ion and their path will be bent to ensure that they collide

with the start microchannel plate (MCP) detector, thereby recording the

ion’s position and providing a timing-start signal. On the other hand, the ion

will pass straight through the time of flight chamber, hitting the stop MCP
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Figure 1.8: Cross-section of the FIPS sensor showing major functional com-
ponents. Figure from Andrews et al. (2012), Space Science Reviews, 131,
523-556 [50]. Reprinted with permission from Springer Science + Business
Media.

detector, and thereby stopping the timer. The difference in time between

the electrons and ion hitting the two detectors is used to calculate the initial

ion speed. This can be obtained after a correction is made for the travel time

of the secondary electrons from the foil to the start detector. The mass-per-

charge follows from the known energy-per-charge and the measured time

of flight. This allows for the reconstruction of the distribution functions

of different mass-per-charge species. The microchannel plate detectors are

electron multipliers, which when struck by a particle, start a cascade of

electrons that propagate through the microchannels amplifying the original

signal of the particle by several orders of magnitude. These electrons exit

the channels and are detected by measuring the total current on a single

metal anode.

The angular resolution of FIPS, in terms of determining the incident

direction of the ion is 15◦. It has a nearly hemispherical (1.4π sr) instanta-

neous FOV. The FOV has conical symmetry about the z-axis of the sensor’s

reference frame and is defined as the region of solid angle bounded by two
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Figure 1.9: Top view of a portion of MESSENGER which depicts the ob-
structions in the solar direction by the spacecraft sunshade and the FIPS
FOV. The figure (from Gershman et al. (2012), Journal of Geophysical
Research, 117, A00M02 [52]) also shows that FIPS cannot observe the so-
lar wind, however, this is not a focus of this thesis. Figure reprinted with
permission from John Wiley and Sons.

nested cones. Both of these cones have their vertices at the origin of the

FIPS coordinate system and have angles with respect to the z-axis of 15◦

and 75◦, respectively. The FOV is the region contained within the 75◦ cone

excluding the region contained within the inner 15◦ cone. This excluded

region shows up as a gap in Figure 1.9 in the centre of the unobstructed

FOV of FIPS. Such a constrained field of view places limitations on the re-

construction of the 3–D ion distribution from this sensor, as will be shown

in Chapter 4.
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Chapter 2

Mercury’s magnetopause and

bow shock from

MESSENGER

Magnetometer observations1

In this chapter, we establish the average shape and location of Mercury’s

magnetopause and bow shock from orbital observations by the MESSEN-

GER Magnetometer [53]. We fit empirical models to midpoints of boundary

crossings and probability density maps of the magnetopause and bow shock

positions. The magnetopause was fit by a surface for which the position r

from the planetary dipole varies as (1 + cos θ)−α, where θ is the angle be-

tween r and the dipole-Sun line, the subsolar stand-off distance Rss is 1.45

RM (where RM is Mercury’s radius), and the flaring parameter α = 0.5. The

average magnetopause shape and location were determined under a mean

solar wind ram pressure, PRam, of 14.3 nPa. The best-fit bow shock shape

established under an average Alfvén Mach number (MA) of 6.6 is described

by a hyperboloid having Rss = 1.96 RM and an eccentricity of 1.02. These

boundaries move as PRam and MA vary, but their shapes remain unchanged.

The magnetopause Rss varies from 1.55 to 1.35 RM for PRam in the range

8.8 to 21.6 nPa. The bow shock Rss varies from 2.29 to 1.89 RM for MA

in the range 4.12 to 11.8. The boundaries are well approximated by figures

of revolution. Additional quantifiable effects of the interplanetary magnetic

1Reprinted from Journal of Geophysical Research: Space Physics, with permission from
Wiley.
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field are masked by the large dynamic variability of these boundaries. The

magnetotail surface is nearly cylindrical, with a radius of ∼ 2.7 RM at a

distance 3 RM downstream of Mercury. By comparison, Earth’s magneto-

tail flaring continues until a downstream distance of ∼ 10 Rss. The modeled

cylindrical shape of Mercury’s magnetopause suggests that magnetic flux

has a short residence time in the tail, and return convection of flux from

the tail to the dayside proceeds rapidly, consistent with the expected ∼ 2

minute Dungey cycle period at Mercury.

2.1 Introduction

The boundaries of Mercury’s magnetosphere reflect fundamental pro-

cesses of the solar wind interaction with the planet’s dipolar magnetic field [24,

54]. These boundaries are the bow shock, across which the solar wind is com-

pressed and deflected around Mercury, and the magnetopause, which is the

current layer separating the shocked solar wind plasma and interplanetary

magnetic field (IMF) from the planetary magnetic field. The bow shock is

a fast magnetosonic shock wave that “stands” in the solar wind while di-

verting the solar wind around the planet’s magnetospheric cavity [39]. The

bow shock changes shape and stands closer or farther from the planet in re-

sponse to variations in solar wind Mach number and, to a lesser extent, IMF

direction [26, 39, 55]. The magnetopause location and shape are determined

principally by the pressure exerted on the magnetopause by the shocked

solar wind plasma, which scales with the solar wind ram pressure, balanced

by the planetary magnetic field [39, 56]. Accordingly, the dynamic pressure

of the solar wind and the magnetic pressure of the magnetosphere are the

dominant factors determining the location and shape of the magnetopause.

Because the distribution of magnetic flux within a magnetosphere is de-

termined both by the intrinsic planetary field and the external currents,

magnetic reconnection, which drives some of these external currents, also

affects magnetopause shape and position. Most important among these

reconnection-driven effects are the inward “erosion” of the dayside mag-

netopause to lower altitudes by transfer of magnetic flux to the tail [57]
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and the outward “flaring” of the nightside magnetopause as the magneto-

tail is loaded with magnetic flux [58]. These expansions and contractions of

the dayside and nightside magnetosphere take place on timescales compa-

rable to the Dungey cycle that governs the circulation of magnetic flux and

plasma within the magnetospheres of Earth-like planets. The characteristic

timescale of the Dungey cycle is ∼ 1 h at Earth and ∼ 2 min at Mercury [28].

It has been suggested that reconnection may have a greater effect on

magnetopause location at Mercury than at Earth [57]. This prediction has

been supported by the extreme loading and unloading of Mercury’s mag-

netotail observed during the third flyby of Mercury by the MESSENGER

spacecraft [29, 59]. Further, it has also been predicted that magnetic fields

associated with induction currents in Mercury’s interior may act to oppose

and limit the solar wind’s ability to compress or expand the extent of the

dayside magnetosphere [60–63]. Mercury has an internally generated, axially

aligned dipolar magnetic field with a moment of 190 to 195 nT R3
M (where

RM is Mercury’s mean radius, 2440 km) that is offset northward from the

geographic equator by 0.2 RM [17–19]. The combination of a weak dipole

moment, the absence of a conducting ionosphere (i.e., no magnetosphere-

ionosphere coupling), and the predominantly quasi-parallel subsolar shock

conditions (due to the small Parker spiral angle at Mercury’s orbit) distin-

guish Mercury from other planets in our solar system that possess magnetic

fields.

The Earth’s bow shock has been studied extensively both observationally

and theoretically (e.g., [55]). It is a highly dynamic boundary, controlled

by temporal variations in solar wind characteristics. The general shape

of the shock has been investigated with empirical models (e.g., [26, 64]),

gas dynamic flow models (e.g., [65, 66]), and magnetohydrodynamic models

(e.g., [67]) and is well described by a conic section. Formisano et al. [68]

found that the subsolar bow shock position moves outward during conditions

of low Alfvén Mach number (MA). Peredo et al. [55] confirmed that MA

primarily controls the bow shock shape, but in contrast to the findings of the

earlier study [68], they observed that the subsolar shock moves earthward

and the flanks flare outward during times of low MA.
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The average shape of the terrestrial magnetopause has been described

with several empirical models (e.g., [69–71]) and magnetohydrodynamic

models [72]. The dynamic pressure of the solar wind affects the size of

the magnetospheric cavity as well as the shape of the magnetopause. The

subsolar magnetopause stand-off distance is observed to decrease with in-

creased dynamic pressure [73, 74], and the boundary shape is observed to

flare with increased pressure [69]. Reconnection-related effects can also in-

fluence the dayside magnetopause location and the flaring of the tail. On

the dayside, a southward IMF component will facilitate reconnection at low

latitudes, which can erode the magnetopause near the subsolar point and

flare the magnetopause on the nightside by adding flux to the tail. The

magnetopause has been observed to move planetward by as much as 1-2

RE (where RE is Earth’s radius) due to the erosion of the boundary under

southward IMF [57, 73, 75]. However, a statistical study of these effects at

Mercury with a large database of magnetopause crossings, such as the one

reported here, would require knowledge of IMF direction on timescales of 1

min or less because of the very short Dungey cycle time at Mercury. The

lack of an upstream monitor therefore limits the scope of our investigation

with respect to the effects of reconnection on magnetopause position.

The solar wind and IMF play major roles in influencing the bow shock

and magnetopause, and those roles must be understood quantitatively in

order to model the internal magnetic field, the magnetosphere-solar wind

interaction, and the access of solar wind and magnetospheric charged parti-

cles to the planetary surface. At Mercury the solar wind density is approxi-

mately an order of magnitude higher and the IMF magnitude a factor of 5

higher than at Earth [23], whereas the planetary magnetic moment is only

0.06% of Earth’s. Mercury’s orbit is eccentric, so the planet is subjected

to different solar wind conditions at perihelion and aphelion. Mercury’s

magnetopause and bow shock have been studied from limited data obtained

during flybys by the Mariner 10 [76] and MESSENGER spacecraft [77].

Russell [76] fit shape models to both the magnetopause and bow shock with

data from the two Mariner 10 flybys, and Slavin et al. [77] updated these

boundary shapes with MESSENGER flyby data. Slavin et al. [77] also
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looked at the boundary crossings during northward IMF from data taken

during the first MESSENGER flyby. However, even the combined Mariner

10 and MESSENGER flyby dataset comprised only six pairs of bow shock

and magnetopause crossing points.

In this chapter we present analyses of Mercury’s bow shock and mag-

netopause shape obtained from orbital magnetic field observations by the

MESSENGER spacecraft over a span of three Mercury years under a va-

riety of IMF and solar wind conditions. The objective of this study is to

characterize the underlying shapes of both the magnetopause and bow shock

and, insofar as the data permit, to assess how these shapes are affected by

the solar wind and IMF. We have analyzed the observations in two ways.

First, from the locations of the inner and outer magnetopause and bow

shock crossings we defined a mean crossing point, and we found the average

boundary shape from the ensemble of crossing points. In the second method,

the probability of spacecraft residence within the range of magnetopause or

bow shock crossings on each pass has been used to build a probability den-

sity map of the two boundaries. In Section 2.2, we describe the magnetic

field observations and how the boundaries were identified. In Section 2.3,

we establish the general shape of both the magnetopause and the bow shock

from the mean locations (Section 2.3.1) and the probability densities (Sec-

tion 2.3.2). In Section 2.4, we assess how the boundaries respond to solar

wind forcing, and the results and conclusions are given in Section 2.5 and

2.6, respectively.

2.2 Magnetic field observations: boundary

identifications

The MESSENGER spacecraft was inserted into orbit about Mercury on

18 March 2011. The initial orbit had a 200 km periapsis altitude, 82.5◦ in-

clination, 15,300 km apoapsis altitude, and 12 h period. During each orbit,

MESSENGER typically spent 1 to 2 h inside the magnetosphere; the rest of

the time was spent in the magnetosheath and in the interplanetary medium.
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For this study we used three Mercury years of MESSENGER Magnetome-

ter (MAG) [49] data starting on 23 March 2011 and extending through 19

December 2011, providing repeated coverage at all local times. To conserve

data volume during this period, MAG operated at variable sample rates,

with high-rate (20 samples/s) data collection primarily in effect during tran-

sits of the magnetosphere. Sample rates in the interplanetary medium were

at least as high as 2 samples/s or higher, and a channel to record fluctua-

tions at 1-10 Hz operated continuously to provide an uninterrupted measure

of the field variability.

Magnetic field data were analyzed in Mercury solar orbital (MSO) co-

ordinates. In MSO coordinates xMSO is positive sunward, zMSO is positive

northward, yMSO is positive duskward and completes the right-handed sys-

tem, and the origin is at the center of the planet. To analyze boundary

locations the spacecraft positions were translated into a system centered on

the planetary dipole [18]. The vector components of the magnetic field in

the planet-centered and dipole-centered systems are identical. Because the

bow shock and magnetopause are ordered by the solar wind flow in the frame

of Mercury’s orbital motion, the spacecraft position data were transformed

into an aberrated system such that the +x direction is anti-parallel to the

solar wind velocity relative to Mercury. The average aberration angle at

Mercury is about 7◦ toward dawn. However, because of Mercury’s variation

in orbital speed between perihelion and aphelion, as well as variability in the

solar wind speed, the aberration angle varied by a factor of about 3, from

3.5◦ to 10.2◦, during the period of our study. The aberration correction for

both the magnetopause and the bow shock crossings was calculated from

the planet’s instantaneous orbital speed together with predictions of solar

wind speed obtained from the WSA-Enlil heliospheric model [42] within four

minutes of the times of the boundary crossings. Because the Fast Imaging

Plasma Spectrometer (FIPS) on MESSENGER does not typically see the

solar wind, we do not have in-situ estimates of solar wind properties, so

we use WSA-Enlil model predictions of solar wind parameters in this study.

Use of model predictions for the solar wind parameters introduces some level

of uncertainty into the normalized boundary shapes derived in Section 2.4

41



2.2. Magnetic field observations: boundary identifications

of the paper, with the highest uncertainty most likely introduced for the

cases of extreme events, when the solar wind pressure is predicted to be

highest. Benchmarking of the WSA-Enlil model at Mercury has been initi-

ated [52, 78]; however, the long-timescale (> 44 day) variations in the model

outputs that are modulated by Mercury’s orbital distances from the Sun are

persistent over the three Mercury years of data analyzed here. Our aim

here is not to use WSA-Enlil for event studies, but to capture the average

annual variation in the solar wind ram pressure and density and use these

variations to correct our average boundary shapes.

The IMF magnitude assigned to each crossing was evaluated as a 1 h

average of MAG data upstream of the outermost bow shock encounter. The

Alfvén Mach number, MA = vsw
[BIMF/(µ0ρ)0.5]

, where vsw is the solar wind

speed, BIMF is the magnetic field magnitude in the IMF, µo is the perme-

ability of free space, and ρ is the solar wind plasma density, was calculated

using IMF values that were estimated from the 1 h IMF averages and WSA-

Enlil model-generated solar wind speed and density. We have shown previ-

ously that the 1 h IMF averages are suitable for determining the IMF Bx

direction, which is the dominant IMF component at Mercury, but they are

not suitable for establishing the IMF By and Bz directions, which vary on

timescales less than 1 h [Winslow et al., 2012]. The magnitude of the IMF

is dominated by the Bx component and is thus also steady on the 1 h time

scale, i.e., the average duration of a transit of the magnetosphere by the

MESSENGER spacecraft. The resolution of these measurements is suitable

for investigating the effect of solar wind pressure and Alfvén Mach number

on magnetopause and bow shock positions, but not the reconnection-driven

effects that depend on IMF orientation and take place on timescales of one

minute to a few minutes [28, 29].

Magnetopause and bow shock crossings were identified on every orbit,

both before and after the magnetospheric transit and denoted as the inbound

and outbound crossings, respectively. On almost every orbit, multiple cross-

ings of each boundary were observed as a result of motion of the boundary

relative to the spacecraft. Although the repeated crossings were often diffi-

cult to distinguish individually, the first and last boundary encounters were
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readily identified. Thus rather than attempt uncertain identifications of ev-

ery boundary crossing within each passage through the boundary region, we

identified the times of the innermost and outermost crossing on each pass

for the bow shock and magnetopause. Our approach has the added benefit

that each pass corresponds to an independent sample of external IMF and

solar wind conditions, whereas statistical analyses that count every crossing

equally in passes with multiple crossings will overweight such passes. We

aim to provide demarcations for the inner and outer limits of the boundaries,

within and outside of which the spacecraft was clearly located in the magne-

tosphere, magnetosheath, or interplanetary medium. Wave characteristics

(including foreshock waves, non-linear quasi-parallel shock phenomena, and

magnetopause boundary waves) are beyond the scope of this paper.

All boundary crossings were picked by visual inspection with the follow-

ing criteria. For the bow shock, the inbound outer limit was identified as the

time at which the first sharp increase in the magnitude |B| of the magnetic

field was observed. The inner limit was identified as the time of the last sharp

increase in |B|. These criteria worked well when the IMF was oriented some-

what oblique to the planet-Sun line, that is, for quasi-perpendicular shock

conditions. A perpendicular shock forms when the shock-normal direction is

perpendicular to the IMF direction, whereas a parallel shock occurs when the

shock normal is parallel or anti-parallel to the IMF. For near-parallel shock

conditions, there was often little or no increase in |B|, but the bow shock

boundary was marked by the onset of large variability in |B|. Sometimes

these modulations grew gradually, in which case we chose the outermost

excursions in |B| that were distinctly larger than the upstream variability.

The outbound bow shock was picked in a similar fashion, that is, a sharp

decrease in the field magnitude marked the boundary.

For the magnetopause, the crossings were most readily identified when

the shear angle between the direction of the magnetic field in the magneto-

sphere and that in the magnetosheath was larger than about 45◦, because

the field rotation is a direct signature of the magnetopause current layer. On

the dayside and on the flanks, the shear is typically in By and Bz, whereas

on the nightside the shear is mostly in Bx. The inner boundary was iden-
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tified by the innermost substantial rotation away from the magnetospheric

field direction and the outer boundary by the outermost rotation toward

the ambient magnetospheric field direction, excluding the background mag-

netosheath variability. In many cases, however, the field direction in the

magnetosheath was the same as (or close to) that inside the magnetosphere.

For example, the magnetic shear can be low at low dayside latitudes when

the IMF is northward and on the nightside when the IMF is anti-sunward

such that the southern lobe field is parallel to the draped magnetosheath

field. In such cases, although the local magnetic shear is low, there were

other signatures in the magnetic field that indicated transition between

magnetosheath and magnetosphere regimes. These signatures include an

increase in magnetic fluctuations in the magnetopause layer (documented

from Earth’s magnetopause [79, 80]) and a change in the character of the

low-frequency fluctuations on the magnetosheath side of the boundary. The

higher-frequency magnetic fluctuations are recorded by the 1-10 Hz fluctu-

ation channel (or BAC), which provides an average amplitude of the 1-10

Hz bandpass-filtered field. In addition, on the dayside the inner magne-

topause boundary is also often indicated by either a step-wise increase in

|B| or the onset of an inward gradient in |B| on the magnetosphere side

of the boundary. However, these signatures were not always sharp, and in

some cases it was difficult to identify the magnetopause boundary. Bound-

ary crossing choices were made conservatively such that the inner edge was

definitely inside the magnetosphere and the outer edge was definitely in

the magnetosheath. Using plasma measurements from FIPS to identify the

boundary crossings is beyond the scope of this paper and would require

careful accounting of the FIPS look direction, since its field of view is 1.4π

sr. Several dozen comparisons show excellent correspondence between the

boundaries identified from MAG observations and abrupt changes in FIPS

proton count rates.

Data from the first magnetospheric transit on 12 October 2011 (orbit

418) are shown in Figure 2.1 together with expanded views of the inbound

and outbound boundary passages. In this case, the shock conditions were

oblique (perpendicular shock geometry) and there was high magnetic shear
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across the magnetopause on both the inbound and outbound crossings. The

spacecraft entered the magnetosphere from the dayside and exited on the

nightside. The spacecraft first grazed the shock at 3:43:59 Coordinated

Universal Time (UTC) before passing through it at 3:45:29 UTC. On this

transit, the shock was also marked by an increase in high-frequency fluc-

tuations, BAC, although most of the fluctuations before the shock crossing

are attributed to foreshock waves. The spacecraft then traveled through the

magnetosheath and encountered the high-shear magnetopause on the dawn

side, marked by a rotation in Bz and By and an increase in BAC shortly

before the magnetopause boundary. On the outbound portion of the orbit,

the spacecraft first encountered the magnetopause at 5:19:56 UTC and was

finally in the magnetosheath at 5:25:05 UTC. The rotation in the magnetic

field is evident in Bx as the spacecraft exited the magnetosphere from the

southern tail lobe and was also associated with a rise in BAC. The spacecraft

then crossed the bow shock twice on its path back into the interplanetary

medium.

Often the boundaries were less clear, and Figure 2.2 shows data from the

first magnetospheric transit on 5 July 2011 (orbit 218) with such crossings.

On this orbit the shock was quasi-parallel on the dayside, which caused the

large modulations in |B| near the bow shock crossing. The magnetic field

inside the magnetosheath was highly variable, with large, quasi-periodic

rotations in By and Bz up to the magnetopause. The magnetic shear across

the magnetopause was low, so the decrease in BAC and the increase in the

total field magnitude were taken to indicate the magnetopause crossing. On

the outbound part of the orbit, the magnetic shear was again low across the

magnetopause, with slight rotations visible in By and Bx, but the crossing

was indicated by an increase in BAC. The field magnitude decreased as the

spacecraft crossed the magnetopause but increased inside the magnetosheath

until it reached the oblique bow shock boundary and decreased abruptly at

7:45:54 UTC.

The times of the inner and outer edges of the recorded magnetopause

and bow shock crossings for all the data presented in this study are given in

the Supplemental Materials of [53]. There are 1,065 magnetopause and 1,084
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Figure 2.1: (a) MESSENGER Magnetometer data for the first magneto-
spheric transit on 12 October 2011 (orbit 418). Left axes give the scales for
Bx (red), By (light green), Bz (blue), and |B| and -|B| (black); the right axis
is the scale for BAC (dark green). Vertical lines denote the crossing times of
the inner and outer edges of the bow shock (dashed) and magnetopause (dot-
dashed). (b) Close-up view of the inbound portion of the orbit. (c) Close-up
view of the outbound portion of the orbit.

bow shock crossings altogether in our dataset. The number of bow shock

crossings exceeds the number of magnetopause crossings because the Mag-

netometer was switched off to conserve power for parts of 19 orbits during
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Figure 2.2: (a-c) MESSENGER Magnetometer data for the first magneto-
spheric transit on 5 July 2011, orbit 218, in the same format as in Figure
2.1.

MESSENGER’s first long-eclipse season in orbit around Mercury. On these

orbits both the inbound and outbound bow shock crossings were recorded,

but typically only the inbound (and not the outbound) magnetopause cross-

ings were observed.
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2.3 Average boundary shapes

The first step in analyzing the crossing data was to determine the best

boundary shapes for all crossings together, effectively averaging over IMF

and solar wind conditions. This averaging was accomplished by fitting em-

pirical models to the magnetopause and bow shock crossing locations. The

boundary locations were specified with two different techniques. First, we

used the mean locations of the boundaries and fit empirical shapes to these

directly. Second, we used a probabilistic measure of residence within the

boundary regions to identify the locations of maximum residence probabil-

ity. Empirical shapes were then fit to these probability density maps, with

the established probabilities used as weights in the fitting. In the analysis

that follows, all positions are in aberrated coordinates (x, y, z), where x and

y are the aberrated xMSO and yMSO coordinates, respectively, and z = zMSO.

In addition, we have assumed that the boundaries are figures of revolution

about the line through the dipole center that parallels the x axis; the valid-

ity of this assumption is quantitatively tested and confirmed in Section 2.5.

The northward offset of the planetary dipole is included in the definition

of the distance from the axis of revolution, given by ρ =
√
y2 + (z − zd)2,

where zd = 0.196 RM [17–19].

2.3.1 Midpoint fits

In the first approach to determining boundary locations, model curves

were fit to the average crossing points, that is, the midpoint between the

inner and outer edge of the boundary location on each pass. The inner and

outer limits of the boundaries were assigned as the uncertainty range. This

method allows direct comparison of our results with approaches that have

been used historically to determine boundary shapes (e.g., [69, 77]).

2.3.1.1 Magnetopause

For the magnetopause, we used a paraboloid conic section [81, 82] as

well as the model shape proposed by Shue et al. [69] to fit our crossings.
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Figure 2.3: Midpoints between the inner and outer magnetopause crossing
positions identified from MESSENGER Magnetometer data from 23 March
2011 through 19 December 2011. Error bars show the distance between the
inner and outer crossing. Curves show the best-fit paraboloid (blue) to the
dayside crossings and the best-fit Shue et al. model (red), as well as models
from previous studies by Slavin et al. [77] (green) and Russell [76] (yellow).
The paraboloid has parameters given by Rss = 1.5 RM and γ = 1, whereas
the Shue et al. model is given by Rss = 1.45 RM and α = 0.5.

Figure 2.3 shows the midpoints of the magnetopause crossings from the three

Mercury years of data analyzed in this study. To establish a time-averaged

magnetopause shape from the crossing points, we modeled them in ρ − x
space. In our boundary fits, we used a grid search method that minimized

the root-mean-square (RMS) residual of the perpendicular distance of the

observed midpoints from the model boundary.

The paraboloid fit is motivated by the magnetospheric model of Alexeev

et al. [82], which was derived with a parabolic parameterization of mag-

netopause shape. Past studies of the magnetopause shapes around other
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planets have also involved fits to conic sections (e.g., [76]). The paraboloid

model shape is described by

x(ρ) = −
(
γ2 + 1

4Rss

)
ρ2 +Rss (2.1)

where γ is a flaring parameter and Rss is the subsolar magnetopause

distance [81]. Any value of γ > 1 is physically unreasonable, because it gives

a subsolar stand-off distance that is not the minimum distance between the

magnetopause and the planet. Setting γ = 1, we find Rss = 1.25 RM as the

best-fit paraboloid. This model does not provide a good visual fit, however,

to data either on the dayside or in the distant tail region. Relaxing the

constraint of γ > 1 gives a better fit to the crossings on the nightside, but

the resulting model still does not fit the dayside points. We find that the

paraboloid model represents the dayside magnetopause shape best when we

exclude the tail crossings, yielding Rss = 1.5 RM and γ = 1 (Figure 2.3).

We also fit the magnetopause crossings with the functional form proposed

by Shue et al. [69] (hereafter referred to as the Shue et al. model) and given

by

R =
√
x2 + ρ2 = Rss

(
2

1 + cos θ

)α
(2.2)

where R is the distance from the dipole center, θ = tan−1
( ρ
x

)
, and α

is another flaring parameter that governs whether the magnetotail is closed

(α < 0.5) or open (α ≥ 0.5). This model has been used successfully to

model the Earth’s magnetopause [69, 83], as well as the magnetopause of

other planets, such as Saturn [84]. The Shue et al. model that best fits our

midpoint magnetopause crossings yields parameter values of Rss = 1.45 RM

and α = 0.5 (shown in Figure 2.3). As can be seen from Figure 2.3, the Shue

et al. model provides a better representation of the magnetopause crossings

than the paraboloid model. Even for the Shue et al. model, the best-fit

parameters are not tightly constrained, as similar RMS values are achieved

over a range of values for Rss and α (Figure 2.4). This behavior is in part

because of a trade-off between the Rss and α parameters, imposed by the
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Figure 2.4: RMS misfit between the midpoints of the magnetopause crossings
and the Shue et al. model, as a function of the subsolar stand-off distance,
Rss, and the flaring parameter, α.

observation geometry, and in part because of the spread in the magnetopause

crossing positions most likely caused by the dynamics of variable solar wind

and IMF conditions.

To better constrain our best-fit parameters, we conducted analyses of

the residuals (the perpendicular distance of our crossings from the model

boundary) for a range of models with Rss − α parameter pairs from the

minimum misfit region in Figure 2.4. We find that as we depart from the

best-fit parameters on either side of the misfit well, the residuals have dis-

tributions with a non-zero mean and are not Gaussian. Thus even though

the RMS misfit is not very different from the absolute minimum value in the

minimum misfit region, the models generated by the parameter pairs in that

region describe the data less well than our best-fit model. In addition, mod-

els have residuals that vary systematically with xMSO. This situation can be

visualized by taking, for example, a model curve lying within the minimum

misfit region with Rss = 1.25 RM and α = 0.6. Such a boundary yields
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residuals that are systematically positive on the dayside (i.e., the boundary

is too close to the planet relative to the observations) and are systematically

negative on the nightside (i.e., the boundary is too flared and farther from

the planet on average than the data). On the other hand, the residuals of

the best-fit model with Rss = 1.45 RM and α = 0.5 have zero mean and a

Gaussian distribution and show no systematic variation with xMSO. Also,

the RMS misfit (∼ 590 km) for the best-fit Shue et al. model is a factor of

1.5 lower than that of the best-fit paraboloid model (which was fit only to

the dayside data), and thus we use only the Shue et al. curve to model the

magnetopause for the remainder of this discussion.

2.3.1.2 Bow shock

To characterize the shape of the bow shock, the midpoints of the bow

shock crossings were modeled by a conic section given by [77]:

√
(x− x0)2 + ρ2 =

pε

1 + ε · cos θ
(2.3)

where the focus of the conic section lies at x0 along the line through

the planetary dipole that parallels the x axis at x0. The focus point, x0,

the eccentricity, ε, and the focal parameter, p (which together with the

eccentricity gives the semi-latus rectum, L = pε), are determined by a grid

search method that minimizes the RMS misfit. The best-fit parameters to

the bow shock midpoints are given by x0 = 0.5 RM , ε = 1.04, and p = 2.75

RM (Figure 2.5). As mentioned above, bow shock identification is difficult

for parallel bow shock conditions, and the outliers in bow shock locations

are due to the conservative outer limits chosen for crossings during these

conditions. Our best-fit model has an RMS misfit of ∼ 1100 km between

model boundary and bow shock position. The extrapolated nose distance for

this best-fit model is 1.90 RM , which yields an approximate magnetosheath

thickness of 0.45 RM from our midpoint magnetopause and bow shock fits.

This magnetosheath thickness is comparable to that predicted at Mercury

by magnetohydrodynamic and hybrid models (e.g., [85, 86]).
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Figure 2.5: Midpoints between the inner and outer bow shock crossing posi-
tions. Error bars show the distance between the inner and outer crossings.
Curves show the best-fit conic section to the data (red) and models from
previous studies by Slavin et al. [77] (blue) and Russell [76] (green). Pa-
rameters for the best-fit model to the bow shock midpoints are p = 2.75 RM ,
ε = 1.04, and x0 = 0.5 RM .

2.3.2 Probabilistic fits

We also examined the magnetopause and bow shock positions in a proba-

bilistic manner, by means of a method employed at Jupiter by Joy et al. [87].

As described in Section 2.2, for each crossing we identified an extended region

in space within which the magnetopause or bow shock crossings occurred.

The inner and outer limits of the boundaries that we identified span the por-

tion of the spacecraft trajectory over which boundary encounters occurred

during each pass. The data set therefore reflects locations where encounters

with the magnetopause and bow shock boundary were probable, and so we

used the crossing data to build a probability density map of these bound-
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2.3. Average boundary shapes

aries around the planet. The spacecraft trajectories between each inner and

outer crossing limit were registered on spatial grids around the planet, and

the number of crossings passing through each grid cell was used to build a

probability density map of the region of space in which the magnetopause

and bow shock are most likely to be encountered.

We divided space around the planet into grid cells as follows. For the

magnetopause, we adopted a spherical coordinate system on the dayside

and a cylindrical system on the nightside to match approximately the shape

of the boundary. The dayside was split into cells in rMP, θMP, and φMP,

where rMP =
√

(x2 + ρ2) is the distance from the dipole center, θMP =

cos−1(x/rMP) is the angle measured from the axis of revolution, and φMP

is the azimuth about the axis of revolution defined as tan−1[y/(z − zd)].

Grid cells were spaced every 50 km, 10◦, and 30◦ in rMP, θMP, and φMP,

respectively. The nightside was divided into grid cells spaced every 50 km,

680 km, and 30◦ in ρ, x, and φMP, respectively. Because the bow shock

nightside data were not well matched by a cylindrical shape, we used the

spherical coordinate system, rSK, θSK, φSK, but with an origin on the axis of

revolution at x = −4 RM for all of the bow shock crossings. That is, rSK =√
((x+ 4RM )2 + ρ2), θSK = cos−1[(x + 4RM )/rSK], and φSK = φMP. The

bow shock bins were 50 km, 5◦, and 30◦ in rSK, θSK, and φSK, respectively.

These coordinates are used only to bin the data, and all results are shown

in ρ− x space.

We evaluated the frequency with which the spacecraft trajectory between

the inner and outer magnetopause (or bow shock) crossings passed through

each bin. That is, for each orbit, each grid cell received a “hit” for every

1 s measurement point in that bin between the inner and outer limit of

the magnetopause (or bow shock). The hits were summed in each cell over

all orbits for the magnetopause and bow shock boundaries separately. The

cells with the highest number of hits had the highest likelihood of falling

between the inner and outer boundary limits. Probabilities were evaluated

by dividing the number of counts in each cell by the sum of all the hits in all

cells along a predefined direction (e.g., along each x bin on the nightside and

along each θ bin on the dayside for the magnetopause). The normalization
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choice reflects the 100% probability that the boundary occurs at some x or

θ position. This procedure resulted in three-dimensional (3-D) probability

density maps of both the magnetopause and bow shock around the planet.

For the analyses that follow, we assumed that both the bow shock and

magnetopause are figures of revolution. We used a two-dimensional (2-D)

probability distribution in the ρ − x plane generated by summing the hits

in bins with the same r and θ (dayside) or ρ and x (nightside), over all φ

bins and then normalizing by the total number of counts along r (or ρ) at

each θ (or x). The assumption of a figure of revolution for each boundary

was tested quantitatively (see Section 2.5).

The 2-D probability density map (Figure 2.6) for the magnetopause

shows that this boundary has a maximum probability of occurrence that

lies within a narrow band on the dayside and within a more extended region

on the nightside. We fit Shue et al. models to this probabilistic boundary by

performing a weighted fit to the grid cell locations in ρ− x space, such that

each cell location was weighted by its probability. The best-fit curve yielded

the same model parameters as the fit to the magnetopause midpoints (Table

2.1), but with a lower RMS misfit of ∼ 96 km that reflects the use of the

probabilities as weights.

The bow shock probability density map (Figure 2.7) shows a more ex-

tended spread in the boundary locations than that for the magnetopause,

in particular on the nightside, where the highest-probability regions occur

at large ρ values. This spread is the result of outlier crossings (Figure 2.5),

most of which occurred during parallel shock conditions. A conic fit to

the grid cell locations weighted by the probabilities yields slightly different

model parameters than our midpoint fit. The least sensitive of the model

parameters in our fits was the focus location, x0: varying this parameter

from −0.7 RM to 0.7 RM changed the RMS misfit by only a few percent.

Due to the covariance between the parameters, this variation in x0 was ac-

companied by large changes in p and ε, and the bow shock shape varied

from an ellipse to an open hyperbola, but the RMS misfit changed only by

a few percent. We thus fixed the focus location to x0 = 0.5 RM in order

to establish best-fit p and ε values that yielded bow shock shapes as close
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Figure 2.6: Probability density map of aberrated magnetopause positions.
The white space represents regions where the magnetopause is never ob-
served, the blue regions where it is very rarely observed, and the dark red
regions where it is observed most often. The red line represents the Shue et
al. model that best fits the probability densities, with Rss = 1.45 RM and
α = 0.5. The probabilities sum to 1 along each x bin on the nightside and
along each θ bin on the dayside.

to hyperboloids as possible. The fit parameters to the bow shock were then

given by x0 = 0.5 RM , ε = 0.99, and p = 3.2 RM , with a weighted RMS

misfit of ∼ 187 km (Table 2.2). With these parameters, the bow shock nose

distance is extrapolated to be 2.09 RM , which gives a magnetosheath width

of 0.64 RM from the probabilistic analysis. The shock distance from the

dipole-Sun line in the y− z plane is given by 3.83 RM at x = 0 and by 6.35

RM at x = −4 RM .
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2.4. Response of boundaries to solar wind forcing

Midpoint fit Probabilistic fit

Rss α RMS Rss α RMS
(RM) residual (RM) residual

(km) (km)

All PRam 1.45 0.50 587 1.45 0.50 96

PRam corrected - - - 1.45 0.50 94

< PRam >= 8.8 nPa - - - 1.55 0.50 96

< PRam >= 11.5 nPa - - - 1.50 0.50 106

< PRam >= 15.2 nPa - - - 1.45 0.50 155

< PRam >= 18.8 nPa - - - 1.40 0.50 120

< PRam >= 21.6 nPa - - - 1.35 0.50 115

Table 2.1: Summary of the best-fit Shue et al. model parameters to the
magnetopause crossing points under different ram pressure conditions for a
fixed α value of 0.50. Angular brackets denote mean value within each ram
pressure bin.

2.4 Response of boundaries to solar wind forcing

2.4.1 Magnetopause

The magnetopause shape and location are expected to vary with solar

wind and IMF conditions (e.g., [74, 83]). Figure 2.8 shows the solar wind

statistics at Mercury at the time of the bow shock crossings, obtained from

averages of MESSENGER MAG observations of the IMF and from WSA-

Enlil model predictions of the solar wind density, speed, ram pressure, and

Alfvén Mach number [42, 78]. We assumed that these statistics held at the

times of both the magnetopause and bow shock crossings on a given orbit

and used them to examine the response of the boundaries to the IMF and

solar wind.

The magnetopause boundary is observed to be closer to the planet dur-

ing times of increased ram pressure and farther out during times of low ram

pressures (Figure 2.9). Baker et al. [78] showed that solar wind ram pres-

sure values from the WSA-Enlil model order and organize the magnetopause

stand-off distance. This behavior is expected, because the magnetic pres-

sure of the planet’s magnetosphere and the solar wind dynamic pressure
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Figure 2.7: Probability density map of the aberrated bow shock crossings.
The red line represents the best-fit conic section to the probability densities,
with p = 3.2 RM , ε = 0.99, and x0 = 0.5 RM . The probabilities sum to 1
along each x bin on the nightside and along each θ bin on the dayside.

are the two largest contributors to the pressure balance that defines the

magnetopause boundary. The ram pressure effect is the dominant factor

influencing the magnetopause, because any IMF effects, if present, were not

readily apparent in the raw data. We thus investigated any possible effect

of the IMF direction on the magnetopause after removing the dependence

on PRam.

We assessed changes in the magnetopause shape and position under dif-

ferent ram pressure conditions. We binned the magnetopause crossing data

into five PRam bins, such that each PRam bin contained one-fifth of the range

of PRam values represented in the data. Thus the PRam bins did not contain
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2.4. Response of boundaries to solar wind forcing

Midpoint fit

x0 p ε RMS Subsolar
(RM) (RM) residual distance

(km) (RM)

All MA 0.5 2.75 1.04 1115 1.90

Probabilistic fit

x0 p ε RMS Subsolar
(RM) (RM) residual distance

(km) (RM)

All MA 0.5 3.20 0.99 187 2.09

MA corrected 0.5 2.90 1.02 149 1.96

< MA >= 4.12 0.5 3.55 1.02 241 2.29

< MA >= 6.32 0.5 2.95 1.02 195 1.99

< MA >= 11.8 0.5 2.75 1.02 162 1.89

Low cone angle 0.5 3.10 0.99 169 2.04
(θ < 45◦)

High cone angle 0.5 2.95 0.99 157 1.97
(θ > 45◦)

Table 2.2: Summary of the best-fit conic section parameters to the bow shock
crossings under different Mach number conditions. In the fits, x0 was fixed
at a value of 0.5 RM (see text). In the probabilistic fits to the three different
MA bins, p was the only parameter varied, and ε was fixed at the mean
value between the best-fit probabilistic and best-fit midpoint result (see text).
Angular brackets denote mean MA value within each Mach number bin.

equal numbers of data points, but the range of PRam values was the same

in each bin. We built 2-D probability density maps for each PRam bin and

conducted fits of the two-parameter Shue et al. model to these separately

(Table 2.1). The largest uncertainty in the best-fit model shape is most

likely associated with the highest ram pressure bin, which will include the

more extreme solar events that may not be properly captured by the WSA-

Enlil model. The Rss and α values for the best-fit curves for each of the

ram pressure bins are plotted in Figure 2.10.

With the exception of the highest PRam bin, the Rss parameter decreases

overall with PRam; in contrast, α shows no systematic variation with PRam.

Thus we first removed the dominant Rss versus PRam variation from the data
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Figure 2.8: Solar wind statistics at the times of the bow shock crossings
obtained from WSA-Enlil model predictions of the solar wind and from av-
erages of MESSENGER MAG observations in the interplanetary medium
for the IMF. Histograms of (a) solar wind number density (cm−3), (b) solar
wind speed (km s−1), (c) solar wind ram pressure (nPa), and (d) solar wind
Alfvén Mach number. In (d), 15 observations with Mach numbers > 20 are
not shown; these numbers reach a maximum value of 69.0.

and normalized the magnetopause crossings by the ram pressure. To do this,

we estimated only the Rss parameter for the data in each of the five PRam

bins while keeping α fixed at its average best-fit value of 0.5 (i.e., a fixed

magnetopause shape). We checked that the best-fit models for the fixed-α

fits in all the five PRam bins yielded residuals that had Gaussian distribu-

tions with a nearly zero mean. The Rss values for the best-fit curves for each
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Figure 2.9: Midpoints of the magnetopause crossings color-coded by solar
wind ram pressure. The solid black line through these data points is the
best-fit Shue et al. model. During times of high solar wind ram pressure,
the magnetopause is observed to move closer to the planet, as expected.

of these ram pressure bins are plotted in Figure 2.11 and given in Table 2.1.

These were fit by a power law given by Rss = (2.15± 0.10)P
[(−1/6.75)±0.024]
Ram ,

where Rss is in units of RM and PRam in nPa and the uncertainties are the

95% confidence limits on the exponent and the coefficient obtained from the

fitting procedure. The magnitude of the exponent is only slightly less than

the -1/6 dependence of Rss on PRam expected for a simple pressure bal-

ance between the internal dipole magnetic field pressure (and small internal

plasma pressure) and solar wind dynamic pressure. This result suggests that

the effects of induction in Mercury’s conductive interior, which “stiffens” the

dayside magnetosphere against changes in solar wind pressure [60–63], may

be present, but if so it is a secondary effect, at least at the altitudes over
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Figure 2.10: (a) Magnetopause subsolar stand-off distance, Rss, plotted as
a function of solar wind ram pressure when both parameters were allowed
to vary in the Shue et al. model fits. The blue stars represent Rss values
established from best-fit curves to five ram-pressure data bins. (b) Flaring
parameter, α, corresponding to the Rss values in (a) for the best-fit Shue et
al. curves, plotted as a function of solar wind ram pressure.

which MESSENGER samples the magnetopause. A detailed study of in-

duction signatures is beyond the scope of this paper. Refinement of the

power-law above will require both additional observations and assessment

of uncertainties in the WSA-Enlil model predictions.

The power law relationship above indicates that a ram pressure of 175

nPa would collapse the magnetopause to the planet’s surface. We note that

the minimum and maximum pressures consistent with the uncertainties of
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Figure 2.11: Magnetopause subsolar stand-off distance, Rss, plotted as a
function of solar wind ram pressure for fits when the flaring parameter was
kept fixed at a value of 0.5. The blue stars represent Rss values established
from best-fit curves to five ram-pressure data bins, and the red curve is a
power law fit to these values with an exponent of -0.148 ± 0.017.

our power law fit span a wide range from 65 nPa and 692 nPa. In the

simulations conducted by Kabin et al. [88], a ram pressure of 147 nPa was

found to collapse the magnetopause to the surface, which is within our

uncertainty range. Using a -1/6 power law (i.e., the relation expected in

the absence of induction) relative to the mean observed Rss of 1.45 RM

yields a lower pressure for the collapse of the magnetosphere of 133 nPa,

well within the range of uncertainty of our power law expression.

With the derived power-law relationship we normalized our magnetopause

crossings as follows. From the WSA-Enlil data, we found the correspond-

ing PRam value for the inbound and outbound portion of each orbit, and

from those values we established an associated Rss value for each orbit from

the power-law fit to our PRam-binned data. The ram-pressure-independent

63



2.4. Response of boundaries to solar wind forcing

magnetopause crossing locations were then determined by multiplying the

x, y, and (z − zd) values by the mean Rss for all crossings (i.e., Rss = 1.45

RM ) divided by the Rss value associated with each observation point. Fig-

ure 2.12 shows the probability density map of the magnetopause after the

solar wind ram pressure dependence was removed. The PRam-independent

magnetopause location is better constrained than the uncorrected locations

(Figure 2.6), especially on the dayside, where the zones of high-probability

regions lie in a narrow band. Although the model that best fits these data

is still described by the same parameters as the PRam-uncorrected mag-

netopause (see Table 2.1), the RMS residual is lower than for the PRam-

uncorrected crossings, with a value of ∼ 94 km. A statistical F-test shows

that at the 91% significance level the variance of the PRam-corrected mag-

netopause model is lower than the variance of the PRam-uncorrected mag-

netopause model.

After removing the first-order variation of the magnetopause position

with ram pressure, we binned the data again into the same PRam bins as

above, fixed Rss to the best-fit PRam-corrected value of 1.45 RM and left

α to vary in Shue et al. model fits to these bins, to test the influence of

ram pressure on the flaring of the magnetopause. Unlike the situation at

Earth, there is no increase in flaring of the magnetopause with increased

ram pressure. This result is expected if the magnetospheric currents and

the ratio of the static solar wind pressure to the dynamic pressure remain

constant [75].

We then assessed whether the IMF direction affects the magnetopause

shape after the ram pressure dependence was removed. Since the MES-

SENGER IMF averages 1 h upstream of the bow shock are not ideal for

evaluating IMF Bz affects on the magnetosphere [89], we used the magnetic

shear angle across the magnetopause to search for any overall dependence

on magnetic reconnection. The magnetic shear was calculated by taking the

dot product of the magnetic field unit vector 1 min inside the inner edge of

the magnetopause crossing and the unit vector 1 min outside the outer edge

of the magnetopause crossing. Figure 2.13 shows the distribution of mag-

netic shear angles across the magnetopause for our observations. We divided

64



2.4. Response of boundaries to solar wind forcing

6 5 4 3 2 1 0 1 2
2

1

0

1

2

3

4

5

X (RM)

 (R
M

)

 

 

Probability

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 2.12: Probability density map of the aberrated magnetopause crossings
after the crossing positions were normalized by solar wind ram pressure. The
best-fit Shue et al. model (red curve) yields the same Rss and α values as
before (Figure 2.6), but the spread in the data has decreased somewhat on the
dayside, and the regions of highest probability are more spatially constrained.

the ram pressure corrected magnetopause crossings into low (θ < 80◦) shear

angle and high (θ > 100◦) shear angle bins, and built probability density

maps of these data. Shue et al. model fits to the highest probability regions

do not yield a resolvable difference between fits to the magnetopause loca-

tions separated by magnetic shear angle. Further observations are needed to

increase the signal-to-noise ratio in the boundary locations and potentially

resolve any shear angle dependence on the magnetopause boundary.
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Figure 2.13: Histograms of (a) the magnetic shear angle across the magne-
topause and (b) the IMF cone angle, calculated from MESSENGER magnetic
field data.

2.4.2 Bow shock

We used WSA-Enlil model data as well as MESSENGER IMF averages

to assess how the bow shock is affected by solar wind and IMF conditions.

To first order, the solar wind Alfvén Mach number is the dominant factor af-

fecting the bow shock; the shock is closer to the planet during high MA than

during low MA (Figure 2.14). This result is expected and in agreement with

gas dynamic and magnetohydrodynamic simulations [85, 86, 90]. As MA

increases, the jump of the plasma flow speed transverse to the shock surface

also increases, corresponding to higher plasma flow speed around the mag-

netopause that results in a thinner magnetosheath [91]. At greater down-

stream distances, the bow shock weakens as it asymptotically approaches
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Figure 2.14: Midpoints of the bow shock crossings color-coded by solar wind
Alfvén Mach number. The solid black line through the data is the conic
section best fit to the midpoints.

its Mach cone [92, 93]. Although MESSENGER does not sample the bow

shock at large downstream distances, an enhanced flaring of this surface

with decreasing Mach number may be present (Figure 2.14).

To establish the bow shock position normalized by Alfvén Mach number,

we adopted a procedure to remove the Mach-number dependence similar

to that applied to the magnetopause to remove the dependence on ram

pressure. We binned the bow shock crossings into three MA bins and fit

separate conic sections to each. To have sufficient data points in each MA

bin to perform model fits (see Figure 2.8d), the low-MA bin was assigned

MA < 5, the medium-MA bin had values in the range 5 < MA < 8, and

the high-MA bin had values of MA > 8 (see Table 2.2 for mean values of

MA in each bin). Fits in which all three bow shock parameters were varied
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revealed large trade-offs among the three model parameters, in a manner

similar to the magnetopause fits. However, through these fits we were able

to establish that the parameter most systematically affected by MA is the

focal parameter, p, which steadily decreased with increasing MA. The other

two parameters did not show any systematic behavior with MA. Thus in

order to normalize our bow shock boundary by MA and look for higher-order

dependencies in the data, we assumed that the bow shock shape does not

change (by keeping x0 and ε fixed at their average values) and fit separate

conic sections to the bow shock crossings in the three MA bins.

We again checked that these fixed-shape fits still yielded residuals with

zero means and nearly Gaussian distributions. In our fits, the low-MA bin

had the highest RMS misfit, and the high-MA bin had the lowest RMS misfit

for all the fits conducted (Table 2.2), consistent with most of the spread in

the bow shock location occurring during low MA (Figure 2.14). From the

fits of conic sections to the different MA bins, we established a power-law

relationship between p and MA, given by p = (4.79 ± 2.54)M
(−0.23±0.17)
A ,

where the uncertainties in the exponent and coefficient are the 95% confi-

dence limits determined from the fitting procedure.

We scaled the bow shock crossing positions by p0/pi, where p0 is the

mean p value obtained from averaging the p values from the midpoint and

probabilistic fit (Table 2.2), and pi is the p parameter for the ith cross-

ing point determined from the power-law relationship above. The resulting

probability density map for the MA-corrected bow shock positions (Figure

2.15) shows a decrease in the spread of the bow shock locations, as well as a

marked decrease in the distance between the high-probability regions on the

nightside and the best-fit model boundary. The best-fit model boundary to

the MA-independent bow shock crossings has a p parameter of 2.9 RM , an

eccentricity of 1.02, a focus point of x0 = 0.5, and a minimum RMS misfit

20% less than that for the fit shown in Figure 2.7.

We also assessed the influence of MA on the flaring of the bow shock

after removing the first-order dependence of the bow shock position on the

Mach number. By allowing ε to vary (and fixing x0 = 0.5 and p = 2.9 RM )

in our conic sections fit to the different MA bins, we found no statistically
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Figure 2.15: Probability density map of the aberrated bow shock crossings
after removing the dependence on Alfvén Mach number. The red line repre-
sents the best-fit conic section to the probability densities, with p = 2.9 RM ,
ε = 1.02, and x0 = 0.5 RM . The normalized bow shock is more spatially
constrained, in a manner similar to that for the magnetopause normalized
by ram pressure.

significant variation of ε with MA. For the sake of completeness, we also

conducted similar tests at a variety of other x0 values, which yielded similar

results. We conclude that variation in bow shock flaring with MA is masked

by the high variability of the crossing locations. More bow shock crossings

are needed at high MA values to establish whether ε varies systematically

with MA at Mercury.

The IMF cone angle is also expected to affect the bow shock, as the

shock is anticipated to flare during quasi-parallel shock conditions [94]. We
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evaluated whether any dependence on IMF cone angle is observed in the bow

shock location or shape after the Mach number dependence was removed.

The IMF cone angle is given by θ = cos−1
(

B|x|
BTotal

)
, and its distribution is

shown in Figure 2.13. By dividing the data into bins of low (θ < 45◦) cone

angle and high (θ > 45◦) cone angle, we found that there is no resolvable

difference between conic section fits to the bow shock locations separated

by cone angle (Table 2.2). The shock is more spatially spread out for the

low-cone-angle bin, an expected result because a low cone angle signifies

parallel shock conditions. The flaring of the bow shock does not appear to

be affected by IMF cone angle.

2.5 Discussion

The observations of Mercury’s magnetopause and bow shock presented

here indicate that these boundaries are variable and dynamic. At Mercury,

the solar wind ram pressure and the Alfvén Mach number are the two dom-

inant external influences on the boundaries. The magnetopause is observed

to move planetward during high PRam, and similarly the bow shock moves

planetward during times of high MA. Unlike at Earth, increased PRam does

not increase the flaring of the magnetopause; the shape of the boundary is

unchanged under variations in solar wind ram pressure. In a like manner,

MA does not appear to influence the flaring of the bow shock at Mercury

despite the fact that at Earth the shock is more flared during times of low

MA.

An important result is that the average magnetopause becomes cylin-

drical at relatively small downstream distances of only ∼ 2− 3 RM (Figure

2.3). At Earth, in contrast, the magnetotail does not cease flaring until

a downstream distance of ∼ 100 RE [95]. Expressed in terms of subsolar

magnetopause stand-off distances, the downstream flaring of Mercury’s tail

ceases by ∼ 2 Rss whereas at Earth this effect is not seen until ∼ 10 Rss.

The factors determining the location where tail flaring ceases are not well

understood, but the position likely corresponds to the distance at which the

plasma sheet is disconnected from the planet as a result of reconnection, and
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plasma flow in the tail is all anti-sunward. At Earth this position occurs

at about −100 RE [96], whereas for Mercury Slavin et al. [59] estimated a

downstream distance of ∼ 3 RM from MESSENGER flyby observations of

reconnection in the tail. Mercury’s magnetopause is well fit by the Shue et

al. model with α = 0.5, which defines the transition from an open (α > 0.5)

to a closed (α < 0.5) magnetospheric cavity on the nightside. From the

best-fit Shue et al. model for the ram-pressure-corrected magnetopause we

find that the magnetotail is on average nearly cylindrical with a radius of

2.05 RM at the dawn-dusk terminator and 2.77 RM at a distance of 4 RM

down the tail. In comparison, Earth’s magnetopause is more flared, with

the data fit well by Shue et al. models that have α > 0.5 [69]. The over-

all nearly cylindrical shape of Mercury’s magnetopause in comparison to

Earth’s may imply that magnetic flux has a short residence time in the tail,

and thus return convection of flux from the tail to the dayside proceeds

rapidly, consistent with the expected ∼ 2 minute Dungey cycle period at

Mercury.

The analysis of the magnetopause and bow shock boundaries in ρ − x
space was based on the assumption of rotational symmetry about the dipole-

Sun line. We tested whether this assumption was justified both qualita-

tively and quantitatively. First, the boundary crossings plotted in x−y and

x − (z − zd) space did not reveal systematic differences. The ram pressure

and Mach number are not observed to cause any asymmetries in the shape,

as the boundary crossings corrected for PRam and MA have similar shapes

to the uncorrected crossings in x − y and x − (z − zd) space. These com-

parisons indicate that variations from rotational symmetry can be treated

as a perturbation to the figures of revolution. We then assessed the degree

to which systematic deviations from figures of revolution are present. From

the corrected crossing locations, we evaluated the best-fit models for both

boundaries, and we calculated the perpendicular distances of each crossing

from the model boundaries as a function of the azimuthal angle, i.e., φMP or

φSK. If either the magnetopause or bow shock were flattened or elongated

in the north-south direction, such an effect would be evident as a sinusoidal

variation in φMP or φSK, respectively, relative to the mean boundary at
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a period of 180◦, i.e., two cycles. We did not observe any systematic de-

partures from figures of revolution for either the magnetopause or the bow

shock. By binning the deviations into 2◦ bins in φMP or φSK and fitting a

sinusoid to these binned deviations, we find maximum sine-wave amplitudes

of 62 and 3 km for the magnetopause and bow shock, respectively. These

sine-wave amplitudes are more than an order of magnitude smaller than

the variability in the deviations of the two boundaries about the models.

We conclude that, to first order, the boundaries are figures of revolution.

The scatter relative to the mean is high however, implying that dynamic

variability in Mercury’s magnetosphere and bow shock are large and that

second-order structure could be present but masked by the large dynamic

variability. It is thus possible that instantaneously these boundaries are not

figures of revolution. However, on average, the departures from figures of

revolution are small compared with the dynamics in the system. Because

of the high variability of the crossing locations analyzed so far, we cannot

yet resolve any average asymmetries in the boundary shapes. At Earth,

the maximum departure from a figure of revolution at high latitudes is ∼ 1

RE [72], which corresponds to ∼ 0.1 Rss (subsolar stand-off distance is ∼ 10

RE). In comparison, an equivalent 0.1 Rss departure is only ∼ 350 km at

Mercury, which would be a sufficiently small departure to be easily masked

by the variability in the available data. Such signatures may be resolved

with additional observations.

2.6 Conclusions

We have established Mercury’s time-averaged magnetopause and bow

shock location and shape from MESSENGER Magnetometer data obtained

during three Mercury years in orbit. We find that the magnetopause is

well described by a Shue et al. model parameterized by a subsolar stand-

off distance of 1.45 RM and a flaring parameter of α = 0.5. The solar

wind ram pressure exerts a primary control on magnetopause location; the

boundary moves closer to the planet under higher PRam (giving a subsolar

distance of 1.35 RM for a mean PRam of 21.6 nPa) and farther away from
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the planet under lower PRam (with an Rss of 1.55 RM for a mean PRam of

8.8 nPa), while leaving the shape unchanged (Table 2.1). The paraboloid

model of Belenkaya et al. [81] provides a substantially worse overall fit to

the magnetopause crossings than the Shue et al. model, reflecting the ab-

sence of evidence for substantial flaring from observations on the nightside.

This comparison suggests that future improvements in global models for

Mercury’s magnetosphere should use a ram-pressure-corrected Shue et al.

model magnetopause. The observed low flaring of the magnetotail may im-

ply that magnetic flux has a short residence time in the tail on average. This

short residence time of the tail flux could also imply that return convection

of flux from the tail to the dayside proceeds rapidly.

The shape of Mercury’s bow shock corrected for Alfvén Mach number is

that of a hyperboloid given by the parameters x0 = 0.5 RM, p = 2.9 RM,

and ε = 1.02, and a subsolar stand-off distance of 1.96 RM. The bow shock

shape does not appear to vary with Alfvén Mach number, as there is no

change in flaring. This is an unexpected result, since Earth’s bow shock is

observed to flare with decreasing Alfvén Mach number. At Mercury, the

bow shock moves closer to the planet for high MA and farther out for low

MA; the extrapolated nose distance of the shock is at 1.89 RM for a mean

MA of 11.8, and at 2.29 RM for a mean MA of 4.12 (Table 2.2). Both the

magnetopause and bow shock boundaries are figures of revolution to first

order, but the variability about the mean is large. With the current data

available we do not resolve effects of IMF orientation on the magnetopause

or the bow shock. As more data are acquired by MESSENGER, effects of

IMF on the magnetopause or bow shock should be more readily discernible.

The variation of the bow shock and magnetopause location with dynam-

ics is large at Mercury, and understanding the processes that these dynamics

reflect is a key area of future study. The derivation of the average bound-

aries presented here provides a baseline with which to evaluate excursions

of the system from its average state. Extensive progress has already been

made in understanding boundary waves [97, 98] and reconnection at Mer-

cury [34, 59, 99]. Extending that work to better understand those aspects

of global magnetospheric dynamics that could lead to the large variations
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in boundary locations is a fruitful area of inquiry.
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Chapter 3

Observations of Mercury’s

northern cusp region with

MESSENGER’s

Magnetometer1

The magnetic cusp of a planetary magnetosphere allows solar wind plasma

to gain access to the planet’s magnetosphere and, for Mercury, the surface.

From measurements by the MESSENGER Magnetometer we have charac-

terized the magnetic field in the northern cusp region of Mercury [89]. The

first six months of orbital measurements indicate a mean latitudinal extent

of the cusp of ∼ 11◦, and a mean local time extent of 4.5 hrs, at spacecraft

altitudes. From the average magnetic pressure deficit in the cusp, we esti-

mate that (1.1±0.6)×1024 protons s−1 bombard the surface over an area of

(5.2± 1.6)1011 m2 near the northern cusp. Plasma pressures in the cusp are

40% higher when the interplanetary magnetic field (IMF) is anti-sunward

than when it is sunward. The influence of the IMF direction does not over-

come the north-south asymmetry of Mercury’s internal field, and particle

flux to the surface near the southern cusp is predicted to be a factor of 4

greater than in the north. The higher particle flux impacting the surface in

the south should lead to a greater exospheric source from the south and a

higher rate of space weathering than in the area of the northern cusp.

1Reprinted from Geophysical Research Letters, with permission from Wiley.
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3.1 Introduction

The magnetospheres of planets with dipolar internal fields possess mag-

netic cusps, regions near the magnetic poles at which fields from magne-

topause currents nearly cancel the internal field. For vacuum superposition

of the magnetic fields of the dipole and magnetopause currents, the cusps are

topological singularities where the magnetic field vanishes. The weak field

near the cusp allows the shocked solar wind plasma of the magnetosheath

ready access to the magnetosphere, and the magnetic field lines that thread

the cusp are populated with this plasma.

Mercury’s internal field is symmetric about the rotation axis but asym-

metric about the geographic equator and can be represented by a dipole with

a moment of 195 nT R3
M (where RM is Mercury’s mean radius, 2440 km)

offset 0.2 RM northward from the planetary center [17]. The high-latitude

field at the surface is predicted to be 4 times weaker in the southern hemi-

sphere than in the northern hemisphere, leading to a correspondingly greater

spatial extent of the cusp projection to the surface in the south than in the

north. Solar wind sputtering of species from the planetary surface may be

a substantial source of exospheric particles (e.g., [100]). It is not known

whether asymmetric particle bombardment of the surface and correspond-

ing differences in space weathering rates could have produced detectable

hemispheric differences in surface color or reflectance.

Earth’s cusps have been extensively studied at low and high altitudes

(e.g., [101]). The position and size of the cusp areas at Earth depend on the

solar wind pressure [102, 103] and the IMF (e.g., [100, 104–106]). Mercury

lacks an ionosphere, the magnetosphere is a factor of∼8 smaller than Earth’s

relative to the planetary diameter, and the average solar wind density is an

order of magnitude higher than at Earth [23], so the cusps at Mercury may

be quite different from those at Earth. In addition, because the IMF is

dominantly sunward or anti-sunward at Mercury, the IMF component in

the Sun-Mercury direction may play a prominent role in the dynamics of

Mercury’s cusps (e.g., [107]).

Previous work on Mercury’s cusps focused on magnetosphere-solar wind
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interaction by means of analytic models [108–110], global magnetohydro-

dynamic models [88, 111], hybrid simulations [112–114], or semi-empirical

models [100, 115]. These studies indicated that solar wind ions can reach

the surface in the cusp region, but the spatial extent of the cusp and the

particle fluence vary among the models. This variation is partly due to the

different IMF and solar wind conditions assumed. From solar wind and

IMF conditions at Mercury’s aphelion and perihelion, Sarantos et al. [110]

predicted that the largest flux of precipitating solar wind ions impacting

Mercury’s surface occurs at local noon between 40◦ and 60◦ latitude with

an equatorward shift at perihelion. To date there have been no observations

that quantify the total plasma pressure in Mercury’s cusps or provide a basis

for assessing its sensitivity to the sunward IMF component.

Orbital observations by the MESSENGER spacecraft’s Fast Imaging

Plasma Spectrometer (FIPS) have revealed that the flux of heavy ions in

Mercury’s magnetosphere peaks between 65◦ and 75◦ latitude, consistent

with the predicted location of the northern magnetic cusp [22]. The ion

flux peaks coincide with depressions in magnetic field strength [116] mea-

sured with the MESSENGER Magnetometer (MAG) [49]. In this chapter

we characterize the northern cusp with MAG data from six months of orbital

observations, calculate the corresponding surface precipitation, and investi-

gate the influence of the sunward IMF and solar wind pressure on the mean

cusp plasma pressure.

3.2 Observations

The MESSENGER spacecraft was inserted into orbit about Mercury on

18 March 2011. The initial orbit had a 200 km periapsis altitude, 82.5◦

inclination, 15,300 km apoapsis altitude, and 12 hour period. We use two

Mercury years of MAG data starting from 23 March 2011, providing coverage

at all local times. Data were analyzed in Mercury solar orbital (MSO)

coordinates, for which +x is sunward, +z is northward, and +y completes

the right-handed system.

The cusp was identified from depressions in the magnitude of 1 s av-
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Figure 3.1: Example of a cusp observation on 21 August 2011, orbit 313.
(top) Measured (black) and modeled (red) magnetic field magnitude in the
cusp region. (middle) Magnetic depression in the residual |B| (black), resid-
ual data before and after cusp entry (red), and a third-degree polynomial fit
(blue) to the red curve. (bottom) The calculated pressure deficit (−PPlasma).

eraged total-field data from which a model field had been subtracted. The

model incorporates the offset internal dipole field and the magnetopause and

tail fields of the Alexeev et al. [82] paraboloid magnetospheric model, with
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model parameters given in Anderson et al. [17]. An aberration correction

was calculated from Mercury’s orbital speed and a mean solar wind speed

of 405 km s−1. For each orbit exhibiting a dayside magnetic depression

poleward of the magnetopause, we identified the times of the cusp outer and

inner entry and exit points. Transits in the cusp were indicated by sustained

depressions in the magnitude of the magnetic field B that exceeded typical

variability and lasted several minutes. An outer cusp entry was identified

at the point where the first transient decrease in |B| was seen, and the in-

ner entry was picked where the sustained depression in |B| started. Similar

criteria were used for the exit inner and outer points. Figure 3.1 shows the

dayside depression in the total residual between the observed and model

fields, given by |B|res = |B|obs − |B|model. The orbit does not always inter-

sect the cusp, particularly when periapsis is on the nightside, and magnetic

depressions were seen on 169 of the 279 orbits analyzed. Each entry and

exit time and the aberrated MSO spacecraft positions are given in the Sup-

plemental Materials of [89]. The field depressions were generally associated

with enhanced magnetic fluctuations at 1-10 Hz frequency, consistent with

greater intensities of local plasma instabilities. The proton gyrofrequency

is 2 to 6 Hz for field strengths observed in the cusp (150 to 400 nT). The

cusp entry and exit times changed by less than a few seconds for different

magnetospheric model parameters.

3.3 Data analysis

We conducted superposed epoch analyses (SEA) of |B| and |B|res in the

cusp to derive an average magnetic depression signature (Figure 3.2). Indi-

vidual profiles from different orbits were aligned in time on their respective

cusp interval midpoints and averaged over a time span of six minutes on

either side of this midpoint. We also conducted SEA of the 1-10 Hz fluctu-

ations. The fluctuation intensity was evaluated from the 20 sample/s data

by taking the root mean square (RMS) value over 1 s intervals in the di-

rection parallel to and two components perpendicular to the 1 s averaged

field direction, denoted by δB‖, δB⊥1 and δB⊥2, respectively. We define
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δB⊥ =
√

(δB2
⊥1 + δB2

⊥2)/2, so that δB⊥ = δB‖ if the fluctuations are equal

in all components. These analyses confirm the depression in the magnetic

field over the cusp and show that this signature is accompanied by an in-

crease in the magnetic fluctuations. The ratio δB⊥/δB‖ is about 1.5 in the

cusp and higher on either side of the cusp (Figure 3.2), indicating that al-

though the fluctuations in the cusp are transverse, they are less so than the

adjacent lower-amplitude fluctuations.

We calculated a plasma pressure that balances the magnetic field depres-

sion from PTotal = PMag + PPlasma, where PTotal is the total pressure; PMag

is the magnetic pressure, B2/(2µ0), where µ0 is the magnetic permeability;

and PPlasma is the particle thermal pressure. We estimated PTotal from the

magnetic field removed from the cusp magnetic field depression [116]. The

unperturbed magnetic field was determined for each pass from the mag-

netospheric model field and a third-degree polynomial fit to the residuals

one minute before and after but excluding the depression interval (Figure

3.1, middle panel). The boundaries of the depression intervals were taken

as the average of the inner and outer cusp entry or exit times. In some

cases the polynomial fit did not consistently remain above the residual field

magnitude in the cusp. These fits were rejected, and new fits were obtained

by increasing the time interval for the baseline fit. The polynomial fit was

added to the magnetospheric model field to estimate the unperturbed total

magnetic field, BU. We then evaluated PTotal = B2
U/(2µ0) and the magnetic

pressure deficit, PB−deficit = PMag − PTotal = −PPlasma (see Figure 3.1, bot-

tom panel). This latter quantity gives the additional plasma pressure in the

cusp relative to any background plasma pressure in the magnetosphere. In

general, FIPS data do not show substantial proton counts adjacent to, but

outside, the cusp, indicating that the background plasma pressure near the

cusp is much lower than that in the cusp.

The limits of the northern cusp are 55.8◦ and 83.6◦ MSO latitude and 7.2

h and 15.9 h local time. On average the cusp is approximately symmetric

about noon (Figure 3.3). Since the MESSENGER orbit is eccentric and

periapsis is on the descending latitude portion of the orbit, the cusp is

encountered at lower altitudes on the descending than on the ascending orbit
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Figure 3.2: Superposed epoch analysis of all cusp observations. (top) SEA
of observed |B| (blue) and model |B| (red) indicated by the scale on the left-
hand ordinate, and SEA of residual |B| (green) indicated by the scale on the
right-hand ordinate, for all 169 cusp profiles. (bottom) SEA of RMS 1-10
Hz fluctuations perpendicular and parallel to the local field, δB⊥ (blue), and
δB‖ (black) (scale on left). The red curve shows δB⊥/δB‖ (scale on right).

track. At higher altitude the cusp is on average a few degrees equatorward

of that seen at lower altitude. In the magnetosphere model, the magnetic

field at the magnetopause vanishes near 62◦ N at noon, consistent with the

expected shift in cusp latitude closer to the magnetopause.
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Figure 3.3: Stereographic projections of the pressure deficit (−PPlasma) along
each cusp profile in aberrated MSO coordinates. During portions of MES-
SENGER’s first Mercury year in orbit (MSO1), the Magnetometer was off
when the spacecraft experienced long eclipses or was close to the planet, re-
sulting in the gap in data coverage (between ∼ 10 h and ∼ 12 h in local time)
for the descending tracks. Complete coverage was obtained during MESSEN-
GER’s second Mercury year in orbit (MSO2). Projections span local times
from 6.67 h to 17.3 h and latitudes 55◦N to the pole. The color bar is sat-
urated so that observed, but localized, pressure deficits greater in magnitude
than -3 nPa are shown in red.

3.4 Discussion

The observations indicate that Mercury’s northern cusp region is a per-

sistent but dynamic feature. Not only is the cusp pressure deficit variable

on a given pass (Figure 3.1), but the cusp extent and plasma pressure can

vary markedly from one orbit to the next (Figure 3.3). This variability likely
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results from the influence of different IMF and solar wind conditions and

the corresponding interactions with, and dynamics of, Mercury’s magneto-

sphere. Here we focus on establishing the mean cusp pressure and particle

fluence to the surface since the plasma pressure may have important conse-

quences for exospheric processes and space weathering. We use MESSEN-

GER averages of IMF BX and predictions of the solar wind ram pressure

from the WSA-Enlil solar wind model [42]. Statistics of these quantities for

the cusp transits are given in Table 3.1.

MESSENGER’s 12-hour eccentric orbit presents challenges to analyzing

the effects of the solar wind on the cusp. First, the local time extent of

the cusp is sampled only twice each Mercury year (Figure 3.3). A study of

variations in cusp local time extent with solar wind conditions will require

considerably more observations than are presently available. Second, IMF

conditions for a given orbit are estimated from averages of MAG observa-

tions upstream of the bow shock. The 1-h time spans for these averages are

comparable to the typical time between MESSENGER cusp transits and

residence in the solar wind. Only the IMF x-component is generally larger

in magnitude than its variability (Table 3.1) implying that the IMF aver-

ages are appropriate for investigating the effects of IMF sector structure on

the cusp, but not for assessing the influence of magnetopause reconnection.

Reconnection depends strongly on the sign of Bz and the magnetosphere

responds to changes in the sign of Bz within minutes [24]. Because the

mean value of Bz is generally smaller than its variability over the averaging

intervals, the average IMF is not a good indicator of reconnection dynam-

ics during our cusp transits. We also compared the average IMF before

and after each magnetosphere transit to assess IMF stability. Only 18%

of orbits that pass through the cusp exhibit an average IMF Bz that is of

the same sign before and after MESSENGER’s magnetosphere transit and

that is at least one standard deviation different from zero. In contrast, the

corresponding percentages for Bx and By are 79% and 42%, respectively.

The data set therefore allows reliable assessment of the cusp dependence on

IMF Bx, which at Mercury’s orbit is the dominant IMF component and is

predicted to have a strong influence on pressures in the cusp (e.g., [107]).
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Ascending tracks

IMF Bx > 0 IMF Bx < 0

|B| 193 nT 179 nT
PPlasma 1.5 ± 0.1 nPa 2.1 ± 0.1 nPa
IMF Bx 16.4 ± 1.1 nT (σ = 5.0 nT) −9.1 ± 0.7 nT (σ = 4.7 nT)
IMF By -4.6 ± 1.2 nT (σ = 6.0 nT) 5.9 ± 1.1 nT (σ = 5.9 nT)
IMF Bz 1.9 ± 1.1 nT (σ = 6.3 nT) 1.3 ± 0.9 nT (σ = 6.8 nT)
PRam 11.9 ± 0.4 nPa 11.3 ± 0.4 nPa

# of orbits 45 43
Latitude 70.9 ◦ N 71.4 ◦ N
Altitude 684 km 706 km

Descending tracks

IMF Bx > 0 IMF Bx < 0

|B| 305 nT 318 nT
PPlasma 1.8 ± 0.1 nPa 1.9 ± 0.1 nPa
Bx 17.8 ± 0.9 nT (σ = 5.2 nT) −10.7 ± 2.0 nT (σ = 5.0 nT)

IMF By -5.1 ± 1.1 nT (σ = 7.0 nT) 2.5 ± 1.4 nT (σ = 6.7 nT)
IMF Bz 1.5 ± 0.8 nT (σ = 7.6 nT) -0.02± 1.35 nT (σ = 7.0 nT)
PRam 14.5 ± 0.5 nPa 11.4 ± 0.3 nPa

# of orbits 55 26
Latitude 72.5 ◦ N 75.2 ◦ N
Altitude 426 km 404 km

Table 3.1: Average cusp properties and ambient conditions separated by as-
cending/descending tracks and by the sign of IMF Bx. The mean |B| and
PPlasma inferred from decreased magnetic field strength are evaluated in the
cusp. The average IMF Bx, By, and Bz are calculated from observations
before and after each magnetospheric transit, and the solar wind PRam is
from the WSA-Enlil model evaluated during times of passage in the cusp.
Mean cusp latitude and altitude are weighted by PPlasma; the rest of the val-
ues are unweighted. Uncertainties are 1 standard error of the mean. For
IMF averages, the mean standard deviation (σ) is given in parentheses; only
the average Bx is consistently greater in magnitude than its variability.

Determining the variability in cusp location and pressure due to dynamics

associated with magnetopause reconnection, as indicated by the IMF By

and Bz components, is left for future analyses.

We assessed the influence of the IMF Bx and the solar wind ram pressure
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on the cusp plasma pressure as follows. Statistics were evaluated separately

for ascending and descending passes and for positive and negative IMF Bx,

because an anti-sunward IMF (negative Bx) is expected to facilitate plasma

transport into the northern cusp (e.g., [107]). The ascending tracks were

divided approximately equally between positive and negative Bx, but the

magnitude of Bx was ∼ 1.7 times higher for sunward than for anti-sunward

IMF conditions. The results indicate a larger plasma pressure in the cusp for

negative Bx. The high-altitude datasets for Bx > 0 and Bx < 0 have similar

mean altitudes and mean ram pressure (PRam) values, so the 40% deeper

magnetic pressure deficit for negative than positive Bx can be attributed to

the IMF orientation. Variation in the cusp mean position at Mercury for

the different signs of Bx and comparable average PRam, as on the ascending

tracks, is at most ∼ 0.5◦ compared to the average cusp extent of ∼ 11◦.

We performed SEA on PB−deficit for each of the two ascending-track

populations following the procedure described in Section 3.3, except that

outside the depression interval we padded the PB−deficit values with zeroes

to fill out the time to 8 min for each event (Figure 3.1, bottom panel). The

SEA profiles of PB−deficit (Figure 3.4) confirm that the magnetic pressure

deficit in the cusp for the transits with Bx < 0 is, on average, larger in

magnitude than for Bx > 0 and show that the cusp is present regardless

of the sign of Bx. The sunward/anti-sunward direction of the IMF thus

modulates plasma pressures but is not the dominant factor determining

pressure in the cusp.

The plasma pressure in the cusp appears to increase with increasing so-

lar wind ram pressure. For Bx > 0 the descending tracks exhibit a higher

PRam and also a lower PB−deficit than the ascending tracks, indicating that

the cusp pressures increase with increasing PRam. The influence of PRam

may account for the smaller difference in PB−deficit between the descending

track observations for Bx > 0 and Bx < 0, as the mean PRam is substan-

tially higher for the Bx > 0 events. Presumably, PB−deficit for the Bx > 0

descending track cases would have been smaller in magnitude had PRam

for these tracks been comparable to that for the Bx < 0 descending track

observations.
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Figure 3.4: SEA of the magnetic pressure deficit for ascending tracks grouped
by IMF Bx > 0 (red) and IMF Bx < 0 (black). A larger-amplitude magnetic
pressure deficit is observed for orbits when the IMF has a negative, or anti-
sunward, Bx component.

The estimate of cusp plasma pressures allows us to calculate the average

particle flux bombarding the surface. We describe this calculation and the

results in Section 3.4.1. Obtaining an average particle flux to the surface has

significant implications for studies relating to the generation of Mercury’s

exosphere as well as space weathering of the surface.

3.4.1 Surface flux calculation

To calculate the surface flux of particles, we assume an isotropic particle

distribution entering from the well-mixed magnetosheath plasma and that

the dominant ions in the solar wind are protons. We know the plasma

pressure at the spacecraft altitude, so our aim is to derive an expression for

the plasma pressure ratio between the spacecraft altitude and the surface,

and from there to estimate the pressure at the surface. Once we know the

pressure at the surface, we can calculate the flux at the surface by using an
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equation that relates the flux of isotropic gas particles to their pressure.

We consider a particle distribution function f0(v) at the spacecraft alti-

tude. The pressure at this altitude is given by the second velocity moment

of the distribution function

P0 =

∫
v2f0(v)d3v. (3.1)

In spherical coordinates, f0(v) = f0(v, α, φ) and d3v = v2 sin(α)dφdαdv,

where φ is the velocity azimuth about the magnetic field, and α is the

velocity pitch angle (the angle between v and B). We assume that the

distribution is gyrotropic, so that there is no dependence on φ, and we also

assume that it is isotropic, so that the speed distribution is independent of

α, to get f0(v) = 2π V (v)A(α). In the absence of electric fields parallel

to B, the particle speed distribution (V (v)) is independent of B, so that it

is the same everywhere along the field line. We can then rewrite equation

(3.1) in spherical coordinates as

P0 = 2π

∫
v4V0(v)dv

∫
A0(α) sin(α)dα. (3.2)

The pressure can be decomposed into the pressure due to particle mo-

tions parallel to and perpendicular to the magnetic field, B, since v2 =

v2
‖ + v2

⊥, where v‖ = v cos(α) and v⊥ = v sin(α). Then, using equation (3.1)

for simplicity,

P0 =

∫
v2
‖f0(v)d3v +

∫
v2
⊥f0(v)d3v, (3.3)

yielding P0 = P‖ + P⊥.

Since the magnetic pressure deficit reflects the perpendicular particle

pressure, at the spacecraft altitude we only need P⊥ (as this is all we mea-

sure), which can be written as

P⊥0 = 2π

∫
v4V0(v)dv

∫
A0(α) sin3(α)dα, (3.4)

after substituting in for v⊥. The total particle pressure at the surface, Ps is
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given by

Ps = 2π

∫
v4Vs(v)dv

∫
As(α) sin(α)dα. (3.5)

If we can estimate the ratio of Ps/P⊥0, we can calculate Ps because

from our measurements of the plasma pressure at the spacecraft altitude

we know P⊥0. Thus, because we assumed that there are no parallel electric

fields, Vs(v) = V0(v), the pressure ratio between the two altitudes is

Ps
P⊥0

=

∫
As(α) sin(α)dα∫
A0(α) sin3(α)dα

. (3.6)

From Liouville’s theorem, in the absence of collisions and loss of particles,

df/dt = 0, so that f0(v0) = f1(v1). However, the planet’s surface represents

a loss for the particles, and we can estimate an upper limit for this loss. For

a charged particle, the local magnetic field and instantaneous pitch angle are

related by the first adiabatic invariant, the magnetic moment, which yields

that
sin2(α)

B
= constant, (3.7)

so that the pitch angle of particles that mirror at the surface is given by

αm,i = sin−1(
√
Bi/Bs), (3.8)

where Bi is the magnetic field magnitude at the altitude of interest, which in

this case can be either at the spacecraft or the surface. For more details on

magnetic mirroring, see Section 1.2.4. This means that all particles heading

toward the surface with pitch angles smaller than αm,i will encounter the

surface, while particles with pitch angles larger than αm,i will mirror above

the surface and return moving away from the surface. All particles that

mirror at or below the surface are missing from the upward flowing portion

of f(v). Thus we can rewrite Ai(α), where i can represent either ‘0’ or ‘s’

for spacecraft altitude or surface, in terms of the function in the absence of
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surface losses, A, which is independent of α and altitude. We get that

α = 0 to π − αm,i : Ai(α) = A

α = π − αm,i to π : Ai(α) = 0, (3.9)

where αm,i represents the mirroring pitch angle at a particular altitude. So

this basically means that due to Liouville’s theorem, we can assume that

A(α) is constant for the part of the pitch angle distribution that is not lost,

and for the part that is lost, A(α) is zero by definition. Since the parts of

the particle distribution that are lost due to absorption by the surface are

not going to contribute to the pressure, the pressure integrals should only

go from 0 to π − αm,i. We can then rewrite equation (3.6) as

Ps
P⊥0

=

∫ π−αm,s
0 sin(α)dα∫ π−αm,0

0 sin3(α)dα
. (3.10)

For the top integral, αm,s is simple, sinceBi = Bs in that case, and this yields

from equation (3.8) that αm,s = π/2. The integral is then straightforward,

and a value of 1 is obtained for the top integral. For the bottom integral,

αm,0 can be calculated from equation (3.8) and an average field magnitude

at the spacecraft altitude of the ascending tracks. With a value for B0 = 186

nT, the pressure ratio becomes Ps/P⊥0 = 0.77.

We can estimate a lower limit on this pressure ratio by assuming that

there is no surface loss, that is, particles are perfectly reflected. In this case,

the integral for Ps goes again from 0 < α < π/2, while the integral for P⊥0

goes from 0 < α < π, yielding a pressure ratio of 0.75. From the mean

magnetic pressure deficit along the high-altitude ascending tracks, we have

that P⊥0 = 1.79 nPa. We can use this, along with the two estimates for the

pressure ratio, to estimate an upper limit for Ps of 1.38 and a lower limit of

1.34 nPa, with an average of Ps = 1.36 ± 0.23 nPa, where the uncertainty

corresponds to the average pressure ratio times half the difference in mean

pressures for positive and negative IMF Bx.
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For an isotropic gas, the flux of particles through a surface is given by

Φ = P/
√

2πmkT , (3.11)

where m is the particle mass, T is the temperature, and k is the Boltzmann’s

constant. To estimate the flux of particles to the surface, we double the

surface pressure that we estimated above because that only accounts for the

downgoing half of the distribution (as the upgoing part was absorbed by the

surface). Thus the flux is given by

Φ = 2Ps/
√

2πmkT (3.12)

We assume that the plasma is dominated by protons, so m = mp, and

we use a characteristic energy of particles in the cusp of 1.05 ± 0.95 keV

from FIPS data (since FIPS observed particles with energies between 0.1 to

2 keV in the cusp) [22]. These assumptions yield an average surface flux of

Φs = (2.1±1.0)×1012 particles m−2s−1. This value agrees with the average

flux over perihelion and aphelion conditions of ∼ 3× 1012 m−2s−1 predicted

by Sarantos et al. [110].

From here, we estimate the total number of particles that hit the surface

in the cusp region by projecting the area of the cusp at the altitude of

the descending tracks down to the surface. We calculate an upper and a

lower limit for the area. Our lower limit is estimated from the area A of

a trapezoid that encompasses the minimum region over which the cusp is

observed at the altitude of the descending tracks in Figure 3.3, projected

down to the surface, using A ∝ 1/B. Our upper limit is estimated by taking

a circular area of radius equal to half the maximum latitudinal extent of the

cusp at the lower altitudes, and again projecting this down to the surface.

The mean cusp area is then calculated to be (5.2± 1.6)× 1011 m2, centered

at 74.7◦ MSO latitude on the surface, and we find that (1.1 ± 0.6) × 1024

particles bombard the northern cusp region every second. The uncertainty

in our total flux is primarily from the uncertainty in the proton temperature

and the area of the cusp.
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As a check on the validity of Liouville’s theorem we compared the pres-

sures estimated for the ascending and descending tracks. For complete sur-

face absorption, the ratio of the perpendicular pressures at the two altitudes

should be P⊥1/P⊥0 = 0.93, so we expect the pressure ratio to be between

0.93 and 1. For IMF Bx < 0, under which solar wind PRam values are com-

parable between ascending and descending tracks (Table 3.1), the pressures

are the same to within the uncertainties.

Because of the northward offset of Mercury’s dipole, and the resulting

weaker surface magnetic field at high southern than northern latitudes, we

expect the flux of precipitating particles to occur over a larger area in the

southern cusp region than in the north. In the absence of observations of the

southern cusp, we use the offset of the dipole magnetic field to estimate the

total number of particles reaching the surface in the south. We calculate the

central MSO latitude of the southern cusp to be about 64◦ S. The magne-

tospheric model [17] predicts a surface field strength at this latitude of 158

nT. From the ratio of the model surface field strength in the south to that

in the north we estimate that the cusp area in the south is 2× 1012 m2, and

the number of particles reaching the surface in the southern cusp region is

correspondingly higher, 4×1024 particles s−1. Over a Mercury solar day, the

planetary surface rotates under the cusp, so the cusp precipitation reaches

all planetary longitudes in a band extending ∼ 1600 km (∼ 38◦) in latitude.

The IMF Bx effect we observe here, corresponding to 40% higher pressures

in the northern cusp for negative than for positive IMF Bx, implies that the

flux to the southern cusp should dominate regardless of the IMF direction.

These hemispheric flux differences would lead to a persistently greater ex-

ospheric source from the south, as sputtering is most likely a contributing

factor in populating the exosphere of Mercury [110]. In addition, if solar

wind ion sputtering is a dominant source of space weathering at Mercury,

this signature may be observed in surface reflectance spectra. It is, however,

possible that Mercury’s current magnetic field configuration has not been in

place sufficiently long compared with space weathering timescales for this

hemispheric asymmetry to be evident in surface reflectance and color differ-

ences. Alternatively, the surface may already have reached saturation, and
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hemispheric differences will be muted.

3.5 Conclusions

From six months of MESSENGER MAG observations we have char-

acterized Mercury’s northern cusp region and found that it is persistently

present but variable in extent and in the depth of its magnetic field de-

pression. We focused on the role of the IMF Bx direction and the solar

wind ram pressure in modulating the average plasma pressure in the cusp

because of possible observable consequences for exospheric processes and

space weathering. The northern cusp is clearly evident even during sunward

IMF conditions but exhibits 40% higher plasma pressures on average dur-

ing anti-sunward conditions, indicating that the effect of IMF Bx direction

is present. Rapid variability in cusp pressures and orbit-to-orbit variations

in the latitudinal extent of the cusp may be related to magnetospheric dy-

namics associated with southward IMF conditions. We estimate that on

average (1.1±0.6)×1024 particles per second reach Mercury’s surface in the

northern hemisphere cusp region, thus (via sputtering) contributing a source

for the exosphere. Because of the northward offset of the planetary dipole,

the flux of particles bombarding the southern cusp should be a factor of 4

higher, yielding a greater exospheric source in the south. Similarly, space

weathering in the south due to cusp precipitation should occur over an area

4 times larger than in the north (or equivalently, over a latitudinal extent

that is a factor of two larger). The implications of the north-south magnetic

asymmetry for exospheric dynamics are therefore substantial and warrant

efforts to confirm the estimated difference in surface magnetic field inten-

sities. Whether a north-south asymmetry is evident in surface reflectance

differences depends on the length of time that the present north-south asym-

metry in the magnetic field has been maintained.
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Chapter 4

Mercury’s surface magnetic

field determined from

proton-reflection

magnetometry1

Solar wind protons observed by MESSENGER exhibit signatures of pre-

cipitation loss to Mercury’s surface. In this chapter, we apply proton re-

flection magnetometry to sense Mercury’s surface magnetic field intensity

in the planet’s northern and southern hemispheres [117]. The results are

consistent with a dipole field offset to the north and show that the tech-

nique may be used to resolve regional-scale fields at the surface. The proton

loss cones indicate persistent ion precipitation to the surface in the northern

magnetospheric cusp region and to the southern hemisphere at low night-

side latitudes. The latter observation implies that most of the surface in

Mercury’s southern hemisphere is continuously bombarded by plasma, in

contrast with the premise that the global magnetic field largely protects the

planetary surface from the solar wind.

4.1 Introduction

A remarkable feature of Mercury’s weak, internal, magnetic field, indi-

cated by orbital observations, is a ∼480 km northward offset of the mag-

netic equator from the planetary equator [17–19]. The low magnetic field

1Reprinted from Geophysical Research Letters, with permission from Wiley.
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strength and the northward offset provide constraints on Mercury’s enig-

matic dynamo mechanism [118] and lead to direct interactions between the

solar wind and the planet’s surface. The weak magnetic field allows precip-

itation of solar wind plasma to the surface in the northern magnetospheric

cusp region. Since the surface magnetic field strength at any southern lati-

tude is predicted to be weaker than at the corresponding northern latitude,

enhanced ion sputtering and space weathering in the southern hemisphere

is possible. In this study we apply proton-reflection magnetometry, adapted

from electron reflectometry [119–121], to determine Mercury’s surface mag-

netic field strength in both hemispheres and measure particle precipitation

to the surface.

Electron reflectometry (ER) has been used extensively at the Moon [122],

Mars [121], and Ganymede [123] to sense remotely the magnetic field strength

at the surface. ER depends on the magnetic mirroring effect, that is, the

reflection of electrons by convergent magnetic fields. Electrons that would

mirror below the surface are lost and the flux of reflected electrons exhibits

a sharp flux drop at the pitch angle (the angle between the particle velocity

and the local magnetic field direction) corresponding to mirroring at the

surface. The in-situ magnetic field together with the pitch angle of the last

reflected electrons, the cut-off pitch angle, indicates the surface magnetic

field strength. This technique has not yet been applied using protons.

At Mercury, protons with energies of 0.3−10 keV are regularly detected

inside the magnetosphere [22] by the Fast Imaging Plasma Spectrometer

(FIPS) [50] on the MErcury Surface, Space ENvironment, GEochemistry,

and Ranging (MESSENGER) spacecraft. The Energetic Particle Spectrom-

eter [50] on MESSENGER detects electrons with energies only above 35

keV and observes significant fluxes too infrequently to use ER. We therefore

use FIPS observations of protons within Mercury’s magnetosphere [53], to-

gether with magnetic field observations from MESSENGER’s Magnetometer

(MAG) [49], to estimate the magnetic field strength at Mercury’s surface.
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4.2 The technique of proton reflection

magnetometry

In this section, we apply the electron reflectometry technique to pro-

tons. Similarly to electron reflectometry, proton-reflection magnetometry

relies on magnetic mirroring, whereby protons travelling in a helical path

along magnetic field lines reflect back along these field lines when the paral-

lel component of their velocity vector (v‖) becomes zero and all the velocity

is in the perpendicular component (v⊥). Such a configuration occurs in con-

vergent magnetic fields. The proton mass is much greater than the electron

mass, and so proton-reflection magnetometry can only be conducted in re-

gions where the ambient magnetic field is high enough for the protons to be

“magnetized”, i.e. to be directed by the magnetic field. It can be seen from

equation (1.7) that the proton gyroradius is significantly higher than the

electron gyroradius in the same ambient magnetic field due the higher mass,

signifying that in weak magnetic fields, at the Moon for example, the domi-

nant force affecting the motion of the protons will not be the Lorentz force.

This is not the case at Mercury however, where the planetary magnetic field

is high enough to “magnetize” both electrons and protons.

Protons reflect at varying altitudes depending on their initial pitch an-

gles, and those that are initially aligned very closely to the ambient magnetic

field do not reflect before they reach the surface and are absorbed by the sur-

face. Thus a spacecraft flying above convergent magnetic fields will detect

particles travelling in the direction of the magnetic field toward the planet’s

surface, as well as particles reflected back along field lines after having un-

dergone mirroring. The spacecraft will also detect a loss cone in the reflected

particle distribution that corresponds to particles absorbed by the surface.

In what follows, we will show how it is possible to use the pitch angle infor-

mation of the protons absorbed by the surface to infer the strength of the

surface magnetic field.

In general, when conducting proton-reflection magnetometry at each in-

tegration period of a plasma spectrometer it is important to ensure that the

same downgoing and upgoing plasma populations are sampled. This in turn
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requires that the distance travelled by the spacecraft during the proton’s

round-trip time has to be less than or equal to the gyroradius of the proton.

This requirement however is not used in our analyses, because the limited

FOV of the FIPS sensor means that we typically see only the incident or

the reflected population at any one integration time, and so we average the

results from many integration times to obtain the full incident and reflected

populations (see Section 4.3).

4.2.1 How to obtain surface field strengths

In this section we describe how to use the magnetic mirroring formalism

outlined in Section 1.2.4 to determine the magnetic field magnitude at the

surface of the planet. The key factor in determining the surface magnetic

field strength relies on measuring the pitch angle distribution of the protons

(i.e., the flux of protons as a function of pitch angle). If there was no loss

mechanism in the system (i.e. the surface), all particles incident along the

magnetic field direction would reflect back along the field lines. Thus if the

initial population entering from the magnetosheath along open field lines

was originally isotropic (i.e. equal fluxes at all pitch angles), the observed

particle pitch angles would be in the range of 0◦ to 90◦ for the incident

population (in Mercury’s northern hemisphere), and if these all reflected,

particles with pitch angles in the range of 90◦ to 180◦ would be detected

returning along the field lines. However, particles that are initially closely

aligned with the magnetic field do not reflect before reaching the surface

and are absorbed. There will thus be protons with a range of initial pitch

angles which will be missing from the returning population. This missing

part of the reflected pitch angle distribution, the loss cone (Figure 4.1),

is determined by the ratio between the magnetic field magnitude at the

spacecraft and that at the surface.

The cut-off pitch angle, αc, that is the pitch angle in the reflected part

of the distribution beyond which no more protons are observed, is the pitch

angle that corresponds to protons mirroring exactly at the surface. These are

the “last” protons which still make it back to the spacecraft, as all protons
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Figure 4.1: Schematic pitch angle distribution showing the cut-off in re-
flected charged particle flux at angle αc due to absorption by the surface.

that would have a reflected pitch angle larger than the cut-off pitch angle

are absorbed. Thus protons with a cut-off pitch angle are remote-sensing

the surface magnetic field because they mirror due to the magnetic field

strength at the surface. We can therefore replace α0 with αc and Bm with

BS, where BS is the surface field strength in equation (1.16) to get

BS =
B0

sin2 αc
. (4.1)

Thus if we can measure the magnetic field strength at the spacecraft

altitude, B0, and obtain αc, it is possible to use equation (4.1) to obtain

the surface magnetic field strength. Therefore the key to estimating BS is

determining the cut-off pitch angle in the pitch angle distribution.

4.3 Application of the technique to

MESSENGER observations

For our analyses, we used one Earth-year of observations from 7 June

2011 to 7 June 2012. Combining observations from MAG and FIPS al-
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lowed the calculation of proton pitch angle and the derivation of pitch-angle

distributions (PADs) within the magnetosphere.

FIPS measures energy per charge (E/q), time of flight, and arrival in-

cidence angle for ions, and completes one scan over the full range of E/q

values every 8 s [124]. It has a conical field of view (FOV) of approximately

1.4π sr, with two symmetric cutouts of 15◦ near the instrument’s symmetry

axis and also near the plane perpendicular to the symmetry axis. Due to the

limited field of view of FIPS, the full proton PAD (from 0◦ to 180◦) is not

visible at any one integration time. To build PADs spanning α = 0◦ to 180◦

at times when the spacecraft was in a given region, we combined pitch angle

distributions from instrument integration times when the incident proton

population was observed with PADs when the reflected proton population

was visible. This approach required averaging PADs over many time inter-

vals and normalizing each contributing PAD to account for obstructions in

the FIPS FOV. Here we focus on regions where the highest proton counts

were detected by FIPS. The analysis thus determines Mercury’s average

long-wavelength (e.g., dipole) field but does not resolve shorter-wavelength

structure.

4.3.1 Deriving individual pitch angle distributions

FIPS Pulse Height Analysis (PHA) data are used to create the proton

pitch angle distributions. These distributions cannot be constructed simply

from the raw data files because the following instrument limitations have

to be taken into account: the size of the solid angle of the pixels on the

detector, the efficiency of the micro-channel plates (MCP) detector, and the

FIPS field of view (FOV) obstructions at each integration time. Because

only angular structure is of interest for these accumulations, proton events

from all E/q steps were added together to improve the signal-to-noise ratio.

To account for the solid angle size variation with zenith angle, θ, of the

pixels on the detector, we divide each proton count obtained from the PHA

data (Figure 4.2A) by the solid angle size given by

sin θdθdφ = 4.248× 10−5r2 − 1.114× 10−3r + 1.15× 10−2 (4.2)
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where r is given by

r = 3.60348− 0.045364 θ + 0.00648116 θ2 − 0.0000451434 θ3. (4.3)

This normalization does not have a large effect on the proton counts

because the variation in solid angle size with zenith angle is small. Next,

because the FIPS MCP detector efficiency varies with location on the detec-

tor [125], our counts are also divided by an MCP correction factor to ensure

that counts that fell on the lower efficiency part of the detector carry a higher

weight. After rotating the vector magnetic field data measured by MAG into

the FIPS reference frame, the pitch angles for all proton counts are com-

puted. The solid-angle-weighted and MCP-normalized proton counts that

fall within 10◦ pitch angle contours are then summed into 10◦ pitch angle

bins, centered on pitch angles of 5◦, 15◦,...,165◦, 175◦.

The summed proton counts are then also weighted by a factor that takes

into account the FIPS visibility of each magnetic pitch angle bin [125]. This

normalization is a function of the FIPS orientation with respect to the mag-

netic field direction and FOV obstructions at each integration time (Figure

4.2B). The counts are divided by this factor, ensuring that pitch angle bin

centers which are not fully in the FOV are weighted higher to account for

unobserved proton counts at those pitch angles. We thus finally arrive at a

pitch angle distribution at every integration time of the instrument, where

the proton counts have been properly weighted in order to take into account

all the instrument limitations (Figure 4.2C). Errors assigned to each pitch

angle bin center incorporate counting statistics and the fraction of proton

gyrophase angles that was visible in the FOV for each pitch-angle bin.

4.3.2 Averaging pitch angle distributions

Because of the limited FOV of FIPS, there are no integration periods

when both incident and reflected particle distributions are fully observed.

In order to increase the signal-to-noise ratio in our observations, as well as

to represent the entire PAD, we averaged PADs from different integration

periods when the spacecraft was over the same MSO location. To connect
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Figure 4.2: Example integration period of FIPS. (A) Zenith angle versus
azimuth angle in the FIPS reference frame. The green dots show the proton
count locations in angle-angle space, and pitch angle contours are for that
integration period (the magenta curve is a pitch angle of 90◦, and the green
curve is 150◦). The spacecraft altitude, latitude, and longitude are also given.
(B) Weighting factor as a function of pitch angle. The limited FOV of FIPS
as well as the viewing geometry given the local magnetic field direction are
taken into account in the weighting. (C) Derived pitch angle distribution at
the given integration period. Error bars reflect counting statistics as well as
the fraction of the proton gyrophase angle that was visible in the FOV for
each pitch angle bin.
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incident and reflected particle populations from different integration periods,

we normalized each individual PAD by the weighted proton count observed

at a pitch angle of either 85◦ or 95◦, depending on which of the two pitch

angles was visible in the distribution at that time. If both were observed,

the proton count at 85◦ was used. This methodology was applied to electron

reflectometry measurements at the Moon [126], where the average proton

counts in the incident population were used to normalize the PAD. Since

FIPS does not observe the full incident population at the same time as the

reflected population, we used the proton count at α ∼ 90◦ to approximate

the average incident population. We then computed weighted averages of

the individual PADs, where the error at each pitch-angle bin center on the

PADs was assigned as the weight. The error assigned to the final averaged

distribution is one standard error in all the proton counts that were averaged

at each pitch angle bin center. Averaged pitch angle distributions were

derived in the cusp region in the northern hemisphere, as well as in regions of

high proton flux on the nightside at low latitudes in the southern hemisphere.

4.3.3 Surface field estimates

Averaged pitch angle distributions were derived in the cusp region in the

northern hemisphere (geographic latitude λ > 60◦N), as well as in regions

of high proton flux on the nightside at low latitudes (0◦ < λ < 30◦S) in the

southern hemisphere. Although high proton fluxes to the dayside southern

hemisphere, especially in the southern cusp region, are expected, MESSEN-

GER is unable to measure these because its eccentric orbit allows it to be

inside the magnetosphere only over northern latitudes on the dayside. The

averaged PAD for the northern cusp region, which includes 485 reflected

and 185 incident population scans, is shown in Figure 4.3A. The incident

population is approximately independent of pitch angle (i.e., isotropic), con-

sistent with protons entering along open field lines from the magnetosheath.

However, there is a void, or loss cone, in the fluxes of reflected protons,

from α ∼ 120◦ to 180◦, evidence for incident protons having been ‘lost’ to

Mercury’s surface. Relative to the sharp cut-off pitch angle observed in ER

101



4.3. Application of the technique to MESSENGER observations

at the Moon [127], the edge of the proton loss cone is smoothed over ∼ 30◦

in α. We attribute this to the combined effects of the FIPS angular resolu-

tion of ∼ 15◦ and pitch angle diffusion from wave-particle scattering in the

cusp. Broadband magnetic field fluctuations between 0.001 and 10 Hz, are

consistently observed in this region [128], and would scatter protons in α.

We estimated the loss cone angle consistent with diffusive scattering by

fitting solutions to the diffusion equation to the loss cones of our pitch angle

distributions. We solved the one-dimensional diffusion equation

∂u(α, t)

∂t
= Dα

∂2u(α, t)

∂a2
(4.4)

where u is the proton count and Dα is the diffusion coefficient, with a

step-function initial condition:

u(α, 0) =

c1 for α ≤ αc,

c2, for α > αc.
(4.5)

where c1 and c2 are constants set by the average maximum and minimum

weighted proton counts in the PAD. The boundary conditions were given

by:

∂u(0, t)

∂α
=
∂u(π, t)

∂α
= 0. (4.6)

The use of reflective boundary conditions (i.e. zero gradient in the flux

at the boundaries), as opposed to one with a negative gradient, is justified

for this diffusion process as there is no loss of particles in the field aligned

(or anti-aligned) direction from pitch angle diffusion. This is due to the

fact that the diffusion process occurs after particles have mirrored and are

travelling up along magnetic field lines away from the surface. As such,

particles that are scattered into the loss cone will be scattered back and

forth across α = 180◦, but will not be lost to the surface. There should thus

be no loss of protons at the boundaries.
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Figure 4.3: Pitch angle distributions in the northern and southern hemi-
spheres. (A) Results for Mercury’s northern cusp. (B) Results for the low-
latitude southern hemisphere nightside. Average proton counts are in red
with standard errors. The black curve shows the diffusion model fit to the
reflected portion of the distribution; the fit uncertainty is in gray. Yellow
shading indicates the loss cone; the black error bar shows the uncertainty
in αc. (C) Comparison of the southern hemisphere PAD (red curve) from
panel (B) to a model single-sided loss cone distribution (black curve) and an
observed double-sided loss cone distribution (blue curve). The character of
the southern hemisphere PAD is in-between that of a single-sided and a fully
formed double-sided loss cone (see text below and in Chapter 5).
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4.3. Application of the technique to MESSENGER observations

The solution to equation (4.4) is

u(α, t) =
∞∑
n=1

Bn cos(nα) e−n
2Dαt, (4.7)

where

Bn =
2

π

[∫ αc

0
c1 cos(nα)dα+

∫ π

αc

c2 cos(nα)dα

]
. (4.8)

We fit equations equations (4.7) and (4.8) to our loss cones and allowed

the cut-off pitch angle, αc, and Dαt to vary freely. We used a grid search

method that minimized the median absolute deviation (MAD) between the

model and the observations. Figure 4.4 shows the contour plots of the ab-

solute value of the residuals for the models best fit to the averaged PAD for

the northern cusp region as well as for the southern hemisphere. We estab-

lished upper and lower bounds on the parameters αc and Dαt by identifying

an allowable upper bound on the misfit, corresponding to a 95% confidence

limit (bold contours in Figure 4.4). The upper and lower bounds on αc were

identified as the locations of the intersection of a horizontal cut (passing

through the minimum misfit) with the bold contour. A corresponding verti-

cal cut yielded the limits on the Dαt parameter. The bounds on the best-fit

model, shown by the grey shaded regions of Figure 4.3, were determined

from the diffusion curves corresponding to the upper and lower limits for αc

and Dαt.

From the fit to the northern cusp PAD, we obtain a cut-off pitch angle,

αc, of 121◦ ± 3◦, which together with the measured average magnetic field

strength at the spacecraft altitudes (< 550 km), B0 = 302.4 ± 53.0 nT,

implies a surface field strength of BS = 412 ± 98 nT where we have used

BS = B0/ sin2(αc). The uncertainty accounts for the standard error in the

fit value of αc and also the standard deviation of B0, computed from all

intervals in the average PAD.

We mapped the average observation location in the cusp down to the

surface by tracing the magnetic field lines to the surface using Mercury’s

offset dipole magnetic field. The observation altitudes ranged from 282 km
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Figure 4.4: (A) Residuals of the diffusion equation curve best fit to the loss
cone of the averaged PAD in the northern cusp region, as a function of the
cut-off pitch angle, αc, and the product of the diffusion coefficient and time,
Dαt. The bold contour marks the residual level from which the errors on the
fit parameters were obtained. (B) Same as A but for the southern hemisphere
averaged PAD. The ratio of the bold contour to the minimum misfit is ∼ 7
in (A) and ∼ 3 in (B).
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Figure 4.5: (A) Stereographic projection plot (looking down from above the
north pole) showing the surface magnetic foot-point locations of the reflected
proton observations in the northern cusp versus local time and latitude. The
Sun is to the right. Latitudes north of 45◦N are shown. (B) Corresponding
plot for the southern hemisphere (looking through the planet from above the
north pole). Latitudes from 10◦N to 90◦S are shown.

to 549 km, with a mean value of 414 km. In latitude, the cusp observations

at the surface extended 15.6◦ degrees in latitude and 7.5 h in local time and

were centered on noon at 76.4◦N latitude on the surface (Figure 4.5A).

We also find high proton fluxes in the latitudinal band 0◦ < λ < 30◦S on

the nightside, with a clear loss-cone signature in the derived PAD (Figure

4.3B), although with larger uncertainties than for the northern cusp region

(Figure 4.3A). In the southern hemisphere, observations as far south as

possible are desirable for observing the long-wavelength structure in the

magnetic field. However, due to MESSENGER’s eccentric orbit and high

altitudes in the southern hemisphere, we are restricted to observations north

of approximately 30◦S latitude. In this averaged PAD, we included 128 scans

in the reflected population and 315 scans in the incident population. The

similar error bars on most of the incident and reflected population fluxes

in Figure 4.3B, despite the higher number of observations being included

in the incident side, is due to the significantly larger standard deviations in
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the fluxes of the incoming protons. The best-fit diffusion model to the loss

cone gives αc = 43◦+7
−13, and this together with B0 = 52.5 ± 14.8 nT at the

spacecraft altitude corresponds to a surface field strength of BS = 113+87
−61

nT. The observation altitudes were higher than those in the northern cusp

region, ranging between 1160 and 1980 km, with a mean of 1535 km. The

mapped surface locations span 23◦S < λ < 34◦S, with a mean of 27.8◦S,

and local times spanning the nightside from 16 h to 5.3 h, centered on 23.5

h (Figure 4.5B).

The apparent secondary loss cone in the incident population for this

averaged PAD (Figure 4.3B) implies that these observations may correspond

to closed field lines on the nightside. However, as Figure 4.3C shows, even

though these observations are likely from a closed field line region, the shape

of the southern hemisphere PAD is significantly different from that a fully

formed double-sided loss cone found on closed field lines on the dayside (see

Chapter 5), and is in between the character of an idealized single-sided and

a fully double-sided loss cone distribution. This is owing to fresh proton

populations drifting onto closed field lines on the nightside from the plasma

sheet, thereby continuously replenishing particles in the loss cone. We can

thus approximate this nightside southern hemisphere PAD as a single-sided

distribution, which suggests that the inferred surface magnetic field strength

for this region may be a lower limit.

4.4 Consistency checks

To ensure that the FIPS proton data and our averaging method are vi-

able for conducting consistent proton reflection measurements we performed

a number of consistency checks. We binned the observations in the northern

cusp region (the region where we have the most observations) in altitude as

well as in latitude and local time, and tested that the derived averaged PADs

yielded expected behavior with respect to the size of the loss cones and the

estimated magnetic field strengths.
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Figure 4.6: Pitch angle distributions derived from observations binned in
altitude: red denotes low-, green mid-, and blue high-altitude observations.

4.4.1 Altitude binning

It is expected that over regions of approximately constant magnetic field

on the surface, if the altitude of the spacecraft observations increases (and

thus the measured magnetic field strength decreases) then the cut-off pitch

angle will increase (or equivalently, the loss cone size will decrease). We

tested that this is the case in our observations in the northern cusp region.

Three altitude averages of the cusp observations were obtained (Figure 4.6).

The first was at low altitude with a mean of 325 km and included 155 scans

in the reflected and 85 in the incident population. The second was at mid

altitude with a mean of 418 km and included 98 scans in the reflected and

96 in the incident side. And the third was at high altitude with a mean

of 510 km and consisted of 173 scans in the reflected and 4 in the incident

population.

Despite having approximately equal number of observations in the inci-
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dent and reflected populations for the mid altitude bin, the errors on the

incident population are much larger because of the large standard devia-

tions in the measured proton fluxes at those pitch angles. We fit diffusion

equation curves to these averaged PADs to derive a cut-off pitch angle for

each. We find that the cut-off pitch angle increases with increasing altitude,

as expected. The derived cut-off pitch angles were: 116◦+6
−4 , 123◦+3

−4 , 126◦+2
−5

for the low-, mid-, and high-altitude bins, respectively. The smaller differ-

ence in loss cone cut-off angle between the mid- and high-altitude bins is

attributed to the difference in the average latitude of observations between

these two bins (the mean latitude at the spacecraft altitude of the mid al-

titude bin was 76.1◦N, whereas it was 73.7◦N for the high altitude bin).

This latitude difference implies a higher surface magnetic field strength in

the mid-altitude bin than for the high-altitude bin, offsetting the expected

altitude-dependent difference in cut-off pitch angle.

4.4.2 Latitude binning

We also obtained averages of PADs in three latitude and two local-time

bins in the cusp region to test whether we observe the latitudinal increase in

the magnetic field strength expected for an intrinsic dipole field. The obser-

vations were binned not just in latitude but also in local time to minimize

the range of altitudes included in each average. Phasing of MESSENGER

orbit-correction maneuvers with local time resulted in dusk observations

that were systematically taken at lower altitudes than the dawn observa-

tions. By splitting the data into dawn and dusk sections, and binning each

section separately into three latitude bins (the latitude at the spacecraft al-

titude and the altitude of the bin centers is given in Figure 4.7), we obtained

six PAD averages in the northern cusp region.

After fitting diffusion equation curves to these PAD averages and ob-

taining the cut-off pitch angle for each averaged PAD, we find that the

magnetic field strength increases with increasing latitude, as expected. The

mean measured magnetic field strengths at the spacecraft altitudes on the

dawn side are 250.2 ± 33.8 nT, 276.2 ± 39.8 nT, and 311 ± 46 nT for low-,
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Figure 4.7: Pitch angle distributions binned in latitude and local time in the
northern cusp. (A) Averaged PADs for latitude bins on the dawn side of the
northern cusp region. Colour coding is as follows: red is low-, blue mid-, and
green high-latitude. The mean latitudes and altitudes of the observations in
each bin are also given. (B) Same as A but for dusk-side observations.

mid-, and high-latitude data bins, and the corresponding surface magnetic

field strengths are 334+65
−72 nT, 376 ± 70 nT, and 432 ± 92 nT, respectively.

The loss cones are not as well defined on the dusk side, especially in the case

of the low-latitude bin, which has very high errors reflecting the small num-

ber of observations that were included in the average. The existence of a loss

110



4.5. Discussion and conclusions

cone in the averaged PAD for the dusk-side low-latitude bin is questionable,

and so we ignore this bin in our calculations. The mid- and high-latitude

bins on the dusk side do exhibit loss cones, albeit more smeared out than

those seen on the dawn side. We estimate that the magnetic field strength

at the surface for these two bins of data (using B0 = 327.0 ± 46.9 nT and

B0 = 343.0± 37.1 nT for the mid- and high-latitude bins) to be 412+140
−74 nT

and 432±62 nT for the mid- and high-latitude bins, respectively, consistent

with an increase in field strength with increasing latitude. The estimates

for the surface field agree within 10% between the dawn and dusk side for

the mid- and high-latitude bins.

4.5 Discussion and conclusions

Estimates of the surface magnetic field strength in the northern cusp and

low latitude southern hemisphere are compared with predictions from the

best-fit time averaged magnetospheric model [19] in Figure 4.8 and Table

4.1. The results from proton-reflection magnetometry are significantly lower

than the model magnetic field. Such a difference is expected however because

the model is a vacuum magnetic field model, whereas our PADs demonstrate

the presence of plasma extending to the surface of the planet. The plasma

generates a diamagnetic field, which will reduce the surface field below the

vacuum model prediction [89, 116, 129].

Fortunately, the proton data provide the information required to esti-

mate the diamagnetic effect (see Appendix A for a detailed derivation of the

diamagnetic field and flux to the surface). The flux of particles at the sur-

face in the northern cusp region can be determined from the loss cone size

and mean proton temperature, Tp, and density, np, in the cusp, yielding the

proton pressure Pp = npkTp, where k is Boltzmann’s constant. The typical

proton density (np ≈ 30 cm−3) and temperature (Tp ≈ 12 MK) derived from

FIPS observations in the cusp [125] are for an isotropic particle distribution;

the anisotropy associated with the loss cone produces an underestimate of

plasma density [130]. Taking this anisotropy into account yields a surface

flux of 3.7×1012 particles m−2s−1, which is approximately in agreement with
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Latitude Local time BPR BPlasma BPlasma - BPR BModel

(MSO (MSO) (nT) (nT) (nT) (nT)
surface)

76.4◦N 12 h 412± 98 −86± 11 498± 99 647

27.8◦S 23.5 h 113+87
−61 −44± 6 157+87

−61 224

Table 4.1: Surface magnetic field strength from proton-reflection magnetom-
etry compared with magnetospheric model predictions. The center latitudes
and local times of the northern cusp and southern hemisphere PAD aver-
ages are given, as well as our surface field estimates with and without the
diamagnetic effect of the plasma near the surface. The vacuum magnetic
field model predictions for comparison with the corrected proton-reflection
magnetometry estimates are also listed.

the flux determined by Winslow et al. [89] for the cusp region. In the region

of our southern hemisphere average, we have np ≈ 5 cm−3 and Tp ≈ 20 MK,

which give a flux of 4.4 × 1011 particles m−2s−1. To take into account the

fact that the loss cone in the incident population for this PAD is only ∼ 70%

filled in (i.e. the PAD is not fully single-sided), we multiply this flux value

by 0.7 to obtain the flux to the surface in this region of 3.1× 1011 particles

m−2s−1. The diamagnetic effect reflects particle motions only in the direc-

tion perpendicular to the local magnetic field, so we used the perpendicular

particle pressure to calculate the diamagnetic field at the surface. We find

an average diamagnetic effect, ∆BPlasma, in the northern cusp of 86±11 nT,

and ∆BPlasma = 44±6 nT in the southern hemisphere at low latitudes. The

uncertainties in these values represent the limits on the diamagnetic field

derived from the pressure at the spacecraft altitude and that at the surface.

After accounting for this effect, our magnetic field estimates agree with the

model predictions in the southern hemisphere and are within 8% (our upper

bound) of the model prediction in the cusp (Table 4.1).

The validity of the offset dipole can be tested by estimating the ratio

between the surface magnetic field strength in the northern cusp and that in

the southern hemisphere. From the mean observation locations, we find that

the ratio from proton reflection magnetometry, corrected for the diamagnetic

effect, is 3.2+3.0
−1.6 in agreement with the result of 3.3 for an offset dipole field
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Figure 4.8: Mollweide projection of surface magnetic field strength from the
best-fit time-averaged magnetospheric model [19] in MSO coordinates. The
equator offset and the magnetopause and magnetotail fields cause departures
from the field of a dipole alone. Black contours mark the approximate outline
of the regions sampled by proton-reflection magnetometry observations.

alone. The full magnetospheric model [19] yields a surface field ratio of 2.6 to

3.6 for the latitudinal and longitudinal extent of our observation locations,

with a mean value of 2.9. A centered dipole field alone gives a ratio of 1.5 for

the latitudes sampled and is not in agreement with our inferred surface field

ratio. Even if we consider that the southern hemisphere surface magnetic

field strength may be a lower limit, we can still conclude that the offset

dipole is confirmed as long as BS in the southern hemisphere is not more

than a factor of ∼ 2.5 greater than our derived value. Such a large value

for the low latitude southern hemisphere field is incompatible with vector

magnetic field measurements by MESSENGER. Lastly, it is important to

note that the large uncertainty assigned to our southern hemisphere loss

cone size is approximately equal to the difference in loss cone angle size

between our PAD in the southern hemisphere and a fully formed double-

sided PAD from the same region (see difference between red and blue curves

for the reflected population of Figure 4.3C). Thus our large uncertainty on

αc for the southern hemisphere population (and the corresponding large

uncertainty on BS) likely captures any possible pitch angle diffusion related
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erosion of the loss cone size.

Proton-reflection magnetometry thus provides independent confirmation

of the offset dipole nature of Mercury’s magnetic field, although weaker

terms of higher degree and order in a multipole expansion of the field are

not ruled out by these results. Significantly, proton-reflection magnetome-

try demonstrates that persistent proton precipitation to the surface occurs

on the nightside of Mercury’s low-latitude southern hemisphere. This result

implies that such precipitation may also be occurring at middle latitudes on

the nightside, where closed field lines reach the surface, because the north-

ward offset of the magnetic equator results in weak surface field strengths

(not more than 25% above our measured value) everywhere in the southern

hemisphere. Together with the proximity of the magnetopause to the sur-

face and the large cusp region on the dayside southern hemisphere [17, 18],

this suggests that most of Mercury’s southern hemisphere surface may be

continuously bombarded by plasma. Such continuous precipitation in the

southern hemisphere implies that space weathering is not confined to the

cusp region and may thus show limited latitudinal variation. Because of

MESSENGER’s eccentric orbit, proton reflection magnetometry at higher

southern latitudes is not feasible, but observations from the ESA-JAXA

BepiColombo mission [131], with a less eccentric orbit that will provide low-

altitude observations in both hemispheres, may provide an opportunity to

probe the surface field more extensively and with greater spatial resolution.
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Chapter 5

Regional-scale surface

magnetic fields and proton

fluxes to Mercury’s surface

from proton-reflection

magnetometry

Following the successful implementation of the proton-reflection mag-

netometry technique to measure the surface magnetic field strength in two

regions on Mercury’s surface, we expand on this work [132]. In this section,

we extend our study with 1.5 years of additional observations (including

data from 2012 and 2013) by MAG and FIPS with the aim of resolving

regional-scale structure in the surface magnetic field strength and deriving

a plasma precipitation map of the surface.

Regional-scale structure in the magnetic field, if present, may be due

to either core or crustal sources. If they are of core origin, surface field

strength measurements could provide further constraints for dynamo mod-

els. Conversely, if the short-wavelength structure is due to crustal remanent

magnetization, correlations between crustal fields and geologic features can

help establish constraints on the temporal evolution of Mercury’s dynamo

field - an important constraint for geophysical evolution models.

Determining the average proton flux to various regions of Mercury’s sur-

face is important from a space weathering and exosphere production per-

spective because it identifies regions on the surface that are exposed to direct
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bombardment by the solar wind. The collision between energetic solar wind

or magnetospheric ions with surface grains can release atoms via momen-

tum transfer [133], a process known as sputtering. Sputtering can release any

atomic species present in the near-surface mineralogy, so particles in the ex-

osphere reflect the composition of the surface on an atomic level [134]. Such

direct ion sputtering is only one of several mechanisms that space weathers

planetary surfaces, and studies using MESSENGER exospheric measure-

ments are currently under way to determine the role that sputtering plays

in the generation of Mercury’s exosphere. Thus it is highly desirable to dis-

tinguish regions on the surface that are exposed to relatively higher or lower

fluxes of solar wind particles to inform exospheric studies.

Differential particle fluxes to various regions on the surface can also yield

clues about magnetospheric processes. For example, particle fluxes to the

surface outside of the cusp regions (where they are mostly expected), signify

that drift and scattering processes are both occurring in the magnetosphere,

allowing particles access to closed field line regions of the magnetosphere.

In this work we improve on our previous estimates of proton precipitation

to Mercury’s surface.

5.1 Methods

In this section, we are interested in planetary processes, and conduct

most of our analyses in a planetocentric Mercury body fixed (MBF) coordi-

nate system. The MBF coordinate system governs the geometry of internally

generated fields at Mercury. The MBF and MSO +z axes are nearly identi-

cal, and hence so are the MSO and MBF latitudes due to Mercury’s small

obliquity [4, 135].

In order to resolve regional-scale structure in either the surface magnetic

field or in proton fluxes to the surface, we systematically derive averaged

pitch angle distributions over all locations around the planet where high

proton fluxes are observed. We grid the surface of the planet into MBF

latitude and longitude bins, with 10◦ spacing in latitude and 20◦ spacing in

longitude and record all individual pitch angle distributions that fall into
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each grid cell. This grid cell size is chosen to reveal variations in the surface

field and fluxes on length scales as small as possible while still ensuring a

high signal-to-noise ratio for the average PADs in each grid cell. Because

our observations are taken at spacecraft altitudes, we map the observation

locations along magnetic field lines to the planet’s surface using the offset

dipole magnetic field, and determine the surface grid cell corresponding to

each FIPS integration period. We then evaluate an averaged pitch angle dis-

tribution from all the individual PADs in each grid cell, where the averaging

is done as described in Section 4.3.2.

Observations were restricted to times when MESSENGER was inside the

magnetosphere and spacecraft altitudes were below 3000 km. Bow shock

and magnetopause boundary crossing times were not available past 15 De-

cember 2012, thus we used a magnetopause model shape with the best-fit

time-averaged parameters defined in Chapter 2 to determine whether obser-

vations were within the magnetosphere. The altitude restriction also helps

in confining observations to within the magnetosphere, except on the day-

side where the magnetopause is not more than ∼ 2500 km from the surface

on average. We later examine more restrictive altitude bins of observations.

These analyses reveal loss cones in pitch angle distributions mapping

to the surface in the northern hemisphere north of 40◦N, as well as in the

southern hemisphere between 20◦S and 40◦S. In the northern hemisphere,

the observations between 40◦ and 60◦N are not part of the cusp region and

thus represent a population of high proton fluxes, that we were not able

to observe previously with fewer observations. This region of high proton

fluxes is consistent with higher plasma pressures in the same latitude range

observed at spacecraft altitudes by Korth et al. [136]. Figures 5.1 and 5.2

show example observations of PADs from the northern and southern hemi-

spheres, respectively. Figure 5.1 shows a clear transition in PAD character-

istics with latitude: north of ∼ 70◦N latitude the PADs have single-sided

loss cones, i.e. isotropic incident population and a clear loss cone in the

reflected population, while south of ∼ 60◦N loss cones are observed in both

the incident and reflected populations. These are termed double-sided loss

cones. By comparing Figures 5.1 and 5.2, it can be seen that the character
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Figure 5.1: Example pitch angle distributions (averaged over measurements
taken at altitudes < 3000 km) in the northern hemisphere shown for 10◦

latitude bands. The latitude, longitude grid cell for each PAD is given in the
top right corner of each panel. The change in character of the PADs can be
seen with increasing latitude. Data is more sparse in the 80◦−90◦N latitude
band, which is signified by the large error bars on the normalized fluxes for
the incident population.

of the PADs in the northern hemisphere between 40◦ − 60◦N is very similar

to those observed in the southern hemisphere. We attribute the double-

sided loss cones observed in these regions to particles bouncing back and

forth along closed magnetic field lines, with particles being lost to the sur-

face on the side of the magnetic field line with the weaker magnetic field
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Figure 5.2: Example PAD (averaged over measurements taken at altitudes
< 3000 km) in the southern hemisphere. The latitude, longitude grid cell for
the PAD is given in the top right corner of the figure. Most PADs observed in
the southern hemisphere exhibit similar double-sided loss cones as observed
at low latitudes in the northern hemisphere.

strength at the planetary surface. At Mercury, the large northward offset

of the magnetic equator yields much weaker surface fields in the southern

hemisphere than the northern hemisphere. Thus, particles on closed field

lines will predominantly be lost to the southern hemisphere. This transition

in PAD characteristics allows us to determine that on average, the bound-

ary between open and closed field lines in the northern hemisphere maps to

latitudes of 60◦ − 70◦N on the surface. It is also important to note that the

average loss cone size appears to be 10◦ − 20◦ larger for the double-sided

loss cones than for the single-sided loss cones, a separate indication that

particles are being lost to the southern hemisphere where the surface field

is weaker.

To obtain surface magnetic field strengths in the latitude-longitude grid

cells where a loss cone is observed, the cut-off pitch angle (or equivalently, the

loss cone size) has to be established. In each grid cell we can also calculate

the proton flux to the surface using the loss cone angle, the proton number
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density and temperature. Calculating the cut-off pitch angle by fitting the

solution to the diffusion equation to the loss cone as described in Section

4.3.3 is straightforward in the region of single-sided loss cones. Here, near-

isotropic proton populations enter the cusp region along open magnetic field

lines; some are lost to the surface, while the returning population undergoes

pitch-angle scattering from the plasma waves present in the region. In this

process the PAD diffuses from a step-function-like drop-off in the fluxes, to

the observed smooth loss cone. We thus use the solution to the diffusion

equation with a step-function initial condition to fit to the single-sided PADs

to obtain the cut-off pitch angle.

In the case of double-sided loss cones the use of the diffusion equation is

no longer physically well motivated because the PADs are in an equilibrium

state. After just one bounce period the PADs will have loss cones on both

sides corresponding to the southern hemisphere, and will thus not have an

initially step-function-like PAD that undergoes diffusion. In this regime,

due to persistent pitch angle scattering as the particles bounce back and

forth along the close field line, the loss cone size (which corresponds to the

southern hemisphere) will slowly get larger as particles from the non-loss-

cone part of the distribution get scattered into the loss cone. The particles

scattered into the loss cone over time will make it down to the surface, so this

larger loss cone angle of the double-sided distributions (which we term “large

void” so as not to confuse terminology with the original loss cone) does still

reflect particles that made it to the surface, albeit largely due to scattering.

Thus we can still obtain the flux of particles to the surface from this large

void, however the flux does not correspond to a per second flux to the surface,

but to a flux over the length of time the particles have spent bouncing back

and forth along the field line. This time cannot be easily determined as we

have no information as to when the particles entered onto the closed field

lines. However, by estimating how large the void is in the PADs we can

obtain a flux to the surface over some average time that particles remain

trapped on closed field lines at Mercury prior to being lost to the surface,

the magnetopause, or down the magnetotail through a combination of drift

motions and pitch angle diffusion.
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The void size is obtained by fitting a curve that matches the shape of

these PADs, and since the diffusion curve is still a fairly good approxima-

tion of the shape of the void, we implement it here again knowing that the

parameter Dαt derived from these fits is no longer physically meaningful.

Deriving a physically motivated shape model for the double-sided loss cones

would involve properly accounting for a number of different factors, includ-

ing: pitch-angle diffusion along the particle’s bounce motion, various particle

drift processes, and loss to the surface. It would also require knowledge of

the length of time (number of bounce periods) taken to reach the observed

PAD shape. Thus modeling of the voids is not pursued here.

Calculating the surface field strength from the large voids of the double-

sided PADs is not warranted because the size of the large voids does not

correspond to the actual loss cone size that would be there in the absence

of pitch angle diffusion and at present it is not known how much they have

been altered. It is important to note that the estimated surface field strength

that was obtained in Chapter 4 for the southern hemisphere is still justified,

because the PAD in Figure 4.3 exhibits a much more isotropic incident

population (and can thus be approximated as a single-sided loss cone) than

the very clearly anisotropic incoming populations in the newly derived PADs

in the southern hemisphere latitude/longitude grid cells. The discrepancy

between the previously derived PAD and the new PADs in the same latitude

range is due to the binning in body-fixed longitude, in which we average pitch

angle distributions from all local times. Previously, our observations in the

southern hemisphere were all confined to the nightside, where fresh proton

populations, which are mostly isotropic, drift in from the plasma sheet onto

closed field lines. There are no sources of fresh proton populations on the

dayside at low-to-mid latitudes, however, and because there are a factor

of ∼ 2 more dayside observations than nightside observations, the dayside

observations dominate the signal in our southern hemisphere bins here. We

have verified that if we confine our new observations to the nightside, we still

detect nearly isotropic incident populations; however, the reduced number

of integration periods means that binning in both local time and body fixed

longitude is not yet possible. Thus here we retain the PADs binned in
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body-fixed longitude but averaged over all local times.

The two different regimes of the PADs (single-sided and double-sided)

allow us to calculate magnetic field strengths and per-second fluxes from

single-sided loss cones at high latitudes in the northern hemisphere and to

obtain bounce-averaged fluxes from double-sided loss cones at lower north-

ern hemisphere latitudes and in the southern hemisphere. However, as the

voids in the double-sided PADs observed in the north still correspond to the

southern hemisphere, we do not gain more information from these about

the fluxes to the north, only to the south. In the following two sections we

describe our results for the surface field strengths and fluxes separately.

5.2 Resolving regional scale surface magnetic

field strengths

Due to the constraints mentioned in the previous Section, deriving sur-

face magnetic field strengths from the latitude/longitude binned observa-

tions is only feasible in the northernmost latitude range, north of the bound-

ary between open and closed field lines. Not all latitude-longitude grid cells

exhibit loss cones in the PADs, we thus visually inspect each averaged PAD

and decide whether there is a clear loss cone to which we can fit a diffusion

curve. Although high proton fluxes from the cusp are expected in the lat-

itude band between 60◦N and 70◦N at the surface, we do not observe any

well defined loss cones in this region. This may be because the transition

between open and closed field lines occurs in this area.

High proton fluxes and clear loss cones are evident in the latitude band

between 70◦ and 80◦ N. Some PADs with loss cones are also observed up to

90◦N, although there are fewer observations in this region and thus the error

bars are on average higher on the normalized PAD proton counts. To derive

surface magnetic field strengths in these regions we binned the observations

in different altitude ranges to reduce the error on BS. However, even for

a 10 km altitude range the standard deviation in the measured magnetic

field strengths at spacecraft altitudes was greater than 50 nT in some cases.
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Figure 5.3: Example PAD corresponding to the 70◦ − 80◦N latitude and
60◦ − 80◦E longitude grid cell with the solution to the diffusion equation fit
to the loss cone.

This is likely due to the large variation in plasma pressures inside the cusp

at the integration times averaged in the PAD. We are not currently able

to properly account for the variations in the diamagnetic field with time in

different regions. Thus variations in B0 translate directly into uncertainties

in the estimated magnetic field strengths at the surface. To minimize this

problem, instead of binning the observations in altitude, we bin them by the

measured magnetic field strength at the spacecraft altitude, ensuring that

the diamagnetic field values are more similar at the selected times.

Clear loss cones were obtained for nearly all longitude bins between 70◦

and 80◦N and one longitude bin at 90◦N when data with B0 > 300 nT

were binned in the different regions on the surface. The average standard

deviation in B0 in these bins was ∼ 25 nT, about a factor of two smaller than

if the observations had been binned in altitude. In all the surface grid cells

where PADs with clear loss cones are detected, we fit diffusion curves to the

reflected population to estimate the cut-off pitch angle. Figure 5.3 shows an

example averaged PAD with a diffusion curve fit to the loss cone. This PAD
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Figure 5.4: Regional-scale surface magnetic field strengths estimated by
proton-reflection magnetometry in the northern hemisphere, a) uncorrected
for the diamagnetic field and b) corrected for the diamagnetic field. The
maps are in a stereographic projection, looking down from above the north
pole.

maps to between 70◦ − 80◦N latitude and between 60◦ − 80◦E in longitude.

The magnetic field strength at the spacecraft for this particular example

was B0 = 327 ± 22 nT and the derived αc was 120◦+6
−4 , yielding a surface

magnetic field strength of 436+82
−64 nT, not including the diamagnetic field

correction. The uncertainties were derived using the approach described in

Chapter 4. From similar fits to all suitable PADs, we establish a map of

the regional-scale magnetic field strength in the northernmost hemisphere,

shown in Figure 5.4.

The method of estimating the diamagnetic field described in Section 4.5

has been improved upon from that described in Section 4.5. Instead of taking

an average proton number density, temperature, and thermal pressure over

the entire cusp region, we take derived values of np, Tp, and Pp (the proton

thermal pressure) from proton observations at specific integration times from

2011 that match the times averaged in our PADs. These derived products

were made available by the FIPS instrumentation team on MESSENGER,

and are described in [52]. Unfortunately the times that these products are

derived do not extend into 2012 or 2013, but we can still use them to establish
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Figure 5.5: a) Diamagnetic field corrected surface field strengths with error
bars as a function of longitude in the northern cusp. The number of individ-
ual PADs averaged in each grid cell was between 7 and 32. b) Upper limits
on the surface magnetic fields strengths (from the addition of the upper error
bars in a) to the corrected surface field values) in the cusp.

average proton conditions in the latitude bins used here, although not in the

longitude bins due to the limited number of observations. We set the errors

on the derived FIPS products to be 1 standard error in the estimated np,

Tp, and Pp values within each latitude bin.

The FIPS estimated average Pp at spacecraft altitude is 1.62± 0.17 nPa

at 70◦ − 80◦ N latitude. Using this total proton pressure at the spacecraft

altitude, we calculate the perpendicular pressure at the spacecraft using

equation (A.7), correcting for the fact that Pp was derived assuming an

isotropic distribution function. We also calculate the perpendicular pressure

at the surface using equation (A.9). From equation (A.1), we obtain the

corresponding diamagnetic field for these perpendicular pressures, and take

the average of the two to get an approximate range for the diamagnetic field

at the surface. The errors on the corrected surface magnetic field strengths

incorporate the average error in the diamagnetic field, and are shown in

Figure 5.5a, while the upper limits on our proton-reflection magnetometry

derived surface magnetic field strengths are shown in Figure 5.5b.

On average the errors onBS are higher than the estimated variation inBS
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5.3. Particle fluxes to Mercury’s surface

from one longitudinal bin to the next. However, we can draw two important

conclusions from these surface field estimates. One is that we do observe

an increased magnetic field strength with increasing latitude, BS for the

80◦− 90◦N bin is significantly higher than the BS for the latitude bin below

it. More importantly, the observed fields at high latitudes combined with our

southern hemisphere surface field result in Chapter 4 are somewhat weaker

but consistent within the uncertainty with an offset dipole (see Figure 4.8).

This result establishes that higher degree and order core or crustal fields on

Mercury must either be very weak, or must be on length scales much smaller

than our longitudinal bin of ∼ 300 km.

5.3 Particle fluxes to Mercury’s surface

We expand our calculation of the proton flux to the surface in the north-

ern cusp and southern hemisphere low latitude region described in Section

4.5 to incorporate the regional scale proton loss cones observed in Section

5.2 above, and build a proton precipitation map of Mercury’s surface. We

can obtain fluxes to the surface from both single-sided and double-sided

PADs as described in Section 5.1, with the caveat that the fluxes deter-

mined from double-sided loss cones are over an average bounce life-time of

protons in Mercury’s magnetosphere. It is important to note that we also

assume for these double-sided loss cones that the original incident popula-

tion was isotropic, prior to becoming trapped on closed field lines, i.e. these

flux estimates are upper limits. The double-sided loss cones measured in

the northern hemisphere correspond to particles being lost to the southern

hemisphere surface. Therefore, our measurements allow for the resolution

of regional-scale fluxes to the surface in the northernmost region of the

northern hemisphere, where the single-sided loss cones are observed, and to

regions of the southern hemisphere mapped by the double-sided loss cones

observed in the north and the PADs observed in the south.

To determine the proton fluxes to the surface, we average individual

PADs from all spacecraft altitudes (up to 3000 km) for the southern hemi-

sphere measurements but only average over observations at < 550 km al-
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Figure 5.6: Example pitch angle distribution exhibiting symmetry in the
double-sided loss cone. The same double-sided PAD is shown in both panels,
from 50◦ to 60◦N latitude, 0◦−20◦E longitude. Diffusion equation fits to the
α = 0◦− 90◦ side yield a void size of 72◦+6

−27, while fits to the α = 90◦− 180◦

yield a void size of 80◦+1
−10, and are thus in agreement within the uncertainty.

titude in the 70◦ − 80◦N latitude band where low spacecraft altitudes are

available. We do not apply a similar B0 binning to these averaged PADs as

for the surface field calculations. This approach is justified for determining

the fluxes because by restricting the range of magnetic field measurements

at the spacecraft we may exclude times of high proton fluxes into the mag-

netosphere and thus would only obtain a lower limit of the fluxes to the

surface. We also significantly increase the signal to noise ratio in our aver-

aged PADs with this approach. The proton number density and temperature

needed for the derivation of the flux to the surface (as described in detail

in Appendix A.2) was calculated in 10◦ latitudinal bins from FIPS moment

estimates as described in Section 5.2. To establish where the double-sided

PADs observed in the northern hemisphere map to in the south, we traced

the magnetic field line from the northern hemisphere observation point at

spacecraft altitudes to the southern hemisphere foot-point location on the

surface of the planet.

Observations from the northern hemisphere double-sided loss cones map
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to latitudes 20◦ − 30◦S, while observations from the southern hemisphere

map to latitudes 20◦ − 40◦S on the surface. MESSENGER cannot observe

more equatorward latitudes on the surface in either the northern or southern

hemisphere because the high spacecraft altitudes over the equatorial region

do not allow it to cross closed field lines that map to the surface near the

equator.

We determine the size of the large voids in the double-sided PADs by

fitting the solution to the diffusion equation to the PAD. Error bars on the

normalized proton flux in the PADs are on average lower for the reflected

population, i.e. α = 0◦ − 90◦ for the southern hemisphere observations and

α = 90◦ − 180◦ for the northern hemisphere observed PADs. We therefore

fit the diffusion curve to the reflected population in each hemisphere. This

carries the assumption that the voids on both sides of the PAD essentially

equilibrate (i.e. the PAD is symmetric about α = 90◦) after one full bounce

period, amounting to the same void size on both sides (as they both corre-

spond to the southern hemisphere surface). We test this assumption on a

few example cases for which the normalized fluxes on both sides of the PAD

have similar error bars, and find that they are in agreement within the error

on the fit αc (see Figure 5.6).

Figure 5.7 shows the proton flux map to the surface in the southern

hemisphere. The fluxes are nearly an order of magnitude higher than the

value in the southern hemisphere low latitude band derived in Section 4.5.

This discrepancy is due to the nearly single-sided loss cone nature of the

PAD in Figure 4.3b, which yields a per second flux to the surface, while the

smeared out double-sided loss cones correspond to proton populations that

have been trapped for numerous bounce periods and thus yield a bounce-

averaged flux to the surface. Thus this is not a valid comparison, as the two

estimates are established over very different time-scales. There were two

longitudinal/latitudinal grid cells (in the latitude range of 20◦ − 30◦S) that

were observed both from northern and southern hemisphere PADs. The

flux values estimated from these two methods were in good agreement in

the two grid cells; for example, for the longitude range of 80◦− 100◦E a flux

of 1.9+0.7
−1.3 × 1012 particles m−2 (bounce life-time)−1 was obtained from the
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Figure 5.7: Regional-scale resolution of proton flux to the southern hemi-
sphere. a) Proton flux to the southern hemisphere surface on a steregraphic
projection plot (looking through the planet from above the north pole). b)
Ratio of the error on the flux to the flux estimate. The number of individual
PADs averaged in each grid cell was between 50 and 1100.

southern hemisphere measurements and a flux of (1.9± 0.8)× 1012 particles

m−2/(bounce life-time)−1 was derived from the northern hemisphere PAD.

In the northern hemisphere, we also establish a flux map in 20◦ longitu-

dinal bins between 70◦ and 80◦N latitudes from observations at less than 550

km altitudes, shown in Figure 5.8. The results for the northern and south-

ern hemispheres are also shown together in a global flux map in Figure 5.9.

The global flux map shows particle fluxes in regions where proton-reflection

magnetometry directly confirms proton precipitation all the way to the sur-

face (i.e., where loss cones are observed). From Figure 5.9 it can be seen

that the fluxes in the north are on average a factor of 2 higher than in the

south, as the open field lines provide a direct path for particles entering from

the solar wind.

An intriguing result that can be seen from the northern hemisphere flux

map in Figure 5.8 is the apparent flux increase in longitude bins near 0◦

and 180◦ longitudes compared to the average fluxes observed near 90◦E and

90◦W. We attribute this flux increase to Mercury’s 3:2 spin orbit resonance,
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Figure 5.8: Regional-scale resolution of proton flux to the northern hemi-
sphere high latitude surface. a) Proton flux to the northern cusp surface
(looking down from above the north pole). b) Ratio of the error on the flux
to the flux estimate. Uncertainties on the fluxes are lowest in the region of
interest, near 0◦ and 180◦ longitudes, although even in these regions the ratio
is still only slightly lower than the signal detected. The number of individual
PADs averaged in each grid cell was between 11 and 172.
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Figure 5.9: Global map of proton flux to the surface.
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which causes the planet’s 0◦ and 180◦ longitudes to always face the Sun

during perihelion or aphelion. These longitudes experience local noon at

perihelion where the solar wind density is highest, and thus they receive

higher plasma fluxes from the solar wind through open field lines in the

cusp (which is on the dayside). A map of the average solar wind density

relative to the maximum expected at Mercury’s distances from the Sun is

shown at different longitudes on the planet in Figure 5.10, with maximum

solar wind densities always occurring near 0◦ and 180◦ longitudes. As our

observations have been averaged over several Mercury years in the 2.5 Earth

years included, it is possible for this orbit-averaged signal to be present in

our measurements. Such a flux difference would have been present since

Mercury entered its 3:2 spin orbit resonance. Higher space weathering rates

and greater exospheric generation from these regions is therefore expected.

Any differences in the surface elemental composition at these longitudes may

introduce different exospheric species compared to the background average.

If differences in exospheric species are correlated with surface elemental com-

positions at these longitudes, the origin of such particles may be traced back

to this region due to increased solar wind sputtering in this area.

We expect the plasma flux to be 57% higher in the longitude bins near

0◦ and 180◦, then near longitudes of 90◦E and 90◦W (Figure 5.10), which

face the Sun at approximately the mean orbital distance of Mercury from

the Sun. This is because the solar wind density decreases as 1/r2 with dis-

tance from the Sun, yielding a 57% difference in solar wind density between

perihelion and the mean orbital distance of 0.39 AU. Our map of the fluxes

shows a signal of ∼ 40%, slightly smaller than the expected value. Figure

5.8b shows the ratio of the uncertainty on the flux to the flux estimates for

each longitude bin cell for the northern hemisphere (similar plot in Figure

5.7b shows the ratio for the southern hemisphere), where the errors take

into account the error on αc as well as one standard error on the derived np

and Tp values in each 10◦ latitude range. The error to flux ratio is lowest in

the area of interest and is ∼ 30% there, signifying that the flux difference

is likely a genuine signal, however, more observations are needed to fully re-

solve its amplitude and longitudinal extent. A less pronounced, but similar
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Figure 5.10: Predicted relative solar wind density at local noon as a function
of longitude, normalized to the maximum value.

signal is also observed in the southern hemisphere fluxes (Figure 5.7). This

signal is not significant above the uncertainty level, but may hint at the fact

that higher proton fluxes to the southern magnetospheric cusp occurring at

perihelion can reach to lower latitudes (where our observations are made)

due to particles drifting from open to closed field lines.

5.4 Conclusions

In this chapter, we have extended our original work on proton-reflection

magnetometry at Mercury with an additional 1.5 years of observations to

resolve regional-scale variation in the surface magnetic field strength as well

as in the proton flux to the planet’s surface. Our most significant findings

can be summarized as follows:

• A new region of proton fluxes in the northern hemisphere is detected,

observed at all local times in the latitude range 40◦ − 60◦N, in agree-
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ment with plasma pressure measurements at spacecraft altitudes con-

ducted by Korth et al. [136]. The pitch angle distributions observed

in this region exhibit double-sided loss cones, similar to those in our

southern hemisphere observations.

• The character change in the PADs from the southern hemisphere low

latitude region to the northern hemisphere polar region, indicates the

boundary between closed field lines at mid to low latitudes and open

field lines at high latitudes. We find that this boundary in the northern

hemisphere is between 60◦ − 70◦N.

• Upper limits for the surface magnetic field strength estimates in the

northernmost region are in agreement with the best-fit time-averaged

magnetospheric model predictions, with a maximum estimated surface

field value from proton-reflection magnetometry of ∼ 700 nT and a

corresponding model prediction of ∼ 750 nT. There are no regions

where the surface field strength is stronger than that expected from

an offset dipole field with a moment of 190 nT R3
M [19]. This suggests

either that higher degree and order core or crustal fields are very weak,

or that they occur on length scales much smaller than the resolution

of our measurements (∼ 300 km).

• Proton fluxes to the surface are estimated for the southern hemisphere

in the latitude range 20◦−40◦S and in the northern hemisphere at lat-

itudes 70◦ − 90◦N. Despite the fairly large uncertainties in these mea-

surements, two significant conclusions can be drawn: 1) the per second

fluxes everywhere in the northern cusp region are approximately a fac-

tor of 2 higher than the bounce-averaged fluxes in the south (which

occur over much longer time-scales); 2) increased fluxes are detected

in the north near 0◦ and 180◦ longitudes compared with fluxes near

longitudes of 90◦E and 90◦W. This may reflect the increased incident

solar wind density at these longitudes at local noon that results from

the 3:2 spin-orbit resonance of Mercury. Although the signal that we

observe is just above the level of the uncertainty, with further obser-

133



5.4. Conclusions

vations it may be possible to better resolve the amplitude of the signal

as well as its longitudinal extent.

Finally, new low-altitude observations soon to be acquired by MESSEN-

GER in the months leading up to its planned impact into Mercury on 28

March 2015, will allow for the surface magnetic field strength estimates

to be tested by orbital MAG observations. These measurements, in con-

junction with low altitude proton-reflection magnetometry, may be able to

significantly improve the resolution of our current proton-reflection magne-

tometry estimates at the surface and may reveal higher degree and order

short-wavelength structure in the internal field.
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Conclusions

In this final chapter, we summarize key results obtained in this thesis

and also list future directions.

In Chapter 2 we explored the nature of the initial interaction between

Mercury’s global magnetic field and the solar wind and IMF by studying

Mercury’s bow shock and magnetopause boundaries. The results from this

work exemplify that the boundaries of Mercury’s magnetosphere, and there-

fore the magnetosphere itself, are highly variable and greatly affected by the

interplanetary medium. Although we do not have continuous solar wind

observations upstream of the bow shock, variations in the location of these

boundaries can still be perceived on the timescale of a few minutes, as the

boundaries are observed to move back and forth across the spacecraft as

the solar wind and IMF conditions change. Solar wind conditions are how-

ever available on an orbit-by-orbit basis, allowing us to quantify variations

in the boundaries on the timescale of hours. The large observed spread

in the boundary locations shows that the magnetosphere can expand and

contract significantly from one orbit to the next, and we found that this ex-

pansion/contraction is controlled dominantly by the solar wind parameters.

By building probability density maps of the boundaries, we determined the

highest likelihood shape and region for these boundaries on average, and

also under various solar wind conditions. We then parametrized the model

shape of the magnetopause as a function of the solar wind ram pressure, and

the bow shock as a function of the Alfvén Mach number, the two dominant

solar wind influences on these boundaries. These parametrized empirical

shape models for the magnetopause and bow shock, which are the most

important results from this work, can be used to define the boundary con-

ditions for Mercury’s magnetosphere and are thus highly relevant for any
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magnetospheric study.

A fruitful area of further inquiry that may be addressed with more obser-

vations is how reconnection affects the magnetopause location at Mercury.

At Earth it has been shown that during times of southward directed IMF,

reconnection at the dayside magnetopause erodes magnetic flux on the day-

side and transfers it into the tail [57, 58]. This moves the magnetopause

planetward and increases the flaring of the magnetotail. We have shown

in Chapter 2 that on average Mercury’s magnetotail is highly cylindrical;

this low flaring implies that magnetic flux has a short residence time in the

tail and is transferred back to the dayside much more quickly than our ob-

servations can resolve. This observation supports the very short Dungey

cycle time at Mercury. However, further observations may be able to in-

form our understanding of the reconnection related planetward erosion of

the dayside magnetopause. It is possible however, that no significant IMF

Bz dependence will be detected, since at Mercury reconnection has been

observed to occur under varying magnetic shear angles, i.e. not just un-

der southward pointing magnetic fields [34]. Resolving this issue would be

possible by analyzing many more Mercury years of MESSENGER obser-

vations to extract any underlying magnetic shear angle dependence on the

magnetopause shape and location. With more observations it would also be

possible to derive a more accurate shape model for the magnetopause, which

includes asymmetries near the poles due to the cusp regions as well as any

other potential asymmetries in the shape causing departures from a figure

of revolution, which could not be resolved from the data used in Chapter 2

alone.

In Chapter 3, using magnetic field observations we investigated the re-

gion of space where solar wind particles are expected to reach Mercury’s

magnetosphere, the magnetic cusp region. Due to MESSENGER’s eccentric

orbit, observations of only the northern hemisphere cusp region are available

at this time. Through observations of diamagnetic depressions in the mag-

netic field on the dayside at high northern latitudes, that were accompanied

by high frequency variations in the field indicative of the presence of plasma,

we mapped out Mercury’s northern cusp region and the associated plasma
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pressure within it. Prior to MESSENGER, numerous models of Mercury’s

magnetosphere had made predictions of the latitudinal and local time extent

of Mercury’s magnetic cusps and therefore the boundary between open and

closed field lines (see review in [137]). Since the models did not incorporate

the north-south asymmetry of the magnetic field (as this was not known

prior to MESSENGER), most models predicted the northern cusp to have

the same latitudinal extent as the southern cusp, and also predicted the

northern cusp to extend much further south (some as far south as 30◦N),

than what we observe. Our observations from 3 Mercury years of data under

varying solar wind conditions indicate that the limits of the northern cusp

are 56◦−84◦ MSO latitude at spacecraft altitudes and 7−16 h in local time.

One of the major results from the work presented in Chapter 3 is that

the observed plasma pressure in the northern cusp region is highly affected

by the solar wind ram pressure and the IMF Bx direction. We find that the

plasma pressure is significantly increased for high ram pressures and for an

anti-sunward IMF configuration, which facilitates plasma transport into the

northern cusp [107]. An equally significant result is that from the measured

plasma pressures in the cusp at spacecraft altitudes we establish the plasma

flux down to the surface of the planet. This is found to be in good agreement

with the predicted average flux over perihelion and aphelion conditions to

the northern hemisphere by Sarantos et al. [110]. Due to the north-south

asymmetry of the internal field, we also predict that the particle flux to the

surface near the southern hemisphere cusp is a factor of 4 greater than in

the north, implying a greater exospheric source from this region and higher

space weathering of the surface.

Investigating the affects of magnetopause reconnection on the magnetic

cusps as indicated by the IMF Bz and By components is an interesting area

for further study. By the end of the MESSENGER mission there will be

altogether 17 Mercury years of observations of the northern cusp region,

which can be used to investigate IMF By effects on the local time extent of

the cusp that have been observed to occur at the Earth [102, 104]. Zhou et

al. [103] showed at the Earth that during times of southward IMF, there is

a clear local time shift in the cusp location depending on the sign of IMF
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By. This is attributed to a shift in the center of the reconnection site by

the IMF By component; positive By is expected to shift the reconnection

site duskward in the northern hemisphere and thus also shift the region of

open flux, i.e. the cusp, duskward; the opposite is expected for negative

By. As was shown in Chapter 3, the IMF By component is more stable

at Mercury than the Bz component, thus such a study focusing on the By

effects on the cusp from 17 Mercury years of observations by MESSENGER

is feasible and would improve our understanding of reconnection related

affects on Mercury’s magnetosphere.

In Chapter 4 of this thesis, we present a new method to quantify the

intensity of solar wind proton precipitation to Mercury’s surface and make

the first measurements of magnetic field strength at the planet’s surface us-

ing magnetic field and plasma spectrometer observations by MESSENGER.

The two most significant findings from this work are: 1) Loss cone obser-

vations directly confirm particle precipitation to the surface and show that

solar wind plasma persistently bombards Mercury’s surface not only in the

magnetic cusp regions as expected but over a large percentage of the entire

southern hemisphere. (2) The north-south asymmetry in Mercury’s long-

wavelength magnetic field structure is confirmed at the surface, not just at

spacecraft altitudes, independently confirming this unusual and challenging

(from a dynamo modeling perspective) feature of the global planetary field

and providing key constraints on Mercury’s internal dynamo.

The asymmetry in Mercury’s magnetic field strength causes hemispheric

disparities in the efficiency of solar wind particle penetration into the magne-

tosphere, and subsequently the surface. The persistent particle precipitation

we observe to low southern latitudes on the planet’s nightside implies that

most of the southern hemisphere is continuously bombarded by plasma, a

result that stands in contrast with the canonical view that a global magnetic

field protects the surface of an airless body from bombardment by the solar

wind. Such precipitation plays a major role in the generation of Mercury’s

exosphere and space weathering of the surface. This widespread plasma

bombardment means that Mercury’s surface might show limited latitudinal

variation in spectral signatures of space weathering, a result that is in agree-
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ment with recent MESSENGER findings [138] but not with predictions from

magnetospheric models prior to MESSENGER observations (e.g., [85]). Our

results demonstrate for the first time that proton reflection magnetometry

can be applied successfully to measure the planetary surface field (provid-

ing the only means to do so at Mercury currently) and to quantify plasma

precipitation directly to the surface. This technique may prove advanta-

geous alongside electron reflectometry, at other planetary bodies and could

be applied at Ganymede, with the upcoming JUICE mission.

Significant wave activity has been observed inside Mercury’s magneto-

sphere [128, 139], which can cause pitch angle diffusion of protons. In future

work it would be fruitful to investigate the nature of this scattering process

by determining the associated diffusion coefficient, since the diffusion coeffi-

cient is dependent on the wave modes involved in the scattering. One possi-

ble way to determine the diffusion coefficient is from the power spectrum of

the magnetic fluctuation levels [36]; as there are many different wave modes

causing the diffusion, the diffusion coefficient will likely be a superposition

of different wave power spectra. Anderson et al. [139] have documented

varying levels of magnetic fluctuations inside the magnetosphere depend-

ing on external conditions. It would thus be interesting to investigate how

the diffusion coefficient varies with external conditions, and if any changes

in pitch angle diffusion are observed with proton-reflection magnetometry.

Once the diffusion coefficient is established, it would be possible to estimate

the diffusion timescale associated with the pitch angle diffusion process in

Mercury’s magnetosphere.

In Chapter 5, we extend our proton-reflection magnetometry work at

Mercury with 1.5 years of additional observations to further probe Mercury’s

surface magnetic field structure and better resolve proton flux precipitation

to the surface. The observed transition from double-sided to single-sided loss

cones in the pitch angle distributions marks the boundary between open and

closed field lines and is shown to occur between 60◦ and 70◦N on the surface,

in agreement with the lower latitudinal boundary of the cusp we detected at

spacecraft altitudes in Chapter 3. We map all the regions on the surface of

the planet in 10◦× 20◦ latitude/longitude grid cells where proton loss cones
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are observed; these indicate the regions where proton precipitation directly

impacts the surface. Our observations allow for the estimation of surface

magnetic field strengths in the northern hemisphere and for the calculation

of proton fluxes both to the northern and southern hemisphere.

Most significantly, we find that in the northernmost region, regional-scale

variations in the surface magnetic field strength must be either very weak

or be on length scales much smaller than the resolution of our observations

(∼ 300 km). The observed increase in magnetic field strength with latitude

is consistent with the latitudinal magnetic field variation predicted by an

offset dipole field. We also find that the bounce-averaged fluxes observed

to the southern hemisphere low latitude region are approximately a fac-

tor of two smaller than the instantaneous fluxes estimated to the northern

hemisphere cusp region, although these are likely to be an order of mag-

nitude lower instantaneously as was shown in Chapter 4. Mercury’s 3:2

spin-orbit resonance is expected to cause a variation in proton fluxes to the

surface with body-fixed longitude due to solar wind density changes along

Mercury’s eccentric orbit. We detect an increase in proton fluxes near 0◦

and 180◦ longitudes, consistent with the expected signal; however, since the

measured flux increase is only slightly above the uncertainty, further obser-

vations are needed to better resolve its amplitude and longitudinal extent.

Such a longitudinal signature in proton fluxes to the surface may affect the

exospheric species observed at Mercury if there are large-scale longitudinal

variations in the surface composition, and is also expected to be accompa-

nied by differential space weathering of the surface in these regions.

Finally, in the last part of its mission phase, MESSENGER will investi-

gate a completely new and unexplored region of Mercury’s magnetosphere,

that at low altitudes. The low altitude campaign of MESSENGER, which

will last approximately 10 months of orbital observations prior to impact

into Mercury, will allow measurements to be taken in the northern cusp in

the altitude range of 25 − 150 km. These observations are not only crucial

from an internal magnetic field perspective, since at these low altitudes the

internal field is certainly expected to dominate, but are also vital in terms

of understanding the dynamics of the low altitude magnetosphere and parti-
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cle fluence to the surface. Proton reflection magnetometry alongside vector

magnetic field measurements at spacecraft altitudes will be able to resolve

regional-scale magnetic field structure that may be present in the northern

hemisphere where these low altitudes will be reached. Particle flux measure-

ments at these low altitudes will also validate our estimates of surface fluxes

from high altitude observations. These final low altitude observations from

MESSENGER will complete the picture of Mercury’s northern hemispheric

magnetosphere, albeit leaving behind many unanswered questions about the

planet’s southern hemisphere for future missions, such as BepiColombo.
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Appendix A

Diamagnetic field and

particle flux calculation for

proton reflection

magnetometry

A.1 Diamagnetic magnetic deficit calculation

In this section we discuss the derivation of the diamagnetic field de-

pression at the surface presented in Section 4.5 for the northern cusp and

southern hemisphere low latitude band. The diamagnetic field is due to par-

ticle motions perpendicular to the magnetic field, and thus the diamagnetic

depression can be calculated from the perpendicular particle pressure given

by

∆B =
√

2µ0P⊥. (A.1)

Thus we need to calculate the perpendicular pressure at the surface to

obtain the diamagnetic field at the surface. The pressure is the second

moment of the phase space distribution function, or phase space density,

and the perpendicular component can be calculated from this as was done in

Section 3.4.1. The total pressure can also simply be obtained from the ideal

gas law P = npkTp where the proton number density, np and temperature,

Tp at the spacecraft are needed, and this value can be obtained from FIPS

measurements. Thus our aim is to obtain the perpendicular pressure at the

surface from the total pressure at the spacecraft altitude, taking into account
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A.1. Diamagnetic magnetic deficit calculation
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Figure A.1: (A) Cartoon diagram showing a loss cone in an idealized pitch
angle distribution in the southern hemisphere (A) and northern hemisphere
(B).

the observed loss cone from the proton reflectometry measurements.

From Liouville’s theorem, the phase space density of particles is pre-

served along the field line in the absence of particle collisions and loss; here

it is also assumed that the particles’ total velocity does not change along

the field line (an approximation which is needed for proton reflectometry).

It is then apparent from equation (3.1) that the total pressure stays con-

stant along the field line in the absence of collisions and loss. As we know

from our proton-reflection magnetometry measurements however, particles

are being lost to the surface, and so the pressure that we measure at the

spacecraft altitude needs to be corrected for this loss to obtain the pressure

at the surface.

The proton number density, np, obtained from FIPS measurements (see

Section 4.5 and [130]) was derived assuming an isotropic proton distribution

at the spacecraft altitude, which our observations have shown to not be a

good assumption. In reality, the distribution has a loss cone from 0 to αc

in the southern hemisphere, and from αc to π in the northern cusp region

(see Figure A.1 A and B). Having such a void in the pitch angle distribution

leads to an underestimate in the phase space density, fp, because under

the isotropy assumption the observed proton number counts by FIPS are

spread evenly over 0 to π in pitch angle space, when in fact those particles
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A.1. Diamagnetic magnetic deficit calculation

are only coming from the non-void region of the angle space. Thus, the

corrected phase space density should be higher, and we need to account

for this enhancement in order to obtain accurate estimates of the proton

pressure and flux (as they both depend on the phase space distribution).

The number density is given by the zero-order velocity moment of the

distribution function

n =

∫
f(v)d3v (A.2)

and in spherical coordinates we have d3v = v2 sinαdφdαdv. The proton

number density, np is equal to the integral over the true phase space density,

fp0, from αc to π in the southern hemisphere and 0 to αc in the northern

hemisphere, whereas in the derivation of np from FIPS measurements, the

integral was implicitly assumed to run from 0 to π over a phase space dis-

tribution that is isotropic. Let fp0 be the true phase space density, while fp

is the phase space density of an isotropic distribution with density np:

np = 2π

∫
v2dv

∫ π

0
sin(α)dαfp(v, α) = 2π

∫
v2dv

∫ π

αc

sin(α)dαfp0(v, α),

(A.3)

shown here for the southern hemisphere example. If we write f =

FV (v)A(α) where V (v) is the speed distribution and A(α) is the pitch

angle distribution, and F is a constant, then Vp(v) = Vp0(v) holds if the

temperatures are the same. The pitch angle dependence can be written as

Ap(α) = 1 for all α, and Ap0(α) = 0 for α = 0 to αc and Ap0(α) = 1 for

α = αc to π in the southern hemisphere (Figure A.1A), while the reverse is

true for Ap0 in the northern hemisphere (Figure A.1B).

From equation (A.3), the ratio Fp to Fp0 is given by the ratios of the

solid angles with non-zero A(α):

Fp0
Fp

=

∫ π
0 sin(α)dα∫ π
αc

sin(α)dα
=

2

1 + |cos(αc)|
, (A.4)

where the limits of integration are again for the southern hemisphere
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A.1. Diamagnetic magnetic deficit calculation

case, but the result with the absolute value sign accounts for both the

northern and southern hemisphere cases (since αc < π/2 in the southern

hemisphere but > π/2 in the northern hemisphere).

The perpendicular pressure is given by

P⊥ =

∫
v2
⊥f(v, α)dvdα. (A.5)

For an isotropic distribution it can be shown that P⊥/P = 2/3 so that

P⊥ = 2/3npkTp. However, since we don’t have an isotropic distribution,

the ratio of P⊥/P will be different as we have to consider equation (A.5)

integrated over only the range of non-zero A(α). Thus we need to take into

account the difference between the phase space distributions, and so we need

the factor Fp0/Fp.

Because we can obtain the total pressure for the isotropic distribution

from FIPS measurements, we take the ratio of the perpendicular pressure for

the loss cone distribution to the total pressure for the isotropic distribution

P⊥p0
Pp

=

∫
v2
⊥fp0dvdα∫
v2fpdvdα

=
2πFp0

∫
v4V (v)dv

∫ π
αc

sin3 αdα

2πFp
∫
v4V (v)dv

∫ π
0 sinαdα

, (A.6)

where the limits of the integration in the numerator are for the southern

hemisphere case, but the results below apply to both cases. Using equation

(A.4), we arrive at

P⊥p0 =

[
1− 1

3

(
1 +

∣∣cos3 αc
∣∣

1 + |cosαc|

)]
Pp. (A.7)

This result is the ratio at the spacecraft altitude, but the actual mag-

netic field due to the plasma at the surface must consider the perpendicular

plasma pressure at the surface. To calculate the perpendicular pressure at

the surface, we need to map the true phase space density at the spacecraft

fp0 to the surface. By Liouville’s theorem, fp0 remains constant along phase

space trajectories, so we use the same fp0 at the surface to evaluate the

pressure. Note however that if we assume that the surface is perfectly ab-
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A.2. Particle flux calculation

sorbing, then there will be no upward going particles and the only integrate

over the downgoing particles. That is, at the surface we have

P⊥p0,surf
Pp

=
2πFp0

∫
v4V (v)dv

∫ π
π/2 sin3 αdα

2πFp
∫
v4V (v)dv

∫ π
0 sinαdα

, (A.8)

which yields

P⊥p0,surf =
2

3(1 + |cosαc|)
Pp (A.9)

where the absolute value sign again takes care of both the northern and

southern hemispheres.

Because the system is not infinite, but has gradients in the magnetic

field between the spacecraft and the surface, the simple expression for ∆B

in equation (A.1) is not precise and the actual ∆B should be somewhere

between that indicated at the spacecraft altitude and that at the surface.

Substituting in values for αc, np, and Tp in equation (A.9) and taking ∆B

to be between
√

2µ0P⊥p0 and
√

2µ0P⊥p0,surf , we arrive at the results listed

in Section 4.5 for the diamagnetic field.

A.2 Particle flux calculation

As we have more information at our disposal from the loss cone size than

what we had available in Section 3.4.1, we can do a more accurate calculation

of the proton surface flux in the northern hemisphere cusp region as well as

calculate the surface flux in the southern hemisphere low latitude band.

The flux of particles per unit area per unit time with velocity parallel to

the magnetic field line v‖ through a surface normal to the magnetic field is

given by

Φ =

∫
fp0(v)v‖d

3v, (A.10)

where we are using the parallel velocity (v‖ = v cos(α)) because we want

the flux through the surface, thus we need the velocity that is parallel to

the surface normal. This assumes that the field lines are perpendicular to

162



A.2. Particle flux calculation

the surface right at the surface. We assume gyrotropy again, such that the

integral over dφ = 2π and use the same decomposition for the phase space

density as in Section A.1. We also need to ensure that the flux is obtained

from the corrected, or true, phase space density fp0 as we established in

Section A.1. The flux can then be rewritten as

Φ = 2π

∫
v3Vp0(v)dv

∫
Fp0A(α) cos(α) sin(α)dα, (A.11)

where the integral over α runs from 0 to αc in the northern hemisphere,

and αc to π in the southern hemisphere. This integral will yield an upper

limit for the flux because by integrating over these values in pitch angle we

are assuming that the loss cone remains completely filled in for the down-

going (incident) particles and that all of the particles within the loss cone

are absorbed at the surface.

Fp0 is simply a constant and can be written in terms of Fp as from

equation (A.4) above. We assume as before that Vp0 = Vp, and we can then

rewrite equation (A.11) as

Φ = 2π

∫
v3Vp(v)dv

∫
Fp

2

1 + |cos(αc)|
A(α) cos(α) sin(α)dα, (A.12)

which due to fp(v) = FpVp(v) (where we have assumed that the phase

space density has no angular dependence as before since A(α) = 0 or 1) can

be simplified to be

Φ = 2π
2

1 + |cos(αc)|

∫
v3fp(v)dv

∫ π

αc

cos(α) sin(α)dα (A.13)

for the southern hemisphere integration limits. In order to solve equation

(A.13), we need to assume a Maxwellian velocity distribution:

f(v) = np

(
mp

2πkTp

)3/2

exp

(
−mpv

2

2kTp

)
, (A.14)

where np is the number density quoted in Section 4.5. Substituting all
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A.2. Particle flux calculation

this into equation (A.13), we find

Φ = 2πnp

(
mp

2πkTp

)3/2 2

1 + |cos(αc)|

∫ ∞
0

v3 exp

(
−mv

2

2kTp

)
dv

∫ π

αc

cos(α) sin(α)dα,

(A.15)

which yields

Φ = np
sin2 αc

(1 + |cosαc|)

√
2kTp
πmp

. (A.16)

Due to the absolute value sign, this equation is again valid for both the

southern and northern hemispheres. Substituting in values for the parame-

ters yields the results discussed in Section 4.5.

164


	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgements
	Dedication
	Introduction
	Interaction of the solar wind with Mercury's magnetosphere
	Charged particle motion
	Uniform magnetic field (E = 0)
	Uniform electric and magnetic fields
	Nonuniform magnetic field
	Motion of trapped particles: magnetic mirrors and bottles

	The bow shock
	The magnetopause and the magnetic cusps
	The planetary magnetic field
	Relevant MESSENGER instruments
	The Magnetometer
	The Fast Imaging Plasma Spectrometer


	Mercury's magnetopause and bow shock from MESSENGER Magnetometer observations
	Introduction
	Magnetic field observations: boundary identifications 
	Average boundary shapes
	Midpoint fits
	Magnetopause
	Bow shock

	Probabilistic fits

	Response of boundaries to solar wind forcing
	Magnetopause
	Bow shock

	Discussion
	Conclusions

	Observations of Mercury's northern cusp region with MESSENGER's Magnetometer
	Introduction
	Observations
	Data analysis
	Discussion
	Surface flux calculation

	Conclusions

	Mercury's surface magnetic field determined from proton-reflection magnetometry
	Introduction
	The technique of proton reflection magnetometry
	How to obtain surface field strengths

	Application of the technique to MESSENGER observations
	Deriving individual pitch angle distributions
	Averaging pitch angle distributions
	Surface field estimates

	Consistency checks
	Altitude binning
	Latitude binning

	Discussion and conclusions

	Regional-scale surface magnetic fields and proton fluxes to Mercury's surface from proton-reflection magnetometry
	Methods
	Resolving regional scale surface magnetic field strengths
	Particle fluxes to Mercury's surface
	Conclusions

	Conclusions
	Bibliography
	Diamagnetic field and particle flux calculation for proton reflection magnetometry
	Diamagnetic magnetic deficit calculation
	Particle flux calculation


