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Abstract

In this thesis, we studied the act-and-wait control mechanism on the stabi-

lization of the inverted pendulum in both piecewise constant feedback and

continuously varying feedback models. We also extend the act-and-wait con-

trol mechanism with a more general model: the act-and-wait control with

frequently varying feedback, which includes piecewise constant feedback and

continuously varying feedback as two of its extreme cases. The frequently

varying feedback model is valuable in approximating the continuously vary-

ing feedback system when the delay is large. The modeling error is discussed

in the comparison of piecewise constant feedback and continuously varying

feedback. The robustness of the three models are studied in the context of

the parametric stability regions as well as for the interaction of delay and

noise. We discovered that although act-and-wait control can stabilize the

pendulum system even with large delay, the robustness is impaired by large

delays. As a result, the piecewise constant feedback system is more sensitive

to parametric noise than the frequently and continuously varying feedback

models. The interplay of act-and-wait control and external noise leads the

system to a periodically varying density for its state.
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Chapter 1

Introduction

Delays arise in feedback control systems when there is a significant time

interval between when a variable is measured and when corrective forces are

applied. The presence of delay and its interplay with random perturbations

leads to instability or poor performance of the system. For example, in space

applications [9], there is an unavoidable two-way communication time delay

between a ground control station and the telerobotic device working in low

Earth orbit. This round-trip communication time delay varies between four

to eight seconds and prevents any effective control interaction between the

ground operator and the telerobotic device in space. Moreover, for some

robotic applications such as the medical robots described in [11], the delay

arises from time-consuming control force computations, which are essential

to ensure the reliable and safe interaction between robots and humans.

The main difficulty of time-delayed systems is that the number of in-

stabilities to be controlled is usually larger than the number of control pa-

rameters. Thus, complete stabilization is impossible for these systems using

traditional time-invariant feedback controls. Therefore, time periodic con-

trol is the most common solution to deal with this difficulty. In [8], Khar-

gonekar et al. showed that compared to time-invariant controls, periodic

controls (time-varying controls) in many cases significantly improve the ro-

bustness of the feedback system. Michiels et al. [13] improved the limitation

of time-invariant output feedback in the stabilization by introducing delays

and time-varying gains. On the other hand, the stability can be improved

by state-dependent on-off controls. Asai et al. [2] introduced an intermit-

tent controller in which the feedback is intermittently switched on and off

according to a switching mechanism defined in the phase plane. This con-

troller, introduced in [2], addressed the potential instability induced by large
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Chapter 1. Introduction

delay, in contrast to the traditional time-invariant feedback controls. In this

thesis, we focus on a special case of time-periodic controls: the act-and-wait

control introduced in [6], [18].

The concept of act-and-wait control states that the control is switched

on for a sampling period (acting period), then it is zero for a certain number

of periods (waiting periods), then it is switched on again, etc. Compared

to the traditional control with continuously applied delayed feedback (as

in [6], [18], which we call continuous control), the act-and-wait control has

advantages due to the larger stability region of control parameters and the

potential deadbeat control. Deadbeat control is the control under which

all of the eigenvalues of the system are zero, so that the system damps

rapidly to zero rather than decaying gradually, as it does for the traditional

continuous control. As we show in §4, for a two dimensional system, the

system under deadbeat control converges to zero equilibrium from any initial

perturbation within at most two on-off cycles. Thus, the deadbeat control

is desirable because the system converges to an equilibrium faster under

deadbeat control than continuous control. This contrast is shown in Figure

1.1, which shows the angular displacement θ(t) of an inverted pendulum

with controller u(t) [17], as given by the linearized equation

θ̈(t)− θ(t) = u(t), (1.1)

which converges to equilibrium given the same initial condition θ(0) = 1.

Here, θ is a dimensionless quantity representing the angular displacement

of pendulum from vertical placement. Clearly, the trivial solution θ = 0 in

equation (1.1) describes the equilibrium to be stabilized. The controller u(t)

consists of a switching factor g(t) and the delayed feedback F (t− τ), which

depends on θ(t − τ) and θ̈(t − τ) for the delay τ . Under the effect of the

switching factor g(t), the control is first switched off for a waiting period of

length tw and then is switched on with an acting period of length ta. As

discussed in detail in §2, the system is stabilized through an appropriate

choice of control parameters P and D which serve as part of the delayed

feedback F (t− τ) as defined in (2.3), (2.4).

2



Chapter 1. Introduction

We compare the behavior of the traditional control with continuously

applied delayed feedback (tw = 0), which is not deadbeat control, with

other cases under act-and-wait control (tw > 0). As shown in Figure 1.1,

deadbeat control is achieved for those cases with act-and-wait control where

the waiting period is longer than the delay time. If tw = τ , the system

converges at the fastest rate. Hence, in this thesis, we always assume that

tw = τ for act-and-wait control, unless otherwise noted.

Another advantage of act-and-wait controller has been verified in [10],

suggesting that stability can be achieved over a larger range of the feedback

delay time for act-and-wait control. In [10], if the delay exceeds a certain

value, the system is unstable under continuous control while it is still stable

under act-and-wait control. In [7], Insperger and Stépán showed that for

certain delays, the sampling period (∆t) has to be small enough to stabilize

the system under continuous control while with act-and-wait control, you

can always obtain a deadbeat control for any ∆t.
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Figure 1.1: The evolution of the angular displacement θ(t) in system (1.1) with
θ(0) = 1, with delay time τ = 0.2, ta = 0.04. The black dotted line represents
the system with continuous control. And others are systems with act-and-wait
control. Blue dash dotted line: tw = 0.08 < τ . Red dashed line: tw = 0.2 = τ .
Magenta solid line: tw = 0.28 > τ . Deadbeat control is achieved for cases with
tw ≥ τ , presented by the red dashed line and magenta solid line, and the strongest
deadbeat control occurs for tw = τ = 0.2.

In this thesis, we use the classical inverted pendulum model or balance
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Chapter 1. Introduction

model to study the effect of delay and noise on this act-and-wait mechanism.

Stabilizing the inverted pendulum with delayed feedback is a classical prob-

lem in human balancing tasks [14] and mechanical systems [12]. We discuss

two types of the act-and-wait control model. The first is the piecewise con-

stant act-and-wait control model (the PWC model), as shown in [7]. This is

motivated by digital control models where control is applied as a piecewise

constant in the interval of a length of the sampling time. The second type

is the frequently varying act-and-wait control model (the FV model), where

the control is updated once in each feedback loop, in contrast to the PWC

model where the control is updated at particular sampling times. The FV

model updates the control more than once during the time interval within

which the control is switched on. The FV model is applicable in biological

models where the delayed feedbacks are more frequent or continuous. The

continuously varying act-and-wait control model (the CV model) serves as

an extreme of the FV model as the frequency of updates approaches infinity.

The continuously varying act-and-wait control (the CV model) is studied in

[6]. From now on, the FV model refers to the act-and-wait model with

frequently varying feedback. The PWC model refers to the act-and-wait

control with piecewise constant feedback updated once in the active period.

The CV model refers to the act-and-wait control with continuously varying

feedback.

In this thesis we focus on the FV model since it captures both the PWC

model and the CV model as two of its extreme cases. It has been shown that

when the delay is small, there are no obvious differences between the PWC

model and the CV model. For example, we can apply the deadbeat control

obtained from the PWC model to the CV model mechanism to stabilize the

system. However, when the delay is large, it is inappropriate to apply the

results from the PWC model to the FV model or CV model since it may lead

to unstable behavior. Here, the FV model is applied to approximate the CV

model in the computational approach and analyze the difference between

the PWC model and the CV model. At the same time, the FV model is

used to compare the PWC model and the CV model in the act-and-wait

context in terms of stability, sensitivity and robustness. We also analyze the

4



Chapter 1. Introduction

effect of more frequent updates on robustness in the presence of noise in the

context of the FV model.

Beside the significant difference between the PWC model and the CV

model, other interesting phenomena arises when the delay gets larger. As

shown in Figure 1.2 (a), we can see that the time series of θ(t) in (1.1) all

exhibit deadbeat behavior, yet large delays reduce the rate of convergence

to the equilibrium given the same initial conditions. Most importantly, the

interaction of delay and noise results in oscillations, as shown in Figure 1.2

(b), (c). In Figure 1.2 (b), with parametric noise, the system with large

delay exhibits damped oscillatory behavior instead of deadbeat damping.

Figure 1.2 (c) shows the evolution of θ(t) driven by external noise, modeled

as additive white noise in the equation of θ(t) (1.1), as discussed in detail in

§4.2. We see from Figure 1.2 (c) that the external noise drives the system

into a sustained oscillation the amplitude of which increases as τ increases,

rather than converging to a steady state equilibrium.
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Figure 1.2: The comparison of the time series for the angular displacement θ(t)
in system (1.1) for different values of τ and ta. Blue solid line: τ = 0.2, ta = 0.04.
Red dashed line: τ = 2, ta = 0.04. Black dash dotted line: τ = 2, ta = 0.4. Figure
(a) shows the comparison of systems under deadbeat control P = P ∗, D = D∗.
Figure (b) shows the comparison of systems with random control parameters P =
P ∗ + .05ξ1, D = D∗ (ξ1 ∼ N(0, 1)). Figure (c) shows the comparison of systems
with external noise (white noise with factor δ = 0.02).

The purpose of this thesis is to investigate the effect of act-and-wait con-

trol in the context of the more general model, the FV model. Under the wide

scope of the FV model, we studied the influence of the delay, different choices

of the acting period length ta, the frequencies of varying feedbacks, and the

noise sensitivities through both analytical and numerical approaches. In §2,
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Chapter 1. Introduction

we give the computational analysis of stability regions for different values

of τ and ta. In §3, we introduce the FV model and compare the PWC, FV

and CV models in the context of deadbeat controls and eigenvalues. In §4,

we investigate the noise sensitivity and the interaction of noise and delay

for two different sources, parametric randomness and external fluctuations.

The goal is to understand novel dynamics resulting from the combined ef-

fects of time-delay, on-off control and noise sensitivity which are generic and

therefore expected to be prevalent in a wide range of balancing systems.

The remainder of this thesis is organized as follows. The basic model

of an inverted pendulum with controller u(t) is presented in §2.1. We de-

compose the controller u(t) into two parts: a switching factor g(t) and the

delayed feedback F (t− τ). The switching factor g(t) distinguishes the act-

and-wait control from the traditional continuous control. We introduce two

kinds of feedback: the continuously varying feedback and the piecewise con-

stant feedback. These two different feedback mechanisms distinguish the

PWC model from the CV model. In §2.2, we give the mathematical expres-

sion of the CV and PWC models in piecewise differential equations and the

corresponding analytical solutions. In §2.3, we analyze the stability of the

CV and PWC models through their stability regions and deadbeat controls.

We discuss the effect of large delay by studying how it changes the size and

shape of the stability regions. These changes in the stability regions make

the system sensitive to parametric and external noise. We compare dead-

beat control parameters and stability regions for different choices of ta when

the delay is large.

In §3, we introduce the FV model, which captures the CV and PWC

models as two of its extreme cases. In §3.1, we compare the differences

between the CV and PWC models, which are problematic when τ is large.

This gives us the motivation to consider a more general model, the FV model.

In §3.2, we give the mathematical analysis of the FV model and compare

the CV, PWC and FV models for small ta � 1 and general ta < 1 for large

τ . We give the general analytical solutions for the deadbeat parameters

P ∗, D∗ and discuss the asymptotic behavior of eigenvalues and deadbeat

parameters.

6



Chapter 1. Introduction

In §4, we consider the noise sensitivity and the interaction of noise and

delay. In §4.1, we explore the effect of parametric noise on the stabilization

of the act-and-wait model. We study the probability density of the criti-

cal eigenvalues and the decay rate under parametric noise. We find that

parametric noise can reduce the convergence rate to the equilibrium, par-

ticularly for larger values of τ . The interaction of delay and external noise

is studied in §4.2. We analyze the system with external noise via two al-

ternating Ornstein-Uhlenbeck (O-U) type processes in the waiting period

and the acting period. We integrate the O-U type process and calculate the

expectation and variance of θ for the PWC model for specific times that

are integer multiples of the period. We also study how the delay induces

the amplification of the input noise. Finally, a summary and discussion are

presented in §5.

7



Chapter 2

The Model for act-and-wait

control

2.1 Basic model with continuously varying

control

We consider the task of vertically balancing an inverted pendulum. Upon an

appropriate time scaling and linearization, the equations of motion around

θ = 0 corresponding to the pendulum at vertical may be written as [17]

θ̈(t)− θ(t) = u(t),

u(t) = g(t)F (t− τ). (2.1)

Here θ is a dimensionless quantity representing the angular displacement of

the stick from vertical θ = 0. Clearly, the trivial solution θ = 0 in equations

(1.1) describes the equilibrium to be stabilized. The controller u(t) consists

of a switching factor g(t) with values 0, 1 and the delayed feedback F (t−τ).

In §2 and §3, we first consider the deterministic model before studying the

effects of noise in §4.

This linearized equation (1.1) around θ = 0 describes the motion of

an inverted pendulum with an applied torque [14], [19], where F denotes

pivot control force. The model (1.1) also provides a simple model of human

postural sway where F represents ankle torque [2]. In other contexts, (1.1)

also captures the motion of a vertical rod controlled by a moving cart [12],

[15] if the cart is much more massive than the pendulum.

8



2.1. Basic model with continuously varying control

The factor g(t) is an on-off switching factor which takes the values of 1

or 0. When g(t) is 0, no control is applied to the system. If g(t) = 1, the

control is switched on and takes the value of F . In general, for act-and-wait

control, the control alternates between on and off. The length of period

when control is on is ta while the length of period when control is off is tw.

The mathematical definition of g(t) is

g(t) =

{
0, if lT < t ≤ tw + lT, l ∈ Z

1, if tw + lT < t ≤ tw + ta = (l + 1)T , (2.2)

where T = tw + ta denotes the period of act-and-wait control loop and

l is an integer. In traditional continuous control [14], [16], the control is

continuously applied to the system without a waiting period, corresponding

to tw = 0 and g(t) = 1. Then the control force F is continuously applied

to the system. The controller u(t) = g(t)F (t) with g(t) = 1 is called the

continuous controller [2], [7].

The force F is often considered as an autonomous feedback with delay

composed of a linear combination of the position θ(t− τ) and angular speed

θ̇(t− τ) at time t− τ ,

F (t− τ) = −Dθ̇(t− τ)− Pθ(t− τ), (2.3)

where τ is delay. This kind of feedback in (2.3) is very common in biological

applications where the time delay in (2.3) is used to model the reaction time

between perceiving a stimulus and initiating an control action, and is often

due to the physical mechanism. For example, in the task of human balancing

of a stick placed at the fingertip, by the time a person’s finger is trying to

move accordingly to control the stick, the finger’s position is being guided

by the information that is already 0.2s old [5], due to the time needed for

the electrical impulse to travel through nerve cells. At the time when the

finger moves to balance the stick, the stick may have slightly changed its

position and angular speed. Thus the feedback given to balance the stick is

always delayed due to the reaction time modeled by τ in equation (2.3).

Yet the feedback is not necessarily continuous as in (2.3) [15], [19]. In the

9



2.2. Continuously varying vs piecewise constant act-and-wait control

digital force control system where digital computers act as system controllers

[1], [4], [9], the feedback is only updated once at time tj over a fixed sampling

period [tj , tj+1). In this case, we write the feedback as

F (t− τ) = −Dθ̇(tj − τ)− Pθ(tj − τ) for t ∈ [tj , tj+1). (2.4)

The delay τ in (2.4) models the time-consuming control force computations

[9] that are essential before application of the control. For example, these

may be necessary for the reliable and safe interaction between robots and

humans.

2.2 Continuously varying vs piecewise constant

act-and-wait control

In [6] and [7], the act-and-wait control concept is introduced for systems

with continuously varying feedback (CV) and piecewise constant feedback

(PWC) respectively. The point of the method is that the switching factor

g(t) defined in (2.2) is periodically switched on (act) and off (wait). It is

natural for a delayed system to have a waiting period in order to wait long

enough to see the effect of the feedback. It is shown that if the duration of

waiting (when the control is turned off) is larger than the feedback delay,

then the system can be better stabilized than those cases with tw < τ .

Here we introduce the mathematical form of the CV controller gF where

g is defined in (2.2) and F as in (2.3) with ta > 0 and tw ≥ τ . Then the

delayed feedback term is switched off for a period of length tw (wait), and it

is switched on for a period of length ta (act). If we denote x = (θ, θ̇)T , then

system (1.1) with continuously varying feedback F (2.3) can be written in

the time periodic DDE form,

ẋ(t) = Ãx(t) + g(t)B̃Dx(t− τ), (2.5)

10



2.2. Continuously varying vs piecewise constant act-and-wait control

where

Ã =

(
0 1

1 0

)
, B̃ =

(
0

1

)
, D = (−P,−D). (2.6)

Similarly, for PWC feedback (2.4), we have

ẋ(t) = Ãx(t) + g(t)B̃Dx(tj− τ), t ∈ [tj , tj+1), tj = j×∆t, j ∈ Z, (2.7)

with matrices defined as in (2.6). Notice here that the duration of the

off period tw and on period ta are chosen to be multiples of the sampling

interval ∆t in (2.7). For the digital control system where the PWC model

is generally applied, sampling is the reduction of a continuous signal to

a discrete signal. Sampling is performed by measuring the value of the

continuous function every ∆t seconds, which is called the sampling interval.

It is natural to combine tw and ta into the sampling period of system (2.7).

Also this enables us to convert system (2.7) into a discrete system as

x(tj+1) = Ax(tj) + g(tj)BDx(tj − τ), (2.8)

where

A = exp(Ã∆t) =

(
cosh(∆t) sinh(∆t)

sinh(∆t) cosh(∆t)

)
,

B = (exp(Ã∆t)− I)Ã−1B̃ =

(
cosh(∆t)− 1

sinh(∆t)

)
,

which we obtained by integrating (2.7) over the interval [tj , tj+1), tj =

j ×∆t, j ∈ Z. The notation of the scheme is denoted in Table 2.1, which is

used throughout the paper.

In [6] and [7], it is shown that if tw ≥ τ , the system can be better

stabilized. So we assume tw ≥ τ and 0 < ta ≤ τ . In this case, (2.5) can be

considered as an ordinary differential equation (ODE) in [lT, tw+ lT ) and as

a DDE in [tw + lT, (l+ 1)T ). If t ∈ [lT, tw + lT ), then g(t) = 0 (the delayed

feedback in the control is turned off), and the solution of (2.5) associated

11



2.2. Continuously varying vs piecewise constant act-and-wait control

Table 2.1: Notation of variables

Variable Description

h mesh size of simulations
∆t the time length when feedback F is fixed
τ time lag
ta the duration when control is on
tw the duration when control is off
T the duration of one control period

m = ta
∆t the ratio of ta to ∆t

n = tw
∆t the ratio of tw to ∆t

k = T
∆t the ratio of T to ∆t

with the initial state x(lT ), can be written as

x(t) = eÃtx(lT ), t ∈ [lT, tw + lT ). (2.9)

If t ∈ [tw + lT, (l + 1)T ), then g(t) = 1 (the delayed feedback is switched

on). Since ta ≤ τ , and the solution over the interval [lT, lw + lT ) is already

given by (2.9), system (2.5) can be written in the form

ẋ(t) = Ãx(t) + B̃DeÃ(t−τ)x(lT ), t ∈ [tw + lT, (l + 1)T ). (2.10)

Solving (2.10) as an ODE over [tw+lT, (l+1)T ) with x(tw+lT ) = eÃtwx(lT )

as an initial condition, we obtain

x((l+1)T ) = ΦCV x(lT ), ΦCV = eÃT+

∫ T

tw

eÃ(T−s)B̃DeÃ(s−τ)ds. (2.11)

The placement of eigenvalues of ΦCV at zero is not ensured because they

depend nonlinearly on the components ofD as shown in (3.15). The stability

is obtained by choosing the components of matrixD to give eigenvalues with

modulus ≤ 1.

For the PWC control, the system (2.7) has the same solution as shown in

(2.9) for t ∈ [lT, tw+ lT ). If t ∈ [tw+ lT, (l+1)T ), then g(t) = 1 (the delayed

12



2.3. Deadbeat control

feedback in the control is switched on). Since the feedback F depends on

tw only, we can write (2.7) in the form

ẋ(t) = Ãx(t) + B̃DeÃ(tw−τ)x(lT ), t ∈ [tw + lT, (l + 1)T ). (2.12)

Solving (2.12) as an ODE over [tw+lT, (l+1)T ) with x(tw+lT ) = eÃtwx(lT )

as an initial condition, we obtain

x((l + 1)T ) = ΦPWCx(lT ), ΦPWC = eÃT +

∫ T

tw

eÃ(T−s)B̃DeÃ(tw−τ)ds.

(2.13)

As shown in Appendix A.1, we can write ΦCV and ΦPWC as

ΦCV = Q

(
eta+τ − (P+D)

2 etata
(P−D)

2
e−ta−eta

2
(P+D)

2
eta−e−ta

2 e−(ta+τ) + (P−D)
2 e−tata

)
Q′ = QΛ∞Q

′,

ΦPWC = Q

(
eta+τ + P+D

2 (1− eta) P−D
2 (1− eta)

P+D
2 (1− e−ta) e−(ta+τ) + P−D

2 (1− e−ta)

)
Q′ = QΛ1Q

′,

where

Q =
1√
2

(
1 1

1 −1

)
. (2.14)

2.3 Deadbeat control

As a result from [6] and [7], it is possible to obtain deadbeat control by an

optimal choice of the constants P and D appearing in (2.3), (2.4) in act-and-

wait control for tw ≥ τ . The system (2.5) or (2.7) is asymptotically stable

if all of the eigenvalues of matrix ΦCV or ΦPWC , are inside the unit circle

of the complex plane. The decay rate ρ is defined in terms of the critical

eigenvalue r,

r = max{|λi|, i = 1, 2, · · · },

ρ = r
1
T . (2.15)

13



2.3. Deadbeat control

where λi(i = 1, 2) are the eigenvalues of matrix ΦCV or ΦPWC . The place-

ment of the eigenvalues of ΦPWC at zero is determined using their linear

dependence on the components of D as shown in (2.19). The optimal pa-

rameters P ∗, D∗ at which the smallest decay rate is obtained are given by

ρ(P ∗, D∗) = min
∀P,D
{ρ(P,D)}. (2.16)

If ρ(P ∗, D∗) = 0, the deadbeat control that is desired is obtained. We call

P ∗, D∗ the deadbeat control parameter.

For the sake of convenience, we introduce the intermediate variables b

and c as follows,

b = Trace(ΦPWC) = λ1 + λ2, c = 4×Determinant(ΦPWC) = 4λ1λ2,

(2.17)

where λ1, λ2 (|λ1| ≥ |λ2|) are the two eigenvalues of ΦPWC . The stability

region of matrix ΦPWC is bounded by three straight lines: c = 4, c =

4b − 4, c = −4b − 4, corresponding to ρ = 1 as shown in Figure 2.1. In

general, the contour plots for ρ = r
1
T in the b− c plane are formed by three

straight lines: c = 4r2, c = 4r(b− r), c = −4r(b+ r). Because we focus on

the decay rate ρ rather than the real eigenvalues, we express ρ in terms of

b, c,

ρ =


(
1

2
(b+

√
b2 − c))

1
T , if b ≥ 0 and b2 ≥ c

(
1

2
(−b+

√
b2 − c))

1
T , if b < 0 and b2 ≥ c

(
√
c/4)

1
T , if b2 < c. (2.18)

Also, b and c are linear functions of P and D for tw ≥ τ .(
b

c

)
=

(
λ1 + λ2

4λ1λ2

)
= R1

(
P

D

)
+ S, (2.19)

14



2.3. Deadbeat control

where

R1 =

(
1− cosh(ta) − sinh(ta)

4(cosh(T )− cosh(τ)) −4(sinh(T )− sinh(τ))

)
, S =

(
2 cosh(τ + ta)

4

)
.

−3 −2 −1 0 1 2 3
−5

0

5

 b

c

Figure 2.1: The stability region in the b − c plane. The red line represents the
contour curve of ρ = 1. The green line: ρ = 0.7

1
T . The blue line: ρ = 0.4

1
T . The

origin is denoted by the black star indicating the deadbeat control where ρ = 0.

In order to get the deadbeat control, we set λ1 = λ2 = 0 ⇐⇒ b = c = 0.

For example, for the PWC model, we have the following relationship between

P , D and the eigenvalues of ΦPWC ,(
λ1 + λ2

4λ1λ2

)
=

(
−2 sinh( ta2 )[sinh( ta2 )P + cosh( ta2 )D] + 2 cosh(τ + ta)

8 sinh( ta2 )[sinh(τ + ta
2 )P − cosh(τ + ta

2 )D] + 4

)
.

For λ1 = λ2 = 0, we solve for P ∗, D∗ as follows,(
P ∗

D∗

)
= −R1

−1 · S, (2.20)
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2.3. Deadbeat control

which yields

P ∗ =
cosh(2τ + 3ta

2 )

2 sinh( ta2 ) sinh(ta + τ)
,

D∗ =
sinh(2τ + 3ta

2 )

2 sinh( ta2 ) sinh(ta + τ)
. (2.21)

Figure 2.2 shows the contour plots for the decay rates in the rescaled

P − D plane with different τ and ta. We compare the stability regions of

continuous control (g = 1) with act-and-wait control as discussed in [7]. For

the case with the control on for all time (g = 1) for small τ = 0.2 with

minimized decay rate ρ∗ = 0.1944 > 0, we notice that the stability area

is a D-shaped area, similar to the original model described in [19]. The

subplot Figure 2.2 (b) shows the stability region of the act-and-wait PWC

model (2.7). We get a larger stability region and deadbeat control ρ∗ = 0

indicating that the act-and-wait control improves the stability. The black

star in subplot (b), (c), (d) corresponds to deadbeat control parameters P ∗,

D∗ for the act-and-wait control.

Also as shown in the bottom row of Figure 2.2, the stability regions

are quite different for different values of ta = ∆t. First of all, when ta =

∆t decreases, the deadbeat control parameters P ∗, D∗ grow approximately

linearly with 1/ta because the control is turned on for a shorter length of

time. In order to damp the system to the equilibrium, the control force gF

(2.4) has to be larger in the shorter active period. This behavior can be seen

from the asymptotic behavior of (2.21) for 0 < ta � 1,

P ∗ ≈ 1

2 sinh( ta2 )

cosh(2τ)

sinh(τ)

1 + tanh(2τ)3ta
2 +O(t2a)

1 + coth(τ)ta +O(t2a)
≈ 1

ta

cosh(2τ)

sinh(τ)
(1 + C1(τ)ta)

D∗ ≈ 1

2 sinh( ta2 )

sinh(2τ)

sinh(τ)

1 + coth(2τ)3ta
2 +O(t2a)

1 + coth(τ)ta +O(t2a)
≈ 1

ta

sinh(2τ)

sinh(τ)
(1 + C2(τ)ta).

(2.22)

If τ > 1, C1(τ) ≈ C2(τ) ≈ 0.5. In general, (1+C1(τ)ta), (1+C2(τ)ta) is a

16



2.3. Deadbeat control

correction term near 1 for small ta. As we can see from (2.22), the deadbeat

control parameters P ∗, D∗ depend on the factor
1

ta
which becomes large for

small ta. So we use the scaled parameters p = P×ta ≈
cosh(2τ)

sinh(τ)
(1+C1(τ)ta)

and d = D× ta ≈
sinh(2τ)

sinh(τ)
(1 +C2(τ)ta) in Figure 2.2 to depict the stability

regions in order to compare different cases.

For the case when the delay is large τ = 2, the stability regions in Figure

2.2 (c) and (d) are both thin. The rescaled stability region moves upward

and to the right when ta gets larger because there is a correction factor

(1 + .5ta) in (2.22) which increases with ta. However, for this τ , it is hard

to tell which choice of ta is better simply based on the size and the location

of the stability region. In the later section §3.1, we explore the behavior of

certain performance measures for different models as a function of ta.

After the rescaling, the stability region shown in Figure 2.2 is largely

decided by the delay τ . As τ increases, the stability regions become small

and thin in the p− d plane as shown in Figure 2.2 (c) and (d). The change

of the shape of the stability region can be explained in (2.19) by recognizing

that R1
−1 is the transformation of the generic stability region in the b-c

plane (Figure 2.1) to the stability region in the P-D plane (Figure 2.2),

affecting both the overall area and the interior angles of the stability region.

First of all, the compression factor det(R1) represents the ratio of the

area of the stability region in the b− c plane to the one in the P −D plane,

with

det(R1) = 16 sinh2(
ta
2

) sinh(τ + ta). (2.23)

The larger det(R1) is, the smaller the stability region in P and D is. As

we can see from (2.23), det(R1) grows exponentially with τ , also shown in

Figure 2.3. Thus the area of stability region in the P − D plane becomes

smaller overall as τ increases. Then for larger values of τ , there is a greater

variation in the decay rate ρ for small variations in control parameters devi-

ating from P ∗, D∗. This change in det(R1) adds to the sensitivity to both

parametric and external noise when τ is large, as can be seen by comparing

Figure 2.2 (b) and (c). Note that the general form of Rm shown in Figure
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Figure 2.2: The comparison of stability regions using the normalized parameters
p = P × ta and d = D × ta. The brown line shows the stability boundary where
the decay rate is ρ = 1. The green line shows the contour curve where ρ = 0.7.
The blue line shows the contour curve where ρ = 0.4. The black star shows where
the deadbeat control parameters lie (P ∗, D∗ corresponds to ρ = 0). Top and Left:
The system with continuously applied PD controller τ = 0.2, minimized decay rate
ρ∗ = 0.0805. Top and right: The PWC model with small delay, τ = 0.2, ta =
0.04, ρ∗ = 0. Bottom and left: The PWC model with large delay τ = 2, ta = 0.04,
ρ∗ = 0. Bottom and right: The PWC model with large delay τ = 2, ta = 0.4,
ρ∗ = 0.
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2.3. Deadbeat control

2.3 is discussed in §3 for which R1 is a special case.

Also, as we can see from (2.23), for small ta and τ � ta, the determinant

det(R1) can be approximated by det(R1) ≈ 4 sinh(τ)t2a given a fixed value of

τ . This explains why the stability region in Figure 2.2 (d) (τ = 2, ta = 0.4)

is smaller than the stability region in Figure 2.2 (c) (τ = 2, ta = 0.04). This

also implies that we can not choose large values for the acting period length

ta, since otherwise we would get a smaller stability region.

Second, the transformation (2.19) also changes the interior angles of the

stability regions. The interior angles are the angles between the vectors

V1, V2, V3 which form the stability boundary in P and D as shown in

Figure 2.2. The vectors Vi are given by (2.19) and the vectors

v1 = (1, 4)′, v2 = (−1, 4)′, v3 = (−4, 0)′,

which are the three vectors lying on the stability boundary in the b−c plane

as indicated by the red triangle in Figure 2.1,

Vi = R1
−1vi =

−1

8 sinh(ta/2) sinh(τ + ta)

(
4 cosh(τ + ta/2) − cosh(ta/2)

4 sinh(τ + ta/2) sinh(ta/2)

)
vi.

The three interior angles of the stability region ψ1, ψ2, ψ3 are then deter-

mined by

cos(ψ1) =
(V1, V2)

|V1| × |V2|
= − tanh(τ)

cos(ψ2) =
(V2, V3)

|V3| × |V3|
=

√
cosh(3τ + ta) + 1

cosh(3τ + ta) + cosh(τ + ta)

cos(ψ3) =
(V1,−V3)

|V2| × |V3|
=

√
cosh(3τ + ta)− 1

cosh(3τ + ta) + cosh(τ + ta)
. (2.24)

Then the largest interior angle of the stability region (ψ1 in Figure 2.2

(b)) depends only on τ regardless of the value of ta. As τ increases, ψ1

increases to π while others decrease (ψ2, ψ3 → 0 in Figure 2.2 (b)) as shown

in Figure 2.3. Then there is a thin triangular stability region with a large
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2.3. Deadbeat control

obtuse angle and two small acute angles when τ is large, with the contour

curves in Figure 2.2 squeezed together. As a result the decay rate ρ increases

rapidly with variation of P , D away from P ∗, D∗. Hence, the system is

sensitive to both parametric and external noise.
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Figure 2.3: Left: The determinant of matrix Rm vs τ . ta = τ/5 varying along
with τ . Note that the general form of Rm is discussed in §3 in which R1 is a special
case. The red marked line with circle: m = 1, that is, the PWC case. The black
marked line with star: m = 10. The blue marked line with square: m = ∞, that
is, the CV case. Right: The interior angles of the stability region shown in Figure
2.2 (b), (c), (d). The red marked line with triangle: the obtuse interior angle ψ1

(2.24). The black marked line with square: the acute interior angle ψ2 (2.24). The
blue marked line with star: the acute interior angle ψ3 (2.24).

In reality, the control force may not be executed exactly at the deadbeat

control parameters P = P ∗ and D = D∗, but may include some errors

between P and D and the deadbeat control parameters P ∗, D∗. Based on

the above analysis, we conclude that for the case with small τ , not only is

the rescaled stability region larger, but also the contour curves around the

deadbeat control are less close together. Then the system is less sensitive to

parametric noise or controlling force error.

For small τ , despite of the errors in P , D, the decay rate remains small in

the neighborhood of P ∗, D∗, and the system has nearly deadbeat damping

behavior. However for large τ , a small error in P or D can lead to a large

increase in decay rate. Instead of deadbeat damping behavior, the system

decays slowly to the equilibrium which gives the system potential sensitivity

to noise (Figure 1.2). This point is studied in detain in §4.
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2.3. Deadbeat control

Similarly we can see from Figure 2.4 that for ρ near the critical value

ρ = 1, the system can oscillate strongly before converging to zero. If ρ

gets close to 1, the transient of the system to zero can be very different for

different eigenvalues given the same decay rate. From Figure 2.4, we can

see that those with zero traces, that is, λ1 + λ2 = 0, oscillate less and decay

faster than the ones with nonnegative traces (shown by the magenta dash

dotted line and the red marked line with +’s) even though they have the

same value of decay rate ρ = 0.7.
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 t

θ
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Figure 2.4: The evolution of the system (1.1) under the PWC control, τ = 2, ta =
0.4 for different decay rates and eigenvalues. The blue dashed line shows the case
with deadbeat control with zero decay rate and zero eigenvalues, ρ = λ1 = λ2 = 0.
Other lines have the same decay rate ρ = 0.7 but different values of eigenvalues.
The black marked line with x’s: λ1 = 0.7i, λ2 = −0.7i. The green solid line:
λ1 = 0.7, λ2 = −0.7. The magenta dash dotted line λ1 = 0.7, λ2 = 0.7. The red
marked line with +’s: λ1 = −0.7, λ2 = −0.7.
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Chapter 3

Cases with frequently

varying feedback

3.1 Formulation and comparison

In §2.3, we notice that for large values of τ , the stability region of the PWC

model shrinks and becomes thin (Figure 2.2). Thus the system is much more

sensitive to errors in control parameters. Moreover, though very simple, the

PWC model is limited when delay is large. If we use the PWC model, then

we have a choice of ta. However, as we can see from Figure 2.2, our choice

of ta may not necessarily yield a preferred change in stability. Although

zero decay rate is always obtained by choosing the right P ∗ and D∗, there

are rapid changes in the decay rate ρ in the neighborhood of P ∗ and D∗ for

larger values of τ .

Furthermore, the PWC model is only applicable to the system with

digital control. Yet in some biological applications, the feedback may be

continuous, as shown in (2.3), or updated very frequently within the acting

period of length ta.

For small delay, when we compute the deadbeat control parameters P ∗,

D∗ (2.16) for two different models, the PWC model (2.7) and the CV model

(2.5), we see that they are close in value, for reasonable values of acting

period length ta. Then, if we interchange deadbeat control parameters P ∗,

D∗, we observe nearly deadbeat damping behavior. This is because, as

we see from the stability region (Figure 2.2), the contour lines for ρ are

evenly spread out. Any slight variation in P , D near the deadbeat control

parameters P ∗, D∗ still corresponds to a small value of decay rate, which
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3.1. Formulation and comparison

gives near deadbeat damping behavior.

However, if the delay τ is large, the comparison of the PWC model

(2.7) and the CV model (2.5) depends on a number of factors. First, if we

consider the CV model that varies continuously in time, we would expect

that any approximation to it should include small ∆t since ∆t denotes the

time between observations in signal processing. Hence, if we take n =
τ

∆t
large (as defined in Table 2.1), ta = ∆t is small in the PWC model (2.7) and

the deadbeat control parameters and the stability region of the PWC model

(2.7) are almost the same as the CV model (2.5) with the same ta. We can

see from the matrices ΦPWC (2.13) and ΦCV (2.11), that the eigenvalues of

these two matrices are almost the same when ta is small (shown in (3.12)).

However, as we discussed before in §2.3, for small values of ta, the deadbeat

control parameters P ∗ and D∗ grow linearly with 1/ta in order to ensure

the stability of the system (2.7), (2.5). This makes the control force F in

(2.3) and (2.4) larger. Nevertheless, in reality, the control force cannot be

too large due to physical limitations. Moreover, for small ta, the system is

very sensitive to parametric noise, since the control is turned on for a short

time, as shown in Figure 1.2.

Instead, if we consider small to moderate values of n =
τ

∆t
, there is

a significant difference between matrices ΦPWC (2.13) and ΦCV (2.11) for

the PWC model (2.7) and the CV model (2.5), which results in different

values of P ∗, D∗, as shown in Table 3.1. Therefore, we would not want to

approximate the deadbeat control parameters for the CV model by the P ∗,

D∗ from the PWC model, since this difference leads to instability when we

apply P ∗, D∗ of (2.5) to (2.7) and vice versa as shown in Figure 3.1. In

the left column of Figure 3.1, as we apply the deadbeat control parameters

P ∗ = 22.6011 and D∗ = 22.5965 of the PWC model (2.7) to the CV model

(2.5), θ(t) oscillates and diverges instead of converging to zero equilibrium.

We observe similar results in the right figure of Figure 3.1. As we apply the

deadbeat control P ∗ = 18.6285 and D∗ = 18.6232 of the CV model (2.5) to

the PWC model (2.7) , the PWC model (2.7) diverges too.

To summarize, for systems with large delay τ , we have to make ta larger

in order to have a realistic control force. This means n (Table 2.1) cannot be
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3.1. Formulation and comparison

too large for the PWC model. Yet for small to moderate values of n (Table

2.1), the PWC model cannot be used to model the CV model because it

leads to instability.

Additionally, according to the Nyquist criterion [3], the sampling period

length ∆t has to fall in a reasonable range to capture the information of

the underlying system. Usually, the sampling frequency is no greater than

one-half of the natural frequency, which means we want ta ≥ 2∆t.

Based on these observations, a more flexible feedback model is needed

when considering cases with larger values of τ . We also want to model

systems where the control varies continuously or frequently in time (
ta
∆t
→

∞). In that case we would not tie sampling size ∆t directly to active period

length ta.

Table 3.1: Optimal control for different feedbacks

Parameter τ = 0.2 τ = 2

CV P ∗ = 113.09,D∗ = 46.88 P ∗ = 18.63,D∗ = 18.62
PWC P ∗ = 114.28,D∗ = 49.14 P ∗ = 22.60,D∗ = 22.60

Now we introduce a new act-and-wait model called the Frequent Varying

(FV) model to allow the feedback to vary more frequently within the acting

period (ta ≥ 2∆t). Hence, instead of the control being piecewise constant

over ta, we subdivide ta into m pieces and let the feedback change m times

within time ta. More specifically, ta = m ·∆t, where ∆t is the sampling size.

The control is fixed within time ∆t. As in the PWC model (2.7), we have

the differential equation of the form

ẋ(t) = Ãx(t) + g(t)B̃Dx(tj− τ), t ∈ [tj , tj+1), tj = j×∆t, j ∈ Z. (3.1)

The only difference here is that ta = m · ∆t, m ∈ N while for the PWC

model, ta = ∆t, that is, m = 1. This change gives a more general model,

where the feedback is updated more frequently than the PWC model . As
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Figure 3.1: Simulations of the system (1.1) with different feedback cases. The top
row: The delay is τ = 0.2 and the acting period length is ta = 0.04 for all the cases.
The blue dash dotted line: the PWC model (2.7), that is, m = 1 in (3.1). The
black marked line with +’s: the CV model (2.5), that is, m = ∞ in (3.1). Left:
P = 114.28 and D = 49.14 (shown in Table 3.1), that is, the deadbeat control of
the PWC model (2.7) is applied to all the cases represented by different lines in
the figure. Right: P = 113.09 and D = 46.88 (shown in Table 3.1), that is, the
deadbeat control of the CV model (2.5) is applied to all the cases in the figure.
The bottom row: The delay is τ = 2 and the acting period length is ta = 0.4 for
all the cases. The red dashed line: The PWC model (2.7), that is, m = 1 in (3.1).
The green solid line: The FV model (3.1) with m = 2. The blue dash dotted line:
The FV model (3.1) with m = 10. The black marked line with +’s: The CV model
(2.5), that is m = ∞ in (3.1). Left: P = 22.60 and D = 22.60 (shown in Table
3.1), that is, the deadbeat control of the PWC model (2.7) is applied to all the
cases represented by different lines in the figure. Right: P = 18.63 and D = 18.62
(shown in Table 3.1), that is, the deadbeat control of the CV model (2.5) is applied
to all the cases in the figure.
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mentioned before in (2.8), we can rewrite (3.1) in a discretized system

x(j + 1) = Ax(j) + g(j)BDx(j − n). (3.2)

For the sake of simplicity of further discussion, we denote the time system

by {x(j), j ∈ Z} where x(j) = x(tj), tj = j ×∆t, j ∈ Z, and g(j) = g(tj),

where g(t) is the same as defined in (2.2). Then m =
ta
∆t

and n =
τ

∆t
, as

defined in Table 2.1.

The frequency of feedback in the FV model (3.2) increases asm increases.

When m −→ ∞, the system resembles the CV model (2.5). For the PWC

model (2.7) , ta = ∆t, that is m = 1. Thus the PWC model (2.7) is one

particular example of the FV model when m = 1. The CV model (2.5) is

approximated by the FV model with m −→ ∞. Thus, the FV model (3.2)

is a more general model, which includes the PWC model (2.7) and the CV

model (2.5) as two of its special cases. From now on, we can use the FV

model to discuss the stability of general act-and-wait control.

When the delay is small, there is no significant difference between cases

with different values of m. As two extremes, the CV model and the PWC

model behave similarly, since they have similar deadbeat control parameters

P ∗, D∗. If we apply the deadbeat control of the CV model to the PWC

model or vice versa, robustness still is ensured, as shown in Figure 3.1.

Yet for large delay, given different values of m, that is, depending on the

frequency with which the feedback is updated, the system (3.2) has distinct

deadbeat control parameters P ∗, D∗ corresponding to different values of m.

This difference in P ∗, D∗ leads to instability if we exterchange the control

parameter values, as shown in Figure 3.1. If we apply the deadbeat control

P ∗ and D∗ of the PWC model (m = 1 in (3.2)) to the FV model (m ≥ 2 in

(3.2)), the system (3.2) blows up, as shown in the left column of Figure 3.1.

On the other hand, if we apply the deadbeat control parameters P ∗ and D∗

of the CV model (m =∞ in (3.2)) to cases with different m, including the

FV model and the PWC model in which m <∞ in (3.2), the system would

oscillate more for smaller values of m, so that at some m, the system would

diverge instead of converge to zero. This behavior can be seen in the PWC
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model (m = 1) in (3.2), as shown in the right column of Figure 3.1. Next,

we compare the FV, CV and PWC models through mathematical analysis

in §3.2.

3.2 Mathematical analysis of FV model

As we observed in Figure 3.1, there are instabilities if we exchange the

deadbeat control parameters for the cases with different m. As an extreme,

there is a significant difference of the deadbeat control parameters for the

PWC model (m = 1) and the CV model (m = ∞) as shown in Table 3.1.

To illustrate where the difference comes from, we look at the mathematical

expression of the time variation of x over one feedback loop. First, we

consider one step in (3.2),

x(n+m) = Ax(n+m− 1) + g(n+m− 1)BDx(m− 1),

where n and m are defined in Table 2.1. We again apply (3.2) to x(n+m−1)

to get,

x(n+m) = A2x(n+m−2)+g(n+m−1)BDx(m−1)+g(n+m−2)ABDx(m−2).

We then iterate (n+m) times until we get x(n+m) in terms of x(0),

x(n+m) = An+mx(0) + g(n+m− 1)BDx(m− 1)

+ g(n+m− 2)ABDx(m− 2) + · · ·+ g(n)Am−1BDx(0)

+ g(n− 1)AmBDx(−1) + · · ·+ g(0)Am+n−1BDx(−n).

Since g(n− 1) = · · · = g(0) = 0 according to (2.2), we have

x(n+m) = An+mx(0) + g(n+m− 1)BDx(m− 1)

+ g(n+m− 2)ABDx(m− 2) + · · ·+ g(n)Am−1BDx(0).
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3.2. Mathematical analysis of FV model

Subsequently, we combine terms above together with g(n+m− 1) = · · · =
g(n) = 1 and x(m− i) = Am−ix(0) to get

x(n+m) = [An+m +BDAm−1 +ABDAm−2 + · · ·+Am−1BD]x(0)

= Φmx(0). (3.3)

where

Φm = QΛmQ
−1, Q =

1√
(2)

(
1 1

1 −1

)
, (3.4)

and

Λm =

(
e(τ+ta) − P+D

2 meta(1− e−∆t) P−D
2 (1− e∆t) sinh(ta)

sinh(∆t)
P+D

2 (1− e−∆t) sinh(ta)
sinh(∆t) e−(τ+ta) − P−D

2 me−ta(1− e∆t)

)
.

(3.5)

For ∆t → 0 ( m → ∞), the form of (3.3) has a limit that corresponds

to the CV model (2.5) with

ΦCV = Φ∞ = lim
m→∞

Φm = QΛ∞Q
−1, (3.6)

where the corresponding matrix Λ∞ = limm→∞Λm is

Λ∞ =

(
eτ+ta − P+D

2 · ta · eta −P−D
2 · sinh(ta)

P+D
2 · sinh(ta) e−(τ+ta) + P−D

2 · tae−ta

)
. (3.7)

This is because, as shown in Appendix A.2, the Taylor expansion for large

m is

Λm ≈ Λ∞ +
∆t

2

(
P+D

2 tae
ta −P−D

2 sinh(ta)

−P+D
2 sinh(ta)

P−D
2 tae

−ta

)
. (3.8)

Thus Λ∞ = limm→∞Λm = lim∆t→0 Λm since ∆t =
ta
m

given fixed ta.

On the other hand, for m = 1, (3.3) refers to the PWC model (2.7) where

ta = ∆t. We have shown in Appendix A.1 that matrix ΦPWC in (2.13) is

equal to Φ1 in (3.3) when m = 1. Under the same decomposition as in (3.4),

we have

ΦPWC = Φ1 = QΛ1Q
−1, (3.9)
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where the corresponding matrix Λ1 is

Λ1 =

(
e(τ+ta) + P+D

2 (1− eta) P−D
2 (1− eta)

P+D
2 (1− e−ta) e−(τ+ta) + P−D

2 (1− e−ta)

)
. (3.10)

Hence, now we can see from the matrix formulation that the FV model,

as given in (3.3), is a more general model for act-and-wait control. It cap-

tures the PWC model (2.7) (m = 1) and the CV model (2.5) (m = ∞) as

two of its extreme cases.

For ta � 1, we compare Λm for two cases: m = 1 and m = ∞. First,

we consider the asymptotic behavior of Λ1 defined in (3.10) by expanding

the term eta by Taylor series,

Λ1 ∼

(
e(τ+ta) + P+D

2 (1− 1− ta +O(t2a))
P−D

2 (1− 1− ta +O(t2a))
P+D

2 (1− 1 + ta +O(t2a)) e−(τ+ta) + P−D
2 (1− 1 + ta +O(t2a))

)

=

(
e(τ+ta) − P+D

2 (ta +O(t2a))
P−D

2 (−ta +O(t2a))
P+D

2 (ta +O(t2a)) e−(τ+ta) + P−D
2 (ta +O(t2a))

)

=

(
e(τ+ta) − P+D

2 (ta +O(t2a))
P−D

2 (−ta +O(t2a))
P+D

2 (ta +O(t2a)) e−(τ+ta) + P−D
2 (ta +O(t2a))

)

=

(
e(τ+ta) − P+D

2 ta −P−D
2 ta

P+D
2 ta e−(τ+ta) + P−D

2 ta

)
+O(t2a). (3.11)

Similarly, for the other extreme case, the CV model, we have the asymptotic

behavior of Λ∞ in (3.7) by expanding the term eta and sinh(ta) for ta ≈ 0

as follows,

Λ∞ =

(
eτ+ta − P+D

2 · ta · eta −P−D
2 · sinh(ta)

P+D
2 · sinh(ta) e−(τ+ta) + P−D

2 · tae−ta

)

∼

(
eτ+ta − P+D

2 · ta · (1 + ta +O(t2a)) −P−D
2 · (ta +O(t3a))

P+D
2 · (ta +O(t3a)) e−(τ+ta) + P−D

2 · ta(1− ta +O(t2a))

)

=

(
e(τ+ta) − P+D

2 ta −P−D
2 ta

P+D
2 ta e−(τ+ta) + P−D

2 ta

)
+O(t2a) ≈ Λ1. (3.12)
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3.2. Mathematical analysis of FV model

As a result,

Φ∞ = QΛ∞Q
−1 ≈ QΛ1Q

−1 = Φ1 for ta � 1.

Thus, the eigenvalues of the PWC model (2.7) (m = 1) and the CV model

(2.5) (m = ∞) are almost the same for ta � 1. If we interchange their

deadbeat control parameters, the robustness is still assured, as shown in the

top row of Figure 3.1 when ta = 0.04 is small.

However, for general ta < 1, although Λm → Λ∞ with a correction term

of order O(
1

m
) as shown in (3.8), the structural difference between Λm and

Λ∞ is significant for small m. For the first entry of Λm and Λ∞,

|Λm(1, 1)−Λ∞(1, 1)| =
P +D

2
tae

ta

(
1 +

e−∆t − 1

∆t

)
=

P +D

2
tae

ta

(
1 +

e−
ta
m − 1

ta/m

)
> 0. (3.13)

This difference (3.13) is large for ta < 1 and small m. Taking the case

presented in Figure 3.1(d) as an example, ta = 0.4, the difference |Λm(1, 1)−
Λ∞(1, 1)| is 1.9539 for m = 1 and 1.0409 for m = 2. This is why we observe

the significant difference between the CV model and the PWC model in

deadbeat control parameters P ∗, D∗ in Table 3.1. As m increases, the

difference between Λm and Λ∞ is O( 1
m), as shown in (3.8).

Next, let us explore the value of m for which the FV model approximates

the CV model. Assume that ||Λm−Λ∞||1 ≤ η so that the stability is assured

when we apply the deadbeat control parameters of the CV model to the FV

model as shown in Figure 3.1(d). Then from (3.8), we have

||Λm −Λ∞||1 ≈ ∆t

2

[
P +D

2
tae

ta +
P +D

2
sinh(ta)

]
=

P +D

4
∆t
[
tae

ta + sinh(ta)
]
≤ η. (3.14)

For example, for the case in Figure 3.1(d), if we choose η = 0.5 in (3.14),

then we find that m ≥ 8 to meet the constraint in (3.14). As we increase m,
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3.2. Mathematical analysis of FV model

the error in the eigenvalues becomes smaller and reduces the oscillation in

the time series. As a result, the FV model converges faster to equilibrium,

as shown in Figure 3.1.

Let us now examine the eigenvalues of the FV model. Recalling that

λm1 and λm2 are the eigenvalues of matrix Φm, then from (3.4) and (3.5), we

have(
λm1 + λm2
4λm1 · λm2

)
= Rm

(
Pm

Dm

)
+ S +Nm ·

(
0

P 2
m −D2

m

)
, (3.15)

where

Rm =

(
−m[cosh(ta)− cosh(ta −∆t)] −m[sinh(ta)− sinh(ta −∆t)]

4m[cosh(τ + ∆t)− cosh(τ)] −4m[sinh(τ + ∆t)− sinh(τ)]

)
,

S =

(
2cosh(τ + ta)

4

)
, Nm = [2− 2cosh(∆t)][m2 − sinh2(ta)

sinh2(∆t)
].

(3.16)

Similar to the cases m = 1 (the PWC model) and m =∞ (the CV model),

the deadbeat control is obtained at λm1 = λm2 = 0. Thus the deadbeat

control parameters P ∗m, D∗m of the FV model satisfying

Rm

(
P

D

)
+ S +Nm ·

(
0

P 2 −D2

)
= 0. (3.17)

As we noticed from equation (3.17), there is a nonlinear term which adds

complication to solving for P ∗, D∗. However, it is shown in Appendix A.2

that the real roots of (3.17) exist for all m ≥ 1, including m = ∞ (the

CV model). There are two sets of roots of (3.17), since it is a second order

system. We can rule out one set of roots of (3.17) (the larger one) because

it is not physical (shown in Appendix A.2). The good news is that the other

set of the roots of (3.17) can be well approximated by the linear part of

31



3.2. Mathematical analysis of FV model

(3.17) by dropping the nonlinear term Nm · (0, P 2 −D2)
′
,(

P ∗m

D∗m

)
≈ −Rm

−1 · S. (3.18)

This is because the nonlinear term Nm is negligible. We consider the be-

havior of Nm for ta < 1. First,

N∞ = sinh2(ta)− t2a = (ta +O(t3a))
2 − t2a = O(t4a). (3.19)

Then for any fixed m, we claim that Nm = O(t4a). Since m∆t = ta, that is,

∆t =
ta
m
≤ ta < 1, we have,

Nm = [2− 2cosh(∆t)][m2 − sinh2(ta)

sinh2(∆t)
]

= [2− 2cosh(
ta
m

)][m2 − sinh2(ta)

sinh2( tam)
]

= −[(
ta
m

)2 +O((
ta
m

)4)][
m2(( tam) +O(( tam)3))2 − sinh2(ta)

(( tam) +O(( tam)3))2
]

= −[(
ta
m

)2 +O(t4a)][
t2a +O(t4a)− sinh2(ta)

( tam)2 +O(( tam)4)
]

=
[( tam)2 +O(t4a)]

( tam)2 +O(t4a)
(sinh2(ta)− t2a +O(t4a))

= [1 +O(t2a)][N∞ +O(t4a)] = O(t4a). (3.20)

We get this result because
ta
m
≤ ta and N∞ = O(t4a), as shown in (3.19).

Since we assume 0 < ta < 1, t4a is very small for moderate ta, as compared to

the linear part in (3.17). Thus, from (3.19) and (3.20), we conclude that the

nonlinear part of N∞ and Nm is negligible. Accordingly, the linear approx-

imation (3.18) also holds for (P,D) around the deadbeat control (P ∗m, D
∗
m).

Generally, around (P ∗m, D
∗
m), we have(

λm1 + λm2
4λm1 λ

m
2

)
≈ Rm

(
P

D

)
+ S. (3.21)
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To find λm1 , λ
m
2 , we must then analyze the behavior of Rm. Specifically, the

PWC model corresponds to m = 1, as shown in (2.20), and the CV model

corresponds to m =∞ with

R∞ =

(
−ta sinh(ta) −ta cosh(ta)

4ta sinh(τ) −4ta cosh(τ)

)
. (3.22)

We show here that,

Rm ≈ R∞ +O(ta/m) = R∞ +O(∆t).

For example, for the first entry of Rm(1, 1) in (3.16), taking ta fixed and

m large with ∆t =
ta
m
→ 0 as m → ∞, we can conduct the asymptotic

analysis. For large m, ∆t� 1, Taylor expansion is

Rm(1, 1) = −m(cosh(ta)− cosh(ta −∆t)) = −m∆t
(cosh(ta)− cosh(ta −∆t))

∆t

= −m∆t
cosh(ta)− [cosh(ta)− sinh(ta)∆t+ cosh(ta)

∆t2

2 +O(∆t3)]

∆t

= −m∆t
sinh(ta)∆t− cosh(ta)

∆t2

2 +O(∆t3)

∆t
.

Recall that ta = m∆t as shown in Table 3.1, we can rewrite the above

asymptotic expansion of entry Rm(1, 1) for ∆t→ 0, by dropping the second

order error term O(∆t2) as follows,

Rm(1, 1) = −ta(sinh(ta)−
cosh(ta)

2
∆t+O(∆t2)) ∼ R∞(1, 1)+ta

cosh(ta)

2
∆t.

Generally, given fixed τ and ta, we have the asymptotic behavior ofRm when

m is large by dropping the second order error terms O(∆t2) ∼ O(
1

m2
),

Rm ∼

(
−ta sinh(ta) + ta

cosh(ta)
2 ∆t −ta cosh(ta) + ta

sinh(ta)
2 ∆t

4ta sinh(τ) + 2tacosh(τ)∆t −4ta cosh(τ)− 2tasinh(τ)∆t

)
= R∞ +O(∆t).
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Combining the results of (3.23) and (3.21), we have the asymptotic be-

havior of the eigenvalues of the FV model as m→∞,

(
λm1 + λm2
4λm1 λ

m
2

)
= Rm

(
P

D

)
+ S = (R∞ +O(∆t))

(
P

D

)
+ S

= R∞

(
P

D

)
+ S +O(∆t)

(
P

D

)

=

(
λ∞1 + λ∞2
4λ∞1 λ

∞
2

)
+O(∆t). (3.23)

Given (3.23), we know that the eigenvalues of the FV model λm1 , λm2 converge

with correction terms of the order of O(∆t) = O(
ta
m

) to the eigenvalues of

the CV model λ∞1 , λ∞2 as m→∞. Therefore, we can use (3.18) to explain

the difference in deadbeat control parameters,

Rm
−1 =

1

det(Rm)

(
Rm(2, 2) −Rm(1, 2)

−Rm(2, 1) Rm(1, 1)

)

=
1

det(R∞) +O(∆t)

(
R∞(2, 2) +O(∆t) −R∞(1, 2) +O(∆t)

−R∞(2, 1) +O(∆t) R∞(1, 1) +O(∆t)

)
= R∞

−1 +O(∆t),

(
P ∗m

D∗m

)
∼ −Rm

−1 ·S = (R∞
−1 +O(∆t)) ·S =

(
P ∗∞

D∗∞

)
+O(∆t). (3.24)

As a result, as m increases, the deadbeat control P ∗m, D
∗
m → P ∗∞, D

∗
∞ with

error O(∆t), and ∆t→ 0, as shown in (3.24).
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Chapter 4

Noise Sensitivity

4.1 Parametric noise

As shown in §1, parametric noise can reduce the convergence rate to the

equilibrium, particularly for larger values of τ . In this section, we study the

FV model with random fluctuations of the control parameters around the

deadbeat control parameters P ∗, D∗ as follows,

P = P ∗ + u1P
∗ε1 = P ∗ + ξ1, D = D∗ + u2D

∗ε2 = D∗ + ξ2. (4.1)

where (ε1, ε2) ∼ N(0, I2). The error in control parameters P and D can

cause additional oscillations, as shown in Figure 1.2 (b) for large τ , not seen

for small values of τ . The system exhibits damped oscillations and slower

decay to zero rather than abrupt damping, as shown in Figure 1.2 (a).

This observation suggests that the decay rate ρ is larger for large values

of τ when there are random fluctuations in the control parameters P , D

around the neighborhood of P ∗, D∗. We analyze this noise sensitivity by

calculating the probability density for the decay rate ρ. First, we have to

calculate the corresponding probability density for the critical eigenvalue

r = max{|λm1 |, |λm2 |} where λm1 , λm2 are eigenvalues of the matrix Φm for the

general FV model (including the PWC model (m = 1) and CV model (m =

∞)). Note that r = ρT indicates how strongly the system is decaying over

one period of length T . As a two dimensional system, given the deadbeat

control without noise, so that r = 0, and the time series of θ(t) converges to

zero within a 2T time interval from any initial condition, as proved below

in (4.26) and observed in Figure 1.2. However, if there is any noise, r 6= 0,

it takes the system more than two on-off cycles (2T ) to converge to zero.
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Thus, the values of r are directly related to additional oscillations caused

by noise and the number of periods the system takes to converge to zero.

We consider random fluctuations of the control parameters around the

deadbeat control parameters P ∗, D∗, as shown in (4.1). Thus the ran-

dom noise (ξ1, ξ2) has a joint two dimensional normal distribution (ξ1, ξ2) ∼
N(0,Σ0), where

Σ0 =

(
(u1P

∗)2 0

0 (u2D
∗)2

)
. (4.2)

It is convenient to use the quantities: b = λm1 +λm2 , c = 4λm1 ·λm2 , similar to

the definition in (2.17). Then (b, c) has the following distribution,(
b

c

)
= Rm

(
P ∗ + ξ1

D∗ + ξ2

)
+ S = Rm

(
ξ1

ξ2

)
∼ N(0,RmΣ0Rm

T ). (4.3)

The probability density function of (b, c) is

P (b, c) =
1

2π
√
|RmΣ0Rm

T |
exp(−(b, c)(RmΣ0Rm

T )−1(b, c)′/2). (4.4)

where Σ0 is defined in (4.2).

We then look at the distribution of the critical eigenvalue r = max{|λm1 |, |λm2 |},
where λm1 , λ

m
2 are eigenvalues of the matrix Φm. Using the following rela-

tionship between r and (b, c),

r =


1

2
(b+

√
b2 − c), if b ≥ 0 and b2 ≥ c

1

2
(−b+

√
b2 − c), if b < 0 and b2 ≥ c√

c/4, if b2 < c, (4.5)

we determine the probability density function of r by combining (4.4) and

(4.5) as shown in Appendix A.3. Then the probability density p(r) is given
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by

p(r) =

∫ 2r

0
(−4b+ 8r)P (b, 4r(b− r))db+

∫ 0

−2r
(4b+ 8r)P (b,−4r(b+ r))db

+

∫ 2r

−2r
8rP (b, 4r2)db, (4.6)

where P (b, c) is the probability density of (b, c) as shown in (4.4).

We point out here that (4.6) and (4.4) do not work for the case with

parametric noise only in one parameter, that is, u1 = 0 or u2 = 0 in (4.2).

This is because if u1 = 0 or u2 = 0, the matrix Σ0 is singular. For example,

for parametric noise in P , P = P ∗+ ξ1 and D = D∗, the probability density

function of r is

p(r) =



16r2 − 8amr

(4r − am)2
·Πb(f

−1
1 (r)), r = 0

16r2 − 8amr

(4r − am)2
·Πb(f

−1
1 (r)) +

8r

am
·Πb(f

−1
3 (r)), r <

1

2
|am|

16r2 − 8amr

(4r − am)2
·Πb(f

−1
1 (r)) +

−16r2 − 8amr

(4r + am)2
·Πb(f

−1
2 (r)), r ≥ 1

2
|am|,

(4.7)

where

f−1
1 (r) =

4r2

4r − am
, f−1

2 (r) =
4r2

−4r − am
, f−1

3 (r) =
4r2

am
, am =

Rm(2, 1)

Rm(1, 1)
,

(4.8)

and Πb is the probability density function of b,

Πb(b) =
1√
2π

1

Rm(1, 1)
exp(− b2

2Rm
2(1, 1)

), b ∼ N(0,Rm
2(1, 1)).

The detail of (4.7) is shown is shown in Appendix A.3. Similarly, if the

noise is only in D, P = P ∗ and D = D∗ + ξ2. Then the probability density
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function of r is

p(r) =



−16r2 − 8amr

(4r + am)2
·Πb(f

−1
2 (r)), r = 0

−16r2 − 8amr

(4r + am)2
·Πb(f

−1
2 (r)) +

8r

am
·Πb(f

−1
3 (r)), r <

1

2
|am|

−16r2 − 8amr

(4r + am)2
·Πb(f

−1
2 (r)) +

16r2 − 8amr

(4r − am)2
·Πb(f

−1
1 (r)), r ≥ 1

2
am.

(4.9)

The functions f1, f2, f3 in (4.9) are the same as shown in (4.8) except that

am =
Rm(2, 2)

Rm(1, 2)
for this case and the probability density function of b is

Πb(b) =
1√
2π

1

Rm(1, 2)
exp(− b2

2Rm
2(1, 2)

), b ∼ N(0,Rm
2(1, 2)),

as shown in Appendix (4.7).

From (4.4), we can see that the probability density function P (b, c) de-

pends on Rm, and from Figure 2.3, det(Rm) increases exponentially as τ

increases, so that the covariance matrix of (b, c) increases with τ . Then (b, c)

have wider distributions as τ grows. The variance of r also increases with

τ . As shown in Figure 4.1, the system has limited sensitivity to parametric

noise for small τ . When the delay is small, the probability density of the

critical eigenvalue r is concentrated near zero. For large τ , the distribution

of r could be problematic. This is because, as shown in Figure 2.2, the

stability region narrows with increasing τ and the density of r spreads out

over values above and below 1. Then, a small fluctuation in P and D results

in a large change in the eigenvalues shown in Figure 4.1. Recalling the phe-

nomena observed in Figure 2.4, we know that when eigenvalue approaches

1, there are more fluctuations in the system. This explains the additional

oscillations caused by parametric noise for large τ , as shown in Figure 1.2

(b).

While r gives the relative convergence rate over one period of length T ,

we also want to know the distribution of ρ, the absolute decay rate over one
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Figure 4.1: The probability density function of the critical eigenvalue r. The para-
metric noise magnitude: u1 = 0.025, u2 = 0.025. Number of numerical simulations:
N = 50000. The blue solid line: The probability density given by (4.6). The red
star: The numerically simulated density. The left panel: The case with small delay
τ = 0.2, ta = 0.04. The right panel: The case with large delay τ = 2, ta = 0.4.

unit of time. We compare different cases with different values of T . For

ρ = r1/T , the probability density function of ρ is given by

q(ρ) = p(ρT )TρT−1 (4.10)

As shown in Figure 4.2, for small τ , the probability density of ρ is concen-

trated close to 0 and decays with increasing ρ, like an exponential distribu-

tion. This behavior for T < 1 is due to the term TρT−1, which decreases

exponentially with ρ. Because ρ is near zero with a large probability, the sys-

tem with small τ exhibits nearly deadbeat behavior despite the parametric

noise, as shown in Figure 1.2 (b). However for large τ , given the same per-

turbation in the control parameters P, D, the decay rate ρ is concentrated

around 1. Subsequently, the system shown in Figure 1.2 (b) converges more

slowly, exhibiting additional oscillations when compared to the system with

small τ .

As we observe from Figure 1.2 (b), the smaller the ta is, the more sensi-

tive the system is to parametric noise. As shown in Figure 4.3, the density

of ρ shifts to smaller values for smaller ta. Yet this small difference alone is

not able to explain the noise sensitivity displayed in Figure 1.2 for different

values of ta. To consider the effect of ta in detail, the mean and the stan-
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Figure 4.2: The probability density function of the decay rate ρ for different
values of τ . Number of numerical simulations: N = 50000. The blue solid line:
The probability density given in (4.10). The red star: The numerically simulated
density. The left panel: The case with small delay τ = 0.2, ta = 0.04. The right:
The case with big delay τ = 2, ta = 0.4. Top Row: The parametric noise magnitude:
u1 = 0.025, u2 = 0.025. Bottom Row: The parametric noise magnitude: u1 = 0.05,
u2 = 0.
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4.1. Parametric noise

dard deviation of θ(t) are illustrated in Figure 4.4. Due to the parametric

noise, the system oscillates beyond a period of length 2T before converging

to zero instead of abruptly damped behavior as in the deterministic sys-

tem. Although the mean of θ(t) converges to zero in an interval of length

2T , the standard deviation converges to zero slowly suggesting additional

oscillations. This is because the control pushes the system back to the zero

equilibrium in the acting period, yet it is not accurate enough due to the

parametric noise, allowing the system to escape from zero in the waiting

period. Although q(ρ) has slightly smaller values for the case with smaller

ta = 0.04, the control comes into effect only for a very short time, and the

system escapes further in the waiting period. In contrast, q(ρ) has larger

values for ta = 0.4, yet the control is turned on longer to push the system

back to zero and reduce its chance to escape during the following waiting

period. As a result, the case with a longer waiting period ta = 0.4 converges

to the zero equilibrium faster and oscillates less. That is why we observe

a larger standard deviation for the case with smaller ta, given the same

waiting period length tw = τ , as shown in Figure 4.4.

Under the more general form of the FV system, we consider the effect

of m on the parametric noise sensitivity. We find that the system is less

sensitive to the parametric noise for larger m. In Figure 4.5, we compare

two extreme cases: the CV model (m→∞) and the PWC model (m = 1).

In the left panel of Figure 4.5, the standard deviation of the time series θ(t)

decreases with m. This indicates that the FV model with larger m oscillates

less and decays faster to the equilibrium compared to cases with smaller

values of m. In the right panel of Figure 4.5, we see that the probability

density p(r) of the critical eigenvalue is concentrated at lower values of r for

larger m. We then conclude that given the same magnitude of the pertur-

bation of the control parameters, we typically sample smaller eigenvalues if

we update the feedback more frequently.
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Figure 4.3: The probability density function of the decay rate ρ for different values
of ta. The parametric noise magnitude: u1 = 0.025 and u2 = 0.025. Number of
numerical simulations: N = 50000. The blue solid line: The probability density
given in (4.10) for the case τ = 2, ta = 0.4. The red star: The numerically simulated
density for the case τ = 2, ta = 0.4. The magenta dashed line: The probability
density given in (4.10) for the case τ = 2, ta = 0.04. The black triangle: The
numerically simulated density for the case τ = 2, ta = 0.04.
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Figure 4.4: Left: The probability density of θ(t) at different times. The parameters
for the cases presented: τ = 2, ta = 0.4, T = 2.4. The red dashed line: The
probability density of θ(t) at t = 2T = 4.8. The blue marked line with +’s: The
probability density of θ(t) at t = 3T = 7.2. The magenta solid line: The probability
density of θ(t) at t = 4T = 9.6. Middle and Right: The blue solid line: The mean
of θ(t). The red dash dotted line: The standard deviation of θ(t). The strip area:
The period when control is switched on. The parameters for the cases presented:
τ = 2, u1 = 0.025, u2 = 0.025. The middle panel: ta = 0.4. The right panel:
ta = 0.04.
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Figure 4.5: Comparison of the CV model and PWC model for τ = 2, ta = τ/5 =
0.4, u1 = 0.025, u2 = 0.025. Number of numerical simulations: N = 50000. The
left panel: Comparison of the standard deviation of θ(t) for the CV and the PWC
models. The red dashed line: The CV case. The blue solid line: The PWC case.
The right panel: The density of the corresponding relative decay ratio r for the CV
and PWC models. The blue solid line: The probability density given in (4.6) for
the CV model. The red star: The numerically simulated density for the CV model.
The black dashed line: The probability density given in (4.6) for the PWC model.
The magenta triangle: The numerically simulated density for the PWC model.

4.2 External noise

The interaction of delay and external noise results in sustained oscillations

instead of decaying oscillations as seen for parametric noise in Figure 1.2

(b). In this section, we study the system (1.1) with external noise described

as

θ̈(t)− θ(t) = u(t) + δζ, (4.11)

where δ is a constant and ζ is white noise. We use two alternating Ornstein-

Uhlenbeck (O-U) type processes to analyze the act-and-wait model with

external noise as follows,

dx(t) = Ãx(t)dt+ δdwt, lT ≤ t < lT + tw, l ∈ Z, (4.12)

dx(t) = Ãx(t)dt+ B̃Dx(t− τ)dt+ δdwt, lT + tw ≤ t < (l + 1)T.

(4.13)

Note wt = (0, Bt)
′ in (4.12) and (4.13) where Bt denotes a Wiener process

(Standard Brownian motion). The first entry of wt is zero because the
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4.2. External noise

external noise is added to the equation for the inverted pendulum (1.1) and

thus appears only in the second entry of ẋ(t) = (θ̇(t), θ̈(t))′ as shown in

(4.11). For external noise, the noise drives the system to escape further

from the zero equilibrium in the waiting period while the control pushes

it back in the active period. By this interaction of control and noise, the

system exhibits attracting periodically varying oscillations. These dynamics

follow a normal distribution with zero mean and the standard deviation

that varies periodically in time, as shown in Figure 4.6. For large τ , we

observe the amplification of noise, which means that a small input noise

leads to significant oscillations in θ(t) and θ′(t), measured via the standard

deviation.

We analyze the system with external noise via two alternating O-U type

processes in the waiting period and the acting period, as shown in (4.12)

and (4.13). First, in the waiting period when the control is off, we have

the O-U process expressed in the differential form, as in (4.12). Integrating

both sides of (4.12), we write the time series x(t) in the waiting period as

x(t) = exp(Ãt)x(t−lT )+δ

∫ t−lT

0
exp(Ã(t−lT−ξ))dw(ξ), lT ≤ t < lT+tw.

(4.14)

From (4.14), we calculate the expectation and variance of x(t) as

E(x(t)) = exp(Ã(t− lT ))Ex(lT ), lT ≤ t < lT + tw, (4.15)

Var(x(t)) = exp(Ã(t−lT ))Var(x(lT )) exp(Ã(t−lT ))+
δ2

4
R(t−lT ), (4.16)

where

exp(Ãt) =

(
cosh(t) sinh(t)

sinh(t) cosh(t)

)
, R(t) =

(
sinh(2t)− 2t cosh(2t)− 1

cosh(2t)− 1 sinh(2t) + 2t

)
.

Second, in the acting period when control is on, we have the O-U type
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4.2. External noise

process expressed in differential form as

dx(t) = Ãx(t)dt+ B̃Dx(t− τ)dt+ δdwt, lT + tw ≤ t < (l+ 1)T, (4.17)

for the CV model and

dx(t) = Ãx(t)dt+ B̃D exp(Ã(tw − τ))x(0)dt+ δdwt, lT + tw ≤ t < (l + 1)T

= Ãx(t)dt+ B̃Dx(0)dt+ δdwt, (4.18)

for the PWC model. The second line in (4.18) is obtained because we take

tw = τ . We consider the PWC model, as it is solvable in an analytical form.

Integrating both sides of (4.18), for the PWC model, we have the analytical

form of x(t) in the acting period lT + tw ≤ t < (l + 1)T ,

x(t) = Φ(t−lT )x(lT )+δ

∫ t−lT

0
exp(Ã(t−lT−ξ))dw(ξ), lT+tw ≤ t < (l+1)T.

(4.19)

The expectation and variance of x(t), lT + tw ≤ t < (l + 1)T in the acting

period is

E(x(t)) = Φ(t− lT )Ex(lT ), lT + tw ≤ t < (l + 1)T, (4.20)

Var(x(t)) = Φ(t−lT )Var(x(lT ))Φ(t−lT )′+
δ2

4
R(t−lT ), lT+tw ≤ t < (l+1)T,

(4.21)

where

Φ(t) =

(
cosh(t) + (1− cosh(t− τ))P sinh(t) + (1− cosh(t− τ))D

sinh(t)− sinh(t− τ)P cosh(t)− sinh(t− τ)D

)
.

Specifically, for the times at integer multiples of the period, that is, t = lT ,

l ∈ Z, we have the recurse form of the expectation and variance of x(lT ),

l ∈ Z as

E(x((l + 1)T )) = ΦPWC(Ex(lT )), (4.22)
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4.2. External noise

Var(x((l + 1)T )) = ΦPWCVar(x(lT ))Φ′PWC +
δ2

4
R(T ). (4.23)

Note that for the parameters P = P ∗, D = D∗, the eigenvalues of ΦPWC

are zeros. Additionally, since ΦPWC is a 2× 2 matrix, according to Jordan

Decomposition, Φ2
PWC = 0. Thus, by multiplying ΦPWC on both the left

and the right hand of (4.23), we have

ΦPWCVar(x((l + 1)T ))Φ′PWC = Φ2
PWCVar(x(lT ))Φ′

2
PWC +

δ2

4
ΦPWCR(T )Φ′PWC

=
δ2

4
ΦPWCR(T )Φ′PWC . (4.24)

Combining (4.23) and (4.24), we get

Var(x((l + 2)T )) = ΦPWCVar(x((l + 1)T ))Φ′PWC +
δ2

4
R(T )

=
δ2

4
ΦPWCR(T )Φ′PWC +

δ2

4
R(T ). (4.25)

Similarly,

E(x((l + 2)T )) = ΦPWC(Ex((l + 1)T )) = Φ2
PWC(Ex(lT )) = 0. (4.26)

In an interval of length 2T , the system converges to periodically varying

oscillations with zero expectation given in (4.26) and variance given in (4.25).

Note that (4.26) indicates that the system converges to equilibrium in a time

interval of the length of 2T at most in the absence of noise, as shown for the

mean of θ(t) in the right panel of Figure 4.6. The standard deviation attracts

to a periodically sustained oscillation due to the interaction of on-off control

and noise. The time series θ(t) follows alternating normal distributions, as

follows from (4.14) and (4.18) and as shown in the left panel of Figure 4.6.

Additionally, as we noted in the Figure of 1.2(c), the system with large

τ is more sensitive to external noise compared to the system with small τ .

Using the analysis of the O-U type process above, we can determine how

the standard deviation is changing along with τ . Considering (4.25), the
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Figure 4.6: The probability density of the external noise driven system. The
parameters are: τ = 2, ta = 0.4, m = 1, δ = 0.1. Number of numerical simulations
N = 10000. Left: The periodically varying probability density of θ(t). The red
marked line with star: The probability density of θ(t) at t = nT . The blue marked
line with square: The probability density of θ(t) at t = nT + T/3. The magenta
marked line with triangle: The probability density of θ(t) at t = (n + 1)T . Right:
The evolution of the distribution features of θ(t). The strip area shows where the
control is on. The triangle: The standard deviation of θ(t) given by numerical
simulations. The star: The mean of θ(t) given by numerical simulations. The
yellow solid line: The theoretical prediction of the mean of θ(t) given by (4.15) and
(4.20). The blue solid line: The theoretical prediction of the standard deviation of
θ(t) given by (4.16) and (4.21).
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variance of θ(nT ) (n ≥ 2) is

Var(θ(nT )) = δ2 ×M(τ, ta),

with the amplification factor M(τ, ta) given by

M(τ, ta) =
1

16 sinh(ta + τ)2
[sinh(6τ + 4ta)− 2 sinh(4τ + 3ta)

+ sinh(2τ + 2ta)− sinh(4τ + 2ta) + 2 sinh(2τ + ta)

+4T (1− cosh(2τ + ta))] +
1

4
[sinh(2τ + 2ta)− 2(τ + ta)].

(4.27)

This amplification factor M(τ, ta) grows exponentially with τ , as shown

in the left panel of Figure 4.7. This explains why the system becomes

sensitive to external noise when the delay is large. Additionally, we plot

the amplification factor M(τ, ta) vs ta for the large delay case with τ = 2,

and find that M(τ, ta) increases with ta. This dependence explains the

phenomena, as shown in Figure 1.2 (c) that for larger acting periods, the

system is more sensitive to external noise.
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Figure 4.7: The amplification factor of the variance of θ(t): M(τ, ta) =
Var(θ(t))

δ2

(4.27). The left: Semi-log plot of M(τ, ta) vs τ . The right: Plot of M(τ, ta) vs ta
(τ = 2).
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Chapter 5

Summary

Delays in feedback control systems are generic in applications in biology [2],

[14] mechanics [4], [5] and robotics [9], [11]. The presence of delay and its

interplay with random perturbations often leads to instability or poor per-

formance of the system. The main difficulty of time-delayed systems is that

the number of instabilities to be controlled is usually larger than the num-

ber of control parameters. Thus, complete stabilization is not possible for

these systems using traditional time-invariant feedback controls. Recently,

it has been recognized that the realistic or ideal control may be one that is

switched on and off, proposed to procure simplicity in mechanical systems,

or to provide a stabilizing mechanism particularly when the time delay is

long.

In this thesis, we focus on one special case of on and off controls: the act-

and-wait control introduced in [6] and [18], which present case studies for

small values of τ , in contrast to the traditional continuous control. The act-

and-wait control has advantages due to the larger stability region of control

parameters and the potential deadbeat control. However, the combination

of delayed feedback, on and off control, and nonlinearities, naturally makes

these systems difficult to analyze. In addition, these elements can also make

the system sensitive to random effects. To better understand the effects

of the act-and-wait control, the new challenge is to develop and analyze

mathematical models that incorporate these observations as well as get the

insight on the influence of the delay and noise. We studied the canonical

model of balancing an inverted pendulum [17] with act-and-wait control.

We implemented the mathematical analysis of the PWC model and the CV

model as well as the more general FV model. Under the wide scope of the

FV model, we studied the influence of the delay, different choices of the
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acting period length ta, the frequencies of varying feedbacks, and the noise

sensitivities through both analytical and numerical approaches.

We built the basic model of an inverted pendulum with controller u(t)

in §2.1. We compared two different kinds of feedback: the continuously

varying feedback and the piecewise constant feedback. These two different

feedback mechanisms distinguish the PWC model from the CV model. Later

in §2.2, we analyzed the CV and PWC models by finding the analytical

expressions and corresponding characteristic matrices: ΦCV and ΦPWC ,

respectively. By analyzing the stability regions and deadbeat controls of

the PWC and CV models in §2.3, we found that although the act-and-wait

control improves the stability, the effectiveness is impaired by large values of

τ . The stability region becomes thinner and smaller as τ increases. Although

the deadbeat control can be obtained, the decay rate is much more sensitive

to the variations of P and D away from P ∗, D∗. For small τ , inspite of the

error in P , D, the decay rate remains small in the neighborhood of P ∗, D∗,

and the system has nearly deadbeat damping behavior. However, for large

τ , a small error in P and D can lead to a large increase in decay rate. Instead

of deadbeat damping behavior, the system decays slowly to the equilibrium,

which gives the system potential sensitivity to noise. We also compared

deadbeat control parameters and stability regions for different choices of ta

when the delay is large. We found that our choice of ta for the PWC model

may not necessarily give a preferred change in stability.

In §3, we introduced the FV model, which captures the CV and PWC

models as two extreme cases. In §3.1, we compared the difference between

the CV and PWC models which are problematic for large τ . In addition,

we discussed the appropriate choices of ta for large τ . Because of these

observations, a more flexible feedback model is needed to consider cases

with larger values of τ . Therefore, we introduced the FV model to allow the

feedback to vary more frequently within the acting period. In §3.2, we did

the mathematical analysis of the FV model and compared the CV, PWC

and FV models for small ta � 1 and general ta < 1. For ta � 1, these three

models did not differ much. However, for large ta < 1, significant differences

emerged between the CV model (m =∞) and the FV model with small m
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including the PWC model (m = 1). We gave general analytical solutions

for the deadbeat parameters P ∗, D∗ and discussed the asymptotic behavior

of the FV model as m → ∞. The eigenvalues of the FV model converge

to those of the CV model with a correction term of order O(
1

m
) for fixed

τ and ta. Therefore, the FV model serves as a good approximation to the

CV model with moderate value of m. It is simple to implement in practical

applications and efficient in numerical simulations.

In §4, we considered the noise sensitivity and the interaction of noise

and delay. We contrasted the effects of noise in system (1.1) for two sources,

parametric randomness and external fluctuations. In §4.1, we gained in-

sight on how parametric noise, which appears in the control parameters P

and D as random variables, influences the stability of the balanced state

with act-and-wait control. We found that parametric noise could reduce the

convergence rate to the equilibrium and causes additional fluctuations, par-

ticularly for larger values of τ . Underlying this fluctuation is the variation

of the eigenvalues for the system. The calculation of the distribution of the

critical eigenvalue for the system with random P and D shows significant

probability for eigenvalues to move away from zero, particularly for larger

values of τ . However, even though the act-and-wait system is sensitive to

parametric noise for large τ , the stabilization is assured while the system

is unstable under the traditional continuous control. In §4.2, we also com-

pared the act-and-wait system with the additive (external) noise, in which

case larger excursions from the balanced state and sustained oscillations

can be observed. We modeled the external noise driven system with two

alternating Ornstein-Uhlenbeck (O-U) type processes, active in the wait-

ing period and the acting period. We integrated the O-U type processes

and calculated the expectations and variances of θ for the times at integer

multiples of the period for the PWC model. Within two periods of time

(2T ), the system converges to an attracting periodically varying oscillation

with zero expectation and periodically varying variance. For large τ , we

observed the amplification of noise, which means that a small input noise

leads to dramatic oscillations in θ(t) and θ′(t), measured via the standard

deviation.
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Chapter 5. Summary

In this thesis, we considered major components that affect the stability

of the system with act-and-wait control, especially the delay and different

sources of random fluctuations. Most observations were verified through

both numerical and analytical approaches, yet in some cases, the analytical

analysis is omitted due to the complexity of the problem. First, we found

the analytical solution of O-U type processes for the PWC model while

not considering more complicated FV and CV models. Through numerical

testing, we found similar behavior of the FV and CV models given external

noise as the PWC model, yet some detailed differences can be captured

through future work. Moreover, we conducted the numerical tests to prove

that the deadbeat control parameters P ∗ and D∗ can always be found, that

is, the determinant of the second order equation is always no less than zero

for the range of τ and ta of our interest, yet the solid analytical proof is

omitted. It would be interesting to explore the nonlinear equations (3.17)

of the deadbeat control parameters P ∗ and D∗.
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Appendix A

The mathematical

calculation

A.1 The calculation of matrices

We show the calculation of A and B in (2.8).

A = exp(Ã∆t),B = (exp(Ã∆t)− I)Ã−1B̃,

where

Ã =

(
0 1

1 0

)
, B̃ =

(
0

1

)
, Ã−1 =

(
0 1

1 0

)
.

The decomposition of Ã is

Ã = QΛQ′, Q =
1√
2

(
1 1

1 −1

)
, Λ =

(
1 0

0 −1

)
, Q = Q′.

So that

A = exp(Ã∆t) = QeΛ∆tQ′ = Q

(
e∆t 0

0 e−∆t

)
Q′ (A.1)

=

(
e∆t+e−∆t

2
e∆t−e−∆t

2
e∆t−e−∆t

2
e∆t+e−∆t

2

)
=

(
cosh(∆t) sinh(∆t)

sinh(∆t) cosh(∆t)

)
, (A.2)
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A.1. The calculation of matrices

and

B = (exp(Ã∆t)− I)Ã−1B̃

=

(
cosh(∆t)− 1 sinh(∆t)

sinh(∆t) cosh(∆t)− 1

)(
0 1

1 0

)(
0

1

)
=

(
cosh(∆t)− 1

sinh(∆t)

)
.

Next, we show that ΦPWC = Φ1 (2.13), ΦCU = Φ∞ (2.11).

ΦPWC = eÃT +

∫ T

tw

eÃ(T−s)B̃DeÃ(tw−τ)ds

= eÃT + eÃT
∫ T

tw

e−ÃsdsB̃DeÃ(tw−τ)

= QeΛ∆TQ′[I +

∫ T

tw

Qe−ΛsQ′dsB̃D]

= QeΛ∆TQ′[I +Q

∫ T

tw

e−ΛsdsQ′B̃D]

= QeΛ∆TQ′[I +Q

(
e−tw − e−T 0

0 eT − etw

)
Q′B̃D]

= Q[eΛ∆T + eΛ∆T

(
e−tw − e−T 0

0 eT − etw

)
Q′B̃DQ]Q′

= Q[

(
eT 0

0 e−T

)
+

(
eT 0

0 e−T

)(
e−tw − e−T 0

0 eT − etw

)
Q′B̃DQ]Q′

= Q[

(
eT 0

0 e−T

)
+

(
eT−tw − 1 0

0 1− e−T+tw

)
1

2

(
−(P +D) −(P −D)

P +D P −D

)
]Q′

= Q

(
eT + P+D

2 (1− eT−tw) P−D
2 (1− eT−tw)

P+D
2 (1− e−(T−tw)) e−T + P−D

2 (1− e−(T−tw))

)
Q′

= Q

(
eT + P+D

2 (1− eta) P−D
2 (1− eta)

P+D
2 (1− e−ta) e−T + P−D

2 (1− e−ta)

)
Q′ = Φ1,

where

Q′B̃DQ =
1

2

(
−(P +D) −(P −D)

P +D P −D

)
.
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A.1. The calculation of matrices

ΦCU = eÃT +

∫ T

tw

eÃ(T−s)B̃DeÃ(s−τ)ds

= eÃT +Q
1

2

∫ T

tw

(
eT−s 0

0 e−(T−s)

)(
−(P +D) −(P −D)

P +D P −D

)(
es−τ 0

0 e−(s−τ)

)
dsQ′

= Q

(
eT 0

0 e−T

)
Q′ +Q

1

2

∫ T

tw

(
−eT−τ (P +D) −eT−2s+τ (P −D)

e−T+2s−τ (P +D) e−T+τ (P −D)

)
dsQ′

= Q

(
eT 0

0 e−T

)
Q′ +Q

(
− (P+D)

2 eT−τ (T − τ) − (P−D)
2

e−T+τ−eT−τ
−2

(P+D)
2

eT−τ−e−T+τ

2
(P−D)

2 e−T+τ (T − τ)

)
Q
′

= Q

(
eT − (P+D)

2 eta(ta) − (P−D)
2

e−ta−eta
−2

(P+D)
2

eta−e−ta
2 e−T + (P−D)

2 e−ta(ta)

)
Q′

= Q

(
eT − (P+D)

2 etata − (P−D)
2 sinh(ta)

(P+D)
2 sinh(ta) e−T + (P−D)

2 e−tata

)
Q′ = Φ∞.

We show the calculation of matrix Φm (3.4).

Φm = An+m +BDAm−1 +ABDAm−2 + · · ·+Am−1BD,

using

BDAm−1 +ABDAm−2 + · · ·+Am−1BD

=

m−1∑
i=0

Q

(
ei∆t 0

0 e−i∆t

)
Q′BDQ

(
e(m−1−i)∆t 0

0 e−(m−1−i)∆t

)
Q′

=

m−1∑
i=0

1

2
Q

(
−e(m−1)∆t(e∆t − 1)(P +D) −e−(m−2i−1)∆t(e∆t − 1)(P −D)

−e(m−2i−1)∆t(e−∆t − 1)(P +D) −e−(m−1)∆t(e−∆t − 1)(P −D)

)
Q′

=
1

2
Q

(
−me(m−1)∆t(e∆t − 1)(P +D) −

∑m−1
i=0 e−(m−2i−1)∆t(e∆t − 1)(P −D)

−
∑m−1
i=0 e(m−2i−1)∆t(e−∆t − 1)(P +D) −me−(m−1)∆t(e−∆t − 1)(P −D)

)
Q′

=
1

2
Q

(
−m(em∆t − e(m−1)∆t)(P +D) − e

−(m−1)∆t−e(m+1)∆t

1−e2∆t (e∆t − 1)(P −D)

− e
(m−1)∆t−e−(m+1)∆t

1−e−2∆t (e−∆t − 1)(P +D) −m(e−m∆t − e−(m−1)∆t)(P −D)

)
Q′.
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A.2. Deadbeat control

So

Φm = Q

(
eT 0

0 e−T

)
Q′ +Q

(
−meta(1− e−1∆t)P+D

2 (1− e∆t) sinh(ta)
sinh(∆t)

(P−D)
2

(1− e−∆t) (P+D)
2

sinh(ta)
sinh(∆t) −me−ta(1− e∆t) (P−D)

2

)
Q′

= Q

(
eT −meta(1− e−1∆t)P+D

2 (1− e∆t) sinh(ta)
sinh(∆t)

(P−D)
2

(1− e−∆t) (P+D)
2

sinh(ta)
sinh(∆t) e−T −me−ta(1− e∆t) (P−D)

2

)
Q′,

where

Q′BDQ =
1

2

(
−(e∆t − 1)(P +D) −(e∆t − 1)(P −D)

−(e−∆t − 1)(P +D) −(e−∆t − 1)(P −D)

)
.

A.2 Deadbeat control

We discuss the solution of the nonlinear equations (3.17) of the deadbeat

control parameters P ∗ and D∗,

Rm

(
P

D

)
+ S +Nm ·

(
0

P 2 −D2

)
= 0. (A.3)

For m ≥ 2, Nm 6= 0. The resulting second order system is solvable,

P ∗max = H1D +H2, D∗max =
H3 +

√
H4

2Nm(H2
1 − 1)

, (A.4)

P ∗min = H1D +H2, D∗min =
H3 −

√
H4

2Nm(H2
1 − 1)

, (A.5)

where

H1 = − coth(ta −
∆t

2
), H2 =

cosh(τ + ta)

m sinh(ta − ∆t
2 ) sinh(∆t

2 )
,

H3 = Rm(2, 1)H1 + 2H1H2Nm +Rm(2, 2),

H4 = (Rm(2, 1)H1+2H1H2Nm+Rm(2, 2))2−4Nm(H2
1−1)(Rm(2, 1)H2+4+NmH

2
2 ).
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A.2. Deadbeat control

The existence of real roots of equation (A.3) is not assured and for the

application we require the control parameters P and D to be real. However

through a numerical test for τ ranging from 0.1 to 8s and ta ∈ [0.004, 1), the

determinant of the reduced single variable quadratic equation, denoted by

H4, is always greater than zero, increasing with τ . Thus for any 0.01 < τ < 8

and ta < 1, the roots in (A.4), (A.5) are real, that is, the deadbeat control

(P ∗m, D
∗
m) exists.

There are two roots for (A.3), a larger one (A.4) and a smaller one (A.5),

yielding two stability regions. Through numerical tests for 0.01 < τ < 8 and

ta < 1, we see that the stability region around smaller values of (P ∗, D∗)

is wider while the region around larger (P ∗, D∗) is a long and thin strip.

Also, the absolute value of larger root of (P ∗, D∗) is extremely large. As we

discussed above, the values of (P ∗, D∗) should be physically realistic. So we

always choose the smaller root of (P ∗, D∗) as shown in (A.5).

Next, we show that Λ∞ = limm→∞Λm for which Λm and Λ∞ are defined

in (3.5) and (3.7).

Proof of Λ∞ = limm→∞Λm given fixed τ and ta.

Assume m is large so that ∆t =
ta
m

is small, allowing the asymptotic

analysis through Taylor expansions as shown for one entry in Λm,

Λm(1, 1) = e(τ+ta) − P +D

2
meta(1− e−∆t)

= e(τ+ta) − P +D

2
m∆teta

(1− e−∆t)

∆t

= e(τ+ta) − P +D

2
tae

ta
1− (1−∆t+ ∆t2

2 + · · · )
∆t

= e(τ+ta) − P +D

2
tae

ta(1− ∆t

2
+O(∆t2))

∼ e(τ+ta) − P +D

2
tae

ta +
P +D

2
tae

ta ∆t

2

∼ Λ∞(1, 1) +
P +D

2
tae

ta ∆t

2
. (A.6)

We get this approximation by dropping the second order error term O(∆t2)

and using the fact that the quantity m∆t = ta is fixed. As in (A.6), we get
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A.3. The probability density of the eigenvalues of Φm

the asymptotic behavior of Λm(2, 2),

Λm(2, 2) = e−(τ+ta)− P −D
2

me−ta(1− e∆t) ∼ Λ∞(2, 2) +
P −D

2
tae
−ta ∆t

2
.

Next,

Λm(1, 2) =
P −D

2
(1− e∆t)

sinh(ta)

sinh(∆t)
=
P −D

2
sinh(ta)

2(1− e∆t)

e∆t − e−∆t

=
P −D

2
sinh(ta)

2(e−∆t − 1)

1− e−2∆t
=
P −D

2
sinh(ta)

−2(e−∆t − 1)

(e−∆t − 1)(e−∆t + 1)

=
P −D

2
sinh(ta)

−2

e−∆t + 1
= −P −D

2
sinh(ta)

2

2−∆t+ ∆t2

2 + · · ·

= −P −D
2

sinh(ta)[1 +
∆t

2
+O(∆t2)]

∼ Λ∞(1, 2)− P −D
2

sinh(ta)
∆t

2
. (A.7)

We get this approximation by dropping the second order error term O(∆t2).

As in (A.7), we get the asymptotic behavior of Λm(2, 1),

Λm(2, 1) =
P +D

2
(1− e−∆t)

sinh(ta)

sinh(∆t)
≈ Λ∞(2, 1)− P +D

2
sinh(ta)

∆t

2
.

Combining all of the above approximations, yields

Λm = Λ∞ +
∆t

2

(
P+D

2 tae
ta −P−D

2 sinh(ta)

−P+D
2 sinh(ta)

P−D
2 tae

−ta

)
.

Thus Λ∞ = limm→∞Λm = lim∆t→0 Λm.

A.3 The probability density of the eigenvalues of

Φm

We calculate the probability density of the critical eigenvalue r = max{|λm1 |, |λm2 |}
where λm1 , λ

m
2 are eigenvalues of matrix Φm as shown in§4.1. Recalling

b = λm1 + λm2 , c = 4λm1 λ
m
2 , r is a piecewise function of (b, c) as in (4.5),
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A.3. The probability density of the eigenvalues of Φm

r =


f1(b, c) =

1

2
(b+

√
b2 − c), (b, c) ∈ I = {b ≥ 0, b2 ≥ c}

f2(b, c) =
1

2
(−b+

√
b2 − c), (b, c) ∈ II = {b < 0, b2 ≥ c}

f3(b, c) =
√
c/4, (b, c) ∈ III = {b2 < c}. (A.8)

First of all, we consider the case with parametric noise only in P around

the deadbeat control P ∗, that is, P = P ∗ + ξ1, D = D∗. Then we have the

following map(
b

c

)
= Rm

(
P ∗ + ξ1

D∗

)
+ S = Rm

(
ξ1

0

)
=

(
Rm(1, 1)ξ1

Rm(2, 1)ξ1

)
. (A.9)

Then we write c in terms of b as c = amb where am =
Rm(2, 1)

Rm(1, 1)
< 0. Thus

we can write r as a single variable function in b as

r =



1

2
(b+

√
b2 − amb) = f1(b), b ≥ 0, ⇒ r ∈ [0,∞)

1

2
(−b+

√
b2 − amb) = f2(b), b ≤ am, ⇒ r ∈ [

1

2
|am|,∞)

1

2

√
amb = f3(b), am < b < 0, ⇒ r ∈ (0,

1

2
|am|). (A.10)

So the probability density function of r is as shown in (4.7),

p(r) =



16r2 − 8amr

(4r − am)2
·Πb(f

−1
1 (r)), r = 0

16r2 − 8amr

(4r − am)2
·Πb(f

−1
1 (r)) +

8r

am
·Πb(f

−1
3 (r)), r <

1

2
|am|

16r2 − 8amr

(4r − am)2
·Πb(f

−1
1 (r)) +

−16r2 − 8amr

(4r + am)2
·Πb(f

−1
2 (r)), r ≥ 1

2
|am|,

(A.11)

where f1, f2, f3 are defined in (4.8),

f−1
1 (r) =

4r2

4r − am
, f−1

2 (r) =
4r2

−4r − am
, f−1

3 (r) =
4r2

am
. (A.12)
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A.3. The probability density of the eigenvalues of Φm

And Πb is the probability density function of b,

Πb(b) =
1√
2π

1

Rm(1, 1)
exp(− b2

2Rm
2(1, 1)

), b ∼ N(0,Rm
2(1, 1)).

Note that f1, f2, f3 are not one-to-one maps ∀r ∈ [0,∞). We confirm that

for each branch in (A.10), the map f1(r), f2(r), f3(r) are one-to-one maps

for the corresponding range of r in (A.10), so that the inverse functions

shown in (4.7) are valid.

First, for f1(b), the derivative is

d

db
f1(b) =

1

2
[1 +

1

2

2b− am√
b2 − amb

] > 0, for b ≥ 0.

Thus r = f1(b) ≥ f1(0) = 0 and r = f1(b) is a one-to-one map from

b ∈ [0,∞) to r ∈ [0,∞).

Second, for f2(b), the derivative is

d

db
f2(b) =

1

2

[
−1 +

1

2

2b− am√
b2 − amb

]
< 0, for b ≤ am.

Thus r = f2(b) ≥ 1

2
|am| and r = f2(b) is a one-to-one map from b ∈

(−∞, am] to r ∈ [
1

2
|am|,∞).

Third, f3(b) =
1

2

√
amb is a one-to-one map from b ∈ (am, 0] to r ∈

(0,
1

2
|am|).

Next, we consider the case with parametric noise only in D around dead-

beat control D∗, that is, P = P ∗, D = D∗+ ξ2. Then we have the following

map

(
b

c

)
= Rm

(
P ∗

D∗ + ξ2

)
+S = Rm

(
0

ξ2

)
=

(
Rm(1, 2)ξ2

Rm(2, 2)ξ2

)
. (A.13)

Then we write c in terms of b as c = amb where am =
Rm(2, 2)

Rm(1, 2)
> 0. So we

63



A.3. The probability density of the eigenvalues of Φm

reduce r to a single variable function in b as

r =



1

2
(b+

√
b2 − amb) = f1(b), b ≥ am, ⇒ r ∈ [

am
2
,∞)

1

2
(−b+

√
b2 − amb) = f2(b), b ≤ 0, ⇒ r ∈ [0,∞)

1

2

√
amb = f3(b), 0 < b < am, ⇒ r ∈ (0,

1

2
|am|). (A.14)

So the probability density function of r is

p(r) =



−16r2 − 8amr

(4r + am)2
·Πb(f

−1
2 (r)), r = 0

−16r2 − 8amr

(4r + am)2
·Πb(f

−1
2 (r)) +

8r

am
·Πb(f

−1
3 (r)), r <

1

2
|am|

−16r2 − 8amr

(4r + am)2
·Πb(f

−1
2 (r)) +

16r2 − 8amr

(4r − am)2
·Πb(f

−1
1 (r)), r ≥ 1

2
am,

(A.15)

with f1, f2, f3 the same as shown in (4.8) except that the parameters

am =
Rm(2, 2)

Rm(1, 2)
for this case. The probability density function of b is

Πb(b) =
1√
2π

1

Rm(1, 2)
exp(− b2

2Rm
2(1, 2)

), b ∼ N(0,Rm
2(1, 2)).

We have to make sure that for each branch in (A.14), the map f1(r),

f2(r), f3(r) are one-to-one maps for the corresponding range of r in (A.14),

so that the inverse functions shown in (4.9) are valid.

First, for f1(b), the derivative is

d

db
f1(b) =

1

2

[
1 +

1

2

2b− am√
b2 − amb

]
> 0, for b ≥ am.

Thus r = f1(b) ≥ f1(am) =
1

2
am and r = f1(b) is a one-to-one map from

b ∈ [am,∞) to r ∈ [
1

2
am,∞).
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A.3. The probability density of the eigenvalues of Φm

Second, for f2(b), the derivative is

d

db
f2(b) =

1

2

[
−1 +

1

2

2b− am√
b2 − amb

]
< 0, for b ≤ 0.

Thus r = f2(b) ≤ f2(0) = 0 and r = f2(b) is a one-to-one map from

b ∈ (∞, 0] to r ∈ [0,∞).

Third, f3(b) =
1

2

√
amb is a one-to-one map from b ∈ (0, am) to r ∈

(0,
1

2
am).

Last, we consider the case with parametric noise in both P and D around

deadbeat control P ∗, D∗, that is P = P ∗ + ξ1, D = D∗ + ξ2. First of

all, we need to prove that the region {r(b, c) ≤ a} is the triangular region

{4a(b− a) ≤ c ≤ 4a2, b ≥ 0} ∪ {−4a(b+ a) ≤ c ≤ 4a2, b < 0} as shown by

the contour plots in Figure 2.1. To prove this, we use (A.8). First for region

I,
1

2
(b+

√
b2 − c) ≤ a⇒ b ≤ 2a, 4a(b− a) ≤ c ≤ b2,

because

1

2
(b+

√
b2 − c) ≤ a⇒

√
b2 − c ≤ 2a− b⇒ b2 − c ≤ 4a2 + b2 − 4ab.

So

{r(b, c) ≤ a} ∩ I ⊆ A = {4a(b− a) ≤ c ≤ b2, 0 ≤ b ≤ 2a}.

Next we prove that A ⊆ {r(b, c) ≤ a} ∩ I. For (b, c) ∈ A,

∂f1

∂b
=

1

2
(1 +

b√
b2 − c

) > 0,
∂f1

∂c
=

1

2
(
−1√
b2 − c

) < 0 on I.

So for any b, f1(b, c) attains its maxium at (b, 4a(b− a)) where

f1(b, 4a(b− a)) =
1

2
(b+ |b− 2a|) =

1

2
(b+ 2a− b) = a.

So f1(b, c) ≤ a for any (b, c) ∈ A which means A ⊆ {r(b, c) ≤ a} ∩ I.

Thus {r(b, c) ≤ a} ∩ I = A.
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Second for region II,

1

2
(−b+

√
b2 − c) ≤ a⇒ b ≥ −2a, −4a(b+ a) ≤ c ≤ b2,

because

1

2
(−b+

√
b2 − c) ≤ a⇒

√
b2 − c ≤ 2a+ b⇒ b2 − c ≤ 4a2 + b2 + 4ab.

So

{r(b, c) ≤ a} ∩ II ⊆ B = {−4a(b+ a) ≤ c ≤ b2, −2a ≤ b ≤ 0}.

Next we prove that B ⊆ {r(b, c) ≤ a} ∩ II. For (b, c) ∈ B,

∂f2

∂b
=

1

2
(−1 +

b√
b2 − c

) < 0,
∂f2

∂c
=

1

2
(
−1√
b2 − c

) < 0 on I.

So for any b, f2(b, c) attains its maxium at (b,−4a(b+ a)) where

f2(b,−4a(b+ a)) =
1

2
(−b+ |b+ 2a|) =

1

2
(−b+ b+ 2a) = a.

Thus f2(b, c) ≤ a for any (b, c) ∈ B which means B ⊆ {r(b, c) ≤ a} ∩ II.

Thus {r(b, c) ≤ a} ∩ II = B.

Third for region III, {r(b, c) ≤ a} ∩ III ⊆ C = {b2 < c ≤ 4a2}, and

C ⊆ {r(b, c) ≤ a} ∩ III. Thus C = {r(b, c) ≤ a} ∩ III. Combining the above

results,

{r(b, c) ≤ a} = A ∪B ∪ C

= {4a(b− a) ≤ c ≤ 4a2, b ≥ 0} ∪ {−4a(b+ a) ≤ c ≤ 4a2, b < 0}.

confirming that the region {r(b, c) ≤ a} is the triangular region {4a(b−a) ≤
c ≤ 4a2, b ≥ 0} ∪ {−4a(b+ a) ≤ c ≤ 4a2, b < 0}.
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Thus the cumulative distribution function of r is

P (r ≤ a) =

∫∫
A
P (b, c)dcdb+

∫∫
B
P (b, c)dcdb+

∫∫
C
P (b, c)dcdb

=

∫ 2a

0

∫ b2

4a(b−a)
P (b, c)dcdb+

∫ 0

−2a

∫ b2

−4a(b+a)
P (b, c)dcdb+

∫ 2a

−2a

∫ 4a2

b2
P (b, c)dcdb.

(A.16)

And the probability density function of r is

p(r) =

∫ 2r

0
(−4b+ 8r)P (b, 4r(b− r))db+

∫ 0

−2r
(4b+ 8r)P (b,−4r(b+ r))db

+

∫ 2r

−2r
8rP (b, 4r2)db, (A.17)

where P (b, c) is the probability density of (b, c) as shown in (4.4). Next, we

show the calculation details of (A.17). Because p(r) =
dP (r)

dr
, we calculate

the derivatives of the three integrals in (A.16) consisting P (r).

d

da

∫ 2a

0

∫ b2

4a(b−a)
P (b, c)dcdb

=

∫ 2a

0

∂

∂a

∫ b2

4a(b−a)
P (b, c)dcdb+ 2

∫ 4a2

4a2

P (b, c)dcdb

=

∫ 2a

0
(−4y + 8a)P (b, 4a(b− a))db.

d

da

∫ 0

−2a

∫ b2

−4a(b+a)
P (b, c)dcdb

=

∫ 0

−2a

∂

∂a

∫ b2

−4a(b+a)
P (b, c)dcdb− (−2)

∫ 4a2

4a2

P (b, c)dcdb

=

∫ 0

−2a
(4y + 8a)P (b,−4a(b+ a))db.
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d

da

∫ 2a

−2a

∫ 4a2

b2
P (b, c)dcdb

=

∫ 2a

−2a

∂

∂a

∫ 4a2

b2
P (b, c)dcdb+ 2

∫ 4a2

(2a)2

P (b, c)dcdb− (−2)

∫ 4a2

(2a)2

P (b, c)dcdb

=

∫ 2a

−2a
8aP (b, 4a2)db.

Combing the above results and the fact that p(r) =
dP (r)

dr
, we get the

expression of the probability density in (A.17).

A.4 The O-U type processes

In this section, we give some calculation details of equations (4.14) - (4.21).

For the sake of simplicity, we assume 0 ≤ t < T . Then the the general results

can be obtained for lT ≤ t < (l + 1)T , l ∈ Z by making the substitution

t′ = t− lT , l ∈ Z.

At first, for 0 ≤ t < tw, the formula (4.16) is obtained through the

following equations

Var((x(t)) = Var(exp(Ãt)x(0)) + Var(δ

∫ t

0
exp(Ã(t− ξ))dw(ξ))

= exp(Ãt)Var(x(0)) exp(Ãt) +

∫ t

0
exp(Ãt′)

(
0 0

0 δ2

)
exp(Ãt′)dt′.

(A.18)

Notice in the second line of (A.18), because the external noise only comes

in the second entry of x(t) as shown in (4.11), the variance of dw(ξ) at time

t = ξ is

Var(dw(ξ)) =

(
0 0

0 δ2

)
.

68
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Next,

∫ t

0
exp(Ãt′)

(
0 0

0 δ2

)
exp(Ãt′)dt′

=

∫ t

0
Q

(
et
′

0

0 e−t
′

)
Q′

(
0 0

0 δ2

)
Q

(
et
′

0

0 e−t
′

)
Q′dt′

=
δ2

2
Q

∫ t

0

(
e2t′ −1

−1 e−2t′

)
dt′Q′

=
δ2

2
Q

(
e2t−1

2 −t
−t 1−e−2t

2

)
Q′

=
δ2

4

(
sinh(2t)− 2t cosh(2t)− 1

cosh(2t)− 1 sinh(2t) + 2t

)
, (A.19)

for 0 ≤ t < tw where matrix Q is defined in (2.14). Combining (A.18)

and (A.19), we get the result in (4.16).
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Second, we show the calculation details of (4.19) for tw ≤ t < tw+ta = T .

x(t) = exp(Ã(t− tw))x(tw) +

∫ t

tw

exp[Ã(t− ξ)]B̃Dx(0)dξ

+ δ

∫ t

tw

exp(Ã(t− ξ))dw(ξ)

= exp(Ã(t− tw))(exp(Ãtw)x(0) + δ

∫ tw

0
exp(Ã(tw − ξ))dw(ξ))

+

∫ t

tw

exp[Ã(t− ξ)]B̃Dx(0)dξ + δ

∫ t

tw

exp(Ã(t− ξ))dw(ξ)

= exp(Ãt)x(0) + δ

∫ tw

0
exp(Ã(t− ξ))dw(ξ)

+

∫ t

tw

exp[Ã(t− ξ)]dξB̃Dx(0) + δ

∫ t

tw

exp(Ã(t− ξ))dw(ξ)

= exp(Ãt)x(0) +

∫ t

tw

exp[Ã(t− ξ)]dξB̃Dx(0)

+ δ

∫ t

0
exp(Ã(t− ξ))dw(ξ)

=

(
cosh(t) + (1− cosh(t− τ))P sinh(t) + (1− cosh(t− τ))D

sinh(t)− sinh(t− τ)P cosh(t)− sinh(t− τ)D

)
x(0)

+ δ

∫ t

0
exp(Ã(t− ξ))dw(ξ)

= Φ(t)x(0) + δ

∫ t

0
exp(Ã(t− ξ))dw(ξ), (A.20)

for tw ≤ t < tw + ta = T , where

Φ(t) =

(
cosh(t) + (1− cosh(t− τ))P sinh(t) + (1− cosh(t− τ))D

sinh(t)− sinh(t− τ)P cosh(t)− sinh(t− τ)D

)
,

and Φ(T ) = ΦPWC = Φ1 = An+1 +BD.
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