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Abstract

Aggregation is a technique for representing conditional probability distributions
as an analytic function of parents. Logistic regression is a commonly used repre-
sentation for aggregators in Bayesian belief networks when a child has multiple
parents. In this thesis, we consider extending logistic regression to directed re-
lational models, where there are objects and relations among them, and we want
to model varying populations and interactions among parents. We first examine
the representational problems caused by population variation. We show how these
problems arise even in simple cases with a single parametrized parent, and propose
a linear relational logistic regression which we show can represent arbitrary linear
(in population size) decision thresholds, whereas the traditional logistic regression
cannot. Then we examine representing interactions among the parents of a child
node, and representing non-linear dependency on population size. We propose a
multi-parent relational logistic regression which can represent interactions among
parents and arbitrary polynomial decision thresholds. We compare our relational
logistic regression to Markov logic networks and represent their analogies and dif-
ferences. Finally, we show how other well-known aggregators can be represented
using relational logistic regression.
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Preface

This thesis is largely based on two published works: one in Knowledge Represen-
tation and Reasoning (KR-2014) conference [22] and one in AAAI-2014 Statistical
Relational AI (StarAI) workshop [23]. The former introduces the research prob-
lem described in this thesis and points out the solution and the latter summarizes
the results and compares the model proposed in [22] with other similar methods in
the literature. In both publications, I was the first and the correspondence author
and I collaborated with David Buchman, Kristian Kersting, Sriraam Natarajan, and
David Poole. In preparation of both papers, we had a great deal of active discussion
among all the co-authors and numerous refinements. Below is a description of my
contributions to the work.

The preliminary problems with applying logistic regression to relational mod-
els and the need to have a model which addresses those problems were realized
by David Poole, my academic supervisor. He introduced this research topic to me
and we started working on it and discussing it in our weekly meetings. Through
our discussions, we found out that there are other issues (besides the preliminary
problems) that we should take into account when using logistic regression for rela-
tional models. We developed a relational version of logistic regression (RLR) and
investigated how it could address the issues with standard logistic regression.

Having the RLR model, I proposed the idea of defining canonical forms for
that. I realized that both positive conjunctive and positive disjunctive formulae
can be used as canonical forms for RLR, and made the proofs for both. We also
suggested a third canonical form in terms of XOR (without proof), the idea for
which was from David Buchman.

Considering the open problem mentioned in [48] about representing k-degree
polynomial decision thresholds, we decided to figure out if our RLR can represent
this class of decision thresholds or not. I proved that every polynomial decision
threshold can be represented by our RLR, and every decision threshold that can be
represented by our RLR is a polynomial decision thresholds.

We also considered representing other well-known aggregators using our RLR.
I worked out how OR, AND, Noisy-OR, Noisy-AND, Mean > t, More-than-t Trues,
More-than-t% Trues, Max > t and Mode = t can be represented by RLR. David
Buchman then suggested how the aggregators Max and Mode can be modeled using
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Max > t and Mode = t respectively.
After preparing the aforementioned contents for our papers, I designed the

structure and wrote the initial draft for [22] and David Poole did this for [23]. All
co-authors revised, proofread, and gave comments on the drafts, especially David
Poole who modified several portions of [22]. Throughout the period working on
both papers, David Poole and I had many active discussions in our weekly meet-
ings, and David Buchman, Kristian Kersting and Sriraam Natarajan’s knowledge
of the domain was very helpful in progression of the ideas.
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Chapter 1

Introduction

Probabilistic graphical models, including Bayesian (belief) networks and Markov
networks (also known as Markov random fields) [41] are probabilistic models
for representing the dependency among random variables. These networks use
a graphical representation to model the interdependence among random variables.
Bayesian networks are directed models representing the joint probability distribu-
tion (JPD) of a set of random variables in terms of conditional probability distri-
butions (CPD): one CPD for each random variable given its parents in the directed
model. This allows for a compact and natural representation. On the other hand,
Markov networks are undirected models representing the joint probability of a set
of random variables in terms of a set of potential functions, where each potential
function is a non-negative real-valued function of a subset of random variables. In
this work, we focus on directed models with conditional probability distributions.

CPDs in Bayesian networks are often represented as tables. The advantage of
a tabular representation is that it is as general as possible in terms of representing
conditional probabilities; however, it also has several disadvantages. One of the
disadvantages of a tabular representation is that the number of parameters required
to describe a CPD for a random variable grows exponentially with the number of
parents it has in the Bayesian network.

Example 1. Consider a medical domain where whether someone has fever or not
depends on ten different diseases. Representing this domain as a Bayesian network
with tabular CPDs, the CPD for random variable Fever will have 210 = 1024 pa-
rameters (assuming all random variables are binary). The Bayesian network and
the tabular CPD for this example are represented in Fig. 1.1 and Table 1.1 (Di rep-
resents the i-th disease and fever≡ “Fever = True′′). Not only it is computationally
expensive to perform operations on this CPD, but also it is quite tiresome to acquire
the probabilities from expert knowledge; experts will lose patience if we ask them
1024 questions. Learning such a table from data is also problematic because, given
the standard ways for learning a tabular CPD from data, we cannot generalize from
similar conditions. (example taken from [26])

Example 1 indicates how using a tabular representation of a CPD for a random
variable may cause troubles. This example suggests considering other represen-
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Figure 1.1: A Bayesian network for random variable Fever based on ten diseases
(represented by D1,D2, . . . ,D10) affecting the probability of someone having fever.

tations of CPDs in such particular situations. Tree-CPD and rule-CPD are two
alternatives to the tabular representation of CPDs, offering a more compact repre-
sentation by using the contextual independence of random variables [15, 50, 60].
Aggregation is another compact representation for CPDs, defining a CPD in terms
of a function. Logistic regression [5, 32] is a form of aggregation which is used for
representing the conditional probability of random variables having many parents
(e.g., see [35, 53]). We will explain how it works in later chapters.

One of the shortcomings of probabilistic graphical models is that they are not
often adequate to represent large and complex domains where there are entities in
a variety of configurations. Furthermore, while they enable us to efficiently handle
uncertainty, their representational power of a wide variety of knowledge is usually
limited. Since first-order logic [54] gives a powerful and compact representation
for knowledge, and knowledge representation and uncertainty management are two

Table 1.1: Conditional probability table for random variable Fever based on ten dis-
eases (represented by D1,D2, . . . ,D10) affecting the probability of someone having
fever.

D1 D2 . . . D10 Pr(fever|D1, . . . ,D10)

True True . . . True α1
True True . . . False α2
. . . . . . . . . . . . . . .

False False . . . False α1024

2



Chapter 1. Introduction

key elements in most applications, combining probability with first-order logic has
received a great deal of attention. Early works on this field include combining prob-
ability with Horn clauses [33, 44, 58], frame-based systems [11, 39], and database
query languages [56]. These works have led to the introduction of what is known as
relational probabilistic models which combine first-order logic with probabilistic
models [1, 14].

Relational probabilistic models are models where there are probabilities about
relations among individuals that can be specified independently of the actual in-
dividuals, and where the individuals are exchangeable; before we know anything
about the individuals, they are treated identically. These models extend Bayesian
networks and Markov networks by adding the concepts of objects, object proper-
ties, and relations.

Similar to Bayesian networks, in directed relational probabilistic models the
joint probability is defined in terms of conditionals. One of the features of relational
probabilistic models is that the conditional probability of a relation may depend
on the number of individuals1 (in relational models, we refer to the number of
individuals as population size) [45, 48]. In such cases, we cannot represent the
conditional probability of the relation in terms of a table.

Example 2. Suppose a group of people are invited to a party. Whether the party
is fun or not depends on the number of invited people that attend the party (popu-
lation size in this example refers to the number of invited people). Therefore, the
number of parents that the random variable FunParty has is equal to the population
size of people that have been invited to that party. This number, however, is not
always fixed, because the number of people that are invited to different parties is
not the same. Since we cannot bound the number of invited people to different
parties, FunParty might have an unbounded number of parents, so a tabular rep-
resentation of the conditional probability for this random variable is no longer a
possible option.

Varying population sizes are quite common. They can appear in a number of
ways including:

• The actual population may be arbitrary. For example, in considering the
probability of someone committing a crime (which depends on how many
other people could have committed the crime) [45] we could consider the
population to be the population of the neighbourhood, the population of the
city, the population of the country, or the population of the whole world. It

1Sometimes the dependence of a relation on the the number of individuals in a relational model
is desirable; in other cases, model weights may need to change. See [20, 21] for more information.
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1.1. Literature Review

would be good to have a model that does not depend on this arbitrary deci-
sion. We would like to be able to compare models which involve different
choices.

• The population can change. For example, the number of people in a neigh-
bourhood or in a school class may change. We would like a model to make
reasonable predictions as the population changes. We would also like to be
able to apply a model learned at one or a number of population sizes to dif-
ferent population sizes. For example, models from drug studies are acquired
from very limited populations but are applied much more generally.

• The relevant populations can be different for each individual. For instance
in Example 2, whether a party is fun for a person or not may depend on the
number of people at that party who are friends with him or her; however, this
number is different for different people at the party. We would like a model
that makes reasonable predictions for diverse numbers of friends.

• The train and test populations may differ. For example, the efficiency of a
new hospitality management may be first examined in a small hospital with
few patients, and later used in large hospitals with many patients.

Variation in population sizes, and the way the predictions of a model change
with it, is an important factor which should be taken into account when dealing with
probabilistic relational models. Not only it can affect the correctness of a model
[48], but also it has a great influence on the performance of different methods used
for inference in relational models [24]. It also necessitates the use of representa-
tions other than tables in certain cases as described in Example 2. Aggregation is
often used in relational models to handle the problem of representing conditional
probabilities for relations with an unbounded number of parents.

In this work, we consider extending standard logistic regression as an aggrega-
tor for relational models and investigate how varying populations can cause prob-
lems for logistic regression. We propose a relational logistic regression model
which addresses these problems and works appropriately for relational models.

1.1 Literature Review

Since their introduction, probabilistic relational models have drawn many researchers’
attention. They have been used in different fields such as making recommendations
[13, 17], clustering [57], security risk analysis [55], and sorting rocks [9].

A great deal of attention in probabilistic relational models has been drawn to-
wards extending standard machine learning models of propositional data to work
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1.1. Literature Review

for relational models. Neville et al. [37] and Blockeel and De Raedt [2] devel-
oped relational probability tree and relational regression tree models by extending
standard decision trees and regression trees respectively. Considering the data is
heterogeneous and interdependent, Neville et al. [37] and Blockeel and De Raedt
[2] use aggregated values of random variables in the data such as mean, mode,
max, count, etc. along with the values of random variables in each tuple of the data
to split the data in tree nodes. Jaeger [19] extends Bayesian networks to relational
domains by defining a language for specifying Bayesian networks whose nodes are
extensions of first-order predicates.

Other extensions of propositional machine learning models to relational do-
mains include relational dependency networks [36], relational Bayesian classifiers
[37], relational Markov networks (or Markov logic networks) [10, 52], etc.

Some models have been proposed in the literature which can lead to learning
of logistic regression models for relational data. For instance, Popescul et al. [51]
use inductive logic programming (ILP) [28] to generate first-order rules for a tar-
get relation, create features by propositionalizing the rules, and then use logistic
regression to learn a classifier based on these features. There are also methods for
discriminative learning of Markov logic networks which can be considered as a
logistic regression model with relational features. For instance, Huynh and Moony
[18] use an ILP technique to generate discriminative clauses for a target relation
and then use logistic regression with L1-regularizer to learn the weights with au-
tomatic feature selection (automatic structure learning). These methods are all de-
signed for learning purposes and are not used as an aggregator in relational models
similar to the way logistic regression is used for aggregation in propositional mod-
els. In this work, we propose a relational version of logistic regression which can
be used both for learning and aggregation purposes and we discuss what can and
cannot be done by our proposed model.

Aggregation in relational models is necessary when a variable has possibly
an unbounded number of parents in the grounding. The use of aggregators for
defining conditional probabilities in such situations has been investigated for many
years and many aggregation methods have been proposed and used in the litera-
ture. Horsch and Poole [16] proposed using probabilistic existential and univer-
sal quantifiers to define a conditional probability (e.g. Pr(b|∃X,a(X)) = 0.7 and
Pr(b|¬∃X,a(X)) = 0.05). An existential quantifier model is equivalent to a logical
OR operation whose value is True if a property holds for at least one individual,
and a universal quantifier is equivalent to a logical AND operation whose value is
True if a property holds for all individuals. Noisy-OR [40] and noisy-AND [8] are
two of the common aggregators which are extensions of standard OR and AND
operations. They define a set of noise parameters for each parent and the prob-
ability of the child being True increases according to those parameters when the
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1.2. Perspective

property holds for more parents. Generalized linear models [29] are a class of pop-
ular aggregators that satisfy the independence of causal influence. They consist
of a function whose input is the values of the parents of a random variable and
whose output is a real number, as well as a threshold on the output of the function
determining if the child node is True or False according to the output. Logistic
regression is a generalized linear model with soft threshold.

One of the important issues which should be taken into account when design-
ing a relational model is the variations in the population sizes. These variations
can have desirable or undesirable effects on predictions of model. Poole et al. [48]
consider the population size effects on three simple models (naive Bayes, logistic
regression with one parent, and a simple Markov network) and indicate that in a re-
lational setting, even these simple models make strong assumptions about how the
size of a population affects the predictions. This study has been extended later on
by considering population size extrapolation [47]. In this work, we also consider
the effects of population size and the problems they introduce for using logistic
regression in relational domains and address those problems in our proposed rela-
tional logistic regression.

1.2 Perspective

In this work, we demonstrate the problems that arise when using standard logis-
tic regression as an aggregator in relational models, where a variable has possi-
bly an unbounded number of parents in the grounding. Considering these prob-
lems, we initially propose a linear, single parent relational logistic regression
which solves the problems with standard logistic regression when there is only
one (parametrized) parent and the decision threshold is linear. Then we demon-
strate what happens when we have more parents that can interact with each other
and when we want to model non-linear decision thresholds. We develop a general
relational logistic regression which works with an arbitrary number of parents and
models every arbitrary polynomial decision threshold. We define canonical forms
and prove what can and cannot be modeled by our relational logistic regression. We
also compare our relational logistic regression model with Markov logic networks,
which are a class of undirected relational models, and point out the similarities and
differences. We conclude the thesis by introducing many other popular aggrega-
tors and representing how we can approximate them using our relational logistic
regression.

In this work, we focus on binary child variables and categorical parent vari-
ables, but explain a possible approach for extending the model to multi-valued
child nodes. Extension of the model to continuous parent variables (as done in

6



1.2. Perspective

[31] for non-relational models) is left as a future work.
The rest of the thesis is organized as follows. Chapter 2 provides sufficient in-

formation for readers to read the rest of the thesis and defines terminologies used in
the thesis. Chapter 3 demonstrates problems with standard logistic regression when
used as aggregator in relational models and defines relational logistic regression to
overcome these problems. This chapter also compares relational logistic regression
with Markov logic networks, and proves theorems about canonical forms and what
can and cannot be represented by relational logistic regression. Chapter 4 repre-
sents how other well-known aggregation models can be approximated in terms of
relational logistic regression. Finally, chapter 5 summarizes the thesis and points
out some future directions.

7



Chapter 2

Background

In this chapter, we provide sufficient information for readers to read the rest of the
thesis. We also define terminologies used throughout the thesis.

2.1 Bayesian Networks

Suppose we have a set of random variables {X1, . . . ,Xn}. A Bayesian network or
belief network [41] is a directed acyclic graph (DAG) where the random variables
are the nodes, and the arcs represent interdependence among the random variables.
Each variable is independent of its non-descendants given the values for its par-
ents. Thus, if Xi is not an ancestor of Xj, then Pr(Xi | parents(Xi),Xj) = Pr(Xi |
parents(Xi)), where parents(Xi) returns the parents of the random variable Xi in
the DAG. The joint probability of the random variables in a Bayesian network can
be factorized as:

Pr(X1,X2, ...,Xn) =
n

∏
i=1

Pr(Xi | parents(Xi)) (2.1)

Example 3. Fig. 2.1 represents a Bayesian network for cancer (network taken
from [27]) with five random variables. In this network, Cancer (C) has two parents,
Pollution (P) and Smoke (S), and two children, Xray (X) and Dyspnea (D). We can
infer from the network that if we observe whether someone has cancer or not, the
probability of them having dyspnea is independent of whether they smoke or not.
In order to model the joint probability of the random variables in the network, five
conditional probabilities are constructed; one for each random variable given its
parents. The joint probability is then as follows:

Pr(C,P,S,X,D) = Pr(P)∗Pr(S)∗Pr(C | S,P)∗Pr(X | C)∗Pr(D | C)

One way to represent a conditional probability distribution Pr(Xi | parents(Xi))
in a Bayesian network is in terms of a table. Such a tabular representation for a
random variable increases exponentially in size with the number of parents. For
instance, a Boolean child having 10 Boolean parents requires 210 = 1024 numbers
to specify the conditional probability (as in Fig. 1.1).
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Pollution Smoking 

Cancer 

Xray Dyspnea 

Figure 2.1: A Bayesian network for random variable Cancer representing few of
its causes and few of the complications caused by it (taken from [27]).

A compact alternative to a table is an aggregation operator, or aggregator, that
specifies a function of how the distribution of a variable depends on the values
of its parents. Examples for common aggregators include OR, AND, as well as
“noisy-OR” and “noisy-AND”. These can be specified much more compactly than
a table.

Example 4. Suppose in Fig. 1.1 we know that all diseases have the same effect
on fever and whether someone has fever or not only depends on the number of
diseases they have. We can model this conditional dependency of fever on its
parents as follows:

Pr(fever | D1,D2, . . . ,D10) = sign(w0 +w1

10

∑
i=1

Di)

where fever ≡ “Fever = True′′ and sign(x) is equal to 1 if x ≥ 0 and 0 otherwise.
This model assumes the probability of fever given the diseases is either 0 or 1.
Having the above model, if we know that people have fever as soon as they have
one of the ten diseases, we can represent this by setting w0 = −1 and w1 = 2
(assuming that True is represented by 1 and False is represented by 0). This is a
compact form requiring only 2 instead of 1024 parameters.

2.2 Logistic Regression

Logistic regression [5, 32] is an aggregator in Bayesian networks. We describe
how it works and how it can be used as an agregator.

9
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Figure 2.2: The sigmoid function.

Suppose a Boolean random variable Q is a child of the numerical random vari-
ables {X1,X2, . . . ,Xn}. Logistic regression is an aggregation operator defined as:

Pr(q | X1, . . . ,Xn) = sigmoid(w0 +∑
i

wiXi) (2.2)

where q≡ “Q = True”, sigmoid(x) = 1/(1+e−x) (Fig. 2.2 shows a sigmoid func-
tion) and w0,w1, . . . ,wn are real-valued weights. It follows from the definition
that Pr(q | X1, . . . ,Xn) > 0.5 iff w0 +∑i wiXi > 0. Logistic regression definition
in Eq. 2.2 assumes numerical parameters, so Boolean inputs need to be mapped
to numerical ones. There are many ways to do this; for now we assume True is
represented by 1 and False is represented by 0.

The space of assignments to the w’s so that w0 +∑i wiXi = 0 is called the deci-
sion threshold, as it is the boundary of where Pr(q | X1, . . . ,Xn) changes between
being closer to 0 and being closer to 1. Logistic regression provides a soft thresh-
old, in that it changes from close to 0 to close to 1 in a continuous manner. How
fast it changes can be adjusted by multiplying all weights by a positive constant.

Example 5. Suppose in Fig. 1.1 we know that if people have none of the ten
diseases, the probability of them having fever is low; however, if they have at least
one of the ten diseases, with a high probability they have fever, and this probability
increases with the number of diseases they have. Below is an example of how we
can model this conditional probability for fever using logistic regression.

Pr(fever | D1, . . . ,D10) = sigmoid(−3+5D1 +5D2 + · · ·+5D10)

Given the above conditional probability, the probability of having fever for a per-
son with none of the ten diseases is sigmoid(−3)' 0.0474. Once they have one of

10
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the ten diseases, this probability becomes sigmoid(−3+5)' 0.8808. This proba-
bility increases as the number of diseases increases. For instance, the probability of
having fever for a person having two of the ten diseases is sigmoid(−3+2∗5) '
0.9991. The decision threshold for this example is D1+D2+ · · ·+D10 =

3
5 , mean-

ing that the probability of fever is more than a half if the sum of the indicators of
diseases being true is more than 3

5 , less than a half if the sum of the indicators is
less than 3

5 , and is exactly a half of the sum equals 3
5 .

2.2.1 The Factorization Perspective

A simple and general formulation of logistic regression can be defined using a
multiplicative factorization of the conditional probability. Eq. 2.2 then becomes a
special case, which is equivalent to the general case when Q is binary and proba-
bilities are positive (non-zero).

We define a general logistic regression for Q with parents X1, . . . ,Xn (all vari-
ables here may be discrete or continuous) to be when Pr(Q | X1, . . . ,Xn) can be
factored into a product of non-negative pairwise factors and a non-negative factor
for Q:

Pr(Q | X1, . . . ,Xn) ∝ f0(Q)
n

∏
i=1

fi(Q,Xi)

where ∝ (proportional-to) means it is normalized separately for each assignment
to the parents. This differs from the normalization for joint distributions (as used
in undirected models), where there is a single normalizing constant. Here the
constraint that causes the normalization is ∀X1, . . . ,Xn : ∑Q Pr(Q | X1, . . . ,Xn) =
1, whereas for joint distributions, the normalization is to satisfy the constraint
∑Q,X1,...,Xn Pr(Q,X1, . . . ,Xn) = 1.

If Q is binary, then:

Pr(q | X1, . . . ,Xn) =
f0(q)∏

n
i=1 fi(q,Xi)

f0(q)∏
n
i=1 fi(q,Xi)+ f0(¬q)∏

n
i=1 fi(¬q,Xi)

If all factors are positive, we can divide and then use the identity y = elny:

Pr(q | X1, . . . ,Xn) =
1

1+ f0(¬q)
f0( q) ∏

n
i=1

fi(¬q,Xi)
fi( q,Xi)

=
1

1+ exp
(

ln f0(¬q)
f0( q) +∑

n
i=1 ln fi(¬q,Xi)

fi( q,Xi)

)
= sigmoid

(
ln

f0( q)
f0(¬q)

+
n

∑
i=1

ln
fi( q,Xi)

fi(¬q,Xi)

)
.

11
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When the ln fi( q,Xi)
fi(¬q,Xi)

are linear functions w.r.t. Xi, it is possible to find values for
all w’s such that this can be represented by Eq. (2.2). This is always possible when
the parents are binary.

2.2.2 Multi-valued Child Variables

Suppose a multi-valued categorical random variable Q, where Q can take k≥ 2 dif-
ferent values denoted by {V1, . . . ,Vk}, is a child of the numerical random variables
{X1,X2, . . . ,Xn}. Logistic regression learns (k−1)(n+1) weights denoted by:

w10 w11 . . . w1n

w20 w21 . . . w2n

. . . . . . . . . . . .
w(k−1)0 w(k−1)1 . . . w(k−1)n


and defines the conditional probability of Q given its parents as:

if (l < k)→ Pr(Q = Vl|X1, . . . ,Xn) =
exp(wl0 +∑

n
i=1 Xiwli)

1+∑
k−1
l′=1 exp(wl′0 +∑

n
i=1 Xiwl′i)

if (l = k)→ Pr(Q = Vl|X1, . . . ,Xn) =
1

1+∑
k−1
l′=1 exp(wl′0 +∑

n
i=1 Xiwl′i)

(2.3)

Note that the definition of logistic regression in Eq. 2.3 reduces to the Eq. 2.2
when K = 2.

2.3 Relational Models

Relational models deal with objects and relations among them. Non-relational (or
propositional) models have a set of features and make predictions about a target
feature based on those features. Relational models have a set of objects (also called
individuals or entities), properties of the objects, and relations among these objects,
and make predictions about target relations. The following subsections describe
what relational models are and how they are used, and motivate why we should use
relational models instead of non-relational models in certain domains.

2.3.1 Motivation

Bayesian networks, e.g., as shown in Fig. 1.1 and 2.1, are defined in terms of fea-
tures (represented by nodes) and the probabilistic dependencies among them (rep-
resented by arcs). In some domains, we have a number of individuals, properties
of individuals, and relationships among them and we want to make probabilistic

12
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predictions about a random variable having a certain value, an individual having a
property, or a group of individuals having a relationship.

Example 6. In social networks, we have a set of individuals (users of the social
network), their properties (e.g., gender, age, etc.), and the relationship among them
(e.g., being friend or following each other), and we might want to predict if a user
is fake or real given their properties and relations (e.g. in [7, 59]).

These domains are best modeled in terms of individuals and relationships rather
than in terms of features. The following example (inspired by two-digit addition
example in [49]) motivates the use of individuals and relations in the domain of
intelligent tutoring systems.

Example 7. Consider an automated tutoring system for diagnosing the arithmetic
errors students make in converting a number in binary format to gray code2. The
system should be able to predict if the students know XOR and the conversion
process well enough or have problems in specific tasks.

Fig. 2.3 represents a simple case of two-bit binary to gray code conversion
(B2G) and a corresponding Bayesian network for diagnosing whether the student
knows the conversion process and how to XOR two bits or not. As we can see
in this model, there is one node in the Bayesian network for each digit (Xi) of
the binary number (plus one extra node which we observe to be zero), one for
each digit (Yi) of resulting gray code format, one representing whether the student
knows XOR (KnowsXOR), and one representing whether the student knows the
conversion process (KnowsB2G). If instead of having a two-bit conversion prob-
lem, our intelligent tutoring is teaching 10-bit conversion, we have to use ten nodes
for the number in binary format and ten for the resulting gray code. Furthermore,
if our system is teaching addition to several students, we need different copies of
the KnowsXOR, KnowsB2G and Yis for each student. We also need another copy
of the Xis and Yis for each conversion problem that a student solves. Having all
these copies, our network will be very huge and it will be very time-consuming to
perform operations on it.

The problem of facing with a huge Bayesian network having many copies of its
nodes arises in this domain because we have many individuals (students, conver-
sion problems and digits), individual properties (whether the students know how to
XOR and the B2G process or not) and relations among individuals (the digits of the
gray code calculated by students for conversion problems). Relational probabilistic
models are an appropriate alternative to be used in such situations.

2Gray code is a binary numerical system where two successive values differ in only one bit. In
order to convert a number in binary format to gray code, the d-th digit of the gray code is calculated
by XOR-ing the d-th and (d+1)-th digits in the binary format, assuming there is an extra 0 to the left
of the binary number.
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X2=0 X1 X0 

 Y1 Y0 

X2 X1 X0 

Y1 Y0 

KnowsB2G KnowsXOR 

Figure 2.3: Two-digit binary to gray (B2G) conversion task and its corresponding
Bayesian network for an intelligent tutoring system.

2.3.2 Relational Probabilistic Models

Relational probabilistic models [14] or template based models [26] extend Bayesian
or Markov networks by adding the concepts of individuals (objects, entities, things),
relations among individuals (including properties, which are relations of a single
individual), and by allowing for probabilistic dependencies among these relations.
In these models, individuals about which we have the same information are ex-
changeable, meaning that, given no evidence to distinguish them, they should be
treated identically. We provide some basic definitions and terminologies in these
models which are used in the rest of the thesis.

Some Definitions

A population is a set of individuals. A population corresponds to a domain in
logic. The population size is the cardinality of the population which can be any
non-negative integer. For instance, a population can be the set of movies in a
movie rating system where Titanic and Her are two individuals and the size of the
population is equal to the number of movies in the database.

A logical variable is written in lower case. Each logical variable is typed with
a population; we use |x| for the size of the population associated with a logical
variable x. For instance, u and m may be two logical variables typed with the
population of users and movies in a movie rating system respectively. Constants,
denoting individuals, start with an upper case letter. We refer to a set of logical
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Age(u) Genre(m) 

Rate(u,m) 

Age(Sam) 

Age(Joe) 

. . . 

Genre(Titanic) Genre(Her) … 

Rate(Sam,Titanic) Rate(Sam,Her) 

Rate(Joe,Titanic) Rate(Joe,Her) 

. . . . . . 

… 

… 

Figure 2.4: On the left is a relational belief network for predicting the rates of users
for different movies given the users’ ages and movies’ genres, and on the right is a
grounding of the model.

variables by a lower case letter in bold (e.g., x).
A parametrized random variable (PRV) is of the form F(t1, . . . , tk) where F

is a k-ary functor (a function symbol or a predicate) and each ti is a logical variable
or a constant. Each functor has a range, which is {True,False} for predicate sym-
bols. A PRV represents a set of random variables, one for each assignment of indi-
viduals to its logical variables. The range of the functor becomes the range of each
random variable. For instance, Rate(u,m), Rate(Sam,m) and Rate(Sam,Titanic)
are three different PRVs.A ground random variable is a PRV where all tis are
constants (e.g. Rate(Sam,Titanic)).

A relational belief network is an acyclic directed graph where the nodes are
PRVs and arcs represent the conditional independence among them. A grounding
of a relational belief network with respect to a population for each logical variable
is a belief network created by replacing each PRV with the set of random variables
it represents, while preserving the structure. Fig. 2.4 represents a relational belief
network on the left, where the rate given by a user u to a movie m depends on the
age of the user and genre of the movie, and its grounding on the right.

An atom is an assignment of a value to a PRV. For instance, R(x) is a PRV and
R(x) = True is an atom. For a Boolean PRV R(x), we represent R(x) = True by
R(x) and R(x) = False by ¬R(x). We refer to an atom ¬R(x) as a negated atom.

A formula is made up of atoms with logical connectives. A Boolean formula is
a formula in which conjunction, disjunction and negation are the only logical oper-
ators used. A conjunctive formula is a formula which is the conjunction of literals,
where a literal is an atom or the negation of an atom. A disjunctive formula is a
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formula which is the disjunction of literals. A positive formula is a formula with no
negations. For instance R(x)∧ S(y) is a positive conjunctive Boolean formula. In
this work, we only consider Boolean formulae and for simplicity we use the term
formula to refer to Boolean formula.

A substitution is a finite set θ = {x1/t1,x2/t2, . . . ,xk/tk} where xis are distinct
logical variables and each ti is a constant or a logical variable different from xi.
Let F be a formula. Fθ is called an instance of F and obtained by replacing
simultaneously all occurrences of every xi, 1≤ i≤ k, in F with the corresponding
ti. θ is called a unifier for a set {F1,F2, . . . ,Fm} iff F1θ = F2θ = · · · = Fmθ . θ

is called the most general unifier for a set {F1,F2, . . . ,Fm} iff any other unifier
ψ of this set can be expressed as ψ = θθ ′, where θ ′ is a substitution. The set
{F1,F2, . . . ,Fm} is unifiable iff there exists a unifier for it. (Definitions taken from
[6].)

A Boolean interaction among a series of PRVs is an interaction that can be
represented by a Boolean formula of the PRVs.

When using a single population, we write the population as A1 . . .An, where n
is the population size, and use R1 . . .Rn as short for R(A1) . . .R(An). We also use
nval for the number of individuals x for which R(x) = val. When R(x) is binary, we
use the shortened nT = nTrue and nF = nFalse.

Intelligent Tutoring Example with Relational Models

Example 7 represented how modeling a domain with multiple individuals and re-
lations among them can be troublesome for a standard Bayesian network. In order
to model this problem in a relational setting, we define logical variables s, d and
p typed with the population of students, digits and problems respectively. Hav-
ing these logical variables, we define the digits of X by two PRVs X(d,p) and
X(d+1,p), where the ground random variable X(D,P) represents the D-th digit of
the number in binary format from the P-th problem. We also define KnowsXOR(s)
and KnowsB2G(s) where each ground random variable KnowsXOR(S) represents
whether student S knows how to XOR and KnowsB2G(S) represents whether stu-
dent S knows the binary to gray conversion process or not. Finally, we define
the result variables as Y(d,p,s), where the ground random variable Y(D,P,S) rep-
resents the D-th digit of the result calculated by student S for the P-th problem.
The relational belief network can be then represented by plate notation [4] as in
Fig. 2.5. Having this relational model, there are several efficient algorithms for
weight learning [11] and inference [30, 46] in these models which can be used to
predict the value of each PRV given any of the other PRVs.
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d, p 

s 
KnowsXOR(s) KnowsB2G(s) 

X(d,p) 
Y(d,p,s) 

X(d+1,p) 

Figure 2.5: Intelligent tutoring system for teaching multi-digit binary to gray (B2G)
conversion modeled in a relational setting using plates notation.

A Relational Model Requiring Aggregation

Fig. 2.6 (taken from [25]) represents a relational model and a grounding of the
model. According to the model, the probability of a team having a substitute de-
pends on the probability of substitution for any of the players, where the probability
of substitution for each player depends on whether the players are injured in the
game or not, and the probability of them having an injury depends on whether
they are in shape or not. In this model, the conditional probability of the PRVs
Shape(player), Inj(player) and Sub(player) can be represented in terms of a ta-
ble, because their parents do not have an extra logical variable, thus the number
of parents they have in the grounding is fixed. However, the PRV Subs() has a
parent Sub(player) which has an extra logical variable. Since the number of play-
ers of different teams and in different sports can be different, Subs() may have an
unbounded number of parents in the grounding. Therefore, the conditional prob-
ability for this PRV cannot be represented in terms of a table and we have to use
aggregation instead. Logical OR (or equivalently an existential quantifier) is an ap-
propriate aggregation operator for the PRV Subs() because Subs() is True if there
is at least one individual P for which Sub(P) is True.
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 Shape(player) 

Inj(player) 

Sub(player) 

player 

Subs() 

Shape(Jack) 

Inj(Jack) 

Sub(Jack) 

Shape(Joe) 

Inj(Joe) 

Sub(Joe) 

Subs() 

…  

… 

… 

Shape(Ben) 

Inj(Ben) 

Sub(Ben)
) 

Figure 2.6: A relational model having a PRV (Subs()) with an unbounded number
of parents in the grounding, whose conditional probability should be represented
using an aggregation operator (taken from [25]).

2.3.3 Markov Logic Networks

Markov logic networks (MLNs) [10, 52] are undirected models for representing the
joint probability distribution of a set of PRVs. MLNs extend the standard Markov
networks to relational domains. They represent the joint probability of PRVs in
terms of a first order knowledge-base with soft constraints. Before we explain how
MLNs work, we need to give two definitions.

A world is an assignment of a value to each ground random variable. The
number of worlds is exponential in the number of ground random variables.

A first-order knowledge-base [12] is a set of sentences or formulae in first-order
logic.

A first-order knowledge-base can be viewed as a set of hard constraints on the
possible worlds. A hard constraint means that if a world violates even one of the
formulae in first-order knowledge-base, the probability of that world is zero. MLNs
soften these hard constraints by making a world less probable (not impossible)
when it violates a formula. Softening the constraint is by associating a weight
to each of the formulae whose value is proportional to the amount of decrease in
probability of a world violating this formula.

More formally, an MLN defines the probability distribution over worlds using
a set of weighted formulae of the form 〈F,w〉, where F is a formula and w is the
weight of the formula. The set of all weighted formulae of a model can be viewed
as a first-order knowledge-base with soften rules. The probability of a world is
proportional to the exponential of the sum of the weights of the instances of the
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                   x 

R(x) 

Q 

R(A1) R(A2) R(An) 

Q 

… 

Figure 2.7: An undirected relational model in plate notation on the left, and its
grounding for the population {A1,A2, . . . ,An} on the right.

formulae that are True in the world. The probability of any formula is obtained by
summing over the worlds in which the formula is True.

Example 8. Consider the undirected relational model in Fig. 2.7. An MLN for
this model may define the probability distribution using the following weighted
formulae:

〈Q,α0〉
〈Q∧¬R(x),α1〉
〈Q∧R(x),α2〉
〈R(x),α3〉

The probability of any world can be calculated based on the number of in-
stances of formulae that are True in the world.

MLNs can also be adapted to define conditional distributions. Below is an
example of representing a conditional distribution using MLNs.

Example 9. Consider the undirected relational model in Fig. 2.7 and suppose the
joint probability of the PRVs is defined using the weighted formulae in Example 8.
Also suppose that the truth value of R(x) for every individual x is observed. The
MLN of Fig.2.7 defines the conditional probability of Q given the observed values
of the R(x) as follows:

Pr(q | obs) = sigmoid(α0 +nFα1 +nTα2) (2.4)

where obs has R(x) is true for nT individuals, and false for nF individuals out of a
population of n individuals (so n = nT +nF), and sigmoid(x) = 1/(1+ e−x).
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Chapter 3

Relational Logistic Regression

Logistic regression is an aggregator for standard Bayesian networks; however, it
cannot be used as an aggregator for relational models without making appropriate
changes. In this chapter, we indicate the problems of using logistic regression in
relational domains and develop a relational version of logistic regression which we
call relational logistic regression.

3.1 Aggregation with Logistic Regression in Relational
Models

We saw earlier in this thesis that using an aggregator to define a conditional proba-
bility in standard Bayesian networks can save a noticeable amount of memory and
reduce computations. While aggregation is optional in non-relational models, it
is necessary in directed relational models whenever the parent of a PRV contains
extra logical variables. For example, suppose Boolean PRV Q is a child of the
Boolean PRV R(x), which contains an extra logical variable, x, as in Fig. 3.1. In
the grounding, Q is connected to n instances of R(x), where n is the population size
of x. For the model to be defined before n is known, it needs to be applicable for
all values of n.

Common ways to aggregate the parents in relational domains, e.g. [11, 16, 25,
34, 38, 42], include logical operators such as OR, AND, noisy-OR, noisy-AND, as
well as ways to combine probabilities.

Logistic regression, as described in previous chapter, may also be used for
relational models. For instance for the model in Fig. 3.1, logistic regression defines
the conditional probability of child node as:

Pr(q | R1, . . . ,Rn) = sigmoid(w0 +∑
i

wiRi). (3.1)

Since the individuals in a relational model are exchangeable, wi must be iden-
tical for all parents Ri (this is known as parameter-sharing or weight-tying), so
Eq. 2.2 becomes:

Pr(q | R1, . . . ,Rn) = sigmoid(w0 +w1 ∑
i

Ri). (3.2)
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R(A1) R(A2) R(An) 
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Figure 3.1: Logistic regression (with i.i.d. priors for the R(x)). The left side is
the relational model in plate notation and the right side is the grounding for the
population {A1,A2, . . . ,An}.

Consider what happens with a relational model when n is not fixed.

Example 10. Suppose we want to represent “Q is True if and only if R is True for
5 or more individuals”, i.e., q ≡

(
|{i : Ri = True}| ≥ 5

)
or q ≡ (nT ≥ 5), using a

logistic regression model (Pr(q) ≥ 0.5) ≡ (w0 +w1 ∑i Ri ≥ 0), which we fit for a
population of 10. Consider what this model represents when the population size is
20.

If R = False is represented by 0 and R = True by 1, this model will have Q =
True when R is true for 5 or more individuals out of the 20. It is easy to see this, as
∑i Ri only depends on the number of individuals for which R is True.

However, if R = False is represented by −1 and R = True by 1, this model will
have Q = True when R is True for 10 or more individuals out of the 20. The sum
∑i Ri depends on how many more individuals have R True than have R False.

If R = True is represented by 0 and R = False by any other value, this model
will have Q = True when R is True for 15 or more individuals out of the 20. The
sum ∑i Ri depends on how many individuals have R False.

While the choice of representation for True and False was arbitrary in the non-
relational case, in the relational case different parametrizations can result in differ-
ent decision thresholds as a function of the population. Table 3.1 gives some nu-
merical representations for False and True, with corresponding parameter settings
(w0 and w1), such that all regressions represent the same conditional distribution
for n = 10. However, for n = 20, the predictions are different.

The decision thresholds in all situations in Table 3.1 are linear functions of
population size. It is straightforward to prove the following proposition:
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Table 3.1: Predictions of a logistic regression model in a relational domain with a
population size of 20 as a function of numerical representations for True and False,
where the parameters are learned for a population of 10.

False True w0 w1 Prediction for n = 20
0 1 -4.5 1 Pr(Q = True)> 0.5 iff nT ≥ 5
-1 1 0.5 0.5 Pr(Q = True)> 0.5 iff nT ≥ 10
-1 2 −7

6
1
3 Pr(Q = True)> 0.5 iff nT ≥ 8

-1 0 5.5 1 Pr(Q = True)> 0.5 iff nT ≥ 15
-1 100 −889

202
1

101 Pr(Q = True)> 0.5 iff nT ≥ 5
1 2 -14.5 1 Pr(Q = True)> 0.5 iff nT ≥ 0

-100 1 1091
202

1
101 Pr(Q = True)> 0.5 iff nT ≥ 15

Proposition 1. Let R = False be represented by the number α and R = True by
β 6= α . Then, for fixed w0 and w1 (e.g., learned for one specific population size),
the decision threshold for a population of size n is

w0

w1(α−β )
+

α

α−β
n.

Proof. Let nT represent the number of individuals for which the parent is True and
n represent the population size. Considering the values for w0,w1,α and β , the
decision threshold can be determined by solving the following equation for nT (we
assume w1 6= 0, otherwise the child does not depend on the parent).

w0 +w1 (βnT +α(n−nT)) = 0

⇒ w0

w1
+nT(β −α)+αn = 0

⇒ nT =
w0

w1(α−β )
+

α

α−β
n

What is important about this proposition is that the way the decision threshold
changes with the population size n, i.e., the coefficient α

α−β
, does not depend on

data (which affects the weights w0 and w1), but only on the arbitrary choice of the
numerical representation of R.

Thus, Eq. (3.2) with a specific numeric representation of True and False is only
able to model one of the dependencies of how predictions depend on population
size, and so cannot properly fit data that does not adhere to that dependence.
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3.2. Single-parent, Linear Relational Logistic Regression

We need an additional degree of freedom to get a relational model that can
model any linear dependency on n, regardless of the numerical representation.

3.2 Single-parent, Linear Relational Logistic Regression

We define a single-parent, linear relational logistic regression by adding a degree
of freedom to the logistic regression formalism in Eq. 3.2.

Definition 1. Let Q be a Boolean PRV with a single parent R(x), where x is the set
of logical variables in R that are not in Q (so we need to aggregate over x). A single-
parent, linear relational logistic regression (SPL-RLR) for Q with parents R(x)
is of the form:

Pr(q | R(A1), . . . ,R(An)) = sigmoid
(
w0 +w1 ∑

i
Ri +w2 ∑

i
(1−Ri)

)
(3.3)

where Ri is short for R(Ai) (Ai is the i-th assignment of individuals to x), and is
treated as 1 when it is True and 0 when it is False. Note that ∑i Ri is the number of
(tuple of) individuals for which R is True (= nT ) and ∑i(1−Ri) is the number of
(tuple of) individuals for which R is False (= nF).

An alternative but equivalent parametrization is:

Pr(q | R(A1), . . . ,R(An)) = sigmoid(w0 +w2 ∑
i

1+w3 ∑
i

Ri) (3.4)

where 1 is a function that has value 1 for every individual, so ∑i 1= n. The mapping
between these parametrizations is w3 = w1−w2; w0 and w2 are the same.

Proposition 2. Let R = False be represented by α and R = True by β 6= α . Then,
for fixed w0, w2 and w3 in Eq. (3.4), the decision threshold for a population of size
n is

w0

w3(α−β )
+

α +w2/w3

α−β
n.

Proof. Let nT represent the number of individuals for which the parent is True and
n represent the population size. Considering the values for w0,w2,w3,α and β , the
decision threshold can be determined by solving the following equation for nT (we
assume w3 6= 0, otherwise the child does not depend on the values of the individuals
in the parent).

w0 +w2n+w3 (βnT +α(n−nT)) = 0

⇒ w0

w3
+

w2

w3
n+nT(β −α)+αn = 0

⇒ nT =
w0

w3(α−β )
+

α +w2/w3

α−β
n
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3.3. Multi-parent, Linear Relational Logistic Regression

Proposition 2 implies that the way the decision threshold in an SPL-RLR grows
with the population size n, i.e. the coefficient α+w2/w3

α−β
, depends on the weights.

Moreover, for fixed α and β , with α 6= β , any linear function of population can
be modeled by varying the weights. This was not true for the traditional logistic
regression.

For the rest of this thesis, when we embed logical formulae in arithmetic ex-
pressions, we take True formulae to represent 1, and False formulae to represent 0.
Thus ∑L F is the number of assignments to the variables L for which formula F is
True.

3.3 Multi-parent, Linear Relational Logistic Regression

The SPL-RLR proposed in Definition 1 can be extended to multiple (parametrized)
parents by having a different pair of weights ((w1,w2) or (w2,w3)) for each parent
PRV. This is similar to the non-relational logistic regression, where each parent
has a (single) different weight. We define a multi-parent, linear relational logistic
regression (MPL-RLR) as follows:

Definition 2. Let Q be a Boolean PRV with parents R1(x1),R2(x2), . . . ,Rk(xk),
where x1,x2, . . . ,xk are the set of logical variables in R1,R2, . . . ,Rk respectively
that are not in Q (so we need to aggregate over them). A multi-parent, linear rela-
tional logistic regression (MPL-RLR) for Q with parents R1(x1),R2(x2), . . . ,Rk(xk)
is of the form:

Pr(q | R1(x1), . . . ,Rk(xk)) =sigmoid
(
w0

+w11 ∑
x1

R1(x1)+w21 ∑
x1

(1−R1(x1))

+w12 ∑
x2

R2(x2)+w22 ∑
x2

(1−R2(x2))

+ . . .

+w1k ∑
xk

Rk(xk)+w2k ∑
xk

(1−Rk(xk))
)

(3.5)

This formulation of MPL-RLR needs 2k+1 parameters, where k is the number
of parents. Similar to SPL-RLR, we can use an alternative representation for MPL-

24



3.4. Interactions Among Parents

RLR as follows:

Pr(q | R1(x1), . . . ,Rk(xk)) =sigmoid
(
w0

+w21 ∑
x1

1+w31 ∑
x1

R1(x1)

+w22 ∑
x2

1+w32 ∑
x2

R2(x2)

+ . . .

+w2k ∑
xk

1+w3k ∑
xk

Rk(xk)
)

(3.6)

where 1 is a function that has value 1 for every individual. The mapping be-
tween these parametrizations is ∀i,w3i = w1i−w2i; w0 and w2i are the same. Simi-
lar to the previous parametrization in Eq. 3.5, this parametrization also needs 2k+1
parameters. In cases where parents have the same logical variable, however, this
parametrization can be more compact.

Suppose x1,x2, . . . ,xr are the sets of logical variables of the parents of Q where
r ≤ k. Eq.3.7 can be re-written with only k+ r+1 parameters as follows:

Pr(q | R1(x1), . . . ,Rk(xk)) =sigmoid
(
w0

+w21 ∑
x1

1+ · · ·+w2r ∑
xr

1

+w31 ∑
xR1

R1(x1)+ · · ·+w3k ∑
xRk

Rk(xk)
) (3.7)

where xRj represents the set of logical variable of the parent Rj.

3.4 Interactions Among Parents

Definition 2 represents how SPL-RLR can be extended to multiple parents with no
interactions. However, there are cases where we want to model the interactions
among the parents.

Example 11. Suppose we want to model whether someone being happy depends
on the number of their friends that are kind. We assume the PRV Happy(x) has as
parents Friend(y,x) and Kind(y) as demonstrated in Fig. 3.2. Note that the number
of friends for each person can be different.

Consider the following hypotheses:

1. A person is happy as long as they have 5 or more friends who are kind.

happy(x)≡ |{y : Friend(y,x)∧Kind(y)}| ≥ 5
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Friend(y,x) Kind(y) 

Happy(x) 

Figure 3.2: A relational model for representing people’s happiness based on the
number of friends they have and whether their friends are kind or not.

2. A person is happy if half or more of their friends are kind.

happy(x)≡ |{y : Friend(y,x)∧Kind(y)}| ≥ |{y : Friend(y,x)∧¬Kind(y)}|

3. A person is happy as long as fewer than 5 of their friends are not kind.

happy(x)≡ |{y : Friend(y,x)∧¬Kind(y)}|< 5

These three hypotheses coincide for people with 10 friends, but make different
predictions for people with 20 friends.

All three hypotheses are based on the interaction between the two parents, each
requiring the number of individuals for which some formulae of the parents (in-
stead of just a single parent) holds. For instance modeling the first hypothesis
needs the number of people that are simultaneously friends with x and are kind.
MPL-RLR does not include formulae of the parents and considers each parent sep-
arately. We cannot count the number of individuals that are simultaneously friends
with x and are kind by having two numbers one indicating the number of people
that are friends with x and the other indicating the number of people that are kind.
Therefore, MPL-RLR cannot model these interactions without including weighted
formuale of the parents in its parametrization. In order to model such aggregators,
we need to extend MPL-RLR by adding such weighted formulae.The following
extended MPL-RLR models these cases:

Pr(happy(x) |Π)

= sigmoid
(

w0 +w1 ∑
y

Friend(y,x)∧ Kind(y)

+w2 ∑
y

Friend(y,x)∧¬Kind(y)
) (3.8)
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3.4. Interactions Among Parents

where Π is a complete assignment of friend and kind to the individuals, and the
right hand side is summing over the propositions in Π for each individual. To
model each of the above three cases, we can set w0, w1, and w2 in Eq. (3.8) as
follows:

1. Let w0 =−4.5, w1 = 1, w2 = 0

2. Let w0 = 0.5, w1 = 1, w2 =−1

3. Let w0 = 5.5, w1 = 0, w2 =−1

Going from Eq. (3.3) to Eq. (3.4) allowed us to only model the positive cases
in SPL-RLR. We can also model this example using only positive formulae by
replacing:

w2 ∑
y

Friend(y,x)∧¬Kind(y)

with:
w2 ∑

y
Friend(y,x)−w2 ∑

y
Friend(y,x)∧Kind(y)

in Eq. 3.8 resulting in:

Pr(happy(x) |Π)

= sigmoid
(

w0 +(w1−w2)∑
y

Friend(y,x)∧Kind(y)+w2 ∑
y

Friend(y,x)
)

(3.9)

Example 11 represented that Boolean formulae of the parents may be required
to be considered when parents interact with each other. It also represented a par-
ticular case where we can model the domain using only positive formulae. We can
use a similar construction for more general cases:

Example 12. Suppose a PRV Q is a child of PRVs R(x) and S(x) and its conditional
probability depends on a conjunctive formula of the parents such as R(x)∧ S(x),
R(x)∧¬S(x), ¬R(x)∧S(x) or ¬R(x)∧¬S(x). As in Example 11, we need to count
the number of instances of a formula that are True in an assignment to the parents.
It turns out that in this case R(x)∧S(x) is the only non-atomic formula required to
model the interactions between the two parents, because other conjunctive interac-
tions can be represented using this count as follows:

∑
x

R(x)∧¬S(x) =∑
x

R(x)−∑
x

R(x)∧S(x)

∑
x
¬R(x)∧ S(x) =∑

x
S(x)−∑

x
R(x)∧S(x)

∑
x
¬R(x)∧¬S(x) =|x|−∑

x
R(x)−∑

x
S(x)+∑

x
R(x)∧S(x)
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with |x|= ∑x True.

Example 12 shows that the positive conjunction of the two interacting parents
is the only formula required to compute arbitrary conjunctive formulae consisting
of one atom of each parent. In more complicated cases, however, subtle changes to
the representation may be required.

Example 13. Suppose a PRV Q is a child of PRVs R(x,y) and S(x,z). Suppose we
want to represent “Q is True if and only if R(x,y)∧¬S(x,z) is True for more than
t triples 〈x,y,z〉”. If we follow what we did in Example 12 to represent R(x,y)∧
¬S(x,z) in terms of positive formulae, we will get that ∑x,y,z R(x,y)∧¬S(x,z) =
∑x,y R(x,y)−∑x,y,z R(x,y)∧S(x,z). However, we need the number of triples 〈x,y,z〉,
instead of the number of pairs 〈x,y〉, for which R(x,y) is True. We thus need to use
∑x,y,z R(x,y) as the number of assignments to x, y and z for which R(x,y) is True as
follows:

∑
x,y,z

R(x,y)∧¬S(x,z) = ∑
x,y,z

R(x,y)−∑
x,y,z

R(x,y)∧S(x,z)

So as part of the representation, we need to include the set of logical variables
and not just a weighted formula.

3.5 Non-linear Decision Thresholds

Examples 12 and 13 suggest how to model interactions among the parents. Now
consider the case where the decision threshold for the child PRV is a non-linear
function of its parents’ population sizes. For instance, if the individuals are the
nodes in a dense graph, some properties of arcs grow with the square of the pop-
ulation of nodes. We describe how MLNs represent a class of non-linear decision
thresholds for undirected models and use an analogous idea in our relational logis-
tic regression.

Markov logic networks (MLNs) as described earlier are undirected models for
representing the joint probability of a set of PRVs, which can be also adapted to de-
fine a conditional distribution. One of the characteristics of MLNs is that they can
also model a class of non-linear dependencies on the population sizes. The follow-
ing example shows a case where a non-linear conditional distribution is modeled
by MLNs.

Example 14. Consider the MLN for PRVs Q and R(x), consisting of a single for-
mula Q∧R(x)∧R(y) with weight w, where y represents the same population as x.
The probability of q given observations of R(Ai) for all Ai has a quadratic decision
threshold:

Pr(q | R(A1), . . . ,R(An)) = sigmoid(w nT
2).
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More formally, MLNs use Boolean formulae with more than one instance of
a PRV (each having a different logical variable typed with the same population)
to model a non-linear decision thresholds on the population size of the PRV. This
allows for modeling a class of non-linear dependencies using only Boolean for-
mulae. This idea can be also used by relational logistic regression. Consider the
following example:

Example 15. Suppose a PRV Q is a child of the PRV R(x), and we want to rep-
resent “Q is True if and only if nT

2 > nF”. This dependency can be represented
by introducing a new logical variable x′ with the same population as x and treating
R(x′) as if it were a separate parent of Q. Then we can use the interaction between
R(x) and R(x′) to represent the model in this example as:

∑
x,x′

R(x)∧R(x′)−∑
x

True+∑
x

R(x).

3.6 Using Weighted Formulae for Relational Logistic
Regression

The previous section represented how the idea of representing non-linear depen-
dencies in MLNs can be also used by relational logistic regression. MLNs define
the joint probability of PRVs in terms of a set of weighted formulae, which makes
the model more intuitive. We can also define our relational logistic regression in
terms of weighted formulae, but for representing a conditional probability distri-
bution instead of the joint distribution. Each of the sigmas in our definitions of
SPL-RLR and MPL-RLR can be represented by a weighted formula, and then we
take the sigmoid of the sum of these sigmas.

Example 16. The three sigmas used in Example 15 for representing a non-linear
decision threshold with relational logistic regression can be represented by the fol-
lowing weighted formulae:

• ∑x,x′ R(x)∧R(x′)⇒ 〈R(x)∧R(x′),1〉

• ∑x True⇒ 〈True,−1〉

• ∑x R(x)⇒ 〈R(x),1〉

Using these weighted formulae to represent the conditional probability, our
relational logistic regression will be the directed analog of MLNs. We will discuss
this in more detail after we define our general relational logistic regression.
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3.7 General Relational Logistic Regression

Previous examples show the potential for using relational version of logistic regres-
sion as an aggregator for relational models. We need a language for representing
aggregation in relational models in which we can address the problems mentioned.
We propose a generalized form of relational logistic regression as a directed analog
of MLNs, which works for multi-parent cases and can model a same class of non-
linear decision thresholds. We first give a formal definition of weighted formulae
used by relational logistic regression and then define relational logistic regression
based on these weighted formulae.

Definition 3. A weighted formula (WF) for a Boolean PRV Q(x), where x is a
tuple of logical variables, is a triple 〈L,Q(x′)∧F′,w〉 where L is a set of logical
variables such that L∩ x′ = {}, Q(x′) is an instance of Q(x), F′ is a formula of
parent PRVs of Q such that each logical variable in F′ either appears in x′ or is in
L , and w is a weight.

A child PRV can have a set of WFs. We represent the set of WFs for Q(x) by
WFsQ.

Example 17. Suppose Q(x,y) is a child of PRVs R(x,z) and S(y). The following
are all valid WFs:

• 〈{},Q(x,y),1〉

• 〈{y′},Q(x,y)∧S(y)∨S(y′),5〉

• 〈{z},Q(x,x)∧R(x,z),−2〉

•
〈
{x,y,z},Q(Xi,Yj)∧S(y)∧R(Xi,z), 3

5

〉
where Xi and Yj are two individuals from the population assigned to x and y respec-
tively. The following WFs, however, are not valid WFs because the first one has
logical variable z in its formula which does not appear in the set of logical vari-
ables, the second one does not have an instance of the child PRV Q, and the third
one has two instances of Q.

• 〈{},Q(x,y)∧R(x,z),1〉

• 〈{x,y},S(y),5〉

• 〈{x,y},Q(x,y)∧Q(Xi,Yj)∧S(y),5〉
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3.7. General Relational Logistic Regression

Definition 4. A weighted formula 〈L,Q′∧F′,w〉 for PRV Q(x), where Q′ repre-
sents an instance of Q and F′ represents a formula of the parents of Q, is compat-
ible with a ground random variable Q(X), where X is a tuple of individuals,if Q′

and Q(X) are unifiable. We represent the set of WFs for Q that are compatible with
Q(X) by comp(WFsQ,X).

Example 18. Consider a PRV Q(x,y) and a ground random variable Q(Xi,Yj).
WFs with the following formulae are compatible with this ground random variable
(F′ shows any Boolean formula of the parents):

• Q(x,y)∧F′

• Q(x,Yj)∧F′

• Q(Xi,Yj)∧F′

and the following are not compatible:

• Q(Xi′ ,y)∧F′

• Q(Xi,Yj′)

Definition 5. Let Q(x) be a Boolean PRV with parents Ri(xi), where xi is the tuple
of logical variables in Ri. A (general) relational logistic regression (RLR) for Q
with parents Ri(xi) is defined using a set of WFs WFsQ for Q as:

Pr(q(X) |Π) = sigmoid
(

∑
〈L,Q′∧F′,w〉∈comp(WFsQ,X)

w ∑
L

F′Πθ(Q′,Q(X))
)

where Π represents the assigned values to parents of Q(x), X represents a tuple
of individuals, 〈L,Q′∧F′,w〉 represents a WF for Q where Q′ is an instance of
Q and F′ is a formula of the parents of Q, comp(WFsQ,X) represents all weighted
formulae for Q compatible with X, θ(Q′,Q(X)) represents the most general unifier
of Q′ and Q(X), and F′

Π
θ(Q′,Q(X)) is formula F′ with substitution θ(Q′,Q(X))

applied to it, and evaluated in Π. (The first summation is over the set of WFs;
the second summation is over the tuples of L. Note that ∑{} sums over a single
instance.)

The SPL-RLR (Definition 1) is a subset of Definition 5, because the terms of
Eq. (3.4) can be modeled as follows:

• w0 can be represented by 〈{},Q,w0〉

• w2 ∑i 1 can be represented by 〈{x},Q,w2〉

31



3.8. RLR vs MLNs

• w3 ∑i Ri can be represented by 〈{x},Q∧R(x),w3〉

RLR then sums these WFs, resulting in:

Pr(q |Π) = sigmoid
(
w0 ∑
{}

True+w2 ∑
{x}

True+w3 ∑
{x}

R(x)
)

= sigmoid
(
w0 +w2n+w3 ∑

i
Ri
)
.

It is straight forward to see that MPL-RLR (Definition 2) is also a subset of
Definition 5.

Example 19. Consider the problem introduced in Example 13. Using general RLR
(Definition 5), we can model the conditional probability of Q using the following
WFs:

〈{},Q,w0〉
〈{x,y,z},Q∧R(x,y)∧¬S(y,z),w1〉

Or alternatively:
〈{},Q,w0〉
〈{x,y,z},Q∧R(x,y),w1〉
〈{x,y,z},Q∧R(x,y)∧S(y,z),−w1〉

3.8 RLR vs MLNs

The definition of WFs in Definition 3 is similar to the WFs used by MLNs. The
major difference is that we allow exactly one instance of the child node in the
formula and it should be conjoined with the formula of the parents, whereas MLNs
allow arbitrary numbers of each PRV in the formulae. The other minor difference
is that we represent the set of logical variables L to be summed over explicitly,
whereas MLNs have it implicitly. Instead of summing over the logical variables in
a set L, MLNs sum over the logical variables appearing in the formula. We allow
extra logical variables that are not in the formula to appear L and the formula sums
over these extra logical variables to calculate the value of WFs in Definition 5. In
order to sum over an extra logical variable z in MLNs, one could conjoin a True(z)
to the formula, where True is a property which holds for all individuals. In this
section, we use explicit set of logical variables in weighted formulae of MLNs.

We demonstrate that RLR is directed analog of MLNs using the following ex-
ample:
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Example 20. Consider the model in Example 8 where we had the following weighted
formulae:

〈{},Q,α0〉
〈{x},Q∧¬R(x),α1〉
〈{x},Q∧R(x),α2〉
〈{x},R(x),α3〉

Treating this as an MLN (as in Fig.2.7), if the truth value of R(x) for every
individual x is observed:

Pr(q | obs) = sigmoid(α0 +nFα1 +nTα2) (3.10)

where obs has R(x) is true for nT individuals, and false for nF individuals out of a
population of n individuals (so n = nT +nF).

Note that in the MLN, α3 is not required for representing the conditional prob-
ability (because it cancels out), but can be used to affect Pr(R(Ai)), where Ai is an
individual of x.

In RLR, the sigmoid, as in Equation (3.10), is used as the definition of RLR.
RLR only defines the conditional probability of Q being True given each combi-
nation of assignments to the R(x) (using Equation (3.10)); when not all R(x) are
observed, separate models of the probability of R(x) are needed.

MLNs and RLR agree for the supervised learning case when all variables ex-
cept a query leaf variable are observed (such as in Example 20). However, they are
quite different in representing distributions.

Note that in MLNs, there is a single normalizing constant, guaranteeing the
probabilities of the worlds sum to 1. In RLR, normalization is done separately for
each possible assignment to the parents.

In summary: RLR uses the weighted formulae to define the conditional proba-
bilities, and MLNs use the weighted formulae to define the joint probability distri-
bution.

3.9 Canonical Forms of RLR

While in Definition 3 we allow for any Boolean formula of parents, we can prove
that a positive conjunctive form is sufficient to model all the Boolean interactions
among parents. A Boolean interaction is defined in the background section. Since
all formulae in the WFs for a child PRV Q are conjoined with an instance of Q, we
only consider the formulae of parents of Q in our proofs.

Proposition 3. Let Q be a Boolean PRV with parents Ri(xi), where xi is a set of
logical variables in Ri which are not in Q. Using only positive conjunctive formulae
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of the parents in the WFs for Q, all Boolean interactions among the parents can be
modeled by RLR.

Proof. Every Boolean formula F can be represented as a disjunction of mutually
exclusive conjunctive formulae as F1 ∨ F2 ∨ ·· · ∨ Fm for some m, where all Fis
are conjunctive formulae and are mutually exclusive (i.e., ∀i, j 6= i : Fi∧Fj is False)
[43]. Therefore, a WF 〈L,F,w〉 can be replaced by 〈L,F1∨F2∨·· ·∨Fm,w〉. Since
the conjunctive formulae are mutually exclusive, this new WF can be replaced my
m WFs 〈L,F1,w〉 ,〈L,F2,w〉 , . . . ,〈L,Fm,w〉. So we prove that any WF 〈L,Fj,w〉
where Fj is a conjunctive formula can be represented using only positive conjunc-
tive formuale.We prove this by induction on the number of negations denoted by
nneg.

For nneg = 0, the formula Fj is in a positive conjunction form and the proposi-
tion holds. Assume the proposition holds for nneg. For nneg +1, let ¬Ri(xi) be one
of the negated atoms of the formula Fj. We write Fj as F′j ∧¬Ri(xi). Note that F′j
has nneg negations. The WF

〈
L,F′j ∧¬Ri(xi),w

〉
can be replaced by

〈
L∪xi,F′j,w

〉
and

〈
L,F′j ∧Ri(xi),−w

〉
. Each of the formulae in these WFs has only nneg nega-

tions for which the proposition holds according to our assumption.

Example 21. Suppose we want to represent a WF 〈x,F,w〉, where F = A(x)∧(B∨
C(x)) conjoined with the child PRV, in terms of WFs with positive conjunctive for-
mulae. First we write F in sum of products form as (A(x)∧B∧¬C(x))∨ (A(x)∧
C(x)). Note that no pair of the product form formulae can be simultaneously True.
The second product form formula is in positive conjunctive form and can be repre-
sented by a single WF:

〈{x},A(x)∧C(x),w1〉

and the first one can be represented using the following WFs:

〈{x},A(x)∧B,w2〉
〈{x},A(x)∧B∧C(x),−w2〉

Proposition 3 suggests using only positive conjunctive formuale pf parents in
WFs. We refer to an RLR conditional probability using WFs with only positive
conjunctive formulae of parents as a positive conjunctive RLR and an RLR con-
ditional probability using WFs with only positive disjunctive formulae of parents
as a positive disjunctive RLR. Proposition 4 proves that positive disjunctive RLR
has the same representational power as positive conjunctive RLR. Therefore, all
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propositions proved for positive conjunctive RLR in the rest of the thesis also hold
for positive disjunctive RLR.

Proposition 4. A conditional distribution Pr(Q | Ri(xi)) can be expressed by a
positive disjunctive RLR if and only if it can be expressed by a positive conjunctive
RLR.

Proof. First, suppose Pr(Q | Ri(xi)) can be expressed by a positive disjunctive
RLR. The corollary of Proposition 3 gives that Pr(Q | Ri(xi)) can be expressed
by positive conjunctive RLR. We can also prove this without using Proposition 3
as follows.

We can write a disjunctive formula F as ¬F′ where F′ is a conjunctive formula.
So we can change all the disjunctive formulae Fj in the WFs for Pr(Q | Ri(xi)) to

¬F′j where F′j is a conjunctive formula. A WF
〈

L,¬F′j,w
〉

can be modeled by two

WFs 〈L,Q,w〉 and
〈

L,F′j,−w
〉

having conjunctive formulae, because the former
counts all assignments to L, and the latter counts all assignments to L for which
F′j is True, thus the subtraction of these WFs gives the number of assignments to L
for which F′j is False. The latter WF may consist of negated atoms but we know
from Proposition 3 that we can model it by a set of positive conjunctive WFs.
Consequently, Pr(Q | Ri(xi)) can be also expressed by a positive conjunctive RLR.

Now, suppose the conditional distribution can be expressed by a positive con-
junctive RLR definition of Pr(Q | Ri(xi)). While Proposition 3 is written for pos-
itive conjunctive RLR, it is straight forward to see that it also holds for conjunc-
tive formulae of negated atoms, by having the induction on the number of pos-
itive atoms and removing them one by one. This means that we can express Q
by WFs 〈L,Fk,w〉 where Fk is a conjunction of negated atoms. We can represent
each of these formulae Fk as ¬F′k where F′k is a positive disjunctive formula. We
also mentioned that a WF

〈
L,¬F′k,w

〉
can be expressed by two WFs 〈L,Q,w〉 and〈

L,F′k,−w
〉
. Both the former and the latter formulae are in positive disjunctive

form. Consequently, Pr(Q | Ri(xi)) can be also expressed by a positive disjunctive
RLR.

Buchman et al. [3] looked at canonical representations for probability distri-
butions with binary variables in the non-relational case. Our positive conjunctive
canonical form corresponds to their “canonical parametrization” with a “reference
state” True (i.e., in which all variables are assigned True), and our positive dis-
junctive canonical form has a connection to using a “reference state” False. Their
“spectral representation” would correspond to a third positive canonical form for
RLR, in terms of XORs (i.e., parity functions).
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3.10. Non-linear Decision Thresholds

3.10 Non-linear Decision Thresholds

We can also model a class of non-linear decision thresholds using RLR. The fol-
lowing example is a case where the child PRV depends on the square of the popu-
lation size of its parent.

Example 22. Suppose Q is a Boolean PRV with a parent R(x). By having a WF
〈{x,x′},Q∧R(x)∧R(x′),w〉 for Q where x′ is typed with the same population as
x, the conditional probability of Q depends on the square of the number of assign-
ments to x for which R(x) is True. This is similar to the WF used for an MLN in
Example 14.

Example 22 represents a case where the conditional probability of a child PRV
depends on the square of its parent’s population size. We can prove that by using
only positive conjunctive formulae in the WFs of a child PRV, we can model any
polynomial decision threshold. First we prove this for the single-parent case and
then for the general case of multi-parents. We assume in the following propositions
that Q is a Boolean PRV and R1(x1),R2(x2), . . . are its parents where xi is the set of
logical variables in Ri which are not in Q. We use x′i to refer to a new set of logical
variable typed with the same population as those in xi.

Proposition 5. A positive conjunctive RLR definition of Pr(Q |R(x)) (single-parent
case) can represent any decision threshold that is a polynomial function of the sizes
of logical variables in x and the number of (tuples of) individuals for which R(x)
is True or False.

Proof. Based on Proposition 3 we know that a WF having any Boolean formula can
be written as a set of WFs each having a positive conjunctive formula. Therefore,
in this proof we do not commit to using only positive conjunctive formulae. The
final set of WFs can be represented by a set of positive conjunctive WFs using
Proposition 3.

Each term of the polynomial in the single-parent case is of the form w(∏i |xi|di)nT
αnF

β 3,
where nT and nF denote the number of individuals for which R(x) is True or False
respectively, xi ∈ x represents the i-th logical variable in x, α , β and dis are non-
negative integers, and w is the weight of the term. First we prove by induction that
for any j, there is a WF that can build the term nT

αnF
β for any α and β where

α +β = j, α ≥ 0 and β ≥ 0.
For j = 0, nT

αnF
β = 1. We can trivially build this by WF 〈{},True,w〉. As-

suming it is correct for j, we prove it for j+ 1. For j+ 1, either α > 0 or α = 0
3It is important to consider the population sizes of logical variables in the polynomial terms since

some properties may depend on these population sizes. For instance, Poole et al. [47] give a real
world example of predicting the age of people using the number of movies they have rated.
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3.10. Non-linear Decision Thresholds

and β > 0. If α > 0, using our assumption for j, we can have a WF 〈L,F,w〉
which builds the term nT

α−1nF
β . So the WF 〈L∪{x′},F∧R(x′),w〉 builds the

term nT
αnF

β because the first WF was True nT
α−1nF

β times and now we count it
nT more times because R(x′) is True nT times.

If α = 0 and β > 0, we can have a WF 〈L,F,w〉which builds the term nT
αnF

β−1.
By the same reasoning as in previous case, we can see that the WF 〈L∪{x′},F∧¬R(x′),w〉
produces the term nT

αnF
β .

In order to include the population size of logical variables xi, where xi ∈ x, and
generate the term (∏i |xi|di)nT

αnF
β , we only add di extra logical variables x′i to the

set of logical variables of the WF that generates nT
αnF

β . Then we set the weight
of this WF to w to generate the desired term.

Until now we proved that we can generate every term of the polynomial. Since
RLR sums over all these terms, we can generate every decision threshold which
is a polynomial function of the sizes of logical variables in x and the number of
(tuples of) individuals for which R(x) is True or False..

Conclusion. One of the conclusions of this proposition is that a term w(∏i |xi|di)nT
αnF

β

can be generated by having a WF with its formula consisting of nT instances of
R(x′) and nF instances of ¬R(x′), adding di of each logical variable xi to the set of
logical variables, and setting the weight of WF to w. We will use this conclusion
for proving the proposition in multi-parent case.

Example 23. Suppose we want to model the case where Q is True if the square
of number of True individuals in R(x) is at least 5 more than twice the number of
False individuals in it (i.e., nT

2 ≥ 2nF +5). In this case, we can model the sigmoid
of the polynomial nT

2−2nF−4.5. The reason for using 4.5 instead of 5 is to make
the polynomial positive when nT

2 = 2nF +5. The following WFs are used by RLR
to model this polynomial. The first WF generates the term nT

2, the second one
generate −2nF and the third one generates −4.5.

〈{x,x′},Q∧R(x)∧R(x′),1〉
〈{x},Q∧¬R(x),−2〉
〈{},Q,−4.5〉

Note that the second WF above can be written in positive form by using the fol-
lowing two WFs:

〈{x},Q,−2〉
〈{x},Q∧R(x),2〉

Using the conclusion following Proposition 5, we now extend Proposition 5 to
the multi-parent case:
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3.10. Non-linear Decision Thresholds

Proposition 6. A positive conjunctive RLR definition of Pr(Q | R1(x1), . . . ,Rk(xk))
(multi-parent case) can represent any decision threshold that is a polynomial func-
tion of the sizes of logical variables in the parents and the number of (tuples of)
individuals for which a Boolean function of parents hold.

Proof. Let G1,G2, . . . ,Gt represent Boolean interactions of parents for our model.
Also let n(i) denote the number of individuals for which Gi is True. Each term of
the polynomial in the multi-parent case is then of the form:
w * (any polynomial of population sizes) * nα1

(1)n
α2
(2) . . .n

αt
(t).

We demonstrate how we can generate any term nα1
(1)n

α2
(2) . . .n

αt
(t). The inclusion of

population size of logical variables and the weight w for each term is the same as
in Proposition 5.

The conclusion of Proposition 5 can be generalized to work for any Boolean
formula Gi instead of a single parent R. We only need to include a conjunction of
αi instances of Gi with different logical variables typed with the same population
in each instance. Let Fi represent this conjunction of αi instances of Gi. We use
this generalization in our proof.

For each nαi
(i), we can use the generalization of the conclusion of Proposition 5

to obtain a WF 〈Li,Fi,1〉 which generates this term. Similar to the reasoning for
single-parent case, we can see that the WF 〈{∪t

i=1Li,F1∧F2∧·· ·∧Ft,w〉 gener-
ates the term nα1

(1)n
α2
(2) . . .n

αt
(t). We can then use Proposition 3 to write this WF using

only positive conjunctive WFs.
Until now we proved that we can generate every term of the polynomial. Since

RLR sums over all these terms, we can generate any decision threshold that is a
polynomial function of the sizes of logical variables in the parents and the number
of (tuples of) individuals for which a Boolean function of parents hold.

Example 24. Suppose we want to model the case where Q is True if the square
of number of individuals for which R1(x1) = True multiplied by the number of
individuals for which R2(x2) = True is less than five times the number of False
individuals in R1(x1).In this case, we define G1 = ¬R1(x1) and G2 = R1(x1)∧
R1(x′1)∧R2(x2). We can model the sigmoid of the polynomial 5n(1)− n(2)− 0.5.
The reason why we use −0.5 in the polynomial is that we want the polynomial to
be negative when 5n(1) = n(2). The following WFs are used by RLR to model this
polynomial where the first formula generates the term 5n(1), the second generates
−n(2) and the third generates −0.5.

〈{x1},Q∧¬R1(x1),5〉
〈{x1,x′1,x2},Q∧R1(x1)∧R1(x′1)∧R2(x2),−1〉
〈{},Q,−0.5〉
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3.11. Beyond Polynomial Decision Thresholds

Note that the first WF above can be written in positive form in the same way as in
Example 23.

Proposition 6 proved that RLR can model any polynomial decision threshold.
Proposition 7 proves the converse of Proposition 6:

Proposition 7. Any decision threshold that can be represented by a positive con-
junctive RLR definition of Pr(Q | R1(x1), . . . ,Rk(xk)) is a polynomial function of
the number of (tuples of) individuals for which a Boolean function of parents hold.

Proof. We prove that every WF for Q can only generate a term of the polynomial.
Since RLR sums over these terms, it will always represent a polynomial decision
threshold.

Similar to Proposition 6, let G1,G2, . . . ,Gt represent the Boolean functions of
parents and let n(i) denote the number of individuals for which Gi is True. A pos-
itive conjunctive formula in a WF can consist of α1 instances of G1, α2 instances
of G2, . . . , αt instances of Gt. Based on Proposition 6, we know that this formula
is True nα1

(1)n
α2
(2) . . .n

αt
(t) times. The WF can contain more logical variables in its set

of logical variables than the ones in its formula. This, however, will only cause the
above term to be multiplied by the population size of the logical variable generating
a term of the polynomial described in Proposition 6. Therefore, each of the WFs
can only generate a term of the polynomial which means that positive conjunctive
RLR can only represent the sigmoid of this polynomial.

3.11 Beyond Polynomial Decision Thresholds

Proposition 7 showed that any conditional probability that can be expressed us-
ing a positive conjunctive RLR definition of Pr(Q | R1(x1), . . . ,Rk(xk)) is the sig-
moid of a polynomial of the number of True and False individuals in each parent
Ri(xi). However, given that the decision thresholds are only defined for integral
counts, some of the apparently non-polynomial decision thresholds are equivalent
to a polynomial and so can be modeled using RLR.

Example 25. Suppose we want to model Q ≡
(⌈√

nT
⌉
< nF

)
. This is a non-

polynomial decision threshold, but since nT and nF are integers, it is equivalent
to the polynomial decision threshold nT − (nF−1)2 ≤ 0 which can be formulated
using RLR by the following WFs:

〈{x},Q∧R(x),−1〉
〈{x},Q∧¬R(x)∧¬R(x),1〉
〈{x},Q∧¬R(x),−2〉
〈{},Q,1.5〉
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Example 26. Suppose we want to model Q≡ (2nT > 3nF). This is, however, equiv-
alent to the polynomial form Q ≡ (nT log2− nF log3 > 0) and can be formulated
in positive conjunctive RLR using the WFs:

〈{x},Q,− log3〉
〈{x},Q∧R(x), log3+ log2〉

There are, however, non-polynomial decision thresholds that cannot be con-
verted into a polynomial one and RLR is not able to formulate them.

Example 27. Suppose we want to model Q≡ (2nT > nF). This cannot be converted
to a polynomial form and RLR cannot formulate it.

Finding a parametrization that allows to model any non-polynomial decision
threshold remains an open problem.

3.12 RLR with Multi-valued Child Variables

Definitions 3 and 5 consider Boolean child variables. We can extend these defi-
nitions to multi-valued child variables similar to the way logistic regression is ex-
tended. Suppose a multi-valued categorical PRV Q(x), where Q(x) can take k ≥ 2
different values {V1,V2, . . . ,Vk}, is a child of PRVs {R1(x1),R2(x2), . . . ,Rm(xm)}.
We define k−1 sets of WFs {wf1,wf2, . . . ,wfk−1} each containing a (possibly) dif-
ferent number of WFs, where each formula of WFs in wfi is conjoined with the
atom Q = Vi.

Having the above k−1 sets of WFs, the probability of Q taking different values
in its domain given a grounding assignment gax can be defined as follows:

if (l < k)→ Pr(Q(x) = Vl|Π) =
exp
(

∑〈L,Q′∧F′,w〉∈comp(wfl,X) w ∑L FΠθ(Q′,Q(X))
)

1+∑
k−1
l′=1 exp

(
∑〈L,F,w〉∈comp(wfl′ ,X) w ∑L FΠθ(Q′,Q(x))

)
if (l = k)→ Pr(Q(gax) = Vl|Π) =

1
1+∑

k−1
l′=1 exp

(
∑〈L,F,w〉∈comp(wfl′ ,X) w ∑L FΠθ(Q′,Q(x))

)
(3.11)

Note that Equation 3.11 reduces to the Equation 5 in Definition 5 when k = 2.
The extension of RLR to continuous child PRVs and continuous parents is left as a
future work.
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Chapter 4

Approximating Other
Aggregators Using RLR

We can model other well-known aggregators using positive conjunctive RLR. In
most cases, however, this is only an approximation because many aggregators are
deterministic taking only values 0 and 1, but the sigmoid function reaches 0 or 1
only in the limit. In order for a sigmoid to produce a 0 or 1 output, we need an
infinitely large number, but we cannot choose infinitely large numbers. We can,
however, get arbitrarily close to 0 or 1 by choosing arbitrarily large weights. In
the rest of this chapter, we use M to refer to a number which can be set sufficiently
large to receive the desired level of approximation. nval is the number of individuals
x for which R(x) = val, when R is not Boolean.

4.1 OR

OR is one of the popular aggregators which is equivalent to the logical existential
quantifier (∃). Using OR, the child node is True if there exists at least one as-
signment of individuals to the logical variables in the parents, for which a desired
formula holds. In order to model OR in RLR for a PRV Q with parent PRV R(x),
we use the WFs:

〈{},Q,−M〉
〈{x},Q∧R(x),2M〉

for which Pr(q | R(x)) = sigmoid(−M + 2MnT). We can see that if none of the
individuals are True (i.e. nT = 0), the value inside the sigmoid is −M which is a
negative number and the probability is close to 0. If even one individual is True
(i.e. nT ≥ 1), the value inside the sigmoid becomes positive and the probability
becomes closer to 1. In both cases, the value inside the sigmoid is a linear function
of M. Increasing M pushes the probability closer to 0 or to 1 and the approximation
becomes more accurate.

Example 28. Suppose a group of people live in an apartment and they can set off
a fire alarm if they smell smoke. We have a random variable AlarmSounds which
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4.2. AND

 

SetsOff(x) AlarmSound Leave(x) Evacuated 

Figure 4.1: A relational model representing the evacuation scenario of a building
when a member of the building sets off an smoke alarm. The conditional probabil-
ity of the PRV AlarmSounds in this model should be represented using the aggre-
gation operator OR and the conditional probability of the PRV Evacuated should
be represented using the aggregation operator AND.

has a parent SetsOff (x) (as in Fig. 4.1) and whose conditional probability can be
approximated by the following WFs:

〈{},AlarmSounds,−10〉
〈{x},AlarmSounds∧SetsOff (x),20〉

where we chose M = 10. We can see in Table 4.1 how close the approximation is
for this value of M.

4.2 AND

AND is equivalent to the logical universal quantifier (∀) and can be modeled sim-
ilarly to OR. In order to model AND in RLR for a PRV Q with parent PRV R(x),
we use the WFs:

〈{},Q,M〉
〈{x},Q∧¬R(x),2M〉

or equivalently with the following WFs having only positive conjunctive formulae:

〈{},Q,M〉
〈{x},Q,−2M〉
〈{x},Q∧R(x),2M〉

Table 4.1: The probability of random variable AlarmSounds as a function of the
number of people num who set off the alarm for the weighted formulae in Exam-
ple 28 with an accuracy of six digits after the decimal point.

num 0 1 2 3 4 > 4
Probability 0.000045 0.999955 1 1 1 1
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R(x) N(x) 

S(x) 

Q 

R(x) 

Q 

Figure 4.2: On the left is a relational model for a child node with a single parent
having an extra logical variable. On the right is a relational model representing the
changes to be made to the model on the left for defining a noisy-OR or noisy-AND
conditional probability for the child node using RLR.

for which Pr(q | R(x)) = sigmoid(M−2MnF). When nF = 0, the value inside the
sigmoid is M > 0, so the probability is closer to 1. When nF ≥ 1, the value inside
the sigmoid becomes negative and the probability becomes closer to 0. Like OR,
accuracy increases with M.

Example 29. In Example 28, after hearing the alarm sound, people start to leave
the building and the building is evacuated if all people have left (see Fig. 4.1). The
conditional probability of the PRV Evacuated can be then approximated using the
following WFs:

〈{},Evacuated,M〉
〈{x},Evacuated,−2M〉
〈{x},Evacuated∧Leave(x),2M〉

Having AND and OR aggregators (i.e. universal and existential quantifiers) we
can model any other Boolean formuale of the individuals.

4.3 Noisy-OR and Noisy-AND

The previous two sections represented how we can use RLR to approximate the
deterministic OR and AND aggregators using a probabilistic model. Now we con-
sider modeling the noisy-OR and noisy-AND using RLR.

Figure 4.2 represents how noisy-OR and noisy-AND can be modeled for the
network in Figure 3.1. In this figure, R(x) represents the values of the individuals
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4.4. Mean

being combined and N(x) represents the noise probability. For noisy-OR, S(x) ≡
R(x)∧N(x), and Q is the OR aggregator of S(x). For noisy-AND, S(x) ≡ R(x)∨
N(x), and Q is the AND aggregator of S(x). Note that the noise probability can
be different for each of the individuals and we cannot model noisy-OR and noisy-
AND without adding extra PRVs to the model and by just using the models for
deterministic OR and AND, where each individual has the same effect.

4.4 Mean

We represent how we can model mean > t. We can model “Q is True if mean(R(x))>
t” using the following WFs (val and t are numeric constants. The second WF is
repeated for each val ∈ range(R), so we have a total of 1+ r WFs where r is the
size of range(R)):

〈{},Q,−M〉〈
{x},Q∧R(x) = val,M2(val− t)

〉
for which

Pr(q | R(x)) = sigmoid(−M+M2
∑

val∈range(R)
nval(val− t))

= sigmoid(−M+M2( ∑
val∈range(R)

nvalval− t ∑
val∈range(R)

nval))

= sigmoid(−M+M2(sum−nt))

where n = |x| and sum represents the sum of the values of the individuals. When
mean = sum

n > t, the value inside the sigmoid is positive and the probability is close
to 1. Otherwise, the value inside the sigmoid is negative and the probability is close
to 0. For this case, M should be greater than the minimum number that | 1

sum−nt | can
take to generate a number greater than 1 when multiplied by (sum−nt). Otherwise,
it may occur that sum− nt > 0 but M2(sum− nt) ≤ M which makes the sigmoid
produce a number close to 0. Note that this minimum bound for M depends on the
accuracy of computations, not on the population size. Another option is to use the
following WFs (the second WF is again repeated for each val ∈ range(R)):

〈{},Q,−ε〉
〈{x},Q∧R(x) = val,M(val− t)〉

where ε is a tiny number ensuring the value inside the sigmoid is negative when
mean = t. It (ε) can be set according to the accuracy of the system, or can be set
to zero if a probability of 0.5 is acceptable when mean = t. Note that the number
of required WFs in both casesgrows with the number of values that the parent can
take.
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Example 30. Suppose we have a set of movies and the ratings people gave to these
movies in a star-rating system. We define a movie to be popular if the average of
its ratings is more than 3.5. In this case, we have a parametrized random vari-
able Popular(m) which is a child of a parametrized random variable Rate(p,m).
The following weighted formulae can approximate the conditional dependence of
Popular(m) on its parent (the second WF is repeated 5 times for different values of
i ∈ {1,2,3,4,5}):

〈{},Popular(m),−ε〉
〈{p},Popular(m)∧Rate(p,m) = i, i−3.5〉

RLR sums over the above weighted formulae and takes the sigmoid resulting in:

Pr(Popular(m) = True|Π) = sigmoid(−ε + sum−3.5n)

where sum denotes the sum of the ratings and n represents the number of ratings
for this movie. The value inside the sigmoid is positive if mean = sum

n > 3.5 and is
negative otherwise (ε is used to ensure the the value inside the sigmoid is negative
when mean = 3.5).

4.5 More-than-t Trues

More-than-t Trues can be considered as an extended version of OR. When t = 0,
these two aggregators are equivalent. More-than-t Trues, corresponding to“Q is
True if R is True for more than t individuals”, can be modeled using the WFs:

〈{},Q,−2Mt−M〉
〈{x},Q∧R(x),2M〉

giving Pr(q | R(x)) = sigmoid(−2Mt−M + 2MnT) and the value inside the sig-
moid is positive if nT > t. The number of WFs required is fixed.

Example 31. In Example 30, suppose instead of rating movies, users can only like
the movies they enjoyed watching, and a popular movie is defined as one having
at least 50 likes. The following WFs can be used to approximate this dependency:

〈{},popular(m),−99〉
〈{p},popular(m)∧ liked(p,m),2〉
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4.6 More-than-t% Trues

More-than-t% Trues, corresponding to “Q is True if R is True for more than t
percent of the individuals”, is a special case of the aggregator “mean > t

100 ” when
we treat False values as 0 and True values as 1. This directly provides the WFs:

〈{},Q,−M〉〈
{x},Q∧¬R(x),M2(0− t

100)
〉〈

{x},Q∧R(x),M2(1− t
100)

〉
while requiring M > | 1

nT−nt/100 |, where n is the populations size of x. Note that
we can use Proposition 3 to replace the second WF with two WFs having positive
conjunctive formulae. Unlike the aggregator “mean > . . . ”, here the number of
WFs is fixed, because the parent can take only two different values.

Example 32. Consider Example 31 and suppose people like or dislike a movie
after they watch it. Also suppose a movie is defined to be popular if more than 70%
of people liked it. This can be approximated by More-than-t% Trues aggregator
using similar WFs as used in Example 30 with t = 70

100 .

4.7 Max

Firstly, we represent how we can model the case where Q is true if the max of R(x)
is greater than t. Then we propose a way of having a random variable whose value
is the maximum value of the individuals in R.

The following WFs are used for modeling max > t, corresponding to “Q is
True if max(R(x)) > t”, in RLR (the second WF is repeated for each val > t ∈
range(R(x))):

〈{},Q,−M〉
〈{x},Q∧R(x) = val,2M〉

thus Pr(q | R(x)) = sigmoid(−M + 2M ∑val>t∈range(R) nval). The value inside the
sigmoid is positive if there is an individual having a value greater than t (i.e. ∃val>
t ∈ range(R) : nval > 0). Note that the number of WFs required grows with the
number of values greater than t that the parents can take.

Now suppose we want Q to be the maximum value of individuals in R(x). For
binary parents, the “max” aggregator is identical to “OR”. Otherwise, range(Q) =
range(R(x)). Let r represent the size of range(R(x)) and t1, t2, . . . , tr represent the
values in range(R(x)). This “max” aggregator can be modeled using a 2-level
structure as in Figure 4.3. First, for every ti ∈ range(R(x)), we create a separate
“max ≥ t” aggregator using RLR (as described earlier), with R(x) as its parents.
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R(x) 

max ≥ t1 max ≥ t2 max ≥ tr 

Q 

… 

R(x) 

Q 

Figure 4.3: On the left is a relational model for a child node with a single parent
having an extra logical variable. On the right is a relational model representing the
changes to be made to the model on the left for defining a conditional probability
representing the aggregator max for the child node using RLR.

This can be viewed in the middle level of Figure 4.3 where there are r intermediate
random variables each representing if the max is greater than or equal to a ti ∈
range(R(x)). Then, we define the child Q, with all the “max ≥ t” aggregators as
its parents. Q can compute max(R(x)) given its parents. Note that while r may be
arbitrarily large, it has a fixed size and does not change with population size, hence
it is possible to use non-relational constructs (e.g., a table) for its implementation.

Example 33. As in Example 30, suppose we have a set of users denoted by the
logical variable p, a set movies denoted by the logical variable m, and the rates of
the users for the movies. Suppose we want to have a PRV MaxRate(m) representing
the maximum rate of each movie.

First, we define 5 PRVs MGE1(m),MGE2(m), . . . ,MGE5(m), where MGEi(m)
represents whether the maximum rate of the movie is greater than or equal to i or
not. The conditional probability of each of these PRVs can be represented by RLR.
As an example, we define the WFs for MGE3(m) as follows (the WFs for the other
PRVs are similar):

〈{},MGE3(m),−10〉
〈{p},MGE3(m)∧Rate(p,m) = 3,20〉
〈{p},MGE3(m)∧Rate(p,m) = 4,20〉
〈{p},MGE3(m)∧Rate(p,m) = 5,20〉

Then the conditional probability of MaxRate(m) given its parents can be defined
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Table 4.2: Conditional probability table for PRV MaxRate(m) representing the
maximum rate of different movies. For simplicity, we just represent the desired
value of the child node (the one having a probability of 1) instead of probabilities
of each value it can take.

MGE1(m) MGE2(m) MGE3(m) MGE4(m) MGE5(m) Value
True True True True True 5
True True True True False 4
. . . . . . . . . . . . . . . . . .

True False False False False 1
. . . . . . . . . . . . . . . . . .

False False False False False 0

as in Table 4.2. We assume the maximum rate of a movie for which we don’t have
any ratings is zero.

4.8 Mode

First, we represent how we can model the case where Q is true if the mode of R(x)
is equal to t. Then we propose a way of having a random variable whose value is
the mode value of the individuals in R.

To model mode = t, corresponding to“Q is True if mode(R(x)) = t”, we first
add another PRV S(y) to the network as in Fig. 34 where the population of y is the
range of R(x). Then for each individual Y of y, we use the following WFs for which
Pr(s(Y) | R(x)) = sigmoid(M− 2M(nY − nt)) and the value inside the sigmoid is
positive if value t has occurred more than or equal to value Y in the population of
R (i.e. nt ≥ nY ). Note that the number of WFs required grows with the number of
values that the parent can take.

〈{},S(Y),M〉
〈{x},S(Y)∧R(x) = C,−2M〉
〈{x},S(Y)∧R(x) = t,2M〉

Then Q must be True if for all individuals in y, S(y) is True. This is because
a False value for an individual of S means that this individual has occurred more
than t and t is not the mode. Therefore, we can use WFs similar to the ones we
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R(x) 

S(y) 
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R(x) 

Q 

Figure 4.4: On the left is a relational model for a child node with a single parent
having an extra logical variable. On the right is a relational model representing the
changes to be made to the model on the left for defining a conditional probability
representing the aggregator mode = t for the child node using RLR.

used for AND:
〈{},Q,M〉
〈{y},Q,−2M〉
〈{y},Q∧S(y),2M〉

Now suppose we want the value of Q to be the mode of the values of the indi-
viduals in R(x). For binary parents, the “mode” aggregator is also called “major-
ity”, and can be modeled with the “more-than-t% Trues” aggregator, with t = 50.
Otherwise, range(Q) = range(R(x)), and we can use the same approach as for
“max”, by having a middle layer with r separate “mode = t” aggregators, where r
represents the size of range(R(x)), and with Q as their child.

Example 34. Suppose in Example 30 a movie is popular if the mode of the rates is
5. In order to model this in RLR, we create a network where Rate(p,m) is the parent
of S(r,m), where r represents the rates and belongs to {1,2,3,4,5}, and S(r,m) is
the parent of Popular(m). The following WFs should be used to approximate the
conditional probability of S(R,m) (where R is an instance of r):

〈{},S(R,m),10〉
〈{p},S(R,m)∧Rate(p,m) = R,−20〉
〈{p},S(R,m)∧Rate(p,m) = 5,20〉

and the following WFs should be used to approximate the conditional probability
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of Popular(m):
〈{},Popular(m),10〉
〈{r},Popular(m),−20〉
〈{r},Popular(m)∧S(r,m),20〉

4.9 Aggregators Not Represented by RLR

In previous sections of this chapter, we discussed how a series of well-known ag-
gregators can be represented using RLR. There are, however, other well-known
aggregators such as median > t that we could not model them using our RLR.
There are also other aggregators whose outputs are a continuous value. Mean and
median are two such aggregators. Since we only considered child nodes having
Boolean or multi-valued ranges, our RLR cannot model such aggregators. Further-
more, we did not consider parents with continuous values in which case the Max
aggregator has also a continuous output. Future work includes extending RLR to
continuous child and parent nodes, and discussing whether such aggregators can
be represented using the extended RLR or not.
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Chapter 5

Conclusion

Today’s data and models are complex, composed of objects and relations, and
noisy. Hence it is not surprising that relational probabilistic knowledge representa-
tion currently receives a lot of attention. However, relational probabilistic model-
ing is not an easy task and raises several novel issues when it comes to knowledge
representation:

• What assumptions are we making? Why should we choose one representa-
tion over another?

• We may learn a model for some population size(s), and want to apply it to
other population sizes. We want to make assumptions explicit and know the
consequences of these assumptions.

In this work, we provided answers to these questions for the case of the logistic re-
gression model. The introduction of the relational logistic regression (RLR) family
from first principle is already a major contribution. Based on it, we have investi-
gated the dependence on population size for different variants and have demon-
strated that already for simple and well-understood (at the non-relational level)
models, there are complex interactions of the parameters with population size.

The major contributions of this work can be summarized as follows:

• Introducing a relation version of logistic regression (RLR).

• Brief comparison of the proposed RLR with MLNs.

• Defining canonical forms of representation for RLR.

• Proving the class of decision thresholds that can and cannot be modeled
using RLR.

• Approximating other well-known aggregators using RLR.

Future work includes:
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Chapter 5. Conclusion

• extending the current version of RLR to continuous child and parent PRVs
and discussing the decision thresholds and aggregators that can and cannot
be represented using the extended RLR,

• developing a lifted inference algorithm, or extending existing algorithms, for
relational Bayesian networks to allow for RLR conditional probabilities,

• learning the structure and the parameters of an RLR conditional probability
for a PRV from data,

• and understanding the relationship to other models such as undirected mod-
els like MLNs. Exploring this direction is important since determining which
models to use is more than fitting the models to data; we need to understand
what we are representing.
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