
Integrated Hardware-Software
Diagnosis of Intermittent Faults

by

Majid Dadashikelayeh

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

August 2014

c© Majid Dadashikelayeh 2014

Abstract

Intermittent hardware faults are hard to diagnose as they occur non-deterministically.

Hardware-only diagnosis techniques incur significant power and area over-

heads. On the other hand, software-only diagnosis techniques have low

power and area overheads, but have limited visibility into many micro-

architectural structures and hence cannot diagnose faults in them.

To overcome these limitations, we propose a hardware-software inte-

grated framework for diagnosing intermittent faults. The hardware part

of our framework, called SCRIBE continuously records the resource usage

information of every instruction in the processor, and exposes it to the soft-

ware layer. SCRIBE has 0.95% on-chip area overhead, incurs a performance

overhead of 12% and power overhead of 9%, on average. The software part

of our framework is called SIED and uses backtracking from the program’s

crash dump to find the faulty micro-architectural resource. Our technique

has an average accuracy of 84% in diagnosing the faulty resource, which

in turn enables fine-grained deconfiguration with less than 2% performance

loss after deconfiguration.

ii

Preface

• Parts of Chapters 1, 2, 3 and 5 have been appeared in the IEEE Silicon

Errors in Logic - System Effects 2013 workshop.

Majid Dadashi, Layali Rashid and Karthik Pattabiraman, SCRIBE: A Hardware Infras-

tructure Enabling Fine-Grained Software Layer Diagnosis. Poster presentation at the 9th

Workshop on Silicon Errors in Logic - System Effects (SELSE), 2013.

• Parts of Chapters 1, 1.3, 2, 3, 4, 5 and 1.4 have been published in

the IEEE/IFIP International Conference on Dependable Systems and

Networks 2014. I setup all the experiments and wrote most of the

paper.

Majid Dadashi, Layali Rashid, Karthik Pattabiraman, and Sathish

Gopalakrishnan. 2014. Integrated Hardware-Software Diagnosis of Intermittent Faults

.DSN, 2014.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vii

List of Figures . viii

Acknowledgements . x

Dedication . xi

1 Introduction . 1

1.1 Motivation . 1

1.2 Proposed Solution and Contributions 2

1.3 Background . 5

1.3.1 Intermittent Faults: Definition and Causes 5

1.3.2 Why Resource-Level, Online Diagnosis ? 6

1.3.3 Dynamic Dependency Graphs 7

1.4 Related Work . 7

iv

Table of Contents

1.5 Summary . 9

2 Approach . 10

2.1 Fault Model . 10

2.2 Challenges . 11

2.3 Overview of Our Approach 12

2.4 Summary . 16

3 SCRIBE: Hardware Layer . 18

3.1 RUI Format . 18

3.2 Data Collection . 19

3.3 Logging Mechanism . 22

3.4 Priority Handling . 23

3.5 Summary . 26

4 SIED: Software Layer . 27

4.1 DDG Construction with RUI 29

4.2 DDG Analysis . 32

4.3 Summary . 38

5 Evaluation . 39

5.1 Methodology . 40

5.1.1 SCRIBE . 40

5.1.2 Configurations . 40

5.1.3 Benchmarks . 41

5.1.4 Fault Injector . 41

5.1.5 Diagnosis . 42

v

Table of Contents

5.1.6 Deconfiguration Overhead 43

5.1.7 SCRIBE Performance, Power and Area Overhead . . 43

5.1.8 SCRIBE Oracle Mode 44

5.2 Results . 45

5.2.1 Diagnosis Accuracy 45

5.2.2 Deconfiguration Overhead 47

5.2.3 SCRIBE Performance, Power and Area Overhead . . 49

5.2.4 SIED Offline Performance Overhead 53

5.2.5 SCRIBE Oracle Mode 54

5.2.6 Sensitivity Study of Buffer Sizes 57

5.3 Summary . 58

6 Conclusion and Future Work 60

6.1 Conclusion . 60

6.2 Future Work . 61

Bibliography . 63

vi

List of Tables

3.1 Details of the additional connections that must be introduced

in the pipeline and when the information should be sent to

the RUI . 21

4.1 RUI of the instructions logged by SCRIBE 29

4.2 Snapshots of program states after crash 29

4.3 Counter values after the DDG analysis 37

5.1 Common machine configurations 40

5.2 Different machine configurations 41

vii

List of Figures

2.1 End to end scenario of failure diagnosis by SCRIBE and SIED 12

3.1 The RUI entry corresponding to an add instruction 19

3.2 Organization of SCRIBE . 20

3.3 The Logging Unit . 22

3.4 The priority handling circuit schematic 24

4.1 Flow of information during the diagnosis process 27

4.2 DDG of the program in the running example. 32

5.1 Accuracy results for applying the heuristics 45

5.2 Average accuracy across benchmarks with respect to the num-

ber of failures . 47

5.3 Accuracy with respect to Ndeconf 48

5.4 Performance overhead after deconfiguration 48

5.5 Correlation between baseline IPC and performance overhead 50

5.6 The performance overhead of SCRIBE 51

5.7 Performance overhead breakdown 52

5.8 The breakdown of power consumption of SCRIBE 54

5.9 Area overhead breakdown of SCRIBE 55

viii

List of Figures

5.10 Accuracy results for the Oracle mode of SCRIBE 56

5.11 Performance overhead of the Oracle mode 57

5.12 The overhead with respect to logging buffer size 58

5.13 The overhead with respect to logSQ size 59

ix

Acknowledgements

First and foremost, I would like to express my deepest appreciation to my

advisor Dr. Karthik Pattabiraman. His patience and diligence when faced

with problems, his passion for research and his constant support have been

paramount in making this thesis possible.

I would also like to thank the other co-authors of my papers, Dr. Sathish

Gopalakrishnan and Dr. Layali Rashid whose work has been the cornerstone

of my research. They have also been truly supportive and provided precious

feedback during this work.

I would also like to thank my labmates and colleagues at the Computer

Systems Reading Group (CSRG) for many insightful discussions on my re-

search topic as well as on related fields.

Finally, I would like to thank my family for all the support they have

given me throughout the years. I would definitely not be here without them.

x

Dedication

To my family and friends

xi

Chapter 1

Introduction

1.1 Motivation

CMOS scaling has exacerbated the unreliability of Silicon devices and made

them more susceptible to different kinds of faults [4]. The common kinds

of hardware faults are transient and permanent. However, a third category

of faults, namely intermittent faults has gained prominence [11]. A recent

study of commodity hardware has found that intermittent faults were re-

sponsible for at least 39% of computer system failures due to hardware er-

rors [22]. Unlike transient faults, intermittent faults are not one-off events,

and occur repeatedly at the same location. However, unlike permanent

faults, they appear non-deterministically, and only in certain circumstances.

Diagnosis is an essential operation for a fault-tolerant system. In this

thesis, we focus on diagnosing intermittent faults that occur in the proces-

sor. Intermittent faults are caused by marginal or faulty micro-architectural

components, and hence diagnosing such faults is important to isolate the

faulty resource [6, 16, 33]. Components can experience intermittent faults

either due to design and manufacturing errors, or due to aging and temper-

ature effects that arise in operational settings [11]. Therefore, the diagnosis

process should be run throughout the life-time of the processor rather than

1

1.2. Proposed Solution and Contributions

only at design validation time. This makes it imperative to design a diagno-

sis scheme that has low online performance and power overheads. Further,

to retain high performance after repair, the diagnosis should be fine-grained

at the granularity of individual resources in a micro-processor, so that the

processor can be deconfigured around the faulty resource after diagnosis [25].

Diagnosis can be carried out in either hardware or software. Hardware-

level diagnosis has the advantage that it can be done without software

changes. Unfortunately, performing diagnosis entirely in hardware incurs

significant power and area overheads, as diagnosis algorithms are often com-

plex and require specialized hardware to implement. On the other hand,

software-based diagnosis techniques only incur power and performance over-

heads during the diagnosis process, and have zero area overheads. Un-

fortunately, software techniques have limited visibility into many micro-

architectural structures (e.g., the reorder buffer) and hence cannot diagnose

faults in them. Further, software techniques cannot identify the resources

consumed by an instruction as it moves through the pipeline, which is es-

sential for fine-grained diagnosis.

1.2 Proposed Solution and Contributions

In this thesis, we propose a hardware-software integrated technique for diag-

nosing intermittent hardware errors in multi-core processors. As mentioned

above, intermittent faults are non-deterministic and may not be easily re-

produced through posteriori testing. Therefore, the hardware portion of our

technique continuously records the micro-architectural resources used by an

2

1.2. Proposed Solution and Contributions

instruction as the instruction moves through the processor’s pipeline, and

stores this information in a log that is exposed to the software portion of

the technique. We call the hardware portion SCRIBE. When the program

fails (due to an intermittent fault), the software portion of our technique

uses the log to identify which resource of the microprocessor was subject to

the intermittent fault that caused the program to fail. The software portion

runs on a separate core and uses a combination of deterministic replay and

back-tracking from the failure point, to identify the faulty component. We

call the software portion of our technique SIED, which stands for Software-

based Intermittent Error Diagnosis. SCRIBE and SIED work in tandem to

achieve intermittent fault diagnosis.

Prior work on diagnosis [6] has either assumed the presence of fine-

grained checkers such as the DIVA checker [2], or has assumed that the

fault occurs deterministically [19], which is true for permanent faults, but

not intermittent faults. In contrast, our technique does not require any

fine-grained checkers in the processor nor does it rely upon determinism of

the fault, making it well suited for intermittent faults. Several papers have

proposed diagnosis mechanisms for post-Silicon validation [8, 23]. However,

these approaches target design faults and not operational faults, which is

our focus. To the best of our knowledge, we are the first to propose a general

purpose diagnosis mechanism for in-field, intermittent faults in processors,

with minimal changes to the hardware.

The main contributions of this thesis are as follows:

1. Enumerate the challenges associated with intermittent fault diagno-

3

1.2. Proposed Solution and Contributions

sis and explain why a hybrid hardware-software scheme is needed for

diagnosis.

2. Propose SCRIBE, an efficient micro-architectural mechanism to record

instruction information as it moves through the pipeline, and expose

this information to the software layer.

3. Propose SIED, a software-based diagnosis algorithm that leverages the

information provided by SCRIBE to isolate the faulty micro-architectural

resource through backtracking from the failure point,

4. Conduct an end-to-end evaluation of the hybrid approach in terms

of diagnosis accuracy using fault injection experiments at the micro-

architectural level.

5. Evaluate the performance, power and on-chip area overheads incurred

by SCRIBE during fault-free operation. Also, evaluate the overhead

incurred by the processor after it is deconfigured upon a successful

diagnosis by our approach.

Our experiments on the SPEC2006 benchmarks show that SCRIBE incurs

an average performance overhead of 11.5%, a power consumption overhead

of 9.3% and on-chip area overhead of 0.95% for a medium-width proces-

sor. Further, the end-to-end accuracy of diagnosis is 84% on average across

different resources of the processor (varies from 71% to 95% depending on

the pipeline stage in which the fault occurs). We also show that with such

fine-grained diagnosis, only 1.6% performance overhead will be incurred by

the processor after deconfiguration, on average.

4

1.3. Background

1.3 Background

In this section, we first explain what are intermittent faults, and their causes.

We then explain why resource level, online diagnosis is needed for multi-core

processors. Finally, we explain the Dynamic Dependence Graph (DDG),

which is used in this thesis for diagnosis.

1.3.1 Intermittent Faults: Definition and Causes

Definition We define an intermittent fault as one that appears non- de-

terministically at the same hardware location, and lasts for one or more

(but finite number of) clock cycles. The main characteristic of intermittent

faults that distinguishes them from transient faults is that they occur re-

peatedly at the same location, and are caused by an underlying hardware

defect rather than a one-time event such as a particle strike. However, un-

like permanent faults, intermittent faults appear non-deterministically, and

only under certain conditions.

Causes: The major cause of intermittent faults is device wearout, or the

tendency of solid-state devices to degrade with time and stress. Wearout can

be accelerated by aggressive transistor scaling which makes processors more

susceptible to extreme operating condition such as voltage and temperature

fluctuations [21], [5]. In-progress wearout faults are often intermittent as

they depend on the operating conditions and the circuit inputs. In the long

term, such faults may eventually lead to permanent defects. Another cause

of intermittent faults is manufacturing defects that escape VLSI testing [10].

Often, deterministic defects are flushed out during such testing and the

5

1.3. Background

ones that escape are non-deterministic defects, which emerge as intermittent

faults. Finally, design defects can also lead to intermittent faults, especially

if the defect is triggered under rare scenarios or conditions [32]. However,

we do not consider intermittent faults due to design defects in this thesis.

1.3.2 Why Resource-Level, Online Diagnosis ?

Our goal is to isolate individual microarchitectural resources and units that

are responsible for the intermittent fault. Fine-grained diagnosis implicitly

assumes that these resources can be deconfigured dynamically in order to

prevent the fault from occurring again. Other work has also made similar

assumptions [6], [19], [16]. While it may be desirable to go even further

and isolate individual circuits or even transistors that are faulty, it is often

difficult to perform deconfiguration at that level. Therefore, we confine

ourselves to performing diagnosis at the resource level.

Another question that arises in fine-grained diagnosis is why not simply

avoid using the faulty core instead of deconfiguring the faulty resource. This

would be a simple and cost-effective solution. However, this leads to vastly

lower performance in a high-performance multi-core processor, as prior work

has shown [25], [16]. Finally, the need for online diagnosis stems from the

fact that taking the entire processor or chip offline to perform diagnosis

is wasteful, especially as the rate of intermittent faults increases as future

trends indicate [10]. Further, taking the chip offline is not feasible for safety-

critical systems. Our goal is to perform online diagnosis of intermittent

faults.

6

1.4. Related Work

1.3.3 Dynamic Dependency Graphs

A dynamic dependency graph (DDG) is a representation of data flow in a

program [1]. It is a directed acyclic graph where graph nodes or vertices rep-

resent values produced by dynamic instructions during program execution.

In effect, each node corresponds to a dynamic instance of a value-producing

program instruction. Dependencies among nodes result in edges in the DDG.

In the DDG, there is an edge from node N1 (corresponding to instruction

I1) to node N2 (corresponding to instruction I2), if and only if I2 reads the

value written by I1 (instructions that do not produce any values correspond

to nodes with no outgoing edges).

1.4 Related Work

Bower et al. [6] propose a hardware-only diagnosis mechanism by modifying

the processor pipeline to track the resources used by an instruction (similar

to SCRIBE), and finding the faulty resources based on resource counters.

However, their scheme relies on the presence of a fine-grained checker (e.g.,

DIVA [2]) to detect errors before an instruction commits. This limits its ap-

plicability to processors that are specifically designed with such fine-grained

checkers.

Li et al. [19] use a combination of hardware and software to diagnose per-

manent errors. Similar to our approach, theirs is also a hybrid technique that

splits the diagnosis between hardware and software. However, they rely on

the determinism of the fault, as they replay a failed program execution (due

to a permanent fault) from a checkpoint and gather its micro-architectural

7

1.4. Related Work

resource usage information during the replay. Unfortunately, this technique

would not work for intermittent faults that are non-deterministic, as the

fault may not show up during the replay.

IFRA [23], is a post-silicon bug localization method, which records the

footprint of every instruction as it is executed in the processor. IFRA is sim-

ilar to SCRIBE in how it records the information. However, SCRIBE differs

from IFRA in two ways. First, IFRA records the instruction information

within the processor, and this information is scanned out after the failure,

after the processor is stopped. On the other hand, SCRIBE writes the

gathered information to memory during regular operation. Second, IFRA

required the presence of hardware-based fault detectors to limit the error

propagation. In contrast, SCRIBE does not require any additional detectors

in the hardware or software.

DeOrio et al. [13] introduce a hybrid hardware-software scheme for post-

silicon debugging mechanism, in which the hardware logs the signal activities

during post-silicon validation, and the software uses anomaly detection on

the logged signals to identify a set of candidate root-cause signals for a bug.

Because their focus is on post-silicon debugging, they do not present the

performance overhead of their technique, and hence it is not possible for us

to compare their performance overheads with ours.

Carratero et al. [8] performs integrated hardware-software diagnosis for

faults in the Load-Store Unit (LSU). Our work is similar to theirs in some

respects. However, our approach covers faults in the entire pipeline, and not

only the Load Store Unit. Further, their goal is to diagnose design faults

during post-silicon validation, while ours is to diagnose intermittent faults

8

1.5. Summary

during regular operation.

There has been considerable work on online testing for fault diagnosis.

For example, Constantinides et al. [12] propose a periodic mechanism to run

directed tests on the hardware using a dedicated set of instructions. How-

ever, this technique may find errors that do not affect the application, which

in turn may initiate unnecessary recovery or repair actions, thus resulting

in high overheads. To mitigate this problem, Pellegrini and Bertacco. [24]

propose a hybrid hardware-software solution that monitors the hardware

resource usage in the application, and tests only the resources that are used

by the application. While this is useful, all testing-based methods require

that the fault appears during at least one of the testing phases, which may

not hold for intermittent faults.

1.5 Summary

In this chapter, we explain the motivations behind the online fine-grained

diagnosis of hardware intermittent faults. Hardware intermittent faults are

becoming more prominent with the technology scaling. We perform diagno-

sis with the granularity of micro-architectural units. Finding the root cause

of an intermittent fault in this level enables the automatic repair of the chip

using deconfiguration with minimal performance loss after repair.

In the following chapters, we present a hybrid hardware/software mech-

anism for diagnosing hardware intermittent faults. We evaluate different

overheads of our design using simulation. We also perform fault injection

experiments to evaluate the accuracy of our diagnosis scheme.

9

Chapter 2

Approach

This section first presents the fault model we consider. It then presents the

challenges of intermittent fault diagnosis. Finally, it presents an overview of

our approach and how it addresses the challenges.

2.1 Fault Model

As mentioned in Section 1.3.1, intermittent faults are faults that last for

finite number of cycles at the same micro-architectural location. We con-

sider intermittent faults that occur in processors. In particular, we consider

faults that occur in functional units, reorder buffer, instruction fetch queue,

load/store queue and reservation station entries. We assume that caches

and register files are protected using ECC or parity and therefore do not

experience software visible faults. We also assume that the processor’s con-

trol logic is immune to errors, as this is a relatively small portion of the

chip [27]. Finally, we assume that a component may be affected by at most

one intermittent fault at any time, and that the fault affects a single bit in

the component (stuck-at zero/one), lasting for several cycles.

10

2.2. Challenges

2.2 Challenges

In this section, we outline the challenges that an intermittent fault diagnosis

method needs to overcome.

Non-determinism : Since intermittent faults occur non-deterministically,

re-execution of a program that has failed as a result of an intermittent fault,

often results in a different event sequence than the original execution. In

other words, the sequence of events that lead to a failure is not (necessarily)

repeatable under intermittent faults.

Overheads: An intermittent fault diagnosis mechanism should incur as

low overhead as possible in terms of performance, area and power, especially

during fault-free operation, which is likely to be the common case.

Software Layer Visibility : Software diagnosis algorithms suffer from

limited visibility into the hardware layer. In other words, software-only

approaches are not aware of what resources an instruction has used since

being fetched until retiring from the pipeline (the only inferable information

from an instruction is the type of functional unit it has used).

No information about the faulty instructions: To find the faulty

resource, the diagnosis algorithm needs to have information about the in-

structions that have been affected by the intermittent fault in order that

the search domain of the faulty resource can be narrowed down to resources

used by these instructions. One way to obtain this information is to log the

value of the destination of every instruction at runtime, and to compare its

value with that of a fault-free run (more details in Section 2.3). However,

logging the value of every executed instruction in addition to its resource

11

2.3. Overview of Our Approach

1. Gather RUI and log to memory (SCRIBE)

2. Failure due to intermittent fault

3. Log program’s register and memory state (core dump)

4. Deterministic replay on another core (SIED)

5. Construct replayed program’s DDG (SIED)

6. Log replayed program’s register and memory state (SIED)

7. Construct augmented DDG and backtrack using analysis heuristics
(SIED)

Figure 2.1: End to end scenario of failure diagnosis by SCRIBE and SIED.
The steps in the figure are explained in the box.

information can result in prohibitive performance overheads as we show in

Section 5. Therefore, we need to infer this information from the failure log

instead.

2.3 Overview of Our Approach

In this section, we present an overview of our approach and how it addresses

the challenges in section 2.2.

12

2.3. Overview of Our Approach

We propose a hybrid hardware-software approach for diagnosis of inter-

mittent faults in processors. Our approach consists of two parts. First,

we propose a simple, low-overhead, hardware mechanism called SCRIBE

to record information about resource usage of each instruction and expose

this information to the software. Second, we propose a software technique

called SIED that uses the recorded information upon a failure (caused by

an intermittent fault) to diagnose the faulty resource by backtracking from

the point of failure through the program’s DDG (see Section 1.3.3). The

intuition is that errors propagate along the DDG edges starting from the

instruction that used the faulty resource, and hence backtracking on the

DDG can diagnose the fault.

Assumptions: We make the following assumptions about the system:

i) We assume a commodity multi-core system in which all cores are

homogeneous, and are able to communicate with each other through shared

address space.

ii) We assume the availability of a fault-free core to perform the diag-

nosis, e.g. using Dual Modular Redundancy (DMR). This is similar to the

assumption made by Li et al. [19]. The fault-free core is only needed during

diagnosis.

iii) The processor is able to deterministically replay the failed program’s

execution. Researchers have proposed the use of deterministic replay tech-

niques for debugging programs on multi-core machines [14, 34]. This is

needed to eliminate the effect of non-deterministic events in the program

during diagnosis (other than the fault).

iv) The fault has already been identified as an intermittent fault prior

13

2.3. Overview of Our Approach

to diagnosis. In particular, it has been ruled out to be a transient fault -

this can be done by only invoking diagnosis if there are repeated failures.

For example, there has been work on distinguishing intermittent faults from

transient faults using a threshold mechanism [3].

Steps : Figure 2.1 shows the sequence of steps our technique would follow

to diagnose a fault.

1. As the program executes, the hardware layer SCRIBE logs the Re-

source Usage Information (RUI) of the instructions (step 1 in Figure

2.1) to memory. Every instruction has an RUI, a bit array indicat-

ing which resources it has used while moving through the processor’s

pipeline. SCRIBE is presented in Section 3.

2. Assume that the program fails as a result of an intermittent fault burst

in one of the processor resources (step 2). This failure can occur due

to a crash or an error detection by the application (e.g. an assertion

failure). The registers and memory state of the application is dumped

to memory, typically as a core dump (step 3).

3. The software layer diagnosis process, SIED is started on another core.

This core is used to perform the diagnosis and is assumed to itself

be fault-free during diagnosis (see assumptions). SIED replays the

program using deterministic replay mechanisms, and constructs the

DDG (steps 4 and 5) of the replayed program. The original program

can be resumed on the core that experienced the intermittent fault, as

SIED does not interfere with it.

14

2.3. Overview of Our Approach

4. When the replayed program reaches the instruction at which the orig-

nal program failed, SIED dumps its register and memory state to

memory (step 6).

5. SIED merges the DDG from step 5 with the RUI log in step 1, to build

the augmented DDG. This is a DDG in which every node contains the

RUI of its corresponding instruction in the program.

6. SIED then compares the memory and register states dumped in steps

3 and 6 to identify the set of nodes in the augmented DDG that differ

between the original and replayed execution. Because the replayed

execution used deterministic replay, any differences between the exe-

cutions are due to the intermittent fault.

7. Finally, SIED backtracks from the faulty nodes in the augmented DDG

using analysis heuristics to find the faulty resource (steps 7 and 8).

The details of how SIED works are explained in Section 4.

Challenges Addressed: We now illustrate how our technique satisfies the

constraints posed in Section 2.2.

Non-determinism: Our technique gathers the micro architectural resource

usage information online using the SCRIBE layer (Step 1). Therefore, it

requires determinism neither in resource usage nor fault occurrence during

the replay.

Overheads: Our technique initiates diagnosis only when a crash or error

detection occurs, thus the diagnosis overhead is not incurred during fault-free

execution. However, the SCRIBE layer incurs both performance and power

15

2.4. Summary

overheads as it continuously logs the instructions’ resource usage information

executing in the processor. Note that SCRIBE only exposes the hardware

RUI information to the software layer. The complex task of figuring out

the faulty component is done in software. Hence, the power overhead of

SCRIBE is low. We describe the optimizations made to SCRIBE to keep

its performance overhead low in Section 3. We present the performance and

power overheads in section 5.2.

Software-layer visibility: The SCRIBE layer records the information on

micro-architectural resource usage and exposes it to software, thus solving

the visibility problem.

No information about faulty instructions: Our technique does not log the

destination result of each instruction, and hence cannot tell which instruc-

tions have been affected by the fault. Instead, SIED uses the replay run to

determine which registers/memory locations are affected by the fault, and

backtracks from these in the DDG to identify the faulty resource.

2.4 Summary

In this chapter, we explain our fault model and a high level overview of our

hybrid hardware/software diagnosis scheme. Our fault model is stuck-at-0

and stuck-at-1 with random occurrence cycle and random duration. The

fault can occur in any of the entries of the Reorder Buffer, Reservation

Station, Instruction Fetch Queue and Load Store Queue. The fault could

also occur at any of the individual functional units.

The diagnosis scheme consists of a hardware layer called SCRIBE and a

16

2.4. Summary

software layer called SIED. SCRIBE is responsible for providing the infor-

mation about the resource usage of the instructions when being executed in

the pipeline. SIED performs a deterministic replay of the process to extract

its dynamic dependence graph. It then augments the dynamic dependence

graph with the resource usage information provided by SCRIBE. In the final

stage, SIED performs two DDG analysis algorithms on the augmented DDG

to find the faulty unit.

In the next two chapters, we present a detailed explanation of the hard-

ware layer and the software layer.

17

Chapter 3

SCRIBE: Hardware Layer

We propose a hybrid diagnosis approach involving both hardware and soft-

ware. SCRIBE is the hardware part of our hybrid scheme and is responsible

for exposing the micro-architectural Resource Usage Information (RUI) to

the software layer, SIED. This allows SIED to identify the faulty resource(s)

upon a failure due to an intermittent fault. In addition, SCRIBE also logs

the addresses of the executed branches, so that the program’s control flow

can be restored in case of a failure (Section 4.1). This chapter presents the

functionality and the design of SCRIBE.

First we explain format of the data which gets revealed to the software

layer. Then the RUI collection mechanism from the pipeline is explained.

In the next section, the mechanism and the hardware components for send-

ing data to memory hierarchy is explained and at the end, we explain the

priority handling technique which decreases the performance overhead to a

significant degree.

3.1 RUI Format

We use the term RUI to denote the log corresponding to a single instruction’s

execution as it moves through the pipeline. The RUI records the units used

18

3.2. Data Collection

by the instruction in each pipeline stage. Each field of the RUI corresponds

to a single pipeline stage or functional unit. As an example, we consider

an add instruction which is put in the entry 4 of Instruction Fetch Queue,

entry 7 of the ROB, entry 24 of reservation station and also uses the second

integer ALU. The RUI of this instruction is shown in figure 3.1.

The RUIs are stored in a circular buffer in the process’s memory address

space as the program executes on the processor. The size of the RUI buffer

is determined by the worst-case number of instructions taken by programs

to crash or fail after an intermittent fault. Because this number can be

large, keeping the buffer on chip would lead to prohibitive area and power

overhead. Hence we choose to keep the RUI information in the memory

instead of on chip. Therefore, in our case, the buffer size is bounded only

by the memory size.

Figure 3.1: The RUI entry corresponding to an add instruction

3.2 Data Collection

We make use of the Reorder Buffer(ROB), a component in the superscalar

architecuture, as a carrier for temporary RUI data. ROB is a hardware

circular buffer implemented in the superscalar pipeline with one entry per

dispatched yet not commited instruction [29]. We augment each ROB entry

19

3.2. Data Collection

Figure 3.2: Organization of SCRIBE in the context of a processor derived
from SuperScalar DLX processor [15]. Dashed lines show the added units
and interconnects to implement SCRIBE.

with an X bit field (X ∝ lg(Total number of resources)) to keep the RUI of

the instruction corresponding to that entry. This field is filled with valid RUI

as the instruction traverses the pipeline and makes use of specific resources.

Since there is a one to one correspondence between each instruction and

an ROB entry, the complete RUI of the instruction can be known when it

reaches the commit stage. The RUIs are sent to the memory hierarchy when

20

3.2. Data Collection

their instructions are retired from ROB, and hence only correctly predicted

instructions will be sent.

To gather information about which resources have been used by the

corresponding instruction of that ROB entry, we need to connect the various

stages of the pipeline with the ROB entry and send the information to the

ROB at the appropriate time. The locations and the time for sending the

information to the RUI field of an ROB entry is shown in table 3.1.

Resource Where When

IFQ
IFQ Head Pointer Instruction Reading

In Dispatch Stage

ROB
ROB Tail Pointer ROB entry allocation

In Dispatch Stage

LSQ
LSQ Tail Pointer LSQ entry allocation in

Dispatch Stage

RS
Select port of RS RS entry allocation

entry MUX In Dispatch Stage

Functional
Select port of
FU selection Issue Stage

Unit MUX

Table 3.1: Details of the additional connections that must be introduced in
the pipeline and when the information should be sent to the RUI

Figure 3.2 shows the whole processor with our mechanism added. The

processor chosen to show the added components is a Superscalar DLX pro-

cessor (based on [15]), with some modifications to make the figure more

understandable. The units related to SCRIBE in the figure are the logging

and priority handling units which are added to the commit stage of the

pipeline. The logging unit is in charge of compressing the RUI entries and

sending them to the priority handling unit. The priority handling unit in

21

3.3. Logging Mechanism

each cycle chooses a regular store or a logging store to send to memory.

These units are explained in detail in sections 3.3 and 3.4. The intercon-

nects transferring the resource usage to the ROB are shown using dashed

lines.

3.3 Logging Mechanism

As shown in figure 3.2, the ROB is connected to the logging unit which is

in charge of sending the RUI to memory hierarchy for long time storage.

The logging unit is expanded and shown in figure 3.3 along with the units

communicating with it (Priority handling, LSQ and ROB). We explain the

design of the logging mechanism in more detail below.

Figure 3.3: The Logging Unit includes the Logging Buffer, Alignment Circuit
and LogSQ

When an instruction is retired from the ROB buffer, the RUI field of its

ROB entry will be inserted into one of the partitions in the Logging Buffer.

Logging Buffer (LB) is a dual partitioned queue and is in charge of keeping

22

3.4. Priority Handling

the RUI of the retired instructions. Each of the partitions of the LB get

filled separately. The role of the alignment circuit is to compress the RUI

data and send them to the memory. When one of the partitions is full, its

data is processed by Alignment Circuit and the other partition starts getting

filled and vice versa. Thus, data processing and filling mode alternate with

each other in each partition of the logging unit.

When a partition of the logging buffer gets full, the alignment circuits

start concatenating RUI fields of multiple log buffer entries to form quad-

words (64 bit words). These quadwords are then stored in Logging Store

Queue (LogSQ) where they compete with the regular loads and stores of the

program to be sent to memory hierarchy. This process is explained in sec-

tion 3.4. If the LogSQ is full, the alignment circuits have to be stalled until

a free entry in the logSQ becomes available. We discuss the implications of

this stalling in Section 5.2.3.

3.4 Priority Handling

The goal of the priority handling unit is to mediate accesses to main memory

between the stores performed by the logging mechanism and the regular

stores performed by the processor. The priority handling unit includes the

priority handling circuit and a multiplexer to select between the regular store

instructions and the logging stores. The schematic of the simple priority

handling circuit is depicted in figure 3.4. The priority handling unit takes

inputs from the (regular) load and store unit and the logging unit and has

its output connected to the write buffer.

23

3.4. Priority Handling

Figure 3.4: The priority handling circuit schematic

In the commit stage, when both a regular load/store instruction and a

logging store instruction from logSQ are ready, one of them has to be chosen

to be sent to memory hierarchy. If logging store instructions are not sent

to memory on time, the logSQ becomes full and the alignment circuits are

stalled. As described in section 3.3, the retiring process will be stalled in

this situation which incurs a performance overhead for the processor. The

main challenge is to reduce the probability of this situation occuring and

hence reduce the performance overhead.

One way to avoid the logSQ from becoming full is to always prioritize the

logging stores over regular ones. This will prevent the regular stores from

blocking the draining process of logSQ. However, this will lead to stalling

the regular non-store instructions which do not need the store port before

a blocked regular store. This is because instructions are retired from the

ROB in a FIFO (First-In-First-Out) manner. If logging store instructions

24

3.4. Priority Handling

are always prioritized, a regular memory instruction at the head of the ROB

would not be retired until the LogSQ is drained. This in turn will lead to

stalling of the instruction commit mechanism in the processor, preventing

the other partition of the logSQ from filling up with instructions. Our

experiments show that this leads to severe performance slowdowns in the

processor.

The other alternative is to prioritize regular stores over logging store

instructions. However, this can lead to the processor being deadlocked due

to the following sequence of events in the processor: (I) LogSQ becomes

full and therefore one partition becomes full before processing of the other

partition is finished. (II) As a result, the instruction retiring from the ROB

will be stalled so that the logging mechanism can catch up. If there is a

load/store effective address generation instruction at the head of ROB, it

will also be held because the retiring process is stalled. (III) Since the held

load/store has priority over logging store instructions, it will not let them

be sent and so the logSQ will not drain. (IV) Hence, the alignment circuits

will be kept stalled. This leads to a deadlock and the processor hangs.

Our solution is to use a hybrid approach where we switch the priorities

between the logging stores and the regular stores based on the size of the

LogSQ. We prioritize regular load/store instructions by default, until the

logging mechanism starts stalling the commit stage (because of one parti-

tion becoming full before processing of the other one is finished). At this

point, the logging store instructions gain priority over regular load/stores for

approximately the number of cycles needed for logSQ to be drained. This

value is computed at the time of the stall as: |LogSQ|
#ofmemoryPorts . During all

25

3.5. Summary

other periods, the regular stores continue to get priority over the logging

stores, and hence do not hold up the other instructions in pipeline.

3.5 Summary

In this chapter, we explain the details of the hardware part of our design,

named SCRIBE. SCRIBE gathers the resources usage information (RUI) of

each instruction in its corresponding Reorder Buffer entry. The length of

an RUI field is around 50 bits but it could also slightly vary depending on

the number of resources in the pipeline. RUI fields are sent to the Logging

Buffer in SCRIBE when an instruction is retired from the pipeline. The RUI

fields become aligned to form quad words and then are sent to a buffer called

Logging Store Queue. The entries in the Logging Store Queue compete with

the regular stores in the Load Store Queue for a memory interface. The

Priority Handling Circuit in SCRIBE is responsible for defining which data

should be sent to the memory in each cycle depending on the number of

entries in each of the two buffers.

The next chapter explains how the software layer uses the RUI informa-

tion provided by SCRIBE to find the faulty resource.

26

Chapter 4

SIED: Software Layer

In this section, we present SIED, the software portion of our technique.

Figure 4.1: Flow of information during the diagnosis process

SIED is launched as a privileged process by the operating system on

a separate core, which enables it to read the RUI segment in the failed

program’s memory written to by SCRIBE. Therefore, SIED has access to

the history of dynamic instructions executed before the failure, and the

micro-architectural resources used by those instructions.

Figure 4.1 shows the steps taken by SIED after a failure. First, the

program is replayed on a separate core until the failed instruction, during

which its DDG is built. The DDG is augmented with the RUI and the

register/memory dumps from the original and replayed program executions.

27

Chapter 4. SIED: Software Layer

This process is explained in Section 4.1. The augmented DDG is then fed

to the DDG analysis step in Figure 4.1 which uses backtracking of DDG

to find the candidates of the faulty resource. This process is explained in

Section 4.2.

Example: We consider the program in Table 4.1 as a running example

to explain the diagnosis steps. The example is drawn from execution of

the benchmark mcf from SPEC 2006 benchmark suite on our simulator.

However, some instructions have been removed from the real example to

illustrate as many cases as possible in a compact way. As the program

is executing, SCRIBE monitors the execution of instructions and logs their

RUI to memory. The RUI logged by SCRIBE during the original execution is

shown in Table 4.1 (the real RUI history includes a few thousands of entries;

however, we only show the last few entries for brevity). For example, row #2

in Table 4.1 shows that the store quadword instruction has used entry 26 of

the ROB, entry 15 of LSQ, entry 16 of IFQ, entry 11 of RS and functional

unit 5 which is one of the memory ports (we consider memory ports as

functional units).

Assume that in this example, the processor has multiple functional units,

and the second functional unit (fu-1) is experiencing an intermittent fault

that is triggered non-deterministically and lasts for several cycles. When the

functional unit experiences the fault, one of the bits in its output becomes

stuck at zero for this time period. This causes an incorrect value to be

produced, as a result of which the program crashes. After the crash, the

entire register and memory state of the process is dumped to memory. For

this example, we only show the register and memory values produced by

28

4.1. DDG Construction with RUI

Instruction ROB LSQ IFQ RS FU

1 addi r1, -1, r1 25 - 15 16 1
2 stq r1, 400(r15) 26 15 16 11 5
3 bic r3, 16, r3 52 - 2 52 2
4 stl r3, 0(r9) 53 24 3 46 5
5 bis r31, r15, r30 84 - 1 7 1
6 ldq r1, 0(r30) 85 2 2 38 6
7 ldq r3, 8(r30) 86 3 3 19 6
8 ldq r30, 16(r30) 87 4 4 40 5
9 stq r5 , -32(r30) 88 5 5 44 6

Table 4.1: RUI of the instructions logged by SCRIBE. The original execution
crashes at instruction 9.

the instructions in Table 4.1. These values are shown in Table 4.2, column

“Snapshot Original”. The “producer index” column represents the index of

the instructions in Table 4.1 that last wrote to the locations in the second

column.

Producer Mem/Reg Producer Snapshot Snapshot
Index Location Original Replayed

2 0xd3e0 stq r1, 400(r15) 8 12
4 0xd988 stl r3, 0(r9) 10 10
6 r1 ldq r1, 0(r30) 16 0
7 r3 ldq r3, 8(r30) 8 20
8 r30 ldq r30, 16(r30) 20 0

Table 4.2: Snapshots: These represent the memory and register state dumps
after the original and replayed executions

4.1 DDG Construction with RUI

As mentioned in Section 2.3, SIED uses deterministic replay techniques to

replay the execution of the failed program and build its DDG. We refer

to the first execution leading to the failure as the original execution and

29

4.1. DDG Construction with RUI

the second execution performed by SIED as the replayed execution. The

steps taken by SIED to build the DDG are as follows (step numbers below

correspond to those in Figure 2.1):

1. The program is started from a previous checkpoint or from the be-

ginning and replayed. However, the replayed program’s control-flow

may not match the control flow of the original execution, as the latter

may have been modified by the intermittent fault. To facilitate fault

diagnosis, the only difference between the original and the replayed ex-

ecution should be the intermittent fault’s effects on the registers and

memory state. Therefore, the control flow of the replayed execution

(target addresses of the branch instructions) is modified to match the

original execution’s control flow (step 4). To obtain the original exe-

cution’s control flow, SCRIBE logs the branch target addresses of the

program in addition to its RUI.

2. From the replayed execution, the information needed for building the

Dynamic Dependence Graph (DDG) of the program is extracted and

the DDG is built (step 5). Figure 4.2 shows the DDG for our example.

The information required for building the DDG can be extracted by

using a dynamic binary instrumentation tool (e.g. Pin [20]). We note

that the overheads added by such tools would only be incurred during

failure and subsequent diagnosis, and not during regular operation.

3. When the program flow of the replayed execution reaches the crash

instruction (the instruction at which the original execution crashes),

the register and memory state of the replayed execution is dumped to

30

4.1. DDG Construction with RUI

memory (step 6). In the example, the replayed execution stops when

reaching instruction 9 and the column “snapshot replayed” in Table

4.2 represents the register and memory state of the replayed program

at that instruction.

4. The snapshots taken after the original and replayed executions are

compared with each other to identify the final values that are different

from each other. Because we assume a deterministic replay, any devia-

tion in the values must be due to the fault. The producer instructions

of these values are marked as final erroneous (or final correct) if the

final values are different (or the same) in the DDG. The branch in-

structions that needed to be modified in step (i) to make the control

flows match are also marked as final erroneous in the DDG. In the

example, the values in the snapshot columns of Table 4.2 are com-

pared, and the differences identified. The nodes corresponding to the

instructions creating the mismatched values are marked in the DDG as

final erroneous nodes (nodes 2, 6, 7 & 8), while node 4 with matching

values, is marked as final correct.

5. The RUI of each instruction is added to its corresponding node in

DDG. We call the resulting graph, the augmented DDG. The aug-

mented DDG is used to find the faulty resource as shown in the next

section.

31

4.2. DDG Analysis

Figure 4.2: DDG of the program in the running example. Gray nodes are
final erroneous and the dotted node is final correct

4.2 DDG Analysis

This section explains how SIED analyzes the augmented DDG to find the

faulty resource. Because each dynamic instruction corresponds to a DDG

node, we use the terms node and instruction interchangeably. The main idea

is to start from final erroneous nodes in the augmented DDG (identified in

Section 4.1), and backtrack to find nodes that have originated the error,

i.e., the instructions that have used the faulty resource. The faulty resource

is found by considering the intersection of the resources used by multiple

instructions that have originated the errors. Recall that the list of resources

used by an instruction is present in its corresponding node in the augmented

DDG.

There are three types of nodes in the augmented DDG: i) Nodes that

have used the faulty resource (originating nodes), ii) Nodes to which the

error is propagated from an ancestor, iii) Nodes that have produced cor-

rect results (correct nodes). The goal of backtracking is to search for the

originating nodes, by going backward from the final erroneous nodes (i.e.,

32

4.2. DDG Analysis

erroneous nodes in the final state), while avoiding the correct nodes. Naive

backtracking does not avoid correct nodes, and because there can be many

correct nodes in the backward slice of a final erroneous node, it will incur

false-positives. Therefore, we propose two heuristics to narrow down the

search space for the faulty resource based on the following observations:

1. If a final erroneous node has a correct ancestor node, the probability

of the originating node being in the path connecting those two nodes

is high. In other words, the faulty resource is more likely to be used

in this path.

2. Having a final correct descendent decreases the probability that the

node is erroneous.

3. Having an erroneous ancestor decreases the probability of the node

being an originating node.

4. An erroneous node with all correct predecessors is an originating node.

Heuristics: To find faulty resources, each resource in the processor is as-

signed a counter which is initialized to zero. The counter of a resource

is incremented if an instruction using that resource is likely to participate

in creating an erroneous value, as determined by the heuristics. Resources

having larger counter values are more likely to be faulty.

Algorithm 1 shows the pseudocode for heuristic 1. The main idea behind

heuristic 1 is to examine the backward slices of the final erroneous nodes and

increase the counter values of the appropriate resources based on the first

three observations. In lines 3 to 8, for each final erroneous node n, the set

33

4.2. DDG Analysis

ALGORITHM 1: Heurisitc 1
input: resources
Algorithm heuristic1

1 foreach node n of final erroneous nodes do
2 Sn1 = Sn2 = φ // Initializing sets

3 foreach node k of n.ancestors do
4 if k.isLastCorrect() then
5 Sn1.add(getNodesBetween(n , k))

6 foreach R of resources do
7 if R is used in Sn1 then
8 counters[R]++;

9 foreach node k of nodes in backward slice of n do
10 if not(k.hasFinalCorrectDescendent) then
11 Sn2.add(k)

12 foreach R of resources do
13 if R is used in Sn2 then
14 if n.hasFaultyAncestor() then
15 counters[R] += 0.5

16 else
17 counters[R] += 1

Sn1 is populated with the nodes between n and its final correct ancestors.

The counters of the resources used by the nodes in the Sn1 are incremented.

Lines 9 to 11 correspond to the second observation. Every node in the

backward slice of the final erroneous node n is added to set Sn2 unless it

has a final correct descendent. Finally, in lines 12 to 17, the nodes that

are added to the set Sn2 are checked to see if they have a faulty ancestor.

If so, their counters are incremented by 0.5, and if not, the counters are

incremented by 1. This is in line with the third observation that nodes with

faulty ancestors are less likely to be originating nodes.

Algorithm 2 presents the second heuristic which is based on Observation

4. The algorithm starts from the final correct nodes and recursively marks

the nodes that are likely to have produced correct output (lines 1 to 2).

34

4.2. DDG Analysis

ALGORITHM 2: Heurisitc 2

Procedure markCorrect(node n)
foreach node p of the predecessors of n do

ec ← p.getErroneousChildrenCount()
if not (p.isErroneous() OR ec ≥ 2) then

p.correct ← True
markCorrect(p)

Procedure markErroneous(node n)
foreach node p of the predecessors of n do

cp ← p.getNonCorrectPredecessorsCount()
cc ← p.getCorrectChildrenCount()
if cp == 1 AND cc ≤ 1 then

p.erroneous ← True
markErroneous(p)

Algorithm heuristic2

1 foreach node n of the final correct nodes do
2 markCorrect(n)

3 foreach node n of the final erroneous nodes do
4 markErroneous(n)

5 foreach node n of the erroneous nodes do
6 cond1 ← (n.erroneousParentsCount == 0)
7 cond2 ← (n.correctParentsCount ≥ 1)
8 if cond1 AND cond2 then
9 Increment Counters of resources used in n;

35

4.2. DDG Analysis

Then it recursively marks the nodes that have likely produced erroneous

outputs starting from the final erroneous nodes (lines 3 and 4). Finally, it

checks all the erroneous nodes for the condition in the fourth observation

i.e., being erroneous with no erroneous predecessor (lines 5 to 9). If the

condition is satisfied, it increments the counters for the resources used by

the erroneous nodes by 1.

After both heuristics are applied, the counter values computed by the

heuristics are averaged to obtain the final counter values. The diagnosis

algorithm identifies the top Ndeconf resources with the highest counter values

as candidates of the faulty resource, where Ndeconf is a fixed value. These are

the processor resources that are disabled to fix the intermittent fault after

diagnosis. Thus Ndeconf represents a trade-off between diagnosis accuracy

and granularity. We study this trade-off in Section 5.2.1.

In general, we disable all the Ndeconf resources identified by the diagnosis

algorithm, with one exception. Because the number of functional units in a

processor is typically low, we never disable more than one functional unit.

This means that if the number of functional units among the resources with

Ndeconf highest final counter values is more than one, only the unit with the

highest counter value is disabled.

Example: Due to space constraints, we only demonstrate the appli-

cation of the first heuristic to the augmented DDG in Figure 4.2. Heuris-

tic 1 starts from erroneous nodes (nodes 2, 6, 7 & 8). None of the er-

roneous nodes in this DDG have a final correct ancestor and therefore

S21 = S61 = S71 = S81 = φ. The backward slice for each of the erro-

neous nodes are collected by the algorithm (S22 = {2, 1}, S82 = {8, 5},

36

4.2. DDG Analysis

S72 = {7, 5}, S62 = {6, 5}). The counters of resources in these sets are

incremented by 1 as they have each participated in creating an erroneous

value.

These nodes might also have participated in creating a final correct value.

If so, they are pruned from the backward slice before their counters are

incremented (Line 10). However, none of the nodes in the backward slices of

the erroneous nodes in Figure 4.2 have final correct nodes as their children.

Therefore, no pruning occurs in the example.

We can see that node 5 which has used the faulty resource fu-1, appears

in the backward slices of three erroneous nodes (6, 7 & 8). This means that

the counter related to fu-1 is incremented 3 times. Meanwhile, fu-1 is also

used by the node 1 in the backward slice of erroneous node 2 (based on

Table 4.1), and hence its counter value is again incremented by 1. The final

counter values are shown in Table 4.3. As seen from the table, the faulty

resource fu-1 is the resource with the highest counter value of 4.

Resource Value Resource Value

fu-1 4 fu-5 2
rob-84 3 rob-85 1
ifq-1 3 lsq-2 1
rs-7 3 ... 1

Table 4.3: Counter values after applying heuristic 1 to DDG in Figure 4.2

Fault Recurrence: The above discussion considers a single occurrence

of an intermittent fault. However, by their very definition, intermittent

faults will recur, thus giving us an opportunity to diagnose them again.

The above diagnosis process is repeated after every failure resulting from

an intermittent fault, and each iteration of the process yields a different

37

4.3. Summary

counter value set. The final counter values are averaged across multiple

iterations, thus boosting the diagnosis accuracy, and smoothing the effect of

inaccuracies.

4.3 Summary

In this chapter, we explain the software part of the diagnosis technique

named SIED. When a program crashes, SIED takes a snapshot of the pro-

gram state, namely the registers and memory values. It then performs a de-

terministic replay of the program to the crash point on a non-faulty core. As

the replay is being executed, the dynamic dependence graph of the program

is extracted. When the replay finishes, another snapshot of the program

is taken and compared with the snapshot after the original execution. The

mismatched values are corrupted as a results of the intermittent fault. These

values are marked as erroneous in the extracted DDG. The RUI information

of each instruction is then added to its node in the DDG to form the aug-

mented DDG. The augmented DDG is fed to the DDG analysis algorithms

which are responsible for finding the faulty resource. These algorithms al-

locate a counter for each resource. Starting from the erroneous nodes, the

algorithms backtrack the DDG and increment the counters of resources used

in the instructions in backward slices of the erroneous nodes. The resources

with the highest counter values at the end of this process are declared as

the most likely ones to be faulty. In the next chapter, we describe our

experimental methodology and the results of our evaluations.

38

Chapter 5

Evaluation

In this chapter, we present the experimental setup and the results of our

evaluations. We answer the following research questions to evaluate our

diagnosis technique:

1. RQ 1: What is the diagnosis accuracy or the probability that the

technique correctly finds the faulty resource?

2. RQ 2: What is the performance overhead of repairing the processor

after finding the faulty resource?

3. RQ 3: How much online performance, power and area overhead is

incurred because of SCRIBE?

4. RQ 4: What is the offline performance overhead of SIED (Replay +

DDG Construction and analysis)?

5. RQ 5: How does the accuracy and performance overhead increase in

oracle mode (i.e. when the output of every instruction is stored along

with its RUI)?

6. RQ 6: How does varying the length of buffers inside SCRIBE affect

its performance overhead?

39

5.1. Methodology

5.1 Methodology

5.1.1 SCRIBE

We implemented SCRIBE in sim-mase, a cycle-accurate micro-architectural

simulator, which is a part of the SimpleScalar family of simulators [18]. We

based our implementation on the SimpleScalar Alpha-Linux, developed as

part of the XpScalar framework [9].

5.1.2 Configurations

To understand the overhead of our diagnosis mechanism across different pro-

cessor families, we use three different configurations (Narrow, Medium and

Wide pipelines) for our experiments. These respectively represent processors

in the embedded, desktop and server domains, and similar configurations

have been used in prior work on instruction-level duplication [30]. Table

5.1 lists the common configurations between the simulated processors and

Table 5.2 shows the configurations that vary across processor families.

Parameter Value

Level 1 Data Cache 32K, 4-way, LRU, 1-cycle latency

Level 1 Instruction Cache 32K, 4-way, LRU, 1-cycle latency

Level 2 combined data 512K, 4-way, LRU,
& instruction cache 8-cycle latency

Branch Predictor Bi-modal, 2-level

Instruction TLB 64K, 4-way, LRU

Data TLB 128K, 4-way, LRU

Memory Access Latency 200 CPU Cycles

Table 5.1: Common machine configurations

The RUI length is defined based on the type of the processor (recall

40

5.1. Methodology

from Section 3 that RUI Length ∝ lg(Total number of resources)). We

choose the LogSQ and Logging Buffer to be 32 and 64 entries respectively.

Our experiments presented in section 5.2.6 indicate that increasing the sizes

of these resources beyond 32 and 64 makes no significant improvement on

performance.

Topic Parameter
Machine Width

Narrow Medium Wide

Pipeline
Fetch 2 4 8

Decode 2 4 8

Width
Issue 2 4 8

Commit 2 4 8

Array Sizes
ROB Size 64 128 256
LSQ Size 32 32 32

Number of Integer Adder 2 4 8
of Integer Multiplier 1 1 1

Functional FP Adder 1 1 2
Units FP Multiplier 1 1 1

Table 5.2: Different machine configurations

5.1.3 Benchmarks

We use eight benchmarks from the SPEC 2006 integer and floating-point

benchmarks set. We chose these benchmarks as they were compatible with

our infrastructure. We did not cherry-pick them based on the results.

5.1.4 Fault Injector

We extended sim-mase to build a detailed micro-architecture level fault in-

jector. For each injection, the program is fast-forwarded 20 million instruc-

tions to remove initialization effects. Then a single intermittent fault burst

41

5.1. Methodology

is injected into one of the following: i) Reorder Buffer entries, ii) Instruc-

tion Fetch Queue entries, iii) Reservation Station entries, iv) Load/Store

Queue entries v) functional unit outputs. The starting cycle of the fault

burst is uniformly distributed over the total number of cycles executed by

the program. The number of cycles for which the fault persists (fault dura-

tion) is also uniformly distributed over the interval [5, 2000], as voltage and

temperature fluctuations last for around 5 to several thousands of cycles

([17, 28]).

After injecting the fault burst, the benchmark is executed and monitored

for 1 million instructions to see if it crashes. We consider only faults that

lead to crashes for diagnosis. This is because we do not assume the presence

of error detectors in the program that can detect an error and halt it. To

simulate a recurrent intermittent fault, we re-execute a benchmark up to 50

times while keeping the injection location unchanged. Note however that

the starting cycle and fault duration are randomly chosen in each run. We

report the results for scenarios in which 10 or more of the fault injections

into a location led to crashes (out of 50 injections).

5.1.5 Diagnosis

SIED is implemented using Python scripts and starts whenever a benchmark

crashes as a result of fault injection. We store the instruction outputs and

extract the traces required to build the program’s DDG by modifying the

MASE simulator. However, these traces would be extracted by a virtual

machine or a dynamic binary instrumentation tool in a real implementation

of SIED (as explained in Section 4.1). The instruction outputs in a real

42

5.1. Methodology

implementation can be stored by slightly modifying the presented SCRIBE

structure. SIED also relies upon deterministic replay mechanisms (as ex-

plained in Section 2.3) for diagnosis. We have extended sim-mase to enable

deterministic replay. Again, this would be implemented by a deterministic

replay technique in a real implementation of SIED. We conducted the sim-

ulations and diagnosis experiments on an Intel Core i7 1.6GHz system with

8MB of cache.

5.1.6 Deconfiguration Overhead

The deconfiguration overhead is measured as the processor’s slow-down after

disabling the candidate locations of the faulty resource suggested by our di-

agnosis approach. We assume that the precise subset of resources suggested

by our technique can be deconfigured. We used the medium width processor

configuration from Table 5.2 for measuring the overhead after deconfigura-

tion.

5.1.7 SCRIBE Performance, Power and Area Overhead

The performance overhead is measured as the percentage of extra cycles

taken by the processor to run the benchmark programs when SCRIBE is

enabled. For measuring the overhead, we execute each benchmark for 109

instructions in the MASE simulator 1. We also implemented SCRIBE in

the Wattch simulator [7] to evaluate its power overhead. The metric by

which the power overhead of SCRIBE is evaluated is the average total power

1We do not use Simpoints due to incompatibilities between the benchmark format for
the simulator and the format required by Simpoints.

43

5.1. Methodology

per instruction. We used the CC3 power evaluation policy in Wattch as

it also takes into account the fraction of power consumed when a unit is

not used [7]. For on-chip area overhead, we implemented SCRIBE in the

Illinois Verilog Model (an open-source Verilog implementation of a processor

executing a subset of Alpha instruction set) [31]. The implementation of the

SCRIBE circuits for estimating the on-chip area overhead is around 500 lines

of Verilog code. The Illinois Verilog Model implementation alone is around

22000 lines of code.

The processor is then synthesized using Synopsys Design Compiler tar-

geting TSMC 65nm technology and the area overhead of the components

in SCRIBE is evaluated. We also perform timing analysis on the synthe-

sized processor to test if adding SCRIBE increases the minimum clock cycle

period required for the processor.

5.1.8 SCRIBE Oracle Mode

We also implemented SCRIBE in Oracle mode. In Oracle mode, SCRIBE

stores the output of every instruction along with its RUI. Having the outputs

of each instruction, the failed program is replayed and the outputs of the

corresponding instructions in the two executions (original and replayed)

get compared. The instructions with mismatching destination values are

the ones affected by the fault. This set of instructions have either used

the faulty resource (in which case we call them faulty instructions) or have

inherited the fault from a faulty predecessor in DDG (In which case we

call them erroneous). In other words, the difference between faulty and

erroneous instructions is that erroneous instructions might not have used the

44

5.2. Results

Figure 5.1: Accuracy results for applying the heuristics (RN = 4 and
Ndeconf = 5)

faulty resource but the error might have been propagated to them because

of data flow between the instructions. The erroneous instructions which do

not have any erroneous instructions as their parent in the DDG are faulty

instructions.

5.2 Results

5.2.1 Diagnosis Accuracy (RQ 1)

Figure 5.1 shows the accuracy of our diagnosis approach for faults occurring

in different units of the medium-width processor. We find that the average

accuracy is 84% across all units. To put this in perspective, our diagnosis

approach identifies 5 resources out of more than 250 resources in the pro-

cessor as faulty, and the actual faulty resource is among these 5 resources,

84% of the time (later, we explain why we chose 5).

The diagnosis accuracy depends on the unit in which the fault occurs,

and ranges from 71% for IFQ to 95% for LSQ. The reason for IFQ having

45

5.2. Results

low accuracy is that faults in the IFQ cause the program to crash within a

short interval of time (i.e., they have shorter crash distances). Short crash

distances lead to lower accuracy, which is counter-intuitive as one expects

longer crash distances to cause loss in the fault information and hence have

lower accuracy. However, our DDG analysis algorithm explained in Section

4.2 uses backtracking the paths leading to final erroneous data. The more

the number of these paths, the easier it is for our algorithm to distinguish

the faulty resource from other resources, and hence higher the accuracy.

Shorter crash distances mean fewer paths, and hence lower accuracy.

The main source of diagnosis inaccuracies is that SIED has only knowl-

edge about final data (correctness of memory and register values at the

failure point). The DDG analysis heuristics in Section 4.2 use backtracking

from final erroneous data to speculate on the correctness of the data before

the failure point. However, non-faulty resources are also used in the paths

leading to final erroneous data, and can be incorrectly diagnosed as faulty

by our technique.

One way to improve the diagnosis accuracy is to record the output of

every instruction, thus eliminating the need for speculation on the correct-

ness of the data before the failure point. However, our evaluations presented

in section 5.2.5 shows that storing the output of every instruction imposes

prohibitive performance overhead.

As explained in Section 4.2, SIED uses information from multiple occur-

rences of the intermittent fault to enhance the diagnosis accuracy. Let RN

denote the number of recurrences of the failure, after which the diagnosis

is performed. There is a trade-off among diagnosis accuracy and the failure

46

5.2. Results

Figure 5.2: Average accuracy across benchmarks with respect to the number
of failures (Ndeconf = 5)

recurrence number (RN) for performing diagnosis. This means that diagno-

sis can be performed earlier at the expense of less accuracy or be postponed

to receive more information from the subsequent failures and hence achieve

higher accuracy, which in turn decreases the probability of the fault recur-

ring after deconfiguration (and hence has lower overheads). Figure 5.2 shows

how changing the RN value can affect the accuracy of diagnosis. We choose

RN = 4 to perform diagnosis (Figure 5.1), as beyond this point, there is

only a marginal increase in diagnosis accuracy with increase in RN .

5.2.2 Deconfiguration overhead (RQ 2)

As mentioned in section 4.2, Ndeconf is the number of resources suggested

by SIED as most likely to be faulty. Diagnosis accuracy is defined as the

47

5.2. Results

Figure 5.3: Accuracy with respect to Ndeconf (RN = 4)

Figure 5.4: Performance overhead after deconfiguration (Ndeconf = 5)

probability of the actual faulty resource being among the resources suggested

by SIED. For the accuracies reported in Figure 5.1, Ndeconf is chosen to be

5.

48

5.2. Results

The processor is deconfigured after diagnosis by disabling these Ndeconf

resources. Although increasing Ndeconf increases the likelihood of the pro-

cessor being fixed after deconfiguration, it also makes the granularity of

diagnosis more coarse-grained. In other words, by increasing Ndeconf , de-

configuration disables more non-faulty resources along with the actual faulty

resource. This results in performance loss after deconfiguration.

Figure 5.3 shows the accuracy of diagnosis as Ndeconf varies from 1 to

5. As expected, increasing Ndeconf increases the accuracy of diagnosis to

84% for Ndeconf = 5. Figure 5.4 shows the average slowdown by disabling

Ndeconf = 5 resources suggested by our technique. As can be seen in the

figure, the slowdown varies from 1% to 2.5%, with an average of 1.6%. This

shows that disablingNdeconf = 5 resources only incurs a modest performance

overhead after reconfiguration, and hence we choose this value.

5.2.3 SCRIBE Performance, Power and Area Overhead

(RQ 3)

Figure 5.6 shows the performance overhead incurred by SCRIBE across three

processor configurations, narrow, medium and wide, described in Section 5.1.

The geometric mean of the overheads across all configurations is 14.7%.

In all but one case (except soplex), the wide configuration (GeoMean =

23.21%) incurs higher overhead than the medium (GeoMean = 11.88%)

and narrow (GeoMean = 11.53%) configurations. The Medium and narrow

configurations are comparable in terms of overhead. The wide processor has

high overhead as it is able to utilize the resources better, thus leaving fewer

free slots to be used by SCRIBE for sending logging stores to memory.

49

5.2. Results

Figure 5.5 shows the correlation between the performance overhead for

each benchmark and the baseline IPC of the benchmark. There is a positive

correlation between the IPC and the overhead (i.e. overhead increases as

the baseline IPC increases). For example, the baseline IPC values for perl

and libquantum are 1.35 and 3 and their overheads are 6.18% and 28.05%

respectively. In other words, SCRIBE uses the opportunities made by the

resources being underutilized to perform its logging.

Figure 5.5: Correlation between baseline IPC and performance overhead.
The trendline for each dataset is also shown.

To better understand the performance overheads incurred by SCRIBE,

we break down the overhead into four parts. Figure 5.7 shows the over-

head breakdown of SCRIBE for the medium width processor. The overhead

components are:

• Memory Ports Pressure: Since multiple Logging Stores are being

50

5.2. Results

Figure 5.6: The performance overhead of SCRIBE applied to three configu-
rations: Narrow, Medium and Wide

sent to the memory hierarchy by SCRIBE, the memory ports might get

busy in some cycles when needed by regular loads/stores. This would

make the regular loads and stores stall. This component is responsible

for ∼ 41% of the total SCRIBE overhead.

• Stalling Regular Stores: In the cycles in which the logging mecha-

nism has priority, regular stores at the head of ROB will be stalled and

hence the commit stage becomes stalled. This will continue until the

regular stores gain priority over logging stores again. This component

is responsible for ∼ 32% of the total SCRIBE overhead.

• Reducing Commit Bandwidth: The commit stage has a limited

bandwidth. SCRIBE consumes part of this bandwidth in each cycle

by attempting to send logging stores to the memory hierarchy. This

51

5.2. Results

part of the overhead is responsible for ∼ 23% of the overhead.

• Stalling the Commit Stage: This happens when one partition of

the Log Buffer is not still done being compressed while the other par-

tition becomes full. In this case, the commit stage will be stalled. This

component is responsible for only ∼ 4% of the total SCRIBE overhead.

Figure 5.7: The breakdown of the performance overhead for medium width
processor

Thus we see that the overhead of SCRIBE is dominated by the memory

pressure it introduces to the processor, as well as the stalling of regular

stores in the processor.

The results of the timing analysis after synthesizing the design shows

that the SCRIBE is not in the critical path of the processor and therefore

does not increase the minimum clock cycle period of the processor.

52

5.2. Results

As far as power is concerned, SCRIBE has 9.3% power overhead on

average. This includes both active power and idle power. Figure 5.8 shows

the breakdown of the power consumption overhead. As seen in the figure,

only 7.9% of the extra power is used by the components of SCRIBE. The rest

of the power overhead is due to the extra accesses to the D-Cache and the

extra cycles due to SCRIBE (indicated in the figure as Other Components).

The synthesis reports from the Synopsys Design Compiler show that

SCRIBE components have only 0.95% of on-chip area overhead. The small

on-chip area overhead is expected as SCRIBE only adds around 1.75 Kbytes

of storage to the processor. A study synthesizing a comparable technique

has reported adding 50Kbytes of on-chip storage and having 2% area over-

head [23]. Figure 5.9 shows the break down of the area overhead of SCRIBE

components. As seen from the figure, the area is largely dominated by the

hardware array structures. The logging buffer with 64 entries has the high-

est area overhead (65.1%). This is because the logging buffer has the largest

number of entries between the buffers used in SCRIBE. The priority han-

dling circuit on the other hand has the least area overhead (0.1%) as it is

simple and consists of very few components (Figure 3.4).

5.2.4 SIED Offline Performance Overhead (RQ 4)

This overhead consists of: i) Replay time ii) DDG construction and analysis

time. The average replay time depends on the program and whether it is

replayed from a checkpoint or from the beginning. We do not consider this

time as it depends on the checkpointing interval. The DDG construction

and analysis time took 2 seconds on average, for our benchmarks.

53

5.2. Results

Figure 5.8: The breakdown of power consumption of SCRIBE

5.2.5 SCRIBE Oracle Mode (RQ 5)

As mentioned in 5.1.8, we also implemented SCRIBE in Oracle mode in

which the output of every instruction is sent to memory along with its RUI.

Figure 5.10 shows the accuracy of the oracle mode for four of the SPEC

2006 benchmarks. The average accuracy across all the units in the Oracle

mode is 97.8%. with the minimum accuracy belonging to the Instruction

Fetch Queue (92.3%).

The relative inaccuracy of IFQ stems from the fact that some of the faults

hitting IFQ entries invalidate the instruction leading to immediate crashes

in the decoded stage and before being dispatched to the ROB. Therefore

the faulty instruction is not visible in the DDG and can not be used to

find the faulty resources. However, the mentioned hardware structure and

our implementation does not catch these instructions. Another source of

inaccuracy for the oracle is long crash distances. This means that the faulty

54

5.2. Results

Figure 5.9: Area overhead breakdown of SCRIBE

resource (the fault origin) is outside of the range of the recorded instructions.

Therefore, backtracking erroneous instructions only reaches us to the oldest

erroneous instruction available which is not necessarily a faulty instruction.

Increasing the size of the RUI Buffer for the Oracle mode eliminates this

source of inaccuracy.

We can see from figure 5.10 that the the Oracle mode is very accurate.

The main reason for the high accuracy of the oracle mode in comparison

with our proposed technique is that with the oracle mode, the DDG anal-

ysis module has the knowledge of correctness of all the data (nodes) in the

backward slices of the DDG. Having this information, backtracking can be

continued until there is no erroneous predecessor for an erroneous node. The

node without an immediate erroneous predecessor has used the faulty re-

source. This means that the DDG analysis is aware of the exact instructions

which used the faulty resource. This important information is absent during

55

5.2. Results

Figure 5.10: Accuracy results for the Oracle mode of SCRIBE (RN = 4 and
Ndeconf = 5)

the DDG analysis without the oracle mode. The DDG analysis without the

oracle mode only has access to the correctness of the data in the crash state

(which it aquires by comparing the snapshots taken after the original and

the replayed executions). Therefore, it considers all of the nodes in the back-

ward slices of the erroneous nodes as the instructions which might have used

the faulty resource and therefore increases their counters. This assumption

is not always correct and leads to some inaccuracy in the diagnosis.

In order to reach to the high accuracy of the oracle mode, we need to have

the output data of all the instructions to achieve this high accuracy. Figure

5.11 shows the performance overhead of storing the output data of every

instruction, for 32-bit instructions and 64-bit instructions, for three SPEC

2006 programs. The overhead for storing 0 extra bits corresponds to that

56

5.2. Results

Figure 5.11: Performance overhead of sending the destination register values
of every instruction on performance overhead (0 bits corresponds to only
sending the RUI as in our technique)

of storing only the resource usage bits, as done by our technique (explained

in Section 3). As seen from the Figure 5.11, the overheads for storing the

results of 32 and 64 bit instructions are respectively 2X and 3X that of

the overhead of only storing the resource usage information. Therefore, we

choose not to record the output of every instruction for diagnosis.

5.2.6 Sensitivity Study of Buffer Sizes (RQ 6)

We perform a sensitivity analysis of the performance overhead of SCRIBE

by varying the sizes of Logging Buffer and LogSQ. We use the medium width

processor from table 5.2 in this part of the evaluation. For conciseness we

use only three of the nine benchmarks, though they are representative of the

57

5.3. Summary

general trend we observed.

Figures 5.12 and 5.13 show the variation of the overhead with the sizes of

the Logging Buffer and LogSQ. As can be seen in the figures, the overhead

initially decreases as we increase the sizes of the buffers. However, increasing

the sizes of Logging Buffer and LogSQ beyond 64 and 32 entries respectively

does not provide any benefit. This is why we choose values of 64 and 32 for

the sizes of the Logging Buffer and the LogSQ respectively.

Figure 5.12: The overhead with respect to logging buffer size for medium
width processor

5.3 Summary

In this chapter, we described our experimental setup and the results of our

evaluations. We evaluate the accuracy of our technique as well as different

58

5.3. Summary

Figure 5.13: The overhead with respect to logSQ size for medium width
processor

overheads of our design. Our synthesis results show that SCRIBE has 0.95%

on-chip area overhead. The results of our simulation experiments show that

SCRIBE has a performance overhead of 12% and power overhead of 9%,

on average. Our fault injection experiments show that our technique has

an average accuracy of 84% in diagnosing the faulty resource, which in turn

enables fine-grained deconfiguration with less than 2% performance loss after

deconfiguration.

59

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Hardware intermittent faults are becoming more prominent as a side effect of

technology scaling. The diagnosis of faults is essential for automatic repair

of the chip using deconfiguration. The granularity of diagnosis is related

with the amount of performance loss after repair. In other words, the finer

the granularity of diagnosis, the less performance will be lost after decon-

figuration. Furthermore, since the intermittent faults can also be caused by

temperature variations and the wear-out due to aging, an intermittent fault

diagnosis mechanism needs to be present during the operational settings of

a chip. This in turn, requires such a mechanism to incur as low amount of

overhead as possible.

In this thesis, we proposed a hardware/software integrated scheme for di-

agnosing intermittent faults in processors. Our scheme consists of SCRIBE,

the hardware layer which enables fine-grained software layer diagnosis and

SIED, the software layer which uses the information provided by SCRIBE

after a failure to diagnose the intermittent fault. The information provided

by SCRIBE consists of the detailed micro-architectural resource usage of

each instruction in the pipeline. We found that using SCRIBE and SIED,

60

6.2. Future Work

the faulty resource can be correctly diagnosed in 84% of the cases on aver-

age. Our scheme incurs about 12% performance overhead, and about 9%

power consumption overhead and less than 0.95% on-chip area overhead (for

a desktop class processor). The fine granularity of our diagnosis mechanism

enables automatic repair of the chip using deconfiguration, with less than

2% slow-down on average.

To the best of our knowledge, this is the first study to decouple the mech-

anisms for gathering the information required by diagnosis and the module

performing the diagnosis operations. The hardware part of the technique

can be used as a building block for the other diagnosis mechanisms. In other

words, the resource usage information provided by the hardware layer could

be used by the other software layer diagnosis algorithms.

6.2 Future Work

The work presented in this thesis can be extended from several aspects.

The hardware part of the design, could be continued to explore micro-

architectural techniques to further optimize the overhead of SCRIBE. This

is the first study to separate the mechanisms for diagnosis information gath-

ering from the diagnosis algorithms. Hence, other software layer diagnosis

techniques relying on the resource usage information of instructions could

also be designed to enhance the accuracy of diagnosis.

Intermittent faults are not always present during the whole period of

the operation of a chip. A technique for only turning the SCRIBE on when

intermittent faults are present could significantly decrease the overall online

61

6.2. Future Work

performance and power overhead of SCRIBE.

The hardware layer presented in this thesis is able to provide the detailed

information about the pipeline resources used by the instructions. Other ap-

plications such as hardware performance monitoring tools could also benefit

from this information provided by SCRIBE.

The measurement of the overhead in this work is based on simulation.

The evaluation of the technique could be extended by running workloads on

a real synthesized chip equipped with SCRIBE. The accuracy measurement

could also be extended to consider other fault models such as multiple fault

locations over time.

62

Bibliography

[1] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing.

PLDI, pages 246–256, 1990.

[2] T.M. Austin. DIVA: A reliable substrate for deep submicron microar-

chitecture design. MICRO, pages 196–207, 1999.

[3] A. Bondavalli, S. Chiaradonna, F. di Giandomenico, and F. Grandoni.

Threshold-based mechanisms to discriminate transient from intermit-

tent faults. IEEE Transactions on Computers, 49:230–245, Mar 2000.

[4] Shekhar Borkar. Microarchitecture and design challenges for gigascale

integration. In Keynote Speech, 37th International Symposium on Mi-

croarchitecture, MICRO, 2004.

[5] Shekhar Borkar, Tanay Karnik, Siva Narendra, Jim Tschanz, Ali Ke-

shavarzi, and Vivek De. Parameter variations and impact on circuits

and microarchitecture. DAC, pages 338–342, 2003.

[6] Fred A. Bower, Daniel J. Sorin, and Sule Ozev. A mechanism for online

diagnosis of hard faults in microprocessors. MICRO, pages 197–208,

2005.

63

Bibliography

[7] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A

framework for architectural-level power analysis and optimizations.

ISCA, pages 83–94, 2000.

[8] J. Carretero, X. Vera, J. Abella, T. Ramirez, M. Monchiero, and

A. Gonzalez. Hardware/software-based diagnosis of load-store queues

using expandable activity logs. HPCA, pages 321–331, 2011.

[9] N.K. Choudhary, S.V. Wadhavkar, T.A. Shah, H. Mayukh, J. Gandhi,

B.H. Dwiel, S. Navada, H.H. Najaf-abadi, and E. Rotenberg. Fab-

Scalar: Composing synthesizable RTL designs of arbitrary cores within

a canonical superscalar template. ISCA, pages 11–22, 2011.

[10] C. Constantinescu. Intermittent faults and effects on reliability of in-

tegrated circuits. RAMS, pages 370–374, 2008.

[11] Cristian Constantinescu. Trends and challenges in VLSI circuit relia-

bility. IEEE Micro, 23(4):14–19, 2003.

[12] Kypros Constantinides, Onur Mutlu, Todd Austin, and Valeria

Bertacco. Software-based online detection of hardware defects: Mech-

anisms, architectural support, and evaluation. MICRO, pages 97–108,

2007.

[13] Andrew DeOrio, Qingkun Li, Matthew Burgess, and Valeria Bertacco.

Machine learning-based anomaly detection for post-silicon bug diagno-

sis. DATE, pages 491–496, 2013.

[14] George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetterman, and

64

Bibliography

Peter M. Chen. Execution replay of multiprocessor virtual machines.

VEE, pages 121–130, 2008.

[15] H. Eveking. Superscalar dlx documentation. http://www.rs.

tu-darmstadt.de/downloads/docu/dlxdocu/DlxPdf.zip.

[16] S. Gupta, Shuguang Feng, A. Ansari, and S. Mahlke. StageNet: A

reconfigurable fabric for constructing dependable CMPs. IEEE Trans-

actions on Computers, 60(1):5–19, Jan 2011.

[17] R. Joseph, D. Brooks, and M. Martonosi. Control techniques to elimi-

nate voltage emergencies in high performance processors. HPCA, pages

79–90, 2003.

[18] E. Larson, S. Chatterjee, and T. Austin. MASE: a novel infrastructure

for detailed microarchitectural modeling. ISPASS, pages 1–9, 2001.

[19] Man-Lap Li, P. Ramachandran, S.K. Sahoo, S.V. Adve, V.S. Adve,

and Yuanyuan Zhou. Trace-based microarchitecture-level diagnosis of

permanent hardware faults. DSN, pages 22–31, 2008.

[20] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur

Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim

Hazelwood. Pin: Building customized program analysis tools with dy-

namic instrumentation. PLDI, pages 190–200, 2005.

[21] J. W. McPherson. Reliability challenges for 45nm and beyond. DAC,

pages 176–181, 2006.

65

http://www.rs.tu-darmstadt.de/downloads/docu/dlxdocu/DlxPdf.zip
http://www.rs.tu-darmstadt.de/downloads/docu/dlxdocu/DlxPdf.zip

Bibliography

[22] Edmund B. Nightingale, John R. Douceur, and Vince Orgovan. Cy-

cles, cells and platters: An empirical analysis of hardware failures on a

million consumer PCs. EuroSys, pages 343–356, 2011.

[23] Sung-Boem Park and S Mitra. IFRA: Instruction footprint recording

and analysis for post-silicon bug localization in processors. DAC, pages

373–378, 2008.

[24] Andrea Pellegrini and Valeria Bertacco. Application-aware diagnosis of

runtime hardware faults. ICCAD, pages 487–492, 2010.

[25] L. Rashid, K. Pattabiraman, and S. Gopalakrishnan. Intermittent hard-

ware errors recovery: Modeling and evaluation. QEST, pages 220–229,

2012.

[26] Layali Rashid et al. Modeling the propagation of intermittent hardware

faults in programs. In Dependable Computing (PRDC), 2010 IEEE 16th

Pacific Rim International Symposium on, pages 19–26. IEEE, 2010.

[27] Giacinto P. Saggese, Nicholas J. Wang, Zbigniew T. Kalbarczyk, San-

jay J. Patel, and Ravishankar K. Iyer. An experimental study of soft

errors in microprocessors. IEEE Micro, 25(6):30–39, 2005.

[28] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei

Huang, Sivakumar Velusamy, and David Tarjan. Temperature-aware

microarchitecture: Modeling and implementation. ACM Trans. Archit.

Code Optim., 1(1):94–125, Mar 2004.

66

Bibliography

[29] J.E. Smith and G.S. Sohi. The microarchitecture of superscalar proces-

sors. Proceedings of the IEEE, 1995.

[30] A. Timor, A. Mendelson, Y. Birk, and N. Suri. Using underutilized CPU

resources to enhance its reliability. IEEE Transactions on Dependable

and Secure Computing, 7(1):94–109, Jan 2010.

[31] N.J. Wang, J. Quek, T.M. Rafacz, and S.J. Patel. Characterizing the ef-

fects of transient faults on a high-performance processor pipeline. DSN,

pages 61–70, June 2004.

[32] C. Weaver and T. Austin. A fault tolerant approach to microprocessor

design. DSN, pages 411–420, 2001.

[33] Philip M. Wells, Koushik Chakraborty, and Gurindar S. Sohi. Adapting

to intermittent faults in multicore systems. ASPLOS, pages 255–264,

2008.

[34] M. Xu, R. Bodik, and M.D. Hill. A “flight data recorder” for enabling

full-system multiprocessor deterministic replay. ISCA, pages 122–133,

2003.

67

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Motivation
	Proposed Solution and Contributions
	Background
	Intermittent Faults: Definition and Causes
	Why Resource-Level, Online Diagnosis ?
	Dynamic Dependency Graphs

	Related Work
	Summary

	Approach
	Fault Model
	Challenges
	Overview of Our Approach
	Summary

	SCRIBE: Hardware Layer
	RUI Format
	Data Collection
	Logging Mechanism
	Priority Handling
	Summary

	SIED: Software Layer
	DDG Construction with RUI
	DDG Analysis
	Summary

	Evaluation
	Methodology
	SCRIBE
	Configurations
	Benchmarks
	Fault Injector
	Diagnosis
	Deconfiguration Overhead
	SCRIBE Performance, Power and Area Overhead
	SCRIBE Oracle Mode

	Results
	Diagnosis Accuracy
	Deconfiguration Overhead
	SCRIBE Performance, Power and Area Overhead
	SIED Offline Performance Overhead
	SCRIBE Oracle Mode
	Sensitivity Study of Buffer Sizes

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

