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Abstract

Community detection is an important aspect of network analysis that has
far-reaching consequences, in particular for biological research. In the study
of systems biology, it is important to detect communities in biological net-
works to identify areas that have a heavy correlation between one another or
are significant for biological functions. If one were to model networks that
evolved over time, a di↵erential network would be a vital part or product of
that analysis. One such network could have an edge between two vertices if
there is a significant change in the correlation of expression levels between
the two genes that the vertices are designed to model.

For this particular network, there are no community detection algorithms
that su�ce. An analysis of the current community detection algorithms
shows that most heuristic-based methods are too simple or have too high
a cost for detecting communities on such sparse networks. A prototypi-
cal algorithm is presented that is preferential to high weight edges when
determining community membership. This algorithm, Weighted Sparse

Community Finder or WSCF, is an incremental algorithm that develops com-
munity structure from highly-weighted community seeds, which are 3-vertex
substructures in the network with a high local modularity.

A preliminary analysis of this detection algorithm shows that it is func-
tional on data sets consisting of up to 600 genes, with more on a more
powerful machine. The communities detected are di↵erent than the ones
provided by the benchmark algorithms because of the high precedence placed
on higher-weight edges. This prototypical algorithm has the potential for
refinement and expansion to provide the ability to find significant results for
applications in the field of Systems Biology.
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Chapter 1

Introduction

Over the recent decades, advancements in technology have allowed for the
analysis of large amounts of data simultaneously. Because of this, biomed-
ical and biological research fields have moved away from a “reductionist”
experimental approach to a more holistic one, called Systems Biology. In
particular, Systems Biology studies the dynamical changes in biological sys-
tems in search of new and emergent properties. These biological systems in-
clude Protein-Protein Interaction (PPI) networks, metabolic networks, cell
signalling networks, gene regulatory networks (focusing on the interaction
between proteins and DNA), and others. Some other systems involve in-
teraction networks between species in an ecosystem and other macro-scale
systems, but that is beyond the scope of the paper.

A popular Systems Biology study is the analysis of PPI networks. These
networks are important because they characterize fundamental processes
within the cell, especially those related to cancer pathologies. Because
of their importance to physiological and pathological processes, there is a
strong desire to build as many interactomes (networks comprising whole
sets of interactions within a cell) as possible. An example of one of these
undertakings is the Human Interactome Project at the Center for Cancer
Systems Biology [22].

We can analyze biologically significant networks, such as PPI networks,
by simply modelling these networks as graphs, having each vertex represent
a protein and every edge be present if there is an interaction between the
proteins. Figure 1.1 shows an example PPI network, with di↵erent groups of
vertices coloured with a label that shows their commonality. These group-
ings can be used to elucidate protein function by characterizing an unknown
using the function of the group it belongs to, and to identify important pro-
teins within the network structure. Such important proteins might be ones
that control the entire function of the group by interacting with (and regu-
lating the function of) every other member of the group, or be responsible
for communicating between one group and another.

In the realm of graph theory, these groupings are called communities,
i.e., a partition of a graph that contains more interconnectivity between its
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Chapter 1. Introduction
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Figure 1.1: An example of community structure in a protein-protein
interaction network. Each community of proteins is represented in a

di↵erent colour, and labeled according to their function. Figure from [14].
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1.1. Community Detection in Networks

vertices than it does with the rest of the graph. In this work, as well as
other works that focus on community detection in weighted graphs, this
definition to place more importance on the weighted edges of the graph.
That is, communities in weighted networks are areas of the graph with a
larger density of “heaver” (high-weight) edges between the vertices in the
communities than between them.

1.1 Community Detection in Networks

Communities in graphs are defined as subgraphs that have a higher den-
sity of edges between its members than between the members and other
regions of the graph. An example of this is again seen in Figure 1.1. These
communities can be seen in a variety of networks, including collaboration
networks between authors [19], social networks [2], and biological networks.
These communities can help identify important aspect of network topology
by identifying substructures that serve a particular function or role within
the network.

Detecting these community structures is still a di�cult problem of inter-
est to many scientists spanning physics, computer science, biology, mathe-
matics, engineers and the social sciences [15]. There are a lot of algorithmic
techniques that have been developed over the years to detect these struc-
tures [9] [20], such as hierarchical clustering and the maximization of
network modularity. These techniques are explained in detail in Chapter 2.
The current techniques are powerful, but there is no conclusive definition of
what constitutes the “best” community structure for every given network.
In addition, they each have their own shortcomings when applied to di↵erent
types of weighted networks.

1.2 Time-Varying Networks

To add a further complication to the problem of community detection, a
reality of biological networks is that they are not static over time. That
is, the network structure is subject to change given predictable fluctuations
such as those depending on circadian rhythms, to networks that start to
destabilize under disease progression. Thus, it is significant to the biolog-
ical community to model how these networks change over time. It is then
reasonable to conclude that the ability to model how community structure
changes over time becomes very important in the analysis of these biological
networks.

3



1.3. Di↵erential Protein-Protein Interaction Networks

One highly used technique of temporal network analysis is the creation
of a di↵erential network, a network that highlights the changes between one
state and the next [13]. An example of a di↵erential network is shown in
Figure 1.2. This figure represents the transition from one state of the net-
work to another after stimulation by Epidermal Growth Factor (EGF) [4].
The provided network is specific to interactions with GRB2 domains, which
are areas on the protein that function as adaptors for receiving signals from
other proteins. The red-shaded nodes are those that interact with GRB2
complexes after stimulation by EGF, green are those with less interactions,
and blue are those that interact with the GRB2 complex in non stimulated
cells (the control group). The border thickness indicates the intensity of the
change, and the boxes in each node indicate the time point in which the
changes occur. The nodes that are greyed out are ones that do not respond
to EGF and thus no significant change was reported.

1.3 Di↵erential Protein-Protein Interaction
Networks

Networks like those above have the capacity to hold a lot of information
with respect to how a network changes over time. A simple extension to a
network like this would be to expand this to look at PPIs in general. Each
node would represent a protein. Each edge could be present between two
nodes if there is a significant change in the correlation of expression that
the two proteins share. Expression, in this case, is the amount of protein
(or its precursor nucleotide sequence) present in the cell at a time x. If the
correlation changes significantly, then it is either the case that two proteins
that once had correlated expression levels are no longer correlated (or have
changed their correlation significantly), or the two proteins that did not have
any sort of correlation are now expressing in correlation with one another.

Such a network would be expected to be sparse, given that there are
strict requirements for what is determined to be a significant change in
correlation. An example of such a network is given in Figure 1.3. The edges
that are blue represent a significant increase in correlated expression levels,
whereas the edges in red represent a significant decrease. The edge label
represents the magnitude of the change, with 1.00 being the highest and
0.00 representing no change. Note that the edge label does not represent
the direction of the change. The edges in grey are left out of the graph,
because they have fold changes lower than significant levels. Although there
is not a defined method to generate these di↵erential networks, this type of

4



1.3. Di↵erential Protein-Protein Interaction Networks

Figure 1.2: An example of a time di↵erential network. This represents the
di↵erential in protein interactions with GRB2 domains after stimulation by

EGF. The coloured bars within each node represent the relative fold
change of that protein relative to the time elapsed in the EGF stimulation

experiment. Figure from [4].
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1.4. Finding Community Structure in Sparse Di↵erentialNetworks

network serves as the motivation for the algorithmic prototype presented in
this paper.

Finding the community structure in these would indicate a series of nodes
that have relationships with one another that have been destabilized. This
could be indicative of a particular function in the cell that is rendered over-
or under-operational due to the change, or it could be used as a diagnostic
tool to identify network destabilizations that are outside of those generated
by a lack or overproduction of a protein vital to the network.

1.4 Finding Community Structure in Sparse
Di↵erential Networks

There can be possible expansions to the graph if to describe more features
of the network to the analyst, although these are not incorporated into the
community detection strategy detailed below. For example, even if the edges
are labeled to represent the amount of change in correlation, the visual cue
of edge thickness can also be used to represent the edge weight, allowing
for more intuitive interpretation of the relative edge weights. Addition-
ally, the vertices can carry an intrinsic weight value and colour representing
a molecule’s change in expression level, with a larger thickness indicating
a greater change, and red/blue colouring indicating the direction of the
change.

There are several methods to find communities in biological networks,
but none that are tailored for the sparse weighted networks as described in
Section 1.3. In this paper, we examine a large number of these methods in
detail and propose a prototype for an incremental method to generate com-
munities from high-scoring network seeds. The algorithm begins with de-
tecting high-scoring three-vertex community seeds, then incrementally tries
to grow them by adding additional vertices and corresponding edges until
the complete communities are formed. In Chapter 2, the current works in
community detection and their applications to our sparse di↵erential net-
work are discussed. In Chapter 3, the alternative incremental algorithm is
presented and discussed. In addition with the presentation of the algorithm,
some preliminary experimental results are presented in Chapter 4 and dis-
cussed in terms of the algorithm’s capabilities. The results are concluded
and discussed in Chapter 5.
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1.4. Finding Community Structure in Sparse Di↵erentialNetworks
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Figure 1.3: Example sparse di↵erential network. This graph represents
correlated expression level changes in a protein-protein network. The edge
labels represent the magnitude of these changes. The edges in red or blue

represent statistically significant increases or decreases in correlated
expression levels, and the greyed-out edges represent a lack of significant

change.
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Chapter 2

Related Works

2.1 Modularity

A major advance in the detection of community structure in biological net-
works was the introduction of network modularity, presented as an eval-
uation criterion for a greedy community-detection algorithm, by Clauset
et. al. in 2004 [7]. Modularity is a centrality-based measure that rewards
highly-connected communities, and punishes sparsely-connected communi-
ties. Modularity Q is calculated by equation 2.1, in which m represents the
total number of edges in the graph. A

ij

is 1 or 0, depending on whether the
edge exists between vertices i and j. The degree of the vertex x is repre-
sented by k

x

; and �(c
i

, c
j

) is 1 if the vertices are in the same community, 0
otherwise.

Q =
1

2m

X

ij

(A
ij

� k
i

k
j

2m
)�(c

i

, c
j

) (2.1)

Modularity is preferential to communities that have an interconnected
structure similar to a clique. This metric is used as a qualitative measure-
ment of an algorithm’s performance in community detection, as well as a
heuristic in other community detection algorithms [17].

Blondel et al. introduced a greedy algorithm that iteratively builds com-
munities by joining vertices together that would net the highest increase in
modularity, then collapsing those communities into a singular node and re-
peating the process to produce a hierarchical community structure [5]. This
algorithm, however, depends on a sequential sweep of all pairs of vertices
and is highly dependent on the sequence ordering. Additionally, the question
arises as to what becomes the most e↵ective stopping criterion for an itera-
tive growth algorithm to halt at the“best” community assignment. Because
of Blondel’s hierarchical community structure, the question becomes which
level of the hierarchical structure denotes the most accurate assignment of
vertices to communities. For determining novel communities, however, the
decision of which hierarchical level is the most appropriate might become
arbitrary.
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2.1. Modularity

With further development into modularity optimization techniques and
the applications of modularity to a large scale networks, the modularity
metric has been adapted to further suit the needs of the researchers. Since
the di↵erential network discussed in the previous chapter has weighted edges,
the modularity used should reflect that property. Expanding to weighted
networks is fairly simple, as discussed by Newman in 2004 [18]. As shown
in equation 2.2, k

x

is replaced by s
x

, where s
x

is the sum of all weights of
the edges adjacent to vertex x, and m is replaced with W , which is the total
sum of the weights of all edges in the network.

Q
w

=
1

2W

X

ij

(W
ij

� s
i

s
j

2W
)�(c

i

, c
j

) (2.2)

Other extensions of modularity include the inclusion of directed graphs [1],
and the evaluation of overlapping community structure [23]. These expan-
sions have been applied as evaluation metrics for a large number of com-
munity detection algorithms [9], notably the greedy ones mentioned above,
as well as other types of algorithms, including simulated annealing and ex-
tremal optimization.

A major problem in the use of greedy algorithms for community detec-
tion, especially those that use modularity as a heuristic, is that they have
the chance of being caught in local maxima. This is because, like all greedy
algorithms, these algorithms will always step in the direction of the great-
est increase of modularity. However, as exemplified in figure 2.1, it is not
always the case that this is the overall most optimal step. From the com-
munity found in subfigure a, a greedy algorithm will not elect to expand the
community to the community in subfigure b because the overall modularity
would be less than the initial modularity. However, the most optimal so-
lution would be to include all of the nodes in the community, as shown in
subfigure c. This shows that the community in subfigure a can be considered
a simple example of a local maxima for community detection.

Simulated annealing is an optimization technique that avoids getting
trapped in local maxima by introducing a computational temperature vari-
able, T . While T is high, the algorithm is allowed to explore di↵erent
configurations at a higher cost. The idea is to begin at a high T and slowly
decrease it to allow the system to ascend into a large maxima while over-
coming cost barriers. In Guimerà and Amaral (2005), simulated annealing
was used to maximize modularity in a module detection algorithm, by set-
ting the overall cost (C) to be negative modularity, or �M [12]. At each
value of T , a random number of updates are performed and accepted with

9



2.1. Modularity
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(a) Initial community.
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(b) Potential new community.
Modularity 0.10.
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(c) Optimal community.
Modularity 0.16.

Figure 2.1: A simple example of a greedy algorithm failing to find the most
optimal community. The modularity of the community in figure a is

greater than the modularity of the combined community in figure b, so the
node d and its edges (in blue) will not be an acceptable addition to the
community. However, the overall modularity of all the nodes in one

community (figure c) is greater than the initial community, and thus is the
most optimal goal. Thus, figure a represents a local maximum in the

overall community detection for this graph.
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2.1. Modularity

the probability given in equation 2.3, where C
f

is the cost after the update,
and C

i

is the cost before the update.

p =

(
1 C

f

 C
i

exp
⇣
�Cf�Ci

T

⌘
C
f

> C
i

(2.3)

The Guimerà and Amaral algorithm performed this community detec-
tion using two di↵erent forms of events as updates. Movement events in-
volve individual node movements from one community to another, and merg-
ing/splitting events involve the merging or splitting of a community. In gen-
eral, they used n

i

= fN2 movement events and n
c

= fN merging/splitting
events at each temperature point T . N is the number of nodes in the net-
work, and typically, f = 1. They cooled the system down by a factor of
0.005T

i

, where T
i

is the current temperature for a given step.
As can be suggested by the parameters chosen by Guimerà and Amaral,

simulated annealing requires a large amount of calculation at each step, and
a large number of steps. While it has a high probability of finding the “best”
modularity configuration, it is really only feasible on smaller networks, as the
complexity of this algorithm is still staggeringly high. As per the parameters
defined above, the complexity must be O(N) =

P
f

t=0(Tt

(modul(N) ⇤ (n
c

+
n
i

))), is still staggeringly high, where modul(n) is the cost of calculating the
modularity in a graph with n nodes, which must be at least O(n2).

To achieve the accuracy of simulated annealing without as high of a
complexity, Duch and Arenas proposed the use of Extremal Optimization
to detect communities [8]. In the extremal optimization algorithm, nodes
are initially partitioned into two random partitions, and then at each step
the node with the lowest fitness is moved from one partition to another,
until an optimal modularity state is reached. Fitness, in this case, refers
to a node’s individual contribution to modularity, given by the equation
�
i

= �a
r(i), which is the fraction of edges that have one or more nodes

incident to community r, one of which must be i. Then, all links between
each component are severed and one proceeds recursively with each resultant
component, until the global modularity can no longer be improved. This
di↵ers from a graph bipartitioning in that the algorithm does not finish at
necessarily the same time in each recursive component, and the number of
nodes and subcomponents in each partition is dependent on the evolution
process of the algorithm. Local fitness of each node is computed by taking
its local modularity (corresponding to value in the modularity summation),
and dividing it by its degree.

Extremal Optimization has a total complexity of O(n2 log n). However,

11



2.2. Other Community Detection Strategies

its e�ciency comes with an accuracy tradeo↵, in that the recursive bisec-
tioning of the algorithm can become error-prone in larger networks with a
large number of communities, because a single “incorrect” bisectioning has
the potential to throw o↵ the results completely. Additionally, by using
lowest-fitness as the selection criterion for which node to move, the algo-
rithm can get trapped in local optima, although this can be fixed by using
a probabilistic selection method [6].

2.2 Other Community Detection Strategies

There are several other community detection strategies that are not modularity-
dependent. This subsection will detail a couple of the more recent modularity-
free developments in community detection.

Ball et al. have developed an expanded community detection to detect
overlapping communities in networks, as community overlap is not uncom-
mon in real-world networks [3]. Their algorithm focuses on the development
of generative network models and using an expectation maximization algo-
rithm to solve the likelihood of those models. It is fast and performs well
with large networks and is competitive with other algorithms, however, the
number of communities K must be specified beforehand.

Another method involves incorporating multiple dimensions of data to
infer regulatory modules, with dimensions such as copy number variation
and DNA methylation alongside RNA expression and gene expression pro-
files [16]. With all these di↵erent types of data, one can apply a regression
method such as a variant of Partial Least Squares to infer network modules.
This work in particular introduces a new regression method called sparse
Multi-Block Partial Least Squares (sMBPLS).

Partial Least Squares (PLS) methods find the relations between two ma-
trices (an input matrix and a response matrix) by projecting both variables
to a new space and determining the linear regression of these variables.
Multi-Block PLS methods break data down into conceptually meaningful
blocks before performing the PLS regression, thus allowing for a greater in-
terpretation of the results than a standard PLS because it is then possible
to examine each block specifically and report information on the relation
of the specific block with the response matrix in the presence of the other
blocks. In Li et al.’s sMBPLS method, sparse constraints are imposed on
their multidimensional data to generate multidimensional modules to use in
an MBPLS algorithm [16].

Instead of analyzing whole blocks, the sMBPLS method further decom-
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2.3. Modelling Dynamic Networks

Figure 2.2: Example Multi-Dimensional Regulatory Module (MDRM).
Subsets of the three data sets (data blocks) on the left have similar profiles
to the gene expression profile over the same subset of samples. Thus, the
data from the selected samples and columns across the three data sets are

an MRDM. Figure from [16].

poses those data blocks into a smaller set of blocks called Multi-Dimensional
Regulatory Modules (MDRMs). MDRMs are defined as the profiles ex-
tracted from the input matrices along k samples (across some subset of
columns i) that have a strong association or show a similar coherent pattern
with the same k samples in the response matrix. An example of an MDRM
can be seen in figure 2.2.

Because of the diversity of the data used, this method allows for mod-
ules to be discovered that would otherwise be more di�cult to find while
restricted to one type of data. If one was specifically looking to function-
ally characterize these modules, this would be an appropriate method to
use. However, these modules are not necessarily indicative of network com-
munities, and vice versa. However, if would still be interesting to apply
this technique to analyze time-dependent matrices to generate interesting
dynamical network properties.

2.3 Modelling Dynamic Networks

A fascinating extension of the detection of communities in biological net-
works is their application to temporal data. In vivo, biological networks do
not stay static over time. Therefore, it is interesting to model the changes in
these networks over time, especially their community or modular structure.
Keeping track of these changes can lead to interesting results, including the
discovery of novel genes in cancer systems [24]. This subsection will detail
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2.3. Modelling Dynamic Networks

some of the methods in literature that deal with network modelling with
respect to dynamic systems.

Park and Bader’s method of modelling dynamic systems is to use a
hierarchical agglomerative clustering method to generate network clusters,
and a matching algorithm to match clusters across multiple time points
[21]. This involves the formation of stochastic block models for the network
at each time point, then merging these models together into a dynamic
block model. Although these block models are separate for each given time
point, the models are coupled in between time points by reweighing the
neighbouring likelihood scores between the generative models. This also has
the added benefit of noise reduction and smoothing between points.

The clusters are then linked together using an expectation-maximization
algorithm that extends the Jaccard correlation of shared neighbours to a
multi-partite matching based on a probabilistic model. They generated a
Markov random field based on the joint probabilities of assignment matrices
across multiple time points, and simplified the otherwise huge state space
by considering each cluster’s assignment matrix independently. Once the
groups were stabilized, the resulting structure was close enough to a tree
structure to perform a belief-propagation algorithm by reformulating the
resultant field to a factor graph.

Although their approach is very strong and more applicable to networks
of 2000 vertices (as opposed to other machine learning approaches, which
can only handle very small networks), it does not necessarily converge on a
solution. Additionally, the bipartite matching has a worst-case runtime of
O(K3), where K is the number of clusters. This can prove to be problem-
atic if there are networks with a large number of communities. However,
this matching would prove to be an interesting extension of the community
detection algorithms used currently.

Another method to track biological networks as they undergo temporal
changes is by use of dynamic bayesian networks (DBNs). Zhu et al. con-
structed a DBN combining multiple short time series into a long time series
and applying the Granger causality test to the model to infer causal rela-
tionships between individuals across time points [6]. However, this method
assumes no causal structure within a single time ”slice”, and only looks at
individuals as opposed to modules or communities.

One significant problem with inferring a temporal network in real-world
data is that in most solutions, the time points are treated as the only points
between which the network changes. Thorne and Stumpf presented a solu-
tion that generates a temporal network that models hidden states between
each time point [25]. They model these hidden states by using a non-
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2.3. Modelling Dynamic Networks

parametric extension of a Hidden Markov Model. This method works well
for a large number of networks, as it does not require the number of hidden
states to be specified ahead of time, and could be applied to time series
that have irregular time points. While their paper also does not consider
changes in community structure, it would be interesting to see its application
to networks.
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Chapter 3

Methods

3.1 Algorithms

The prototypical method presented in this thesis is a top-down approach
to evaluating weighted community structure. It makes use of the network
topology to only examine the heaviest-weighted edges and then incremen-
tally examines edges of lower and lower weight, until a threshold, t, is
reached. It takes a network of size n vertices and e edges with edge weights
w
ij

where i and j are the endpoints of an edge.
Algorithm 1, the Weighted Sparse Community Finder, encapsulates the

logic behind the prototype, which calls methods to build community seeds
before incrementally growing and merging them together. The incremen-
tal nature of the algorithm means that edges with weights greater than or
closest to the largest threshold t

l

will first be considered as seeds for new
communities, and then for candidates to join other communities. Then edges
with weights closer to the smallest threshold t

s

will be considered as seeds
and then candidates for growth, respectively.

The threshold of consideration will be decremented by some amount d at
each iteration, which is set to 0.05 for the purposes of algorithm evaluation.
The thresholds will always be a number 0  t  1. This threshold provides
an e↵ective stopping criterion for the algorithm – since it is important to
focus on edges of higher weights, the low-weight edges will not be considered
if they are below the threshold t. If the threshold is too high and the results
are not meaningful, the threshold can be relaxed and the algorithm can be
run again considering edges of even lower weight.

At each iteration, the methods BuildCommunities, GrowCommunities,
and MergeCommunities are called, respectively. The intended logic of each
method is given in algorithms 2, 3, and 4, and is discussed in the paragraphs
below. GrowCommunities is called a second time after MergeCommunities to
allow for an edge that has been rejected by the first iteration of GrowCommunities
to potentially join a newly-merged community. To illustrate the e↵ects of
each method, the example graph in Figure 3.1 will be modified after each
explanation.
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Figure 3.1: An example graph for the illustration of Weighted Sparse
Community Finder.
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3.1. Algorithms

Algorithm 1: Weighted Sparse Community Finder

Data: The graph, G(V,E),
decrement d, and
terminal (lowest) threshold T < 1.
Result: A set of communities, S
S  � ;
t � 1
while t > T do

e � E
t

/* edges with weights above threshold T */

S  � BuildCommunities(S, e)
S  � GrowCommunities(S, e)
S  � MergeCommunities(S)
S  � GrowCommunities(S, e)
decrement t by d

The BuildCommunities algorithm takes a set of edges E and tries to
form three-vertex community seeds using purely those edges. Each com-
munity “seed” is defined as a 3-clique (or a “triangle”) in the graph, or a
“stem” of two edges connected by a single common node. According to the
modularity calculation given in equation 2.2, each triangle will always have
a positive modularity. A stem is a viable community seed if and only if the
modularity of that stem is positive. The method traverses through each edge
and all edges adjacent to that edge to try to form communities. Duplicate
community seeds are handled during the MergeCommunities method.

The results of the BuildCommunities algorithm at a high threshold t is
shown in Figure 3.2. In subfigure a, the nodes the triangular community
(d, g, i) is highlighted in red. In subfigure b, three more “stem” communities
are shown in separate colours – they are present as stems because they do
not have an edge that forms a triangle between them. Additional “stem”
communities can be imagined using the same criteria – two high weighted
edges without a third high weighted edge forming a triangle between them.

This generation of mini-communities as “seeds” for larger communities
is especially important when handling sparse graphs, since the communi-
ties found may be very small, but still have some meaning. The current
methods described in Section 2 use non-incremental community generation
with very large modularity calculations, or do not have a stopping criterion
to determine what level of a hierarchical community structure defines the
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3.1. Algorithms

Algorithm 2: BuildCommunities
Data: Set of edges E, set of communities, S
Result: An updated set S containing new community seeds.
i � 0
for edge e 2 E do

(n1, n2) � e.nodes
for node n3 connected to n1 do

/* ignore if it is the same edge found */

if n2 == n3 then

next

/* See if there is at least one triangle connecting

n1, n2, and n3 */

else

connected  � false
for node n4 connected to n3 do

if n4 == n2 then

s
i

 � {n1, n2, n3}
S.add(s

i

)
i++
connected  � true

/* If there are no triangles found, see if stem

n1, n2, n3 has good modularity */

if connected  � false then

s
i

 � {n1, n2, n3}
if getModularity(s

i

) > 0 then

S.add(s
i

)
i++
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Figure 3.2: An example of BuildCommunities finding initial three-vertex
community seeds. Since the threshold t is high, no edges with scores less
than 0.9 (in this case) are considered. Thus, one of the potential initial

communities that is found by BuildCommunities in subfigure a is
highlighted in red. Another potential community set is highlighted in red,

blue, and violet in subfigure b.
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3.1. Algorithms

actual communities. Since this method uses incremental community gener-
ation and has a determined stopping criterion, it is well-suited to the sparse
di↵erential graphs as motivated in Section 1. It is important to note that
while it is designed for sparse communities, it will still find communities in
a less sparse graph as well.

The complexity of BuildCommunities isO(E⇤d⇤(d+getModularity(s))),
where E is the number of edges in the graph. d is the maximum degree
among vertices in the graph, which is expected to be low given these net-
works are sparse. getModularity(s) is the function that calculates the
modularity of a subset of vertices s, which an overall runtime of ⇥(2E

s

),
the sum of the degrees of the vertices in s. Since this is a value that can
be stored, this operation only needs to be completed once for every unique
subset s of S, as they are encountered.

The MergeCommunities method is designed to take each pair of commu-
nities and determine if the modularity of them as one community is greater
than the average of both community modularities. To do this, all of the ver-
tices and corresponding edges are added into a single community, including
edges that were never part of either community but connect the two com-
munities together. If this modularity is greater, then the merged community
replaces the two sub communities. An example of this is illustrated in Figure
3.3, where two triangular communities are merged to form a 4-clique with
one missing edge. Edges that have both vertices contained in the merged
community that would not otherwise be present in either individual com-
munity are also added to the merged community, as exemplified in Figure
3.4.

Algorithm 3: MergeCommunities
Data: S, the set of current communities, with size n
Result: S, set of communities, size  n
for x � 1...S.size do

for y  � x+ 1...S.size do

if getModularity(s
x

+ s
y

) > getModularity(s
x

) then
s
x

 � s
x

+ s
y

remove s
y

from S

The complexity of MergeCommunities is O(S2 ⇤ getModularity(s
i

)),
where S is the current number of communities and s

i

is the larger of the
two communities that are attempted to be merged. The complexity for
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Figure 3.3: An example of MergeCommunities taking two communities
and merging them together. The two communities in subfigure a have a
common edge between vertices g and i, represented as two edges for

clarity. MergeCommunities compares the combined modularity of both
communities versus the modularity keeping them separate. If the

di↵erence in overall modularity is positive, then the communities are
merged together, producing subfigure b.
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Figure 3.4: Another example of MergeCommunities taking two
communities and merging them together. The edge (g, i) is not present in
either community in subfigure a, but since both vertices it is adjacent to
are present in the community in subfigure b, it is added to the merged

community.
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3.1. Algorithms

getModularity(s
i

) is as above. While this method is initially näıve and
slow, there are several speedups that could be implemented in further itera-
tions. One such improvement would only consider merging two communities
together if there was a common edge between the two communities, or there
were several edges that connect the two communities together.

Between each Build and Merge step, the method GrowCommunities is
invoked. It takes a set of edges E and a set of communities S and tries to add
each edge to one or more communities from the set. If the edge has a node
that belongs to a community already, then the method will try to add that
edge to that given community. If both nodes belong to communities already,
then the edge is discarded. This can happen because if the nodes belong to
the same community, then that edge already belongs to that community. If
the nodes belong to disparate communities, then the edge has a low enough
weight to be not considered in the Build step for each of those communities’
seeds.

The remaining edges either have a single node with community mem-
bership, or neither nodes have community membership. Let us define e

ij

as
an edge such that i has community membership to a set of communities S

i

,
and j does not have any membership to any communities. Then for each
community in S

i

, the edge is added if the modularity of the community
when node j (and all corresponding edges connecting j to other members of
the community) is added is greater than the modularity of the community
without j, as shown in Figure 3.5.

If both i and j belong to no communities, then the algorithm will try
to add them both (and corresponding edges connecting them) into every
community in S, again only adding them if the modularity of the community
with the added nodes is greater than the modularity of the community
without them. This is exemplified in Figure 3.6. Because the modularity of
a community is highly dependent on having edges that connect its members,
the modularity change will only be positive if there are in fact edges that
exist between an endpoint of the edge to be added and a member of the
community.

The time complexity of GrowCommunities is O(E⇤C⇤getModularity(s))
where E is the number of the edges in the graph, C is the current number of
communities, and getModularity(s) is as defined as above, with s being the
largest possible community in C. This again is a slow, prototypical version
of this method that will náıvely try to add a node pair that is not already
connected to a community to every community in the current solution. An
important speedup in the next iteration of this method would be to only try
to add both nodes to a community if there is an edge already connecting
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3.1. Algorithms

Algorithm 4: GrowCommunities
Data: Set of edges E, set of communities, S
Result: A set of hopefully larger communities, S
foreach edge e in E do

(n1, n2) � e.nodes
/* If the edge has at least one node connected to a

community... */

if n1.communities != null OR n2.communities != null then
/* If BOTH nodes are connected to a community, just

skip */

if n1.communities != null AND n2.communities != null then
next
else

/* The communities are going to be either n1’s

communities or n2’s communities, depending on

which set isn’t null */

List communities � n1.communities.exists ?
n1.communities : n2.communities
/* And the node to add will be the other one. */

Node d � n1.communities.exists ? n2 : n1

foreach community c 2 communities do

if getModularity(c+ d) > getModularity(c) then

c � c+ d

/* Otherwise, neither node is connected to a community,

so let’s try to add the edge to all the communities.

*/

else

foreach community c 2 S do

if getModularity(c+ n1 + n2) > getModularity(c) then

c � c+ n1 + n2
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Figure 3.5: An example of GrowCommunities extending the community
{d, i, g} with a single edge. The edge (g, h) has a single node connected to

a community so GrowCommunities tries to add it to its incident
community, producing the community in subfigure b.
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Figure 3.6: Another example of GrowCommunities extending the
community {d, i, g} with a single edge. The edge (e, j) is completely
disconnected from any communities, so GrowCommunities tries to add
both of the nodes e and j and all relevant edges to the community,

producing the community in subfigure b.

27



3.2. Implementation

each of them to some member of the community.

3.2 Implementation

The program was implemented in C++ and compiled using the Apple LLVM
version 5.0. The adjacency matrices were represented as a vector of bit
vectors to minimize the space required by the program. In order to maximize
the e�ciency of these bit vectors, the dynamic bitset class from the Boost
C++ Library was used.

3.3 Data Sets

To initially prototype this program, test cases were developed of equal-
weight triangular disconnected graphs, equal-weight square disconnected
graphs, and equal-weight 4-clique disconnected graphs. These were gener-
ated in varying sizes of n (the number of nodes) to determine the scalability
of the program.

To analyze the algorithm’s e↵ectiveness on data sets closer to what may
be found in real applications of the program, a series of benchmarks were
utilized. The commonly-used benchmarks featured in Girvan and Newman
[11] o↵er a way to test the algorithm on a series of undirected, unweighted
graphs. They featured graphs that separated easily into four equally-sized
communities, containing edges with with no weight values assigned to them.

In addition to these benchmarks, weighted benchmarks (with correct
solutions) were proposed by Lancichinetti and Fortunato [15], o↵ering a
method to generate networks with a power law distribution of degrees and
and community sizes, similar to those found in nature. These networks
are the hardest to make community detection predictions o↵ of, due to the
large variance in degree distribution and community size. Lancichinetti and
Fortunato also made it possible to have weighted and directional edges in
their benchmark graphs, which allows for the examination of this algorithm
on networks with di↵erent weight distributions.
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Chapter 4

Preliminary Experimental
Results

4.1 A Test Case

To analyze the performance of this algorithm e↵ectively, first a simple ex-
ample was generated for the purposes of tracing the algorithm through the
community detection process. The example graph is the one featured in
Figure 3.1. From that graph, four communities are determined as a result
of WSCF, as shown in subfigure f in Figure 4.1, with each community’s edges
represented in a di↵erent colour. Figure 3.1 is duplicated in subfigure a in
Figure 4.1 for comparison.

The results feature two larger communities (in purple and blue) and two
smaller communities (in green and red). The smaller communities feature
a triangle-shaped community {d, g, i}, as well as a line segment community
{d, g, h}. Even though there is an edge (i, h), it is not included in any of
the communities and the two communities are not combined to a larger
community. This is because the edge (i, h) is of relatively low weight, and
the merged community {d, g, h, i} would have a lower modularity than each
of the separate communities. This is also why the community {g, h, i} does
not form or contribute to a community, even though there is a triangle
involving these nodes.

This decision process is exemplified in Figure 4.1, which shows the se-
quential progression of WSCF on the graph. Each individual sub-figure repre-
sents when the algorithm makes a change to the current set of communities,
except for the removal of duplicates that happens in MergeCommunities.
Subfigure a is the initial graph, a duplicate of Figure 3.1. Subfigure b shows
the communities found after the initial FindCommunities step, identify-
ing four unique 3-vertex communities. As per the implementation of the
program, the 3-vertex communities exist as either triangles or two-edge seg-
ments. To show multiple communities that e↵ectively contain the same edge,
multiple edges are drawn between those pairs of vertices. Although multi-
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Figure 4.1: Progression of WSCF on the example graph from Figure 3.1.
Each subfigure represents a change in the community set found by WSCF.
The communities are represented by coloured edges connecting nodes

together, each colour belonging to its own community. Additional edges
are drawn to represent membership of an edge to many communities.
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4.2. Scalability Analysis

ples of the same community are found, they are not shown, and they are
collapsed into unique communities during every MergeCommunities step.

The next time the community set is modified is shown in subfigure c,
with two new communities discovered, presented in cyan and orange. In
the subfigure d, the newly found communities are merged with the blue
one, creating one large community. Once the threshold drops to 0.7, a
new community in is found in subfigure e, in orange. This community is
merged with the community that is adjacent to it in the following Merge

step, forming subfigure f . Thus, the four communities that are shown in
that subfigure are the ones discovered by WSCF.

4.2 Scalability Analysis

To test the scalability of WSCF, a series of test graphs were generated, fea-
turing disjoint 3-clique, 4-clique, and 4 “square” subgraphs. The “square”
subgraphs consist of four vertices with a degree of two, thus joined by only
four edges, forming four-sided polygon if drawn on paper. An example of a
4-“square” subgraph would be a graph consisting of only the vertices e, d, j
and i from Figure 3.1 or Figure 4.1a. The 3-clique subgraph can be repre-
sented using vertices a, b and c, and the 4-clique subgraph can be represented
using vertices d, g, h and i if there was another edge connecting vertices d
and h. The number of vertices, n, was varied so that the time elapsed until
program completion could be measured. The number of edges in each graph
E is equal to n in the 3-clique and 4-“square” testcases, and equal to 1.5n
in the case of 4-clique graphs.

The program was timed using the C/C++ timer.h class, reporting the
seconds elapsed from the beginning of the program to the end. Due to
rounding errors, it is expected that the reported elapsed times are within
two seconds of the actual elapsed times. WSCF was tested on a 2013 Macbook
Pro with a 2.6 GHz Intel Core i5 processor and 8GB memory. It was tested
starting at n = 50, and subsequently larger intervals in increments of 50
until the testing machine ran out of application memory.

WSCF was successfully tested within a reasonable time on the 3-clique
graphs for sizes of n up to 600. This number is reasonable because of the
experimental design required to gather the data, but will need to be im-
proved for much larger graphs. A chart that compares the elapsed times of
each of the graph sets at the di↵erent levels of n is shown in Figure 4.2.

Communities were found in the 3-clique graphs as expected — one for
each 3-clique. However, in the 4-“square” graph, the communities found only
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4.2. Scalability Analysis

Figure 4.2: Scalability analysis results of the WSCF algorithm against
graphs consisting of disjoint subgraphs that are 3-cliques, 4-cliques, and

4-“squares”, respectively.
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consisted of two edge segments. The combined modularity of the “square”
communities were not larger than the individual modularities of the segment
communities. This results in a stark di↵erence in runtime between 3-clique
and 4-“square” test cases, due to the sheer volume of communities in the
4-“square” cases, since the runtime of the program is highly dependent on
the number of communities.

Although it is expected that that the 4-clique graphs would form 4-
member communities, the 4-clique graphs do not form communities — they
form 3-clique communities instead. This may be due to a number of reasons,
the truth of which can be explored in a future project. Because there are
an unexpected number of communities in the 4-clique test case, the elapsed
time to run the program is noticeably higher, as shown in Figure 4.2.

4.3 Comparison to Benchmarks

4.3.1 Unweighted Benchmarks

Because this program is designed for sparse graphs, the initial unweighted
benchmarks as proposed by Girvan and Newman [11] are not representative
of the target graphs. The original benchmark set was for 128 vertices, each
with a degree of 16, belonging to 4 communities by having a significant
portion of their edges existing only within their communities, and the rest
existing outside of their communities. To appropriate the same type of
model for sparse networks, a degree of six was imposed for each vertex,
as opposed to 16. Instead of expecting the algorithm to find four large
communities, the expected community size was set to 8, forming 16 distinct
communities. Because these benchmarks were all unweighted, a weight of
0.99 was assigned to each edge in the graph.

Even though the graph generating program was modified to produce
graphs that are sparse enough for the algorithm to handle, the same error
as the 4-clique community issue was encountered — the program found a
large amount of three-vertex communities without merging them together
to form the larger communities. Perhaps this is due to the lack of iteration
and direction that the program had - without high-weighted seeds (that have
a higher weight than other potential seeds) to spearhead the communities,
the program will just find random seeds everywhere and try to expand and
merge those to no avail.
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Figure 4.3: Benchmark graph generated from [15], with the communities
as determined by the benchmark program highlighted in di↵erent colours.

Visualized using GraphViz [10].

4.3.2 Weighted Benchmarks

To generate weighted benchmark graphs for analysis, the code from Lanci-
chinetti and Fortunato [15] was utilized, using a relatively small base-case
of 32 nodes and an average degree of 4. The smaller graph size was chosen
so that the community detection could be visually compared for “correct-
ness”, that is, the correct communities of vertices are found. A weighted
graph with its appropriate community determination is shown in Figure
4.3. The graph generation program grouped the vertices into four distinct
communities, shown in di↵erent colours in the figure.

To determine the communities using WSCF, the starting weight cut o↵
was set to 0.95. The cuto↵s were decremented in steps of 0.05 until the
weights considered reached 0.5, at which point the program terminated.
The communities found by WSCF, however, are vastly di↵erent from the
communities found by the benchmark generation program. As shown in
Figure 4.4, the communities detected are much smaller and more plentiful
than the communities from Figure 4.3. Most notably, a lot of communities
stayed at the size of n = 3, with a few small exceptions. One major issue
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Figure 4.4: Benchmark graph generated from [15], with the communities
as determined by WSCF highlighted in di↵erent colours. Visualized using

GraphViz [10].

with the communities detected in this figure is that one community consists
of several completely disjoint communities, which are highlighted by the
red edges in the Figure 4.4. The community highlighted by the orange
edges, however, is larger than three and appears as it if could possibly be
a community of interest. However, the large inclusive communities from
Figure 4.3 are not present.

It was assumed that the communities determined in Figure 4.3 consisted
of edges that had greater weight than the others, thus WSCF would find
similar communities due to its preference for highly-weighted edges. It was
found, however, that this is not the case. In fact, there are several high-
weight edges that are considered outside of communities, and low-weight
edges that are considered within communities, or communities consisting
of mostly low-weight edges at all. In Figure 4.5, edges with weights above
the seventy-fifth percentile are marked in red, edges with weights below the
fiftieth percentile are marked in blue. Edges that have weights below the
fiftieth percentile are two low to be considered originally for community
generation in WSCF. It is apparent that the aforementioned benchmark does
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Figure 4.5: Benchmark graph generated from [15], with the edge weights
marked by coloration. If the edge exists above the seventy-fifth percentile,
it is coloured red. If the edge weight is below the fiftieth percentile, that is,

too low for WSCF to consider when determining community seeds, it is
marked blue. Important to note is that there are a large number of blue
edges within the communities shown in Figure 4.3, as well as a few red

inter-commiunity edges. Visualized using GraphViz [10].

not construct communities with edge weight as a consideration as much as
node degree and interconnectivity, which is not the goal of WSCF.

4.4 Findings

While WSCF produced results that are not similar to the intended communi-
ties imposed by the benchmarks, it can be noted that the benchmark graphs
had communities that were outside of the intents and purposes of the al-
gorithm, thus making them impossible to detect using WSCF. The bench-
mark graph generating software tends to prefer communities that have a lot
of interconnectivity regardless of the weight of the edges that connect the
communities, which is a vital component of WSCF. Thus, the di↵ering results
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actually o↵er a unique perspective the weighted graphs, making sure that
edges with large weights are involved in a community if at all possible.

One of the challenges for the future development of this algorithm will
be to correct the MergeCommunity metrics towards more interconnectivity,
especially between high-weighted edges. Once the algorithm becomes more
preferential to clique structures, there is a good chance that it will be a
powerful community detector, especially when the graph is sparse. Some
other future considerations include better structures for memory manage-
ment to allow for larger data sets to be included, as well as the investigation
mentioned at the end of section 4.2.
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Chapter 5

Conclusion

A significant problem in systems biology remains the expression and analysis
of human biological networks over time, and the analysis of the di↵erences
between these networks as they change at various time points. A popular
approach to examining network structures is the detection of network com-
munities. In this paper, a large amount of the current community detection
practices were presented and discussed, and prototype for a new method,
WSCF, was presented. A preliminary analysis of WSCF was given, including
scalability analysis as well as its applications on benchmark graphs as seen
in literature. While its performance on the literature benchmark graphs
was unexpected, this is due primarily to the actual benchmark community
generation algorithms that seem to ignore edge weights when generating the
community structure.

The current available algorithms mostly consist of modularity-based
methods, which employ a wide variety of algorithms that maximize the
modularity metric to determine community structure. Simpler algorithms,
like greedy algorithms, are not going to be ideal to solve such a nuanced
problem. Simulated annealing and extremal optimization both o↵er their
own solutions, at high complexity and accuracy tradeo↵s. Other methods
that do not involve modularity are reliant on numerous types of data — since
the problem of finding community structure in sparse di↵erential networks
can only be assumed to have a couple of types of data (correlation change
between two genes and the expression levels of the given gene). However, ap-
plying multiple dimensions to sparse di↵erential community detection might
elucidate interesting results.

Because there is no single perfect algorithm for the detection of com-
munity structure in this specific network type, a prototypic algorithm was
developed and tested. The algorithm was heavily weighted towards involving
edges with larger weights in the community structures because this would
generate communities of genes whose mutual expression levels have changed
significantly over time. A suggested area that this may be the case is in pa-
tient data, before and after drug treatment, or during disease progression.
In particular, this type of analysis has the potential to pinpoint areas in
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which mutual expression levels have been destabilized.
The algorithm itself is incremental — starting with high-weight commu-

nity “seeds” and expanding the community, vertex by vertex and merging
communities together until a larger community structure (with a high mod-
ularity value) is discovered. Due to this incremental method, the priority
for community detection is placed on the high-weight edges, with inter-
connectivity as a secondary metric. That is, the higher-weight edges will
be preferentially added to a community structure than a lower-weight edge
whose adjacent vertices have a lot of connection in the community struc-
ture. This is to ensure that the communities found primarily consist of
the aforementioned disparate changes in mutual expression correlations and
thus find relevant results. Additionally, the small community seed gener-
ation and expansion ensures that this algorithm will find communities in
sparse graphs.

While this algorithm is able to perform on data sets in the sizes of
hundreds, some interesting challenges for the future are to employ memory
management and work distribution over a cluster of processors to achieve
more e�cient detection. An improvement of the modularity heuristic to
allow for more flexibility of preferences between higher-weighted edges and
higher connectivity edges would be beneficial to further tailor the results to
the needs of specific experimental design. Algorithms based on this heuristic
have the potential to make an impact on systems biological research in the
future.
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