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Abstract 

In recent years, three-dimensional (3D) printers have revolutionized the process of 

prototyping and manufacturing inanimate objects. Extending this technology to tissue 

engineering as a means of creating customized in vitro tissue constructs that mimic in 

vivo conditions is a relatively new idea that has the potential to transform the way 

biological research is conducted. Biological tissues are inherently complex 3D 

heterogeneous structures. Many of these tissues are made up of building blocks that 

vary in composition and morphology. These building blocks are organized into different 

levels and locations which allow them to interact with one another in unique ways such 

that the overall tissue structure exhibits a specific biological function. Designing and 

then printing 3D biological structures composed of multiple cell-encapsulated building 

blocks, each programmed by composition and architecture and printed using different 

properties, is a challenge in tissue engineering.  

 This thesis presents the development of a 3D bioprinting software toolchain for 

the design and printing of software-programmable tissues. The 3D bioprinting software 

toolchain is built around a novel bottom-up tissue engineering design method. The 

Tissue Building Block Design (TBBD) method seeks to enable the assembling of 

complex biological structures from a set of simpler building blocks, each coded with 

unique material compositions, printing properties, and architectures. Algorithms were 

developed to generate the layer-by-layer heterogeneous process plans required to 3D 
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print tissue models designed using the TBBD method. We evaluate the performance of 

our implementation of the TBBD method by analyzing execution times and performing a 

comparison against a more standard design approach. We then analyze and discuss 

the effect of design choices and printing parameters on the overall printing process and 

the challenges associated with our microfluidics-based method of bioprinting. We also 

demonstrate the functionality and asses the capabilities of the 3D bioprinting software 

toolchain by printing several different heterogeneous hydrogel structures using our 3D 

bioprinter.  
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Chapter 1: Introduction 

3D printing, also known as additive manufacturing or rapid prototyping, refers to the 

printing of physical 3D structures from computer-aided design (CAD) models in a layer-

by-layer approach [1], [2], [3]. Although the first successful demonstration of additive 

manufacturing occurred over three decades ago, it is only in recent years that 3D 

printing started revolutionizing the process of manufacturing mechanical parts [4], [5]. 

3D printing has now grown into a more than $2 billion industry and is predicted to top 

$10.8 billion by 2021 [5]. Improvements in computer technology, reduction in hardware 

costs, expiration of key patents, open-sourcing and collaborative development of 

relevant software tools and algorithms, and the emergence of new printing materials 

significantly contributed to the tremendous rate at which 3D printing technology has 

progressed [6], [7], [8], [9], [10]. 3D printing is now being used to fabricate fully 

functional parts suitable for end use and is no longer only reserved for prototyping 

purposes [11]. 3D printing technology has the potential to drastically reduce product 

development time and cost-effectively create customized and geometrically complex 

structures on-demand across a wide variety of different applications [1]. This has 

captivated the imagination of engineers, scientists, and economists to the point where 

many have asserted 3D printing technology as the “third industrial revolution” [12].   

The creation of biological structures from digital models is a quickly emerging 

application of 3D printing that could potentially have transformative implications on the 
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field of tissue engineering. This particular application is now commonly being referred to 

as 3D bioprinting [13]. Besides the ultimate goal of printing organs for repair or 

replacement, the use of 3D bioprinting to create functional tissue constructs is a shorter-

term application that can provide biologists with a novel tool for examining the pathology 

of specific diseases and facilitating the discovery of new therapeutics [13].  

Today it takes an average of $1-4 billion and 12-14 years to develop a drug [14], 

[15]. Drugs can fail for a variety of reasons, but in many cases it is due to an incorrect 

efficacy or toxicity assessment made during pre-clinical analysis. Current pre-clinical 

testing platforms can take a number of different forms; however, the most ubiquitous are 

2D cell cultures and animal models, neither of which fully models the human physiology 

[16], [17], [18]. 2D cultures can differ significantly from the complex 3D intercellular 

interactions occurring in organs [19]. Animal models provide a powerful system level 

perspective but are often poor predictors of the human drug response [20]. Recent 

studies have demonstrated that 3D cell co-cultures better represent human in 

vivo conditions compared to the standard 2D cultures currently being used in the drug 

discovery process [16], [17], [18]. Moreover, 3D cell co-cultures have the potential to 

replace animal models. Using 3D co-cultures in the drug screening process could 

contribute to significant improvements in the predictive accuracy of the pre-clinical drug 

discovery process by providing the pharmaceutical industry with 3D tissue models that 

better mimic in vivo conditions. These enhancements could drive a fundamental shift in 

the pharmaceutical industry, enabling the development of completely new therapeutics, 



3 

 

 

and enabling pharma to test drugs they may have shelved in the past due to a lack of 

appropriate models.  

This thesis is comprised of four chapters: 

 Chapter 1: An introduction to 3D printing, its application to creating biological 

structures, the general 3D printing software workflow, and a review of the most 

related literature.  

 Chapter 2: An overview of our developed 3D bioprinting system. Then detailed 

explanations of the design and implementation of the methods and core 

algorithms used in the 3D bioprinting software toolchain are presented.  

 Chapter 3: An analysis and discussion of observed results from test simulations 

and 3D printing experiments that were conducted to evaluate the performance, 

test and verify the functionality of our developed algorithms, and assess the 

effect of design choices and printing parameters on the overall printing process. 

Results from 3D printing hydrogel structures are also presented and discussed in 

this chapter.  

 Chapter 4: Concluding remarks and suggestions on future directions of this 

project. 

1.1 Motivation  

The ability to rapidly design and then print 3D heterogeneous human tissues on-

demand could enable advancements in the fields of tissue engineering, drug discovery, 
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and regenerative medicine [13]. Biological tissues are inherently complex 

heterogeneous structures made up of different regions. Each region may be composed 

of several key components such as cells, extracellular matrices, and intricate vascular 

networks that are arranged in specific 3D geometries [13]. For example, the anatomy of 

an artery (shown in Figure 1) consists of a central lumen and a set of concentric walls 

with different architectures, cell compositions, and morphologies. In order to engineer a 

physiologically relevant tissue that mimics native behavior, different regions of a 

structure may need to be printed using different properties. Control over composition, 

structure, and parameters such as patterning and porosity is essential as these 

properties have been shown to affect biological response [13], [21], [22].   

   

Figure 1: (a) 3D CAD model of an artery (b) Cross-Section of artery (source: Wikimedia 

Commons) 

Designing and then printing cell-laden structures with complex geometries, 

multiple materials, heterogeneous toolpath planning and printing properties in an 

automated way presents a challenge in tissue engineering. Providing new design 
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methods and tools that enable the creation of 3D tissue models as well as a platform for 

sharing the software-described tissue models is expected to aid biologists and tissue 

engineers in advancing the field of in vitro tissue model development.  

1.2 Objectives 

The primary goals of this work are to develop an automated process and user-friendly 

software toolchain for designing and 3D printing heterogeneous tissue structures as well 

as a platform for describing and sharing tissue models. Achieving the objectives of this 

work will first require an in-depth understanding of standard 3D printing principles and a 

study of the most common file formats and open source software tools currently being 

used by the 3D printing community. Then a method will be developed for designing 3D 

biological structures, taking into account the inherent heterogeneity and complexity of 

native tissues. After that, algorithms will be designed and implemented to code tissues 

in 3D with programmable geometrical and material properties. Then the performance of 

the developed algorithms will be evaluated by analyzing execution times.  Software will 

then be developed to facilitate control and coordination of printhead function and stage 

motion. A language for describing and sharing tissue models will be developed.  The 

effect of design choices and printing properties on the overall printing process will be 

analyzed and discussed. To verify the functionality and demonstrate the capabilities of 

the developed software toolchain, several test structures will be designed and then 3D 

printed.  
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1.3 3D Printing 

The basic idea behind 3D printing is that a CAD object is translated into a physical 

structure by consecutively stacking a set of 2D layers until the entire structure is 

realized. Each deposited 2D layer represents a cross-sectional slice of the 3D structure 

and has an associated finite layer thickness. The 3D printing process thus yields 

structures that are approximations of CAD models where a layer is the basic building 

unit [1]. Reducing the layer thickness improves the quality of the resulting 3D structure 

at the cost of increasing the time required to build the entire structure [1]. Within each 

layer, various printing control parameters are manipulated in order to vary the stability, 

porosity, and composition of the printed structure to suit the specific application 

requirements.  

Of the many different 3D printing deposition methods, currently one of the most 

common processes is an extrusion-based technology known as Fused Filament 

Fabrication (FFF) [1]. FFF was developed and commercialized by Stratasys, Ltd. more 

than two decades ago [23]. The way FFF works is that a solid thermoplastic filament is 

heated into a liquid polymer that is extruded through a nozzle and patterned according 

to a computer-controlled motion sequence [23].  

In contrast to 3D printers, which use an additive manufacturing process, 

subtractive manufacturing machines such as Computer Numerical Controlled (CNC) 

machines start with a solid block of material and use cutting tools to sculpt the desired 

object by removing the excess [24]. Because of this fundamental difference, 3D printing 
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poses several benefits over subtractive manufacturing processes. Some examples of 

these benefits include a reduction in material consumption, increased geometrical 

complexity doesn’t necessarily complicate the fabrication process, and greater 

simplification in programming and software preparation of build instructions [1], [25]. A 

diagram depicting the difference in methodology between additive manufacturing and 

subtractive manufacturing is shown in Figure 2.  

 

Figure 2: Additive Manufacturing versus subtractive manufacturing 

With the rapid decrease in the cost of 3D printers in recent years, a thriving 

online community of 3D printing enthusiasts has emerged. Through this open 

community, a general 3D printing toolchain has been adopted and users actively 

participate in the collaborative development of different computer-aided design (CAD) 

and computer-aided manufacturing (CAM) software tools, such as OpenSCAD, 
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ReplicatorG, Slic3r, and Printrun [3]. Initiatives such as the RepRap and Fab@Home 

projects provide complete hardware specifications for users to construct fully working 

personal 3D printers [9], [26]. Websites such as Thingiverse serve as platforms for 

hosting and sharing 3D printing design files [27].  

The generally accepted 3D printing software workflow for transforming a 3D 

model in the virtual world to its real world equivalent consists of three steps: modeling, 

slicing, and then printer control to print the actual structure [1], [3]. While the specific 

implementation may vary slightly and extra elements such as initialization procedures 

and post-processing functions may be incorporated for different printing applications, 

the software workflow and the associated file formats shown in Figure 3 are common 

across almost all 3D printers. Modeling involves fully specifying the surface geometry of 

the desired 3D structure using CAD software such as SolidWorks. The surface 

geometry is most commonly described and exported as a StereoLithography (STL) file. 

Slicing involves the use of computer-aided manufacturing (CAM) tools to translate a 3D 

CAD model into machine instructions understood by the particular 3D printer used in the 

printing process. The generated slicing data is commonly described using G-Code [3]. 

Printer control is the process whereby machine-specific commands are communicated 

to the 3D printer in order to create the entire structure.  
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Figure 3: Software tools and file formats used in the general 3D printing software 

toolchain 

 

The following sections will describe the details behind the different software 

elements and file formats used in the general 3D printing process. The first section 

explains the process of designing a computer model of a desired physical structure 

using CAD software and provides a background on the industry-standard tessellation 

file format. The second section describes the process of generating toolpaths required 

to realize a desired physical structure using CAM software and provides an overview of 

one the most commonly used numerical control languages. 
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1.3.1 3D Model Design and Tessellation  

Product design is the first step in any systematic manufacturing process and involves 

conceptualizing an idea and transforming it into a fully defined visualization [28]. This 

also applies to the 3D printing process, which usually starts with designing a 3D 

computer model of a physical structure. Models can be designed by a user through the 

use of 3D CAD modeling software, obtained or modified from online sharing 

repositories, or reverse-engineered using application specific technologies such as 3D 

scanning or medical imaging. The output of this step is a 3D model that is most 

commonly described and represented using the STL file format [1], [3].  

 Created by 3D Systems Inc. in 1987, the STL file format has since become the 

industry standard and is currently supported by almost all 3D CAD software programs 

[29], [30], [31]. STL is a tessellated representation of a physical structure whereby the 

surface geometry of a 3D model is approximated by a list of triangular facets without 

attributes such as material information and CAM specifications [29], [30], [31]. 

Furthermore, no measurement units are assigned in the STL file, so software programs 

using STL files usually allow users to specify the desired units [30]. Each of the 

triangular facets is described by a unit normal and three vertices as shown in Figure 4 

[29], [30], [31]. The unit normal and each of the three vertices are defined by X, Y, and Z 

coordinates. 
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Figure 4: STL file structure 

 

STL files come in two different storage formats: ASCII and binary. Both formats 

use a “.STL” extension [29]. The ASCII format is human-readable and is mostly 

reserved for debugging and instructional purposes while the binary format is more 

commonly used due to its compact file size.  An example of an ASCII STL file exported 
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using SolidWorks that describes a tetrahedron is shown in Figure 5. Although both the 

ASCII and binary versions approximate the tetrahedron using 4 triangular facets, the file 

sizes are 722 bytes and 284 bytes, respectively. 

 

 
 

Figure 5: ASCII STL File describing a tetrahedron 
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1.3.2 3D Model Slicing and Toolpath Generation  

Following the completion of the necessary modeling and tessellating tasks using 3D 

CAD software and exporting the corresponding STL file, the next step in the 3D printing 

workflow involves CAM process planning. This includes generating the necessary 

printer instructions and sending these instructions to the 3D printer.  

Since 3D printers build up physical objects through the successive deposition of 

material in a layer-wise approach, tessellated objects described in STL files must first 

be sectioned into a set of geometrically and dimensionally correct 2D horizontal layers 

(slices) with associated user-defined layer thicknesses. This process is commonly 

referred to as slicing within the 3D printing community.  

The slicing process is achieved by first intersecting the 3D model with a set of 

imaginary slicing planes whose common normal is in the vertical build direction (as 

shown in Figure 6). From the intersection points that are formed between a given 

imaginary slicing plane and the 3D surface representation, a contour (perimeter) is 

drawn out for each slice. After the perimeters are defined for each slice, toolpaths that 

the printhead needs to follow in order to fill the space enclosed by each slice’s perimeter 

with raw material according to a specific pattern are generated. The output of the slicing 

process is printing instructions.  
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Figure 6: Intersection of slicing plane and 3D model 

 

The entire slicing process, also sometimes referred to as toolpath generation, 

can be accomplished through the use of slicer software. With the rise of 3D printing, 

several different slicer applications have been collaboratively developed, optimized, and 

are currently available online as open-source applications. Some examples of the more 
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common slicer programs include Slic3r, Skeinforge, Repsnapper, and Cura. Slicer 

applications typically accept an STL file as an input and allow the user to define several 

different CAM specifications such as printhead speed, layer thickness, and fill density 

and patterns in order to generate the given set of printing instructions. Some slicer 

applications employ additional algorithms to add extra fill, perimeters, and layers when 

needed in order to ensure structural stability and improve the quality of the printed 

object. Given a specific STL input file, the output of the slicer software is a file 

containing a set of printing instructions described using numerical control (NC) code.  

An NC program is essentially a structured sequence of code blocks specifying the exact 

motion profiles and supplementary operations to be executed by the 3D printer in order 

to create a physical structure [32].  

G-Code is the most widely used NC Programming language, used extensively 

over the past few decades for CNC part programming, and more recently for desktop 

3D printing toolpath generation [3]. For this reason, many open source slicer 

applications are sometimes also referred to as G-Code generators.   Although a specific 

version of G-Code was standardized in the 1980s with ISO 6983 [33], there currently 

exist various different implementations independently developed by motion controller 

manufactures [34], [35]. Moreover, some controllers don’t understand G-Code. This 

variability in motion controllers makes it difficult for a single G-Code program to drive 

different motion controllers. Furthermore, many additive manufacturing machines use 

several unique functions that make it difficult to standardize a specific NC language. 

Due to the lack of a unified control language understood by all controllers, in many 
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cases where G-Code generators are used for slicing, G-Code post-processing or 

interpretation is a necessary step in order to ensure the code is correctly understood by 

the machine [34], [35].  

The G-Code programming language is built upon sequential lines of code called 

blocks [36]. Each G-Code block is comprised of a series of words [36]. Each word is 

comprised of a letter followed by a numerical value [36]. Words are used to denote 

specific machine instructions or arguments. The complete list of allowable letters and 

numerical precision is determined by the controller manufacturer.  A G-Code program is 

a file that consists of a list of blocks ordered in a structured way to describe the exact 

motion and auxiliary functions that a machine must perform [36]. An example of a 

G-Code program describing the motion toolpaths required to 3D print a 10 mm cube 

with no top or bottom is shown in Table 1. The G-Code program consists of 50 slices 

(layer thickness of 0.2 mm) in the XY-plane and the corresponding new slice 

movements in the Z-axis. The toolpath of the first slice is shown in Figure 7.  
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Table 1: G-Code program describing the toolpath of a cube with no top or bottom  

3D Model Sliced 

 

 
G-Code Program 

# G-Code Block Description  

1 G28 Home all axes  

2 G90  Use absolute coordinates  

3 G21 Set unit to millimeters  

4 G1 Z0.200 F1800.000 Move to next layer (0) 

5 G1 X5.050 Y14.950 Move to first perimeter point 

6 G1 X5.050 Y5.050 Perimeter point 

7 G1 X14.950 Y5.050 Perimeter point 

8 G1 X14.950 Y14.950 Perimeter point 

9 G1 X5.050 Y14.950 Perimeter point 

10 G1 Z0.400 Move to next layer (1) 

11 G1 X5.050 Y5.050 Perimeter point 

12 G1 X14.950 Y5.050 Perimeter point 

13 G1 X14.950 Y14.950 Perimeter point 

14 G1 X5.050 Y14.950 Perimeter point 

. 

. 

. 

. 

. 

. 

. 

. 

. 

250 G1 Z10.000 Move to next layer (49) 

251 G1 X5.050 Y5.050 Perimeter point 

252 G1 X14.950 Y5.050 Perimeter point 

253 G1 X14.950 Y14.950 Perimeter point 

254 G1 X5.050 Y14.950 Perimeter point 
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Figure 7: Toolpath of first layer of sliced cube with no top or bottom 

In the example G-Code program shown in Table 1, the first few commands (lines 

1-3) are preparatory G-Code instructions generated for a particular 3D printer hardware 

configuration. These preparatory instructions are included to perform functions such as 

initializing all axes and configuring the appropriate units. The remaining lines of code 

(lines 4-254) are all G1 commands. G1 commands are the most commonly used 

commands generated by open source slicer programs. The G1 command denotes a 

straight line movement from the current point to the specified point at a given speed. For 

example, on line 4 in Table 1, the G1 command instructs the printer to move in a 

straight line from the current position to the specified Z coordinate (0.200 mm) at the 

programmed speed (1800 mm/minute) in order to start printing a new layer of material.  

On line 5, the G1 command instructs the printer to move in a straight line from the 

current position to the X and Y coordinates (5.050 mm, 14.950 mm) which corresponds 

to the first perimeter point.  
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After successfully designing the model of the desired physical structure using 3D 

CAD software, exporting the resulting STL tessellation file, slicing the model and 

generating the corresponding G-Code toolpath file, the last step in the 3D printing 

software workflow involves sending the G-Code file to the 3D printer via some 

communication link such as USB or Ethernet. This communication task is handled by 

the 3D printer’s client (printer control) software. The printer control software sends the 

sequence of instructions to the firmware installed on the 3D printer’s microcontroller to 

execute a particular printing process. The 3D printer control software usually provides a 

graphical user interface (GUI) with printing-related functions such as initialization, direct 

motion control, and printing start/stop. The printer firmware interprets the received 

instructions and prints the desired structure.  

1.4 Related Work  

There are currently two main methods commonly used in tissue engineering [37]. The 

first method is a top “top-down” approach which involves seeding cells onto a 

biocompatible or biodegradable structure called a scaffold [37]. The cell-seeded scaffold 

structure is then incubated and cultured until the cells grow and start to mimic real 

human tissue [37]. The second method is a “bottom-up” approach which involves using 

simple cell-laden building blocks to build up more complex tissue pre-cursors [37]. 

These tissue pre-cursors must then be cultured to allow for the cells to differentiate and 

eventually exhibit a physiologically-relevant function. Bottom-up tissue engineering 

methods could produce tissues that better represent in vivo conditions, especially for 
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biological structures that have repetitive units such as the liver [38]. Fiber-based printing 

is one example of a bottom-up tissue engineering approach whereby cell-laden fibers 

are patterned into structures [38]. This approach to tissue engineering is analogous to 

the popular FFF methods used in many commercial 3D printing systems such as the 

MakerBot Replicator Desktop 3D Printer, RepRap, and others.   

Most bioprinting systems rely on two types of printing technologies: inkjet printing 

[39] and extrusion printing [40]. Inkjet-based bioprinting systems allow for high-

resolution and micro-scale printing [41], [42]. Some problems related to inkjet-based 

bioprinting include high mechanical shear of ejected cells, clogging at the orifice, limited 

to printing materials with low viscosities, sedimentation of cells in inkjet cartridge,  and 

lengthy build times required to print macro-scale structures [41], [42].  While extrusion-

based bioprinting systems enable the printing of large structures, they are typically 

limited to printing macro-scale structures and materials with sufficiently high viscosities 

[41], [42]. Furthermore, most extrusion-based systems rely on a separate nozzle for 

each material.  

 The bioprinting system developed in this work uses a microfluidic printhead to 

deposit a hydrogel fiber that is chemically cross-linked on-chip via coaxial flow focusing. 

Using this approach, material is loaded into the printer as a liquid, but dispensed as a 

solid fiber, allowing for various on-chip programmatic microfluidic operations prior to 

fiber formation. Generating cell-laden hydrogel fibers using this approach, commonly 

referred to as microfluidic spinning, has been reported by several others [43], [44], [45]. 

Extending this concept to 3D printing for the fabrication of fiber-based biological 
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structures has also been demonstrated before [46], but with very limited automation and 

without the ability to design complex heterogeneous structures based on user-defined 

3D CAD models. The work described in [46] relies on manually programming a set of 

motion instructions, without the use of user-defined 3D CAD models, to print simple 

patterns. Moreover, while the work in [46] demonstrates the use of multiple materials, 

material changeovers during the printing process are handled manually and are not 

automatically triggered based on pre-defined CAD specifications and material 

information.  

 Traditionally, 3D printing systems were used to create objects that are 

homogenous in terms of material composition and CAM specifications [1], [5], [47]. This 

explains why STL – which is the most common file format compatible with almost every 

3D printing system – only describes the surface geometry of a structure, and does not 

include any material information or CAM specifications [29], [30], [31]. STLs have been 

used in many studies focused on printing homogenous biological structures [48], [49]. 

Open source slicers such as RepRap and Slic3r have been used to generate the 

toolpaths from an input STL file [50], [51] . In recent years, 3D printers capable of 

synthesizing multiple material objects have emerged due efforts from industry, 

academia, and a thriving community of 3D printing enthusiasts [52].  

 For applications that require the use of multiple materials such as heterogeneous 

bioprinting, others have developed software that takes multiple STLs as inputs, then 

assigns material information to each STL, and then compiles the set of STLs into a 

multi-material model [1], [53], [54]. The multi-material model defined in CAD is then fed 
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into CAM software in order to generate the set of printing instructions. Using this 

approach, the same set of CAM specifications is enforced upon the entire structure. 

This greatly limits the control over print settings and overall functionality of the object. 

Others have proposed revised STL file formats that include additional information 

besides just geometry. One example of this is the Additive Manufacturing File Format 

(AMF) [55]. In addition to specifying an object’s geometry, AMF supports composition 

and color descriptions [55]. However, most 3D CAD modeling programs, such as 

SolidWorks, are not compatible with AMF. Additionally, using AMF poses the same 

limitations as the approach of assigning material information to a set of STLs; namely, 

the same properties are imposed upon the entire model during the CAM step. Other 

bioprinting systems rely on manually programming instructions line-by-line as well as 

heavily relying on human intervention to facilitate material changeovers during a print 

job [38]. There remains a need to develop standard 3D printing design approaches that 

allow users to easily assign materials and properties to different regions of a 3D model, 

generate the printing process plans, and then print these heterogeneous structures in 

an automated way [47].  

 Though high-end commercial 3D printers, such as those developed by Stratasys  

and 3D Systems, are starting to support multi-material printing, these systems often rely 

on proprietary file formats that are tailored to specific printer hardware configurations 

[47]. Most of these printing systems use inkjet technology and in-house rasterization 

algorithms to simultaneously deposit multi-material liquid photopolymers that are cured 

using ultraviolet light. Although these printers are capable of creating objects with high 
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resolution, building large structures using this approach can be extremely time 

consuming.  

 Filament-based multi-material 3D printers, such as those developed my 

MakerBot and the multi-nozzle bioprinter described in [54] use a dedicated extruder for 

each material. This type of system configuration usually leads to disruptions, 

discontinuities, and time delays during the printing process as a result of printhead 

changeovers [47]. Reducing disruptions caused by material changeovers is still an 

ongoing challenge [47].  

While process planning for single-material 3D printing has been extensively 

researched over the past two decades, research around processing planning for multi-

material systems is still in its infancy [56]. To avoid redundant tool changeovers in multi-

nozzle printers, algorithms that organize toolpaths of the same material type at the 

same level into groups have been investigated [57].  Our software toolchain supports 

the printing of multi-material structures using a single nozzle printhead.  We developed 

algorithms to support the programmatic switching of materials on-the-the-fly without 

delays associated with printhead changeovers, allowing for the continuous and 

synchronized interweaving of programmable multiple material fibers both within and 

across layers.  

 Commercial bioprinting software developed by Organovo is described in [58]. 

The software is capable of fabricating structures composed of various hydrogels and 

cell types. The software operates in two modes: “Click ‘N Print” and “Script ‘N Print” 

[41], [58]. In the “Click ‘N Print” mode, a blank cross-section of stacked cylinders is 
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displayed on a GUI and users can design simple structures by assigning a material type 

to each of the cylinders [41], [58].  Basing the design process around cylindrical building 

blocks rather than user-specified 3D CAD models greatly limits patterning capabilities 

and control over the structure’s geometry and composition. The “Script ‘N Print” mode is 

used to design more complex structures, but requires users to manually program 

movements of the positioning stage and multiple printheads [41], [58]. This process can 

be extremely time consuming, error-prone, and requires extensive knowledge and 

experience about motion control programming.  

 To overcome the lack of a universal G-Code specification, we developed a G-

Code interpreter using Unix-based compiler utilities. Interpreting G-Code using similar 

compiler utilities has been demonstrated for CNC applications [59], but not for 3D 

printing applications. The G-Code interpreter is used to translate the G-Code generated 

by the slicer program to machine code understood by the motion controller used in our 

bioprinting system (Galil DMC-2140). The use of compiler utilities allows for 

interoperability across different bioprinting systems driven by different motion 

controllers. While Galil Motion Control, Inc. (Galil) previously developed proprietary 

software that translates G-Code to Galil’s specific machine code (DMC), that application 

is no longer publicly available and only supports a form of G-Code commonly used in 

CNC applications and is not directly compatible with 3D printing slicer software. Galil 

also developed a proprietary CAD-to-DMC program that translates DXF files into DMC 

commands; however, this software is limited to 2D CAD drawings [60].  
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 In this work, we focus on developing a novel 3D bioprinting software toolchain 

that is compatible with industry standard file formats and CAD/CAM tools for the 

fabrication of 3D printed biological structures with heterogeneous properties based on 

user-defined 3D models. We present a design method that involves assembling 

complex structures from simpler building blocks; each building block could be 

programmed and implemented using different properties such as fiber diameter, 

deposition/infill patterning, porosity, layer thickness, and composition. Using our 

approach, a set of STL building blocks are sliced independently, according to a unique 

set of CAM specifications, to generate a set of G-Code files. Then each G-Code file is 

assigned a material type, 3D coordinates, and other unique properties compatible with 

multifunctional printhead processes. The set of G-Code files is then merged into a 

single file in order to generate the heterogeneous layer-by-layer process planning 

instructions. In this way, the process of assigning material information, print settings, 

and other unique properties is performed during the CAM step. This enables us to 

decouple our unique ability to design and print building blocks under different conditions 

from standard approaches used in 3D CAD modeling, allowing us to leverage on 

industry standards file formats and build on open-source tools. We also focus on 

establishing full automation and coordination between multifunctional printhead 

processes and stage motion as well as develop control systems that are printer 

independent and could be adapted to other hardware implementations. This work also 

aims on developing a generalized description language and design approach to enable 

community development of printed tissues.  



26 

 

 

Chapter 2: Design and Implementation  

In this work, we have developed a novel 3D bioprinting system that integrates tissue 

design software and microfluidics to create customizable 3D fiber-based heterogeneous 

tissue constructs [61], [62]. Following the printing process, cell-laden structures 

fabricated using our bioprinting system must undergo a process of cell culturing so that 

the cells differentiate appropriately. The following chapter will present an overview of the 

hardware components as well a detailed explanation of the design and implementation 

of our 3D bioprinting software toolchain  

2.1 3D Bioprinter Hardware    

The 3D bioprinting system developed in this work is mainly comprised of several 

hardware components: a microfluidic printhead, a pressure control system, a pneumatic 

solenoid switch bank, a vacuuming pump, a computer-controlled 3-axis positioning 

stage, and a customized printing substrate [61], [62]. The microfluidic printhead and the 

pneumatic solenoid switch bank were developed by Simon Beyer. A diagram of the 

developed bioprinting system is shown in Figure 8. 
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Figure 8: Diagram of the 3D bioprinting system 

The printhead is comprised of a microfluidic chip capable of dispensing cell-laden 

hydrogel fibers. A stream of aqueous sodium alginate is coaxially focused by 

surrounding it with aqueous calcium chloride (crosslinker) within the printhead. In this 

way, sodium alginate is loaded into the printer as a liquid but dispensed as a gelled fiber 

(calcium alginate). Because of this, performing various on-chip microfluidic operations 

such as mixing and sequencing prior to gelling are possible. By changing the pressure 

ratio between the aqueous sodium alginate and the crosslinker, the fiber diameter could 

be varied from 70-300 µm. The on-chip flow rates are regulated using a pressure-driven 

flow controller (Fluigent MFCS-4C). To enable deposition of multiple materials, such as 

hydrogels laden with different types of cells, pneumatically controlled valves were 
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incorporated for each fluid channel in the printhead. A dedicated pneumatic solenoid 

switch was used to actuate the on-chip valve for each fluid channel.  By changing the 

valves’ configuration, the type of material being dispensed as well as the alginate 

gelation process could be controlled. The microfluidic printhead is fabricated from 

PDMS (poly-methylsiloxane) using a soft lithography process. The moulds used in the 

process are 3D printed using a commercial 3D printer (Objet 24).  

Because the crosslinker exits the printhead orifice with the rapidly gelling 

alginate, it will pool and interfere with the already printed fibers. To overcome this 

problem, the current embodiment of the system must print materials on a porous 

substrate and vacuum must be applied to remove excess crosslinker during the printing 

process. Two different printing substrates with porous membranes were used. The first 

type of printing substrates used was standard well plate inserts (Corning® Costar® 

Transwell® cell culture inserts, 8.0 μm pore size). These are widely used and 

compatible with standard drug screening technology. The second type of printing 

substrates used was custom designed and 3D printed. The custom printing substrate 

contains a porous surface on which fibers are patterned and stacked. An outlet feed 

from the printing substrate is connected to a vacuuming system to remove the excess 

crosslinker. A schematic of the printhead and the customized printing substrate showing 

the removal of excess crosslinker is shown in Figure 9.  
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Figure 9: Schematic of printhead and excess crosslinker removal mechanism 

 To automate the process of patterning the gelled fibers deposited by the 

printhead, a computer controlled multi-axis positioning system was used. The 

positioning system is composed of X, Y, and Z axes. The printhead is attached to the 

Z axis and the printing substrate is secured onto both the X and Y axes. In this way, the 

printhead moves up in the Z-direction with each new layer according to the user-

specified layer thickness. Within each layer, lateral patterning is achieved by 

coordinated movements in both the X and Y directions. The mechanical resolution of 

each of the three linear actuators is 1 µm. Three independent motor drivers supply each 

of the three stepper motors with the required pulse output signals that in turn provide 

the required motion to the different lead screws. For coordinated motion, a multi-axis 

motion controller was used (Galil DMC-2140). The Galil motion controller uses a 

specialized 32-bit Motorola 68331 series microcontroller [63]. The Galil hardware is 

programmed using an interpreted programming language called Digital Motion 
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Controller (DMC) code [64]. DMC code is run on a specialized Real Time Operating 

System (RTOS) that is loaded on the Galil hardware [64]. In addition to supporting 

embedded programming and running programs completely on the Galil controller, host-

centric programming is also supported [64]. An application programming interface (API) 

can be used to send commands from the host computer to the controller [64]. For 

communication between the host computer and the motion controller, an Ethernet 

connection was used. Besides coordinated motion, this microcontroller serves as the 3D 

bioprinters’ main processing unit and is used for the control and synchronization of 

external events, such as switching between different materials during a print job. Limits 

for each axis were detected using optical limit switches. A system level diagram is 

shown in Figure 10.   

 

Figure 10: System level diagram  
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2.2 3D Bioprinting Software Toolchain   

The developed software toolchain supports the design and 3D bioprinting of cell-laden 

hydrogel structures with intricate architectures, programmable compositions, and 

multiple printing properties such as fiber diameter, layer thickness, infill patterning, and 

porosity. The software toolchain is built around the idea of a component-based 

architectural design method. This design method is used in areas such as software 

engineering to develop large software-intensive systems as well as in aerospace 

engineering to design aircrafts composed of various different specialized subsystems 

[65], [66], [67], [68]. Bottom-up tissue engineering methods, such as the fiber-based 

technique used by our 3D bioprinter, are based around the same component-based 

design method. In the context of tissue printing, we have called this design approach 

the Tissue Building Block Design (TBBD) method. Using the TBBD method, complex 

tissues could be assembled from a set of simpler building blocks as shown in Figure 11. 

These building blocks can be placed in 3D either vertically or laterally. Then the 

arranged building blocks are printed layer-by-layer to realize the desired 3D structure.  
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Figure 11: Assembling of tissue building blocks  

 
A diagram of our developed software toolchain with the different software tools, 

file formats, and online platform is shown in Figure 12. The software tools include CAD 

Software, CAM Software, Tissue Designer, and Printer Control Software. The generated 

files include STL files, G-Code files, toolpath files, material files, and PTDL files. The 

workflow begins with designing different building blocks using 3D CAD software. Each 

building block is represented by one STL file. Then each STL file is sliced independently 

using CAM software according to specific CAM specifications and exported as a G-

Code file.  After that, the set of G-Code files (set of sliced building blocks) are merged 

into a single toolpath file and a single material file using Tissue Designer. Finally, the 
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generated toolpath and material files are interpreted by the Printer Control Software and 

commands are sent to the 3D bioprinter in order to execute the specified print job. An 

example showing the different steps involved in 3D printing a heterogeneous tissue 

structure designed using our bioprinting software toolchain is shown in Figure 13. To 

encourage the collaborative development and sharing of tissue design files amongst 

users, Tissue Designer also supports a Printed Tissue Description Language (PTDL) 

used to describe the designed tissue structure. An online platform called OpenVitro was 

initiated to facilitate the sharing of tissue design files, including PTDL files.  

 

Figure 12: Software tools, file formats, and online platforms used in our 3D bioprinting 

software toolchain 
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Figure 13: Steps involved in the 3D bioprinting software toolchain 

 

The next sections will describe the details behind the different components of our 

3D bioprinting software toolchain. In the first section, we will discuss the process of 

designing structures using the TBBD method. In the second section, we will discuss the 

used open-source slicer and the relevant CAM specifications. Then in the third section, 

we will discuss the novel algorithm used to merge individual tissue building blocks. In 

the fourth section, we will explain the details behind Tissue Designer, PTDL, and 

OpenVitro. In the last section, we will discuss printer control, synchronization, and 

communication.  
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2.2.1 Tissue Building Block Design Method  

The TBBD method aims to allow for the design of a heterogeneous tissue model 

composed of a set of tissue building blocks. Each building block could be given different 

material assignments, CAM specifications, and other parameters that relate building 

blocks to one another, such as 3D orientation and print priorities. Tissue building blocks 

can be designed using any standard 3D CAD software that supports the generation of 

STL files. SolidWorks, one of the most popular 3D CAD programs [69], was used for the 

design of most building blocks in this work. To create a heterogeneous tissue structure, 

an individual building block must first be designed and exported as a STL file for each 

region that requires a different surface geometry, material type, or set of CAM 

specifications. Using SolidWorks, an assembly file representing the surface geometry of 

the entire tissue structure may be designed and the individual parts representing the 

different building blocks may be exported into separate STL files [69]. As previously 

mentioned, since STL files only capture surface geometries, CAM specifications and 

material assignments are assigned to each building block at subsequent stages of the 

toolchain. 

For example, the heterogeneous structure in Figure 14 requires separate STL 

files describing the surface geometry of each building block. Using the TBBD method, 

the heterogeneous structure is created by merging the two different building blocks. 

Each building block will be individually sliced according to a set of CAM specifications 
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(Section 2.2.2) and then materials and other properties will be assigned (Section 2.2.3) 

in later stages of the 3D bioprinting software toolchain.  

 

Figure 14: Building blocks with different surface geometries 

In the case where two building blocks of a tissue structure have the same surface 

geometries, then only one STL file is needed.  An example of this case is shown in 

Figure 15. The desired heterogeneous tissue structure is composed of two stacked tube 

segments, with the material type being the only difference between them.  

 

 
Figure 15: Building blocks with identical surface geometries 
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2.2.2 Tissue Building Block Slicing  

As previously explained in section 1.3.2, the 3D printing process is a layered 

manufacturing technique that relies on slicing a 3D CAD model into a set of stacked 

horizontal layers and the generation of the necessary toolpaths to fill them. In order to 

generate a set of slices from a building block, an open-source slicing tool (Slic3r Version 

0.9.8) was used. The input of the slicer software is a building block STL file. Usually, 

slicer tools allow the user to rotate the imported STL file to the desired orientation. 

Moreover, most open-source slicer programs are packaged with various functions and 

settings specifically optimized for the commonly used FFF printing method. For the 

purpose of our 3D bioprinting software toolchain, the open-source slicing tool is only 

used to generate the slices and the associated toolpaths needed to fill them. This 

information is described using G-Code. In this way, any other G-Code generators such 

as SkeinForge, Repsnapper, and Cura may be used instead of Slic3r. In other words, 

our 3D bioprinting software toolchain is not reliant on any one particular slicer software. 

Additionally, different slicer programs could be used to individually slice each building 

block   giving the user added design flexibility. The CAM specifications that are of most 

interest to us during the slicing process and their corresponding descriptions are 

summarized in Table 2.  
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Table 2: CAM specifications for the slicing process 

CAM Specification  Description 

Layer thickness (mm) The vertical distance between each 

consecutive layer  

Number of perimeters  The number of outlines or contours per layer 

Fill density (%) The percentage of the area within a perimeter 

that is filled with material  

Fill pattern  The specific geometry that is used to fill the 

area within a perimeter  

Extrusion width (mm) The width of the deposited fiber within a layer 

 
As an example, an STL file describing the surface geometry of a cylinder with a 

diameter and height of 10 mm is sliced (Figure 16). The layer thickness is set to 

100 µm, resulting in the generation of a sliced building block that consists of 

100 slice elements. The number of perimeters is set to 2. The fill density is set to 40%, 

which corresponds to 60% porosity. The extrusion width is set to 100 µm. A diagram 

showing the 50th slice of the cylinder with different fill patterns is shown in Figures 16. 

Different fill patterns could be used to achieve intricate internal tissue architectures that 

could affect biological response [22].  
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Figure 16: (a)Slice of a cylinder (b) rectilinear fill pattern (c) concentric fill pattern 

(d) honeycomb fill pattern (e)hilbertcurve fill pattern (f) archimedeanchords fill pattern 
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  The G-Code file generated from the slicing process consists of a series of G1 

commands. As previously mentioned, a G1 command denotes linear interpolation 

between the current absolute position and the specified absolute position. In other 

words, the generated G-Code program describes a toolpath that consists of a series of 

straight line movements. A typical generated G-Code file consists of a structured list of 

three different types of G-Code block patterns shown in Table 3. We define a Type I G-

Code block as a block that describes a straight line movement within a layer while 

depositing material. A Type II G-Code block describes a straight-line movement within a 

layer without depositing material. A Type III G-Code block describes a layer change. 

Table 3: Different types of defined G-Code blocks 

G-Code  
Block Type 

Code Description 

Type I G1 XNumber YNumber FNumber ENumber Move from the current 
XY position to the specified 
position (XNumber, YNumber) 
at the specified feed rate 
(FNumber) while extruding the 
specified length of filament 
(ENumber) 

Type II G1 XNumber YNumber FNumber Move from the current 
XY position to the specified 
position (XNumber, YNumber) 
at the specified feed rate 
(FNumber) without extruding  

Type III G1 ZNumber FNumber Move from the current 
Z position to the specified 
Z position (ZNumber) at the 
specified feed rate (FNumber) 
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To follow an incremental tissue development approach, a sliced building block 

could be printed. Then the design could be further modified based on observed 

structural and functional endpoints. Once the building block design is optimized and the 

printed structure is shown to exhibit the desired behavior, it could be integrated with 

previously optimized building blocks and printed as one heterogeneous structure. For a 

more rapid tissue development process or for experiments with endpoints that depend 

exclusively on the interaction between heterogeneous components, the sliced building 

blocks could be merged with other sliced building blocks and then the entire set could 

be printed at once.  

2.2.3 Tissue Building Block Design Algorithm  

The previous section discussed the second step of the 3D bioprinting software 

toolchain: slicing each building block according to specific CAM specifications. This 

section discusses the third step of the 3D bioprinting software toolchain: merging a set 

of sliced building blocks using the developed TBBD Algorithm. If building blocks are 

stacked on top of each other, such as the arrangement shown in Figure 15, a sequential 

printing approach whereby a given building block is completely printed before starting to 

print the subsequent building block may work. However, this approach will not work if, 

for example, the building blocks were arranged closely side-by-side. In this case, a 

collision would occur between the printhead and the first printed building block when it 

starts printing the second building block. In order to 3D print heterogeneous structures 

composed of multiple building blocks arranged side-by-side, such as concentric tubes, 
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we need to be able to merge slices from different sliced building blocks as the structure 

is built up layer-by-layer. 

The input of the TBBD algorithm is a set of sliced building blocks represented by 

a set of G-Code files as well as a material number, printing priority, and XYZ 

parameters for each building block.  Using our software, a multi-material structure could 

theoretically be composed of an infinite number of material types. However, in a 

practical sense, the number of materials is bounded by the number of material channels 

supported by the single-nozzle microfluidic printhead used in our bioprinting system. For 

this project, the microfluidic printhead architecture only supports a maximum of two 

materials. To address the issue of merging slices from different sliced building blocks at 

the same Z level, a priority-based scheduling scheme is used. A fixed, user-specified 

printing priority is assigned to each sliced building block during the design phase. 

Printing priorities are used in scheduling the order in which slices from different building 

blocks at the same Z level are printed. Higher priority slices are printed before lower 

priority slices. Algorithms could be developed in the future to automatically assign 

printing priorities based on specific design rules or application-specific requirements. In 

order to arrange a set of building blocks in 3D space, each building block is given an x-

center position, y-center position, scaling factor, and z-offset. The x-center and y-center 

positions are used to orient the building block in the XY plane. For example, if x-center 

and y-center positions are equal to zero, the building block will be centered at the origin 

of the printing substrate. The scaling factor is used to scale the building block in the XY 

plane. The z-offset parameter is used to indicate the z-position of the first slice of a 
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building block. In other words, the z-offset parameter is used to stack building blocks on 

top of each other.  

The TBBD algorithm is divided into three main modules: G-Code Interpreter, 

Slice Scheduler, and Output Code Generator (Figure 17). For fast processing and 

efficient memory usage, the algorithm was written using C++ [70]. The G-Code 

Interpreter analyses and parses through the input and stores it into different classes of 

dynamically created objects. The Slice Scheduler is responsible for scheduling the order 

in which slices are printed. The Output Code Generator receives slice objects from the 

Slice Scheduler and produces the toolpath and material code understood by the 3D 

bioprinter. Each of these modules will now be explained in more detail.  

 

Figure 17: TBBD Algorithm  

The G-Code Interpreter is developed using Flex and Bison (GNU 

implementations of Lex and Yacc) [71] . Flex and Bison are two powerful tools used to 

develop interpreters and compilers [71], [72]. Flex and Bison work together to find 
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patterns in structured input and produce a response based on the recognized pattern 

[71], [72]. This process is split up into two stages: lexical analysis, which is done using 

Flex, and parsing, which is done using Bison [71], [72]. Lexical analysis involves 

defining the input into significant units called tokens and describing each token using a 

regular expression [71], [72]. Our tokens are defined as the different G-Code words in a 

G-Code block. A grammar is specified in Bison and defines the relationships between a 

sequence of tokens and their meaning [71], [72]. Our defined grammar specifies the 

rules of how the defined tokens make up the different G-Code blocks. In runtime, Bison 

parses the G-Code using the defined grammar.  

 The G-Code Interpreter structures the input according to the class diagram 

shown in Figure 18. The G-Code Interpreter starts with creating a GCodeFile object for 

each input G-Code file (building block) and stores the associated material number, 

printing priority, x-center, y-center, scaling factor, and z-offset. The G-Code Interpreter 

then scans each G-Code file line-by-line and detects whenever a sequence of tokens 

matches the defined grammar. Whenever a valid G-Code block is detected, a function is 

called to store the numerical portions of the G-Code words and the type of the G-Code 

block in a GCodeBlock object. The created GCodeBlock object is added to an existing 

Slice object or a new Slice object. A new Slice object is created whenever we encounter 

a Type III G-Code block (see Table 3), which indicates a layer change. A data member 

called z_level in the Slice class is used to keep track of the absolute height of the slice.  

In other words, z_level is equal to the z-offset plus the numerical portion of the “Z” G-

Code word of a Type III G-Code block; in this way, we can merge building blocks that 
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are sliced with different layer thicknesses. This process continues until the end of the 

valid G-Code file. Storing the G-Code in a structured way, as opposed to just a 

sequence of instructions, makes our software powerful, flexible, and scalable.  A basic 

flowchart showing how one valid input G-Code file and the associated parameters are 

processed and stored using the G-Code Interpreter is shown in Figure 19.  

 

Figure 18: Class diagram showing composition relationship  
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Figure 19: Flowchart of G-Code interpreter module 
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 The Slice Scheduler is responsible for determining which Slice object is sent to 

the Output Code Generator to be printed next. Since the slices are correctly sorted 

within each building block, the z_level and print_priority of each Slice object at the front 

of the vectors are compared. Among these compared Slice objects, the one with the 

lowest z_level and highest print_priority is scheduled to be printed next. If the z_level of 

the current slice object is equal to the z_level of the previous slice object, then the two 

slices are merged. In other words, the printhead will not move up in the Z direction and 

both toolpaths are combined. This is done by setting the is_merged flag to true. This 

flag informs the Output Code Generator to ignore any Type III (layer change) G-Code 

blocks for merged slices. As an example, a graph showing the toolpath of two merged 

slices, each slice coming from separate building blocks is shown in Figure 20. A 

flowchart of the Slice Scheduler is shown in Figure 21.  

 

Figure 20: Merged slices 
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Figure 21: Flowchart of Slice Scheduler 

 The Output Code Generator is mainly responsible for producing two files used to 

drive the 3D bioprinter: a toolpath file and a material file. As previously mentioned, due 

to the lack of a universal G-Code adopted by motion control manufactures, G-Code 

interpreting or post-processing is a necessary step [32], [33]. Furthermore, some motion 

controllers don’t understand any form of G-Code altogether. This is the case with the 

motion controller used in our 3D bioprinting system. The motion controller used only 

understands DMC code. A “G1” G-Code command is equivalent to a “LI” DMC 

command. Furthermore, the G-Code generated by the slicer application is in absolute 

coordinates, but the Galil controller requires relative coordinates. Additionally, the 
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generated G-Code is in millimetres, whereas the DMC controller requires encoder 

counts. The DMC code structure for sending a sequence of linear interpolation 

commands is shown in Table 4.   

Table 4: DMC code structure for a linear interpolation sequence 

DMC Instruction Description 

LM ABC Specify the number of axes 

LI 3000, 2000,1000 Move 3000 counts in X, move 2000 counts in Y, and 

1000 counts in Z from the current XYZ position 

. 

. 

. 

. 

. 

. 

LE End of sequence  

 

 The generated toolpath file contains DMC code that specifies the list of linear 

interpolated movements required to print the designed 3D model. The Output Code 

Generator waits until it receives a Slice object from the Slice Scheduler. Once a Slice 

object is received, the Output Code Generator loops through all the GCodeBlock 

objects in the gcode_blocks vector (which is stored in the Slice object) and translates G-

Code to DMC. The scaling_factor is also applied to the XY position movements at this 

stage. If the is_merged flag value is true, the Z movement of the GCodeBlock object is 

ignored. If the is_traveling flag value is true, it is possible to invoke a function to stop 

depositing material, but our printhead currently does not support this.  
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 The material file consists of two space delimited columns: the first column 

specifies the material type and the second column specifies the total fiber length (µm) 

that has to be printed (from the start of the print job) before switching to the 

corresponding material type. To compute each of these values, the total fiber length is 

updated each time the Output Code Generator processes a GCodeBlock object using 

the following equation, 

 

        ∑√               
                 

                 
 

 

   

               

 

When the Output Code Generator detects a change in material type, a new row is 

inserted in the material file containing the material number and the current fiber length.   

The structure of a material file is shown in Figure 22. For example, when the total 

printed fiber length is equal to 438483 µm, material 1 will be loaded and printed; when 

the total printed fiber length is equal to 589769 µm, material 2 will be loaded and 

printed; when the total printed fiber length is equal to 666751 µm, material 3 will be 

loaded and printed; when the total printed fiber length is equal to 779290 µm, material 4 

will be loaded and printed. A flowchart of the Output Code Generator is shown in 

Figure 23. 
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Figure 22: Structure of material file 
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Figure 23: Flowchart of output code generator module 
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 The calculated total fiber length is also used to estimate the build time for a given 

print job. The build time is approximately equal to the total fiber length divided by the 

print speed,  

                  
                  

     
                                                        

The estimated build time allows the user to better evaluate costs before they are 

incurred and better plan printing experiments.  

 In addition to generating the material and toolpath files, a folder containing the 

point clouds of each layer is outputted. The point clouds are graphed and used to 

analyze the generated toolpaths, layer-by-layer, before printing. This could be important 

as users could detect problems before starting the printing process, which could 

potentially save time and material costs. Examples of issues that may be detected by 

visualizing the point clouds include overlapping toolpaths as well as trailing fibers 

caused by Type II G-Code blocks.  

 With minor changes, a new Output Code Generator capable of generating code 

understood by different motion controllers could be easily developed. This is the power 

behind using the Flex and Bison. For example, recently we have developed a second 

3D bioprinting system that uses a different motion controller model. Slight modifications 

to the output code generator module were made, and a new version of our software was 

released. 
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2.2.4 Tissue Designer, PTDL, and OpenVitro   

In addition to developing a Linux-based console interface, an intuitive graphical user 

interface (GUI) called Tissue Designer was developed. Tissue Designer allows users 

with no programming experience to assemble building blocks into heterogeneous tissue 

structures. This was an important requirement as initial users of our 3D bioprinting 

software toolchain include biologists with no programming backgrounds. Both the 

console interface and Tissue Designer allow users to input a set of sliced building 

blocks and the associated parameters, run the TBBD algorithm, and generate the 

output code to drive the 3D bioprinter. Tissue Designer was written using Visual C# and 

is built around the developed core TBBD algorithm (section 2.2.3).  

 The Tissue Designer interface is shown in Figure 24. The software allows users 

to “Drag and Drop” or “Add” a set of G-Code files (sliced building blocks) and specify the 

associated material numbers (MTRL), printing priorities, placement parameters (X, Y, 

and Z), and scaling factors (SF). The printing priority of each sliced building block is 

assigned by using the “Up” and “Down” buttons; the top row is assigned the highest 

priority and the bottom row is assigned the lowest priority. A specific building block can 

be removed from the “PTDL Palette” by using the “Delete” button. The PTDL Palette 

can be entirely cleared by clicking the “Delete All” button.  Before merging the building 

blocks (i.e., run the TBBD algorithm), the specific printer model must be specified. 

Currently, our printer supports two in-house developed 3D bioprinting systems that we 

have called Biogen 1 and Biogen 2. After the merging process is successfully 
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completed using the core TBBD algorithm, the generated toolpath and material files can 

be exported so that they can be fed into the printer control software.   

 

Figure 24: Tissue Designer graphical user interface 

 One important feature of Tissue Designer is that it allows users to export and 

import the assembled heterogeneous structures using our developed PTDL format. 

PTDL is an Extensible Markup Language (XML) based format for describing printed 

tissue structures. XML is an open standard that is managed by the World Wide Web 

Consortium (W3C) [73].  XML is an ASCII file that contains structured data organized 
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into a set of hierarchical elements. Because of its wide acceptance, there exist many 

open-source tools for performing operations on XML files such as editing, viewing, 

parsing, compressing, and encrypting.  

 The purpose of PTDL is to facilitate the exchange and reuse of printed tissue 

descriptions using a common language. This would reduce the time spent redefining 

previously described tissue components and encourage the design of more complex 

structures. Both the export and import PTDL features can be accessed from the file 

menu in Tissue Designer.  

The PTDL syntax is built to support the TBBD method. The basic PTDL format is 

composed of several elements shown in Table 5. The first line of the PTDL file 

describes the XML version and the encoding used. The rest of the elements in the 

PTDL file are enclosed within a parent root element, <ptdl> and </ptdl>. Within the 

parent element, building blocks are specified as child elements, sorted by decreasing 

printing priority. Within each building block child element, the building block properties 

are specified as subchild elements. An example PTDL file containing two building block 

elements is shown in Figure 25. 
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Table 5: PTDL elements 

Element Description 

<ptdl> Parent root PTDL element  

<block> Defines a new building block element 

<gcode> Specifies a reference to a g-code file 

<x> Specifies the x-center position of the building block  

<y> Specifies the y-center position of the building block 

<z> Specifies the z-offset position of the building block 

<scale> Specifies the XY scaling factor of the building block  

<material> Specifies the material number of the building block  

 

Figure 25: PTDL file describing a heterogeneous tube 
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To provide an online platform for exchanging tissue models, OpenVitro was 

initiated (Figure 26). OpenVitro is a website for sharing PTDL and other tissue design 

files, such as STL files, G-Code files, toolpath files, and material files. The long-term 

goal of OpenVitro is to facilitate the collaboration amongst biologists and tissue 

engineers. Through OpenVitro, PTDL and different elements of the 3D bioprinting 

software toolchain could be further developed based on elicited user-requirements and 

feedback.  

 

Figure 26: OpenVitro online tissue model sharing 

2.2.5 Printer Control, Synchronization and Communication  

Control over on-chip behavior and synchronization between printhead function and 

stage motion is essential for printer automation. To do this, the microcontroller is used 

to generate output signals controlling on-chip valves’ configurations based on specific 

events. In this way, the printhead could be programmatically manipulated. Examples of 
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current printhead functions include chip initialization and cleanup, the initiation and 

halting of fiber generation, and material switching. Future printhead functions could 

include material mixing and concentration gradient generators.  

 To initialize the printhead before printing, a function was developed that consists 

of a timed-sequence of on-chip valve configurations. The main purpose of the 

initialization procedure is to fill the different on-chip channels with the appropriate 

materials and confirm proper chip function prior to printing. The pressure values for all 

the material inputs were maxed to 75 mbar. The entire procedure is listed in Table 6.  

First, all the material valves (water, crosslinker and both hydrogel pre-cursors) are 

opened for five seconds. This is done to get rid of bubbles by allowing liquid flow 

through all the channels. Then the water valve is closed and the remaining valves are 

kept open for two seconds to confirm that a fiber is being generated. Then the exiting 

channel is flushed from any residue by closing all the valves except for water for fifteen 

seconds. Finally, all the valves are closed. After the completion of the 

initialization/cleanup procedure, the printhead should be ready for printing  

Table 6: On-chip valve configurations for initialization/cleanup procedure 

# Duration 
(Seconds) 

Water 
 

Crosslinker 
 

Alginate 1 
 

Alginate 2 

1 5 OPEN OPEN OPEN OPEN 

2 2 CLOSED OPEN OPEN OPEN 

3 15 OPEN CLOSED CLOSED CLOSED 

4 - CLOSED CLOSED CLOSED CLOSED 
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 To keep track of the amount of fiber deposited during a motion sequence, the 

total distance traveled from the start of the toolpath is continuously stored and updated 

in real-time on the microcontroller’s on-board memory. By monitoring this value and 

accounting for delays and execution times associated with on-chip procedures, unique 

printhead operations could be executed at controlled points along a continuously 

deposited fiber. Though our printhead only supports material switching, as the printhead 

is further developed and other features such as concentration and temperature control, 

cell counting and mixing are integrated into the hardware, continuous fibers with more 

advanced and spatially-controlled properties could be printed.  

As mentioned above, printhead tasks should be executed a priori so that 

properties could be applied in a controlled way along different points of a continuously 

printed fiber. When printing multi-material structures, the printhead needs to ensure that 

the specified material is being deposited at the correct time. Because the process of 

switching materials occurs within the chip a distance away from the tip of the nozzle, 

there is an unavoidable delay associated with material switching that should be 

accounted for. In other words, material switching needs to be triggered on-chip prior to a 

material switch point within a toolpath to allow for the previous material within the 

channel to exit the nozzle and the new material to fill the channel. As long as the fiber 

exits the printhead nozzle at a rate equal to the stage speed, the distance (channel 

length) it takes within the printhead to change materials should be constant. If the fiber 

exits the nozzle at a rate that is faster than the stage speed, the fiber will coil within the 

channel, causing the effective channel length to be greater than the actual length. 
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Besides affecting the channel length, coiling within the channel may also lead to 

eventual chip clogging.  If the fiber exits the nozzle at a rate that is slower than the 

stage speed, the fiber will be stretched. This will also affect the channel length and may 

also lead to other problems such fiber breakage. These three fiber exit velocity 

scenarios are summarized in Figure 27.  

 

Figure 27: Fiber exit velocity versus stage velocity  

As mentioned in section 2.2.3, the TBBD algorithm generates a material file with 

several switch points. These switch points correspond to the length of the fiber to be 

deposited and the material type for each building block. While only two commands are 

currently supported (material1 and material2), additional commands could be defined to 
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accommodate for tasks other than material switching. By comparing the distance 

traveled (which is continuously updated on the microcontroller’s on-board memory) and 

comparing it with the defined switch points, unique chip conditions could be invoked at 

the beginning of a building block’s toolpath. In this way, appropriate properties could be 

applied to each building block. The ability to programmatically apply multiple properties 

to different regions of a 3D printed tissue pre-cursor could help ensure that the post-

printing cell culturing process enables cells to differentiate appropriately and exhibit a 

biological function.     

 To explain how material switching is coordinated with the motion toolpath using 

the approach mentioned above, an example is presented in Figure 28. The 3D structure 

shown in the example is a multi-material coaxial tube. Several key points are labeled 

along the toolpath and the corresponding valve configurations are summarized. To 

enable fiber gelation throughout the entire toolpath, the water valve remains closed 

while the crosslinker valve stays open. At point 1, material 2 valve is opened while 

material 1 valve is closed, allowing for the deposition of purple fiber. Usually, an 

initialization structure is printed some distance away to ensure that the channel is 

primed with the appropriate material and that a uniform fiber is being deposited by the 

first point of the desired structure’s toolpath. By point 2, the initialization structure should 

have printed successfully and the toolpath starts moving towards the first point of the 

structure. The valve configurations remain unchanged from point 1 to point 5. At point 5, 

the remaining arc length for the inner purple circle is equal to the channel length. 

Therefore, material 2 valve is opened and material 1 valve is closed. By point 6, all 
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material 2 should have exited the channel and material 1 is deposited. These valve 

configurations remain unchanged from point 6 to finish. After the toolpath is completed, 

all valves are closed.  

 

Figure 28: Example of synchronization between material switching and toolpath 

 Printer control software was developed to facilitate control over printer function. A 

GUI of the software is shown in Figure 29. The printer control software features can be 

divided into four categories: setup controls, motion controls, valve controls, and print 
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controls. Real-time control of the on-chip channel pressure values is handled by the 

pressure controller (Fluigent) software. Various buttons and inputs are implemented to 

provide users with useful print-related functions. A terminal console window is used to 

display output messages such as those relating to connections and disconnections of 

the bioprinter, system and software errors, print status, and on-chip valve 

configurations.    

 

Figure 29: Printer control software GUI 
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Setup and initialization starts by first establishing a connection with the bioprinter. 

Then the positioning stage is initialized by moving all three axes to the limits and then 

returning back to the home position. The “Initialize Chip” button calls the initialization 

procedure outline in Table 6.   

 Motion control features allow direct control of the 3D bioprinter. Each axis could 

be moved independently by specifying the distance and the speed. Home and waste bin 

positions can be defined and saved. This allows users to set these two positions at the 

beginning of a printing experiment and return to these special positions at any time. The 

home position is typically the starting position of the print job and the waste bin position 

is usually the position where the printhead produces waste material during initialization. 

To set the initial home position of the nozzle prior to printing, the printhead was moved 

down until contact was made with the printing substrate and the nozzle was in the 

center of the printing substrate. In addition to motion controls, each valve on the 

printhead could be turned on or off using the GUI. Motion and valve controls are useful 

in testing printhead functionality and for debugging purposes.  

 The print controls section of the printer control software handles print jobs. The 

software takes material and toolpath files generated by Tissue Designer as inputs in 

order to print 3D tissue structures. The multi-axis move commands specified in the 

toolpath file are sent to the microcontroller’s on-board buffer which can store up to 

512 incremental move segments. It is important to guarantee continuous motion during 

a print job in order to prevent material building up unevenly in one particular location of 

the structure. To ensure continuous motion and to allow for the printing for structures 
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that require more than 512 movement segments, the microcontroller’s on-board buffer 

must never be emptied until the toolpath’s last movement is executed. Otherwise, 

motion will be halted immediately after the execution of the last incremental move 

segment, even if the entire toolpath has yet to be fully executed. At the same time, it is 

important to not send commands if the on-board buffer is full to avoid buffer overflow. 

To solve this producer-consumer communication problem (shown in Figure 30), a 

dedicated thread is given the task of monitoring the status of the on-board buffer. As 

movements are executed and space becomes available in the buffer, commands are 

sent to the controller.  

 

Figure 30: Sending and executing move commands using buffer and monitor thread 

 To handle material switching, the printer control software first reads the input 

material file and stores the material switch points as well as the corresponding material 

type in a queue of material objects. A dedicated thread is used to monitor an on-board 

register that stores the total distance traveled from the start of a print job. If the material 
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switch point of the material object stored at the front of the queue minus the channel 

length equals the distance traveled, then output signals are sent from the 

microcontroller to the pneumatic solenoid switch bank in order to switch to the specified 

material. As materials are switched, material objects are pulled from the front of the 

material queue. To parameterize this process and allow our software to be compatible 

with different printhead architectures, the channel length is one of the inputs of the 

printer control software. This flowchart for this synchronization process is shown in 

Figure 31.  

 

Figure 31: Flowchart for synchronization between printhead and toolpath 

With the addition of new hardware modules (as shown in Figure 32), other 

parameters could be introduced to account for task-specific delays.  For example, some 
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types of materials such as collagen may need to be printed under controlled-

temperature conditions to prevent premature gelation and printhead clogging. New 

control parameters could be introduced to account for the time it takes to reach the 

temperature set point and this time could be synchronized to motion events in a similar 

approach to that used in handling a priori material switching. Moreover, new tags that 

define parameters such as temperature and concentration could be added to PTDL to 

account for these additional building block properties and printing specifications. In this 

way, the printhead could be thought of as a programmable lab-on-a-printer.  

 

Figure 32: Lab-on-a-printer schematic 
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2.3 Summary 

Prior to the development of our 3D bioprinting software toolchain, we were limited to 

printing simple structures. To print a desired structure, a user would have to manually 

program, line-by-line, the necessary printing instructions. This process can be extremely 

time consuming, tedious, and error-prone. Moreover, knowledge about the specific 

motion control programming and toolpath generation theory is required to produce fine 

process planning. One of the primary objectives of this work was to automate the 

process of printing 3D heterogeneous tissue structures. This would allow users, such as 

biologists and tissue engineers, to quickly design, visualize, graphically simulate, and 

then 3D print customizable tissue structures.  

This chapter presented an overview of our novel 3D bioprinting system capable 

of creating customizable 3D heterogeneous tissue constructs based on user defined 3D 

models. An overview of the hardware components as well as detailed explanations of 

the design and implementation of our 3D bioprinting software toolchain was described. 

Our 3D bioprinting software toolchain is built around a novel Tissue Building Block 

Design (TBBD) method. Using the TBBD method, which is the core of our 3D bioprinting 

software toolchain, each tissue building block could be independently modeled using 

CAD software and then sliced according to a unique set of CAM specifications and 

assigned unique properties. The developed 3D bioprinting software toolchain easily 

integrates CAD and CAM, whereas the manual programming approach does not 

intuitively facilitate this. Printing complex heterogeneous structures is no longer 
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bottlenecked by the ability to design these structures in software, but mostly by 

hardware and material limitations. Due to these significant improvements in the 

functionality, efficiency, integration, automation, and control of the 3D bioprinting 

process, tissue development could be greatly accelerated.  To encourage the 

collaborative development and sharing of tissue design files amongst users, the 

developed Tissue Designer software also supports a Printed Tissue Description 

Language (PTDL) used to describe the designed tissue structure. An online platform 

called OpenVitro was initiated to facilitate the sharing of tissue design files, including 

PTDL files. Details of the control over on-chip behavior and synchronization between 

printhead function and stage motion as well as printer communication was also 

explained in this chapter.  
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Chapter 3: Experiments, Results, and Discussion  

In this chapter, we present and discuss our experiments and results. In the first section, 

we evaluate the performance of our implementation of the TBBD method by analyzing 

execution times. In the second section, we analyze and discuss the effect of design 

choices and printing parameters on the overall printing process and the challenges 

associated with our microfluidics-based method of bioprinting. In the third section, we 

demonstrate the functionality and asses the capabilities of the 3D bioprinting software 

toolchain by printing several different heterogeneous hydrogel structures using our 3D 

bioprinter.  

3.1 Software Evaluation and Performance  

To verify the functionality and evaluate the performance of our implementation of the 

TBBD method, we ran several simulations independent of our bioprinting system. The 

functionality was assessed by using a test structure and visualizing the generated 

slices. The performance was assessed by evaluating the speedup achieved using our 

TBBD method. The results were collected using an Intel Core i5-3210M processor 

running at 2.5 GHz and 8 GB of memory. 

 For the first set of simulations, our goal was to verify the functionality of our 

implementation of the TBBD method before printing. The verification was done by 

merging a set of sliced building blocks and plotting the generated point clouds of each 
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slice. For example, one of the test structures used in the verification process is shown in 

Figure 33. The structure is composed of nine building blocks: eight small cubes 

embedded within a larger cube. Each building block was designed in CAD software and 

independently sliced using different CAM specifications. Using Tissue Designer, each 

sliced building block was then assigned a different material number. Then the set of 

sliced tissue building blocks were prioritized and the entire tissue structure was 

compiled for printing using our core TBBD algorithm. The toolpaths of the first layer 

within the four different regions are shown in Figures 34-37. As shown, the results verify 

that the implementation of the TBBD method works correctly. 
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Figure 33: Test structure composed of nine building blocks 

 

Figure 34: Toolpath of first slice in region 1 of test structure 



74 

 

 

 

Figure 35: Toolpath of first slice in region 2 of test structure 

 

Figure 36: Toolpath of first slice in region 3 of test structure 
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Figure 37: Toolpath of first slice in region 4 of test structure 

 Using a more standard design approach, a tissue model is sequentially sliced 

entirely, without avoiding redundant slicing computations, and then merged. Whereas 

using the TBBD method, a model can be granulated into identical surface geometries 

and only one of the granular building blocks is sliced to avoid redundant slicing. In other 

words, a tissue structure is decomposed into a set of simpler building blocks and then 

merged using our software. For the second set of simulations, our goal was to 

benchmark the performance of our developed TBBD algorithm versus a more standard 

design approach. To do this, the slicing and merging execution times were analyzed for 

various assembled models. As a demonstration of this, a cylinder with a diameter and 

height of 20 mm was chosen as a test structure. Using a more standard design method, 
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the tissue structure was merged using a single cylinder building block (with a height of 

20 mm), relying heavily on the slicer software. Using the TBBD method, the tissue 

structure was merged using 100 identical cylinder building blocks, each with a height of 

0.2 mm. All the building blocks were sliced using common CAM specifications: 100 µm 

layer thickness and extrusion width, 3 perimeters, 30% fill density, and varying fill 

patterns. The slicing, merging, and total execution times using both design approaches 

for different fill patterns are shown in Figures 38-40. As can be seen from the figures, 

the total execution time is reduced by avoiding redundant slicing while merging time 

stays about the same using both design approaches.  

 

 

Figure 38: Slicing execution times for both the standard design approach and the TBBD 

method for different fill patterns 
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Figure 39: Merging execution times for both the standard design approach and the 

TBBD method for different fill patterns 

 

 
Figure 40: Total execution times for both the standard design approach and the TBBD 

method for different fill patterns 
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 TBBD speedup over the more standard design method for various heights and fill 

patterns of the test structure is summarized in Figure 41. The results show that the 

TBBD method is as fast if not faster than the more standard design approach. Using the 

TBBD method, even though we are optimizing the slicing process through sliced 

building block reuse, our speedup is always limited by the merging execution time. 

Because of this, when we analyze the speedup curve, it is clear that the speedup 

saturates as the merging time becomes the bottleneck. However, the disadvantage of 

the TBBD method is that it relies on the user to granulate the desired structure into 

simpler building blocks that are then used to assemble the desired structure. This may 

be a demanding process if there is extreme variation in the slices in the Z build 

direction. Look-ahead algorithms could be developed in the future to reduce redundant 

slicing. Furthermore, the absolute time savings may not be significant for small 

structures, but for larger structures that are sliced with computationally intensive space 

filling curve algorithms (such as the archimedeanchords), the absolute time savings 

may be substantial. Moreover, adding more building blocks results in larger PTDL file 

sizes. However, since PTDL is XML-based, XML compression tools could be used if 

storage space becomes a major concern. 
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Figure 41: Speedup using TBBD 

 

3.2 Design Choices, Printing Parameters, and Printing 

Process 

Several experiments were conducted to analyze the effect of design choices, printing 

parameters, and the overall printing process. All the printing experiments were 

conducted using 1 wt% alginate (Protanal LF 120 M) and gelled using a 125 mM 

calcium chloride solution, unless otherwise stated. Additionally, during our experiments, 

we encountered several challenges related to our specific microfluidics-based 

bioprinting approach. The results of the conducted experiments, as well as the different 
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methods used to investigate the encountered challenges, will be discussed in this 

section.   

Prior to printing a structure, the printing speed and fiber flow rate were calibrated. 

Dispensing too much material (fiber flow rate > printing speed) led to printhead clogging. 

Dispensing too little material (fiber flow rate < printhead speed) caused the fiber to be 

tugged and eventually break. Based on the most-recent printhead dimensions, the 

channel length parameter in the printer control software was set to 30 mm. Observed 

fiber coiling within the channel indicates that the fiber flow rate is faster than it should be 

in order to match the speed of the XY positioning stage. This leads to an effective 

channel length that is larger than the actual channel length, causing material buildup 

and unsynchronized material switching. This problem is demonstrated in Figure 42(a). 

To approximately match the fiber flow rate to the speed of the XY positioning stage 

given the current setup, the speed was gradually increased such that fiber coiling within 

the printhead was minimized (see Figure 42(b)). This visual calibration test was 

conducted at the start of a printing experiment to obtain the appropriate printing speed 

for particular printhead pressure values. Although the printhead pressure values driving 

each of the material input channels could be tuned to match a given speed, it was found 

that frequently changing printhead pressures led to problems such as clogging within 

the printhead. Therefore, once a pressure value was seen to produce a stable fiber, the 

appropriate printing speed was then found using the visual calibration test.  
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Figure 42: (a) The printhead showing the fiber flow rate and speed are mismatched; 

fiber is coiled inside the printhead channel (b) The printhead showing the fiber flow rate 

and printing speed are matched; fiber is straight inside the printhead channel  

The effect of not accounting for the channel length was significant, particularly 

when printing structures with intra-layer material switching. When the channel length 

was not correctly set, material from one building block was incorrectly present in the 

adjacent building block. Whereas when the channel length was correctly set according 

to the printhead dimensions, significantly better results were obtained as shown in 

Figure 43.   
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Figure 43: (a) A multi-material coaxial tube structure without accounting for channel 

length during material switching (b)  a multi-material coaxial tube structure with correctly 

set channel length 

As previously mentioned in Section 2.1, our printhead generates a solid hydrogel 

fiber by introducing a coaxially flowing crosslinking agent to a liquid pre-polymer.  This 

gelation process is carried out within the channel length portion of the printhead shown 

in Figure 28. Because of this, there is a delay from the moment a request to start 

printing is invoked to the actual time that a fiber exits the printhead orifice. To observe 

and investigate this delay problem, a video was captured during the execution of a test 

printing session. The test printing session consisted of a clock-wise circular motion 

sequence. The video was captured until the moment a relatively uniform fiber was seen 

exiting the printhead orifice. Several frames from this video are shown in Figure 44, 

starting at a 9 o'clock position, then 12 o'clock, then 3 o'clock, then 6 o'clock, and so on. 

As can be seen, segments of the toolpath are executed without fiber deposition. This 

posed a challenge to the overall printing process. Through several printing experiments, 
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it was seen that a poorly printed first layer with gaps negatively affected overall print 

quality and structural integrity. Besides accounting for the delay associated with filling 

the channel length portion of the printhead with material, we also noticed that extra time 

was needed until a relatively uniform fiber exits the nozzle. To solve this problem, an 

initialization pattern was printed a distance away from the desired structure to help 

ensure that the printhead channel was loaded with material and that a relatively uniform 

fibre was exiting the printhead orifice prior to the first point of the desired toolpath. The 

initialization pattern could be designed as a separate building block and should be 

assigned the highest printing priority to ensure that it is scheduled to be printed before 

any subsequent building blocks. When designing the initialization structure, 

consideration should be taken to avoid interference with the desired structure’s toolpath. 

For our printing experiments, the point clouds generated by Tissue Designer were 

graphed and analyzed prior to printing to avoid this problem.  
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Figure 44: Several frames from a video of a test printing session in the absence of 

printing an initialization building block 

Besides its primary purpose, the use of an initialization structure served as a 

useful tool for determining if initial height of the nozzle was incorrectly set. If the nozzle 

was determined to be too close or too far from the substrate, the print job was halted 
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before completion. If the nozzle was too close to the printing substrate, the printhead 

clogged almost immediately due to material buildup in the nozzle and the nozzle tip 

dragging across the printing substrate. If the nozzle was too far from the printing 

substrate, a tapering effect in the build direction was observed because the layer-

thickness would effectively be overestimated. An example of this effect is shown in 

Figure 45. In this example the input CAD file is a cube, but the printed structure appears 

pyramided. The tapering effect was also observed if the layer thickness was set too 

high.  

 

 

 

Figure 45: Tapering effect due to incorrect nozzle leveling to printing substrate or 

incorrect layer thickness 
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It was observed that when printing shapes with right edges such as squares, the 

corners were rounded as seen in Figure 46(a). To investigate this further, several 

printing experiments were conducted that involved printing 10x10 mm squares or 

variants under different conditions to see if corner rounding could be minimized. The 

first experiment involved modifying the square structure in CAD by dragging the corners 

outwards to offset the rounded corners. Using this technique, an improvement was 

observed, though at the cost of slightly warped sides, as can be seen in Figure 46(b). 

The second experiment involved pausing at corners for 500 milliseconds (Figure 46(c)). 

This corner slowdown technique failed due to material build up, clogging, and 

discontinuous fiber deposition caused by a mismatch between the calibrated printing 

speed and flow rate as previously set using the channel length visual calibration test 

mentioned earlier. To investigate this corner slowdown approach further, additional 

printhead and real-time pressure control functionality could be implemented to support 

changes in flow rate within a printing session. The third experiment involved printing a 

square pattern using a less viscous hydrogel. This was done by first diluting the alginate 

from 1 wt% down to 0.5 wt% and then printing a square structure. Using the less 

viscous alginate, corner rounding was reduced as seen in Figure 46(d), though at the 

cost of using a weaker fiber. The fiber was more malleable though the alginate 

appeared to be not fully gelled as can be seen by the blue dye leaching out of the fiber 
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onto the surface. This might also suggest that corner rounding could be due to the 

stiffness and the cylindrical nature of the fiber.         

 

Figure 46: (a) Printed square showing corner rounding effect (b) Printed CAD-modified 

square (c) Printed square using corner slowdown (d) Printed square using 

0.5 wt % alginate 
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Control over structural porosity may serve as a key feature to allow cell culture 

media to penetrate into the structure during the cell culturing step of the tissue 

engineering process as well to support removal of excess crosslinking agent during the 

printing step. The porosity of a structure can be optimized by tuning the fill density 

parameter (defined in Table 2). This parameter is specified by the user during the CAM 

phase of the tissue engineering process. It was seen that printing highly dense 

structures caused excessive pooling of crosslinking agent and eventual print failure. 

Several structures were printed using varying fill densities as well as fill patterns as 

shown in Figure 47. As can be seen in Figure 47, the fibers are not laid down exactly 

according to the generated patterns. The printed structures appear denser than the 

generated toolpaths.  One reason behind this is a disparity between the extrusion width 

used in slicing the 3D CAD model and the actual fiber diameter. The extrusion width 

parameter should be accurately set to the actual fiber diameter. To address this issue, 

the printhead could be characterized further to generate a table of known 

alginate/crosslinker pressure ratios and the corresponding fiber diameter. The 

appropriate pressure values for each material channel could then be set by the pressure 

control system in order to produce a fiber with a diameter equal to the user-specified 

extrusion width. This control over fiber diameter could also help reduce the tapering 

effect previously mentioned as the actual layer thickness would be known a priori.  
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Figure 47: (a) Toolpath generated using 20% fill density and rectilinear patterning (b) 

toolpath generated using 40% fill density and rectilinear patterning (c) toolpath 

generated using 20% fill density and concentric patterning (d) toolpath generated using 

40% fill density and concentric patterning  
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As an experimental demonstration of printing building blocks with varying infill 

patterns, the structure shown in Figure 48(a) was printed. The one-layer thick structure 

consists of two building blocks: a circular core and a circular shell. The circular core was 

sliced with 20% infill density and 90 degree rectilinear patterning; the circular shell was 

sliced with 20% infill density and concentric patterning. The pattern was printed using 

the microfluidic printhead (Figure 48(b)) as well as using a felt pen secured to the Z-axis 

(Figure 48(c)).  In addition to a disparity between extrusion width and actual fiber width, 

the pooling of excess crosslinking agent as well as non-uniform fiber generation 

affected our ability to accurately recreate generated toolpaths. Pooling of the 

crosslinking agent caused many problems such as disturbing already deposited fiber, 

affecting fiber adhesion and stacking, and leading to material buildup and printhead 

clogging. A method to remove the excess crosslinking agent on-chip as opposed to 

relying completely on removal via a porous substrate after fiber deposition is something 

that can be investigated further to help address these problems.  

 

Figure 48: Structure with varying infill patterning 
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3.3 3D Printing Experiments 

Several different structures were designed using Tissue Designer and then printed 

using the developed bioprinting system. The results show our ability to construct 3D 

hydrogel structures with arbitrary geometries and heterogeneous components. All the 

printed samples were composed of 1 wt% alginate and gelled using a 125 mM calcium 

chloride solution. The alginate was dyed using different colors to highlight multi-material 

building blocks. For these experiments, the printing speed, extrusion width, and layer 

thickness were often changed slightly because of variations in material composition, 

printhead fabrication, experimental setup, initial Z position of the nozzle, and channel 

pressures. For most of the printing experiments, the printing speeds ranged from 

20-40 mm/s and the extrusion width and layer thickness ranged from 100-200 µm 

depending on the diameter of the generated fiber.  

 The first demonstrated printed structure was a heterogeneous tube. The building 

block used in the tissue design process was an STL file describing a tube segment. 

Since the multi-material tube structure is composed of a set of tube segments with 

identical surface geometries, only one tube segment building block was required. The 

building block was then sliced to generate the G-Code file. Using Tissue Designer, the 

same G-Code file was added multiple times to represent the stacked and identical tube 

segments, material information was assigned, and then the entire tissue structure was 

merged. The final printed structure is shown in Figure 49. These results highlight our 

ability to design and print structures with inter-layer material switching.  
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Figure 49: (a) CAD representation of multi-material tube (b) printed multi-material tube 

 

 By adding additional building blocks and using the scaling feature in Tissue 

Designer, a larger multi-material tube was designed and printed. This highlights our 

ability to quickly modify our tissue design files in order to print a different structure. The 

results are shown in Figure 50.  
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Figure 50: (a) CAD representation of large multi-material tube (b) printed large multi-

material tube 

 

 The second printed structure was a heterogeneous coaxial tube. A blood vessel 

is a good example of such a structure. The coaxial tube structure was compiled using 

two tube building blocks. Each building block was assigned a different material number. 

The results are shown in Figure 51. These results demonstrate our ability to design and 

print structures with intra-layer material switching, allowing for the design of 

heterogeneous structures with lateral patterning.  
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Figure 51: (a) CAD representation of coaxial tube (b) Printed coaxial tube 

 Using the scaling feature in Tissue Designer, a variant of the coaxial tube 

structure was designed. The inner tube was enlarged so that both tubes were brought 

closer to each other. This is shown in Figure 52. 

 

 

Figure 52: Printed variant of coaxial tube 
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 As previously mentioned, it was observed that the first layer in the printed 

structure highly dictates the overall stability of the structure. Therefore, during our 

printing experiments we often printed an initialization pattern around our structure in 

order to ensure that the fiber was continuously stable before beginning to print our 

desired structure. As a result, in the case of the coaxial tube structure, we set the 

printing priorities such that slices from the outer tube are printed before slices from the 

inner tube. This was done to reduce trailing fibers between the concentric circles during 

travel movements, which is particularly important in the first layer. 

 The third printed structure was a multi-material cube composed of rectangular 

cube building blocks. As previously discussed in section 3.2, it was observed that sharp 

corners in a toolpath resulted in rounded corners in the final printed structure. To 

mitigate this problem in this case, the design of the corners was modified in CAD. The 

cube building block was sliced to produce layers with a single perimeter and filled with 

rectilinear patterning and a density of 40%. The sliced building blocks were stacked, 

assigned different material numbers, and merged to generate the necessary toolpath 

and material code. The results are shown in Figure 53. Since this structure was highly 

dense and several layers high, excess crosslinking agent pooled on the top most layer 

as the structure was built layer-by-layer and therefore the quality of fill patterning was 

affected.  
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Figure 53: (a) CAD representation of multi-material solid cube (b) printed multi-material 

solid cube 

 Another hydrogel structure that was printed was the letters “UBC”. Because our 

current printhead design does not support being turned on and off during a print job, 

each letter was allowed to print to completion before starting the next letter. This was 

done to avoid trailing fibers between letters during travel movements. The printed 

structure is shown in Figure 54.  Although the geometry of this structure isn’t really 

biological relevant, these results show our ability to design arbitrary 3D structures.  
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Figure 54: (a) CAD representation of the letters “UBC” (b) printed “UBC” 

3.4 Summary 

This chapter discussed the results from various experiments conducted to assess the 

performance of the developed software toolchain, investigate designs choices, printing 

parameters, and the overall printing process, demonstrate the 3D printing of different 

structures, and to validate basic 3D biology using our approach. Analyzing the TBBD 

speedup curves, we observed a combined slicing and merging execution time that is as 

fast as or faster than simply slicing and then merging the designed structure as one unit. 

Through several printing experiments, we were able to observe several problems such 

as unmatched flow rate and printing speed, unsynchronized material switching due to 

an incorrect channel length parameter, tapering effect due to incorrect layer thickness or 

nozzle/substrate leveling, poor first printed layer in the absence of an initialization 

pattern, corner rounding, and other challenges associated with the nature of the 

hydrogel and pooling of excess crosslinking agent. Methods and recommendations to 

mitigate or eliminate these problems were discussed. Using the TBBD method, we were 

able to successfully print several heterogeneous structures, including some with 

multiple materials.  
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Chapter 4: Conclusion and Future Work  

Applying 3D printing technology to tissue engineering as a means of creating 

customized human tissue constructs is a relatively new idea that has the potential to 

revolutionize biological research. There are several research studies that demonstrate 

that 3D cell cultures better mimic real biological tissue than the standard 2D cell co- or 

mono-cultures. In the field of drug discovery, models that exhibit real tissue 

mechanisms under exposure to drugs are of significant interest. Using 3D tissue 

constructs to get a more realistic and representative response to a given drug could 

improve the efficiency and significantly reduce the cost of the drug discovery process, 

and ultimately replace animal models as a testing standard. For these reasons, we have 

developed a new platform capable of designing and implementing heterogeneous 3D 

biological structures based on user-defined 3D CAD models.  

 In this work, we developed a novel 3D bioprinting software toolchain capable of 

transforming user-defined 3D models into 3D printed biological structures with 

heterogeneous properties and a platform for a programmable lab-on-a-printer. This will 

potentially allow tissue engineers and biologists to rapidly design and 3D print advanced 

in vitro tissues that can be used in many applications such as drug discovery.  

 The 3D bioprinting software toolchain was built around a novel Tissue Building 

Block Design (TBBD) method that allows users to assemble structures with complex 

architectures and multiple properties from a set of simpler building blocks. Through the 
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TBBD method, each building block could be independently modeled using CAD 

software and then sliced according to a unique set of CAM specifications. A TBBD 

algorithm was developed to allow users to assign material types and other unique 

properties to each building block and then arrange the building blocks in 3D. The 

algorithm then generates the layered heterogeneous process planning required to print 

the designed multi-component tissue model. Interpreting and structuring G-Code in an 

object-oriented way makes our software flexible and scalable. The use of Flex and 

Bison compiler utilities allows for easier interoperability across different bioprinting 

systems and hardware implementations. Analyzing the TBBD speedup curves, we 

observed a combined slicing and merging execution time that is as fast as or faster than 

simply slicing and then merging the designed structure as one unit. An intuitive 

graphical user interface called Tissue Designer, built around the core merging 

algorithm, was developed. We established full automation and coordination between 

multi-functional printheads and stage motion. We also developed control systems and 

printing coordination techniques that are printer independent and could be adapted to 

other hardware implementations. To enable community development of printed tissues 

and to facilitate the exchange and reuse of the software-described tissues using an 

open standard, Printed Tissue Description Language (PTDL) was developed. An online 

platform called OpenVitro was initiated for the sharing of these tissue design files.   

 Using the developed 3D bioprinting software toolchain, we were able to 

successfully print several heterogeneous structures with both inter- and intra-layer 

material switching, validating our capability to reproduce the desired structure. Multiple 
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material printing is handled automatically; material switching is coordinated 

programmatically, in synchrony with toolpath motion. The approach used for a priori 

material switching could be used to account for delays associated with future printhead 

tasks to allow for properties to be applied in a controlled way along different points of a 

continuously printed fiber. We systematically optimized the printing process by 

considering print related issues such as unmatched flow rate and printing speed, 

printhead function and stage motion control and coordination, poor first layer printing, 

tapering effect and corner rounding.  

  Future work in this area could incorporate additional features in the PTDL format 

to accommodate for additional printhead functionality such as concentration and 

temperature generators. Additionally, information pertaining to material preparation, 

post-printing, and cell culturing stages of the tissue development process could also be 

added to the PTDL standard. Expanding PTDL would allow biologists and tissue 

engineers to exchange more detailed process information using a common language. 

This language expansion will require additional requirements that could be gathered 

from the OpenVitro community. To increase printing throughput, another possible 

direction would be to develop algorithms to control and synchronize a multi-nozzle 

printhead and print into a multi-well plate. This could be very useful in applications such 

as high-throughput drug screening where the responses of numerous drug compounds 

on cellular structures are tested. Using the TBBD method, future work could also 

investigate the effect of different internal architectures on biological response.  
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