
Reliable and Efficient Transmission of
Compressive-Sensed

Electroencephalogram Signals
by

Patrick Rmeily

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

August 2014

c© Patrick Rmeily 2014

Abstract

As technologies around us are emerging at a rapid rate, wireless body sensor

networks (WBSN)s are increasingly being deployed to provide comfort and

safety to patients. WBSNs can monitor the patient’s health and transmit

the collected data to a remote location where it can be assessed.

Such data is collected and transmitted using low battery devices such as

specialized sensors or even smart phones. To elongate the battery life, the

energy spent on acquiring, processing and transmitting the data should be

minimized. The thesis addresses the case of electroencephalogram (EEG)

signals. It studies the energy spent in the sensor node, mainly in the pro-

cessing stage, i.e. after acquiring the data and before transmitting it to

a certain receiver-end in a wireless fashion. To minimize this energy, the

number of bits to be processed and transmitted must be minimized. Com-

pressive sampling (CS) is ideal for such a purpose as it requires minimal

number of computations to compress a signal.

For transmitting the signals acquired by CS, we studied their quanti-

zation followed by 2 different schemes. Scheme 1 applies lossless Huffman

coding for further compression that allows perfect reconstruction. This is

followed by a Reed-Solomon (RS) code to protect the data from errors dur-

ing transmission. Scheme 2 does not apply any further compression. It only

ii

quantizes the data and applies the RS code to it.

Both schemes were then enhanced by adding an interleaver and de-

interleaver that improved the results. The data was then sent in packets

over a transmission channel which was simulated using a 2-state Markov

model.

Under ideal channel conditions, Scheme 1 with Huffman compression

decreased the total number of bits sent by 5.45 %. The best scheme how-

ever was scheme 2 followed by an interleaver. It achieved the best signal

reconstruction results under normal or noisy channel conditions.

iii

Preface

This thesis presents the research conducted by Patrick Rmeily, in collabora-

tion with Professor Dr. Rabab K. Ward. I hereby declare that I am the first

author of this thesis. The chapters in this thesis are based on work that I

have conducted by myself and projects that I have submitted as assignments

as part of my past coursework. Section 2.1.3 is based on the work done by

my colleague at UBC, Mr Hesham Mahrous.

iv

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . v

List of Tables . viii

List of Figures . xii

List of Acronyms . xiv

Acknowledgments . xv

1 Introduction . 1

1.1 Telemetry for Medicinal Purposes 1

1.2 Conditions for Telemetry . 2

1.3 Electroencephalogram Signals 3

1.4 Aim and Motivation of the Thesis 5

1.5 Thesis Structure . 8

2 Literature Review and Background Theory 9

v

2.1 Compressed Sensing . 9

2.1.1 Encoder . 11

2.1.2 Decoder . 12

2.1.3 Block-Sparse Bayesian Learning 14

2.2 Source Coding . 18

2.2.1 Overview of Information Theory 19

2.2.2 Huffman Code . 22

2.3 Transmission Channel . 26

2.3.1 Channel Models . 26

2.3.2 Two-State Markov Model 32

2.3.3 Packet-Switched Networks 35

2.4 Channel Coding . 37

2.4.1 Block vs Convolutional Codes 38

2.4.2 Reed-Solomon Code 43

2.4.3 Interleaving . 48

3 Frameworks . 50

3.1 General Framework of the CS-EEG Encoding 50

3.2 Huffman Code Followed by RS Code 54

3.3 Huffman Code Followed by RS Code and Interleaving 55

3.4 No Source Coding Followed by RS Code 55

3.5 No Source Coding Followed by RS Code and Interleaving . . 56

3.6 Performance Measures . 57

4 Results . 58

4.1 Parameters Used in the Framework 58

vi

4.2 Huffman Code Followed by RS Code 61

4.3 Huffman Code Followed by RS Code and Interleaving 66

4.4 No Source Coding Followed by RS Code 69

4.5 No Source Coding Followed by RS Code and Interleaving . . 72

4.6 General Comparisons . 74

5 Summary and Conclusions . 78

5.1 Main Results . 78

5.2 Future Work . 81

Appendices

A . 82

Bibliography . 89

vii

List of Tables

4.1 Results for Different Values of qbits 58

4.2 Values for α and β . 60

4.3 Results for Random Patterns Using RS(255,223) 61

4.4 Results for Random Patterns Using RS(255,193) 63

4.5 Results for Random Patterns Using RS(255,153) 64

4.6 Results for Fixed Patterns Using RS(255,223) 64

4.7 Results for Fixed Patterns Using RS(255,193) 65

4.8 Results for Fixed Patterns Using RS(255,153) 65

4.9 Results for Random Patterns Using RS(255,223) and Inter-

leaving . 67

4.10 Results for Random Patterns Using RS(255,193) and Inter-

leaving . 67

4.11 Results for Random Patterns Using RS(255,153) and Inter-

leaving . 67

4.12 Results for Fixed Patterns Using RS(255,223) and Interleaving 68

4.13 Results for Fixed Patterns Using RS(255,193) and Interleaving 68

4.14 Results for Fixed Patterns Using RS(255,153) and Interleaving 69

viii

4.15 Results for Random Patterns Using RS(255,223) with no Source

Coding . 70

4.16 Results for Random Patterns Using RS(255,193) with no Source

Coding . 70

4.17 Results for Random Patterns Using RS(255,153) with no Source

Coding . 71

4.18 Results for Fixed Patterns Using RS(255,223) with no Source

Coding . 71

4.19 Results for Fixed Patterns Using RS(255,193/153) with no

Source Coding . 71

4.20 Results for Random Patterns Using RS(255,223) with Inter-

leaving, no Source Coding . 72

4.21 Results for Random Patterns Using RS(255,193) with Inter-

leaving, no Source Coding . 73

4.22 Results for Random Patterns Using RS(255,153) with Inter-

leaving, no Source Coding . 73

4.23 Results for Fixed Patterns Using RS(255,223/193/153) with

Interleaving, no Source Coding 73

4.24 Encoder Processing Times of the Approaches 74

4.25 Encoder Processing Times Comparison with CS Algorithm

using RS(255,223) . 75

4.26 Number of bits sent per epoch 76

A.1 Results for Random Patterns Using RS(255,223) 83

A.2 Results for Random Patterns Using RS(255,193) 83

ix

A.3 Results for Random Patterns Using RS(255,153) 83

A.4 Results for Random Patterns Using RS(255,223) and Inter-

leaving . 84

A.5 Results for Random Patterns Using RS(255,193) and Inter-

leaving . 84

A.6 Results for Random Patterns Using RS(255,153) and Inter-

leaving . 84

A.7 Results for Random Patterns Using RS(255,223) with no Source

Coding . 84

A.8 Results for Random Patterns Using RS(255,193) with no Source

Coding . 85

A.9 Results for Random Patterns Using RS(255,153) with no Source

Coding . 85

A.10 Results for Random Patterns Using RS(255,223) with Inter-

leaving, no Source Coding . 85

A.11 Results for Random Patterns Using RS(255,193) with Inter-

leaving, no Source Coding . 85

A.12 Results for Random Patterns Using RS(255,153) with Inter-

leaving, no Source Coding . 86

A.13 Results for Fixed Patterns Using RS(255,223) with and with-

out Interleaving . 86

A.14 Results for Fixed Patterns Using RS(255,193) with and with-

out Interleaving . 86

A.15 Results for Fixed Patterns Using RS(255,153) 86

A.16 Results for Fixed Patterns Using RS(255,153) and Interleaving 87

x

A.17 Results for Fixed Patterns Using RS(255,223) with no Source

Coding . 87

A.18 Results for Fixed Patterns Using RS(255,193/153) with no

Source Coding, with and without Interleaving 88

A.19 Results for Fixed Patterns Using RS(255,223) with Interleav-

ing no Source Coding . 88

xi

List of Figures

1.1 Sample of an EEG output . 4

1.2 Block diagram for the processing of EEGs using WBSN . . . 5

2.1 Block diagram of the adjusted algorithm 15

2.2 Plot of the entropy w.r.t. the probability of a random variable 21

2.3 Example of how a Huffman algorithm works 23

2.4 AWGN channel model . 27

2.5 Binary symmetric channel model 29

2.6 BSC capacity . 31

2.7 2-state Markov model . 33

2.8 Convolutional encoder [10] . 39

2.9 Viterbi decoder [10] . 41

2.10 Step by step Viterbi decoding [10] 42

2.11 Reed-Solomon encoder [10] 44

2.12 Interleaver [18] . 48

2.13 Deinterleaved output [18] . 49

3.1 Block diagram of the encoder 50

3.2 Block diagram of the first approach 54

xii

3.3 Block diagram of the first approach with interleaving 55

3.4 Block diagram of the second approach 56

3.5 Block diagram of the second approach with interleaving . . . 56

4.1 Huffman followed by RS code (255,223) in good channel con-

ditions . 64

4.2 Huffman followed by RS code (255,223) in average channel

conditions . 65

4.3 Huffman followed by RS code (255,193) in bad channel con-

ditions . 66

4.4 Huffman followed by RS code (255,223) with interleaving in

average channel conditions . 68

4.5 Huffman followed by RS code (255,193) with interleaving in

bad channel conditions . 69

4.6 No source coding followed by RS code (255,193) in bad chan-

nel conditions . 72

xiii

List of Acronyms

AWGN Additive White Gaussian Noise
BCI Brain Computer Interface
BSBL Block-Sparse Bayesian Learning
BSBL-BO Block-Sparse Bayesian Learning - Bounded Optimization
BCS Binary Symmetric Channel
BW Bandwidth
CR Compression Ratio
CS Compressed Sensing
DCT Discrete Cosine Transform
DM Delta Modulation
DMC Dynamic Markov Compression
DWT Discrete Wavelet Transform
EEG Electroencephalogram
FEC Forward Error Correcting
GSM Global System for Mobile communications
IID Independent and Identically Distributed
LDPC Low-Density Parity-Check
NMSE Normalized Mean Square Error
PCM Pulse-Code Modulation
RIP Restricted Isometry Property
RS Reed-Solomon
RV Random Variable
SNR Signal-to-Noise Ratio
SSIM Structural SIMilarity
SVM Single Measurement Vector
TDM Time Division Multiplexing
WBSN Wireless Body Sensor Network
WT Wavelet Transform

xiv

Acknowledgments

There are many people that I would like to thank and acknowledge for their

support and help, but first and foremost I would like to thank my supervisor

Professor Rabab Ward for her unconditional support and encouragement. I

cannot express the gratitude and appreciation I have for her professionalism,

body of knowledge, achievements, and most importantly her kindness. I will

never forget that kindness of hers, and I can say that this is what made all

the difference for me in having her as my supervisor.

I would like to thank my lab mates, and specifically Simon, Hesham and

Hiba for all the laughs we had together and all the stories we shared. There

have been lots of ups and downs in the last couple of years, and having you

around helped make the downs easier to go through!

Last but definitely not least, I would like to thank my family and closest

friends for their continuous belief in me, even when things seemed to always

go against what I was hoping for at that time. But as life teaches us so often,

you need to accept the things you cannot change and with time the reason

for such events becomes clearer. So thank you life for all those lessons, and

thank you for sending me all those beautiful people to enrich my journey!

xv

Chapter 1

Introduction

1.1 Telemetry for Medicinal Purposes

One of the basic human rights is that of having a good health care system

that is properly functional to ensure the safety and health of human beings.

Most countries around the world spend huge amounts of money for research

into health, especially that many of the advanced countries have witnessed

increases in their elderly population [4].

The current age demography shows that more people suffer from chronic

diseases which come naturally with age. However, the amount of chronic

diseases is increasing drastically in younger people due to unhealthy eating

habits and lifestyles [16]. This creates a bigger financial burden for the health

care system, estimated to be in the billions of dollars. Chronic diseases are

not something that younger people would usually suspect they have. This

means that constant medical check-ups and supervision could be beneficial.

However, that is practically impossible to do as it requires that each patient

has one caretaker specifically assigned to him/her. Even if that were to be

possible, the costs alone would be far too much to deal with. Therefore

solutions that are inexpensive - or at the least cost-effective - need to be

presented.

1

Wireless body sensor nodes (WBSN)s are one solution that is gaining

a lot of ground in the health care industry [27], [3]. They allow patients

to continuously monitor themselves, from the comfort of their homes, while

remote caregivers can be at clinics for example. By using sensors that are

attached to the body, WBSNs allow patients to check on vital signs such as

their heart rate, diabetes and brain activity. Considering that WBSNs are

cost-effective, efficient, and can be produced at a large scale, the solution

that the health care industry has been looking for is now available. The fact

that such devices could save lives forms an enough reason for the industry to

spend or carry a lot of research in this area, to further improve the services

that they can provide.

1.2 Conditions for Telemetry

As exciting as WBSNs sound, it is not as easy to design such devices as it

seems. There are some conditions and restrictions on parameters that are

essential in the designing of WBSNs which will be discussed now.

In many applications, telemedicine uses data channels that have low

bandwidth (BW). The BW of a channel dictates how many bits per second

one can send through the channel and since low BW channels have low bit

rates, we already are faced with the first restriction of not being able to send

large chunks of data all at once.

To be able to directly monitor one’s vital signs, the results have to reach

the remote center in real-time or close to real-time. This means that the

less data we send, the faster the signal will be reconstructed and viewed at

2

the receiver end. To achieve that, one must try and make sure that the data

to be sent is composed of only useful data that is also not redundant. This

poses another condition on the processing stage of the WBSN encoders.

Another restriction, which is basically the most costly one, is that of

the processing power at the WBSN nodes. WBSNs usually use batteries

that do not last long. Think of a cell phone battery for example. If you

open applications that require too much processing power, the battery will

unfortunately die out pretty quickly. Hence, for WBSNs to be convenient

and practical to use, the algorithms executed inside them should be designed

so that their processing time is extremely fast. Therefore the battery would

not get drained out and the patient wouldn’t have to change batteries often

(since WBSNs are operated using a battery).

This previous restriction leads us to another costly one, which is the

energy needed to transmit all the data. As mentioned earlier, lesser amounts

of transmitted data lead to a more real-time viewing of the signal at the

receiver end. This is not the only benefit that comes out when the data

amount to be sent is decreased. Saving up on energy is just as important of

a benefit, if not even more, because the lesser the data to be sent, the lesser

the energy that will be needed, and hence, the more the battery’s lifespan

is preserved [27].

1.3 Electroencephalogram Signals

Even though the work frame in this thesis can be applied to many signals,

the focus has been on electroencephalogram (EEG) signals, which are signals

3

Figure 1.1: Sample of an EEG output

that convey the electrical brain activity and are acquired by non-invasive

sensors placed on the patient’s head. They are then transmitted wirelessly.

The information contained in the EEG signals obtained from multi-

ple electrode sensors can help diagnose epilepsy, sleep disorders, strokes,

Alzheimer’s, tumors and comas among other illnesses. EEG monitoring

needs on average 30 minutes of recorded signals for specialists to be able to

detect a disorder. In the case of some disorders, the monitoring should be

done for a longer period of time [13], [14]. This makes the use of WBSNs at

home much more favorable than spending time at the hospital. Figure 1.1

shows a sample of a recorded EEG output.

Such WBSNs, specifically for EEG signals, have a certain number of elec-

trodes placed on the patient’s head as specified in the international 10-20

system. The number of electrodes used can vary depending on the pur-

pose. Each of these electrodes results in an output signal, and that sensor

is known as an EEG channel. EEG electrodes provide high temporal reso-

lution. However, this is not the case for spatial resolution (i.e. resolution of

the EEG signal over the scalp) which can be a limitation. To increase the

spatial resolution, the number of sensors used in the EEG measurements

has to be increased.

Before transmitting the EEG data, the channels have to be processed as

4

Figure 1.2: Block diagram for the processing of EEGs using WBSN

shown in Fig. 1.2. All the channels are collected and the resulting output

forms a one stream of data. This data is then processed in two parts. The

first part removes any redundancy that may be present in the data in order

to transmit the relevant data only, and the second part adds protection bits

to the data to protect it against the channel noise that can greatly distort

it. Finally this data is transmitted using Bluetooth.

Since this processing is done within the WBSN [8], the complexity should

be minimal so as not to drain out the system battery. That is not the case

on the receiver-end where the computations to retrieve and reconstruct the

original data sent can be more complex, since there are no restrictions placed

on the energy consumption at this receiver-end [7].

1.4 Aim and Motivation of the Thesis

The aim of this thesis is to minimize the energy spent at the sensor node.

The energy is spent on acquiring the data, processing it so it can be trans-

mitted and then wirelessly transmitting it. To minimize the transmission

energy, as few bits as possible should be transmitted. Therefore the acquired

5

data should be compressed before its transmission so that it is represented

by as less bits as possible and it can be reconstructed from these bits. The

compression should also require as little energy as possible for use in appli-

cations such as WBSNs that transmit EEG data [1]. Compressed Sampling

is ideal for this purpose. With present day technology however, it is not

yet possible to sample the analog signal directly using CS. Therefore we re-

sample the acquired signal using CS. We then quantize the CS resulting data

using the minimum number of levels that allow good quality reconstruction.

To transmit the signals, we aim to come up with a joint source and channel

coding combination that can be used for EEG WBSN purposes. As already

discussed, the power consumed by the algorithms that process the data at

the encoder side (the WBSN) should be decreased as much as possible. We

also need the signals to be reconstructed and displayed in real-time, and we

have to do that using a low bandwidth channel, that is also noisy. So the

goal is to find a suitable framework that can address these demands.

Processed signals need to be quantized. This process already introduces

an error, known as the quantization error. Depending on the kind of signals

being sent, the bits required for quantization can be lowered. In other

words, some signals require the smallest variations in the amplitudes to be

reconstructed clearly because such variations are pivotal to the diagnosis of a

patient. In such cases, a higher number of bits can be used for quantization,

which leads to more quantization levels that allow for such variations to be

captured. Other signals can allow for a more flexible quantization error and

hence the number of quantizing bits can be smaller.

When applying source coding, a lossless compression algorithm is desired

6

for the simple fact that it can perfectly reconstruct the transmitted data.

Lossless algorithms however suffer from the high number of computations

required to compress the information. The Huffman code is usually the

algorithm of choice as it can be found in numerous applications that cover

several fields. In comparison, lossy-algorithms are simpler in terms of their

computational requirements.

For channel coding purposes, there are two main types of algorithms:

block and convolutional algorithms. Both have very powerful existing algo-

rithms. However, when dealing with real-time applications block codes are

usually more prevalently used because they can be computed faster.

The work in this thesis is motivated by the use of compressed sensing

(CS), which is a technique that samples and compresses at the same time.

CS was discovered recently. The sampling is done at a rate far below the

Nyquist rate, which for many decades was not explored. Because CS samples

the data by taking linear projections of the raw data [7], it requires little

energy at the transmitter side. The computationally complex part of CS is

at the receiver end. For our application however, this does not constitute a

problem as there is no limitation on the power in the receiver end. Those

two properties make CS a perfect algorithm of choice to be applied in WBSN

applications.

In summary, this thesis aims to find a good combination between com-

pressing the data, quantizing and adding protection to it while taking into

consideration the computational effort and the energy spent at the sensor

node, the noise in the channel and the reconstruction quality. The thesis

will study the results of each scheme applied and propose improvements for

7

future work.

1.5 Thesis Structure

The rest of the thesis is divided into 4 chapters. The first chapter, chapter

2, gives a theoretical review of the concepts used in this work. Section 2.1 of

this chapter introduces the concept of compressed sensing and presents the

theory behind the encoding and decoding stages of this algorithm. Section

2.2 introduces the concept of source coding and information theory. It goes

into the detail of one of the most famous source coding algorithms, the Huff-

man code. Section 2.3 deals with the transmission channel, its properties

and how to model the Bluetooth channel that is used for sending the data.

Section 2.4 explains the need for channel coding algorithms in any transmis-

sion scheme. It gives a comparison between two families of codes: block and

convolutional codes. Its also discusses interleaving and its benefits. This

is followed by chapter 3 which presents the different schemes used for the

transmission of the data and then chapter 4 which analyzes the results ob-

tained from the experiments. Finally, the whole results and observations are

summarized in chapter 5.

Throughout the thesis, it is important to point out that bold lowercase

letters mean the variable used is a vector, whereas bold uppercase letters

mean it is a matrix. Scalar quantities are represented in normal letters.

8

Chapter 2

Literature Review and

Background Theory

2.1 Compressed Sensing

Signals in life are usually of an analog, continuous nature. When we want to

discretize them, we have to apply a technique called sampling, which as the

name implies, takes samples from the signal, and these samples can then be

analyzed or manipulated for whatever purpose intended. Then when these

samples are dealt with, they are retransformed into an analog continuous

signal by interpolation.

The samples though could not be taken randomly and without any con-

strictions. There is a whole area of study behind it called the Nyquist-

Shannon sampling theory, or in short, the sampling theory [26]. What it

states is that for a signal x(t) we must take at least two samples per cycle of

the highest frequency component of that signal [21]. In mathematical term,

if the highest frequency of the signal x(t) is

2fM ≤ fS (2.1)

9

where fS is the sampling frequency. If this condition is not satisfied,

aliasing would occur causing the signal to not be properly reconstructed

from the samples taken. In cases where the bandwidth is very large and the

constraints that are imposed on the sampling architecture are a bit too much

to cope with, the traditional sampling theorem proves to be too demand-

ing. In other cases where the signals are sparse in their nature, applying

Shannon’s sampling theorem produces a large amount of redundancy in the

samples, which are costly to wirelessly transmit as is the case with telemon-

itoring where the bandwidth is small and one needs to make the most of it,

therefore using that theorem limits the sensor nodes lifetime.

This theorem has been lately challenged by the advent of a new technique

called compressed sensing which will be discussed in this chapter.

For WBSNs that were discussed in chapter 1, increasing the battery’s

lifetime and achieving high compression ratios (CR)s is important, as well as

the cost of the device. The cheaper the device, the more willing the patients

would be to purchase them. This also signifies that the hardware cost should

be low, which in turn means that the encoding algorithm should have low

complexity, leaving the complexity to the decoder at the remote center or

laptop [27].

As far as choice of transforms for signal reconstruction go, the wavelet

transform (WT) was usually the choice to use for excellent signal recon-

struction at the receiver. However, the WT compression fails to satisfy such

constraints, which has led to the introduction of CS, which is a compres-

sion technique that depends on the sparsity of the signals on hand, and in

comparison to the WT, reduces energy consumption while maintaining a

10

competitive data compression ratio, and largely reducing the device’s cost

as was shown in [16].

Basically CS allows us to take far fewer samples from a signal than is

actually needed by conventional techniques and still manage to properly

reconstruct that signal. To do so, two properties must be satisfied: that of

sparsity and that of incoherence [5].

What is meant by sparsity is the idea that for a signal of finite length,

the information rate contained in that signal is much less than its length

suggests, hence making it compressible. That is a point that allows CS to

not only act as a sampling technique, but also a compressing algorithm,

since it drastically decreases the amount of data taken from the signal.

Incoherence on the other hand refers to the duality between the time

and frequency domain representations of the signal where in one domain,

that representation is spread out, and in the other domain, it is sparse [5].

Taking advantage of those two properties allows for a sampling and

compression algorithm that is practical and energy efficient for applications

where the encoding energy is quite limited. Both sampling and compression

are replaced by a randomized sub-sampling technique that linearly encodes

the samples without the need of high resolution for the reconstruction of

the signal [15]. Two matrices are essential for CS: the linear measurement

sensing matrix and the dictionary matrix.

2.1.1 Encoder

CS starts by collecting M samples of a signal x whose dimension is Nx1,

where M � N using simple analogue measurement waveforms, thus sam-

11

pling and compressing at the same time which helps in removing a large part

of the digital architecture. The M samples are collected using the simple

measurement vectors φi, where 1 ≤ i ≤ M and φi is of length N. Each of

those vectors has k-nonzero elements. The transpose of these vectors form

the rows of the sensing matrix Φ which compresses the signal x as follows:

y = Φx. (2.2)

The output signal y has a dimension of Mx1 where M � N [16].

2.1.2 Decoder

The original signal x is recovered from the compressed data y using the

sensing matrix Φ and assuming that x is actually a sparse signal. If x is

not sparse (as is the situation with EEG signals), but it is sparse in another

domain, that is there exists a matrix D such that x = Dz, where z is sparse

and D is a dictionary (transform) matrix of dimension NxN , then equation

2.2 can now be rewritten as

y = ΦDz (2.3)

Thus in this case, the CS algorithms would first have to recover z by

using y and ΦD, and then recover the original signal x from the relation

x = Dz.

When CS is used in applications such as telemonitoring, the signal x is

first compressed by the sensors according to equation 2.2. The compressed

data y is then transmitted to a server that may reside in a clinic or another

12

facility. The original data x is recovered from y according to equation 2.3,

where the matrix Φ is known and D is determined from the nature of x.

To see the advantages of this method, all one has to do is go deeper into

the mathematics that is involved in CS. The simple linear sampling strategy

applied by CS yields results that are marginally off the optimal adaptive

strategy (which is too complex) [23].

To guarantee the robust and efficient recovery of any S-sparse vector x,

the sensing matrix Φ must obey the key restricted isometry property (RIP)

(1− δS)‖x‖2 ≤ ‖ΦDz‖2 ≤ (1 + δS)‖x‖2 (2.4)

where δS is the isometry constant of the matrix Φ - which must not be

too close to one (δS < 1). The RIP ensures that the energy of the signal

is bounded from below and above. The smaller δS is, the more energy is

captured and the more stable the inversion of ΦD is [5].

The key factor that bounds the restricted isometry constant δS is the

mutual coherence amongst the columns of ΦD as follows [11]:

δS ≤ (k − 1)µ (2.5)

where µ = max1≤i 6=j≤N < φi,dj >, and k is the number of non-zero

entries in x.

A good choice for the measurement matrix Φ is a random matrix with

independent and identically distributed (iid) entries [9].

The signal x is recovered at the decoder side via a convex optimization

problem. One major advantage of decoding by optimization, is that CS

13

decoders are more robust to noise and quantization errors, which helps in

further enhancing compression and reduces the demands on the digital back-

end and the on-board memory.

If the RIP in equation 2.4 holds, then a reconstruction that is faithful to

the original signal can be accomplished by solving the convex optimization

problem:

z̄ = minz ‖y −Φz‖22 + λg(z); (2.6)

where λ is a regularization term and g(z) is the penalty term, which is

a function of z [15]. The regularization and penalty terms are needed to

account for the noise factor introduced by the l2 norm. After solving for z̄,

we can get the reconstructed signal as follows x̄ = Dz̄.

2.1.3 Block-Sparse Bayesian Learning

The problem of EEG signals is that they are not sparse by nature, neither

in the time domain nor in a transform domain. Since the CS theory is de-

veloped for signals that are sparse or have sparse representation coefficients

in some transform domain, the existing CS algorithms cannot achieve good

signal recovery for EEG signals. Therefore, the aim in [27] was to find an

algorithm capable of recovering the EEG signal from its compressed sensing

data using equation 2.3.

The block-sparse Bayesian learning (BSBL) algorithm was developed to

try and deal with that. BSBL uses a general dictionary to reconstruct a

non-sparse signal instead of finding an optimal dictionary for a specific type

14

Figure 2.1: Block diagram of the adjusted algorithm

of data. The BSBL algorithm was proven in [27] to be effective for the

compressed sensing and reconstruction of non-sparse signals that also have

no distinct block structure. It uses the discrete cosine transform (DCT) and

discrete wavelet transform (DWT) as dictionaries.

BSBL addresses the single channel signal case, also called the single mea-

surement vector (SVM) case. The algorithm exploits the intra-correlations

within the structure of an SMV EEG channel. Let us denote the number of

EEG channels as P . For the case when P = 1 (the SMV case), the data is

encoded using the algorithm explained in section 2.1.1 with a few processing

steps before compressing the data. For the multi-channel case when P > 1,

BSBL reconstructs each column of the data one by one.

It is in the way with which the original data is reconstructed that the

BSBL differs from traditional CS algorithms. CS exploits the sparsity of

the signals when reconstructing them. BSBL exploits either the temporal

correlation in the signal or its block-sparsity [27].

Assume a block sparse signal of the form x = [x1, ..., xh1 , ..., xhg−1+1, ..., xhg]T ,

where [x1, ..., xh1] = xT1 up to [xhg−1+1, ..., xhg] = xTg , and xi has dimension

hi × 1, i = 1...g.

BSBL models each block xi ∈ Rdi×1 as a parametrized multivariate

15

Gaussian distribution of the form

p(xi; γi,Bi) ∼ N(0, γiBi), (2.7)

where i = 1...g. γi is a non-negative parameter that controls the block

sparsity of x. If γi = 0, then the ith block of x is all zero. Bi is a positive

definite matrix with dimension di× di. It captures the correlation structure

of the ith block.

Assuming that the blocks are mutually uncorrelated, the prior of x ac-

cording to 2.7 is p(x) ∼ N(0,Σ0) where Σ0 is a block diagonal matrix with

the ith principal block given by γiBi. The noise vector is assumed to satisfy

a multivariate Gaussian distribution p(v) ∼ N(0, λI), where λ is a positive

scalar and I is the identity matrix.

Now, the estimate of x can be obtained by the Maximum-A-Posterior

estimation, assuming that all the parameters λ and (γi,Bi)
g
1 have been

estimated using the Type-II maximum likelihood estimation [28].

The reconstruction of the data is done using a bound optimization BSBL

algorithm. This algorithm has the ability to exploit the intra-block corre-

lation through the estimation of the matrices Bi. Even though the user

needs to determine the block partition, it still works well for arbitrary block

partitions.

The work done in [15] improves the BSBL algorithm presented in [29] by

investigating both the intra-correlation and inter-correlation of multivariate

EEG channels and processing all channels simultaneously. This approach

processes the data epoch per epoch and then takes the output for every

16

epoch and forms a stream of data, i.e. it is divided into equal blocks of size

N , where N is chosen to be equal to 256 samples per epoch. Assuming there

are P channels, the stream would be of size P ×N . This step is known as

epoching, and it is the first block in figure 2.1.

The second block subtracts the channel mean from every channel, hence

normalizing each channel. Such a step leads to better results by the algo-

rithm because it removes the biasing that affects the data by the acquisition

amplifiers. The means are added again after the reconstruction of the data.

The third block in figure 2.1 exploits the intra-correlation and inter-

correlation of the P channels. A random channel is first selected. Then

its cross correlation is computed among other channels. The three channels

with the highest correlation among the others are placed next to one another

along the rows of the matrix X. Next, the sorted channels are excluded and

the previous steps in this block are repeated again until all channels are

sorted. Once the blocks are reordered into P rows, they are vectorized to

form one output, x ∈ RPN×1, using the equation

V EC(X) = [a1,1, a2,1, ..., aL,1, a1,2, a2,2, ..., aL,2, ..., a1,P , a2,P , ..., aL,P]T ,

(2.8)

where a is the cell matrix of the data matrix X of dimension P ×N .

The last block deals with the compression of the data, which compresses

all the channel outputs at once instead of one at a time. It was shown

in [11] that compression that can lead to perfect reconstruction depends

on the degree of coherence between matrices Φ and D, and the higher that

17

incoherence, the larger the achievable compression ratio. The main condition

for this to happen is that Φ must be iid.

2.2 Source Coding

When one wishes to transmit data from one end to another, it is very impor-

tant to ensure that the transmitted signal only carries the necessary infor-

mation and nothing more, especially in cases where we have constraints on

the data rate we are transmitting with. Therefore, compressing and deleting

unwanted data is an essential step before sending the signal. That is what

source coding does. To define source coding in just one sentence, we can

say that it is an algorithm that is used to get rid of all redundant and irrel-

evant bits in the data. Before going into a deeper and more mathematical

explanation of what that means, it is necessary to define what is meant by

redundant and irrelevant bits.

Redundancy means something that is repetitive, hence why source cod-

ing helps us get rid of that. This means that when the representation of a

symbol is not efficient enough, one can decrease the number of bits used to

represent this symbol. This of course is also dependent on the probability of

occurrence of this symbol as will be demonstrated later. The second term,

irrelevancy, can also be directly interpreted as something that is of no im-

portance to the correct reception and understanding of the data. Therefore,

this irrelevant part can be simply discarded (by the use of filters for exam-

ple). However, out of these two terms, the one that is most important to us

is redundancy, and most source coding algorithms work on taking advantage

18

of it [10].

2.2.1 Overview of Information Theory

In this section we consider a more in-depth explanation of the importance of

source coding. It is a means that allows us to achieve compression of data,

which reduces the amount of bits that need to be transmitted. As mentioned

in the introduction of this chapter, the probability of the occurrence of a

symbol is of great importance, because it is what can be targeted in order

to reduce the redundancy. Therefore one must know the statistics of the

symbols that are being transmitted and the probability of occurrence of

each symbol. This is the basic building block of all information theory.

Let xi and yj be the outcome observed for the two random variables X

and Y . From their probabilities, we can get the first important parameter

in information theory, which is the information of an event. There are two

types of information: the first is the mutual information between xi and yj

and the second is the self-information. Mathematically, these are expressed

as

I(xi; yj) = log2
P (xi|yj)
P (xi)

(2.9)

I(xi) = log2
1

P (xi)
= − log2 P (xi) (2.10)

where equation 2.9 and equation 2.10 are the mutual and self-information

respectively.

The self-information can be the same as the mutual information in the

19

case where the occurrence of the event Y = yj uniquely determines that

of the event X = xi. In this case, the conditional probability P (xi|yj) is

unity and hence we get the self-probability. Another interesting scenario

is when the two random variable X and Y are statistically independent.

Here, the conditional probability would be equal to P (xi) and hence the

mutual information would be 0. Also worth noting is that from equation

2.10, it is clear that the higher the probability of the event, the less the

information that is being conveyed, and the lower the probability, the higher

the information being conveyed.

The second important parameter that we need to know is the entropy

or the average self-information, which gives an indication on how well the

source coding performance is. The entropy is defined as

H(X) =
n∑

i=1

P (xi)I(xi). (2.11)

If we replace the equation 2.10 in equation 2.11, then we would get the

following:

H(X) = −
n∑

i=1

P (xi) log2 P (xi) (2.12)

where the unit is bits/symbol in both equations 2.11 and 2.12.

Figure 2.2 shows the entropy plotted against the probability of an event

of a random variable. It can be seen that the entropy is maximum when the

probability is equal to half. In other words, the entropy would be maximum

when all the symbols are transmitted with equal probability.

In order to see how much redundancy is present in a certain source

20

Figure 2.2: Plot of the entropy w.r.t. the probability of a random variable

coding scheme, one has to simply calculate the maximum entropy and then

subtract from it the entropy of the scheme used. This is defined in equation

2.13. The smaller the difference is, the less is the redundancy available in

the symbols being transmitted. In such cases, the complexity of the source

coding algorithms would come into play, because if the system designed has

limitations on its power or computational ability, and the redundancy is

minimal, then the following question arises. Is it worth it to use such an

algorithm for minimal improvements, but at the same time consume more

resources? The answer to this question will be clearly stated in chapter 4.

Redundancy = Hmax −H(X) (2.13)

Another parameter of importance in information theory is the average

code-word length L, defined as

21

L =
n∑

i=1

L(xi)P (xi). (2.14)

This parameter allows us to see the difference in the code-word length

when using a source coding algorithm compared to when the data is sent as

is. Mostly, when source coding is used, L decreases, which is to be expected,

since the task of the algorithm is to decrease the redundancy.

2.2.2 Huffman Code

Perhaps the best way to show the efficiency and advantage of source coding

is to simply give an example about a source coding algorithm. The algorithm

of choice here will be the Huffman Code. The basic idea behind Huffman

coding is to assign the symbol with the highest probability of occurrence the

shortest code-word, and the least probable symbol the longest code-word,

all the while making sure that the combinations are unique and would not

be confused with other symbols upon receiving them. This is important or

else the code would be invalid.

The algorithm will be explained step by step. It has 4 stages presented

below:

1- The symbols are sorted according to their probability in descending

order.

2- Add the probability of the two lowest probabilities and assign a 1 to

the lower symbol of the two and a 0 to the higher one.

3- Repeat steps 1 and 2 for the probabilities till you end up having only

two values.

22

Figure 2.3: Example of how a Huffman algorithm works

4- Then move from right to left column-wise and symbol-wise to get the

representation of each symbol.

The following numerical example will help show the advantages of the

Huffman code. Let us consider four symbols A, B, C and D with probabilities

0.6, 0.25, 0.1 and 0.05 respectively. Figure 2.3 below shows the graphical

implementation of the algorithm presented above.

After applying the 4 steps of the algorithm, symbol A, which had the

highest probability, ended up being assigned only one bit, whereas the sym-

bols C and D which had the lowest probabilities were assigned three bits

each. Had we chosen not to apply source coding, since we have 22 symbols,

then the logical thing to do would be to give each symbol a two-bit repre-

sentation, say 00, 01, 10, 11 for A, B, C and D respectively. Let us take

any transmitted sequence abiding by the above probabilities, that is we will

transmit 40 symbols (24 A, 10 B, 4 C and 2 D):

AAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBCCCCDD.

23

Now let us replace each symbol by its bit representation first in the case

where no source coding is used and then directly after it in the case where

Huffman encoding was used, and we get:

Without Huffman Encoding:

0001010101010101010101101010101111

and after Huffman Encoding:

00000000000000000000000010101010101010101010110110110110111111.

In the former scenario, for 40 transmitted symbols, we get a total of

40x2 = 80 bits, whereas for the latter scenario, we would get a total of

24x1 + 10x2 + 4x3 + 2x3 = 62 bits, hence a decrease of 22.5% in the amount

of bits transmitted.

From the above values obtained, it is easy then to calculate the average

code-word length L as follows:

L = 2x0.5 + 2x0.25 + 2x0.125 + 2x0.125 = 2 bits/symbol.

Lhuffman = 1x0.6 + 2x0.25 + 3x0.1 + 3x0.05 = 1.5 bits/symbol.

The above result reflects the improvement that source coding can intro-

duce, since the average length of one code-word decreased from 2 bits to 1.5

bits, or 25%!

The Huffman code is an algorithm applied for the compression of dig-

ital data. It is one of many such schemes belonging to the lossless data

compression algorithms, as opposed to lossy data compression algorithms.

24

The difference between the two types of algorithms is in both the amount

of compression achieved and the quality of the reconstructed signal. For

lossless algorithms, the compression ratio achieved is less than when a lossy

algorithm is used. On the other hand, they are able to achieve perfect

reconstruction at the receiver end, something that can not be done by the

lossy algorithms. Some signals do not afford losing any of its accuracy

(remember that analog signals already lose some of their resolution due to

the quantization error introduced by digitizing the signal), hence the reason

why lossless algorithms are preferred. However, these codes require more

computational processing than their lossy counterparts.

The above algorithm is a digital source coding technique. There exist

several important analog source coding techniques, with the most popular

being the Pulse-Code Modulation (PCM).

The concept of PCM is very simple. It converts an analog signal into

a digital one by first sampling the signal, then quantizing it, and finally

encoding each quantized value by a certain number of binary bits.

Another important analog source coding technique is the Differential

pulse-code modulation (DPCM). The concept of DPCM is based on the

correlation between successive samples that are sampled at the Nyquist rate

or faster. In such cases, the correlation is high, that is, the average change in

the amplitude of the successive samples is relatively small, and DPCM makes

use of this correlation [22]. Also worth mentioning is the Delta modulation

(DM) scheme, which is basically just a simplified form of the DPCM. How-

ever, we will not delve into those two schemes as the intention of mentioning

them is simply to bring them to the attention of the reader.

25

2.3 Transmission Channel

The transmission process consists of three main building blocks: the trans-

mitter, the receiver and the channel. The transmitter side deals with the

encoding of the data whereas the receiver decodes it. This section explains

the part that is in the middle: the channel and its effects on the transmission

process. To help in the understanding of how a channel works, examples of

a few well-known channel model will be discussed.

2.3.1 Channel Models

A channel is basically a physical medium through which a signal is transmit-

ted. During transmission in such a medium, errors are added to the trans-

mitted data, hence corrupting it. A channel can be any physical medium

where data travels through on its way from the transmitter to the receiver. It

can be the atmosphere in the case of wireless transmission, or wire lines and

optical fiber cables in the case of telephone channels, among other possible

mediums [22].

An ideal channel is one in which the signal that is transmitted arrives

exactly as is at the receiver end where it is reconstructed. However, in real

life that is never the case. In the simplest of cases, the channel will add in

one way or another noise that is usually considered white, and hence the

first channel we will discuss is the Additive White Gaussian Noise (AWGN)

channel.

This is a type of channel where the received signal is simply the sum of

the original signal and added noise, as defined in equation 2.15.

26

Figure 2.4: AWGN channel model

y(t) = x(t) + n(t) (2.15)

where y(t) is the received signal, x(t) the sent signal and n(t) the added

noise. This equation can be easily transformed into the model shown in

figure 2.4 below. The added white noise has a constant power spectral

density, which means it has the same value over all frequencies.

This channel model does not take into consideration the phenomena of

fading, interference, dispersion, nonlinearity or frequency selectivity. How-

ever, it gives a mathematical model that is useful in understanding the

behavior of a system before such phenomena are taken into consideration

[2].

All of the aforementioned phenomena occur frequently depending on the

channel and the environment among other variables. The most common

is fading. Fading occurs normally due to multi-path propagation, which is

created because of the presence of reflectors that lie in the path between

27

the transmitter and the receiver. This causes interference with the original

signal and it leads to attenuation, phase shift and delay in the original

signal. Frequency selectivity is a kind of fading as well. It is caused when

the signal partially cancels itself when multi-path exists. Dispersion is when

the signal hits an object, such as the branches of a tree and it gets dispersed

or deflected into several directions, which could lead to more paths due to

more reflections of the signal.

Some other common examples of channel models will be given. We start

things off with the simplest of all, the binary symmetric channel (BSC).

This channel only transmits zeros and ones, that is binary symbols as the

name indicates [22].

To model this channel, we assume that the input and output have

discrete-time binary input and output sequences respectively, characterized

by the set X = 0, 1 for the input and Y = 0, 1 for the output. The errors

are assumed to be statistically independent, and their average probability is

p. The transition probabilities are given as

P (Y = 0|X = 1) = P (Y = 1|X = 0) = p, (2.16)

and

P (Y = 0|X = 0) = P (Y = 1|X = 1) = 1− p. (2.17)

Therefore the channel can be modeled as a discrete-time channel as is

shown in figure 2.5.

The BSC is actually a special case of a more general discrete-time chan-

28

Figure 2.5: Binary symmetric channel model

nel called the discrete memoryless channel. In this case, we have q-ary

input symbols going into the channel and Q-ary output symbols coming out

from the detector with Q ≥ 2q. If we consider that the channel and the

modulation are memoryless, then the channel can be described by a set of

conditional probabilities

P (Y = yi|X = xj) ≡ P (yi|xj), (2.18)

where i = 0, 1, ..., Q− 1 and j = 0, 1, ..., q − 1.

Another channel is the discrete-input, continuous-output channel, where

the input alphabet is one of q possible values, with X = x0, x1, ..., xq−1,

and the output of the detector is non-quantized, which means that there are

infinite values for the output value Y . An example of such a channel is the

AWGN channel explained at the beginning of this section, which is modeled

as

29

Y = X +N, (2.19)

where N is a zero-mean Gaussian random variable with variance σ2 and

X = xk, k = 0, 1, ..., q − 1.

A main constraint on any channel model is the capacity of the channel,

which will be briefly explained now. We start by considering a discrete

memoryless channel with an input alphabet X = x0, x1, ..., xq−1, an output

alphabet Y = y0, y1, ..., yQ−1 and the set of transition probabilities defined

in equation 2.18. Assume that the symbol xj is transmitted and the symbol

yi is received. The mutual information provided about the event X = xj by

the occurrence of the event Y = yi is log[P (yi|xj)/P (yi)], where [22]

P (yi) =

q−1∑
k=0

P (xk)P (yi|xk). (2.20)

The average mutual information would be

I(X;Y) =

q−1∑
j=0

Q−1∑
i=0

P (xj)P (yi|xj) log
P (yi|xj)
P (yi)

. (2.21)

The channel capacity is then calculated by computing the maximum of

I(X;Y) over the set of input symbol probabilities P (xj), which depends on

the characteristics of the discrete memoryless channel through the condi-

tional probabilities P (yi|xj). Therefore, the channel capacity C is

30

Figure 2.6: BSC capacity

C = max
P (xk)

I(X;Y) = max
P (xk)

q−1∑
j=0

Q−1∑
i=0

P (xj)P (yi|xj) log
P (yi|xj)
P (yi)

, k = 0, 1, ..., q−1.

(2.22)

There exist two constraints for which the maximization is done:

1- P (xj) ≥ 0.

2-
q−1∑
j=0

P (xj) = 1.

The unit of the channel capacity C is measured in bits per input symbol

into the channel. Figure 2.6 shows the capacity of a binary symmetric

channel plotted versus the probability of error p.

Next we consider the discrete-time AWGN memoryless channel. Again,

the capacity is the maximum average mutual information between X and

Y .

31

C = max
P (xk)

q−1∑
i=0

∞∫
−∞

p(y|xi)P (xi) log
p(y|xi)
p(y)

dy, k = 0, 1, ..., q − 1 (2.23)

where

p(y) =

q−1∑
k=0

p(y|xk)P (xk). (2.24)

2.3.2 Two-State Markov Model

A Markov chain is a stochastic process that studies the transitions between

the different allowable states in a certain situation [6]. It is a memoryless

random process because the next state in the chain depends does not depend

on the previous state other than the current state.

Three elements characterize a Markov chain:

1- The transition diagram (shown in figure 2.7 for a two state).

2- The probability transition matrix P .

3- The steady state vector π [6].

The two-state Markov model is shown in Figure 2.7. The model has two

states in the figure: state 1 or the good state, which means that the packet

has been received, and state 2 or the bad state, which means that the packet

has been lost. The variable PBB is the self-loop probability for state 2, PAA

the self-loop probability for state 1, PAB the probability of transition from

state 1 to state 2, and finally PBA, the probability of transition from state

2 to state 1 [6].

For the sake of simplicity, let us relabel the probabilities as follows:

32

Figure 2.7: 2-state Markov model

PBB is q, PBA is p, PAB is P and PAA is Q.

For states greater than 2, the other states are added with arrows going to

and coming from every other state including one self state arrow signifying

that the next state remains in the same state as the current state.

The probability transition matrix has as elements the transition proba-

bilities between each of the states and the states themselves. For an nxn

matrix, which means there are n-states in the chain, P is expressed as:

P =

P00 P01 ... P0n

P10 P11 ... P1n

...

Pn0 Pn1 ... Pnn

(2.25)

where pij is the probability that the current state in the chain is in state

i given that the previous state was in state j [6].

The elements of P must satisfy the two following conditions:

1- pij ≥ 0, i, j = 0, 1, ..., n.

2-
∑

j pij = 1, j = 1, 2, ..., n.

33

The first property simply means that each element must be greater than

or equal to zero, which is quite logical since those are probabilities. The

second property implies that the total sum of the elements of a row must be

equal to one.

For the model used in this thesis, the two-state Markov model, the prob-

ability transition matrix is as follows:

P =

PAA PAB

PBA PBB

 (2.26)

The steady-state vector π represents the total appearing percentage of

every state in the chain [6]. We can get this vector from the probability

transition matrix P as shown in equation 2.27 below

Pm = 1π (2.27)

where 1 is a column vector of ones and m is a large power. The vector

π must satisfy the property that
∑

i πi = 1, where πi is the steady state

probability for the ith state. What this property signifies is that the sum of

the elements of π should be equal to 1.

There are two parameters of great importance for such a model and

they are the average packet loss burst length, β2state, and the probability of

packet loss, α2state, both of which are defined as follows:

β2state =
1

1− q
(2.28)

and

34

α2state =
P

2−Q− q
. (2.29)

From equations 2.28 and 2.29 it is easy to find the self-loop probabilities

q and Q:

q = 1− 1

β2state
(2.30)

and

Q = 1− α2state

(1− α2state)β2state
. (2.31)

Markovian models are quite efficient in describing the characteristics of

a channel in a mathematical method, allowing us to have a better approach

to simulating a real channel [6].

2.3.3 Packet-Switched Networks

In this thesis, packet-switched networks are used since we are transmitting

packets of data. However, it is important to explain what is happening

during transmission for both packet-switched and circuit-switched networks,

and compare the two schemes.

A circuit-switched network establishes a fixed bandwidth channel be-

tween nodes before the users are able to communicate or connect. It is

analogous to connecting the nodes physically with an electrical circuit [20].

Normally, circuit switching is used only for connecting voice circuits. How-

ever, it can be used in other forms of digital data, even if that rarely happens.

35

In circuit-switched networks, the data is transferred non-stop and without

any overhead bits. During a communication between two users, the circuit

cannot be used by other users until the circuit is dropped and then a new

connection is set up. Such channels are labeled as busy channels. On the

other hand, when a channel is available for new calls to be set up, such

channels are called idle [20].

To establish a connection through the network and monitor its progress

and termination requires the use of a control channel that is separate, similar

to the links during telephone exchanges where the CCS7 packet-switched

signaling protocol is used to communicate and control the call setup and

information as well as use time division multiplexing (TDM) to transmit

the actual circuit data. Examples of circuit switched networks include high-

speed circuit-switched data service in cellular systems such as X.21 and the

public switched telephone network.

Packet switching on the other hand is a communications method where

packets are sent on different routes between nodes over data links that are

shared with other traffic. In each network node, packets are either queued

or buffered, resulting in some variable delay called the queuing or buffering

delay respectively. Once a packet is routed using a specific path, it is highly

possible that the path may change for the next packet and not be the same.

This means that in some cases the packets sent from the same source to the

same destination would end up being routed differently. Hence the need to

know the original order of the packets [20].

Packet switching is used for several advantageous reasons. It optimizes

the use of the channel capacity available in digital communication networks

36

such as computer networks. It also minimizes the time wasted in circuit

switching to establish a connection for transmission, and increases robust-

ness of communication. The Internet and local area networks (LAN) are the

most well-known applications that make use of packet switching. [20].

To conclude this section, a small comparison is made between circuit

and packet switching. The main points for circuit switching are:

1- Long call setup times

2- The setup times can be negligible compared to data length

3- Inefficient channel utilization for bursty traffic.

As for packet switching, its main points are:

1- Breaks the message into packets

2- Can interpolate packets from other nodes, therefore does not block

the system

3- Error check on

4- Efficiently handles asymmetric traffic.

2.4 Channel Coding

This section covers the topic of channel coding. Channel coding is the most

important building block of any transmission scheme. It is used to protect

the transmitted data from errors or erasures that are introduced by the

channel in which they are being transmitted, so that they can be correctly

decoded at the receiver. Source coding decreases the amount of bits being

sent by removing redundant bits whereas channel coding adds bits to the

transmitted data to protect it. There are two types of channel codes: the

37

block codes and the convolutional codes.

2.4.1 Block vs Convolutional Codes

Let us start by defining the two types of codes, and then proceed to give an

example of one of the most powerful convolutional codes, the Viterbi code as

well as an example of a simple block code, the repetition code. Linear con-

volutional codes produce an output that depends on the previously received

bits and the current bit by performing an operation such as binary XOR on

those bits for example. The block codes on the other hand, simply take a k

block of bits and converts them into an n block of data. Both codes have

a rate R = k/n, where k is the input number of bits and n is the output

number of bits after encoding. Linear block codes have two advantages over

linear convolutional blocks [10]:

1- The processing delay caused by their implementation is less than their

counterparts.

2- The computational and processing complexity of the algorithms is

less.

The Viterbi algorithm is based on the maximum likelihood decoding

technique. Figure 2.8 below shows an example of a convolutional encoder

that takes k bits as input and outputs n bits, where n > k [10].

The encoder shown in figure 2.8 has as parameters k = 1 and n = 2, and

hence the rate of this encoder is 1/2. The first output bit is computed by

applying the XOR operation on x(n), x(n-1) and x(n-2), whereas the second

output bit is computed by applying an XOR on x(n) and x(n-2). One

important thing to note is that the convolutional encoder is not systematic,

38

Figure 2.8: Convolutional encoder [10]

which means that the output bits do not contain any of the input bits. That

can be easily noticed by observing the output. For systematic codes, the n

output bits are made of the k input bits followed by the n − k added bits

for protection, which is obviously not the case with the Viterbi encoder.

To obtain the trellis diagram which is needed for the decoding of the

received sequence, one needs to apply the Viterbi algorithm. Here is a

summarized step-by-step implementation of the algorithm [10]:

A- Initialization

Label the left-most state of the trellis (i.e., the all-zero state at level 0)

as 0.

B- Computation step j + 1

Let j = 0,1,2,... and suppose that at the previous step j, we have done

two things: all survivor paths have been identified, and the survivor path

39

and its metric for each state of the trellis have been stored.

Then at level j + 1, compute the metric for all the paths entering each

state of the trellis by adding the metric of the incoming branches to the

metric of the connecting survivor path from level j. Hence, for each state,

identify the path with the lowest metric as the survivor of step j+1, thereby

updating the computation.

C- Final Step

Continue the computation until the algorithm finishes its forward search

through the trellis and therefore reaches the termination node (i.e., the all-

zero state), at which time it makes a decision on the maximum likelihood

path. Then, the sequence of symbols associated with that path is released

to the destination as the decoded version of the received sequence.

One important note is that if the received sequence is very long, then

the Viterbi algorithm will require a lot of storage capabilities, and in such

cases, normally a compromise is made. That compromise is to truncate the

trellis as follows:

We choose a decoding window of length l. The algorithm operates on

a corresponding frame of the received sequence and it always stops after l

steps. After that, a decision has to be made with regards to the ”best” path,

and the symbol associated with the first branch on that path is released to

the user, whereas the one associated with the last branch on the path is

dropped.

The next step is to move forward the decoding window by one time

interval, and make a decision on the next code frame, and so on. It is true

that in such a case, the decoding decisions made are not exactly maximum

40

Figure 2.9: Viterbi decoder [10]

likelihood, but they can be made almost as good provided that the decoding

window l is long enough [10].

It has been shown that satisfactory results can be obtained as long as

the decoding window length l is about five times the constraint length K of

the convolutional code, where K is equal to the number of shifting elements

found in the encoder, plus 1. In the case of figure 2.8, K = 3. After applying

the algorithm, we get the trellis diagram shown in figure 2.9.

A quick example will illustrate how a trellis diagram is built. Assume

that the encoder in figure 2.8 produces an all-zero output, and after trans-

mission, the received sequence was 0100010000.... Therefore, there are two

bits that are received in error (the two bits that are 1). Figure 2.10 gives a

step-by-step illustration of how the correct sequence is decoded.

Next up, we discuss block codes, and we start with the repetition code,

which is one of the simplest and easiest block codes to implement. The

concept is to take every codeword and repeat it based on the rate of the

code. For example, a k = 2 and n = 6 code has a rate of 1/3. This

41

Figure 2.10: Step by step Viterbi decoding [10]
42

means that every original code-word has to be repeated three times. Let

the original symbols be designated as ki, i = 1, 2, 3, 4 and the codewords as

nj , j = 1, 2, 3, 4. An example of a 1/3 rate repetition code is

k0 = [0 0], n0 = [0 0 0 0 0 0],

k1 = [0 1], n1 = [0 1 0 1 0 1],

k2 = [1 1], n2 = [1 1 1 1 1 1],

k3 = [1 0], n3 = [1 0 1 0 1 0],

The decoding is done by comparing the received code-word to the dictio-

nary containing all possible code-words. The comparison is done in terms of

the differences in the bits. The codeword that has the least total difference

is then chosen as the corrected received code-word [10].

2.4.2 Reed-Solomon Code

Now we move on to a more complicated block code which is the Reed-

Solomon code. The RS code is a linear systematic block code based on finite

field theory. It is an (n, k) code, where k is the number of data symbols,

and n is the total number of symbols transmitted which contains both the

data symbols and the Forward Error Correcting (FEC) symbols, as shown

in Figure 2.11.

The parameter n is defined as,

n = qm − 1, (2.32)

where q is the size of the Galois Field (GF), and m is the number of bits

in every symbol. Basically a GF is a finite field on which the operations of

43

Figure 2.11: Reed-Solomon encoder [10]

commutative addition, subtraction, multiplication and division (except by

zero) are defined [19].

The RS code has the ability to correct t errors, as long as the following

inequality is respected:

t ≤ (n− k)

2
. (2.33)

Next, let us delve into the mathematics behind the encoding of the RS

code [25], which is defined by its generator polynomial. For a code capable

of correcting up to t errors, the generator polynomial is given as

44

g(X) = (X+am0)(X+am0+1)(X+am0+2)...(X+am0+2t−1) = g0+g1X+g2X
2+...+g2t−1X

2t−1+X2t

(2.34)

where a, an m-bit binary symbol, is the primitive element of the finite

field GF (2m), and m0 is a pre-set number that is usually 0 or 1. To encode

a message sequence, the message polynomial is first constructed as

u(X) = u0 + u1X + u2X
2 + ...+ uk−1X

k−1. (2.35)

The parity polynomial, which has the parity sequence as its coefficients,

is calculated as the remainder of X2t. The code is constructed as the data

sequence followed by the parity sequence. Hence, the final code polynomial

is

t(X) = X2tu(X) + v(X) (2.36)

where

v(X) = v0 + v1X + v2X
2 + ...+ v2t−1X

2t−1. (2.37)

The decoding of the data takes place as follows. We assume that the

transmitted code vector is

t(X) = t0 + t1X + t2X
2 + ...+ tn−1X

n−1 (2.38)

and that the received vector is

45

r(X) = r0 + r1X + r2X
2 + ...+ rn−1X

n−1. (2.39)

The first step is to calculate the 2t syndrome components as follows:

S0 = r(a0) = r0 + r1 + r2 + ...+ rn−1

S1 = r(a1) = r0 + r1(a) + r2(a)2 + ...+ rn−1(a)n−1

S2 = r(a2) = r0 + r1(a
2) + r2(a

2)2 + ...+ rn−1(a
2)n−1

up to

S2t−1 = r(a2t−1) = r0 + r1(a
2t−1) + r2(a

2t−1)2 + ...+ rn−1(a
2t−1)n−1.

The syndrome polynomial is then calculated as

S(X) = S0 + S1X + S2X
2 + ...+ S2t−1X

2t−1. (2.40)

The second step in the decoding process of an RS code is to find the

error location polynomial L(X) and the error evaluation polynomial W (X).

The error location and error evaluation polynomials are defined as

L(X) = 1 + L1X + L2X
2 + ...+ LeX

e (2.41)

and

W (X) = W0 +W1X +W2X
2 + ...+We−1X

e−1 (2.42)

respectively, where e is the number of errors. These two polynomials are

related to the syndrome polynomial through the fundamental equation

L(X)S(X) = W (X)modX2t. (2.43)

46

Both L(X) and W (X) are solved using the iterative Berlekamp-Massey

algorithm.

The last step in decoding an RS code is to find the error location and

the error value. One can find the error location by using Chan’s searching

algorithm. Basically X is substituted with an in L(X) for all possible n in a

code to find the root of L(X). The inverse of the root of the error location

polynomial is the error position. Once the error location is known, the error

value is calculated with the help of Forney’s error evaluation algorithm.

Once the error value is found, it is added to the corrupted symbol to correct

the error [24].

An interesting property of the RS code is its ability to correct not only

errors but also erasures, as long as the following inequality is respected:

2t+ S ≤ n− k, (2.44)

where S is the number of erasures that can be corrected. In such a case,

the error locator polynomial is modified such that it would also include an

erasure locator polynomial.

There are many applications for the RS code, most notably in data

storage applications such as the CD and DVD, and in data transmission. It

is also used in mail encoding and most notably, in satellite communications.

The first major use of RS codes for satellite transmission was when Voyager

had to transmit a digital picture back to Earth and it used the RS code

in conjunction with the Viterbi algorithm, and since then this practice has

become a fixture in deep-space and satellite transmission [24].

47

Figure 2.12: Interleaver [18]

2.4.3 Interleaving

An interleaver is a process that rearranges the order of transmitted symbols

before sending them and then returns them to their original location at the

receiver’s end.

The main reason behind the use of an interleaver (and at the receiver

a deinterleaver) is to be able to deal with channels that cause errors or

erasures in bursts. The concept is very simple: just input the sequence

to be transmitted horizontally and then read it vertically, as is shown in

Figures 2.12 and 2.13 respectively. What this helps in is spreading out the

errors caused by bursts which helps in making the decoding process in most

scenarios better.

For transmission schemes that use block coded channel encoders, the

error detection and correction capability can be limited as seen in equation

2.33. In case of a very poor channel, the block decoders would fail to correct

48

Figure 2.13: Deinterleaved output [18]

all the errors introduced by the channel, but by spreading the errors on a

larger set of symbols, the interleaving/deinterleaving process in fact gives

the decoders a better chance at being able to properly decode the received

data.

The interleaver in Figure 2.12 is a square interleaver having a depth of

four and is called a 4-by-4 interleaver. The depth of the interleaver is the

number of symbols in each block of data. Of course, the interleaver can have

any dimension the designer wishes to use, but it is always advisable to use

one where the distance between the two consecutive output symbols is large

enough, so that when the error burst occurs, the errors can be scattered as

far away as possible from each other.

49

Chapter 3

Frameworks

This chapter discusses the different schemes applied and parameters used

throughout the work.

3.1 General Framework of the CS-EEG Encoding

Figure 3.1: Block diagram of the encoder

After collecting the data and applying compressed sensing (CS) to it

using the improved block-sparse Bayesian learning (BSBL) algorithm, the

encoder stage was designed as shown in figure 3.1.

The first step in designing our transmission system was to choose the

number of quantization bits from which we can know how many quantization

levels will be used. The equation that relates the two quantities is given as

Qlvl = 2qbits (3.1)

where Qlvl is the number of quantization levels available and qbits is

50

the number of bits required to represent the quantized values. To decide

on the number of quantization bits, we need to make sure that no valuable

information is lost when quantization is done. This is because quantization

introduces an error called the quantization error which should be kept at a

minimum. Keeping that in mind, we quantized the signals using different

number of quantization bits. We sent the data through an ideal channel. We

did not apply any source or channel coding on this data in order to see the

effect of this parameter on the reconstructed signals. Then we reconstructed

the quantized data and compared it to the original signals available.

There are two types of quantization:

1- Uniform quantization: The quantization levels have the same interval

distance between each other. Each interval is also represented by the same

number of quantization bits. This type of quantization is used when the

signal values are uniformly distributed among all values.

2- Non-uniform quantization: The signal information is distributed heav-

ily around a certain range. In those areas, more levels are assigned, whereas

the other areas would get lesser levels assigned to them.

Since the compressed sensing (CS) EEG signals contain equally impor-

tant information in all its levels, we chose uniform quantization for our work.

In the first two sections, 3.2 and 3.3, we used the lossless Huffman code

for source coding. The reasoning behind our choice is that Huffman is capa-

ble of perfectly reconstructing a signal under ideal channel conditions. Since

the EEG data has values that occur more than others, applying the Huffman

code to compress it is a reasonable choice. This is because Huffman coding

relies on the probability of occurrence of symbols to compress the data.

51

Huffman is used in many applications such as the image formats joint

photographic experts group (JPEG) and portable network graphics (PNG).

It is also used in the archive file format PKZIP (it includes the zip archiving

file format).

The Reed-Solomon (RS) encoder was used in all schemes. The RS is a

block code. Block codes are known for their fast implementation compared

to convolutional codes, which is highly desired for wireless body network

sensors (WBSN)s. It is also capable of detecting and correcting errors. That

capability can be increased by changing the data length of each codeword

(remember that for block codes such as the RS, k-data symbols are encoded

into n-symbols, where n > k).

In figure 3.1, the data was sent as packets. Each packet length is 12

symbols, where each symbol is a double variable in Matlab.

The channel was simulated using a two-state Markov model [12]. The

data was transmitted through the Markov model under three noisy channel

conditions:

1- Good channel conditions, which mean that the number of errors in-

troduced by the channel is on average quite low.

2- Average channel conditions, which mean that the number of errors

increases. This is where the channel encoder and decoder error correcting

capabilities start to be tested.

3- Poor channel conditions, which mean that the number of errors intro-

duced by the channel is large.

The channel error sequences were generated in two different ways using

the above matrices for each channel condition:

52

1) Random pattern: In this approach, we generate the error sequence at

the same time as the data is being transmitted. What this means is that the

data transmitted will not always be sent under the same error sequences.

Every transmission process will be done under a different error sequence.

For fair results, the same data is transmitted 10 times over 10 different

error sequences. Then the results obtained for each of the 10 cases will be

averaged. This way of sending the data helps to find if the algorithm that

outperforms all others once, will in general outperform them on a regular

basis.

2) Fixed pattern: This approach generates one fixed error sequence for

the three channel conditions (good, average, poor). These 3 sequences are

used for all the data to see how the algorithms would compare under the

exact same channel conditions.

We expect that the algorithm that will outperform the other algorithms

using the first method will also outperform them using the second method.

The error sequence consists of two values: 1 and 2. The value 1 implies that

the packet has been correctly received. The value 2 implies that the packet

has been incorrectly received. In the case of the latter situation, the whole

packet is in error. This means that the symbols found in the packet have all

had their values changed.

An interleaver and deinterleaver were used after the RS encoder and

before the RS decoder. The reasoning behind the use of the interleaver is

simple. The error sequences can occur in large bursts, especially in poor

channel conditions. In such a case, the RS decoder might not be able to

correct all the errors introduced by the channel. This would degrade the

53

performance. The interleaver would spread out the errors. This would allow

the RS decoder to be able to correct the erroneous data.

The following sections will give the block diagrams of the schemes applied

to study the individual and combined effects of source coding (compression),

forward error correction and interleaving on the performance of the encoder

side in terms of processing times and total number of symbols sent. It

will also evaluate their performances at the decoder side in terms of data

reconstruction.

3.2 Huffman Code Followed by RS Code

Figure 3.2: Block diagram of the first approach

The first scheme that we considered was the pairing of the Huffman

code followed by a Reed-Solomon code. At the receiver side, the decoder

of each algorithm is applied in reverse order from the encoder side, i.e.

the RS decoder first and then the Huffman decoder. Finally, the signal is

reconstructed. The block diagram for this scheme is shown in figure 3.2.

54

3.3 Huffman Code Followed by RS Code and

Interleaving

Figure 3.3: Block diagram of the first approach with interleaving

Figure 3.3 shows the block diagram of the approach used in this section.

Basically it is the approach used in section 3.2 with interleaving and dein-

terleaving added before and after the channel respectively. We expect the

results to improve with the addition of interleaving.

3.4 No Source Coding Followed by RS Code

The CS algorithm used achieved a compression ratio of 90 %. Since the

addition of Huffman proved to under-perform in poor channel conditions

as will be shown in the next chapter, in this framework we use no further

compression than that provided by CS. Therefore we remove the Huffman

code. Instead, the quantized data is sent directly into the RS encoder, as

shown in figure 3.4.

55

Figure 3.4: Block diagram of the second approach

3.5 No Source Coding Followed by RS Code and

Interleaving

Figure 3.5: Block diagram of the second approach with interleaving

This last framework is a slight modification of the previous one in that

interleaving and deinterleaving is added after and before the RS encoder

56

and decoder respectively, as is shown in figure 3.5. Again we expect an

improvement to the previous scheme due to the presence of interleaving.

3.6 Performance Measures

The measures used to test the performance of the work done are:

1- Normalized Mean Square Error (NMSE): this parameter calculates

the errors or differences between the original signal and the reconstructed

signal. It is expressed as
‖(x−x̂)‖22
‖x‖22

, where x is the original signal and x̂ is the

reconstructed signal. The lower and closer to zero the NMSE, the better

the performance of the scheme.

2- Signal to Noise Ratio (SNR): a way to see how much the noise or

errors have distorted the signal. It is defined as SNR = 10 log(
Psignal

Pnoise
). For

our work, the signal is the CS output signal before quantization, and the

noise is the recovered signal after reconstruction. The higher the value of

this parameter, the better. The unit for this parameter is decibel (dB).

3- Structural SIMilarity (SSIM): a parameter that measures the similar-

ity between the original and reconstructed signals. Its value is between 0

and 1. The closer it is to 1, the closer the reconstructed signal is to the

original one [30].

57

Chapter 4

Results

4.1 Parameters Used in the Framework

This chapter discusses the results obtained from the different schemes ap-

plied. We start by presenting the parameters used for the improved com-

pressed sensing (CS) algorithm. The signals that we are encoding are elec-

troencephalogram signals. They are collected from 23 channels. The data

was compressed up to a 90 % compression ratio (CR) with the help of

CS. The dictionary used is the inverse discrete cosine transform (DCT−1)

dictionary. The reconstructing algorithm used is the BSBL-BO algorithm

explained in [15].

Table 4.1: Results for Different Values of qbits

qbits NMSE SNR(in dB) SSIM

8 0.03526 ∗ 10−3 38.6601 0.9756

7 0.06316 ∗ 10−3 32.8572 0.9611

6 0.25824 ∗ 10−3 26.7608 0.9224

5 1 ∗ 10−3 20.7383 0.841

Table 4.1 gives the NMSE, SNR and SSIM for different values of the

number of quantization bits qbits. We started with qbits = 8 bits and the

58

results were excellent. We then decreased the number of quantization bits

to 7 bits to see how much the parameters would be affected. Logically, we

expect the values to be slightly worse, which was the case. But even then,

the results were still excellent. We then resent the data for qbits = 6 bits

and the results were still great. We tried to decrease the value of qbits to

only 5 bits, but as can be seen in table 4.1, the results were not satisfactory.

Usually, if SSIM = 0.841, the reconstructed signal still resembles the original

signal a lot. But we can not afford such loss in signal similarity because we

need to account for the losses that the channel errors will introduce to the

data. This would further lower the value of SSIM and hence the lowest value

for qbits that we can afford to achieve good reconstruction is 6 bits. This

means that there are 26 = 64 quantization levels.

The RS code used had a codeword length of n = 255 symbols. Three

different data lengths k were used: 223, 193, 153. By applying equation 2.33,

we can calculate up to how many errors each code is capable of correcting.

The RS(255,223) code can correct up to 16 errors. The RS(255,193) code

can correct up to 31 errors. And the RS(255,153) code can correct up to

51 errors. It becomes directly clear that the RS(255,153) would yield better

results than the other two codes in severe channel conditions because of

its ability to correct more errors, but the trade-off is that we would be

transmitting more bits.

The parameters for the 2-state Markov model were calculated from the

values of the probability of packet loss, α, and the average packet burst

length, β. The values of both α and β for each of the 3 noisy channels were

obtained from previous statistics on global system for mobile (GSM) com-

59

munications (which is a standard used by mobile phones in digital cellular

networks). The values for α and β are given in table 4.2.

Table 4.2: Values for α and β

Channel Condition α β

Good 0.001167 1.076

Average 0.02825 1.378

Poor 0.12372 1.429

From the values of α and β, we calculated the values of pij of the proba-

bility transition matrix using equations 2.30 and 2.31. These equations allow

us to calculate the values of Q and q, which are the self loop probabilities of

the good and bad states in the Markov model respectively. From Q and q

we calculate P = 1−Q and p = 1− q. The transition probability matrices

for each of the 3 channels are then as follows:

Pgood =

0.9989 0.0011

0.9294 0.0706

Paverage =

0.9789 0.0211

0.7257 0.2743

Ppoor =

0.9012 0.0988

0.6998 0.3002

.

The interleaver used in the two sections 3.3 and 3.5 is a

Lepoch

12 by 12

interleaver, where L is the length of the encoded epoch (i.e. after source

and channel encoding). This means that the encoder depth is 12, which in

60

turn means that the data is rearranged in a way that every 12th symbol in

the epoch is placed one after the other. Therefore, if we have 24 symbols

ABCDEFGHIJKL MNOPQRSTUVWX,

this interleaver would rearrange them as

AMBNCODPEQFRGSHTIUJV KWLX.

4.2 Huffman Code Followed by RS Code

Tables 4.3, 4.4 and 4.5 show the results obtained when the data was transmit-

ted through the randomly generated error sequences using the three different

RS codes, the (255,223), (255,193) and (255,153) codes respectively.

Tables 4.6, 4.7 and 4.8 show the results of the three RS codes using the

pre-generated error sequences for each of the three channel conditions (good,

average, poor).

Naturally as expected, the case when RS(255,153) was used achieved

the best results. However, for poor channel conditions, the SSIM of the

reconstructed signal was low, which means that this scheme is not suited for

bad channel conditions.

Table 4.3: Results for Random Patterns Using RS(255,223)

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 29.6 ∗ 10−3 21.4714 0.8127

Poor FAILED FAILED FAILED

Overall, the only combination in this section that fared well was the

61

Huffman code followed by the RS(255,153) code, but even that pairing gave

results that are not satisfactory under poor channel conditions. Figures

4.1, 4.2 and 4.3 show the reconstructed signal in green superimposed on

the original signal in blue for the cases when RS(255,223) was used in both

good and average conditions, and when the RS(255,193) was used in bad

conditions respectively.

Notice that for the RS(255,223) code, the scheme completely fails under

poor channel conditions using the randomly generated error sequence ap-

proach, and completely under all channel conditions when using the fixed

generated error sequence. The RS(255,193) fails as well under poor channel

conditions when using the fixed generated error sequence.

The reason for such failures is because the number of errors introduced

by the channel in a certain RS codeword is larger than what can be corrected

by the RS decoder. In this case of the RS(255,223) and RS(255,193) codes,

the number of errors that can be corrected is 16 and 32 errors respectively.

This changes the symbol stream and hence introduces a new codeword that

is not found in the dictionary of the Huffman code. In such cases, Huffman

can no longer decode the codewords and the whole scheme fails.

In the cases where the scheme did not fail, but results achieved were

less than satisfactory, there exists another reason. If the error introduced is

larger than what the RS decoder can correct, it can happen that the errors

are still a codeword in the Huffman dictionary. But this codeword is not

the one that was actually transmitted. This still allows the Huffman code

to function properly, however a propagated error would occur starting with

the first codeword that was wrongly decoded. To make this clearer, assume

62

that the transmitted codeword was

AAABCDADBBD

.

If the error occurs at the 4th symbol, i.e. symbol B, there is no certainty

that the error will not affect the rest of that sequence. The Huffman decoder

would still be able to decode the sequence because even though the symbol

sequence is erroneous, the errors caused symbols to appear in the sequence

that are still in the Huffman dictionary. Therefore, the decoded sequence

can possibly be

AAACABDDCBA

which obviously is not the transmitted sequence itself. This would de-

grade the reconstructed signal and hence why some numbers such as those

in table 4.4 for average and poor channel conditions are not better.

Table 4.4: Results for Random Patterns Using RS(255,193)

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 19.8 ∗ 10−3 23.9993 0.852

Poor 211.8 ∗ 10−3 5.2918 0.4068

Figure 4.1 shows an almost perfect reconstruction of the signal using the

RS(255,223) code. The small differences between the original and recon-

structed signals are attributed to the quantization error introduced at the

encoder. Figure 4.2 shows that the algorithm performed close to the optimal

63

Table 4.5: Results for Random Patterns Using RS(255,153)

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 2.3 ∗ 10−3 25.4091 0.9263

Poor 142.4 ∗ 10−3 6.9801 0.5438

Table 4.6: Results for Fixed Patterns Using RS(255,223)

Channel NMSE SNR(in dB) SSIM

Good FAILED FAILED FAILED

Figure 4.1: Huffman followed by RS code (255,223) in good channel condi-
tions

case (which is the results obtained in table 4.3 for the good channel case).

Figure 4.3 shows that some samples are not correctly reconstructed in the

output signal. It also shows a small shift in the reconstructed samples in

some parts of the signal. This explains why the SSIM was only 0.4068.

64

Table 4.7: Results for Fixed Patterns Using RS(255,193)

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 0.25824 ∗ 10−3 26.7608 0.9224

Poor FAILED FAILED FAILED

Table 4.8: Results for Fixed Patterns Using RS(255,153)

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 0.25824 ∗ 10−3 26.7608 0.9224

Poor 4.7 ∗ 10−3 25.4211 0.8796

Figure 4.2: Huffman followed by RS code (255,223) in average channel con-
ditions

65

Figure 4.3: Huffman followed by RS code (255,193) in bad channel conditions

4.3 Huffman Code Followed by RS Code and

Interleaving

Tables 4.9, 4.10 and 4.11 again show the results obtained when the data

was sent through randomly generated channels using the three different RS

codes, and tables 4.12, 4.13 and 4.14 show the results when a fixed error

stream is used.

The results show that once again the RS(255,223) fails completely under

bad channel conditions for randomly generated error sequences as well as for

all channel conditions when using the pre-generated fixed error sequences.

So does the RS(255,193) under poor channel conditions when using the pre-

generated error sequence scenario.

However apart from that, the results of the algorithm fared better when

compared to the previous section. This is attributed to the interleaver which

spreads out the errors to other parts of the data stream. Sometimes the er-

66

Table 4.9: Results for Random Patterns Using RS(255,223) and Interleaving

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 19.18 ∗ 10−3 23.8635 0.8475

Poor FAILED FAILED FAILED

rors happen in large bursts which would render the channel decoders helpless

and unable to correctly decode the data. The spreading of those errors would

make it easier and more possible for the decoders to retrieve the correct data.

Table 4.10: Results for Random Patterns Using RS(255,193) and Interleav-
ing

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 0.25824 ∗ 10−3 26.7608 0.9224

Poor 184.1 ∗ 10−3 6.1303 0.4435

Table 4.11: Results for Random Patterns Using RS(255,153) and Interleav-
ing

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 0.25824 ∗ 10−3 26.7608 0.9224

Poor 71.3 ∗ 10−3 19.506 0.7494

Figure 4.4 shows the improvement that interleaving achieves by super-

imposing the green reconstructed signal over the blue original one for the

RS(255,223) code under average channel conditions using the random error

67

Table 4.12: Results for Fixed Patterns Using RS(255,223) and Interleaving

Channel NMSE SNR(in dB) SSIM

Good FAILED FAILED FAILED

Table 4.13: Results for Fixed Patterns Using RS(255,193) and Interleaving

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 0.25824 ∗ 10−3 26.7608 0.9224

Poor FAILED FAILED FAILED

streams.

Figure 4.4: Huffman followed by RS code (255,223) with interleaving in
average channel conditions

Figure 4.5 also shows the improvement in the case of the RS(255,193)

under poor channel conditions when compared to the exact scenario without

interleaving (in section 4.2). Those improvements though, just as the tables

68

Table 4.14: Results for Fixed Patterns Using RS(255,153) and Interleaving

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 0.25824 ∗ 10−3 26.7608 0.9224

Poor 0.25824 ∗ 10−3 26.7608 0.9224

show as well, are not good enough for this scheme to be adopted for the

transmission of CS-EEG signals.

Figure 4.5: Huffman followed by RS code (255,193) with interleaving in bad
channel conditions

4.4 No Source Coding Followed by RS Code

The fact that the conventional approach of using a source coder followed by a

channel coder failed in its performance made us think of ditching any further

source coding, since already CS acts as a source coder by compressing 90 %

of the data. This is what this section implements: CS followed directly by

69

the RS encoder.

Table 4.15: Results for Random Patterns Using RS(255,223) with no Source
Coding

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 10.1 ∗ 10−3 20.9918 0.8946

Poor 74.1 ∗ 10−3 5.5298 0.5881

The next 5 tables (table 4.15 - 4.19) show the results obtained from

this simulation. The first thing that we notice is that the algorithm never

fails regardless of the channel conditions. This is because there is no pre-

determined dictionary used anywhere that gives only a specific number of

decodable codewords. The fact that it does not stop working under any

circumstance already favors it over the two schemes presented in sections

3.2 and 3.3.

Table 4.16: Results for Random Patterns Using RS(255,193) with no Source
Coding

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 0.25824 ∗ 10−3 26.7608 0.9224

Poor 69.3 ∗ 10−3 9.4839 0.7423

The next noticeable improvement in the results is that this algorithm

outperforms the previous two in every aspect, under every condition, with

the exception of the total number of bits sent per epoch (these numbers

will be compared in section 4.6). Figure 4.6 further proves the point that it

70

outperforms the previous two scenarios, for the RS(255,193) code using the

randomly generated error sequences under poor conditions.

Table 4.17: Results for Random Patterns Using RS(255,153) with no Source
Coding

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 0.25824 ∗ 10−3 26.7608 0.9224

Poor 0.25824 ∗ 10−3 26.7608 0.9224

Table 4.18: Results for Fixed Patterns Using RS(255,223) with no Source
Coding

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 0.25824 ∗ 10−3 26.7608 0.9224

Poor 33.1 ∗ 10−3 5.6462 0.4801

Table 4.19: Results for Fixed Patterns Using RS(255,193/153) with no
Source Coding

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 0.25824 ∗ 10−3 26.7608 0.9224

Poor 0.25824 ∗ 10−3 26.7608 0.9224

In fact, for the RS(255,153) code, the algorithm performs ideally under

all channel conditions, whether using the pre-generated or randomly gener-

ated error sequences in the channel. The RS(255,193) code also performs

really well except when using the randomly generated error sequences in a

71

poor channel scenario. Therefore, up till now, the RS(255,153), no source

coding and no interleaving combination is the scheme of choice!

Figure 4.6: No source coding followed by RS code (255,193) in bad channel
conditions

4.5 No Source Coding Followed by RS Code and

Interleaving

Table 4.20: Results for Random Patterns Using RS(255,223) with Interleav-
ing, no Source Coding

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 0.25824 ∗ 10−3 26.7608 0.9224

Poor 41.6 ∗ 10−3 10.6303 0.7357

Tables 4.20 - 4.23 show the results obtained in this section. All param-

eters were improved under all channel conditions. The RS(255,193) code

72

performance improved immensely from the last section (NMSE: 0.0181 vs

0.0693 SNR: 21.2808 vs 9.4839 SSIM: 0.8795 vs 0.7423), but still not good

enough to recommend it as the code of choice for the transmission of CS-

EEG signals. The scheme of choice after all the results were obtained is

the one that uses no source coding followed by the RS(255,153) code and

interleaving.

Table 4.21: Results for Random Patterns Using RS(255,193) with Interleav-
ing, no Source Coding

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 0.25824 ∗ 10−3 26.7608 0.9224

Poor 18.1 ∗ 10−3 21.2868 0.8795

Table 4.22: Results for Random Patterns Using RS(255,153) with Interleav-
ing, no Source Coding

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 0.25824 ∗ 10−3 26.7608 0.9224

Poor 0.25824 ∗ 10−3 26.7608 0.9224

Table 4.23: Results for Fixed Patterns Using RS(255,223/193/153) with
Interleaving, no Source Coding

Channel NMSE SNR(in dB) SSIM

Good 0.25824 ∗ 10−3 26.7608 0.9224

Average 0.25824 ∗ 10−3 26.7608 0.9224

Poor 0.25824 ∗ 10−3 26.7608 0.9224

73

4.6 General Comparisons

Table 4.24: Encoder Processing Times of the Approaches

Codeword Data Length Time (With Huffman) Time (Without Huffman)

RS(255,223) 1.75 sec 1.65 sec

RS(255,193) 2.44 sec 2.34 sec

RS(255,153) 4.4 sec 4.3 sec

Table 4.24 shows the average processing time of each algorithm at the

encoder side (per epoch) under the 3 different RS codes used. This table

only takes into account the time needed for the quantization, source coding,

channel coding and packetization to be processed and implemented. In all

3 cases, the no source coding scheme performed slightly faster than their

counterparts using Huffman. The Huffman code processing time is 0.1 sec-

onds. The quantization processing time is 0.03 seconds. The interleaving

processing time is 0.001 seconds. This means that the bulk of the processing

time was due to the RS code. As the data length of the RS code decreases,

its processing time increases. This is because the number of RS codewords

generated increases, which implies that more RS codewords need to be pro-

cessed. There is no escaping the use of a channel encoder when transmitting

in non-ideal channel conditions. Therefore, the processing times of the RS

code have to be tolerated.

Table 4.25 compares the time it takes for the encoder to be processed

with and without Huffman, as well as for the encoder part of the CS al-

gorithm. It compares those 3 for two different values of the number of

74

Table 4.25: Encoder Processing Times Comparison with CS Algorithm using
RS(255,223)

qbits CS Encoding time Approach w. Huffman Approach w/o Huffman

6 bits 4 sec once, 0.0016 sec/ep 1.75 sec/ep 1.65 sec/ep

7 bits 4 sec once, 0.0016 sec/ep 2.1 sec/ep 1.96 sec/ep

quantization bits qbits. The first thing we notice is that the processing time

for the CS algorithm is the same in both cases. This is because the CS

encoder part is processed before quantization is applied to the data. The

second thing we observe is that the CS encoder has 2 values in it. The first

value of 4 seconds is a one time value for the whole block of data (i.e. for all

the epochs). The second value is the same for every epoch, 0.0016 seconds.

This is a very small processing time. It was expected to be small because

one of the main advantages of the CS algorithm is that its computations

are quick at the encoder side, leaving most of the work to be done at the

receiver end.

The third column of table 4.25 gives the processing time at the encoder of

the Huffman and RS(255,223) combination. The processing time of the RS

code is once again evident. The processing time increased by 0.35 seconds

per epoch when the number of quantization bits was increased. The increase

in processing time is also the case in the fourth column of that same table.

This column gives the encoder processing times for the no source coding and

RS(255,223) scheme. As it can be seen, the increase in processing time is

0.31 seconds per epoch.

Table 4.26 shows the difference in the number of bits sent per epoch with

75

Table 4.26: Number of bits sent per epoch

Codeword Data Length With Huffman Without Huffman

RS(255,223) 2170 2295

RS(255,193) 2434 2550

RS(255,153) 2938 3060

and without the use of the Huffman code. The difference is approximately

125 symbols in the 3 cases of the RS code used. That difference takes into

account the number of symbols it requires to transmit the dictionary of the

Huffman code with every epoch. It is possible to use just one dictionary

for all the epochs, but this would not be the optimal compression scheme.

It is better to send with each epoch its own dictionary of codewords, even

though this leads to added symbols being transmitted. This table gives the

only area that the scheme with Huffman coding actually outperformed the

scheme without Huffman coding. The addition of the Huffman code achieved

a 5.45 % compression ratio when compared to the other scheme. However,

if we consider that the better reconstruction results occurred when Huffman

isn’t used, Huffman is not a very suitable algorithm for the transmission of

CS-EEG signals in WBSNs, a sentiment echoed in [17].

The total data available is two hours of EEG data from a patient suffering

a seizure. The total processing time of this data (encoding and decoding)

is over 34 hours (the CS decoding algorithm takes about 16 seconds per

epoch to reconstruct the 23 channel EEG signals). We used 5 minutes of

this data for our purposes. The total processing time for 5 minutes was 1

hour 30 minutes approximately. The data was transmitted through different

76

channel conditions for a total of 132 times.

In conclusion, after all the results were presented and analyzed, the algo-

rithm of choice would be the one presented in section 3.5, i.e. the one where

no source coding was applied, followed with the RS(255,153) code and an

interleaver. True that using the RS(255,153) means sending more encoded

symbols than the RS(255,223) code because it encodes every 153 data sym-

bols into 255 symbols in comparison to 223 data symbols encoded into 255

symbols, but the data arrives correctly and is properly reconstructed, which

in the end is the most important condition. There is always a small and

sometimes inexpensive trade-off to achieve this condition, and this time is

one of them.

Other schemes were considered at first. Concatenated Huffman coding

was an idea under consideration, but once the results of the conventional

combination of algorithms came out, the idea was dropped. Another poten-

tial was to study the correlation of the EEG signals and exploit it, but since

the CS algorithm used did that very well, there wasn’t any correlation left

to exploit, so this idea was let go as well. A third approach was to apply

low-density parity-check codes (LDPC), but for lack of time, this approach

was not implemented.

77

Chapter 5

Summary and Conclusions

5.1 Main Results

This thesis is concerned with elongating the battery life at the EEG sensor

node. To save on the energy consumed by wireless transmission, the acquired

EEG is first compressed using the block-sparse Bayesian learning (BSBL)

compressed sensing (CS) approach and quantized. We then studied the

performance of two methods for transmitting the CS-quantized EEG signals.

The first method presented in section 2 of chapter 3 proposed the use

of a Huffman code followed by a Reed-Solomon (RS) encoder to protect

the transmitted data. The codeword length of the RS code was varied to

find a suitable length capable of correcting enough errors caused by the

channel. The results were acceptable under very good and average channel

conditions but deteriorated quickly when the channel conditions worsened.

Another crucial point that we observed is the computation time needed at

the encoder for this whole scheme to be processed, which proves to be costly

in terms of energy.

In section 2 of chapter 3 we add interleaving right after the packetiza-

tion of the data. The results yielded a better performance in all cases when

compared to the scheme without interleaving. The only advantage of incor-

78

porating Huffman coding was the compression gain (5.45%) it achieved on

the data that was already compressed using CS. This means that the total

compression achieved including CS and Huffman is 90.545 %. This gain

however is not enough to justify the use of Huffman, since its performance

under noisy or not ideal channel conditions is unsatisfactory.

The second method (presented in section 4 of the same chapter) proposed

transmitting the CS compressed data without any source or further lossless

coding. It simply applies the RS code before transmitting the data. The

results showed a noticeable improvement in performance when compared to

the first proposed method, as evidenced by the results under poor channel

conditions where the reconstruction of the received data was closer to the

actual transmitted data.

The final method applied interleaving to the above scheme (no further

compression followed by an RS encoder). Its results were again superior

to the case where no interleaving was applied. In fact, this scheme is the

one that outperformed all other schemes and is the scheme of choice for

the transmission of compressed sensing EEG data, for the case where the

RS(255,153) is used.

Before starting the experiments, we expected that the Huffman code

would not perform well in very noisy channels, but we did not expect the

results to be as underwhelming as they ended up being. They were in fact

worse than our original expectation. From the point of view of decreas-

ing the number of bits transmitted, the Huffman code would be optimal

under ideal conditions because it can perfectly reconstruct the compressed

data. As mentioned above, it decreased the total number of bits transmitted

79

per epoch by 5.45%. However, its poor performance under noisy channel

conditions would hinder its application for our purposes. The processing

times of the encoder are given for every scenario, showing that the scheme

of sections 3.4 and 3.5 (using BSBL CS compression, 6 bits quantization,

(255,223/193/153) Reed Solomon coding followed by interleaving) were pro-

cessed slightly faster than the schemes in sections 3.2 and 3.3 (using BSBL

CS compression, 6 bits quantization, Huffman coding, (255,223/193/153)

Reed-Solomon coding followed by interleaving).

The bulk of the processing time was from the RS encoder. The Huffman

code account for only 0.1 seconds of processing time. Quantization and

interleaving accounted for only 0.031 seconds. The processing times of the

RS encoder increased when the data length in each codeword decreased.

Throughout the thesis, we had to design the schemes such that they

would suit the improved BSBL algorithm of [15]. To the best of our knowl-

edge, this algorithm which uses CS is close to being optimal, even though

we can not prove it mathematically. But the results obtained using this

algorithm were impressive and they formed the upper limit that the work in

this thesis was trying to reach. We came extremely close falling only 0.9%

off the upper limit value of the structural similarity index and 3.19% off the

upper limit value of the normalized mean square error.

Considering that the encoder stage of the wireless body sensor network

(WBSN) must have little processing complexity due to the constraint on

energy, we improved that stage through the removal of the whole source

coding block since already the 90 % compression ratio achieved using the

algorithm of [15] is quite high. Usually, lossy algorithms are faster in terms of

80

running time and achieve higher compression rates than lossless algorithms

such as the Huffman code, however, they do not reconstruct the signal at

the receiver end perfectly and they would still add more processing time

compared to cases where source coding is not present at all.

5.2 Future Work

The channel coding algorithm used is a very efficient algorithm, both in

terms of speed and its error correction and detection capabilities. Lately low-

density parity-check (LDPC) codes are being applied in many applications

that have bandwidth constraints. They are used most notably in the satellite

transmission of digital television. Trying to implement them into the world

of WBSNs could prove to be useful and hence is one way that could possibly

improve the results obtained in this work.

The actual energy required for transmitting the bits at the sensor node

should be studied in detail and in conjunction with building a hardware

prototype for this problem.

81

Appendix A

The whole structure of the thesis started with the data being sampled with

compressed sensing applied to it, then quantizing it, applying a source cod-

ing algorithm followed by a channel encoder, transmitting it, then applying

channel and source decoding to every epoch, before all epochs were recon-

structed using the algorithm of [15].

The results given in chapter 4 were for all the schemes that started before

the quantization of the data up until source decoding. They did not include

the blocks before and after, which is basically the work done in [15]. This

Appendix gives the results of the whole framework including that of [15],

i.e. from before the data was sampled till after it was reconstructed using

the improved BSBL-BO algorithm.

According to [15], the best results achieved by the algorithm used for a

90 % compression ratio using a discrete cosine transform dictionary (without

any source coding, channel coding or interleaving, and in ideal channel cases,

that is there weren’t any errors introduced by the channel) were as follows:

NMSE = 0.0533

SNR = 12.7347

SSIM = 0.8523.

These results are the upper limit that this thesis attempted to reach as

closely as possible, and were it not for the quantization error introduced at

the encoder, it would have been possible to reach those numbers. The tables

82

Table A.1: Results for Random Patterns Using RS(255,223)

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.1482 8.1202 0.7596

Poor FAILED FAILED FAILED

Table A.2: Results for Random Patterns Using RS(255,193)

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.0924 10.1137 0.8213

Poor 0.6986 1.4722 0.3401

below show the results achieved for each scheme applied.

An important note is that the results above are slightly different than

the values found in [15]. This is because the total data processed was less

since the processing time of the total data available was over 34 hours. After

running the algorithm once and then running the same algorithm for a lesser

amount of data, it was clear that the values would remain extremely close,

but the processing time of the data would be only an hour and a half.

Table A.3: Results for Random Patterns Using RS(255,153)

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.0597 11.8943 0.8412

Poor 0.4847 1.9502 0.3912

83

Table A.4: Results for Random Patterns Using RS(255,223) and Interleaving

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.0915 10.1271 0.8067

Poor FAILED FAILED FAILED

Table A.5: Results for Random Patterns Using RS(255,193) and Interleaving

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.055 12.5925 0.8446

Poor 0.5736 2.2068 0.3082

Table A.6: Results for Random Patterns Using RS(255,153) and Interleaving

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.055 12.5925 0.8446

Poor 0.2586 6.0035 0.6995

Table A.7: Results for Random Patterns Using RS(255,223) with no Source
Coding

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.0893 10.0151 0.8249

Poor 0.3568 4.1059 0.5152

84

Table A.8: Results for Random Patterns Using RS(255,193) with no Source
Coding

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.055 12.5925 0.8446

Poor 0.2998 5.0786 0.6026

Table A.9: Results for Random Patterns Using RS(255,153) with no Source
Coding

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.055 12.5925 0.8446

Poor 0.055 12.5925 0.8446

Table A.10: Results for Random Patterns Using RS(255,223) with Inter-
leaving, no Source Coding

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.055 12.5925 0.8446

Poor 0.2133 6.0178 0.6142

Table A.11: Results for Random Patterns Using RS(255,193) with Inter-
leaving, no Source Coding

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.055 12.5925 0.8446

Poor 0.1029 10.0081 0.8124

85

Table A.12: Results for Random Patterns Using RS(255,153) with Inter-
leaving, no Source Coding

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.055 12.5925 0.8446

Poor 0.055 12.5925 0.8446

Table A.13: Results for Fixed Patterns Using RS(255,223) with and without
Interleaving

Channel NMSE SNR SSIM

Good FAILED FAILED FAILED

Table A.14: Results for Fixed Patterns Using RS(255,193) with and without
Interleaving

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.055 12.5925 0.8446

Poor FAILED FAILED FAILED

Table A.15: Results for Fixed Patterns Using RS(255,153)

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.055 12.5925 0.8446

Poor 0.0681 10.876 0.8446

86

Table A.16: Results for Fixed Patterns Using RS(255,153) and Interleaving

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.055 12.5925 0.8446

Poor 0.055 12.5925 0.8446

Table A.17: Results for Fixed Patterns Using RS(255,223) with no Source
Coding

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.055 12.5925 0.8446

Poor 0.343 4.6471 0.4801

87

Table A.18: Results for Fixed Patterns Using RS(255,193/153) with no
Source Coding, with and without Interleaving

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.055 12.5925 0.8446

Poor 0.055 12.5925 0.8446

Table A.19: Results for Fixed Patterns Using RS(255,223) with Interleaving
no Source Coding

Channel NMSE SNR SSIM

Good 0.055 12.5925 0.8446

Average 0.055 12.5925 0.8446

Poor 0.055 12.5925 0.8446

88

Bibliography

[1] A.M. Abdulghani, A.J. Casson, and E. Rodriguez-Villegas. Quantifying

the performance of compressive sensing on scalp EEG signals. Applied

Sciences in Biomedical and Communication Technologies (ISABEL),

2010 3rd International Symposium on, pages 1–5, 2010.

[2] C.O. Arinze, V.E. Idigo, C.O. Ohaneme, and V.N. Agu. Simulation

and evaluation of high density cognitive hotspot network based on IEEE

802.11 minipop access point series. International Journal of Computers

and Distributed Systems, 4(2):1–10, 2014.

[3] S. Aviyente. Compressed sensing framework for EEG compression.

IEEE/SP Statistical Signal Processing 14th Workshop 2007, pages 181–

184, 2007.

[4] World Bank. Population ages 65 and above (% of total). http://data.

worldbank.org/indicator/SP.POP.65UP.TO.ZS/countries. Ac-

cessed: 06/06/2014.

[5] E. J. Candes and M. B. Wakin. An introduction to compressive sam-

pling. IEEE Signal Processing Magazine, 25(2):21–30, 2008.

[6] Jose Luis Cuevas-Ruiz Diana Alejandra Sanchez-Salas and Miguel

89

http://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS/countries
http://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS/countries

Gonzales-Mendoza. MATLAB - A Fundamental Tool for Scientific

Computing and Engineering Applications - Volume 2. InTech, Morn

Hill, 2012.

[7] S. Fauvel. Energy-efficient compressed sensing frameworks for the com-

pression of electroencephalogram signals, 2013.

[8] S. Fauvel, A. Agarwal, and R. Ward. Compressed sensing and energy-

aware independent component analysis for compression of EEG signals.

Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE Inter-

national Conference on, pages 973–976, 2013.

[9] S. Fauvel and R.K. Ward. An energy efficient compressed sensing frame-

work for the compression of electroencephalogram signals. Sensors,

14(1):1474–1496, 2014.

[10] Simon Haykin. Communication Systems. Wiley, Hoboken, New Jersey,

2001.

[11] F.J. Hermann. Randomized sampling and sparsity: getting more infor-

mation from fewer samples. Geophysics, 75:173–187, 2010.

[12] H.H. Hung and L.J. Chen. An analytical study of wireless error models

for bluetooth networks. Advanced Information Networking and Appli-

cations, pages 1317–1322, 2008.

[13] M. Khazi, A. Kumar, and V. M-J. Analysis of EEG using 10:20 elec-

trode system. International Journal of Innovative Research in Science,

Engineering and Technology, 1(2):185–191, 2012.

90

[14] D. Lechuga, O. Escandn, M. Corona, C. Montoya, R. G., A. Anguiano,

C. Garca, and J. Moctezuma. Electroencephalographic abnormali-

ties in patients with idiopathic insomnia. Neuroscience and Medicine,

2(3):178–184, 2011.

[15] H. Mahrous, R. Ward, and Z. Zhang. Multi-channel compression of

EEG signals via compressed sensing. In the process of being published.

[16] H. Mamaghanian, N. Khaled, D. Atienza, and P. Vandergheynst. Com-

pressed sensing for real-time energy-efficient ECG compression on wire-

less body sensor nodes. IEEE Transactions on Biomedical Engineering,

58(9):2456–2466, 2011.

[17] R. Mc Sweeney, C. Spagnol, E. Popoviv, and L. Giancardi. The im-

pact of source and channel coding in the communications efficiency of

wireless body area networks. International Journal on Advances in

Software, 2(4):337–348, 2009.

[18] James-A.B. Milner, B.P. Analysis and compensation of packet loss in

distributed speech recognition using interleaving. Proceedings of IN-

TERSPEECH, pages 1–4, 2003.

[19] M. Moudgill, A. Iancu, and D. Iancu. Galois field instructions in the

sandblaster 2.0 architecture. International Journal of Digital Multime-

dia Broadcasting, pages 1–5, 2009.

[20] University of Virginia. Switching technology. http://www.cs.

virginia.edu/~mngroup/projects/mpls/documents/thesis/

node8.html. Accessed: 14/08/2014.

91

http://www.cs.virginia.edu/~mngroup/projects/mpls/documents/thesis/node8.html
http://www.cs.virginia.edu/~mngroup/projects/mpls/documents/thesis/node8.html
http://www.cs.virginia.edu/~mngroup/projects/mpls/documents/thesis/node8.html

[21] Charles L. Phillips and John M. Parr. Signals, Systems, and Trans-

forms. Prentice Hall, Upper Saddle River, New Jersey, 2008.

[22] John Proakis. Digital Communications. McGraw-Hill, New York, 2000.

[23] P. Rmeily and H. Mahrous. Bayesian learning algorithm for compressive

sensing of non-sparse EEG signals. -. Class project.

[24] N. Sireesha and V. Prasanth. Iterative multivariate interpolation for

low complexity Reed-Solomon codes. International Journal of Modern

Engineering Research, 2(5):3769–3772, 2012.

[25] Highland Communications Technologies. Introduction to Reed-Solomon

codes. http://www.highlandcomm.com/reed_solomon_codes.htm.

Accessed: 04/08/2014.

[26] M. Unser. Sampling—50 Years after Shannon. Proceedings of the IEEE,

88(4):569–587, 2000.

[27] Z. Zhang, T. Jung, S. Makeig, and B. Rao. Compressed sensing of

EEG for wireless telemonitoring with low energy consumption and in-

expensive hardware. IEEE Transactions on Biomedical Engineering,

60(1):221–224, 2013.

[28] Z. Zhang, T.P. Jung, S. Makeig, and B.D. Rao. Compressed sensing

for energy-efficient wireless telemonitoring of non-invasive fetal ECG

via block sparse Bayesian learning. IEEE Transactions on Biomedical

Engineering, pages 1–4, 2014.

92

-
http://www.highlandcomm.com/reed_solomon_codes.htm

[29] Z. Zhang and B. D. Rao. Extension of SBL algorithms for the recovery

of block sparse signals with intra-block correlation. IEEE Transactions

on Signal Processing, 61(8):2009–2015, 2013.

[30] W. Zhou, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality

assessment: From error visibility to structural similarity. IEEE Trans-

actions on Image Processing, 13(4):600–612, 2004.

93

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Acknowledgments
	Introduction
	Telemetry for Medicinal Purposes
	Conditions for Telemetry
	Electroencephalogram Signals
	Aim and Motivation of the Thesis
	Thesis Structure

	Literature Review and Background Theory
	Compressed Sensing
	Encoder
	Decoder
	Block-Sparse Bayesian Learning

	Source Coding
	Overview of Information Theory
	Huffman Code

	Transmission Channel
	Channel Models
	Two-State Markov Model
	Packet-Switched Networks

	Channel Coding
	Block vs Convolutional Codes
	Reed-Solomon Code
	Interleaving

	Frameworks
	General Framework of the CS-EEG Encoding
	Huffman Code Followed by RS Code
	Huffman Code Followed by RS Code and Interleaving
	No Source Coding Followed by RS Code
	No Source Coding Followed by RS Code and Interleaving
	Performance Measures

	Results
	Parameters Used in the Framework
	Huffman Code Followed by RS Code
	Huffman Code Followed by RS Code and Interleaving
	No Source Coding Followed by RS Code
	No Source Coding Followed by RS Code and Interleaving
	General Comparisons

	Summary and Conclusions
	Main Results
	Future Work

	
	Bibliography

