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Abstract

The gauge / gravity duality, or holographic correspondence, is a theoretical
tool that allows the description of strongly coupled field theory through a
dual classical gravity theory. In this thesis, we advance the use of numerical
methods in applications of the holographic correspondence to the study of
strongly coupled field theories in three situations.

Firstly, we study the relationship between chemical potential and charge
density across myriad examples of Lorentz invariant 3 + 1 dimensional holo-
graphic field theories with the minimal structure of a conserved charge.
Solving for the classical gravitational configurations dual to the field theo-
ries and extracting the charge density and chemical potential, we enumerate
the relationships that can exist in a wide range of holographic theories.

Secondly, we study the spontaneous formation of inhomogeneous (striped)
order, a phenomenon that has been observed in the cuprates, in a 2 + 1
dimensional strongly coupled field theory. By numerically solving the equa-
tions of motion using finite difference techniques, we construct the full non-
linear striped black brane solutions that provide the gravity dual to this field
theory. We evaluate the thermodynamics and show that the system under-
goes a second order phase transition to the striped phase as the temperature
is lowered.

Finally, we apply the holographic correspondence to study particular as-
pects of quantum chromodynamics (QCD). First, we develop a phenomeno-
logical holographic model to describe the colour superconductivity phase of
QCD, which is believed to exist at large quark density. We construct the
phase diagram for our model, which includes confined, deconfined, and su-
perconducting phases. In a separate project, we revisit the construction of
the baryon in the Sakai-Sugimoto model of holographic QCD. In this model,
gauge field configurations on the probe D8 flavour branes with non-trivial
topological charge (instantons) correspond to baryons in the dual field the-
ory. In order to extend previous studies, we relax an assumption of spherical
symmetry and, utilizing pseudospectral methods, numerically construct the
deformed instanton in the bulk. Compared to previous studies, we find
significantly more realistic values for the mass and size of the baryon.
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Chapter 1

Introduction

1.1 Motivation

Quantum field theory is one of the most ubiquitous and useful theoretical
frameworks ever developed. It provides the backbone underlying two of the
largest and most prominent areas of modern physics: particle physics and
condensed matter physics. Within these contexts, the framework has been
extremely successful as a theoretical description of experimentally observed
phenomena. In particular, quantum electrodynamics (quantum field theory
applied to the theory of photons and electrons) has provided the most precise
match between theory and experiment ever.1

A key feature of quantum electrodynamics, which allows such precise
calculations and which is shared by many of the situations successfully de-
scribed by quantum field theory, is that the theory is weakly coupled. Phys-
ically, this means that if the system is perturbed slightly (say we grab and
shake an electron), the configuration will not change very much (other elec-
trons will only be slightly bothered). Mathematically, weakly coupled the-
ories admit a perturbative description, in which the effect of interactions
can be computed by expanding around the simpler non-interacting system,
resulting in a series expression for the result. Depending on the precision
needed for a calculation, this series may be truncated at some point and
higher order interactions may be neglected.

However successful the perturbative approach is, it is fundamentally lim-
ited to the description of weakly coupled theories. There are many systems
in nature which are properly described as strongly coupled quantum field the-
ories. A prime example of this is quantum chromodynamics (QCD, quantum
field theory for quarks and gluons) at low energies. For these theories, if the
system is perturbed slightly (if we grab and shake a quark), the entire con-
figuration may change significantly. From a calculational perspective, the
perturbative approach is no longer applicable, as the first few terms in the

1This is for the magnetic moment of the electron, the most recent measurement of
which was reported in [6].
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series will not be a good approximation of the exact result, and we need
different methods with which to study the theory.

One possible route to study strongly coupled field theory is through
lattice techniques. Schematically, one Euclideanizes the theory before dis-
cretizing spacetime by putting it on a lattice. The problem of solving the
theory becomes the problem of minimizing the (Euclidean) action on this
lattice. Established techniques, such as the Monte Carlo method, can then
be applied to find the minimized action. Lattice techniques, however, have
several shortcomings. Firstly, the computational power needed to study
these theories becomes very large very quickly as one tries to increase the
accuracy of calculations. Secondly, and perhaps more importantly, these
techniques are limited to field theory at zero charge density. Finite density
systems are interesting in a variety of situations, including, for example,
neutron stars and superconductors. Upon analytically continuing the ac-
tion, a chemical potential term will become imaginary, resulting in highly
oscillatory behaviour in the path integral, which is not amenable to study
with Monte Carlo techniques. Thus, lattice techniques are limited in their
ease of implementation and applicability.

A more contemporary and flexible approach to the study of strongly
coupled field theory, the application of which is the topic of this thesis, is
the gauge / gravity duality.2 First proposed in 1997 [7–9], this remarkable
correspondence states that a strongly coupled field theory describes identical
physics as a classical theory of gravity (in one higher dimension). Under the
duality, the problem of calculating observables in the field theory is mapped
to the relatively simpler problem of solving classical equations of motion.
The correspondence provides calculational access to many novel regimes of
strongly coupled field theory, including field theory at finite density.

In the years since the discovery of the holographic correspondence, it has
been applied to the study of strongly coupled field theories in many interest-
ing ways. One example and success story is a study of viscosity in strongly
coupled field theories [10], which provides some theoretical explanation for
the small viscosities of the quark-gluon plasma seen at the Relativistic Heavy
Ion Collider. Further examples of applications of the correspondence include

2The holographic correspondence is a general term to describe the correspondence be-
tween a gravitational theory in d + 1 dimensions and a theory without gravity in d di-
mensions. Specifying to the gauge / gravity duality identifies the d-dimensional theory as
a gauge field theory. Finally, the AdS/CFT correspondence (anti-de Sitter / conformal
field theory) refers to a specific class of theories that exhibit this relationship, in which a
gravity theory with anti-de Sitter asymptotics is dual to a conformal field theory. In this
thesis, as is common, we use these three labels synonymously.
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models of superconductors [11], superfluids [12], and QCD (for example,
[13]). While exact holographic descriptions of QCD or high-Tc supercon-
ductivity, as seen in experiments, are not yet possible, models that elucidate
universal features of similar classes of systems are available for study. In
this way, the correspondence currently offers tremendous potential for gen-
eral results from which qualitative and (in some cases) quantitative lessons
may be drawn.

In this thesis, the gauge / gravity duality is applied to the study of
various strongly coupled field theoretic phenomena, with the goal of con-
tributing to and advancing the literature on holographic techniques and
results. To this end, we describe projects focused in three domains: general
holographic field theories, applications to condensed matter systems, and
applications to QCD. To facilitate these studies, we make extensive use of
numerical techniques, from the application of standard ‘blackbox’ solvers for
ordinary differential equations to the use of finite difference and pseudospec-
tral methods for the partial differential classical field equations that arise
in inhomogeneous situations. The studies applying the latter techniques
contribute to the forefront of the emerging research direction combining nu-
merical techniques and holographic methods.

A brief outline of this introductory chapter is as follows. In section 1.2,
we provide a more detailed background for the gauge / gravity duality,
including a more precise statement of the correspondence, a sketch of the
original ‘derivation’, and examples of the explicit mapping between field
theory and gravitational observables. In section 1.3, we provide a summary
of each of the four projects that comprise the content of this thesis.

1.2 Introduction to the gauge / gravity duality

Here we provide a brief review of certain salient features of the gauge / grav-
ity duality, the main theoretical tool used in this thesis.3 In section 1.2.1,
we describe the gauge / gravity duality in generality, defining it more pre-
cisely than above and providing a conceptual argument as to why it may
be true. In section 1.2.2, we review the specific construction that moti-
vated the original statement of the conjecture. This is the duality between
strongly coupled N = 4 SU(N) super-Yang-Mills theory on 3 + 1 dimen-
sional Minkowski space and type IIB string theory on AdS5 × S5. This
subsection contains technical details which depend on some prior knowledge

3There are many existing reviews of the holographic correspondence, including [14–17].
Reports the thesis author found particularly useful are [18–21].
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of string theory. In section 1.2.3, we provide some of the standard entries in
the holographic ‘dictionary’, which relates observables and constructions on
either side of the correspondence. Finally, section 1.2.4 briefly motivates the
use of and need for numerical techniques in the study of strongly coupled
field theory using the holographic correspondence.

1.2.1 The gauge / gravity duality

In this section, we discuss the gauge / gravity duality in generality, limiting
ourselves to features that are present across examples, and providing an
argument as to why such a correspondence may exist. For a particular
construction manifesting the correspondence, see section 1.2.2.

The gauge / gravity duality, in general, is the conjectured equivalence
between a quantum field theory in d spacetime dimensions and a theory
of quantum gravity in d + 1 spacetime dimensions.4 This equivalence is a
complete equivalence of the physical spectra at any value of the parameters
in the theory, “including operator observables, states, correlation functions
and full dynamics” [16]. There is an established dictionary (see section 1.2.3)
that describes the precise mapping between objects in the field theory and
objects on the quantum gravity side. If computational tools were available
for both theories in every region of parameter space, one could in principle
precisely match up every result in each theory: every physical question and
corresponding result in one theory has a dual version in the theory on the
other side of the correspondence. Put very shortly, the two theories describe
the same physics.

How could such a correspondence exist? At first blush, it sounds absurd
to claim that a quantum field theory and a theory of quantum gravity could
be alternate descriptions of the same physics. On one side of the duality is a
standard field theory on a fixed spacetime background, which in particular
cannot contain a massless spin-2 (graviton) field [22]. On the other side
is a theory of quantum gravity,5 which necessarily contains a spin-2 field,
in one higher dimension. Further, the descriptions of these theories are
manifestly different. In particular, quantum gravity must admit phenomena
and characteristics that do not seem to have any obvious description in a

4Although the focus of this thesis is on strongly coupled quantum field theory, we begin
by discussing the holographic correspondence as applied to a general field theory, before
specializing to the limit of strong coupling (and the corresponding region of validity for
classical gravity) below.

5In the earliest examples of the duality the theory of quantum gravity was a string
theory.
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field theory, including black holes, wormholes, and diffeomorphism invari-
ance. Thus, we have two theories with two very different descriptions that
purportedly describe the same physics.

A key realization lies in the fact that quantum gravity is holographic
in that the number of degrees of freedom in a region is proportional to the
surface area surrounding the region, and not the volume as is the case for
a local quantum field theory.6 To see why this must be the case, consider
for a moment the following gedanken experiment in a theory of gravity.
Assume you have some volume V of space (bounded by the area A) which
contains more information, or entropy, than a corresponding black hole of
the same size: S > SBH . For a sufficiently large volume, general relativity
will provide a good description irrespective of the underlying theory, so
that the entropy of the black hole will be given by the Bekenstein-Hawking
formula SBH = A/4GN . Since our configuration is not a black hole, its mass
is less than the critical mass for the volume V . Now, add matter to the
region V such that its mass exceeds the critical mass; the configuration will
gravitationally collapse, forming a black hole. Before adding the matter, the
total entropy of the system was Sbefore = S+Sout, where Sout is the entropy
of the matter that we threw into the region. After the region collapses, the
total entropy of the system is described by the Bekenstein-Hawking formula:
Safter = SBH . By our initial assumption, we have Sbefore > Safter, showing
that this process violates the second law of thermodynamics. Therefore, the
assumption that we could have a region with larger entropy than a black
hole of the same size must be false. We arrive at the conclusion that, in a
theory of quantum gravity, the information in the region V is bounded by
SBH = A/4GN .

Given the above discussion, we see that the number of degrees of free-
dom in a theory of quantum gravity in d+ 1 dimensions scales as a volume
in d dimensions. This is the same behaviour one expects from a d dimen-
sional quantum field theory.7 Thus, it becomes at least plausible that the
holographic correspondence could connect two such theories.

A particular salient feature of the duality is the relationship between the
parameters on either side of the correspondence. The dimensionless coupling
λ of the field theory is directly related to the typical length scale of the cur-
vature in the quantum gravity theory: at large coupling λ the geometry of

6See [23, 24] for discussions of the holographic principle. The entropy bound described
here is called the Bekenstein bound [25]. See, for example, [21] for a version of the
argument given here.

7In section 1.2.2, we will match the number of degrees of freedom more precisely in a
particular example of the duality.
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the dual theory is weakly curved and classical gravity is a good approxima-
tion, while for small λ the curvature of the gravity side is large in units of
the string length and the full quantum gravity theory is needed. Thus, for
large λ, the gravity side is accessible with current tools for classical general
relativity, while for small λ, the field theory side is accessible via perturba-
tive quantum field theory. This mutual exclusivity of reliable calculational
domains makes the holographic correspondence difficult to prove, as explicit
matching of the sides is only possible in certain symmetrical situations.
However, it makes it extremely useful as a tool for the study of strongly
coupled field theories. In order to describe the physics of the strongly cou-
pled quantum field theory, one simply has to find classical saddle-point of
the gravity action. In cases with gravitational backreaction, this reduces to
solving the Einstein equations of general relativity. While this may be tech-
nically difficult, established techniques exist for this integration, in contrast
to the dual problem of studying a strongly coupled quantum theory.

In this way, using the holographic correspondence, many questions about
strongly coupled quantum field theories may be phrased in the context of
a classical gravity theory. By considering different theories on the gravita-
tional side (for example, different geometries or different matter content),
one may study a variety of strongly coupled field theories which display a
rich array of behaviours. Relatively straightforward classical gravity com-
putations thus provide access to certain previously intractable field theory
calculations. This thesis utilizes the gauge / gravity duality in this way to
study strongly coupled field theory in various contexts.

It is useful to have a mental image of the correspondence. Let us spe-
cialize to large λ and consider the particular example of the classical global
anti-de Sitter (AdS) space in 2 + 1 dimensions (AdS3, a solution to Einstein
gravity with a negative cosmological constant), dual to strongly coupled
conformal field theory on S1 × R. In Figure 1.1, we provide a visualiza-
tion of the geometries involved in this correspondence. The gravity side,
AdS3, is conformal to the bulk of a cylinder. On the field theory side, at
the right of the figure, we have S1 ×R, which maps out the boundary of a
cylinder, and which is conformal to the boundary of AdS3. Then, the de-
grees of freedom of the field theory live on a space which can be conformally
mapped to the boundary of the gravity side; this motivates the label of the
holographic correspondence. The extra direction on the gravity side in this
case is parametrized by the radial coordinate from the axis of the cylinder.
Often, these two images are amalgamated into one, with the field theory
considered to be defined on the boundary of the bulk spacetime.
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x t
xt

gauge /

gravity

AdS3
CFT on

S1 ×R

Figure 1.1: A visualization of the geometries involved in the holographic
correspondence for the example of classical global anti-de Sitter space in 2+1
dimensions (AdS3, pictured at left, is conformal to a solid cylinder) dual to
strongly coupled conformal field theory on S1 ×R (right, on the boundary
of a cylinder). The physics of the gravity theory in the solid cylinder is
completely encoded in the field theory on the cylindrical surface, and vice
versa. In these images, the time direction is vertical; the shaded disc on AdS3

at left represents a spatial slice of the gravity theory, at constant time, while
the drawn-in ring on S1 × R at right is the corresponding spatial slice in
the field theory. The geometry of the field theory, S1 × R, is conformally
equivalent to the boundary of the gravity spacetime. Due to this, these
pictures are often amalgamated into one image, with the field theory mapped
onto the boundary of the bulk spacetime. (In Figure 1.4 and beyond we
adopt this representation.)

1.2.2 More justification for the correspondence

The original and perhaps most concrete example of the gauge / gravity dual-
ity is the equivalence of type IIB string theory on AdS5×S5 and strongly cou-
pled N = 4 SU(N) super-Yang-Mills theory on 3+1 dimensional Minkowski
space.8 It was through this example that this remarkable correspondence
was first proposed by Maldacena [7].9 In this technical section, using results

8N = 4 SU(N) super-Yang-Mills theory is a supersymmetric field theory with gauge
fields, fermions, and scalars connected by the N = 4 supersymmetry generators. The
gauge fields in this theory transform in the adjoint of SU(N) and are described by the
Yang-Mills Lagrangian.

9See also [8, 9] for important early developments.
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from string theory, we will briefly review the argument for the equivalence
of these theories, focussing on the limit in which the gravity side becomes
weakly curved and classical gravity is a good approximation. Given this
specific example, we go on to make explicit the relationship between param-
eters on either side of the duality and more precisely compare the numbers
of degrees of freedom on either side of the correspondence. The content
in this section is intended to provide a more detailed motivation for the
correspondence.

The basic argument for the correspondence, in this case, relies on the
commutativity of certain limits or scalings. We will begin with a well-defined
string theory construction before taking two limits: the large coupling λ
limit10 and the low-energy limit. If we perform these operations in differ-
ent orders, we arrive at the disparate theories. Assuming that the limits
commute then gives the correspondence. The string theory construction we
consider is a stack of N coincident D3 branes (in type IIB string theory),
where N � 1. The parameters in the string theory will be the number of
branes N and the string coupling g, which controls the strength of string
interactions. Recall that D-branes are surfaces on which strings can end and
are dynamical objects themselves in string theory. Two aspects of D-branes
that will be important here are that the string endpoints generate a field
theory on the world-volume of the branes (whose massless states include
gauge fields described by a Yang-Mills theory) and that the branes carry
energy, which causes gravitational effects around the branes. First, we will
take the low-energy limit before going to strong coupling, giving the field
theory part of the correspondence, before performing the operations in the
reverse order to arrive at the gravity side.

To find the field theory part of the correspondence, consider the physics
on the world-volume of the branes. The string endpoints give a field theory
on the branes, the effective coupling (gYM) of which is related to the string
coupling as g2

YM = g. However, for a large number N of coincident branes,
the gauge group of the field theory has large rank (is a ‘large-N ’ theory),
so that the relevant coupling is the ‘t Hooft coupling λ = g2

YMN = gN
[26]. If we consider these branes at small coupling λ, the physics can be
described perturbatively using field theory techniques on the branes. If
we now take the low-energy limit, the massive open string states decouple,
leaving massless open string states on the branes, which, in this case, gives
precisely the N = 4 SU(N) super-Yang-Mills theory, with coupling λ, on

10λ refers to coupling on the field theory side. Below, we describe the interpretation of
λ in terms of parameters on the gravity side.
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3 + 1 dimensional Minkowski space (on the world-volume of the branes).11

Taking the coupling λ large, we get the super-Yang-Mills theory at strong
coupling.

Now, by taking the limits in the opposite order, we may find the gravity
side of our correspondence. We begin again at our stack of N D3 branes,
where N � 1. We would like to replace this configuration by a classical
supergravity geometry, which will provide a good description of the system
when the typical curvatures in the geometry are small. Given that D-branes
carry energy (and charge), we solve the classical supergravity equations to
find the spacetime that describes the brane configuration. The resulting
spacetime is the p-brane supergravity solution, which is somewhat similar
to a standard black hole solution (but with different geometry and in a
different number of dimensions). The characteristic length of curvature in
this spacetime is proportional to λ; if we take λ large, the branes source
a spacetime with small curvature, and we can effectively replace the stack
of D3 branes with this supergravity geometry. Then, after taking the large
λ limit, we are left with type IIB string theory on this supergravity back-
ground. At this point, we now take the low-energy limit. From the point
of view of an observer infinitely far from the branes, all string states suffi-
ciently close to the horizon of the branes have vanishing energy. Therefore,
the low-energy limit is synonymous with the ‘near-horizon’ limit, where we
focus in on the geometry very close to the branes and keep all the string
states. This near-horizon geometry is AdS5 × S5, which may be written as

ds2 =
r2

L2
(ηµνdx

µdxν) +
L2

r2
dr2 + L2dΩ2

S5 , (1.1)

where L is the characteristic length scale of the geometry and ηµν is the 3+1
dimensional Minkowski metric. The field theory directions, or those parallel
to the D3 branes, are described by the ηµνdx

µdxν part of the metric, while
r labels the radial distance from the branes (the horizon being at r = 0).
The result of taking the limits in this way is that we are left with type IIB
string theory on the near-horizon geometry (1.1).12

11In addition to the theory on the branes, the physical degrees of freedom in this situa-
tion include closed strings away from the branes. In the low-energy limit, massive closed
string states decouple, leaving massless closed string states (supergravity) in the bulk,
and interactions between the closed strings in the bulk and the open strings on the brane
are suppressed. Thus, we have also bulk free supergravity in the space away from the
branes, which is decoupled from the field theory on the branes. Below, we will see that
we have an identical decoupled supergravity sector in additional to the gravity side of the
correspondence, so that this sector does not play a role in the duality.

12In the low-energy limit, we also keep massless string states away from the near-horizon
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In summary, taking the low-energy and strong coupling λ limits in dif-
ferent orders (and with N � 1), we have arrived at either strongly coupled
N = 4 SU(N) super-Yang-Mills theory on 3 + 1 dimensional Minkowski
space or type IIB string theory on AdS5 × S5. Assuming that the limits
commute gives us the conjectured equivalence of these two theories. This
discussion is summarized in Figure 1.2.

Given this explicit construction, we can identify relationships between
the parameters of the string theory (or gravity side) and the field theory (or
gauge theory side). The parameters of the gravity side can be taken to be
the AdS radius L/ls (in units of the string length ls) and the string coupling
g. On the field theory side, we have the rank of the gauge group N and
the ‘t Hooft coupling λ. In the duality described here, the relations between
these are given by

λ = gN, L4 = 4πα′2gN, (1.2)

where α′ = l2s . We see here the precise dependence of the characteristic size
L on the coupling λ = gN .

For classical supergravity to be a good approximation on the gravity
side, the characteristic length scale L of the curvature must be large so
that the space is weakly curved. The relevant length scales for stringy and
quantum effects are the string length ls and the Planck length lP ; L must
be large compared to these for the classical supergravity description. Using
GN = l8P = g2l8s for this ten dimensional space, we have

L

lP
∼ N1/4 � 1 (1.3)

as the condition which suppresses quantum effects. Using the string length,
we find that

L

ls
∼ λ1/4 � 1 (1.4)

will control corrections from the tower of massive string states.13

Now, using the specific duality developed above, we can again compare
the degrees of freedom in each theory, as in section 1.2.1. This time, given
more information about the theories involved and the relations (1.2) we will

region, which gives us free supergravity away from the branes and which decouples from
the brane physics. This is precisely the same as the supergravity sector we arrived at away
from the branes in the alternative ordering above, so that these sectors can be trivially
identified.

13Schematically, the states of the string have masses m2 ∼ n/α′, where n is the level of
excitation. For large λ, these masses become large and the massive string states are not
accessible.
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N D3 branes

low-energy

N = 4 SYM

λ

low-energy

λ� 1

λ� 1

strongly coupled

SYM

(string theory on)

supergravity

p-brane

×S5

⇐⇒

Figure 1.2: Motivating the AdS/CFT correspondence via string theory. Be-
ginning with a stack of N D3 branes (top left, shown with strings) and
taking the large coupling λ = gN and low-energy limits in different ways,
one arrives at the correspondence. Taking the low-energy limit of the D3
brane system gives the N = 4 super-Yang-Mills (SYM) theory on 3 + 1 di-
mensional Minkowski space with coupling λ (top right). Then, we may take
the coupling λ large to get the strongly coupled theory. Starting again with
the stack of branes, and taking λ to be large first, one can replace the branes
with a corresponding classical supergravity p-brane geometry (bottom left).
Taking the low-energy limit in this geometry leaves type IIB string theory
in the near-horizon region, AdS5 × S5. (See Figure 1.3 for a description of
AdS space, depicted here in green.) Finally, we identify the two theories in
the bottom right corner to arrive at the correspondence.
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be able to observe the dependence on more parameters of the theories (in
addition to seeing the scaling with the field theory volume).

We begin with the field theory side, which we will consider generically
as an SU(N) field theory with matter content in the adjoint representa-
tion. We will consider the theory in a finite volume V3, to regulate infrared
divergences, and introduce a short-distance cutoff δ, to control ultraviolet
divergences. The number of cells in the volume will then be V3/δ

3. For this
type of field theory, the field degrees of freedom in each cell will be N ×N
matrices, with N2 degrees of freedom each. Therefore, the total number of
degrees of freedom will be given by

d.o.f.field theory ∼
N2V3

δ3
. (1.5)

Now, consider the gravity side. As discussed above, the information in
gravity is holographic, so that the degrees of freedom of the system should
be proportional to the area surrounding the system. In the metric (1.1),
the boundary which surrounds the system is at r = ∞; it is the area of
this boundary which we wish to compute. Before we calculate this area,
however, we should also consider that we must regulate the gravity side in
the same way as we did our field theory. To impose an infrared regulator,
we will simply consider a finite volume V3 of the directions parallel to the
original D3 branes (this is the ηµνdx

µdxν term of the metric). To impose an
ultraviolet cutoff in the gravity theory is not so straight-forward. It turns
out (as discussed further below, section 1.2.3) that the near-boundary region
of the spacetime corresponds to the ultraviolet of the field theory. Thus, to
impose a similar cutoff, we should compute the area of the surface just inside
the boundary.

For convenience in this calculation, we will change coordinates in (1.1)
as r = L2/z, to get the metric

ds2 =
L2

z2

(
ηµνdx

µdxν + dz2
)

+ L2dΩ2
S5 . (1.6)

The boundary, previously at r = ∞, is now at z = 0. By computing the
area of the surface near the boundary, at z = δ, we will be imposing an
ultraviolet cutoff as desired. In the background described by equation (1.6),
the area of the surface at constant z = δ, constant time, and with volume
V3 in the field theory directions is given by

A = V3 ·
√
L6

δ6
· L5, (1.7)
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where the factor L5 gives the volume of the S5 part of the geometry. The
number of degrees of freedom, or information, is given by the Bekenstein
formula S = A/4GN . Using also equation (1.2) and the string theory result
that GN ∼ g2l8s = g2α′4, we find the information of the gravity theory to be

d.o.f.gravity theory =
A

4GN
∼ V3L

8

δ3g2α′4
∼ N2V3

δ3
, (1.8)

in agreement with the field theory result (1.5).
In addition to finding the expected scaling with the field theory volume

V3, we have added the information of how the two theories behave with
respect to an ultraviolet cutoff δ and how the information scales with the
rank N of the field theory gauge group. We find that the results on both
sides of the correspondence match up as needed.

1.2.3 The holographic dictionary

Above, in section 1.2.2, we motivated the equivalence of strongly coupled
N = 4 SU(N) super-Yang-Mills theory on 3 + 1 dimensional Minkowski
space and type IIB string theory on AdS5×S5. The construction discussed
there represents a precise example of the more general class of holographic
relationships known as the AdS/CFT correspondence.14 In this section, we
zoom out from this specific situation and examine the holographic duality
with the minimal ingredient of asymptotically AdS gravity, which, as we will
discuss further below, is the minimal structure for the dual of a conformal
field theory. We will build some physical intuition for the correspondence
while enumerating some of the standard entries in the holographic dictio-
nary, which relates quantities on both sides of the duality. Through this,
we will develop some of the practical computational tools one can use to
address questions in holographic field theories.

First, we elaborate on the structure of AdS space and connect the isome-
tries of the spacetime to the symmetries of the field theory. Next, we discuss
the direct correspondence between the path integrals on either side of the
duality and detail how the classical gravitational action can be used to get
information about the field theory partition function. Finally, from a phe-
nomenological perspective, we discuss how one may add structure to the
dual field theory by including different matter fields in the gravity action.

14N = 4 SU(N) super-Yang-Mills theory is a conformally invariant field theory.
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Symmetries of AdS space and the UV/IR relation

In this subsection, we discuss AdS space in more detail, connecting the
symmetries of this spacetime to those in the field theory, and building an
intuition about how dynamics at different coordinate positions in the gravity
side correspond to dynamics at different energy scales in the field theory.

We will consider AdSd+1, with metric given by

ds2 =
r2

L2
(ηµνdx

µdxν) +
L2

r2
dr2, (1.9)

where ηµν is the d-dimensional Minkowski metric. We will refer to xµ as
the field theory directions and r as the radial direction. In Figure 1.3, we
provide a caricature of this space. r varies from 0 to∞; r = 0 is the Poincaré
horizon while r =∞ is the asymptotic boundary of the space. The geometry
of the boundary at r = ∞ is conformal to d-dimensional Minkowski space,
which is the spacetime on which the dual field theory is defined. AdSd+1 is a
space with constant negative curvature, which implies that radial geodesics
diverge as they approach the asymptotic boundary. If we have a box with
a certain area in the field theory directions, at a fixed r1, and we move the
box to a larger radial coordinate r2, the area of the box will increase by a
factor rd−1

2 /rd−1
1 . The typical length scale of this curvature is L; if L is large

in units of the Planck length, the space is weakly curved. Finally, we note
that AdSd+1 is a solution of the Einstein-Hilbert action with cosmological
constant:

S =

∫
dd+1x

√−g
(
R+

d(d− 1)

L2

)
. (1.10)

It is this action which will define the partition function for the gravity side.
AdS space is highly symmetric; that it is dual to a conformal field theory

(which is also highly symmetric) is no coincidence. The isometries of the
AdS space include Poincaré transformations in the field theory directions,
dilatations (scalings of the coordinates), and special coordinate transfor-
mations. Taken together, the isometry group of AdSd+1 is isomorphic to
SO(d, 2). Now, the conformal group in d spacetime dimensions is precisely
SO(d, 2) [27]. Thus, there is a direct relationship between isometries of the
gravity side and the conformal symmetry of the field theory. The gravity
side allows a geometrical realization of the conformal symmetry through
isometries of the spacetime.

As an example of this relation, consider in particular scale transfor-
mations in the field theory, which, through the duality, are directly ‘ge-
ometrized’ in the extra gravity coordinate. In the field theory, these are

14



1.2. Introduction to the gauge / gravity duality

← r → ηµνdx
µdxν

Figure 1.3: A caricature of AdS space, as described by equation (1.9). The
radial direction, r, increases from left to right; at fixed r, the metric is
proportional to d-dimensional Minkowski space. The space has a horizon
at r = 0, past the left of the diagram, where the square will pinch off
(the factor multiplying ηµνdx

µdxν in the metric goes to zero). There is an
asymptotic boundary as r →∞, on the right of the diagram. The geometry
of the boundary of AdSd+1 is conformal to d-dimensional Minkowski space.
AdSd+1 is a negatively curved space, which implies that radial geodesics
diverge as they approach the asymptotic boundary, and which inspires the
shape of this schematic.

given by xµ → axµ. The energy in the field theory, conjugate to time, scales
as E → a−1E. The corresponding symmetry in the AdS space is the di-
latation xµ → axµ, r → a−1r. Thus, scaling to high-energy processes (or
dynamics at small distances) corresponds to moving the bulk process to-
wards the boundary at r =∞. This behaviour is captured in the statement
that the radial coordinate on the gravity side behaves like an energy in the
field theory. Fields deep in the interior, at small r, represent processes in the
infrared of the field theory, while excitations near the boundary at r = ∞
correspond to the ultraviolet of the field theory. On the gravity side, an
infrared cutoff would correspond to placing a cutoff before the asymptotic
boundary, to regulate the long-range excitations. Thus, through the corre-
spondence, the infrared of the gravity side is mapped to the ultraviolet of the
field theory, so that this is often called the UV/IR relation. See Figure 1.4
for a schematic image of this relationship.15

15A particular interesting implication of the UV/IR relation is that a cutoff of the gravity
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1.2. Introduction to the gauge / gravity duality

Figure 1.4: The UV/IR relationship between the bulk and boundary. Dy-
namics at short distances, or high energy scales, in the boundary theory
correspond to excitations near the boundary in the gravity theory (excita-
tions at long distances, or in the infrared of the gravity theory). Infrared
dynamics, or low-energy excitations of the field theory, correspond to dy-
namics deep in the gravity bulk. (This image was inspired by a similar figure
in [14].)

Equivalence of path integrals and the computation of expectation
values

In this subsection, we make explicit the correspondence between the parti-
tion functions on either side of the duality and discuss how, in the limit of
strong coupling, we may approximate the partition function of the gravity
theory by using its classical action.

In order to use the gauge / gravity duality to perform calculations, we
need a mathematical relationship between the two theories. The main prac-
tical statement of the correspondence is the equivalence of the gravitational
partition function with the generating functional of the field theory:

ZAdS [certain b.c.s] = ZCFT [JA] =
〈
ei

∫
JAOA

〉
. (1.11)

JA are sources with OA the corresponding operators in the field theory,
where the label A includes all information about the operators, including

side at a minimum radius rmin (restricting r to (rmin,∞)) will introduce a minimum
energy for excitations, or a mass gap, into the field theory. This understanding gives some
intuition about how we might use the correspondence to model theories with an energy
gap.

16



1.2. Introduction to the gauge / gravity duality

Lorentz indices. As we will detail shortly, the presence of sources for oper-
ators in the field theory is dual to the existence of fields in the bulk gravity
side. ZAdS must also be supplemented with particular boundary condi-
tions (at the asymptotic boundary), as indicated in equation (1.11). These
boundary conditions typically enforce the value of the source JA.

In this work, we are interested in using the gravity side to answer ques-
tions about the field theory. Through the relation (1.11), knowing the be-
haviour of the gravity theory allows one to perform computations in the field
theory, using the standard expression

〈OA〉 = −iδZCFT [JA]

δJA
. (1.12)

Our main focus is on applying the correspondence to strongly coupled field
theories. In this limit, classical gravity is a good description of the bulk and
we can approximate the gravity partition function as

ZAdS ≈ eiS0 , (1.13)

where S0 is the gravity action evaluated on the classical solution. Combining
equations (1.11), (1.12), and (1.13) gives

〈OA〉 =
δS0

δJA
. (1.14)

Thus, to compute field theory expectation values, one may solve the classical
equations of motion on the gravity side to find the on-shell action S0 before
using (1.14) to arrive at the field theory result. The holographic correspon-
dence translates the problem of computing correlation functions to finding
the classical gravity action.

Mapping (gravity) fields to (field theory) operators

Given the equivalence of the partition functions of the theories on either side
of the correspondence, equation (1.11), and the prescription for computing
correlation functions, equation (1.14), it is important to describe how we
may add structure to the field theory, in the form of sources JA and op-
erators OA, through manipulations of the gravity theory (which we have
full control over). In this subsection, we precisely state how the content of
the two theories connects and present three examples of this mapping. The
information reviewed here provides some of the necessary basis for building
up holographic field theories in a phenomenological manner.

17



1.2. Introduction to the gauge / gravity duality

As touched on briefly above, the content of the field theory is determined
by sources for the operators of the theory. Generically, there are many types
of operators that could appear in a field theory (for example, with different
Lorentz indices). What might be the corresponding content on the gravity
side? Components that we can add to the gravity side, which also display
a rich array of possibilities, are fields of various types. Included in the
statement of the holographic correspondence is that (in the strong coupling
limit) classical fields in the gravity bulk are in correspondence with operators
of the field theory. As we will see in the examples below, the source and
expectation value for the dual operator are encoded in the asymptotic, near-
boundary behaviour of the classical field. Three important components of
this mapping are:

1. The Lorentz structure of the field in the bulk carries over to the oper-
ator in the field theory.

2. The mass of the field on the gravity side is in correspondence with the
scaling dimension of the operator in the conformal field theory.

3. Gauge symmetries in the bulk map to global symmetries on the bound-
ary.

These details begin to illuminate how we might use the holographic corre-
spondence to build up conformal field theories with certain operator content.

As a first example of how the duality between fields and operators works
in practice, let us consider the simplest case of a massive real scalar field ψ
in AdS space. From an effective-theory or naturalness perspective, we will
use the action

Sψ =

∫
dd+1x

√−g
{

1

2
(∂ψ)2 +

1

2
m2ψ2

}
, (1.15)

where m is the mass of the scalar field. Since ψ is a scalar field, it will
be dual to some scalar operator in the field theory, which we will call Oψ.
Including this scalar field on the gravity side corresponds to considering a
source ψ(0) for Oψ, so that we are studying the generating functional

ZCFT [ψ(0)] =
〈
ei

∫
ψ(0)Oψ

〉
. (1.16)

In terms of the scalar field in the bulk, it is the value of ψ at the boundary
that determines the source ψ(0). By solving the equation of motion following
from (1.15) in the AdS background (1.9), for large r, and comparing to the

18



1.2. Introduction to the gauge / gravity duality

definition for expectation values from partition functions, equation (1.12),
we arrive at the expansion

ψ =
ψ(0)

rd−∆
+ · · ·+ 〈Oψ〉

r∆
+ . . . , (1.17)

where

∆ =
1

2

(
d+

√
d2 + 4m2L2

)
(1.18)

and . . . denotes terms higher order in 1/r (additional terms may appear
at orders lower than the 〈Oψ〉 term, as indicated). As anticipated, the
source ψ(0) and expectation value of the operator Oψ are encoded in the
asymptotics of the scalar field.16 ∆, which depends on the mass m, is the
scaling dimension of the operator in the field theory, meaning that we can
write the field theory correlation function of Oψ schematically as17

〈Oψ(x)Oψ(y)〉 ∼ 1

|x− y|2∆
. (1.19)

In practice, the value of the source ψ(0) is part of the boundary conditions
imposed on the gravity theory. Posing the equations of motion for the clas-
sical configuration of ψ in the AdS background as subject to the boundary
condition r∆ψ → ψ(0) as r → ∞ gives a well-defined problem, the solution
of which allows one to read off the expectation value 〈Oψ〉.

Next, let us consider a U(1) vector field Aµ in the bulk, with Maxwell
action

SA =

∫
dd+1x

√−g 1

4
F 2, (1.20)

where F is the field strength for the gauge field. The gauge field will couple
to an operator with one Lorentz index, which we will call jµ. The generating
functional for the dual field theory will be

ZCFT [A(0)µ] =
〈
ei

∫
A(0)µj

µ
〉
, (1.21)

where we are reminded that, as above for the scalar field, we must include
boundary conditions on the gauge field Aµ in the bulk. Once again we can
write the solution for this field near the asymptotic boundary, finding

Aµ = A(0)µ +
〈jµ〉
rd−2

+ . . . . (1.22)

16Generically, the source is encoded in the non-normalizable mode of the field while the
response is dual to the normalizable portion of the field.

17To see this, one may again use the symmetry xµ → axµ, r → a−1r. Under this scaling,
the scalar field ψ should be invariant. Using equation (1.17), we can then read off how
Oψ should scale under this transformation.
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1.2. Introduction to the gauge / gravity duality

The allowed set of local U(1) gauge transformations on the gravity side
reduce to global U(1) transformations at the boundary r → ∞, implying
that the current jµ is a global U(1) symmetry current. Notice also that
the scaling dimension of jµ is ∆j = d − 1, which agrees with the scaling
dimension of a conserved current in a d-dimensional conformal field theory
[27].

In particular, this correspondence provides a straightforward method
with which to study a field theory at finite density. One may turn on a
chemical potential µ for a global U(1) charge by fixing the boundary con-
dition A(0)t = µ; the corresponding response jt = ρ will be the conserved
charge density. Thus, to study strongly coupled field theory at finite density,
one simply has to study the dynamics of an electric field (arising from the
gauge potential At) in a gravitational background (see Figure 1.5).18

~E

Figure 1.5: Including an electric field in the bulk is dual to a field theory at
finite charge density. (This image was inspired by a similar figure in [14].)

Finally, we consider the metric gµν , a tensor field in the bulk. The
minimal action for the metric is the Einstien-Hilbert action, given above in
equation (1.10). To understand the field theory quantities that are encoded
in the metric, recall that, in a field theory, the energy-momentum tensor Tµν
arises as the conserved current associated with Lorentz transformations. As
for the gauge field above, the local gauge freedom of the metric in the bulk
will reduce to a global transformation on the boundary: Diffeomorphism

18The situation described here corresponds to studying the field theory in the grand
canonical ensemble, in which we fix the chemical potential. By using alternate boundary
conditions for the gauge field, we could study the canonical ensemble, in which we fix the
charge density.
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1.2. Introduction to the gauge / gravity duality

invariance in the bulk becomes the freedom of global (Lorentz) coordinate
transformations in the field theory. Thus, it is natural to identify the (bound-
ary value of the) metric with the source for the energy-momentum tensor
Tµν . Written in the same manner as the scalar and gauge fields above, the
field theory generating functional will be

ZCFT [g(0)µν ] =
〈
ei

∫
g(0)µνT

µν
〉
, (1.23)

where g(0)µν refers to the boundary value of the metric gµν . Once again
we may solve the equations perturbatively near the boundary, finding the
schematic expansion [28]

gµν ∼ r2g(0)µν + · · ·+ 〈Tµν〉
rd−2

+ . . . , (1.24)

where . . . denotes terms higher order in 1/r (additional terms may appear
at orders lower than the 〈Tµν〉 term, as indicated). In the field theory, Tµν
is the symmetry current that results from a change of coordinates. As can
be seen in these expressions, the metric of the field theory (the tensor that
couples to Tµν) is g(0)µν , conformal to the boundary value of the bulk metric
gµν . It is this relationship that drives the notion that the field theory ‘lives
on the boundary’ of the gravity bulk. As a final check, notice that the
dimension of the Tµν is ∆T = d, as required by the conformal symmetry in
the field theory [27].

1.2.4 Holography and numerics

As discussed above, a typical application of holography to the modelling of
some strongly coupled physics involves solving the classical field equations of
a gravitating system. In low-dimensionality or in cases with high symmetry,
analytic solutions are known. For example, the possible solutions for Ein-
stein gravity (with negative cosmological constant) include AdS space and
the Schwarzschild-AdS black hole. However, restricting to analytic solutions
greatly restricts the characteristics of the corresponding field theory, and if
we wish to model more interesting types of field theories, we quickly arrive
at systems for which no closed-form solutions exist. There are two ways we
might want to extend the known solutions, which we discuss here: we could
include more fields on the gravity side (scalar, gauge, fermion, or tensor
fields, for example) or we could examine situations with reduced symmetry.
In both cases, we must turn to numerical methods in order to make progress.
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1.2. Introduction to the gauge / gravity duality

As discussed in the previous subsection, the correspondence between
bulk fields and field theory operators means that if one wishes to add con-
tent to the field theory, then one should consider a gravity side with more
fields (the nature of which are determined by the desired operator content).
Upon adding fields to the gravity side, one quickly arrives at systems for
which analytic solutions are not known.19 In these cases, numerical tech-
niques become useful tools with which to find solutions. If we maintain
symmetry in the field theory directions, the equations of motion reduce to
ordinary differential equations, which depend only on the holographic radial
coordinate r. For example, in the expression (1.17), this would imply that
δψ and 〈Oψ〉 are independent of the field theory directions. In this case, the
equations of motion may be solved in a straightforward manner using, for
example, standard computer mathematics software. The majority of studies
in the literature have focussed in this way on homogeneous field theory.

In order to provide contact with real experimental systems in which the
assumption of homogeneity does not apply, one needs to introduce a de-
pendence on the field theory directions (so that δψ = δψ(x) and 〈Oψ〉 =
〈Oψ(x)〉). To use the correspondence to its full capacity, we should also apply
it to studying strongly coupled theories in these less symmetric situations.
Generically, if we introduce a dependence on the field theory directions, the
equations of motion will take the form of coupled partial differential equa-
tions, and any hope of an analytic solution is lost. Therefore, numerical
methods are necessary to address this entire new sector of problems con-
cerning strongly coupled theories. In particular, for static problems, the
equations take the form of well-defined boundary value problems, for which
standard numerical techniques exist. Many of these may reasonably be im-
plemented with only modest computational resources; thus, these problems
are accessible to many researchers with current technologies and equipment.
However, only recently have some research groups began to study field the-
ory in inhomogeneous situations in this way.

A portion of this thesis (the projects described in chapters 3, 4, and 6) is
dedicated to applying numerical techniques to certain holographic situations
with reduced symmetry. In appendix A, we briefly review the numerical
procedures used in these studies.

19An exception is the Reissner-Nordström-AdS black hole, which solves the Einstein-
Maxwell system (a gauge field in dynamical gravity), and is dual to a field theory at finite
density.
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1.3 Thesis overview

This thesis consists of four projects covering three distinct domains of appli-
cability. In this section, for each project, we briefly describe the motivation,
methods, and main results. First, summarized in section 1.3.1, we study
holographic field theories in generality, seeking results for generic finite den-
sity theories. Next, we apply holography to the study of phases which
spontaneously break translation invariance (section 1.3.2). These have ap-
plications in condensed matter physics. Finally, we turn to QCD, and study
two separate problems. First, we model the existence of a colour supercon-
ductivity phase at high densities (section 1.3.3). Second, we examine the
construction of the baryon in a holographic model (section 1.3.4).

1.3.1 Density versus chemical potential in holographic
probe theories20

One difficult regime of strongly coupled field theory that holography is par-
ticularly suited to study is that of finite charge density. Here, lattice tech-
niques fail due to the ‘sign problem’, whereby at finite chemical potential,
the Euclidean action becomes complex, resulting in a highly oscillatory path
integral. We can avoid this difficulty by mapping the problem to a grav-
ity dual. As reviewed above, in section 1.2.3, according to the holographic
dictionary, in order to have a chemical potential (indicating a global U(1)
symmetry) in the field theory, one must simply include a U(1) gauge field in
the gravity bulk. Given this simple access to finite density configurations,
it is interesting to characterize the types of field theories which have a dual
formulation and to extract qualitative (and, ideally, quantitive) results from
the gravity approach.

In this work, we study systems with the minimal structure of a con-
served charge, finding in particular which relations between charge density
(ρ) and chemical potential (µ) are possible in field theories with a gravity
dual. We focus on Lorentz invariant 3 + 1 dimensional holographic field
theories with the goal of offering a survey of results in the context of holog-
raphy. Comparing and contrasting the results of such a study can provide
an understanding of the behaviour of strongly interacting matter that is
common across all models and those features that are particular to certain
constructions, and may provide qualitative results applicable to QCD and
other strongly coupled systems.

20This section is a summary of the work presented in chapter 2 and published in [1].
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~E

different gravity

theories

Figure 1.6: In chapter 2, we study holographic field theories with the mini-
mal structure of a conserved charge, which corresponds to having a gravity
bulk with an electric field. We enumerate the results for the relationship
between chemical potential µ and charge density ρ across a large number of
3 + 1 dimensional example field theories. These field theories differ in their
dual gravity description which is indicated by the shaded area at the left of
the figure. (This image was inspired by a similar figure in [14].)

We find that, at large µ, a large class of theories are well-modelled by a
power law relationship of the form

ρ = cµα + . . . , (1.25)

where the dots denote terms subdominant in powers of µ. By studying
various general and specific examples of holographic field theories, we may
enumerate the possible values of the parameters α and c. The particular
situations we examine in this work may be split into general results and
specific examples. We summarize the cases we consider:

1. General considerations:

(a) Using thermodynamic stability and causality as general field the-
ory constraints, we derive the condition α ≥ 1, restricting the
power that can appear in the relationship.

(b) For a holographic field theory in which the gauge field is governed
by the probe Maxwell action (that is, in a fixed gravitational
background), we find that, analytically, α = 1.
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(c) For a holographic field theory using a Born-Infeld gauge field
action, we derive α > 1.

2. Specific examples:

(a) We consider Dp-Dq brane systems, given by a single probe Dq
brane embedded in the black brane background generated by a
stack of N Dp branes, for various (p, q). In these systems, the
Born-Infeld action describes the dynamics of the gauge field on
the probe brane and determines the possible behaviours (pow-
ers α) that may arise. We analytically determine the different
possible behaviours.

(b) Next, we consider bottom-up models,21 both probe and backre-
acted, in both black hole and soliton (horizon-less) geometries,
and with and without a scalar field. Depending on the example,
we use analytical or numerical approaches to solve the equations
of motion on the gravity side before using the correspondence
to interpret our results in terms of the dual field theory and to
evaluate the dependence of α and c on both the model and the
parameters within each model.

These results, the main output of our study, are summarized in Ta-
ble 2.1 (for Dp-Dq systems) and in Table 2.2 (for bottom-up models).

1.3.2 Holographic stripes22

High temperature superconductivity is one of the most interesting and tech-
nologically relevant problems in condensed matter physics. Experiments
have recorded many novel results in materials that exhibit high temperature
superconductivity. One of these is the observation of translation-symmetry
breaking states, or stripes, which have been observed in the form of charge
density waves (see Figure 1.7), in which the charge density varies with po-
sition, and spin density waves, in which the spin density varies with posi-
tion. Striped phases are believed to be due to strong coupling effects and a
tractable theoretical model is not yet available. By applying the holographic

21‘Bottom-up’ models are those in which the theory does not arise from an explicit
string theory construction. Starting with the action (1.10) would be considered a bottom-
up approach, while Dp-Dq brane systems are examples of ‘top-down’ models.

22This section is a summary of the work presented in chapters 3 and 4 and published
in [2] and [3]. Chapter 3 presents a concise version of the study while chapter 4 provides
full results and the complete details of the analysis.
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Figure 1.7: A schematic phase diagram for the cuprates. The vertical
axis is temperature while the horizontal axis represents doping. Shown are
schematic diagrams at: a) weak coupling; b) coupling that varies with x,
and; c) strong coupling. Phases of the cuprates include the superconducting
phase (SC) and inhomogeneous phases: the nematic phase, the charge den-
sity wave (CDW), and the spin density wave (SDW). In chapters 3 and 4, we
study a holographic model of a strongly coupled system which exhibits an
inhomogeneous phase. (Reprinted with permission from [29], c©2009 Taylor
& Francis.)

correspondence, one may study strongly coupled systems that share impor-
tant features with these experimental materials. In this project, we seek to
model the spontaneous transition to a translation-symmetry-breaking phase,
in hopes that general lessons may be extracted from the results and applied
to the experimental systems. To this end, our goal is to find the gravity
dual of a 2 + 1 dimensional model system with spontaneous striped order.

To find the gravity dual of a system with stripes, we need a mechanism
to break the translational invariance. One mechanism to introduce spatial
inhomogeneities is the inclusion of a Chern-Simons-type term in the gravity
Lagrangian. The specific model we study, due to Donos and Gauntlett [30],
is

L =
1

2
(R+12)− 1

2
∂µψ∂µψ−

1

2
m2ψ2− 1

4
FµνFµν−

1√−g
c1

16
√

3
ψ εµνρσFµνFρσ.

(1.26)
The Chern-Simons coupling between the scalar field ψ and the gauge field
Aµ (the term proportional to c1) promotes the formation of stripes for large
enough chemical potential and for a range of wave-vectors. Through a per-
turbative analysis, Donos and Gauntlett showed that instabilities of the ho-

26



1.3. Thesis overview

mogeneous background towards the formation of stripes indeed exist in the
above model [30]. These stripes appear in the charge density, current den-
sity, and energy-momentum tensor of the dual field theory. In this project,
we perform the full analysis of the system, solving for the nonlinear inho-
mogeneous solutions and characterizing the phase transition between the
homogeneous and the striped phases.

The equations governing our gravitational model are the Einstein equa-
tions, Gµν = Tµν , and the matter field equations. The fields will vary in
both the holographic radial direction and the inhomogeneous direction of
the field theory, resulting in coupled nonlinear partial differential equations.
To solve the equations, we discretize on a rectangular grid before applying
a Gauss-Seidel relaxation method on the resulting algebraic equations; see
appendix A.2 for more details about the numerical approach in this project.

With the solutions for varying temperature and wave-vectors in hand,
we can study the thermodynamics of the homogeneous and inhomogeneous
phases in order to determine which phase dominates. For the field theory
on a domain of finite size, we make this comparison in each of the micro-
canonical, canonical, and grand canonical ensembles, confirming that the
striped solution dominates (when it exists) in all cases, and finding a second
order transition to the inhomogeneous phase as the temperature is lowered.
For the experimentally interesting case of the field theory on an infinite
domain, we compare the free energy density of the homogeneous solution to
that of all stripes available at the given temperature in order to determine
the dominant stripe width. We find a second order transition to the striped
phase as the temperature is lowered and that, once inside the domain of the
striped phase, the width of the dominant stripe increases with decreasing
temperature. This main result is shown in Figure 3.5.

1.3.3 Towards a holographic model of colour
superconductivity23

As discussed above, low energy QCD is the prototypical strongly coupled
field theory. Since the domains of applicability of typical field theory ap-
proaches (perturbative quantum field theory and lattice simulations) are
restricted to limited regions of the phase diagram, the holographic cor-
respondence, which provides access to the thermodynamics of the theory
across the parameter space, offers a promising avenue for study. Unfor-
tunately, the precise gravity dual of QCD is not know. However, certain

23This section is a summary of the work presented in chapter 5 and published in [4].
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features of QCD may be modelled in the holographic approach, offering (at
the least) qualitative information about the phase diagram of QCD. One
such feature that is particularly amenable to the gravity approach is the
existence of a colour superconductivity quark matter phase at high density.
(See Figure 1.8.)

liq
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QGP

CFL

nuclear
superfluid

heavy ion
collider

neutron star

non−CFL
hadronic

Figure 1.8: A schematic of the conjectured QCD phase diagram. At small
densities and temperatures is the hadronic phase while at larger tempera-
tures and densities is the quark-gluon plasma (QGP). At very high densities,
we find phases which exhibit colour superconductivity (shaded in yellow),
labelled by whether or not they are expected to exhibit the phenomenon
of colour-flavour-locking (CFL). In chapter 5, we study a phenomenological
holographic model of the colour superconductivity phase. (Reprinted with
permission from [31], c©2008 the American Physical Society.)

In this project, we employed a bottom-up, phenomenological approach
to model a confining gauge theory on 3 + 1 dimensional Minkowski space
which displays a colour superconductivity phase at large densities. The key
features in our model include a QCD (confinement) scale,24 a conserved
baryon current (dual to a U(1) gauge field Aµ), and an operator to char-
acterize the colour superconductivity phase (dual to a scalar field ψ). The

24This is provided by the addition of an extra periodic direction in the geometry. On the
gravity side, this allows a phase transition between a geometry with a black hole horizon
and one without (a soliton configuration). The soliton geometry cuts off the gravity bulk
at a minimum radius, introducing a mass gap in the dual field theory and resulting in a
confining phase [32].
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phenomenological gravity action describing this minimal set of ingredients
is given by

S =

∫
d6x
√−g

{
R+

20

L2
− 1

4
F 2 − |∂µψ|2 −m2|ψ|2

}
. (1.27)

The standard solution to this model is the charged AdS black hole (with
ψ = 0), which is dual to the deconfined phase of the field theory. The
existence of a confinement scale admits a second, horizon-less gravity so-
lution, which translates to the confined phase of the field theory. Finally,
it is known that in this model, for large chemical potential, there is an in-
stability towards a ‘hairy’ black hole, with non-zero scalar field ψ. In this
phase, the operator Oψ dual to the scalar field will acquire a non-zero ex-
pectation value: 〈Oψ〉 6= 0. Within our model, Oψ is interpreted as some
quark operator whose expectation value indicates the presence of a (colour)
superconducting condensate. Thus, the field theory dual to the system de-
scribed by the action (1.27) exhibits three distinct phases: a confined phase,
a deconfined phase, and a colour superconducting phase.

Solving the system of ordinary differential equations derived from the
action and computing the free energy of each phase at various temperatures
and chemical potentials allows us to construct the phase diagram given in
Figure 5.1, which is the main result of this study. A particular interesting
outcome is that our model predicts a very small temperature for the onset
of the colour superconducting phase.

1.3.4 Holographic baryons from oblate instantons25

In this project, we again seek to apply the holographic correspondence in the
study of particular aspects of QCD. This time, we turn our attention to the
construction of the baryon in a holographic model of large-Nc two-flavour
QCD.

The model we consider is based on the Sakai-Sugimoto model of holo-
graphic QCD [13], a top-down string theory construction. The Sakai-Sugimoto
construction begins with a stack of Nc D4 branes,26 compactified on a circle
and considered in the low energy limit. On the field theory side, this gives
pure massless SU(Nc) Yang-Mills theory, representing the gluonic degrees of
freedom of QCD. In order to introduce flavour into the theory, one adds Nf

25This section is a summary of the work presented in chapter 6 and published in [5].
26The construction of the D4 brane background here closely resembles the D3 brane

system used in the original derivation of the correspondence, as reviewed in section 1.2.2
above.

29



1.3. Thesis overview

D8 branes to the construction; strings extending from the background D4
branes to the flavour D8 branes give states transforming in the fundamental
of SU(Nc), corresponding to the quarks of the theory. The gravity dual of
this theory is found by replacing the stack of D4 branes by the metric they
source. If the number of D8 branes is small, Nf � Nc, the effect of the D8
branes on the geometry can be neglected, and we are left with D8 branes
embedded in the background sourced by the D4 branes. In this model,
baryons arise on the gravity side as configurations of the U(Nf ) gauge field
on the flavour D8 branes that possess a non-trivial topological charge. See
Figure 1.9 for a visualization of this situation.

u
u d← r →

Figure 1.9: A visualization of the duality between the instanton in the bulk
(at the left, viewed side-on) and the baryon in the boundary field theory.
The instanton, a configuration of the bulk gauge fields with non-trivial topo-
logical charge, is oblate: it is squashed in the gravity radial direction r and
spherical in the field theory directions. In chapter 6, we numerically solve
for the minimal energy instanton configuration in the bulk.

The action describing gauge field configurations on Nf = 2 D8 branes is
given by

S ∝
∫
d4xdr tr

[
1

2
h(r)F2

µν + k(r)F2
µr

]

+ γ

∫

M5

tr

(
AF2 − i

2
A3F − 1

10
A5

)
, (1.28)

where A is a U(2) gauge field with field strength F , and h(r) and k(r) are
known functions. Then, our task of solving for a baryon in this theory re-
duces to finding gauge field configurations with a non-zero topological charge
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described by the action (1.28). The solution to this is an instanton27 in the
three spatial field theory directions and the holographic radial direction r of
the bulk.

There are three effects which determine the size and shape of the instan-
ton. Firstly, the coupling γ, the only parameter in the model (1.28), controls
the strength of the Coulomb self-repulsion of the instanton. For large γ, the
instanton tends to spread out in all directions. Second, the gravitational
well of the underlying geometry seeks to keep the instanton at small radial
coordinate r. For small γ, the instanton is small and the geometry does not
play a large role. However, for large γ, the geometry does become important
and the minimum energy configuration is an oblate instanton, squashed in
the r-direction and SO(3)-symmetric in the field theory directions. Finally,
the form of the gauge field action plays a role in restricting the deformation.
Since a spherical instanton minimizes the Yang-Mills action, this acts to
restrict the squashing of the configuration.

Previous studies have approximated the gravity dual of the baryon as
an SO(4)-symmetric BPST instanton. However, at non-zero values of the
coupling γ, as detailed above, the solution will only possess SO(3) symmetry.
It has been shown that the SO(4) approximation to the baryon fails to
satisfy certain model-independent form-factor relations [33]. In this project,
we seek to find the precise, SO(3)-symmetric solution to the field equations,
in order to improve upon the previous calculations of holographic baryons
in this model.

We assume only an SO(3) symmetry and solve the resulting partial dif-
ferential field equations using pseudospectral differentiation on a Chebyshev
grid and a Newton’s method for the resulting algebraic equations (see ap-
pendix A.3 for a review of these methods). Our approach allows us to com-
pute the properties of the baryon, including the charge profile and mass, at a
range of couplings γ. Our main results may be found in Figures 6.4 and 6.7.
In particular, we may evaluate our solution at the value of γ that has been
found to best fit the mesonic spectrum of QCD, finding significantly more
realistic values than previous studies for the mass and size of the baryon.
These results are found in equations (6.24) and (6.30).

27This is a misnomer, due to the fact that the original studies used the Belavin-Polyakov-
Schwarz-Tyupkin (BPST) instanton as the static solution for the four spatial directions;
the solution is more precisely described as a soliton in the spatial directions, and static in
time.
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Chapter 2

Density versus chemical
potential in holographic
probe theories1

2.1 Introduction

The AdS/CFT correspondence [7–9], which conjectures the equivalence of
a gravity theory in d + 1 dimensions and a gauge theory in d dimensions,
has become a valuable tool for the study of strongly coupled field theories.
Using the correspondence, many questions about quantum field theories
may be phrased in the context of a gravity theory; in the limit of strong
coupling, certain previously intractable field theory calculations are mapped
to relatively simple classical gravity computations.

Holography and finite density

One difficult regime of strongly coupled field theory that gauge / gravity
duality is particularly suited to study is that of finite charge density. Here,
lattice techniques fail due to the ‘sign problem’: at finite chemical potential,
the Euclidean action becomes complex which results in a highly oscillatory
path integral. We can avoid this difficulty by mapping the problem to a
gravity dual using the AdS/CFT dictionary. According to the dictionary,
in order to have a global U(1) symmetry in the field theory, one needs to
include a U(1) gauge field in the gravity bulk. The charge density and
chemical potential are encoded in the asymptotic behaviour of the gauge
field. At strong coupling in the field theory, the bulk theory is well described
by classical gravity, and one may solve the classical equations of motion on
the gravity side to study the field theory at finite density.

Given this relatively simple access to finite density configurations, we
might hope that some physically realistic strongly interacting systems may

1A version of this chapter has been published [1].

32
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be approximately described by a holographic dual. In this case, qualitative
features of the holographic theory would carry over to the exact theory. It
would be useful to characterize the types of finite density field theories that
have a dual formulation and admit this type of study.

In this paper, we seek to answer this question from the perspective of the
holographic theory. Specializing to holographic probes, in which fields are
considered as small fluctuations on fixed gravitational backgrounds, we study
systems with the minimal structure of a conserved charge and find the ρ−µ
relations that are possible in the field theory duals. We attack this problem
by first deriving constraints on the relationship based on general grounds
before studying several specific examples of holographic field theories.

Summary of results

In our study, we observe that, at large densities, the field theory dual to a
substantial class of gravity models can be described by a power law relation
of the form2

ρ = cµα. (2.1)

Firstly, we look to understand the constraints on the the ρ − µ rela-
tionship from the point of view of the field theory, using local stability
and causality. Usually, results here depend on the particular form of the
free energy. In all cases with ρ − µ behaviour (2.1), local thermodynamic
stability places the condition α > 0 on the exponent. In general, for a the-
ory at low temperature, we may write the particular free energy expansion
f ∝ −µα+1 − aµβT γ , with γ > 0 and a > 0, with corresponding charge
density ρ ∝ (α+ 1)µα + aβµβ−1T γ . Combined, local stability and causality
demand that α ≥ 1 and γ > 1.

Next, we consider Born-Infeld and Maxwell actions for the gauge field
in a generic background. Under mild assumptions, in both cases, the power
α is constrained. For the Born-Infeld action, the condition

α > 1 (Born-Infeld action) (2.2)

arises,3 while, for the Maxwell action, the power law coefficient is fixed to

α = 1. (Maxwell action) (2.3)

2Here and throughout, α refers to the power in this form of ρ− µ relationship.
3Naively, we could construct systems for which α ≤ 1, however, in these situations, the

contribution of the constant charge density to the total energy diverges, consequently we
can not say that there is a power law relation. This divergence signals a breakdown of
the probe approximation rendering these systems outside the scope of these notes. Notice
that α > 1 is consistent with the bound derived from stability and causality.
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Interestingly, these conditions are in agreement with those derived from
field theory considerations, giving rise to the same range of possible values
of α. In summary, all power law relationships consistent with stability and
causality can be realized in simple probe gauge field setups by varying the
background metric.

To see which values of α arise for backgrounds corresponding to specific
models, we explore a variety of 3 + 1 Poincaré-invariant holographic field
theories dual to Dp-Dq brane systems and ‘bottom-up’ models with gauge
and scalar fields. The former have been used, for example, in studies of
holographic systems with fundamental matter [13, 34–37], producing many
features of QCD, including confinement,4 chiral symmetry breaking, and
thermal phase transitions [39–42]. Bottom-up, phenomenological models
have been studied in various model-building applications including super-
conductors5 [11, 18, 44–47] and superfluids [12, 48, 49].

In the Dp-Dq systems, Table 2.1, a variety of powers α in the range
1 < α ≤ 3 are realized, respecting the α > 1 constraint. Note that these
results only involve the Born-Infeld action and neglect couplings of the brane
to other background spacetime fields.

Probe brane
d = 4 d = 5

Background branes D9 D8 D7 D6 D5 D4 D8 D7 D6

D3 3 3 3
D4 5/2 2 3/2 3 5/2
D5 2 2
D6 3/2

Table 2.1: The power α in the relationship ρ ∝ µα at large ρ for 3 +
1 dimensional field theories dual to the given brane background with the
indicated probe brane, with d− 1 shared spacelike directions. For d = 5 the
theory is considered to have a small periodic spacelike direction while for
background Dp branes with p > 3, the background is compactified to 3 + 1
dimensions.

In the phenomenological probe models, Table 2.2, in all cases except one
(the probe gauge field in the black hole background), the dominant power

4It was recently pointed out that the usual identification of the black D4 brane as the
strong coupling continuation of the deconfined phase in the field theory is not valid [38].

5A top-down realization of a gauge / gravity superconductor has been found in [43].
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α is determined by conformal invariance, since we consider asymptotically
AdS backgrounds.6 Since µ and T are the only dimensionful parameters,
the density must take the form ρ = µd−1h(T/µ), where the underlying
space has d spacetime dimensions. At large µ and fixed T , we can expand
h to see that µd−1 dominates the ρ − µ relationship. In systems with one
small periodic spacelike direction, the dominant power α is larger than the
corresponding theory without a periodic direction since, at large densities,
on the scale of the distance between charges, the theory is effectively higher
dimensional.7 Our study of bottom-up models also includes an analysis of
the gravity models in the full backreacted regime. As seen in Table 2.2,
the power law α in these cases is also determined by the same conformal
invariance argument.

In these bottom-up models we are more interested in the detailed be-
haviour at intermediate values of µ. It is found that, in general, when
the scalar field condenses in the bulk, the corresponding field theory is in a
denser state than that without the scalar field. As well, the field theory dual
to the gauge field and scalar field in the soliton background is in a denser
state than that dual to the same fields in the black hole background. In the
systems with a scalar field, at large µ, the ρ − µ relationship is well fit by
the form ρ = c(q,m2)µα,8 where q and m2 are the charge and mass-squared
of the scalar field. While the power α is fixed by the conformal invariance,
we find that the scaling coefficient c(q,m2) increases with increasing q or
decreasing m2.

6Different power laws can arise for holographic theories on different backgrounds, such
as Lifshitz spacetimes. However, these will not be considered here.

7The phase transition that holographic theories with a periodic direction undergo as
the density increases was studied in [50].

8In the probe cases we can scale q to 1, leaving c = c(m2).
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Regime Background Fields d = 4 d = 5

probe
black hole

φ 1 1
φ, ψ 3 4

soliton φ, ψ 4

backreacted
black hole

φ 3 4
φ, ψ 3 4

soliton φ, ψ 4

Table 2.2: The power α in the relationship ρ ∝ µα at large ρ for 3 + 1
dimensional field theories dual to the given gravitational background with
the stated fields considered in either the probe or backreacted limits. φ is
the time component of the gauge field, ψ is a charged scalar field, and d is
the number of spacetime dimensions. For d = 5 the theory is considered to
have a small periodic spacelike direction.

Organization

In section 2.2, we discuss some possible general examples of finite density
field theories and attempt to establish bounds on the ρ− µ relationship by
imposing thermodynamical constraints on these systems. In section 2.3 we
briefly introduce holographic chemical potential and find, for Maxwell and
Born-Infeld types of action, under mild assumptions, to what extent they
reproduce the relationship found in section 2.2. In section 2.4 we investigate
the probe limit of both top-down and bottom-up theories; first we study
Dp-Dq systems, then we move to gauge and scalar fields in both black hole
and soliton (with one extra periodic dimension) backgrounds. Section 2.5
extends the analysis of the bottom-up models to include the backreaction of
the fields on the metric.

Relation to previous work

Some of the results presented in these notes have appeared previously in the
literature. Finite density studies for probe brane systems have appeared for
the Sakai-Sugimoto model [42, 51–53], the D3-D7 system [35, 36, 54–56], and
the D4-D6 system [57]. The bottom-up models we consider are naturally
studied at finite chemical potential (see, for example, [18] for the black hole
case and [58] for the soliton dual to a 2 + 1 dimensional field theory) due to
the presence of the gauge field.

Our work focusses on the ρ− µ relation at large chemical potential over

36



2.2. CFT thermodynamics

a broad class of theories that are dual to 3+1 dimensional field theories. We
find, on very general grounds, constraints on the ρ−µ relation in holographic
models constructed from Maxwell and Born-Infeld actions. Additionally, we
use thermodynamical considerations to constrain the ρ−µ relation from the
field theory point of view and find that these constraints are in agreement
with those derived holographically. Further, we extend the analysis in the
above references to the large density regime and include additional examples,
collecting the results of a large range of models.

2.2 CFT thermodynamics

In this section, by appealing to local thermodynamic stability and causality
in the field theory, we attempt to establish generic constraints satisfied by
the coefficient α from a purely field theory stand point. The results found
here will lay ground for our intuition when approaching this problem from
the holographic side.

Generic system at large chemical potential

In order to study the density and chemical potential from the field theory
perspective, we begin with a general ansatz for the free energy of a hypothet-
ical system. In the large density limit, we expect that the chemical potential
will dominate the expression, so we may write9

f ∝ −µα+1 − aµβT γ + . . . , (2.4)

where the dots denote corrections higher order in T/µ. For a positive,
imposing a positive entropy density s = −(∂f/∂T )|µ > 0 implies γ > 0,
consistent with the second term being subleading in the low temperature
expansion.

Considering the field theory as a thermodynamical system and imposing
local stability demands that [59]10

χ =

(
∂ρ

∂µ

)

T

> 0, (2.5)

and

Cρ = T

(
∂s

∂T

)

ρ

= −T


 ∂

2f

∂T 2
−
(
∂2f

∂T∂µ

)2
1
∂2f
∂µ2


 > 0. (2.6)

9Recall ρ = −(∂f/∂µ)T so that, again, ρ ∝ µα.
10χ is the charge susceptibility and Cρ is the specific heat at constant volume.
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Applying these to (2.4) in the T/µ → 0 limit gives the constraints α > 0
and γ > 1.

Examining the speed of sound vs of our system also allows us to establish
a constraint. To ensure causality, we impose

0 ≤ vs ≤ 1, (2.7)

with the speed of sound given by [12]

v2
s = −

[(
∂2f
∂T 2

)
ρ2 +

(
∂2f
∂µ2

)
s2 − 2

(
∂2f
∂T∂µ

)
ρs
]

(sT + ρµ)

[(
∂2f
∂T 2

)(
∂2f
∂µ2

)
−
(

∂2f
∂T∂µ

)2
] , (2.8)

where ρ and s are the charge and entropy densities. For γ > 1, this implies
the stronger bound of α ≥ 1. This is the same bound as derived in section 2.3
from consideration of the bulk dual of field theories. It is interesting that it
arises from very general circumstances in both cases.

Zero temperature

In the zero temperature limit of ansatz (2.4) only the first term survives, so
that f ∝ −µα+1. In this case, the only condition for local stability is given
by equation (2.5), which trivially leads to ρ ∝ µα with α > 0. Computing
the speed of sound and enforcing causality leads again to α ≥ 1.

General conformal theory

For a conformal field theory in d spacetime dimensions, the most general
free energy density is

f = −µdg
(
T

µ

)
, (2.9)

where g(x) is an arbitrary dimensionless function. Local stability depends
on the details of the function g, and a general statement is not possible at
this point. To ensure causality, we compute equation (2.8), finding the speed
of propagation to be

v2
s =

1

d− 1
, (2.10)

from which it follows directly that a conformal theory obeys requirement
(2.7) only in dimension d ≥ 2. This result is trivial, as sound waves are not
possible if there are no spacelike dimensions to propagate in.
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Free fermions

As an example, we will compute the ρ− µ relationship for a system of free
fermions. In the grand canonical ensemble, the partition function for spin
1/2 particles of charge q in a 3 dimensional box and subjected to a large
chemical potential is

Z(µ, T ) =
∏

~n

(1 + e−β(E~n−µq)), (2.11)

where the product is over available momentum levels. The partition function
for antiparticles follows with the replacement q → −q so we include antipar-
ticles by considering the total partition function Z̃(µ, T ) = Z(µ, T )Z(−µ, T ).
Passing to the continuum limit, approximating the fermions as massless, and
setting q = 1, the resultant charge density is

ρ =
µ3

3π2
+
µT 2

3
. (2.12)

The dominant power in this case is the same as is expected in a generic
conformal field theory.

2.3 General holographic field theories at finite
density

It was shown in the previous section how local stability and causality lead
to α ≥ 1. In this section, under mild assumptions, we investigate the Born-
Infeld and Maxwell actions in the large µ regime and observe to what extent
they fall under the general results from section 2.2.

2.3.1 Finite density

To find constraints on the ρ − µ relation in holographic field theories, we
begin by studying very general systems with the minimal structure of a
conserved charge. The holographic dictionary gives that a conserved charge
in the field theory is dual to a massless U(1) gauge field A in the bulk [60].
If the gauge field is a function only of the radial coordinate r, the chemical
potential and the charge density are encoded in the behaviour of A as

µ = At(∞) (2.13)

and

ρ = − ∂SE
∂At(∞)

, (2.14)
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where SE is the Euclidean action evaluated on the saddle-point and the
derivative is taken holding other sources fixed. As discussed in [36], an
equivalent expression for the charge density is11

ρ =

(
1

d− 2

)
∂L

∂(∂rAt)
, (2.15)

where the normalization of ρ has been chosen for later convenience. After
writing down the gravitational Lagrangian, our prescription for computing
the charge density at a given chemical potential is to solve the equations of
motion with a fixed boundary condition for the gauge field, equation (2.13),
before reading off the density using equation (2.15).

2.3.2 Gauge field actions

To include a gauge field in our AdS/CFT construction, we simply include
it in the bulk action. Two gauge field Lagrangians that have appeared in
holographic studies are the Maxwell and the Born-Infeld Lagrangians. Typi-
cally, the Maxwell action is used in bottom-up holographic models while the
Born-Infeld action appears in the study of brane dynamics. Below, in sec-
tion 2.4 we will consider holographic models using both types of Lagrangians.
However, much insight can be gained by investigating these actions under
generic conditions. Therefore, in this section, we study general versions of
these two Lagrangians, at fixed temperature and large chemical potential, in
the probe approximation.12 Interpreting our results using (2.13) and (2.15),
we will develop some constraints for the ρ − µ relationship in holographic
theories described by these actions.

The Maxwell action

Consider a gauge field described by the Maxwell action
∫ √−gF 2 in a general

background of the form

ds2 = gFTµν (r)dxµdxν + grr(r)dr
2. (2.16)

If we assume homogeneity in the field theory directions and consider a purely
electrical gauge field (keeping only its time-component), the Lagrangian is

11Generically, At is a cyclic variable, so that the conjugate momentum is conserved, and
we may evaluate this expression at any r.

12In the probe approximation, we assume there is no backreaction on the gravity metric.
This is enforced in this case by studying the gauge field Lagrangian on a fixed background
geometry.

40



2.3. General holographic field theories at finite density

simply
L = g(r) (∂rAt)

2 , (2.17)

for some function g(r). From this we find

ρ =

(
2

d− 2

)
g(r)∂rAt. (2.18)

In the systems considered below, the spacetime either has a horizon or
smoothly cuts off at some radius rmin. The value of the gauge field at this
point is a boundary condition for the problem. Below, At(rmin) is either
zero or a constant, neither of which affect the ρ − µ behaviour; we take
At(rmin) = 0 here. Integrating (2.18), we find

µ = ρ

(
d− 2

2

)∫ ∞

rmin

dr

g(r)
. (2.19)

Provided the integral is finite, we have

ρ ∝ µ. (2.20)

Thus, for any holographic field theory with the gauge field described only
by the Maxwell Lagrangian in a fixed metric we have α = 1.

The Born-Infeld action

The Born-Infeld action is the non-linear generalization of Maxwell electro-
dynamics and is the appropriate language in which to describe the dynamics
of gauge fields living on branes. Assuming homogeneity in the field theory
directions, so that the gauge potential varies only with the radial direction,
these systems are governed by an action of the generic form13

L =
√
g(r)− h(r)(∂rAt)2, (2.21)

where again, we take At to be the only non-zero part of the gauge field. The
charge density is given by the constant of motion

ρ =

(
1

d− 2

)
h(r)∂rAt(r)√

g(r)− h(r)(∂rAt)2
. (2.22)

13g(r) and h(r) are arbitrary functions; g(r) is not related to the previous discussion.

41



2.4. Holographic probes

Here, we assume that the gauge field is sourced by a charged black hole
horizon at r+.14 Euclidean regularity of the potential At fixes its value at
the horizon as At(r+) = 0 [36]. Then, we can integrate to find

µ =

∫ ∞

r+

dr

√
g(r)

h(r)

(d− 2)ρ√
h(r) + (d− 2)2ρ2

. (2.23)

To extract the large ρ behaviour, we split the integral at Λ � 1. For
ρ� Λ, the integral from r+ to Λ approaches a constant, while the functions
in the integral from Λ to ∞ can be approximated by their large r forms,
which will be denoted with a ∞ subscript. The expression for the chemical
potential now becomes

µ ≈
∫ Λ

r+

dr

√
g(r)

h(r)
+

∫ ∞

Λ
dr

√
g∞(r)

h∞(r)

(d− 2)ρ√
h∞(r) + (d− 2)2ρ2

. (2.24)

The ρ dependence of µ comes from the second term. If g∞(r)/h∞(r) ≈ r2m

and h∞(r) ≈ rn, by putting x = r/ρ2/n we find that

µ ∼ ρ(2+2m)/n

∫ ∞
r+

ρ2/n

dx
xm√
xn + 1

. (2.25)

The convergence of the integral here requires that n/(2 + 2m) > 1, resulting
in the relationship

ρ ∝ µα with α > 1, (2.26)

where the power α depends on the specific bulk geometry.

2.4 Holographic probes

With the general constraints of the previous sections in hand, we move on
to study particular holographic field theories in the probe approximation,
to see which specific values of α are realized. Here, we study two common
probe configurations that have arisen in previous holographic studies. These
are extensions of the actions considered in section 2.3. First, we examine
probe branes in the black brane background using the Born-Infeld action.

14To have a non-trivial field configuration, a source for the gauge field in the bulk is
required. In the low temperature, horizon-free versions of these models, this source is
given by lower dimensional branes wrapped in directions transverse to the probe branes
[61].
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Then, we move on to the phenomenological perspective, in which we write
down an effective gravity action without appealing to the higher dimensional
string theory. In this approximation, using the Maxwell action, we look
at the gauge field in both the planar Schwarzschild black hole and soliton
backgrounds, with and without a coupling to a scalar field.

In both cases, in the systems we consider, the only sources in the field
theory are the temperature T and chemical potential µ. Below, we fix T
and work at large µ (such that µ/T � 1). In this regime, we look for a
relationship ρ ∝ µα + . . . , where the dots denote terms higher order in T/µ.

2.4.1 Probe branes and the Born-Infeld action

In the systems we will consider here, the background consists of Nc D-branes;
in the largeNc limit, these branes are replaced with a classical gravity metric.
In this regime, fundamental matter is added by placing Nf probe branes in
the geometry [62].

The brane action

Assuming that the background spacetime metric Gµν is given, the action
governing the dynamics of a single Dq probe brane is the Born-Infeld action

S ∝
∫
dq+1σe−φ

√
−det(gab + 2πα′Fab). (2.27)

Here, latin indices refer to brane coordinates and greek indices denote space-
time coordinates, while Xµ(σa) describes the brane embedding. gab is the
induced metric on the probe brane given by gab = ∂aX

µ∂bX
νGµν , Fab is

the field strength for the U(1) gauge field on the brane, and φ is the dilaton
field. Following the previous discussion, the only component of the gauge
field we choose to turn on is At, additionally, we assume it depends only
on the radial coordinate r, At = At(r). Considering that the probe brane
is extended in the r direction and the spacetime metric is diagonal, the
Lagrangian simplifies to

L ∝ e−φ
√
−det(gab)

(
1 +

(∂rAt)2

gttgrr

)
, (2.28)
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where we rescaled At to absorb the 2πα′ term. In the notation of equation
(2.21), we can write

g(r) = −det(gab)e
−2φ, (2.29)

h(r) =
det(gab)e

−2φ

gttgrr
. (2.30)

The background

For Nc Dp branes, at large Nc, the high temperature background is the black
Dp brane metric, given by15

ds2 = H−1/2(−fdt2 + d~x2
p) +H1/2

(
dr2

f
+ r2dΩ2

8−p

)
, (2.31)

with

H(r) =

(
L

r

)7−p
, f(r) = 1−

(r+

r

)7−p
, eφ = gsH

(3−p)/4. (2.32)

L is the characteristic length of the space, while gs is the string coupling.
This metric has a horizon at r = r+.

Our probe Dq brane is fixed to share d − 1 spacelike directions with
the Dp branes. If p > d − 1, the fundamental matter propagates on a d
dimensional defect and we may consider the extra p−(d−1) directions along
the background brane to be compactified, giving an effective d dimensional
gauge theory at low energies. Alternatively, we can build a d−1 dimensional
gauge theory by compactifying one or more of the directions shared by the
probe and background branes. Below, we will study field theories that are
effectively 3 + 1 dimensional using both methods.

We stipulate that the Dq probe brane wraps an Sn inside the S8−p

and extends along the radial direction r. These quantities are related by
q = d+ n. The induced metric on the Dq brane is

ds2 = H−1/2(−fdt2 + d~x2
d−1) +

(
η(r) +

H1/2

f

)
dr2 +H1/2r2dΩ2

n, (2.33)

where
η(r) = ∂rX

µ∂rX
νGµν −Grr. (2.34)

15More details on this solution can be found in [34].
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Calculating equations (2.29) and (2.30) gives16

g(r) = r2nfH
1
2

(p+n−d−3)

(
η(r) +

H1/2

f

)
, (2.35)

h(r) = r2nH
1
2

(p+n−d−2), (2.36)

from which (2.23) gives the chemical potential

µ =

∫ ∞

r+

dr
(d− 2)ρ√

r2n
(
L
r

)( 7−p
2

)(p+n−d−2)
+ (d− 2)2ρ2

√
fη(r)

H1/2
+ 1. (2.37)

Now, η(r) will be some combination of (∂rχi)
2, where the χi denote the

directions of transverse brane fluctuations. By writing down the equations
of motion we can observe that ∂rχi = 0 is a solution, in which case the
probe brane goes straight into the black hole along the radial direction r.
This describes the high temperature, deconfined regime; we set η(r) = 0 in
the following.

For large ρ we find

ρ ∝ µ 1
4

[(p−7)(p−d−2)+(p−3)(q−d)], (2.38)

so that for the probe brane systems,

α =
1

4
[(p− 7)(p− d− 2) + (p− 3)(q − d)]. (2.39)

As above, α is constrained as α > 1 for convergence of the integral. If α ≤ 1,
the contribution of the constant charge density to the total energy diverges,
signalling a breakdown of the probe approximation. At this point, we can
use equations (2.38) and (2.39) to investigate what type of ρ−µ behaviours
can arise from Dp-Dq brane constructions.

Example: the Sakai-Sugimoto model

The well-known Sakai-Sugimoto model [13] consists of Nf probe D8-D8
branes in a background of Nc D4 branes compactified on a circle. We have
p = 4, q = 8, and d = 4. Putting these numbers into (2.38) yields

ρ ∝ µ5/2, (2.40)

consistent with previous results [42, 53].

16We leave the constant factors of gs from eφ out of the Lagrangian, as our goal here is
just the power law dependence.
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ρ− µ in 3 + 1 dimensional probe brane theories

Equation (2.39) determines the dominant power law behaviour in all Dp-
Dq configurations relevant to 3 + 1 dimensional field theory. As discussed
above, we can set the number of shared probe and background directions to
be d − 1 = 3 or put d − 1 = 4 and demand one of the the spacelike shared
directions to be periodic; see Table 2.1 for the results. The power α = 3 is
an upper bound for the 3 + 1 dimensional probe brane gauge theories we
have considered.

Our calculation above involves only the Born-Infeld action for the probe
brane and in particular neglects any possible Chern-Simons terms that ap-
pear due to the coupling between the brane and a spacetime tensor field.
The Chern-Simons term is important in the D4-D4 system, for example [37].

2.4.2 Bottom-up models and the Einstein-Maxwell action

We now turn our attention to bottom-up AdS/CFT models in the probe
regime. To construct a phenomenological gauge / gravity model, we begin
with a theory of gravity with a cosmological constant, such that the geometry
is asymptotically AdS. To study the relationship between charge density and
chemical potential in the dual field theory, we demand that there must be
a gauge field in the bulk. At this point, our model has the ingredients for
us to compute our desired result. But, one may ask what type of extensions
are possible. Motivated by superconductivity and superfluidity studies, we
will consider also a charged scalar field in our gravity theory. Adding a
scalar field alters the dynamics of the system, notably resulting in different
phases [63, 64]. When the scalar field takes on a non-zero expectation value,
this breaks the U(1) gauge symmetry in the bulk and corresponds to the
presence of a U(1) condensate in the boundary theory.

The particular model we study is the Einstein-Maxwell system with a
charged scalar field:

S =

∫
dd+1x

√−g
{
R+

d(d− 1)

L2
− 1

4
FµνFµν − |∂µψ − iqAµψ|2 − V (|ψ|)

}
.

(2.41)

Different dual field theories may be obtained by considering this action in
different regimes and with different parameters. Below, we make the follow-
ing ansatz for the gauge and scalar fields:

A = φ(r)dt, ψ = ψ(r). (2.42)
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The r component of Maxwell’s equations will give that the phase of the
complex field ψ is constant, so without loss of generality we take ψ real. For
the remainder of the study, we choose units such that L = 1 and consider
the potential V (ψ) = m2ψ2.

The probe limit

To get the probe approximation for the system described by (2.41), we
rescale ψ → ψ/q and A → A/q before taking q → ∞ while keeping the
product qµ fixed (to maintain the same A − ψ coupling). The gauge and
scalar fields decouple from the Einstein equations and we study the fields in
a fixed gravitational background.

The background is governed by the action

S =

∫
dd+1x

√−g {R+ d(d− 1)} . (2.43)

One solution here is the planar Schwarzschild-AdS black hole, given by

ds2
bh = (−fbh(r)dt2 + r2dxidx

i) +
dr2

fbh(r)
, (2.44)

with

fbh(r) = r2

(
1− rd+

rd

)
, (2.45)

where r+ is the black hole horizon. Below, we consider two systems in the
Schwarzschild-AdS background: the probe gauge field, and the probe gauge
and scalar fields.

Computing µ and ρ

If the kinetic term for the gauge theory on the gravity side is the Maxwell
Lagrangian,

L =
1

4

√−gFµνFµν , (2.46)

then for an asymptotically AdS space the field equation for the time com-
ponent of the gauge field is

φ′′ +
d− 1

r
φ′ + · · · = 0, (2.47)
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where ′ denotes an r derivative and . . . denotes terms that have higher
powers of 1/r. The solution is

φ(r) = φ1 +
φ2

rd−2
+ . . . . (2.48)

Recalling that φ(∞) = µ determines that φ1 = µ, while we can plug (2.48)
into (2.46) and compute, using (2.15), that φ2 = ρ. We have that

φ(r) = µ− ρ

rd−2
+ . . . , (2.49)

so that in practice, below, we just have to read off the coefficients of the
leading and next to leading power of 1/r to find the chemical potential and
the charge density.

The scalar field

Solving the scalar field equation at large r in an asymptotically AdS space
results in the behaviour

ψ =
ψ1

rλ−
+

ψ2

rλ+
+ . . . , (2.50)

where

λ± =
1

2

{
d±

√
d2 + 4m2

}
. (2.51)

For m2 near the Breitenlohner-Freedman (BF) bound [65, 66], in the range
−(d−1)2/4 ≥ m2 ≥ −d2/4, the choice of either ψ1 = 0 or ψ2 = 0 results in a
normalizable solution [63]. For m2 > −(d− 1)2/4, ψ1 is a non-normalizable
mode and ψ2 is a normalizable mode. For the cases with the scalar field,
we define our field theory by taking ψ1 = 0, so that we never introduce a
source for the operator dual to the scalar field.

The probe gauge field

Here, we study the probe gauge field, without the scalar field, in the Schwarzschild-
AdS background (2.44). The equation of motion for φ is

φ′′ +
d− 1

r
φ′ = 0. (2.52)

Regularity at the horizon demands that φ(r+) = 0 and the AdS/CFT
dictionary gives φ(∞) = µ, leading to

φ(r) = µ

(
1− rd−2

+

rd−2

)
. (2.53)
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Then, applying (2.49), we have

ρ = µrd−2
+ . (2.54)

The horizon r+ depends only on the temperature, T = r+d/4π,17 so this is
a linear relationship between ρ and µ, in accordance with (2.20).

Adding a scalar field

We now turn on the scalar field in (2.41), and consider the dynamics in the
Schwarzschild-AdS background (2.44).

The field equations become

ψ′′ +

(
f ′bh
fbh

+
d− 1

r

)
ψ′ +

(
q2φ2

f2
bh

− m2

fbh

)
ψ = 0, (2.55)

φ′′ +
d− 1

r
φ′ − 2q2ψ2

fbh
φ = 0. (2.56)

At this point, we can scale q to 1 by scaling φ and ψ, and so m is the only
parameter here.

The coupling allows the gauge field to act as a negative mass for the
scalar field. At small chemical potentials, ψ = 0 is the solution. As we
increase µ, the effect of the gauge field on the scalar field becomes large
enough such that the effective mass of the scalar field drops below the BF
bound of the near horizon limit of the geometry, so that a non-zero profile
for ψ is possible, and we have a phase transition to the field theory state with
broken U(1) symmetry. A smaller (more negative) squared mass results in
a smaller critical chemical potential, at which the scalar field turns on.

Using a simple shooting method, for d = 4 we numerically solve equations
(2.55, 2.56) and arrive at the relationship

ρ = cpbh(m2)µ3, (2.57)

where cpbh(m2) is a scaling constant that depends on the mass of the scalar
field. The coupling to the scalar field has resulted in the larger power (α = 3)
in the scaling of ρ. A smaller squared mass corresponds to a larger value of
cpbh and, for a given chemical potential, is dual to field theory with a higher
charge density. In Figure 2.1, we can see the existence of a denser state
when the scalar field turns on as well as the relative relation between the
mass of the scalar field and the charge density in the field theory.

17For a Euclidean metric ds2 = α(r)dτ2 + dr2

β(r)
with periodic τ = it coordinate and

α(r+) = β(r+) = 0, regularity at the horizon demands that the temperature (the inverse
period of τ) be given by T =

√
α′(r+)β′(r+)/4π.
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Figure 2.1: Charge density versus chemical potential for the probe gauge
and scalar fields in the d = 4 black hole background, on a log-log scale. The
thick dashed line is for the system with no scalar field for which, analytically,
ρ ∝ µ. At a critical chemical potential, depending on the mass of the
scalar field, configurations with non-zero scalar field become available. The
thin dotted line is a model power law ρ ∝ µ3, as described in equation
(2.57). From left to right, the thick solid lines are for scalar field masses
m2 = −15/4, −14/4, −13/4, and −3. A more negative scalar field mass
results in a denser field theory state at a given chemical potential.

The soliton probe

Motivated by recent work [4, 58, 67], we now add more structure to the
bulk theory in the form of an extra periodic dimension. To model a 3 + 1
dimensional field theory, we set d = 5 and stipulate that this includes one
periodic spacelike coordinate w of length 2πR. At energies much less than
the scale set by this length, E � 1/R, the dual field theory will be effectively
3+1 dimensional. The extra dimension sets another scale for the field theory
and enables a richer phase structure in the system.18

With the extra periodic direction, there is another solution to the back-

18The phase diagram including both black hole and soliton solutions, was studied in
[58] for a 2+1 dimensional field theory in the context of holographic superconductors and
in [4] for a 3 + 1 dimensional field theory in the context of holographic QCD and colour
superconductivity.

50



2.4. Holographic probes

ground described by (2.43). This is the AdS-soliton, given as the double-
analytic continuation of the Schwarzschild-AdS solution (2.44):

ds2
sol = (r2dxµdx

µ + fsol(r)dw
2) +

dr2

fsol(r)
, (2.58)

with

fsol = r2

(
1− r5

0

r5

)
. (2.59)

Here, r0 is the location of the tip of the soliton. For regularity, it is fixed by
the length of the w dimension as

r0 =
2

5R
. (2.60)

By computing the free energy of the systems, it can be shown that the soli-
ton background dominates over the black hole background for small enough
temperatures and chemical potentials. As the temperature or chemical po-
tential is increased, there is a first order phase transition to the black hole,
which is the holographic version of a confinement / deconfinement transition.

For zero scalar field, the soliton can be considered at any temperature
and chemical potential; the period of the Euclidean time direction defines the
temperature while φ = µ = constant is a solution to the field equations. In
this case, ρ = 0 and we do not have an interesting ρ−µ relation. Considering
a non-zero scalar field provides a source for the gauge field and allows non-
trivial configurations.

In the soliton background (2.58), the equations of motion are

ψ′′ +

(
f ′sol
fsol

+
4

r

)
ψ′ +

(
q2φ2

r2fsol
− m2

fsol

)
ψ = 0, (2.61)

φ′′ +

(
f ′sol
fsol

+
2

r

)
φ′ − 2q2ψ2

fsol
φ = 0. (2.62)

As in the black hole case, at this point we can set q = 1 by scaling the fields.
After numerically integrating, we have

ρ = cpsol(m
2)µ4. (2.63)

Compared to the black hole case, above, we find a larger power of µ. At large
densities, the average distance between charges becomes small compared to
the size R of the periodic direction. In this limit, the system becomes
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2.5. ρ− µ in backreacted systems

effectively higher dimensional and so we would expect a larger power α in
the ρ− µ relationship. The numerics were consistent with this result.

As can be seen in Figure 2.2, a more negative mass squared results in
a smaller critical chemical potential and a denser field theory state at a
given chemical potential. This is as expected by comparing the structure of
the equations to those in the black hole case. Further, at a given chemical
potential, the soliton solution corresponds to a denser field theory state than
the black hole solution with the same scalar field mass.
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Figure 2.2: Charge density versus chemical potential for the probe gauge and
scalar fields in the soliton background and the d = 5 black hole background.
The thin dashed line is the probe gauge field in the black hole background
for which, analytically, ρ ∝ µ. The thick solid lines are the soliton results
(from left to right, the squared mass of the scalar field is −22/4, −5, −18/4,
and −4) while the thick dashed lines are the black hole results (again, from
left to right, m2 = −22/4, −5, −18/4, and −4). Each of the thick lines
approaches the power law ρ ∝ µ4, equation (2.63). At a given chemical
potential, the soliton background gives a field theory in a denser state.

2.5 ρ− µ in backreacted systems

Despite our analysis in section 2.4 relying on the probe approximation, it is
interesting to ask how much of a difference allowing for backreaction on the
bottom-up models could make to the ρ − µ relation and the bounds found
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previously. Henceforth we generalize the bottom-up model introduced in
section 2.4.2 and allow for the backreaction of the gauge and scalar field on
the metric. Recall that the action is

S =

∫
dd+1x

√−g
{
R+ d(d− 1)− 1

4
FµνFµν − |∂µψ − iqAµψ|2 −m2ψ2

}
.

(2.64)

We start by studying the well-known Reissner-Nordstrom-AdS (RN-AdS)
solution to the Einstein equation, in which ψ = 0. Later, we allow the
scalar field to acquire a non-zero profile and investigate its consequences on
the ρ−µ profile. We finish with the investigation of the backreacted version
of the solitonic solution.

2.5.1 Charged black holes

The backreacted solution with no scalar field is the planar RN-AdS black
hole, given by

ds2 = (−fRN(r)dt2 + r2dxidx
i) +

dr2

fRN(r)
, (2.65)

with19

fRN(r) = r2

(
1−

(
1 +

(d− 2)µ2

2(d− 1)r2
+

)
rd+
rd

+
(d− 2)µ2

2(d− 1)

r
2(d−2)
+

r2(d−1)

)
. (2.66)

The gauge potential is

φ(r) = µ

(
1− rd−2

+

rd−2

)
, (2.67)

so that, using (2.49), we have ρ = µrd−2
+ . Here, the horizon r+ can be

expressed as a function of the temperature and chemical potential through
the Hawking temperature

T =
1

4π

(
dr+ −

(d− 2)2µ2

2(d− 1)r+

)
. (2.68)

19We parametrize this solution in terms of the location of the horizon r+ and the
asymptotic value of the gauge field (the chemical potential µ) instead of the usual choices
of the charge and mass of the black hole.
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Eliminating r+ in favour of ρ and µ in (2.68), we may solve for ρ to find

ρ =

(
(d− 2)2

2d(d− 1)

) d−2
2

µd−1

[(
2(d− 1)

d

) 1
2 2πT

(d− 2)µ
+

√
1 +

8π2(d− 1)T 2

d(d− 2)2µ2

]d−2

.

(2.69)
Notice that the dominant power in the ρ−µ relationship is µd−1, as expected
in a d dimensional conformal field theory. For d = 4, the particular large µ
expansion is

ρ =
1

6
µ3 +

π√
6
µ2T +

1

2
π2µT 2 +

1

4

√
3

2
π3T 3 + . . . . (2.70)

2.5.2 Hairy black holes

If we turn on the scalar field, an analytic solution to the equations of motion
is no longer possible and we turn to numerical calculation. We take as our
metric ansatz

ds2 = −g(r)e−χ(r)dt2 +
dr2

g(r)
+ r2(dxidx

i), (2.71)

where g(r) will be fixed to have a zero at r+, giving a horizon. We arrive at
the following equations of motion:

ψ′′ +

(
g′

g
− χ′

2
+
d− 1

r

)
ψ′ +

1

g

(
q2φ2eχ

g
−m2

)
ψ = 0, (2.72)

φ′′ +

(
χ′

2
+
d− 1

r

)
φ′ − 2q2ψ2

g
φ = 0, (2.73)

χ′ +
2rψ′2

d− 1
+

2rq2φ2ψ2eχ

(d− 1)g2
= 0, (2.74)

g′ +

(
d− 2

r
− χ′

2

)
g +

reχφ′2

2(d− 1)
+
rm2ψ2

d− 1
− dr = 0. (2.75)

The first two equations can be derived via the Euler-Lagrange equations
for φ and ψ, while the final two equations are the tt and rr components of
Einstein’s equation.

In this system, as in the probe case, section 2.4.2, at small chemical
potentials the scalar field is identically zero. As we increase the chemi-
cal potential above a critical value, the system undergoes a second order
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phase transition to a state with non-zero scalar field. When the scalar field
condenses, the corresponding field theory is in a denser state at the same
chemical potential than for the system without scalar field.

We solve the equations numerically for d = 4, to yield the result, in the
phase with the scalar field,

ρ = cbh(q,m2)µ3. (2.76)

As we increase the charge or decrease the mass squared of the scalar field, the
critical chemical potential, at which the scalar condenses, decreases, while
the scaling coefficient cbh increases. The scaling coefficient cbh(q,m2) is, in
all cases we checked, larger than the coefficient of the µ3 term in the AdS-
Reissner-Nordstrom black hole, equation (2.70), indicating that the density
scales faster with the chemical potential when the scalar field is present.

When we include metric backreaction for the black hole, the dominant
power in the ρ − µ relationship is greater than the probe case when there
is no scalar field and is the same as the probe case when there is a scalar
field, indicating that, at least for the systems considered, the bounds found
for the ρ− µ behaviour apply to the backreacted cases as well.

2.5.3 Backreacted soliton

Motivated by the form of the soliton background (2.58) we choose the metric
ansatz

ds2 =
dr2

r2B(r)
+ r2

(
eA(r)B(r)dw2 − eC(r)dt2 + dxidx

i
)
, (2.77)

where we constrain B(r0) = 0 so that the tip of the soliton is at r0. The
field and Einstein equations give

ψ′′ +

(
6

r
+
A′

2
+
B′

B
+
C ′

2

)
ψ′ +

1

r2B

(
e−C(qφ)2

r2
−m2

)
ψ = 0, (2.78)

φ′′ +

(
4

r
+
A′

2
+
B′

B
− C ′

2

)
φ′ − 2ψ2q2φ

r2B
= 0, (2.79)

B′
(

4

r
− C ′

2

)
+B

(
ψ′2 − 1

2
A′C ′ +

e−Cφ′2

2r2
+

20

r2

)
+

+
1

r2

(
e−C(qφ)2ψ2

r2
+m2ψ2 − 20

)
= 0, (2.80)
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C ′′ +
1

2
C ′2 +

(
6

r
+
A′

2
+
B′

B

)
C ′ −

(
φ′2 +

2(qφ)2ψ2

r2B

)
e−C

r2
= 0, (2.81)

A′ =
2r2C ′′ + r2C ′2 + 4rC ′ + 4r2ψ′2 − 2e−Cφ′2

r(8 + rC ′)
. (2.82)

We solve equations (2.78-2.81) numerically with asymptotically AdS
boundary conditions before integrating (2.82) to find A.20 The results are
consistent with a ρ− µ relationship of the form

ρ = csol(q,m
2)µ4. (2.83)

As in the probe case, the effective higher dimension of the space dictates
the power in the relationship. The dependence of csol(q,m

2) on q and m2

is as in the backreacted black hole case, section 2.5.2. Like the black hole
with scalar field, the backreacted soliton with scalar field gives the same
dominant power α as the corresponding probe case.

2.6 Discussion

In these notes we studied the ρ−µ relation for a variety of holographic field
theories, and set conditions for physically consistent relationships based on
local stability and causality. We observed that all of the examples consid-
ered are well modelled by a power law ρ = cµα in the large µ regime and
that none of them fail to satisfy any of the general constraints established
in sections 2.2 and 2.3. Except for the case of a probe gauge field in the
Schwarzschild-AdS black hole background, the power α in all the bottom-up
models obeyed the generic dimensional argument discussed in the introduc-
tion, as can be seen in Table 2.2. This resulted in a larger power for the
models with an extra periodic dimension. The brane constructions, Ta-
ble 2.1, displayed a larger variety of power laws, with the range 1 < α ≤ 3,
where α depended on the particular dimensions of the probe and background
branes.

The study of bottom-up models led to the conclusion that, in general,
the presence of a non-zero profile for the scalar field in the bulk induces
a larger charge density on the boundary. In most cases, this change was
realized as an increase of the scaling coefficient c while the power law was

20More details on the numerical process can be found in [4].
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kept unaltered. The only exception was the probe Einstein-Maxwell case,
section 2.4.2. Here, in the absence of a scalar field, the probe Maxwell
field enjoys its standard linear equations of motion, and naturally we find a
linear ρ−µ relationship. With a non-zero scalar field, the power law becomes
ρ ∝ µd−1, as expected for the underlying CFT. In systems with an extra
periodic direction, the numerical results displayed in Figure 2.2 support the
conclusion that at a given (large enough) chemical potential, the solitonic
phase is denser than the corresponding black hole phase.

Despite our attempt to survey a large variety of holographic models, we
do not claim to have presented a complete report and we do not discard the
possibility of finding different ρ − µ relations in other types of bottom-up
and top-down models. For example, one generalization would be to include
Nf > 1 flavour branes in the Dp-Dq systems; this has been shown to change
the power α in the relation [53]. It would be interesting to extend this study
to other classes of systems and to see how the results compare to those given
here.
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Chapter 3

Holographic stripes1

3.1 Introduction and summary

The gauge / gravity duality describes phenomena in strongly coupled field
theories via their relation to classical or semi-classical gravitational systems.
From the perspective of the boundary quantum field theory, this relation can
be used to construct and study models for ill-understood phenomena which
arise in such strongly coupled systems. On the other hand, the relation
to local quantum field theory helps motivate and interpret new results in
classical and quantum gravity. In this chapter we apply holography to study
the spontaneous breaking of translation invariance and the formation of
striped order.

Stripes are known to form in a variety of strongly coupled systems, from
large N QCD [68, 69] to systems of strongly correlated electrons (for a review
see [29]). The formation of stripes and the associated reduced dimensionality
are speculated to be related to the mechanism of superconductivity in the
cuprates [70]. It is therefore useful to study striped phases in the holographic
context.

Besides its interest in the boundary theory, this study has an intrinsic
interest in the bulk gravitational context.2 We describe striking bulk and
boundary properties of our bulk solutions, including frame dragging effects,
the magnetic field, the curvature and the geometry. Some of the features
can be understood as the emergence of a near horizon region which acts as
a bulk topological insulator. The magnetoelectric effect is then responsible
for the patterns we observe for the bulk magnetic field and vorticity.

Our study is facilitated by a numerical solution of the set of coupled
nonlinear Einstein and matter equations in the bulk, which exhibit a nor-

1A version of this chapter has been published [2]. This chapter presents a concise
version of the study of holographic stripes while chapter 4 provides full results and the
complete details of the analysis.

2Our model describes a black hole whose instability to the formation of inhomogeneous
structures resembles the black string instability [71] which is known to be of the second
order for high enough dimensions [72].
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malizable inhomogeneous mode. Previous studies of inhomogeneous solu-
tions in asymptotically AdS spacetimes concentrated on non-normalizable
modes [73] (i.e. explicit rather than spontaneous breaking of translation in-
variance) or the study of co-homogeneity one solutions [74–77], where one of
the translational Killing vectors is replaced by a helical Killing vector. More
recently, such spontaneous breaking was exhibited in a probe model, which
was shown to have a magnetic field induced lattice ground state [78]. In
contrast to the above, our solutions are co-homogeneity two, they backreact
on the geometry, and exhibit spontaneous breaking of translation invariance
below a critical temperature.

These features are analyzed as a function of temperature. In particular,
we find that the horizon of the black hole develops a ‘neck’ and a ‘bulge’ in
the transverse direction which shrink with temperature, such that the ratio
of their sizes contracts as fast as ∼ T σ, with an order σ ∼ 0.1 exponent.
Simultaneously, the proper length of the horizon in the transverse direction
grows at a rate ∼ 1/T 0.1. However, the curvature remains finite, and its
maximal value, occurring at the bulge, tends to a constant in the limit
T → 0.

The bulk black hole solutions give rise to the holographic stripes on
the boundary, characterized by non vanishing momentum and electric cur-
rent and modulations in charge and mass density. Starting small near Tc,
the amplitudes of the modulations grow steadily at lower temperatures, ap-
proaching finite values at T → 0.

Finally, we study the thermodynamics of the system by constructing
phase diagrams in various ensembles. For small values of the axion coupling,
where the thermodynamic potentials in both phases are nearly degenerate,
our numerical method is not accurate enough to sharply distinguish between
weak first order and second order transitions. However, for sufficiently large
values of the axion coupling we discover a clear second order phase transition
in the canonical (fixed charge), the grand canonical (fixed chemical poten-
tial) and the micro-canonical ensembles. We describe both the finite system
(of fixed length) and the infinite system, where we find that the dominant
stripe width changes as function of temperature.
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3.2. The holographic setup

3.2 The holographic setup

The Lagrangian describing our coupled system is [30]

L =
1

2
R− 1

2
∂µψ∂µψ −

1

4
FµνFµν − V (ψ)− Lint,

V (ψ) = −6 +
1

2
m2ψ2,

Lint =
1√−g

c1

16
√

3
ψ εµνρσFµνFρσ, (3.1)

where R is the Ricci scalar, Fµν is the Faraday tensor, Lint describes the
axion coupling and g is the determinant of the metric. We use units in which
the AdS radius l2 = 1/2, Newton’s constant 8πGN = 1, and c = ~ = 1, and
choose m2 = −4 and several values of c1.

Perturbative instabilities towards the formation of charge and current
density waves were identified in [30] for a range of wave numbers and tem-
peratures.3 We note the appearance of axion electrodynamics in the bulk
theory. It is curious that here, as in several examples of inhomogeneous
instabilities (see also [80]), the topology of the bulk fields seems to play an
important role, though the analysis performed to discover the instability is
local in nature.4

In this chapter we investigate the end-point of the instability. Part of
the boundary data is the spatial periodicity, and we focus mostly on the
wave number with the largest critical temperature Tc [30]. This state is
a co-homogeneity two solution, thus we construct the family of stationary
solutions that emerge from the critical point, assuming all the fields to be
functions of the radial coordinate r and one spatial coordinate x.

Our ansatz includes the scalar field ψ(r, x), the gauge field components
At(r, x) and Ay(r, x) and the metric

ds2 = −2r2f(r)e2A(r,x)dt2 + 2r2e2C(r,x)(dy −W (r, x)dt)2

+ e2B(r,x)

(
dr2

2r2f(r)
+ 2r2dx2

)
, (3.2)

where for the sake of convenience we included in the definition of the metric
functions the factor f(r) characterizing the metric of the AdS Reissner-

3An interesting application of the instability in this model has appeared very recently
[79].

4It is not generic, however, that the topology of the bulk fields is essential for inho-
mogeneous instabilities. See [81] for an example system whose bulk does not involve an
axion.
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Nordström (RN for short) solution, with horizon at r = r0:

f(r) = 1−
(

1 +
µ2

4r2
0

)(r0

r

)3
+
µ2

4r2
0

(r0

r

)4
.

The inhomogeneous solutions reduce to the RN solution above the critical
temperature.

The conformal in r, x plane ansatz (3.2) is convenient in constructing
co-homogeneity two solutions. With this ansatz, the Einstein and mat-
ter equations reduce to seven coupled elliptic equations and two constraint
equations. Moreover, the constraint system can be solved elegantly using
its similarity to a Cauchy-Riemann problem [82].

The boundary conditions we impose correspond to regularity conditions
at the horizon and asymptotically AdS conditions at the conformal bound-
ary. With these boundary conditions, the set of solutions we find depend
on three parameters: the temperature T , the chemical potential µ and the
periodicity in the x direction L. Using the conformal symmetry inherent in
asymptotically AdS spaces, the moduli space of solution depends only on
the two dimensionless combinations of these parameters. To focus on the
dominant critical mode that becomes unstable at the largest temperature
Tc we choose L = 2π/kc.

On the spatial boundaries it is useful to impose ‘staggered’ periodicity
conditions. Using two reflection symmetries which are preserved by the
form of the unstable perturbation, one can reduce the numerical domain to
a quarter period and impose5 ∂xψ(x = 0) = 0, ψ(x = L/4) = 0, h(x = 0) =
0, ∂xh(x = L/4) = 0 and ∂xg(x = 0) = 0, ∂xg(x = L/4) = 0, where h
represents the fields Ay and W , and g refers collectively to A,B,C and At.

The elliptic equations derived from (3.1) are discretized using finite dif-
ference methods and are solved numerically by a straightforward relaxation
with the specified boundary conditions. In this method the equations are
iterated starting with an initial guess for all fields, until successive changes
in the functions drop below the desired tolerance. We verify that the re-
maining two constraints are satisfied by those solutions. More details of this
numerical procedure are given in chapter 4 and appendix A.2.

5Our boundary conditions do not exclude the homogeneous solution, but since that
solution is unstable we find that in practice our numerical procedure converges to the
inhomogeneous solution unless we are very close to the critical point.
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3.3. The solutions

Figure 3.1: Metric functions for θ ' 0.11 and c1 = 4.5. Note that the metric
functions A,B and C have half the period of W . The variation is maximal
near the horizon, located at ρ = 0, and it decays as the conformal boundary
is approached, when ρ → ∞. The matter fields (not shown) behave in a
qualitatively similar manner.

3.3 The solutions

A convenient way to parametrize our inhomogeneous solutions is by the
dimensionless temperature θ = T/Tc, relative to the critical temperature
Tc. Our method allows us to find solutions in the range 0.003 . θ . 0.9 for
c1 = 4.5 and the range 0.00016 . θ . 0.96 for c1 = 8, for fixed µ.

Bulk Geometry. For subcritical temperatures, as we descend into the
inhomogeneous regime, the metric and the matter fields start developing
increasing variation in x. Figure 3.1 displays the metric functions for θ '
0.11, over a full period in the x direction, in the case c1 = 4.5. The matter
fields have qualitatively similar behaviour. The variation of all fields is
maximal near the horizon of the black hole at ρ ≡

√
r2 − r2

0 = 0, and it
gradually decreases toward the conformal boundary, ρ→∞.

Many of the special features of the solutions we find are related to the
presence of axion electrodynamics, the effective description of the electro-
magnetic response of a topological insulator, in the gravity action. In the
broken phase we have an axion gradient in the near horizon geometry, which
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3.3. The solutions

therefore realizes a topological insulator interface.6 The presence and the
pattern of a near horizon magnetic field, summarized in the field Ay, can be
related to the magnetoelectric effect in such interfaces.

In curved space the magnetic field is accompanied by vorticity, which
is manifested by the function W . This causes frame dragging effects in the
y direction. Test particles will be pushed along y with speeds W (r, x), in
particular the direction of the flow reverses every half the period along x.
The drag vanishes at the horizon and at the location of the nodes of W where
x = Ln/2, for integer n (see Figure 3.1). In general, the dragging effect
remains bounded, the vector ∂t is everywhere timelike, and no ergoregion
forms.

The Ricci scalar of the RN solution is RRN = −24, constant in r and
independent of the parameters of the black hole. This is no longer true for
the inhomogeneous phases, where the Ricci scalar becomes position depen-
dent. The right panel of Figure 3.2 illustrates the spatial variation of the
Ricci scalar, relative to the RRN for θ ' 0.003. The plot corresponds to
c1 = 4.5, however we observe qualitatively similar results for other values of
the coupling.

The maximal curvature is always along the horizon at x = nL/2 for
integer n. It grows when the temperature decreases and approaches the
finite value of R ' −94 in the small temperature limit.

The left panel in Figure 3.2 shows the variation of transverse extent
of the horizon in the y direction, ry(x) ≡

√
2 r0 exp[C(r0, x)], along x for

θ ' 0.003. Typically there is a ‘bulge’ occurring at x = nL/2 and a ‘neck’ at
x = (2n+1)L/4, for integer n. Note that Ricci scalar curvature is maximal
at the bulge and not at the neck as would happen, for instance, in the spher-
ically symmetric black string case. The size of both the neck and the bulge
monotonically decrease with temperature, however, the neck is shrinking
faster. We find that the ratio scales as a power law rneck

y /rbulge
y ∼ θσ near

the lower end of the range of θ’s that we investigated. The exponent σ de-
pends on the coupling, ranging from about 0.5 for c1 = 4.5 to approximately
0.1 for c1 = 8.

Another aspect of the geometry is the proper size of the stripe in the x di-
rection at fixed r, lx(r) ≡

∫ L
0 exp[B(r, x)] dx. The proper length tends to the

coordinate length as 1/r3 asymptotically as r → ∞, but it exceeds that as
the horizon is approached. Namely, the inhomogeneous phase ‘pushes space’
around it along x, resembling the ‘Archimedes effect’. The proper length of

6It would be interesting to discuss localized matter excitations on the interface, espe-
cially fermions, along the lines of [83].
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3.3. The solutions

Figure 3.2: Left panel: The variation along x of the size of the horizon in
the y direction includes alternating ‘necks’ and ‘bulges’. Right panel: Ricci
scalar relative to that of RN black hole, R/RRN − 1 for θ ' 0.003 over half
the period. The scalar curvature is maximal along the horizon at the bulge
x = nL/2 for integer n. The axion coupling here is c1 = 4.5 and similar
results appear for other c1’s.

the horizon is maximal and it grows as the temperature decreases. We find
that at small θ the proper length of the horizon diverges approximately as
∼ θ−0.1.

Boundary Observables. Near the conformal boundary the fields decay
to their AdS values, and the subleading terms in their variation are used
to define the asymptotic charge densities of our solutions. The subleading
fall-offs of the metric functions in our ansatz determine the boundary stress-
energy tensor, whereas the fall-offs of the gauge field determine the charge
and current densities of the boundary theory. Finally, the subleading term
of the scalar field near infinity determines the scalar condensate.

For our inhomogeneous solutions we find that all charge and current den-
sities are spatially modulated, except for 〈Txx〉, which is constant, consistent
with the conservation of boundary energy-momentum. We define the total
charges of a single stripe by integrating the charge densities over the full
period L. These integrated quantities are charge densities per unit length
in the translationally invariant direction y.
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Figure 3.3: Difference in the thermodynamic potentials between the inho-
mogeneous phase and the RN solution for c1 = 8, plotted against the tem-
perature. In both ensembles there is a second order phase transition, with
the inhomogeneous solution dominating below the critical temperature.

3.4 Thermodynamics

We demonstrated that below the critical temperature Tc there exists a new
branch of solutions which are spatially inhomogeneous. The question of
which solution dominates the thermodynamics depends on the ensemble
used. We start our discussion by fixing the boundary periodicity, corre-
sponding to working in a finite system of length L.7 We discuss the system
with infinite length in the inhomogeneous x-direction below.

The canonical ensemble corresponds to fixing the temperature and the
total charge. This describes the physical situation in which the system is
immersed in a heat bath consisting of uncharged particles. In the upper
panel of Figure 3.3 we plot the difference of the normalized total free en-
ergy, F = M − TS, between the two classical solutions as function of the
temperature T , for c1 = 8. In our ensemble the total charge N is fixed, and
we use the scaling symmetry of the boundary theory to set N = 1, or in
other words measure all quantities in terms of N . As a result the free energy
is a function of one parameter, the temperature T . The figure displays a
second order phase transition, where the inhomogeneous solution dominates

7Here, we mostly discuss the case L = 2π/kc, where kc is the wavelength of the
dominant instability, that with the highest critical temperature. Results for other values
of L appear in chapter 4, and are qualitatively similar.
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Figure 3.4: The entropy of the inhomogeneous solution for c1 = 8 (points
with dotted line) and of the RN solution (solid line). Below the critical
temperature, the striped solution has higher entropy than the RN. The RN
branch terminates at the extremal RN black hole, while the striped solution
persists to smaller energies.

the thermodynamics below the critical temperature Tc, the temperature at
which inhomogeneities first develop.

If we fix the chemical potential instead of the charge, we discuss a sit-
uation where the system is immersed in a plasma made of charged parti-
cles. To study the thermodynamics we use the grand canonical free energy
Ω = M−TS−µN , displayed in the lower panel of Figure 3.3. In this ensem-
ble it is convenient to measure all quantities in units of the fixed chemical
potential µ. Then, again, the free energy is a function of only the temper-
ature T . In the fixed chemical potential ensemble we find a similar second
order transition, where the inhomogeneous charge distribution starts dom-
inating the thermodynamics at the temperature where the inhomogeneous
instability develops.

The physical situation relevant to the study of the real time dynam-
ics of the instability corresponds to fixing the mass and the charge. This
is the microcanonical ensemble, describing an isolated system in which all
conserved quantities are fixed. In this ensemble it is convenient to measure
all quantities in terms of the (fixed) charge, and the remaining control pa-
rameter is then the mass M . We find that in this ensemble as well, the
striped solutions dominate the thermodynamics (have higher entropy) for
all temperature below the critical temperature Tc, at least when the axion
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Figure 3.5: A contour plot of the free energy density, relative to the ho-
mogenous solution. The red line shows the variation of the dominant stripe
width as function of the temperature for c1 = 8.

coupling c1 is sufficiently large. This is shown in Figure 3.4.
Finally, we can also study the infinite system in the inhomogeneous x-

direction, which we choose to look at in the canonical ensemble. In this case
we are in a position to compare the free energy density of different stripes, of
different lengths in the x-direction. This comparison is shown in Figure 3.5,
where we see that the qualitative picture is the same as in the finite sys-
tem – a second order transition with striped solutions dominating at every
temperature below the critical temperature. Just below the critical temper-
ature, the dominant stripe is that corresponding to the critical wavelength
kc. However, for lower temperature different stripes will dominate, in fact
we see in Figure 3.5 that the dominant stripe width tends to increase with
decreasing temperature.
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Chapter 4

Striped order in the
AdS/CFT correspondence1

4.1 Introduction and summary

The gauge / gravity duality is a relationship between a strongly coupled field
theory and a gravity system in one higher dimension. This correspondence
has been fruitful in studying various field theory phenomena by translating
the problem to the gravitational context. In particular, the duality has
shone new light on many condensed matter systems - see [18, 21, 84, 85] for
reviews.

Early models in this area, such as the holographic superconductor [11],
focused on homogeneous phases of field theories. In this case, the fields on
the gravity side depend only on the radial coordinate in the bulk and the
problem reduces to the solution of ordinary differential equations. However,
many interesting phenomena occur in less symmetric situations. Generi-
cally, the problem of finding the gravity dual to an inhomogeneous bound-
ary system will necessitate solving relatively more difficult partial differential
equations, almost always resulting in the need for numerical methods. While
these become technically hard problems, there exist established numerical
approaches. Due to the success of the holographic method in studying ho-
mogeneous situations, it is worthwhile to push the correspondence to these
less symmetric situations in order to describe more general phenomena in
this context.

One particular area of condensed matter that appears to be amenable
to a holographic description is the appearance of striped phases in certain
materials.2 These phases are characterized by the spontaneous breaking
of translational invariance in the system. Examples include charge density
waves and spin density waves in strongly correlated electron systems, where

1A version of this chapter has been published [3]. A concise presentation of this study
is given in chapter 3.

2Stripes are also known to form in large-N QCD [68, 69].
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either the charge and/or the spin densities become spatially modulated (for
a review see [29]). The formation of stripes is conjectured to be related to
the mechanism of superconductivity in the cuprates [70]. To approach this
striking phenomenon from the holographic perspective, one would look for
an asymptotically AdS gravity system which allows a spontaneous transition
to a modulated phase.

Recently, several interesting spatially modulated holographic systems
have been studied. One way to study stripes on the boundary is to source
them by imposing spatial modulation in the non-normalizable modes of some
fields, explicitly breaking the translation invariance, as in [73, 86].3 How-
ever, if one wishes to make contact with the context described above, it
is important that the inhomogeneity emerges spontaneously rather than be
introduced explicitly.

In some cases, the spatially modulated phase has an extra symmetry,
allowing the situation to be posed as a co-homogeneity one problem on the
gravity side. Examples include systems in which one of the translational
Killing vectors is replaced by a helical Killing vector [74–76, 80, 90, 91].
More general inhomogeneous instabilities, in which one of the translation
symmetries is fully broken, have been described in phenomenological model
[30, 92] and in certain #ND = 6 brane systems [93–95].4

In this chapter, we study the full non-linear co-homogeneity two striped
solutions to the Einstein-Maxwell-axion model that stem from the normal-
izable, inhomogeneous modes of the Reissner-Nordström-AdS solution de-
tailed in [30]. In this model, below a critical temperature, stripes sponta-
neously form in the bulk and on the boundary. We study the properties
of the stripes in both the fixed length system, in which the wavenumber is
set by the size of the domain and charges are integrated over the stripe,
and the infinite system, in which the corresponding thermodynamic den-
sities are studied. For the black hole at fixed length, we examine the be-
haviour in different thermodynamic ensembles as we vary the temperature
and wavenumber.

The study is facilitated by a numerical solution to the set of coupled
Einstein and matter equations in the bulk. Inspired by the black string
case [82, 98], we fix the metric in the conformal gauge, resulting in a set
of field equations and a set of constraint equations. Then, as described in
[82], the resulting constraint equations can be solved by imposing particular

3In a similar vein, more recently, lattice-deformed black branes have been of interest
in studies of conductivity in holographic models [79, 87–89].

4Other studies of inhomogeneity in the context of holography include [78, 83, 96, 97].
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boundary conditions on the fields.
As well as being of interest from the holographic perspective these nu-

merical solutions are important as they represent new inhomogeneous black
hole solutions in AdS. We find strong evidence that the unstable homo-
geneous branes transition smoothly to the striped state below the critical
temperature.5 As we approach zero temperature the relative inhomogeneity
is seen to grow without bound and the black hole horizon tends to pinch off,
signalling the formation of a spacetime singularity in this limit.

A subset of our results has already been reported in chapter 3; in this
chapter we provide full details. The summary of the results follow:

Boundary field theory

• We calculate the fully back-reacted normalizable inhomogeneous modes.

• The stripes have momentum, electric current and modulations in charge
and mass density (see [100] for a recent study of angular momentum
generation).

• As a function of temperature, the modulations start small, then grow
and saturate as T → 0.

• We study the stripe of fixed length in various ensembles, finding a
second order phase transition, for sufficiently large axion coupling,
in each of the grand canonical (temperature T , chemical potential µ
fixed), canonical (T , charge N fixed) and microcanonical (mass M , N
fixed) ensembles. We compute corresponding critical exponents.

• For the infinite length system, there is a second order transition to a
striped phase. The width of the dominant stripe grows as the temper-
ature is decreased.

• In the zero temperature limit, within the accuracy of our numerics,
the entropy appears to approach a non-zero value.

Bulk geometry

The new inhomogeneous black brane solutions that we find have peculiar
features, including

5The instability to the formation of the striped black branes resembles the black string
instability [71] which is known to be of the second order for high enough dimensions
[72, 99].
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• The inhomogeneities are localized near the horizon, and die off asymp-
totically following a power law decay.

• The phenomena of vorticity, frame dragging and the magneto-electric
effect similar to one produced by a near horizon topological insulator
are observed.

• The inhomogeneous black brane has a neck and a bulge. In the cur-
vature at the horizon, the maximum is at the bulge. In the limit of
small temperatures, the neck shrinks to zero size.

• The proper length of the horizon grows when temperature is decreas-
ing, and diverges as 1/T 0.1 in the limit T → 0. The proper length in
the stripe direction increases from the boundary to the horizon, which
can be thought of as a manifestation of an ‘Archimedes effect’.

In section 4.2, we define our model and set up our numerical approach,
describing our ansatz, boundary conditions and solving procedure. Then,
in section 4.3, we report on interesting geometrical features of the bulk so-
lutions. Section 4.4 studies the solutions at fixed length from the point of
view of the boundary theory. There, we make the comparison to the homo-
geneous solution and find a second order transition, in addition to describing
the observables in the theory. In section 4.5, we relax the fixed length con-
dition and find the striped solution that dominates the thermodynamics for
the infinite system. Appendix B.1 provides details about computing the
observables of the inhomogeneous solutions while appendix B.2 gives more
details on the numerics, including checks of the solutions and validations of
our numerical method.

Note added: As the manuscript that forms the basis for this chapter
was being completed, [101] and [102, 103] appeared, which use a different
method and have some overlap with this work.

4.2 Numerical set-up: Einstein-Maxwell-axion
model

In [30], perturbative instabilities of the Reissner-Nordström-AdS (RN for
short) black brane were found within the Einstein-Maxwell-axion model. In
[2] and here, we construct the full non-linear branch of stationary solutions
following this zero mode.

71



4.2. Numerical set-up: Einstein-Maxwell-axion model

4.2.1 The model and ansatz

The Lagrangian describing our coupled system can be written as [30]

L =
1

2
(R+12)− 1

2
∂µψ∂µψ−

1

2
m2ψ2− 1

4
FµνFµν−

1√−g
c1

16
√

3
ψ εµνρσFµνFρσ,

(4.1)
where R is the Ricci scalar, Fµν is the Faraday tensor, ψ is a pseudo-scalar
field and g is the determinant of the metric. We use units in which the AdS
radius l2 = 1/2, Newton’s constant 8πGN = 1 and c = ~ = 1, and choose
m2 = −4. The constant c1 controls the strength of the axion coupling.

For this choice of scalar field mass, instabilities exist for all choices of
c1. For c1 = 0, the instability is towards a black hole with neutral scalar
hair. For c1 > 0, inhomogeneous instabilities along one field theory direction
exist for a range of wavenumbers k. The critical temperature at which each
mode becomes unstable depends on the wavenumber: Tc(k). For a given c1,
there is a maximum critical temperature, above which there are no unstable
modes. As one increases c1, the critical temperature of a given mode k
increases, such that for a fixed temperature a larger range of wavenumbers
will be unstable. See appendix B.2.1 for more details on the perturbative
analysis.

One may consider generalizations of this action, including higher order
couplings between the scalar field and the gauge field. In particular, as
discussed in [30], generalizing the Maxwell term as − τ(ψ)

4 FµνFµν , where
τ(ψ) is a function of the scalar field, results in a model that can be uplifted
to a D = 11 supergravity solution (for particular choices of c1, m, and
the parameters in τ(ψ)). In this study, we wish to study the formation of
holographic stripes phenomenologically. The existence of the axion-coupling
term (c1 6= 0) is a sufficient condition for the inhomogeneous solutions and
so we set τ(ψ) = 1 here.

We are looking for stationary black hole solutions that can be described
by an ansatz of the form

ds2 = −2r2f(r)e2A(r,x)dt2 + 2r2e2C(r,x)(dy −W (r, x)dt)2

+ e2B(r,x)

(
dr2

2r2f(r)
+ 2r2dx2

)
,

ψ = ψ(r, x), A = At(r, x)dt+Ay(r, x)dy, (4.2)

where r is the radial direction in AdS and x is the field theory direction
along which inhomogeneities form. We term the scalar field and gauge fields
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collectively as the matter fields. f(r) is a given function whose zero defines
the black brane horizon. We take f(r) to be that of the RN solution,

f(r) = 1−
(

1 +
µ2

4r2
0

)(r0

r

)3
+
µ2

4r2
0

(r0

r

)4
, (4.3)

so that the horizon is located at r = r0. The homogeneous solution is the
RN black brane, given by

A = B = C = W = ψ = Ay = 0, At(r) = µ(1− r0/r), (4.4)

where µ is the chemical potential. Above the maximum critical temperature,
this is the only solution to the system.

To find the non-linear inhomogeneous solutions, we numerically solve the
equations of motion derived from the ansatz (4.2). The Einstein equation
results in four second order elliptic equations, formed from combinations of
Gtt−T tt = 0, Gty−T ty = 0, Gyy−T yy = 0, and Grr+Gxx−(T rr +T xx ) = 0, and two
hyperbolic constraint equations, Grx−T rx = 0 and Grr−Gxx−(T rr−T xx ) = 0, for
the metric functions. The gauge field equations and scalar field equation give
second order elliptic equations for the matter fields. For completeness, the
full equations are given in appendix B.2.2. Our strategy will be to solve these
seven elliptic equations subject to boundary conditions that ensure that the
constraint equations will be satisfied on a solution. Below, we describe the
constraint system and our boundary conditions. For more details about the
numerical approach, we refer to appendix B.2.

4.2.2 The constraints

The two equations Grx−T rx = 0 and Grr−Gxx−(T rr −T xx ) = 0, which we do not
explicitly solve, are the constraint equations. Using the Bianchi identities
[82], we see that the constraints satisfy

∂x
(√−g(Grx − T rx )

)
+ 2r2

√
f∂r

(
r2
√
f
√−g(Grr −Gxx − (T rr − T xx ))

)
= 0,

(4.5)

2r2
√
f∂r

(√−g(Grx − T rx )
)
− ∂x

(
r2
√
f
√−g(Grr −Gxx − (T rr − T xx ))

)
= 0.

(4.6)
Defining r̂ by ∂r̂ = 2r2

√
f∂r gives Cauchy-Riemann relations

∂x
(√−g(Grx − T rx )

)
+ ∂r̂

(
r2
√
f
√−g(Grr −Gxx − (T rr − T xx ))

)
= 0, (4.7)
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∂r̂
(√−g(Grx − T rx )

)
− ∂x

(
r2
√
f
√−g(Grr −Gxx − (T rr − T xx ))

)
= 0, (4.8)

showing that the weighted constraints satisfy Laplace equations. Then, sat-
isfying one constraint on the entire boundary and the other at one point
on the boundary implies that they will both vanish on the entire domain.
In practice we will take either zero data or Neumann boundary conditions
at the boundaries in the x-direction. The unique solution to Laplace’s
equation with zero data on the horizon and the boundary at infinity and
these conditions in the x-direction is zero. Therefore, as long as we fulfill
one constraint at the horizon and the asymptotic boundary and the other
at one point (on the horizon or boundary), the constraints will be satis-
fied if the elliptic equations are. Our boundary conditions will be such
that

√−g(Grx − T rx ) = 0 at the horizon and conformal infinity and that
r2
√
f
√−g(Grr −Gxx − (T rr − T xx )) = 0 at one point on the horizon.

4.2.3 Boundary conditions

The elliptic equations to be solved are subject to physical boundary condi-
tions. There are four boundaries of our domain (see Figure 4.1): the hori-
zon, the conformal boundary, and the periodic boundaries in the x-direction,
which are described next.

Staggered periodicity

To specify the boundary conditions in the x direction we look at the form
of the linearized perturbation which becomes unstable (see appendix B.2.1).
To leading order in the perturbation parameter λ, they are of the form:

ψ(x) ∼ λ cos(kx),

Ay(x) ∼ λ sin(kx),

gty(x) ∼ λ sin(kx), (4.9)

where k is the wavenumber of the unstable mode. To second order in the
perturbation parameter, the functions gtt, gxx, gyy and At (which we denote
collectively as h) are turned on, with the schematic behaviour

h(x) ∼ λ2(cos(2kx) + C), (4.10)

where C are independent of x.

74



4.2. Numerical set-up: Einstein-Maxwell-axion model

��
��
��
��
��
��
��
��
��
��
��
��

6

-

regularity,
p�gGr

x = 0

A, B, C, W / 1
r3 ,

At � µ, Ay / 1
r
,

 / 1
r2 ,

p�gGr
x = 0

 = @xAy = @xgty = @xh = 0

@x = Ay = gty = @xh = 0

rr = rcutr = r0

x

x = L
4

x = 0

Figure 1: A summary of the boundary conditions on our domain. At the horizon,
r = r0, we impose regularity conditions. At the conformal boundary, r ! 1, we
have fall o↵ conditions on the fields (imposed at large but finite r = rcut) such that we
do not source the inhomogeneity. In the x-direction, we use symmetries to reduce the
domain to a quarter period L/4. Then, we impose either periodic or zero conditions
on the fields, according to their behavior under the discrete symmetries discussed in
the text. (h collectively denotes the fields {gtt, gxx, gyy, At}.) In addition to these,
we explicitly satisfy the constraint equation

p�gGr
x = 0 on the horizon and the

conformal boundary.

where k is the wavenumber of the unstable mode. To second order in the perturbation
parameter, the functions gtt, gxx, gyy and At (which we denote collectively as h) are
turned on, with the schematic behavior

h(x) ⇠ �2(cos(2kx) + C), (2.10)

where C are independent of x.
All these functions are periodic with period L = 2⇡

k
. However, they are not

the most general periodic functions with period L. For numerical stability it is
worthwhile to specify their properties further and encode those properties in the
boundary conditions we impose on the full solution. We concentrate on the behavior
of the perturbation with respect to two independent Z2 reflection symmetries.

8

Figure 4.1: A summary of the boundary conditions on our domain. At
the horizon, r = r0, we impose regularity conditions. At the conformal
boundary, r →∞, we have fall off conditions on the fields (imposed at large
but finite r = rcut) such that we do not source the inhomogeneity. In the x-
direction, we use symmetries to reduce the domain to a quarter period L/4.
Then, we impose either periodic or zero conditions on the fields, according
to their behaviour under the discrete symmetries discussed in the text. (h
collectively denotes the fields {gtt, gxx, gyy, At}.) In addition to these, we
explicitly satisfy the constraint equation

√−gGrx = 0 on the horizon and
the conformal boundary.

All these functions are periodic with period L = 2π/k. However, they
are not the most general periodic functions with period L. For numeri-
cal stability it is worthwhile to specify their properties further and encode
those properties in the boundary conditions we impose on the full solution.
We concentrate on the behaviour of the perturbation with respect to two
independent Z2 reflection symmetries.

The first Z2 symmetry is that of x → −x, y → −y, which is a rotation
in the x, y plane. This is a symmetry of the action and of the linearized
perturbation (keeping in mind that Ay and gty change sign under reflection
of the y coordinate). We conclude therefore that this is a symmetry of the
full solution.

Similarly, the Z2 operation x → L
2 − x, y → −y is a symmetry of the

action, which is also a symmetry of the linearized system when accompanied
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by λ→ −λ. In other words the functions ψ,Ay, gty are restricted to be odd
with respect to this Z2 operation, while the rest of the functions, which we
collectively denoted as h, are even.

The two symmetries defined here restrict the form of the functions that
can appear in the perturbative expansions for each of the functions above.
For example, it is easy to see that the function ψ(x) gets corrected only in
odd powers of λ and the most general form of the harmonic that can appear
in the perturbative expansion is cos(nkx), for n odd. Similar comments
apply to the other functions above.

We restrict ourselves to those harmonics which may appear in the full
solution. The most efficient way to do so is to work with a quarter of
the full period L (reconstructing the full periodic solution using the known
behaviour of each function with respect to the two Z2 operations defined
above). The specific properties of each function appearing in our solutions
are imposed by demanding the following boundary conditions:

∂xψ(x = 0) = 0, ψ

(
x =

L

4

)
= 0,

Ay(x = 0) = 0, ∂xAy

(
x =

L

4

)
= 0,

gty(x = 0) = 0, ∂xgty

(
x =

L

4

)
= 0,

∂xh(x = 0) = 0, ∂xh

(
x =

L

4

)
= 0. (4.11)

At the horizon

In our coordinates (4.2) the horizon is at fixed r = r0. For numerical con-
venience we introduce another radial coordinate ρ =

√
r2 − r2

0, such that
the horizon is at ρ = 0.6 Expanding the equations of motion around ρ = 0
yields a set of Neumann regularity conditions,

∂ρA = ∂ρC = ∂ρW = ∂ρψ = ∂ρAt = ∂ρAy = 0, (4.12)

and two conditions in the inhomogeneous direction along the horizon,

∂xW = ∂x(At +WAy) = 0. (4.13)

Thus, bothW and the combination At+WAy are constant along the horizon.
The boundary conditions in the x direction (4.11) imply that W = 0. Then,

6In the rest of the paper, we use r and ρ interchangeably as our radial coordinate. We
use the coordinate ρ in the numerics.
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the second condition together with regularity of the vector field A on the
Euclidean section give that At = 0 on the horizon.

The regularity conditions give eight conditions for the six functions
A,C,W,ψ,At and Ay. In principle, we would choose any six of these to
impose at the horizon. If we find a non-singular solution to the equations,
then the other two conditions should also be satisfied. In practice, some of
these conditions work better than others for finding the numerical solution.
We find that using Neumann conditions for A,C, ψ, and Ay and Dirichlet
conditions for W and At results in a more stable relaxation.7

The conditions for B are determined using the constraint equations.
Expanding the weighted constraints at the horizon, we find

√−g(Grx − T rx ) ∝ ∂x(A−B) +O(ρ), (4.14)

r2
√
f
√−g(Grr −Gxx − (T rr − T xx )) ∝ ∂ρB +O(ρ). (4.15)

The first condition gives constant surface gravity (or temperature) along the
horizon. As discussed above, we will impose one constraint at the horizon
and the boundary, and the other at one point. In practice, we will satisfy
r2
√
f
√−g(Grr−Gxx−(T rr −T xx )) at (ρ, x) = (0, 0), updating the value of B at

this point using the Neumann condition ∂ρB = 0. This will set the difference
(B−A)|(ρ,x)=(0,0) ≡ d0, which we will then use to update B using a Dirichlet
condition along the rest of the horizon, satisfying

√−g(Grx − T rx ) = 0.

At the conformal boundary

In our coordinates, the boundary is at r = ∞. Since we are looking for
spontaneous breaking of homogeneities, our boundary conditions will be
such that the field theory sources are homogeneous. This implies that the
non-normalizable modes of the bulk fields are homogeneous. The inhomo-
geneity of the striped solutions will be imprinted on the normalizable modes
of the fields, or the coefficient of the next-to-leading fall-off term in the
asymptotic expansions.

The form of our metric ansatz is such that the metric functions A,B,C
and W represent the normalizable modes of the metric. Imposing that the
geometry is asymptotically AdS with Minkowski space on the boundary
implies that these four metric perturbations must vanish as r → ∞. By
expanding the equations of motion near the boundary, one can show that
A,B,C and W fall off as 1/r3. In practice, we place the outer boundary of
our domain at large but finite rcut and impose the fall-off conditions there.

7Using Neumann conditions at the horizon for W and At results in values at the horizon
that converge to zero with step-size, consistent with the above analysis.
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4.2. Numerical set-up: Einstein-Maxwell-axion model

As in the RN solution, we source the field theory charge density with
a homogeneous chemical potential, corresponding to a Dirichlet condition
for the gauge field At at the boundary. In the inhomogeneous solutions,
we expect the spontaneous generation of a modulated field theory current
jy(x), dual to the normalizable mode of Ay. Solving the equations near the
boundary with these conditions reveals the expansions At = µ+O(1/r) and
Ay = O(1/r), which we impose numerically at rcut.

The scalar field equation of motion gives the asymptotic solution

ψ =
ψ(1)

rλ−
+
ψ(2)

rλ+
+ . . . , (4.16)

where

λ± =
1

2

(
3±

√
9 + 4(lm)2

)
. (4.17)

For the range of scalar field masses −9/2 ≤ m2 ≤ −5/2, both modes are
normalizable, and fixing one mode gives a source for the other. In our study
we will choose m2 = −4, giving λ− = 1, λ+ = 2. Since we are looking for
spontaneous symmetry breaking, in this case we must choose either ψ(1) = 0
or ψ(2) = 0. We choose the former, so that ψ falls off as 1/r2.

Now, consider the weighted constraint
√−gGrx. As discussed above, in

order to solve the constraint system, we require this to disappear at the
conformal boundary. Near the boundary,

√−g ∝ r2 + . . . , so for
√−gGrx to

disappear we must have Grx = O(1/r3). Expanding the equations near the
boundary we have

Grx − T rx ∝
3∂xA

(3)(x) + 2∂xB
(3)(x) + 3∂xC

(3)(x)

r2
+O

(
1

r3

)
, (4.18)

where X = X(3)(x)/r3 + . . . for X = {A,B,C}. Therefore, in addition to
the boundary conditions mentioned above, for

√−gGrx = 0 to be satisfied at
r =∞, it appears that we should have that 3A(3)(x)+2B(3)(x)+3C(3)(x) =
const. The means to impose this addition condition comes from the fact
that our metric (4.2) has an unfixed residual gauge freedom [104], allow-
ing one to transform to new r̃ = r̃(r, x), x̃ = x̃(r, x) coordinates which are
harmonic functions of r and x. Performing such a transformation generates
an additional function in (4.18), which can then be chosen to ensure that
the constraint is satisfied (in appendix B.2 we describe how). This condi-
tion implies the conservation of the boundary energy momentum tensor, see
appendix B.1.
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4.2.4 Parameters and algorithm

The physical data specifying each solution is the chemical potential µ, the
temperature T , and the periodicity L.8 Since the boundary theory is confor-
mal, it will only depend on dimensionless ratios of these parameters. This
manifests itself in the following scaling symmetry of the equations:

r → λr, (t, x, y)→ 1

λ
(t, x, y), Aµ → λAµ. (4.19)

We use this to select µ = 1. Then, our results are functions of the dimen-
sionless temperature T/µ and the dimensionless periodicity Lµ.

The temperature is controlled by the coordinate location of the horizon.
For a given r0, the temperature of the RN phase is T0 = (1/8πr0)(12r2

0 −
1) while the temperature of the inhomogeneous solution is T = e−d0T0.
Recall that (B − A)|r0 = d0 is dynamically generated by satisfying the
constraints at the horizon. From our numerical solutions, we find that d0

monotonically increases as we lower the temperature, so that T0 gives a
reliable parametrization of the physical temperature T . In practice, we
generate solutions by choosing values of T0 below the critical temperature
Tc(k).

We solve the equations by finite-difference approximation techniques. We
use second order finite-differencing on the equations (B.27) – (B.33) before
using a point-wise Gauss-Seidel relaxation method on the resulting algebraic
equations.9 For the results in this paper, for c1 = 4.5, a cutoff of ρcut =
{6, 8} was used while for c1 = 5.5 and c1 = 8, for which the modulations
were larger, a cutoffs of ρcut = 10 and ρcut = 12 correspondingly were
used. Grid spacings used for the finite-difference scheme were in the range
dρ, dx = 0.04 − 0.005. Neumann boundary conditions are differenced to
second order using one-sided finite-difference stencils in order to update the
boundary values at each step. At the asymptotic boundary ρcut we impose
the boundary conditions by second order differencing a differential equation
based on the fall-off (for example, ∂rA = −3A/r) to obtain an update rule
for the boundary value. As a result we find quadratic convergence as a
function of grid-spacing for our method, see appendix B.2.5.

8Fixing µ, T and L gives the system in the grand canonical ensemble. Once the phase
space has been mapped in one ensemble other ensembles can be considered via appropriate
reinterpretation of the numerical data. See section 4.4 for a description of this process.

9See appendix A.2 for a description of this procedure.
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4.3 The solutions

The system of equations (B.27) – (B.33) is solved subject to the boundary
conditions described in the previous sections. The details of our numeri-
cal algorithm are found in appendices A.2 and B.2. Here we focus on the
properties of the solutions and their geometry.

Unless otherwise specified the following plots were obtained using the
axion coupling of c1 = 4.5. In this section, we consider solutions for which
the periodicity is determined by the dominant critical wavenumber kc; for
c1 = 4.5, this gives Lµ/4 ' 2.08, see Table B.1. We found that the geometry
and most of the other features are qualitatively similar for the couplings
c1 = 5.5 and c1 = 8. A convenient way to parametrize our inhomogeneous
solutions is by the dimensionless temperature T/Tc, relative to the critical
temperature Tc, below which the translation invariance along x is broken.
For c1 = 4.5, our method allows us find solutions in the range 0.003 .
T/Tc . 0.9.

4.3.1 Metric and fields

For subcritical temperatures, as we descend into inhomogeneous regime,
the metric and the matter fields start developing increasing variation in
x. Figure 4.2 displays the metric functions, and Figure 4.3 shows the non
vanishing components of the vector potential field and of the scalar field for
T/Tc ' 0.11 over a full period in the x direction. The variation of all fields
is maximal near the horizon of the black hole at ρ =

√
r2 − r2

0 = 0, and it
gradually decreases toward the conformal boundary, ρ→∞.

Many of the special features of the solutions we find may be explained
via axion electrodynamics as seen in the effective description of the elec-
tromagnetic response of a topological insulator. This effect is mediated by
the interaction term in our Lagrangian (4.1). In the broken phase we have
an axion gradient in the near horizon geometry, which realizes a topological
insulator interface, see Figure 4.3. The characteristic patterning of the near
horizon magnetic field, B = ∇×A, shown in Figure 4.4, is reminiscent of the
magnetoelectric effect at such interfaces. The magnetic vortices are local-
ized near the black hole horizon and have alternating direction of magnetic
field lines.

In curved space the magnetic field is accompanied by vorticity, which is
manifested by the function W . This causes frame dragging effects in the
y direction. Test particles will be pushed along y with speeds W (r, x), in
particular the direction of the flow reverses every half the period along x.
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Figure 4.2: Metric functions for T/Tc ' 0.11. Note the metric functions
A,B and C have half the period of W . The variation is maximal near
the horizon, located at ρ = 0, and it decays as the conformal boundary is
approached, when ρ→∞.

The drag vanishes at the horizon and at the location of the nodes of W where
x = nL/2, for integer n, see Figure 4.2. In general, the dragging effect
remains bounded, and no ergoregion forms, where the vector ∂t becomes
spacelike.

4.3.2 The geometry

There are several ways to envisage the geometry of our solutions, we discuss
them in turn.

The Ricci scalar of the RN solution is RRN = −24, constant in r and
independent of the parameters of the black hole. This is no longer true for
the inhomogeneous phases, where the Ricci scalar becomes position depen-
dent. Figure 4.5 illustrates the spatial variation of the Ricci scalar, relative
to RRN for T/Tc ' 0.054. The maximal curvature is always along the hori-
zon at x = nL/2 for integer n. It grows when the temperature decreases
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Figure 4.3: At relative to the corresponding RN solutions, Ay and ψ for
T/Tc ' 0.11. The period of At is twice that of ψ and Ay. The x-dependence
dies off gradually as the conformal boundary is approached, at ρ→∞.
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Figure 4.4: Magnetic field lines for solution with T/Tc ' 0.07. The pattern
of vortices of alternating field directions form at the horizon (located at
ρ = 0).

and approaches the finite value of R ' −94 in the small temperature limit.

Embedding in a given background space is a convenient way to illustrate
curved geometry. We consider the embedding of 2-dimensional spatial slices

82



4.3. The solutions

Figure 4.5: Ricci scalar relative to that of RN black hole, R/RRN − 1,
RRN = −24, for T/Tc ' 0.054 over half the period. The scalar curvature is
maximal along the horizon at x = nL/2 for integer n.

of constant x of the full geometry (4.2)

ds2
2 =

e2B(r,x)

2 r2 f(r)
dr2 + 2 r2 e2C(r,x)dy2 (4.20)

as a surface in 3-dimensional AdS space

ds2
3 = 2 r̃2 dz2 +

dr̃2

2 r̃2
+ 2 r̃2dy2. (4.21)

We are looking for a hypersurface parametrized by z = z(r̃). Then the
metric on such a hypersurface reads

ds2
2 =

[
1 + 2 r̃2

(
dz

dr̃

)2
]
dr̃2

2 r̃2
+ 2 r̃2dy2. (4.22)

Comparing (4.22) and (4.20) we obtain set of the relations

r̃ = r eC ,[
1

2 r̃2
+ 2 r̃2

(
dz

dr̃

)2
](

dr̃

dr

)2

=
e2B(r,x)

2 r2 f(r)
, (4.23)
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Figure 4.6: The embedding diagram of constant x spatial slices, as a function
of x at given y for T/Tc ' 0.035. The geometry of ρ = const slices is
maximally curved at x = nL/2 for integer n.

resulting in the embedding equation

dz

dr
=

1

2 r2

√
f(r)−1 e2B(r,x)−2C(r,x) − (1 + r ∂rC(r, x))2. (4.24)

We integrate this equation for a given x, and in Figure 4.6 show the embed-
ding at constant y. The maximal curvature along ρ = const slices occurs at
x = nL/2 for integer n, which is consistent with Figure 4.5.

The proper length of the stripe along x relative to the background AdS
spacetime at given r is

lx(r)/lx(r =∞) =

∫ L/4

0
eB(r, x) dx. (4.25)

Figure 4.7 shows the dependence of the normalized proper length on the
radial distance from the horizon. The proper length tends to the coordinate
length as 1/r3 asymptotically as r →∞, but it exceeds that as the horizon is
approached. Namely, the inhomogeneous black brane ‘pushes space’ around
it along x, in a manner resembling the ‘Archimedes effect’.

The proper length of the horizon in x direction is obtained calculating
(4.25) at r0. Figure 4.8 demonstrates the dependence of this quantity on
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Figure 4.7: Radial dependence of the normalized proper length along x for
T/Tc ' 0.054. While asymptotically the proper length coincides with the
coordinate size of the strip, it grows as the horizon is approached. This is a
manifestation of the ‘Archimedes effect’.

the temperature. For high temperatures the length of the horizon resembles
that of the homogeneous RN solution, however, it grows when temperature
decreases. We find that at small T/Tc the proper length of the horizon
diverges approximately as (T/Tc)

−0.1.
The transverse extent of the horizon, per unit coordinate length y, is

given by
ry(x) =

√
2 r0 e

C(r0,x). (4.26)

Figure 4.9 shows the variation of ry(x) along the horizon for T/Tc ' 0.054.
Typically there is a ‘bulge’ occurring at x = nL/2 and a ‘neck’ at x =
(2n + 1)L/4, for integer n. Comparing this with Figure 4.5 we note that
Ricci scalar curvature is maximal at the bulge and not at the neck as
would happen, for instance, in the cylindrical geometry in black string
case [98]. Figure 4.10 displays the dependence of the sizes of the neck
and bulge on T/Tc. Both sizes monotonically decrease with temperature,
however the rate at which the neck is shrinking exceeds that of the bulge.
This is demonstrated in Figure 4.11. In fact, we find that for c1 = 4.5,
rnecky /rbulgey ∼ (T/Tc)

1/2 near the lower end of the range of temperatures
that we investigated. For other values of the axion coupling the scaling of
the ratio is again power-law, with an exponent of the same order of magni-
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Figure 4.8: Temperature dependence of the proper length of the horizon
along the stripe. Starting from as low as L at high temperatures, the proper
length grows monotonically and for small T/Tc the growth is well approxi-
mated by the power-law dependence ∼ (T/Tc)

−0.1.

tude, e.g. for c1 = 8, the exponent is about 0.12. This signals a pinch-off of
the horizon in the limit T → 0.

4.4 Thermodynamics at finite length

In this section we consider the thermodynamics and phase transitions in the
system, assuming that the stripe length is kept fixed. For the finite system
the length of the interval is part of the specification of the ensemble and is
kept fixed. In the next section we discuss the infinite system, for which the
stripe width can adjust dynamically.

4.4.1 The first law

We demonstrated that below the critical temperature there exists a new
branch of solutions which are spatially inhomogeneous. In the microcanon-
ical ensemble the control variables of the field theory are the entropy S, the
charge density N , and the length of the x-direction L, with corresponding
conjugate variables temperature T , chemical potential µ, and tension in the
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Figure 4.9: The extent of the horizon in the transverse direction, ry, as
a function of x for T/Tc ' 0.054 in x ∈ [−L/2, L/2]. The characteristic
pattern of alternating ‘necks’ and ‘bulges’ forms along x.
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Figure 4.10: The dependence of the size of the neck and the bulge on tem-
perature.
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Figure 4.11: The ratio of the transverse extents of the neck and the bulge
shrinks as rnecky /rbulgey ∼ (T/Tc)

1/2 at small temperatures, indicating a
pinch-off of the horizon in the limit T → 0.

x-direction τx.
10 The usual first law is augmented by a term corresponding

to expansions and contractions in the x-direction and is given by

dM = TdS + µdN + τxdL. (4.27)

where M , S, and N are quantities per unit length in the trivial y direction,
but are integrated over the stripe.

Our system has a scaling symmetry given by (4.19). In the field theory,
this corresponds to a change of energy scale. Under this transformation, the
thermodynamic quantities scale as

M → λ2M, T → λT, S → λS, µ→ λµ,

N → λN, τx → λ3τx, L→ 1

λ
L. (4.28)

Using these in (4.27) with λ = 1 + ε, for ε small, yields

2M = TS + µN − τxL, (4.29)

the Smarr’s-like expression that our solutions must satisfy and that can be
used as a check of our numerics. For all of our solutions, we have verified
that this identity is satisfied to one percent.

10Explicit expressions for these quantities in terms of our ansatz are given in appendix
B.1.
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4.4. Thermodynamics at finite length

4.4.2 Phase transitions

The question of which solution dominates the thermodynamics depends on
the ensemble considered. In the holographic context the choice of thermo-
dynamic ensemble is expressed through the choice of boundary conditions.
The corresponding thermodynamic potential is computed as the on-shell
bulk action, appropriately renormalized and with boundary terms rendering
the variational problem well-defined. We examine each ensemble in turn.

The grand canonical ensemble

In our numerical approach, the natural ensemble to consider is the grand
canonical ensemble, fixing the temperature T , the chemical potential µ,
and the periodicity of the asymptotic x direction as L. The corresponding
thermodynamic potential is the grand free energy density

Ω(T, µ, L) = M − TS − µN. (4.30)

Different solutions of the bulk equations with the same values of T, µ, L
correspond to different saddle point contributions to the partition function.
The solution with smallest grand free energy Ω is the dominant configura-
tion, determining the thermodynamics in the fixed T, µ, L ensemble. In our
case we have two solutions for each choice of T, µ, L, one homogeneous and
one striped. Exactly how one one saddle point comes to dominate over the
other at temperatures below the critical temperature determines the order
of the phase transition.

In this ensemble it is convenient to measure all quantities in units of the
fixed chemical potential µ. Then, after fixing L from the critical mode ap-
pearing at the highest Tc (see Figure B.1 and Table B.1 in appendix B.2.1),
we have that Ω/µ2 is a function only of the dimensionless temperature T/µ.
In the fixed chemical potential ensemble for large enough axion coupling we
find a second order transition, where the inhomogeneous charge distribution
starts dominating the thermodynamics immediately below the temperature
at which the inhomogeneous instability develops. Near the critical tem-
perature, the behaviour of the grand free energy difference is consistent
with (Ω − ΩRN )/µ2 ∝ (1 − T/Tc)

2, while the entropy difference goes as
(S − SRN )/µ ∝ T/Tc − 1. This is as expected from a second order tran-
sition. As can be seen in Figure 4.12 and Figure 4.13, we find this second
order transition for a range of lengths, L, and for a variety of values of the
axion coupling c1. With the current accuracy of our numerical procedure,
we find it increasingly difficult to resolve the order of the phase transition
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Figure 4.12: The grand free energy relative to the RN solution for several
solutions of different fixed lengths at c1 = 8. In all cases shown we observe
a second order phase transition. The critical exponents determined near
the critical points in each case are consistent with the quadratic behaviour
(Ω− ΩRN )/µ2 ∝ (1− T/Tc)2.

for smaller values of c1. In fact, for c1 = 4.5 the grand free energies of
the homogeneous and inhomogeneous phases are nearly degenerate but still
allow us to determine the phase transition as second order. It would be
interesting to see if the phase transition remains of second order or changes
to the first order for smaller values of the axion coupling.

To examine the observables in the striped phase further, we focus on
c1 = 8 and the corresponding dominant critical mode, Lµ/4 ' 1.21, and
consider solutions for the temperatures 0.00016 . T/Tc . 0.96. Various
quantities are plotted with the corresponding homogeneous results in Fig-
ure 4.14. Along this branch of solutions, the mass of the stripes is more than
the RN solution and the entropy is always less. We plot the maximum of the
boundary current density 〈jy〉, momentum density 〈Ty0〉 and pseudo-scalar
operator vev 〈Oψ〉. Fitting the data near the critical point to the func-
tion (1 − T/Tc)α, we find the approximate critical exponents αjy = 0.40,
αTy0 = 0.41 and αOψ = 0.38 with relative fitting error of about 10%.

We find evidence that the entropy of the striped black branes does not
tend to zero in the small temperature limit, see Figure 4.14. This is further
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Figure 4.13: The grand free energy relative to the RN solution for c1 =
4.5 and fixed Lµ/4 = 2.08. The grand free energies of the homogeneous
and inhomogeneous phases are nearly degenerate, such that their maximal
fractional difference is about 1%.

supported by the behaviour of the transverse size of the horizon (4.26).
Here the bulge seems to contract at a much slower rate than the neck,
which evidently shrinks to zero size in the limit T → 0. However, strictly
speaking, this conclusion is based on extrapolation of the finite temperature
data to T = 0. Checking whether the entropy asymptotes to a finite value
or goes to zero in this limit, as suggested in [102, 103], will require further
investigation with a method of higher numerical accuracy.

The canonical ensemble

To study the system in the canonical ensemble we fix the temperature,
total charge and length of the system. This describes the physical situation
in which the system is immersed in a heat bath consisting of uncharged
particles. The relevant thermodynamic potential in this ensemble is the free
energy density

F (T,N,L) = M − TS. (4.31)

If we measure all quantities in units of the fixed charge N , then, again, the
free energy F/N2 is only a function of the dimensionless temperature T/N .

To solve our system with a fixed charge, we would need to fix the integral
in x of the coefficient of the 1/r term in the asymptotic expansion of the
gauge field At. Numerically, it is much easier to fix the chemical potential,
as this gives a Dirichlet condition on At at the boundary. In the grand
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Figure 4.14: The observables in the grand canonical ensemble for c1 = 8
and Lµ/4 = 1.21 (points with dotted line) plotted with the corresponding
quantities for the RN black hole (solid line). Fitting the data near the
critical point to the function (1 − T/Tc)α, we find the approximate critical
exponents αjy = 0.40, αTy0 = 0.41 and αOψ = 0.38 with relative fitting error
of about 10%.
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Figure 4.15: The difference in canonical free energy, at c1 = 8 and fixed
length LN/4 = 1.25, between the striped solution and the RN black hole.
The striped solution dominates immediately below the critical temperature,
signalling a second order phase transition.

canonical ensemble, we solved for one-parameter families of solutions at
fixed Lµ, labelled by the dimensionless temperature T/µ. Equivalently, in
the (Lµ, T/µ) plane, we solve along the line of fixed Lµ. Translated to the
situation in which we measure quantities in terms of the charge density N ,
these solutions become one-parameter families of solutions with varying LN ,
or a curve in the (LN, T/N) plane with LN a function of T/N . By varying
the length Lµ (or solving with µ = 1 and varying L), we can find a collection
of solutions that intersect the desired fixed LN line. By interpolating these
solutions and evaluating the interpolants at fixed LN , we can study the
stripes in the canonical ensemble.

In this ensemble we find a similar second order transition, in which the
inhomogeneous solution dominates the thermodynamics below the critical
temperature (Figure 4.15). The scaling of the free energy below the critical
temperature is nearly quadratic in |T − Tc|, a mean field theory exponent
as is common in large N models.

The microcanonical ensemble

The microcanonical ensemble describes an isolated system in which all con-
served charges (in this case the mass and the charge) are fixed. This ensem-
ble describes the physical situation relevant to the study of the real time
dynamics of an isolated black brane at fixed length. In this case, the state
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Figure 4.16: The entropy of the inhomogeneous solution for c1 = 8 (points
with dotted line) and of the RN solution (solid line). Below the critical
temperature, the striped solution has higher entropy than the RN. The RN
branch terminates at the extremal RN black hole, while the striped solution
persists to smaller energies.

that maximizes entropy is the dominant solution. As shown in Figure 4.16,
we find that the entropy of our inhomogeneous solutions is always greater
than that of the RN black hole of the same mass. Furthermore, the mass
of the inhomogeneous solutions is always smaller than that of the critical
RN black hole. Therefore, at fixed LN , the unstable RN black holes below
critical temperature are expected to decay smoothly to our inhomogeneous
solution.

Fixing the tension

Alternatively, one could attempt to compare solutions with different values
of L. The meaningful comparison is in an ensemble fixing the tension τx. For
example, one could compare the Legendre transformed grand free energy

G(T, µ, τx) = M − TS − µN − τxL (4.32)

where the additional terms comes from boundary terms in the action ren-
dering the new variational problem (fixing τx) well-defined. The candidate
saddle points are the solutions we find with various periodicities L, and their
relative importance in the thermodynamic limit is determined byG(T, µ, τx).
In particular the solution which is thermodynamically dominant depends on

94
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the value of τx we hold fixed. In this study we concentrate on the thermo-
dynamics in the fixed L ensemble and we leave the study of the fixed τx
ensemble to future work.

4.5 Thermodynamics for the infinite system

In this section we lift the assumption of the finite extent of the system in
the x-direction and consider the thermodynamics of the formation of the
stripes below the critical temperature. For the infinite system we can define
densities of thermodynamic quantities along x:

m =
M

L
, s =

S

L
, n =

N

L
. (4.33)

In terms of these, the first law for the system becomes

dm = Tds+ µdn (4.34)

and the conformal identity is

3m = 2(Ts+ µn). (4.35)

In the infinite system, we compare stripes of different lengths, at fixed
T/µ, to each other and to the homogeneous solution. The solution that
dominates the thermodynamics is the one with the smallest free energy
density ω, where

ω = m− Ts− µn. (4.36)

This comparison is shown in Figure 4.17 for c1 = 8, where we see that the
free energy density of the stripes is negative relative to the RN black hole,
indicating that the striped phase is preferred at every temperature below the
critical temperature.11 Very close to the critical temperature, the dominant
stripe is that with the critical wavelength kc. As we lower the temperature,
the minimum of the free energy density traces out a curve in the (Lµ, T )
plane, and the dominant stripe width increases to Lµ/4 ≈ 2.

One can also study the observables of the system along this line of min-
imum free energy density. The results are qualitatively similar to those for
the fixed L system (Figure 4.14). In particular, the free energy density scales
as (ω − ωRN )/µ3 ∝ (1− T/Tc)2 near the critical point, indicating a second
order transition in the infinite system as well.

11In appendix B.2.4, we describe the generation of Figure 4.17.
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Figure 4.17: Action density for c1 = 8 system relative to the RN solution.
The red line denotes the approximate line of minimum free energy.
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Chapter 5

Towards a holographic model
of colour superconductivity1

5.1 Introduction

Background

Quantum chromodynamics is believed to display a rich phase structure at
finite temperature and chemical potential, with phase transitions associated
with deconfinement, nuclear matter condensation, the breaking of (approx-
imate) flavour symmetries (which are exact in generalizations with equal
quark masses and/or massless quarks), and the onset at high density of
quark matter phases displaying colour superconductivity (for reviews see
for example [31, 105–107]). However, apart from the regimes of asymptoti-
cally large temperature or chemical potential, a direct analytic study of the
thermodynamic properties of the theory is not possible.

Even using numerical simulations, only the physics at zero chemical po-
tential is currently accessible, since at finite µ the Euclidean action becomes
complex, and the resulting oscillatory path integral cannot reliably be sim-
ulated using standard Monte-Carlo techniques. Current proposals for the
phase diagram of QCD and related theories are largely based on qualitative
arguments and phenomenological models. While these provide a plausible
picture, it is possible that they miss important features of the physics. It
would certainly be satisfying to have examples of theories similar to QCD
in which the full phase diagram could be explored directly.

The holographic approach

A modern route to understanding properties of strongly coupled gauge
theories, that would be otherwise inaccessible, is via the AdS/CFT cor-
respondence, or gauge theory / gravity duality. This suggests that cer-
tain quantum field theories (usually called ‘holographic theories’), generally

1A version of this chapter has been published [4].
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with large-rank gauge groups, are equivalent to gravitational systems. By
this correspondence, calculations of physical observables in the field theory
are mapped to gravitational calculations; in many cases difficult strongly-
coupled quantum mechanical calculations in the field theory (such as those
required to understand the thermodynamic properties of QCD) are mapped
to relatively simple classical gravity calculations. Optimistically, it may
then be possible to find a theory qualitatively similar to QCD for which the
physics at arbitrary temperature and chemical potential can be understood
exactly via simple calculations in a dual gravitational system.

By now, there are well-known examples in gauge-theory / gravity duality
for which the field theory shares many of the qualitative features of QCD
(see, for example [13]). Further, many of these theories have been studied
at finite temperature and chemical potential, revealing phase transitions
associated with deconfinement, chiral symmetry breaking, meson melting,
and the condensation of nuclear matter. However, to date, most of the
theories that can be studied reliably using dual gravity calculations have
the restriction that the number of flavours is kept fixed in the large Nc

limit. In such theories, the physics at large chemical potentials is known to
be qualitatively different than in real QCD. For example, at asymptotically
large chemical potential, theories with large Nc and fixed Nf are believed
to exhibit an inhomogeneous ‘chiral density wave’ behaviour [68, 69], rather
than the homogenous quark matter phases predicted for finite Nc and Nf . In
order to find examples of holographic theories which most closely resemble
real QCD at finite chemical potential, one should therefore attempt to find
examples of calculable gravitational systems corresponding to theories with
finite Nf/Nc. This situation presents some technical challenges, as we now
review.

In the well-known examples of holographic gauge theories, the addition
of flavour fields in the field theory corresponds to adding D-branes on the
gravity side [62]. Quarks correspond to strings which have one endpoint on
these D-branes, while mesons correspond to the quantized modes of open
strings which begin and end on the branes. The configurations of these D-
branes in theories with finite Nf and large Nc are determined by finding
action-minimizing configurations of the branes on a fixed background geom-
etry. On the other hand, in order to have Nf of order Nc in a large Nc theory,
we need a large number of these flavour branes, and these will back-react
on the spacetime geometry itself. For Nf ∼ Nc, there are as many degrees
of freedom in the flavour fields as there are in the colour fields (gauge fields
and adjoints), so it is natural to expect that the back-reaction will be so
significant that in the final description the flavour branes themselves will be
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completely replaced by a modified geometry with fluxes (in the same way
that the branes whose low-energy excitations give rise to the adjoint degrees
of freedom do not appear explicitly in the gravity dual description of the
field theory).

There has been significant progress in understanding the back-reaction
of flavour branes, with some fully-back reacted analytic solutions available
(for a review see [108]), but so far, there has not been enough progress to
fully explore the phase structure of a QCD-like theory with finite Nf/Nc.
In particular, as far as we are aware, colour superconductivity phases have
not been identified previously in holographic field theories.2

Quark matter from the bottom up

In this chapter, we aim to come up with a holographic system describing a
confining gauge theory that does exhibit a quark-matter phase with colour
superconductivity at large chemical potential. However, motivated by recent
condensed matter applications of gauge/gravity duality (see, for example [18,
21, 44, 45, 64, 84]), we will avoid many of the technical challenges described
above by taking what is known as a ‘bottom up’ approach. Rather than
working in a specific string theoretical model which takes into account the
back-reaction of flavour branes, we will make an ansatz for the ingredients
necessary for such a model to describe the relevant physics. We study the
simplest possible gravitational theory with this minimal set of features, with
the hope that it captures the qualitative physics of interest. We will indeed
find that even this simple theory exhibits many of the expected features.

Ingredients

We wish to construct a gravitational theory to provide a holographic de-
scription of a four-dimensional confining gauge theory on Minkowski space
with Nf ∼ Nc flavours. On the gravity side, the Minkowski space will ap-
pear as the fixed boundary geometry of our spacetime, but we must have
at least one extra dimension corresponding to the energy scale in the field
theory. Since the field theory has a scale (the QCD or confinement scale),
the asymptotic behaviour of the solution must exhibit an additional scale
relative to the asymptotically AdS geometries that appear in gravity duals
of conformal field theories. In the simplest examples of gravity duals for
confining gauge theories, this scale is provided by the size of an additional

2However, see [109] for a possible manifestation of the related colour-flavour locking
phase in a holographic system.
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circular direction in the geometry.3 Thus, we will work with a gravitational
system in six dimensions whose boundary geometry is R3,1 × S1. We will
assume that the asymptotic geometry is locally Anti-de-Sitter space, so the
confining gauge theory we consider arises from a five-dimensional conformal
field theory compactified on a circle. When we study the theory at finite
temperature, there will be an additional circle in the asymptotic (Euclidean)
geometry, the Euclidean time direction whose period is 1/T .

The gauge theories we are interested in have at least one other con-
served current, corresponding to baryon (or quark) number. By the usual
AdS/CFT dictionary, this operator corresponds on the gravity side to a U(1)
gauge field in the bulk. The asymptotic value of the time component for
this gauge field corresponds to the chemical potential in our theory, while
the asymptotic value of the radial electric flux corresponds to the baryon
charge density in the field theory. For a given chemical potential, the min-
imum action solution will have some specific value for the flux, allowing us
to relate density and chemical potential.

The colour superconductivity phases believed to exist at large density in
QCD and related theories are usually characterized by condensates of the
form 〈ψψ〉, bilinear in the quark fields ψ, which spontaneously break the
U(N) gauge symmetry, and the U(1)B global symmetry. Naively, we would
want to model such operators by a bulk charged scalar field corresponding to
the condensate. However, bulk fields always correspond to gauge-invariant
operators, while by definition the ψψ bilinears which break the gauge sym-
metry are not gauge-invariant (in fact, there is no way to make a singlet
from two fundamental fields, except in the case of SU(2)). Additionally, the
simplest gauge-invariant operators charged under U(1)B involve N ψ fields
and have dimension of order N , thus our holographic dual theory should
have no light scalar fields charged under the U(1)B gauge field.

The correct way to understand the condensation of the ψψ bilinears is
as an example of spontaneously broken gauge symmetry (as in the Higgs
mechanism), rather than as a phase transition characterized by some gauge-
invariant order parameter. Nevertheless, the transition to colour supercon-
ductivity can be characterized by the discontinuous behaviour of gauge-
invariant operators, which are of the form ψψ(ψψ)†. Such operators are
gauge invariant and neutral under the U(1)B, and therefore should corre-
spond to an uncharged scalar field in the bulk with dimension of order 1.4

3There are other possibilities here, as we mention briefly in the discussion section.
4As emphasized by Andreas Karch, a gauge invariant operator of the form O4 =

ψψ(ψψ)† can be written as a sum of terms OαOα where each Oα ∼ (ψ†ψ)α is gauge
invariant (and α represents flavour/Lorentz indices). Thus, O4 is something like a double-
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Combining everything so far, we want to study gravity in six dimensions
with negative cosmological constant and boundary geometry R3,1×S1 with
a U(1) gauge field and a neutral scalar field. The simplest action for this
system is5

∫
d6x
√−g

{
R+

20

L2
− 1

4
F 2 − |∂µψ|2 −m2|ψ|2

}
, (5.1)

where we include one tunable parameter, the mass m of the scalar field,
which determines the dimension of the corresponding operator in the dual
field theory. More generally, we could consider other potentials for the scalar
field, or a more complicated action (e.g. with a Chern-Simons term or of
Born-Infeld type) for the gauge field, but we restrict here to this simplest
possible model.6

Results

Starting with the model (5.1), we have explored the phase structure by min-
imizing the gravitational action for specific values of temperature (corre-
sponding to the asymptotic size of the Euclidean S1 direction) and chemical
potential (corresponding to the asymptotic value of A0). Our results for the
phase diagrams are shown in Figures 5.1, 5.2, and 5.3. For small µ, we find a
confined phase at low-temperature and a deconfined phase at high temper-
ature, with the scalar field uncondensed in each case. However, increasing
µ at zero temperature, we find (setting LAdS = 1) for −25

4 ≤ m2 ≤ −5 a
transition to a phase with nonzero scalar condensate (on a geometry with
horizon) and finite homogeneous quark density, as expected for a colour
superconductivity phase. Increasing the temperature from zero, we find a
transition back to the deconfined phase at a remarkably low temperature; for
example, at m2 = −6, the critical temperature at which superconductivity
disappears is

T/µ ∼ .00006333 . (5.2)

trace operator. In a large N theory, factorization of correlators implies that the expecta-
tion value of O4 can be calculated classically from the Oα expectation values (up to 1/N
corrections). Thus, discontinuous behaviour of O4 should be directly related to discontin-
uous behaviour in the simpler gauge-invariant operators Oα (which also have no baryon
charge), so it may be more appropriate to think of the scalar field in our model as being
dual to one of these simpler operators.

5Since we will also consider the case of a charged scalar field, we have written the action
using standard normalizations for a complex scalar, but we will take the scalar to be real
in the uncharged case.

6For another approach to modeling the QCD phase diagram by an effective holographic
approach, see for example [59, 110].
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Figure 5.1: Phase diagram of our model gauge theory with m2 = −6,
R = 2/5. Region in dashed box is expanded in next figure.

The tendency for the scalar field to condense at low temperatures for the
range of masses above can be understood in a simple way, as explained for
example in [11, 111]. In d+ 1 dimensional anti-de Sitter space with anti-de
Sitter radius L, the minimum mass for a scalar field to avoid instability is
m2
BF = −d2/(4L2). The minimum action solution for large chemical poten-

tial in the absence of any scalar field is a planar Reissner-Nordstrom black
hole solution with one of the isometry directions periodically identified. In
the limit of zero temperature, the near horizon region of this black hole has
geometry AdS2 × R4, with the radius of the AdS2 equal to L2 = L/

√
20.

Thus, in the near-horizon region, there will be an instability toward conden-
sation of the scalar field if m2 < −1/(4L2

2) = −5/L2. We thus have a range
(setting L = 1) of −25/4 ≤ m2 ≤ −5 for which the scalar field tends to
condense in the near-horizon region but is stable in the asymptotic region.
Numerical simulations verify that we indeed have scalar field condensation
for precisely this range of masses.

While there is no guarantee that the gravitational system we study has a
legitimate field theory dual, ‘top-down’ gravitational systems corresponding
to fully consistent field theories must have the same basic elements (usually
with additional fields and a more complicated Lagrangian). The fact that
the expected physics emerges even in our stripped-down version suggests
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Figure 5.2: Phase diagram of our model gauge theory with m2 = −6,
R = 2/5. Region in dashed box is expanded in next figure.
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Figure 5.3: Phase diagram of our model gauge theory with m2 = −6,
R = 2/5. The dashed curve represents the phase boundary in theory without
a scalar field.
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that quark-matter phases will be found also in the complete models, once
back-reaction effects are under control. Optimistically, qualitative features
that we find in the bottom-up model (such as the extremely low transi-
tion temperature between superconducting and deconfined phases) may be
present also in more complete holographic theories. In this case, our simple
model may provide novel qualitative insights into fully consistent QCD-like
theories.

Charged scalar

While less relevant to colour superconductivity, it is also interesting to ex-
plore the physics of our model when we make the scalar field charged under
the gauge field. In this case, the scalar field corresponds to a gauge-invariant
operator in the field theory that is charged under the U(1) associated with
A, and the kinetic term for the scalar field is modified in the usual way as
∂µψ → ∂µψ − iqAµψ. As we have argued above, this symmetry cannot be
U(1)B, but could be another flavour symmetry, such as isospin in a model
with two or more flavours. The flavour superconductivity associated with
meson condensation was studied previously in the holographic context (with
finite Nf ), for example in [43, 112, 113]. Our results are qualitatively similar
to the ones obtained in those studies, and we leave more detailed comparison
for future work.

In section 5.5 below, we determine the phase diagram for various values
of q and m. The same system was studied for the 2 + 1 dimensional case
in [58] and originally in [67] for the case of large q. The application there
was to holographic insulator/superconductor systems, but the intriguing
resemblance of the phase diagrams in those papers to QCD phase diagrams
partially motivated the present study.

5.2 Basic setup

In this chapter, we consider holographic field theories with a conserved cur-
rent Jµ, assumed to be a baryon current (or isospin current when we consider
charged scalar fields) and some gauge-invariant operator O whose condensa-
tion indicates the onset of (colour or flavour) superconductivity. We would
like to explore the phase structure of the theory for finite temperature T and
chemical potential µ; that is, we would like to find the phase that minimizes
the Gibbs free energy density g = e − Ts − µρ, where e, s, and ρ are the
energy density, entropy density, and charge density in the field theory. We
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5.2. Basic setup

can also ask about the values of e, s, ρ, and 〈O〉 as a function of temperature
and chemical potential.

As discussed in the introduction, our holographic theories are defined by
a dual gravitational background which involves a metric, U(1) gauge field,
and scalar field, with a simple action

∫
d6x
√−g

{
R+

20

L2
− 1

4
F 2 − |∂µψ|2 −m2|ψ|2

}
. (5.3)

We choose coordinates (t, x, y, z) for the non-compact field theory directions,
w for the compact field theory direction, and r for the radial direction. We
take boundary conditions for which the asymptotic (large r) behaviour of
the metric is

ds2 →
( r
L

)2 (
−dt2 + dx2 + dy2 + dz2 + dw2

)
+

(
L

r

)2

dr2 , (5.4)

where w is taken to be periodic with period R. To study the theory at finite
temperature, we take the period of τ = it in the Euclidean solution to be
1/T .

The equations of motion constrain the gauge field to behave asymptoti-
cally as

Aν = aν −
jν
3r3

+ . . . . (5.5)

Since Aν is assumed to be the field corresponding to the conserved baryon
current operator Jν , in the field theory, the usual AdS/CFT dictionary
tells us that aν is interpreted as the coefficient of the Jν in the Lagrangian
(i.e. an external source for the baryon current) while jµ is interpreted as
the expectation value of baryon current for the state corresponding to the
particular solution we are looking at. To study the theory at finite chemical
potential µ without any external source for the spatial components of the
baryon current, we want to take

aν = (µ, 0, 0, 0) . (5.6)

The scalar field equations of motion imply that asymptotically

ψ =
ψ1

rλ−
+

ψ2

rλ+
+ · · · , (5.7)

where

λ∓ =
1

2
(d∓

√
d2 + 4m2) . (5.8)
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The holographic field theories we consider are defined by assuming ψ1 = 0.
In this case, λ+ gives the dimension of the operator dual to ψ.7 In this case,
ψ2 (which will be different for solutions corresponding to different states of
the field theory) gives us the expectation value of the operator O in the field
theory.

By the AdS/CFT correspondence, the field theory free energy corre-
sponds to the Euclidean action of the solution. Thus, to investigate the
field theory state which minimizes free-energy for given T and µ, we need to
find the gravitational solution with boundary conditions given above which
minimizes the Euclidean action. Note that we only consider solutions with
translation invariance in t, x, y, z, and w. It would be interesting to investi-
gate the possibility of inhomogeneous phases (or at least the stability of our
solutions to inhomogeneous perturbations) but we leave this as a question
for future work.

Calculating the action

In order to obtain finite results when calculating the gravitational action for
a solution, it is important to include boundary contributions to the action.
In terms of the Lorentzian metric, gauge field and scalar, the fully regulated
expression that we require is [64]

S = lim
rM→∞

[
−
∫

r<rM

dd+1x
√−g

{
R+

d(d− 1)

L2
− 1

4
F 2 − |Dµψ|2 −m2|ψ|2

}

+

∫

r=rM

ddx
√−γ

{
−2K +

2(d− 1)

L
− 1

L
λ−|ψ|2

}]
, (5.9)

where

λ− =
d

2
− 1

2

√
d2 + 4m2 . (5.10)

Here, γ is the metric induced on the boundary surface r = rM , and K is
defined as

K = γµν∇µnν , (5.11)

where nµ is the outward unit normal vector at r = rM . The scalar countert-
erm here is the appropriate one assuming that our boundary condition is to

7For a certain range scalar field masses in the range −d2/4 ≤ m2 ≤ −d2/4 + 1, it is
also consistent to define a theory by fixing ψ2 = 0. In this case, the dimension of the dual
operator is λ−. We consider this case briefly in section 4.2.
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fix the coefficient of the leading term in the large r expansion of ψ. Since
we are setting this term to zero, it turns out that the counterterm vanishes
in the rM →∞ limit.

For all cases we consider, the metric takes the form

ds2 =
r2

L2
dx2

i + g00(r)dt2 + grr(r)dr
2 + gww(r)dw2 . (5.12)

Assuming the Einstein equations are satisfied, we can show (by subtracting
a term proportional to the xx component of the equation of motion) that
the integrand in the first term may be written as a total derivative with
respect to r

−√−g
{
R+

d(d− 1)

L2
− 1

4
F 2 − |Dµψ|2 −m2|ψ|2

}
= ∂r

(
2

rgrr

√−g
)
.

(5.13)

Using

nµ = (0, . . . , 0,
√
grr) , (5.14)

we have

K = γµν∇µnν
= γµν

{
−Γrµνnr

}

= γµν
{

1

2
grr

∂gµν
∂r

√
grr

}

=
1

2
√
grr

γµν
∂γµν
∂r

=
1√
grr

∂ ln(
√−γ)

∂r
(5.15)

so that

√−γ(−2K) = − 2√
grr

∂
√−γ
∂r

. (5.16)

Our final expression for the action density is

S/Vd =
2

rgrr

√−g
∣∣∣∣
rM

r0

+

{
− 2√

grr

∂
√−γ
∂r

+
2(d− 1)

L

√−γ
}

r=rM

. (5.17)
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Action in terms of asymptotic fields

It is convenient to rewrite the expression (5.17), in terms of the asymptotic
expansion of the fields. For the ansatz (5.12), and the boundary conditions
appropriate to our case, we find

gtt = −r2 +
g

(3)
tt

r3
+ . . . ,

grr =
1

r2
+
g

(7)
rr

r7
+ . . . ,

gww = r2 +
g

(3)
ww

r3
+ . . . ,

ψ =
ψ(3)

r3
+ . . . ,

φ = µ− ρ

3r3
+ . . . . (5.18)

Inserting these expansions into our expression above for the action we find
that (assuming the term at r = r0 vanishes)

S = 5g(3)
ww + 4g(7)

rr − 5g
(3)
tt . (5.19)

However, using the equations of motion, we find that g
(3)
ww + g

(7)
rr − g(3)

tt = 0,
so we can simplify to:

S = −g(7)
rr . (5.20)

Numerically, it can be a bit tricky to read off g
(7)
rr because there is also a

1/r8 term in the expansion of grr. But using the equations of motion, we
can find

g(8)
rr =

3

4
(7 +m2)(ψ(3))2 . (5.21)

From this, it follows that the combination

−r7grr(r) + r5 − 3

4
(7 +m2)r5ψ2(r) (5.22)

behaves like

−g(7)
rr +O(1/r3) . (5.23)

So, we can numerically evaluate the action by taking

S ≈ −r7
∗grr(r∗) + r5

∗ −
3

4
(7 +m2)r5

∗ψ
2(r∗) , (5.24)

where r∗ is taken to be large but not too close to the cutoff value.
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5.3 Review: ψ = 0 solutions

We begin by considering the solutions for which the scalar field is set to
zero.

5.3.1 AdS soliton solution

At zero temperature and chemical potential, the simplest solution with our
boundary conditions is pure AdS with periodically identified w. However,
assuming antiperiodic boundary conditions for any fermions around the w
circle, there is another solution with lower action. This is the AdS soliton
[114], described by the metric (setting L = 1)

ds2 = r2
(
−dt2 + dx2 + dy2 + dz2 + f(r) dw2

)
+

dr2

r2f(r)
, (5.25)

where

f(r) = 1− r5
0

r5
. (5.26)

As long as we choose the period 2πR for w such that

r0 =
2

5R
(5.27)

the solution smoothly caps off at r = r0. This IR end of the spacetime
corresponds in the field theory to the fact that we have a confined phase
with a mass gap. The fluctuation spectrum about this solution corresponds
to a discrete spectrum of glueball states in the field theory.

Starting from this solution, we can obtain a solution valid for any tem-
perature and chemical potential, by periodically identifying the Euclidean
time direction and setting A0 = µ everywhere. Using (5.20) we find that
the action for this solution is

Ssol = −r5
0 = −

(
2

5R

)5

. (5.28)

The negative value indicates that this solution is preferred over the pure
AdS solution with action zero.

5.3.2 Reissner-Nordstrom black hole solution

For sufficiently large temperature and/or chemical potential, the AdS soliton
is no longer the ψ = 0 solution with minimum action. The preferred solution
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is the planar Reissner-Nordstrom black hole, with metric

ds2 = r2
(
−dt2f(r) + dx2 + dy2 + dz2 + dw2

)
+

dr2

r2f(r)
, (5.29)

where

f(r) = 1−
(

1 +
3µ2

8r2
+

)
r5

+

r5
+

3µ2r6
+

8r8
, (5.30)

the scalar potential is

φ(r) = µ

(
1− r3

+

r3

)
, (5.31)

and w is periodically identified as before.
This solution has a horizon at r = r+. The temperature of the solu-

tion (determined as the inverse period of the Euclidean time for which the
Euclidean solution is smooth) is given in terms of r+ by

T =
1

4π

(
5r+ −

9µ2

8r+

)
. (5.32)

From (5.20), we find that the action for this solution is

SRN = −r5
+

(
1 +

3

8

µ2

r2
+

)
. (5.33)

Thus, we find that the black hole solution has lower action than the soliton
for

r+

(
1 +

3

8

µ2

r2
+

) 1
5

>
2

5R
, (5.34)

where r+ is determined in terms of T and µ by (5.32). This defines a curve
in the T −µ plane that begins on the µ = 0 axis at T = 1/(2πR) and curves
down to the T = 0 axis at µ = 219/10/(51/234/5R) ≈ 4.3547/(2πR), as shown
in Figure 5.4.

As usual, the existence of a horizon in this solution indicates that the
corresponding field theory state is in a deconfined phase [32].

In the next sections, we consider solutions with nonzero scalar field.
We will find that for large µ there exist solutions with nonzero scalar field
that have lower action than the solutions we have considered, so the phase
diagram of Figure 5.4 will be modified.
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Figure 5.4: Phase diagram without scalar field, in units where R = 2/5.

5.4 Neutral scalar field: Colour
superconductivity

In the case of a neutral scalar field, our simple model has no explicit source
for the gauge field in the bulk, so homogeneous solutions with a non-trivial
static electric field (corresponding to a non-zero baryon number density in
the field theory) necessarily have a horizon from which the flux can emerge8.

To look for solutions of this form, we consider the ansatz9

ds2 = −g(r)e−χ(r)dt2 +
dr2

g(r)
+ r2(dw2 + dx2 + dy2 + dz2) ,

At = φ(r) ,
ψ = ψ(r) . (5.35)

8In a more complete model, the source might be provided by some non-perturbative
degrees of freedom in the theory, such as the wrapped D-branes that give rise to baryons
in the Sakai-Sugimoto model.

9We could have considered a more complicated ansatz, with an extra undetermined
function in front of dw2. However, it is plausible that as for the ψ = 0 solution, the
minimum action solution for the case where the w circle does not contract in the bulk is
a periodic identification of the solution with non compact w and rotational invariance in
the x, y, z, w directions.
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5.4. Neutral scalar field: Colour superconductivity

The scalar and Maxwell’s equations that follow from the action (5.3) are

ψ′′ +

(
4

r
− χ′

2
+
g′

g

)
ψ′ − m2

g
ψ = 0 , (5.36)

φ′′ +

(
4

r
+
χ′

2

)
φ′ = 0 , (5.37)

while the Einstein equations are satisfied if

χ′ +
rψ′2

2
= 0 , (5.38)

g′ +

(
3

r
− χ′

2

)
g +

reχφ′2

8
+
m2rψ2

4
− 5r = 0 . (5.39)

These have two symmetries:

ψ̃(r) = ψ(ar) , φ̃(r) =
1

a
φ(ar) , χ̃(r) = χ(ar) , g̃(r) =

1

a2
g(ar) ,

(5.40)
arising from the underlying conformal invariance, and

χ̃ = χ+ ∆ , φ̃ = e−
∆
2 φ . (5.41)

We would like to find solutions with a horizon at some r = r+. The
electric potential must also vanish at the horizon, and we are looking for
solutions for which the leading falloff ψ1 in (5.7) vanishes for the scalar.
Also, multiplying the first equation (5.36) by g and evaluating at r = r+ fixes
ψ′(r+) in terms of ψ(r+) and g′(r+). Altogether, our boundary conditions
are

g(r+) = 0 , φ(r+) = 0 , χ(∞) = 0 , ψ1 = 0 , (5.42)

and

ψ′(r+) =
8m2ψ(r+)

40r+ − 2m2r2
+ψ

2(r+)− r+eχ(r+)(φ′(r+))2
. (5.43)

The remaining freedom to choose r+ and φ′(r+) leads to a family of solutions
with different T and µ. Explicitly, we have

µ = φ(∞) , T =
1

4π
g′(r+)e−χ(r+)/2 . (5.44)

Note that solutions with the same T/µ are simply related by the scaling
symmetry (5.40).
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5.4.1 Numerical evaluation of solutions

To find solutions in practice, we can make use of the symmetries (5.40) to
initially set r+ = 1 and χ(0) = 0 and solve the equations with boundary
conditions

g(1) = 0 , χ(0) = 0 , φ(1) = 0 , φ′(1) = E0 , ψ(1) = ψ0 , (5.45)

and

ψ′(1) =
8m2ψ0

40− 2m2ψ2
0 − E2

0

. (5.46)

We can integrate the φ and χ equations explicitly to obtain

χ(r) = −
∫ r

0
dr̃

1

2
r̃

(
∂ψ

∂r

)2

,

φ(r) = E0

∫ r

1

dr̃

r̃4
e−

1
2
χ(r̃) , (5.47)

leaving the remaining equations

ψ′′ + (
4

r
+
rψ′2

4
+
g′

g
)ψ′ − m2

g
ψ = 0 ,

g′ +
3g

r
+
gr

4
ψ′2 +

E2
0

8r7
+
m2rψ2

4
− 5r = 0 . (5.48)

We use E0 as a shooting parameter to enforce ψ1 = 0, and find one
solution for each ψ0. From these solutions, we apply the symmetry (5.41)
with ∆ = −χ(∞) to restore χ(∞) = 0 and finally use the symmetry (5.40)
to scale to the desired temperature or chemical potential.

Using this method, we find that solutions exist for scalar mass in the
range −25/4 ≤ m2 ≤ 5, which is exactly the range of masses for which the
scalar is stable in the asymptotic region but unstable in the near-horizon
region.10 For a given m2 in this range, solutions exist in the region T/µ <
γ(m2), where γ(m2) is a dimensionless number depending on m2 (which we
evaluate in the next section). The value of γ(m2) is remarkably small for
all m2 in the allowed range. For example, with m2 = −6 (not particularly
close to the limiting value m2 = −5), we have γ ≈ .00006333. It would
be interesting to understand better how this small dimensionless number
emerges since the setup has no small parameters. From the bulk point of

10Solutions of this form were first found in lower dimensions in [11]. The zero-
temperature limit of such solutions were considered in [47].
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view it is presumably related to the warping between IR and UV regions of
the geometry.11 From the boundary viewpoint, the low critical temperature
may be explained by the BKL scaling [111, 115, 116] near a quantum critical
point.

For a given T and µ, we can use (5.20) to evaluate the action for the
solution and compare this with the action for the soliton and/or Reissner-
Nordstrom solution with the same T and µ. We find that the action for
the new solutions is always less than the action for the Reissner-Nordstrom
solutions, and is also less than the action for the soliton solutions for chem-
ical potential in a region µ > µc(T ). Thus, the solutions with scalar field
represent the equilibrium phase in the region T/µ < γ, µ > µc(T ), as shown
in Figures 5.1 – 5.3 above.

The transition between the deconfined and superconducting phases is
second order, while the transition between confined and superconducting
phases is first order. The place where these phase boundaries meet repre-
sents a triple point for the phase diagram where the three phases (confined,
deconfined, superconducting) can coexist.

5.4.2 Critical temperature

For fixed m2, the value of ψ(0) in the solutions increases from zero at T/µ =
γ, diverging as T/µ → 0. Since ψ is small everywhere near T/µ = γ, the
critical value of T/µ will be the value where the ψ equation, linearized
around the Reissner-Nordstrom background, has a solution with the correct
boundary conditions. Thus, we consider the equation

ψ′′ + (
4

r
+
g′

g
)ψ′ − m2

g
ψ = 0 , (5.49)

where (setting r+ = 1)

g(r) = r2 −
(

1 +
3µ2

8

)
1

r3
+

3µ2

8r6
, (5.50)

and find the value µ = µc for which the equation admits a solution with
boundary conditions ψ(1) = 1 (we are free to choose this), ψ′(1) = m2/g′(1)
and the right falloff (ψ1 = 0) at infinity.12

11By considering the alternate quantization mentioned in section 2 and fine-tuning the
mass so that the dual operator has the smallest possible dimension consistent with uni-
tarity in the dual field theory, we can obtain γ as large as 0.0151, so even under the most
favorable circumstances, the critical T/µ is quite small.

12To obtain a very accurate result, we first find a series solution ψlow near r = 1 with
ψ(1) = 1 (we are free to choose this) and ψ′(1) = m2/g′(1) and find a series solution ψhigh
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Figure 5.5: Critical T/µ vs m2 of neutral scalar (filled circles). Mass
is above BF bound asymptotically but below BF bound in near-horizon
region of zero-temperature background solution in the range −6.25 ≤ m2 <
−5. Unfilled circles represent critical values in the theory with alternate
quantization of the scalar field, possible in the range −6.25 ≤ m2 < −5.25.

The choice r+ = 1 implies that T = (5 − 9µ2/8)/(4π), so we have
γ = (5 − 9µ2

c/8)/(4πµc). The results for γ(m2) are plotted in Figure 5.5.
For comparison, we also considered the theory defined with the alternate
quantization (ψ∞2 = 0) of the bulk scalar field (mentioned in section 2). As
we see in Figure 5.5, the critical temperatures are somewhat larger in this
case, but still much smaller than 1 relative to µ.

5.4.3 Properties of the superconducting phase

In the superconducting phase, it is interesting to ask how the charge den-
sity and free energy behave as a function of chemical potential. Since the
solutions (as for the planar RN-black hole solutions) are trivially related to
solutions where the w direction is non-compact, and since the underlying
theory has a conformal symmetry, physical quantities in this phase (or in

for large r with the correct fall-off (ψ1 = 0) at infinity. Starting with ψlow and ψ′low at
some r = r1 where the low r series solution is still very accurate, we then numerically
integrate up to r = r2 where the large r series is very accurate and then find µ for which
ψ′num(r2)/ψnum(r2) = ψ′high/ψhigh.
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the RN phase) behave as µnF (T/µ) for some non-trivial function F and
a power n.13 At the critical value of T/µ, we have a second order transi-
tion from the RN phase to the phase with scalar, so the free energy and its
derivatives, and other physical quantities such as the density, are continuous
across the transition. Thus, the relevant function F in these cases will be
the same for the two phases across the transition. We find that the function
F for either the charge density or the free energy changes very little between
the very small value of T/µ where the the transition occurs and the T → 0
limit. Thus, to a good approximation, we find that the density and free
energy behave in the superconducting phase in the same way as for the zero
temperature limit of the RN phase. For R=2/5, we have

ρ ≈ 0.320µ4 , (5.51)

while

G ≈ −.064µ5 . (5.52)

In both cases, the behaviour at large µ is governed by the underlying 4+1
dimensional conformal field theory.

5.5 Charged scalar field: Flavour
superconductivity

In this section, we generalize our holographic model to the case where the
scalar field is charged under the gauge field in the bulk. As we discussed in
the introduction, this implies that the dual field theory includes some low-
dimension gauge-invariant operator with charge, so the charge in this case
is more naturally thought of as some isospin-type charge (since the smallest
gauge-invariant operators carrying baryon charge have dimensions of order
N).

A significant qualitative difference in this case is that a scalar field con-
densate acts as a source for the electric field in the bulk, so it is possible to
have solutions with no horizon carrying a finite charge density in the field
theory. This gives the possibility of a fourth phase in which the scalar field
condenses in the soliton background.

To obtain the action for the charged scalar case, we begin with the action
(5.3) and make the replacement ∂µψ → ∂µψ − iqAµψ. The results of the
previous section correspond to q = 0.

13If the solutions instead depended on the circle direction in a non-trivial way, we might
have a general function of RT and Rµ.
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5.5.1 Low-temperature horizon free solutions with scalar

Above some critical value of µ, there exist horizon-free geometries with a
scalar field condensate. The solutions may be parameterized by the magni-
tude of the scalar at the IR tip of the geometry, and we will find a single
solution for each such value. To determine these geometries, we need to take
into account back-reaction on the metric. The most general solution with
the desired properties can be described by the ansatz

ds2 = r2(eA(r)B(r)dw2 + dx2 + dy2 + dz2 − eC(r)dt2) +
dr2

r2B(r)
,

At = φ(r) ,
ψ = ψ(r) , (5.53)

where we demand A(∞) = C(∞) = 0 and B(∞) = 1. As for the soliton
geometry, we expect that the w circle is contractible in the bulk so that
B(r0) = 0 for some r0. For the geometry to be smooth at this point, the
periodicity of the w direction must be chosen so that

2πR =
4πe−A(r0)/2

r2
0B
′(r0)

. (5.54)

Starting from the action (5.3) with scalar derivatives replaced by covari-
ant derivatives, the scalar and Maxwell equations are:

ψ′′ +

(
6

r
+
A′

2
+
B′

B
+
C ′

2

)
ψ′ +

1

r2B

(
e−C(qφ)2

r2
−m2

)
ψ = 0 , (5.55)

φ′′ +

(
4

r
+
A′

2
+
B′

B
− C ′

2

)
φ′ − 2ψ2q2φ

r2B
= 0 . (5.56)

Following [58], we find that the Einstein equations give:

A′ =
2r2C ′′ + r2C ′2 + 4rC ′ + 4r2ψ′2 − 2e−Cφ′2

r(8 + rC ′)
, (5.57)

C ′′ +
1

2
C ′2 +

(
6

r
+
A′

2
+
B′

B

)
C ′ −

(
φ′2 +

2(qφ)2ψ2

r2B

)
e−C

r2
= 0 , (5.58)

B′
(

4

r
− C ′

2

)
+B

(
ψ′2 − 1

2
A′C ′ +

e−Cφ′2

2r2
+

20

r2

)

+
1

r2

(
e−C(qφ)2ψ2

r2
+m2ψ2 − 20

)
= 0 . (5.59)
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These equations have two scaling symmetries,

ψ̃(r) = ψ(ar) , φ̃(r) =
1

a
φ(ar) , Ã(r) = A(ar),

B̃(r) = B(ar) , C̃(r) = C(ar) , (5.60)

and
C̃ = C + ∆ , φ̃ = e

∆
2 φ . (5.61)

Numerical evaluation of solutions

To find solutions, we first use the scaling symmetries to fix r0 = 1 and
C(r0) = 0. For each value of ψ(1), we use φ(1) as a shooting parameter,
choosing the value so that ψ has the desired behaviour for large r. From
the solution obtained in this way, we can use (5.61) with ∆ = −C(∞) to
obtain the desired boundary condition C(∞) = 0 in the rescaled solution.
From (5.54), we see that the choice r0 = 1 corresponds to a periodicity for
the w direction equal to

2πR =
4πe−A(1)/2

B′(1)
. (5.62)

which will generally be different for solutions corresponding to different val-
ues of ψ(1). In order to obtain solutions corresponding to our chosen value
R = 2/5 (such that the action for the soliton solution is -1) we use the scal-
ing (5.60), taking a = B′(1)/5e−A(∞)/2. After all the scalings, we calculate
the chemical potential and action (making use of (5.20)) as

µ = φ(∞) , S = [B] 1
r5
. (5.63)

The action is plotted against chemical potential for various values of q
in Figures 5.6, 5.7, and 5.8 taking the example of a mass just above the BF
bound, m2 = −6.

We find that for large enough values of q, the chemical potential increases
monotonically and the action decreases monotonically as we increase ψ(r0).
This implies that we have a second order transition to the superconducting
phase at a critical value, which can be determined by a linearized analysis
(see appendix C.1) to be µ ≈ 1.0125/q.

Below q ≈ 1.35, the chemical potential is no longer monotonic in ψ(r0).
We see that for q = 1.3, this results in a second order phase transition at
µ ≈ 1.558, followed by a first order phase transition at µ ≈ 1.616 (taking
R = 2/5). For smaller q (e.g. q = 1.2 in Figure 5.8), we simply have a
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Figure 5.6: Action vs chemical potential for soliton with scalar solutions,
taking m2 = −6 and q = 2.
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Figure 5.7: Action vs chemical potential for soliton with scalar solutions,
taking m2 = −6 and q = 1.3.
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Figure 5.8: Action vs chemical potential for soliton with scalar solutions,
taking m2 = −6 and q = 1.2.

first order transition to the superconducting phase at a value of chemical
potential that is less than the value for the solution with infinitesimal scalar
field. All of these results are completely analogous to the lower-dimensional
results of [58].

5.5.2 Hairy black hole solutions

At high temperatures, the w circle is no longer contractible, and we assume
that (as for the solutions without scalar field) the solution can be obtained by
periodic identification of a solution with boundary R4,1 instead of R3,1×S1.
Thus, we take the ansatz

ds2 = −g(r)e−χ(r)dt2 +
dr2

g(r)
+ r2(dw2 + dx2 + dy2 + dz2) ,

At = φ(r) ,
ψ = ψ(r) .

The scalar and Maxwell’s equations are

ψ′′ +

(
4

r
− χ′

2
+
g′

g

)
ψ′ +

1

g

(
eχq2φ2

g
−m2

)
ψ = 0 , (5.64)
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φ′′ +

(
4

r
+
χ′

2

)
φ′ − 2q2ψ2

g
φ = 0 , (5.65)

while the Einstein equations are satisfied if

χ′ +
rψ′2

2
+
reχq2φ2ψ2

2g2
= 0 , (5.66)

g′ +

(
3

r
− χ′

2

)
g +

reχφ′2

8
+
m2rψ2

4
− 5r = 0 . (5.67)

These have two symmetries:

ψ̃(r) = ψ(ar) , φ̃(r) =
1

a
φ(ar) , χ̃(r) = χ(ar) , g̃(r) =

1

a2
g(ar) ,

(5.68)
and

χ̃ = χ+ ∆ , φ̃ = e−
∆
2 φ . (5.69)

As we did for q = 0, we would like to find solutions with a horizon at some
r = r+. The electric potential must also vanish at the horizon, and we are
looking for solutions for which the leading falloff ψ1 in (5.7) vanishes for the
scalar. Also, multiplying the first equation (5.64) by g and evaluating at
r = r+ fixes ψ′(r+) in terms of ψ(r+) and g′(r+). Altogether, our boundary
conditions are

g(r+) = 0 , φ(r+) = 0 , χ(∞) = 0 , ψ1 = 0 , (5.70)

and

ψ′(r+) =
8m2ψ(r+)

40r+ − 2m2r2
+ψ

2(r+)− r+eχ(r+)(φ′(r+))2
. (5.71)

The remaining freedom to choose r+ and φ′(r+) leads to a family of solutions
with different T and µ. Explicitly, we have

µ = φ(∞) , T =
1

4π
g′(r+)e−χ(r+)/2 . (5.72)

Solutions with the same T/µ are simply related by the scaling symmetry
(5.68).
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Numerical evaluation of solutions

To find solutions in practice, we can make use of the symmetries (5.68),
(5.69) to initially set r+ = 1 and χ(0) = 0 and solve the equations with
boundary conditions

g(1) = 0 , χ(0) = 0 , φ(1) = 0 , φ′(1) = E0 , ψ(1) = ψ0 , (5.73)

and

ψ′(1) =
8m2ψ0

40− 2m2ψ2
0 − E2

0

. (5.74)

We use E0 as a shooting parameter to enforce ψ1 = 0, and find one
solution for each ψ0. From these solutions, we apply the symmetry (5.69)
with ∆ = −χ(∞) to restore χ(∞) = 0 and finally use the symmetry (5.68)
to scale to the desired temperature or chemical potential.

5.5.3 Phase diagrams

At a generic point in the phase diagram, we can have up to four solutions
(AdS soliton, planar RN black hole, soliton with scalar, black hole with
scalar), or more in cases where there is more than one solution of a given
type.

To map out the phase diagram, we evaluate the action for the various
solutions using the methods of section 2. The equilibrium phase corresponds
to the solution with lowest action. The phase diagrams for q = 1.3 and q = 2
(in the case m2 = −6) are shown in Figures 5.9 and 5.10/5.11.

For large q, the condensation of the scalar field occurs in a region of the
phase diagram where the back-reaction is negligible, so the phase diagram
may be understood here (for µ ∼ 1/q) by treating the gauge field and scalar
on a fixed background (the Schwarzschild black hole). The resulting phase
diagram is shown in Figure 5.12.

5.6 Discussion

In this chapter, we have investigated the phase structure for a simple class
of holographic systems which we have argued have the minimal set of in-
gredients to holographically describe the phenomenon of colour supercon-
ductivity. Even in these simple models, we find a rich phase structure with
features similar to the conjectured behaviour of QCD at finite temperature

122



5.6. Discussion

0.0 0.5 1.0 1.5 2.0
Μ0.0

0.1

0.2

0.3

0.4

0.5
T

Figure 5.9: Phase diagram for m2 = −6 and q = 2. Clockwise from the
origin, the phases correspond to the AdS soliton (confined), RN black hole,
black hole with scalar, and soliton with scalar.
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Figure 5.10: Phase diagram for m2 = −6 and q = 1.3. Clockwise from the
origin, the phases correspond to the AdS soliton (confined), RN black hole,
black hole with scalar, and soliton with scalar.
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Figure 5.11: Small temperature region of phase diagram for m2 = −6 and
q = 1.3. Dashed line represents a first order transition within the soliton
with scalar phase.
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Figure 5.12: Phase diagram for large q, m2 = −6.
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and baryon chemical potential. It would be useful to verify the thermody-
namic stability (and also the stability towards gravitational perturbations)
of the phases that we have identified. This could indicate regions of the
phase diagram where we have not yet identified the true equilibrium phase
for the model, for example since our ansatz might be too symmetric.

We have calculated some of the basic thermodynamic observables, but
it would be interesting to investigate more fully the physical properties of
the various phases and establish more definitively a connection between the
phase we find at large µ and small temperature and the physics of colour
superconductivity.

Apart from the ψψψ†ψ† condensate that we can see directly using the
ingredients of our model, there are various other features that character-
ize a colour superconductivity phase [31]. Typically, the breaking of gauge
symmetry is accompanied by some breaking of exact or approximate flavour
symmetries. Thus, the superconducting phase has a low-energy spectrum
characterized by Goldstone bosons or pseudo-Goldstone bosons associated
with the broken flavour symmetries, together with massive vector bosons
associated with the spontaneously broken gauge symmetry. It would there-
fore be interesting to analyze the spectrum of fluctuations in our model to
compare with these expectations.

A caveat related to looking for features associated with the global flavour
symmetries (and their breaking) in our model is that we may not have
included enough ingredients in our bottom-up approach for all these features
to be present. In simple models where the flavour degrees of freedom are
associated with probe branes, there are explicit gauge fields in the bulk dual
to the global symmetry current operators. However, in fully back-reacted
solutions (appropriate for studying Nf ∼ Nc), these branes are replaced by
a modified geometry with additional fluxes (for an explicit example of such
solutions, see [117]). In these solutions (which we are trying to model in our
approach), it is less clear how to identify the global symmetry group from the
gravity solution, but presumably it has to do with some detailed properties
of the geometry. Thus, it is possible that the Goldstone modes associated
with broken flavour symmetries correspond to fluctuations in some fields
(e.g. form-fields) that we have not included.

The colour superconducting condensate also breaks the global baryon
number symmetry, so there should be an associated Goldstone boson related
to the phase of the condensate, and associated superfluidity phenomena.
In other holographic models with superfluidity, the condensate is dual to
a charged scalar field in the bulk and the Goldstone mode is related to
fluctuations in the phase of this field. However, as we mentioned in the
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introduction, the baryon operator has dimension of order N , so we do not
expect a light charged scalar field in the bulk. In a more complete top-down
model, the baryon operator may be related to some non-perturbative degrees
of freedom (such as D-branes) in the bulk, and it may be necessary to have
a model with these degrees of freedom included in order to directly see the
Goldstone mode from the bulk physics. Related to these observations, it
may be interesting to probe our model with D-branes (put in by hand), in
order to make the relation to microscopic physics more manifest, and to
help gain a better understanding of the phenomenological parameters of our
model.

There are a number of variants on the model that would be interesting
to study. First, the breaking of scale-invariance, implemented in our model
by the varying circle direction in the bulk, could be achieved in other ways,
replacing gww with a more general scalar field, as in the model of [59].
In the setup of that paper, the transition between confined and deconfined
phases was found to exhibit crossover behaviour at small chemical potential,
a feature expected in the real QCD phase diagram and expected generally
for massive quarks with sufficiently large Nf/Nc. It would be interesting to
look for an even more realistic holographic model by incorporating features
of the model we have studied here and the model of [59].

It would also be interesting to look at the effects of a Chern-Simons term
for the bulk gauge field. In [80] and [90], it was shown that such a term
(with sufficiently large coefficient) gives rise to an instability toward inho-
mogeneous phases, perhaps associated with the chiral density wave phase
believed to exist at large density in QCD with Nf � Nc [68, 69]. It is
interesting to investigate the interplay between these inhomogeneous insta-
bilities and the superconducting instabilities discussed in the present paper.
It would also be interesting to consider more general actions (such as Born-
Infeld) for the gauge field, interaction terms for the scalar field in the bulk,
or other couplings between the scalar field and gauge field.

Finally, once the technical challenges of writing down fully back-reacted
solutions for top-down models of holographic QCD with Nf ∼ Nc have
been overcome, it will be interesting to see whether the basic features we
find here are manifested in the more complete string-theoretic models. If
certain features are found to be universal, these might taken as qualitative
predictions for the QCD phase diagram, or at least motivate an effort to
understand whether these features are also present in the phase diagram of
real-world QCD.
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Chapter 6

Holographic baryons from
oblate instantons1

6.1 Introduction

Perhaps the most successful holographic model of QCD has been the Sakai-
Sugimoto model [13, 118], defined by the physics of Nf probe D8-branes in
the background dual to the decoupling limit ofNc D4-branes compactified on
a circle with antiperiodic boundary conditions for the fermions. This model
reproduces many features of real QCD, including chiral symmetry breaking,
a deconfinement transition [32, 41], and a realistic meson spectrum.

The description of baryons in the Sakai-Sugimoto model involves soli-
tonic configurations of the Yang-Mills field on the D8-brane.2 In a sim-
plified ansatz where the Yang-Mills field is taken to depend only on the
four non-compact spatial directions in the bulk, configurations with baryon
charge are precisely those configurations with non-zero instanton number
for this reduced 4D Yang-Mills field [13, 119–121]. This connection between
baryon charge and bulk instanton number stems from a Chern-Simons term
s tr (F ∧ F ) in the reduced D8-brane action. Here, tr (F ∧ F ) is the instan-
ton density for the SU(2) part of the Yang-Mills field, and s is the U(1)
part of the Yang-Mills field, dual to the baryon current operator in the field
theory.

To date, the study of baryons in the Sakai-Sugimoto model has been
somewhat unsatisfactory, for several reasons: I) While the action for the
gauge field is of Born-Infeld type, only the leading Yang-Mills terms are
typically used when studying the instantons. II) For large ’t Hooft coupling
where the model can be studied most reliably, the size of the instanton in
the bulk has been argued to be much smaller than the size of the compact
directions in the bulk. In this case, the assumption that the gauge field does
not depend on the compact directions is questionable. III) Rather than

1A version of this chapter has been published [5].
2Mesons correspond to pertubative excitations of the D8-branes.
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solving the bulk equations to determine the precise solitonic configuration
of the Yang-Mills field, the form has been taken to be that of a flat-space
SO(4) symmetric instanton, with the size of the instanton as the only free
parameter.

The assumptions in I) and II) here amount to replacing the original
top-down Sakai-Sugimoto model with a phenomenological (bottom-up) holo-
graphic model that retains many of the same successes as the Sakai-Sugimoto
model. For the present chapter, we continue to make these assumptions,
though we hope to relax them in future work in order to better understand
baryons in the fully-consistent top-down model. Our goal in the present
chapter is to overcome the third deficiency, by setting up and solving nu-
merically a set of partial differential equations that determine the proper
form of the soliton.3 Using these solutions, we are able to calculate the
mass and baryon charge distribution of the baryons as a function of the
model parameter γ (proportional to the inverse ’t Hooft coupling λ) that
controls the strength of the Chern-Simons term relative to the Yang-Mills
term.

One motivation for our study is the work of [125], which points out that
the flat-space instanton approximation used previously does not give the
correct large radius asymptotic behaviour (known from model-independent
constraints) for the baryon form factors (computed for example in [126–
128]). Via a perturbative expansion of the equations at large radius, it was
later shown [33] that by relaxing the assumption of SO(4) symmetry, the
proper asymptotic behaviour can be recovered.4 Thus, we expect that by
constructing and studying the complete solutions, we can obtain a signifi-
cantly improved picture of the properties of baryons in holographic QCD.

The solutions that we find take the form of ‘oblate instantons’: compared
with the SO(4) symmetric configurations, the correct solutions are deformed
to configurations with SO(3) symmetry that are spread out more in the field
theory directions than in the radial direction. This shape is expected. The
Coulomb repulsion between instanton charge density at different locations
(induced by the Chern-Simons coupling to the Abelian gauge field) acts
symmetrically in all directions, impelling the instanton to spread out both
in the radial and field theory directions. Gravitational forces in the bulk limit
the spreading in the radial direction, but there are no equivalent forces acting
to radially compress the instanton in the field theory directions. Thus, the

3[122–124] have used a similar numerical approach in other phenomenological holo-
graphic QCD models.

4In the earlier work [129], a similar expansion was used in a phenomenological holo-
graphic QCD model. See also [130] for a recent related study.
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instanton is oblate, compressed in one direction relative to the other three.
The anisotropy is limited by the Yang-Mills action for the SU(2) gauge field,
which in flat space is minimized (in the one-instanton sector) for spherically
symmetric configurations.

The size and anisotropy of the instantons is controlled by the parameter
γ (related to the inverse ’t Hooft coupling in the original model). For small γ,
the spreading effects of the Chern-Simons term are small, and the instantons
become small and approximately symmetrical near their core. For larger γ,
the instantons become significantly larger and more anisotropic. Using our
numerics, we are able to construct solutions up to γ of order 100 and evaluate
the mass and baryon charge profiles of the corresponding baryons.

While our model is not expected to quantitatively match real-world QCD
measurements, previous studies have found that the meson spectrum agrees
reasonably well with the spectrum in QCD for a suitable choice of the pa-
rameter γ. Thus, it is interesting to compare the mass and size of the
baryons in our model to the QCD values for the light nucleons. Using the
value γ = 2.55 that gives the best fit to the meson spectrum [127], we find
that the mass and baryon charge radius of the baryon are 1.19 GeV and
0.90 fm. This mass is significantly closer to realistic values (∼ 0.94 GeV
for the proton and neutron) than the previous value of 1.60 GeV based on
the SO(4) symmetric ansatz. The baryon charge radius is quite similar to
measured values for the size of the proton and neutron. For example, the
electric charge radius of a proton has been measured to be in the range 0.84
fm – 0.88 fm [131], while the magnetic radii of the proton and neutron are
listed in [131] as 0.78 fm and 0.86 fm respectively.

An outline for the remainder of the chapter is as follows: In section 6.2,
we briefly review the description of baryons in the Sakai-Sugimoto model and
set up the problem. In section 6.3, we describe our numerical approach to
the equations. In section 6.4, we describe physical properties of the solution,
focusing on the baryon mass and the distribution of baryon charge (charge
density as a function of radius), as a function of γ. Our main results may
be found in Figures 6.4 and 6.7. We conclude in section 6.5 with a brief
discussion of directions for future work.

Note: While this work was being completed, [132] appeared, which also
presents a numerical solution of the Sakai-Sugimoto NB = 1 soliton, using
different methods, and which has some overlap with this paper.
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6.2 Baryons as solitons in the Sakai-Sugimoto
model

In this section, we give a brief review of the Sakai-Sugimoto model and set
up the construction of a baryon in this model.

The Sakai-Sugimoto model consists of Nf probe D8 branes in the near
horizon geometry of Nc D4 branes wrapped on a circle with anti-periodic
boundary conditions for the fermions. The metric of the D4 background is
[32]

ds2 =
λ

3
l2s

(
4

9
u

3
2
(
ηµνdx

µdxν + f(u)dx2
4

)
+

1

u
3
2

(
du2

f(u)
+ u2dΩ2

4

))
,

eΦ =

(
λ

3

) 3
2 u

3
4

πNc
, f(u) = 1− 1

u3
, F4 = dC3 =

2πNc

V4
ε4, (6.1)

where ε4 is the volume form on S4 and V4 is the volume of the unit 4-sphere.
The direction x4, with radius 2π, corresponds to the direction on which
the D4-branes are compactified. The u and x4 directions form a cigar-type
geometry and the space pinches off at u = 1. The four dimensional SU(Nc)
gauge theory dual to this metric has a dimensionless coupling λ.

The flavor degrees of freedom are provided by Nf probe D8 branes in
the background (6.1). The action for a single D8 brane is

SD8 = −µ8

∫
d9σe−Φ

√
−det(gab + 2πα′Fab) + SCS , (6.2)

with µ8 = 1/(2π)8l9s and where SCS is the Chern-Simons term. Below, we
expand this action around a particular embedding and take the non-Abelian
generalization of the result to define the action we consider. We take the
probe branes to wrap the sphere directions and fill the 3 + 1 field theory
directions. Then, the embedding is described by a curve x4(u) in the cigar
geometry, with boundary conditions fixing the position of the probe branes
as u→∞.

In this chapter, we consider only the antipodal case, in which the ends of
the probe branes are held at opposite sides of the x4 circle. The minimum
energy configuration with these boundary conditions is that in which the
probe branes extend down the cigar at constant angle x4, meeting at u = 1.
Going to the radial coordinate z defined by u3 = 1 + z2, and expanding the
action (6.2) for small gauge fields around the antipodal embedding gives the
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model we consider [119]:

S = −κ
∫
d4xdz tr

[
1

2
h(z)F2

µν + k(z)F2
µz

]

+
Nc

24π2

∫

M5

tr

(
AF2 − i

2
A3F − 1

10
A5

)
, (6.3)

where κ = λNc/(216π3), h(z) = (1 + z2)−1/3 and k(z) = 1 + z2. A is a
U(Nf ) gauge field with field strength F = dA + iA ∧ A. In this paper, we
focus on the case Nf = 2. We split the gauge field into SU(2) and U(1)

parts as A = A+ 1
212Â.5

The competing forces that determine the size of the soliton are evident
in the effective action (6.3). First, the gravitational potential of the curved
background will work to localize the soliton near the tip of the cigar, at
z = 0. This will be counterbalanced by the repulsive potential due to the
coupling between the U(1) part of the gauge field and the instanton charge
in the Chern-Simons term. At large λ, the effect of the Chern-Simons term is
suppressed, and the result is a small instanton, which was previously approx-
imated by the flat-space SO(4) symmetric BPST instanton. As discussed in
[33], this approach fails to properly describe several aspects of the baryon.
Due to the curved background, the actual solution will only be invariant
under SO(3) rotations in the field theory directions. This distinction is es-
pecially important if we wish to use this model away from the strict large λ
limit, as in that case, the soliton can become large such that the effects of
the curved background are important for more than just the asymptotics of
the solution.

The most general field configuration invariant under combined SO(3)
rotations and SU(2) gauge transformations may be written as [133, 134]6

Aaj =
φ2 + 1

r2
εjakxk +

φ1

r3
[δjar

2 − xjxa] +Ar
xjxa
r2

,

Aaz = Az
xa

r
, Â0 = ŝ. (6.4)

where each of the fields are functions of the boundary radial coordinate
r2 = xaxa and the holographic radial coordinate z. The ranges of these
coordinates are 0 < r <∞ and −∞ < z <∞. With these definitions, there
is a residual gauge symmetry under which Aµ transforms as a U(1) gauge

5We define the SU(2) generators to satisfy [τa, τ b] = iεabcτ c.
6This ansatz has also been used in the study of holographic QCD in a phenomenological

model [122–124] and was applied to the Sakai-Sugimoto model in [33].
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field in the r−z plane and φ = φ1 + iφ2 transforms as a complex scalar field
with charge (−1), so that Dµφ = ∂µφ− iAµφ.

The free energy of the system is given by the Euclidean action evaluated
on the solution. Since we work at zero temperature and consider only static
solutions, the mass-energy equals the free energy, and we only pick up a
minus sign from the analytic continuation. Then, in terms of the above
ansatz, the mass of the system is written as

M = MYM +MCS , (6.5)

where
∫
dtM = −S,

MYM = 4πκ

∫
drdz

[
h(z)|Drφ|2 + k(z)|Dzφ|2 +

1

4
r2k(z)F 2

µν

+
1

2r2
h(z)(1− |φ|2)2 − 1

2
r2
(
h(z)(∂rŝ)

2 + k(z)(∂z ŝ)
2
)]

(6.6)

and

MCS = −2πκγ

∫
drdz ŝ εµν [∂µ(−iφ∗Dνφ+ h.c.) + Fµν ] , (6.7)

with γ = Nc/(16π2κ) = 27π/(2λ) and Fµν = ∂µAν−∂νAµ. For the classical
solution, γ is the only parameter in the system. It controls the relative
strength of the Chern-Simons term; a larger γ will increase the size of the
soliton.

The equations of motion that follow from extremizing the mass-energy
are given by

0 = Dr (h(z)Drφ) +Dz (k(z)Dzφ) +
h(z)

r2
φ(1− |φ|2) + iγεµν∂µŝDνφ,

0 = ∂r
(
r2k(z)Frz

)
− k(z) (iφ∗Dzφ+ h.c.)− γεrz∂rŝ(1− |φ|2),

0 = ∂z
(
r2k(z)Fzr

)
− h(z) (iφ∗Drφ+ h.c.)− γεzr∂z ŝ(1− |φ|2),

0 = ∂r
(
h(z)r2∂rŝ

)
+ ∂z

(
k(z)r2∂z ŝ

)
− γ

2
εµν [∂µ(−iφ∗Dνφ+ h.c) + Fµν ] .

(6.8)

The baryon number is given by the instanton number of the non-Abelian
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part of the gauge field,

NB =
1

8π2

∫
d4x trF ∧ F

=
1

4π

∫
drdz εµν [∂µ(−iφ∗Dνφ+ h.c.) + Fµν ]

=
1

4π

∫
drdz (∂rqr + ∂zqz), (6.9)

where F is the field strength of the SU(2) gauge field A and

qr = (−iφ∗Dzφ+ h.c.) + 2Az, qz = (iφ∗Drφ+ h.c.)− 2Ar. (6.10)

Since the expression is a total derivative, the boundary conditions on our
SU(2) gauge field will set the baryon charge. We study configurations with
NB = 1.

6.3 Numerical setup and boundary conditions

In this section we describe our setup, including our boundary conditions,
gauge fixing, and details about the numerical procedure we use.

6.3.1 Gauge fixing

There is a residual U(1) gauge freedom in the above ansatz, and we choose
to use the Lorentz gauge χ ≡ ∂µAµ = 0. Our gauge fixing is achieved by
adding a gauge fixing term to the equations of motion, analogous to the
Einstein-DeTurck method developed in [135]. Alternatively, one can view
this procedure as adding a gauge fixing term to the action, and working in
the Feynman gauge.

As a result one obtains modified equations of motion in which the prin-
cipal part of the equations is simply the standard elliptic operator ∂2

r + ∂2
z .

Once a solution is obtained, one has to make sure it is also a solution to the
original, unmodified equations, i.e that χ = 0. This has to be checked nu-
merically, but can be expected to be satisfied since χ is a harmonic function,
so with suitably chosen boundary conditions (for example such that χ = 0
on the boundaries of the integration domain) uniqueness of the solution to
the Laplace equation guarantees that χ = 0. For the solutions presented
here, the gauge condition is well satisfied as the L2 norm of χ, normalized
by the number of grid points N , satisfies |χ|/N < 10−5.
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6.3.2 Ansatz and boundary conditions

For small γ, the soliton solution is well localized near the origin (r, z) =
(0, 0). For small z, k(z) ∼ h(z) ∼ 1 and the SU(2) part of the action
reduces to that of the Witten model [133] for instantons. Then, in this
regime, we expect the solution to possess an approximate SO(4) symmetry,
and thus we find it convenient to use the spherical coordinates

R =
√
r2 + z2, θ = arctan(r/z) (6.11)

for our numerical calculation. The inverse transformation is r = R sin θ, z =
R cos θ. One can show that by restricting the ansatz (6.4) to SO(4) sym-
metry,7 the solution can be written in terms of two spherically symmetric
functions f(R) and g(R) as

φ1 = −rzf(R), φ2 = r2f(R)−1, Ar = −zf(R), Az = rf(R), ŝ = g(R).
(6.12)

In this parametrization, the BPST instanton is given by

f(R) =
2

ρ2 +R2
, g(R) = 0, (6.13)

where ρ determines the size of the energy distribution. The non-trivial
winding of the instanton is built into the expressions in (6.12) through the
appropriate factors of r and z and the factor of 2 in the numerator of f(R)
fixes the winding number to be NB = 1. The BPST solution has a scaling
symmetry in that it admits solutions of arbitrary scale ρ.

The factors of k(z) and h(z) in the Sakai-Sugimoto model break the
SO(4) symmetry. This has two effects on the SO(4) ansatz. First, the
functions φ1, φ2, Ar, and Az will not be related to each other through the
common function f(R). Second, the functions appearing in the ansatz must
be promoted to functions of both the radial coordinate R and the angle θ.
These considerations motivate our reduced ansatz as

φ1 = −
(
R2 sin θ cos θ

1 +R2

)
ψ1(R, θ), φ2 =

(
R2 sin2 θ

1 +R2

)
ψ2(R, θ)− 1,

Ar = −
(
R cos θ

1 +R2

)
ar(R, θ), Az =

(
R sin θ

1 +R2

)
az(R, θ), ŝ =

s(R, θ)

R sin θ
.

(6.14)

7This assumption would be valid if k and h were spherically symmetric. The Chern-
Simons term does not break the SO(4) symmetry.
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In each of the non-Abelian gauge field functions we include a factor of (1 +
R2)−1 such that we may use Dirichlet boundary conditions at R = ∞ to
fix the baryon number. We rescale s by a factor of r−1 = (R sin θ)−1 in
order to have better control over the behaviour of the gauge field near the
r = 0 boundary. We numerically solve for the five functions {ψ1, ψ2, ar, az, s}
on the domain (0 ≤ R < ∞, 0 ≤ θ ≤ π/2) corresponding to (0 ≤ r <
∞, 0 ≤ z < ∞). In practice, we use a finite cutoff at R = R∞, chosen
such that the physical data extracted from the solution does not depend on
it. The symmetries of the solution around z = 0 are used to extend it to
(−∞ < z ≤ 0).

In terms of the coordinates (R, θ), the baryon charge becomes

NB =
1

4π

∫
dRdθ (∂RqR + ∂θqθ), (6.15)

where we have defined

qR = R(sin θqr + cos θqz), qθ = cos θqr − sin θqz. (6.16)

The baryon number is given by the boundary integrals

NB =
1

4π

(∫ ∞

0
dR qθ

∣∣∣
θ=0

+

∫ π

0
dθ qR

∣∣∣
R=∞

+

∫ 0

∞
dR qθ

∣∣∣
θ=π

+

∫ 0

π
dθ qR

∣∣∣
R=0

)
.

(6.17)

Plugging our ansatz into qR and qθ and evaluating on the boundaries shows
that the only contribution to the winding is from the boundary at R =∞.
Thus, the baryon number reduces to

NB =
1

2π

∫ π/2

0
dθ qR

∣∣∣
R=∞

, (6.18)

and we use boundary conditions at the cutoff R∞ to impose that NB = 1.
The boundary conditions we use are as follows. At θ = π/2 (which

maps back to z = 0), we have Neumann conditions on all the fields, as
the odd/even characteristics of the functions about z = 0 are built into the
ansatz (6.14). At this boundary χ = 0 implies ∂θaz = 0 so that this bound-
ary condition satisfies the gauge choice. To obtain boundary conditions at
θ = 0 (r = 0), we expand the equations of motion for small θ. Satisfying
these order by order in θ gives a set of conditions on the fields. A subset of
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these conditions that results in a convergent solution is given by8

θ = 0 : ∂θψ1 = 0, ∂θψ2 = 0, ar = ψ1, ∂θaz = 0, s = 0. (6.19)

The gauge condition at θ = 0 can be shown to be satisfied on a solution
given these boundary conditions. At the origin R = 0, a similar procedure
yields

R = 0 : ∂Rψ1 = 0, ∂Rψ2 = 0, ∂Rar = 0, ∂Raz = 0, s = 0. (6.20)

We do not explicitly satisfy the gauge condition at R = 0.9 At the cutoff
R∞, the boundary conditions are determined by behaviour of the gauge
field Â0 and the winding number NB = 1. As discussed below, in section
6.4.2, the field theory density of baryon charge ρB(r) (defined below) is
proportional to the coefficient of the z−1 falloff of the Abelian gauge field
Â0, at large z. In order to reliably calculate ρB(r), we therefore impose
that s falls off as z−1 by using the boundary condition s = −z∂zs, suitably
translated into (R, θ) coordinates, at the cutoff R∞. Since we rescaled the
SU(2) gauge fields by (1 + R2)−1, we are left with Dirichlet conditions on
the other functions, giving

R = R∞ : ψ1 = ψ2 = ar = az = 2, s = −R cos2 θ ∂Rs+ sin θ cos θ ∂θs.
(6.21)

Given the asymptotic boundary behaviour of the fields, the gauge choice is
satisfied for large R∞. With these large R conditions, we have qR = 4 and
so NB = 1, as desired.

6.3.3 Numerical procedure

We solve the equations of motion by using spectral methods on a Cheby-
shev grid, using Newton’s method to solve the resulting non-linear algebraic
equations.10 For the results presented here, we take the number of grid
points to be (NR, Nθ) = (50, 25). We introduce a cutoff at large R = R∞.
For a large enough cutoff we can reliably read off the z−1 falloff in order to
obtain information about the baryon charge density. However, if the cutoff

8In practice, we use the boundary condition ∂θaz = 1
2
R∂θ∂Rψ1 during the solving

procedure, as we found empirically that this results in a more stable Newton iteration.
Once the numerical procedure converges, the solution satisfies the boundary conditions
given here.

9We check that the gauge condition χ = 0 is numerically satisfied on our solutions
across the domain. See section 6.3.1.

10See appendix A.3 for a description of this procedure.
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is too large, the total mass-energy of the solution becomes dependent on
R∞. In practice, we take R∞ to vary with γ, such that we can compute
both the mass-energy and the baryon charge density with confidence across
most of our domain. We find that while the charge density can be computed
to good accuracy for large γ, the mass-energy becomes unreliable for γ & 70.
To generate a solution, we continue the Newton method until the residuals
reach a very small value (∼ 10−9). For generic values of γ, we can solve for
the configuration from a trivial initial guess (zero for all the fields), while
for very large or very small γ, we solve by using a nearby solution as the
initial guess. Finally, the convergence of our solutions is demonstrated in
Figure 6.1.

25 30 35 40 45 50 55

5 ´ 10-6
1 ´ 10-5

5 ´ 10-5

1 ´ 10-4

5 ´ 10-4

0.001

NR

D
u

Figure 6.1: The convergence of the value ∆u = |u(NR)−u(NR− 2)|/NRNθ,
where u(NR) denotes the solution for the five fields {ψ1, ψ2, ar, az, s} on the
grid with NR points in the R direction and Nθ = NR/2 points in the θ
direction. These runs are for γ = 10 and R∞ = 60. The dashed line is the
best linear fit, showing the exponential convergence ∆u ∝ e−0.18N .

6.4 Solutions

We focus on two observables of the baryon in the Sakai-Sugimoto model:
the mass-energy and the baryon charge density. We examine each of these
in turn.
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Figure 6.2: The energy density ρE(r, z) in the (r, z) plane. For small γ, the
solution appears approximately spherically symmetric. As the coupling γ
increases, the soliton expands and deforms, becoming elongated along z = 0.

6.4.1 The mass-energy

The energy distribution of the soliton tells us how the structure is deformed
as we increase the repulsion of the instanton charges by tuning the coupling
γ. Writing the mass-energy as11

M =
1

4π

∫
d4x ρE(r, z), (6.22)

we plot the energy density ρE(r, z) of the soliton in Figures 6.2 and 6.3. For
small γ, the core of the soliton appears spherically symmetric in the (r, z)
plane. A closer inspection reveals a skewed tail with a slower falloff of energy
density in the z direction; compare Figures 6.2a and 6.3a. As we increase
γ, the core of the soliton expands and deforms, smearing along the z-axis.

In [13], the mass of the baryon was approximated as the energy of a D4
brane wrapping the S4, giving M0 = 8π2κ. The mass of the wrapped D4
brane coincides with the mass of a point-like SO(4) instanton at γ = 0.
By allowing a finite size spherical instanton, [119] computed a correction to
this, finding

MSO(4) = M0 +

√
2

15
Nc. (6.23)

In Figure 6.4, we plot the total mass-energy, normalized by M0, of the soli-
ton found here using the more general SO(3) ansatz. As γ decreases and the

11We define ρE(r, z)/4π as the integrand of equation (6.5) multiplied by a suitable
Jacobian factor.
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Figure 6.3: The logarithm of the energy density ρE(r, z) in the (r, z) plane,
on the same domain as the corresponding plots in Figure 6.2. A large portion
of the energy away from the soliton core is contained in the tail at large
holographic radial coordinate z and small field theory coordinate r.

soliton shrinks, the effect of the curved background becomes less important
and the energy approaches that of the point-like spherical instanton. As γ
increases and the soliton becomes more deformed, the energy of the config-
uration also increases. For γ > 10, we notice that the mass-energy appears
to be controlled by a power law. The best fit in this region gives M ∝ γ0.53.

By fitting the Sakai-Sugimoto model to the experimental values for the
ρ meson mass and the pion decay constant, one can fix both the parameter
κ and the energy scale in the field theory. In [127], this procedure yields
κ = 0.00745 and an energy scale such that 1 in the dimensionless units we
have been using corresponds to 949 MeV. With Nc = 3, this gives γ = 2.55.
We can compare our numerical results for the baryon mass to those of the
SO(4) approximation for these values of the parameters. We find

MSO(4) ' 1.60 GeV,

MSO(3) ' 1.19 GeV. (6.24)

There is a large difference in the results of the two approaches. Interestingly,
the SO(3) result is a much better approximation of the true mass of the
nucleons.

6.4.2 The baryon charge

The baryon charge in the field theory is related to the instanton number
density 1

8π2 trF ∧F in the bulk. In Figures 6.5 and 6.6 we plot the instanton
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Figure 6.4: The total mass of the soliton as a function of γ, normalized by the
mass M0 = 8π2κ of a D4 brane wrapping the sphere directions (equivalently
the mass of a point-like SO(4) instanton at γ = 0 in the effective theory).
As γ decreases, the mass of the numerical solution approaches that of the
point-like instanton. For γ > 10, our results can be approximated by the
relation M ∝ γ0.53.

charge density for two representative solutions. The result closely matches
the energy density of the soliton.

The baryon charge density can be found from the baryon number current,
as defined for example in [127]:

JµB = − 2

Nc
κ
(
k(z)F̂µz

) ∣∣∣
z=∞

z=−∞
. (6.25)

Writing the Abelian gauge field near the boundary as

Â0 =
Â

(1)
0 (r)

z
+ . . . , (6.26)

where . . . denotes terms at higher order in 1/z, we find that the baryon
density is

ρB(r) = J0
B(r) =

Â
(1)
0 (r)

8π2γ
. (6.27)

In terms of the density, the total baryon charge is

NB =

∫ ∞

0
dr 4πr2 ρB(r). (6.28)
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Figure 6.5: The instanton number density 1
8π2 trF ∧ F in the (r, z) plane.

The distribution of the instanton charge closely mimics the distribution of
energy density, as shown in Figures 6.2 and 6.3.
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Figure 6.6: The logarithm of the instanton number density 1
8π2 trF∧F in the

(r, z) plane, on the same domain as the corresponding plots in Figure 6.5.
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We fit our numerical solutions to the functional form in equation (6.26)

and read off the coefficient Â
(1)
0 (r) in order to find ρB(r). This fit is only

robust up to a value of r that depends on the coupling γ: r = r̄(γ). As
demonstrated in [33], the charge density ρB(r) decays as 1/r9. Thus the
field Â0 is decaying much faster in the field theory r direction than the
holographic radial z direction. Since we solve in the coordinate R = (r2 +
z2)1/2, and choose a large cutoff R∞ such that the z falloff is reliable, we
might expect the fit to break down at some point, after ρB(r) has decayed
to a very small value. Numerically, we determine r̄(γ) as the point at which
the error in the fit reaches ten times the error in the fit at r = 0.

In Figure 6.7, we plot the baryon charge ρB(r) up to the cutoff r̄(γ)
for various values of γ. As γ increases, the baryon density at the origin
ρB(0) decreases and the charge moves toward the tail of the distribution. In
the log-log plot, the 1/r9 falloff of the charge density can clearly be seen.
Figure 6.8 shows the behaviour of the baryon charge density across our entire
range of γ.
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Figure 6.7: Left: The charge density ρB(r) for γ = 4, 12, 20, 28, from top
to bottom. Right: The same data on a log-log axis. As γ increases, the
charge density becomes less peaked near the origin. The 1/r9 falloff of
ρB(r) behaviour can be seen in the tail of the charge distributions.

As a check of our solution, we can compute NB by both formulas (6.9)
and (6.28). We find that, across the range of γ and using both formulas,
NB = 1 to good precision.

Lastly, with the charge density ρB(r), we can compute the baryon charge
radius

〈r2〉 =

∫ ∞

0
r2
(
4πr2ρB(r)

)
dr. (6.29)

To integrate past the cutoff r̄(γ), we approximate the tail of the distribution
as ρB(r; γ) ∼ c(γ)/r9, where c(γ) is approximated from the value of the
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Figure 6.8: The charge density ρB(r) for varying γ.

density at the integration cutoff. The baryon charge radius is plotted in
Figure 6.9. For γ > 35, the relation appears to obey a power law, with best
fit given by 〈r2〉 ∝ γ0.93.

As above, it is interesting to compare the result to that obtained from
the SO(4) approximation, evaluated at the parameters defined by the fit to
meson physics. The result is12

〈r2〉1/2SO(4) ' 0.785 fm,

〈r2〉1/2SO(3) ' 0.90 fm. (6.30)

In this model, the baryon charge radius equals the electric charge radius of
the proton [127]. The result from our numerics is very close to the exper-
imental value for the electric charge radius of the proton, which has been
measured to be in the range 0.84 fm – 0.88 fm.

12We compare to the result from the classical analysis of the SO(4) baryon, given in
equation (3.11) of [127].
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Figure 6.9: The baryon charge radius 〈r2〉 =
∫
r2
(
4πr2ρB(r)

)
dr as a func-

tion of γ. For γ > 35, the relation can be approximated by 〈r2〉 ∝ γ0.93.

6.5 Conclusion

We have studied properties of baryons in a holographic model of QCD re-
lated to the Sakai-Sugimoto model by simplifying the Born-Infeld part of
the D8-brane action to a 5D Yang-Mills plus Chen-Simons action for the
gauge fields in the non-compact directions. By dropping the assumption
of SO(4) symmetry and finding direct solutions to the bulk field equations
for the gauge field, we have found that various properties of the baryons in
the holographic QCD model change significantly. In particular, the baryon
mass gives substantially better agreement with measured values. There are
several interesting directions for future work.

Within the present model, it would be interesting to calculate other
observables such as the form-factors associated with the isospin currents
(associated with the SU(2) flavour symmetry) and compare these to re-
sults calculated using the SO(4) symmetric ansatz [127]. It would also be
interesting to consider interactions between two baryons. This requires a
less-symmetric ansatz, but the numerics should still be feasible. Again, it
would be interesting to compare with previous results calculated assuming
flat-space instanton configurations [136]. For higher baryon charge, it should
be feasible to consider the question of nuclear masses as a function of baryon
number, at least within the space of SO(3)-symmetric configurations. The
actual ground states for higher baryon number may not be so symmetric
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however. In addition, it would be interesting to investigate solutions with
a finite baryon charge density (e.g. at finite baryon chemical potential).
Such configurations were considered with various simplifying assumptions
in [42, 50, 52, 53, 137, 138]. As shown in [53], these are necessarily inhomo-
geneous in the field theory directions, so a numerical approach similar to the
one used in this paper is likely necessary to investigate detailed properties
of the ground state at various densities.

Finally, it is interesting to investigate effects of replacing the Yang-Mills
action used here with the full D8-brane Born-Infeld action. This is incom-
pletely known, but one could work for example with the Abelian Born-Infeld
action promoted to a non-Abelian action via the symmetrized trace prescrip-
tion that has been shown to be correct for the F 4 terms. While the equa-
tions in this case will be significantly more complicated, they should pose
no serious obstacle for the numerical approach that we are using. An inter-
esting difference between the Born-Infeld and Maxwell actions for Abelian
gauge fields is that the Maxwell action associates an infinite energy to point
charges, while this energy is finite in the Born-Infeld case. Thus, we might
expect that the tendency for the instantons to spread out is somewhat less
with the Born-Infeld action. In this case, we may expect a somewhat smaller,
less massive baryon. Thus, the baryon mass in the model using the Born-
Infeld action may be even closer to the experimental value than we have
found here.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we applied the holographic correspondence to the study of
various strongly coupled phenomena. The projects comprising the thesis
fell into three domains of applicability: i. General holographic field theories;
ii. Holographic condensed matter, and; iii. Holographic QCD. Technically,
this work involved posing and solving classical field equations in curved
backgrounds (with and without backreaction). To facilitate these studies,
we made extensive use of numerical methods, overcoming some technical
obstacles which may have discouraged previous researchers.

In chapter 2, we studied strongly coupled field theories with the minimal
structure of a conserved charge, focussing in particular on the relationship
between charge density and chemical potential at large density. At finite
charge density, the typical lattice field theory approach to strong coupling
dynamics fails, rendering holography as the most convenient and reliable
calculational method. After some general thermodynamic considerations,
we applied the holographic approach to study a wide range of model field
theories, including those built via explicit string theory constructions and
those developed through a phenomenological approach. We enumerated our
results across these theories, providing a useful guide to a subset of the
behaviours available in holographic theories.

In chapters 3 and 4, we applied the holographic correspondence to the ex-
perimentally observed phenomenon of the spontaneous formation of striped
phases. We studied a phenomenological model dual to a strongly coupled
field theory that undergoes a spontaneous transition to a phase with striped
order as we lower the temperature. Building on previous work that showed
a perturbative instability towards a striped phase, we applied numerical rel-
ativity techniques in order to find the full nonlinear striped solutions across
the parameter range. The geometries we found exhibited novel character-
istics including a charge density wave, a momentum density wave, and a
modulated black brane horizon that tends to pinch off as we lower the tem-
perature. Given the solutions, we constructed the phase diagram of the
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system, showing that the field theory undergoes a second order phase tran-
sition to the striped phase.

In chapter 5, we used holography to study the colour superconductivity
phase of QCD, which is expected to exist at large density. To facilitate this,
we constructed a phenomenological model of QCD, designed to mimic cer-
tain aspects of the phase diagram. Using results from previous studies, we
included in our holographic model the ingredients necessary for three QCD
phases: a confining phase, a deconfining phase, and a colour superconduc-
tivity phase. By analyzing the thermodynamics of the different phases, we
constructed the phase diagram at all values of temperature and chemical
potential, showing that, indeed, our model qualitatively resembled the ex-
pected phase diagram of QCD.

Finally, in chapter 6, we applied numerical techniques to the construction
of the baryon in the well-known Sakai-Sugimoto model of large-Nc QCD. As
reviewed above, the gravity dual of the field theory baryon in this model is a
gauge field configuration on the probe D8 branes with non-trivial topological
charge. Previous studies of the baryon in this model assumed a spherical
symmetry for this gauge field configuration, an assumption which was shown
to produce results that failed certain model-independent tests of baryons.
We relaxed this spherical symmetry, formulating and solving the full nonlin-
ear partial differential equations using numerical techniques in order to find
an oblate instanton, the true minimum energy configuration corresponding
to the baryon. We studied the dependence of the mass and baryon charge of
the baryon on a parameter γ, which determines the baryon self-repulsion. At
the value of γ dictated by the best fit of parameters to the meson spectrum
of QCD, our solution was found to give significantly more realistic values
for the mass and charge radius of the proton than previous studies.

7.2 Future directions

In this section, we briefly describe some of the most promising and interest-
ing studies that would comprise extensions to the work presented here and
that would depend on the numerical techniques used in this thesis. Some of
these and more have already been discussed in the bulk of the thesis.

7.2.1 Inhomogeneous holography and condensed matter

There are many possible directions to follow up on the holographic stripes
project, discussed in chapters 3 and 4. Firstly, we offer advice for undertak-
ing future projects in this area. As opposed to using the numerical method
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outlined in those chapters (using a conformal ansatz, with finite difference
techniques), it is the thesis author’s recommendation that a more efficient
approach would be to use the deTurck method [135] combined with pseu-
dospectral differentiation. This method has been successfully applied to
similar problems in, for example, [88, 101, 102]. The deTurck approach
avoids the gauge fixing issues that we encountered, described in section B.2.3
and, anecdotally, works very well for problems of this type. Furthermore,
pseudospectral differentiation combined with the Newton’s method, as de-
scribed in appendix A.3, offers a compact algorithm with running times on
a desktop computer that may be measured in minutes. This is in contrast
to the Gauss-Seidel relaxation used in those chapters, which required hours
of processing time on a parallel computer system for each solution.

A direct extension of the work described here involves the zero temper-
ature state. The question of what happens to the stripes as we go to zero
temperature was unresolved in our study, as our numerics broke down at
very small temperatures. However, solutions of the black brane at finite tem-
perature could direct the search for the zero temperature geometry. This is
interesting both theoretically and in terms of experimental results. Theoret-
ically, it has been demonstrated that the homogeneous Reissner-Nordstrom
black brane has a non-zero entropy at zero temperature, implying that the
dual field theory is in violation of the third law of thermodynamics. This is
one of the original motivations that prompted the search for instabilities of
the theory, leading to the discovery of these striped phases. An interesting
question then is to find the true ground state of the charged black brane
in particular holographic theories. Given these, one could make qualitative
or, possibly, quantitative comparisons to the low temperature behaviour of
experimental systems. In addition, it has been speculated that the ground
state of QCD may also display lattice behaviour. If true, it would be very
interesting if these holographic models displayed a similar behaviour.

Secondly, in order to again make connection to the condensed matter
literature, it would be interesting to compute the optical conductivity in this
model of holographic stripes. Such a project would be along the lines of the
recent work by Horowitz, Santos, and Tong [87, 88], in which they introduced
an inhomogeneity ‘by hand’, thereby breaking the translation invariance.
This is important because in examples of homogeneous holographic field
theories, the DC conductivity is always infinite. It has been pointed out
that breaking the translation invariance will remove the infinite peak at
zero frequency and widen it into a Drude peak, typical of condensed matter
systems, and allowing the holographic theory to better model experimental
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materials.1 The analysis required in such a study would present a new level
of technical difficulty, as the conductivity computation would require the
solving of a system of partial differential equations linearized around the
numerical striped background solution. However, these results would be
extremely interesting in the push to closer align holographic models with
experimental phenomena.

An alternative direction would be to apply these techniques to find the
geometries dual to translation-symmetry breaking phases in theories exhibit-
ing hyperscaling violation [139, 140].2 Systems with hyperscaling violation
have been suggested to describe theories with a Fermi surface [141], mak-
ing them interesting as models of condensed matter systems. Several recent
studies have shown the existence of instabilities towards striped phases in
models dual to field theories with this behaviour [142, 143]. As above, for
striped phases, it would be useful to have examples of holographic theories
that at least qualitatively mimic these experimental results.

A final interesting extension of the stripes program would be to allow
translation symmetry breaking in both spatial field theory directions, re-
sulting in a checkerboard-type field theory configuration. Checkerboards,
or lattices, have shown up in condensed matter situations (see, for example,
[144]) and it would be interesting to have a concrete theoretical model which
realizes their formation.3 Technically, this would require solving partial dif-
ferential equations with dependence on three directions, increasing the scale
of the problem. However, the techniques described above should render this
problem tractable, even with relatively modest computational resources.

7.2.2 Baryons in holographic QCD

The application of numerical methods to the area of holographic QCD of-
fers many interesting directions for future research. In particular, in the
Sakai-Sugimoto model discussed in chapter 6 (or even other models of holo-
graphic QCD) there are many unresolved questions regarding the behaviour
of baryons and how they interact.

1Indeed, [87, 88] did make comparisons between conductivity in their model and in
the cuprates, finding a striking agreement for the power-law describing behaviour at mid-
infrared frequencies.

2These theories posses a dynamical critical exponent z and a hyperscaling violating
exponent θ, which alter the thermodynamics of the system. In particular, the scaling of
entropy with temperature in such a theory is given by S ∼ T d−θ/z. (In scale invariant
theories without hyperscaling violation, z = 1 and θ = 0.)

3A holographic example of such a situation was recently studied in [78].
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As discussed in chapter 6, in the Sakai-Sugimoto model the gravity dual
of a field theory baryon is an instanton configuration of the gauge fields
on the probe flavour branes. In this model, the usual spherical instanton
is deformed to an oblate spheroid, the shape of which is determined by a
competition between the coupling γ (controlling the self-repulsion of the
instanton), the background geometry, and the restriction towards spherical
symmetry due to the Yang-Mills form of the action. Motivated by this, a
first extension of this work, which would allow a better understanding of
these holographic baryons and would be interesting more generally, would
be to study the deformation of instantons governed by the standard Yang-
Mills action. It is known that a spherical instanton minimizes the energy of
this system; of particular interest in terms of holographic baryons would be
the energy dependence of the state on the deformation of the configuration.
Operationally, this could be studied by including Lagrange multiplier terms
for the quadrupole moment of the instanton in the action. A technical
difficulty in solving this numerically is the scaling symmetry of the spherical
instanton: all sizes of spherical instantons possess the same total energy.
Some care must then be taken in setting up the numerical problem such
that there is a unique solution.4

In our study of baryons, the action, equation (6.3), was derived by a series
expansion of the DBI action for the gauge fields on the probe flavour branes.
This expansion is based on the assumption that the variation of the gauge
fields is small on the order of the string scale. However, this assumption is
not strictly satisfied at strong coupling in the model. In fact, in [13], it was
shown that the characteristic size of the instanton in this model is on the
order of the string scale, violating the original assumption. Then, in order
to more precisely describe baryons in this model, it would be interesting
to strip away this assumption and study the full DBI action governing the
gauge fields on the brane. Technically, this is difficult, due to the non-
Abelian nature of the gauge fields: a correct procedure for evaluating the
trace over the gauge structure has not been established [145]. However, one
may study simplifications of the DBI action that may more closely resemble
the actual system of interest. One very simple way to do this would be
to modify the structure of the U(1) part of the action, from the standard
Yang-Mills to the Born-Infeld type. Since the Born-Infeld action softens
the infinities associated with point charges, resulting in a smaller repulsive
force for two charges brought very close together, one would expect that this

4Some preliminary attempts by the thesis author to study the Yang-Mills instanton in
this way were unsuccessful due to difficulties in setting up the numerical problem.
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modification would allow the instanton in our model to relax somewhat to
a smaller, less energetic configuration.5 A second, more realistic approach
would be to include more gauge field terms from the expansion of the DBI
action. The form of this expansion is known up to fourth order [146, 147].
By including further terms in the expansion, one may be able to glean some
indications of how the baryon configuration would be expected to change
upon using the full DBI action. This type of project would only necessitate
a minor modification of the numerical procedure used in our previous study
and thus offers a tantalizing possibility.

The above two suggestions were related to better understanding the con-
struction of the baryon in the Sakai-Sugimoto model. One could also extend
the above work by studying further questions related to the baryon. A first
interesting direction here would be to study configurations of higher baryon
number; these would be holographic nuclei. A conceptually straightforward
question along these lines would be to examine how the masses of the nuclei
depend on the baryon number in this model. Given the fit of the model
parameters to meson physics, it would be very interesting to evaluate the
masses of the holographic nuclei and to make a comparison to observed re-
sults. As shown in chapter 6, this model provides a quantitatively realistic
relationship between meson masses and the mass of the baryons; it would be
interesting if the higher baryon number configurations also matched exper-
imental results. In the field theory, a deuterium state (two baryons bound
together) would have only a cylindrical symmetry. To find the holographic
dual of this state would then require a three-dimensional code, increasing
the numerical complexity of the problem.6 However, as discussed above for
holographic checkerboards, this should still be tractable with the numerical
techniques used here.

Finally, given a three-dimensional solver and the construction of a cylin-
drically symmetric deuterium state, one could investigate the force between
baryons. This problem has been studied in various approximations in holo-
graphic models, including under the assumption of SO(4)-symmetric instan-
tons representing baryons [136]. By studying the deuterium state, one could

5Indeed, a preliminary investigation by the thesis author, using a Born-Infeld action
for the U(1) part of the gauge field, showed that the minimum energy solution was slightly
smaller and less massive than the solution for the model with Yang-Mills U(1) action.

6One simplification could be to look for holographic nuclei with the field theory SO(3)
symmetry of the single baryon. A preliminary study by the author within the ansatz
of chapter 6 found a large negative binding energy for the two baryon configuration,
indicating that this configuration, with the two baryons ‘on top’ of each other in the field
theory, will certainly not be preferred.

151



7.3. Final remarks

precisely compute the dependence of the force between the baryons on the
distance between them (by, for example, using again Lagrange multipliers
for the quadrupole moment of the state). It would be interesting to compare
the less-symmetric case to previous results in order to further understand
interactions between holographic baryons.

7.3 Final remarks

The work presented in this thesis consists of several important examples
of applied holography. While the research presented in chapters 2 and 5
provided interesting new results for holographic field theories in general and
within a particular phenomenological model of holographic QCD, the main
significance and contribution of this thesis comes from the application of nu-
merical techniques to holographic situations with reduced symmetry. The
striped phases work of chapters 3 and 4 represented the first black hole so-
lutions of that kind7 and was an important step in the progress of applying
the holographic correspondence to find the full gravitational bulk (including
the geometry) to systems with a broken translation symmetry. Meanwhile,
the holographic baryons of chapter 6 were results of one of the first studies
applying numerical techniques to this problem,8 thus pushing the field into
new territory. Both projects required dedicated efforts to overcome signifi-
cant technical obstacles that may have discouraged other researchers from
undertaking such work. Overall, these studies are part of a recent thrust,
led by a subset of researchers in the field, towards combining numerical
techniques (including those used in numerical relativity) with holography;
examples of these works include [83, 87–89, 101, 102, 104, 148–151].9

This marriage of numerical and holographic techniques offers tremen-
dous promise in terms of connecting the existing literature on holographic
theories to experimentally observed strongly coupled systems. This includes
both the theory that underlies our world (QCD) and those theories that
describe the novel materials that will be the cornerstone of tomorrow’s tech-
nological advances (condensed matter). It is the thesis author’s expectation
that the approaches used in this work and in related studies will become
standard tools of practitioners in the field and will allow the study of new

7These were the first full solutions for planar black holes that spontaneously break
translation symmetry.

8The study [132] appeared while the work on holographic baryons was being completed,
while the earlier studies [122–124] used similar numerical techniques.

9Even more recently, some time-dependent holographic problems have been solved
using numerics. See [152–154].
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and more realistic classes of models. The holographic correspondence is
the window which currently offers the most lucid view of strongly coupled
phenomena and, as computational techniques progress, may ultimately pro-
vide a tractable and realistic description of those experimental states and
situations which are currently beyond theoretical control.

153



Bibliography

[1] Nogueira, F. & Stang, J. B. Density versus chemical potential in
holographic field theories. Phys.Rev. D86, 026001 (2012). 1111.2806.

[2] Rozali, M., Smyth, D., Sorkin, E. & Stang, J. B. Holographic Stripes.
Phys.Rev.Lett. 110, 201603 (2013). 1211.5600.

[3] Rozali, M., Smyth, D., Sorkin, E. & Stang, J. B. Striped order in
AdS/CFT correspondence. Phys.Rev. D87, 126007 (2013). 1304.

3130.

[4] Basu, P., Nogueira, F., Rozali, M., Stang, J. B. & Van Raamsdonk,
M. Towards A Holographic Model of Color Superconductivity. New
J.Phys. 13, 055001 (2011). 1101.4042.

[5] Rozali, M., Stang, J. B. & van Raamsdonk, M. Holographic baryons
from oblate instantons. JHEP 1402, 044 (2014). 1309.7037.

[6] Hanneke, D., Fogwell, S. & Gabrielse, G. New measurement of the
electron magnetic moment and the fine structure constant. Phys. Rev.
Lett. 100, 120801 (2008).

[7] Maldacena, J. M. The large N limit of superconformal field theo-
ries and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998).
hep-th/9711200.

[8] Gubser, S. S., Klebanov, I. R. & Polyakov, A. M. Gauge theory cor-
relators from non-critical string theory. Phys. Lett. B428, 105–114
(1998). hep-th/9802109.

[9] Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math.
Phys. 2, 253–291 (1998). hep-th/9802150.

[10] Kovtun, P., Son, D. & Starinets, A. Viscosity in strongly interacting
quantum field theories from black hole physics. Phys.Rev.Lett. 94,
111601 (2005). hep-th/0405231.

154

1111.2806
1211.5600
1304.3130
1304.3130
1101.4042
1309.7037
hep-th/9711200
hep-th/9802109
hep-th/9802150
hep-th/0405231


Bibliography

[11] Hartnoll, S. A., Herzog, C. P. & Horowitz, G. T. Holographic Super-
conductors. JHEP 12, 015 (2008). 0810.1563.

[12] Herzog, C. P., Kovtun, P. K. & Son, D. T. Holographic model of
superfluidity. Phys. Rev. D79, 066002 (2009). 0809.4870.

[13] Sakai, T. & Sugimoto, S. Low energy hadron physics in holographic
QCD. Prog.Theor.Phys. 113, 843–882 (2005). hep-th/0412141.

[14] Hartnoll, S. A. Horizons, holography and condensed matter (2011).
1106.4324.

[15] Gubser, S. S. & Karch, A. From gauge-string duality to strong inter-
actions: A Pedestrian’s Guide. Ann.Rev.Nucl.Part.Sci. 59, 145–168
(2009). 0901.0935.

[16] D’Hoker, E. & Freedman, D. Z. Supersymmetric gauge theories and
the AdS / CFT correspondence 3–158 (2002). hep-th/0201253.

[17] Maldacena, J. The gauge/gravity duality (2011). 1106.6073.

[18] Hartnoll, S. A. Lectures on holographic methods for condensed matter
physics. Class. Quant. Grav. 26, 224002 (2009). 0903.3246.

[19] Aharony, O., Gubser, S. S., Maldacena, J. M., Ooguri, H. & Oz, Y.
Large N field theories, string theory and gravity. Phys.Rept. 323,
183–386 (2000). hep-th/9905111.

[20] Polchinski, J. Introduction to Gauge/Gravity Duality 3–46 (2010).
1010.6134.

[21] McGreevy, J. Holographic duality with a view toward many-body
physics. Adv. High Energy Phys. 2010, 723105 (2010). 0909.0518.

[22] Weinberg, S. & Witten, E. Limits on massless particles. Physics
Letters B 96, 59–62 (1980).

[23] Susskind, L. The world as a hologram. J.Math.Phys. 36, 6377–6396
(1995). hep-th/9409089.

[24] ’t Hooft, G. Dimensional reduction in quantum gravity (1993). gr-qc/
9310026.

[25] Bekenstein, J. D. Universal upper bound on the entropy-to-energy
ratio for bounded systems. Phys. Rev. D 23, 287–298 (1981).

155

0810.1563
0809.4870
hep-th/0412141
1106.4324
0901.0935
hep-th/0201253
1106.6073
0903.3246
hep-th/9905111
1010.6134
0909.0518
hep-th/9409089
gr-qc/9310026
gr-qc/9310026


Bibliography

[26] Hooft, G. A planar diagram theory for strong interactions. Nuclear
Physics B 72, 461–473 (1974).

[27] Ginsparg, P. H. Applied conformal field theory (1988). hep-th/

9108028.

[28] de Haro, S., Solodukhin, S. N. & Skenderis, K. Holographic reconstruc-
tion of space-time and renormalization in the AdS / CFT correspon-
dence. Commun.Math.Phys. 217, 595–622 (2001). hep-th/0002230.

[29] Vojta, M. Lattice symmetry breaking in cuprate superconductors:
stripes, nematics, and superconductivity. Advances in Physics 58,
699–820 (2009).

[30] Donos, A. & Gauntlett, J. P. Holographic striped phases. JHEP 1108,
140 (2011). 1106.2004.

[31] Alford, M. G., Schmitt, A., Rajagopal, K. & Schfer, T. Color super-
conductivity in dense quark matter. Rev.Mod.Phys. 80, 1455–1515
(2008). 0709.4635.

[32] Witten, E. Anti-de Sitter space, thermal phase transition, and con-
finement in gauge theories. Adv.Theor.Math.Phys. 2, 505–532 (1998).
hep-th/9803131.

[33] Cherman, A. & Ishii, T. Long-distance properties of baryons in the
Sakai-Sugimoto model. Phys.Rev. D86, 045011 (2012). 1109.4665.

[34] Mateos, D., Myers, R. C. & Thomson, R. M. Holographic phase
transitions with fundamental matter. Phys. Rev. Lett. 97, 091601
(2006). hep-th/0605046.

[35] Nakamura, S., Seo, Y., Sin, S.-J. & Yogendran, K. A New Phase at
Finite Quark Density from AdS/CFT. J.Korean Phys.Soc. 52, 1734–
1739 (2008). hep-th/0611021.

[36] Kobayashi, S., Mateos, D., Matsuura, S., Myers, R. C. & Thomson,
R. M. Holographic phase transitions at finite baryon density. JHEP
02, 016 (2007). hep-th/0611099.

[37] Van Raamsdonk, M. & Whyte, K. Baryon charge from embedding
topology and a continuous meson spectrum in a new holographic gauge
theory. JHEP 1005, 073 (2010). 0912.0752.

156

hep-th/9108028
hep-th/9108028
hep-th/0002230
1106.2004
0709.4635
hep-th/9803131
1109.4665
hep-th/0605046
hep-th/0611021
hep-th/0611099
0912.0752


Bibliography

[38] Mandal, G. & Morita, T. Gregory-Laflamme as the confine-
ment/deconfinement transition in holographic QCD. JHEP 1109,
073 (2011). 1107.4048.

[39] Kruczenski, M., Mateos, D., Myers, R. C. & Winters, D. J. Towards a
holographic dual of large-N(c) QCD. JHEP 05, 041 (2004). hep-th/
0311270.

[40] Babington, J., Erdmenger, J., Evans, N. J., Guralnik, Z. & Kirsch, I.
Chiral symmetry breaking and pions in nonsupersymmetric gauge /
gravity duals. Phys.Rev. D69, 066007 (2004). hep-th/0306018.

[41] Aharony, O., Sonnenschein, J. & Yankielowicz, S. A holographic model
of deconfinement and chiral symmetry restoration. Annals Phys. 322,
1420–1443 (2007). hep-th/0604161.

[42] Bergman, O., Lifschytz, G. & Lippert, M. Holographic Nuclear
Physics. JHEP 11, 056 (2007). 0708.0326.

[43] Ammon, M., Erdmenger, J., Kaminski, M. & Kerner, P. Flavor Super-
conductivity from Gauge/Gravity Duality. JHEP 0910, 067 (2009).
0903.1864.

[44] Horowitz, G. T. Introduction to Holographic Superconductors (2010).
1002.1722.

[45] Hartnoll, S. A., Herzog, C. P. & Horowitz, G. T. Building a
Holographic Superconductor. Phys. Rev. Lett. 101, 031601 (2008).
0803.3295.

[46] Horowitz, G. T. & Roberts, M. M. Holographic Superconductors with
Various Condensates. Phys. Rev. D78, 126008 (2008). 0810.1077.

[47] Horowitz, G. T. & Roberts, M. M. Zero Temperature Limit of Holo-
graphic Superconductors. JHEP 11, 015 (2009). 0908.3677.

[48] Basu, P., Mukherjee, A. & Shieh, H.-H. Supercurrent: Vector Hair for
an AdS Black Hole. Phys. Rev. D79, 045010 (2009). 0809.4494.

[49] Arean, D., Basu, P. & Krishnan, C. The Many Phases of Holographic
Superfluids. JHEP 10, 006 (2010). 1006.5165.

[50] Kaplunovsky, V., Melnikov, D. & Sonnenschein, J. Baryonic Popcorn.
JHEP 1211, 047 (2012). 1201.1331.

157

1107.4048
hep-th/0311270
hep-th/0311270
hep-th/0306018
hep-th/0604161
0708.0326
0903.1864
1002.1722
0803.3295
0810.1077
0908.3677
0809.4494
1006.5165
1201.1331


Bibliography

[51] Kim, K.-Y., Sin, S.-J. & Zahed, I. Dense hadronic matter in holo-
graphic QCD. J.Korean Phys.Soc. 63, 1515–1529 (2013). hep-th/

0608046.

[52] Horigome, N. & Tanii, Y. Holographic chiral phase transition with
chemical potential. JHEP 01, 072 (2007). hep-th/0608198.

[53] Rozali, M., Shieh, H.-H., Van Raamsdonk, M. & Wu, J. Cold Nuclear
Matter In Holographic QCD. JHEP 01, 053 (2008). 0708.1322.

[54] Erdmenger, J., Kaminski, M. & Rust, F. Holographic vector mesons
from spectral functions at finite baryon or isospin density. Phys.Rev.
D77, 046005 (2008). 0710.0334.

[55] Erdmenger, J., Kaminski, M., Kerner, P. & Rust, F. Finite baryon
and isospin chemical potential in AdS/CFT with flavor. JHEP 0811,
031 (2008). 0807.2663.

[56] Ammon, M. et al. On Stability and Transport of Cold Holographic
Matter. JHEP 1109, 030 (2011). 1108.1798.

[57] Matsuura, S. On holographic phase transitions at finite chemical po-
tential. JHEP 0711, 098 (2007). 0711.0407.

[58] Horowitz, G. T. & Way, B. Complete Phase Diagrams for a Holo-
graphic Superconductor/Insulator System. JHEP 1011, 011 (2010).
1007.3714.

[59] DeWolfe, O., Gubser, S. S. & Rosen, C. A holographic critical point.
Phys.Rev. D83, 086005 (2011). 1012.1864.

[60] Minwalla, S. Restrictions imposed by superconformal invariance on
quantum field theories. Adv. Theor. Math. Phys. 2, 781–846 (1998).
hep-th/9712074.

[61] Witten, E. Baryons and branes in anti de Sitter space. JHEP 07, 006
(1998). hep-th/9805112.

[62] Karch, A. & Katz, E. Adding flavor to AdS/CFT. JHEP 06, 043
(2002). hep-th/0205236.

[63] Klebanov, I. R. & Witten, E. AdS/CFT correspondence and symmetry
breaking. Nucl. Phys. B556, 89–114 (1999). hep-th/9905104.

158

hep-th/0608046
hep-th/0608046
hep-th/0608198
0708.1322
0710.0334
0807.2663
1108.1798
0711.0407
1007.3714
1012.1864
hep-th/9712074
hep-th/9805112
hep-th/0205236
hep-th/9905104


Bibliography

[64] Gubser, S. S. Breaking an Abelian gauge symmetry near a black hole
horizon. Phys. Rev. D78, 065034 (2008). 0801.2977.

[65] Breitenlohner, P. & Freedman, D. Z. Stability in Gauged Extended
Supergravity. Annals Phys. 144, 249 (1982).

[66] Breitenlohner, P. & Freedman, D. Z. Positive Energy in anti-De Sitter
Backgrounds and Gauged Extended Supergravity. Phys.Lett. B115,
197 (1982).

[67] Nishioka, T., Ryu, S. & Takayanagi, T. Holographic Superconduc-
tor/Insulator Transition at Zero Temperature. JHEP 03, 131 (2010).
0911.0962.

[68] Deryagin, D. V., Grigoriev, D. Y. & Rubakov, V. A. Standing wave
ground state in high density, zero temperature qcd at large nc. Inter-
national Journal of Modern Physics A 07, 659–681 (1992).

[69] Shuster, E. & Son, D. On finite density QCD at large N(c). Nucl.Phys.
B573, 434–446 (2000). hep-ph/9905448.

[70] Carlson, E., Emery, V., Kivelson, S. & Orgad, D. Concepts in
high temperature superconductivity. In Bennemann, K. & Ketterson,
J. (eds.) Superconductivity, 1225–1348 (Springer Berlin Heidelberg,
2008).

[71] Gregory, R. & Laflamme, R. Black strings and p-branes are unstable.
Phys.Rev.Lett. 70, 2837–2840 (1993). hep-th/9301052.

[72] Sorkin, E. A Critical dimension in the black string phase transition.
Phys.Rev.Lett. 93, 031601 (2004). hep-th/0402216.

[73] Flauger, R., Pajer, E. & Papanikolaou, S. A Striped Holographic
Superconductor. Phys.Rev. D83, 064009 (2011). 1010.1775.

[74] Ooguri, H. & Park, C.-S. Holographic End-Point of Spatially Modu-
lated Phase Transition. Phys.Rev. D82, 126001 (2010). 1007.3737.

[75] Donos, A. & Gauntlett, J. P. Helical superconducting black holes.
Phys.Rev.Lett. 108, 211601 (2012). 1203.0533.

[76] Donos, A. & Gauntlett, J. P. Black holes dual to helical current phases.
Phys.Rev. D86, 064010 (2012). 1204.1734.

159

0801.2977
0911.0962
hep-ph/9905448
hep-th/9301052
hep-th/0402216
1010.1775
1007.3737
1203.0533
1204.1734


Bibliography

[77] Iizuka, N. et al. Bianchi Attractors: A Classification of Extremal Black
Brane Geometries. JHEP 1207, 193 (2012). 1201.4861.

[78] Bu, Y.-Y., Erdmenger, J., Shock, J. P. & Strydom, M. Magnetic
field induced lattice ground states from holography. JHEP 1303, 165
(2013). 1210.6669.

[79] Donos, A. & Hartnoll, S. A. Universal linear in temperature resistivity
from black hole superradiance. Phys.Rev. D86, 124046 (2012). 1208.
4102.

[80] Nakamura, S., Ooguri, H. & Park, C.-S. Gravity Dual of Spatially
Modulated Phase. Phys.Rev. D81, 044018 (2010). 0911.0679.

[81] Donos, A. & Gauntlett, J. P. Holographic charge density waves.
Phys.Rev. D87, 126008 (2013). 1303.4398.

[82] Wiseman, T. Static axisymmetric vacuum solutions and nonuniform
black strings. Class.Quant.Grav. 20, 1137–1176 (2003). hep-th/

0209051.

[83] Rozali, M. Compressible Matter at an Holographic Interface.
Phys.Rev.Lett. 109, 231601 (2012). 1210.0029.

[84] Herzog, C. P. Lectures on Holographic Superfluidity and Supercon-
ductivity. J.Phys. A42, 343001 (2009). 0904.1975.

[85] Sachdev, S. What can gauge-gravity duality teach us about condensed
matter physics? Annual Review of Condensed Matter Physics 3, 9–33
(2012).

[86] Hutasoit, J. A., Siopsis, G. & Therrien, J. Conductivity of Strongly
Coupled Striped Superconductor. JHEP 1401, 132 (2014). 1208.

2964.

[87] Horowitz, G. T., Santos, J. E. & Tong, D. Further Evidence for
Lattice-Induced Scaling. JHEP 1211, 102 (2012). 1209.1098.

[88] Horowitz, G. T., Santos, J. E. & Tong, D. Optical Conductivity with
Holographic Lattices. JHEP 1207, 168 (2012). 1204.0519.

[89] Horowitz, G. T. & Santos, J. E. General Relativity and the Cuprates
(2013). 1302.6586.

160

1201.4861
1210.6669
1208.4102
1208.4102
0911.0679
1303.4398
hep-th/0209051
hep-th/0209051
1210.0029
0904.1975
1208.2964
1208.2964
1209.1098
1204.0519
1302.6586


Bibliography

[90] Ooguri, H. & Park, C.-S. Spatially Modulated Phase in Holographic
Quark-Gluon Plasma. Phys.Rev.Lett. 106, 061601 (2011). 1011.4144.

[91] Donos, A. & Gauntlett, J. P. Holographic helical superconductors.
JHEP 1112, 091 (2011). 1109.3866.

[92] Iizuka, N. & Maeda, K. Stripe Instabilities of Geometries with Hyper-
scaling Violation. Phys.Rev. D87, 126006 (2013). 1301.5677.

[93] Bergman, O., Jokela, N., Lifschytz, G. & Lippert, M. Striped in-
stability of a holographic Fermi-like liquid. JHEP 1110, 034 (2011).
1106.3883.

[94] Jokela, N., Lifschytz, G. & Lippert, M. Magnetic effects in a holo-
graphic Fermi-like liquid. JHEP 1205, 105 (2012). 1204.3914.

[95] Jokela, N., Jarvinen, M. & Lippert, M. Fluctuations and instabilities
of a holographic metal. JHEP 1302, 007 (2013). 1211.1381.

[96] Iizuka, N. et al. Extremal Horizons with Reduced Symmetry: Hyper-
scaling Violation, Stripes, and a Classification for the Homogeneous
Case. JHEP 1303, 126 (2013). 1212.1948.

[97] Bao, N., Harrison, S., Kachru, S. & Sachdev, S. Vortex Lattices and
Crystalline Geometries. Phys.Rev. D88, 026002 (2013). 1303.4390.

[98] Sorkin, E. Non-uniform black strings in various dimensions. Phys.Rev.
D74, 104027 (2006). gr-qc/0608115.

[99] Kol, B. & Sorkin, E. On black-brane instability in an arbitrary di-
mension. Class.Quant.Grav. 21, 4793–4804 (2004). gr-qc/0407058.

[100] Liu, H., Ooguri, H., Stoica, B. & Yunes, N. Spontaneous Generation
of Angular Momentum in Holographic Theories. Phys.Rev.Lett. 110,
211601 (2013). 1212.3666.

[101] Donos, A. Striped phases from holography. JHEP 1305, 059 (2013).
1303.7211.

[102] Withers, B. Black branes dual to striped phases. Class. Quant. Grav.
30, 155025 (2013). 1304.0129.

[103] Withers, B. The moduli space of striped black branes (2013). 1304.

2011.

161

1011.4144
1109.3866
1301.5677
1106.3883
1204.3914
1211.1381
1212.1948
1303.4390
gr-qc/0608115
gr-qc/0407058
1212.3666
1303.7211
1304.0129
1304.2011
1304.2011


Bibliography

[104] Aharony, O., Minwalla, S. & Wiseman, T. Plasma-balls in large N
gauge theories and localized black holes. Class.Quant.Grav. 23, 2171–
2210 (2006). hep-th/0507219.

[105] Rajagopal, K. & Wilczek, F. The Condensed matter physics of QCD
(2000). hep-ph/0011333.

[106] Stephanov, M. QCD phase diagram: An Overview. PoS LAT2006,
024 (2006). hep-lat/0701002.

[107] McLerran, L. & Pisarski, R. D. Phases of cold, dense quarks at large
N(c). Nucl.Phys. A796, 83–100 (2007). 0706.2191.

[108] Nunez, C., Paredes, A. & Ramallo, A. V. Unquenched Flavor in the
Gauge/Gravity Correspondence. Adv.High Energy Phys. 2010, 196714
(2010). 1002.1088.

[109] Chen, H.-Y., Hashimoto, K. & Matsuura, S. Towards a Holographic
Model of Color-Flavor Locking Phase. JHEP 1002, 104 (2010). 0909.
1296.

[110] Gursoy, U., Kiritsis, E., Mazzanti, L., Michalogiorgakis, G. & Nitti,
F. Improved Holographic QCD. Lect.Notes Phys. 828, 79–146 (2011).
1006.5461.

[111] Iqbal, N., Liu, H., Mezei, M. & Si, Q. Quantum phase transitions
in holographic models of magnetism and superconductors. Phys.Rev.
D82, 045002 (2010). 1003.0010.

[112] Ammon, M., Erdmenger, J., Kaminski, M. & Kerner, P. Supercon-
ductivity from gauge/gravity duality with flavor. Phys.Lett. B680,
516–520 (2009). 0810.2316.

[113] Basu, P., He, J., Mukherjee, A. & Shieh, H.-H. Superconductivity
from D3/D7: Holographic Pion Superfluid. JHEP 0911, 070 (2009).
0810.3970.

[114] Horowitz, G. T. & Myers, R. C. The AdS / CFT correspondence and a
new positive energy conjecture for general relativity. Phys.Rev. D59,
026005 (1998). hep-th/9808079.

[115] Kaplan, D. B., Lee, J.-W., Son, D. T. & Stephanov, M. A. Confor-
mality Lost. Phys.Rev. D80, 125005 (2009). 0905.4752.

162

hep-th/0507219
hep-ph/0011333
hep-lat/0701002
0706.2191
1002.1088
0909.1296
0909.1296
1006.5461
1003.0010
0810.2316
0810.3970
hep-th/9808079
0905.4752


Bibliography

[116] Jensen, K., Karch, A., Son, D. T. & Thompson, E. G. Holo-
graphic Berezinskii-Kosterlitz-Thouless Transitions. Phys.Rev.Lett.
105, 041601 (2010). 1002.3159.

[117] D’Hoker, E., Estes, J. & Gutperle, M. Exact half-BPS Type IIB
interface solutions. II. Flux solutions and multi-Janus. JHEP 0706,
022 (2007). 0705.0024.

[118] Sakai, T. & Sugimoto, S. More on a holographic dual of QCD.
Prog.Theor.Phys. 114, 1083–1118 (2005). hep-th/0507073.

[119] Hata, H., Sakai, T., Sugimoto, S. & Yamato, S. Baryons from in-
stantons in holographic QCD. Prog.Theor.Phys. 117, 1157 (2007).
hep-th/0701280.

[120] Hong, D. K., Rho, M., Yee, H.-U. & Yi, P. Chiral Dynamics of Baryons
from String Theory. Phys.Rev. D76, 061901 (2007). hep-th/0701276.

[121] Hong, D. K., Rho, M., Yee, H.-U. & Yi, P. Dynamics of baryons
from string theory and vector dominance. JHEP 0709, 063 (2007).
0705.2632.

[122] Pomarol, A. & Wulzer, A. Stable skyrmions from extra dimensions.
JHEP 0803, 051–051 (2008). 0712.3276.

[123] Pomarol, A. & Wulzer, A. Baryon Physics in Holographic QCD.
Nucl.Phys. B809, 347–361 (2009). 0807.0316.

[124] Pomarol, A. & Wulzer, A. Baryon physics in a five-dimensional model
of hadrons (2009). 0904.2272.

[125] Cherman, A., Cohen, T. D. & Nielsen, M. Model Independent Tests
of Skyrmions and Their Holographic Cousins. Phys.Rev.Lett. 103,
022001 (2009). 0903.2662.

[126] Hong, D. K., Rho, M., Yee, H.-U. & Yi, P. Nucleon form-factors
and hidden symmetry in holographic QCD. Phys.Rev. D77, 014030
(2008). 0710.4615.

[127] Hashimoto, K., Sakai, T. & Sugimoto, S. Holographic Baryons:
Static Properties and Form Factors from Gauge/String Duality.
Prog.Theor.Phys. 120, 1093–1137 (2008). 0806.3122.

[128] Kim, K.-Y. & Zahed, I. Electromagnetic Baryon Form Factors from
Holographic QCD. JHEP 0809, 007 (2008). 0807.0033.

163

1002.3159
0705.0024
hep-th/0507073
hep-th/0701280
hep-th/0701276
0705.2632
0712.3276
0807.0316
0904.2272
0903.2662
0710.4615
0806.3122
0807.0033


Bibliography

[129] Panico, G. & Wulzer, A. Nucleon Form Factors from 5D Skyrmions.
Nucl.Phys. A825, 91–114 (2009). 0811.2211.

[130] Colangelo, P., Sanz-Cillero, J. J. & Zuo, F. Large-distance properties
of holographic baryons. Nucl.Phys. B875, 351–367 (2013). 1306.6460.

[131] Beringer, J. et al. Review of Particle Physics (RPP). Phys.Rev. D86,
010001 (2012).

[132] Bolognesi, S. & Sutcliffe, P. The Sakai-Sugimoto soliton. JHEP 1401,
078 (2014). 1309.1396.

[133] Witten, E. Some exact multipseudoparticle solutions of classical yang-
mills theory. Physical Review Letters 38, 121–124 (1977).

[134] Forgacs, P. & Manton, N. S. Space-time symmetries in gauge theories.
Commun. Math. Phys. 72, 15 (1980).

[135] Headrick, M., Kitchen, S. & Wiseman, T. A New approach to static
numerical relativity, and its application to Kaluza-Klein black holes.
Class.Quant.Grav. 27, 035002 (2010). 0905.1822.

[136] Hashimoto, K., Sakai, T. & Sugimoto, S. Nuclear Force from String
Theory. Prog.Theor.Phys. 122, 427–476 (2009). 0901.4449.

[137] Sin, S.-J. Gravity back-reaction to the baryon density for bulk filling
branes. JHEP 0710, 078 (2007). 0707.2719.

[138] Yamada, D. Sakai-Sugimoto model at high density. JHEP 0810, 020
(2008). 0707.0101.

[139] Charmousis, C., Gouteraux, B., Kim, B. S., Kiritsis, E. & Meyer, R.
Effective Holographic Theories for low-temperature condensed matter
systems. JHEP 1011, 151 (2010). 1005.4690.

[140] Dong, X., Harrison, S., Kachru, S., Torroba, G. & Wang, H. Aspects
of holography for theories with hyperscaling violation. JHEP 1206,
041 (2012). 1201.1905.

[141] Huijse, L., Sachdev, S. & Swingle, B. Hidden fermi surfaces in com-
pressible states of gauge-gravity duality. Phys. Rev. B 85, 035121
(2012).

164

0811.2211
1306.6460
1309.1396
0905.1822
0901.4449
0707.2719
0707.0101
1005.4690
1201.1905


Bibliography

[142] Cremonini, S. & Sinkovics, A. Spatially Modulated Instabilities of
Geometries with Hyperscaling Violation. JHEP 1401, 099 (2014).
1212.4172.

[143] Cremonini, S. Spatially Modulated Instabilities for Scaling Solutions
at Finite Charge Density (2013). 1310.3279.

[144] Abrikosov, A. On the Magnetic properties of superconductors of the
second group. Sov. Phys. JETP 5, 1174–1182 (1957).

[145] Tseytlin, A. A. On nonAbelian generalization of Born-Infeld action in
string theory. Nucl.Phys. B501, 41–52 (1997). hep-th/9701125.

[146] Hashimoto, A. & Taylor, W. Fluctuation spectra of tilted and in-
tersecting D-branes from the Born-Infeld action. Nucl.Phys. B503,
193–219 (1997). hep-th/9703217.

[147] Koerber, P. & Sevrin, A. The NonAbelian D-brane effective action
through order alpha-prime**4. JHEP 0210, 046 (2002). hep-th/

0208044.

[148] Wiseman, T. Numerical construction of static and stationary black
holes (2011). 1107.5513.

[149] Horowitz, G. T., Santos, J. E. & Way, B. A Holographic Josephson
Junction. Phys.Rev.Lett. 106, 221601 (2011). 1101.3326.

[150] Garcia-Garcia, A. M., Santos, J. E. & Way, B. Holographic Description
of Finite Size Effects in Strongly Coupled Superconductors. Phys.Rev.
B86, 064526 (2012). 1204.4189.

[151] Santos, J. E. & Way, B. Black Funnels. JHEP 1212, 060 (2012).
1208.6291.

[152] Adams, A., Chesler, P. M. & Liu, H. Holographic Vortex Liquids and
Superfluid Turbulence (2012). 1212.0281.

[153] Adams, A., Chesler, P. M. & Liu, H. Holographic turbulence (2013).
1307.7267.

[154] Chesler, P. M. & Yaffe, L. G. Numerical solution of gravitational
dynamics in asymptotically anti-de Sitter spacetimes (2013). 1309.

1439.

165

1212.4172
1310.3279
hep-th/9701125
hep-th/9703217
hep-th/0208044
hep-th/0208044
1107.5513
1101.3326
1204.4189
1208.6291
1212.0281
1307.7267
1309.1439
1309.1439


[155] Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P.
Numerical Recipes in C (2Nd Ed.): The Art of Scientific Computing
(Cambridge University Press, New York, NY, USA, 1992).

[156] Trefethen, L. N. Spectral Methods in MatLab (Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000).

[157] Boyd, J. P. Chebyshev and Fourier spectral methods (Courier Dover
Publications, Mineola, New York, USA, 2013).

[158] Papadimitriou, I. & Skenderis, K. AdS / CFT correspondence and
geometry 73–101 (2004). hep-th/0404176.

[159] Papadimitriou, I. & Skenderis, K. Thermodynamics of asymptotically
locally AdS spacetimes. JHEP 0508, 004 (2005). hep-th/0505190.

166

hep-th/0404176
hep-th/0505190


Appendix A

Review of numerical
techniques used

In this thesis, in the work described in chapters 3, 4, and 6, we employed
standard numerical methods for the solution of the partial differential equa-
tions that arose in problems in holography applied to situations with in-
homogeneity in the field theory. These were the construction of a striped
phase in a strongly coupled field theory and the gravity dual of a baryon in
a large-Nc field theory.

In this appendix, we briefly review the implementation of the two major
techniques used. Firstly, in section A.1, we sketch our general approach for
solving partial differential equations numerically. Following this discussion,
we describe the two specific approaches employed: finite differencing with a
Gauss-Seidel relaxation method (section A.2) and pseudospectral differenti-
ation with a Newton iteration (section A.3). This appendix is not intended
to be a complete guide to these approaches. Rather, it is to provide a (hope-
fully enlightening) caricature of the techniques used. The interested reader
is directed to the useful references [155–157] for more information.

Although our studies involved partial differential equations, with depen-
dence on two variables, for clarity of presentation below we will restrict our
descriptions of the numerical techniques to the case of an ordinary differ-
ential equation for the field ϕ(x), with dependence on one coordinate x.
Specifically, we will consider as our model equation Poisson’s equation in
one dimension,

d2ϕ(x)

dx2
= ρ(x), (A.1)

on the domain x ∈ [−1, 1]. We will use this model equation for illustrative
purposes in our discussion of the numerical techniques.
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A.1. Generic numerics for elliptic partial differential equations

A.1 Generic numerics for elliptic partial
differential equations

In this thesis, we applied the holographic correspondence to the study of
certain time-independent problems. The partial differential equations that
resulted from these static situations were boundary value problems. In a
problem of this type, data specified on the boundaries of the domain1 deter-
mines the solution on the interior. The main task for solving these problems
is, given a set of boundary conditions, to find the configuration that satisfies
both the boundary conditions and the equations of motion in the interior
of the domain. The prototypical boundary value problem is the Poisson
equation (A.1), which appears in various contexts in physics. The par-
tial differential equations encountered in this thesis are comparable to more
complicated, nonlinear versions of the Poisson equation.

In order to solve these more complicated boundary value problems, for
which closed-form analytic solutions are not known (and may not even be
possible), one must turn to numerical methods. Typically, numerical meth-
ods create some approximation of the continuous field ϕ(x) in order to trans-
late the differential equation into a number of coupled algebraic equations,
which can be solved numerically. Perhaps the most conceptually straight-
forward approach, which is undertaken in this thesis, is to discretize the
domain on a grid, so that the continuous function ϕ(x) becomes a set of
values ϕi at each grid point. By choosing a suitable discretization of the
derivatives, one arrives at a set of coupled algebraic equations for the field
values ϕi. If we write the field as the vector

~ϕ =




...
ϕi
...


 , (A.2)

then, after the discretization, we can view this problem as the matrix equa-
tion

A · ~ϕ = ~ρ, (A.3)

where ~ρ is the vector created by evaluating the source ρ(x) at the grid
points and, in our model problem (A.1), A is the matrix that represents the

discretized operator d2

dx2 .

1This could be, for example, the value of the fields (Dirichlet conditions), a zero deriva-
tive condition (Neumann conditions), or some more complicated condition.
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A.2. The numerical approach for holographic stripes

Within this general framework, there is some choice as to how one may
solve their problem. First, in terms of the domain grid and the discretiza-
tion of the derivatives, different choices can affect the performance of the
algorithms and the accuracy of the numerical approximations. Two common
methods, used in this thesis and reviewed below, are finite differencing (in
this case, on a rectangular grid) and pseudospectral methods on a Cheby-
shev grid. In addition, upon approximating the continuous equation as a
matrix equation, different options are available to solve the coupled alge-
braic equations. In our two cases here, we use a Gauss-Seidel relaxation
method and a Newton iteration.

A.2 The numerical approach for holographic
stripes

For the study on holographic stripes reported in chapters 3 and 4, the tech-
nique used was a second-order finite differencing on a rectangular grid fol-
lowed by Gauss-Seidel relaxation to solve the resulting algebraic equations.
We provide a basic description of each of these components in turn below.

A.2.1 Finite differencing on a rectangular grid

Finite differencing is one of the most familiar methods with which to ap-
proximate a derivative. Indeed, the definition of the derivative relies on the
limit of a finite difference equation. To use this method on a constant grid,
one first splits the domain into N sections of equal length h = 2/N , with
grid points given by xi = −1 + ih. The continuous field is transformed
into a discrete vector by taking its values at these grid points, ϕi = ϕ(xi),
and organizing them according to equation (A.2). Derivatives of ϕ are com-
puted using the standard finite difference equations. In our work, we used
second-order finite differences, which, for our model problem, consists of the
replacement

d2ϕ(xi)

dx2
→ ϕi+1 − 2ϕi + ϕi−1

h2
. (A.4)

By using a series expansion for the field ϕ, one can show that the error in
this expression is of order h2. Therefore, using this method, one expects
quadratic convergence of our approximate solution as we increase the grid
density (decrease h).

Upon making the replacement (A.4), at each grid point xi we now have
an equation involving the value of the field at that point, ϕi, and the values
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A.2. The numerical approach for holographic stripes

of the field at neighbouring points, ϕi−1 and ϕi+1, resulting in N+1 coupled
algebraic equations. We can rewrite this as the matrix equation A · ~ϕ = ~ρ,
where now A is the tri-diagonal matrix

A =
1

h2




. . .

1 −2 1
1 −2 1

1 −2 1
. . .




(A.5)

with zeros above and below the listed entries.2 At this stage, solving the
original differential equation becomes the task of solving this algebraic ma-
trix equation.

A.2.2 Relaxation iteration

To solve the coupled algebraic equations resulting from our finite difference
discretization, we use a standard pointwise Gauss-Seidel-style relaxation it-
eration, which we review here. This type of iteration can be understood in
two ways: Firstly, it is an algorithm which exploits the sparse structure of
the matrix A, so that each iteration can be computed quickly. Secondly, it
can be rephrased as solving a related diffusion problem to find an equilib-
rium configuration. (This motivates the label ‘relaxation’.) After defining
the iteration, we will discuss the second, more relaxing interpretation.

After differencing, our model equation reads

A · ~ϕ = ~ρ. (A.6)

Following [155], we split the matrix A as A = L+D+U , where L is the lower
triangular part of A, D is the diagonal of A, and U is the upper triangular
part of A. We set up the iteration as

D · ~ϕ(n+1) = −(L+ U) · ~ϕ(n) + ~ρ, (A.7)

where the superscript (n) labels the nth iteration. The value for our field
at the next iteration, ~ϕ(n+1), is calculated with low computational expense,
as D, being diagonal, is easily inverted. One can see that if the algorithm
converges, such that the difference between ~ϕ(n) and ~ϕ(n+1) becomes very

2Boundary conditions can be incorporated into this structure by altering the rows
which update the boundary values of the field.
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close and below some threshold, we will have solved our original equation
up to the defined numerical accuracy. This is a standard iterative method
for solving a matrix equation of this type.

Now, consider a related diffusion problem, defined as

∂~ϕ

∂λ
= −A · ~ϕ+ ~ρ, (A.8)

where λ labels an auxiliary ‘time’ dimension. Finding an equilibrium so-
lution to (A.8), such that ∂~ϕ/∂λ = 0, will give a solution to our model
problem. If we discretize the time variable λ using a first-order forward
finite difference equation,

∂~ϕ

∂λ
→ ~ϕ(n+1) − ~ϕ(n)

∆λ
, (A.9)

numerically solving this diffusion equation amounts to the update scheme
given by

~ϕ(n+1) = ~ϕ(n) −∆λ

(
A · ~ϕ(n) − ~ρ

)
. (A.10)

Compare this to the iteration above: adding and subtracting ~ϕ(n) on the
right-hand side of (A.7) gives

~ϕ(n+1) = ~ϕ(n) −D−1 ·
(
A · ~ϕ(n) − ~ρ

)
. (A.11)

Thus, in our model problem, with the identification ∆λ = (D−1)ii, (A.7)
is identical to the scheme that solves the diffusion equation (A.8). Finding
a fixed point of the iteration is equivalent to finding an equilibrium solu-
tion to the diffusion problem, and ultimately gives a solution to the desired
differential equation.

In terms of performance of the scheme described above, a simple way to
increase the speed is to perform the updates ‘in place’. Typically, the field

values ϕ
(n)
i are updated to ϕ

(n+1)
i one at a time (from i = 0 to i = N) as

the algorithm loops over the grid domain. According to our second-order

finite differencing and the iteration (A.7), in our model problem ϕ
(n+1)
i will

depend on ϕ
(n)
i+1 and ϕ

(n)
i−1. In this setup, by the time the loop arrives at the

point i, ϕ
(n+1)
i−1 will have been computed. If, instead of computing the entire

vector ~ϕ(n+1) based on the previous vector ~ϕ(n), one updates each ϕ
(n)
i using

updated values at neighbouring grid points as soon as they become available

(uses ϕ
(n+1)
i−1 instead of ϕ

(n)
i−1), the algorithm experiences a constant factor
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speedup. This is called a Gauss-Seidel method. In our solver, we implement
such an update procedure.

For linear problems, such as our model Poisson equation, this type of
iteration can be shown to converge, based on the structure of the matrices
that result from finite differencing. For nonlinear problems, such as those
encountered in this thesis, no general results are available. Practically, this
does not impede the implementation of the relaxation. For each problem,
one can simply apply the method and observe if convergence occurs. If the
residual ~ξ ≡ A · ~ϕ − ~ρ converges to zero, one can be sure that they have
found a solution.

A.3 The numerical approach for holographic
baryons

For the study on holographic baryons in the Sakai-Sugimoto model reported
in chapter 6, we used pseudospectral differentiation on a Chebyshev grid
before applying Newton’s method to the resulting algebraic equations. In the
following subsections, we motivate and describe these technical components.

A.3.1 Pseudospectral differentiation and Chebyshev grids

In this section, we will summarize the development of pseudospectral meth-
ods as outlined in [156]. The main goal of this section is to motivate the
use of the Chebyshev differentiation matrix DN , whose action on the vec-
tor of grid points ~ϕ will give an approximation to the derivative, and the
Chebyshev grid. The main idea we will encounter is that pseudospectral
differentiation can be considered as an order N finite difference scheme,
where N is the number of grid points. The method is ‘spectral’ because
approximations to the derivatives use information from every grid point in
the domain. When using pseudospectral methods, increasing the number of
grid points increases the accuracy of the approximations in two ways: by
reducing the grid spacing, h ∝ N−1, and by increasing the power of h that
controls the error. The result is exponential convergence in N , of the order
O(1/NN ).

To begin our discussion, we recast the second-order finite differencing
reviewed in section A.2.1 as a polynomial interpolation. Let ψi denote the
approximation to ϕ′(xi). To find ψi (with second-order accuracy) via an
interpolation, let p(x) be the unique polynomial (of degree 2 or less) that
goes through the function ϕ at xi and at its two neighbouring points (such
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that p(xi−1) = ϕi−1, p(xi) = ϕi, and p(xi+1) = ϕi+1). On a constant grid,
with xi+1 − xi = h, this polynomial is

p(x) =

(
(x− xi)(x− xi+1)

2h2

)
ϕi−1

−
(

(x− xi−1)(x− xi+1)

h2

)
ϕi

+

(
(x− xi−1)(x− xi)

2h2

)
ϕi+1. (A.12)

Given this interpolant, we find ψi by differentiating p(x) and evaluating the
result at xi. Carrying out this procedure gives

ψi =
ϕi+1 − ϕi−1

2h
. (A.13)

This is precisely the expression for a centred second-order finite difference.
By using a series of (second-order) polynomial approximations through each
grid point, one can derive the linear transformation D2 corresponding to the
second-order first derivative on a constant grid, such that ~ψ = D2 · ~ϕ. The
result is

D2 =
1

2h




. . .

−1 0 1
−1 0 1

−1 0 1
. . .



, (A.14)

with other entries being zero.
The expressions for higher order finite difference schemes follow in the

same manner. To derive the (centred) finite difference approximation to
ϕ′(xi) of degree n, one first finds the unique polynomial p(x) (of degree n or
less) that interpolates ϕ(x) at the set of points (xi−n/2, . . . , xi, . . . , xi+n/2).
Then, taking the derivative of p(x) and evaluating at xi will give the nth
order finite difference expression. In this manner, we can build up the dif-
ferentiation matrix Dn for any n. The error in the approximate derivative
ψi (the difference ϕ′(xi)− ψi) will be of order O(hn).

The matrix for our pseudospectral differentiation is found by taking this
scheme to limit. On the grid with N + 1 grid points, we find the unique
polynomial of degree less than or equal to N , before differentiating it and
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evaluating it at each grid point. This gives a linear transformation3

~ψ = D̃N · ~ϕ (A.15)

which produces an approximation of the derivative ϕ′(x). The error in this
approximation will be roughly of order O(hN ) = O(N−N ). By using a poly-
nomial of degree N , the matrix D̃N will be dense, as compared to the sparse
structure of the matrix used above for the finite difference scheme. Thus,
solving a differential equation using pseudospectral differentiation involves
more costly matrix inversions than using a low-order finite difference scheme.
However, the exponential convergence with N means that in practice, when
using pseudospectral methods, one has to use many fewer grid points than
for a finite difference scheme, resulting in savings in vector and matrix stor-
age space. Computational savings in terms of fewer iterations also results
and is described more in section A.3.2.

The polynomial one finds through the interpolation process depends on
the grid points xi. Above, we assumed the constant grid xi = −1 + ih. It
has been proven that, for polynomial interpolation on the interval [−1, 1],
the optimal interpolation points (the grid points at which the interpolant is
taken to match the original function) are given by the Chebyshev points

xi = cos

(
iπ

N

)
, i = 0, 1, . . . , N. (A.16)

These points are less dense in the interior of the domain, around x = 0,
and cluster near the boundaries at x = ±1. This allows one to avoid the
Runge phenomenon, in which, for polynomial interpolation on a constant
grid, errors accumulate near the boundary of the domain. The Chebyshev
differentiation matrices DN are defined as the matrices that enact the linear
transformation of differentiating, according to the above polynomial inter-
polation procedure, when using the Chebyshev points (A.16) as the inter-
polation points. The explicit expressions for the entries of the matrix DN ,
as found in, for example, [156], are

(DN )00 =
2N2 + 1

6
, (DN )NN = −2N2 + 1

6
,

(DN )ii =
−xi

2(1− x2
i )
, i = 1, . . . , N − 1,

(DN )ij =
ci
cj

(−1)i+j

(xi − xj)
, i 6= j, i, j = 1, . . . , N − 1, (A.17)

3We write this differentiation matrix as D̃N , to distinguish it from the Chebyshev
differentiation matrix DN defined below.
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where

ci =

{
2, i = 0, N,

1, otherwise.
(A.18)

To use the Chebyshev method on our model problem, we discretize the
domain on a Chebyshev grid and replace the derivatives with the Chebyshev
matrices DN , to get

D2
N · ~ϕ = ~ρ. (A.19)

We have now reduced our original differential equation to an algebraic matrix
equation, the solution of which we describe in the following section.

As a final note, we provide an alternate description of the Chebyshev
spectral method. Although we motivated this method through finite dif-
ferencing and polynomial interpolation, this approach has a different in-
terpretation in terms of an expansion in the Chebyshev polynomials. The
Chebyshev polynomials are a set of polynomials defined by

Tn(x) = cosnθ(x), (A.20)

where θ(x) is defined through

x = cos θ. (A.21)

In this latter method, one expands the field in terms of the Chebyshev
polynomials as

ϕ(x) =

N∑

n=0

anTn(x). (A.22)

Explicitly following this approach, one would insert the expansion (A.22)
into the original equation and use orthogonality of the Chebyshev poly-
nomials to derive algebraic equations for the vector of coefficients ~a. It is
equivalent to use the values of the function ~ϕ as the unknowns and explicitly
solve for these, as we do above. These considerations show that, in addition
to finding the value of the function at the grid points (finding the vector
~ϕ), one can compute the vector of coefficients ~a in order to find an entire
function, (A.22), which approximates our solution.

A.3.2 Newton’s method for matrix equations

In this section, we review the use of Newton’s method in solving the matrix
equations that result after discretizing the problem on a Chebyshev grid
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and replacing the derivatives with the Chebyshev differentiation matrices.
In this section, we will change notation to write our problem as

L(ϕ) = 0, (A.23)

where L is the operator which represents our differential equation. In the

case of our model Poisson equation, we would have L(ϕ) ≡ d2ϕ
dx2 − ρ. Our

task is to find the field ϕ which satisfies equation (A.23).
Upon discretizing according to the prescription in the previous section,

we get one equation of motion at each grid point, and thus arrive at a vector
of equations, which we write as

~L(~ϕ) = 0. (A.24)

The Newton’s method for this system of equations can be derived by a series
expansion in the usual way. Letting subscripts denote components of vectors
as above, we can expand our operator near a vector ~ϕ∗ as

Li(~ϕ∗) = Li(~ϕ) +

(
∂Li
∂ϕj

)
(ϕ∗j − ϕj) + . . . , (A.25)

where . . . denote terms higher order in (ϕ∗i − ϕi). Now, if we assume that
~ϕ∗ satisfies the equations of motion, we have Li(~ϕ∗) = 0. Then, truncating
the series and rearranging terms, we arrive at a prescription for finding ~ϕ∗

based on the nearby vector ~ϕ:

ϕ∗i = ϕi −
(
∂Lj
∂ϕi

)−1

Lj(~ϕ). (A.26)

Starting from an initial guess for our fields, we iterate according to equa-
tion (A.26) until the original equation (A.24) is satisfied to some numerical
tolerance.

From the iteration (A.26) and the definition of the Chebyshev matri-
ces DN , one can motivate that the numerical approach described here will
converge in fewer iterations than that described in section A.2. The Gauss-
Seidel relaxation is a local relaxation procedure, as the update procedure
for the field at each grid point ϕi depends only on neighbouring points. The
method described in this section is spectral, in that the update procedure
for the field at each point ϕi depends on the value of the field at every other
point. Thus, the iterations are able to quickly propagate changes in the field
to all corners of the domain, resulting in faster convergence. In practice, the
number of iterations needed for numerical convergence is several orders of
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magnitude smaller for the Chebyshev spectral method with Newton itera-
tion. Therefore, even though each iteration is slower due to the need for
a more complex matrix inversion, the amount of total computational time
needed for solving using pseudospectral methods is much smaller than for
the finite difference method. Indeed, the solution of the partial differential
equations encountered in chapter 6 was accessible with only modest desktop
resources.
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Appendix B

Striped order supplementary
material

In this appendix to chapter 4, we provide details of the asymptotic charges
in our model (section B.1) and about our numerical procedure (section B.2).

B.1 Asymptotic charges

B.1.1 Deriving the charges

Since our ansatz is inhomogeneous and includes off-diagonal terms in the
metric, and our action is not standard (in that it includes the axion coupling)
we have re-derived the expressions for the charges and other observables in
our geometry. In deriving the asymptotic charges of our spacetime, for the
four dimensional Einstein-Maxwell-Higgs theory we discuss in the main text,
we follow the covariant treatment of [158, 159]. We refer the reader to those
papers for details of the method used.

The bulk action has to be supplemented by boundary terms of two types.
First, there are boundary terms needed to ensure that the variational prob-
lem is well-defined. Then there are counter-terms, terms depending only
on the boundary values (leading non-normalizable modes) of fields on the
cutoff surface, which are added to render the on-shell action and the con-
served charges finite. Both kinds of boundary terms are the standard ones
for Einstein-Maxwell-Higgs theory; the additional axion coupling does not
necessitate an additional boundary terms of either kind as long as the scalar
mass satisfies m2 < 0.

We find it convenient to study the first variation of the on-shell action,
which always reduces to boundary terms. The expression for the regulated
first variation of the on-shell action can be differentiated with respect to
the boundary values of the bulk fields, to give finite expressions for the con-
served charges. We write those expressions below in terms of the asymptotic
expansion of the fields occurring in our ansatz, carefully taking into account
the differences between our coordinate system and the standard Fefferman-
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Graham form of the asymptotic metric, which is used to derive the standard
expressions in the literature.

Having explained our procedure, we now display the expressions for the
observables used in the main text. We first assume the radial coordinate is
in the standard Fefferman-Graham form, and then discuss additional terms
arising from change of coordinate necessary to bring our asymptotic metric
into the standard form.

For the scalar fields ψ, one can write asymptotically

ψ(x, r) = ψ(0)(x)r−λ− + ψ(1)(x)r−λ+ (B.1)

with

λ± =
3

2
±
√

9

4
+m2. (B.2)

We set ψ(0)(x) = 0 as part of our boundary conditions, then the coefficient
ψ(1)(x) is the spatially modulated VEV of the scalar operator dual to ψ.

Similarly, the gauge field can be expanded near the boundary as

Aµ(x, r) = A(0)
µ (x)− A

(1)
µ (x)

r
. (B.3)

The functions A
(1)
µ (x) correspond to the charge and current density of the

boundary theory.
As for the boundary energy-momentum tensor, the expression is fairly

simple in odd number of boundary dimensions, and we have checked that
it is not modified by the matter action. With our normalization convention
one can write

Tij = 6g
(3)
ij , (B.4)

where the superscripts of the metric functions denote the order in the asymp-
totic expansion.

Since our metric ansatz is not of the Fefferman-Graham form, we need
to perform a change of coordinate (in the x, r plane, for which we used
the conformal ansatz) to put the metric is such a form. The details of the
transformation are straightforward and the process results in the following
shifts in the asymptotic metric quantities:

∆g
(3)
ij =

2

3
g(x), (B.5)

for every i, j, where g(x) is the leading asymptotic correction to the metric
component grr. That is, at large r that metric component becomes

grr(r, x)→ 1

2r2
+
g(x)

r5
. (B.6)

179



B.1. Asymptotic charges

Finally, since the metric becomes diagonal asymptotically, the non-vanishing
time components of the energy-momentum tensor Ttt and Tyt have a simple
interpretation as energy and momentum density, respectively. The con-
served charges are given by integrating those densities over a spatial slice.

B.1.2 Explicit expressions for the charges

Homogeneous solution

For reference, in this subsection we give the explicit expressions for the
homogeneous RN solution in our conventions. The radius of the horizon is
given in terms of the temperature by

r0 =
1

6

(
2πT +

√
3µ2 + 4π2T 2

)
. (B.7)

The mass, entropy and charge of the RN solution of fixed length L are

MRN =
(
4r3

0 + µ2r0

)
L, (B.8)

SRN = 4πr2
0L, (B.9)

NRN = 2r0µL. (B.10)

The corresponding densities in the infinite system are given by dividing
through by L.

Inhomogeneous solution

Here we list explicit expressions for the thermodynamic quantities in our
system in terms of our solution ansatz. Conserved charges are given by
integrating over the inhomogeneous direction. We define f (3) = −(4r3

0 +
µ2r0)/4, the 1/r3 term from the function f(r) (equation (4.3)), and X(3)(x),
for X = {R,S, T}, as the coefficient of the 1/r3 term of the corresponding
metric function. The energy-momentum tensor yields the mass4

M =

∫ L

0
〈T tt(x̃)〉dx̃ = 4

∫ L

0
ξ(x)2(−f (3) + 5S(3)(x) + 3T (3)(x))dx, (B.11)

the tension in the x direction

τx = −
∫ L

0
〈T xx(x̃)〉dx̃ = 2

∫ L

0
ξ(x)2(f (3)+6R(3)(x)+4S(3)(x)+6T (3)(x))dx,

(B.12)

4See appendix B.2.3 for details about the numerical process, including the definitions
of the x̃ coordinate and ξ(x). The functions {R,S, T} are defined on the UV grid; they
are analogous to {A,B,C} in the original ansatz.
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and the pressure in the y direction

Py =

∫ L

0
〈T yy(x̃)〉dx̃ = −2

∫ L

0
ξ(x)2(f (3) +6R(3)(x)+10S(3)(x))dx. (B.13)

Now, expanding the equations of motion at the asymptotic boundary, we
get the relation R(3)(x) + 2S(3)(x) + T (3)(x) = 0. Using this, we see that
〈Tµν(z)〉 is traceless, as necessary. Conservation of the energy momentum
tensor requires ∂xτx = 0. This is related to the constraint equation (4.18)
and we explain our strategy to ensure it is satisfied in appendix B.2.3.

The coefficient of the 1/r falloff of the gauge field gives the charge

N = −2

∫ L

0
A

(1)
t (x). (B.14)

At the horizon, we read the (constant) temperature as

T =
1

8πr0
(12r2

0 − µ2)e−(B−A)|r=r0 (B.15)

and the entropy is proportional to the area of the event horizon, given by

S = 4πr2
0

∫ L/4

0
e(B(r0,x)+C(r0,x))dx. (B.16)

B.1.3 Consistency of the first laws

Here, we discuss the first laws for both the finite length stripe and the stripe
on the infinite domain.

Finite system

In our system, as described above, we have unequal bulk stresses τx
5 and

Py. Then, if we have a rectangle of side lengths (L,Ly), the work done by
the expansion or compression of this region will differ depending on which
direction the stress is in. The usual −PdV term in the first law is replaced
and we have

dM̂ = TdŜ + µdN̂ + τxLydL− PyLdLy, (B.17)

5We define τx = −Px, where Px is the pressure in the x direction. For our solutions,
τx > 0.
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where the hatted variables represent thermodynamic quantities integrated
over the entire system. Defining densities (in the trivial y-direction) by

M =
M̂

Ly
, S =

Ŝ

Ly
, N =

N̂

Ly
, (B.18)

we can write the first law as

dM = TdS + µdN + τxdL+
dLy
Ly

(−M + TS + µN − PyL). (B.19)

Tracelessness of the energy-momentum tensor implies M = L(Px + Py), so
that the term proportional to dLy can be rewritten as the conformal identity
(4.29), which disappears for a conformal system described by the first law
(4.27). Therefore, the first law (4.27) and the conformal identity (4.29) are
consistent.

Infinite system

For the infinite system, we define densities in both the x and y directions as
equation (4.33). Under the scaling symmetry (4.19), these scale as

m→ λ3m, s→ λ2s, n→ λ2n. (B.20)

Using the first law (4.34), we derive the conformal identity (4.35). Again,
we can see this from the first law for the system with integrated charges.
Plugging the densities m, s, n into the first law of the finite length system
(4.27), we arrive at

dm = Tds+ µdn+
dL

L
(−m+ Ts+ µs+ τx). (B.21)

Using the conformal identity of the finite length system (4.29), we see that
the term proportional to dL is just the conformal identity for the infinite
system, which is satisfied for a system described by (4.34).
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B.2 Further details about the numerics

B.2.1 The linearized analysis

Following [30], we look for static normalizable modes around the Reissner-
Nordstrom background. We consider the fluctuation6

δgty = λ

(
(r − r0)

r
w(r) sin(kx)

)
,

δAy = λ(a(r) sin(kx)),

δψ = λ(φ(r) cos(kx)), (B.22)

where λ is a small parameter in which we can expand the equations. Putting
this ansatz into (B.27) - (B.33) and expanding to linear order in λ, we arrive
at the linearized system

w′′(r)− r0a
′(r)

r3(r − r0)
+

(4r − 2r0)w′(r)

r(r − r0)

+
w(r)

(
2r0

(
4r3 + 4r2r0 + 4rr0

2 − r0

)
− k2r2

)

r2 (4r4 − r (4r0
3 + r0) + r0

2)
= 0,

a′′(r) +

(
8r4 + r

(
4r0

3 + r0

)
− 2r0

2
)
a′(r)

r (4r4 − r (4r0
3 + r0) + r0

2)

− k2a(r)

4r4 − r (4r0
3 + r0) + r0

2
+

c1kr0φ(r)√
3 (4r4 − r (4r0

3 + r0) + r0
2)

− 4rr0w
′(r)

4r3 + 4r2r0 + 4rr0
2 − r0

− 4r0
2w(r)

4r4 − r (4r0
3 + r0) + r0

2
= 0,

φ′′(r) +
c1kr0a(r)

2
√

3r2 (4r4 − r (4r0
3 + r0) + r0

2)

− φ(r)
(
k2 + 2m2r2

)

4r4 − r (4r0
3 + r0) + r0

2
−
(
−16r3 + 4r0

3 + r0

)
φ′(r)

4r4 − r (4r0
3 + r0) + r0

2
= 0.

(B.23)

Fixing the scalar field mass as m2 = −4, there are three parameters in these
equations: the temperature of the black brane T0 (equivalently the location
of the horizon r0), the wavenumber k, and the strength of the axion coupling

6Regularity at the black hole horizon enforces that δgty(r0) = 0.
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c1. In this analysis, we will choose c1 and k and then use a shooting method
to find the T0 at which normalizable modes appear.

Due to the linearity of the equations, the scale of our solutions is arbi-
trary. We use this to fix a Dirichlet condition on w at the horizon. Changing
coordinates to ρ =

√
r2 − r2

0, and expanding the equations near ρ = 0 gives
regularity conditions on the fluctuations at the horizon in terms of Neumann
boundary conditions. Our horizon boundary conditions are then

w(ρ)|ρ=0 = 1, w′(ρ)|ρ=0 = a′(ρ)|ρ=0 = φ′(ρ)|ρ=0 = 0, (B.24)

Namely, that the fields are quadratic in ρ near the horizon. In order to
search for normalizable modes, we set the sources in the field theory to zero
by imposing leading order fall-off conditions near the AdS boundary:

w(ρ) =
w3

ρ3
+ . . . , a(ρ) =

a1

ρ
+ . . . , φ(ρ) =

φ2

ρ2
+ . . . . (B.25)

In practice, after fixing c1 and k, we use T0 as a shooting parameter to
find the solution with the correct w fall-off and the corresponding critical
temperature Tc.

For each c1, we find a range of unstable momenta. By adjusting the
strength of the axion coupling, one can find a large variation in the size
of this unstable region in the (k/µ, T0/µ) plane (see Figure B.1). The re-
lationship between c1 and the maximum critical temperature is well fit by
Tmaxc (c1)/µ = 0.025c1 − 0.091. The wavenumbers for the dominant critical
modes, corresponding to Tmaxc (c1), for select c1 are found in Table B.1.

c1 Tmaxc /µ kc/µ Lµ/4 = π/2kc
4.5 0.012 0.75 2.08
5.5 0.037 0.92 1.71
8 0.11 1.3 1.21
18 0.37 2.85 0.55
36 0.80 5.65 0.28

Table B.1: The maximum critical temperatures and corresponding critical
wavenumbers for varying c1.

B.2.2 The equations of motion

For completeness, here we present the equations of motion derived from the
Lagrangian (4.1). The Einstein equations in our case are four second order
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Figure B.1: The critical temperatures at which the Reissner Nordstrom
black brane becomes unstable, for varying axion coupling c1. As the strength
of the axion coupling increases, the size of the unstable region (the area under
the critical temperature curve) also increases.

elliptic equations for the metric components and two constraint equations.
For the compactness of the expressions, we define

ÔU · ÔV = ∂rU∂rV +
1

4r4f
∂xU∂xV, Ô2U = ∂2

rU +
1

4r4f
∂2
xU. (B.26)

The four elliptic equations, formed from combinations of Gtt− T tt = 0, Gty −
T ty = 0, Gyy − T yy = 0, and Grr +Gxx − (T rr + T xx ) = 0, then take the form

Ô2A+ (ÔA)2 + ÔA · ÔC − e−2A+2C

2f
(ÔW )2 − e−2A

4r2f
(ÔAt)

2

− 1

4r2

(
e−2AW 2

f
+ e−2C

)
(ÔAy)

2 − e−2AW

2r2f
ÔAt · ÔAy

+

(
5

r
+

3f ′

2f

)
∂rA+

(
1

r
+
f ′

2f

)
∂rC +

3

r2
− 3e2B

r2f
+
e2Bm2ψ2

4r2f

+
3f ′

rf
+
f ′′

2f
= 0, (B.27)
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Ô2B +
1

2
(Ôψ)2 − e−2A+2C

4f
(ÔW )2 − ÔA · ÔC − 1

r
∂rA

+

(
2

r
+
f ′

2f

)
∂rB −

(
1

r
+
f ′

2f

)
∂rC = 0, (B.28)

Ô2C + (ÔC)2 + ÔA · ÔC +
e−2A+2C

2f
(ÔW )2 +

e−2A

4r2f
(ÔAt)

2

+
1

4r2

(
e−2AW 2

f
+ e−2C

)
(ÔAy)

2 +
e−2AW

2r2f
ÔAt · ÔAy

+
1

r
∂rA+

(
5

r
+
f ′

f

)
∂rC +

3

r2
− 3e2B

r2f
+
e2Bm2ψ2

4r2f
+
f ′

rf
= 0,

(B.29)

and

Ô2W − ÔA · ÔW + 3ÔC · ÔW − e−2CW

r2
(ÔAy)

2

− e−2C

r2
ÔAt · ÔAy +

4

r
∂rW = 0. (B.30)

The matter field equations are

Ô2ψ + ÔA · Ôψ + ÔC · Ôψ +
c1e
−A−C

8
√

3r4f
(∂rAt∂xAy − ∂xAt∂rAy)

+

(
4

r
+
f ′

f

)
∂rψ −

e2Bm2ψ

2r2f
= 0, (B.31)

Ô2At − ÔA · ÔAt + ÔC · ÔAt +
e−2A+2CW

f
ÔW · ÔAt + ÔW · ÔAy

+ 2WÔC · ÔAy − 2WÔA · ÔAy +
e−2A+2CW 2

f
ÔW · ÔAy

+
c1

4
√

3r2

(
eA−C − e−A+CW 2

f

)
(∂rψ∂xAy − ∂xψ∂rAy)

− c1e
−A+CW

4
√

3r2f
(∂rψ∂xAt − ∂xψ∂rAt) +

2

r
∂rAt −

Wf ′

f
∂rAy = 0,

(B.32)
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and

Ô2Ay + ÔA · ÔAy − ÔC · ÔAy −
e−2A+2CW

f
ÔW · ÔAy −

e−2A+2C

f
ÔW · ÔAt

+
c1e
−A+C

4
√

3r2f
(∂rψ∂xAt − ∂xψ∂rAt) +

c1e
−A+CW

4
√

3r2f
(∂rψ∂xAy − ∂xψ∂rAy)

+

(
2

r
+
f ′

f

)
∂rAy = 0. (B.33)

Finally, the constraint equations are

∂x∂rA+ ∂x∂rC − ∂rA (∂xB − ∂xA)− (∂xA+ ∂xC) ∂rB

− (∂xB − ∂xC) ∂rC +
f ′

2f
∂xA−

(
f ′

2f
+

2

r

)
∂xB

− e−2A

2fr2
(∂xAt +W∂xAy) (∂rAt +W∂rAy)−

e−2(A−C)

2f
∂xW∂rW

+
e−2C

2r2
∂xAy∂rAy + ∂xψ∂rψ = 0

(B.34)

and

∂2
rA+ ∂2

rC −
1

4fr4
(∂2
xA+ ∂2

xC) +

(
1− 1

4fr4

)
(∂rA)2 +

(
1− 1

4fr4

)
(∂rC)2

+
1

2fr4
(∂xA+ ∂xC) ∂xB − 2 (∂rA+ ∂rC) ∂rB +

(
3f ′

2f
+

2

r

)
∂rA

−
(
f ′

f
+

4

r

)
∂rB +

(
f ′

2f
+

2

r

)
∂rC +

e−2A

8f2r6
(∂xAt +W∂xAy)

2

− e−2A

2fr2
(∂rAt +W∂rAy)

2 − e−2(A−C)

2f

(
(∂rW )2 − 1

4fr4
(∂xW )2

)

+
e−2C

2r2

(
(∂rAy)

2 − 1

4fr4
(∂xAy)

2

)
+ (∂rψ)2 − 1

4fr4
(∂xψ)2 +

f ′′

2f

+
2f ′

fr
= 0. (B.35)

B.2.3 Constraints

The constraint equations, Grx−T rx = 0 and Grr−Gxx− (T rr −T xx ) = 0, are the
non-trivial Einstein equations that are not part of the system of second-order
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elliptic equations that we numerically solve. As discussed in section 4.2, the
weighted constraints can be shown to solve Laplace equations on the domain.
If we satisfy one of the constraints on all boundaries and the other at one
point, they will be satisfied everywhere. At the black hole horizon, we choose
to impose r2

√
f
√−g(Grr −Gxx − (T rr − T xx )) = 0 at the point (ρ, x) = (0, 0)

and
√−g(Grx − T rx ) = 0 across the horizon. Since we use periodic boundary

conditions in the inhomogeneous direction, the boundaries at x = 0 and
x = xmax are trivial if

√−g(Grx− T rx ) = 0 at the horizon and the conformal
boundary. Then, we are left with the task of satisfying

√−g(Grx − T rx ) = 0
at the boundary.

In section 4.2, we found the asymptotic expansion of this constraint as

Grx − T rx ∝
3∂xA

(3)(x) + 2∂xB
(3)(x) + 3∂xC

(3)(x)

r2
+O(r−3), (B.36)

where A(3)(x), B(3)(x) and C(3)(x) come from solving the elliptic equations.
It appears that, within our problem, we do not have the ability to make the
weighted constraint disappear. The key lies in an unfixed gauge symmetry
in our original metric that is related to conformal transformations of the
(r, x) plane.7 Essentially, within our metric ansatz, we have the freedom to
transform to any plane (r′, x′) that is conformally related to (r, x). Demand-
ing that the weighted constraint

√−g(Grx − T rx ) vanishes at the conformal
boundary uniquely identifies the correct coordinates (r̃, x̃).

Our procedure is to split the domain at some intermediate radial value
ρint. On the IR portion of the grid, 0 < ρ < ρint, the equations are as
above. On the UV portion of the grid, ρint < ρ < ρcut, we use the coordinate
freedom to select the correct asymptotic radial coordinate. We can write
the metric in the UV as

ds2 = −2r̃2f̃(r̃, x̃)e2Rdt2 + e2S

(
dr̃2

2r̃2f̃(r̃, x̃)
+ 2r̃2dx̃2

)
+ 2r̃2e2T (dy − Udt)2,

(B.37)

where f̃(r̃, x̃) ≡ f(r(r̃, x̃)). Under a transformation in the (r̃, x̃) plane such
that r̃ and x̃ satisfy Cauchy-Riemann-like relations

∂r̃(r, x)

∂r
=
r̃(r, x)2

r2

∂x̃(r, x)

∂x
,

∂x̃(r, x)

∂r
= − 1

4r2r̃(r, x)2f(r)

∂r̃(r, x)

∂x
,

(B.38)

7See [104] for a discussion of the same issue in a different context.
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the metric becomes

ds2 = −2r̃(r, x)2f(r)e2Rdt2 + e2S |∇r̃(r, x)|2
(

dr2

2r2f(r)
+ 2r2dx2

)

+ 2r̃(r, x)2e2T (dy − Udt)2 (B.39)

with

|∇r̃(r, x)|2 =
r2

r̃(r, x)2

(
∂r̃(r, x)

∂r

)2

+
1

4r2r̃(r, x)2f(r)

(
∂r̃(r, x)

∂x

)2

. (B.40)

We now have an extra function r̃(r, x) in our system which we may use to
satisfy the constraint and fix the residual gauge freedom, as we will now see.
The Cauchy-Riemann-like conditions give the Laplace-like equation

∂

∂r

(
r2

r̃(r, x)2

∂r̃(r, x)

∂r

)
+

∂

∂x

(
1

4r2r̃(r, x)2f(r)

∂r̃(r, x)

∂x

)
= 0. (B.41)

We can solve this asymptotically, finding

r̃(r, x) = ξ(x)r +
2ξ′(x)2 − ξ(x)ξ′′(x)

24ξ(x)r
+ . . . , (B.42)

where ξ(x) is an arbitrary function that encodes the coordinate freedom we
have.

Expanding the constraint asymptotically, we have

Grx − T rx ∝ 1

r2

(
2(3∂xR

(3)(x) + 2∂xS
(3)(x) + 3∂xT

(3)(x))ξ(x)

+ 3(f (3) + 2R(3)(x)− 4S(3)(x) + 2T (3)(x))ξ′(x)
)

+O(r−3),

(B.43)

where X = X(3)(x)/r3 + . . . asymptotically, for X = {R,S, T}. Demanding
that the constraint (B.43) vanishes at the leading order yields a differen-
tial equation we can solve for ξ(x), giving us a boundary condition for the
function r̃(r, x), such that the weighted constraint will disappear at the con-
formal boundary. However, we have found that the code is unstable if we
directly use this solution for ξ(x). Instead of directly integrating the con-
straint, we use the freedom in ξ(x) to fix the tension τx to be constant.
This enforces the same effect on the tension as if we had used the explicit
solution for ξ(x) but is much more stable numerically. Below, we check that
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the constraints are suitably satisfied even though our boundary conditions
do not exactly fix them. To this end, we set

ξ(x) =
K

(f (3) + 6R(3)(x) + 4S(3)(x) + 6T (3)(x))1/3
. (B.44)

Expanding the equations asymptotically gives the expressionR(3)(x)+2S(3)(x)+
T (3)(x) = 0; if this is satisfied on our solutions our definition of ξ(x) coincides
with that found by integrating the constraint (B.43).

The constant K appearing in ξ(x) sets the scale of the boundary theory.
We use it to fix the length of the inhomogeneous direction in the field theory
to be Lµ/4. The correct coordinate in the inhomogeneous direction of the
field theory is x̃. From the Cauchy-Riemann conditions, we can find the
large r expansion of x̃(r, x) as

x̃(r, x) =

∫ x

0

dx′

ξ(x′)
+

ξ′(x)

8ξ(x)2r2
+ . . . . (B.45)

Integrating to find the proper length of one cycle in the boundary, we solve
for K at leading order in r to find

K =
4

L

∫ L/4

0
(f (3) + 6R(3)(x) + 4S(3)(x) + 6T (3)(x))1/3dx′. (B.46)

When integrating the charges over the inhomogeneous direction in the field
theory, one must remember to integrate over the correct coordinate, dx̃ =
dx/ξ(x).

Our corrected numerical procedure is as follows. On the IR grid, we
solve the elliptic equations (B.27) - (B.33) for the metric functions A,B,C
and W . On the UV grid, we solve the equivalent elliptic equations from
the metric (B.39) in the variables R,S, T and U plus equation (B.41) for
the new field r̃(r, x). At the horizon, we enforce the boundary conditions
discussed in §4.2. At the interface ρ = ρint, we impose matching conditions
on the four metric functions and that r̃(ρint, x) = r(ρint). Asymptotically,
R,S, T and U all fall off as 1/r̃3. To set boundary conditions on r̃, we notice
that

∂rr̃(r, x) +
r̃(r, x)

r
= 2ξ(x) +O

(
1

r3

)
. (B.47)

We truncate this expression at O(r−2) and finite difference to find an update
procedure for r̃(ρcut, x). This boundary condition is updated iteratively as
the functions R,S, T are updated in our solving procedure such that once
we find a solution with small residuals we can be sure that the tension is
constant and the constraint is satisfied.
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Figure B.2: The data underlying Figure 4.17. The points represent solutions
we computed. These were interpolated to find the free energy density over
the domain. The solid blue line is the edge of the unstable region and the
thick red line is the approximate line of minimum free energy density.

B.2.4 Generating the action density plot

To generate the relative action density plot, Figure 4.17, we find the solutions
on a grid of lengths L and temperatures T0, as shown in Figure B.2. By
interpolating these solutions on the domain, we can map the thermodynamic
quantities across the unstable region and determine the approximate line of
minimum free energy, or the dominant solution in the infinite size system.

B.2.5 Convergence and independence of numerical
parameters

Performance of the method and convergence of physical data

As discussed above, to solve the equations numerically, we use a second or-
der finite differencing approximation before using a point-wise Gauss-Seidel
relaxation method on the resulting algebraic equations. The method, in-
cluding the UV procedure described above, performs well for this system.

The UV procedure is unstable for a generic initial guess, resulting in a
divergent norm. To find a solution from a generic initial guess, we can run
the relaxation without the UV procedure until the norm is small enough
that the result approximates the true solution, before activating the UV
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Figure B.3: The behaviour of the L2 norm of the residual during the relax-
ation iterations for c1 = 8, T0 = 0.04 and Lµ/4 = 0.75. From top to bottom
(at the left of the plot) the grid spacing is dρ, dx = 0.04, 0.02, 0.01. The UV
procedure is unstable unless the solution is close enough to correct solution.
For grid spacing dρ, dx = 0.04, the UV procedure was activated after 3×105

iterations while for the others, the initial guess was taken to be a solution
with slightly different parameters such that the UV procedure could be used
immediately.

procedure to find the true solution. Once we have these first solutions,
by using these as an initial guess for solutions nearby in parameter space
and by interpolating to a finer grid, we can generate further solutions by
relaxing with the UV procedure. In Figure B.3, we plot the L2 norm of
the total residual during the relaxation of the c1 = 8 solution at T0 = 0.04
and Lµ/4 = 0.75 for the grid spacings dρ, dx = 0.04, 0.02, 0.01, showing
the expected exponential behaviour of the Gauss-Seidel relaxation. The
physical data extracted from our solutions is consistent with the expected
second order convergence of our finite-difference scheme, see Figure B.4.

Asymptotic versus first law mass

A useful check of the numerics is to compare the mass of the system read off
from the asymptotics of the metric, equation (B.11), to that computed by
integrating the first law, equation (4.27). Since the temperature and entropy
are read off from the horizon, comparing these two methods of finding the
mass provides a non-trivial global consistency check on our results. We
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Figure B.4: The value of the scalar field condensate for varying grid sizes
for c1 = 8 and Lµ/4 = 0.75. From top to bottom, the grid spacing is
dρ, dx = 0.01, 0.02, 0.04. The results are consistent with second order scaling
as expected from our numerical approach.

verify that the difference between the asymptotic mass and the first law mass
remains smaller than 0.5% across our set of trials, indicating consistency of
our results.

A related check of the numerics is the conformal identity or the Smarr-
like relation, 2M = TS + µN − τxL, derived above from the first law for
the finite length system. To evaluate how well our solutions satisfy this
equation, we examine the ratio

2Mfall−off − TS − µN + τxL

max(Mfall−off , TS, µN, τxL)
, (B.48)

since the largest term in the expression sets a scale for the cancellation we
expect. This ratio is very small for our solutions near the critical tempera-
ture. As we lower the temperature, this ratio increases, but stays small. The
precise value depends on the parameters of the solution, but is not larger
than order 1%. Moreover, this ratio decreases as we move the position of
the finite cutoff of the conformal boundary to a larger radius.

Finite ρcut boundary check

For the c1 = 8 trials reported in the paper, we use ρcut = 12 as our conformal
boundary. In Table B.2 we present results for varying ρcut, showing that
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our choice is large enough such that the physical results are insensitive to
the cutoff. Although the physical results presented in the table appear very
stable, at small ρcut, the results for the mass and charge depend significantly
on the fitting procedure for the asymptotic metric functions and gauge field.
By running our simulations at ρcut = 12, we are both well within the the
region where the solutions do not change with the conformal boundary and
within a region where our fitting procedure to the asymptotics behaves well.

ρcut S M N

1 0.758504 0.305774 0.527406
2 0.767913 0.342327 0.490524
3 0.768211 0.341928 0.490593
4 0.768285 0.342043 0.490583
5 0.768311 0.342136 0.490577
6 0.768322 0.34221 0.490574
7 0.768328 0.342277 0.490572
8 0.768332 0.342324 0.49057
9 0.768334 0.342367 0.490569
10 0.768335 0.342402 0.490568
11 0.768336 0.342434 0.490568
12 0.768336 0.342459 0.490567

Table B.2: Behaviour of physical quantities with the cutoff for c1 = 8 and
Lµ/4 = 0.75 and for fixed grid resolution dρ, dx ∼ 0.02. The entropy S is
read off at the horizon, while the mass M and the charge N are read off at
the conformal boundary. Both the entropy and the charge are very robust
against the location of the conformal boundary. The mass takes slightly
longer to settle down, but is well within the convergent range for ρcut = 12.

Behaviour of the constraints

One of the most important checks for our numerical solution is the behaviour
of the constraints. For numerical homogeneous solutions found with our
method, the L2 norm of the constraints is very small, on the order of 10−4.
For the inhomogeneous solutions, the constraints are small near the critical
temperature, but grow and saturate as we lower to the temperature, to
have a maximum L2 norm on the order of 10−2: see Figure B.5. Since our
boundary conditions explicitly fix the weighted constraints on the horizon,
they disappear there. The weighted constraints then increase towards the
conformal boundary, approaching a modulated profile of constant amplitude.
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Figure 22: The weighted constraints for c1 = 8 and Lµ/4 = 1.21. The top plots are
near the critical point, T/Tc = 0.97, while the bottom plots are at small temperature,
T/Tc = 0.00016. By our boundary conditions, the constraints disappear at the
horizon. They approach a finite value as they approach the asymptotic boundary.

plitude. The amplitude near the conformal boundary controls the overall L2 norm
of the constraints.

The constraint violation improves marginally with step size and with moving
the interface closer to the horizon, but does not improve as we take the conformal
boundary to a larger radius. To check that the constraints are well satisfied on our
solution, we compare them to the sum of the absolute value of the terms that make
up the constraints. That is, if the constraints are given by

P
i hi, we compare this

to
P

i |hi|. This procedure gives us an idea of the scale of the cancellation among
the individual terms hi. We find that the sum

P
i |hi| diverges approximately as r4

towards the asymptotic boundary, such that the approach of the constraint violation
to a constant is a good indicator that the constraints are satisfied on the solution. In
Table 3, we compare the L2 norm of these two sums on the entire domain, showing

46

Figure B.5: The weighted constraints for c1 = 8 and Lµ/4 = 1.21. The top
plots are near the critical point, T/Tc = 0.97, while the bottom plots are
at small temperature, T/Tc = 0.00016. By our boundary conditions, the
constraints disappear at the horizon. They approach a finite value as they
approach the asymptotic boundary.

The amplitude near the conformal boundary controls the overall L2 norm
of the constraints.

The constraint violation improves marginally with step size and with
moving the interface closer to the horizon, but does not improve as we take
the conformal boundary to a larger radius. To check that the constraints are
well satisfied on our solution, we compare them to the sum of the absolute
value of the terms that make up the constraints. That is, if the constraints
are given by

∑
i hi, we compare this to

∑
i |hi|. This procedure gives us an

idea of the scale of the cancellation among the individual terms hi. We find
that the sum

∑
i |hi| diverges approximately as r4 towards the asymptotic

boundary, such that the approach of the constraint violation to a constant
is a good indicator that the constraints are satisfied on the solution. In
Table B.3, we compare the L2 norm of these two sums on the entire domain,
showing that the constraint violation for the inhomogeneous solutions is
generally about four orders of magnitude less than the scale set by

∑
i |hi|.
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Interestingly, the relative constraint improves marginally as we go to lower
temperatures.

Parameters T0 L2(
∑

i hi)/L
2(
∑

i |hi|)
c1 = 8, Lµ/4 = 2.00 (RN solution) 0.105 9.12 · 10−7

c1 = 8, Lµ/4 = 1.21 (striped solution) 0.075 2.02 · 10−4

0.05 1.84 · 10−4

0.025 1.58 · 10−4

0.005 1.37 · 10−4

0.001 1.32 · 10−4

Table B.3: Comparison of the constraint violation, measured by the
schematic constraint equation

∑
i hi, to the scale set by the individual terms,∑

i |hi|, for grid size dρ, dx ∼ 0.01. We take the L2 norm of the measures
on the entire domain. The c1 = 8, Lµ/4 = 2.00 solution is a homogeneous
RN solution found numerically with our code, for which the constraints are
very well satisfied. The constraints for the striped solutions are satisfied
compared to the scale set by

∑
i |hi| by four orders of magnitude and the

relative constraint improves marginally as we lower the temperature.

The asymptotic equation of motion

Expanding the equations of motion asymptotically gives the relation

R(3)(x) + 2S(3)(x) + T (3)(x) = 0, (B.49)

which can be used to give another check of the numerics. As explained in
B.1.2, this condition implies the tracelessness of the energy-momentum ten-
sor. For the inhomogeneous solutions near the critical temperature we find
that this expression is on the order of the individual metric functions X(3),
where X = {R,S, T}, but generally decreases as we lower the temperature.
As well, we find that homogeneous solutions found using our numerical tech-
niques satisfy (B.49) well. There seems to be an unidentified systematic er-
ror here that may deserve further attention in the future. Possible problems
may occur in the implementation of the UV procedure or in our procedure
to read off the coefficients of the falloffs of the metric functions. However,
our physical results are robust under changes to the boundary conditions,
so that we are confident in our results despite this possible systematic. In
particular, the physical quantities extracted from the horizon are indepen-
dent of the different boundary constraint fixing schemes we implemented.
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Therefore, we advocate using the mass derived from the integrated first law,
which uses no asymptotic metric functions.
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Appendix C

Colour superconductivity
supplementary material

In this appendix to chapter 5, we provide more details about our model with
a charged scalar field, analyzing both the large charge limit (section C.1)
and finding the critical chemical potential for scalar field condensation (sec-
tion C.2).

C.1 Large charge limit

In this section, we analyze the case of large q. This is particularly simple,
since in this limit, the back-reaction of the scalar and the gauge field on the
metric go to zero in the region of the phase diagram where transitions to
the superconducting phases occur. Explicitly, we can show that in the limit
q → ∞ with qµ fixed, the gauge field and scalar field decouple from the
equations for the metric, but still give rise to a nontrivial phase structure.
To investigate this, we need only consider the scalar field and gauge field
equations on the fixed background spacetimes corresponding to low tem-
peratures (the soliton geometry) and high temperatures (the Schwarzschild
black hole).

Low Temperature

Starting from the action (5.3) for the scalar field and gauge field on the
soliton background (5.25), we find that the equations of motion are (setting
L = 1)

φ′′ +

(
f ′

f
+

4

r

)
φ′ − 2q2

r2f
ψ2φ = 0 ,

ψ′′ +

(
f ′

f
+

6

r

)
ψ′ +

q2

r4f
φ2ψ − m2

r2f
ψ = 0 , (C.1)

where f is defined in (5.26).
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These equations have two scaling symmetries related to the conformal
symmetry of the boundary field theory and to the absence of back-reaction
in our large charge limit. Given a solution (φ(r), ψ(r), r0, q,m), we can check
that the scaling

(φ(r), ψ(r), r0, q,m)→ (βφ(αr), βαψ(αr),
r0

α
,
q

αβ
,m) (C.2)

sends solutions to solutions. For our calculations, we will use this to set
r0 = q = 1.

Multiplying these equations by f and taking the limit r → r0 = 1, we
find that regular solutions must obey

φ′(1) =
2ψ2(1)φ(1)

5
,

ψ′(1) =
ψ(1)

5

(
m2 − φ2(1)

)
. (C.3)

We have two remaining parameters, ψ(0) and φ(0). One of these can be fixed
by demanding that the ‘non-normalizible’ mode of ψ vanishes at infinity,
while different values of the remaining parameter correspond to different
values of µ.

Employing numerics, we find that for a fixed value of m2, there is some
critical value of µ above which solutions with a condensed scalar field exist.

In order to determine the critical value µc(m
2), we use the fact that the

field values go to zero as we approach the critical µ from above. Thus, at
the critical µ, the equations above linearized around the background solution
φ = µ should admit a solution with the correct boundary conditions. The
linearized equations decouple from each other, so we need only study the ψ
equation. This becomes

ψ′′ +

(
6r5 − 1

r(r5 − 1)

)
ψ′ +

r(µ2 −m2r2)

r5 − 1
ψ = 0 . (C.4)

We can take ψ(1) = 1 without loss of generality, so the boundary condition
for ψ′ becomes

ψ′(1) =
1

5
(m2 − µ2) . (C.5)

Given m2, we now find µ2 by demanding that the leading asymptotic mode
(ψ1) of ψ vanishes. Our results for the critical µ as a function of m2 are
shown in Figure C.1.
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C.1. Large charge limit

High temperature

The high temperature geometry relevant to the limit of large q with µq fixed
is the µ → 0 limit of the Reissner-Nordstrom geometry (5.29), which gives
the planar AdS-Schwarzschild black hole (with one of the spatial directions
compactified). This is the relevant background for T > 1/(2πR).

Explicitly, we have

ds2 = r2
(
−dt2f(r) + dx2 + dy2 + dz2 + dw2

)
+

dr2

r2f(r)
, (C.6)

where

f(r) = 1− r5
+

r5
. (C.7)

Here, r+ is related to the temperature by

r+ =
4πT

5
. (C.8)

The equations of motion in this background are

ψ′′ +

(
f ′

f
+

6

r

)
ψ′ +

q2

r4f2
φ2ψ − m2

r2f
ψ = 0 . (C.9)

The equations have the same scaling symmetry as before, so we can set r+ =
q = 1 for numerics. Here, the choice r+ = 1 corresponds to T = 1/(2πR),
where R is the radius chosen in the previous section by setting r0 = 1. In
this case, the boundary conditions are

φ(1) = 0 , ψ′(1) =
m2L2ψ(1)

5
. (C.10)

To determine the physics at other temperatures, we can fix q and R and use
the scaling to adjust the temperature.

For any values of parameters, we have a solution

ψ = 0 , φ(r) = µ(1− 1

r3
) . (C.11)

corresponding to the pure Reissner-Nordstrom background in the probe
limit.

As in the low temperature phase, we find a critical value µc = F (m2)
(or, restoring temperature dependence, µc = T

Tc
F (m2)) for each choice of

200



C.1. Large charge limit

Figure C.1: Critical values of µq vs m2 for scalar condensation in large
q limit. The top curve is the critical value for µ in black hole phase (just
above the transition temperature), while the bottom curve is the critical µ
in low temperature phase.

m2, above which there is another solution with nonzero ψ. This critical µ
may again be determined by a linearized analysis, from which we obtain the
equation

ψ′′ +

(
6r5 − 1

r(r5 − 1)

)
ψ′ +

(
µ2(r3 − 1)2

r4(r5 − 1)2
− m2r3

r5 − 1

)
ψ = 0 . (C.12)

We can set ψ(1) = 1 without loss of generality, and this requires

ψ′(1) =
m2

5
. (C.13)

These can be solved numerically to find F (m2), and our results (with the
low temperature results) are plotted in Figure C.1.

A sample phase diagram, for the case m2 = −6 is shown in Figure 5.12.

Order of phase transitions in the probe limit

To complete this section, we verify analytically that the action for solutions
with scalar field in the probe limit is always less than the corresponding
unperturbed solution. In this limit we neglect the gravity back reaction of
the gauge fields and scalar. The on-shell action in this approximation is
given by

S

T d
=

∫
dd+1x

√−ggttgrrA
′2
t

2
. (C.14)
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C.2. Critical µ for solutions with infinitesimal charged scalar

We have used the fact that the scalar action is quadratic and vanishes on-
shell once the boundary value of scalar is kept to zero [49]. Writing the action
in this simple form gives us information about the relative free energy of the
different phases.

The solution for At in the superconducting phase may be written as

ASt = A0
t + δAt , (C.15)

where δAt → 0 in the IR region of the bulk and near the boundary. A0
t is

the value of At in the normal phase. Then, from equation (C.14) we get

Snew
T dV

=
Sold
T dV

+ 2

∫
dr
√−ggrrgtt∂rA0

t∂r(δAt) +

∫ √−ggrrgtt (δAt)
′2

2
dr .

(C.16)

The cross term between A0
t and δAt vanishes after integrating by parts and

then using the eom of A0
t . Hence

δS = Snew − Sold = (T dV )

∫ √−ggrrgtt (δAt)
′2

2
dr < 0, (C.17)

as gtt < 0. Therefore if a phase with non-trivial scalar condensate exists it
will always have a lower free energy than the normal phase and the associated
transition will be of second order.

The introduction of gravity may give rise to a positive term in the on-
shell action and the nature of phase transition may change.

C.2 Critical µ for solutions with infinitesimal
charged scalar

To find the critical µ at which solutions with infinitesimal scalar field exist,
we find the value of µ for which the linearized scalar equation about the ap-
propriate background admits a solution with the right boundary conditions
at infinity.

At low temperatures, this gives (setting r0 = 1)

ψ′′ +
(
g′

g + 4
r

)
ψ′ + 1

g

(
q2φ2

r2 −m2
)
ψ ,

g(r) = r2 − 1
r3 , φ = µ , (C.18)

while for the RN black hole background (setting r+ = 1) we have

ψ′′ +
(
g′

g + 4
r

)
ψ′ + 1

g

(
q2φ2

g −m2
)
ψ ,
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Figure C.2: Critical T/µ vs charge q for condensation of m2 = −6 scalar
field in Reissner-Nordstrom background.

g(r) = r2 −
(

1 + 3µ2

8

)
1
r3 + 3µ2

8r6 ,

φ = µ
(
1− 1

r3

)
. (C.19)

More general values of r0 or r+ can be restored by the scaling symmetry.
For m2 = −6, we find a critical value of µ in the low-temperature case

given by µlowq = 5.089/(2πR). At high temperatures, the critical solutions
exist T/µ when has a critical value as plotted in Figure C.2.
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