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Abstract

Cognitive radio networks (CRNs) provide an effective solution to address the increasing

demand for spectrum resources. The cooperation among secondary users (SUs) improves

the sensing performance and spectrum efficiency. In this thesis, we study a traffic-demand

based cooperative spectrum sensing and access strategy in a CRN with multiple SUs

and multiple primary users (PUs). In the proposed strategy, each SU makes its own

cooperation decision according to its traffic demand. When the SU has a high traffic

demand, it selectively chooses channels to sense and access. When it has no data to

transmit, it can choose not to perform sensing and save energy for future transmission.

In the first part of the thesis, we study the traffic demand-based cooperation strategy

in CRNs, in which each SU senses at most one channel during a time slot. We formulate

this problem as a non-transferable utility (NTU) coalition formation game, in which each

SU receives a coalition value that takes into account the expected throughput and energy

efficiency. In order to obtain the final coalition structure, we propose a sequential coali-

tion formation (SCF) algorithm. Simulation results show that our proposed algorithm

achieves a higher throughput and energy efficiency than a previously proposed coalition

formation algorithm in [1].
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In the second part of this thesis, we extend the cooperation strategy problem in CRNs

by enabling each SU to sense multiple channels during the sensing stage. We formulate the

problem as an NTU overlapping coalitional game. We propose an overlapping coalition

formation (OCF) algorithm to obtain a stable coalition structure. The proposed OCF

algorithm is proved to converge after a finite number of iterations. We also modify the

SCF algorithm proposed in the first part of this thesis to address the problem in the

new system model. The modified SCF algorithm requires a lower number of iterations

and involves less information exchange among SUs. Moreover, an adaptive transmission

power control scheme is proposed for SUs to further improve their energy efficiency.

Simulation results show that our proposed algorithms achieve a higher throughput than

the disjoint coalition formation (DCF) algorithm.
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Chapter 1

Introduction

This chapter first introduces the background of cognitive radio network (CRN), coop-

erative spectrum sensing and spectrum allocation methods in CRNs, and game theory

applications in CRNs. Then, we present the motivation and contributions of our work.

The list of publication and the structure of the thesis are shown at the end of this chapter.

1.1 Cognitive Radio Network

There is an increasing demand for spectrum resources due to rapid development of the

mobile applications. However, spectrum channels are under-utilized by licensed users [2].

CRNs provide a promising solution to utilize the spectrum holes and improve spectrum

efficiency [3]. In CRNs, secondary users (SUs) are allowed to access the spectrum channels

as long as the transmission of primary users (PUs) is not interfered with. In this way,

the spectrum white spaces are filled by SUs’ transmission and spectrum efficiency can be

improved.

In CRN, each SU corresponds to a pair of secondary transmitter and secondary re-

ceiver with or without a base station. The PUs are authorized to transmit data on
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licensed channels and their transmission should not be interfered by SUs. CRNs can be

classified to underlay CRN and overlay CRN according to the way that spectrum is uti-

lized [4]. In an underlay CRN, SUs can use spectrums only if the interference generated

by SUs’ transmission is below a predefined threshold. While, in an overlay CRN, spec-

trums are opportunistically accessed by SUs when they are temporarily not used by PUs.

We consider the overlay CRN model in this thesis. To better utilize spectrum resources

and guarantee the protection for PU’s transmission, SUs have to detect the channel avail-

ability before accessing the channel. There are multiple detection techniques for SUs to

perform spectrum sensing, such as energy detection, feature detection, matched filtering

and coherent detection [5]. When the PUs are detected as idle (i.e., the licensed channels

are available), SUs can transmit on the channel. In order to use the channel with high

efficiency, SUs need to consider which channels to choose and how the spectrum resources

should be allocated, which is referred to as spectrum access and allocation in CRNs.

1.2 Cooperative Spectrum Sensing and Access in

CRNs

For spectrum sensing in CRNs, an SU may not be able to detect the channel accurately

due to the shadowing and path loss. Therefore, SUs work cooperatively to sense the

channel and decide the channel availability based on fusion decision. This is referred to

as cooperative spectrum sensing. After spectrum sensing, the use of available channels
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is shared among SUs. In the design of cooperative spectrum sensing and access (CSSA)

strategy, the throughput and energy efficiency are two important factors that are widely

considered. Many studies have been conducted to address the CSSA problem in CRNs.

They developed different strategies to improve the throughput or energy efficiency in

CRNs.

By optimizing the sensing parameters (e.g., detection threshold and sensing duration)

in cooperative sensing or developing efficient sensing scheduling methods, better sensing

performance and a higher network throughput can be achieved [6], [7]. When maximizing

the network throughput, the protection for the transmission of PUs needs to be guar-

anteed. Therefore, the constraints of power consumption and sensing performance are

taken into account [8], [9]. Some works focus on developing scheduling algorithms to

assign available channels to different SUs [10], [11]. In this way, the spectrum resources

are allocated to SUs according to the channel characteristics and traffic demands, and a

high system energy efficiency is obtained. In [12], the optimal sensing time, energy de-

tection threshold and the number of SUs are determined to maximize the system energy

efficiency.

1.3 Game Theory Applications in CSSA

In many existing works, the problem of CSSA in CRNs can be formulated as a game,

where each SU is modeled as a player. Each player aims to maximize its individual

payoff or improve the social welfare. In [13], the problem of cooperative spectrum sensing



Chapter 1. Introduction 4

scheduling in CRNs with multiple channels is formulated as an evolutionary game, where

each SU makes its own decision on whether to participate in sensing or not. An entropy-

based coalition formation algorithm is developed to help SUs select which channel to

sense. In [14], Jiang et al. study the channel access problem in CRNs by proposing a

Bayesian learning based method to estimate the channel states, and a Markov decision

process based approach to make channel access decision for each SU.

In order to obtain better cooperative sensing performance or distribute spectrum

resources among SUs efficiently, the concept of coalitional game is also applied to the

design of cooperation strategy in CRNs. The work in [1] investigates the tradeoff between

spectrum sensing and spectrum access. The problem is formulated as a disjoint coalition

formation game, where each SU aims to maximize its utility. A distributed algorithm

is proposed to obtain the Nash-stable coalition structure. In [15], Hao et al. apply the

hedonic coalition formation game theory to the cooperative spectrum sensing and access

problem. The coalition payoff relates to energy efficiency and sensing accuracy. They

propose a disjoint coalition formation algorithm to find the stable coalition structure. In

[16], a coalitional game approach is applied to study the spectrum access of SUs, where

SUs serve as cooperative relays of PUs and obtain channel access as a payment. It is

shown that SUs form a grand coalition as the final coalition structure to maximize the

system utility.
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1.4 Motivation

Although several algorithms have been proposed to improve either the energy efficiency

or throughput of SUs in CRNs, most of them do not consider traffic demand of each

SU. In most of the previous works, SUs are assumed to have infinite data to transmit

and the spectrum channel can always be fully utilized when it is assigned to SUs, such

as [1] and [15]. This, however, may not be the case in practice. The traffic demand

of SUs may change from time to time and vary from one to another. The amount

of data that an SU needs to transmit depends on its application, e.g., an SU with a

video streaming application usually requires a higher throughput than an SU running a

best-effort application. In addition, the traffic demand of an SU may change over time,

e.g., an SU with an environmental monitoring application aims to report the change of

temperature. Therefore, when investigating the problem of the spectrum sensing and

access in CRNs, it is necessary to take into account the traffic demand of SUs. Although

in [10] and [17], the traffic demand of SUs is considered when studying the spectrum

resource allocation problem, they do not consider spectrum sensing. Moreover, their

objective is to maximize the aggregate system utility instead of developing a cooperative

strategy from the perspective of individual SUs.

Most of the existing works assume that all SUs should participate in cooperative

sensing (e.g., [11], [18] and [19]). However, in an energy-constrained CRN, for an SU

having no data to transmit during a certain time period, it may be better to stay idle to

conserve energy for future transmission instead of participating in cooperative sensing.
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Thus, it is reasonable to let SU make its own decision on cooperation according to its

traffic demand. The work in [20] uses an evolutionary game approach to determine the

cooperative sensing strategy of SUs. However, it does not consider the energy efficiency

and traffic demands of SUs.

Although coalitional game theory is widely used in developing spectrum sensing and

access strategies in CRNs, most of the previous works aim at formulating the problem as

a disjoint coalition formation game and finding the non-overlapping coalition structure

(e.g., [1] and [15]). They assume that an SU can only join one coalition and perform

cooperative sensing within that coalition. This assumption restricts the cooperation of

SUs and limits the improvement of system utility. To relax this assumption, overlapping

coalitional game theory can be used. In an overlapping coalitional game, each player

can join multiple coalitions to maximize its payoff. Due to the nature of CRNs, SUs

can broadcast their sensing results to other devices. This allows them to participate in

multiple groups at the same time. Therefore, overlapping coalitional game can be applied

to spectrum sensing and access problem in CRNs. For example, the work in [21] studies

the cooperative sensing of SUs. The problem is formulated as an overlapping coalitional

game and a distributed algorithm is proposed to find the stable coalition structure. How-

ever, this work focuses on improving sensing performance and does not consider spectrum

resource allocation. Moreover, it does not take into account the associated cost of joining

a coalition.
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1.5 Contributions

In this thesis, we study a traffic demand-based joint CSSA strategy in CRNs. We consider

a CRN with multiple SUs and multiple PUs. Each SU has to perform spectrum sensing if

it wants to access the channel, and one channel can only be assigned to one SU at a time

during the transmission stage. In the proposed cooperation strategy, each SU makes its

own cooperation decision according to its traffic demand. When an SU has a high traffic

demand, it participates in cooperative sensing and shares the spectrum resources with

other SUs. If there is no data to transmit, the SU can choose not to perform sensing and

save energy for future transmission. We apply the coalitional game approach to analyze

the problem, in which each SU is modeled as a player to maximize its individual utility.

In Chapter 2, we consider the case that each SU can only sense one channel during the

sensing stage. In Chapter 3, we generalize the system model and enable each SU to sense

multiple channels.

The main contributions of this thesis are as follows:

• In Chapter 2, we study a cooperation strategy in a CRN with multiple channel,

where each SU can only sense one channel at a time. We formulate this problem

as a non-transferable utility (NTU) coalitional formation game, in which each SU

receives payoff according to its expected throughput and energy efficiency. We

propose a sequential coalition formation (SCF) algorithm to determine the final

coalition partition. Simulation results show that our proposed SCF algorithm ob-

tain a final partition that has a higher throughput and energy efficiency than the
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Nash-stable partition obtained by a switch rule-based coalition formation (SRCF)

algorithm proposed in [1]. Moreover, our proposed algorithm has a lower complexity

than the SRCF algorithm.

• In Chapter 3, we extend the problem by enabling each SU to sense multiple chan-

nels during the sensing stage. Each SU makes individual decisions on how many

and which channels to sense and access according to its own traffic demand. We

formulate this problem as an NTU overlapping coalition formation game. To ob-

tain the stable overlapping coalition structure, we propose an overlapping coalition

formation (OCF) algorithm. We prove that our proposed algorithm converges to a

stable coalition structure after a finite number of iterations. Moreover, we modify

the SCF algorithm to address the problem in the new system model. The modified

SCF algorithm has as good performance as OCF algorithm and requires a lower

number of iterations and less information exchange among SUs. We also propose an

adaptive transmission power control strategy to minimize the energy consumption

spent on transmission while guaranteeing that the maximum expected throughput

is obtained. Simulation results show that our proposed OCF and modified SCF

algorithms outperform the disjoint coalition formation (DCF) algorithm in terms

of aggregate throughput.
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1.6 List of Publication

The following publication has been completed based on the work in this thesis.

• Zhiyu Dai and Vincent W.S. Wong, “Traffic demand-based cooperation strategy

in cognitive radio networks,” in Proc. of IEEE Wireless Communication and Net-

working Conference (WCNC), Istanbul, Turkey, April 2014.

1.7 Structure of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, we present the traffic-demand

based cooperation strategy in CRNs with each SU sensing only one channel in a time

slot. In Chapter 3, we extend the CSSA problem by studying the case that each SU is

allowed to sense multiple channels. Conclusions and future work are given in Chapter 4.
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Chapter 2

Traffic Demand-based Cooperation

Strategy in CRNs

In this chapter, we study a traffic demand-based joint cooperative spectrum sensing and

access strategy for individual SU in CRNs, where each SU senses at most one channel

during the sensing stage. We present the system model and formulate the problem as a

coalitional game. A sequential coalition formation (SCF) algorithm is proposed to obtain

the final coalition structure. Then, we present the performance evaluation by comparing

our proposed algorithm with the switch rule-based coalition formation (SRCF) algorithm.

The summary is given at the end of this chapter.

2.1 System Model

We consider a CRN with N SUs and M PUs. Each SU corresponds to a transmitter-

receiver pair and each PU transmits data via a licensed channel. There are M licensed

channels. Let N = {1, 2, . . . , N} denote the set of SUs and M = {1, 2, . . . ,M} denote

the set of PUs. Assume that the CRN works in a time slotted manner and the slot
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duration is T . At the beginning of each time slot, if an SU chooses to participate in

cooperative spectrum sensing and access, it will perform sensing before accessing the

available channels and the sensing duration is τ . Each SU has different amount of data

in its buffer waiting to be transmitted and only these SUs participating in sensing can

obtain access for channel use. Each SU selectively joins in cooperative sensing based on

the knowledge of the traffic demand and channel capacity.

We assume that during the sensing stage, each SU can only sense one channel. This

assumption is also made in [11] and [15]. In order to avoid interference between transmis-

sion of different SUs, we assume that a channel can only be accessed by one SU at a time.

Let Sj denote the set of SUs choosing to sense and access channel j ∈ M. We use Pf,i,j

and Pd,i,j to denote the false alarm probability and detection probability of SU i ∈ N

when it detects channel j ∈ M, respectively. The detection probability is the probability

that the channel is detected as busy when it is indeed busy. The false alarm probability

is the probability that the channel is detected as busy when it is idle. Since we use the

cooperative sensing method, in each coalition there is a fusion center collecting sensing

results from SUs and making a decision on the channel availability. The fusion center

uses OR rule to decide the availability of channels [22]. The false alarm probability and

detection probability of the set of SUs Sj choosing to detect channel j ∈ M are given as

Pf,j = 1−
∏
i∈Sj

(1− Pf,i,j), (2.1)
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and

Pd,j = 1−
∏
i∈Sj

(1− Pd,i,j). (2.2)

Let Wt,i denote the transmit power of SU i and Bj denote the bandwidth of channel

j. SU i can achieve a transmission rate of Ri,j over the channel j as

Ri,j = Bj log2

(
1 + |gi|2

Wt,i

σ2
n

)
, (2.3)

where gi denotes the channel gain of transmission link of SU i and σ2
n is the noise power.

We use PI,j to denote the probability that the channel j is idle. Since the slot duration

T is very short, we assume that the information bits in SU i’s buffer are Di, which is a

constant during a time slot. This assumption is also made in [10] and [17]. In order to

encourage SUs with high traffic demand to participate in sensing and accessing channels,

we give SUs chances to access channel according to their traffic demands. The probability

that SU i ∈ Sj can access channel j when this channel is detected as idle can be modeled

as

Pi(Sj) =
Di∑

k∈Sj
Dk

. (2.4)

We assume that SUs do not cheat at reporting the information of traffic demand when

cooperating with other SUs. The behaviour of dishonest SUs is beyond the scope of this

thesis and may be analyzed in future work using mechanism design.

Given that SU i obtains access to an available channel j, since SU i cannot transmit

more than the number of information bits in its buffer, the transmission time for SU i,
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denoted as ti,j , is

ti,j = min

{
Di

Ri,j
, T − τ

}
. (2.5)

The probability that channel j is correctly detected as idle is PI,j(1 − Pf,j). The

expected throughput that SU i can achieve if it chooses to sense and access channel j is

Ui(Sj) =
PI,j(1− Pf,j)Pi(Sj)Ri,jti,j

T
. (2.6)

We also consider the power consumption of SU i, which includes power consumption

of sensing and transmission. There are two cases that SU will perform transmission over

channel j. The first case is that channel j is busy and it is detected as idle, which

has a probability of (1 − PI,j)(1 − Pd,j). The second case is that channel j is idle and

it is detected as idle, which has a probability of PI,j(1 − Pf,j). Therefore, the power

consumption Ei can be modeled as

Ei(Sj) =
((

(1− PI,j)(1− Pd,j) + PI,j(1− Pf,j)
)
Pi(Sj)Wt,iti,j +Ws,iτ

) 1
T
, (2.7)

where Ws,i denotes the sensing operation power of SU i.

In addition to throughput, we consider energy efficiency as another factor that affects

SUs’ decisions on cooperative sensing. The energy efficiency of SU i in coalition Sj is

defined as throughput over power consumption, which is

ηi(Sj) =
Ui(Sj)

Ei(Sj)
. (2.8)

The objective of each SU is to maximize its throughput while keeping its energy

efficiency above the threshold value ηmin. That is, during a time slot, each SU aims to
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transmit the data in its buffer as much as possible under the condition that its energy

efficiency is not smaller than a predefined threshold. When the traffic demand of an

energy-constrained SU is very low, it may have to spend too much energy in order to

transmit just several information data bits if it joins in cooperative sensing. In this case,

where the cost of cooperation outweighs the payoff, this SU simply chooses not to perform

sensing and saves energy for transmission next time.

2.2 Coalition Formation

In this section, we formulate the individual cooperation strategy problem as an NTU

coalition formation game. We propose a sequential coalition formation algorithm to

obtain a final coalition structure.

2.2.1 NTU Coalitional Game Formulation

According to coalitional game terminology, we refer to the set of SUs N as the set of

players in this game, and denote the coalition value function as v. Then, this coalitional

game is described by the pair of (N , v). This is an NTU game, because in this game

the payoff of a coalition cannot be assigned a real value, instead different players receive

different payoffs within each coalition. The value of a coalition S is defined by a |S|-

dimensional vector. That is v(S) = (xi(S), ∀ i ∈ S), where xi(S) represents the payoff
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that SU i receives in coalition S and is given as

xi(S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ui(S), if ηi(S) ≥ ηmin,

0, otherwise.

(2.9)

Note that the coalition value of an SU is the expected throughput if its energy effi-

ciency is higher than or equal to the threshold ηmin, and is equal to zero otherwise. Each

SU can only choose to sense and access one of the M channels. All the SUs that choose

the same channel form a coalition. We denote the coalition sensing and accessing channel

j ∈ M as Sj. In addition, we define the set of the SUs that choose to quit sensing as

SM+1 and the payoff of each SU in SM+1 is zero.

From (2.4) and (2.6), with more SUs joining one coalition, an SU in this coalition

gets less chance to access channel, which may lead to a lower payoff. Therefore, the

grand coalition, which includes all SUs in a coalition, is not the optimal partition for

this coalitional game. In order to study this coalition formation problem, we define the

preference of player i over different coalitions as follows:

Definition 1 [23]: SU i ∈ N prefers coalition Sk over Sm, where Sk, Sm ⊆ N , is

equivalent to xi(Sk) ≥ xi(Sm). This relation can be represented as

Sk �i Sm ⇔ xi(Sk) ≥ xi(Sm). (2.10)

Since the objective of an SU is to obtain a higher payoff by leaving or joining a

coalition, the SU would leave its current coalition and join a new coalition if it prefers

the new coalition over its current coalition according to Definition 1. A move of any SU
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will result in a new partition. Therefore, we study the stability of coalition partition by

introducing the concept of Nash-stable partition, which is defined as follows:

Definition 2 [24]: A coalition partition Π of N is Nash-stable if ∀ i ∈ N SΠ(i) �i

Sk ∪ {i} for all Sk ∈ Π ∪ {∅}, where SΠ(i) denotes the set S ∈ Π such that i ∈ S.

According to Definition 2, a coalition partition is Nash-stable if no player has an

incentive to leave its current coalition and join a new coalition. Therefore, all players

will stay in their current coalition in a Nash-stable partition. Since there are (M + 1)N

possible partitions given that the number of SUs and the number of channels are finite,

we can use the exhaustive search algorithm to find all possible Nash-stable partitions of

this coalitional game. However, the exhaustive search algorithm leads to a high compu-

tational complexity because the number of possible partitions grows exponentially with

the number of SUs. Thus, we propose an algorithm with low complexity to obtain the

final partition in the next section.

2.2.2 Sequential Coalition Formation (SCF) Algorithm

We propose the SCF algorithm, which is originated from the concept introduced in [25].

The sequential game of coalition formation is defined by the coalition value function v

and the rule of order ρ, which means the coalition structure is formed step by step and

at each step only one player can propose a coalition structure. Players make moves one

by one according to the rule of order ρ. Once a player has joined a coalition S, it has to

remain in this coalition, which means the next active player can only make a coalition
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proposal among the remaining players.

In the proposed algorithm, the rule of order ρ is determined by traffic demand of SUs.

That means the SU with the highest traffic demand is the first one to make a move.

Since SUs act selfishly, we assume that at each step the only active SU simply concerns

its own payoff and chooses the best coalition to join. The active SU makes a decision

based on the current coalition structure and remains in that coalition once it has joined a

coalition. The coalition partition is formed step by step by each SU. Thus, the sequential

coalition formation involves N iterations. Let Π(k) denote the partition formed in the kth

iteration. In (k+1)th iteration, SU k+1 becomes active. It can either join any coalition

in Π(k) or form a singleton coalition, which yields the new partition Π(k+1) in (k + 1)th

iteration.

The proposed SCF algorithm is shown in Algorithm 1. First, SUs communicate

the traffic demand information with each other (lines 1 to 3) and the traffic demand

information vector D is obtained (line 4). Q(X ) is a sorting function that maps a vector

X to a |X |-dimensional vector. It returns a vector with each element representing the

sorted index of each X ’s element in descending order. For example, for Y = Q(X ), where

X = (x1, x2, x3, x4) and x2 ≥ x3 ≥ x1 ≥ x4, Y = (2, 3, 1, 4), which means x2 ranks first, x3

ranks second, x1 ranks third, and x4 ranks fourth in the sequence. The rule of order ρ is a

vector obtained through sorting D by applying function Q(D) (line 5). At the beginning

of the sequential coalition formation, we form the initial partition by letting all SUs join

quit sensing set SM+1 (line 6). After that, SUs make coalition formation decision one by
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one according to ρ. For example, the SU with the highest traffic demand makes the first

choice. During each iteration, we first set the payoff of active SU i, which is originally

in quit sensing set, to zero (line 8). We also initialize coalition structure by setting it as

the structure we obtained in last iteration (line 9). We assume that SU i leaves the quit

sensing coalition and joins coalition j, which results in a new coalition structure Π(i)∗

(line 10). Then SU i calculates its payoff in potential new coalition according to (2.9)

(line 12) and compares it with its current payoff (line 13). It leaves its current coalition

and joins a new coalition if it prefers the new coalition. Thus, a new partition is formed

(line 14), and its payoff is updated (line 15). After N iterations, the final partition Π(N)

and corresponding coalition payoff xi are obtained (line 20).

To better explain our proposed SCF algorithm, we have the following example. Con-

sider a CRN with N = {1, 2, 3, 4} and M = {1, 2}. We denote S3 as the quit sensing

coalition. Without loss of generality, we assume that D3 ≥ D4 ≥ D2 ≥ D1. Thus, we

obtain ρ = (3, 4, 2, 1) by calculating Q(D). According to SCF algorithm, all SUs are in

the quit sensing coalition S3 initially. In the first iteration, SU 3 makes the first choice

(i.e., ρ(1) = 3). Assume that SU 3 prefers channel 1 over channel 2, then SU 3 chooses

channel 1 to sense and access. SU 4 ranks second according to ρ. Thus, SU 4 makes the

second choice. Assume that x4({4}2) ≥ x4({3, 4}1) ≥ x4(S3), SU 4 chooses to join coali-

tion S2. For SU 2, which ranks third, assume that x2({3, 2}1) ≥ x2({4, 2}2) ≥ x2(S3).

SU 2 joins coalition S1. SU 1 is the last one to make a decision. It can choose to join

{3, 2}1 or {4}2 or stay in quit sensing coalition S3. Assume that the energy efficiency of
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Algorithm 1 Sequential Coalition Formation (SCF) Algorithm in CRN

1: for each i ∈ N do
2: SU i broadcasts its traffic demand Di to other SUs and receives information from

other SUs
3: end for
4: D := (D1, D2, . . . , DN)
5: ρ := Q(D)

6: Set Π(0) := {{1, 2, . . . , N}(0)M+1}
7: for i = 1 to N do
8: Set xρ(i) := 0
9: Set Π(i) := Π(i−1)

10: for j = 1 to M do
11: Set Π(i)∗ :=

{
Π(i−1) \ {S(i−1)

M+1 , S
(i−1)
j }

}⋃
{S(i−1)

M+1 \ {ρ(i)}, S(i−1)
j

⋃
{ρ(i)}}

12: Calculate xρ(i)(S
(i−1)
j

⋃
{ρ(i)}) according to (2.9)

13: if xρ(i)(S
(i−1)
j

⋃
{i}) ≥ xρ(i) then

14: Set Π(i) := Π(i)∗

15: Set xρ(i) := xρ(i)(S
(i−1)
j

⋃
{i})

16: end if
17: end for
18: end for
19: Calculate xi(S), ∀ i ∈ S and S ∈ Π(N)

20: Output Π(N) and xi, ∀ i ∈ N

SU 1 is lower than the energy efficiency threshold no matter it joins {3, 2}1 or {4}2, SU

1 chooses to stay in coalition S3 and quits sensing during this time slot. Therefore, the

final partition is Π(4) = {{3, 2}1, {4}2, {1}3}.

2.3 Performance Evaluation

In this section, we compare the performance between our proposed SCF algorithm and

the switch rule-based coalition formation (SRCF) algorithm [1] from the perspective of

aggregate throughput and energy efficiency, respectively. Moreover, we compare the
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Table 2.1: List of Simulation Parameters

Parameter Value
Number of SUs N 10
Number of PUs (licensed channels) M 6
Path loss exponent γ 2
Bandwidth of channel j Bj 100 kHz
Probability that channel j is being idle PI,j [0.5, 1]
False alarm probability of SU i when it detects
channel j Pf,i,j

0.1

Detection probability of SU i when it detects chan-
nel j Pd,i,j

0.9

Noise power σ2
n 0.01 mW

Transmission power of SU i Wt,i 100 mW
Sensing power of SU i Ws,i 50 mW
Slot duration T 100 ms
Sensing duration τ 5 ms
Average number of packets generated by SU dur-
ing a time slot λ

0.2 packet

The energy efficiency threshold ηmin 50 kbit/Joule

computational complexity of these two algorithms by analyzing their running time.

Unless stated otherwise, we consider a CRN with ten SUs and six PUs (i.e., six

licensed channels). The transmitter and receiver of each SU is randomly placed in a 100

m × 100 m square region. We model the channel gain of the link of SU i as |gi|2 = 1/dγi ,

where di is the distance between the transmitter and receiver of SU i, and γ is the path

loss exponent. We set γ to 2. According to IEEE Standard 802.22, we set the detection

probability of every SU at each channel as 0.9 and the false alarm probability as 0.1.

The probability that the channel is idle is randomly chosen between [0.5, 1]. The number

of packets generated by each SU during a time slot follows Poisson distribution with an

average rate of λ = 0.2 packet per time slot, and each packet is 20 kb.

The list of parameters is shown in Table 2.1. We run the simulation on a computer
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Figure 2.1: Aggregate throughput versus the number of PUs M for N = 10.

that is equipped with Intel(R) Core(TM)2 Duo P7350 CPU 2.00 GHz processor and 2.00

GB RAM. We use MATLAB as simulation tool in the Windows 7 operation system. The

performance of algorithms are compared under the same parameters setting.

When we apply the SRCF algorithm [1], different initial partitions may lead to

different Nash-stable partitions. Therefore, we randomly set the initial partition and

run SRCF algorithm 50 times to obtain 50 Nash-stable partitions. We calculate the

average payoff of each SU and obtain the average coalition value of these Nash-stable

partitions, which we denote as the average Nash-stable partition. To better compare SCF

algorithm and SRCF algorithm, we analyze the results of average Nash-stable partition

in the following simulation.

Figure 2.1 shows the aggregate throughput of SUs when we increase the number of
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Figure 2.2: Aggregate throughput versus the number of SUs N for M = 6.

PUs M (i.e., the number of channels) from 1 to 10. Results show that our proposed

SCF algorithm has a better performance than the SRCF algorithm in terms of aggregate

throughput. For both algorithms, the aggregate throughput increases with M at first.

This is because the throughput is constrained by channel resources when M is small.

Thus, when more channels are available, the traffic demand of SUs is satisfied and a higher

aggregate throughput can be obtained. However, when M is large, increasing M further

does not improve aggregate throughput too much, because the aggregate throughput is

constrained by the traffic demand of SUs when channel resources are abundant.

Figure 2.2 shows the aggregate throughput of SUs as the number of SUs N increases

from 2 to 20. Results show that performance of SCF algorithm is similar to or better

than that of SRCF algorithm in terms of aggregate throughput. In our proposed SCF
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Figure 2.3: System energy efficiency versus the number of PUs M for N = 10.

algorithm, SUs with high traffic demand are given priority to sense and access good

channels (i.e., channel with high probability of being idle). Therefore the spectrum

resources are utilized with a high efficiency. However, in SRCF algorithm, SUs act

selfishly and the channel resources can be occupied by SUs with low traffic demand.

Thus, the aggregate throughput of SUs for SRCF algorithm is less than that for SCF

algorithm. Besides, the number of SUs N increases the aggregate throughput when N

varies from 2 to 20.

Figure 2.3 shows the average energy efficiency of SUs when we increase the number

of PUs M from 1 to 10. In SRCF algorithm, all SUs are supposed to participate in

cooperative sensing. SUs with low traffic demand spend energy on sensing but may

obtain a low throughput. However, in our proposed SCR algorithm, SUs with energy
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Figure 2.4: Running time of algorithms versus the number of SUs N for M = 6.

efficiency lower than the ηmin choose to quit sensing and save energy for transmission

next time. Thus, the average energy efficiency for SCF algorithm is higher than that for

SRCF algorithm. Besides, for both algorithms, the energy efficiency increases with M

when M is small. This is because SUs that participate in sensing obtain a low throughput

when channel resources are insufficient, which leads to a low energy efficiency. As more

channels become available, SUs achieve higher throughput and thus obtain a higher

energy efficiency.

To provide an idea of the complexity of our proposed SCF algorithm compared with

SRCF algorithm, we evaluate the running time of these two algorithms as the number

of SUs N increases from 2 to 30. Results in Figure 2.4 show that the running time of

the SRCF algorithm is almost three times that of our proposed SCF algorithm. Our
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proposed SCF algorithm involves only N iterations. During each iteration, the active

SU only has to calculate coalition payoff M times before choosing the best coalition to

join. However, for SRCF algorithm, in order to reach a Nash-stable partition, each SU

has to calculate and compare its coalition payoff in M different coalitions whenever there

is a change of partition. Thus, the complexity of SRCF algorithm is higher than our

proposed SCF algorithm. Therefore, SRCF algorithm performs worse than our proposed

SCF algorithm in terms of running time. When N = 30, our proposed SCF algorithm

outperforms SRCF algorithm by over 60% in terms of running time.

2.4 Summary

In this chapter, we studied the cooperation strategy in CRNs with multiple channels

from the perspective of traffic demand of SUs. We proposed a joint cooperative spec-

trum sensing and access scheme, which allows energy-constrained SUs work more effi-

ciently through selectively participating in cooperation. An NTU coalition formation

game was formulated to study this cooperative sensing problem, in which each SU makes

individual decision on joining in coalition to maximize a payoff that takes into account

the expected throughput and energy efficiency. Since exhaustive search method leads

to a high computational complexity, we proposed an SCF algorithm. Simulation results

showed that our proposed SCF algorithm obtains the final partition that outperforms the

Nash-stable partition by the SRCF algorithm in [1] in terms of aggregate throughput,

energy efficiency, as well as computational complexity.
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Chapter 3

Overlapping Coalitional Game

Approach for Cooperation Strategy

in CRNs

In the previous chapter, we study the cooperation strategy in CRNs, where each SU can

only sense one channel at a time. In this chapter, we extend the problem by enabling

each SU to sense multiple channels. We apply the overlapping coalitional game theory

to the design of CSSA strategy in CRNs. We first present the system model, which is

different from the system model proposed in Chapter 2. Then, we formulate the problem

as an overlapping coalitional game and propose two coalition formation algorithms. The

stability of the algorithms is analyzed and it is followed by the performance evaluation.

A summary is provided at the end of this chapter.
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3.1 System Model

In this chapter, we still consider a CRN with N SUs, M PUs, and a common base station.

Each SU corresponds to a transmission link between the transmitter of the SU and the

base station. Each PU transmits data via a licensed channel. Let N = {1, 2, . . . , N}

denote the set of SUs and M = {1, 2, . . . ,M} denote the set of PUs. Each SU can

sense multiple channels and all the SUs sensing the same channel form a group. Each

channel is sensed cooperatively by one group of SUs and the channel is assigned to one

of the group members when it is detected as idle. Each SU has different amount of

data in its buffer waiting to be transmitted and only the SUs participating in sensing

can obtain access for channel use. SUs selectively participate in cooperative sensing

based on the knowledge of the traffic demand and channel capacity. In order to avoid

interference between transmission of different SUs, we assume that an idle channel can

only be accessed by one SU at a time.

In Chapter 2, we assign certain values to detection probability and false alarm prob-

ability of each SU respectively. In this chapter, we calculate these two parameters based

on specific sensing parameters. The detection probability of SU i at channel j is [22]

Pd,i,j(ε, γi,j) = Q

((
ε

σ2
n

− γi,j − 1

)√
Ns

2γi,j + 1

)
, (3.1)

where Q(.) is the tail probability for the standard normal distribution, ε is the detection

threshold, σ2
n denotes noise power, γi,j is the received SNR at SU i when it senses channel

j, Ns is the number of sensing samples during the sensing stage in a time slot.
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The false alarm probability of SU i at channel j can be expressed as [22]

Pf,i,j(Pd,i,j, γi,j) = Q
(√

2γi,j + 1Q−1(Pd,i,j) +
√
Nsγi,j

)
. (3.2)

According to (3.2), a high detection probability leads to a high false alarm probability.

To protect the transmission of the PU j, we set a desired target value P̄d,j. When SUs

perform cooperative sensing at channel j and use the OR rule to make a sensing decision,

the cooperative sensing performance needs to satisfy the target value. When the target

detection probability value at each channel is fixed, we can compute the target detection

probability of each SU as [26]

P̄d,i,j = 1− (1− P̄d,j)
1

|Sj | , (3.3)

where |Sj| denotes the number of SUs sensing channel j.

We apply the P̄d,i,j obtained by (3.3) to calculate Pf,i,j in (3.2). According to OR

rule, we calculate the false alarm probability at channel j, which is Pf,j, according to

(2.1).

In this chapter, we assume that each member in the same coalition obtains an equal

chance to access channels. The probability that SU i ∈ Sj can access channel j given

that this channel is detected as idle is 1
|Sj | . The probability that channel j is correctly

detected as idle is PI,j(1−Pf,j), where PI,j is the probability that channel j is idle. Thus,

the probability that SU i is allowed to perform transmission over channel j without

interfering the transmission of PU is

PU
i,j = PI,j(1− Pf,j)

1

|Sj|
. (3.4)
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Given that SU i is assigned to transmit data over channel j, the achieved throughput

is

Ui,j =
Ri,jti,j

T
, (3.5)

where Ri,j is the transmission rate of SU i on channel j and it can be calculated according

to (2.3), and ti,j is the transmission time of SU i on channel j according to (2.5).

We also consider the power consumption of SU i, which includes power consumption

of sensing and transmission. There are two cases that SU will perform transmission over

channel j. The first case is that channel j is busy and it is detected as idle, which has

a probability of (1 − PI,j)(1 − Pd,j). The second case is that channel j is idle and it is

detected as idle, which has a probability of PI,j(1−Pf,j). Therefore, the probability that

SU i is assigned channel j to transmit data is

PE
i,j =

(
(1− PI,j)(1− Pd,j) + PI,j(1− Pf,j)

) 1

|Sj|
. (3.6)

The energy spent on data transmission is

Et
i,j = Wt,i,jti,j. (3.7)

The energy spent on spectrum sensing when SU i senses one channel is

Es
i,j = Ws,i,jτ. (3.8)

In Chapter 2, it is assumed that an SU can only sense one channel in a time slot.

However, in practice, SUs are able to sense multiple channels during the sensing stage

[1]. We denote the set of channels that SU i chooses as Ai. Now we consider the expected
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throughput that SU i can obtain by choosing channel set Ai. Let K denote a subset of

Ai. All the channels in set K are detected as idle and provide SU i an opportunity to

perform transmission over the channel. The probability is
∏

j∈K(P
E
i,j)
∏

j∈Ai\K(1 − PE
i,j).

Although SU may be provided with multiple channels to access, it can transmit over

only one channel during the transmission stage in a time slot. It will choose the best

one among these |K| channels, which can maximize its throughput (i.e., maxj∈K{Ui,j}).

If SU i chooses channel argmaxj∈K{Ui,j} to access among these offered channels, SU i

may fail to transmit data due to the mis-detection of the primary user. The probability

that SU i can successfully transmit data over this channel is
PU
i,argmaxj∈K{Ui,j}

PE
i,argmaxj∈K{Ui,j}

. Thus, the

expected throughput that SU i can obtain is

Ui(Ai) =
∑
K⊆Ai

((∏
j∈K

PE
i,j

∏
j∈Ai\K

(1− PE
i,j)
)PU

i,argmaxj∈K{Ui,j}

PE
i,argmaxj∈K{Ui,j}

max
j∈K

{Ui,j}
)
. (3.9)

As shown in (3.9), the expected throughput of SU i increases with the size of Ai. This

is because by choosing more channels to sense, SU i obtains more opportunities to ac-

cess channel and achieves higher throughput. However, for an energy-constrained SU, it

should limit the energy spent on sensing in order to save enough energy for data transmis-

sion. Therefore, we need to consider the expected power consumption when SU i chooses

channel set Ai. The power consumption contains two parts: sensing power consumption

and data transmission power consumption. The power consumption spent on sensing

each channel in Ai is inevitable to SU i. However, the power spent on transmission oc-

curs only when SU i is performing data transmission over a specific channel. Thus the
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expected power consumption of SU i is

Ei(Ai) =

( ∑
K⊆Ai

((∏
j∈K

PE
i,j

∏
j∈Ai\K

(1− PE
i,j)
)
Et

i,argmaxj∈K{Ui,j}

)
+
∑
j∈Ai

Es
i,j

)
1

T
. (3.10)

To reach a balance between throughput and power consumption, we propose the

energy efficiency as a criterion to evaluate SUs’ decision on cooperation. We define the

expected energy efficiency of SU i as [27]

ηi(Ai) =
Ui(Ai)

Ei(Ai)
. (3.11)

The objective of each SU is to maximize its throughput subject to energy efficiency

constraint. That is, during a time slot, each SU aims to transmit the data in its buffer

as much as possible under the condition that its energy efficiency is not smaller than a

predefined threshold. When the traffic demand of an energy-constrained SU is very low

and SU participates in cooperative sensing, it may have to spend too much energy in

order to transmit just several information data bits. In this case, the cost of cooperation

outweighs the payoff, this SU can simply choose not to perform sensing and save energy for

transmission next time. Moreover, all SUs choosing the same channel perform cooperative

sensing and share the access to this channel. Thus, the problem is how each SU should

cooperate with other SUs and which channel it should choose. We will address this

problem in the next section.
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3.2 Overlapping Coalitional Game for Cooperation

Strategy

In this section, we formulate the CSSA problem as an NTU overlapping coalitional game.

The payoff value of each SU captures the expected throughput and energy efficiency that

can be obtained by joining multiple coalitions. For SUs to make distributed decision

on coalition formation, we define three move rules that take into account both social

welfare and individual payoff. We propose an overlapping coalition formation (OCF)

algorithm to enable SUs to form a final stable coalition structure. The convergence of

this algorithm is analyzed. Moreover, we modify the SCF algorithm proposed in Chapter

2 to address the problem in our new system model. The modified SCF algorithm has

a lower computational complexity and requires less information exchange than OCF

algorithm.

3.2.1 NTU Overlapping Coalitional Game Formation

In this CSSA strategy, SUs choose different channels to maximize their expected through-

put while satisfying the energy efficiency requirement. All SUs choosing the same channel

perform spectrum sensing cooperatively to improve the sensing performance, and share

the spectrum resources based on the channel availability. We assume that all SUs sens-

ing the same channel form a coalition. Therefore, we can formulate this problem as a

coalitional game. Since in our system model, an SU can choose multiple channels and
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contribute to multiple coalitions, this is an overlapping coalitional game. Different from

traditional disjoint coalitional game, in an overlapping coalitional game, a player is al-

lowed to join more than one coalition. Therefore the coalitions are overlapped, where

each player contributes to multiple coalitions and obtains higher payoff. In addition, in

our system model, the payoff of each SU in one coalition depends on its traffic demand.

Thus, the utility obtained by each SU in a coalition may be different and this utility

cannot be transferred among different SUs. Therefore our formulated coalitional game is

an NTU game. We first introduce the definition of an NTU overlapping coalitional game:

Definition 3 [28]. An NTU overlapping coalitional game G = (N , v) is given by a set

of players N = {1, . . . , N} and a function v : S → R
|S|, where S ⊆ N denotes a coalition

formed by the players and v(∅) = 0.

Corresponding to our system model, the players of this game refer to N SUs. They

cooperate with each other and form different coalitions to sense and access different

channels. The value function v maps each coalition S ⊆ N to an |S|-dimensional vector.

We define the coalition value as the expected payoff that each SU can obtain in this

coalition: v(Sj) = (xi(Sj), ∀ i ∈ Sj), where xi(Sj) = PU
i,jUi,j according to (3.4) and (3.5).

However, this is not the total payoff that SU i can obtain in the game, because SU i

can join multiple coalitions in an overlapping coalitional game. We will discuss the total

payoff of SU i in the following context.

In a coalitional game, players autonomously form different coalitions to achieve higher

payoff. The collection of these coalitions is referred to as coalition structure. In a disjoint
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coalitional game, a coalition structure is a partition ofN [29]. However, in an overlapping

coalitional game, SUs are allowed to join multiple coalitions at the same time. Therefore,

the coalitions are overlapped. We define the coalition structure Π as follows:

Definition 4 [30]. An overlapping coalition structure Π over a player set N is defined

as a set Π = {S1, . . . , SK}, where K is the number of coalitions. ∀ 1 ≤ j ≤ K, Sj ⊆ N

and ∪K
j=1Sj = N . Since coalitions can be overlapping, ∃ Si, Sj ∈ Π, i �= j such that

Si ∩ Sj �= ∅.

Since all the SUs choosing the same channel form a coalition, there are at most M

coalitions. In addition, some SUs with very low traffic demand may prefer to stay idle to

save energy for future transmission. Thus, they may choose not to perform sensing. We

denote the set of SUs that quit sensing as SM+1. Therefore, in our system model, the

number of coalitions K is less than or equal to M + 1.

Since an SU can belong to more than one coalition, we consider the payoff that SU

i obtains in an overlapping coalition structure. We cannot calculate the payoff of an SU

by summing up all the payoff it obtains from all the coalitions it belongs to. Although

an SU may be chosen by more than one channel at the same time, it can transmit over

only one channel at a time. Therefore, we define the total payoff of SU i as follows

pi(Π) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ui(Ai), if ηi(Ai) ≥ ηmin,

−∞, otherwise,

(3.12)

where Ai = {j | SU i ∈ Sj and Sj ∈ Π} is the set of channels that SU i chooses to

sense and access. For example, consider an overlapping coalitional game G = (N , v),
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where N = {1, 2, 3, 4} and M = {1, 2}. SUs form coalitions: S1 = {1, 2}1, S2 = {2, 3}2

and S3 = {4}3, where S1 = {1, 2}1 means SUs 1 and 2 form a coalition to sense and

access channel 1. The collection of these coalitions Π = {{1, 2}1, {2, 3}2, {4}3} is the

overlapping coalition structure of N . The corresponding channel sensing sets for each

SU are A1 = {1}, A2 = {1, 2}, A3 = {2}, and A4 = ∅.

When the expected energy efficiency of SU i is greater than the energy efficiency

threshold ηmin, the total coalition value of SU i is equal to the expected throughput it

obtains by choosing the channel set Ai. Otherwise, it is equal to negative infinity. This

definition guarantees that the energy efficiency of SUs during the coalition formation

process will not be lower than the threshold. In addition, we define the payoff of each

SU in set SM+1 as zero. Note that an SU cannot belong to SM+1 and Sj , j ∈ M at the

same time. Once an SU decides to join quit sensing coalition SM+1, it does not sense and

access any channel. Thus, it does not belong to any other coalitions. Therefore, SM+1 is

an isolated coalition and it is not overlapped with any other coalitions.

After defining the coalition value of SUs and overlapping coalition structure, we con-

sider the preference order of SUs. The preference order helps SUs choose between two

coalitions and select the better channel to sense and access. In some existing works (e.g.,

[1] and [15]), the SUs are selfish, which means an SU seeks to maximize its own payoff

without considering the benefits of other SUs. In this case, the channel may be occupied

by SUs with low traffic demands while SUs with high traffic demands are still in short of

spectrum resources. This leads to a low utilization of the channels. Thus, we introduce
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a preference order that takes into account both social welfare and individual payoff. We

define the social welfare as the value of a coalition structure Π and it is calculated as

u(Π) =
∑
i∈N

pi(Π). (3.13)

The value of a coalition structure is the sum of payoffs of all the players in a coalition

structure. When considering the preference order of an SU, we take into account both

individual payoff and coalition structure value as follows:

Definition 5 [30]. In an overlapping coalitional game G = (N , v), given two coalition

structures Πp and Πq over N , Πp is i-preferred over Πq, where i ∈ N , is equivalent to

pi(Πp) > pi(Πq) and u(Πp) > u(Πq). This relation is represented as

Πp �i Πq ⇔ pi(Πp) > pi(Πq) and u(Πp) > u(Πq). (3.14)

According to Definition 5, a coalition structure is preferred over another only when

the total payoff of the coalition structure and the individual payoff of an SU are both

increased from one to the other. This preference order not only guarantees the increase of

social payoff during the coalition formation process, but also keeps the spectrum efficiency

above a certain level. Under this preference order, we show that, during the coalition

formation process, the SUs can reach a stable coalition structure after a finite number of

iterations in the following subsection.
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3.2.2 Coalition Formation Algorithms

Based on the preference order, we define three move rules. During the process of over-

lapping coalition formation, SUs make their own decisions on joining or leaving any

coalitions according to their preference order over different coalitions. There are three

possible moves. First, SU joins a new coalition that it does not belong to. Second, SU

leaves one of its current coalitions. Third, SU switches from one of its current coali-

tions to a new coalition. To provide a mechanism through which SUs can form different

coalitions by performing above moves, we define three move rules as follows:

Definition 6. Join rule: Consider a coalition structure Πp over a set of players N ,

where Sj ∈ Πp and i ∈ N \ Sj . A new coalition structure is defined as Πq = {Πp \ Sj} ∪

{Sj ∪ {i}}. If Πq �i Πp, then SU i joins Sj and Πp changes into Πq.

According to Definition 6, in coalition structure Πp, SU i does not belong to coalition

Sj at first. We assume that SU i joins coalition Sj and the current coalition structure Πp

changes into a new coalition structure Πq. If Πq is preferred over Πp by SU i according

to Definition 5, SU i joins coalition Sj and the current coalition structure Πp is replaced

by Πq. Although the decision is made by SU i, it does not mean that SU acts selfishly

without considering the effect of its move to other SUs. This is because an SU joins a new

coalition only when its own payoff and the coalition structure value are both improved

by this movement. For example, if SU i can increase its payoff by joining coalition Sj,

however its movement is detrimental to other SUs in the game and leads to the decrease of

the total payoff of all SUs, SU i is not allowed to join coalition Sj in this case. Therefore,
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individual payoff and social welfare are both taken into account in this join rule.

Definition 7. Quit rule: Consider a coalition structure Πp over a set of players N ,

where Sj ∈ Πp and i ∈ N ∩ Sj. A new coalition structure is defined as Πq = {Πp \ Sj} ∪

{Sj \ {i}}. If Πq �i Πp, then SU i leaves Sj and Πp changes into Πq.

According to quit rule, SU i leaves one of its current coalitions j and Πp changes

into Πq if this newly formed coalition structure is preferred over the current one by SU

i. Although SU i can always increase its chance to access channels by joining more

coalitions, it may still perform quit move sometimes. When there are too many other

SUs in one coalition that SU i belongs to, SU i obtains little chance to access channels.

Therefore, in this case, SU i may leave this coalition to increase its payoff according to

quit rule.

Definition 8. Switch rule [15]: Consider a coalition structure Πp over a set of players

N , where Sj , Sk ∈ Πp and i ∈ Sj , i �∈ Sk, and i ∈ N . A new coalition structure is defined

as Πq = {Πp \ {Sj , Sk}} ∪ {Sj \ {i}} ∪ {Sk ∪ {i}}. If Πq �i Πp, then SU i switches from

Sj to Sk and Πp changes into Πq.

The switch rule combines the above two rules together. According to its definition,

SU i switches from one of its coalitions to a new coalition when the resulted new coalition

structure is preferred over the current one. The switch rule balances the size of different

coalitions and improves the spectrum efficiency. During the coalition formation process,

some channels may be chosen by many SUs while some other channels are sensed by few

ones. When SUs find that their payoff can be improved by switching from the coalition
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with many members to another coalition with very few members, they perform switch

moves. In this way, SUs autonomously distribute their contribution to different coalitions

and channels are equally utilized.

In order to study the stability of the overlapping coalition structure, we define the

stability of an overlapping coalition structure as follows:

Definition 9. An overlapping coalition structure Π over a set of players N is stable if

∀ i ∈ N , such that i ∈ Sj , i /∈ Sk, and Sj , Sk ∈ Π, SU i will not deviate from Sj or join

Sk.

According to Definition 9, for any SU i in a stable coalition structure, it will not leave

any of its coalitions or join a new coalition. Therefore, all the SUs would stay in their

current coalitions and do not make any changes.

Overlapping Coalition Formation (OCF) Algorithm

To reach a stable coalition structure, we propose an OCF algorithm as shown in Algorithm

2. This algorithm is a distributed algorithm, which is executed by each SU i, ∀ i ∈ N .
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Algorithm 2 Overlapping Coalition Formation (OCF) Algorithm in CRN. It is executed
by SU i, ∀ i ∈ N .
1: Initialization: Initialize coalitions SM+1 := N ; Sj := ∅, ∀j ∈ M. Initialize the coalition

structure Π := {S1, . . . , SM , SM+1}, and Πk := Π, ∀ k ∈ N .
2: SU i broadcasts its traffic demand Di to other SUs and receives information from other

SUs.
3: SU i calculates the optimal transmission power W opt

t,i,j by solving problems (3.15) and (3.18),
∀ j ∈ M.

4: repeat
5: SU i randomly selects k ∈ Ai and j ∈ M \Ai, where Ai = {j | SU i ∈ Sj and Sj ∈ Π}.
6: ΠQuit := {Π \ Sk} ∪ {Sk \ {i}}.
7: SU i calculates u(ΠQuit) and pi(ΠQuit) according to (3.11), (3.12) and (3.13).
8: ΠJoin := {Π \ Sj} ∪ {Sj ∪ {i}}.
9: SU i calculates u(ΠJoin) and pi(ΠJoin) according to (3.11), (3.12) and (3.13).
10: ΠSwitch := {Π \ {Sj , Sk}} ∪ {Sj ∪ {i}} ∪ {Sk \ {i}}.
11: SU i calculates u(ΠSwitch) and pi(ΠSwitch) according to (3.11), (3.12) and (3.13).
12: if ΠQuit �i Π then
13: Π := ΠQuit,
14: else if ΠJoin �i Π then
15: Π := ΠJoin,
16: else if ΠSwitch �i Π then
17: Π := ΠSwitch.
18: end if
19: Πi := Π.
20: u(Πi) := u(Π).
21: SU i broadcasts the information of updated coalition structure Πi and its value u(Πi) to

other SUs.
22: SU i receives the information of Πn and u(Πn) from other SU n, ∀ n ∈ N \ {i}.
23: The collection of the updated information of coalition structure Tinfo := {Π1, . . . ,ΠN}.
24: Π := argmaxΠn∈Tinfo

{u(Πn)}.
25: until ∀ i ∈ N , ∀ k ∈ Ai and j ∈ M \ Ai, the resulted ΠQuit, ΠJoin, and ΠSwitch satisfy

that ΠQuit ��i Π, ΠJoin ��i Π and ΠSwitch ��i Π, respectively.
26: SU i performs cooperative sensing within each coalition that it belongs to based on Π during

sensing stage. When being assigned to channel j, SU i transmits data with the optimal
transmission power W opt

t,i,j.

In Algorithm 2, we initialize the coalitions by letting all SUs join quit sensing coalition

SM+1 (line 1). Then SU i communicates the traffic demand information with other SUs

(line 2). SU i calculates its optimal transmission power W opt
t,i,j (line 3) through solving
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problems (3.15) and (3.18), which will be discussed in the next section. After that, SU i

makes coalition formation moves according to three move rules. At the beginning of each

iteration, SU i randomly selects a coalition that it currently belongs to Sk and a new

coalition it does not belong to Sj (line 5). SU i assumes that it leaves coalition Sk and

a new coalition structure is formed (line 6). SU i calculates its resulted payoff and the

value of this resulted new coalition structure (line 7). Similarly, it considers potential new

coalition structures resulting from join move and switch move (lines 8, 10), and calculates

their values (lines 9, 11), respectively. If the resulted coalition structure by quit move is

preferred over the current one by SU i, the coalition structure is updated (line 13). If the

quit move does not improve the coalition structure, SU i considers join move (line 14) and

switch move (line 16). SU i updates the information of coalition structure and its value

(lines 19 - 20) and communicates the updated information with other SUs (lines 21 - 22).

All the updated coalition structure information form a set Tinfo (line 23). The coalition

structure with the greatest value among Tinfo is selected as the new coalition structure

(line 24). SUs repeated the coalition formation process until all SUs will not deviate from

their current coalitions or join other new coalitions. In other words, the process converges

to a stable coalition structure. After the coalition formation process, SU i cooperatively

senses the channels with other SUs in corresponding coalitions according to Π. During

the spectrum access stage, SU i sets its transmission power to the optimal value when it

is allocated a channel to transmit data (line 26).

The convergence of the proposed OCF algorithm is guaranteed as follows:
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Theorem 1. The proposed OCF algorithm converges to a stable overlapping coalition

structure after a finite number of iterations.

Proof. Given that the number of channels M and the number of players N are finite,

the number of possible overlapping coalition structures is 2M×N . When implementing

the OCF algorithm, the coalition formation process involves a sequence of moves of SUs,

which result in a sequence of coalition structure {Π(0)′ ,Π(1)′ , . . . ,Π(r)′}, where r is the

total number of moves made by SUs. According to Definitions 5 - 8, after each move of

any SU, a new coalition structure with a higher value is formed. In addition, the number

of possible coalition structures is finite. Therefore, r is a finite number. Π(r)′ is the final

overlapping coalition structure resulting from the last move of SUs. Assume that Π(r)′ is

not stable, according to Definition 9, there exists i ∈ N such that SU i will deviate from

one of its current coalitions or join a new coalition. Thus, according to the proposed

OCF algorithm, SU i will make join, quit or switch moves and Π(r)′ will change into a

new coalition structure. This contradicts with the fact that Π(r)′ is the final coalition

structure. Thus, Π(r)′ is a stable coalition structure. Therefore, after a finite number

of iterations, the proposed OCF algorithm converges to a stable overlapping coalition

structure.

During the process of coalition formation, each SU seeks to improve its individual

utility while increasing the total value of the coalition structure. The movement of SUs

leads to a new coalition structure after each iteration. Thus, the OCF algorithm converges

to a stable coalition structure. A larger payoff is obtained every time the coalition
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structure changes. Moreover, our proposed OCF algorithm is adaptive to the changes

in network settings. Whenever new SUs join the network or more channels become

available, traffic demand or channel condition changes, SUs can adaptively change their

cooperation strategies and form different coalition structures according to Algorithm 2.

Therefore, the traffic demand of SUs are still satisfied, network throughput and system

energy efficiency are guaranteed when there are changes in network settings.

Modified Sequential Coalition Formation (SCF) Algorithm

Although the convergence of OCF Algorithm is guaranteed, the number of iterations

required to reach a final stable coalition structure may grow exponentially with the

number of SUs. Therefore, we modify the SCF algorithm proposed in Chapter 2 to

address this issue. The modified SCF algorithm involves a lower number of iterations

and requires less information exchange among SUs than the OCF algorithm.

Similarly to the SCF algorithm proposed in Chapter 2, the coalition structure is also

formed step by step in the modified SCF algorithm. At each step, only one player can

propose a coalition structure. Players make moves one by one according to the rule of

order ρ, which is determined by traffic demand of SUs. Since in our new system model

overlapping coalition structure is allowed, the active SU can join multiple coalitions based

on the current coalition structure, which is different from the previous SCF algorithm.
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Algorithm 3 Modified Sequential Coalition Formation (SCF) Algorithm in CRN.

1: for each i ∈ N do
2: SU i reports its traffic demand Di to the central coordinator.
3: SU i calculates the optimal transmission power W opt

t,i,j by solving problem (3.15) and
(3.18), ∀ j ∈ M.

4: end for
5: D := (D1,D2, . . . ,DN )
6: Central coordinator calculates ρ := Q(D) and broadcasts the information of ρ to all SUs.
7: for i = 1 to N do
8: if i = 1 then
9: SU ρ(i) initializes the coalitions SM+1 := N ; Sj := ∅, ∀j ∈ M, and the coalition

structure Π := {S1, S2, . . . , SM+1}.
10: else
11: SU ρ(i) receives the information of Π from SU ρ(i− 1).
12: end if
13: for each j ∈ M do
14: ΠJoin := {Π \ Sj} ∪ {Sj ∪ {ρ(i)}}.
15: SU ρ(i) calculates u(ΠJoin) and pρ(i)(ΠJoin) according to (3.11), (3.12) and (3.13).
16: SU ρ(i) randomly selects k ∈ Aρ(i), where Aρ(i) = {j | SU ρ(i) ∈ Sj and Sj ∈ Π}.
17: ΠSwitch := {Π \ {Sj , Sk}} ∪ {Sj ∪ {ρ(i)}} ∪ {Sk \ {ρ(i)}}.
18: SU ρ(i) calculates u(ΠSwitch) and pρ(i)(ΠSwitch) according to (3.11), (3.12) and (3.13).
19: if ΠJoin �ρ(i) Π then
20: Π := ΠJoin,
21: else if ΠSwitch �ρ(i) Π then
22: Π := ΠSwitch.
23: end if
24: end for
25: if i = N then
26: SU ρ(i) broadcasts the updated information of Π to other SUs.
27: else
28: SU ρ(i) sends the updated information of Π to SU ρ(i+ 1).
29: end if
30: end for
31: SU i, ∀ i ∈ N \ {ρ(N)}, receives the updated information of Π from SU ρ(N).
32: SU i, ∀ i ∈ N , performs cooperative sensing within each coalition that it belongs to based

on Π during sensing stage. When being assigned to a channel, SU i transmits data with
the optimal transmission power W opt

t,i,j.

The modified SCF algorithm is shown in Algorithm 3. In this algorithm, SUs make

distributed coalition formation decision. However, their behaviors are coordinated by a

central coordinator. First, each SU reports its traffic demand information to the central
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coordinator (line 2) and calculates its optimal transmission power value (line 3). The

traffic demand information from different SUs forms an information vector D (line 5).

Q(X ) is a sorting function, which is defined the same with the sorting function in old

SCF algorithm proposed in Chapter 2. Central coordinator calculates the rule of order ρ

through sorting D with function Q(D). The information of ρ is broadcast to all SUs (line

6). Then, SUs make coalition formation decision one by one according to ρ. For example,

the SU with the highest traffic demand (e.g., SU ρ(1)) makes the first choice. It initializes

the coalition structure by setting all SUs in quit sensing coalition SM+1 (line 9). For other

SUs, the active SU receives the updated information of Π from previously active SU (line

11). During the coalition formation process, each SU checks all the channels one by one

to look for potential new coalition when it is active. For a new channel j, if SU prefers

to sense channel j, SU can join coalition j or switch to coalition j, which means quit

move is not considered in this algorithm. Specifically, the active SU first considers the

potential new coalition structure by assuming that it joins coalition Sj (line 14). The

SU calculates its new payoff and the value of the resulted coalition structure (line 15).

Moreover, the active SU randomly selects a coalition it belongs to (line 16), and assumes

that it switches from this selected coalition to coalition Sj (line 17). Also, the value of

the potential new coalition structure resulting from switch move and SU’s new payoff are

calculated (line 18). If the resulted coalition structure by join move ΠJoin is preferred

over the current one Π, the coalition structure is updated (line 20). If the join move

cannot improve the coalition structure, the resulted structure by switch move ΠSwitch
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is considered (line 21). After checking all the new coalitions, the currently active SU

sends the updated information of Π to the next active SU (line 28). For the last active

SU, it broadcasts the final coalition structure to other SUs (line 26). After the coalition

formation process, SUs perform sensing cooperatively within each coalition that they

belong to according to the final coalition structure. During the transmission stage, SUs

perform data transmission with the optimal transmission power (line 32).

Although this SCF algorithm does not guarantee the stability of the final coalition

structure, its performance in terms of throughput is as good as OCF algorithm, which

will be shown by simulation results in the following section. Moreover, SCF algorithm has

a lower computational complexity than OCF algorithm. During the process of coalition

formation in SCF algorithm, each SU makes coalition formation move only when it is

active and it checks each potential sensing channel only once. Therefore, there are at

most M × N iterations when running SCF algorithms. On the other hand, in OCF

algorithm, coalition formation movement takes place every time there is a new coalition

structure preferred over current one. SUs moves from one coalition to another or join

new coalitions until the final stable coalition structure is achieved. Since the number of

the possible overlapping coalition structure is 2M×N , there are at most 2M×N iterations,

which is much more than the number of iterations required in SCF algorithm. Besides,

SCF algorithm involves much less information exchange than OCF algorithm. In SCF

algorithm, in addition to the exchange of traffic demand information, each SU only

has to send the updated coalition structure information to the next active SU. In OCF
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algorithm, each SU has to exchange the information of updated coalition structure with

others after each iteration, which consumes much more time and energy than running

SCF algorithm.

3.3 Adaptive Transmission Power Control

In this section, we analyze the transmission power control strategy given that an SU has

been assigned a channel. We prove that this adaptive transmission power control strategy

achieves the optimal transmission power value, which minimizes the energy consumption

spent on data transmission under the constraint that the maximum throughput of SU is

achieved.

From (2.3), (3.5) and (3.7), we notice the transmission power affects the throughput

and the energy spent on transmission. On one hand, increasing the transmission power

leads to an increase of transmission rate, thus improve the throughput. On the other

hand, more energy is required for data transmission when transmission power is increased.

Therefore, it is reasonable for SU to adaptively change its transmission power to balance

the tradeoff between throughput and energy consumption. Thus, our objective is to

obtain the optimal transmission power that minimizes the energy consumption while

achieving the highest throughput.

First, we assume that the transmission power of SU i varies from Wmin
t,i to Wmax

t,i (i.e.,

Wmin
t,i ≤ Wt,i,j ≤ Wmax

t,i ). Consider SU i has been assigned channel j for transmission.

Since the bandwidth of channel j is fixed, the transmission rate Ri,j depends on Wt,i,j
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according to (2.3). During one time slot, the value of T , τ and Di are constant. Thus,

both the throughput and energy consumption for transmission are functions of Wt,i,j . We

first consider the throughput maximization problem as follows

maximize
Wt,i,j

Ui,j(Wt,i,j)

subject to Wmin
t,i ≤ Wt,i,j ≤ Wmax

t,i .

(3.15)

Note that the objective function in problem (3.15) is a piecewise function. We can rewrite

Ui,j(Wt,i,j) by substituting (2.3) to (3.5) and obtain the objective function as follows

Ui,j(Wt,i,j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Bj log2

(
1+|gi|2

Wt,i,j

σ2
n

)
(T−τ)

T
, if Wt,i,j ≤ W h

t,i,j ,

Di

T
, otherwise,

(3.16)

where W h
t,i,j > 0 is the threshold and satisfies that Bj log2

(
1 + |gi|2

Wh
t,i,j

σ2
n

)
(T − τ) = Di.

Combining problem (3.15) and equation (3.16), different transmission power range leads

to different optimal solution results to problem (3.15). We denote the set of optimal

solutions to problem (3.15) as W∗
t,i,j = {Wt,i,j | Wt,i,j is an optimal solution to problem

(3.15)}. We have

W∗
t,i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{Wmax
t,i }, if Wmax

t,i ≤ W h
t,i,j ,

{Wt,i,j | W h
t,i,j ≤ Wt,i,j ≤ Wmax

t,i }, if Wmin
t,i ≤ W h

t,i,j ≤ Wmax
t,i ,

{Wt,i,j | Wmin
t,i ≤ Wt,i,j ≤ Wmax

t,i }, otherwise.

(3.17)

According to (3.17), the number of solutions to problem (3.15) depends on the re-

lations between W h
t,i,j and the range of the transmission power. In other words, SUs
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set their transmission power to a certain value or within a range to obtain the maxi-

mum throughput. In order to save energy spent on transmission while guaranteeing the

maximum throughput, we consider an optimization problem that minimizes the energy

consumption for data transmission under the constraint that the highest throughput is

obtained. This optimization problem is formulated as follows

minimize
Wt,i,j

Et
i,j(Wt,i,j)

subject to Ui,j(Wt,i,j) ≥ Umax
i,j ,

(3.18)

where Umax
i,j is the maximum value of Ui,j(Wt,i,j), which can be achieved only when the

transmission power Wt,i,j is an optimal solution to problem (3.15) (i.e.,Wt,i,j ∈ W∗
t,i,j). In

other words, the solution to problem (3.15) serves as the constraint in problem (3.18). In

this way, the requirement for throughput can be guaranteed when we minimize the energy

consumption for data transmission. As we discussed above, the number of solutions to

problem (3.15) depends on the range of transmission power. Therefore, for problem

(3.18), the optimal solutions are obtained based on the following three cases.

In Case 1, where Wmax
t,i ≤ W h

t,i,j , the only solution to problem (3.15) is the optimal

solution to problem (3.18), which is Wmax
t,i . It means SU i has to perform data transmis-

sion over channel j with its maximum transmission power in order to achieve the highest

throughput. In this case, the energy consumption for transmission during one time slot,

which is the objective function value of problem (3.18), is Wmax
t,i (T − τ).

In Case 2, we have Wmin
t,i ≤ W h

t,i,j ≤ Wmax
t,i . The optimal solution to problem (3.15)

is {Wt,i,j | W h
t,i,j ≤ Wt,i,j ≤ Wmax

t,i }, which is a constraint in problem (3.18). We express
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Et
i,j by substituting (2.3) and (2.5) to (3.7) and obtain the objective function as follows

Et
i,j(Wt,i,j) =

Wt,i,jDi

Bj log2

(
1 + |gi|2Wt,i,j

σ2
n

) . (3.19)

Proposition 1. Function Et
i,j(Wt,i,j) in (3.19) is a monotonically increasing function.

Proof. We take the first derivative of function Et
i,j(Wt,i,j) with respect toWt,i,j and obtain

Et
i,j

′
(Wt,i,j) =

ln 2Diσ2
n

Bj |gi|2(
ln(1 + |gi|2Wt,i,j

σ2
n

)
)2
(
ln(1 + |gi|2

Wt,i,j

σ2
n

)−
|gi|2Wt,i,j

σ2
n

1 + |gi|2Wt,i,j

σ2
n

)
. (3.20)

Since

ln 2Diσ
2
n

Bj |gi|2(
ln(1+|gi|2

Wt,i,j

σ2
n

)
)2 > 0, to prove the monotonicity of function Et

i,j(Wt,i,j), we need

to show that ln(1 + |gi|2Wt,i,j

σ2
n

) −
|gi|2

Wt,i,j

σ2
n

1+|gi|2
Wt,i,j

σ2
n

> 0 for ∀ Wt,i,j > 0. Assume that y =

ln(1+ |gi|2Wt,i,j

σ2
n

)−
|gi|2

Wt,i,j

σ2
n

1+|gi|2
Wt,i,j

σ2
n

. We calculate the first derivative of y with respect to Wt,i,j,

which is

y′ =
|gi|2

σ2
n

(
1

1 + |gi|2Wt,i,j

σ2
n

− 1

(1 + |gi|2Wt,i,j

σ2
n

)2

)

=
|gi|4Wt,i,j

σ4
n

(1 + |gi|2Wt,i,j

σ2
n

)2
.

We have y′ > 0, ∀ Wt,i,j > 0. Thus, y is monotonically increasing with respect to Wt,i,j

and y(Wt,i,j) > y(0) = 0. Therefore, Et
i,j

′
(Wt,i,j) > 0 and Et

i,j is monotonically increasing

with Wt,i,j.

According to Proposition 1, the value of Et
i,j(Wt,i,j) increases with Wt,i,j when W h

t,i,j ≤

Wt,i,j ≤ Wmax
t,i . Thus, the optimal solution to problem (3.15) is W h

t,i,j , which satisfies

Bj log2

(
1 + |gi|2

Wh
t,i,j

σ2
n

)
(T − τ) = Di and Wmin

t,i < W h
t,i,j < Wmax

t,i .
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In Case 3, we have W h
t,i,j ≤ Wmin

t,i , problem (3.15) has multiple solutions in the set

{Wt,i,j | Wmin
t,i ≤ Wt,i,j ≤ Wmax

t,i }. The objective function is the same with that in Case

2. According to Proposition 1, the optimal solution to problem (3.18) is Wmin
t,i .

The optimal solution to problem (3.18) changes with the relation between the W h
t,i,j

and transmission power range. When the range of the transmission power of SU i is

fixed, the value of W h
t,i,j determines the number of solutions to (3.15), and thus affects

the solution to problem (3.18). According to the definition of W h
t,i,j, the value of W h

t,i,j

depends on the traffic demand of SU i. When SU i has very few data bits to transmit

(i.e., Di is very small), W h
t,i,j is relatively small. In this case, Di

T−τ
is equal to Ri,j, and

Ri,j is monotonically increasing with Wt,i,j . Thus, W h
t,i,j is smaller than Wmin

t,i , which

corresponds to Case 3. Therefore, SU i saves energy by setting its transmission power

as Wmin
t,i . On the contrary, when Di is very large, W h

t,i,j is greater than Wmax
t,i . In order

to obtain the highest throughput, SU i performs transmission with a transmission power

of Wmax
t,i . In this way, the transmission power is adaptively controlled according to the

traffic demand of SU. Also, the energy spent on data transmission is minimized under

the constraint that SU achieves the highest throughput.

3.4 Performance Evaluation

In this section, we compare the performance of the OCF algorithm, SCF algorithm, and

disjoint coalition formation (DCF) algorithm from the perspective of aggregate through-

put. In DCF algorithm, each SU can only join at most one coalition instead of multiple
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coalitions, and SUs form a disjoint coalition structure by implementing this algorithm.

DCF algorithm is similar to the algorithm proposed in [15].

Unless stated otherwise, we consider a CRN with N SUs and M PUs (i.e., M licensed

channels). SUs are randomly placed in a 100 m × 100 m square region. The base station

is placed at the center of the square region. Each channel has a bandwidth of 100 kHz

and the probability that a channel is idle is randomly chosen between [0.5, 1]. The CRN

works in a time slotted manner. The slot duration T is 100 ms and the sensing duration

is 5 ms. We model the channel gain of the link of SU i as |gi|2 = 1/dni , where di is the

distance between SU i and the base station, and n is the path loss exponent. We set

n to 2. We set the target detection probability at each channel as 0.99. The received

PU’s SNR at each SU γi,j is set to −15 dB. The noise power σ2
n is set to 0.01 mW. The

threshold of transmission power of each SUWmin
t,i is 50 mW and the upper bound Wmax

t,i is

150 mW. The sensing power at each SU Ws,i,j is 50 mW. The number of sensing samples

during the sensing stage in a time slot Ns is 5000, which is similar to the parameters

setting in [31]. The number of packets generated by each SU during a time slot follows

Poisson distribution with an average rate of λ = 0.5 packet per time slot, and each packet

is 20 kb. The buffer size of each SU is set to 200 kb. The energy efficiency threshold ηmin

is 500 kb/J.

Fig. 3.1 shows a snapshot of a stable overlapping coalition structure obtained by

implementing OCF algorithm. There are seven SUs and three PUs (i.e., three licensed

channels) in the network. The base station (BS) is located in the center of the square area.
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Figure 3.1: An example of a stable overlapping coalition structure (M = 3, N = 7) by

OCF algorithm.

Seven SUs are randomly distributed in the area. All the SUs in the same ellipse form a

coalition to sense and access a channel. Results in Fig. 3.1 show that SUs 1, 4 and 7 belong

to coalition 1, which corresponds to channel 1. SUs 3, 4, 5 and 7 form a coalition to sense

and access channel 2. SU 2 forms a singleton coalition to use channel 3. SU 6 joins the

coalition 4, which is the coalition of quit sensing. Thus, the overlapping coalition structure

Π = {{1, 4, 7}1, {3, 4, 5, 7}2, {2}3, {6}4}. In this stable coalition structure, coalitions 1 and

2 are overlapped with each other. SUs 4 and 7 contribute to both coalitions at the same

time. While SU 6 chooses not to cooperate with other SUs due to the fact that it has no

traffic demand during the current time slot. Therefore, SU 6 is in quit sensing coalition.

Fig. 3.2 shows the aggregate throughput of SUs when the number of SUs N increases
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Figure 3.2: Aggregate throughput versus the number of SUs (N) in CRN for M = 6.

from 2 to 20. As it shows in this figure, both OCF and SCF algorithms outperform DCF

algorithm in terms of aggregate throughput. This is because in OCF and SCF algorithms,

SUs can join multiple coalitions, which increase their chances to access channels and

improve their throughput. However, in DCF algorithm, an SU can only join one coalition

and share one channel with other SUs, its chance of obtaining the use of channel is limited.

This result shows that overlapping coalitional game strategy improves spectrum efficiency.

Fig. 3.3 shows the aggregate throughput of SUs when the number of PUs M (i.e, the

number of channels) increases from 1 to 10. Results show that OCF and SCF algorithms

have similar performance. When M is small, the performance gap between these two al-

gorithms and DCF algorithm is small. This is because in OCF and SCF algorithms, SUs

can sense very few channels to improve their chance of transmitting data when channel
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Figure 3.3: Aggregate throughput versus the number of PUs (M) in CRN for N = 10.

resources are limited. The gap of performance becomes larger when M increases. When

more channels become available, SUs in OCF and SCF algorithms obtain higher through-

put by joining multiple coalitions. However, SUs in DCF obtain limited improvement of

throughput due to the constraint that it can choose to sense and access only one channel.

Fig. 3.4 shows the aggregate throughput when increasing the average generated packet

rate λ. Both OCF and SCF algorithms outperform DCF algorithm in terms of throughput

when λ changes from 0.1 to 1. The throughput increases with traffic demand when λ

is small for all algorithms. Larger value of λ means more data information generated

at each SU during each time slot, which encourages SUs to join in coalition and obtain

higher throughput. When λ ≥ 0.7, the throughput does not increase significantly with

traffic demand. This is due to the fact that the increase of throughput is constrained by
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Figure 3.4: Aggregate throughput versus the average generated packets rate λ.

spectrum resources.

In Fig. 3.5, it shows the aggregate throughput for various energy efficiency threshold

ηmin. When ηmin is smaller than 1500 kbit/J, the energy efficiency threshold has little

effect on the number of coalitions that an SU can join. Therefore, SUs are able to join

enough coalitions to satisfy their traffic demand. In this case, the increase of ηmin has little

effect on SUs’ throughput. However, when ηmin ≥ 1500 kbit/J, the number of coalitions

that an SU is allowed to join is limited. SUs are refrained from transmitting data in their

buffer until the expected energy efficiency becomes greater than the threshold. This leads

to the decrease of throughput. Moreover, OCF and SCF algorithms still outperform DCF

algorithm in this scenario.

Fig. 3.6 shows the number of iterations when running OCF and SCF algorithms as
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Figure 3.5: Aggregate throughput versus the energy efficiency threshold ηmin.

the number of SUs in network increases. When N is small, the number of iterations for

these two algorithms are similar. This is because when there are only a few SUs, the

cooperation possibilities are limited. The number of iterations that OCF algorithm needs

to converge is not very large. However, when N > 10, the performance gap between these

two algorithms becomes larger. In SCF algorithm, an SU checks each new coalition only

once when it is active. However, in OCF algorithm, all SUs try to form new coalitions

whenever there is a change in coalition structure until the process converges. The number

of possible coalition structures increases exponentially withN . Therefore, OCF algorithm

requires more iterations to reach a stable coalition structure than SCF algorithm when

N is large.
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Figure 3.6: Number of iterations versus the number of SUs N .

3.5 Summary

In this chapter, we studied a traffic-demand based cooperation strategy in CRNs with

multiple channels. We proposed a joint cooperative spectrum sensing and access scheme

to enable energy-constrained SUs to obtain a high throughput while maintaining a high

energy efficiency. An overlapping coalitional game was formulated to solve this problem,

in which each SU makes its own decision to form overlapping coalitions with other SUs to

sense and access multiple channels cooperatively. To reach a stable coalition structure, we

proposed an OCF algorithm based on three move rules, which captures both individual

payoff and social welfare. We proved that our proposed OCF algorithm converges to

a stable coalition structure. We also proposed a modified SCF algorithm, which has a

lower computational complexity and requires less information exchanges. Moreover, an
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adaptive transmission power control scheme is proposed. Simulation results show that

the OCF algorithm and modified SCF algorithms have similar performance in terms of

throughput. Both of these two algorithms outperform the DCF algorithm.
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Chapter 4

Conclusions and Future Work

In this chapter, we conclude the thesis by summarizing the research work and contri-

butions that we have made. We discuss the limitation of our current work and suggest

possible extensions for future research.

4.1 Conclusions

In the thesis, we developed a traffic demand-based joint cooperative spectrum sensing

and access strategy in CRNs. In our proposed strategy, each SU can choose to perform

cooperative sensing when it has high traffic demand, or simply quit sensing when it has

no data to transmit. In this way, the energy can be conserved for future transmission.

We first considered the case that each SU senses at most one channel during sensing

stage. Then, we extended the problem by taking into account multiple-channel sensing

ability of each SU. We applied coalitional game theory to analyze two different situations

respectively, and proposed several coalitional formation algorithms. Specifically, our

contributions are as follows:

• In Chapter 2, we considered a cooperation strategy in CRNs from the perspec-
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tive of individual SU, which can only sense one channel at a time. We formulated

the problem as a disjoint coalitional game. Each SU serves as a player to im-

plement a cooperation strategy that can maximize its own utility, which captures

expected throughput and traffic demand. We proposed a sequential coalition for-

mation (SCF) algorithm to obtain a final coalition structure. For performance eval-

uation, we compared our proposed SCF algorithm with switch rule-based coalition

formation (SRCF) algorithm in terms of throughput and algorithm running time.

Simulation results show that our proposed algorithm achieves a higher throughput

than SRCF algorithm and requires less running time.

• In Chapter 3, we extended the problem by allowing each SU to sense multiple

channels during the sensing stage. It provides SUs more opportunities to utilize

spectrum resources. We applied overlapping coalitional game theory to solve our

problem in the new system model. During the process of coalition formation,

each SU not only considers its own individual payoff, but also takes into account

social welfare, which is defined as the value of coalition structure. We proposed

an overlapping coalition formation (OCF) algorithm to reach a stable coalition

structure. It is proved that the OCF algorithm converges after a finite number

of iterations. Moreover, a modified SCF algorithm is proposed to reach a final

coalition structure. The modified SCF algorithm has similar performance with OCF

algorithm, but with lower number of iterations and less information exchange among

SUs. We also proposed an adaptive transmission power control scheme for each SU
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to minimize the energy consumption spent on transmission while guaranteeing the

maximum throughput. For performance evaluation, we analyzed several different

factors that may affect the performance of the algorithms, such as the number of

SUs and PUs, the traffic demand of SUs and energy efficiency lower bound. We also

presented the snapshot of overlapping coalition structure and studied the number

of iterations when implementing different algorithms. Simulation results show that

our proposed algorithms outperform disjoint coalition formation (DCF) algorithm

in terms of aggregate throughput of SUs.

4.2 Future Work

Our current work can be extended in the following directions:

• In our system model, we fixed the sensing duration and sensing power during the

sensing stage, which can affect the sensing performance and expected throughput of

SUs. Therefore, it would be interesting to explore the relation between the sensing

parameters and throughput when we study the CSSA strategy in CRNs. In this

case, the system model setting would be more general, as each SU will be able to

adjust its sensing duration and sensing power to fit its individual traffic demand.

However, considering the uncertainty of the sensing parameters will increase the

computational complexity of the problem. Also, if each SU uses adaptive sensing

control when making cooperation decisions, it requires more information exchange

among SUs, which may increase the overhead. Therefore, developing a cooperation
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strategy that involves sensing uncertainty, but has relatively low computational

complexity is a possible extension to our current work.

• In our proposed algorithms, each SU makes the decision of spectrum sensing and

access jointly. This limits the possible cooperation among SUs and may constrain

the improvement of throughput. Therefore, letting each SU make separate cooper-

ation decisions during sensing stage and data transmission stage is another possible

extension to our current work. We can divide the problem into two parts: cooper-

ative sensing problem and spectrum allocation problem, which can be formulated

as two different coalitional games, respectively. That is, SUs first perform coop-

erative sensing according to a coalition structure that can optimize the sensing

performance. Then, SUs access the channels based on another coalition structure

that makes the most use of spectrum resources. Therefore, it would be interesting

to explore the relation between these two games, and study a cooperative strategy

that can optimize the decisions of an SU in both games.
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