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Abstract

Due to software complexity, manual and automatic testing are not enough to

guarantee the correct behavior of software. One alternative to this limitation

is known as Symbolic Execution.

Symbolic Execution is a formal verification method that simulates soft-

ware execution using symbolic values instead of concrete ones. The execu-

tion starts with all input variables unconstrained, and assignments that use

any input variable are encoded as logical expressions. Whenever a branch

is reached, the symbolic execution engine checks which values the branch

condition can assume. If more than one valid evaluation is possible, the

execution forks, and a new process is created for each possibility.

In cases where the program execution is finite, symbolic execution is

complete, and potentially executes every reachable program path. However,

the number of paths is exponential in the number of branches in the program,

and this approach suffers from a problem know as path explosion.

This thesis presents a novel algorithm that can dynamically reduce the

number of paths explored during symbolic execution in order to prove a

given set of properties. The algorithm is capable of learning from conflicts

detected while symbolically executing a path.

I have named this algorithm Conflict-Driven Symbolic Execution (CDSE),

since it was inspired by the conflict-driven clause learning (CDCL) insights

introduced by modern boolean satisfiability solvers. The proposed algorithm

takes advantage of two features responsible for the success of CDCL solvers:

conflict analysis and non-chronological backtracking. In a nutshell, CDSE

prunes the search space every time a certain branch is proven infeasible by

learning the reason why there is a conflict.

In order to assess the proposed algorithm, this thesis presents a proof-of-
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Abstract

concept CDSE tool named Kite, and compares its performance to the state-

of-the-art symbolic execution tool Klee [10]. The results are encouraging,

and present practical evidence that conflict-driven symbolic execution can

perform better than regular symbolic execution.
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Preface

The work presented in this thesis was primarily done by myself, except for

the encoding of the search constraints (Section 3.2.1), which I designed in

collaboration with Sam Bayless.

None of the text of this thesis was taken from previously published arti-

cles.
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Chapter 1

Introduction

Software complexity is increasing, and current testing techniques are not

enough to guarantee correct functionality. Bugs, such as the one responsible

for NASA’s Mars climate orbiter crash [1], can be very costly [37]. In 2002,

Tassey [47] estimated that the cost of software bugs in the U.S. economy is

$59.5 billion dollars per year.

Moreover, failures in safety-critical software not only have impact in

economic terms, but also can endanger lives. For example, a software bug

in the Therac-25 radiation therapy machine controller caused at least five

patients deaths due to excessive X-rays administration in the 1980s [33].

In order to avoid bugs from reaching the market, verification has become

a crucial stage of software development.

Software testing is by far the most used technique for software verifica-

tion due to its simplicity and scalability. The code is executed with different

inputs in order to assure quality and look for bugs. The inputs can be gen-

erated randomly, or to try to imitate expected usage scenarios. In addition,

coverage directed techniques can be used to generate inputs that aim at in-

creasing test-case coverage, e.g., these techniques can generate inputs that

force the program to execute specific lines of code [10].

Nevertheless, testing is not enough to ensure correct behavior. For in-

stance, a test suite for any program with only one input of 32 bits would

require 232 different test inputs to be complete. Assuming one program from

this set executes in 10 ms, a complete test suite would take more than 80

years to finish.

Complementary to automated testing, static analysis techniques have

become part of the software verification process. Any analysis performed

without concretely executing the program can be classified as static. For
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Chapter 1. Introduction

example, modern compilers use static analysis to detect irregular and un-

safe constructions before generating the executable code. These detection

algorithms trigger compilation warnings or errors whenever they identify

code that appears buggy.

Recently, static analysis has also been used to build automatic formal

program verification tools. In contrast to previous techniques, formal pro-

gram verification proves some correctness properties instead of just bug

finding. Two predominant techniques used for the construction of formal

program verification tools are Model Checking and Symbolic Execution:

Model Checking was introduced by Clarke and Emerson [12] and by Queille

and Sifakis [42], independently. It is a technique for verifying tempo-

ral logic properties of a given transition system (including software) by

exploring its state space. In its original form, model checking imple-

mentations used explicit representations of the state transition graph.

However, the number of states grows exponentially with the number

of system variables — a problem known as state explosion.

Symbolic state representation was later introduced to ameliorate the

state explosion problem [8]. In particular, the employment of model

checking spread widely in industry after the introduction of Bounded

Model Checking (BMC) [6] and the adoption of satisfiability solvers

(SAT solvers). Bounded model checking modifies model checking to

encode only a finite sequence of state transitions that reaches certain

states of interest as a Boolean formula. SAT solvers are used to deter-

mine whether the formula is satisfiable or not, which proves if the states

of interest are reachable or not, respectively1. The generated boolean

formula is linear in the length of the sequence of state transitions, and

determining if this formula is satisfiable or not is an NP-Complete

problem. In spite of the high worst-case complexity, BMC has scaled

to larger problems than other approaches, largely because it benefits

directly form ongoing advances in SAT solvers.

1There exists different model checking techniques, known as Unbounded Model Check-
ing, than can often prove properties of infinite execution sequences. However, they go
beyond the scope of this thesis.
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Symbolic Execution was introduced by King [28]. It is a method to simu-

late software execution using symbolic values instead of concrete ones2.

While simulating the program with symbolic values, branch statements

might have more than one feasible evaluation. When this is the case,

the symbolic execution engine must consider every feasible possibil-

ity; consequently, it forks. Every time the execution forks, a new

constraint derived from the branch condition will be added to each

simulation process according to the direction taken. These constraints

are accumulated during the execution, and they comprise the path

condition. Symbolic execution employs constraint solvers to deter-

mine the possible values of a branch statement given a certain path

condition. In cases where the program execution is finite, symbolic

execution is complete, and potentially executes every reachable pro-

gram path. Symbolic execution tools may also bound program loops

to guarantee the analysis termination, but like BMC the analysis is

restricted to paths that respect the loop bound. In both scenarios

where the execution is finite, the number of paths is still exponential

in the number of branches in the program; consequently, this approach

suffers from path explosion.

Both methods represent state transitions in programs as propositional

logic formulas, and use constraint solvers to check their satisfiability3.

Bounded model checking, however, typically builds one single formula to

represent the entire program, while symbolic execution builds different for-

mulas for each execution path.

This difference gives two advantages to symbolic execution. First, sym-

bolic execution is usually more efficient for finding deeper bugs, because its

2In this thesis, symbolic execution refers to the path-by-path exploration with symbolic
values as it was first presented by [28]. Such a terminology is also used by many other
authors [5, 25, 48]. In contrast, Symbolic execution has been used as a broader term by
[3, 29], to include techniques this thesis classifies as model checking.

3Even though this chapter emphasizes the usage of SAT solvers as constraint solvers,
other solvers can be used for model checking and symbolic execution, such as Satisfiability
Modulo Theories (SMT) solvers. The emphasis on SAT solvers is because most algorithmic
advances were first applied to SAT solvers.
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1.1. Motivating Example

formula size doesn’t grow as fast as model checking to reach a certain depth

in the program. Thus, if lucky, the symbolic execution might find a bug

at a depth where the model checking formula is too big and complex to be

solved in a reasonable time.

The second advantage is that symbolic execution can be used to par-

tially verify software. Whenever symbolic execution fails to prove whether

one or more properties holds in a certain time or memory constraint, it can

return which paths were completely executed. Thus, symbolic execution can

guarantee these paths’s correctness regarding the properties tested. Further-

more, the path condition can be used to generate test inputs or constraints

to guide automated tests. In contrast, when a model checker does not reach

a conclusion, the model checker doesn’t produce any intermediate result.

Symbolic execution is at a disadvantage compared to model checking

when it tries to prove that a certain property holds. Not only are sym-

bolic execution decision heuristics not as optimized as SAT solvers’s, but,

more importantly, SAT solvers can learn from the decisions previously made,

whereas most symbolic execution engines can’t.

Ideally, any symbolic execution engine would also take advantage of its

previous decisions in order to reduce the verification effort. After executing

a path, the engine can learn facts regarding the path’s fragments. Further-

more, these facts can be used to predict whether other paths will satisfy the

properties tested.

In this thesis, I present an efficient technique that can reason about sym-

bolically executed paths and prune the solution search space. This technique

is based on the learning scheme used in Conflict-Driven Clause Learning

(CDCL) SAT (Satisfiability problem) solvers, which are known for the suc-

cess and scalability of SAT solvers.

1.1 Motivating Example

Before providing the proposed learning technique, this section presents the

intuition behind the learning scheme through an example. I illustrate how

to learn facts from symbolically executed paths, and to prune a large num-

4



1.1. Motivating Example

1 int main ( ) {
2
3 symbol ic int x , y ;
4
5 i f ( x < 0)
6 x = −x ;
7 i f ( y < 0)
8 y = −y ;
9

10 int r e s u l t = x − y ;
11
12 i f ( x < y )
13 r e s u l t = y − x ;
14
15 a s s e r t ( r e s u l t >= 0 ) ;
16
17 }

Listing 1.1: An example to illustrate that not all paths are needed to
prove a property. In this example, the property to be proven is an assertion
statement embedded in the code. (In this example, this assertion always
holds)

ber of paths.

In Listing 1.1, the property to be verified is encoded as an assertion

statement, which should hold for every possible execution. There are 8

distinct execution paths that reach the assertion, as shown by the execution

tree in Figure 1.1. Most symbolic execution tools, like Klee [10] and Java

PathFinder [48], would simulate all 8 paths before returning that the given

property always holds. However, it is possible to prove that the assertion

always holds by executing only 2 paths.

For example, if the first path to be executed is the one where all if

statements (x < 0, y < 0 and x < y) are True (red path), symbolic

execution will reach the conclusion that result is always greater or equal

to 0. Such a conclusion can be derived from the constraint ‘x < y’ and the

assignment in line 13 alone; thus, the other constraints and statements are

irrelevant to prove the property in this path. Once that fact is learned, every

other path that includes the true branch of the ‘if x < y’ statement doesn’t

5



1.2. Text Organization

x < 0

y < 0

 T

y < 0

 F

x < y

 T

x < y

 F

x < y

 T

x < y

 F

P ?

 T

P ?

 F

P ?

 T

P ?

 F

P ?

 T

P ?

 F

P ?

 T

P ?

 F

Figure 1.1: The execution tree for Listing 1.1, where P represents the
property being proved.

have to be executed, because these paths will include the two constraints

that are enough to guarantee the property tested.

Now, suppose the second path to be executed is the one where the first

two if statements (x < 0 and y < 0) are still True, but the last one,

x < y, is False (the blue edge). The result definition comes from line

10 and the path condition includes the constraint ¬(x < y), or equivalently

x >= y. Together, the definition and the constraint imply that result is

always greater or equal to 0. This new implication is enough to prune every

path where the last branch, x < y, is False.

Since every path that reaches the assertion will contain either the con-

straint x < y and result = y − x definition or the constraint x >= y and

result = x− y definition, those two paths are enough to prove the property

result >= 0.

1.2 Text Organization

This thesis introduces a technique to systematically learn facts (like the ones

in the preceeding example) from each symbolically executed path. These

6



1.2. Text Organization

facts can be used to predict the behavior of non-executed paths. I also

present a proof-of-concept tool named Kite, which is an implementation of

the learning technique built on the top of the symbolic execution tool Klee

[10].

This thesis is organized as follows: Chapter 2 provides background on

Symbolic Execution and on the CDCL algorithm. Chapter 3 explains how

these two approaches can be combined to build a more efficient software ver-

ification tool. Chapter 4 introduces Kite, as well as implementation details

and optimizations that make such an approach more scalable. Chapter 5

presents the tests and the results obtained from executing Kite, as well as a

comparison with other state-of-the-art verification tools. Chapter 6 presents

the recent works that are related to the proposed method. Finally, Chap-

ter 7 discusses this thesis’s main contributions, its limitations, and future

work.
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Chapter 2

Background

This chapter presents the background on two important techniques that will

be the basis of this work. The first is symbolic execution, which is a software

analysis technique usually used to generate tests, as well as to find run-time

errors and assertion failures. The second is Conflict-Driven Conflict Learn-

ing SAT solving, which is a powerful constraint solver framework that has

been used as an underlying engine for symbolic execution, model checking

and many other industrial applications.

Symbolic execution engines and SAT solvers are both search tools. Sym-

bolic execution engines search for an assignment to program variables that

will lead the execution along a certain path, while SAT solvers search for an

assignment to boolean variables that will lead a formula to evaluate to true.

However, there is one main difference between these search mechanisms

that is relevant for this thesis: modern SAT solvers learn from failed search

attempts, while symbolic execution tools usually don’t — even though, as

we will see, they can.

2.1 Notations and Definitions

This section establishes the notation followed throughout this thesis. In

order to distinguish SAT instance variables from program variables, this

thesis will represent the former with a lower case v, and the latter with

Greek letters. Specifically, the program variables will be represented with

σ. Additionally, boolean expressions will be represented with β, program

properties will be represented with a ρ, and property violations will be rep-

resented with a µ.

Additionally, this thesis assumes the program under verification follows

8



2.1. Notations and Definitions

the imperative or procedural programming paradigm, where the program

execution follows a sequence of commands — an execution path — that

change the program state. A program state is defined as the collection of

program variables and their associated values, together with the control

location, which is known as the program counter. Each instruction (com-

mand or program statement) either modifies program variable values, or the

control location, i.e., each instruction is either an assignment or a branch

(conditional or unconditional). For simplicity, sequences of consecutive in-

structions with a single entry and a single exit point, and no branches, are

grouped as basic blocks.

Without loss of generality4, this thesis considers programs that con-

tain one method only — all method calls are inlined — and all conditional

branches are represented by if-statements with the following format:

if β then [goto True BB] else [goto False BB]

where if the given condition β is true, the next basic block (BB) to be

executed is the True BB; otherwise, the next one is the False BB. The else

statement is optional, and when omitted, the False BB is equivalent to the

basic block that follows the if statement.

The flow of control within a program can be captured as a directed graph,

known as the control flow graph (CFG). The control flow graph represents

the sequence of commands and possible transitions between them. Thus,

in a program’s CFG, the nodes represent basic blocks and the edges indi-

cate possible control flow transitions between basic blocks. Every branch

instruction destination associated with the instruction location originates at

an edge in the control flow graph. In this thesis, basic block identification

starts with a B, and branch identification starts with a b. Consequently,

the same notation is used to represent the CFG nodes and edges, B and b

respectively.

Consider the small example in Listing 2.1, and its CFG depicted in Figure

2.1(a). The CFG has 3 nodes — representing basic blocks BA, BB and BC

4The structured program theorem [7] states that any program can be described using
three transition techniques: sequence, selection, and repetition (or loop).

9



2.1. Notations and Definitions

1 int main ( int argc , char∗∗ argv ) {
2 symbol ic int a , b ;
3 int r e t = a + b ;
4 i f ( argc > 1)
5 r e t = r e t / 2 ;
6 return r e t ;
7 }

Listing 2.1: A small example in C to illustrate how basic blocks are defined.
The program has 3 basic blocks, the entry basic block BA goes from line 1
to 4, while BB contains only the statement from line 5 and BC is composed
by the return statement in line 6.

— and 3 edges — representing branches b0 = (BA, BB), b1 = (BA, BC) and

b2 = (BB, BC). The if-statement is a conditional branch statement that

connects BA to either BB or BC . The transition from BB to BC is implicit,

because the unconditional branch statements at the end of a basic block can

be omitted in some languages like C.

Although every feasible execution path in a program is represented in

the CFG, not every path represented in the CFG is necessarily feasible. A

path is only considered feasible if there exists at least one set of input values

that leads the program execution through the path’s command sequence. If

no such set of values exists, the path is considered infeasible. This thesis

will use the the term possible execution paths for those that may or may

not be feasible (i.e., it hasn’t been proven yet whether the path is feasible

or not).

The set of all feasible execution paths in a program can be represented

as a tree, known as the execution tree (see example shown in Figure 2.1(b)).

Thus, the subset of paths represented in the execution tree can be obtained

by unwinding the CFG, and checking their feasibility. Due to loops in a

program, and in the CFG, an execution tree can be infinite.
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BA
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 b1
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(a) The control flow graph.

BA

BB
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BC
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BC

 b3

(b) The execution tree.

Figure 2.1: The control flow graph and the execution tree for the program
described in Listing 2.1. (a) The CFG represents every basic block in the
program, along with all possible transitions between them. (b) The execu-
tion tree represents every feasible execution path. It can be obtained by
unwinding the CFG, and checking which paths are feasible.

2.2 Symbolic Execution

In a nutshell, symbolic execution is a program analysis method that simu-

lates program execution with symbolic values instead of concrete ones. The

symbolic execution engine treats each input variable as a symbolic value;

hence, the engine can analyze the program behavior under every combi-

nation of input values. The usage of symbolic values provides a safe and

sound method to find feasible execution paths, as well as to establish under

which conditions they are executed. If the program doesn’t have an infinite

execution tree, then symbolic execution is also a complete method.

In order to handle symbolic values, the program’s execution semantics

must be extended. First, variables assignments are extended, and a variable

can either have a concrete value or a symbolic expression. The symbolic

expression is defined as an expression that represents a function over the

symbolic variables. The symbolic execution engine produces a symbolic ex-
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pression while evaluating a program’s data manipulation instruction. The

evaluation expands each variable used and translates the instruction opera-

tion into an arithmetic operator.

The semantics of if-statement instructions is also extended, and the

if-condition might have more than one possible evaluation in the current

execution, i.e., the if-condition may be true, false or undefined. In the

last case, the engine explores both possibilities separately. To do so, the

execution forks into two distinct executions, named processes: one that

follows the true-branch, and another one that follows the false-branch.

Each process assumes that the if-condition is either true or false according

to the direction taken.

The if-statement evaluation depends on the previous assumptions made

by the current process. Therefore, the program state is extended in order to

maintain the set of conditions that have been assumed true during a process

execution. This set is known as the path condition, or just pc5.

The symbolic execution engine evaluates an if-condition under the path

condition in order to establish which branches are feasible. Given a condition

β of an if-statement and the current pc, the engine checks whether one of

the branch conditions β or ¬β is true under the constraints in pc. In other

words, the symbolic execution checks the following expressions:

pc =⇒ β (2.1)

pc =⇒ ¬β (2.2)

Assuming pc is not strictly false, at most one expression is true. If one

expression is valid, the execution follows the respective branch. In this case,

it is optional whether the engine adds the branch condition to pc. However,

if both expressions are satisfiable, both branches are feasible. As mentioned

before, the execution forks, and the child processes inherit the program state

5It is important to emphasize that pc stands for path condition in the symbolic ex-
ecution context[28, 40, 48], and it differs from another common use of pc as program
counter
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from their parent. The engine adds the branch condition to each process pc

according to the direction taken.

Given these new semantics, the symbolic execution of a program runs as

follows6:

1. Initialization: The symbolic execution starts with a single process

from the program’s entry block — as any concrete execution. Each

input variable is considered symbolic, and the path condition is ini-

tialized as true.

2. Sequential execution: Next, the engine executes each instruction

sequentially until it finds an if-instruction (step 3), or until it finds

an exit instruction (step 6).

3. If-statement execution: The if-condition is evaluated under the

path condition. If only one branch is feasible, the engine follows that

branch, and continues the sequential execution described in step 2. If

both branches are feasible, the execution must fork.

4. Forking: A process forks by generating two child processes, which

inherit their parent’s program state. The execution engine sets each

child to follow one specific branch, and adds the corresponding branch

condition to pc. Both children are added to a worklist, and the engine

selects a process to follow (step 5).

5. Process selection: Conceptually, the engine can pick any process

from the worklist to follow. Once the engine chooses a process, the

engine restarts the process execution from the instruction pointed by

the process program counter (step 2).

6. Process termination: Whenever an exit instruction is reached, the

engine terminates the current process. The engine uses the termi-

nated process pc to generate a concrete test input vector that leads

the program execution under the completed path. After terminating a

6This step division is not standard, but didactic.
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process, the engine checks whether there are any processes left in the

worklist. If there are not, the symbolic execution is done. Otherwise,

the engine goes back to step 5.

Thus, the symbolic execution engine keeps executing each forked process

until one of the following cases:

• The engine executes every forked process until the end. In this case,

it completely executed every feasible path in the program.

• The engine picks a process that never ends, i.e., the engine follows an

infinite execution path, and it never terminates.

• The execution produces an infinite number of processes; thus, it never

terminates.

The set of paths executed during the symbolic execution can be repre-

sented as a symbolic execution tree. In cases where the tree is finite, it also

represents the program execution tree, and it represents every feasible path

in the program. Moreover, every node in the symbolic execution tree rep-

resents a forking if-statement execution, and each leaf represents a process

termination. The pc associated with any leaf is unique, and each concrete

input generated in step 6 satisfies one and only one leaf pc. Additionally,

there is at least one concrete input for each feasible execution path.

The description given in this session is a high-level overview of the sym-

bolic execution algorithm introduced by King [28] in 1976, and which is

still the base of most symbolic execution tools available today such as Klee

[10], and Java PathFinder [48]. State-of-the-art symbolic execution tools im-

plement additional optimizations that further improve symbolic execution

scalability.

2.2.1 Solving Strategies

Symbolic execution is mainly used today for two purposes: to generate test

cases, and as a bug finding tool. In these cases, symbolic execution can be

14
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used as a search algorithm that seeks feasible paths that lead the execution

to some points of interest in the program. In other words, symbolic execution

traverses the program’s CFG, while trying to find a feasible path that reaches

a certain node. These nodes can represent program exit points, assertion

failures or just uncovered program lines.

King’s original description of symbolic execution does not define any

systematic search strategy to explore the execution tree automatically [28].

King also introduced an interactive symbolic execution tool, named Effigy

[27], where the user is responsible for choosing the process the tool will follow

at step 5.

Since symbolic execution’s introduction, many search heuristics has been

introduced in order to choose which path the engine should follow, and

to systematically explore the execution tree. The main search strategies

implemented by symbolic execution software are described bellow:

Depth-first: In this strategy, the engine implements the worklist as a stack,

always visiting the process that has been most recently created. After

forking, the engine picks one of the process children, and pushes the

other one to the top of the worklist; thus, it always follows one complete

execution path, before switching to a different path. Once a process

terminates, the engine picks the process generated in the most recent

fork.

This strategy is implemented by many tools [10, 22, 48] due to its

simplicity. It also allows for easy integration with other approaches

that may enumerate the paths to be checked, such as concolic execution

[22], and model checking [48]. However, in cases where the execution

tree is unbalanced, the search can spend a lot of effort in one small

portion of the tree — or worse, get stuck in an infinite path.

Breadth-first: A breadth-first search strategy is used to avoid process star-

vation [48], and it gives equal opportunities for the process to run. The

worklist is processed in FIFO order, always selecting the oldest pro-

cess.
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The main drawback of this approach is that if the point of interest can

only be reached deep in the execution tree, then the process may take

a very long time to find it.

Uniform Random: In this approach, the engine randomly chooses which

process following a uniform probability according to the process depth

in the execution tree [9, 10]. The probability of each process to be

picked is equal to 2−L, where L represents the fork level on which

the process was generated. Thus, this strategy favors processes that

are shallow on the execution tree. As with any random search, each

execution explores a different part of the execution tree, and results

are hard to reproduce.

Coverage-Optimized: Many different greedy approaches have been pro-

posed to select a process that is likely to cover new code [9, 10, 30].

These techniques usually compute a weight for each state based on the

minimum distance to an uncovered instruction, and the recently cov-

ered new code. Then, the engine chooses the process randomly based

on each state weight.

This approach adds some overhead to the process selection step; nev-

ertheless, it is usually one of the most efficient strategies to reach

uncovered program statements.

Modern symbolic execution tools usually apply one or more strategies

described above. Some tools support a combined strategy, where more than

one search strategy is interleaved using a round-robin scheduling technique.

2.2.2 Query Optimizations

In order to evaluate an if-statement, the symbolic execution engine em-

ploys some sort of constraint solver to check the branch conditions under

the path constraint. Conceptually, the symbolic execution engine invokes

a constraint solver every time a process execution reaches an if-statement,

and this can impact on the engine performance. Because query complexity is

exponential in the number of variables included in the formula, the number
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of queries, and the size of each query, have a major impact on the symbolic

execution engine’s performance. For this reason many optimizations have

been introduced in order to reduce query complexity, or to attempt to solve

queries without invoking the constraint solver.

Constant Propagation: This optimization affects the instruction’s seman-

tics. When an instruction is executed, a simplification stage follows

the expression generation. In this simplification, any arithmetic oper-

ation that only involves concrete values is replaced by the operation’s

result, which is also constant. Thus, instead of propagating formulas

that involve only concrete values, this method propagates the results

of those operations.

Constant propagation can be applied both statically, as a compiler

pass, and dynamically in each individual execution path, according to

the values assigned to the program variables. Constant propagation

may completely eliminate queries that reference only variables with

concrete values. Failing that, this operation may still reduce the size

and complexity of queries.

Concrete Execution: In this strategy (also known as concolic execution),

symbolic execution can be interleaved with concrete executions [22, 31,

44]. The concrete executions help symbolic execution by determining

the feasibility of entire execution paths, and well as the feasibility

of any subset of each path constraint. Each concrete execution is

monitored to record the command sequence followed.

Implied Value Concretization: Some assumptions made along an exe-

cution path may imply variable assignments. For example, if a process

takes a branch that has the condition σi = 0, the engine can assign 0

to σi, as well as replace any occurrence of σi in the path condition by

the constant 0. After that, it can apply constant propagation to try

to simplify the path condition even more.

Constraint Independence: Instead of testing whether a branch condition

β is feasible under the complete path condition, the engine can try to

17



2.3. SAT Solvers

simplify the query by identifying which constraints in pc are indepen-

dent from β. Two constraints βi and βj are classified as independent

if they don’t share any variables, and if there is no other βm that is

dependent on both βi and βj .

This optimization removes constraints that are completely disjoint

from the branch condition being checked, and reduces the formula

complexity without affecting its satisfiability.

Query Cache: This last optimization is also used to reduce the number of

calls to the constraint solver. Query caches store the results of previous

queries, to avoid making repeated (expensive) calls to the solver for

the same conditions. When combined with constraint independence,

queries might represent a sub-path condition; therefore, the cache can

eliminate queries from different paths that includes the same sub-path

condition.

Besides the optimizations described in this section, researchers have also

focused on the extension of symbolic execution to support different language

features, such as: pointers, heap modeling, environment modeling and con-

currency. These optimizations are out of the scope of this thesis. This

thesis presents an approach that is orthogonal to these advances, and it

should benefit from them without any conceptual change.

Existing search techniques that employ some kind of learning to prune

the number of paths executed during symbolic execution will be discussed in

more detail in Chapter 6. Chapter 6 also contrasts these learning techniques

with the one presented in this thesis.

2.3 SAT Solvers

The problem of deciding the satisfiability of propositional formulas, known

as Boolean satisfiability or just SAT, is one of the most important open

problems in complexity theory. SAT was the first problem proven to be

NP-complete, and there are no known algorithms for solving with better
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than exponential worst case complexity. Despite this, modern SAT solvers

are often highly effective in practice. State-of-the-art solvers are capable of

solving industrial problems with over a million variables and several million

constraints.

While work on SAT goes back to the 1960s, the main advances in this

area started in the late-90s with the introduction of Conflict-Driven Clause

Learning (CDCL) SAT solvers. Since then, SAT solvers have been produc-

ing remarkable results as constraint solvers in areas such as software and

hardware verification.

2.3.1 Definitions

A propositional formula is a logic expression defined over a set of n Boolean

variables, {v1, v2, . . . , vn}, and that contains only three logic operations:

and (∧), or (∨) and not (¬). Modern SAT solvers usually assume that

the propositional formula are represented in a specific form: Conjunctive

Normal Form (CNF).

A CNF formula consists of a conjunction of m clauses, {c1, c2, . . . , cm},
where each clause is a disjunction of one or more literals. A literal represents

the occurrence of a variable vi or its complement ¬vi. Formula 2.3 is an

example of a CNF formula with 4 clauses and 3 variables:

(v1) ∧ (¬v2 ∨ ¬v3) ∧ (v1 ∨ v3) ∧ (¬v1 ∨ ¬v2 ∨ v3) (2.3)

From now on, this thesis assumes that any propositional formula ϕ is

represented in CNF, and CNF formulas will simply be called formulas.

Each variable in ϕ is a Boolean variable, and can either be assigned to

true (1) or false (0). Assigning a variable to true (resp. false) is equivalent

to assigning all positive occurrences of its literals to true, and all negative

occurrences to false (resp. true), and this thesis will make assignments to

literals or variables interchangeably. When a variable hasn’t been assigned

any value, it is a free variable. A set A of the variables in ϕ together with

their corresponding assigned value is a truth assignment, or just assignment,
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to ϕ. An assignment A is complete if it assigns a value to every variable in

the given formula (|A| = n); if |A| < n, then A is a partial assignment.

A formula ϕ evaluated under a complete assignment A is either satisfied

(true) or unsatisfied (false) by A. Additionally, if ϕ is evaluated under

a partial assignment, ϕ can also be undefined, i.e., the evaluation cannot

conclude the value of ϕ by the given assignment.

The satisfiability problem can be defined as the problem of finding whether

there exists at least one complete assignment that satisfies ϕ. For a formula

with n variables, there are 3n possible partial assignments, of which 2n are

complete assignments.

2.3.2 DPLL SAT Solvers

The first efficient search procedure applied to SAT was introduced by Davis,

Logemann and Loveland [14], and it was based on the resolution decision pro-

cedure presented by Davis and Putnam [15]. This search algorithm known

as DPLL is the base of most modern complete SAT solvers, including CDCL

solvers.

DPLL solvers take advantage of some useful properties of CNF formulas,

which emerge from the fact that each clause in a formula ϕ can be evaluated

separately under an assignment A. If any literal in a clause is assigned to

true, the entire clause is assigned to true. If every literal in a clause is

assigned to false, the clause is false, and so is ϕ. Otherwise, a clause is

undefined under A. Thus, for a formula to be unsatisfied, it only requires

one unsatisfied clause.

Another useful property emerges from clauses that have one literal only,

such as the clause (v1) in formula 2.3. These clauses are known as unit

clauses, and any unit clause implies that its unique literal must be assigned

to true in order for the formula to be evaluated to true.

Besides that, if a literal l occurs in a formula, and its negation doesn’t,

the literal is classified as a pure literal. In this case, this literal can be safely

assigned to true. This is due to the fact that a satisfying assignment A

either assigns l to true, or A can be modified by assigning l to true, and the
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resulting assignment will also satisfy ϕ.

DPLL traverses the search space in a top-down approach. It starts from

an empty assignment, and it iteratively assigns values to free variables, and

checks whether the new assignment is a satisfying or an unsatisfying (partial)

assignment.

At each iteration, the algorithm tries to find a variable assignment that

is implied by the detection of unit clauses (known as unit propagation), or

of pure literals. If no value is implied, the solver arbitrarily chooses a free

variable vi, and assigns either vi or ¬vi to true. An arbitrary assignment

is called a decision, and splits the search space in two. A DPLL solver

maintains the set of decisions previously made as a decision tree, and a

decision level is associated with every arbitrary assignment to denote its

depth in the decision tree.

After any variable assignment, the algorithm creates a new formula ϕ′

by modifying ϕ to:

• Remove the occurrence of the literal assigned to false.

• Remove the clauses with the literal assigned to true.

If ϕ′ is empty, then the current assignment is a satisfying one. If ϕ′

has an empty clause, then the current assignment is an unsatisfying one.

Otherwise, the original formula is undefined under the current assignment,

and the search continues by picking another variable assignment.

The occurrence of an empty clause is known as a conflict, and the al-

gorithm backtracks. In DPLL, the search always backtracks to the previous

decision level by reverting to the formula ϕ′. The search then checks whether

it has tried both branches of the decision tree. If it hasn’t, the search as-

signs the opposite value to the decision variable. If the search has tried both

values, it has to backtrack one more level.

The DPLL search algorithm terminates when it finds a satisfying assign-

ment, or when it backtracks past level 1 — there is no satisfying assignment.
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Algorithm 2.1 CDCL framework implemented by modern SAT solvers.
Given a CNF formula, CDCL is a search procedure that tries to find a
satisfying assignment. The CDCL algorithm traverses the decision tree ap-
plying conflict analysis, clause learning, and non-chronological backtracking
to reduce the search space.

Input: Set of clauses.
Output: SAT if there exists an assignment that satisfy all the clauses

simultaneously, UNSAT otherwise.

function CDCL( )
status← preprocess( )
if status 6= UNKNOWN then

return status
loop

l← decide( )
if l 6= ∅ then

status← propagate(l)
if status = CONFLICT then

if level = 0 then
return UNSAT

else
level, cause ← analyze conflict( )
learn(cause)
backtrack(level)

else
return SAT

2.3.3 CDCL SAT Solvers

The DPLL algorithm was proposed in 1962, and it remained the framework

of state-of-the-art complete solvers until the introduction of Conflict-Driven

Clause Learning (CDCL) SAT solvers. In 1996 [45], Silva and Sakallah

presented a new SAT solver named GRASP, based on DPLL solvers. Unlike

other DPLL solvers, GRASP was capable of analyzing and learning from

conflicts reached during the search. CDCL solvers are named after GRASP’s

conflict-driven clause learning procedure.

Algorithm 2.1 presents pseudo-code for the CDCL framework. Like
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DPLL, CDCL starts from an empty assignment, and the solver implements

an iterative search. However, the search is modified to support conflict

analysis, clause learning, and non-chronological backtracking.

Preprocess: In the beginning of the algorithm, a CDCL solver may per-

form some preprocessing to find out whether the formula’s satisfiability

can be trivially determined, or if any variable value can be implied.

Decide: Like DPLL solvers, if the solver can’t deduce any free variable

assignment, the solver picks a literal to assign to true. A CDCL solver

also records the level of each decision.

Propagate: Once a decision is made, CDCL reduces the formula being

assessed by removing any clauses containing the selected literal, and

removing from each remaining clause any occurences of the comple-

ment of the decision literal. In practice, the solver uses efficient data-

structures to manage these operations. During propagation, if the

solver identifies a unit clause, its unique literal is assigned to true, and

the new assignment is propagated; if it detects an empty clause, then

it raises a conflict.

Analyze Conflict: If the search reaches a conflict, then the solver analyzes

the set of decisions, and the assignments implied by them. To do

so the solver either maintains and analyzes an implication graph, or

implements a sequence of selective resolution operations. More details

about how this operation is performed can be found in [45, 50].

Learn: Once the solver finds a subset of the assigned literals that together

are sufficient to cause a conflict, the solver generates a new clause

containing the negation of these literals. By adding this learned clause

into the clause database, the solver will be prevented from returning

to the same search space in the future.

Backtrack: The last step after a conflict is detected is a non-chronological

backtracking. The solver has to backtrack to a level that reverts at
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least one conflicting assignment. If an earlier decision is responsible

for the conflict, the search can backtrack more than one level.

The search ends if it successfully assigned a value to each variable in the

formula without raising a conflict, i.e., it found a satisfying assignment. Oth-

erwise, if the formula is unsatisfiable, the solver terminates when a conflict

is raised at level 0.

Efficient CDCL solvers also include many other implementation improve-

ments introduced after GRASP. One example is the new unit propagation

detection algorithm introduced by Moskewicz et al. [36], which reduced the

solving time of hard instances up to two orders of magnitude. Their ap-

proach does not investigate every clause at each iteration while searching for

new unit clauses. Instead, their approach picks two literals in every clause

that have not yet been assigned false, and watches them. After assigning a

new value to a variable, only the clauses watched by the corresponding false

literal need to be visited (during which either a new watching literal will be

found for each clause, or unit propagation will be triggered, or a conflict will

be raised). This BCP algorithm is known as the 2-literal watching scheme.

Other improvements include restarts [24], sophisticated decision heuristics

[23, 36], and learned clause deletion [23].

In the last 20 years, SAT solver advances have not been restricted to

performance improvements. New features have been added to SAT solvers

to improve their usability in different applications. The following ones are

the most relevant to this thesis:

Unsatisfiability Core : In the process of generating an unsatisfiability

proof to a formula ϕ, many modern SAT solvers can identify a sub-

formula ϕ′, ϕ′ ⊆ ϕ, that is also unsatisfiable, known as an unsatisfia-

bility core. This core can be very helpful in diagnosing the causes of

some formula’s infeasibility.

In practice, the goal is to generate a small unsatisfiability core, known

as minimal unsatisfiability core. However, this is a hard problem,

harder than proving that a formula is unsatisfiable, and there exists
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many different strategies that attempt to efficiently identify small and

minimal cores (for more details see [38, 51]).

Incremental Solvers : An incremental SAT solver is a solver capable of

reusing its solving state after solving a formula ϕi to successively solve

similar formulas. The variable activity used in decision heuristics,

deletion / restarts strategies and others can be safely reused indepen-

dently of the formulas. However, learned clauses can only be reused

if no clause of ϕi is deleted. A solver can keep the learned clauses to

solve ϕj after solving ϕi if:

ϕi ⊆ ϕj

Because ϕj contains every clause in ϕi, this technique can be used to

solve problems incrementally. This process is much faster than solving

each formula independently.

Assumption Mechanism : Eén and Sörensson [19, 20] observed that it

is safe to keep the clauses learned even if some clauses are deleted.

However, this only applies if all the removed clauses are satisfied at the

top level (such as unit clauses). Given this observation, the authors

introduced a modification in the preprocessing stage that allows a

solver to check a formula satisfiability under initial assumptions (or

just assumptions). An assumption is a unit clause that represents

a variable assignment that should be propagated before a formula is

solved. This assumption mechanism allows the solver to simulate the

effect of removing clauses from a formula.

For example, a user can invoke an incremental solver successively to

check ϕi and ϕj , even if ϕi * ϕj . For that, he / she adds a new

variable vk to both formulas, and adds the literal vk to every clause

that is in ϕi but not in ϕj . Then, the user invokes the solver to

check whether the modified ϕ′i under the assumption ¬vk is satisfiable.

During preprocessing, the solver propagates the assumption, which

removes every occurrence of the literal vk, and the ϕ′i is reduced to ϕi.
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After solving ϕi, the user can add the clauses that are exclusive of

ϕj , and invoke the same solver; however, the user passes vk as an as-

sumption. The solver propagates this new assumption, which trivially

satisfy all clauses that contain vk. Thus, the solver can remove them

from search.

The assumption mechanism also provides a powerful and lightweight

mechanism to detect the unsatisfiability reason, or even the unsatis-

fiability core. Because each assumption is treated as a unit clause,

the solver will still represent it in the implication graph. Once the

solver proves that a formula is unsatisfiable, the solver can analyze

the conflict, and check if the final conflict is a consequence of any of

the assumptions given. If there is no assumption involved, the solver

can conclude that the formula is unsatisfiable. On the other hand,

if there are one or more assumptions involved in the final conflict,

the solver concludes that the formula is unsatisfiable under the as-

sumptions given. Additionally, the solver provides a subset of the

assumptions that is sufficient to make the formula unsatisfiable [18].

2.4 CDCL Applications

The unquestionable efficiency of CDCL SAT solvers has inspired many re-

searchers to apply the same reasoning behind CDCL to solve problems in dif-

ferent domains. For example, Satisfiability Modulo Theories (SMT) solvers

employ SAT solvers to enumerate abstract solutions, and a theory solver,

which is able to handle atomic constraints in some decidable first-order the-

ory to test and refine each solution. The efficiency of modern SMT solvers

comes from the integration of the CDCL SAT solver and the theory solver.

The SAT solver consults the theory solver after every decision, and the the-

ory solver may return a new deduced assignment, as well as a conflict clause

— if a conflict is detected. This tight integration, known as lazy SMT 7,

is responsible for a great advance in SMT performance, and it has a direct

7The name was given in contrast to eager SMT, which encodes the SMT formula into
an equivalently satisfiable Boolean formula before invoking a SAT solver.
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impact in symbolic execution, since most symbolic executions employ some

kind of SMT solver as their constraint solver [43].

Another example is the Conflict Driven Fixed Point Learning (CDFL)

technique [17], which instantiates a CDCL architecture over abstract do-

mains. This technique was successfully applied for bounds analysis, and it

was mathematically generalized to lattice-based abstractions [16].

In the software verification context, the insights of modern SMT solvers,

and consequently CDCL solvers, has inspired the introduction of a program

analysis named Satisfiability Modulo Path Programs [25]. Chapter 6 de-

scribes this analysis technique at length, and compares it to the method

introduced in this thesis.
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Chapter 3

Conflict-Driven Symbolic

Execution

Symbolic execution has been highly optimized to generate lightweight queries

to the constraint solver, which allows tools to successfully explore many exe-

cution paths even in large programs. Nevertheless, symbolic execution tools

still try to exhaustively execute every feasible path in order to prove/dis-

prove certain properties. This strategy resembles DLL SAT solvers; thus,

symbolic execution might benefit from CDCL techniques, in the same way

that SAT solvers did.

Therefore, this chapter presents a novel symbolic execution algorithm

that avoids executing every execution path, named Conflict-Driven Symbolic

Execution (CDSE). In a nutshell, CDSE prunes the search space every time

a certain branch is proven infeasible, by learning the reason why there is a

conflict.

The initial CDSE description considers programs that have no loops and

only one property. Section 3.4 describes how CDSE can handle multiple

properties, while Section 3.5 presents different CDSE solutions to verify

programs with loops.

In addition, this thesis assumes that a program property ρ is encoded as

a boolean expression βρ. The property ρ is embedded in the source code as

an assert statement:

assert(βρ)

which is semantically equivalent to the following if-statement:

if ¬βρ then abort()
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3.1. Overview

The branch that represents the transition to the abort() statement, i.e. a

property violation, will be represented with a µ

3.1 Overview

Like any symbolic execution algorithm, CDSE is a search algorithm. In

CDSE, each program branch statement and a possible direction represents

a decision. From now on, this pair will be called a ‘branch’, inspired by the

program’s control flow graph (CFG) representation. Thus, CDSE explores

the program’s search space by choosing which branches should be executed

in sequence.

In order to reduce the search space, the CDSE search engine prunes paths

by employing the same insights from CDCL solvers: if a certain subset

of decisions raises a conflict, this conflict can be used to backtrack non-

chronologically, and to preempt the occurrence of similar conflicts.

The engine uses the control flow graph (CFG) and facts learned from pre-

vious attempts to guide its future decisions. The engine iteratively chooses

which branch to take, and then evaluates this decision’s consequences before

making a new decision.

For example, going back to Listing 1.1 at page 5, conflict-driven symbolic

execution exploits the same intuition presented in Section 1.1 to prove that

the given assertion always holds by executing only 2 out of 8 execution paths.

In addition, it extracts information from the program’s CFG to optimize the

learning process, as well as the decision procedure.

In order to prove that the assertion always holds, the CDSE engine

searches for a feasible path between the entry node and the assertion failure

BB (the True BB of the translated if-statement). First, the engine extracts

from the program’s CFG (shown in Figure 3.1(a)) which branches could

never be included in any path that connects the entry node (BA) and the

assertion True BB (BH). As a result, the engine learns branch b11 would

never be included; therefore, it should never be taken.

After that, the engine symbolically executes the program by alternately

choosing which branch to follow, and checking whether it is feasible or not.

29



3.1. Overview

BA

BB

 b1

BC

 b2

 b3

BD

 b4

BE

 b5

 b6

BF

 b7

BG

 b8

 b9

BH (abort)

 b10

BI (exit)

 b11

(a) Program’s control flow graph
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(b) Program’s execution tree — modified copy from Figure 1.1 representing
executed basic blocks.

Figure 3.1: The control flow graph and the execution tree for the program
described in Listing 1.1. (a) In the CFG, each branch b and each basic block
B has a unique ID. (b) The execution tree represents the 8 paths in the
CFG that would lead the program to check the assertion. The execution
tree edges represent only conditional branches; thus, one node may represent
the execution of more than one basic block.
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3.1. Overview

Following the description in Section 1.1, in order for the CDSE engine to

execute the path marked in red in Figure 3.1(b), the engine must choose to

follow the branches b1, b3, b4, b6, b7, b9, and b10. When the engine reaches

b10, and checks if its condition is feasible, the engine finds a conflict.

The branch b10 condition is not feasible because of the constraint ‘x < y’

and the result definition from assignment ‘result = y− x’ (inside BF ). The

engine adds the constraint ‘x < y’ to the path condition as a consequence

of the decision to follow b7. Additionally, the result value is defined in BF

because the engine takes b9. Consequently, the decision of taking branches

b7, b9 and b10 led the symbolic execution into a conflict, and the engine

learns that it should never take them together again. This learning prunes

4 possible execution paths (including the red path) from its search.

In order to leave the conflicting state, the engine has to backtrack and re-

move at least one of the conflicting decisions. The engine can keep decisions

that led it to take b1, b3, b4, b6, but it cannot take either b7 or b9. Taking

b7 implies that execution will follow b9, and b9 execution must follow b7’s.

Moreover, the engine knows that only paths that include b10 are relevant to

the proof — since all paths either include b10 or b11, and previous analysis

excluded b11’s.

If the engine decides to keep the same decisions until b6, and to take

b8 and b10, the execution follows the path with the blue edge. Once again,

the engine reaches a conflict when it checks whether b10 is feasible. This

conflict emerges because of branches b8 and b10. As a consequence to the

decision of taking b8, the engine adds the constraint ‘x > y’ to the path

condition, and the definition of variable result (result = x − y) from BE

reaches BG. This constraint and this definition together conflict with the

branch b10 condition ¬(result >= 0). Therefore, the conflict detected is an

invariant to every path that includes b8 and b10.

CDSE concludes the assertion always holds after applying what the en-

gine learned from both: the two conflicts it reached and the program’s CFG.
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3.2. Learning Scheme

3.2 Learning Scheme

In order to reduce the search space, the CDSE engine must be able to learn

from its bad decisions, as well as to make new decisions based on the facts

learned from previous iterations. Thus, the CDSE learning scheme pro-

vides a mechanism to extract the decisions that led the search to a conflict,

and to create a new constraint that blocks them. Moreover, this learning

scheme also provides a mechanism to restrict the engine’s choices according

to the constraints previously learned. Consequently, every time a conflict is

reached, the engine learns a new constraint and the available choices become

more restricted.

3.2.1 Search Constraints

Every decision made by the CDSE engine respects the constraints imposed

by the program’s CFG and the facts learned along the search. In other

words, the engine should pick only branches that compose a CFG path and

that haven’t been blocked yet.

The engine represents these constraints as a set of clauses (CNF). The

CNF representation allows the engine to use a SAT solver to find decisions

that do not violate the search constraints. From now on, this CNF will be

called fCFG.

An f CFG is a formula used to represent the constraints that guide the

CDSE search, including those extracted from the program’s CFG. Each

variable in the f CFG formula has a one-to-one correspondence to an element

in the CFG — either a branch or a basic block. Therefore, the engine can

easily map elements of one set to the other.

The engine uses a SAT solver to solve the f CFG and consequently to

enumerate CFG paths that would lead the program execution to a property

violation, given that no conflict is detected by the engine. Thus, the f CFG

is encoded to be satisfiable if and only if there is a path in the CFG be-

tween the program’s entry node and a property failure µ. Consequently, the

reachability problem becomes a satisfiability problem, where:
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3.2. Learning Scheme

1. The variable corresponding to the entry node must be true.

2. Any variable corresponding to an exit node (excluding the abort call

from the property encoding) must be false.

3. A branch variable vb can be true if and only if the origin and target

variables are also true, when they exist.

4. A basic block variable vB can be true if and only if at least one incom-

ing edge variable is true.

5. A basic block variable vB can be true if and only if at least one outgoing

edge variable is true.

6. The variable corresponding to the property violation µ must be true.

Note that the constraints described above do not restrict satisfying as-

signments to represent only one path. However, they guarantee that a sat-

isfying assignment represents at least one non-blocked path that connects

the entry node to the property violation in the CFG. Moreover, if a variable

vb is assigned to true in a satisfying assignment, these constraints guarantee

that one of its path includes the branch b.

Initially, the f CFG includes only constraints derived from the CFG.

These constraints are enough to block the decisions that could lead the

search to an ill-defined path in the CFG, or to an irrelevant path to the

property proof. The initial f CFG is satisfiable unless every assertion state-

ment is trivially marked as dead code during CFG construction.

During the search, the engine tries to execute a CFG path that respects

the current assignment to the f CFG. If the path is feasible, than it finds

an assertion failure. On the other hand, if the path is infeasible, the engine

performs a conflict analysis to establish a set of branches that led to the

conflict. This conflict analysis, which is described in the next section, returns

a new constraint, represented as a clause, that blocks any path that contains

every branch in the given set. The engine adds this clause to the f CFG, and

invokes the SAT solver to find a new assignment that respects the increased

set of constraints.
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3.2.2 Conflict Analysis

In order to determine a reason of a conflict, the symbolic execution of a path

is slightly modified. The changes allow the CDSE engine to represent the

conflict reason as a clause, and to learn from it by adding the clause to the

f CFG.

In CDSE, the engine chooses which branches to take in sequence, and it

executes a path following these decisions. The engine executes a program

statement as a consequence of the past decisions. Therefore, the CDSE

expression generation reflects not only the instruction semantics, but also

the decisions that led the instruction execution.

In order to represent this dependency, the expression encoding includes

instruction guards, from now on represented with δ. An instruction guard is

a boolean symbolic variable that express the condition that the search must

meet in order to execute the guarded instructions. In CDSE, the instruction

guard is true if and only if the immediate preceding branch is taken.

The engine encodes an instruction guard as a boolean symbolic variable

δi that follows the same identification number i as the last branch taken

bi. After taking branch bi, and before taking any other branch, the engine

guards the instructions with the same variable δi. In CDSE, the engine may

guard an assignment or boolean conditions.

Given an assignment

σ := 〈expr〉

where σ is a program variable, and 〈expr〉 is the expression to be assigned

by regular symbolic execution. The engine guards such an assignment by

extending the expression to be assigned to a select expression. A select

expression represents a ternary operation that contains a boolean condi-

tion, and two possible assignments. The evaluation of the boolean condition

determines which assignment is chosen.

In this new expression, the variable σ gets the 〈expr〉 if the guard δi

is true. Otherwise, σ can get any value, i.e. its value is nondeterministic,

which is represented as a 〈nondet〉 symbol. The original assignment is then
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3.2. Learning Scheme

replaced by the following guarded assignment:

σ := δi ? 〈expr〉 : 〈nondet〉

Consequently, the variable σ will be defined as 〈expr〉 if the program execu-

tion reaches the assignment instruction — if it takes the preceding branch

bi; otherwise, σ can have any value.

The engine can use data flow analysis to optimize the number of assign-

ments to guard. CDSE does not need to guard a variable assignment if its

definition dominates every possible use.

Besides assignments, CDSE also guards constraints generated from con-

ditional branches. Before executing a conditional branch command, the

engine chooses a branch bi that it will follow. Then, the engine creates a

new expression with the original branch condition 〈cond〉 and the instruc-

tion guard δi. In this new expression, δi implies that 〈cond〉 must be true.

In other words, if the branch bi is taken, the branch condition must be true.

Thus, the following constraint is added to the path condition:

δi =⇒ 〈cond〉

Given the new encoding, the engine invokes the constraint solver passing

all guards to the current path as assumptions, i.e., the solver has to solve the

given formula assuming every guard is true. Consequently, CDSE still passes

an equally satisfiable problem to the constraint solver. Additionally, if the

path is infeasible, CDSE leverages the constraint solver conflict reasoning to

provide which guards — and which branches — are responsible for a conflict.

Once the constraint solver returns a conflict clause, CDSE has to trans-

late the guards involved in the conflict returned to their respective branches.

The translation follows a lightweight mapping mechanism, since the guards

identification number is the same as its relative branch. Finally, CDSE gen-

erates a conflict clause based on the branches that led to the current conflict,

and adds such a clause to the learned clause database.

Thus, CDSE explores the program structure in three different contexts.
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3.3. CDSE Algorithm

The first one is the program CFG, which represents the set of all possible

transitions in the program. CDSE uses the CFG to build an initial knowl-

edge about the program. Second, CDSE represents the CFG as a formula,

f CFG, where the algorithm can easily add new facts (learned clauses). The

f CFG represents each CFG element as a boolean variable. The last con-

text is the symbolic execution encoding itself. CDSE introduces the concept

of instruction guards, which are symbolic variables that represent branches

in this context. CDSE employs these guards in order to perform a conflict

analysis. Therefore, each branch bi in the program CFG has a corresponding

f CFG variable vi, and a corresponding guard δi.

3.3 CDSE Algorithm

The conflict-driven symbolic execution algorithm systematically explores the

search space by deciding which branches to take given the knowledge it built

from previous decisions. CDSE starts from the entry node in a program,

and symbolically executes the program until it reaches a branch statement.

Then, CDSE chooses which branch should be taken next, and checks whether

such decision is feasible or not. CDSE iteratively executes instructions be-

tween the chosen branches, until it reaches the violation branch bµ, or the

branch chosen is infeasible. If the bµ branch is feasible, a bug was found

and a concrete counter example (CEX) is extracted. On the other hand, if

a branch is infeasible, a reason for the conflict is determined. The CDSE

engine, then, learns which set of branches should not be taken in order to

avoid the same conflict, and backtrack.

Algorithm 3.1 presents a pseudo-code for the algorithm described above.

Like CDCL solvers, the algorithm can be divided into the following main

steps:

Preprocess : In lines 1-7, CDSE employs different static analysis tech-

niques to optimize the code and to extract relevant information for

the next steps.

Decide : At every iteration, symbolic execution reaches a branch state-
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3.3. CDSE Algorithm

Algorithm 3.1 Pseudo-code for the conflict-driven symbolic execution pro-
posed in this thesis.

Input: Program P, Bound B and Assertion A
Output: TRUE if assertion can’t be violated, a CEX otherwise

1: P’ ← analyze and optimize(P)
2: cfg, f CFG← build cnf(P’, B, A) // Build CFG and translate to CNF
3: paths ← solve(f CFG)
4: if paths = ∅ then
5: return True
6: pcond ← ∅ // Path conditions
7: dstack ← ∅ // Decision stack
8: loop
9: branch ← decide next branch(cfg, paths, dstack)

10: Push(dstack, branch)
11: pcond ← pcond & get cond(P’, branch)
12: if is feasible(pcond) = True then
13: if next = ¬A then
14: return compute cex(P’, pcond)
15: else
16: sym exec step(branch) // Current branch → next branch

17: else
18: lclause ← analyze conflict( )
19: add clause(f CFG, lclause)
20: paths, pcond, dstack ← backtrack(f CFG, pcond, dstack)
21: if paths = ∅ then
22: return True

ment, and decides which direction to take. Lines 9-10 represent the

decision procedure.

Propagate : Once a decision has been made, the algorithm propagates it.

From line 11 to 16, the path condition is extended and checked. If

feasible, the algorithm checks whether it has found a bug. If a bug

was found, the algorithm returns a counter example. Otherwise, CDSE

executes the instructions from the last branch until the next branch.

Conflict Analysis : If a conflict was reached, the algorithm establishes
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3.3. CDSE Algorithm

which decisions led to this conflict (Line 18).

Learn and Backtrack: In lines 19-22, the algorithm learns to avoid the

conflict detected, and backtracks to some previous branch where this

conflict is no longer implied. If there is no path left, the algorithm

returns True.

3.3.1 Preprocess

This step precedes the symbolic execution, and the goal of this step is to

extract relevant information for the following steps, as well as simplify the

program instructions. During Preprocess, the engine can apply many static

analysis techniques included in modern compilers to optimize the program,

such as constant propagation, loop unrolling, dead code elimination, etc.

Additionally, the engine gathers two piece of static information that are

required in further steps: the control flow graph and the use-def chain.

The control flow graph can be easily retrieved by visiting each basic

block in the program and connecting it to its immediate successors — its

branch targets. Because decisions are based on branches, the CFG contains

an entry edge that points to the entry node. As mentioned in section 3.2,

the engine also represents the CFG as a CNF (the f CFG), which facilitates

the decide and learn steps. Thus, the engine also initializes the f CFG, and

uses a SAT solver to find an initial assignment during preprocessing.

The second piece of information needed is the set of all definitions of a

program variable (namely, variable assignments) that can reach a certain

usage, known as the use-def chain. Modern compilers already compute this

data flow information while transforming the program into static single as-

signment (SSA) form. In SSA form, whenever a variable value can come

from different sources, due to join points in the CFG, phi-functions (or phi-

nodes) are added to the beginning of basic blocks. Semantically, phi-nodes

are conditional assignments, where a variable is assigned to its latest value

in the preceding block. The phi-nodes carry information about where vari-

able values may come from, and the CDSE engine employs this knowledge

to define which assignments have to be guarded.
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3.3.2 Decide

The search starts after the preprocess step. At every iteration, the first step

is to decide which branch to take next. Each decision is based on the CFG,

and the current assignment to the f CFG variables.

First, the decision procedure identifies which choices are available by

using the CFG to find the existing basic block transitions that originated

from the last basic block executed. The procedure then refines the set of

choices available by using the current assignment to the f CFG. The decision

procedure can only pick a branch bi if the f CFG variable vi has been assigned

to True. If after the refinement there is more than one choice available, the

decision procedure could apply different strategies to try to guess which one

is the best choice, or choose randomly.

After a decision is made, the f CFG variable picked is pushed onto a

stack, named the decision stack. The new size of this stack determines the

level associated to this last decision.

3.3.3 Propagate

After the decision procedure picks a branch bi, CDSE propagates every

change implied by this choice. This includes checking if the branch bi is

feasible, and symbolically executing the instructions that follow it. Sym-

bolic execution will continue until it reaches the next conditional branch

statement.

First, the engine has to check the branch condition under the current

path constraints. For that, the engine derives the branch condition from the

current branch statement and the direction to be taken. The engine guards

the constraint with the δi that is related to the branch bi, and extends the

path condition by adding this guarded constraint.

Given this new path condition and the current decisions, the engine in-

vokes the constraint solver to check whether the path condition is satisfiable

or not. If the new path condition is infeasible, CDSE found a conflict, and

the engine follows the conflict analysis step. Otherwise, the propagation

continues.

39



3.3. CDSE Algorithm

CDSE propagation continues by checking whether it has reached a bug.

In which case, it retrieves a valid counter example from the constraint solver,

and returns it to the user.

If propagation does not reach any conflict or any bug, the engine sym-

bolically executes the instructions that follows bi, and it uses δi to guard

instructions whenever it is necessary. If during the symbolic execution, the

engine reaches an unconditional branch bj , the engine adds bj to the decision

stack as an implied decision, and starts using δj instead.

3.3.4 Conflict Analysis

The conflict analysis’ goal is to establish a subset of decisions that led the

search into a conflicting state, where the path being explored is no longer

feasible. CDSE exploits the assumption mechanism adopted in many CDCL-

based constraint solvers to implement a lightweight and efficient conflict

analysis.

As explained in Section 3.2.2, the CDSE engine encodes the instruction

guards as assumptions to be respected by the constraint solver. Therefore,

if the constraint solver finds that the current path condition is unsatisfiable,

the solver returns a reason for the conflict as a conflict clause based on the

assumptions given.

Because the conflict clause returned by the constraint solver is based

on guards and not on the f CFG variables, the engine has to translate this

clause as a function of the f CFG variables. In order to differentiate the

conflict clauses returned by the constraint solver from the ones returned by

the CDSE conflict analysis stage, from now on, this thesis will use execution

conflict clause for the former and CDSE conflict clause for the latter. Hence,

an execution conflict clause is based on instruction guards, while a CDSE

conflict clause is based on f CFG variables.

As mentioned in Sections 3.2 and 3.3.1, the CDSE engine uses the same

identification number i to identify a branch bi and its corresponding f CFG

variable vi and guard δi. Thus, the engine uses this identification number

to map guards to f CFG variables, and to perform the translation from an
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execution conflict clause to a CDSE conflict clause.

As a result, the conflict analysis procedure returns a clause with the

negation of every f CFG variable involved in the conflict. For example, if

branches gi and gj are responsible for the conflict, the conflict analysis will

return the CDSE conflict clause (¬vi ∨¬vj). This clause summarizes which

decisions can be taken to avoid the same conflict.

3.3.5 Learn and Backtrack

In this last step, the CDSE engine applies the information returned by the

conflict analysis to undo previous decisions, and to preempt the occurrence

of similar conflicts. First, the engine expands the f CFG by adding the CDSE

conflict clause retrieved from the conflict analysis. This clause represents a

new constraint that excludes the corresponding decision subset responsible

for the last conflict. Therefore, future satisfying assignments to the f CFG

can’t assign true to every f CFG variable responsible for the conflict.

Once the conflict is learned, the engine needs to backtrack its previous

decisions in order to leave the conflicting state. CDSE backtracks by solving

the expanded f CFG, and looking for new paths to follow. If the f CFG is no

longer satisfiable, every path has been blocked, and CDSE has proven the

target property always holds.

In contrast, if the SAT solver finds a satisfying assignment to the f CFG,

the engine checks which variables in the decision stack are no longer assigned

to true, and backtracks to a level where all these decisions are removed. The

engine also removes from the path condition the constraints added due to

the backtracked decisions, and the algorithm goes back to the decision step,

starting a new iteration.

3.4 Multiple Properties

Conflict-driven symbolic execution can simultaneously verify multiple prop-

erties in the target program. Adding support for multiple properties requires

just a few changes to the preceding algorithm description. First, the unit
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clause vµ, defined in Section 3.2 item 6, is no longer added to the f CFG.

Instead, the f CFG translation adds a property clause to the f CFG. The

property clause is defined as the union of every variable relative to a prop-

erty failure µi, or:

∨
i

vµi

This change is enough if the goal of CDSE is to prove whether the pro-

gram respects all properties given, i.e., whether it can find any property

violation. However, if the goal is to prove/disprove every property given,

Multiple Property CDSE includes a second change. Whenever the symbolic

execution reaches the violation of a property ρi, the engine saves the counter

example found and learns to never look for the same violation. For that,

the engine adds to the f CFG the unit clause (¬vµi), which blocks every

complete path that could violate ρi again.

Even though this unit clause blocks every assignment to the f CFG that

assigns vµi to true, this will not restrict the search for a violation of a

non-blocked property. Note that there is no path in the CFG that can

include two property violations. A satisfying assignment to the f CFG that

includes more than one property violation must also include independent

paths that connect each one of them to the entry node. Thus, for any

satisfying assignment to the f CFG that assigns vµi and vµj to true, there

is a second satisfying assignment that does not include vµi , but that still

includes the same paths to µj . Adding a unit clause (¬vµi) to the f CFG

will block the first assignment, but not the second.

3.5 Loop Handling

So far, the CDSE description relies on the absence of loops in the program

control flow graph. In the presence of loops, an assignment to the f CFG no

longer guarantees the existence of a path that connects the entry node to

one of the target nodes (See Figure 3.2 for an example). Therefore, CDSE

must handle the loops in the CFG before converting it to a CNF.
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(b) A satisfying assignment to the f CFG.

Figure 3.2: An example of a satisfying assignment to the f CFG that
no longer guarantees the existence of a complete path in a CFG due to
the existence of loops. (a) Represents a program CFG with two loops.
(b) Represents a satisfying assignment to the corresponding f CFG. In this
representation, each CFG element’s identification is replaced by the value
assigned to the corresponding f CFG variable.
Any complete path in the given CFG should include b3; however, a loop in
the CFG allows a node to succeed its predecessor, and rules 4 and 5 can be
satisfied without guaranteeing that b3 must be taken in order to reach BD.
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For example, the CDSE engine can apply source code modifications to

the program target P , unrolling all loops until a given bound n. In this

case, the symbolic execution is bounded, and it can prove property correct-

ness only for execution paths that respect the loop bound, and no other

conclusion could be taken about the program’s behavior past the bound.

However, source code loop unrolling is expensive, since it generates n

copies of the same instruction sequence, and it can be easily avoided in

CDSE. Because the CDSE engine takes advantage of the CFG to guide its

search, the engine can apply more sophisticated approaches to handle loops,

such as:

Static CFG Unrolling: Instead of unrolling the program’s source code,

the engine can unroll loops only in the CFG.

Dynamic CFG Unrolling: The engine can also unroll the CFG dynami-

cally. The algorithm starts by unrolling every loop twice, and assuming

that a loop second iteration should not be taken. Then, CDSE pro-

ceeds with the search until it either finds a counter example, or blocks

every path available. In the latter, the engine checks if any assump-

tion added causes the current f CFG to be unsatisfiable. If that is the

case, the engine removes the assumption, unrolls the loops that were

involved in the conflict, and continues the search.
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Chapter 4

Kite: A Conflict-Driven

Symbolic Execution Tool

This chapter presents my proof-of-concept conflict-driven symbolic execu-

tion (CDSE) tool named Kite8, which was used to evaluate the performance

of this new algorithm. This chapter describes Kite’s implementation details,

including which changes were necessary to employ many of the symbolic ex-

ecution optimizations described in Section 2.2.2.

4.1 Kite’s Architecture

Kite was developed to verify embedded assertions in sequential programs.

Kite verifies programs described in the LLVM assembly language, known

as LLVM IR, which can be obtained by parsing C files using the LLVM C

front-end [41].

Kite was mainly constructed on top of a state-of-the-art symbolic exe-

cution tool named Klee [10, 39]. Kite’s implementation can be divided into

four main modules:

Preprocessor: The preprocessor is responsible for reading the input file,

as well as analyzing, and optimizing the program before the symbolic

execution starts.

Instruction Interpreter: This module interprets the program instructions

following the symbolic execution semantics. The interpreter imple-

ments the entire CDSE propagation step.

8Kite is an open-source project and its source code can be retrieved from: www.cs.

ubc.ca/labs/isd/Projects/Kite
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Kite

Pre-Processor
(Extended LLVM)

Decision
EngineConstraint

Solver
(Extended STP) MiniSat

Instruction Interpreter
(Based on Klee)

Figure 4.1: Kite’s main modules, their composition and communication.
The preprocessor module provides information to the instruction interpreter
and the decision engine. The instruction interpreter symbolically executes
the code guided by the decision engine. The interpreter and the constraint
solver share information about path condition feasibility.

Decision Engine: The decision engine chooses which branches to follow,

as well as the backtrack level, whenever a conflict is detected. Thus,

it implements the decision step, as well as learning and backtracking

steps.

Constraint Solver: The constraint solver is responsible for analyzing the

path constraints, and deciding whether they are valid or not. In cases

where the constraints are not valid, it returns an execution conflict

clause. Moreover, the constraint solver also extracts an assignment to

the program input variables when the execution reaches an assertion

failure.

Figure 4.1 depicts how these four modules are organized inside Kite, as

well as the communication between them. The preprocessor is the first mod-
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ule to act in Kite’s execution, and it provides information to the instruction

interpreter and the decision engine. The symbolic execution is then coor-

dinated by the instruction interpreter. This module consults the decision

engine every time a decision is required, or after any conflict is detected.

Besides that, the interpreter invokes the constraint solver to check whether

any modification in the path condition is feasible.

Kite inherited three of its modules from Klee: the preprocessor, the con-

straint solver and the instruction interpreter. Consequently, Kite also in-

herited three tools used in Klee: LLVM [32], STP [21], and CryptoMiniSat2

[46]. LLVM is the base of the preprocessor, while STP and CryptoMiniSat2

comprise the constraint solver.

Kite introduces some extensions to the preprocessor and the constraint

solver in order to support the CDSE preprocessing requirements and the ex-

ecution conflict detection. These two modifications are described in Sections

4.2 and 4.4, respectively. Kite’s instruction interpreter is the result of many

modifications applied to Klee’s symbolic execution engine to implement a

conflict-driven approach. These changes are described in Section 4.3.

The decision engine is a new module exclusive to Kite. The decision

engine includes an underlying SAT solver in order to solve the search con-

straints. The underlying SAT solver is an extended version of MiniSat [20],

which was modified in order to implement different decision heuristics as

described in Section 3.2.1.

4.2 Preprocessor

The preprocessor is responsible for reading, analyzing, and optimizing the

program under verification. As previously mentioned, Kite’s input is a pro-

gram described using the LLVM IR, and the preprocessor module is mainly

composed of the LLVM compiler itself.

The LLVM (Low Level Virtual Machine) compiler was introduced in

2004 by Lattner and Adve [32]. The authors designed LLVM to be a flexible

and easy-to-extend compiler framework. Since then, LLVM has grown, and

it incorporates many program analysis procedures and optimization passes.
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Furthermore, LLVM also behaves as a virtual machine capable of interpret-

ing its own assembly language, the LLVM IR.

The LLVM provides optimization passes that reduce the number and

cost of instructions in the final executable. These passes can also be used

to optimize the IR for symbolic execution. Many operations that are hard

for computer processors are also hard for constraint solvers. For example,

memory access and division operations usually demand many machine cy-

cles. These operations also cause big overheads during symbolic execution.

Memory access is hard to model, while the translation of a division operation

produces symbolic expressions that are hard to solve.

Therefore, Kite includes many LLVM’s optimization and analysis passes.

Kite uses these passes to transform the code into SSA (Single Static Assign-

ment), to reduce memory access, to apply constant propagation, to simplify

arithmetic expressions, to canonicalize loop induction variables, etc.

Additionally, Kite introduces two new passes to retrieve the information

necessary to build the program’s control flow graph (CFG) required by the

CDSE: Loop Analysis and CFG Analysis. The first pass identifies every

loop in the program, as well as its structure (back edge, entry block and

exit blocks). The second pass is a function analysis pass, which is used to

collect the program’s structure, i.e., this pass collects every basic block, as

well as the transitions between them (branches and function calls).

4.2.1 CFG Construction

The CDSE learning scheme relies on the knowledge of the program’s control

flow graph. Since LLVM contains only separate representations of CFGs

per program function, Kite’s preprocessor implements a method to build a

unique CFG for the entire program.

The CFG construction can be divided into two stages. In the first one,

the preprocessor collects the required information about the program’s struc-

ture using the Loop Analysis and the CFG Analysis passes. In the second

stage, the preprocessor builds the CFG using the information collected. It

encodes every basic block as a node, and every branch as an edge. The
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preprocessor also decodes every function call in a process similar to function

inlining. For that, the preprocessor divides the callee basic block into two

nodes, which represents the instructions executed before and after the call.

Then, the preprocessor duplicates the called function CFG and connect it

to the two new basic blocks. The preprocessor also unrolls every loop and

every recursive function until a certain depth. In both cases, the iteration

past the depth is represented with an exit node, which is handled in the

f CFG construction.

Additionally, the preprocessor employs an optimization to reduce the

CFG to nodes that are relevant to the search. This optimization follows

the intuition behind program slicing [49]. A program slice is a subset of

instructions that can directly or indirectly have influence over a program

component. Since the assertion statements are the symbolic execution tar-

gets during the program verification, basic blocks that cannot precede these

statements are removed from the CFG representation. This optimization

consists of a simple backward traversal that originates from every assertion

statement, followed by the removal of every node that the traversal didn’t

visit. Exit nodes are connected to the end of the edges that connect a visited

node to a non-visited one.

4.2.2 f CFG Construction

The preprocessor is also responsible for generating the f CFG representation,

which is used by the decision engine to guide the CDSE search. Once the

preprocessor generates the CFG, the preprocessor translates this CFG into

a conjunction normal form (CNF) formula. The preprocessor traverses the

CFG, and applies the rules described in Section 3.2.1 (page 32) in order to

perform such a translation.

Every exit node is represented as one single variable vexit, and a unit

clause ¬vexit is added to the CFG. This excludes from the search every path

that reaches the program’s return statement, as well as every path sliced

out of the CFG.
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4.3 Instruction Interpreter

The instruction interpreter is responsible for symbolically executing the pro-

gram following the decisions made by the decision engine. The instruction

interpreter was developed on top of the symbolic execution tool Klee [10].

Klee was mainly developed to generate test cases automatically, but Klee

is also capable of searching for runtime errors, including assertion failures.

Klee generates a test case every time it reaches the end of an execution path.

This input can be used to lead the program’s execution along a certain path,

and it allows the user to debug errors by using regular debugging tools.

Kite maintains Klee’s test case generation, but it only generates a test

case when an assertion failure is detected. Furthermore, Kite’s interpreter

takes advantages of many of Klee’s features to implement the CDSE algo-

rithm.

Execution Backtrack: The instruction interpreter starts the execution at

the program’s entry point, with a single process. Every time the inter-

preter reaches an if-statement, the current process forks after checking

if the next branch is feasible. However, the interpreter maintains one

child process as a copy of the current program state before it takes any

branch. The interpreter saves this copy in a stack, which represents

the program states at each decision level.

Thus, the interpreter can easily backtrack to any level by popping all

program states until the backtrack level, and by setting the current

program state to be the state in this level. Because any program state

stored by the interpreter is a copy of another state before a branch is

taken, the execution always restarts from an if-statement, and this

triggers another decision step.

Notice that the interpreter discards all program states that are popped

during the backtrack step. However, due to the nonchronological back-

track strategy implemented in Kite, some of these states might still

be explored in future iterations. Consequently, Kite is penalized for

discarding them, and it might have to re-execute some redundant se-
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quence of instructions to restore a discarded state. This penalty could

be removed with further optimizations, which are presented in Chapter

7.2.

Instruction Guards: Klee represents every symbolic expression as an ab-

stract syntax tree (AST), which links together the operations to be

performed in-order. For that, Klee represents each operation, sym-

bolic variable, and concrete value as a specific class that extends an

expression base class. In order to represent instruction guards, Kite

includes two new expression classes, one to represent guarded expres-

sions, and one to represent guarded constants. These new types are

named δ-expression and δ-constant respectively.

A δ-expression simulates a select operation where a guard δ is the

boolean condition, the true side is the guarded expression and the false

side is a non-deterministic value. This allows the interpreter to replace

an expression by its guarded version in any AST.

The δ-constant is a specialization of the δ-expression and the constant

class, which represents concrete values. Thus, a δ-constant stores a

concrete value and a list of guards. This type of expression allows the

symbolic execution to eliminate queries, to propagate constants, and

simplify expressions when the guarded expression is a constant.

The implementation of δ-constants is enough to guarantee constant

propagation during expression creation. Because this class extends

and re-implements every method of the constant class, it can be used

anywhere a concrete value is used. Additionally, a δ-constant always

propagates its guards.

For example, given an assignment:

σi = σj + σk

where both used variables σj and σk have guarded concrete values.

If σj is assigned to 10 under guard δa, and σk is assigned to 5 under
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guard δb, the interpreter will assign σi to 15 under both guards δa and

δb.

The constant propagation triggered by the implied value optimization

is described in the following item.

Query Optimizations: Klee implements query optimizations that have

great impact on symbolic execution scalability, and can reduce the

runtime by more than an order of magnitude [10]. Therefore, Kite

also implements these optimizations to show that most of them are or-

thogonal to the CDSE approach. Kite’s interpreter extends the query

optimization methods in order to comply with the guards’ usage.

The implied value concretization, for example, has to propagate the

guards involved in the concretization. If the execution adds a con-

straint such as σi = 0, this optimization replaces every occurrence of

σi by the value 0. However, before replacing the occurrences of σi,

this method first checks if the added constraint is guarded. If it is, the

method collects all guards, and it creates a δ-constant representing the

concrete value 0, which is used instead of the concrete value 0.

The query cache adaptation is more complicated. The cache imple-

mented in Klee stores all queries its interpreter sends to the constraint

solver together with the computed results. The interpreter consults

the cache before sending a new query to the constraint solver. In case

of a cache hit, the interpreter can use the cached result instead of

invoking the solver.

However, the instruction guards used in Kite can impact in the chance

of a cache hit, because similar queries that are originated from different

paths could have different guards. Therefore, Kite’s cache does not

keep any information about guards. Kite implements a lightweight

guard removal method, which the cache invokes to generate a copy of

a query without its guards. The cache uses this extraction mechanism

before looking a query up, or before adding a new entry.

Since the guards are used only during conflict analysis, where a query
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is unsatisfiable, Kite’s cache only stores satisfiable queries. This re-

striction allows the cache to safely ignore all guards in a query. In cases

where the query is unsatisfiable, CDSE requires information about the

conflicting guards, which the cache doesn’t provide. This forces the

interpreter to call the constraint solver in order to obtain this infor-

mation.

Although Kite could extend the cache in order to keep the guards

involved in a conflict previously found, that could increase the com-

plexity of the cache lookup mechanism, and potentially decrease the

cache efficiency. Moreover, the CDSE learning scheme already elimi-

nates many redundant unsatisfiable queries.

The constraint independence optimization did not require any change.

This optimization determines constraint dependence by analyzing the

set of symbolic variables that are included in the leaves of each expres-

sion AST. Since the guards never represent a leaf, and this method

doesn’t change any expression, the guards can be safely ignored.

Therefore, the implemented data structure allows Kite to safely apply

all the query optimizations included in Klee. Additionally, it allows Kite to

learn facts whenever the interpreter reaches a branch with a concrete condi-

tion without calling the constraint solver. If a branch condition evaluates to

false, its guards represent the conflict to be learned. If a branch condition

evaluates to true, the interpreter knows the non-taken branch is infeasible

under the same path; consequently, Kite can add a new learned clause to

the f CFG even though the execution did not reach any conflict. Kite de-

rives the learned clause from the condition guards, excluding the guard that

represents the last branch taken, and the guard relative to the non-taken

branch.

4.4 Constraint Solver

Kite employs the constraint solver to prove whether a certain branch can be

taken or not. The instruction interpreter passes a formula to the constraint
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solver that defines the branch condition and the current path condition.

Besides that, the interpreter also provides a set of assumptions that must

be considered during the proof.

Then, the constraint solver determines whether the formula is satisfiable

or not. If the formula is satisfiable, the constraint solver produces variable

values that satisfy the constraints. The instruction interpreter uses these

values if the branch taken leads to a bug; thus, these values represent a

valid counter example to an assertion. In cases where the formula is proven

unsatisfiable, Kite’s constraint solver returns a set of assumptions that led

the proof to an unsatisfiable result.

Kite inherits the pair STP / CryptoMiniSat from Klee as the constraint

solver employed during symbolic execution to check the feasibility of a

branch condition. STP is a constraint solver developed to efficiently solve

constraints generated by program analysis, bug finding and test generation

tools [21]. STP implements different algorithms based on the abstraction-

refinement paradigm to reduce the size of the target formula, and then it

employs a SAT solver to check the formula satisfiability. CryptoMiniSat is

one of the SAT solvers supported by STP, and it is the one chosen in Klee’s

implementation. CryptoMiniSat extends MiniSat to support the XOR op-

eration that is common in cryptography [46].

STP receive as an input a quantifier-free formula in the theory of bit-

vectors and arrays. STP is capable of determining whether a given formula

is satisfiable or not, as well as producing an assignment in the first case.

Nevertheless, STP does not support solver assumptions; consequently, STP

is not capable of generating a final conflict clause, as required by the CDSE

algorithm.

Therefore, Kite’s implementation required some modifications to STP’s

interface and internal processing to support assumptions. Kite’s constraint

solver extends the STP interface, and it includes methods to create non-

deterministic variables, to add assumptions to the proof, and a method to

retrieve the conflicting assumptions, in case of an unsatisfiable query.
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4.5 Decision Engine

The decision engine is the module responsible for choosing which branch the

instruction interpreter should follow. This module includes a SAT solver

based on MiniSat[20] to find satisfying assignments to the f CFG whenever

they exist.

MiniSat was chosen because it is a highly efficient9 and robust open-

source implementation of an incremental CDCL SAT solver, that has a

well-defined and clean interface. Because of these characteristics, MiniSat

has been widely used[11, 21], and it has also served as the base to many

other successful solvers, such as Glucose [2] and CryptoMiniSat [46].

During the initialization, the decision engine receives the program CFG

from the preprocessor, and the f CFG. The engine uses the CFG to determine

where the execution is, and which literals represent the next branches. The

decision engine also maintains a decision stack, with all literals that represent

the decisions taken in the current path.

Every time the interpreter reaches an if-statement, the interpreter in-

vokes the decision engine to determine which branch it should follow. The

decision engine first checks the current assignment to the f CFG to check

if both branches could potentially be taken. If that is the case, the engine

arbitrarily chooses which one the interpreter should follow.

After a decision, the interpreter might find that the branch chosen is

infeasible. In this case, the interpreter passes a conflict clause to the decision

engine that adds the clause to the f CFG. The decision engine invokes its

SAT solver to determine whether a new path can be taken, and to which level

the execution must backtrack. Because MiniSat is incremental, it reuses the

previous solving state to solve the new formula. This mechanism reduces the

cost of successive calls to MiniSat performed by the decision engine. When

the f CFG becomes unsatisfiable, the decision engine informs the interpreter

that the backtrack level is 0, which implies that the symbolic execution can’t

reach any assertion failure.

If a new satisfying assignment is found, the decision engine visits each

9MiniSat won all the industrial categories of the SAT 2005 competition.
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literal kept in the decision stack starting from level 1 until it finds a literal

that was assigned to false. Consequently, the backtrack level corresponds

to the level of the last visited literal that is still true, i.e., the engine keeps

every decision that is common between the last executed path, and the new

assignment.

In order to reduce the backtrack depth, Kite introduces a modification

to MiniSat that allows the solver to restart the search from a certain set of

decisions. From now on, this modified Minisat will be named kMiniSat.

Besides assumptions, kMiniSat receives a vector of literals that should

be assigned to true if possible. Thus, before starting the regular search,

kMiniSat includes a preprocessing step that initiates the search by propa-

gating these preferred decisions, whenever possible. Preprocessing finishes

if the preferred decisions were propagated, or if a conflict is detected.

In contrast to assumptions, the decisions derived from this vector are not

mandatory, and the solver is free to revert them during the regular search

loop.

Kite’s decision engine may use this new mechanism to try to guide the

SAT solver to search a new path similar to the current path taken. For

that, the engine may provide the literals respective to the branches taken

as the preferred decisions. Otherwise, the engine passes an empty vector,

which leave the SAT solver free. Kite implements three different strategies

to determine when to guide the SAT solver, and when to let it free:

Black Box: In this strategy, Kite always leaves the SAT solver free to

decide, i.e., no preferred assignment is given, and the SAT solver is

treated as a black box.

Always Guide: This is the opposite strategy, where Kite always tries to

minimize the backtrack level as much as possible. Thus, the decision

engine always sets kMiniSat preferred decisions as the last set of branch

literals followed.

Maximize Learning: Following the intuition that the smaller the learned

clause, the more paths it will potentially prune, this strategy chooses
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when to guide kMiniSat according to the size of the last learned clause.

The decision engine guides kMiniSat if the learned clause size relative

to the path size is smaller or equal to a constant k.

4.6 Known Limitations

Kite is still a prototype, developed to assess the conflict-driven symbolic

execution algorithm. Therefore, it is not mature software, and it has some

known limitations. These limitations are not inherent to CDSE, but are

the result of development time constraints. Kite’s main limitations are the

following:

Memory Handling: Using Klee and LLVM’s structure to implement the

proposed technique had one main drawback, memory handling is usu-

ally conservative; thus, global memory and pointers are harder to rea-

son about. The absence of phi-nodes and lack of pointer analysis

impact on the conflict analysis, making it less efficient and requiring

special handling.

Because the use-def analysis implemented in LLVM doesn’t include

memory accesses, Kite cannot predict which join points in the CFG

could potentially change the value of a memory location. Conse-

quently, Kite guards the expression generated from a memory read

with the guards that correspond to all branches taken between the

read and the write operations. Since this approach over-approximates

the possible interference other paths could have in a value read from

a memory position, this approach is safe, but not very efficient.

Therefore, Kite’s preprocessing step always includes the LLVM opti-

mizations passes that reduce the number of memory accesses. Chap-

ter 7.2 suggests and discusses other preprocessing techniques to delay

memory writes, anticipate memory reads, or use memory shadows to

improve CDSE learning.

Symbolic Pointer Dereference: Kite does not support dereference of point-

ers with symbolic values. Whenever a pointer is dereferenced, Kite
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checks whether the pointer’s value is constant or not. In the former

case, the instruction execution can access only one memory object

through this pointer. In the latter, more than one memory object

could be reached through this pointer, and this would require some

adaptations in the expression generation, or in the CDSE learning

scheme.

Originally, Klee forks its execution whenever it reaches a pointer deref-

erence which may result in different memory access. Klee creates a

new process for each memory position that can be accessed. In or-

der to reuse Klee’s approach, Kite could include a f CFG variable vi

associated with which memory position it chose to follow, and guard

the dereference command with a guard δi. This would allow Kite to

learn and backtrack to this decision, and explore paths with different

memory dereference.

Another solution to this problem would be the usage of conditional

accesses inspired by model checking. The result of the dereference

operator ’*’ is the value of a variable σ, if the pointer’s value is equal

to the address of σ — the reference &σ. For example, if a pointer ρ

may hold the address of two variables σi or σj , the dereference of ρ

would be decoded as:

∗ρ =⇒ (ρ = &σi) ? σi : σj (4.1)

Furthermore, this change could be applied statically by a code trans-

formation pass executed during preprocessing. Different pointer anal-

ysis could be applied to restrict the number of variables that could be

dereferenced in a certain instruction.

Function Pointer Call: The same intuition behind symbolic pointer deref-

erence could be applied to encode function pointer calls. The control

flow transition will follow a certain path depending on the value of the

pointer’s value, i.e., it can be translated as nested if-statements that
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compares function’s addresses to the pointer’s value. Once more, Kite

could replace every function call by applying a code transformation

pass together with a pointer analysis during preprocessing stage.
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Chapter 5

Results

This chapter presents practical evidence that conflict-driven symbolic exe-

cution (CDSE) can perform better than regular symbolic execution, as well

as model checking. For that, Kite is compared to the symbolic execution

tool Klee [10], and to the model checker CBMC [11].

Additionally, this chapter presents the impact of the decision heuristics

on Kite’s performance on the benchmarks used. These results support the

choice of Kite’s best overall configuration.

5.1 Testing Environment

In order to assess Kite, all tests were performed using a benchmark com-

posed of the ntdrivers-simplified and ssh-simplified instances re-

trieved from the 2013 Competition on Software Verification (svcomp13) [4].

The tests were slightly modified to comply with Klee’s standards and limita-

tions, without breaking CBMC compatibility. The non-deterministic func-

tions were renamed, and every loop was bounded to 50 iterations. In these

benchmarks, the ERROR label represents a bug, and the label was replaced

by an assert(false) statement.

Because the name of the tests can exceed 50 characters, the tests were re-

named to make all tables and graphs more readable. The renaming followed

the test classification according to the existence of a property violation. A

test can either be considered safe or unsafe. The former indicates that all

assertions should hold, while the latter indicates that the test has a bug, and

at least one assertion is violated. Thus, the tests were renamed to either

safe n or unsafe n, where n is a unique identification number. Appendix A

presents a table with the mapping between the original test name and their
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simplified name.

The CBMC version used was 4.7, which corresponds to the latest release

by the date the tests were performed. Since Klee doesn’t have any officially

numbered releases, every test was performed using two different change-

sets. The first version corresponds to Klee’s changeset from which Kite was

forked10, and the second one corresponds to Klee’s latest changeset by the

time the tests were executed11. However, this chapter only presents the re-

sults obtained by the forked version, because this version performed better

than the latest version. Additionally, the forked version is closer to Kite’s

implementation. See Appendix A for the performance obtained using Klee’s

latest changeset.

Additionally, this chapter presents many different versions of Kite ac-

cording to the different decision heuristics employed (see Section 4.5 for

definitions). This chapter will use the following names to differentiate each

heuristic:

Kite KG: Represents the Always Guide strategy.

Kite KB: Represents the Black Box strategy.

Kite KM(k): Represents the Maximize Learning strategy, where a constant

k is given as the threshold parameter. For example, KM(10) corre-

sponds to the heuristic that guides the SAT search if the last learned

clause size is smaller or equal to 10% of the explored path size (in the

number of branches taken).

All the results presented were obtained from a single machine that has an

Intel(R) Core(TM) i7-2600K processor and 16GB memory. The machine’s

operating system was openSUSE version 12.1. Additionally, the tests had

no memory limit, but they had a time limit of 200s per test.

10Changeset 9b5e99905e6732d64522d0efc212f3f1ce290ccc from September 12th, 2012
11Changeset e49c1e1958e863195b01d99c92194289b4034bbb from January 21st, 2014
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5.2 Overall Evaluation

This first analysis compares Kite’s performance to Klee’s [10] and CBMC’s

[11] performance. As will be discussed in Section 5.3, engine KM(10) had

the best performance overall; thus, this engine is used by default, and it is

the one presented in this section.

Kite and Klee were executed with the following switches:

--optimize: Runs LLVM optimization passes before symbolic execution.

--exit-on-error: Aborts symbolic execution whenever an error is found.

--no-output: Doesn’t generate test cases for each complete path explored.

CBMC was run using the following switch:

--no-unwinding-assertions: Doesn’t generate unwinding assertions for

the program loops.

These switches were chosen to optimize performance, and to mimic the same

behavior for all tests. Every tool was set to run until it found an assertion

failure, or proved that all assertions hold.

All tools concluded the verification before the time limit established,

and every result was consistent to the properties safety. No false errors were

detected in any safe test, and every tool reported one assertion violation in

every unsafe test.

Table 5.1 presents the time taken by each tool to solve each safe instance,

and the total time to solve the entire safe test set. In this test set, Kite

had the fastest solving time (203.55s), and it was 1.55× faster than Klee

(315.60s). CBMC presented the worst performance, and it spent 1410.99s

to solve the test set; thus, CBMC was 6.93× slower than Kite and 4.47×
slower than Klee.

Even though the focus of this thesis is on the impact of adding learn-

ing capability to symbolic execution, it is important to highlight that both

symbolic execution tools performed better than the model checking tool. As

seen in the table 5.1, Klee and Kite were superior to CBMC in all instances.
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Test CBMC Klee Kite

safe 01 1.35 0.16 0.28
safe 02 0.41 0.45 0.17
safe 03 0.30 0.06 0.04
safe 04 0.51 0.14 0.25
safe 05 0.11 0.02 0.02
safe 06 0.16 0.04 0.02
safe 07 52.51 0.93 1.28
safe 08 53.92 0.92 1.26
safe 09 67.37 0.95 1.25
safe 10 54.45 0.92 1.27
safe 11† 169.76 68.58 11.60
safe 12 2.82 0.09 0.61
safe 13 0.61 0.09 0.13
safe 14† 157.06 40.72 18.76
safe 15† 158.55 40.36 15.91
safe 16† 159.71 40.39 42.01
safe 17† 184.12 40.62 34.36
safe 18† 172.86 40.30 38.33
safe 19† 174.41 39.86 36.00

Total 1410.99 315.60 203.55

Table 5.1: Table showing the execution time (in seconds) spent by Klee,
CBMC and Kite to prove that each test case respects their assertions. Since
every tool spent more than 10s to solve the 7 instances marked with a ‘†’,
they will be classified as hard, in contrast to the other instances, classified
as easy, that could be solved in less than 1s by at least one tool.

This shows that using symbolic execution to prove properties given an upper

loop bound is feasible, and that symbolic execution can be more efficient in

certain cases.

Comparing Kite against Klee, the former performed significantly better

in almost all hard instances — where every tool spent more than 10s to

solve. Kite was The greatest speed-up in these instances happened while

solving test safe 11, where Kite was 5.9× faster than Klee. Kite was slower

than Klee only in one hard instance, safe 16, but the time difference was of

only 4%.
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However, Kite did not outperform Klee in the easy instances. The two

main reasons for this behavior are Kite’s initial overhead, and Kite’s back-

tracking implementation. First, the time spent by Kite’s preprocessor de-

pends on the program control flow graph size, and it is significant only when

the total solving time is small. Besides that, the cost of backtracking past

unblocked branches may overcome the benefit of eliminating some paths

from the entire analysis (refer to Section 4.3 at page 50 for more details).

Section 7.2 suggests an optimization that can be applied to reduce the num-

ber of instructions executed due to backtracking.

In the unsafe instances, Klee had the best overall performance, as shown

in Table 5.2. Klee took 4.23s, while Kite spent 5.50s and CBMC spent

1602.30s. Both, Kite’s and Klee’s search heuristics were efficient at finding

the assertion violations, and they solved every instance in less than 2s.

As mentioned before, in instances where the solving time is short, Kite’s

implementation overhead had a significant impact on the solving time.

CBMC had worse performance than Kite and Klee. This result supports

the intuition that symbolic execution is usually faster than model checking

to find property violations. This big difference is also a consequence of

the CBMC loop unrolling strategy. CBMC unrolls every program loop to

their upper bound prior to solving the instance. Therefore, it generates a big

formula, even though the assertion violation might be reached by executions

that perform fewer loop iterations. Because of that, CBMC’s performance

is closely related to the loop bound provided by the user.

Overall, Kite had the best performance in the benchmarks used. As

shown in Table 5.3, Kite solved all instances in 209.05s, while Klee spent

319.83s, and CBMC took 3013.29s.

Besides the improvement in symbolic execution performance, the benefit

of CDSE becomes clearer when viewed in terms of the number of instructions

symbolically executed. This number can be reduced when the engine prunes

paths out of its analysis. Figure 5.1(a) and 5.1(b) depict the impact of Kite’s

learning scheme in the number of instructions symbolically executed in safe

and unsafe instances, respectively.

Despite the backtracking cost, Kite still tends to execute fewer instruc-
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Test CBMC Klee Kite

unsafe 01 0.31 0.24 0.03
unsafe 02 0.49 0.14 0.06
unsafe 03 0.18 0.04 0.02
unsafe 04 1.83 0.07 0.19
unsafe 05 130.86 0.04 0.03
unsafe 06 178.63 0.62 0.78
unsafe 07 197.32 1.60 1.62
unsafe 08 185.79 0.27 1.35
unsafe 09 172.38 0.15 0.05
unsafe 10 167.25 0.09 0.06
unsafe 11 154.35 0.10 0.07
unsafe 12 52.92 0.13 0.46
unsafe 13 183.94 0.04 0.04
unsafe 14 67.48 0.18 0.43
unsafe 15 54.34 0.14 0.06
unsafe 16 54.23 0.38 0.25

Total 1602.30 4.23 5.50

Table 5.2: Table showing the execution time (in seconds) spent by Klee,
CBMC and Kite to find a bug in each test case.

tions than Klee, for both instance types. In all hard instances, Kite executed

fewer instructions, and this gain came close to one order of magnitude. See

Appendix A for a complete table with the exact number of instructions

symbolically executed by Klee and Kite.

5.3 Evaluation of the Decision Engines

The decision engine plays an important role in any conflict-driven clause

learning (CDCL) approach, and the same applies to CDSE. Tables 5.4 and

5.5 show the different performances for safe and unsafe instances obtained

by changing Kite’s decision heuristic.

Engine All Guide (KG) had the best performance in the safe test set.

This engine tries to minimize the number of levels backtracked by guiding

its SAT solver; consequently, it reduces the penalty of discarding unblocked
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Instances Type CBMC Klee Kite

Safe 1410.99 315.60 203.55
Unsafe 1602.30 4.23 5.50

Total 3013.29 319.83 209.05

Table 5.3: Total time spent (in seconds) by each tool to solve the bench-
marks. Overall, Kite had the best performance, and CBMC had the worst
performance.

processes. However, this engine tends to explore the same search space for a

long time. Therefore, this strategy impacted the time to find the assertion

violation in test unsafe 7.

In contrast to KG, the engine derived from the Black Box strategy (KB)

never guides the SAT solver. Because the SAT solver used has no knowl-

edge about the branch precedence, nor which path was taken, this engine

backtracking strategy is more random. Thus, this engine tends to explore

different parts of the execution tree, and pays a high price for discarding

many unblocked processes. This impacted the engine performance in all

hard safe instances. This engine also did not perform well in the test un-

safe 7, although it was almost 10× faster than the other engines in the

unsafe 8 instance.

The Maximize Learning strategy tries to balance the cost and benefit

of guiding the SAT solver during CDSE. This heuristic chooses when to

guide the SAT solver according to the “quality” of the search space. The

engine quantifies the quality of the search space by computing the relation

between the learned clause size and the current path size. The search space

is classified as good enough, if this relation is smaller than a given threshold

k.

Three different thresholds were tested: 5%, 10% and 15%. The higher the

threshold, the more often the decision engine tends to guide the SAT solver.

Thus, the engine KM(15) had a behavior similar to the KG engine. Between

the three Maximize Learning engines, KM(15) had the best performance in

the safe instances, but spent a significant amount of time to solve unsafe 7.
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(b) Unsafe instances.

Figure 5.1: Number of instructions symbolically executed by Klee and Kite
on safe and unsafe instances. As expected, Kite symbolically executed fewer
instructions in the majority of the tests, even in unsafe instances where Klee
has better performance.

The poor performance of KM(15) on unsafe 7 had a large impact on its

overall performance, and this one long runtime made KM(15) overall worse

than either KM(10) (the best performer) or KM(5). The KM(10) engine was

also superior to KM(5). In fact, KM(10) overcame KM(5) in the safe and

unsafe test sets.

Therefore, the best overall result was obtained using the Maximize Learn-

ing strategy with 10% threshold, KM(10). Although this engine was not the

best in the safe instances, KM(10) still performed well on them. Moreover,

this engine was the best one in the unsafe test set by a significant differ-

ence. KM(10) was more than 2× faster than the other engines in the unsafe

instances.

Notice that the tests shown in this section is limited to two benchmarks,

although KM(10) had the best performance in these benchmarks, no con-

clusion can be held about other instances. Further testing is necessary to

establish a better pattern, and to establish which engine is better in which

cases.
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Test KB KG KM(5) KM(10) KM(15)

safe 01 0.62 0.27 0.30 0.28 0.27
safe 02 0.34 0.19 0.25 0.17 0.18
safe 03 0.04 0.04 0.04 0.04 0.05
safe 04 0.76 0.25 0.25 0.25 0.25
safe 05 0.01 0.01 0.01 0.02 0.02
safe 06 0.02 0.02 0.02 0.02 0.02
safe 07 2.02 1.30 1.35 1.28 1.27
safe 08 2.31 1.33 1.31 1.26 1.46
safe 09 1.98 1.25 1.29 1.25 1.30
safe 10 2.08 1.25 1.32 1.27 1.27
safe 11 33.26 11.57 11.78 11.60 12.66
safe 12 0.58 0.56 0.57 0.61 0.58
safe 13 0.17 0.12 0.13 0.13 0.13
safe 14 46.48 16.93 17.26 18.76 19.07
safe 15 41.42 15.41 16.75 15.91 17.17
safe 16 71.25 31.73 44.70 42.01 40.14
safe 17 64.35 24.91 37.10 34.36 30.22
safe 18 58.39 25.68 40.74 38.33 34.51
safe 19 67.48 27.28 39.36 36.00 32.41

Total 393.56 160.10 214.53 203.55 192.98

Table 5.4: Table showing the effect of different decision engines on Kite’s
execution time (in seconds) to verify the safe instances.
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Test KB KG KM(5) KM(10) KM(15)

unsafe 01 0.05 0.03 0.04 0.03 0.04
unsafe 02 0.07 0.06 0.06 0.06 0.06
unsafe 03 0.03 0.02 0.02 0.02 0.02
unsafe 04 0.52 0.19 0.11 0.19 0.19
unsafe 05 0.05 0.03 0.03 0.03 0.03
unsafe 06 0.49 0.55 0.74 0.78 0.56
unsafe 07 Timeout Timeout 6.77 1.62 27.88
unsafe 08 0.17 1.35 2.73 1.35 1.36
unsafe 09 0.06 0.05 0.04 0.05 0.04
unsafe 10 0.50 0.06 0.07 0.06 0.06
unsafe 11 0.52 0.09 0.09 0.07 0.08
unsafe 12 0.37 0.45 1.09 0.46 0.44
unsafe 13 0.04 0.04 0.03 0.04 0.04
unsafe 14 0.69 0.43 0.45 0.43 0.43
unsafe 15 0.59 0.06 0.07 0.06 0.06
unsafe 16 0.44 0.46 0.08 0.25 0.24

Total >204.59 >203.87 12.42 5.50 31.53

Table 5.5: Table showing the effect of different decision engines on Kite’s
execution time (in seconds) to find a property violation in the unsafe in-
stances. In the instance unsafe 07, two engines did not finish before the
200s timeout. Thus, the total time reported for these engines are not pre-
cise.
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Chapter 6

Related Work

There is a vast literature on software verification which goes beyond the

scope of this thesis to survey. This chapter considers only works that aim

to reduce the number of paths explored during symbolic execution. To the

best of my knowledge, there are only other four approaches reported in the

literature that can successfully reduce this number. All of them learn facts

once a conflict is reached, i.e., when a certain branch is proven infeasible

under a certain path condition. These approaches, however, differ on which

facts are learned, and how they employ them in order to prune paths from

the search.

This chapter describes these approaches, and contrasts their learning

schemes to the one introduced in this thesis. These approaches are described

in two sections: the first section introduces learning schemes based on in-

terpolants, while the second section describes approaches based on conflict

clauses, which are closer to conflict-driven symbolic execution (CDSE).

Before presenting the different learning schemes, it is important to high-

light the distinction between early conflict detection and conflict preemption.

In both cases, the symbolic execution engine stores all the knowledge it ac-

quires from previous executions in a database, and uses this knowledge to

prune the search space. However, these scenarios differ according to how

the engine can employ this knowledge.

Early Conflict Detection: In early conflict detection, the symbolic exe-

cution engine uses its knowledge to interrupt the symbolic execution

of a path, before reaching an infeasible branch. In other words, the

engine uses the database to constrain the symbolic execution, and may

trigger a conflict while symbolically executing a feasible branch. There-
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fore, the engine can determine if the next branch would never lead the

current exploration into a target violation.

Conflict Preemption: In conflict preemption, the symbolic execution en-

gine uses its database to restrict the set of paths that can be followed.

Thus, the database offers a mechanism to avoid the paths that would

trigger a known conflict. Once the engine starts executing a new path,

the engine will not hit a conflict that is kept in the database. It will ei-

ther find a valid counterexample, or it will reach an infeasible branch,

which represents a new conflict.

For example, Section 3.1 explains how CDSE explores only two execution

paths to prove that the program in Listing 1.1 (at page 5) does not violate

its embedded assertion, even though there are 8 feasible paths that lead

the program to the execution of the assertion statement. Consider the pro-

gram control flow graph (CFG) depicted in Figure 6.1, after exploring paths

{b1, b3, b4, b6, b7, b9, b10} and {b1, b3, b4, b6, b8, b10} CDSE learns the following

clauses:

(¬b7 ∨ ¬b9 ∨ ¬b10) ∧ (¬b8 ∨ ¬b10)

Each learned clause is derived from a unique conflict.

Notice that these two clauses alone are not sufficient to prove the prop-

erty’s correctness without exploring other paths — the two clauses by them-

selves form a satisfiable formula. However, because the CDSE engine ini-

tially populates its database with the constraints extracted from the CFG,

it can conclude that there isn’t any feasible path that will trigger the asser-

tion failure in this case. Thus, the CDSE engine uses the f CFG to prune

all paths that violates a certain learned clause. CDSE can preempt which

decisions would lead the search to hit a known conflict, and it will never try

to follow conflicting decisions.

However, the same is not true for a learning scheme that can still learn

only these two clauses, but that does not integrate any other knowledge

about the CFG. Such an engine doesn’t know yet that all paths that lead

the execution to b10 have to include either b7 and b9, or b8. Thus, it has to
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Figure 6.1: The control flow graph for the program described in Listing
1.1, where basic block BH represents the assertion failure.

continue exploring the search space to guarantee that the assertion failure

can’t be reached. Nevertheless, these two clauses can still be used to detect

a conflict before reaching an infeasible branch. For example, if the engine

follows path {b1, b3, b5, b7, b9}, these decisions are enough for the engine to

know that b10 must be false. Thus, it will be able to detect the conflict after

executing BG, but before checking if the branch b10 is feasible.

6.1 Interpolation-Based Learning Schemes

Given a pair of logical formulas ϕA and ϕB, where ϕA∧ϕB is unsatisfiable, a

Craig interpolant [13] is a set of constraints I with the following properties:

1. ϕA =⇒ I

2. I ∧ ϕB is unsatisfiable.

3. I contains only variables from ϕA
⋂
ϕB
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The interpolant I can be used to abstract ϕA by keeping the invariant

that the conjunction with ϕB cannot be satisfied. Therefore, interpolation-

based approaches extract interpolants from unsatisfiable queries, where a

certain branch condition β is infeasible under a path condition pc, and use

them to block state transitions that trigger conflicts previously learned.

There are two interpolation approaches described in the research litera-

ture, Lazy Annotation [34] and Abstraction Learning [26]. These approaches

were developed independently, but both roughly implement the same algo-

rithm to verify loop-free programs. The algorithm description below will

follow the Lazy Annotation implementation.

For loop-free programs, Lazy Annotation proceeds as follow. The en-

gine symbolically executes paths in a depth-first manner, and it follows a

path until a conflict rises, or until a violation is reached. The interesting

case happens when there is a conflict. In this case, the engine extracts an

interpolant that summarizes a reason for this conflict, and that blocks the

current execution state. The algorithm annotates the infeasible edge with

the extracted interpolant, and backtracks to a non-blocked state. Whenever

the execution reaches an edge with some annotation, the engine uses the

annotated interpolant I to determine if pc will trigger a conflict detected in

previous iterations. If pc =⇒ I, the pc would trigger the same conflict used

to generate I, i.e., I blocks the current execution state; thus, the engine

interrupts the current search, and backtracks.

If the engine detects a new conflict in an edge already annotated, the

engine extracts a new interpolant, and extends the previous annotation cre-

ating a disjunction with the new interpolant. Moreover, whenever all outgo-

ing edges of a node are infeasible under a certain path, the engine extracts

a new interpolant for the given node. This interpolant is derived from the

conjunction of the conditions that block the outgoing edges.

On one hand, interpolants offer a safe abstraction that summarizes why

certain path conditions lead the program execution into a conflicting state.

Because the interpolants express path conditions that may trigger a conflict

in certain parts of the code, interpolants offer a more fine grained abstraction

than the conflict clauses extracted in CDSE. Thus, they can potentially
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6.1. Interpolation-Based Learning Schemes

detect conflicts that CDSE can’t.

Additionally, interpolation can be used to perform unbounded analysis.

As shown by McMillan [35], interpolation provides an approximate image

operator, which can be used iteratively to compute an over-approximation

of the set of reachable states that does not trigger a property violation. If

this computation reaches a fixpoint, the over-approximate set is an inductive

invariant that proves that the property won’t be violated by any reachable

state. This unbounded analysis in the context of symbolic execution is better

explored in Abstraction Learning, which is capable of proving correctness of

programs with loops in a reasonable amount of time [26].

On the other hand, neither interpolation-based approach is capable of

reasoning about the restrictions represented in the CFG, and they cannot

preempt future conflicts as CDSE does. In Lazy Annotation, and in Ab-

straction Learning, the execution identifies a blocked state only when the

execution reaches a branch where the current state implies the annotated

interpolant. The engine has to visit every feasible edge at least once.

The example shown in Listing 6.1 retrieved from the Lazy Annotation

paper [34] shows an example on how the interpolation-based approaches

employ their knowledge to early conflict detection.

For this example, Lazy Annotation explores three different conflicts, and

one blocked path, in order prove that the error function is infeasible. Fol-

lowing the original description [34], the algorithm could start by choosing to

execute the path that visits L3 and L7. The first conflict is detected when

the engine tries to follow branch L10→ L11. The algorithm would backtrack

to node L6 and annotate L6 → L7 with label p.

Then, a new conflict is detected while trying to execute L6 → L9. The

engine annotates this edge with the label a, and annotates L6 with p ∧ a.

The engine backtracks until L2, and it executes the third path via L5 until

it reaches L6.

The engine doesn’t follow the branch L6 → L7, since it is blocked by

label p, and the current path constraints implies p. Then, the engine follows

only the branch L6 → L9. It eventually triggers a conflict while trying to

reach L11. Thus, it will label L6 → L9 with p. Location L6 is also labeled
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diamond :
L1 a s s e r t (p ) ;
L2 i f (∗ )
L3 a = 1 ;
L4 else
L5 a = 0 ;
L6 i f ( a )
L7 x = x + 1 ;
L8 else
L9 x = x − 1 ;
L10 i f ( ! p )
L11 e r r o r ( ) ;

Listing 6.1: A program fragment retrieved from [34]. In this example, the
error() function represents an assertion(false), which cannot be reached
during any program execution. The assert(p) statement states that every
execution considered in this example should assume that p is initially set to
true.

with p, since L6’s label is derived from the disjunction of its old label p ∧ a
and p.

This example shows how Lazy Annotation can prune the search space by

detecting a conflict once it reaches L6 through L5, even though the edge L6→
L7 is feasible. However, this is also a good example that shows the benefit of

integrating structural information about the program to the learning scheme.

Notice that L11 is only reachable if !p is true in L10, but the variable p is

never modified, and its value comes from statement in L1. Thus, it is possible

to prove this property by executing only one single path.

6.2 Clause Learning Schemes

In the same direction taken in this thesis, [30] and [25] also present symbolic

execution approaches that have similar structure to CDCL SAT solvers. At

a high level, both approaches are closely related to CDSE, since they also

summarize a conflict found as a function of the branches taken in the current

executed path. Unfortunately, both clause learning approaches do not have

a publicly available implementation; therefore, it was not possible to include

75



6.2. Clause Learning Schemes

them in the tests presented in Chapter 5.

The solution presented by Krishnamoorthy, Hsiao, and Lingappan [30],

explores the program in a depth-first search manner, and implements

nonchronological backtracking. Whenever a conflict is detected, this ap-

proach applies conflict analysis included in its constraint solvers to detect

which assignments in a query (the conjunction of path condition pc with a

branch condition β) are responsible for the conflict. The engine has to map

the conflicting assignments to the branch conditions where they were made.

Then, the algorithm learns how to avoid this conflict, and backtracks to

the most recently visited node that does not imply this conflict, and that has

a non-blocked outgoing edge. This approach does not encode the CFG as a

CNF, and it does not use a SAT solver to enumerate paths. Consequently,

it only detects a conflict when the engine selects a new branch to explore.

After choosing which branch to take next, the engine checks if the path

violates one of the clauses in the database. If a violation is detected, the

engine does not follow the chosen branch. Instead, the engine tries to take

the other branch that originated in the current location. If all branches

in a location under the current path are blocked, the engine backtracks.

Otherwise, it continues executing the branch chosen.

Because the learned clauses are checked at every decision, this algorithm

is able to perform early conflict detection. However, this learning scheme

only stores the constraints that were learned during conflict analysis; con-

sequently, the engine does not employ any knowledge about the unblocked

paths that are available in a certain search space, and it cannot preempt

known conflicts.

The algorithm description is not clear about how conflicting assignments

are mapped to the branches. Additionally, this approach does not apply any

other information about the CFG to reduce the number of assignments that

can be considered conflicting. The encoding may have a negative impact

the strength of the clauses learned.

The Satisfiability Modulo Path Program [25] technique, or just SMPP,

is the other approach that learns facts about the branches taken in a path

that led the execution into a conflict. For loop-free programs, SMPP resem-
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bles CDSE, since SMPP also encodes the program CFG as a conjunctive

normal form (CNF) formula, and it also uses a SAT solver to enumerate the

paths. For each satisfying assignment, the engine follows the branches that

determine the chosen path, and the execution stops whenever an infeasible

branch, or an error is found. In the case of an infeasible path, the algorithm

also learns a clause that forces the algorithm to avoid the refined set of con-

flicting branches. Thus, SMPP can also preempt conflicts in the same way

that CDSE does.

SMPP has been proposed for different verification approaches, and ex-

tended to symbolic execution. Despite the similarity between SMPP and

CDSE, these algorithms have subtle differences, that can greatly impact the

algorithm’s performance and efficiency in practice, such as:

Conflict Analysis : One key difference between SMPP and CDSE is the

conflict analysis procedure. SMPP requires the constraint solver to

determine an unsatisfiability core12 for an unsatisfiable query. Ad-

ditionally, the SMPP engine has to map each conflicting assignment

returned by the constraint solver, to the branch previously taken (con-

ditional or unconditional). Then, the algorithm performs an interfer-

ence analysis to refine the set of branches responsible for the conflict.

This analysis determines which other paths intersect with the current

one, which could result in a different set of assignments that might not

lead the execution to trigger the same conflict.

Therefore, SMPP demands an interference analysis every time a new

conflict is detected, while CDSE doesn’t. CDSE avoids the extra work

because the symbolic encoding includes some information about the

program structure. Additionally, this encoding leverages SSA analysis

to reduce the information included, and consequently reduces the con-

flict clause detected by the constraint solver. Because CDSE uses the

assumption mechanism implemented by incremental constraint solvers,

it also does not require the constraint solver to determine the unsat-

12As defined in Section 2.3.3, given an unsatisfiable formula ϕ, an unsatisfiability core
is a sub-formula ϕ′, ϕ′ ⊆ ϕ, that is also unsatisfiable
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isfiability core of a conflicting query.

Query Optimizations: In CDSE, the instruction guards provide a clean

way to implement all query optimizations included in modern sym-

bolic execution tools. As described in Section 4.3, these optimizations

are applied not only to accelerate the solving process as in Klee. Con-

straint simplification techniques often find that in certain paths some

branch conditions are constant. In these cases, the guards mecha-

nism allows the CDSE engine to learn what caused the condition to

be constant. The engine uses such information to learn facts even be-

fore attempting to take an infeasible branch, i.e., before the execution

reaches a conflict.

f CFG encoding: Another difference between SMPP and CDSE is the

CFG formula encoding. SMPP encodes the CFG formula to be sat-

isfied only if the variables assigned to true represent one single path.

In other words, the constraints added to the CFG are stronger, and a

node variable can be assigned to true, only if exactly one of its prede-

cessors is true, and if exactly one of the node’s successors is also true.

Therefore, these constraints are translated to XOR functions. Since the

description of XOR functions with n variables in CNF requires 2n−1

clauses, SMPP encoding result in a bigger and more complex CNF

formula.

Loop Handling: For programs with loops, the SMPP can use an alterna-

tive CFG without loops by reducing the original graph using Maximal

Strongly Connected Components. Although they suggest loop un-

rolling to deal with loops in symbolic execution, their implemented

approach performs an over-approximated symbolic execution, where

all the assignments inside a loop are replaced by non-deterministic

values.
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Chapter 7

Conclusion

The classic symbolic execution algorithm introduced by King [28] suffers

from a problem known as path explosion. Assuming that a program to be

verified has a finite execution tree, symbolic execution explores every feasible

execution path. In the worst case scenario, the number of execution paths

is exponential to the number of conditional branches in a program.

As presented in Chapter 6, there are just a few approaches that address

this problem, and most symbolic execution tools still explore the entire

execution tree. This thesis presents a novel symbolic execution algorithm

that successfully reduces the number of paths necessary to prove property

correctness.

7.1 Contributions

This thesis’s main contribution is a novel algorithm that can dynamically

reduce the number of paths explored during symbolic execution. This al-

gorithm is capable of learning from conflicts detected while symbolically

executing a path. Because this algorithm was inspired by the insights in-

troduced in conflict-driven clause learning (CDCL) SAT solvers, I named it

Conflict-Driven Symbolic Execution (CDSE).

The algorithm presented in this thesis has many interesting properties

that makes it a unique symbolic execution extension. These properties are

outlined bellow:

Lightweight learning scheme: The CDSE learning scheme requires just

a few changes to symbolic execution, and it takes advantage of the com-

piler’s SSA format to reduce the number of guarded instructions. Ad-
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ditionally, this learning scheme leverages incremental solver techniques

to generate lightweight conflict analysis, and to efficiently solve the

control flow graph formula (f CFG) after adding new learned clauses.

Small CFG formula encoding: In contrast to the SMPP algorithm [25],

CDSE does not use XOR operations to encode the program control

flow graph (CFG). Consequently, the CDSE encoding (f CFG) can be

easily satisfied, and the size of the f CFG is linear to the size of the

CFG.

Error preemption: Because CDSE combines the CFG structure and the

facts learned as a unique formula, CDSE can use a SAT solver to

restrict the search. Consequently, CDSE can preempt conflicts already

learned, and it only executes paths that have not been blocked yet.

Learning without conflicts: The CDSE algorithm can leverage constant

propagation method not only to eliminate queries, but also to learn

potential conflicts without hitting them. A constant branch condition

always implies that one direction cannot be taken; thus, the CDSE

engine can learn why one direction is infeasible under the current con-

straints, even if this direction is not the one being followed.

Another important contribution of this thesis work is the proof-of-concept

CDSE tool Kite. Kite is an open-source tool, which can verify software de-

scribed in C. Furthermore, Kite can be used in the development of future

work.

I developed Kite in order to assess the CDSE algorithm, and to compare

it to existing verification techniques. The results presented in Chapter 5 give

empirical evidence that CDSE can be better than regular symbolic execution

in proving property correctness. These results also show that there is more

space for improving the CDSE algorithm.
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7.2 Future Work

As future work, this thesis suggests the following topics that can improve

the CDSE algorithm:

Decision Heuristics: The results in Section 5.3 show how the engine effi-

ciency is highly dependent on the decision heuristic. Kite introduced

a small change in the SAT solver included in the decision engine, that

allows the engine to induce the SAT solver to start its search under

a similar path as the last one executed. This small change was as-

sociated with a mechanism to choose when this induction should be

applied. The engines derived from this change performed better than

leaving the SAT solver free to decide the f CFG assignments.

CDSE may still benefit from more sophisticated approaches. For ex-

ample, one interesting research direction would be changing the SAT

solver decision heuristic to prioritize assignments to branch variables

that are closer to the entry node.

Additionally, the decision heuristics introduced in this thesis could

benefit from more diverse test cases. This would improve the heuris-

tic’s tuning, and it may provide more information about their strong

and their weak points.

Loop Handling: Section 3.5 presents two techniques to handle loops, the

static and dynamic CFG unrolling. Another interesting approach

would be combining CDSE with some unbounded model checking tech-

nique. In the same way that the dynamic CFG unrolling uses assump-

tions in order to detect which loops may influence a property’s proof,

this mechanism can be used to find which loops are relevant to a prop-

erty’s proof. For these loops, CDSE could integrate unbounded model

checking (UMC) techniques instead of unrolling them. Potentially,

this approach would allow the reduction of the logic that has to be

analyzed by UMC, since this technique is usually more expensive than

bounded symbolic execution.
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Parallel Computation: One last important improvement would be the

use of multiple CDSE engines at the same time. Inspired by parallel

SAT solvers, these CDSE engines could be configured to search in

different search spaces, and share every conflict learned. Furthermore,

the engines could run different decision heuristics, creating a portfolio

of CDSE solvers.

Additionally, there are more practical directions that could be followed

to improve Kite’s applicability, and efficiency. Some of these improvements

would be:

State Discarding: Currently, Kite always discards every state in the deci-

sion stack that is higher than the backtrack level. Consequently, Kite

has to re-execute a redundant sequence of instructions to restore a dis-

carded state, if needed. However, this limitation could be overcome by

keeping track of all unblocked processes, and a mechanism to recover

them. The main challenge of this approach would be how to deter-

mine which processes are alive, and which ones have been completely

blocked.

Memory Handling: The CDSE learning scheme employs the knowledge

of use-def chains to efficiently determine which merging points in the

CFG could carry different variable definitions. In Kite, this knowledge

is not available for memory accesses; thus, Kite assumes any merging

point between a memory write and a memory read could impact on

the memory value.

As discussed in Section 4.6, this approach could be improved by adding

a use-def analysis of memory access. Even though this use-def anal-

ysis is sometimes imprecise, it would allow Kite to optimize simple,

but common, memory accesses with constant indexes. For more com-

plicated cases, Kite could also take advantage of pointer analysis, and

determine a superset of relevant merging points to some memory re-

gion.
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Kite would benefit from these changes while solving instances where

memory accesses are more complex. These memory accesses cannot

be eliminated by the optimization passes included in LLVM.

Symbolic Pointers: This is another limitation in Kite’s implementation

presented in Section 4.6. This limitation restricted the choice of tests

used Section 5.

As discussed in Section 4.6, Kite could either fork at each pointer

dereference, one process per possible address, or Kite could encode

all possibilities as a conditional access. The first solution, which is

implemented in Klee, would require a change in the f CFG. The f CFG

would need to include the points in the program where these forks

could occur. The second approach would require Kite to enumerate

all possible values of a pointer, and encode conditional reads, as well

as conditional writes.

Because larger examples tend to require more complete memory handling

and support for symbolic pointers, with these improvements, Kite could

extend the range of problems it can solve. Moreover, Kite could be used

to investigate how scalable CDSE is. Since Kite excels over other tools for

larger examples, it is reasonable to expect that CDSE may scale to problems

that traditional symbolic execution can’t.
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[19] Niklas Eén and Niklas Sörensson. Temporal Induction by Incremental

SAT Solving. Electr. Notes Theor. Comput. Sci., 89(4):543–560, 2003.
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Appendix A

Extended Results

This appendix presents the result data that was not included in Chapter 5.

First, Tables A.1 and A.2 show the map between each instance used and

their simplified name.

Benchmark Instance Simplified Name

ntdrivers-simplified cdaudio simpl1 safe.cil.c safe 01
diskperf simpl1 safe.cil.c safe 02
floppy simpl3 safe.cil.c safe 03
floppy simpl4 safe.cil.c safe 04
kbfiltr simpl1 safe.cil.c safe 05
kbfiltr simpl2 safe.cil.c safe 06

ssh-simplified s3 clnt 1 safe.cil.c safe 07
s3 clnt 2 safe.cil.c safe 08
s3 clnt 3 safe.cil.c safe 09
s3 clnt 4 safe.cil.c safe 10
s3 srvr 1 safe.cil.c safe 11
s3 srvr 1a safe.cil.c safe 12
s3 srvr 1b safe.cil.c safe 13
s3 srvr 2 safe.cil.c safe 14
s3 srvr 3 safe.cil.c safe 15
s3 srvr 4 safe.cil.c safe 16
s3 srvr 6 safe.cil.c safe 17
s3 srvr 7 safe.cil.c safe 18
s3 srvr 8 safe.cil.c safe 19

Table A.1: Renaming of Safe Instances.

Tables A.3 and A.4 shows the performance of both versions of Klee:

Kleef corresponds to the changeset from which Kite was forked13, and Kleel

13Changeset 9b5e99905e6732d64522d0efc212f3f1ce290ccc from September 12th, 2012
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Benchmark Instance Simplified Name

ntdrivers-simplified floppy simpl3 unsafe.cil.c unsafe 01
floppy simpl4 unsafe.cil.c unsafe 02
kbfiltr simpl2 unsafe.cil.c unsafe 03

cdaudio simpl1 unsafe.cil.c unsafe 04

ssh-simplified s3 srvr 10 unsafe.cil.c unsafe 05
s3 srvr 11 unsafe.cil.c unsafe 06
s3 srvr 12 unsafe.cil.c unsafe 07
s3 srvr 13 unsafe.cil.c unsafe 08
s3 srvr 14 unsafe.cil.c unsafe 09
s3 srvr 1 unsafe.cil.c unsafe 10
s3 srvr 2 unsafe.cil.c unsafe 11
s3 clnt 1 unsafe.cil.c unsafe 12
s3 srvr 6 unsafe.cil.c unsafe 13
s3 clnt 3 unsafe.cil.c unsafe 14
s3 clnt 4 unsafe.cil.c unsafe 15
s3 clnt 2 unsafe.cil.c unsafe 16

Table A.2: Renaming of Unsafe Instances.

corresponds to the latest changeset14 by the time the tests were executed.

Kleef had better performance than Kleel for all safe instances. For the

unsafe instances, the Klee versions had similar performance. Thus, Kleef

had the best overall performance, which explains why this was the version

used in Chapter 5.

Finally, Tables A.5 and A.6 show the number of instructions symboli-

cally executed by both Klee versions and all Kite versions to solve the safe

and unsafe instances, respectively. As expected, the number of instructions

executed by both versions of Klee to solve the safe instances are the same,

since they both execute all feasible paths in the program (Table A.5).

14Changeset e49c1e1958e863195b01d99c92194289b4034bbb from January 21st, 2014
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Test Kleef Kleel
safe 01 0.16 0.25
safe 02 0.45 0.47
safe 03 0.06 0.09
safe 04 0.14 0.19
safe 05 0.02 0.03
safe 06 0.04 0.05
safe 07 0.93 0.98
safe 08 0.92 0.98
safe 09 0.95 1.07
safe 10 0.92 0.98
safe 11 68.58 102.84
safe 12 0.09 0.16
safe 13 0.09 0.12
safe 14 40.72 66.16
safe 15 40.36 66.52
safe 16 40.39 64.99
safe 17 40.62 66.30
safe 18 40.30 66.06
safe 19 39.86 65.73

Total 315.60 503.97

Table A.3: The execution time (in seconds) spent by the two versions of
Klee to solve the safe instances. Kleef corresponds to the forked version,
while Kleel corresponds to the latest one.
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Test Kleef Kleel
unsafe 01 0.24 0.14
unsafe 02 0.14 0.16
unsafe 03 0.04 0.04
unsafe 04 0.07 0.11
unsafe 05 0.04 0.03
unsafe 06 0.62 0.53
unsafe 07 1.60 2.29
unsafe 08 0.27 0.18
unsafe 09 0.15 0.07
unsafe 10 0.09 0.10
unsafe 11 0.10 0.10
unsafe 12 0.13 0.16
unsafe 13 0.04 0.03
unsafe 14 0.18 0.16
unsafe 15 0.14 0.16
unsafe 16 0.38 0.15

Total 4.23 4.45

Table A.4: The execution time (in seconds) spent by the two versions of
Klee to solve the unsafe instances. Kleef corresponds to the forked version,
while Kleel corresponds to the latest one.
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Test Kleef Kleel KiteB KiteG KiteM(5) KiteM(10) KiteM(15)

safe 01 14,095 14,095 23,099 6,465 11,357 6,465 6,465
safe 02 12,876 12,876 6,046 3,602 4,122 3,143 3,421
safe 03 4,003 4,003 723 736 736 736 736
safe 04 6,945 6,945 13,913 3,257 3,326 3,292 3,257
safe 05 655 655 0 0 0 0 0
safe 06 1,909 1,909 0 0 0 0 0
safe 07 17,298 17,298 16,557 6,243 7,481 6,243 6,243
safe 08 17,284 17,284 18,008 5,642 6,034 5,642 5,642
safe 09 17,322 17,322 14,819 5,790 6,077 5,790 5,790
safe 10 17,284 17,284 16,413 5,726 6,074 5,726 5,726
safe 11 549,056 549,056 277,252 50,935 46,063 50,935 50,935
safe 12 2,684 2,684 6,166 2,824 5,846 5,399 5,612
safe 13 1,683 1,683 3,977 1,563 2,490 2,424 2,314
safe 14 614,650 614,650 480,643 82,164 101,893 116,105 102,153
safe 15 615,130 615,130 411,546 71,751 95,342 76,877 86,574
safe 16 613,162 613,162 793,898 219,609 416,020 387,664 351,395
safe 17 625,116 625,116 722,191 187,700 377,336 338,916 283,695
safe 18 616,034 616,034 677,706 207,993 423,542 399,795 346,147
safe 19 615,124 615,124 770,891 204,738 412,356 359,172 306,548

Table A.5: Table showing the number of instructions that were symbolically executed by all versions of Klee
and Kite to solve the safe instances. In instances safe 05 and safe 06, Kite was capable of proving property’s
correctness just by applying the code optimization passes, and the slicing algorithm.
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Test Kleef Kleel KiteB KiteG KiteM(5) KiteM(10) KiteM(15)

unsafe 01 2,183 2,285 334 334 334 334 334
unsafe 02 4,762 5,215 819 543 543 543 543
unsafe 03 1,736 1,597 244 244 244 244 244
unsafe 04 3,873 5,016 16,064 6,056 1,085 6,056 6,056
unsafe 05 467 468 602 414 414 414 414
unsafe 06 11,549 12,710 2,658 2,071 2,858 2,224 2,071
unsafe 07 46,911 45,692 Timeout Timeout 79,136 5,034 228,371
unsafe 08 4,406 3,022 1,052 3,033 12,038 3,033 3,033
unsafe 09 539 556 500 489 496 489 489
unsafe 10 1,153 1,200 3,959 610 677 610 610
unsafe 11 1,156 1,207 6,427 632 632 632 632
unsafe 12 2,162 2,330 2,710 2,638 6,280 2,638 2,638
unsafe 13 378 378 377 377 377 377 377
unsafe 14 2,339 2,177 4,200 2,513 2,501 2,513 2,513
unsafe 15 2,397 2,377 2,964 649 729 649 649
unsafe 16 2,397 2,155 2,550 1,183 759 1,183 1,183

Table A.6: Table showing the number of instructions that were symbolically executed by all versions of Klee and
Kite to solve the unsafe instances.
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