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Abstract

Using a shear cell device, we have studied four associated problems in foam
by experiments: Bubble-bubble coalescence in sheared two-dimensional foam;
lateral migration of a single large bubble in an otherwise monodisperse foam;
size segregation of bubbles in sheared bidisperse foam; and the effect of non-
Newtonian rheology of foam on lateral migration of bubble. For bubble-
bubble coalescence in sheared two-dimensional foam, we observed a thresh-
old of shear rate beyond which coalescence of bubbles happens. The most
promising explanation was the model based on the centripetal force with
qualitative agreement with experimental results.

Next we studied the dynamics of monodisperse foam in the presence of
a single bubble whose size is different from the neighboring bubbles. We
reported the lateral migration of a larger single bubble away from the wall.
We also reported thresholds of shear rate and bubble size ratio beyond which
migration occurs. In this study we modified the Chan-Leal model and pre-
dicted the experimental trajectories of migrating bubbles.

For bidisperse foams, we reported evolution in foam structure to a size
segregated structure, in which large bubbles accumulate at the middle of the
gap whereas smaller ones close to walls. Then, we adopted a model based
on convection-diffusion equation to account for both lateral migration and
shear induced diffusion.

Finally, we extended the second work by widening the gap of Couette
coaxial cylinder geometry. Similar to the second work, we found that large
bubble migrates laterally to an equilibrium position close to the inner wall.
We believe this new mechanism is the non-Newtonian feature of foam. We
characterized our foam by measuring its degree of shear thinning and also
estimated its elasticity based on the literature data on foam. Then, we
found out for a shear thinning fluid bubble migrated to position even closer
to the inner wall than in the foam while a bubble in Boger fluid migrated
to a position closer to the outer cylinder. Therefore, for a viscoselastic fluid
which has the same feature one would expect to see bubble migration to a
position between these two for two fluids.
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Preface

This PhD thesis entitled “Dynamics and Rheology of Sheared Two-dimensional
Foam” presents the main features of the research that I carried out during my
PhD study under supervision of Professor James. J. Feng. In this preface,
the contributions and collaborations to the papers published or submitted
for publication from current thesis are briefly explained.

• A version of chapter 3 has been published. H. Mohammadigoushki, G.
Ghigliotti, and J. J. Feng (2012), Anomalous coalescence in sheared
two-dimensional foam. Physical Review E 85, 066301 (2012). Under
supervision of J. J. Feng, and collaboration with Giovanni Ghigliotti,
I did a comprehensive experimental work with theoretical study of
coalescence in sheared two-dimensional foam and drafted the paper.
J. J. Feng put his ideas and helped me to prepare the final version of
paper.

• A version of chapter 4 has been published. M. H. Mohammadigoushki,
and J. J. Feng (2012), Size-differentiated lateral migration of bubbles
in Couette flow of two-dimensional foam. Phys. Rev. Lett. 109,
084502. Under supervision of J. J. Feng, following first study I per-
formed experiments on cross stream-line migration of a single large
bubble inside a monodisperse foam in a Narrow gap Couette device
and drafted the paper. J. J. Feng helped me to explore the effect of dif-
ferent parameters in experiments as well as digging more into physics
of the problem and he also helped me to prepare the final version of
paper.

• A version of chapter 5 has been published. H. Mohammadigoushki,
and J. J. Feng (2013), Size segregation in sheared two-dimensional
polydisperse foam. Langmuir 29, 1370-1378. Through a systematic
research, I studied the size-based segregation of bubbles in bidisperse
and polydisperse two-dimensional foam and developed a model to ex-
plain the experimental observation. I conducted this study under su-
pervision of J.J. Feng. I prepared the draft of the paper with help of
J. J. Feng.

• A version of chapter 6 has been submitted for publication. H. Mo-
hammadigoushki, P. Yue and J. J. Feng (2013), Bubble migration in
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two-dimensional foam sheared in a wide-gap Couette device: effects
of non-Newtonian rheology. Through a systematic research, I stud-
ied the lateral migration of single large bubble in monodisperse two-
dimensional foam in wide-gap Couette co-axial cylinder device and
explained the experimental observations both by theoretical models
and simulation. Professor Pengtao Yue at Virgina Tech helped us to
get the simulation results for migration of a bubble in shear thinning
fluid. I conducted this study under supervision of J.J. Feng. I prepared
the draft of the paper with help of J. J. Feng.
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Chapter 1

Introduction

1.1 Background and application

Aqueous foams are highly concentrated dispersion of bubbles inside a sur-
factant solution. Despite the fact that foams contain gas and liquid that
are simple fluids, their dynamics can be quite complex [13]. This complex
behavior finds unique applications in several industrial processes. For in-
stance, their low density and high surface area make them good materials
for flotation in which liquid foams are used to extract minerals from ore [40].
Gases such as steam, carbon dioxide and hydrocarbon gases are injected into
oil reservoirs to increase the recovery of oil. These gases are much less dense
and less viscous than the oil they attempt to displace, so they tend to mi-
grate to the top of the reservoir, leaving most of the oil behind. Foams can
help these gases to sweep oil reservoirs more efficiently [40]. Liquid foams
are being used in daily life as well, in cosmetics and foods.

1.2 Basic elements of a liquid foam

Figure 1.1: Typical Structure of a liquid foam.

A liquid foam is made up of some distinct structural elements (bubbles,
films, and Plateau borders). This elegant structure is illustrated beautifully
in the images shown in figure 1.1.

Films: In liquid foam bubbles are pressed together but are separated
by thin films. Although these are the most evident feature of the foam
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1.3. Liquid foams, wet and dry

structure, they become significant only in stability of foam, since foams
break because of film rupture.

Plateau borders: These are where films meet in threes along an
edge. This region is a liquid-filled channel.

Figure 1.2: Elements of a liquid foam in a magnified structure.

1.3 Liquid foams, wet and dry

Foam structure can be characterized by different parameters including the
foam quality and distribution of bubble size. Foam quality refers to the
fraction of gas inside the sample of foam. With increasing of the foam
quality, the shape of bubbles may change from spherical to polyhedral and
foam transforms from wet to dry.

Fig.1.3 shows samples of a wet foam and a dry foam. Based on the size
distribution of bubbles, foams can be monodisperse, bidisperse or polydis-
perse. Liquid foams can also be categorized in terms of dimensionality to
2D foam and 3D foam.

Two-dimensional liquid foams: A so-called 2D foam is a monolayer
of bubbles. Depending on how the monolayer is confined on the top and the
bottom, there are three common configurations, as illustrated in Figure 1.4.

Three-dimensional liquid foams: If the bubbles in foam are in con-
tact with each other in three dimensions they form a three-dimensional
foam.

1.4 Stability of liquid foams

1.4.1 Quasi-static porcesses

A quasi-static process in a foam is one in which the relaxation of the struc-
ture back to equilibrium is much faster than the time-scale at which the foam
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Figure 1.3: Typical Structure of a dry foam (A) and a wet foam(B).

is perturbed. Foams are unstable materials and therefore, surface active
agents or surfactants are added to the solution to stabilize them. Surfac-
tant molecules have a hydrophobic and a hydrophilic part. When adsorbed
to the gas-liquid interfaces, they reduce the surface tension and generate
Marangoni stresses that would inhibit the tangential flow along the inter-
face of bubbles and therefore, foam becomes more stable. It has been shown
that the foam is constantly evolving as soon as it is created. This compli-
cates the measurements and therefore, alters experimental trends. Several
mechanisms result in foam structural evolution. The structural evolution
may occur in mechanical equilibrium or under dynamic fields. These pro-
cesses may act at the same time. At mechanical equilibrium, three processes
may lead to structural evolution , which are:

i) Gravitational drainage: Due to the effect of gravity liquid flows
vertically and accumulates at the bottom of the column; this is gravitational
drainage and leads to thinning of the film between bubbles and eventually
rupture of the bubble.

ii) Bursting of bubbles: Bubbles in foam may burst at the interface
with free air. It has been shown that the burst of one bubble in a sample of
static foam might trigger some avalanches of bursting of neighboring bubbles
as well (Vandewalle et al. 2002).

iii) Coarsening or Ostwald Ripening. For polydisperse foams, the
Laplace pressure in neighboring bubbles is different. In smaller bubbles

3
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Figure 1.4: Typical Structure of a two-dimensional foams. (b) Liquid foam with
gas-liquid boundary condition (bubble raft), (b) Two-dimensional foam with glass-
liquid boundary condition and (c) two-dimensional foam with glass-glass boundary
condition (Hele-Shaw cell).

this pressure is higher than that in larger ones. This causes the gas to
diffuse from small to large bubbles through liquid films; this process is called
coarsening or Ostwald ripening. Consequently, strong coarsening may lead
to topological changes called T1 and T2 events. T1 is a neighbor switching
event in which bubbles switch their neighbors to gain a lower energy level
(Weaire & Hutzler 1999). A typical schematic of T1 process is illustrated in
Fig. 1.5. T2 events happen when one small bubble completely vanishes (cf.
Fig.1.5).

1.4.2 Beyond the quasi-static limit

Subject to shear, a liquid foam may undergo structure changes. For instance,
in a flowing foam when two bubbles come into contact with each other, the
film between two bubbles can thin into a critical thickness in which van der
Waals forces can trigger film instability and consequently rupture. Hence,
two bubbles coalesce with each other and form a larger one. In addition, a
fairly large bubble can break into smaller one in a flowing foam [27]. Gole-
manov et al. (2008) sheared a three dimensional foam in a parallel disk
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Figure 1.5: Illustration of T1 and T2 events in dry foam.

geometry and observed bubble breakup above a critical shear stress that is
two orders of magnitude smaller than that for breakage of a single bubble.
T1 events do not happen just as a result of coarsening; also shearing of
foam may trigger T1 events [17, 46]. Finally, in flow of a confined foam,
bubbles with different sizes might interact with each other and induce cross-
streamline migration and an effective diffusion. Herzhaft (2002) sheared a
polydisperse foam in a similar geometry and observed segregation of bub-
bles across the gap according to the size; smaller bubbles were mostly found
closer to the walls and bigger bubble at the middle of the gap. It is as yet
not clear whether this might be due to breakup, coalescence or migration of
bubbles or a combination thereof. Herzhaft (2002) also measured the shear
stress in a parallel disk geometry and observed an overshoot in shear stress
followed by reduction as a function of time in step strain tests. Interestingly,
Golemanov et al. (2008) carried out similar experiments but observed that
the shear stress increases as a function of time and attributed this to breakup
of bubbles. Quilliet et al. (2005) observed migration of a bigger bubble in a
sheared two-dimensional foam toward the periphery sides (i.e. towards the
side walls). The morphological changes mentioned above affect the rheology
and mechanical properties of the foam as a whole. Consequently, a funda-
mental understanding of the structural and rheological evolutions of foam is
of scientific as well as practical importance [30].

1.5 Rheology of liquid foams

Although foams only contain fluids, they behave like viscoelastic solids or
like non-Newtonian liquids, depending on applied stress, liquid volume frac-
tion and the time scale set by the inverse of frequency in oscillatory ex-
periments or the time elapsed since the application of a transient stress or
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strain. The rheological behavior of foams, concentrated emulsions, pastes
and many other soft materials is strikingly similar. Slow relaxations, aging
and jamming phenomena are found in all of these forms of soft condensed
matter. Some might be due to generic mechanisms, acting on a mesosocopic
length scale, while others might arise from the phyico-chemical composi-
tion of the materials. Subjected to small stresses, foam exhibits solid-like
behavior. Beyond a yield stress, it behaves as a liquid-like material. The
Herschel-Bulkley model is commonly used to describe foam rheology [62].
Thus, the geometrical, hydrodynamical and rheological properties of gas liq-
uid foam can be tuned to make it a uniquely versatile multiphase mixture
for a variety of process applications and product designs. It is therefore a
material that is of broad interest to chemical engineers [72].

1.5.1 Experimental methods

Various experimental techniques are employed to characterize and analyze
foam deformation and flow [18, 30, 53]. The macroscopic response to ap-
plied shear stress can be measured by conventional rheometers. For instance:
Parallel plate, cone-plate and Couette cylinders have all been successfully
used as shear geometries. However, several precautions must be taken to
obtain physically interpretable rheological results. The surfaces of the con-
fining walls must be roughened to avoid wall slip. Alternatively, one can
use smooth surfaces and, in such cases, the foam-wall slip must be explicitly
considered in data analysis [63]. In addition, measures must be taken to en-
sure foam stability during the experiment, with respect to liquid drainage,
bubble coarsening and liquid evaporation at the contact with ambient atmo-
sphere. Alternatively, one can study the coupling between foam aging (due
to bubble coarsening or size-based segregation) and the rheological foam
properties. In this case, the ageing process must be characterized for a foam
sample, identical to that studied in the rheometer. For all these reasons,
the rheological foam measurements are far from straightforward and the ex-
perimental protocols should be designed carefully, depending on the specific
system and aim of the study.

Several methods have been used to characterize the bubble velocity pro-
files and structural rearrangement dynamics in flowing foams. Magnetic
resonance imaging (MRI) detects the velocity distribution inside sheared
foam, while diffusing wave spectroscopy (DWS) provides statistical infor-
mation about the rate of bubble rearrangements in strained and in flowing
foams [53, 60, 61]. Direct optical observations of bubble monolayers (2D
foams) have provided rich information about the bubble shape and dynam-
ics in flowing foams [39, 46, 70]. Direct observations of dynamics inside
dry 3D foams have been carried out using optical tomography [69]. The
experimental studies have clearly evidenced that the rheological response of
foam involves processes in a wide range of length-scales. The deformation of
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1.5. Rheology of liquid foams

individual bubbles creates the elastic stress of foams, while the yielding and
plastic flow are the consequence of rearrangements in the bubble packing,
and the viscous friction in the liquid films between neighbouring bubbles is a
source of energy dissipation. At present, one of the most challenging and ex-
citing research problems in foam rheology is to explain and predict the links
between the macroscopically observed foam behavior and the microscopic
processes that govern this behavior.

Our focus in this thesis will be on the mechanisms for structural evolution
of foams in dynamic state and on the correlation between their rheology and
structure.

Due to the opacity of the three-dimensional foam, it is hard to directly
observe the changes in its structure during flow and correlate them to the
rheological properties. To connect the rheology to the local behavior of
bubbles, therefore, researchers have studied flow of two-dimensional foam
which are monolayers of 3D bubbles. Experiments on two-dimensional foam
flow have been performed in different geometries. For example some authors
have confined foam bubbles in a Hele-Shaw cell in Couette geometry and
rotated the inner disk while having the outer cylinder stationary [17]. They
reported localized flow profiles in which the velocity profiles show fast decay
away from the driving boundary. In the liquid-glass case, the foam is con-
stricted from the top by a glass plate and at the bottom is in contact with a
solution. For the third case, the bubble monolayer floats on the liquid and is
exposed to air on top. This configuration is also known as the bubble raft. In
Couette geometries, Dennin and co-workers have sheared bubble rafts with a
fixed inner disk and a rotating outer cylinder [46]. More recently Katgert et
al. (2010) studied both bubble rafts and two-dimensional foam with glass-
liquid boundary condition and showed that the normalized velocity profile
is shear dependent in the presence of the upper wall and is independent of
shear rate for a freely floating bubble raft [39]. They concluded that the
boundary condition plays an important role on the localization of velocity
profile.

All studies so far on shearing two-dimensional foams have been focused
on low shear rates and the only topological changes observed is T1 events.
For three dimensional foams Herzhaft (2002) and Golemanov et al. (2008)
reported structural changes, but there is at present little understanding of
the mechanism or mechanisms responsible for that structural evolution. In
addition apparently there is contradiction in the evolution of shear stress
in their measurements [27, 28]. Therefore, it is of high importance to mea-
sure the rheological properties of foam flow and see the effect of structural
evolution on rheological properties. These are our motivations for carrying
out a series of experiments to identify the mechanisms involved in structural
evolution for the flow of two-dimensional foam. In the following we will be
explaining the objectives of this work in detail.
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1.6 Objectives and contributions of this research

We propose a series of experiments to identify and investigate the mecha-
nisms responsible for structural evolution of freely floating 2D foams (bubble
raft) in a Couette co-axial cylinder geometry undergoing shear. Details of
the geometry will be given later. The objectives of the thesis are to answer
these fundamental questions:

(1) Will there be breakup or coalescence in a sheared two-dimensional
monodisperse foam?

(2) Does a bubble whose size is larger than the neighboring bubbles mi-
grates laterally with respect to the flow stream-lines?

(3) What if we introduce more than one large bubble in a sea of smaller
bubbles? Would we see the size-based segregation in sample of bidis-
perse two-dimensional foam?

(4) What is the contribution of non-Newtonian behavior of two-dimensional
foam to the structural evolution?

As will be seen, these have been accomplished to a good degree in the
research described in Chapters 3-6. The main contributions of the thesis
can be summarized into four general items:

• We have discovered an anomalous coalescence mechanism, whereby
bubbles coalesce for shear rates above a threshold, as opposed to be-
low a critical rate, which is the normal scenario for bubble and drop
coalescence. We also proposed an explanation for the anomalous coa-
lescence.

• We reported for the first time, the lateral migration of a single large
bubble in an otherwise monodisperse foam. This cross-streamline mi-
gration pushes the large bubble away from the walls. We developed a
continuum model to account for the migration.

• We reported the size-based segregation in bidisperse and polydisperse
two-dimensional foams and developed a model based on migration
and shear induced diffusion to explain this process. We developed a
migration-diffusion model that accurately predicts the size segregation.

• We studied the effect of non-Newtonian behavior of foam on bubble
migration in a wide gap Couette device. We found that non-Newtonian
rheology of foam changes the migration process and then we strived
to explain it by separating the viscous and elastic contributions in
migration process.
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1.7 Thesis outline

Chapter 2 presents details of the experimental setup and research methodol-
ogy. We describe a shear cell Couette device used for all the experiments to
be presented in the thesis. Additionally, we explain the characterization of
the material used in this research and at the end we present the visualizing
technique that was utilized in this research.

Chapters 3-6 deal with the four research projects in turn. Chapter
3 presents detailed results of bubble-bubble coalescence in sheared two-
dimensional foam. We observed a threshold above which coalescence occurs.
This threshold depends on the bubble size and liquid viscosity. Then, we
offered several mechanisms to explain this anomalous coalescence. The most
promising one is the model based on the centripetal force.

Chapter 4 presents new results on migration of a single large bubble in
a sea of smaller bubbles. We report lateral migration of this single large
bubble across the gap to a final equilibrium position which turned out to be
the middle of the gap. The migration occurs above some thresholds for shear
rate and bubble size ratio. We modify the Chan-Leal formula to explain the
migration in foam and also used a force balance to explain the presence of
thresholds for migration.

Chapter 5 presents experimental results on bidisperse and polydisperse
two-dimensional foams. We report the size based segregation above thresh-
olds for bubble size and shear rate, similar to migration study. Then, we
develop a model to account for shear induce diffusion as well as lateral mi-
gration.

Chapter 6 presents an extension to chapter 4 in which we have widen the
gap of the Couette cell device. We showed that this seemingly naive change
in geometry elicits the non-Newtonian behavior of foam. Again, migration
of a single bubble in an otherwise monodisperse foam was investigated, but
this time bubble migrates to a final equilibrium position which is not at the
middle of the gap anymore. Modification of Chan-Leal formula no longer
predicts the experimental observations. Hence, the viscoelastic nature of
foam comes to play. We rationalize the bubble migration experiments in
foam by studying the migration in shear thinning and Boger fluids which
mimic the foam behavior.

Chapter 7 summarizes the key results of the thesis, outlines the limita-
tions of the current work, and makes recommendations for future work.
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Chapter 2

Experimental setup and
methodology of research

2.1 Materials

Since the experiments are performed on the two-dimensional liquid foam,
the materials that we need to make the foam include: distilled water, glyc-
erol (Fisher Scientific), dish washing liquid (Unilever, Sunlight) and ni-
trogen, which will be provided by Praxair company in compressed steel
cylinders. In addition to that for other experiments we have used xan-
than gum (West Point Naturals) and Polyacrylamide (Sigma-Aldrich, Mw
= 5,000,000-6,000,000).

2.2 Material characterization

Prior to the actual experiments on the foam flow, we have performed some
experiments to characterize the materials that are present in the experi-
ments.

• Surface tension: Surface tension was measured by a tensiometer
(Cole-Parmer, Surface Tensiomat 21 WU-59951-14) which is a Du Noy
Ring type Tensiometer. We measured surface tension for different liq-
uids, including the pure liquids and soap solution at room temperature.
This type of tensiometer uses a platinum ring which is fully submerged
in a liquid. As the ring is pulled out of the liquid, the tension required
is precisely measured in order to determine the surface tension of the
liquid.

• Density: Density of different fluids is measured by using a Density
Meter (Anton- Paar DMA 35N) at room temperature.

• Rheology: Rheological properties such as shear viscosity and shear
stress of all pure materials and soap solutions as well as two-dimensional
foam are measured by using a rheometer (Malvern, Kinexus) and MCR
(502) with a co-axial cylinder and cone-plate geometry.
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2.3. Shear cell device and foam making procedure

Figure 2.1: Schematic of the shear cell (not to scale). (b) A top view snapshot of
2D foam at rest with bubble radius of 500 μm.

2.3 Shear cell device and foam making procedure

The migration experiments are carried out in a modified Couette cell device.
This cell consists of two cylinders: a stationary outer cylinder with the
inner radius of R0 = 10 cm and a rotating sharp-edged inner disk with two
different radii, Ri = 9.3 and 8.1 cm (Fig. 1a). The static liquid level is
flush with the top surface of the inner and outer cylinders such that the
interface is pinned at the sharp corners. Furthermore, triangular teeth are
machined onto the solid surfaces to prevent slippage of first row of bubbles.
Bubbles are produced by blowing nitrogen through an immersed capillary
tube in a soapy solution using a pneumatic PicoPump (WPI, model PV-
820). This method allows us to make an extremely uniform bubble size that
can be fine-tuned by the nitrogen pressure. Moreover, the inner cylinder is
attached to a servomotor that can be rotated from 0.1rpm to 100rpm using
a motor controller.
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Figure 2.2: (a) A top view snapshot of 2D foam at rest with bubble radius of
≈ 540 μm. (b) Typical velocity field of foam obtained by PIV at Ω = 5 rpm.

2.4 Imaging techniques and bubble size
measurement

Multiple cameras have been used for the experiments. We used a high-speed
camera (Megaspeed, MS 70K) to capture the evolving foam structure. The
frame rate ranges from 25 fps to 20,000 fps. In addition to that, we used
two other high-resolution cameras (Watec model 902B) to directly observe
the structure of the foam and to measure the bubble velocity profile across
the gap by using Particle Image Velocimetry (PIV). For PIV we used an
open source Graphical User Interface (GUI) code in MATLAB developed
by William Thielicke to track the position of bubbles in consecutive expo-
sures [74]. By measuring the displacement of bubbles between consecutive
images we can calculate the foam velocity profile across the gap. Fig. 2.2
shows top view snapshots of foam at rest ( Fig. 2.2 (a)) and typical veloc-
ity vectors obtained PIV method for sheared foam (Fig. 2.2 (b)). We also
measured the bubble size and bubble size distribution using microstructural
measurement software developed by Nahamin Pardazan Asia Co. [80]
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Chapter 3

Coalescence of bubbles in
sheared two-dimensional
monodisperse foam

3.1 Introduction

As discussed in chapter 1, foams are fragile soft matter, with a microstruc-
ture which is thermodynamically and mechanically unstable [2, 6, 68, 76].
For three-dimensional foams there have been number of studies which inves-
tigated the structural evolution in flowing foam. For instance, Golemanov
et al. [27] observed breakup of bubbles sheared between parallel disks. On
the other hand, in a similar geometry, Herzhaft [28] reported size-based seg-
regation of bubbles in a polydisperse foam in which smaller bubbles found
to be close to the top and bottom disks while larger ones mainly accu-
mulated in the middle. Conspicuously missing, however, is any report of
shear induced coalescence, a common occurrence in sheared emulsions [58].
This has motivated us to study the possibility of bubble-bubble coalescence
in a sheared foam. The most important difficulty with understanding the
structure-flow coupling in a 3D foam emanates from its opacity; Therefore,
recently researchers have mainly focused on experimentation with 2D foams,
i.e. monolayers of 3D bubbles. This way, they can easily see and correlate
the microstructure to flow properties. The only structural changes observed
so far are T1 events [46]. Our main goal in this study is to investigate the
structural changes in 2D foams under more vigorous shearing. The main
finding is a new type of bubble coalescence unexpected at the start. We
consider several models for the anomalous coalescence, the most promis-
ing one is the one based on inertia of the fluid which can explain most of
experimental observations.

3.2 Results

3.2.1 Critical rotational velocity for coalescence

In this work we found that there is a threshold for rotational velocity Ωc

above which large bubbles start to appear quickly after the start of shearing
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Figure 3.1: (a) A foam with bubble radius R = 500 μm in liquid I shows no sign
of coalescence when sheared at 60 rpm. (b) Large bubbles appear after about 20
seconds of shearing at 75 rpm.

(Fig. 3.1). At shear rates below Ωc, no large bubbles appear during the long
period of experiments and the foam morphology remains the same as the
beginning(∼ 30 min). The threshold is observed for all bubble sizes, liquid
compositions and surfactant concentrations that we tested.

Our optical setup offers a 2 cm × 2 cm viewing window that is fixed in
space. Thus, we capture only a small portion of the circular trajectory of the
bubbles. The coalescence takes place very quickly after shearing above Ωc.
Therefore, we cannot capture the actual process of the coalescence as Ritacco
et al. [68] did for bursting of bubbles in static bubble raft. Coalescence is
thus inferred from the appearance of large bubbles.

This surprising result is not in line with the conventional wisdom that
coalescence happens for gentler collisions, with an upper bound on the shear
rate and a corresponding maximum capillary number [e.g. 10, 12, 19, 75,
81]. The coalescence between two freely suspended bubbles or drops is
determined by the competition between two time scales, the interaction
time ti and the drainage time td. The former is the time that the two
bubbles spend to interact with each other, and scales with the inverse shear
rate, while the latter is the time required for the liquid film between them
to drain to a critical thickness such that van der Waals forces can trigger

14



3.2. Results

Solution Glycerin c μ (mPa·s) σ (mN/m)
I 10 wt.% 5 wt.% 1.0 ± 0.1 27.0 ± 1.0
II 30 wt.% 5 wt.% 1.8 ± 0.2 27.0 ± 1.0
III 50 wt.% 5 wt.% 4.2 ± 0.4 27.0 ± 1.0

Table 3.1: Composition and properties of the solutions.

the rupture of film [10]. The requirement of ti � td for coalescence leads
to an upper critical capillary number. Such a criterion has been verified by
extensive studies that examined various parameters in the process, including
drop size, viscosity of the fluids, lateral offset of the colliding drops, and
surfactant concentration [e.g. 32, 33]. This apparently does not apply in our
case.

3.2.2 Effect of bubble size and liquid viscosity

We have examined the effects of the bubble size R and liquid viscosity μ
on coalescence process. Fig. 3.2 shows that the critical angular velocity Ωc

increases with both R and μ. This is again surprising: it implies that the
anomalous coalescence cannot be analyzed in the conventional framework
of a capillary number, i.e. in terms of viscous forces competing with surface
tension. There must be a new mechanism at play that was absent in the
convention scenario of collision and coalescence.

If we draw straight lines through the data points in this log-log plot,
their slopes give the scaling Ωc ∝ R0.27±0.02. The dependence of Ωc on the
liquid viscosity μ is rather weak: Ωc ∝ μ0.1.

3.2.3 Interfacial shape and bubble distribution

We have also recorded the shape of the foam-air interface and spatial redis-
tribution of the bubbles under shear. These may offer potential clues to the
cause of the anomalous coalescence.

Intuitively one may expect the centripetal force to deform the interface
on the rotating liquid. This is not the case; the interface exhibits no observ-
able variation in its elevation across the gap even at the highest Ω tested.
This is largely due to the effect of pinning of the interface at the solid walls.
In the experiment, we fill the gap between the cylinders such that the static
liquid surface is flush with the tops of the cylinders. Once shearing starts,
the free surface is subject to the centripetal force as well as anchoring on
the sharp edges of the inner and outer walls. Using the velocity profiles
of Fig.3.3, we have computed the shape of the interface, shown in Fig. 3.4
for a rotational speed of 60 rpm. Thus, the anchoring of the surface limits
its undulation to negligible amounts (< 0.2 mm; one order of magnitude
smaller than without anchoring). Furthermore, the bubbles are held mostly
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3.2. Results

Figure 3.2: Critical rotation speed Ωc as a function of bubble radius R for liquids
I, II and III (see Table 3.1).

16



3.2. Results

Figure 3.3: Bubble velocity profiles at three rotation speeds with liquid I. Bubble
size R = 250 μm. The line represents the analytical solution for a Newtonian fluid.
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Figure 3.4: Shape of the free surface for liquid sheared at Ω = 60 rpm. The radial
distance is measured from the axis of rotation and the inner and outer boundaries
are at 93 mm and 100 mm, respectively.

underwater by surface tension [54].
At relatively low rotation speed, the bubbles slide past each other in rows.

At higher Ω, however, there appears to be radial motion of the bubbles that
disrupts the layers. As a result, bubbles tend to be more tightly packed in
the inner half of the gap than in the outer half. In fact, voids of clear liquid
start to appear in the outer region (Fig. 3.5), which quickly disappear after
the shearing stops. The most plausible cause of this spatial inhomogeneity
is the centripetal force exerted by the rotating liquid on the bubbles. This
may be the cause of this anomalous coalescence as explained below.

3.3 Potential mechanisms for anomalous
coalescence

One should not that there are some differences between our experiments
and previously reported drop- or bubble-coalescence experiments. In shear-
induced drop collision, the shear brings into contact two freely suspended
drops that would otherwise not interact with each other at all. In our bub-
ble raft, on the other hand, bubbles are in close contact with each other
even without shear. Why should the static bubbles be immune to coales-
cence while the sheared ones are not? Moreover, our bubbles are covered by
surfactants, and there is also ample supply of it in the surrounding liquid.
Finally, our coalescence occurs at relatively high flow rates, much higher
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Figure 3.5: Bubble distribution in a foam 10 min after shearing at Ω = 60 rpm.
R = 500 μm.

than typical of drop-coalescence experiments [83]. In the following, we will
explore these differences for clues to the anomalous coalescence.

3.3.1 Shear precludes surfactant-stabilized films

The first idea is to investigate difference between the stability of static foam
and the coalescence in a sheared one. Static foams are stabilized by sur-
factants because the latter form regular structures in liquid films that are
sufficiently thin [64]. If the bulk surfactant concentration is below CMC,
bilayers of surfactants form the so-called “black films” [14]. At higher con-
centrations, micelles arrange themselves into a more or less regular colloidal
structure in the liquid film, producing thick stable films [64]. In either case,
the surfactant structure contributes a disjoining pressure that prevents liq-
uid drainage and stabilizes the static foam. Conceivably, vigorous shearing
may disrupt such surfactant structures or prevent them from forming in the
first place. This could be a mechanism for the observed coalescence.

In a recent study, Denkov et al. [20] demonstrated how the black film
may cause jamming in flowing foams. In essence, they assume that for low
enough shear rates, there is enough time for the film between neighboring
bubbles to thin down to a critical thickness where attractive forces act to
produce black films. Then the bubbles are locked into a rigid structure
that resists the shearing, and the foam is jammed. In our experiment, the
surfactant concentration is above CMC and the stable structure should be
the thick stable film instead of the black film [64].

At low Ω, we observe nonhomogeneous shearing with large domains of
jammed bubbles. Around Ω = 3 rpm, all such domains unjam and the
bubble raft starts to shear more or less uniformly. We thus take this to be
the threshold for the destruction of the thick stable films. However, larger
bubbles only start to appear at a much higher rotational speed of Ω ∼
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60 rpm. Therefore, the unjamming cannot be the cause of the anomalous
coalescence, which requires much more vigorous shearing.

3.3.2 Surface remobilization due to surfactant transport

The second mechanism which might be responsible for coalescence in foam
is surfactant transport. Drainage in liquid films carries surfactants along
the interface, and creates a gradient in surfactant concentration along the
interface of bubbles. This in turn produces a tangential Marangoni stress
that resists the interfacial flow. Conceivably, sufficiently strong shearing
may produce a viscous stress τv that overpowers the Marangoni stress τM ,
thereby remobilizing the bubble surfaces. Once bubble surface is mobilized
the film drainage will be facilitated and so will coalescence. This suggests
using the Marangoni number Ma = τM/τv ∼ 1 as a criterion for the observed
anomalous coalescence. In studying pairwise collision of surfactant-covered
drops, Yoon et al. [83] used this argument to rationalize the appearance of a
“transition capillary number” for lower bulk surfactant concentrations such
that coalescence occurs above it but not below. This seems to be consistent
with our anomalous coalescence.

Therefore, we will study the antagonism between Marangoni stress and
viscous stress as a potential explanation for the anomalous coalescence ob-
served in our experiment. For soluble surfactants, the surface concentration
is determined by two steps: bulk diffusion of surfactants toward the inter-
face and adsorption onto the interface [49]. For our commercial detergent,
it is not possible to estimate the relative rates of these two steps. We will
examine the cases of either one being the limiting step by adapting the clas-
sical analysis of Levich on falling drops [49]. In our problem, the liquid flow
outside the bubbles is due to shear instead of sedimentation. Thus, we need
to replace the characteristic liquid velocity in Levich’s calculations by γ̇R,
γ̇ being the local shear rate.

If adsorption is the limiting step that dictates the surfactant distribution
Γ on the bubble surface, one can estimate the surface concentration gradient
as [49]:

|∇Γ| ≈ Γ0 γ̇

α R
, (3.1)

where Γ0 is the equilibrium concentration and α is the coefficient of adsorp-
tion. This implies that the Marangoni stress

τM = |∇σ| =
(

∂σ

∂Γ

)
Γ0

|∇Γ| (3.2)

is proportional to the shear rate. Since the shear stress τv on the surface is
also proportional to γ̇, the ratio τM/τv will be independent of the shear rate.
This cannot explain the fact that coalescence happens above a threshold
rotational speed.
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3.3. Potential mechanisms for anomalous coalescence

When the bulk diffusion determines the surfactant distribution on the
bubble surface, Levich [49] estimated |∇Γ| and hence |∇σ| based on a bound-
ary layer thickness δ ∼ (DR/γ̇)1/3, D being the bulk diffusivity:

τM = |∇σ| ≈ Γ0γ̇δ

DR

(
∂σ

∂c

)
, (3.3)

where c is the bulk concentration of the surfactant, and ∂σ/∂c = Γ0RgT/c by
virtue of the Gibbs equation, Rg and T being the gas constant and absolute
temperature. Now the stress ratio can be written as

τM

τv
≈ Γ2

0RgT

c

δ

μDR
. (3.4)

From the Stokes-Einstein relationship, the surfactant diffusivity D is in-
versely proportional to the liquid viscosity μ: D = kBT/(6πμrs), rs being
the characteristic size of the surfactants and kB the Boltzmann constant.
Plugging this and the estimation of δ into the above equation, we obtain

τM

τv
≈ C (μγ̇R2)−1/3, (3.5)

where C contains factors including T and c, and is a constant in our exper-
iment. The prediction that τM/τv decreases with γ̇ allows the possibility
that the Marangoni stress be overpowered by the viscous shear stress at
sufficiently high γ̇, which would be consistent with the proposed mechanism
of bubble-surface remobilization. However, the prediction of a critical shear
rate that scales with μ−1 and R−2 contradicts the observations in Fig. 3.2.

In view of the above analysis, we are driven to the conclusion that the
remobilization of bubble surface by shear stress overcoming Marangoni stress
cannot be the cause of the anomalous coalescence.

3.3.3 Bubble compression due to inertia

The photo in Fig. 3.5 indicates a tendency for the bubbles to be pushed
radially inward. The only plausible agent for such an effect is the centripetal
force of the rotating liquid. As the spinning liquid generates an inward
pressure gradient, the bubbles, having a much lower density than the liquid,
are pushed inward towards the inner cylinder. Thanks to pinning on the
walls, the liquid surface rises little (Fig. 3.4). The radial pressure gradient
is thus maintained not by hydrostatic head but by surface tension in the
liquid meniscus. Conceivably the squeezing between bubbles accelerates the
drainage in the liquid film. If the film drains down to a critical thickness
within the interaction time between two bubbles, coalescence would occur
[10]. Thus, one may be able to adapt ideas from conventional drop-drop
collision to explain the anomalous coalescence. In the following we test this
mechanism through a scaling model.

21



3.3. Potential mechanisms for anomalous coalescence

For a pair of bubbles pushed into each other by a constant force F , we
may estimate the drainage time from an initial film thickness h0 to the final
critical one hc using the rigid parallel disk model [10, 52]:

td =
3πμa4

4F

(
1
h2

c

− 1
h2

0

)
, (3.6)

where a is the radius of the liquid film. In our geometry, the radial pressure
gradient due to the spinning liquid is dp/dr = ρu2/r, ρ being the liquid
density and u the tangential velocity of the liquid at distance r. This exerts
a force (dp/dr) · 2R · πR2 on each bubble. Since the bubbles are in close
contact with each other, they transmit the centripetal force onto their inner
neighbors in a sort of force chain, resulting in the largest cumulative force
on the innermost layer of bubbles:

F = 2πρR3
N−1∑
i=1

u2

r
, (3.7)

with the summation over the outer layers of bubbles. In comparison with F ,
the squeezing force πa2(σ/R) due to capillary pressure is at least an order
of magnitude smaller, and has thus been neglected.

Chesters and Bazhlekov [11] have proposed an empirical relation for the
critical film thickness hc for rupture due to van der Waals force:

hc =
2
3

(
A

4πσ

)0.3

(aR)0.2, (3.8)

A being the Hamaker constant taken here to be A = 3×10−19 J [35]. We need
now to estimate a. For pairwise collisions in a shear flow, the classical theory
gives a/R ∼ Ca1/2 [10]. We have measured a directly by using ImageJ [67],
and found it relatively insensitive to shear. In the static foam, a ≈ 0.17R, in
close agreement with previous computations [16]. With shearing, a tends to
increase with Ω but quickly saturates to an average value a ≈ 0.2R at about
25 rpm. Apparently the close packing constrains the bubble movement and
diminishes the role of shearing. Measuring a among hundreds of pairs of
bubbles reveals moderate variations in any given foam, and Fig. 3.6 shows
a typical distribution of a in a sheared foam. Since smaller a gives faster
film drainage, and we are concerned with the onset of coalescence, we use
the smallest a = 0.14R. Inserting this value along with Eqs. (3.7) and (3.8)
into Eq. (3.6), the ratio between drainage and interaction times is:

τ =
td
ti

= 1.64 × 10−3
(πσ

A

)0.6 μR0.2γ̇

ρ
∑N−1

i=1
u2

r

. (3.9)

where we have neglected h−2
0 relative to h−2

c , and taken the interaction time
between neighboring rows of bubbles to be ti ≈ γ̇−1 as in previous analysis
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3.3. Potential mechanisms for anomalous coalescence

Figure 3.6: Distribution of the film radius a in a sheared bubble raft with bubble
size of R = 500 μm undergoing rotational speed of Ω = 75 rpm. The curve shows
a fitted normal distribution.
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3.3. Potential mechanisms for anomalous coalescence

Figure 3.7: The critical condition for coalescence corresponds to τ = 8 for solution
I, τ being computed for the innermost layer of bubbles using the measured bubble
velocity profile. For solutions II and III, the critical τ values are 12.5 and 28.5,
respectively.
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3.4. Conclusion

[10]. We argue that τ � O(1) should give the critical condition for the
anomalous coalescence observed here.

The validity of the scaling theory can now be tested against the key
experimental observations. First, note that γ̇ and u are both proportional to
Ω. Thus τ ∼ Ω−1 and τ < 1 does yield a minimum critical rotational speed
as observed. Quantitatively, however, the critical condition corresponds to
τ = 8, 12.5 and 28.5 for solutions I, II and III, respectively (Fig. 3.7). These
numbers are one order of magnitude too large. Second, the τ criterion
predicts a scaling for the critical rotational speed Ωc ∼ R0.2, in reasonable
agreement with the power-law scaling observed in Fig. 3.2. Third, it also
predicts Ωc to increase linearly with the liquid viscosity μ. While the trend
is correct, the experimentally observed dependence on μ is much weaker:
Ωc ∼ μ0.1 (cf. Fig. 3.2). Finally, the large bubbles appear more often in
the inner part of the gap than the outer. Given that the smallest a can be
anywhere in a particular experiment, this provides indirect support for the
accumulation of the inward force in Eq. (3.7).

Thus, the inertia-based mechanism explains the qualitative trends ob-
served. But quantitatively it overestimates the drainage time as well as the
effect of liquid viscosity. The latter recalls the study of Yoon et al. [82]
on freely suspended droplets, where the viscosity effect is also weaker than
expected. In our case, the numerical discrepancies have many potential
causes. For example, the Hamaker constant [35] is not known for the flu-
ids used here, and possibly the bubble surface may develop dimples during
thinning [75] that would compromise the calculation above. Since our bulk
surfactant concentration is 100 times CMC, the abundance of surfactants
may introduce additional effects. Rapid adsorption onto the bubble surface
may partially mitigate the Marangoni stress and locally remobilize the sur-
faces [64]. Though this has been dismissed as a critical condition for the
anomalous coalescence, it might explain the fact that the drainage rate is
underestimated in our model, producing too large a critical τ value. More-
over, the later stage of drainage is probably influenced by the presence of
micelles, which may form layers that hinder film thinning below h ∼ 100 nm
[64]. This non-viscous effect may reduce the overall dependence on μ. Un-
fortunately, not knowing the chemical properties of the surfactant mixture
in the detergent, it is difficult to formulate these ideas quantitatively.

3.4 Conclusion

In this chapter we reported an anomalous type of bubble coalescence in
a monolayer sheared in a Couette device, which occurs above a critical
rotational speed Ωc. This contrasts the conventional wisdom about bub-
ble and drop coalescence that it occurs below a critical capillary number.
Our coalescence cannot be characterized by a critical capillary number; the
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3.4. Conclusion

critical Ωc increases with bubble size and the viscosity of the suspending
liquid. To rationalize the experimental observations, we have considered
three potential mechanisms for the coalescence: shear preventing the forma-
tion of surfactant-stabilized films between bubbles, shear stress overcoming
Marangoni stress to remobilized the bubble surface, and centripetal force
pressing the bubbles radially inward into each other. None of these accounts
quantitatively for all the experimental results.

The third is the most promising. According to this model, the anoma-
lousness of the scenario arises from two factors: the film drainage is driven
by a centripetal force instead of a viscous one, and the bubble deformation
is determined by geometric constraints rather than shearing. The apparent
reversal in the coalescence criterion, from the conventional maximum cap-
illary number to a minimum shear rate, is similar in spirit to that demon-
strated recently by Ramachandran and Leal [66] for collision between vesi-
cles. Though clearly not a complete theory for the anomalous coalescence,
the inertia-based model captures the qualitative trends of the experiment,
and may serve as a starting point for further investigations.
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Chapter 4

Lateral migration of a single
large bubble in monodisperse
two-dimensional foam

4.1 Introduction

Foams rheology and hydrodynamics are intimately coupled to its microstruc-
ture, i.e. the shape and spatial organization of the bubbles [30, 78]. A
particularly intriguing phenomenon is size-based segregation of bubbles in
a polydisperse foam [28]. After shearing between rotating parallel plates,
smaller bubbles appear predominantly near the top and bottom plates while
the larger ones are in the middle. The cause is unclear, but one possibility
is that the bubbles have migrated across streamlines based on their size. In
a more recent experiment on a two-dimensional (2D) foam under oscillatory
shear [65], a bubble larger than its monodisperse neighbors migrates toward
one of the four borders confining the foam. This seems to contradict the
observations of Herzhaft on size-based segregation of bubbles [28]. More
curiously, the migration does not distinguish between the flow direction and
the direction of the velocity gradient. These two studies hint at some rule
governing lateral migration of bubbles in sheared foam, but little is known at
present. In contrast, lateral migration of particles and droplets suspended in
a liquid medium has been extensively studied in the past [e.g. 7, 8, 34, 47].
A solid spherical particle in a Stokes flow cannot migrate because the linear
system is time-reversible. A droplet deforms under shear, and this introduces
a nonlinearity into the problem and makes lateral migration possible. It has
been shown that in low-Reynolds-number Couette flows, droplets move away
from the walls toward the center of the gap [8, 31, 38]. This is commonly
interpreted as a wall repulsion; the rigid wall produces an asymmetry in the
velocity and pressure fields around the drop. Hence arises the lateral migra-
tion force. Naturally one wonders if the same repulsion operates in sheared
foam. This chapter describes an experimental study of lateral migration of
bubbles in a 2D foam sheared steadily in a narrow-gap Couette device. Into
a monodisperse bubble raft we introduce a single bubble of different size and
investigate its migration. By correlating the migration speed with the shear
rate and the bubble size ratio, we propose a hydrodynamic explanation for
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4.2. Results

Figure 4.1: Migration trajectories of a single bubble (R = 0.7 mm) at Ω = 7 rpm.
The curves represent the Chan-Leal formula (Eq. 4.1). The top inset illustrates
the migration schematically (not to scale) and the bottom one depicts the liquid
meniscus above the bubble calculated from the model of Ref. [54].

the migration based on bubble deformation.

4.2 Results

4.2.1 Migration of bubble in a Newtonian fluid

As a baseline, we first study the migration of a single bubble floating on the
free surface. It migrates to the center of the gap from all initial positions.
Typical trajectories are shown in Fig. 4.1. The dimensionless drop position
s is scaled by the gap width d, with s = 0 at the inner cylinder and 1 at
the outer cylinder. The symmetry between inward and outward trajectories
confirms the uniformity of the shear rate across the gap. This migration
is reminiscent of that of neutrally buoyant droplets suspended in a liquid
medium [8, 31]. Thus we have compared the measured trajectories with
those predicted by the theory of Chan and Leal [8]. Chan and Leal [8]
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4.2. Results

considered the migration of a Newtonian drop in a Newtonian matrix sheared
in a Couette device, under the condition of vanishing capillary number and
small drop deformation. For a bubble of radius R in a matrix of viscosity η,
the dimensional migration velocity can be written as:

vm(S) =
σ

η
Ca2(

Ri

Ro
)4{ 81

560
R2

d2
[1+

R2
o

(Ri + Sd)2
]2f(S)− 1

7
R4

oR

(Ri + Sd)5
}, (4.1)

where Ca = ηγ̇R/σ is defined using the shear rate at the inner cylinder,
f(S) = S−1 − (1 − S)−2 + 2 − 4S, and we have put the bubble viscosity
to zero. The first term in the bracket represents wall repulsion that pushes
the bubble to the center of the gap (S = 0.5), while the second term is due
to the curvature of the streamlines and drives the bubble toward the inner
cylinder. Thus, the Chan-Leal formula predicts an equilibrium position
between the center and the inner cylinder. Note that the prerequisites for
the perturbation theory, Re ≈ 0, Ca � 1 and R � d, are all satisfied by
the experiment. With Re, Ca, R and d being Reynolds number, capillary
number, bubble radius and gap size respectively. Integrating the above
using the experimental parameters produces the trajectories of Fig. 4.1. The
agreement between the measured and predicted trajectories is very close.
The formula was derived for a neutrally buoyant drop inside a 3D fluid
while our bubble “floats” on the liquid surface. In reality, surface tension
keeps 99% of the bubble volume below the undisturbed free surface, which
is consistent with theoretical calculations [54] (Fig. 4.1 inset). The viscous
friction in the thin meniscus atop the bubble may be larger than in a fully
3D geometry. But apparently the left-right asymmetry dominates and the
vertical dimension seems to matter little. Thus, the Chan-Leal formula
predicts the migration in our geometry with no fitting parameter.

4.2.2 Migration in two-dimensional monodisperse foam

The main result of the experiment is the migration of a larger bubble of ra-
dius R in an otherwise monodisperse bubble raft of radius r. Generally the
large bubble migrates toward the center of the gap, and the migration speed
depends on the size ratio κ = R/r as well as rotation rate Ω. Figure 4.2
shows migration trajectories for several κ and Ω values. During the migra-
tion, the large bubble shifts from one row of bubbles to the next, spending a
finite time in each. This is indicated by the horizontal bars on some trajec-
tories, forming a staircase pattern. For clarity, the bars are omitted on the
other trajectories with only data points plotted at the center of each step.

The following observations can be made. (i) There are a threshold κ0

for a fixed Ω and a threshold Ω0 for a fixed κ, below which no migration
occurs. For the conditions of Fig. 4.2(a), κ0 lies between 1.43 and 1.54.
In particular, a bubble smaller than its neighbors, i.e. with κ < 1, does
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Ω = 2 rpm, Cae = 3.4 × 10−3

Ω = 2.5 rpm, Cae = 4.3 × 10−3

Ω = 3 rpm, Cae = 5.2 × 10−3

Ω = 7 rpm, Cae = 1.2 × 10−2

(b)

Figure 4.2: Bubble migration in a 2D foam. (a) Effect of the bubble size ratio κ
at Ω = 4 rpm. The bubble radii are (in mm): (r,R) = (0.35, 0.5) for κ = 1.43;
(0.39, 0.6) for κ = 1.54; (0.435, 0.7) for κ = 1.61 and (0.35, 1) for κ = 2.86. The
solid and dashed curves are predictions of Eq. (4.3) for κ = 1.61 and 2.86. (b)
Effect of the rotational rate Ω for fixed bubble sizes (r,R) = (0.35, 0.7) mm. The
curves are predictions of Eq. (4.3) for Ω = 3 and 7 rpm.
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4.3. A hydrodynamic model to explain the migration in foam

Figure 4.3: Bubble deformation in different environments at Ω = 7 rpm. The
large bubble (R = 0.7 mm) in (a) deforms much more in a foam of smaller bubbles
(r = 0.35 mm) than alone in (b). (c) A smaller bubble (R = 0.4 mm) is shielded
by its neighbors (r = 0.58 mm).

not migrate at all. In Fig. 4.2(b), Ω0 is between 2 and 2.5 rpm. (ii) For
sufficiently large Ω and κ, a large bubble migrates all the way to the center
(s = 0.5). Below these, the bubble may migrate to an intermediate position
between the wall and the center. (iii) The migration speed increases with
κ and Ω. (iv) The migration is much faster than if a bubble of radius R
migrates on a free surface, without the bubble raft. This can be seen by
comparing Fig. 4.2 with Fig. 4.1; the migration time differs by a factor of
O(102).

4.3 A hydrodynamic model to explain the
migration in foam

4.3.1 Model development

All the above observations can be explained by a model based on the de-
formation of the migrating bubble. Chan and Leal [8] showed that the wall
repulsion stems from the left-right asymmetry in the flow around the bubble
and the concomitant asymmetric bubble shape. In our experiment, a larger
bubble protrudes outside its own row and forces the surrounding bubbles to
rearrange as they pass around it (Fig. 4.3a). Compared to fluid particles in
a continuum, the surrounding bubbles have a finite radius r and a capillary
pressure inside, and thus are much harder to displace and deform. They
continuously rub and bump into the sides of the large bubble, imparting
a force Fb on it. This force is the counterpart of the liquid pressure and
viscous force in the single-bubble scenario, but is much larger. A visible
consequence of Fb is the pronounced deformation of the large bubble, much
more than a single bubble of the same size subject to the same shear rate
(Fig. 4.3b). A less visible one, we surmise, is a strong wall repulsion arising
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Figure 4.4: Deformation parameter of a larger bubble in a 2D foam as a function
of the bubble size ratio κ. The error bars indicate the variation among 7 shear rates
tested, and the curve is a quadratic fit to the data.

from the asymmetry in Fb from the two sides.
This idea can be made more precise by plotting the bubble deformation

as a function of the size ratio κ (Fig. 4.4). We define a bubble deformation
parameter D = (l − a)/(l + a), l and a being the long and short axes of
the roughly elliptical deformed bubble. According to Taylor’s celebrated
formula [73], a single bubble of negligible internal viscosity in a sheared
fluid should have D = Ca. In the bubble raft, we represent the data by
D/Ca = g(κ) = 2.5κ2 − 7κ + 11. Now we equate the larger deformation
in a bubble raft to that of a single bubble at a higher “effective capillary
number” Cae:

Cae = D = Ca · g(κ). (4.2)

Plugging this into the Chan-Leal formula (Eq. 4.1) gives us a modified Chan-
Leal formula

vm(s, κ) =
81
140

R2

d2

σCa2
e

μ
f(s) g2(κ). (4.3)

After time integration, this formula predicts well all the migration trajecto-
ries recorded in our 2D foam, over the entire range of r, R and Ω values.
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4.3. A hydrodynamic model to explain the migration in foam

For clarity, only a few representative curves are plotted in Fig. 4.2. Note
that the O(10) deformation enhancement in Fig. 4.4 translates to the O(102)
increase in the migration velocity. The success of Eq. (4.3) confirms our hy-
pothesis in the preceding paragraph. As a corollary, a bubble of the same
size as its neighbors or smaller (κ ≤ 1) does not migrate because it does not
jut out of its own row (Fig. 4.3c). Thus, it is not subject to the “bumping
force” Fb.

4.3.2 Thresholds for migration

Finally, we examine the thresholds κ0 and Ω0 for lateral migration. When a
monodisperse 2D foam is sheared, the bubbles typically move in streamwise
rows past one another. For a larger bubble (radius R) to migrate laterally,
it must squeeze into the next row of bubbles (radius r). The wall repulsion
force Fw driving the migration, therefore, must exceed a threshold in order to
deform the bubbles of the next row to create the gap. Because these bubbles
in turn interact with multiple moving and changing neighbors on the other
side, it is difficult to posit a precise force balance from which to calculate
the threshold. As an estimation, we take the resistance to migration to be
on the same order of magnitude as the capillary force between bubbles in
the row: Fc = (σ/r) · πa2, where a is the radius of the thin film between
neighboring bubbles in a 2D foam. For the foam quality used here, a shows
a normal distribution among the bubble pairs, with a mean of a = 0.2r [57],
which will be used below. On the other hand, the wall repulsion can be
estimated from the Stokes formula using the migration velocity of Eq. (4.3):
Fw = 6πμvmR. We use the Stokes formula as opposed to the Hadamard
formula because the bubble surface is immobilized by the high surfactant
concentration [57]. Now the ratio between these two forces is:

Φ =
Fw

Fc
=

243
70

R3r

a2d2
Ca2f g2. (4.4)

Note that f(s) gives the wall repulsion at position S. In particular, using
the largest Fw, for the first row next to the wall, gives us the ratio Φ1. We
argue that a Φ1 value of O(1) gives the threshold for lateral migration of
the larger bubble.

Figure 4.5 plots Φ1 for all the κ and Ω values tested in our experiments.
The experimental conditions giving rise to lateral migration are indicated
by filled and half-filled symbols, the latter for partial migration to positions
between the wall and the center. The non-migrating conditions are shown by
hollow symbols. These two groups are almost perfectly separated by Φ1 =
0.4, thus validating Eq. (4.4) as an approximation for the threshold. For
lower Ω, three data points fall on the wrong side of the line; the experiment
may have been more susceptible to external disturbances in these cases.
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4.3. A hydrodynamic model to explain the migration in foam

Figure 4.5: Threshold for bubble migration. Φ1, computed from Eq. (4.4) for
the first row of the bubbles next to the wall, is plotted as functions of Ω for var-
ious κ values. Hollow, half-filled and filled symbols indicate no migration, partial
migration and complete migration to the center. The dashed line is Φ1 = 0.4.
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Note that the thresholds reflect the graininess of the bubble raft, and have
no counterpart in the Chan-Leal theory.

4.4 Conclusion

In this chapter, we studied lateral migration of a single bubble whose size is
different from the neighboring bubbles and showed that the size-differentiated
lateral migration in sheared 2D foam can be achieved under some conditions.
The key findings can be summarized as the following:

(a) We introduced a single bubbles whose is different than the neighboring
bubbles in a monodisperse foam and found out it migrates laterally as
long as the bubble size ratio κ and Ω are both above some thresholds.

(b) We modified the Chan-Leal theory to account for the observations.
The rubbing of large bubbles by the smaller neighboring bubbles re-
sulted into an elevated deformation. After accounting for this fairly
high deformation, we were able to predict the migration trajectories
of bubbles using the Chan-Leal theory.

(c) We also explained the presence of thresholds for bubble size ratio and
rotational velocity by using a force balance between the wall repulsion
and capillary attraction between bubbles.

(d) And finally lateral migration that was reported in this chapter offers
a potential explanation for the size-based segregation in sheared 3D
polydisperse foam [28].
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Chapter 5

Size segregation in sheared
two-dimensional polydisperse
foam

5.1 Introduction

As we mentioned in previous chapters, it is widely recognized that complex
dynamics of foam is rooted in the foam’s microstructure on the bubble scale;
the bubbles may undergo breakup, coalescence, coarsening, and morpholog-
ical changes [2, 6, 17, 21, 68, 76]. Prior experiments have indicated the
possibility that bubbles may segregate according to size in a flowing poly-
disperse foam. But other experiments suggested evidence to the contrary.
Herzhaft [28] sheared three-dimensional polydisperse foams between paral-
lel disks, and reported that the large bubbles tend to appear at the middle
of the gap while smaller ones are closer to the walls. One explanation is
that the bubbles have segregated according to size during the shear. How-
ever, an alternative is bubble breakup [27] and coalescence [57] under shear,
which could also have produced the observed patterns. In an experiment
designed expressly to probe bubble migration, Quilliet et al. [65] produced
a monolayer of monodisperse bubbles as a two-dimensional (2D) foam, and
inserted a bubble larger than its neighbors. Under oscillatory shear, the
large bubble is seen to migrate toward one of the boundaries of the cell.
This is inconsistent with Herzaft’s report of migration away from walls. In
a Hele-Shaw cell, Cantat et al. [5] reported aggregation of large bubbles
among smaller neighbors. Cox et al. [15, 24] studied planar extension of
bidisperse 2D foams experimentally and numerically, and found no sign of
size-based bubble segregation. Therefore, the question of size segregation in
flowing polydisperse foam remains open.

For emulsions and suspensions, on the other hand, the segregation and
margination of drops and particles in confined flows are well documented [44,
50, 51, 71]. For example, bidisperse suspensions of particles show mild size
segregation in 2D channel flow [50, 51]. White blood cells and platelets
are found closer to the walls while the red cells aggregate in the center
of the tube [44, 71]. We should note, of course, that foams are different
from suspensions or emulsions in that the bubbles are closely packed, with
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5.2. Size segregation in bidisperse foam

relatively little suspending fluid in between. Thus they have a much reduced
mobility.

As we showed in previous chapter, we have taken the first step toward
answering the question of size segregation in sheared foam by studying the
migration of a single large bubble in an otherwise monodisperse bubble raft
[55]. In a Couette shear cell, we saw migration of the large bubble away
from the walls toward the center of the gap, apparently driven by a “wall
repulsion”. This appears consistent with the observations of Herzhaft [28]
but not those of Quilliet et al. [65]. Now in bidisperse and polydisperse
foams, a new factor is that the large bubbles interact among themselves
as well. How does this interaction affect the migration of the bubbles of
different sizes? Do bubbles segregate based on size, and if yes, what is the
role of the area fraction of different species? These are the questions we set
out to answer in this chapter.

5.2 Size segregation in bidisperse foam

We have done several experiments for bidisperse as well as polydisperse
foams. But, it turns out that the key features of size-based segregation are
mostly manifested in bidisperse foams already. For the ease of analysis,
therefore, we will focus on bidisperse foams in the following, with a final
subsection devoted to features specific to polydisperse ones.

Samples Φ1(%) Φ2(%) Φ3(%) Φ4(%)
A 80 20 — —
B 95 — 5 —
C 90 — 10 —

Bidisperse D 80 — 20 —
E 70 — 30 —
F 50 — 50 —
G 80 — — 20
H 90 5 5 —
I 80 10 10 —
J 60 20 20 —
K 40 30 30 —

Polydisperse L 90 — 5 5
M 80 — 10 10
N 60 — 20 20
O 40 — 30 30

Table 5.1: Composition of the bidisperse and polydisperse foam samples used in
the experiments. Φ1, Φ2, Φ3 and Φ4 are the area fractions of the bubble species with
radius a1 = 350 μm, a2 = 500 μm, a3 = 700 μm and a4 = 875 μm, respectively.
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Figure 5.1: Size segregation in sample D under shear (Ω = 5 rpm). The upper
row consists of snapshots of the foam at different times: (a) t = 0; (b) t = 2 min;
(c) t = 5 min. The lower row shows the corresponding large bubble distributions
φ3(y)/Φ3.

Figure 5.1 illustrates a typical process of size-based segregation of the
two bubble species under shear. The distribution of the large bubbles, of
radius a3 = 700 μm in this case, are generated by averaging over several
snapshots taken in repeated experiments. In each snapshot, we divide the
visible domain of the foam into 9 parallel strips of equal thickness across the
gap d, and count the number of large bubbles in each strip. This produces
a profile of the area fraction for the large bubbles, φ3(y), normalized by
the average fraction Φ3 = 20%, y being the dimensionless coordinate across
the gap with the origin at the center and y = ±0.5 at the walls. The large
bubbles are initially released close to the walls (Fig. 5.1a). Under a rotational
rate Ω = 5 rpm, the two species mix at first (Fig. 5.1b). In time, however, the
large bubbles aggregate in the center of the gap, within |y| < ye ≈ 0.25 in this
case, and a quasi-steady state is reach at t = 5 min (Fig. 5.1c). In this state,
there is no statistically significant variation along the azimuthal direction.
The quasi-steady distribution of the bubbles is independent of the initial
configuration. Figure 5.2 shows that three different initial distributions at
the same Φ3 = 20% all lead to the same final distribution. Of course, the
time required to reach the final state differs. For brevity, we will refer to the
quasi-steady state after prolonged shearing simply as the “steady state”.

The apparent aggregation of large bubbles at the center of the gap is con-
sistent with our earlier observations on the migration of single large bubbles
in a 2D foam of smaller bubbles [55]. To sum up those findings, a large
bubble off the center of the gap experiences an asymmetric “bumping force”
from the small bubbles that pass along its sides under shear. This produces
a “wall repulsion” toward the center of the gap, much as in the migration
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Figure 5.2: Three different initial configurations of sample D (top row), with
the large bubbles randomly distributed (a), near the walls (b) and segregated into
azimuthal segments (c), lead to the same quasi-steady distribution in the lower
row after shearing at Ω = 7 rpm for 10 min. The arrow indicates the direction of
shearing.

of a single drop submerged in a suspending liquid [8, 47]. Furthermore, the
migration speed can be predicted by the Chan-Leal formula [8] if the cap-
illary number Ca is replaced by an effective capillary number Cae that is
higher than Ca and accounts for the enhanced deformation of the large bub-
ble under the continuous impact of the smaller surrounding bubbles. In the
present study, the obvious difference is that there are multiple large bubbles
that interact among themselves as well.

There are two prerequisites for the migration of the single large bubble in
an otherwise monodisperse foam of smaller bubbles [55]: that the shear rate
γ̇ and the bubble size ratio κ each be above a certain threshold. These reflect
the discreteness of the foam; it takes a minimum force to push a large bubble
from one row to the next against the capillary pressure in the neighboring
bubbles. Such thresholds have also been observed for the bidisperse foams
here. In fact, the two threshold values of Ω and κ are expected to be the
same as for a single large bubble [55]. Insofar as they are critical values
corresponding to the onset of lateral migration of the large bubbles, they
are unaffected by the interaction among large bubbles, which arises only
after the thresholds have been crossed. For example, no segregation occurs
in Sample A for Ω up to 7 rpm, the highest rotational rate possible without
incurring centripetal effects [55]; the bubble size ratio κ = a2/a1 = 1.43 is
too small. In Sample D (κ = 2), the threshold is around Ω = 3 rpm. For
Sample G (κ = 2.5), it has come down to around 2 rpm. We have previously
presented detailed experimental data on the thresholds [55], along with an
analytical expression for the critical condition based on scaling arguments.
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Figure 5.3: Steady state distribution of the large bubbles in Sample C after shear-
ing at (a) Ω = 3 rpm and (b) Ω = 7 rpm for 10 min. The solid lines are predictions
of the migration-diffusion model to be discussed in subsection III.E.

5.2.1 Effect of shear rate

The shear rate affects both the final steady-state bubble distribution across
the gap and the approach to that steady state. Figure 5.3 shows the steady-
state distribution of a3 in Sample C after shearing at different rotational
speeds. Evidently, with increasing shear rate the final distribution of the
large bubbles becomes more narrowly peaked, and the near-wall regions free
of large bubbles widen. For the two cases shown, the half-width of the large-
bubble distribution ye ≈ 0.28 and 0.22 for Ω = 3 and 7 rpm, respectively.

Furthermore, we compare the speed of segregation at different shear rates
starting from the same uniform initial configurations. Figure 5.4 plots the
temporal evolution of the half-width of the large-bubble distribution, ye(t).
At higher shear rate, the size segregation proceeds at higher speed, and
the steady-state distribution is attained within a shorter time. Intuitively,
this trend is reasonable. Faster shearing causes more vigorous and frequent
impingement of the small bubbles onto the large ones, which should enhance
the speed of lateral migration for the latter. A more precise analysis calls
for the introduction of another factor, shear-induced diffusion of the large
bubbles, which influences the steady-state distribution as well.

5.2.2 Effect of area fraction of large bubbles

The size segregation in polydisperse foams differs from the migration of a
single large bubble studied before [55] in that the large bubbles interact
among themselves. Naturally one expects this interaction to depend on the
large-bubble area fraction. By shearing Samples B, D and F, with Φ3 = 5%,
20% and 50% for the large bubbles, respectively, we compare the steady-
state distributions in Fig. 5.5. By increasing Φ3, the distribution becomes
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Figure 5.4: Temporal evolution of the half-width of the large-bubble distribution,
ye(t), for Sample D at Ω = 3 and 7 rpm. The solid and dashed lines indicate
predictions of the migration-diffusion model.

Figure 5.5: Steady-state distribution of the large bubbles in Sample B, D and F
after 10 min of shearing at 7 rpm. These samples have the same bubble sizes but
different area fractions for the larger bubbles (see Table 1). The solid lines are
predictions of the migration-diffusion model.

broader and the large bubbles are more spread out in the gap. At even
higher fractions, the large bubbles become essentially uniformly distributed
across the gap.

Moreover, Fig. 5.6 compares the temporal development toward the steady
state at two different Φ3 values. For Sample E at the higher Φ3 = 30%, the
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Figure 5.6: Temporal evolution of ye(t) for Samples C (Φ3 = 10%) and E (Φ3 =
30%) undergoing shear at 7 rpm. The solid and dashed lines indicate predictions
of the migration-diffusion model.

equilibrium distribution is achieved more rapidly. In view of the wider dis-
tribution in equilibrium (Fig. 5.5c), or equivalently the larger steady-state
ye value, the large bubbles initially near the walls need to travel less distance
to reach their equilibrium position. This seems to provide an easy rational-
ization of Fig. 5.6. But a more careful examination will be made below with
the help of a quantitative model.

5.2.3 Effect of bubble size ratio

Figure 5.7 compares the steady-state distributions and temporal evolution of
ye for two bidisperse foam samples with the same large-bubble area fraction
Φ but different bubble size ratio (κ). Sample G, with the larger κ, exhibits
a more sharply peaked steady distribution, and reaches it more rapidly than
Sample D. This mirrors the effects of the shear rate which was explained
in 5.2.1. In the migration of a single large bubble in an otherwise monodis-
perse foam of small bubbles [55], we have found that a larger κ increases
the migration velocity as if by elevating the shear rate. In fact, an effective
capillary number Cae can be defined based on κ that quantitatively captures
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Figure 5.7: Effect of the bubble size ratio κ on (a) the steady-state distribution of
the large bubbles, and (b) the transient to the steady state in terms of ye. Sample
D has a bubble size ratio κ = 2 and Sample G has κ = 2.5. Both have 20% average
area fraction for the large bubbles and are subject to Ω = 7 rpm. The solid and
dashed lines represent the model predictions.

this effect. The model presented below will make a similar connection for
the bidisperse foams.

5.3 A migration-diffusion model

The description above indicates that size segregation in sheared foam is
driven by the migration due to wall repulsion, the same mechanism as op-
erates on a single large bubble in a medium of smaller ones [55]. A second
key player, one that distinguishes the bidisperse foam from the single-large-
bubble scenario, is the interaction among the large bubbles themselves. This
interaction may be described by the idea of shear-induced diffusion that is fa-
miliar from prior studies of suspensions and emulsions [22, 34, 41, 48, 50, 51].
The competition between these two factors determines the speed of segre-
gation between bubbles of different sizes and their final distribution.

King and Leighton [41] and Hudson [34] studied the spatial distribution
of drops in sheared dilute monodisperse emulsions and investigated the in-
terplay between wall migration and shear-induced diffusion. The evolution
of the drop volume fraction φ in a simple shear obeys a convection-diffusion
equation:

∂φ

∂t
= − ∂

∂y′

(
vmφ − D

∂φ

∂y′

)
, (5.1)

where vm is the velocity of wall-induced migration, D is a diffusivity, and
y′ = yd is the dimensional coordinate across the gap. The Chan-Leal for-
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mula [8] is used for vm, in terms of the dimensionless y:

vm = −4α
σ

η

a2

d2
Ca2

[
y +

8y

(1 − 4y2)2

]
, (5.2)

where α is a mildly varying function of the drop-to-matrix viscosity ratio
given by Chan and Leal [8], σ is the interfacial tension, η is the ambient
fluid viscosity, a and d are the drop radius and gap size, and Ca = ηγ̇a/σ is
the capillary number. The diffusivity D is written as

D = φγ̇a2λ, (5.3)

where λ is a dimensionless coefficient. Balancing the drop fluxes due to wall
migration and diffusion, Hudson [34] arrived at the following steady-state
profile:

φ(y) = φ0 + Pe

(
1 − y2

2
− 1

1 − 4y2

)
, (5.4)

where φ0 = φ(0) is a constant of integration, and the Peclet number

Pe = 4α
a

d

Ca

Φλ
, (5.5)

Φ being the average volume fraction. Note that both vm and φ diverge
toward the walls (y → ±0.5). The actual profile comprises the positive
central part of Eq. (5.4) and drop-free layers next to the walls, whose edges
(y = ±ye) are determined by setting φ(ye) = 0 in Eq. (5.4). Conservation
of the drop volume

∫ ye

−ye
φ(y) dy = Φ specifies the centerline volume fraction

φ0.
To adapt this emulsion model to our bidisperse foam, we make the same

analogy as was used previously to represent the wall-induced migration of
a single large bubble in a sheared monodisperse foam of smaller bubbles
[55]. Essentially, we view the smaller bubbles as constituting an effective
continuum that suspends and flows around the large bubbles, playing the
role of the continuous-phase liquid in the emulsion. Of course, the foam is
2D while the emulsion is 3D, and the smaller bubbles exert a hydrodynamic
impact on the larger ones that differs from that of a continuous, viscous liq-
uid. Most importantly, the large bubbles are observed to deform much more
than in a viscous liquid under the same capillary number. We previously
showed in Chapter 4 that the enhanced deformation can be described by an
empirical equation for an effective capillary number

Cae = Ca(2.5κ2 − 7κ + 11), (5.6)

κ being the large-to-small bubble size ratio. Cae is larger than Ca and, when
used in the Taylor formula for drop deformation, predicts the observed bub-
ble deformation. With Caa being replaced by Cae, the migration velocity
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5.3. A migration-diffusion model

vm of a single large bubble can be predicted accurately by the Chan-Leal
formula [55]. This vm can be used in the emulsion model (Eq. 5.1) for the
bidisperse foam at hand. Then we need only to find the counterpart of the
diffusivity of Eq. (5.3).

As far as we know, the idea of shear-induced diffusion has never been
used for foams before, and no measured data exist for D or λ. In emulsions,
one may consider λ a function of the viscosity ratio, the surface mobility,
the capillary number Ca, and the drop fraction Φ. For surfactant-stabilized
dilute emulsions, King and Leighton [41] have reported λ(Ca) as a weakly
rising function of the capillary number Ca (cf. their Fig. 8). In surfactant-
free emulsions, Hudson [34] obtained λ values that are an order of magnitude
larger, owing to the higher surface mobility. Viewed as an emulsion of the
large bubbles in an effective liquid medium, our bidisperse foam is similar
to King and Leighton’s emulsion in that the surfaces are immobilized by
surfactants, and the drop-to-matrix viscosity ratio is negligibly small. Thus,
we borrow their dimensionless diffusivity λ, now as a function of the effective
capillary number Cae. In fact, all our experiments have used low shear rates
such that Cae < 0.1, in which range λ = 0.02 ± 0.002 remains essentially
constant (see Fig. 8 of King and Leighton [41]). Therefore, we have simply
taken λ = 0.02 in our model calculations. Note that this neglects any
dependence of λ on Φ and possibly also on the bubble size ratio κ in our
foam. Both prior experiments [34, 41] used dilute emulsions and neither
explored the effect of Φ. We assume that λ is independent of the area
fraction of the large bubbles for our bidisperse foam. This assumption will be
validated a posteriori by comparing the model prediction with experimental
data over the whole range of area fraction. With the effective continuum
analogy, increasing κ amounts to increasing the effective capillary number
Cae through Eq. (5.6). As long as we operate in the low-Cae regime, the κ
effect on λ can be safely neglected.

Having λ thus determined and noting that α = 81/140 for an emul-
sion of negligible drop viscosity [8], we calculate the Peclet number for our
bidisperse foam as

Pe =
81
35

a

d

Cae

Φλ
. (5.7)

With this Peclet number, we can use Eq. (5.4) to predict the steady-state dis-
tribution of the large bubbles in our bidisperse foam, and integrate Eq. (5.1)
for the transient toward the steady state. In Eq. (5.4), the centerline concen-
tration φ0 is determined from the conservation of drop volume

∫ ye

−ye
φdy = Φ.

Equation (5.1) is integrated using finite difference with boundary conditions
φ(±ye) = 0, ye being determined iteratively from the drop volume conser-
vation by the shooting method. Both the steady φ profile and the transient
can be compared with measurements. In particular, we will examine the
effects of the shear rate γ̇, the average area fraction Φ and the bubble size
ratio κ.
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5.3. A migration-diffusion model

Figure 5.3 compares the model predictions with the measured steady-
state distributions for the bidisperse Sample C at two shear rates, and
Fig. 5.4 compares the temporal development of the distribution for Sam-
ple D. In both cases, the rotational speed of 3 and 7 rpm correspond to
capillary numbers Ca = 5.8 × 10−3 and 1.4 × 10−2, which in turn corre-
spond respectively to effective capillary numbers Cae = 4.0 × 10−2 and
9.5 × 10−2. Based on these parameters, the predicted steady-state profile
and its temporal development are both in reasonably good agreement with
experimental measurements. With increasing shear rate, the large bubbles
migrate away from the walls more rapidly, and this aggregation at the cen-
ter overpowers the shear-induced diffusion that strives to spread the large
bubbles uniformly. Consequently, the size-based segregation occurs more
rapidly for higher shear rates, and produces a narrower equilibrium distri-
bution centered at the middle of the gap y = 0. Note that Eq. (5.1) does
not predict a t ∼ γ̇−1 scaling for the transient. It would if vm and D were
both proportional to γ̇ or Ca. In reality, vm ∝ Ca2, and D also depends on
Ca nonlinearly thanks to λ(Ca) [41]. Our experimental data do not exhibit
such a scaling either.

As the average area fraction of the large bubbles Φ3 increases, Fig. 5.5
shows that the model correctly predicts the widening of the equilibrium
distribution, and the agreement with measurements is quantitatively accu-
rate. The idea underlying this prediction is that higher fraction of the large
bubbles increases the frequency of their collision and thereby elevates the
effective diffusivity D (cf. Eq. 5.3). This has been confirmed by the experi-
ments. We have also studied the effect of area fraction on the speed of size
segregation. The model predicts that with increasing Φ3, the segregation
occurs more rapidly (Fig. 5.6); it takes less time to reach the equilibrium
distribution. This captures the trend in the experimental data if not the
precise values of the segregation time. Qualitatively, increasing Φ3 increases
the diffusivity D, which should counteract the migration and lead to a slower
segregation. On the other hand, a higher Φ3 corresponds to a wider equilib-
rium distribution with a larger ye. This means that large bubbles initially
near the wall need to travel a shorter distance to get to their steady-state
position. These two effects oppose each other and the outcome seems to be
in favor of the latter. King and Leighton [41] have quantified the competi-
tion between the two effects in the limiting case of small y. By linearizing
the migration velocity vm of Eq. (5.2) (i.e., reducing the y terms between the
brackets to 9y), they obtained a self-similar solution in which time t scales
only with d/vm, and is independent of Φ3. Our experiment and analysis are
not restricted to the small-y limit, and thus do not exhibit the similarity.
Recall that we have assumed λ to be independent of Φ in Eq. (5.7). The
close agreement for the whole range of area fractions studied here indicates
that this is a reasonable assumption.

Finally, we examine the effect of the bubble size ratio κ, which influ-
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Figure 5.8: Steady-state bubble distributions in the polydisperse foam samples
H, I, J and K, after 10 min of shearing at 7 rpm. The samples have the same
three bubble sizes, a1 = 350 μm, a2 = 500 μm and a3 = 700 μm, at different
average area fractions: (a) Sample H, (Φ1, Φ2, Φ3) = (90%, 5%, 5%); (b) Sample I,
(80%, 10%, 10%); (c) Sample J, (60%, 20%, 20%); (d) Sample K, (40%, 30%, 30%).
The area fractions are normalized for each species.

ences the structural evolution of bidisperse foams through the Cae ∼ Ca
relationship in our model (Eq. 5.6). Figure 5.7 shows that the model cor-
rectly predicts the effects of κ on the steady-state distribution as well as on
the temporal evolution toward it: higher κ produces a faster approach to
a narrower steady-state distribution. Qualitatively and quantitatively (via
Eq. 5.6), therefore, increasing κ has similar effects to elevating the shear
rate or capillary number.

5.4 Polydisperse foam

We now consider polydisperse foams composed of three bubble sizes, a1,
a2 and a3 for Samples H–K and a1, a3 and a4 for Samples L–O (see Table
1). Note that in these samples the two larger species always have the same
area fraction. Figure 5.8 shows the steady-state distributions for Samples
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H–K. For Sample H with the lowest Φ3, the largest bubbles (of radius a3)
exhibit a sharply peaked distribution at the center of the gap while the two
smaller bubble species (a1 and a2) are more or less uniformly distributed.
If the a3 bubbles were absent, the a1 and a2 bubbles would not exhibit size
segregation as their size ratio κ = 1.43 is below the threshold for Ω = 7 rpm
[55]. Therefore, the aggregation of the a3 bubbles in Sample H is similar to
that in a bidisperse foam. By increasing the area fraction Φ2 and Φ3 to 10%
and 20% (Samples I and J), the two smaller bubble species are displaced
toward the walls. This is evidently due to the increasing area occupied by
the a3 bubbles at the center, and recalls the marginalization of white blood
cells when the more flexible red cells aggregate in the center [44, 71].

However, increasing Φ2 and Φ3 further to 30% (Sample K) brings about
an apparent reversal of the marginalization. Now all three species are
roughly uniformly distributed in the gap. This can be rationalized by the
stronger shear-induced diffusion of the largest bubbles at the higher Φ3,
much as in the bidisperse foams of Fig. 5.5. Comparing Fig. 5.8 and Fig. 5.5,
however, reveals an interesting role for the a2 bubbles. In Fig. 5.8(d), the a3

distribution flattens for Φ3 = 30% in the polydisperse Sample K, whereas
in the bidisperse Sample F (Fig. 5.5c), the large bubbles are not quite uni-
formly distributed even for Φ3 = 50%. Thus, the a2 bubbles are not inert and
merely passively displaced by the a3 bubbles. They actively facilitate the
spreading of the largest bubbles. This may have occurred through hindering
their migration toward the center (via effectively reducing κ) or enhancing
the diffusion of the largest bubbles, or even both.

Now we investigate the size segregation in polydisperse Samples L–O in
which the two larger species, a3 and a4, both tend to migrate away from
the walls and compete with each other to occupy the center of the gap.
Figure 5.9 shows the equilibrium distributions of the three bubble species
subject to shearing at Ω = 7 rpm. As it turns out, the two large bubble
species behave similarly in this case. For Φ3 = Φ4 ≤ 20% (Samples L–
N), both a3 and a4 bubbles aggregate at the center of the gap. The a1

bubbles are marginalized as seen above. The largest a4 species enjoys a
narrower distribution with a higher peak than a3. Thus, the larger bubble
size κ affords the former an advantage. With increasing Φ3 and Φ4, the
distributions broaden until at 30%, both become more or less uniformly
distributed across the gap (Sample O). As in Fig. 5.5(c) and Fig. 5.8(d),
this can be ascribed to the dominance of the shear-induced diffusion of the
a3 and a4 bubbles.

5.5 Conclusion

We have studied the structural evolution of bidisperse and polydisperse 2D
foams in a narrow-gap Couette shear cell. Within the parameter ranges
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Figure 5.9: Steady-state bubble distributions in the polydisperse foam Samples L,
M, N and O, after 10 min of shearing at 7 rpm. The samples have the same three
bubble sizes, a1 = 350 μm, a3 = 700 μm and a4 = 875 μm, at different area frac-
tions: (a) Sample L, (Φ1, Φ3, Φ4) = (90%, 5%, 5%); (b) Sample M, (80%, 10%, 10%);
(c) Sample N, (60%, 20%, 20%); (d) Sample O, (40%, 30%, 30%). The area fractions
are normalized for each species.

tested, the main experimental findings can be summarized as follows.

(a) After shearing for a sufficiently long time, the foam achieves a quasi-
steady morphology that is independent of the initial configuration.

(b) In this quasi-steady state, the bubble species may be uniformly mixed
or segregated by size depending on the physical and flow parameters.
Size segregation occurs if the bubble size ratio and shear rate are both
above certain threshold values, and if the area fraction of the large
bubbles is not too high. Otherwise a mixed state obtains.

(c) In size-segregating bidisperse foams, the segregation occurs more rapidly
and produces a narrower final distribution for higher shear rates and
larger bubble size ratios. Increasing the area fraction of the large bub-
bles, on the other hand, leads to a broader final distribution that is
achieved in less time.
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(d) Polydisperse foams behave similarly in that size segregation occurs at
relatively low area fractions of the largest bubbles while a uniformly
mixed morphology prevails at higher large-bubble area fractions. The
bubbles of intermediate size tend to facilitate the broadening of the
distribution of the largest bubbles.

These observations are rationalized by adapting a migration-diffusion
model previously developed for monodisperse emulsions. Viewing the larger
bubbles as being suspended in an effective continuum comprising the smaller
ones, we describe the structural evolution in bidisperse foams by a convection-
diffusion equation. The model balances two competing factors, the lateral
migration due to wall repulsion and the shear-induced diffusion due to in-
teraction among the large bubbles. For bidisperse 2D foams, the model
predicts all aspects of the experimental observations, often with quantita-
tive accuracy.

The success of the emulsion model in predicting bubble segregation in a
polydisperse bubble raft is quite remarkable, especially in view of the differ-
ences between the two systems. The prevailing thinking of foam dynamics
is that it is determined by the interfacial morphology on the local scale.
Then the 2D foam studied here can be viewed as a curious exception where
at least one attribute of the dynamics, the migration and segregation of
bubbles based on size, turns out not to be intimately related to the mor-
phology of the smaller bubbles. These small bubbles can be replaced, in a
sense, by an effective continuum while preserving the same segregation of
the large bubbles. There are some caveats to this analogy, however. The
“replacement” of the surrounding bubbles by an effective continuum is so as
to produce the same amount of deformation on the large bubbles. This boils
down to an effective capillary number. One cannot reduce the analogy fur-
ther to something more tangible, say an effective viscosity, which would not
produce the correct migration velocity from the Chan-Leal formula (Eq. 5.2).
Thus, the effective capillary number embodies intricate local dynamics hav-
ing to do with the discreteness of the surrounding bubbles, which exert a
“bumping force” on the large bubbles [55] that cannot be ascribed to an
elevated medium viscosity. Moreover, the analogy may be limited to certain
types of foam. In our experiment, the bubbles are closely packed but not
pressed against one another so as to produce polygonal facets. If we try
to pack more bubbles into the raft, they tend to pile on top of others and
destroy the two-dimensionality. Thus, the smaller bubbles are essentially
undeformed in our experiments. In drier foams that undergo more inten-
sive interaction among bubbles, e.g. through T1 events [79], the continuum
analogy may no longer hold.

To conclude, let us briefly return to prior experiments that motivated our
study. Our findings suggest that in the prior experiment of Herzhaft [28],
where 3D polydisperse foams are sheared between parallel plates, shear-

50



5.5. Conclusion

induced migration probably have occurred to produce marginalization of
smaller bubbles to the plates and a central layer rich in large bubbles. How-
ever, three-dimensionality affects how neighboring bubbles interact with one
another, and our 2D model will need to be upgraded before it can be com-
pared quantitatively to 3D foam experiments. In addition, it is important to
note the experimental and numerical results of Cox and coworkers [15, 24]
that showed no size segregation in 2D foams undergoing cyclic planar ex-
tension and compression. The conditions in their studies differ from ours in
at least three aspects. In extensional flows the bubbles do not follow par-
allel streamlines. Instead, neighboring rows are compressed into one while
being elongated in the orthogonal direction. Thus, the interaction among
bubbles differs markedly from the rubbing and bumping in our shear ex-
periments. Moreover, the cyclic straining introduces repeated encounters
among bubbles, a feature absent from steady shearing. Finally, the maxi-
mum extensional rate in their experiments is only 0.0455 s−1, much below
our threshold value of 4.17 s−1 for approximately the same bubble-size ratio
κ = 2. Their simulation employed the Surface Evolver, and is thus quasi-
static in nature. It appears, therefore, that size segregation in extensional
flows remains an open question that requires further studies, especially at
high strain rates.
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Chapter 6

Effect of non-Newtonian
rheology on bubble
migration in sheared foam

6.1 Introduction

Foams are quintessential soft matter in that they admit both a macroscopic,
continuum-based description and a microscopic, bubble-scale one. On the
one hand, foam rheology is invariably measured on the bulk. In so doing,
one implicitly adopts an effective continuum view, and sometimes explicitly
represent the foam rheology by continuum models [39, 46]. On the other
hand, bulk flow and deformation produces changes of the microstructure, i.e.
bubble-scale morphology. Shearing is known to induce neighbor-swapping
rearrangements known as T1 processes [62, 77]. Additional microstructural
changes include bubble coalescence, breakup, migration and size-based seg-
regation [27, 28, 56, 57]. Since foams can be examined on both levels, and
indeed manifest a clear link between their microstructure and bulk flow be-
havior, they are excellent model systems for studying the coupling between
the microscopic and macroscopic scales.

We are just beginning to understand the interaction between the two
length scales, and many questions remain to be answered. Even the shear
viscosity of a foam is not well understood. In one simple-shear experiment,
Golemanov et al. [27] observed a marked increase of the shear stress in time
after the start of shear, and attributed it to the breakup of the bubbles. In
another experiment, Herzhaft [28] reported a shear stress that gradually de-
clines in time. In addition, foams show shear-thinning, which can be fitted
to the continuum Herschel-Bulkley model [39, 46]. Surprisingly, the bubble
velocity profile under shear differs appreciably from that predicted by the
continuum model [39]. This has been ascribed to a nonlocal effect arising
from the cooperative movement of bubbles within a certain “cooperativity”
length scale. Surface tension is also known to produce normal stress differ-
ences on the macroscopic scale [25, 45]. Thus, the micro-macro connection
is subtle for foams, and their dynamics is influenced by continuum rheology
as well as textural granularity.

We have been investigating another aspect of this connection, through
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the cross-streamline migration of bubbles in sheared “two-dimensional” foam,
which is a bubble raft floating on a soapy solution. The two-dimensionality
affords direct visualization of bubble-scale microstructures that would be
impossible for 3D foams. As we showed in the previous chapter, bubbles
segregate according to size in sheared polydisperse foams, and that the seg-
regation can be understood based on a simple continuum model in which
the smallest bubbles are viewed as an effective Newtonian fluid that sus-
pends the larger bubbles. In this model, combining shear-induced migration
of individual bubbles and an effective diffusion due to collision among large
bubbles can account for the segregation data very well. This adds to the
collection of foam behavior that can be described as continuum. In the
mean time, the discreteness of the bubbles manifests itself as well, in terms
of “quantized” steps of migration and thresholds in shear-rate and bubble
size ratio under which no migration takes place. Note that the above has
been observed in simple shear in a narrow-gap Couette device.

The experiments to be presented in this chapter extends the above study
to nonuniform shear in a wide gap Couette device. This seemingly naive
change of geometry, as it turned out, brings out the non-Newtonian rhe-
ology of the foam to bear on the migration of bubbles. Therefore, this
may be viewed as an interesting example of the bulk rheology affecting the
microstructural evolution of the foam. Bubble migration in foam can be
contrasted with drop migration in non-Newtonian fluids, a subject that has
received long-standing attention [8, 9, 26]. As will be demonstrated, bubble
migration in a non-Newtonian liquid holds the key to understanding the
migration in foam. In fact, the continuum analogy can be maintained if we
view the smaller bubbles as constituting an effective non-Newtonian fluid
that shows shear-thinning and normal stress difference under shear.

In quasi-static state liquid foam shows topological changes known as T1
and T2 events[21, 46, 62]. Furthermore, bubbles in liquid foam may undergo
breakup, coalesce or even segregate according to the size when subject to
high shear rates [27, 28, 56, 57]. In chapter 4 and chapter 5 in narrow gap,
we explored the structural change due to size-based bubble segregation, and
found that the surrounding bubbles can be viewed as an effective Newtonian
continuum in some sense[55, 56].

In this chapter, we show how the continuum idea can be extended to a
situation where the foam must be seen as a non-Newtonian fluid. Therefore,
the main objective of this work is to study the non-Newtonian behavior
of liquid foam and its effect on structural evolution. As will be demon-
strated, bubble migration in a non-Newtonian liquid holds the key to un-
derstanding its migration in foam. Studies on migration of a single droplet
in non-Newtonian fluids show that the migration differs from the Newtonian
fluid [8, 9, 26]. The main objective in this chapter is to understand the mi-
gration in foam through the window of non-Newtonian effects. Therefore,
we make some well characterized viscous and elastic fluids that represent the
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shear-thinning and normal stresses in sheared foam and study the migration
process in them.

6.2 Experimental results

We have performed two series of experiments—bubble migration and rheo-
logical measurements—on three types of mediums: two-dimensional foams,
xanthan gum solutions and a Boger fluid. In the following, we present the
result of each experiment in turn.

6.2.1 Bubble migration in foam

The experimental protocol for recording bubble migration across streamlines
is similar to that used in narrow-gap Couette cells in chapter 3. We make
a monodisperse foam consisting of bubbles of radius r = 0.36 ± 0.02 mm,
which covers the entire wide gap of the Couette device in a more or less
regular hexagonal lattice. The foam quality, defined as the area fraction of
the bubbles, is maintained at 85% for all the experiments to be presented.
We then insert a single large bubble of radius R into the foam at different
initial positions, and shear the foam by rotating the inner cylinder at a
constant angular velocity Ω. The two control parameters are the nominal
shear rate and the bubble size ratio κ = R/r. Shear rate at the inner
wall can be estimated from from the velocity gradient that the first row
of bubble experiences at each rotational speed. Therefore, shear rate γ̇
varies from 1.5 to 8.62 s−1; the upper bound is chosen such that centripetal
force remains negligible in all experiments. Foams in our wide-gap device
may yield partially, and that introduces unnecessary complication to the
discussion of migration. Thus, from here onward, we will only consider
shear rates above that required for full yielding: 3.5 s−1 < γ̇ < 8.62 s−1.
For the large bubble we have tested five sizes: R = 0.5, 0.6, 1, 1.4 and 1.8
mm, corresponding to κ = 1.39, 1.67, 2.79, 3.91 and 5.03.

Similar to what has been reported for the narrow-gap Couette device in
chapter 4, the large bubble migrates across the flow direction if the shear rate
γ̇ and bubble size ratio κ are each above a threshold value. The migration
is driven by a hydrodynamic force that arises from the asymmetric flow and
pressure fields surrounding the deformed bubbles [55, 56]. The thresholds
reflect the discreteness of the foam; the hydrodynamic force has to overcome
the capillary pressure in neighboring bubbles in order to move the large
bubble to the next row. The migration is generally away from the walls, and
the hydrodynamic driving force is greatest at the wall and diminishes toward
the center [8]. Thus, a large bubble may migrate across one or several rows
if released near the wall, but not at all if released further away from the wall.
For simplicity, we will exclude such partial migration from further discussion,
and define the thresholds of γ̇ and κ according to complete migration, i.e.
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migration to an equilibrium position regardless of initial positions. As in the
narrow-gap Couette cell, we find the γ̇ threshold to decrease with increasing
κ, and the κ threshold to decrease with increasing γ̇ [55]. The threshold
values are comparable to those in the narrow gap. In the following we will
concern ourselves only with the dynamics above these thresholds.
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κ = 2.79, γ̇ = 8.62sec−1

κ = 3.91, γ̇ = 5.71sec−1

κ = 3.91, γ̇ = 6.72sec−1

κ = 3.91, γ̇ = 6.72sec−1

Figure 6.1: Migration trajectories of bubbles of two size R = 1 mm (κ = 2.79)
and R = 1.4 mm (κ = 3.91), released from different positions in the foam sheared
at different shear rates. The bubble center is given by s, its distance from the
inner cylinder scaled by the gap width d = Ro − Ri. The curve shows Chan-Leal’s
prediction for the bubble size R = 1.4 mm undergoing shear rate of γ̇ = 5.71 s−1.

Figure 6.1 shows the migration trajectories of bubbles of two sizes (κ =
2.79 and κ = 3.91) at different shear rates. The threshold shear rate is
around 5.71 for the smaller bubble, and around 3.5 for the larger one. For
shear rates above this threshold, the final equilibrium position is reached
from all initial positions. This equilibrium position seems to be independent
of the shear rate and the bubble size ratio, although the speed of migration
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increases with γ̇ and κ. The features described so far are similar to prior
observations in the narrow-gap Couette device [55].

The key difference is that the equilibrium position for large γ̇ is not
at the center of the gap, as is the case in the narrow-gap geometry [55].
Rather it is some distance inward from the center of the gap, closer to the
inner cylinder; in the particular case shown in Fig. 6.1, this position is at
s ≈ 0.36. One naturally seeks a geometrical explanation for the difference.
After all, the wide-gap Couette device should produce a nonuniform shear
rate profile across the gap, with higher local shear rate in the inner half
the gap than the outer half. This asymmetry should bias the equilibrium
position of the migrating bubble. This effect can be quantified with the help
of the Chan-Leal theory for lateral migration of droplets in Couette flows
[8, 9].

Although the Chan-Leal formula was developed for the migration of a
single drop in a continuum suspending fluid, we have demonstrated that it
can accurately describe the migration of a single large bubble in a sea of
monodisperse bubbles if the enhanced bubble deformation is accounted for
through an elevated effective capillary number [55, 56]. Since the Chan-Leal
theory was developed for a Couette device, it accounts for the curvature
in the streamlines and the variation of shear rate across the gap. Thus we
have used the modified Chan-Leal formula, containing the effective capillary
number, to predict the migration of a single bubble corresponding to the
conditions of one of the experimental runs of Fig. 6.1, and the result is
plotted as a solid curve. It predicts only a slight inward shift of the final
equilibrium position, s = 0.47, which cannot account for the much larger
shift observed experimentally. Besides, the migration speed is also over-
predicted by a wide margin. Therefore, the observations in the wide-gap
experiment cannot be accounted for by the geometry alone.

A factor that has not been taken into account in the above comparison
is the non-Newtonian features of the liquid foam. The Chan-Leal formula
used in Fig. 6.1 is for a Newtonian suspending fluid. It has successfully
represented the migration observed in our previous experiments [55, 56],
which implies that the small-bubble foam can be viewed effectively as a
Newtonian suspending fluid. Can it be that the nonuniform shearing in the
wide-gap device brings out non-Newtonian rheology that is not manifest in
the narrow-gap Couette cell? Shear-thinning will accentuate the nonlinear-
ity of the velocity profile, and a large bubble would thus experience unequal
viscosities upon its two sides. Moreover, the first normal stress difference N1

would also exhibit an asymmetry between the two sides. To ascertain these
potential effects on bubble migration in the foam, we need to characterize
the bulk rheology of the foam first. As will become clear in the next sub-
section, this has in turn motivated us to make polymer solutions possessing
shear thinning and elasticity separately, in which bubble migration may be
investigated as benchmarks for gauging the bubble migration in foam.
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Figure 6.2: Shear flow curve of the two-dimensional foam measured in a rheometer
with a bob-cup fixture. Two data sets are plotted along with a best-fitting curve
to the Herschel-Bulkley equation (Eq. 6.4).

6.2.2 Bulk rheology of 2D foam and polymer solutions

Foams are known to have a yield stress, and in the fully yielded state exhibit
shear-thinning and normal stress differences [25, 39, 42, 60]. To probe the
shear-thinning of our 2D foam, we have measured its shear rheology on a
rotational rheometer using the bob-cup fixture. To accommodate a large
number of bubbles, we used a wide-gap setup, with the radius of the inner
cylinder being 22 mm and that of the stationary outer cylinder being 35
mm. The local shear rate at the inner cylinder is obtained from the following
[23, 43]:

γ̇ = 2 Ω
d(lnΩ)
d(lnM)

. If (σo ≤ σy ≤ σi) (6.1)

γ̇ = 2
d(lnΩ)/d(lnM)

1 − R2
i /R2

o

−Ω − M(dΩ/dM)
ln(Ri/Ro)

. If (σo > σy) (6.2)
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Figure 6.3: Shear viscosity of xanthan gum solutions of various concentrations.
The line indicates the foam viscosity.

σo, σi, σy and M being the shear stress at the outer cylinder, shear stress
at the inner cylinder, the yield stress and torque at the inner cylinder re-
spectively. The shear rate can be estimated from the maximum of equa-
tions(6.1, 6.2). According to Estelle et al. [23] the appropriate shear rate is
the one that maximizes the dissipation in flowing material.

Figure 6.2 shows the shear stress as a function of the shear rate for our
2D foam. Following prior experiments on 2D and 3D foams [39, 60], we fit
the data by a Herschel-Bulkley model:

σ = σy + Kγ̇n, (6.3)

with a yield stress σy = 0.32 Pa, consistency K = 0.77 Pa·sn and a power-
law index n = 0.47. Thus, our foam shows similar shear-thinning behavior
to previous experiments [39, 60]. Both 2D and 3D foams are known to
exhibit a first normal stress difference N1 [25, 42, 45, 59]. Labiausse et al.
[45] measured N1 for a 3D foam in the pre-yielding regime. Kraynik et al.
[42] further determined that N1 is on the same order of magnitude as the
shear stress for 3D foam before yielding. In simulations of a random 2D foam
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Figure 6.4: Comparison of the power-law viscosity of xanthan solutions of different
concentrations (symbols) with that of the foam (horizontal lines). (a) The power-
law index n; (b) the consistency factor K.

undergoing simple shear in the yielded regime, Okuzono et al. [59] recorded
N1 values roughly twice as large as the shear stress over a range of shear
rates. For our 2D foam, we have not been able to measure N1 directly. In
view of the limited data in the literature, we have decided to use the results
of Okuzono et al. [59] as a guideline, and assume that for our 2D foam N1 is
on the same order of magnitude as the shear stress, which we have measured
with confidence.
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As shear-thinning and normal stress act simultaneously on bubble mi-
gration in our foam, it is impossible to identify and analyze their individual
contributions. Therefore, we have sought to probe the two effects separately
by using shear-thinning and viscoelastic polymer solutions that represent
each aspect of the foam’s rheology.

Figure 6.5: Shear rheology of the Boger fluid, with open circles for the shear
viscosity and filled diamonds for the first normal stress difference N1. The straight
line is a power-law fitting for N1 with a slope close to 2. The filled squares show
the shear stress of the foam, which is comparable in magnitude to N1 of the Boger
fluid, especially near the upper bound of the shear rate.

Aqueous solution of xanthan gum are known to exhibit shear thinning
but negligible elasticity [1, 3]. We have tested a series of xanthan solutions
and chosen the closest one to the foam rheology. Figure 6.3 shows the shear
viscosity of xanthan solutions of 6 concentrations. For comparison, we have
plotted the viscosity of our foam in the range of shear rates encountered in
the bubble-migration experiments. Furthermore, we fit a power-law to the
xanthan viscosities in the same range, and plot in Fig. 6.4 the consistency
K and the power-law index n for the xanthan solutions together with the
values measured for our foam. The closest one to the foam appears to be the
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solution at a concentration of 2500 ppm. Therefore, we choose this solution
as the representative for the shear-thinning behavior of foam.

Similarly, Fig. 6.5 compares the shear rheology of the Boger fluid with
that of the foam. Within the range of shear rates tested, the Boger fluid
exhibits an essentially constant shear viscosity, and an N1 that scales ap-
proximately with γ̇2. Ideally, we would have liked N1 of the Boger fluid to
match the foam shear stress in the γ̇ range of interest, up to 6 s−1. This
turns out to be difficult to realize experimentally. For one, increasing the
polymer concentration in the Boger fluid brings forth appreciable shear thin-
ning. Thus, we have accepted this Boger fluid as roughly representing the
order of magnitude of the normal-stress in the foam.

6.2.3 Bubble migration in shear-thinning and Boger fluids

We have conducted bubble migration experiments in the shear-thinning xan-
than solution and the Boger fluid, using the same wide-gap Couette device,
bubble sizes and operating conditions as in the foam experiments. Figure 6.6
depicts migration of large bubbles of two sizes in the xanthan solution at
different shear rates and initial positions. Our results show that the same
equilibrium position, s ≈ 0.25, is reached from different initial positions.
This position is roughly midway between the center of the gap and the
inner cylinder, and is much more inward than that in a Newtonian fluid
(s = 0.47 according to the modified Chan-Leal formula; see Fig. 6.1). Be-
sides, the equilibrium position does not depend on the bubble size, nor on
the shear rate. But the speed of migration does increase with the bubble size
and the shear rate. Thus, shear-thinning tends to shift the bubble further
toward the inner cylinder. This conclusion is consistent with the previous
experimental results of Gauthier et al. [26]. In a wide gap Couette device,
Gauthier et al. studied migration of a deformable droplet in a shear-thinning
fluid with power-law index n = 0.71. Droplets of different sizes starting from
different initial positions all end up at an equilibrium position s ≈ 0.4.

Our xanthan solution has stronger shear-thinning (n = 0.43) than their
fluid, and it is reasonable that the bubbles assume a position farther inward
than in their case. Regarding the hydrodynamic origin of the effect, one may
imagine that the bubble experiences reduced viscosity on the side closer to
the inner wall, where the shear rate is higher. This may have biased the
lateral force in favor of inward migration. However, such a naive argument
fails to anticipate the apparent insensitivity of the equilibrium position to
γ̇ and κ. In the next subsection, we will use numerical simulations of drop
migration in shear-thinning fluids to explore these questions.

The opposite trend is observed in the Boger fluid. Figure 6.7 shows
typical migration trajectories of bubbles of three sizes, released at different
initial positions, at two shear rates. In all cases, the bubble migrates to an
equilibrium position close to s = 0.55 in the outer half of the gap. This
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R = 0.6 mm, γ̇ = 8.0 sec−1

R = 1 mm, γ̇ = 8.0 sec−1

R = 1 mm, γ̇ = 3.15 sec−1

R = 1 mm, γ̇ = 8.0 sec−1

R = 0.6 mm, γ̇ = 8.0 sec−1

Figure 6.6: Migration trajectories of bubbles in the xanthan solution starting from
different initial positions. The bubbles are of two sizes R = 0.6 mm and R = 1
mm, and the shear rate is varied from γ̇ = 3.5 s−1 to γ̇ = 8.62 s−1.

suggests that the normal stress N1 tends to force the bubble outward. Fur-
thermore, the equilibrium position shows no dependence on the shear rate γ̇
and little dependence on the bubble size κ, although the migration speed
increases with both.

Chan and Leal [8, 9] have carried out experimental and theoretical stud-
ies of the migration of a single suspended drop in a Boger fluid sheared in
a Couette device. The predictions of the Chan-Leal formula, for the experi-
mental conditions used here, are plotted as solid and dashed lines in Fig. 6.7.
First, the formula correctly predicts the outward shift of the bubble’s equi-
librium position in all cases. Second, for a fixed bubble size, the formula
predicts a final equilibrium position that is independent of the shear rate,
in agreement with our observations. In Fig. 6.7(a), the predicted s ≈ 0.6
differs from our measurement by 8%. This difference in the destination af-
fects the prediction of the migration speed, but it still falls within reasonable
agreement with experimental data. Third, the Chan-Leal formula predicts
the equilibrium position s to shift away from the outer wall as the bubble
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R = 1 mm, γ̇ = 2.64 sec−1

R = 1 mm, γ̇ = 4.77 sec−1
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(b)

R = 0.7 mm, γ̇ = 4.77sec−1

R = 1 mm, γ̇ = 4.77sec−1

R = 1.4 mm, γ̇ = 4.77sec−1

Figure 6.7: Migration trajectories of a single bubble in the Boger fluid. (a) A
bubble of radius R = 1 mm released from two initial positions at two shear rates.
(b) The effect of bubble size at a fixed shear rate (γ̇ = 4.77 s−1). The curves show
the predictions of the Chan-Leal formula.

size R increases relative to the gap d = Ro − Ri. This effect is stronger for
smaller R/d and saturates for larger R/d. In comparison, our experimental
data shows a much weaker effect of bubble size. As R increases from 0.7
mm to 1 mm and then to 1.4 mm, s seems to shift slightly inward toward
the centerline, but the magnitude is much below the roughly 10% change in
s predicted by the Chan-Leal formula.
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6.3 Discussion

In this section we will try to understand the underlying physics behind the
experimental results. To do so, we will strive to answer three important
questions separately: (a)- Why does elasticity (N1) shift the equilibrium
position outward? (b)- Why does shear thinning have an opposite effect?
(c)- What is the effect of combination of these two factors?

6.3.1 Effect of elasticity

We start with the first question: how does elasticity (N1) shift the equilib-
rium position outward? Karnis and Mason [37] suggested that a particle
in a Boger fluid experiences normal forces due to N1 on both of its sides.
In the nonuniform shear of a wide-gap Couette device, the normal force is
larger on the inner side as the shear rate is higher there. This asymmetry
pushes the droplet toward regions of lower shear rates, i.e. toward the outer
wall. Ho and Leal [29] introduced the idea of “hoop thrust” to rationalize
the N1 effect on particle migration. They suggested that the presence of the
particle disturbs the flow field around it and generates “bowed streamlines”
around the particle. The tension along these streamlines thus produce a
hoop stress that tends to drive the particle toward regions of lower shear
rates. Both explanations are similar in essence; the gradient in shear rate
leads to a gradient in normal stress, which then pushes the particle toward
the outer wall.

Another intriguing feature of Fig. 6.7(a) is the independence of the equi-
librium bubble position to the shear rate γ̇. There are two mechanisms
governing migration of a deformable particle in a Boger fluid, the normal
stress as discussed above, and the deformation of the bubble or drop. As
demonstrated by Chan and Leal [8] in Newtonian as well as second-order
fluids, the bubble deformation creates an asymmetry in the flow and stress
fields in the vicinities, which tends to push the bubble away from solid walls.
Thus, this effect is opposite to that of N1 in the outer half of the Couette
device. When the shear rate γ̇ is elevated, N1 increases and so does the
bubble deformation. The Chan-Leal theory shows that these two effects
cancel out such that the final equilibrium position is independent of γ̇. This
has been born out by our experimental data as well (Fig. 6.7a). Our exper-
imental conditions also satisfy the constraints under which the Chan-Leal
asymptotic theory holds. These conditions are Ca � 1, R/d � 1, De � 1
and De << Ca.

The effect of the bubble size R can be considered in a similar way. A
larger bubble will experience larger deformation on the one hand, and a
larger N1-based normal force on the other. Again the two factors tend to
oppose each other. The Chan-Leal calculation shows, however, that they
do not exactly cancel each other. Smaller bubbles tend to favor the N1
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Figure 6.8: Calculated force for Boger fluid and Newtonian fluid vs radius on a
bubble with radius of 1 mm in wide-gap Couette geometry using Chan-Leal formula.

0 0.05 0.1 0.15
0.5

0.6

0.7

0.8

R/d

s e
,D

im
en

si
on

le
ss

E
qu

il
ib

ri
u
m

P
os

it
io

n

 

 

Chan-Leal model
Experiments

Figure 6.9: Dimensionless equilibrium position vs dimensionless radius of the bub-
ble in Boger fluid sheared at γ̇ = 4.77 sec−1. Curve shows the prediction of Chan-
Leal’s model and the data are experimental results.
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effect, and thus attain an equilibrium position closer to the outer wall. With
increasing bubble size, the equilibrium position shifts inward but levels off
for R/d ≈ 0.11 (c.f. Fig. 6.9). The experimental data, covering a modest
range of R/d, do show a clear downward trend, although the slope is not
as steep, and the equilibrium positions are generally farther from the outer
cylinder than the theoretical prediction. The largest discrepancy is for the
smallest drop (R = 0.7 mm). At present we have no explanation.

We can rationalize the migration results of a bubble in Boger fluid by
estimating the lateral force on the bubble during the migration process.
The wall repulsive force can be computed from the Stokes formula using the
migration velocity of the Chan-Leal theory for both Newtonian and Boger
fluids. Fig 6.9 shows calculated force vs dimensionless position in different
fluids. For a Newtonian fluid this force goes to zero at s ≈ 0.48 which indi-
cates the equilibrium position of a migrating bubble and for similar bubble
in Boger fluid equilibrium position shifts toward the outer cylinder s ≈ 0.6.
This confirms our experimental results on migrating bubbles in Boger fluid.

6.3.2 Effect of shear thinning

Shear thinning behavior of foam is an important non-Newtonian feature
that might have affected the migration of bubble under shear. To the best
of our knowledge, there is no theory that can explain the effect of shear
thinning on lateral migration of a deformable object. Therefore, we have
carried out several 2D simulations using finite element method. Simulations
would allow us to analyze the bubble trajectory and force on a bubble in-
side a shear thinning fluid. The shear thinning parameters were chosen to
represent the xanthan gum solution with following parameters: n = 0.43,
K = 1 (Pa.s0.43), 0.025 ≤ R/d ≤ 0.1 and 1.37s−1 ≤ γ̇ ≤ 11s−1 in a Couette
co-axial cylinders geometry with Ri = 2 cm and Ro = 3 cm. The size of
computational domain is different from the one in experiments( Ri = 8.1 cm
and Ri = 9.9 cm ). This is mainly due to the technical difficulties in simu-
lating of very large domains.

Fig.6.10 shows the trajectory of a migrating bubble in shear thinning
fluid obtained by simulations. For a Newtonian fluid Chan-Leal’s theory
gives an equilibrium position of s ≈ 0.49. It indicates that the equilib-
rium position of bubble shifts further towards the inner cylinder when shear
thinning behavior is introduced (s ∼ 0.377 < 0.49). This result is essen-
tially in agreement with our experimental observations for shear thinning
fluid (c.f. Fig.6.6). The predicted equilibrium position is different from the
one in experiments and this is due to the different geometry chosen in sim-
ulations. Moreover, fig. 6.10 shows that the final equilibrium position does
not depend on the shear rate. This is consistent with our experimental ob-
servations reported in figure 6.6 and also prediction of Chan-Leal’s theory.

Furthermore, Fig. 6.11 shows the bubble trajectories for different bubble
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Figure 6.10: Bubble migration trajectories in shear thinning fluid for R/d = 0.05
at different shear rates.

sizes and fixed shear rate. The final equilibrium position clearly moves away
from the inner cylinder when bubble size is increased. On the other hand,
the final equilibrium position for different bubble size tested in experiment
is s = 0.25 ± 0.01. Therefore, we do not see the effect of bubble size in
experiments. Mason et al [26] have also measured the trajectory of droplets
in shear thinning fluid with different size and did not see a considerable
change in equilibrium position. They reported equilibrium position of s ≈
0.43 ± 0.05 for R/d = 0.073 and s ≈ 0.453 for R/d = 0.11. At this moment
we do not have an explanation for the disagreement between experiments
and simulations.

To rationalize the effect of shear-thinning on the final equilibrium po-
sition of the bubble, we consider two lateral forces acting on it. The first
arises from wall repulsion, and is the same as in a Newtonian fluid that
can be estimated from the Chan-Leal formula. The second is due to shear-
thinning. Specifically, we expect the inner side of the bubble to experience
a higher shear rate and thus lower viscosity than the outer side. This radial
asymmetry in the viscosity is probably the direct cause of an inward lateral
force on the bubble, which shifts the bubble closer to the inner wall against
the wall repulsion.
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Figure 6.11: Bubble migration trajectories in shear thinning fluid for γ̇ = 2.74s−1

at different shear rates.

We can estimate the net lateral force on the bubble from the computed
bubble trajectory. To convert the lateral velocity of the bubble to a force,
we borrow the following formula from a cylinder moving in a fluid bounded
by a wall [36]:

Fl =
4πμVmig

[log(g+a
R ) − a

g ]
, (6.4)

where a2 = g2 − R2. R and g are the bubble size and its distance from the
wall. Fig. 6.12 compares this force experienced by a bubble sheared in shear
thinning fluid with the one in Newtonian fluid. It appears that increasing
of the shear rate does not change this force balance. But, increasing of
the bubble size tends to empower the wall repulsive force. Consequently,
the equilibrium position of the bubble shifts further away from the inner
cylinder for larger bubbles.

Now we turn to the foam that has both shear-thinning and elasticity.
We know that elasticity generates a net outward motion of bubble which
opposes the inward motion of the bubble. This force is on the same or-
der of magnitude as the shear thinning force but in the opposite direction.
Therefore, if we combine these two effects, the net outcome is that the final
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dimensionless position on a bubble with in wide-gap Couette geometry. Newtonian
force was evaluated using Chan-Leal formula.

equilibrium position should be in the range of equilibrium positions bounded
by those for the purely shear-thinning and purely elastic fluids.

For migration experiments in foam the final position is between those
expected from the two “rheologically pure” liquids. Although this force
balance is a simplified version of what happens in real case, it is capable of
rationalizing the experimental observations nonetheless.

In our discussion so far, we have tacitly taken the 2D foam of smaller
bubbles as an effective continuum, a non-Newtonian fluid exhibiting shear-
thinning and normal stress difference. The conclusion of the above discussion
is that as far as the bubble migration is concerned, the analogy seems to hold.
This amazing fact is reminiscent of the use of the falling ball rheometer for
measuring the viscosity of a suspension, made of particles comparable in size
with that of the falling ball [4]. Nevertheless, the foam is a heterogeneous
medium and its granularity manifests itself in certain ways. An example of
this is the so-called nonlocal effect. Figure 6.2 shows the bulk shear rheology
of the foam, measured from the torque on the inner cylinder. Alternatively
we can measure the velocity profile of the foam using PIV [57], with typical
profiles shown in Fig. 6.13. In the same figure we have plotted the velocity

69



6.4. Conclusion

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(r−Ri)
(Ro−Ri)

v/
v i

 

 

Newtonian Fluid
γ̇ = 1.5 sec−1

γ̇ = 3.5 sec−1

Figure 6.13: Normalized velocity versus normalized radius. Symbols show the
local measurements by using PIV and curves show the corresponding predictions
using global measurements.

profile computed from the Herschel-Bulkley viscosity of the foam, and there
is a disagreement between the global measurement (of viscosity) and the
local measurement (of the v(r) profile). Katgert et al. [39] rationalized this
discrepancy by a nonlocal effect in flowing foam, with clusters of bubbles
moving cooperatively over a certain correlation length. This serves as a
reminder of the subtle dynamics of sheared foam and of the limitations of
the continuum analogy.

6.4 Conclusion

To conclude, we studied lateral migration of a bubble in sheared two-dimensional
foam in a wide-gap Couette geometry. We reported two thresholds for shear
rate and bubble size ratio. The final equilibrium position of a migrating bub-
ble in wide-gap geometry differs from the narrow gap device. We showed
that for a wide-gap geometry equilibrium positions shifts further towards the
inner cylinder compared to a narrow-gap device. This shift was attributed
to the non-Newtonian rheology of foam. It appears that the viscoelasticity
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of foam alters the migration behavior. We then understood the effect of
shear thinning and elasticity on the migration of a bubble by conducting
experiments on xanthan gum and Boger fluids separately. It is of interest
that we could rationalize the migration results in foam by using the migra-
tion experiments in those aforementioned fluids. Foam also shows non-local
effects in terms of rheology [39]. In this work we used the result of bulk
rheology to justify the migration experiments, how about using local mea-
surements? i.e. Can local measurements of rheology be used to understand
migration in foam? This remains an open question that can be addressed
in future studies.
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Chapter 7

Conclusion and
recommendations

The overarching theme of the research conducted in this thesis is to use the
experiments to explore the structural evolution of two-dimensional foam un-
dergoing flow. This is a necessary and significant step in studying the flow
of foams in microscopic as well as macroscopic level. Up to now, most exper-
iments on foams have focused on the structural changes in static or quasi-
static states, and less attention has been given to the changes in structure
in dynamical processes. There have been a limited number of experiments
which investigated the dynamical change in foam structure. Those exper-
iments are not in line with each other when they are put in one picture.
For example, some experiments show that size based segregation happens
in three dimensional foams in which larger bubbles tend to move away from
the walls, but some other experiments in two-dimensional foams showed
that large bubbles rather to move towards the wall. Therefore, knowledge
in this area is limited and has lacked a firm scientific foundation. A well
designed experiment with a simplified geometry fills a much needed role in
this context.

Developing a new shear device with Couette co-axial cylinder geometry
have allowed us to study the dynamics of two-dimensional foam thorough in
simple shear flow. This device is coupled with three different cameras that
allowed us to visualize the microstructure of the foam as foam undergoes
shear simultaneously. The use of two-dimensional foam is preferred to three-
dimensional foam, since the latter is opaque and its microstructure is difficult
to visualize.

We also used the PIV method to track and compute the velocity profile
of foam across the gap and used this as additional tool to rationalize the
experimental observations. In view of the outcome of the four projects, one
can claim that the experiments have succeeded in identifying and clarifying
the mechanisms underlying structural changes in foam. In addition, we have
uncovered novel physics in sheared two-dimensional foams.

In the following, I will first summarize the key findings, and then reflect
on their significance and limitations.
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7.1 Summary of key findings

7.1.1 Coalescence of bubbles in sheared two-dimensional
monodisperse foam

To thoroughly understand the mechanisms responsible for structural evolu-
tion in three-dimensional foams, we made the problem tractable by simplify-
ing the sample to two-dimensional foam. This allowed us to simply visualize
the foam structure at any point during experiments. We performed experi-
ments in simple shear flow of two-dimensional foam in fairly high shear rates
and observed appearance of large bubbles shortly after the start. Smaller
bubbles have been coalescing to make larger bubbles only if a minimum
threshold is passed. We did not observe breakup of bubbles in this case.
Then, we explored the effect of different parameters including bubble size,
viscosity of liquid and shear rate on the coalescence process. The minimum
threshold for coalescence of bubbles in foam contradicts the conventional
wisdom on coalescence in which coalescence occurs for gentler collisions.
Then, we made an effort to rationalize the experimental observations using
different theories that could possibly explain the results. Though none of
the theories worked quantitatively, the most promising one was the model
based on inertia of fluid. This theory can explain the minimum threshold
for start of coalescence and the dependency of this shear rate to the bubble
size, but overestimate the effect of viscosity.

Perhaps the most important finding of this study is that if we shear
a two-dimensional foam fast enough, we would observe the coalescence of
bubbles and therefore, formation of new large bubbles in foam. This is the
first observation of its kind.

7.1.2 Cross stream-line migration of a single large bubble
in monodisperse foams.

One of the potential mechanisms for structural evolution in foam is cross-
stream line migration of bubbles away from walls during the flow of foam.
This phenomena has been extensively reported in flow of suspensions and
emulsions. For foams, on the other hand, there have been relatively few
studies on structural evolution in the literature, and they tend to contradict
each other. Therefore, it is vital to understand the physics of the problem
to resolve the apparent contradictions.

In this study we used a simple Couette co-axial cylinder and filled it
with monodisperse foam. Then, we introduced a single bubble whose size
was different than its surroundings. We reported cross-streamline migration
for the cases in which bubble size ratio and shear rate were both above some
thresholds. For those cases, bubble migrates from any initial position to
the middle of the gap. Then, we modified a model based on perturbation
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theory to account for the migration in foam. The results of theory and
experiments were in good agreement with each other. In addition to that
we used a force balance between wall repulsion and capillary attraction to
account for the presence of thresholds; again this simple force balance was in
reasonable agreement with experimental observations. This was a key step
towards understanding the mechanisms responsible for structural evolution
in a confined foam flow.

7.1.3 Size-based segregation in sheared two-dimensional
polydisperse foam

Following the study of single-bubble migration, the next step for us was to
introduce more than one large bubble into a monodisperse foam and perform
similar experiments as before in Couette co-axial cylinder geometry. When
we have several large bubbles in a sea of smaller bubbles, they will interact
with each other resulting in an effective diffusion. This diffusion tends to
evenly distribute the large bubbles in the gap while the lateral migration
does the opposite. The competition between these two mechanisms lead to
distribution of large bubbles across the gap, which is peaked at the middle of
the gap. There are also regions close to walls where no large bubble can be
found. Then, we studied the effects of different parameters such as bubble
size ratio, shear rate, area fraction of large bubbles and initial configura-
tion of foam to better understand the process of size-segregation. Here, we
again observed thresholds for migration similar to previous work. Beyond
these thresholds, foam structure evolves to the state where large bubbles
are mainly accumulated in the middle of the gap. Initial configuration of
polydisperse foam does not seem to have any effect on the final equilibrium
state as long as we are above the thresholds. Then, we used a model that ac-
counts for both cross stream-line migration and diffusion due to interaction
of large bubbles with each other. It turned out that model could predict the
experimental observations to a good degree.

7.1.4 Effect of non-Newtonian rheology on bubble
migration in sheared foam.

We have done experiments in a narrow gap Couette co-axial cylinder in
which two-dimensional foam behaved essentially as a Newtonian fluid. There-
fore, the non-Newtonian feature of the foam has not been manifested in
previous experiments. One naturally wonders how does the non-Newtonian
behavior of foam impact the structural evolution? To explore this question,
we widen the gap of Couette co-axial cylinder to introduce a nonuniform
shear rate profile within the gap. Two-dimensional foam in wide gap ex-
hibits non-Newtonian behaviors including the shear thinning, yielding and
elasticity. For simplicity we have focused on experiments in which foam is
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fully yielded in the gap. Therefore, the remaining non-Newtonian features
are shear thinning and elasticity. We made a monodisperse foam and placed
it between two cylinders and then introduced one large bubble inside the
sea of smaller ones. We again report the lateral migration for shear rates
and bubble size ratio above some thresholds, similar to our previous results.
The main difference between wide-gap experimental results and narrow gap
is the final equilibrium position that the bubble attains. For narrow gap
geometry this position is at the middle of the gap, while for the wide-gap
geometry it is at the inner half closer to the inner cylinder. We also modified
the perturbation theory of Chan-Leal to account for trajectory of bubbles.
In this model we included the curvature of stream-lines, shear rate profile
and elevated deformation of bubble. It turned out that model fails to explain
the experiments. Therefore, there has to be another factor that leads to this
deviation. We believe that this is due to the non-Newtonian features of the
foam. To understand the process of migration in a viscoelastic fluid, one has
to study the effect of shear thinning and elasticity separately. For foam this
is impossible. Therefore, we designed some polymer solutions which mimic
the shear thinning behavior and elasticity of foam. In addition to that, we
used theoretical as well as simulation results to explain these two effects
separately. Both experiments and calculations are pointing to the same di-
rection that the shear thinning behavior pushes the bubble further towards
the inner cylinder while the elasticity does the opposite. Therefore, for a
foam which is viscoelastic fluid the final equilibrium position has to be in
the middle of values for shear thinning and elastic fluids. This is consistent
with the results of experiments in foam.

7.2 Significance and limitations

The insights gained from this research are potentially useful in two general
ways. First, the novel phenomena that we have discovered in foam experi-
ments may inspire further, more in-depth research in foam and flow of other
multicomponent fluids. These experiments serve as the first window towards
a better understanding of fundamental dynamics of foam as complex fluids.
Second, This study provides potential guidelines for designing bubble struc-
tures in engineering processing. This understanding in turn would lead to
products with better qualities.

For example, the final properties of some cosmetic products such as
shaving cream is determined by their microstructure. It is shown in this
thesis that the structure of a sheared foam tends to evolve, therefore, the
quality of product would change. Hence, one can tune foam’s properties
by knowing its dynamics through the process of manufacturing. In another
example, foam is used in process of enhanced oil recovery. Its efficiency
can be improved by tuning its structure. To do so, one should identify the
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mechanisms responsible for structural evolution in foam and then try to
tune them based on the requirements in each application.

The limitations of this research can be summarized as follows:

1. Two dimensionality. A real liquid foam has a complex 3D structure,
but the opacity of three dimensional foam has forced us to study the
2D foam. With this simplification we might lose some basics physics
which emanates from three dimensionality of foam. For instance, a
bubble is surrounded by more bubbles in 3D foam than in a 2D one.
This might change its deformation in the same flow field and therefore,
its dynamics.

2. Limited range of bubble size. We could not test a very wide range of
bubble size in the experiments with narrow gap Couette device due
to some limitations. Foam structure has to be stable in the absence
of dynamic flow field. In order to increase the stability of foam we
needed to increase the viscosity of soap solution. This would result in
bubbles with larger size. Moreover, we are bounded to put at least 10
bubbles across the gap of narrow Couette as a rule of thumb to assume
the foam as a continuum fluid. Given the gap size, this gives us an
upper bound for the bubble size.

3. Limited range of shear rate. For the Couette co-axial geometry we are
bound to use a limited range of shear rate due to the presence of some
complicating forces. If the shear rate is too high, centripetal forces
come into play and contaminate the clear picture of lateral migration
or size segregation in foam. The shear rate is also bounded from
below by the need to ensure yielding throughout the entire domain.
This avoids the unnecessary trouble of dealing with an uncertain yield
surface in the experiments. Therefore, we had to make sure that we
were operating within the range that the inertia of the fluid and also
the yielding could not have affected the lateral migration and size
segregation experiments.

4. Different geometry or flow field. Currently, our experimental observa-
tions are limited to Couette co-axial cylinder geometry. What about
some other geometries such as channel flow or simple shear flow in
parallel plate geometry? We can avoid the previous limitation for the
shear rate range by investigating a different geometry.

7.3 Recommendation

We have taken the fist step to identify the main mechanisms responsible for
structural evolution in polydisperse foam. One can carry out experiments
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to further detailed understanding of foam dynamics. In the following, I list
some potential works that can be carried out in future.

1. Size-based segregation in wide-gap Couette co-axial geometry.

Following chapter 5, one can perform experiments on polydisperse
foam and investigate the effect of nonuniform shear rate on size-based
segregation. Then, possibly a model can be developed to describe
the distribution of large bubbles among smaller ones similar to results
reported in ( chapter 5) for narrow gap system.

2. Correlation between Rheology and Size-based segregation in Couette
co-axial geometry.

Another potential future works on polydisperse foam is to study the
rheology of two-dimensional polydisperse foam in conjunction with the
visualization techniques. We have studied the size-based segregation
in polydisperse foam in chapter 5. Now, one can measure the rheolog-
ical properties of two-dimensional polydisperse foam as its structure
evolves. Would there be any correlation between size-based segre-
gation and rheological properties of foam? And if yes, what is the
underlying physics behind this correlation?

3. Complex flow fields and geometries.

There are also other factors that can be investigated. For instance,
what is the effect of different flow fields on the aforementioned obser-
vations in chapter 4 and 5? Since foam processing necessarily involves
complex flow fields that combine shear and elongation, and are spa-
tially heterogeneous, it will be highly valuable to test foam flows in
such complex geometries.

This summary makes it clear that there are myriad new problems that
remain to be investigated in flows of foam. It is our hope that the findings
of this thesis will inspire other researchers to contribute to this area of re-
search, perhaps by bringing new tools and strategies to the as yet unresolved
questions.
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