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Abstract

Conductive composites consist of a conductive filler dispersed within an in-
sulating matrix. These composite materials have been known for many years
and are regularly produced experimentally and commercially for a variety of
applications. Novel techniques are now being found for creating composites
that exhibit conductivity with less conductive filler material than classical
physics suggests is sufficient if the particles are uniformly distributed. Sev-
eral parties have offered physical explanations for the characteristics of their
composites by incorporating a blend of classical and quantum physics but
few attempts have been made to compare explanations or develop any mech-
anism to simulate the physics. The model presented in the present work
incorporates first principles physics and semi-empirical theory to account
for the distribution of particles within a composite and calculate resultant
conductivity using three dimensional network analysis. Results from several
model iterations are presented and they are compared with published ex-
perimental results. The model demonstrates that a random distribution of
spherical particles smaller than 200 nm at 3% loading, given realistic wave
function decay rates and reasonable tunnelling barrier heights, cannot ex-
plain experimentally observed conductivities in these composite materials.
The final model, using a Voronoi tessellation approach, duplicates the be-
haviour trend of the composites being simulated and illustrates some gaps
in the present material science knowledge of conductive composites.
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Preface

Early work on the model presented herein was performed by Liam Russel in
2010. His initial MATLAB embodiment was limited to the particle place-
ment method described in Section 2.1.1 and was limited to simulations in-
volving relatively few particles within relatively small volumes. Nevertheless
his framework established an approach that was substantially continued as
the present model was developed. In cases where the algorithms developed
by Russel did not need logical adjustment (such as the particle connectiv-
ity mapping described in Section 2.2) his code was re-written or adapted
to improve memory usage and computation time at larger scales. The only
component that remained substantially unchanged is used to graphically dis-
play model output. That component proved useful during the work discussed
herein although it was not used to generate any of the figures presented.

Figures 1.7 and 1.9 are used with permission from applicable sources.
Figure 1.6 was generated by me to show a subset of the information presented
in a similar figure published by Kohjiya et al. and he is credited in that
figure’s caption.

A series of material analyses performed by Aaron Linklater cited in Fig-
ure 1.8 and elsewhere are unpublished and were shared through an internal
UBC report.
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Chapter 1

Background

Electrically conductive composites can be created through the dispersion of
conductive filler particles throughout an insulating matrix. Potential filler
particles include carbon allotropes such as carbon black or nanotubes; or-
ganic conductors such as polypyrrole; and metals. Charge flow within these
conductive composites has been attributed to a variety of transport mecha-
nisms. A definitive trend shared by all the composites is that a composite
with very little conductive filler has a conductivity near that of the insulat-
ing material and the conductivity increases toward that of the conductive
filler as the filler is added. The current theory describing the physics that
drive that conductivity change are explored further in the following sections.

1.1 Percolation

In the simplest case, conduction can be said to follow basic percolation
theory whereby particles must touch in order for charge transport to oc-
cur [14, 15]. Net conductivity is then dependent on the total number of
physically connected pathways between test points. At low loading volumes
of conductive particles the mean distance between filler particles is large and
the conductance of the composite is near that of the insulating matrix. As
the volume loading of conductive particles, φ, is increased, the mean dis-
tance between filler particles decreases and they begin to form linkages. As
linkages are sufficiently formed to create a conductive pathway through the
matrix the conductivity of the particles begins to contribute to the conduc-
tivity of the bulk. At a critical loading fraction, φc, there is a sharp increase
in conductivity, σ, as the conductive pathways reach sufficient abundance
as to be common-place [16].

The critical loading fraction in a simple model such as this can be cal-
culated statistically. A random filling routine is used to place particles in
three-dimensional space. The critical loading fraction is taken to be the
mean loading fraction at which 50% of these models exhibit a percolating
cluster [4]. At this critical loading fraction, the material is said to be at
its percolation threshold. At loadings near the critical loading fraction, the

1



1.1. Percolation

conductivity can change drastically (over several order of magnitude) with
small changes in the loading fraction [14, 16]. This simple percolation-style
conductivity model follows a power-law behaviour of the form

σ ∝ (φc − φ)−t, (1.1)

where t is the critical exponent and φ < φc. A continued increase in φ beyond
φc results in a gradual plateau of σ that approaches the bulk conductivity
of the filler particle. This gradual plateau also continues the power-law
behaviour but with some signs reversed.

σ ∝ (φ− φc)
t, (1.2)

where φ > φc. The shape of this generalised relationship is shown in Fig-
ure 1.1. Simple percolation theory predicts a volume loading fraction of
φc = 0.16 and t = 2.0 for spheres packed cubically in 3D space and is
not dependent on the size of the spheres or the size of the volume being
considered [14, 17].
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Figure 1.1: Figure 1.1A is an illustration showing the basic power law
relationship described by combining equation (1.1) (solid line) and equa-
tion (1.2) (dashed line). In this illustration φc = 0.16 and t = 2.0 are used
and σ is scaled for visual clarity. Figure 1.1B does not differentiate between
equation (1.1) and equation (1.2) but shows the effect of scaling t. For the
dotted line t = 1.5, for solid line t = 2, and for the dashed line t = 2.5.

When experimental data is reviewed the simple percolation theory is
quickly shown to be insufficient. Empirical analysis gives a critical expo-
nent in the range of t = 1.3 to t = 20 [18–22]. There are conflicting views on

2



1.2. Tunnelling conduction

which physical properties influence which variables. Balberg, working with
carbon black in polyethylene, claims φc and t are systematically related to
the structure of the carbon black under test, as well as the moulding con-
ditions [17]. Lower structure (more spherical) results in higher t values. As
structure becomes higher (less spherical), t approaches a value of 2.0. This
is attributed to the particle contact requirement of the simple percolation
theory [17]. Others [14, 16] claim φc of the composite depends on the shape
of the particles and the homogeneity of the dispersion while the critical ex-
ponent t depends on the material combination. Low values of φc have also
been attributed to the formation of long conductive filaments and other in-
homogeneities in the filler distribution [18]. Some [16, 23, 24] have made the
specific claim that t values are not at all correlated to particle shape or φc.

Clearly there is a lack of consensus as one moves from the purely theo-
retical model involving perfect spheres in stochastically predictable arrange-
ments to laboratory devices involving irregular shapes, sizes, and distribu-
tions. Much of this discord is rooted in the range of conduction influencers
in situations where the particles seem unlikely to always be in contact. In
these cases we turn to quantum tunnelling for additional insight.

1.2 Tunnelling conduction

1.2.1 Sphere to sphere tunnelling

When the dispersed particles are very small or have high aspect ratios, signif-
icant conduction is observed at volume loadings lower than the percolation
threshold predicted by basic percolation theory. This is often attributed to
a quantum tunnelling conduction mechanism whereby particles need not be
in physical contact for charge transport to occur. The amount of charge
transported between conductors that are not in contact falls off exponen-
tially as the distance, δ, between them increases and is typically considered
negligible between conductors more than δ = 10 nm apart [16]. Despite
this general consensus, there are published findings of tunnelling conduction
occurring over gaps as large as 2.5 µm [25].

The amount of charge transported is also heavily dependent on the height
of the potential barrier that occurs at the insulator-conductor junction. The
potential barrier height, ϕ, between adjacent particles in composites com-
prised of a metallic conductor and a polymeric insulator is typically in the
range 0.05 eV > ϕ > 1 eV [1].

3



1.2. Tunnelling conduction

The resistance, Rδ, between two sites is often given as

Rδ =
16π2

~δ

3Aγq2e
eγδ , (1.3)

where

γ =
2

~

√

2meϕ, (1.4)

~ is the reduced Planck constant, A is the effective cross-sectional area where
tunnelling occurs (between spherical particles), and qe andme are the charge
and mass of an electron respectively [2, 26]. In these analyses δ is gener-
alised as the typical distance between particles in a large system with many
parallel branches. A plot of equation 1.3 is shown in Figure 1.2. It is ap-
parent that for the ϕ values being considered particles must be very close
in order to register a meaningful conductance between them. Although the
development of this equation describes A as the effective cross-sectional area
where tunnelling occurs between spherical particles, a rigorous definition of
“effective cross-sectional area” is not provided. The tunnelling conductance
between spheres is going to be different than the tunnelling conductance be-
tween parallel plates of the same surface area (or projection area). A 1963
analysis of inter-particle conduction [27–30] that leads to equation (1.3) is
typically at the root of modern analyses of this topic in the literature. The
equation is of the same form as seen in analyses of scanning tunnelling mi-
croscopy although in those analyses a parallel plate assumption is typically
either explicit or implied, even when tunnelling is occurring from a mono-
atomic needle tip. Point-to-point tunnelling approximations result in a ne-
glecting of the terms δ

Aγ
(as is done later in equation (3.3)) [31–33]. These

discrepancies in geometry assumptions nevertheless remain unresolved.
γ is defined from first principles as a description of wave function decay

within the tunnelling barrier. The tunnelling barrier is dependent on the
effective local work function [33]. An intuitive way to consider γ−1 is to
treat it as a number representative of the distance over which tunnelling
occurs (equivalent to exploring the case where δγ = 1). The location of γ in
the exponential (1.3) gives it the units m−1 in agreement with the descrip-
tion in (1.4). Figure 1.3 shows the relationship described by equation (1.4)
but inverts γ to better serve its consideration as an indicator of tunnelling
distance.

As can be extracted from the line in Figure 1.3, the typical boundary
values for ϕ stated earlier, 0.05 eV and 1 eV, give values for γ−1 of 0.437 nm
and 0.0976 nm respectively. Despite the agreement of units, the values
obtained seem too small to be a literal representation of typical tunnelling

4



1.2. Tunnelling conduction

1 2 3 4 5 6
10

−20

10
−15

10
−10

10
−5

10
0

δ (nm)

1
/
R

δ
(S

)

 

 

ϕ = 0.05 ev

ϕ = 0.14 ev

ϕ = 0.37 ev

ϕ = 1.00 ev

Figure 1.2: Equation 1.3 is represented by
1

Rδ
as a function of δ with lines

shown for four different values of ϕ. In this example A = π(10 nm)2.

5
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Figure 1.3: Comparison of potential barrier height and the constant γ ac-
cording to equation (1.4). Recall that potential barriers in conductive com-
posites are typically in the range 0.05 eV > ϕ > 1 eV [1]. The boundaries
of that range are illustrated with dotted lines for reference.
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1.2. Tunnelling conduction

distances. For reference, scanning tunnelling microscopy typically operates
over a distance of 0.7 nm to 0.3 nm, equivalent in this analysis to a barrier
height range of 0.02 eV to 0.1 eV [33, 34]. There is only a small amount
of overlap in those ranges suggesting a direct comparison between γ and
tunnelling distance may not be always fair. Nevertheless, this definition
does offer a starting point for a model that requires a value for γ when
mapping connections between particles.

Numerical values for ϕ and δ are not typically available for a prepared
sample of conductive composite. In some cases they are treated as constants
useful for fitting a trend line to experimental results. This approach is used
by Wang et al. [2] in a composite of polydimethylsiloxane and carbon black
where a unitless combined value of γδ = 1.786 is used to fit a trend line.
Combining (1.4) with this definition gives the equality

γδ =
2

~

√

2meϕδ = 1.786. (1.5)

Solving for distance as a function of barrier height we find

δ(ϕ) =
1.786~

2
√
2meϕ

≈
0.1743
√
ϕ

, (1.6)

for δ in nm and ϕ in eV. Presumably the barrier height is relatively fixed
within any single device but this relationship gives a range of possible values
within which Wang claims his device operates.

An alternative way to experimentally determine values for ϕ and δ is by
measuring the frequency response of a tunnelling device. Treating the device
as a simple Resistor-Capacitor circuit, the dominant resonant frequency can
be used to extract a mathematical description of the typical distance between
the particles that are transporting charge. Resistance of the circuit is taken
to be the one described in equation (1.3). The capacitance between any two
particles, Cδ, is described by

Cδ = ǫǫ0
A

δ
, (1.7)

where ǫ0 is the permittivity of free space and ǫ is the relative permittivity of
the insulator. A capacitance equation of this form describes the capability
of parallel plates to store charge. In the present examination the equation is
assumed to approximately hold for semi-spherical plates in order to consider
previous work in this field [3]. Capacitance and resistance can be combined
to describe the resonant frequency,
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1.2. Tunnelling conduction

f0 =
1

2πRδCδ
, (1.8)

of the device in Hz. Substitute (1.3) and (1.7) into (1.8).

f0 =
3γq2e

32π3~ǫǫ0
e−γδ, (1.9)

where γ is defined by (1.4). Solve for δ as a function of γ.

δ =

ln

(

3γq2e
32π3f0~ǫǫ0

)

γ
. (1.10)

This analysis method is used by Meier et al. [3] to consider a composite
of polystyrenebutadiene and carbon black and results in the relationship

δ(ϕ) ≈
lnϕ+ 43.5

20.5
√
ϕ

, (1.11)

for δ in nm and ϕ in eV.
Whereas [2] fixed the relationship γδ = 1.786 in equation (1.6), γδ ef-

fectively ranges from 19.46 to 21.8 in equation (1.11) using data from [3].
In Figure 1.4 equation (1.11) is compared to equation (1.6) to gain further
perspective on the barrier height vs tunnelling gap relationship extracted
from the work of [2] and [3].

The results from [3] suggest typical distances between particles that are
substantially further apart than the results from [2]. These extremes of
the data in Figure 1.4 are summarised in Table 1.1. The δ ranges differ
by a factor of 10. This serves to further illustrate the disagreement among
researchers regarding typical properties of conductive composites.

ϕ (eV) 1 0.01 Data source

δ (nm) 0.17 1.7 Wang et al. (2010) [2]

δ (nm) 2.1 19.0 Meier et al. (2007) [3]

Table 1.1: Comparison of values for ϕ and δ.

In both sets of results, there must be very small potential barriers (ϕ <

0.01 eV) for devices where particles are typically more than 20 nm apart.
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Figure 1.4: Comparison of potential barrier height (ϕ) and the inter-particle
gap over which tunnelling must typically occur (δ) using the modelling ap-
proach from Wang et al. [2] and Meier et al. [3].
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1.2. Tunnelling conduction

1.2.2 Hard/soft shell approach

In the case of small particles [15] or generally spherical particles with high
aspect ratio tendrils [35], it can be instructive to consider the particles as
hard solid spheres that have a soft outer shell. The hard solid cores behave as
in the typical percolation model. They are incompressible and have a fixed
ability to conduct when in contact with another particle. The soft outer shell
defines an effective radius of interaction. If two particles under consideration
have overlapping soft shells, they are considered capable of transporting
charge. In a simplified model, this conduction can be considered to behave
in an on/off fashion where only spheres with an overlapping soft shell need be
considered. In this case the critical distance, δc, is the largest distance (core
surface to core surface) that must be considered in order for a conducting
cluster to span the sample 50% of the time [36].

Ambrosetti et al. [16] use this model at length and offer the resistance
equation

Rδ = R0e
2δc
ξ , (1.12)

whereR0 is a constant and ξ is a characteristic tunnelling length. Comparing
equations (1.3) and (1.12) another relationship is apparent.

ξ =
2

γ
, (1.13)

or, substituting (1.4),

ξ(ϕ) =
~√

2meϕ
. (1.14)

This gives two opportunities to interpret physical meaning when γ, ϕ, or
ξ is used as a fitting constant during the analysis of experimental data.
A value for any of them suggests both a characteristic tunnelling length
and a characteristic potential barrier height. Using (1.14) with the previ-
ous employed reference barrier heights yields ξ(0.05 eV) ≈ 0.873 nm and
ξ(1 eV) ≈ 0.1952 nm. The expression (1.13) results in exactly twice the val-
ues shown in Figure 1.3 and implies the relationship δγ = 2. As before the
reference barrier heights are not in agreement with expected inter-particle
distances.

The work done by Heyes et al. employs a series of Monte Carlo and
molecular dynamics simulations to produce a set of equations that describe
percolation events when randomly packing spheres using the soft shell and
solid core approach to modelling [4]. Ultimately this results in a high order
equation for critical distance with extremely good fit over the range 0.25 ×
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1.2. Tunnelling conduction

10−7 < φ < 0.62 and normalised to particle solid core diameter (expressed
here as 2r). The critical distance is defined as

δc

2r
= 1 +

1

f(φ)
, (1.15)

and illustrated in Figure 1.5 using

f(φ) = (a0φ)
1

3 + (a0φ)
2

3 + (a0φ) +
4

3
(a0φ)

4

3 +
5

3
(a0φ)

5

3

+2 (a0φ)
2 + a1φ

3 + a2φ
4 + a3φ

6,

(1.16)

where a0 = 2.8902, a1 = 129.644, a2 = −98.334, and a3 = 1302.40 [4].
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Figure 1.5: The normalised critical distance, δc
2r
, is shown with respect to

volume loading fraction of solid core spheres. The relationship is described
explicitly by equations (1.15) and (1.16) taken from [4].

The random packing approach to the development of this model is in-
structive as the numerical outcomes reinforce the notion that random pack-
ing is unlikely to be taking place during the mixing and curing of conduc-
tive particles in an insulating polymer matrix. Solving equation (1.15) for
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1.3. Particle agglomeration and filament formation

φ = 0.05 and r = 25 nm yields a critical distance of about 90 nm or, us-
ing equations (1.12) and (1.14), the tunnelling barrier is on the order of
20 µeV. If the typical radius is increased to 65 nm, the critical distance and
tunnelling barrier change to about 240 nm and 4 µeV respectively. It is
not typically reasonable to expect tunnelling to occur over distances that
large nevertheless composites prepared at those loadings and particle sizes
have been shown to exhibit conductivity [8, 37]. An apparent conclusion is
that this simple model makes assumptions that are either not valid or fail
to account for something in those experiments. The model requires further
refinement.

1.3 Particle agglomeration and filament
formation

An analysis of carbon black in poly(methyl methacrylate) has revealed that
the particles formed wire-like structures with wire diameters as small as
24 to 31 nm and edge lengths over 1 µm [38]. This work reveals a distinctly
Voronoi-like structure. Samples were prepared using carbon black with a
mean diameter of 21 nm. Final preparation employed a press sinter method
that squeezes the sample during curing. The cured material is then thinly
sliced and imaged. A figure of merit in this work is the ratio of filler particle
size to wire diameter. This suggests it is reasonable for wire-like filaments
to form that may be only slightly thicker than the mean diameter of their
constituent particles [38]. Scanning electron microscopy of carbon black with
a mode diameter near 50 nm in polyethylene and polypropylene is in general
agreement, showing filaments and Voronoi cell-like structures with cell edges
on the order of several µm long and filaments with variable diameters from
less than 0.2 µm to greater than 1 µm [39].

1.4 Carbon black as a conductive filler

Carbon black is most commonly manufactured by combustion of heavy oils.
The carbon precipitates out as small particles. The small particles fuse to
form aggregates. Large aggregates tend to have more structure (be less
spherical) with a substantial number of branches. The high surface area
promotes conduction and promotes situations where aggregates, influenced
by Van der Waals forces, cluster together into larger groups called agglom-
erates [8]. Carbon black can also begin as carbon pellets that are sheared
and crushed to form smaller particles. During the shearing and crushing
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1.4. Carbon black as a conductive filler

process carbon black again aggregates and agglomerates because of interac-
tions between particle surfaces [40, 41]. In both cases, this aggregated state
typically results during the manufacturing process. Aggregates in mixture
with a rubbery matrix tend to further coalesce to form larger agglomer-
ates. During mixing it is believed that agglomerates often break apart and
re-form but aggregates remain substantially unchanged [5]. A scattering
profile study of carbon black before and after combination with polymers
shows that the smallest size of carbon black agglomerates grows during the
mixing and curing process suggesting that the carbon black has bonded into
filaments bounded by polymer chains [42]. The size and shapes of the new
carbon black units depends on the polymer, the mixing conditions, and the
curing conditions [5, 8, 42–46].

It is common to describe the behaviour of carbon black conductive com-
posites using a percolation model, a tunnelling model, or a combination of
the two. The two models are limited in their compatibility and still fail
to explain the myriad differences in experimental results. The most sub-
stantive incompatibilities stem from the requirement that in a tunnelling
model particles must be within a few nanometres of each other yet must
not touch while they must form a geometric continuum for percolation to
occur. While there is consensus that the conductivity of a particular carbon
black-polymer composite will vary as the volume loading of carbon black,
it has also been noted that changing the type, and therefore the carbon
black particle structure and size, may also yield very different conductivity
despite a constant volume loading. Those same geometric differences also
affect tunnelling performance as high aspect ratio geometries can lead to
large electric fields that distort the tunnelling barrier potential profile and
result in augmented quantum tunnelling. Work done by Verhelst reveals this
variation in the extreme. Five different carbon blacks (with mean diameters
of 30 nm, 10 nm, 29 nm, 42 nm, and 29 nm) are mixed with polystyrene-
butadiene. The test samples exhibit very different percolation curves and
require different volume loadings (10.4%, 19.1%, 28.7%, 43.3%, and 53.1%
respectively) to achieve the same resistivity (about 7.4 kΩm) [46]. In gen-
eral qualitative terms this means that particle structure and size must be
captured in any analytical model either directly or, more often, indirectly
within fitting constants such as a unique percolation threshold, percolation
critical exponent, and potential barrier height for each combination of a type
of carbon black, a polymer, and possibly also each set of mixing conditions.

There is agreement among scientists that, for a fixed volume loading,
the presence of smaller agglomerates enables a more favourable distribution
of particles with smaller inter-particle distances [1, 8, 45]. This increases
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1.4. Carbon black as a conductive filler

the likelihood of charge transfer through the insulating barriers between
particles.

Absolute minimal inter-particle distances are suggested by some of the
chemical properties of carbon. The length of a carbon to carbon bond
is 0.14 nm and the inter-planar spacing of graphene sheets in graphite is
0.34 nm [47]. It has been shown that as loading increases, the distance
between particle cluster centres decreases but the distance between particle
cluster edges approaches a threshold value near 3 nm [5]. This result is
shown in Figure 1.6 [5]. An implication of this and the acknowledgement
that agglomerates both break apart and form during the mixing process is
that aggregates closer than 3 nm tend to fuse into agglomerates and that
freshly broken agglomerates tend to separate by at about 3 nm.
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Figure 1.6: Typical distance between nearest-neighbour carbon black ag-
glomerates in natural rubber as a function of volume loading fraction.
Adapted from [5].

One of the most popular forms of carbon black used for creating con-
ductive composites is Vulcan XC72 made by Cabot Inc [48]. A scanning
electron microscope micrograph of Vulcan XC72 is shown in Figure 1.7.
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1.4. Carbon black as a conductive filler

Figure 1.7: Scanning electron microscope micrograph of Vulcan XC72.
Reprinted from [6] with permission from Elsevier.
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1.4. Carbon black as a conductive filler

Figure 1.8 contains data points from experimental works done across a
range of loadings of two different carbon blacks in four different polymers.
These results will serve as a reference for results produced during simulation.
The second carbon black, Black Pearls 2000, is also produced by Cabot Inc.

Size profiles of Vulcan XC72 done by the author, a colleague [9], and
others suggests a log-normal distribution of particle diameters [37, 46, 49,
50]. Spectroscopy measurements and scanning electron microscope mea-
surements of particles tend to differ in conclusion regarding the most abun-
dant unit size. Spectroscopy measurements tend to give a diameter rang-
ing from 100 nm (in water with a surfactant) [9] to 400 nm (in oil) [50]
whereas scanning electron microscope analysis of pure carbon black sug-
gests a diameter range from 30 nm to 125 nm with a mode diameter near
55 nm [11, 37, 46, 49]. A spectroscopic analysis of the material shown in
Figure 1.7 (and published with that image) suggests a mode diameter in
excess of 300 nm in clear contradiction with the image in Figure 1.7 [6]. Liu
et al. examined transmission electron microscope images of carbon black
that had been applied in suspension to a substrate and then allowed to dry.
The resultant size profile is shown in Figure 1.9. This supports the notion
that particles in suspension are forming agglomerates much larger than the
size of any single particle or aggregate [13].

Despite this potential confusion there is consensus in the assertion that
the particles have a high degree of structure and are prone to aggregation and
agglomeration so it may be reasonable to attribute some of this difference
in size measurement results to agglomeration within the dispersal medium
used for spectroscopy. Studies of Vulcan XC72 cluster size done after mixing
and curing support claims that within a rubbery matrix aggregates on the
order of 100 nm to 150 nm are typical and they readily join to form larger
agglomerates [5, 39].

For the purpose of modelling, Vulcan XC72 at a loading of 3% by volume
is used as a starting reference as it is a volume loading that shows measur-
able conductivity in published works and the particle size distributions for
Vulcan XC72 are reasonably well described. A typical diameter near 125
nm is assumed for small aggregates: some aggregation is assumed to have
taken place with the expectation that the algorithms used to model particle
arrangement will capture agglomeration phenomenon.
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Figure 1.8: Conductivity across a range of loadings of two different carbon
blacks in four different polymers. Taken from works published or shared by
Niu et al. [7], Rwei et al. [8], Linklater [9], Li [10], Huang [11], and Huang
et al. [12].
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Figure 1.9: Size distribution of Vulcan XC72. Data represents about
660 particles in about 200 images. Figure created by [13]. Reprinted by
permission of The Electrochemical Society.

1.5 Summary

Prior work has shown that a combination of percolation and quantum tun-
nelling effects must be considered in order to successfully model the internal
behaviour of conductive composites. While the physics of individual com-
ponents seem reasonably well understood in isolation there remains some
ambiguity with respect to the combined effects as well as their interaction
effects. Carbon black has been demonstrated as a useful conductive filler,
but characterisations of the filler are inconsistent.

In general, a successful model must allow for variability in particle size,
incorporate agglomeration effects and filament formation, and account for
conduction due to both contact and tunnelling. The following sections out-
line the modelling approach used and review the mathematics and physics
that drive the model. Modelling results are then presented and discussed.
Finally some thoughts are presented for future work that could serve to
move this model forward or otherwise improve the work described herein.
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Chapter 2

Experimental methods

Modelling experiments were conducted using software written in MATLAB
and executed on a dedicated high performance computing cluster. The clus-
ter consists of 20 Dell PowerEdge 1950 servers each with a pair of 2.66 GHz
quad core Xeon processors and between 8 and 32 GB of RAM.

In order to approximate the random nature of physical mixing and varia-
tion in particle size, several randomization algorithms were created with pa-
rameters tuned semi-empirically. A pass in the simulator typically involved
six steps: load or generate all needed model parameters and establish model
boundaries, place particles and electrodes according to a set of predefined
rules, create a map describing the connections to and from all particles
within one radius of interaction of each other, calculate the inter-particle
conductivity for each connection, calculate the bulk equivalent conductivity
of the model, and finally store or present the results in data files or figures.
This is diagrammed in Figure 2.1.

The first and final steps are reasonably simple and computationally triv-
ial. Particle placement methods are described in Section 2.1. Connections
between particles are mapped by examining the space one radius of inter-
action from the surface of each particle. Using the language introduced in
Section 1.2.2, it is a check to see if the soft shell of one particle reaches out
as far as the hard shell of any other particles. The computation of inter-
particle conductivity is relatively simple though the underlying physics of
the calculation warrants analysis. This analysis is done in Section 3. The
bulk conductivity calculation treats the system as a large resistor array and
solves the system using nodal analysis. Computing the solution involves
the inversion of a large matrix. If the resistor network does not complete a
path from end-to-end or has only a weak end-to-end connection a conduc-
tivity of or near zero would be expected. This situation creates a singularity
whose computation produces numerical values that are very small and may
be positive or negative. Negative results are easy to identify as being errant
but small positive values may be the result of either no connection or a
very weak connection. The lower numerical limit of reliable simulation data
presented herein is somewhere between 10−8 and 10−9 S/m. Alternately
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Figure 2.1: Processing the present model involves six steps that are described
in the text.
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2.1. Particle placement

put, an estimated numerical error of ±10−8 S/m should be applied to all
computational results presented herein.

2.1 Particle placement

Particles are placed in a semi-random fashion throughout a specified vol-
ume. Several different distribution algorithms were explored. Several of the
methods are described below. All the methods approximate particle shape
as a sphere of fixed radius. In some cases the spheres are of uniform size
and in others cases there is a distribution of sizes.

2.1.1 Method 1: random placement of uniform particles

This is the most basic placement algorithm and is the foundation upon which
the others are built. The number of particles needed, n, is calculated as

n =
V φ
4

3
πr3

, (2.1)

where r is the particle radius and V is the total volume being simulated.
Particles are seeded by randomly assigning particle centre coordinates. A
validity check then occurs to ensure a newly placed particle does not intersect
an existing particle. Intersecting particles are deemed to be invalidly placed
and are then removed. The process loops until all particles have been placed.

2.1.2 Method 2: clustering

Particles are generated as in placement Method 1 but the validity check has
an extra component. In addition to avoiding intersections particles must,
with a user defined probability, be within a user defined distance of any ex-
isting particle. This allows the user to approximate empirical observations
of particle agglomeration [44] and tendency to form filaments [51]. In each
successive modelling pass the algorithm is repeated for any particles that
failed intersection related validity checks. This can result in slightly more
randomly placed particles than defined by the user but allows a model whose
other parameters are overly constrained to run to completion with the user
then being informed of any resultant deviations from input parameters. A
weakness of this approach is that computation time quickly becomes pro-
hibitively long for small particles in large systems. This weakness was one
of the motivations to explore other approaches that could produce similar
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or better results. Further insight into this modelling methodology as well as
some of the results it produced are presented in Section 4.4.

2.1.3 Method 3: volume exclusion method

Before seeding particles, spherical exclusion zones are created based on a
user defined exclusion fraction and exclusion size. These two tunable pa-
rameters allow the user to approximate an empirical phenomenon whereby
particles tend to create shell-like structures around areas that contain few
or no particles [39]. This is generally attributed to surface effects [52, 53].

This methodology has been used by others to model the formation of
carbon black filaments in rubbers [54]. The model created by Jean et al.

was formulated and tested using imaged slices of composite material where
the particles have a mean radius of 20 nm and the slices have a thickness
of 40 nm (± 10 nm). During the extensive analysis of particle aggregation
and agglomeration, conclusions are drawn regarding the structure of the
particle distribution. It is noted that a Voronoi tessellation is well suited
to this type of modelling although a volume exclusion methodology is then
pursued to approximate the structure. The authors show that while the
carbon black particles are spherical and take on a log-normal distribution of
sizes, they form aggregates that can be considered spheroids and are about
ten times as large as their constituent particles. The authors use these
spheroidal approximations of aggregates to create a suitable set of spherical
exclusion zones within which no particles may exist. Spherical particles are
then randomly placed within all space except that defined by the exclusion
zones. Parameters such as the size and density of these zones are tuned by
an automated process that compares slices of the resultant 3D space with
images of the material slices until the particle and aggregate shapes and
densities match to within a pre-set confidence interval [54]. Despite this
effort, the presented model still fails in two notable ways. It does not offer
meaningful insight into the volume resistivity of composites modelled and
the model does not survive scaling (it percolates less as the model scales
up). The former may be an oversight on the part of the authors as they do
present resistivity data for their reference material but the latter is clearly
an area for improvement as the usefulness of their model is surely tied to its
ability to predict the behaviour of increasingly larger volumes of material.

Within the present work a volume exclusion modelling method was im-
plemented as per the following. Uniform particles were generated as in
placement Method 1, however, particles were allowed to fall within an ex-
cluded zone with a user defined probability. The probability of being allowed
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within an exclusion zone or not was included as a user tunable variable in
order to more closely approximate empirical results. This does not affect vol-
ume loading fractions but increases the likelihood of particles being nearer
to one another. A two dimensional representation of this approach is shown
in Figure 2.2. This method yielded results in some cases that were similar
to the shell and filament effects described in published works [5, 39, 44, 51–
53], however the computation time for the simulations became prohibitively
long.
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Figure 2.2: A two dimensional arbitrary unit representation of the volume
exclusion method described in Section 2.1.3. Exclusion zones are shown as
circles with a dashed line (radius = 0.05). Particles are shown as a circle with
a solid line (radius = 0.01). In this example, exclusions zones are permitted
to overlap, particles are not, and no particles may be in an exclusion zone.

2.1.4 Method 4: Voronoi wire frame method

The wire frame method seeks to improve on the filamentation results of
placement Method 3 while simultaneously reducing the computation time
involved in creating and analysing the model. Rather than creating exclusion
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zones as a sphere using a centre point and radius, which must then be
compared to every particle placed to check for intersection, exclusion zones
are only defined as a point. The array of exclusion points is used to generate
a three dimensional Voronoi structure wire-frame in the modelling space
where the particles are placed on the “wires”.

A Voronoi diagram divides space using boundaries drawn between seed
points such that only one seed point is enclosed within each region. All space
within each region is closer to its own enclosed seed point than it is to any
other seed point. In two dimensions this is relatively easy to visualize and is
shown in Figure 2.3. This style of geometry is consistent with observations
of natural phenomenon such as polycrystalline micro-structures in metallic
alloys [55–57]. It is also used in a variety of mapping applications [57, 58].

In three dimensional space the principle is the same but the product is
visually more complex. Rather than a map of convex polygons that enclose
seed points in a two dimensional plane, the map is instead divided into
convex polyhedra that enclose seed points in three dimensional space [57].
To aid in visualization an example 3D Voronoi structure is presented in
Figure 2.4 as a stereographic image set.
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Figure 2.3: A 2D Voronoi structure with cell edges shown as lines and dots
at each seed point.

Analyses of composite materials have shown Voronoi-like structures of
carbon black throughout [5, 38, 51, 54]. Work by Jean et al. using carbon
black in natural rubber revealed a characteristic Voronoi edge length of
96 nm to 128 nm, 5 - 6 times the size of the constituent particles (whose
mean radius is given as 20 nm) [54]. Work by Levine et al. using carbon
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Figure 2.4: Stereographic example of a 3D Voronoi structure with cell edges
shown as lines and dots at each vertex. Seed points are shown as a star.
Hold image about 50 cm away and allow eyes to cross slightly. When three
images appear, observe the central one.

black in poly(methyl methacrylate) measured unbroken wire segments up
to 100 µm long and mean wire thickness less than ten times the size of the
constituent particles (whose mean radius is given as 21 nm) [38]. These
numbers serve as references when adjusting model parameters.

In the present model, seed points are randomly assigned. The volume
and perimeter of each Voronoi cell is calculated. During particle placement,
each particle is randomly assigned to either be placed anywhere in the model
volume, or be placed within a user defined range of one of the Voronoi cell
segments. Assignment to a particular segment is weighted to ensure all
segment sections have equal probability of being selected for a particle, in
other words, an equal probability per unit length. Finally, particles are
checked for intersection.

2.1.5 Method 5: distributed radii

Particles were sized according to a log-normal distribution centred about
published mode particle size values as described in the literature [6, 50, 54].
The mode size of the particles is preferred to the mean as the mode size
identifies the most commonly occurring (or the typical) particle size but the
two values differ for a log-normal distribution. During discussions of input
parameters and output results a combination of mode and mean must how-
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2.1. Particle placement

ever be used. This is because while “mode” is more useful when defining
the type of distribution the randomization algorithm is to produce, it is not
possible to directly calculate the mode of a discrete number of points each
of which is drawn from a continuous distribution. In cases where a pub-
lished size range was used as a reference the range values were treated as
the 95% confidence intervals for the log-normal distribution. This combined
mode and variance were set at execution time but they were permitted to
drift. The drift would occur as a result of particles being rejected due to
intersection. During each subsequent placement pass, new particles were
generated using the same probability distribution function. Because there
was a greater likelihood of larger particles experiencing intersections, the
likelihood of having an abundance of smaller particles increased with each
pass. Placement passes continued until the total required volume of parti-
cles was reached. An example of the output from this algorithm is shown
in Figure 2.5. Using a log-normal distribution allowed particles to take on a
random radius while maintaining non-negative values and favouring smaller
particles over larger ones. This was deemed appropriate as mechanical mix-
ing has been shown to break apart large agglomerates [5]. All simulations
results presented herein include algorithms that create particles whose sizes
are distributed in this way.

2.1.6 Method 6: intersections allowed

The placement methods described above all served to better approximate
the formation of agglomerates, clusters, and filaments of particles described
in literature [5, 44, 53]. They also improved the bulk connectivity of the
model. The connectivity improved because the mean distance between par-
ticles decreased and particle networks became more likely to span the extent
of the model. This accounts for connectivity between particles where a tun-
nelling or hopping type conduction mechanism is dominant but does not
readily account for connectivity that might result if two particles were to
be in physical contact. The placement algorithm, despite all the additional
constraints introduced, still assigns a bounded random coordinate to each
particle, a bounded random radius, and then ensures it does not intersect
other particles. This results in a situation where the likelihood of two par-
ticles being in contact is approximately zero and, even if it were to occur,
it would be a point-contact with no cross-sectional area and thus be unsuit-
able for conventional conductivity consideration. To approximate situations
where particles may come into contact and stay in contact with each other,
slight intersection of particles was allowed and the amount permissible was
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Figure 2.5: In this example set of particles the user set target mean radius
and standard deviation were 65.0 nm and 9.75 nm respectively. A log-normal
distribution with those parameters is shown as a dashed line for reference.
It has a mode radius of about 62.8 nm. The resultant particles from four
successive models are combined and histogram data of the resultant radius
distribution is shown as the solid line. Histogram bins span about 0.32 nm.
Particle radii vary from 31.2 nm to 124.5 nm with a mean and standard
deviation of 64.3 nm and 9.55 nm respectively.
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2.2. Particle connectivity mapping

subject to user adjustment.

2.2 Particle connectivity mapping

Having placed all the particles using one of the methods described above,
they must now be evaluated to determine their connectivity to each other
particle being modelled. The degree of effective connectivity between par-
ticles is dependent on their proximity to one another. Two connectivity
situations are considered. When particles are in direct contact with one an-
other the notion that they are connected is obvious. A case requiring greater
reflection occurs when particles are near one another but do not touch. As
previously discussed in Section 1.2.2, one way to check for and model this
type of connectivity is by defining particles as having a soft, permeable shell
that surrounds a solid core [4, 59, 60]. If a soft shell touches a neighbouring
solid core, particles are said to connect. Solid cores are not typically permit-
ted to overlap. In a basic mathematical model this type of connectivity has
a binary state: particles either connect or they do not; they either form a
network or they do not. An alternate interpretation is to use this approach
to check for connectivity but define the connection in quantum mechanical
terms as a gap over which tunnelling occurs. The soft shells then define a
radius of interaction where tunnelling conduction will be computed. The
rule prohibiting hard shells from overlapping is relaxed in order to allow
random placements that result in direct, classically conductive connections
to occur within agglomerates.

Because tunnelling conduction falls off exponentially as tunnelling dis-
tance increases, there will be a threshold particle gap or soft shell size above
which the amount of charge transport is negligible and particle connections
can be said to be absent. Computationally it is practical to assign an upper
bound on the distance worthy of consideration. Beyond that upper bound,
called the radius of interaction, ri, the amount of charge being transported
is taken to be sufficiently negligible that it need not be considered.

In a model filled with randomly placed particles all potentially contribut-
ing to charge tunnelling or hopping it is conceivable that each particle trans-
mits charge to or receives charge from every other particle. This is captured
in a map that describes the distance between all particles. Particles that
intersect and are therefore in direct contact will have a negative gap equal
to the amount of linear overlap. Non-overlapping particles are considered as
sites where tunnelling is occurring. As previously discussed, some of those
charge flows will be negligible. The negligible flows can be identified by
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2.3. Electrodes

their correspondingly large distance between particles allowing the map to
be pruned to only include the particle connections spanning gaps less than
the radius of interaction.

2.3 Electrodes

As the ultimate goal of the model is to represent a bulk material and ap-
proximate its end-to-end conductivity the model requires that consideration
be given to electrodes. In physical embodiments the electrodes are typically
a good conductor with physical properties that suit the associated experi-
ment or application. Examples include conductive grease, evaporated met-
als, foil, and poly3,4-ethylenedioxythiophene/polystyrenesulfonate (a con-
ductive polymer) [15, 22, 35].

In our model, electrodes are represented fundamentally the same as other
conductive points but they have some special properties: they are geomet-
rically confined to the planes of the electrodes, they have no thickness, and
they are sufficiently abundant as to approximate a continuum. The first two
criteria are absolute and the third is subjective. When modelling electrodes
in this way there are two possible outcomes if the abundance of electrode
sites is ill defined. If there are too few electrode sites it is likely that de-
spite a possible internal network of particles there will be a lack of electrode
connection sites within the radius of interaction of the particles in the bulk
despite many particles being near the electrode plane. An example of this
is shown in Figure 2.6A. This is analogous to an overly high contact resis-
tance. If there are too many electrode sites, connections from the nearby
internal particles will be very likely to occur and potentially over represent
the connectivity. Figure 2.6B shows the same internal network as Figure
2.6A, but with an increased number of electrode sites. This is analogous
to an overly low contact resistance. In this model the latter situation is
favourable. An artificially low contact resistance ensures that the resistance
of the bulk dominates.

In order to ensure good connectivity without creating an overwhelming
number of electrode sites, electrode sites that do not connect with any bulk
particles are removed before performing conduction calculations.

2.4 Node trimming

As the model requires computationally intense mathematics and the inver-
sion of large matrices there is incentive to use the fewest number of electrical
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Figure 2.6: In this two dimensional arbitrary unit example conductive parti-
cles are shown as · and electrodes are shown as *. Connections between sites
(particles or electrodes) are shown as a line. Diagram A shows a connected
network that has few electrode connection sites. Diagram B shows the same
network but with more electrode connection sites. Observe the difference
between the two diagrams in particular near x-axis locations 0.2, 0.5, and
0.8.
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2.4. Node trimming

nodes possible. Each particle within the model will develop its own potential
and participate in charge transport as long as it is either connected to at
least two other particles or connected to one other particle and an electrode.
Each electrode is composed of many particles without a radius and all its
constituent particles are considered to be equipotential. One electrode is
grounded and the other is held at a fixed voltage. These details allow the
implementation of an algorithm for determining if any electrode sites can be
ignored when tabulating the electrical nodes. Any particle without a con-
nection to another particle is not considered an electrical node. Any particle
with only one connection to another particle must also have a connection
to an electrode or else it is not considered an electrical node. These par-
ticles that are marked as not being electrical nodes will be ignored during
conductivity calculations. An example of this is shown in Figure 2.7.
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Figure 2.7: This two dimensional arbitrary unit example contains the same
connected network as Figure 2.6B. Conductive particles are shown as · and
electrodes are shown as *. Connections between sites (particles or electrodes)
are shown as a line. Three particle sites that do not contribute useful elec-
trical nodes have been identified (with circles) as suitable for exclusion from
the conductivity calculation.
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Chapter 3

Inter-particle conductivity

Once the mapping of connected particles is complete and trimmed each con-
nected pair is considered individually to determine the conductance between
them. Particles may be in contact or have some distance between them. The
present work developed a variety of methods used to model the charge trans-
port occurring in conductive composites. The first method presented is very
basic and the subsequent methods are more sophisticated.

3.1 Absolute path length

In the simplest of modelling situations a conductance, G, is assigned pro-
portional to the linear distance between the particles.

G =
σδ

δ
, (3.1)

where σδ is a conductivity parameter that describes the conductivity of a
fixed cross section, and δ is the distance between the two particle surfaces.
This method accounts solely for the empirical observation that as the mean
distance between particles decreases, conductance increases. It does not
consider any of the more complicated physics that contribute to conductivity.
The computation time is very short and this method can be instructive
when looking for general changes in the model due to alterations in input
parameters such as geometry, particle size, and volume loading. It provides
very little physical meaning but does offer insight into whether the number
of end-to-end connections has increased or decreased due to a parameter
change in the simulation.

3.2 Basic exponential

Using an exponential algorithm to calculate inter-particle conductance, Gt,
approximates a tunnelling type of charge flow. The equation has the form

Gt = G0 e
−γδ +G1 (3.2)
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3.3. Conduction due to particle contact

where G0 is a base conductance and G1 is the conductance of the insulating
filler. The physical meaning of γ is explored in the definitions of equa-
tions (1.4) and (1.13). This relationship between conductance and distance
is applied to all gaps greater than zero and less than the upper limit imposed
by the radius of interaction and captures point-to-point charge tunnelling
across the distance between particle edges without considering the cross sec-
tion of the particles. Using this information G0 is defined using (1.3) as a
reference.

G0 =
3q2e

16π2~
. (3.3)

This gives G0 ≈ 4.6 µS.
Models that describe imaging systems such as scanning tunnelling mi-

croscopes successfully use this analytical approach for scanning tips with a
radius of curvature less than 200 nm suggesting that this is a reasonable
approach for models with particles sizes less than that limit [33].

3.3 Conduction due to particle contact

Conduction arising from particle contact is assumed to follow classical con-
duction theory. The amount of contact occurring is related to the amount
the particles overlap in the model. The conductance in this area, Gc, is
approximated as

Gc = σc
Ac

a
, (3.4)

where σc is the internal conductivity of the conductive particles, Ac is the
cross-section of the contact area, and a is the distance between sphere-
centres.

Ac = πr2c , (3.5)

where rc is the radius of the contact circle made by the two overlapping
spheres. From Figure 3.1 the distance between sphere-centres is

a = r1 + r2 + δ, (3.6)

where r1 and r2 are the respective radii for the two spheres being considered.
The angle between the point of overlap and the straight line between

centres is shown as angle θ. The law of cosines is used to describe the
relationship between these lines and θ,

r22 = r21 + a2 − 2 r1 a cos(θ). (3.7)

33



3.4. Conductivity summary
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Figure 3.1: Geometry between overlapping spheres, δ < 0. When δ > 0,
rc = 0, and the spheres do not overlap.

This can be rearranged to find

θ = cos−1

(

r21 − r22 + a2

2r1a

)

. (3.8)

The contact radius,
rc = r1 sin(θ), (3.9)

is found as a function of θ through trigonometry. Substituting (3.6) and (3.8)
into (3.9) gives

rc = r1 sin

(

cos−1

(

r21 − r22 + (r1 + r2 + δ)2

2r1(r1 + r2 + δ)

))

, (3.10)

for δ < 0.
Substituting (3.5) and (3.6) into (3.4) produces

Gc =
σcπr

2
c

r1 + r2 + δ
. (3.11)

Equation (3.11) is computed numerically using rc as defined by (3.10)
above.

3.4 Conductivity summary

For a model that considers conduction over a distance, as well as contact
conduction we can combine equations (3.2) and (3.11) to give a piecewise
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3.4. Conductivity summary

definition for G that depends on δ.

G(δ) =

{

σcπr
2
c

r1+r2+δ
if δ < 0

G0 e
−γδ +G1 if δ ≥ 0.

(3.12)

Figure 3.2 shows a combined example of the results from using (3.2) to
find tunnelling conduction and solving (3.11) to find the contact conduction.
This plot was generated from a set of simulations with a target mean particle
radius of 65 nm and target standard deviation of 9.75 nm (actual radius
distribution shown in Figure 2.5). As the gap increases beyond 15 nm (not
shown) the conductance continues to decay in a log-linear fashion. As the
gap approaches 0 nm, the tunnelling conduction begins to increase sharply.
Once contact has been made, classical charge transport dominates quickly.
A minimum contact conduction is set at G0. In this example, this minimum
is surpassed when the overlap exceeds 0.01 nm resulting in a contact radius
approaching 2.5 nm. While the relationship between gap and conductivity
is relatively smooth, a small amount of noise is visible and is due to the
random matching of particles of differing radius.
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Figure 3.2: Conductance between particles arranged according to increasing
gap size. Particle size varies as illustrated in Figure 2.5 and the effect of
this variation can be seen as a small amount of noise in the line. A negative
gap indicates particles overlap and the particles are therefore in physical
contact.
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Chapter 4

Results

4.1 Model size

Modelling an abundance of particles with a radius less than 100 nm in a cubic
space whose edges are on the order of millimetres or larger is not computa-
tionally trivial. Models were computed on a cluster with nodes containing
8 cores and memory availability ranging from 8 to 32 GB as described in
Section 2. Using this equipment to run simulations, a cubic space with edge
lengths on the order of tens of microns may be simulated. It is reasonable
to consider these sizes are representative of bulk conductivity provided that
an edge length is chosen such that variations in edge length do not cause
substantial changes in simulation results. In order to determine where that
threshold lays, a series of simulations were performed with increasing edge
lengths of cubic space. The time and memory required to run a simulation
increases substantially with an increase in cube dimensions. For instance,
to simulate a cube with an edge length of 18 µm takes about 24 hours and a
cube with an edge length of 20 µm takes about 48 hours. It was found that
the conductivity did not change substantially for edge lengths above 18 µm
when simulating particles with a mean radius less than 100 nm at a load-
ing of 3% by volume using the most complex modelling scenarios discussed
below. This edge length value is used for all further simulations described
in this work as a compromise between asymptotic saturation and model
computation time. These results are shown in Figure 4.1.

4.2 Random placement of uniform particles

Uniform particles are placed randomly in 3D space as per the method de-
scribed in Section 2.1.1. Particles are checked to ensure they do not overlap.
Initial tests were done at 3% volume loading with particles of diameter
125 nm. The basic exponential (3.2) is used to compute conduction using
G0 as defined by (3.3).

In order to promote conduction in the model a rather low barrier height is
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Figure 4.1: Conductivity is shown to increase asymptotically to a maximum
value as the edges length of a cube being simulated increases. Individual
results are shown as a circle. The long-dash line indicates mean value and
the dotted lines are one standard deviation above and below the mean. The
solid line shows the exponential increase in computation time as the edge
size increases.
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4.3. Contact conduction

initially used, ϕ = 0.1 meV. This is substantially lower than barrier heights
that are typical in these materials but it serves as a useful starting place as
the model is developed. Using (1.4), this gives γ−1 = 9.8 nm. The radius
of interaction is swept over a range of values to determine typical distances
at which key inter-particle connections are being made. Figure 4.2 shows
histogram data of connection lengths along with the associated numerical
conductance per connection of that length. Figure 4.3 shows the net con-
ductivity of the model as the radius of interaction is changed. To create this
data set five simulations were run through all the steps required to place par-
ticles. Then the conductivity of each model was evaluated where the radius
of interaction was swept from 100 nm to 300 nm. This effectively permits
the simulation to consider, at first, only nearby neighbours, and, in the end,
more distant neighbours. In each case, if the network of conductive parti-
cles does not create a complete path through the model then the resultant
conductivity is that of the insulating matrix and is not shown. At a radius
of interaction greater than 200 nm, all five models exhibit conductivity near
0.22 µS/m. When only considering particles less than 180 nm apart, only
three data points are generated; two of the models failed to exhibit end-
to-end connectivity of conductive particles. With the radius of interaction
below 150 nm only one of the five models continued to exhibit connectivity.

It can be concluded therefore that in order to repeatedly achieve a model
with end-to-end connectivity using this particle placement method, the sim-
ulation must allow tunnelling events to occur over distances greater than
200 nm. This minimum value for the radius of interaction already uses overly
optimistic potential barrier values suggesting that the placement method
used fails to result in an appropriate layout of conductive particles.

4.3 Contact conduction

As described previously, the initial model calculates the tunnelling conduc-
tion between particles but as the particle generation algorithm does not
permit particle edges to overlap there will not ever be a case where contact
conduction occurs. By allowing a small overlap during the particle place-
ment phase of the simulation (as described in Section 1.4), situations will
arise that are analogous to the formation of agglomerates during a mixing
process.

Figure 4.4 illustrates the jump in conductivity that occurs at contact.
For gaps greater than zero this result is identical to that shown in Figure
4.2.
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Figure 4.2: Particles that are deemed “connected” will conduct charge ac-
cording to equation (3.2). The amount of conduction that occurs depends
on the gap between particles. The right axis (and thin line) show histogram
counts for gaps of a particular length from a typical execution of the model.
Histogram bins span about 5.5 nm. For reference, the left axis (and thick
dashed line) show the results of the tunnelling equation (3.2) for a gap of
that size.
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Figure 4.3: Five unique models were created with the same initial param-
eters (described in the text). Once each model was created, the radius of
interaction was varied to create maps of connected particles. If a model
exhibited end-to-end connectivity of its particles at a particular radius of
interaction, a conductivity value for that combination is shown. Data to the
left of the vertical dashed line is intermittent and data to the right of the
vertical dashed line begins to converge.
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Figure 4.4: Particles with a negative inter-particle distance are said to be in
contact and conduct according to equation (3.11). Particles not in physical
contact that are deemed “connected” will conduct charge according to equa-
tion (3.2). The right axis (and thin line) show histogram counts for gaps of
a particular length from a typical execution of the model. Histogram bins
span about 5.8 nm. The left axis (and thick dashed line) show the results of
the contact equation (3.11) and tunnelling equation (3.2) for a gap of that
size.
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4.4. Clustering and filaments

As per equation (3.2), conductance between two particles is exponen-
tially dependent on the height of the barrier between them. In Figure 4.5
results are shown for three different values of γ in order to see the effect
a changing barrier height has on conductivity. Barrier heights 0.1 meV,
1 µeV, and 10 neV are equivalent to values of γ−1 of 9.76 nm, 97.6 nm,
and 976 nm respectively. While the units of these values and their discus-
sion in Section 1.2 suggest a possible connection to physical properties, the
values do not make sense when compared to reasonable potential barriers
and reasonable tunnelling distances. To the right of the dashed vertical line,
conductivities are seen to converge on a conductivity near 0.1935 µS/m,
0.887 S/m, and 4.45 S/m respectively. It is noteworthy that although the
net conductivity rises dramatically with an increasing γ−1 due to its place
in the exponent of equation (3.2), the inter-particle distance at which the
model begins to conduct remains relatively constant.

This set of results illustrates that although a model seeking to represent
some of the physical realities of agglomerate formation must allow particles
to physically connect in some way, the simple introduction of an algorithm
to this effect has not solved problems previously described with respect
to particle proximity and unrealistic tunnelling distances. The varying of γ
showed an increase in the converged conductivity but did not alter the radius
of interaction at which convergence began. The simulation still requires a
radius of interaction above 200 nm to reliably produce results.

4.4 Clustering and filaments

In order to approximate the natural formation of filaments during the mixing
and curing process an algorithm is used whereby, with a specified probability,
particles must be within a specified range of a particle that has already been
placed (as described in Section 2.1.3). This results in localised variability
in volume loading although the bulk volume loading remains constant. As
expected, specifying relatively large distances in the enforcement algorithm
has no effect. Specifying progressively smaller enforced distances increases
the likelihood of particles being within a short radius of interaction of each
other. Specifying relatively small distances in the enforcement algorithm
has the effect of many particles being within range of each other but has the
side-effect of creating particle clusters that do not always connect to other
clusters. To aid in the visualization of the problems described, two dimen-
sional examples of them are shown in Figure 4.6 and Figure 4.7. Figure 4.6
shows a set of particles where the enforced proximity value is relatively large.
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Figure 4.5: Five unique models were created with nearly all the same initial
parameters to generate each set of results (each set is shown with a different
symbol). The only difference between each set of model parameters is the
numerical value for γ (indirectly defined by setting the barrier height to three
different values). For ♦, ϕ = 0.1 meV. For ◦, ϕ = 1 µeV. For ∗, ϕ = 10 neV.
Once each model was created, the radius of interaction was varied to create
maps of connected particles. If a model exhibited end-to-end connectivity
of its particles at a particular radius of interaction, a conductivity value
for that combination is shown. Data to the left of the vertical dashed line
is noisy and intermittent and data to the right of the vertical dashed line
begins to converge.
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4.4. Clustering and filaments

It is functionally equivalent to a completely random placement and no im-
provements are noted. Some particles connect but rarely are more than four
or five particles connected in succession. Figure 4.7 shows a set of the same
number of particles where a relatively short enforced proximity has resulted
in localised accumulations of particles. Where connections occur there is
often a large number of particles interconnected but the structures might be
better described as globs than filaments. Each of these challenges is more
pronounced when considering the problem in three dimensions.

Although the enforced proximity did not immediately increase end-to-
end connectivity further study was performed by sweeping through a variety
of enforcement probabilities and enforcement proximities. The radius of in-
teraction required for bulk conductivity to occur is actually larger than with-
out the enforced proximity (an increase to about 200 nm from the 150 nm
shown in Figure 4.5). The effect of this on the bulk conductivity seems ap-
parent in Figure 4.8 where an enforced proximity of 25 nm produces a pro-
gressively lower mean conductivity as enforcement probability is increased
at the upper radii of interaction. While this trend does seem to appear,
overall conduction is weak and near the lower computational limits of the
simulator (as described in Section 2) limiting the reliability of conclusions
drawn from this data set. An optimum enforced maximum range value was
found near 100 nm. This maximum range value resulted in increased for-
mation of filaments that span the entire bulk. These results are shown in
Figure 4.9. In both figures the probability of proximity enforcement is swept
from 0.50 to 0.95. The effect of increased enforcement probability is shown
to amplify the effects discussed above; for short range enforcement (25 nm)
the bulk conductivity drops and for medium range enforcement (100 nm)
the conductivity increases.

Ultimately this methodology resulted in zones of relatively higher par-
ticle density rather than forming filaments. When the higher density zones
overlapped increased conductivity was observed and large portions of the
model space were left without any meaningful number of conductive par-
ticles. The intention of this modelling approach was to more closely ap-
proximate experimentally observed particle distributions, including filament
formation, and, as a result, exhibit better conductivity with a shorter ra-
dius of interaction. Although a set of parameters was found that improved
performance at a shorter radius of interaction, the placement algorithm did
not generate filament-like formations. In addition, it is difficult to reason-
ably defend the choice of modelling parameters used to create the optimized
result.
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Figure 4.6: Three hundred particles are distributed in two dimensional space
(arbitrary units). Seventy five of them are placed randomly and the re-
mainder are placed in succession where each must be within 0.5 units of
a previously placed particle. Each particle is shown as · and its radius of
interaction is shown as � (ri ≈ 0.015 units). For the purposes of this illus-
tration, consider particles connected if their �’s touch. The result is similar
to a random distribution. Some connections exist but rarely involving many
particles.
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4.4. Clustering and filaments

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 4.7: Three hundred particles are distributed in two dimensional space
(arbitrary units). Seventy five of them are placed randomly and the re-
mainder are placed in succession where each must be within 0.05 units of
a previously placed particle. Each particle is shown as · and its radius of
interaction is shown as � (ri ≈ 0.015 units). For the purposes of this illus-
tration, consider particles connected if their �’s touch. Several groupings of
many particles are apparent but the groupings do not often interconnect.
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Figure 4.8: Conductivity values as a function of radius of interaction when
an enforced proximity of 25 nm is implemented. Each data point represents
the mean result of five simulations and each line is associated with a differ-
ent enforcement probability as shown in the legend. Overall volume loading
of particles is held constant at φ = 0.03. As described in Section 2, conduc-
tivities near 10−9 S/m are of unreliable precision due to a near-singularity
during matrix inversion. This accounts for the erratic low mean conductivity
values.
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Figure 4.9: Conductivity values as a function of radius of interaction when
an enforced proximity of 100 nm is implemented. Each data point represents
the mean result of five simulations and each line is associated with a different
enforcement probability as shown in the legend. Overall volume loading of
particles is held constant at φ = 0.03.
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4.5 Voronoi cell network

Implementing a node networking scheme that more closely follows a Voronoi
network as described in Section 2.1.4 resulted in a substantial jump in model
conductivity. Key model parameters are the quantity of Voronoi cells oc-
curring per unit volume, vdens, and the maximum thickness of the filaments
formed, vrMax. Values for vdens were determined empirically by running
successive simulations and comparing the resultant cell edge lengths to typ-
ical values as described in Section 2.1.4. Cell edge lengths were targeted
to be in the range from several nm’s to 10’s µm. This was found to oc-
cur in models with 106 mm−3 < vdens < 107 mm−3. Figure 4.10 shows
an example histogram of edge lengths for a model with a target density of
vdens = 5× 106 mm−3.
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Figure 4.10: Histogram data of typical mean edge lengths for a model with
a target density of vdens = 5× 106 mm−3. Each histogram bin spans about
0.95 µm.

Filament maximum thickness values were swept from 10 to 30 times
the mean particle radius. In this case that equates to approximately 1 µm
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4.5. Voronoi cell network

< vrMax < 2 µm. The de-facto minimum thickness is the diameter one
particle (or possibly no particles as the case may be). This range of model
inputs is consistent with the works described in Section 1.3. The filaments
are not forced to be consistently of the thickness defined by vrMax, rather
they are permitted to contain bulges and narrows provided none of the bulges
exceed the defined maximum thickness. Figure 4.11 shows the results of this
vrMax sweep as a function of volume loading and gives the resultant model
conductivity. Each parameter set shows a conductivity evolution with a sim-
ilar trend as loading increases. The thicker filaments likely exhibit slightly
lower conductivity because they result in conductive particles spread more
radially along the axis of the filament whereas a narrower filament restricts
the particles to more confined and regular filaments. For reference, Fig-
ure 4.12 shows the results of the vrMax = 1.06 µm sweep within the context
of the experimental results previously shown and individually attributed in
Figure 1.8. Also shown for reference are converged values from results pre-
viously discussed and shown in Figures 4.3, 4.5, and 4.9. The Voronoi model
produces a trend line that runs parallel to those measured in experiments
with carbon black and polydimethylsiloxane. Despite the shape of the re-
sults being similar, it is apparent that the magnitude of the Voronoi model
data (about 10−3 S/m at 3% volume loading) is substantially smaller than
the magnitude of the experimental data (about 10−1 S/m at 3% volume
loading). The previously used modelling methods all generated results even
smaller (about 10−6 S/m at 3% volume loading). Also included for reference
is an upper limit to carbon conductivity. The limit is computed by consid-
ering all carbon matter present at a particular volume loading arranged into
a column that perfectly and uniformly connects through the model space.

The Voronoi model data takes on a shape that conforms to the power
law behaviour discussed in Section 1.1. Figure 4.13 compares that data to
equation(1.2) with φc = 0.05 and t = 5. A constant of proportionality,
105, is applied to overlap the power law shape with the model data. When
performing the fit an appropriate value for φc is not immediately clear. It
represents the inflection point of the power law curve. In the case of these
model results that point is below the minimum computable conductivity.
The parameters chosen give a reasonable fit across the data available. Bal-
berg’s assertions suggest this value of t indicates the particles are “more
spherical” though more quantitative implications remain unclear [17].

In order to ensure end-to-end model connectivity during model devel-
opment, the radius of interaction has been maintained relatively high such
that conduction decay is dependant on the value of ϕ. The latest models
were repeated while evaluating the variation in conductivity as a function
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Figure 4.11: Conductivity as a function of volume loading for a range of
filament radius values.

52



4.5. Voronoi cell network

0.01 0.02 0.03 0.04 0.05
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

φ

σ
(S

/
m

)

 

 

experimental

random placement

contact allowed

clustering

voronoi cells

upper limit of σ

Figure 4.12: Model results are shown here with published experimental data
[8, 9]. (Individual attributions are shown in Figure 1.8.) Model results are
those previously shown in Figures 4.3, 4.5, 4.9, and 4.11. For reference, the
upper limit of conductivity is also shown.
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Figure 4.13: Voronoi model results are compared to a line fit for the power
law behaviour discussed in Section 1.1.
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4.5. Voronoi cell network

of radius of interaction. This is illustrated in Figure 4.14 for four different
volume loadings.
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Figure 4.14: Conductivity as a function of radius of interaction for four
different volume loadings. Data to the lower-left of the dashed line is noisy
and intermittent in end-to-end connectivity and data to the upper-right of
the dashed line is convergent.

In contrast to prior plots of conductivity vs radius of interaction, in Fig-
ure 4.14 it is clear that end-to-end connectivity occurs when considering
neighbours less than 100 nm apart, an improvement over prior iterations of
the model. The saturation of conductivity that occurs shortly after connec-
tivity first occurs is illustrative of the exponential dependence on distance in
tunnelling scenarios. This overall improvement is attributed to the filaments
represented by the Voronoi network. Although the minimum radius of inter-
action needed for each of the simulation sets shown in Figure 4.14 is greater
than might be expected for a tunnelling scenario, it is an improvement over
prior models.
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Chapter 5

Conclusions and future work

5.1 Conclusions

The model created and evaluated as part of this work synthesizes theory
drawn from first principles, theoretical explanations of observed phenomena,
and basic analysis of experimental data. The semi-empirical approach used
combines many parameters, most of which can be said to have a physical
interpretation. Many previous works have neglected these physical interpre-
tations in favour of good agreement between analytical expressions and the
data being published concurrently with those expressions. This model dif-
ferentiates itself by identifying obvious or potential physical meaning behind
constants that could otherwise be treated as simple fitting parameters. In
cases where parameters are permitted to move outside apparently reasonable
bounds a discussion of assumptions and motivations is provided.

A great deal of uncertainty can be found in the parameter γ and, through
the relationship defined in (1.4), ϕ in the tunnelling conduction exponential.
Although the physics describing the height of the barrier being tunnelled
through holds in simple situations such as with a scanning tunnelling mi-
croscope, it seems apparent that in the case of many conductive composites
there are more factors that warrant consideration. While not clearly under-
stood they either modify or act in addition to barrier height effects. Rather
than introduce additional parameters, these effects are left bundled in the
barrier height parameter to illustrate this gap in understanding.

The initial model shows that a random distribution of spherical particles,
given realistic γ and ϕ, cannot explain experimentally observed conductiv-
ities in these composite materials. The final model shows conductivity in
simulations loaded less than φ = 5% by volume. The conductivity is several
orders of magnitude lower than experimental results that use carbon parti-
cles of similar dimension and upon whose structure the model was based.
This discrepancy further illustrates that the model still lacks a comprehen-
sive set of physics and input parameters.

Ultimately, it shows that bulk conductivity at loadings well below the
classical percolation threshold can be simulated by combining known physics

56



5.2. MATLAB as a modelling tool

with empirical observations of micro-structure in conductive composites cre-
ated using particles on the size order of 200 nm and smaller. The trend in
simulation results agrees with the trends observed in published experimental
data. The differences between the simulation results and the experimental
results serve to motivate future exploration of these materials in pursuit of
a more complete understanding of the phenomena at work.

5.2 MATLAB as a modelling tool

All simulations were conducted in MATLAB Version 7.9.0.529 (R2009b).
Most algorithms were tested on a standard laptop computer before exe-
cution on the high performance computing cluster described in Section 2.
Compute time for simulations was a key concern during model development.
The core algorithm for serially generating lists of locations in space for par-
ticle placement and the earliest version of the user interface were created by
Liam Russel in 2010. A serial approach to subsequent modelling algorithms
followed naturally from this start. As model complexity grew the compute
time for modelling also grew rapidly, in part due to its serial nature. Most
model components were later rewritten to take advantage of memory allo-
cation and parallel processing functionality in MATLAB. A model that was
designed with the intention of performing parallel operations at all possible
times could serve to improve simulation durations on a platform such as a
high performance computing cluster.

Long compute times (during development they reached over seven days
for a single simulation), although undesirable, can be overcome with pa-
tience. The most substantial obstacle to model computation was the cubic
growth in memory requirements as the model size increased with one par-
ticular matrix inversion making the greatest draw on resources. On several
occasions memory usage exceeded the capability of the computing cluster
and resulted in a failure of the simulation after many hours or days of com-
putation.

MATLAB provides a good set of tools for developing parallel process-
ing algorithms and for memory management. Ultimately the limitations
described above can be attributed somewhat to choice of modelling algo-
rithms and predominantly to hardware limitations.
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5.3 Future work

5.3.1 Greater complexity in modelling parameters

One approach to increasing the “realism” of this model would be to incor-
porate more first principles physics and more empirical observations. For
instance, incorporating a set of modelling routines that move particles ac-
cording to physical processes at work during mixing could offer additional
insight. This approach could take advantage of known surface tension ef-
fects that affect agglomeration and filament formation. The model could
also be modified to incorporate the assertion by Kohijiya that aggregates
closer than 3 nm tend to fuse into agglomerates and that freshly broken
agglomerates tend to separate by 3 nm [5].

A series of experiments could be done to determine whether hopping or
tunnelling is dominant. The processes could be differentiated by observing
the temperature variance of conduction. The temperature dependence of
hopping may reveal whether or not this phenomenon warrants inclusion in
models of this sort.

One caution though is that the incorporation of any poorly understood
parameters can lead to greater uncertainty in the model and may ultimately
over-tune it in the same way that adding additional high order components
to a line fit may seem at first to give better results even if it is not really
revealing more about the governing mechanisms.

5.3.2 Post-curing analysis of carbon black

Further analysis of the size and shape of carbon aggregates and agglomerates
that have undergone a mixing and curing process is warranted.

Despite difficulties slicing thin samples of many conductive composite
materials, it is ultimately possible to cool a sample sufficiently for thin slices
to be made. Combining a cryostat microtome with high resolution imaging
tools could shed substantial light on the structures formed by carbon black
in the scenarios being considered by this model. A challenge in doing this
is that many cryotomes have a lowest operating temperature near -40 � as
they are designed for biological systems. In those systems softer rubbers
such polydimethylsiloxane may not be sufficiently frozen to produce a clean
cut. Once that obstacle is overcome and the corresponding digital images are
analysed, the resultant numerical data describing a range of micro or nano
scale physical parameters for a suite of composites could prove instrumental
in the further tuning of this model or the creation of a new one.

58



5.3. Future work

To gain further insight into the carbon black it may be valuable to gen-
tly dissolve the polymer component of a cured sample and then image the
precipitated carbon particles with as little disturbance as possible. A com-
parison with imaging and size profiling of the same carbon done pre-curing
may prove insightful.

5.3.3 Alternate techniques

At the outset it was hoped this model could be used as a predictive tool to
anticipate the electrical characteristics of conductive composites and that
it could then be further refined to explore the importance of deformation
of irregular geometries in future applications. The approach taken was one
that captured and described the inter-particle charge transport phenomenon
at work within the composite. As a result of this choice it does offer insight
into those physics but it falls short of being a true predictive model. While
a truly predictive model that relies solely on governing physics may be the
most satisfying solution, the present gaps in understanding suggest there is
work to be done before that model exists. In the interim it may be useful
to divide the approach in two. The present model can be expanded and
refined to become a better representation of the science behind conductive
composites while a separate model may be useful as a purely predictive
tool. The purely predictive tool could potentially take more of a “black-
box” approach that did not consider physics but rather simply considered
input and output parameters and is trained against known data using the
wide range of adaptive machine learning algorithms available in the field of
computer science.
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Appendix A

Simulation parameters

Contained herein is a list of relevant modelling parameters for figures gen-
erated using the model described throughout this document.

Parameters for Figure 2.5

φ = 3%

r = 65 nm (log normal deviation target = 15%)

G0 = 4.62 µS

γ−1 = 9.76 nm

ϕ = 0.1 meV

vdens = 5× 106 mm−3

vrMax = 1.0625 µm

ri = 100 nm

Parameters for Figure 4.1

φ = 3%

r = 62.5 nm (log normal deviation target = 10%)

G0 = 4.62 µS

γ−1 = 9.76 nm

ϕ = 0.1 meV

vdens = 10× 106 mm−3

vrMax = 187.5 nm

ri = 275 nm
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Appendix A. Simulation parameters

Parameters for Figure 4.2

φ = 3%

r = 62.5 nm (log normal deviation target = 10%)

G0 = 4.62 µS

γ−1 = 9.76 nm

ϕ = 0.1 meV

Parameters for Figure 4.3

φ = 3%

r = 62.5 nm (log normal deviation target = 10%)

G0 = 4.62 µS

γ−1 = 9.76 nm

ϕ = 0.1 meV

ri = varies as per x-axis

Parameters for Figure 4.4

φ = 3%

r = 62.5 nm (log normal deviation target = 10%)

G0 = 4.62 µS

γ−1 = 9.76 nm

ϕ = 0.1 meV

Parameters for Figure 4.5

φ = 3%

r = 62.5 nm (log normal deviation target = 10%)

G0 = 4.62 µS

γ−1 = varies as per figure description
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Appendix A. Simulation parameters

ϕ = varies as per figure description

vdens = 108 mm−3

vrMax = 187.5 nm

ri = varies as per x-axis

Parameters for Figure 4.8

φ = 3%

r = 65 nm (log normal deviation target = 15%)

G0 = 4.62 µS

γ−1 = 9.76 nm

ϕ = 0.1 meV

ri = varies as per x-axis

enforced proximity = 25 nm

probability of enforced proximity = varies as per legend

Parameters for Figure 4.9

φ = 3%

r = 65 nm (log normal deviation target = 15%)

G0 = 4.62 µS

γ−1 = 9.76 nm

ϕ = 0.1 meV

ri = varies as per x-axis

enforced proximity = 100 nm

probability of enforced proximity = varies as per legend
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Appendix A. Simulation parameters

Parameters for Figure 4.10

φ = 3%

r = 65 nm (log normal deviation target = 15%)

G0 = 4.62 µS

γ−1 = 9.76 nm

ϕ = 0.1 meV

vdens = 5× 106 mm−3

vrMax = 187.5 nm

ri = 100 nm

Parameters for Figure 4.11

φ = varies as per x-axis

r = 65 nm (log normal deviation target = 15%)

G0 = 4.62 µS

γ−1 = 9.76 nm

ϕ = 0.1 meV

vdens = 5× 106 mm−3

vrMax = varies as per legend

ri = 100 nm

Parameters for Figure 4.14

φ = varies as per legend

r = 65 nm (log normal deviation target = 15%)

G0 = 4.62 µS

γ−1 = 9.76 nm

ϕ = 0.1 meV
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Appendix A. Simulation parameters

vdens = 5× 106 mm−3

vrMax = 1.0625 µm

ri = varies as per x-axis
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