
Performance Improvements in
Crawling Modern Web Applications

by

Alireza Zarei

B.Sc., Amirkabir University of Technology (Tehran Polytechnic), 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

February 2014

c© Alireza Zarei 2014

Abstract

Today, a considerable portion of our society relies on Web applications to
perform numerous tasks in everyday life; for example, transferring money
over wire or purchasing flight tickets. To ascertain such pervasive Web
applications perform robustly, various tools are introduced in the software
engineering research community and the industry. Web application crawlers
are an instance of such tools used in testing and analysis of Web applica-
tions. Software testing, and in particular testing Web applications, play an
imperative role in ensuring the quality and reliability of software systems. In
this thesis, we aim at optimizing the crawling of modern Web applications
in terms of memory and time performances.

Modern Web applications are event driven and have dynamic states in
contrast to classic Web applications. Aiming at improving the crawling pro-
cess of modern Web applications, we focus on state transition management
and scalability of the crawling process. To improve the time performance of
the state transition management mechanism, we propose three alternative
techniques revised incrementally. In addition, aiming at increasing the state
coverage, i.e. increasing the number of states crawled in a Web application,
we propose an alternative solution, reducing the memory consumption, for
storage and retrieval of dynamic states in Web applications. Moreover, a
memory analysis is performed by using memory profiling tools to investigate
the areas of memory performance optimization.

The enhancements proposed are able to improve the time performance
of the state transition management by 253.34%. That is, the time consump-
tion of the default state transition management is 3.53 times the proposed
solution time, which in turn means time consumption is reduced by 71.69%.
Moreover, the scalability of the crawling process is improved by 88.16%.
That is, the proposed solution covers a considerably greater number of states
in crawling Web applications. Finally, we identified the bottlenecks of scal-
ability so as to be addressed in future work.

ii

Preface

This thesis is original, independent work and it is designed, carried out, and
analyzed by the author, Alireza Zarei.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . viii

List of Figures . x

Acknowledgements . xii

Dedication . xiii

1 Introduction . 1

2 Background . 4
2.1 Web Applications . 4

2.1.1 HTML and DOM . 5
2.1.2 Modern vs. Classic Web Applications 6

2.2 Crawling Web Applications 7
2.2.1 Crawling Classic Web Applications 7
2.2.2 Crawling Modern Web Applications 7
2.2.3 Problem and Proposed Solutions 8

2.3 Performance Improvements 9
2.3.1 Time Performance Improvement 9
2.3.2 Memory Performance Improvement 10

2.4 Graph Databases . 10

3 Reverse Engineering Crawljax for Optimization 12
3.1 Crawljax High Level Algorithm 13
3.2 Reverse Engineering Crawljax 13

3.2.1 Investigating Crawljax for Alternative Solutions . . . 14

iv

Table of Contents

4 Motivation and Research Goals 18
4.1 Motivation . 18
4.2 Research Questions . 20

4.2.1 Improving Time Performance 20
4.2.2 Increasing State Coverage 21

4.3 Goals . 22
4.3.1 Time Performance . 22
4.3.2 Memory Performance 23

4.4 Methodology . 24

5 Optimizing State Transition Management 26
5.1 Tracking State Changes in Web Applications 27
5.2 Foundations for the Proposed Techniques 28

5.2.1 Tracking DOM Mutations 28
5.2.2 Mutation Events . 29
5.2.3 Mutation Observers 29
5.2.4 Mutation-Summary Library 29
5.2.5 Proxies . 30

5.3 Alternative Methods for Tracking State Changes 30
5.3.1 Shared Characteristics of the Solutions 31
5.3.2 Proxy-Based Solution 32
5.3.3 Plugin-Based Solution 33
5.3.4 Plugin-Based Solution with In-Memory Agent 33

5.4 Evaluation . 35
5.4.1 Research Questions Broken Down 35
5.4.2 Experimental Design and Methodology 35
5.4.3 Results . 37

6 Increasing the Number of States Crawled 54
6.1 Memory Management . 55

6.1.1 Java Virtual Machine Heap 55
6.1.2 Garbage Collection 56

6.2 Criteria for Alternative Solutions 57
6.3 Criteria for Selecting a Graph Database 58

6.3.1 Required Functionalities 59
6.3.2 Licensing . 60
6.3.3 Partial Locks . 60
6.3.4 Storing Objects in Nodes and Edges 60
6.3.5 API for Java and Maven Availability 61

6.4 Comparison of Graph Databases 61

v

Table of Contents

6.5 Scalable Solution . 63
6.5.1 Memory Performance Trade-Offs 64
6.5.2 Time Performance Trade-Offs 64

6.6 Evaluation . 65
6.6.1 Research Questions 65
6.6.2 Experimental Design and Methodology 66
6.6.3 Results . 72

6.7 Further Memory Analysis . 74

7 Discussion . 85
7.1 State Transition Management 85

7.1.1 RQ1.A: Time Performance of the Proxy-Based Solu-
tion . 85

7.1.2 RQ1.B: Time Performance of the First Plugin-Based
Solution . 86

7.1.3 RQ1.C: Time Performance of the Second Plugin-Based
Solution . 86

7.2 Scalability . 86
7.2.1 RQ2.0: Determinism of the Crawler 87
7.2.2 RQ2.A: Correctness 87
7.2.3 RQ2.B: Memory Performance 87
7.2.4 RQ2.C: Time Performance 88

7.3 Threats to Validity . 88
7.3.1 Internal Validity . 88
7.3.2 External Validity . 89

7.4 Future Work . 89
7.4.1 Further Scalability through String Optimization . . . 89
7.4.2 Further Scalability through Candidate Elements Op-

timization . 90
7.4.3 Scalability Improvement by Text Compression Tech-

niques . 90
7.4.4 Improving Time Performance Targeting 90

8 Related Work . 92
8.1 Optimizing the Crawling Process 92
8.2 Graph Database Applications 93

9 Conclusion . 94

Bibliography . 97

vi

Table of Contents

Appendix

A Deterministic Candidates . 102

vii

List of Tables

4.1 Average DOM size in characters 19

5.1 State transition management experiments objects 37
5.2 Proxy-based time consumption (milliseconds); the proxy-based

“time overhead” is much greater than the time improvements
i.e. “saved time”. 41

5.3 Standard deviations of proxy-based time consumption 42
5.4 Relative standard deviations percentages (absolute values of

coefficient of variation) of proxy-based time consumption . . 43
5.5 Maximum values of proxy-based time consumption (millisec-

onds) . 44
5.6 Minimum values of proxy-based time consumption (millisec-

onds) . 45
5.7 Proxy-based bypassed comparisons: the detailed information

on events fired, comparisons that were categorized as unnec-
essary, false negatives and false positives. 46

5.8 External js-plugin-based solution times (milliseconds): the
time improvements by the first plugin-based solution is much
greater than the time overheads it imposes on the crawling
process. 47

5.9 Standard deviations of external-js plugin-based time consump-
tion . 47

5.10 Relative standard deviations percentages (absolute values of
coefficient of variation) of external-js plugin-based time con-
sumption . 48

5.11 Maximum values of external-js plugin-based time consump-
tion (milliseconds) . 48

5.12 Minimum values of external-js plugin-based time consump-
tion (milliseconds) . 49

viii

List of Tables

5.13 External js-plugin-based bypassed comparisons: the detailed
information on events fired, comparisons that were catego-
rized as unnecessary, false negatives and false positives. . . . 49

5.14 Internal js-plugin-based solution times (milliseconds): the sec-
ond plugin-based solution overtakes the default process. The
time it improves is greater than the time overhead it imposes
on the crawling process. 50

5.15 Standard deviations of internal-js plugin-based time consump-
tion . 51

5.16 Relative standard deviations percentages (absolute values of
coefficient of variation) of internal-js plugin-based time con-
sumption . 51

5.17 Maximum values of internal-js plugin-based time consump-
tion (milliseconds) . 52

5.18 Minimum values of internal-js plugin-based time consumption
(milliseconds) . 52

5.19 Internal js-plugin-based bypassed comparisons: the detailed
information on events fired, comparisons that were catego-
rized as unnecessary, false negatives and false positives. . . . 53

6.1 Graph databases comparison: Neo4j emerged to be the most
suited graph to our application. 62

6.2 Graph databases comparison scale levels 63
6.3 Correctness experiments objects 69
6.4 Scalability experiments objects 71
6.5 Scalability experiments results: the proposed version outper-

forms the default crawler in terms of the number of states
crawled. 75

6.6 Time performance experiments results: the default crawler
performs more efficiently on most of the cases. However, in
two cases the proposed solution overtakes the default crawler
and in six out of ten cases the time overhead is less than 10%. 77

6.7 Initial memory experiment specifications 78
6.8 Second memory experiment specifications 78

ix

List of Figures

2.1 Ajax vs. classic Web applications models. Source: [1]. 6

3.1 Crawljax high level algorithm 13
3.2 Crawljax high level algorithm with more details 17

5.1 Generic solution components 31
5.2 Proxy-based solution components 33
5.3 Plugin-based solution components–external injection 34
5.4 Plugin-based solution components–internal injection 34
5.5 Proxy-based solution time performance: the time overhead

imposed by the proxy-based solution is much greater than the
time it saves by bypassing unnecessary comparisons. Hence,
the default crawling performs more efficiently. The bars rep-
resent the averages taken over 5 rounds of experiments pre-
sented in table 5.2. 40

5.6 External js-plugin-based solution times: the first plugin-based
solution, which employs a Web server and injects scripts ex-
ternally, overtakes the default process. The time improve-
ments on average is much greater than the overheads im-
posed. The bars represent the averages taken over 5 rounds
of experiments presented in table 5.8. 46

5.7 Internal js-plugin-based solution times: the time the second
plugin-based solution improves is greater than the time over-
heads it imposes on the process. hence, the second plugin-
based solution also overtakes the default state transition man-
agement system. The bars represent the averages taken over
5 rounds of experiments presented in table 5.14. 50

6.1 Java heap divided into generations and the runtime options.
Source: [2]. 56

x

List of Figures

6.2 Scalable vs. default no. of states crawled: in all cases the
proposed version overtakes the default crawler in terms of
the number of states crawled given a limited amount of heap
memory. 73

6.3 Scalability improvements: the percentage of increase in the
number of states crawled. 74

6.4 Scalable vs. default time performance: the proposed version
overtakes the default crawler only in two cases out of ten and
in six cases time overhead is less than 10 %. However, on
average the time overhead is 18.20%. 76

6.5 Memory consumption of the default version: the experiment
is carried out on google.com and the memory consumption is
demonstrated. 79

6.6 Memory consumption of the proposed version: the experi-
ment is carried out on Google.com and the memory consump-
tion is demonstrated. 80

6.7 Memory consumption of the default version: the experiment
is carried out on Yahoo.com and the memory consumption is
demonstrated. 81

6.8 Memory consumption of the proposed version: the experi-
ment is carried out on Yahoo.com and the memory consump-
tion is demonstrated. 82

6.9 Default memory consumption: the lowest curve (in red) shows
old generation allocation. On top of that, the young gener-
ation (in salmon) is presented. The highest curve (in blue)
shows the maximum amount of memory available to be allo-
cated, i.e. Java heap size. The important observation here is
that the old generation allocation never drops as all the states
are detained in memory. In this experiment Java maximum
heap size is set to 1 gigabyte and 330 states are crawled. . . . 83

6.10 Improved memory consumption: the lowest curve (in red)
shows old generation allocation. On top of that young gener-
ation is presented (in salmon). The highest curve (in blue)
shows the maximum Java heap memory available to be allo-
cated. One of the results of our work is that the old generation
allocation occasionally drops, i.e. states data is freed. This
enables the crawler to discover 542 states using 1 gigabyte of
memory. 84

xi

Acknowledgements

I wish to thank my supervisor, Dr. Ali Mesbah, for his careful supervision,
guidance and support on carrying out the projects constituting this thesis.
I would like to express my gratitude and appreciation for bringing about in-
ternship opportunities for me during my M.A.Sc. program. Without doubt,
this work was not possible without his generous support, help and accurate
attention.

I would like to thank Peter Luong, president and founder of FusionPipe
Software Solutions, for creating internship opportunities which provided me
experience in preparing for industry and support in completing my pro-
gram. I would also like to thank him for his kind supervision and generous
attitude in sharing his invaluable expertise with me during the projects. Es-
pecial thanks to Sang Mah, whose enthusiasm, extraordinary positive atti-
tude, and tireless efforts in MITACS, bring about numerous fruitful industry
experiences for students such as me at UBC.

Moreover, I would like to thank my committee members, Dr. Karthik
Pattabiraman and Dr. Sathish Gopalakrishnan for kindly agreeing to par-
ticipate in the committee for evaluating my thesis. I would like to thank
them for their utmost generosity with their time, great improvement ideas,
and constructive feedback for revising my thesis.

I would also like to thank Dr. Pooyan Fazli for providing me with his
effective mentorship and valuable time during the course of the program.

Last but not least, I would like to thank our friendly community in
Software Analysis and Testing (SALT) lab who helped me greatly during
the course of this research with their encouragement, support and feedback.

xii

Dedication

I would like to dedicate this work to my family; my parents whose love
and support have always filled my heart with strength and hope. I wish
to dedicate this work to them for giving me the opportunity to follow my
heart and pursue my dreams. I would also like to dedicate this thesis to my
dearest sisters, Mina and Maryam, who are the meaning of hope for me.

I would also like to dedicate this thesis to my friends whose encourage-
ment, support and understanding have always empowered me and kept me
going during the most difficult times.

xiii

Chapter 1

Introduction

Nowadays, Web applications play an important role in performing various
day-to-day tasks in businesses, industry, and individuals’ daily lives. Per-
forming tasks such as on-line banking or booking flight tickets has become
possible by prevalence of Web applications. Pervasiveness of Web applica-
tions in the carrying out tasks in modern societies calls for ensured reliability
and enhanced quality. To that aim, various tools have been introduced to
help Web developers and quality assurance professionals deliver more robust
Web applications. Web application crawlers are among the most important
tools in the area of Web application development and search engines. Web
crawlers are used in testing Web applications as well as in realizing the
indexing of the World Wide Web (WWW) by search engines.

Traditionally, Web applications were composed of a number of self-
reliant documents identified by unique Uniform Resource Locators (URLs)
[3]. These documents were linked to each other by means of inter-document
references called hypertext links or hyper-links. As such, in order to navi-
gate through a Web application in a Web browser, each time a hyper-link
was clicked a new document was retrieved, loaded in the browser window,
and the new document would replace the previous content of the browser
window. This design of Web applications resulted in inefficient time and
bandwidth consumption because even for a minor change in needed in the
document loaded in the browser, the whole document needed to be trans-
mitted and replaced.

As a significant progress towards the maturity of Web applications, in
addition to the hyper-link based URL transition mechanism, “modern” Web
applications utilize “Ajax” technologies to provide “interactivity” and “re-
sponsiveness” [4] for users. Ajax technologies including scripting languages
such as JavaScrip [5] and asynchronous method calls help achieve dynamic
Web Applications. Dynamic modern Web applications boost the interactiv-
ity of Web applications by minimizing the time users need to wait for the
application to be responsive again after each interaction such as clicking on
a photo. The advent of modern Web applications greatly improved users
experience, but on the otherhand, Web crawlers have to pay a price because

1

Chapter 1. Introduction

crawling event driven modern Web applications is inherently more resource
demanding.

Web application crawlers automate the crawling of Web applications by
exploring hyper-link-based transitions and other types of transitions such
as Ajax-based ones. These multi-layer tools are used for various purposes.
They can be used for indexing Web applications in search engines. They are
also used as a means for testing Web applications. Crawljax [4], a modern
Web crawler to be outlined in this thesis, is able to explore JavaScript-
enabled Web applications.

Crawling modern Web applications is inherently a resource (e.g. time,
compute, memory) demanding task for various reasons. First, as apposed to
crawling classic static HTML Web pages, modern crawlers need to execute
JavaScripts and apply the dynamic changes to the state of the Web appli-
cation being crawled. Whereas in crawling traditional HTML-based Web
applications, a transition from one state to another state in the crawling
process is more of a retrieval and parsing process rather than an execution
one. The event driven model of modern Web applications, the execution of
scripts, and navigating dynamic transitions are more time consuming than
merely retrieving the pages and following static URLs. The reason is that a
modern Web crawler needs to wait for a browser (or a tool that can execute
JavaScript) to load the content and execute the JavaScript.

In addition, modern Web application crawlers are composed of various
layers and technologies working together to make the crawling process fea-
sible. Specially the additional components for executing JavaScript and
managing the states navigations impose considerable resource requirements
on the crawling process. For example, in crawling modern Web applications
the crawler needs to communicate with the execution layer (e.g a browser).
These inter-process communications cause a sizable time consumption on
the crawling process.

In this work, we aim at improving the memory and time performances
of the crawling process in modern Web applications. We investigate two
components of the crawling process to improve the time and memory effi-
ciency of the crawling. First we focus on the changes that occur in the Web
applications and induce state transitions. By doing so, we aim to improve
the time efficiency of the state transition mechanism of the crawling process.
In addition, we investigate the memory utilization of the crawling process
to improve the state coverage of the crawling. In other words, we aim at
increasing the number of states crawled given a limited amount of resources
(memory).

In the optimization of states transition management part, we propose

2

Chapter 1. Introduction

three different solutions, improved incrementally over one another, to re-
duce the time consumption of tracking changes in the crawling process. We
employ different methods and techniques to achieve improvement in time
performance.

In order to increase the number of states crawled given a limited amount
of memory, we introduce a new component to the crawler to free the memory
required for saving the states of the Web application in the crawling process.
To this aim, we replace the current storage and retrieval component which
relies on the main memory by our proposed solution to crawl a greater
number of states.

The first alternative solution we proposed, utilizing a proxy, did not
overtake the default state transition management. However, the second
enhancement proposed, without a proxy, was able to improve the time per-
formance of the state transition management by 253.34%. That is, the time
consumption of the default state transition management is 3.53 time the
proposed solution time. The third alternative solution also overtook the
default mechanism by 197.48%. The second solution demonstrated the best
performance among all available mechanisms.

Moreover, the scalability of the crawling process is improved by 88.16%.
That is, the proposed solution covers a considerably greater number of states
in crawling Web applications. This scalability improvement was achieved
costing 18.20% of time overhead. Finally, we identified the bottlenecks of
scalability so as to be addressed in future work.

The rest of this work is organized as follows. In chapter two we present
the background information related to the concepts and technologies used
in this work. In chapter three, we provide an overview of Crawljax, the
crawler on which our ideas are examined. This overview is based on the
reverse engineering endeavor we did to shed lights on the rapidly changing
characteristics of the crawler. Chapter four covers the motivation and the
research goals. What follow afterward are the two main chapters covering
the improvements we targeted in the crawling process; the time performance
of the state transition in chapter five and increasing the number of states
crawled in chapter six. Afterward we revisit the research questions, address
some of the threats to validity and the future work in the discussion in
chapter seven. Finally a review of the related work finalizes the thesis.

3

Chapter 2

Background

In this chapter we briefly touch upon the concepts and information that
constitute the foundations on which this thesis is based. We start off by
shedding some lights on Web applications concepts because we will discuss
Web applications as objects of the experiments throughout the thesis. Web
applications are directly used in designing the experiments. They are also
pivotal in explaining many parts of the thesis such as the crawling process in
Web crawlers and the memory analysis we peformed. In addition we briefly
explain the crawling of both traditional and modern Web applications. Af-
terward we proceed to pinpoint the aspects of the crawling process that we
aim to improve.

2.1 Web Applications

A Web application is any piece of software that is built to be run in a
common Web browser such as Mozilla Firefox R©. In other words, a Web
application is a special type of client-server application that uses a Web
browser as its client. Web applications usually consist of two components
(sides), a client side and a server side. In this thesis we focus only on the
client side. The area of Web application development is diversely rich and
there are manifold technologies, languages and standards used in developing
Web applications. We shortly give an overview of some related technologies
in the following.

Web applications constitute a considerable portion of deployed software
in today’s computing and business ecosystems. Web-mail services, news
broadcasting Web sites and on-line banking portals are examples of Web
applications used by users on a daily basis. Web applications vary greatly
in complexity and size, from only a few lines of static HTML documents to
hundreds of thousands of lines of code in a dynamic multi-tier application.

Technologies, languages, approaches and techniques used in creating
Web applications are heterogeneously diverse. Just to name a few, Hy-
perText Murk-up Language (HTML), eXtensible Markup Language (XML)
and Cascading Style Sheets (CSS) are used for creating the content and

4

2.1. Web Applications

defining the presentation of the content in the client side user interface of
Web applications. Scripting languages such as JavaScrip [5] (EcmaSript [6])
empower the client side of Web applications with dynamic execution. They
also provide control over content modifications and help reduce the amount
of data transferred between the browser and the server by enabling dynamic
updates to the user interface. On the server side, PHP, ASP.NET, and Java
technologies are popular for building the engines of Web applications in the
server side. Languages and technologies used in Web development are too
numerous to be mentioned here so in the rest of this chapter we merely
suffice to explain the concepts that are directly of pertinence to our work.

2.1.1 HTML and DOM

The information openly published on the Internet is most effective when it
can serve a vast audience. In order to maximize the reach of the content
published on the Web, in early days of the advent of the Internet, a uni-
versal language that all computers could agree on was a desideratum. To
that aim, HTML, developed by Tim Berners-Lee and popularized in 1990s,
became the “mother tongue” of the World Wide Web (Web). HTML is used
in developing Web applications to create content, retrieve documents by hy-
pertext links, add forms for accessing services, and including multimedia
in a page [7]. HTML role in Web applications is interrelated with its live
transformation which is called HTML DOM.

As it is set out by World Wide Web Consortium [8] (W3C) in the spec-
ification of Document Object Model (DOM), the DOM is a language- and
platform-independent convention that aims at unifying the usage of the doc-
uments in computer programs. Using the DOM interface, programs and
scripts achieve a unified way of accessing and modifying documents. Nu-
merous types of documents including XML, and XHTML documents, which
are incremental improvements over HTML, are used in the area of Web
applications.

When an HTML document is retrieved from a Web server, the browser
parses the page and builds an object representing the page based on the
DOM specification. This object is called DOM object or DOM tree. The
scrips of the Web application (e.g. JavaScript) can access and modify the
DOM tree. These accesses and manipulations can retrieve and modify the
presentation, content and the structure of the DOM tree. The DOM is also
used by the layout engines of browsers. Layout engines such as WebKit [9]
use the DOM interface to render the presentation of Web pages.

5

2.1. Web Applications

2.1.2 Modern vs. Classic Web Applications

The event driven model of modern Web applications utilizes “Ajax” tech-
nologies to reduce the responsiveness gap between classic Web applications
and desktop applications. Ajax is a collective short form for the combina-
tion of Asynchronous JavaScript and XML. Modern Web applications use
different Ajax technologies. For example, XML and HTTP requests are
used for communicating data, HTML DOM for live presentation of user in-
terfaces, and CSS for a presentation layer over the content. In addition,
JavaScript is used for DOM manipulation and making links between all the
aforementioned technologies [1].

As shown in figure 2.1 from [1], the model of modern Web applica-
tions differs from that of classic Web applications in terms of data exchange
method and user interactions. In classic Web applications, the application
is a set of separate “whole” HTML pages with logical links. Theses pages
are connected together by hypertexts links. In classic Web applications, the
browser provokes an HTTP request to the server of the application once
users click on a link or submit a form. The server then analyses the request
and creates the response as a complete new HTML page [1].

Figure 2.1: Ajax vs. classic Web applications models. Source: [1].

On the other hand, in modern Web applications, an Ajax engine en-
hances the user experience by eliminating the need for reloading a whole
new page each time data is exchanged with the server. That is, users ac-
tions on a modern Web application result in sending asynchronous requests

6

2.2. Crawling Web Applications

to the sever of the application. In the mean time, the application is respond-
ing and not waiting on a hold for the response while the server processes the
request and responds the data back. The key difference here is that instead
of reloading the whole application by a new HTML page, the Ajax engine
processes the response data and applies partial changes to the DOM of the
application. Hence, the data exchange is minimal and the user does not
need to wait for the response and a complete reload of the application [1].

As modern Web applications are richer and have a greater number of
components than classic Web applications, the crawling method for each
category is different. In the following we give an overview of the crawling
of each of these two types of Web applications and illustrate how they are
different.

2.2 Crawling Web Applications

Crawling Web applications is the process of exploring the structure and
the content of Web applications. In classic Web applications, exploring
the applications is carried out by following hypertext links. On the other
hand, in modern Web applications, elements such as div and span can also
be sources of transition form one page of the application to another page.
Hence, the crawling process is to some extent more resource intensive in
modern Web applications. We cover the differences in crawling the two
classes of Web applications in what follows.

2.2.1 Crawling Classic Web Applications

Hypertext links are pivotal in crawling classic Web applications. A classic
Web crawler, comparative to the way general purpose search engines such
as Google R© crawl, starts form a provided URL, retrieves the page, pareses
the page and extract all absolute and relative URLs and adds them to the
queue designated for URLs to be crawled next. This process is repeated
recursively till the queue is emptied or certain conditions are met.

2.2.2 Crawling Modern Web Applications

On the other hand, in modern Web applications the dynamic state changes
are taken into account. In crawling modern Web applications, the presence
of an Ajax engine in the browser is pivotal. This makes crawling modern
Web applications different in a number of ways. First, there are elements
other than hypertext links (e.g. div) that can transition the state of the

7

2.2. Crawling Web Applications

application. This transitions is done to discover new states and information.
In addition, the dynamic nature of JavaScripts requires the crawling process
to wait for the execution of JavaScripts and to allow the DOM tree to be
settled after firing events.

Because JavaScript based reactions (function invocations) can be at-
tached to almost any element in a Web page, modern Web application
crawlers, in addition to parsing each page and extracting its hypertext links,
need to examine other types of elements for exploring Web applications.
Crawljax [4], a modern Web application crawler, for example, can be con-
figured to examine a set of HTML elements for exploring Web applications.

As a result of the differences mentioned above, the crawling process of
modern Web applications is more detailed than that of classic applications.
The crawling algorithm for a modern Web crawler such as Crawljax starts
with opening a URL, extracting all hypertext links and elements such as
div, button, and span and saving them in a candidates’ queue. Afterward
these elements are polled one by one and an event (such as click or hover)
is fired on each of them. As non-href (non hyperlink) elements do not
guarantee a change in the URL, a sufficient amount of time is required
for allowing the dynamic changes and server communications to finish and
to let the DOM settle. Then the crawler checks if more information is
discovered. If so, the newly discovered parts of the application is parsed
for candidate elements and any found element is added to the queue. This
process continues recursively.

2.2.3 Problem and Proposed Solutions

As it was explained earlier, compared to crawling classic Web applications,
crawling modern Web applications requires carrying out a greater number
of steps. In particular, requirements such as examining a much wider set
of HTML elements (e.g. span, href, and div), executing JavaScript code,
and communicating to the server and the browser at each state make the
crawling of modern Web applications more resource consuming.

Crawling modern Web applications is resource intensive. Consuming
resources such as time and memory is of a considerable degree in modern
crawlers. The reason is that the crawling process needs to employ additional
components for performing the sub-tasks of modern crawling that does not
exist in classic crawling.

There are a number of steps which are pertinent only to modern crawling.
First, handling the execution of JavaScript has to be done in one way or
another such as employing a browser. In addition, tracking dynamic state

8

2.3. Performance Improvements

changes must be handled as any interaction can lead to a new state in
the application. Furthermore, managing the interactive communications
between the client and the server in each dynamic state is essentially more
time consuming than merely retrieving the data.

In order to mitigate the aforementioned resource demanding qualities
of crawling modern Web applications, in this thesis we aim at identifying
and tacking some of the performance problems of the crawling process. We
specifically focus on improving the time and memory performance of the
crawling process. Regarding the time performance improvement, we focus
on state transition management of the crawling process. In addition, we
investigate the state storage and retrieval aspects of the crawling process to
improve the memory performance of the crawling process. The discussion
is followed by expanding upon the performance improvements that will be
discussed later on in this thesis.

2.3 Performance Improvements

Improving the performance of a system is defined as tuning the way re-
sources are consumed by the system in achieving goals . As mentioned
earlier, crawling modern Web applications imposes extra resource require-
ments on the underlying system the crawler is running on. Time, memory,
and compute resources are examples of system resources that are consumed
more intensively by a modern Web application crawler compared to classic
crawlers. Hence, here we aim at improving the time and memory perfor-
mance of the crawling process by tuning the way specific aspects of the
crawling are carried out.

2.3.1 Time Performance Improvement

The process of crawling modern Web applications is more time consum-
ing than the classic one because modern crawling employs more layers of
tools working together to achieve the task of crawling. The time needed
for performing inter-process communications, performing rounds of requests
and responses between the client and the server, and waiting for the user
interface to settle after interactions are among the time consuming tasks
performed by the crawling process. In addition, the way specific sub-tasks
such as managing the state transitions are performed in the crawling pro-
cess creates optimization opportunities. In this work, we focus on the state
transition management of the crawling process to optimize for reducing time
consumption.

9

2.4. Graph Databases

2.3.2 Memory Performance Improvement

Memory is one of the system resources that are extensively used in the
crawling process. Loading layers of different tools and components that are
necessary for performing the crawling is an important inducer of memory
consumption. In addition, parsing HTML pages to extract HTML elements
requires significant memory allocation. Another critical part of the crawling
process is handling the storage, comparison, retrieval and identification of
the states. In this work, we focus on improving the memory performance of
this part of the crawling process to improve the scalability of the crawling
process.

We utilize a graph database to overcome the obstacles hindering the
scalability of the crawling process. Graph databases are shortly introduced
in the next section to facilitate the presentation of the application of a graph
databases to the Crawler.

2.4 Graph Databases

Graph databases are a sub-category of NoSQL databases. NoSQL databases
which are also called “Not only SQL” databases are a category of databases
that provide additional ways other than SQL for storing and retrieving data.
A graph database utilizes graph data structure for storing and accessing
data. The key is that each item in a graph database provides direct “look-up
free” references to its adjacent elements. In other words, a graph database
provides index-free adjacency.

Graph databases are optimized for utilization in software systems that
operates on a data that is naturally presentable by graphs. The reason is
that graph databases avail of graph structures, graph nodes, and graph edges
for designing the data model and storing the data. Aside from the ease of
modeling graph-like data, graph databases are geared to provide efficient
mechanisms for performing graph-specific operations such as finding the
shortest path between two nodes in a graph.

Graph databases vary in terms of capabilities, features and the scope
for which they are designed. Fore example, some graph databases provide
transaction handling and concurrent access while others do not. There are
general purpose graph databases and some more specialized ones such as
triple stores. Graph databases are widely used in industry specially by
social networking Web applications. For example, FlockDB [10] is used for
supporting the storage and retrieval of the underlying system of Twitter R©
[11].

10

2.4. Graph Databases

We implement the aforementioned improvements as enhancements to
Crawljax and perform empirical experiments to evaluate the suggested en-
hancements. Hence in the next chapter Crawljax will be discussed in details
to explain its default algorithm and the suggested enhancements we pro-
posed for the crawling process.

11

Chapter 3

Reverse Engineering
Crawljax for Optimization

Crawljax [4] is a software tool for crawling modern Web applications. It
specifically is delivered as a solution for answering the challenges of crawling
Ajax-based Web applications. The challenges arise from some characteris-
tics of modern Web applications. These characteristics include execution of
scripts on the client side, asynchronous communications between the client
and the server, and dynamic manipulation of DOM trees. These charac-
teristics result in dynamic state changes in Ajax-based Web applications
without a necessary change in the URL of the Web application. Crawljax
captures these state changes and the transitions between states in a finite-
state machine model. The structure underlying this finite-state machine
is called stateflow graph by its designers and here after we refer to it as
such. The stateflow graph, central to the memory enhancements suggested
in this thesis, is a directed multigraph1 with states at nodes and transitions
at edges.

Crawljax utilizes selenium Web driver [12] to bring up browsers and crawl
Web applications. Running Web applications in a real browser, Crawljax
ensures the model it creates matches the real behavior of the Web appli-
cation under crawl. The state machine created incrementally by Crawljax
comprises the state-space of the Web application under crawl. The state
machine also includes the navigational path between states. This state ma-
chine can be used for various purposes such as quality assurance and program
comprehension.

In this thesis we propose some enhancements to the Crawljax in order
to improve the state coverage and time performance of the crawling process.
We explain the internal structure of Crawljax and the parts of its crawling
algorithm that are directly related to this work to achieve more clarity in
presenting the work performed in this thesis.

1Amultigraph is a non-simple directed graph in which loops and multiple edges between
vertices are permitted.

12

3.1. Crawljax High Level Algorithm

3.1 Crawljax High Level Algorithm

Form a high level perspective, Crawljax works as the following. A crawl
session starts by providing the URL of the Web application and additional
optional configurations as inputs to the crawler. A Web browser is brought
up and it is driven to open the first page of the Website referenced by
the URL. Afterward The loaded page is parsed and all of the candidate
elements in the page such as buttons and URLs are identified to be clicked
on in the next steps. Clicking on elements can lead to transitions to new
states. Hence, after clicking on each candidate element, the current state
of the DOM is compared to the previous state of the DOM. If the state is
changed and it is not a replica it is added to the inferred state machine.

input : URL, Configurations
output: stateF lowGraph, Logs

1 Open the URL in the browser;
2 Parse the loaded DOM and extract all the candidate elements;
3 Save the candidate elements in candidateElements ;
4 while termination conditions not met do
5 Pick an element from the candidateElements;
6 Fire a click event on the element;
7 Extract the state of the Web application form the browser;
8 Compare the new state with last captured state;
9 if the new state is different from the previous state then

10 Compare the new state to all previous states;
11 if no replica of the state found in the stateF lowGraph then
12 Add the new state to the the stateF lowGraph;
13 Extract the candidate elements form the new state and

store them in candidateElements;

14 Add the transition to the the stateF lowGraph;

Figure 3.1: Crawljax high level algorithm

3.2 Reverse Engineering Crawljax

As Crawljax is being evolved rapidly, relying on the initial papers does not
suffice for a deep understanding of the “current” state of the system. So

13

3.2. Reverse Engineering Crawljax

we conducted a thorough source code investigation to be able to propose
alternative solutions for optimizing the crawling process.

In this thesis, we investigate if we can utilize a graph database for storage
and retrieval of data in Crawljax. As the main memory is usually smaller
than secondary memories in computer systems our aim is to optimize the
memory consumption by storing the data in a graph database instead of
main memory. Based on our previous experiments with crawling Web ap-
plications with Crawljax, we knew that the states of the Web applications
amount for a sizable memory consumption. Hence we came up with the idea
of storing the stateflow graph of the Crawljax in a graph database. There
were numerous graph databases options. In order to identify if there is a
right choice of database for our application, we analyzed Crawljax imple-
mentation to see what criteria and requirements emerge that guide us in
selecting the most amenable graph database.

3.2.1 Investigating Crawljax for Alternative Solutions

We investigated the source code of Crawljax to extract the criteria for se-
lecting a graph database most suited to our application. Our findings from
this investigation of Crawljax’s internal components are as follows.

Crawljax opens a Web browser and goes to the URL of the application.
After loading the index page, it examines the DOM tree of the page and
extracts all the elements which are likely to change the state in case an event
is fired on them. Then Crawljax fires events on these candidate elements and
analyzes the changes. Finally, based on the analysis of the changes made
to the DOM Crawljax incrementally builds a stateflow graph which models
the states deduced by crawling the application. In order to save this model
which represents the states and the transitions between them as a directed
multigraph is utilized. This model is defined as follows.

The stateflow graph inferred from crawling a Web application A is de-
noted as a four-tuple (i,V ,E,L). The meaning of these symbols are [4]:

• i: i is the initial state of the Web application. This state is captured
when the page is finished loading into the browser and the onload
event is fired by the browser.

• V : V is the set of all states in the application. Each dynamic DOM
state is represented by a vertex v which is a member of the set V .

• E: E is the set of all edges in the stateflow graph. The members of E
are ordered pairs of (v1,v2) which represent an edge from the vertex v1

14

3.2. Reverse Engineering Crawljax

to vertex v2. These directed edges exist in the graph when state v2 is
reachable from state v1 by firing some event on on a clickable (a Web
element that can be clicked on) c in state v1.

• L: L is a function from E to the set of event types and DOM element
properties.

This provides us with a solid mathematical understanding of the data struc-
ture that we need to provide in our alternative solutions.

There are also other important points which must be taken into con-
sideration. If a change is detected in the state of the Web application the
newly detected state is compared to all states in the state-machine. If a
duplicate state is found the new state will not be added to the stateflow
graph. However, regardless of the newness of the found state, a new edge is
added to the stateflow graph, starting from the previous state to the current
state. Edges hold additional information such as the type of the event that
was fired and the element which the event was fired on. In addition the
current state of the state-machine is updated to the newly resulted state.
This means the crawling is continued by exploring the new state and hence
a depth first traversal.

Crawljax has an option to crawl an application with multiple browsers.
In the concurrent crawling sessions, all crawling nodes share the same state-
flow graph but each crawler node has its own state machine. The state
machine is an abstract interface on top of the stateflow graph. Hence the
stateflow graph is a more concrete data structure in Crawljax. The state
machines in combination with the stateflow graph insure the synchronized
reading and updating of the states and navigational paths.

In other words, the state machine is divided into a global stateflow graph
for all crawling nodes and multiple state machine instances, one for each
crawling node. The crawling nodes are synchronized over the clickable ele-
ment they are examining. This measure is taken to prevent exploring the
same clickable by multiple crawling nodes.

Among numerous classes and data structures in Crawljax, there are two
data structures that are of critical importance when considering the conse-
quences of concurrent modifications. In particular, these data structures,
encapsulate the logic of the steps that we need to implement for safe con-
current storing and retrieving of the data form and into the graph database.

There is a data structure that stores all the states with candidate el-
ements and is called statesWithCandidates. The second data structure,
which is called cache, is a map from states to queues of actual candidate

15

3.2. Reverse Engineering Crawljax

elements. Each queue stores a series of candidate elements which are ex-
tracted from the Web page. These elements are extracted when the browser
has loaded this specific state mapped to the queue. Crawljax begins crawl-
ing by loading the index state and then running a crawling node called
CrawlTAskConsumer with which the first state, the index state, is crawled.
The candidate elements of the first state are put into the cache as a starting
point for the rest of the crawling.

A more detailed algorithm but still very high level of the multi-node
crawling process of Crawljax is illustrated in algorithm 3.2.

16

3.2. Reverse Engineering Crawljax

input : URL, Configurations
output: stateF lowGraph, Logs

1 Open the URL in the browser and load the index page;
2 Parse the index and extract all the candidate elements;
3 currentState← index;
4 stateWithCandidates← {index};
5 cache← {(index,CE)} such that CE = {e: e is a candidate element

in the index};
6 stateF lowGraph← ∅;
7 while stateWithCandidates 6= ∅ do
8 Poll a state s from stateWithCandidates ;
9 Reset the browser;

10 Move the browser from index to s;
11 Retrieve s.candidateElements from cache ;
12 while s.candidateElements 6= ∅ do
13 Poll an element e of s from s.candidateElements;
14 Fire a click event on e;
15 detectedState← current state of the application in the

browser;
16 if detectedState 6= s then
17 Add e to crawlPath;
18 Compare detectedState with all other states in

stateF lowGraph;
19 if detectedState 6∈ stateF lowGraph then
20 stateF lowGraph← stateF lowGraph +

{detectedState};
21 Parse detectedState for candidate elements;
22 stateWithCandidates← stateWithCandidates +

{detectedState};
23 cache← cache + {(detectedState, CanElements)}

such that CanElements = {e: e is a candidate element
in detectedState };

24 else
25 crawlPaths← crawlPaths + {crawlpath};
26 stateF lowGraph← stateF lowGraph + {e};
27 currentState← detectedState;

Figure 3.2: Crawljax high level algorithm with more details

17

Chapter 4

Motivation and Research
Goals

In order to realize a system for crawling Ajax-enabled Web applications, nu-
merous layers of software tools and technologies such as JavaScript execution
engines and DOM processing libraries must be put in place to obtain a pur-
poseful crawling outcome. Ajax-enabled Web applications are crawled for
different purposes including, “program comprehension” and “analysis and
testing of dynamic Web states”. For example, the model Crawljax infers
can be used for “generating a static version of the application” [4].

Because of its inherent complexity, a purposeful crawling process, capa-
ble of producing a pragmatic model for Web applications, introduces man-
ifold areas of optimization. These areas of optimization, once considered
carefully, have the potential to examine novel ideas for improving the crawl-
ing of Web applications.

In the following we explain the goals of the thesis by enumerating some
challenges associated with crawling Web applications and propose our ideas
for attacking these problems. We put forward two high level research ques-
tions to pinpoint the bird’s-eye view of the goals of the thesis. Afterward,
we elaborate on these questions by taking them to lower levels of abstraction
to target more specific questions.

4.1 Motivation

Crawling Ajax-enabled Web applications is a predominantly resource con-
suming task for the computer system hosting the crawler. This high degree
of resource consumption lies, in large part, on two sets of drivers. First,
Ajax crawlers perform various sub-tasks by utilizing a multi-layer stack of
tools. The second reason is that Web applications, which are the objects of
the crawling, can be of considerable size in terms of the memory it requires
to store their various components such as their DOM or their GUI.

In crawling Web applications, tasks such as retrieving a Web applica-

18

4.1. Motivation

tion from its server, executing the application’s scripts (chiefly JavaScript),
communicating with a browser, tracking states and state transitions, and
processing the content of the DOM impose a considerable memory and time
consumption on the computer system hosting the crawler.

In addition, providing a mechanism for handling dynamic state transi-
tions in Web applications imposes a high level of resource consumption on
crawling. Especially, when applications have many states and the states of
the Web applications are of a large size memory consumption becomes more
challenging. Table 4.1 presents the data we collected about the size of the
DOM trees during our experiments. The data shows that most of the Web
applications in the top list of Alexa have states that on average are of a
considerable size. The average length of states across all applications listed
in table 4.1 is around Kilo characters. Moreover, Crawljax stores a stripped
version of the DOM beside the original DOM. This stripped version has less
details but is of almost the same size. In addition, the size of Java “char”
type is two bytes. Hence, the size of the states in memory is on average one
928 Kilobytes (multiplying the average length of the DOM by four).

Table 4.1: Average DOM size in characters

Web Application DOM Length

google.com 311671.49

wikipedia.org 242418.29

live.com 46303.59

twitter.com 192321.88

qq.com 603644.86

amazon.com 290661.37

linkedin.com 28188.43

baidu.com 184074.15

facebook.com 41485.17

youtube.com 310531.81

yhoo.com 304536.09

average 232348.83

In order to improve the crawling of Ajax-enabled Web applications, aim-
ing at mitigating the memory and time consumption of the task of Web ap-
plication crawling, we propose two enhancements to the crawling process. In
the following, we state our enhancements targeting: 1) the improvement of

19

4.2. Research Questions

the time performance of the state transition management and 2) the memory
performance of the state storage and retrieval component.

4.2 Research Questions

In this thesis, we initially defined two research questions to pinpoint the
objectives of the thesis. These research questions address enhancing the
performance of the crawler in crawling Ajax-enabled Web applications. In
particular, we aim at conducting research to assess our ideas for improving
the time consumption and memory utilization of the crawler in performing
the crawling task. Our research questions address the following aspects of
the crawling process:

Idea 1: Improving the time consumption of crawling by revising the process
of examining state transitions in Ajax-enabled Web Applications

Idea 2: Optimizing the memory utilization for improving the crawling pro-
cess memory consumption

The research questions are stated in the following and will be further
broken into more specific and more detailed sub-questions. Moreover, as
we made progresses in the thesis project and performed the experiments
in details, analysis of the results revealed interesting facts about the time
requirements and memory utilization of our proposed methods. These dis-
coveries guided us to design further research questions to assess additional
enhancements and explore further corners of the crawling process.

4.2.1 Improving Time Performance

As mentioned earlier, there are numerous aspects and sub-tasks in crawl-
ing Web applications that have the potential to be investigated for finding
optimization opportunities. One important aspect of Ajax-enabled Web ap-
plications is that they can change their states dynamically, namely they are
dynamically stateful. More specifically, Ajax-enabled Web applications can
transition into different dynamic states as the Ajax technologies (such as
asynchronous calls and script execution) change the state of the Web appli-
cation upon occurrence of different events. Hence managing the changes in
the states and transitions between the states are of high importance in the
crawling process. As such, if we aim at modeling the states of the Web ap-
plications during the crawling process we have to provide some mechanism
for keeping track of state changes in the Ajax-enabled Web applications.

20

4.2. Research Questions

Keeping track of state changes and transitions between the states im-
poses a significant complexity on the crawler and hence creates potentials
for optimization. One of the important steps in tracking the state changes
is to determine if, at specific points in time, the state of the Web application
has changed or not. Another important issue is to check whether the state
to which we have just transitioned is a replica (i.e. a clone of one of the
previously stored states) or is an unprecedented state. As such, we think
the state comparison step has the potential to be attacked for enhancing the
crawling time.

Here we state our first idea for improving the crawling of Ajax-enabled
Web applications as a high level research question which later on will be
broken into more specific sub-questions:

RQ1: How much can the time consumption of the state transition manage-
ment be improved by enhancing the state comparison mechanism?

The intuition behind this research question is that we know, from expe-
rience, that comparing the states of the Ajax-enabled Web applications is
an expensive task. State comparison is time demanding because it includes
several sub-tasks dealing with multiple layers of software tools. For example,
accessing the states requires communicating with a browser. In addition the
states are, on average, large objects. This translates to an expensive time
requirement for the extraction of the state data from the browser, initiation
of the state objects on the crawler and performing the comparison.

4.2.2 Increasing State Coverage

Memory utilization is another aspect of the crawling of Ajax-enabled Web
applications that is of high implication to the performance of the crawler.
By experience, from crawling Web applications with Crawljax in previous
studies we know that the states of Web applications are usually of consider-
able size. States of Ajax-enabled Web applications are stored in the memory
while a Web application is explored by the crawler. The large size of the
states multiplied by the number of states crawled, to any given point in
crawling, accounts for a sizable amount of memory consumption. We be-
lieve that this imposed consumption of main memory is one of the obstacles
for increasing the coverage and comprehensiveness of crawling. As such, we
believe that improving the memory consumption is a potential optimization
area for achieving more coverage in crawling Ajax-enabled Web applications.

We state our second idea for enhancing the crawling of Ajax-enabled Web
applications as a research question which targets the memory utilization of

21

4.3. Goals

the crawling process:

RQ2: To what degree can the coverage and comprehensiveness of crawling
be improved by relinquishing state storage to a graph database?

What we endeavor to achieve here is we would like to assess the results of
enhancing the main memory consumption on the state coverage achieved in
crawling. Especially, we are interested in improving the way the states data
are currently stored in the crawling process. We do this by analyzing the
effects of enhancements made to the state storage mechanism on the memory
performance of the crawler and on the number of states it can crawl.

4.3 Goals

The goal of this thesis is to improve the performance of crawling of Web
applications during which we assess our ideas for enhancing the crawling
process. In particular, we target improving time performance and memory
performance of the crawling. In order to improve the time performance of
the crawling, we aim at reducing the time the crawler spends on tracking
state changes and the transitions between states. In addition, in order to
improve the memory performance of crawling, we target the reduction of
the per-state memory consumption of Web crawling so as to explore more
states and increase the coverage of the crawling in Web applications.

4.3.1 Time Performance

In the process of crawling an Ajax-enabled Web application, as the ap-
plication transitions to different states, the crawler requires to handle the
transitions and track and store the states and navigational paths between
them. In order to track the transitions, every time an event is fired on the
Web application (line 14 of algorithm 3.2), the crawler checks if the Web
application has transitioned to a new state or not (line 16). This task is
done by comparing the states of the Web application before and after firing
the event. We believe this practice results in some inefficiencies that creates
optimization opportunities.

In order to improve the time performance of the crawling, we aim at
improving the mechanism the crawler uses for state comparison. To perform
the state comparison, the crawler maintains the two states (before and after
firing events, denoted by s and detectedState) in the memory. These states
are extracted from the browser by taking snapshots of the DOM tree of

22

4.3. Goals

the application (line 15). Afterward the crawler compares the two states in
order to decide if an alteration has happened to the state of the application
or not. However, extracting the DOM from browser, initiating a new state
object, and comparing the objects after each event is very time consuming.
Hence we suggest we should eliminate these steps whenever we can find
faster alternatives.

If no event attribute (e.g. “onclick”) is added to an HTML element,
firing events (e.g “click”) on the element will cause no change to the state
of the Web application. If we have an alternative way that can notify us
that no changes have happened to the DOM, we can safely skip the whole
comparison process and save the time that would have been spent other-
wise. However, the alternatives must be fast enough to overtake the current
comparison mechanism.

4.3.2 Memory Performance

Memory consumption of the crawling process is significantly considerable.
Expensive DOM related operations such as comparison, stripping and string
replacements impose a sizable memory requirement on the crawler. In ad-
dition, IO processes, mainly used for communications with the browser add
substantial memory overhead to the crawling. Furthermore, during the ex-
ploration of Web applications, the crawler builds an inferred state machine
in the main memory. This huge state machine, storing the states discov-
ered in the crawl session as well as the transitional links between the states,
consumes almost half of the memory allocated to the crawler.

In order to improve the memory performance, we focus on the mecha-
nism currently employed for managing the state machine model. Storing,
retrieving and assuring the uniqueness of states are the key tasks carried out
in the crawling process and are directly related to the state machine model.
As a Web application is crawled, states are discovered one by one and added
to the state machine. The memory is allocated gradually for each detected
state. However, the main memory of the system is limited. Hence, at some
point, when a specific number of states are stored in the state machine, there
is no capacity left in the main memory for allocating space to crawling tasks
(including adding a new state). As a result, the crawling process halts (on
errors), and having covered a specific number of states the crawler quites on
an out of memory error.

In order to improve the state space coverage in crawling Web applica-
tions, we have to dismantle the memory limitation. Considering the huge
size of the stateflow graph, we target freeing the memory required for stor-

23

4.4. Methodology

age and retrieval of the states and transitions between the states. We aim
at freeing the memory so it can be allocated to the rest of the tasks in the
crawling process. If we are able to do so, we could continue the crawling
further and discover more states and subsequently cover a greater number
of states than the original crawler does.

4.4 Methodology

In this thesis we investigate if application of a number of enhancements to the
crawling process can result in time and memory performance optimization in
crawling Web applications. Specifically, tracking the changes in DOM trees
of Web applications is enhanced in three different methods as an endeavor
to optimize the time spent in states comparisons. In addition we investigate
how utilizing a graph database for storage and retrieval of the state machine
model affects memory performance of the crawling process.

Crawljax has various extension points, called plug-ins, which can be
utilized for performing additional tasks at specific points in the crawling
process. We also add new extension points to the Crawljax. Availing of
the current and new extension points we apply our alternative methods
for tracking DOM-tree changes in the applications. In order to expedite the
state comparison process we relinquish the change tracking to agents that we
developed to work on the browser side instead of the crawling engine’s side.
This way we install an agent in the browser side and aim at bypassing the
expensive DOM extraction, initiation and comparison operations. Proxies
(explained in next chapter) and Crawljax plug-ins are used to install the
state tracker agent.

There is a sizable graph data structure in the crawling process, called
stateflow graph, which holds the main output of the crawling process. Aim-
ing at making memory utilization more efficient, we introduce a new compo-
nent to the crawler for replacing this data structure and handling the storage
and retrieval of the states transitions model. The component that we intro-
duce interfaces a graph database to store the stateflow graph structure and
data in a database rather than main memory. This method is expected to
reduce the memory consumption, however it might impose an IO overhead
affecting both time and memory performances. It is the experimental results
that will determine to what extant this method is effective in boosting the
performance of the crawling.

In order to assess the effects of the proposed enhancements on the time
and memory performances of the crawling process, we conduct experiments

24

4.4. Methodology

on ten Web applications from Alexa’s top Websites list. As these Web sites
are complex Web applications composed of manifold components, they are
not deterministically crawlable. That is, crawling the same Web application
multiple times does not result in the same sequence of states each time. As
such, in order to mitigate the effects of this nondeterministic behavior, we
crawl each applications multiple times and take average over the collected
results.

In the next two chapters we explain in details how we applied the two en-
hancements to the crawling process. In addition, the way experiments were
conducted is discussed and the results of the experiments are also presented
at each chapter. The next chapter covers the improvements we proposed for
state transition management and the chapter after that discusses improving
the memory consumption of the crawling process.

25

Chapter 5

Optimizing State Transition
Management

The crawler models the Web application being crawled by inferring a state
machine representing the states of the application and the navigational paths
between the states. Therefore, keeping track of the client-side states and the
transitions between the states is a substantial task in the crawling process.
In order to manage the state transitions, the crawler communicates with the
browser in which the application is running. These communications include
taking a snapshot of the state of the application at certain occasions to test if
any changes have been made to the state of the Web application (lines 15 and
16 of algirithm 3.2). As these sub-tasks are expensive operations in terms of
the time they consume, we investigate methods of optimizing the transition
management aspects of the crawling process. Throughout this chapter the
concept of the “state” of a Web application comes up frequently. Hence
we shed some light on what we refer to as the state early in the chapter to
improve the clarity.

Web Applications States The state of a Web application at any given
point of time is dependent on values of multiple components of the Web ap-
plication. This multivariate concept includes both server-side and browser
side variables. The browser side state itself, cab be delineated to the values
of the DOM-tree elements, the values of the JavaScript variables, JavaScript
functions and some less frequent elements such as Web Storage [13]. How-
ever, as the crawler focuses on the DOM-tree of the Web application, in this
thesis, what we refer to as the state of the Web application is as follows:

• In the browser the state of the applications is the DOM Object’s state.

• In the crawler, the state is the string representation of the DOM-tree
after being processed and normalized (stripped).

The crawler representation of the state has less details. For example
some white spaces such as tabs and carriage returns are removed from the

26

5.1. Tracking State Changes in Web Applications

original DOM tree. Hence, chances are that minimal changes to the DOM-
tree are filtered by the crawler. The reverse cannot be true as every change
in the crawler side must be originated from some change in the browser
DOM-tree.

5.1 Tracking State Changes in Web Applications

Currently what Crawljax does to track the changes applied to the states of
Web applications is as follows. After firing an event on some specific candi-
date element in a page of the application, the crawler retrieves the current
state of the application from the browser. For example, in photo gallery ap-
plication, Crawljax clicks on one of the photo albums. As a result the GUI
of the photo applications changes so that a number of photo thumbnails are
loaded into the view. Crawljax retrieves the DOM of this new view of the
application.

Afterward the crawler constructs suitable data holders for shaping the
raw data retrieved from the browser into usable objects representing the
the state of the Web application. Then it compares this newly retrieved
state (photo thumbnails DOM) with the previous state (the home page) so
as to test if changes have been made to the application. Performing these
sub-tasks results in expensive inter-process communications (e.g. between
the browser and Crawljax), string operations, object construction and a
number of sizable IO operations for sending the state of the application
from browser to the crawler. Here we investigate alternative approaches for
tracking the state of the application aiming at eliminating or bypassing some
of these operations, whenever possible, to improve the time efficiency of the
crawling.

Investigating the way currently the crawler performs the transition checks,
we came up with the idea of eliminating unnecessary comparisons. In par-
ticular, if no event attribute is attached to an element, firing events on the
elements causes no change in the state of the Web application. Hence, in
these situations, if we can be notified that there is no change in the appli-
cation since last time, we can avoid:

1. Retrieving a large amount of data representing the state of the Web
application from the browser

2. Processing the raw data representing the state of the application to
initiate the objects representing the state

27

5.2. Foundations for the Proposed Techniques

3. Performing a comparison on two usually large objects representing the
previous and newly retrieved states

The key point here is that we do not aim at eliminating these steps
completely; We only want to find alternative methods that are able to bypass
the unnecessary comparisons. To that goal, we need to find an effective way
to get notified of changes as they are made to the state of the application.

5.2 Foundations for the Proposed Techniques

We employed a number of different technologies and techniques in our pro-
posed methods for improving the management of states transitions. We
briefly touch upon each concept and different options that we had and enu-
merate their points of strength and disadvantages. We make an introduction
to different options available for tracking DOM mutations and the proxy
technology that we utilized in this project.

5.2.1 Tracking DOM Mutations

DOM mutations are any changes made to the DOM tree. The mutations
include addition, deletion and modification of the content of the elements of
the DOM and also structural changes to sub-trees of the DOM. Changing
the name of an attribute, deleting a node in the DOM and modifying the
textual content of a node are examples of DOM mutations.

Crawljax, the Web application crawler whose performance improvement
is the subject of this thesis, crawls Web applications and builds a stateflow
graph of the transitions between different states in a Web application. For
the purpose of its crawling, Crawljax considers the current state of the DOM
tree as the state of the Web application under crawl at any given point of
time. As such, tracking the changes made to the DOM, namely DOM muta-
tions, is of high importance in identifying state transitions during crawling
sessions.

As Web technologies and standards have evolved over the past decade,
different mechanism and APIs have become available to Web developers for
tracking DOM mutations. DOM Mutation events, Mutation Observers, and
finally mutation-summary library are main options for tracking DOM mu-
tations in developing Web applications. We opt for utilizing the mutation-
summary library in this thesis. We justify this choice of technology by
explaining each option in next sections.

28

5.2. Foundations for the Proposed Techniques

5.2.2 Mutation Events

Mutations events [14] interface which was introduced in DOM Level 2 is a
mechanism for tracking the changes made to the DOM. As the design of the
Mutation Events interface was considered to be flawed it is in the process
for being dropped and is considered as depreciated. There are a number
of performance and bug-causing issues associated with this interface: the
slowness of the mechanism; triggering too many reports upon the occurrence
of changes to the DOM in a synchronous way; and, leads to development of
crash-prone Web applications. [15]

5.2.3 Mutation Observers

Mutation Observers provide another mechanism for receiving notifications
about changes made to the DOM tree. Mutation Observers are introduced
in DOM3 [16] and are designed to replace Mutation Events for tracking
alterations of the DOM. Mutation Observers provide call back functions to
handle the changes. This has the advantage of handling multiple changes
as a group whereas in the mutation events multiple events are triggered for
every single alteration.

5.2.4 Mutation-Summary Library

Mutation-Summary Library [17] is an open-source library implemented in
JavaScript and provided by Google R©. Being implemented on top of Muta-
tion Observers API, the mutation-summary library provides a more reliable
way for tracking the changes made to the DOM. The improvements of this
library over the Mutation Observer API include the ease of using its API,
and grouping and filtering DOM alterations before reporting.

The mutation-summary library works in a way that it takes snapshots
of the DOM in specific intervals and then compares these snapshots in order
to find and report the differences between two subsequent snapshots. This
means that the transient changes that dissipate shortly, in such a short
time that they do not last till the next snapshot, are not reported. As the
state comparison intervals in Crawljax are significantly longer than those
of Mutation Observers and mutation-summary Library, we are interested
only in more durable changes that last for a considerable period of time.
Hence, the summarizing feature in this technology is very amenable to our
use-case. However, in use-cases where transient DOM state changes are of
importance, this library should not be used [18].

29

5.3. Alternative Methods for Tracking State Changes

5.2.5 Proxies

A proxy is a concept in computer networking which allows implementing
encapsulation in the design of network architectures [19]. A proxy server,
is a server intercepting the communications between a client and its server.
Intermediating between the client and the server , proxies can access and
modify the request from client before sending it to the server. Likewise,
proxies can also access and make alterations to the response from the server
before handing it to the client. Proxies are of different types and are used
for various purposes.

Different types of proxies include but not limited to Open Proxies, For-
ward Proxies and Reverse Proxies. Providing anonymity on the Internet,
filtering, caching and eavesdropping are examples of using proxies. Prox-
ies can be implemented in different layers of computer networking. Proxy
servers are in the form of software application or a physical device such as
a router. In this thesis we set up a software proxy intercepting HTTP and
HTTPS communication in the application layer.

Having explained the foundations upon which our proposed methods are
drawn, we continue the discussion by presenting the alternative methods we
came up with for improving the time consumption in the crawling.

5.3 Alternative Methods for Tracking State
Changes

We aim at bypassing unnecessary comparisons. Unnecessary comparisons
happen when an event is fired on some element but it does not lead to any
change in the DOM-tree, even a single byte. The current crawler, however,
performs the three steps mentioned above. We propose the idea of installing
a light weight agent in the browser side, instead of in the crawler side, to
track the changes in the DOM-tree. This agent should have the following
characteristics:

• It must be able to track every single change applied to the DOM.

• It should not impose considerable time overhead on the browser and
as a result on the crawling process.

• It must provide some interface that can be utilized for communicating
from the crawler

30

5.3. Alternative Methods for Tracking State Changes

We came up with three different solutions to build our agent with the
aforementioned desired characteristics. However, it is the experimental re-
sults that show how efficient the solutions are. Our solutions have three
components as it is shown in the figure 5.1. The injector component is
responsible for installing the agent in the browser side. The agent itself
is responsible for tracking DOM mutations and setting the mutation flag
whenever some changes are made to the DOM. Finally a communication
component that retrieving the mutation flag from the agent in the browser
is its main responsibility.

Generic Solution Components

Mutation
Tracker
Agent

Mutation-
Flag

Retriever

Agent
Injector

Figure 5.1: Generic solution components

We present the common approaches and technologies utilized in all al-
ternative methods we proposed in the next section. Following the common-
alities the differences are presented and each method is explained in details.

5.3.1 Shared Characteristics of the Solutions

Regarding the DOM change tracking part we utilized the Mutation-Summary
library to get notified of every single change made to the DOM. The com-
munication component of the agent was made feasible by introducing new
extension points to the crawler. Finally, in order to install the agent, we
made use of three different methods utilizing multiple technologies.

The Mutation-Summary library is very flexible in allowing us to define
what type of changes are of importance to us. As every single change in the
DOM-tree has the ability to be translated into a crawler-side state change,
we set the mutation tracker capabilities to track all types of change, in-
cluding textual and structural changes in forms of additions, deletions and

31

5.3. Alternative Methods for Tracking State Changes

substitutions. In addition we designed a flag for storing the mutation status
of the DOM-tree. This mutation flag is originally reset to false and upon ev-
ery single change made to the DOM it is set to true. True means that some
changes have been made to the DOM-tree and hence a full state comparison
is required.

A new extension point was introduced to the crawler to enable commu-
nications between our agent and the crawler. As it is shown in algorithm
3.2, the Crawljax algorithm fires an event on a candidate element, waits for
a certain amount of time and then retrieves the DOM-tree from the browser.
However, we made it possible to add additional functionalities at the very
exact point before retrieving the DOM-tree from browser. We utilized this
extension point to build the communication part of our agent. What we do
at this point is that instead of retrieving a huge DOM-tree from the browser,
we retrieve our mutation flag; If the flag is set to true we proceed with the
ordinary full comparison process, otherwise, assured that the state of the
DOM has not been changed we bypass the unnecessary DOM-tree retrieval
and comparison steps.

Now we move on with explaining each alternative solutions in details
and present the way they differ and how they are improved incrementally
over one another.

5.3.2 Proxy-Based Solution

In the first solution we utilized a proxy to install our agent in the browser
side. The agent is installed in the browser-side by intercepting the infor-
mation that is sent by the Web server of the application being crawled.
The information sent by the Web server is processed and whenever a new
page is sent to the browser the agent is appended to the page so as to
track the alterations of the DOM-tree. We set up a Web server to host the
Mutation-Summary library so it can be included as part of our agent. The
Mutation-Summary is hooked to the application as an external JavaScript.
The communication with the agent is performed utilizing the newly cre-
ated extension point explained earlier. The components of the proxy-based
solution are outlined in figure 5.2.

The proxy helps us achieve full control over data exchanged between the
browser and the server and install our agent smoothly. However, it imposes
a considerable latency on processing the information and as a result the time
it saves is less than its overhead. Hence we continued improving the agent
in the tow versions that are described in the following sections.

32

5.3. Alternative Methods for Tracking State Changes

Proxy-based Solution Components

Selenium-
backed

Mutation-
Flag

Retriever

Mutation
Tracking
Scripts

Mutation-
Summary

Library

Proxy-
based
Agent

Injector

External
Script

Injection

Web
Server

Figure 5.2: Proxy-based solution components

5.3.3 Plugin-Based Solution

As depicted in figure 5.3, in this version we retained the Web-server and the
communication point, but we eliminated the proxy component to achieve
time efficiency. As such, the role of the proxy, which was installing the
agent in the browser side, is carried out by building a new plug-in for the
crawler. This plug-in is attached to the crawler at an extension called On-
Page-Load plug-in. Hence, the plug-in installs the agent every time a new
page is loaded in the browser. In addition, whenever the communication
component attempts to retrieve the mutation flag, it checks whether the
agent is present in the browser. If the agent is not present, it injects it again
so it is installed and ready to function for the next iteration. This version of
solution works significantly more efficiently than the proxy-based solution
and outperforms the default behavior of the crawler. We, however, aspire
to further improve it as explained in the the second plugin-based method.

5.3.4 Plugin-Based Solution with In-Memory Agent

The performance achieved by the plugin-based solution realized our goal for
improving the time consumption of the transition management. However,
we had an intuition that placing the mutation-summary library on a Web-
server and fetching it repeatedly imposes a time overhead on the solution.
Hence, we designed another solution in which we eliminated the Web-server
as shown in figure 5.4. In this solution, the installer component holds a
copy of the library and injects it directly to the Web page simultaneously as

33

5.3. Alternative Methods for Tracking State Changes

Plugin-based with Server Components

Selenium-
backed

Mutation-
Flag

Retriever

Plugin-
based
Agent

Injector

External
Script

Injection

Mutation
Tracking
Scripts

Mutation-
Summary

LibraryWeb
Server

Figure 5.3: Plugin-based solution components–external injection

the core of the agent is injected. The difference here is that in the previous
version, a reference to the mutation-summary library was injected in the
page and the browser had to load the actual library itself, but in the new
version the actual library is injected directly. The other components are the
same as the Plugin-based Solution.

Internal Plugin-based Components

Selenium-
backed

Mutation-
Flag

Retriever

Plugin-
based
Agent

Injector

Internal
Script

Injection

Mutation
Tracking
Scripts

Mutation-
Summary

Library

Figure 5.4: Plugin-based solution components–internal injection

Having covered the three enhancements proposed for improving the time
consumption of the crawling, we present the experiments conducted to eval-
uate the three solutions in the next section.

34

5.4. Evaluation

5.4 Evaluation

We conducted a series of experiments to answer the research questions that
shaped the objectives of this thesis. In this section we break down the first
high level research question into three specific questions. Afterward, we
present the design of our experiments, the methodology of conducting them
and the results achieved from carrying out these experiments.

5.4.1 Research Questions Broken Down

Our first high level research question targets improving the time consump-
tion of the crawling process. Having explained more details about our en-
hancements to the state transition management, we delineate RQ1 into more
specific research questions to investigate the performance of our solutions.
We have three research questions associated with improving the time perfor-
mance of the crawling process. As explained in details earlier, these solutions
are proxy-based, plug-in based with Web server and plug-in based with in-
memory injection. Each research question addresses the time performance
of one of these solutions. Hence we state the following sub-questions:

RQ1.a : To what extent does the proxy-based solution for managing state
transitions improve the time performance of the currently employed
mechanism for managing state transitions?

RQ1.b : To what extent does the Plug-in-based solution for managing state
transitions improve the time performance of the currently employed
mechanism for managing state transitions?

RQ1.c : To what extent does the Plug-in-based Solution with in-memory
agent for managing state transitions improve the time performance of
the currently employed mechanism for managing state transitions?

We will investigate these question and explain the experiments conducted
to answer these questions in details in the following sections. We shed lights
on how we investigated the effects of replacing the default behavior of the
crawler by our alternative solutions.

5.4.2 Experimental Design and Methodology

We designed a serious of experiments to compare the enhanced versions with
the default version of the crawler to answer our research questions. In each
experiment we evaluate the enhancements made to the crawler against the

35

5.4. Evaluation

default behavior of the crawler. In each enhancement proposal additional
functionality has been introduced to the crawling algorithm. These enhance-
ments help track the mutations of DOM trees to bypass unnecessary com-
parisons. On the other hand, these enhancements can potentially introduce
time overheads to the system. Hence we devised a number of experiments
to measure the variables pertaining to the efficiency and correctness of the
various solutions in hand.

In these experiments the main variable measured is the time consumption
of default vs. enhanced crawling. However, we measure additional variables
to achieve more insights over the performance and the correctness of the so-
lutions. First, we measure the time overhead of the mutation tracker agent
i.e. the proposed solution. In addition, we measure the time spent on com-
paring identical DOM trees whose comparison is unnecessary. We performed
more measurements whose variables are explained in the following.

First and foremost, we measure the time consumption each alternative
solution imposes as an extra overhead on the system. This time is divided
into two categories. First, there is an overhead associated with installing
the agent in the application. This is the time required to intercept and
modify the responses sent from the server for the proxy-based solution and
plug-in injection time for the two other solutions. The second category is
the time each solution needs to retrieve the mutation flag. Furthermore,
we measure the time spent on performing unnecessary comparisons which
must be bypassed. These unnecessary comparisons are bypassed by the
enhanced solutions. Another variable that we measure is false negatives. A
false negative happens when the mutation flag shows no change in the state
of the DOM but actual DOM comparison informs us of mutations in the
state of the application. The total time of each experiment, the size of the
DOM-trees, number of events fired, number of bypassed comparisons, and
total number of states crawled are additional variables that we measure in
the experiments.

Experimentation Objects In these experiments we use the top most
visited Websites from Alexa list. These Web applications crawled as the
objects of the experiments are listed in table 5.1 along with the IDs assigned
to them. These IDs are specially used for effiency in using the limited space
in the tables and charts illustrating the experiments results.

The dynamics of Web application responses require careful attention in
designing the experiments. One important issue that needs careful attention
is that when performing an experiment on the client side of a Web applica-

36

5.4. Evaluation

Table 5.1: State transition management experiments objects

ID Web Application

ggle www.google.com

wkpd www.wikipedia.com

live www.live.com

twtr www.twitter.com

qq www.qq.com

amzn www.amazom.com

lnkn www.linkedin.com

tbao www.taobao.com

yndx www.yandex.ru

yhoo www.yahoo.com

tion, the server side characteristics should be taken into consideration. It is
quite possible that inputing the same sequences of events to the GUI of a
Web application result in two different responses from the server. In order
to mitigate the effects of the non-determinism induced by the server side
and the network characteristics, we repeat each experiment five times for
each Web application.

We measured the time consumption by means of the System class time
measurement capability. The number of maximum states for each experi-
ment was initially set to 30. However after conducting the experiments we
observed that if some applications are allowed to run for a maximum of 24
hours some of them could use up the default heap space and result in a heap
space error. Hence, we changed the heap maximum size and repeated the
experiments with the maximum number of states set to 10 state. The results
of performing the experiments along with precise definition of the variables
measured are presented in the next section.

5.4.3 Results

Each solution is evaluated by crawling all the object Web applications. For
each experiment, one Web application from the objects is crawled by the
crawler. The time saved by the solution and the time overhead imposed
on the crawler by the solution is measured in each experiments. The ex-
periments are run five times and the average (arithmetic mean) is taken
over the results. Result for the proxy-based, plugin-based with Web server,

37

5.4. Evaluation

and plug-in-based solutions are presented in the figures 5.5, 5.6, and 5.7
respectively.

Designing the experiments, we strove to measure all the meaningful met-
rics that are of importance to the evaluation of our proposed methods. Here
we explain these variables before presenting the results in the tables and
charts.

Saved Time : The time improvement achieved by introducing the new
solution. That is the time spent on unnecessary comparisons (i.e.
The time our solutions save). This includes the time that is spent
on communicating with the browser and retrieving the state of the
application. The additional overheads such as constructing objects for
states are also included in this variable. This is the main variable that
proposed enhancements must maximize.

Overhead : The time overhead imposed by the new solution to the crawler.
This is the main variable that proposed solutions must minimize.
Overhead time is the sum of flag time and proxy time for the proxy-
based solution. This is the sume of flag time and plug-in time for the
plugin based solutions. These are defined next.

Proxy : The time consumed by the proxy. In the first solution which proxy
plays a significant role we measure the time overhead of intercepting
communicants for injecting our agent.

Plugin : The time consumed by the “plug-in” based injections. In the two
plug-in-based solutions we measure the time overhead of injecting our
agent.

Flag : The ‘time’ consumed for retrieving the mutation “flag”. This in-
cludes the time required for communication with the browser, exe-
cuting javaScript in the application and retrieving the value of the
mutation flag.

Time : The total time of an experiment. That is the time beginning from
start of a crawl session until either reaching the maximum number of
states or quiting the experiment for other reasons such as exhausting
the state space of the application under crawl.

Events Fired : Total number of “events fired” on a Web application by
the crawler. The crawler fires events such as the click event on specific
elements in the applications under crawl.

38

5.4. Evaluation

Bypassed : The number of comparisons that are bypassed because the
agent notified the crawler that no change has been made to the state
of the Web application.

States : The number of states crawled in the experiment.

FN : The number of false negatives. False negative in this contexts are cases
where the mutation flag suggests bypassing a comparison because no
change has been reported by the agent, but the actual comparison
reveals that changes have been made to the state of the application
and have been recognized by the agent.

FP : The number of false positives. In this context a false positive happens
when existence of changes are reported by the agent but the actual
comparison decides the change is not significant enough to be consid-
ered as a state change.

Having covered the variables and acronyms that are to be used in the results
we present the results achieved from conducting the experiments in the
following section.

RQ1.A: Time Performance of the Proxy-Based Solution The proxy-
based solution was thoroughly assessed by crawling the experiment objects
multiple times. Figure 5.5 shows the main variables that were measured in
the experiments:

Improvement: The time the proxy-based solution saves by eliminating
unnecessary comparisons and communications.

Overhead: The time overhead imposed by the proxy-bases solution.

As it is presented in figure 5.5, proxy-bases solution time overhead is more
than the time it saves by improving the crawling process. The new solution
does not overtake the default behavior significantly. The new solutions per-
forms similar to the default version for four of the the ten cases. The default
crawler performs significantly better on six objects out of ten.

The proxy-based solution does not improve the time performance of the
state transition management process.

Table 5.2 presents the the experiments results in more details. For each
Web application the time saved by bypassing unnecessary comparisons are

39

5.4. Evaluation

ggle wkpd live twtr qq amzn lnkd yndx tbao yhoo average

Proxy−based Time Improvements vs. Time Overheads

Web Applications

T
im

e
(s

)

0
10

0
20

0
30

0
40

0
50

0

Saved Time
Overhead Time

Figure 5.5: Proxy-based solution time performance: the time overhead im-
posed by the proxy-based solution is much greater than the time it saves by
bypassing unnecessary comparisons. Hence, the default crawling performs
more efficiently. The bars represent the averages taken over 5 rounds of
experiments presented in table 5.2.

listed. In addition, the time overheads, one for retrieving the flag and an-
other one imposed by the proxy, are shown separately. These two items
are also summed up together as the total overhead and are listed under the
“Time Overhead” title. The total time of the experiments are also included
in table 5.2. The values shown in table 5.2 are averages taken over five
rounds of experiments. Further statistical measures about the results are
also provided; standard deviation in table 5.3, absolute value of coefficient
of variation (i.e. relative standard deviation) in table 5.4, maximum values
is table 5.5, and minimum values in table 5.6.

Table 5.7 presents the detailed data about the number of events fired on
experiment objects and how many of these events resulted in new states. It
also includes how many times the agent bypassed unnecessary comparisons.
The column, “Events Fired” shows the total number of events fired on the
application. In the default crawler, each fired event results in a comparison
to check whether the state of the application is changed or not. However, the
proposed solution bypasses a number of these comparisons. These measured
numbers of bypassed comparisons are listed in the “Bypassed” column. The
total number of states crawled in the experiments are included in the “State”

40

5.4. Evaluation

Table 5.2: Proxy-based time consumption (milliseconds); the proxy-based
“time overhead” is much greater than the time improvements i.e. “saved
time”.

ID Saved Time Proxy Time Flag Time Time Overhead Total Time

ggle 138.2 8931.6 130 9061.6 57113.4

wkpd 18601.4 83642.8 22008.2 105651 243323.4

live 6851.4 1606.6 739.4 2346 97208.2

twtr 4359.8 1558.8 496.8 2055.6 202418.8

qq 0 434564.8 97.4 434662.2 951066.2

amzn 47224.2 97183.8 914.8 98098.6 341746.6

lnkd 6087.8 30472.2 949.6 31421.8 114203

yndx 0 58768.8 91 58859.8 67407.2

tbao 132.6 332581.8 97.2 332679 616755.6

yhoo 327 5152.2 46.6 5198.8 26142.6

average 8372.24 105446.34 2557.1 108003.44 271738.5

column. False negative and false positives are also presented in “FN” and
“FP” columns receptively.

RQ1.B: Time Performance of the First Plugin-Based Solution The
first pulgin-based solution, which utilizes a Web server for hosting the mutation-
summery library is assessed for its time performance. We present the results
of the experiments in figure 5.6. We performed the experiments on the ob-
ject Web applications to compare the time performance of the proposed
plugin-based solution against the default crawling process. In these exper-
iments multiple variables are measured. However, the main two variables
that are present in figure 5.6are as following:

Improvement: The time the solution saves by eliminating unnecessary
comparisons and communication steps when there is no change in the
state of the Web application after firing an event.

Overhead: The time overhead imposed by the plugin-based solution.

As it is shown in figure 5.6 the sever-utilizing plugin-based proposed
solution performs more efficiency in the carrying out the state transition

41

5.4. Evaluation

Table 5.3: Standard deviations of proxy-based time consumption

ID Saved Time Proxy Time Flag Time Time Overhead

ggle 9.44 973.08 5.24 977.29

wkpd 2470.24 6258.46 2855.96 8666.19

live 1039.96 157.61 82.49 205.57

twtr 406.34 87.45 50.11 76.06

qq 0.00 22790.28 6.27 22786.71

amzn 4365.87 14216.21 104.32 14300.70

lnkd 891.01 3187.10 137.90 3298.76

yndx 0.00 4028.57 12.88 4036.75

tbao 12.30 27018.00 9.26 27025.11

yhoo 36.93 290.98 3.71 290.22

management tasks. As it is depicted in the bar chart in figure 5.6, on average
the proposed solution consumes less time than the default crawling process.
In addition, in half of the cases the proposed solution consumes considerably
less time than the time the default crawler spends on performing unnecessary
comparisons. It is only in one case that the proposed solution is more of an
overhead than an improvement, and in four cases out of ten the difference
is not very significant.

The plugin-based solution, utilizing a web server, improves the time perfor-
mance of the state transition management process by 253.34%. That means
the time consumption ratio of default to proposed is 3.5334, which means
the time consumption is reduced by 71.69%.

Aside from figure 5.6 which shows the gist of the results of the exper-
iments, we present the details of the data gathered in the experiments on
the the sever-utilizing plugin-based proposed solution in table 5.8. As it is
shown in table 5.8 time improvements of the solution in the experiments
are listed by Web application. The improvements are listed in the “Saved
Time” column, and the time overhead is provided as a total number under
the “Time Overhead” title. The time overhead is also broken down in to its
constituents, plugin time and mutation flag retrieval time in columns “Plu-
gin Time” and “Flag Time” respectively. The values presented in table 5.8
lists the averages taken over results of five rounds of experiments. Further

42

5.4. Evaluation

Table 5.4: Relative standard deviations percentages (absolute values of
coefficient of variation) of proxy-based time consumption

ID Saved Time Proxy Time Flag Time Time Overhead

ggle 6.83 10.89 4.03 10.78

wkpd 13.27 7.48 12.97 8.20

live 15.17 9.81 11.15 8.76

twtr 9.32 5.60 10.08 3.70

qq Not defined 5.24 6.43 5.24

amzn 9.24 14.62 11.40 14.57

lnkd 14.63 10.45 14.52 10.49

yndx Not defined 6.85 14.15 6.85

tbao 9.27 8.12 9.52 8.12

yhoo 11.29 5.64 7.97 5.58

statistical measures about the results are also provided; standard deviation
in table 5.9, absolute value of coefficient of variation (i.e. relative standard
deviation) in table 5.10, maximum values is table 5.11, and minimum values
in table 5.12.

Table 5.13 sheds more lights on the details of how the aforementioned
time performance improvements are achieved by the sever-utilizing plugin-
based proposed solution. The variables presented in this table have the same
meaning as those presented in table 5.7.

RQ1.C: Time Performance of the Second Plugin-Based Solution
The second plugin-base solution, which does not utilize a Web server for
hosting the mutation-summary library and instead injects it directly, was
also assessed thoroughly in the same manner as its two predecessors. We
present the gist of the experiments carried out on the ten object Web appli-
cations in figure 5.7. As it is shown in the bar chart, the second plugin-based
solution performs more efficiently than the default crawling process. As it
is shown in the average bars, the proposed solution consumes less time than
the default crawler on average. Moreover, in six cases out of ten, the pro-
posed solution takes over the default crawler. It is only in one case that the
proposed version consumes significantly more time than the default version.

43

5.4. Evaluation

Table 5.5: Maximum values of proxy-based time consumption (millisec-
onds)

ID Saved Time Proxy Time Flag Time Time Overhead

ggle 152 10273 137 10406

wkpd 20647 9 7 24209 115775

live 7468 1783 820 2603

twtr 4664 1683 568 2140

qq 0 469333 103 469427

amzn 51946 107874 6 108880

lnkd 6757 32909 1054 33953

yndx 0 63470 101 63569

tbao 147 369165 107 369267

yhoo 377 5615 52 5661

The plugin-based solution, not utilizing a Web sever, improves the process of
state transition management by 197.48%. That means the time consumption
ratio of default to proposed is 2.9748, which means the time consumption is
reduced by 66.38%.

In addition to figure 5.7 which presents the essence of the experiments
results, we shed more lights on the details of the time consumption by the
second plugin-based solution in 5.14. The variables presented in this table
have the same meaning as those in table 5.8. Here again, the time overhead
is presented in two ways. First, it is broken down to its two components,
the plugin time and the flag time. In addition, it is presented as the sum
of its two constituents in the column “Time Overhead”. The time improve-
ments of the proposed solutions is listed in the column “Saved Time”. The
averages taken over the results of five rounds of experiments are listed in
table 5.8. Further statistical measures about the results are also provided;
standard deviation in table 5.15, absolute value of coefficient of variation
(i.e. relative standard deviation) in table 5.16, maximum values is table
5.17, and minimum values in table 5.18.

Table 5.19 presents the data achieved from experiments which illustrates
in details the manner in which the second plugin-based solution bypasses
unnecessary comparisons and improves the time efficiency of the crawling
process. The variables presented in this table are the same as those presented
in tables 5.13 and 5.7.

44

5.4. Evaluation

Table 5.6: Minimum values of proxy-based time consumption (milliseconds)

ID Saved Time Proxy Time Flag Time Time Overhead

ggle 129 8038 124 8164

wkpd 14511 75281 17168 92449

live 4 1445 609 2105

twtr 3665 1449 442 1965

qq 0 408490 88 408591

amzn 40142 72889 770 73659

lnkd 4569 24990 742 25732

yndx 0 55830 69 55901

tbao 118 299326 85 299411

yhoo 294 4894 42 4942

As presented in the tables and figures so far, in summary, the proxy-based
solution does not improve the time performance of the state transition man-
agement process. The first plugin-based solution, utilizing a web server,
improves the time performance significantly. On average the first plugin-
based solution improves the time performance by 253.34%. That means
the time consumption ratio of default to proposed is 3.5334, which means
the time consumption is reduced by 71.69%. The third solution, which is
plugin-based and does not utilize a Web sever, improves the process of state
transition management by 197.48%. That means the time consumption ra-
tio of default to proposed is 2.9748, which means the time consumption is
reduced by 66.38%.

We will elaborate more on the results when revisiting research questions
in the discussion chapter. Having addressed state transition management
improvements we continue with presenting the improvements made to the
scalability of the crawling in the next chapter.

45

5.4. Evaluation

Table 5.7: Proxy-based bypassed comparisons: the detailed information on
events fired, comparisons that were categorized as unnecessary, false nega-
tives and false positives.

ID Events Fired Bypassed States FN FP

ggle 10 1 10 0 0

wkpd 169.8 154.2 10 4.2 6.6

live 72.6 62.4 10 8.8 1.2

twtr 50.8 41 10 8.6 0.8

qq 9 0 10 0 0

amzn 92.8 83.2 10 0 0.6

lnkd 100 90.4 10 0 0.6

yndx 9 0 10 0 0

tbao 10 1 10 0 0

yhoo 17.8 7.6 10 0 1.2

ggle wkpd live twtr qq amzn lnkd yndx tbao yhoo average

External−JS−Plugin−based Time Improvements vs. Overheads

Web Applications

T
im

e
(s

)

0
5

10
15

20
25

30

Improvement
Overhead

Figure 5.6: External js-plugin-based solution times: the first plugin-based
solution, which employs a Web server and injects scripts externally, overtakes
the default process. The time improvements on average is much greater than
the overheads imposed. The bars represent the averages taken over 5 rounds
of experiments presented in table 5.8.

46

5.4. Evaluation

Table 5.8: External js-plugin-based solution times (milliseconds): the time
improvements by the first plugin-based solution is much greater than the
time overheads it imposes on the crawling process.

ID Saved Time Plugin TIme Flag Time Time Overhead Total Time

ggle 0 136.8 190.8 327.6 57113.8

wkpd 12846 144.6 22757.2 22901.8 243323.6

live 6908.6 727.4 1211.8 1939.2 97208.4

twtr 6461.8 147.4 1106.6 1254 202418.8

qq 0 101.8 159 260.8 951066

amzn 22757.2 120.2 939.2 1059.4 341746

lnkd 3066.2 96.4 1432.8 1529.2 114203

yndx 0 109 144 253 67407.2

tbao 0 412.2 175.2 587.4 616755.8

yhoo 2400.4 509 424.4 933.4 26142.6

average 5444.02 250.48 2854.1 3104.58 271738.52

Table 5.9: Standard deviations of external-js plugin-based time consumption

ID Saved Time Plugin Time Flag Time Time Overhead

ggle 0.00 12.76 26.54 22.57

wkpd 1808.80 6.77 2015.18 2004.42

live 691.93 53.09 160.99 122.64

twtr 1078.02 15.06 127.21 76.19

qq 0.00 8.17 14.71 16.62

amzn 1354.61 9.65 68.53 76.86

lnkd 353.50 10.45 75.71 111.24

yndx 0.00 8.46 6.44 24.64

tbao 0.00 34.71 24.94 62.02

yhoo 184.15 48.40 33.26 83.67

47

5.4. Evaluation

Table 5.10: Relative standard deviations percentages (absolute values of
coefficient of variation) of external-js plugin-based time consumption

ID Saved Time Plugin Time Flag Time Time Overhead

ggle Not defined 9.32 13.90 6.88

wkpd 14.08 4.68 8.85 8.75

live 10.01 7.29 13.28 6.32

twtr 16.68 10.21 11.49 6.07

qq Not defined 8.02 9.25 6.37

amzn 5.95 8.03 7.29 7.25

lnkd 11.52 10.84 5.28 7.27

yndx Not defined 7.75 4.47 9.73

tbao Not defined 8.42 14.23 10.55

yhoo 7.67 9.50 7.83 8.96

Table 5.11: Maximum values of external-js plugin-based time consumption
(milliseconds)

ID Saved Time Plugin Time Flag Time Time Overhead

ggle 0 151 211 356

wkpd 14130 151 25032 25882

live 8085 785 1457 2058

twtr 8337 160 1329 1354

qq 0 111 178 279

amzn 24122 130 1023 1154

lnkd 3372 114 1506 1682

yndx 0 119 151 280

tbao 0 467 192 628

yhoo 2664 554 465 1036

48

5.4. Evaluation

Table 5.12: Minimum values of external-js plugin-based time consumption
(milliseconds)

ID Saved Time Plugin Time Flag Time Time Overhead

ggle 0 124 147 294

wkpd 9765 134 20029 20840

live 6286 654 1090 1764

twtr 5751 130 1029 1181

qq 0 91 141 239

amzn 20484 110 854 985

lnkd 2579 88 1332 1391

yndx 0 97 135 225

tbao 0 379 131 478

yhoo 2184 440 386 813

Table 5.13: External js-plugin-based bypassed comparisons: the detailed in-
formation on events fired, comparisons that were categorized as unnecessary,
false negatives and false positives.

ID Events fired ByPassed States FN FP

ggle 9 0 10 0 0

wkpd 170.6 158.4 10 1 3.2

live 72.2 62.6 10 0 0.6

twtr 69.4 59.8 10 0 0.6

qq 9 0 10 0 0

amzn 64.6 54 10 0 1.6

lnkd 100.4 91 10 0 0.4

yndx 9 0 10 0 0

tbao 9 0 10 0 0

yhoo 18.8 9.8 10 0 0

49

5.4. Evaluation

ggle wkpd live twtr qq amzn lnkd yndx tbao yhoo average

Internal−JS−Plugin−based Time Improvements vs. Overheads

Web Applications

T
im

e
(s

)

0
5

10
15

20
25

30

Improvement
Overhead

Figure 5.7: Internal js-plugin-based solution times: the time the second
plugin-based solution improves is greater than the time overheads it im-
poses on the process. hence, the second plugin-based solution also overtakes
the default state transition management system. The bars represent the
averages taken over 5 rounds of experiments presented in table 5.14.

Table 5.14: Internal js-plugin-based solution times (milliseconds): the sec-
ond plugin-based solution overtakes the default process. The time it im-
proves is greater than the time overhead it imposes on the crawling process.

ID Saved Time Plugin Time Flag Time Time Overhead Total Time

ggle 0 163.8 160.6 324.4 112488.6

wkpd 12516.6 169.4 22748.8 22918.2 196764.2

live 7024.2 261.4 1063.4 1324.8 96941.2

twtr 4144.8 123 787.8 910.8 190713.8

qq 0 147.6 133.4 281 233494.2

amzn 12997.6 459.6 558 1017.6 131194.4

lnkd 3046.6 127 1387 1514 115787

yndx 0 102.6 179.2 281.8 65686.2

tbao 546.2 245.8 190.4 436.2 550140.2

yhoo 1941 290 296 586 650855

average 4221.7 209.02 2750.46 2959.48 234406.48

50

5.4. Evaluation

Table 5.15: Standard deviations of internal-js plugin-based time consump-
tion

ID Saved Time Plugin Time Flag Time Time Overhead

ggle 0.00 19.28 16.29 14.12

wkpd 1914.28 30.95 1883.50 2698.28

live 629.92 29.74 78.32 80.70

twtr 192.48 9.67 92.94 68.77

qq 0.00 18.15 6.99 25.42

amzn 656.91 37.29 43.82 141.02

lnkd 314.51 5.34 44.67 152.09

yndx 0.00 12.34 9.81 17.43

tbao 33.74 32.67 17.53 35.49

yhoo 191.88 18.49 23.44 35.89

Table 5.16: Relative standard deviations percentages (absolute values of
coefficient of variation) of internal-js plugin-based time consumption

ID Saved Time Plugin Time Flag Time Time Overhead

ggle Not defined 11.77 10.14 4.35

wkpd 15.29 18.26 8.27 11.77

live 8.96 11.37 7.36 6.09

twtr 4.64 7.86 11.79 7.55

qq Not defined 12.29 5.23 9.04

amzn 5.05 8.11 7.85 13.85

lnkd 10.32 4.20 3.22 10.04

yndx Not defined 12.02 5.47 6.18

tbao 6.17 13.29 9.20 8.13

yhoo 9.88 6.37 7.91 6.12

51

5.4. Evaluation

Table 5.17: Maximum values of internal-js plugin-based time consumption
(milliseconds)

ID Saved Time Plugin Time Flag Time Time Overhead

ggle 0 195 176 347

wkpd 15774 224 24571 27275

live 7726 300 1148 1406

twtr 4393 135 899 992

qq 0 178 142 311

amzn 13517 505 619 1243

lnkd 3381 135 1456 1665

yndx 0 123 193 309

tbao 603 300 217 473

yhoo 2195 316 324 623

Table 5.18: Minimum values of internal-js plugin-based time consumption
(milliseconds)

ID Saved Time Plugin Time Flag Time Time Overhead

ggle 0 149 133 308

wkpd 11139 150 20701 20397

live 6321 237 967 1218

twtr 3937 110 701 828

qq 0 134 128 252

amzn 12217 409 510 905

lnkd 2711 120 1332 1349

yndx 0 91 167 262

tbao 518 218 171 396

yhoo 1766 266 266 533

52

5.4. Evaluation

Table 5.19: Internal js-plugin-based bypassed comparisons: the detailed in-
formation on events fired, comparisons that were categorized as unnecessary,
false negatives and false positives.

ID Events fired ByPassed States FN FP

ggle 9 0 10 0 0

wkpd 170.2 158.4 10 1.2 2.8

live 73.2 63.4 10 0 0.8

twtr 49.6 40 10 0 0.6

qq 9 0 10 0 0

amzn 34.6 25.4 10 1.8 0.2

lnkd 100.4 91.2 10 0 0.2

yndx 9 0 10 0 0

tbao 13.8 4.8 10 0 0

yhoo 16.6 7 10 0 0.6

53

Chapter 6

Increasing the Number of
States Crawled

In this chapter, we make the case for improving the scalability of crawling
modern Web applications. As mentioned earlier, crawling modern Web ap-
plications is a resource intensive process. In particular, managing storage
and retrieval of states of Web applications has the potential to overwhelm
the memory of the crawler. The memory required for storing the states’ data
is likely to be of considerable size in modern Web applications. This mainly
depends on the average size of the states as well as the number of states
in the application under crawl. As the number of states in the state ma-
chine increases, the memory allocated to the state machine grows larger and
larger. This continues up to a point where no further memory allocation is
possible because all memory available to the crawler is already allocated. At
this point, the crawler breaks and the crawling process stops. To tackle this
problem, we aimed at improving the memory utilization so that a “greater
number of states can be crawled” before all memory is allocated.

In this chapter, first we briefly explain the background knowledge and
foundations on which the proposed enhancements are laid. As such, we touch
upon the way memory management is achieved in Java because Crawljax,
the crawler on which we examined our abstract ideas, is implemented in Java.
This is done to pave the way for explaining the proposed improvements,
the experiments, and the memory analysis. The memory management is
followed by explaining how we chose a graph database for application in
our solution. In fact, in the process of realizing our ideas into functional
measurable capabilities, we needed to select a graph database for creating an
alternative solution for improving the memory consumption in the crawling
process. Hence early in this chapter, we explain how the comparison is done
among all viable options for selecting a graph database.

In what follows, we continue with touching upon the foundation of mem-
ory management to help present the suggested improvements, the memory
analysis and the experiments.

54

6.1. Memory Management

6.1 Memory Management

The way memory is allocated and freed in the crawler does not solely depend
on the way the tool is implemented. In fact, it is only the memory allocation
that is performed directly in the manner the design and implementation of
the crawler dictates. However, the deallocation part of the memory manage-
ment is performed automatically by lower level layers of the Java technology
which complicates memory measurements and optimizations in this project.
Hence we provide a brief introduction to the founding concepts of memory
management in Java Virtual Machine on which the crawler is executed.

6.1.1 Java Virtual Machine Heap

JVM heap is the part of JVM memory in which all class instances and arrays
reside. All threads in a JVM share the same heap. JVM heap is created
at the beginning when the JVM starts up. The heap can be of either a
variable or an invariable size. In the former case, the heap can increase in
size if the application requires more memory. Likewise, the heap size can
also be reduced if the allocated heap is too large for the current consumption
requirements of the application [20, 21].

There are also a number of JVM options that can be set (e.g. as com-
mand line arguments) to specify the initial, minimum, and maximum size
of the JVM heap. Aside from being limited by the maximum size option
(-Xmx), the size of the physical memory available to the underlying system
on which the JVM runs is an upper limit for the heap size.

JVMs can also implement memory management processes to elevate the
efficiency of memory utilization. These management processes are some-
times referred to as garbage collection (GC) processes. In order to make
room for creating new objects, memory management processes remove the
objects that are not necessary to be detained in the memory anymore.

However, if an application consumes the heap memory up to a degree
that there is no more space left for creating further required objects, the out
of memory error happens for the JVM and the application execution stops:

If a computation requires more heap than can be made available
by the automatic storage management system, the Java Virtual
Machine throws an OutOfMemoryError.
— JVM Specification [21]

55

6.1. Memory Management

6.1.2 Garbage Collection

Garbage collection or memory management in Java is the process of re-
moving the objects that will not be used in the future so as to to prepare
allocatable space for new objects in the memory. Contrary to C and C++
languages which require the programmer to be in charge of object deallo-
cation, Java takes care of clearing memory from unused objects. In what
follows, memory management concepts such as the nursery, young genera-
tion and old generation are described to shed light on how JVM performs
the memory management task.

As it is depicted in figure 6.1, there are two significant divisions in the
JVM heap: the nursery (or young generation) and the old generation. The
nursery is the part of the heap where new objects are allocated. When
the nursery is full the memory management process performs a garbage
collection in the nursery to make room for new objects. At the same time,
the objects that are still in use, and as a result are not collectible, are
promoted to another part of the heap which is called old generation. The
garbage collection on the nursery is called young or minor collection. When
the old generation space is full the garbage is collected in that place too.
The GC on old generation space is called old or major collection.

Figure 6.1: Java heap divided into generations and the runtime options.
Source: [2].

The concept of having a nursery in the heap is introduced to improve
the performance of garbage collection. As “most objects are temporary and
short-lived,” [21] a two generational heap allows implementing two types of
GC to improve the efficiency. As the most recently allocated objects are in
the nursery, the GC required for the nursery could generally be much faster
than the GC of the old generation space or the GC of a single-generational

56

6.2. Criteria for Alternative Solutions

heap (a heap that treats old and new objects in the same manner in terms
of collecting them).

Another improvement in the garbage collection process is that the JVM
reserves a part of nursery for the most recent objects. This area is called
the keep area and it is exempted from the first upcoming young collection.
The reason behind this is that the objects that are just created in the keep
area are very likely to survive the first next young collection and hence
be promoted to the old generation. The problem here is that once the
objects are promoted to the old generation space, they become immune to
young collection and hence are kept in memory till the next major garbage
collection. However, the keep area objects are either cleared or promoted
by the second upcoming young collection.

Having covered the foundation of memory management in Java which
will help clarify the memory related concepts throughout the chapter, we
continue with discussing the qualities identified as requisite for alternative
methods aiming at improving the memory consumption.

6.2 Criteria for Alternative Solutions

Optimizing the memory utilization is one of the goals of this work. As men-
tioned previously, there are multiple drivers that cause extensive memory
consumption in modern Web application crawling. We, however, focus on
the memory requirements driven from managing the storage of states in the
crawling process. If the state space of a Web application is of considerable
size and states of the application are sizable on average, the crawling process
runs out of memory at some point and stops crawling. In order to mitigate
this limitation, we propose our ideas for improving the scalability of the
crawling process.

Investigating the scalability problem of the crawling process, we put for-
ward the idea of creating an alternative method for storing the sate machine
containing the states of the application. As the state machine is concurrently
accessed and it plays a significant role in the crawling process, our alternative
solutions must deliver the following qualities:

• It must provide safe concurrent write and read capabilities for storing
and retrieving states.

• It must not impose a considerable time requirement on the crawling
process.

57

6.3. Criteria for Selecting a Graph Database

• It must have the flexibility for designing a suitable graph structure
similar to the structure of the state machine which is a graph data-
structure in the crawler.

• The memory overhead imposed by the execution of the solution and of
the communications with it must not defy the purpose of the solution.
That is, it must use less memory than the default crawler.

Taking the above characteristics into consideration, searching for solutions
to achieve our goal of improving memory consumption, we put forward the
idea of utilizing a graph database.

Graph databases are optimized for utilization in applications whose data
can naturally be presented in a graph like form. In addition, some graph
databases provide transaction management and multiple access capabilities
that are able to handle concurrent accesses. However, there are many graph
databases, with various complexities and capabilities. We have to conduct a
comparison to decide which graph database is most suitable for being used
in our solution. Furthermore, the time and memory overheads imposed by
the selected database will be the focus of our research questions, and they
will be extensively investigated in our experiments.

In order to perform this comparison, we need to set out the criteria
for performing the comparison including what functionalities need to be
supported and what qualities must be held by the database. In the following
section we explain how we extract the criteria for selecting the database by
reverse engineering the crawler.

6.3 Criteria for Selecting a Graph Database

Based on the investigation of Crawljax, we discovered the required function-
alities that the alternative solutions must provide. A preliminary research
on the concepts and characteristics of graph databases also helped find-
ing a number of additional criteria for comparing current graph databases.
We wield the criteria to sift the available options and choose the right graph
databases that fulfills our requirements the best. The guidelines for choosing
the database is explained in what follows. They include required functional-
ities, licensing, partial locks, the ability to have complex nodes in the graph,
and productivity and maintenance issues such as offering an API for Java
and Maven public repository availability.

58

6.3. Criteria for Selecting a Graph Database

6.3.1 Required Functionalities

Based on the investigation of the source code of Crawljax, we deduce that
any alternative solutions we provide for the Crawljax state-storage and re-
trieval mechanism have to provide the following functionalities:

• Concurrent reading from the stateflow graph

• Concurrent writing to the stateflow graph.

• Insuring uniqueness when adding states.

• Insuring the presence of the start and end nodes when adding an edge
in the stateflow graph.

• Managing the count of states already in the graph in a block-free and
thread safe manner.

• Feasibility of implementing a directed multigraph data structure.

• Finding the previous state of a given state in the state-machine.

• Calculating the path to a given state from the index state.

• Getting all outgoing edges from a node.

• Finding all incoming edges to a node.

• Finding outgoing nodes from a given node or at least Finding the
target node of an edge.

• Finding the target node of an edge.

• Checking if an edge exists between two nodes.

• Calculating the shortest paths from a given vertex to another vertex,
ideally by Dijkstra.

• Finding all nodes

• Finding all edges

We also identified a number of implicit requirements that we needed to
fulfill. These requirements, extracted from investigation of the crawler logic
and code are presented briefly as follows. First, we should be aware that
whenever changes are made to the state of the application under crawl, the

59

6.3. Criteria for Selecting a Graph Database

state must be compared to all previous states in the stateflow graph. Hence
we need to have a method for performing these comparisons to ensure the
uniqueness of states added to the stateflow graph. However, if the states
are stored as primary keys in the database, or if the database does not
allow duplicate vertices, the database itself might have an optimized way of
performing the comparisons. On the other hand, we might not have to store
the whole state object in the stateflow graph and instead it might suffice to
store the IDs of the states or their hashed representations. In that case, we
have to provide mechanism for linking these states’ keys to actual states’
data.

6.3.2 Licensing

It is very important for us to ensure that the licensing characteristics of the
graph database matches the Crawljax open source licensing. In particular,
we consider if it is a propriety software or it is available under some type
of open-source license too. As Crawljax itself is offered under the generous
Apache version 2 license, we would like to avoid imposing any limitations on
users of the crawler. To that aim, we avoid choosing more restricted licenses
and proprietary licenses.

6.3.3 Partial Locks

In the default version of the crawler, the methods that add states to the
multigraph are synchronized over the entire stateflow graph. Thus when a
crawling node is examining the uniqueness of a new state or when a crawling
node is adding the new state to the graph, the whole stateflow graph is
locked. What is ideal for us is to find a graph database that is able to
provide a facility to update, add or delete states and edges without locking
the entire graph. Hence ability to lock the database partially is of critical
importance to us in the selection of a graph database.

6.3.4 Storing Objects in Nodes and Edges

Crawljax stores various information in nodes and edges of the stateflow
graph. As the states and the navigational paths between them comprise
multiple objects, our database must be able to store these objects or at
least a transformation of the objects in its nodes and edges.

60

6.4. Comparison of Graph Databases

6.3.5 API for Java and Maven Availability

As Crawljax is completely implemented in Java and it utilizes Maven de-
pendency management facilities, we prefer to use a database that provides
a Java API and it can be added as a dependency to Crawljax via public
maven repositories.

Having covered the criteria and guidelines for selecting a graph database
for application in our solution, we go on with presenting the actual compar-
ison and selection of the database in the next section.

6.4 Comparison of Graph Databases

We conducted a comparison among the available graph databases in order
to select the most applicable graph database for our application. The com-
parison is based on the criteria listed in section 6.3. In addition, to those
criteria, we considered the design flexibility and the maintenance implica-
tions of our design as well. In particular, although some of the triple stores
seemed to be promising in terms of the maturity of the software product, we
decided not to proceed with triples stores. The reason was to avoid impos-
ing unnecessary complexity to the crawler system. This complexity would
be introduced by having to transform a graph like data to a set of complex
relationships that could be shaped into triples. Hence, to eliminate the need
for this transformation, we omitted triple stores from our final choices.

Table 6.1 shows the comparison of the databases that we considered
for utilization in our solution. The shortenings used in the table have the
following meanings:

Funct. : The functionalities listed in the guidelines in section 6.3.1

J & M : API for Java and Maven public repository availability.

SCONE : Storing complex objects in nodes and edges.

GDB : Graph database name.

PL : Partial locks.

As this comparison is performed in a more qualitative than quantitative
manner, we use a three level scale for each criteria. These levels are depicted
as the background color of the cells of the table. These levels are shown in
the table 6.2.

61

6.4
.

C
om

p
arison

of
G
rap

h
D
atab

ases

Table 6.1: Graph databases comparison: Neo4j emerged to be the most suited graph to our application.

GDB Licensing J & M PL Funct. SCONE

Neo4j GPLv3 Yes Yes Yes Yes

FlockDB APL2 Not Maven Yes No No

GraphDB APL2 Not Maven Yes Yes HyperGraph

AllegroGraph Proprietary Not Maven Yes Partially TripleStore

BigData GPLv2 Yes Yes Yes RDF

Filament BSD Poor Yes Poor No

Graphbase Proprietary Not Maven Yes Yes RDF

HyperGraphDB LGPL Yes Yes Complex HyperGraph

InfiniteGraph Proprietary Yes Yes Yes Yes

InfoGrid AGPLv3 Yes Yes Partially No

Titan APL2 Immature Yes Yes Yes

62

6.5. Scalable Solution

Table 6.2: Graph databases comparison scale levels

Level Color

Acceptable Green

average Yellow

Not very acceptable Red

Based on the comparison presented in the table 6.1, it emerged that
Neo4j is the graph database most suited for utilization in our application.
As it is shown in the table 6.1 this graph database satisfies all our desired
characteristics. Especially its extensive locking options is very useful for
concurrent access requirements of the crawling process. It also provides
an optional multilevel caching that can optimize the time performance of
the crawling. It is implemented in Java and is available in Maven public
repository. Furthermore, its open-source license fits well with the Crawljax
license.

Having covered the foundations on which the scalable solution is based,
the discussion is continued by presenting our ideas for improving the number
of states crawled in the next section.

6.5 Scalable Solution

Having selected Neo4j as our choice of graph database, we built an alter-
native solution for storage and retrieval of the state-machine. Aiming at
freeing the memory needed for storing the state machine, we utilized the
graph database to delegate all the state storage functionalities to secondary
memory. We utilized the graph database capabilities to provide all the
previous functionalities of the in-memory stateflow graph. In addition, we
wrapped the solution in the very same interface as that of the in-memory
stateflow graph. Introducing a new component to the crawler, we aimed
at increasing the scalability of crawling by exploring a greater number of
states.

Handling concurrent accesses to the state-holder data structure is one of
the important aspects of the crawling algorithm. Our alternative solution
handles multiple concurrent accesses by utilizing the database’s transaction
management capabilities. The Neo4j graph database transactions support
the ACID properties and ensure the safety of concurrent read and write
operations.

63

6.5. Scalable Solution

As the API we provide for the proposed state storage solution is the
same as the default one, the changes are encapsulated only within the scope
of the storage component. However, as one of the internal differences of the
proposed solution is that it has to serializes the live objects into persisted
byte arrays so as to be compatible with the graph database acceptable data
types. Hence, we changed numerous classes with minor alterations to ful-
fill the requirement for serializability. Bearing in mind that introducing a
database component to the system brings about time and memory trade-offs,
we describe them in the following.

6.5.1 Memory Performance Trade-Offs

Delegating the management of the states and transitions between the states
to a component that predominantly does not use main memory for storing
data frees a considerable amount of space in the main memory. On the
other hand, utilization of a database introduces an additional memory over-
head. The database (which is not an in-memory one) requires significantly
frequent IO operations. These IO operations are memory consuming. In
addition, we serialize the states and transitions before storing them in the
database. Likewise, we deserialize them before making them alive and use
them in the crawling process. The serialization and deserialization processes
are of considerable memory overheads. The transactions conducted by the
database cause substantial memory overhead as well.

6.5.2 Time Performance Trade-Offs

In the current status of the crawler, the whole state machine is locked when
a process wants to add a new state to the data structure. This puts other
processes in hold state and increases the time consumption of the crawling.
In the scalable solution however, partially locking transactions expedite the
process of crawling by eliminating the need for locking the entire state-
machine. On the other hand, the scalable solution needs to communicate
with the hard disk very frequently. This means the additional latency of the
IO operations has the potential to impose a significant time overhead on the
crawling. It is however the evaluation that answers how significant it can
be. In the next session we discuss the evaluation of the scalable solution.

64

6.6. Evaluation

6.6 Evaluation

In the scalable crawling solution, we aimed at increasing the number of
states crawled by improving the memory performance of the crawling. To
this aim, we utilized a graph database to free the main memory from being
allocated for state storage purposes. We aimed at answering the research
questions by conducting experiments addressing the correctness, memory
performance and time performance of the solution.

We conducted a series of experiments to answer the research questions
that shaped the objectives of this work. In this section we present the design
of our experiments, the methodology of conducting them and the results
achieved from carrying out these experiments. We discuss the evaluation of
the scalable crawling solution and results of the related experiments in the
following.

6.6.1 Research Questions

Considering the time and memory trade-offs of the scalable solution, we
are interested in investigating how our solution performs in real crawling
sessions. As such, we designed a number of research questions to shed light
on the applicability of our solution. We defined three research question to
pinpoint the goals of the enhancements carried out in this work. These
research questions address the correctness, scalability and performance of
the proposed solution compared to the default version of the crawler.

In particular we address three different aspects of the proposed solution
for improving the scalability of crawling. We investigated if the solution
performs the task of crawling in a correct manner. In addition, we measured
how scalable the new solution works compared to the default version of the
crawler. The time performance of the alternative solution was investigated
too. In addition, new research question emerged from witnessing interesting
observations during the experiments.

To delve into the goals of the work, here we break down the second
research question into three more specific research questions to pinpoint the
objectives of the research.

Correctness The first sub-question addresses the correctness of our graph
database based solution. This is indeed important because the state-machine
plays a very critical role in the crawling process. Especially taking into
account the concurrent aspects of the crawler.

65

6.6. Evaluation

RQ2.a : Does (and to what extent) the proposed solution perform the task
of crawling a Web application correctly?

This research question, inherently, dictates a type of experiment that is very
similar to what is generally carried out in the process of testing software
artifacts. Thus, we need to define what correctness means in this context.
In fact, similar to software testing, we need an oracle to decide whether the
task of crawling is performed correctly or not.

Scalability: Memory Performance The second subquestion addresses
the scalability of the new mechanism for managing states storage and re-
trieval.

RQ2.b : To what extent can the proposed crawler crawl Web applications
in a more scalable manner than the default version of the crawler does?

In the context of this work, we define the scalability of a crawler as the ability
to crawl and store more states within a given Web application utilizing a
certain amount of main memory. Hence, this RQ aims to determine whether
the proposed version is able to overtake the the default version in crawling a
larger number of states within a Web application while the maximum Java
heap space is limited to a certain amount of memory.

Time Performance In the third sub-question we target the time con-
sumption of the proposed solution compared to the default crawler.

RQ2.c : How does the graph database-backed solution perform in crawling
Web applications in terms of time consumption?

This research question examines in particular the time the proposed version
requires to crawl a Web application compared to the default version of the
crawler. We are interested to see which version crawls a specific number
of states in a Web application in a shorter amount of time, given a limited
amount of memory.

Having stated and explained the research questions highlighting the ob-
jectives of the work, we move on with the discussion of how we pursued the
answers to these questions by designing the experiments.

6.6.2 Experimental Design and Methodology

Correctness Experiments As the very first step, the correctness must be
defined in the context of this work. In order to achieve this goal, we need to

66

6.6. Evaluation

find a baseline for assessing our new solution. This baseline is naturally the
original crawler. Hence, we assume that the default version of the crawler
crawls a Website correctly. As such, correctness, in this context, means
performing the task of crawling in the same manner as the default version of
the crawler does . This, in turn, suggests that correctness means producing
the same output as the the original version. So the default version can be
utilized to achieve an oracle for assessing the proposed version. Moreover,
this oracle can be used to determine to what extent the new version performs
in equivalence to the default version. As mentioned in the introduction, the
crawler builds a model out of the crawling of a Web application in form of a
stateflow graph. We utilize this stateflow graph model to compare whether
our proposed crawler produces the same output as the default version.

There are two important issues that need to be addressed before we use
the stateflow graph for shaping our oracle. First, we should beware that we
are implicitly assuming the default version of the crawler is deterministic.
Deterministic in this context means if we crawl the same Web application
repeatedly, the same stateflow graphs are built as the result of the crawling
sessions. In addition, we need to have a Web application that its state
transitions remain the same over the course of multiple crawling sessions. In
other words, the Web application must not behave randomly, must not have
time-based behavior or any other types of behavior that leads to different
stateflow graphs over multiple crawling sessions.

The first step in this experiment is to either find or build a deterministic
Web application for being used as objects of the correctness experiments.
Building one such web application seemed to be more feasible, if not the
only option, because we still cannot use the crawler for finding deterministic
Websites. The reason is that we do not know if the crawler is determinis-
tic yet. As such, we built a Web application that has multiple clickables.
Firing click events on these clickables causes the state of the application
(the DOM-tree) transition to numerous states. The key point here is that
the application is designed in a way that clicking on a specific sequence of
elements will always result in the same sequence of state transitions. This
Web application is assured to work deterministically being tested thoroughly
and manually. Having a simple and manageable design, the application is
completely deterministic.

Having confidence on the determinism of the object application, we need
to investigate if the crawler has a deterministic behavior too. Determinism
for the crawlers means that, given the Web application is deterministic, the
partial stateflow graph created by the crawler is identical over multiple crawl
sessions. This means if we set a limit on the total number of states crawled,

67

6.6. Evaluation

and crawl the Web application twice, the resulting stateflow graphs, SFG1

and SFG2 must have the following properties:

• The number of states found in both stateflow graphs, SFG1 and
SFG2, must be equal.

• All the states present in SFG1 must be present in SFG2 too and vice
versa.

• Given there is a transition T1 between States S1 and S2 in SFG1,
there must be a transition T2 in SFG2 which joins counter parts of S1

and S2.

By partial stateflow graph we mean the states of the Web application is not
exhaustively discovered to a point that no further state is detectable in the
Web application.

In order to assess if these qualities hold in the crawler, we conduct an
experiment to answer the following research question:

RQ2.0 : Is the default version of the crawler deterministic in crawling Web
applications?

In order to answer this question, we crawl the object application we
developed ten times and compare the stateflow graphs to see if they hold
the above qualities. The comparisons result shows that the stateflow graphs
have the above criteria. This means we can rely on the deterministic nature
of the crawler to form our correctness oracle.

Having discussed the determinism of the crawler, we proceed with in-
vestigating if the graph database-backed solution works correctly. To assess
the correctness of the proposed solution, we crawl the deterministic Web
application with both the default crawler and the crawler enhanced by our
solution. Afterward, we compare the two state-flow graphs based on the
properties listed above.

In order to further investigate the correctness of the proposed solution,
we do not limit the experiments to the deterministic Web application devel-
oped by ourselves. Having ensured the default crawler is deterministic, we
use it to find more deterministic Web applications. The solution we came up
with for finding additional deterministic Web applications is that we crawl
a Web application multiple times with the default browser and compare the
stateflow graphs. If the stateflow graphs were equal then we deduce the
application is deterministic and can be used in correctness experiments.

68

6.6. Evaluation

We started running the determinism test on top Alexa Websites to check
if we could find objects for our experiments. However, these most visited
Web applications are highly complex and we found none of the top ten were
deterministic. We also tested other simple applications that we expected
they might be deterministic but still none of them were. What we did we
started crawling random Websites hoping that we could find some determin-
istic Web applications. Fortunately we found a number of Web applications
that they were deterministic. So we used them as objects of the correctness
experiments. The application that found to be deterministic are listed in
the table 6.3 and the Websites crawled and were not deterministic are listed
in the appendix A .

Table 6.3: Correctness experiments objects

States Crawled Web Application

50 www.al-awda.org

50 www.martinkrenn.net

50 www.thething.it

50 www.c-level.org

50 www.rprogress.org/index.htm

50 www.math.mcgill.ca det

1 www.isc.org/downloads/BIND

1 www.hunyyoung.com

2 home.planet.nl/mooij321

1 www.antique-hangups.com

3 www.project451.com

1 lmuwnmd.wpengine.com/...

Scalability Experiments As we finished the correctness experiments,
having assured that the new solution crawls Web applications in the same
manner as the default crawler and produces the same output, we pro-
ceeded with the memory performance experiments. However, the first results
showed that our solution was not able to outperform the default version in
terms of the number of states it crawled. We concluded that it is either a
sign of inefficient memory consumption in our solution, or an indicator of
too huge a memory overhead imposed by the solution .

As a result, we conducted a comprehensive memory analysis on the de-

69

6.6. Evaluation

fault crawler and the new solution to understand how exactly the memory
is consumed by different components of the crawler and finding inefficiencies
in them. This memory analysis gave us insight into the internal behavior
of the crawler and helped resolve the inefficiencies. The memory analysis is
presented after the experiments results in section 6.7.

Conducting the scalability experiments, we investigated whether the new
version could improve the number of states crawled compared to the default
version of the crawler as stated in the research question RQ2.b. To this aim,
we crawled a number of top Alexa Web sites by the proposed crawler and
the default crawler to compare memory utilization in the two versions of the
crawler. The important variables and facts about the experiments are as
follow.

• Top 10 Alexa Websites are crawled as the objects of our scalability
experiments.

• We limit the memory by setting the maximum Java heap size to one
Gigabyte.

• The most important criteria for comparison is the number of states
crawled given the limitation on the memory usage.

• For each crawling experiment the default version and the enhanced
crawler are run by the same configurations.

• The maximum number of states is set to be unlimited so the crawler
crawls till it uses up all the memory, given the Web application has
enough states.

• DOM size for each state is measured and recorded.

To evaluate the memory performance of the proposed solution we crawled
ten most popular Websites from the Alexa top sites. With each versions of
the crawler, we crawled each Web application five times and then took the
average of the results over the five crawling sessions. In each experiment we
collected the average DOM size of the states in characters. Most importantly
the number of states crawled up to the very point before throwing the out-
of-memory exception was recorded in the experiments. The objects of the
scalability experiment are presented in table 6.4.

As mentioned in the background, there is always a limitation on the
amount of memory available to Java heap, be it a start up option or the
maximum capacity of the system on which it is running. We, however, set

70

6.6. Evaluation

Table 6.4: Scalability experiments objects

ID Web Application

ggle www.google.com

wkpd www.wikipedia.com

live www.live.com

twtr www.twitter.com

qq www.qq.com

amzn www.amazom.com

lnkn www.linkedin.com

baid www.baidu.com

fb www.facebook.com

yaho www.yahoo.com

this limitation to one Gigabyte. We selected 1 Gigabyte as the upper limit
because in a system used by developers for programming, such as the system
we have been using, 1 Gigabyte is almost the maximum amount that can
be allocated to the Java heap while being able to run other tasks, e.g. the
experiments in our case, smoothly without having the system freeze. The
experiments end when the crawler allocates all the Java heap memory and
throws an out of memory error because there is no more memory left to
allocate to the requests of the crawling process.

We had various options for measuring memory consumption in the ex-
periments. We utilized VisualVM and Yourkit Java profilers for monitoring
the memory consumption of the two versions of the crawler. In section 6.6.3
we discuss the results of the experiments.

Time Performance Experiments As mentioned in the explanation of
RQ2.c, time performance in this context is assessed on a holistic approach
and is based on time required to crawl Web applications by the two versions
of the crawler. In particular, we aim at investigating which version requires
less time to crawl a certain number of states in the object Web applications.
There are a number of important differences between these two versions of
the crawler that are determining in the result of the experiments. In par-
ticular we are interested in investigating the counter effects of the following
characteristics.

First, the scalable version utilizes a database that resides in a secondary

71

6.6. Evaluation

memory (hard disk). This means the database requires to perform a consid-
erable number of I/O requests and as a result it might consume significant
time while storing and retrieving data. On the other hand, and more inter-
estingly, the database does not have to lock the stateflow graph to add or
update the data in contrast to the default version which locks the stateflow
graph and as a consequence, threads cannot update the model simultane-
ously in the default version.

The objects of these experiments are the same as the scalability listed in
the table 6.4. We crawl each of these Web applications five times with both
crawlers and measure the time. The maximum number of states is set to 100
and the memory of the Java heap is set to a maximum of one Gigabyte. As
mentioned in the scalability experiment, there is always a maximum for the
Java heap. If we had not set the maximum manually it would have been the
default amount for the maximum. Hence, given the fact that all objects were
crawlable up to 100 states within utilizing 1 Gigabyte of memory, we opted
to set this upper limit which also goes well with scalability experiments too.

Having covered the design and methodology of the experiments, we
present the results of the experiments in the following section.

6.6.3 Results

The results of the experiments are presented here to answer the three re-
search questions that were explained in the previous sections. These research
questions targeted the correctness, scalability, and time performance of the
proposed solution.

RQ2.A: Correctness We conducted the correctness experiments on the
the Web application listed in table 6.3. In addition, we ran the experiment
on the deterministic Web application that we developed as well.

The results show that the new solution works correctly in crawling all of the
Web applications crawled. Hence, the answer to RQ2.a is positive.

The scalable crawler produces completely the same output as the default
crawler. In fact, the first correctness experiment that we ran was not positive
but that led us to find the bugs and fixed them to achieve a point that the
results were positive for all Web applications.

RQ2.B Scalability The gist of the results of the scalability experiments
are presented in the bar charts of figure 6.2 and 6.3. As it is presented in

72

6.6. Evaluation

figure 6.2, the result show in all experiments the proposed solution performs
more efficient and demonstrates more scalability than the default version.
In addition, as it is shown in figure 6.3, the proposed crawler achieves im-
provements in all experiments with an overall average of 88.16%. Hence, the
answer to question RQ2.b is:

The proposed solution improves the scalability of crawling process by 88.16%
on average.

Table 6.7 shows how the new solution outperforms the default version while
tested on different Web application objects. This table shows the details of
the results.

ggle wkpd live twtr qq amzn lnkd baid facb yaho average

Scalable vs. Default No. of States Crawled

Web Application

N
o.

 o
f S

ta
te

s

0
50

0
10

00
15

00
20

00
25

00
30

00

Default
Scalable

Figure 6.2: Scalable vs. default no. of states crawled: in all cases the
proposed version overtakes the default crawler in terms of the number of
states crawled given a limited amount of heap memory.

RQ2.C: Time Performance As presented in table 6.6, the default crawler
performs more efficiently than the proposed solution. This is, in fact, no
surprise to our expectations. As discussed in 6.5.2, the time performance
trade offs prepares for the fact that introducing a slower component such
as secondary memory to the crawling process can slow down the system.
Moreover, compared to the scalability achieved by the solution, the time
overhead is not too intolerable. Hence, the answer to question is: although

73

6.7. Further Memory Analysis

ggle wkpd live twtr qq amzn lnkd baid facb yaho average

Scalability Improvements

Web Application

Im
pr

ov
em

en
t P

er
ce

nt
ag

e

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Figure 6.3: Scalability improvements: the percentage of increase in the num-
ber of states crawled.

the proposed solution outperforms the default crawler in two cases, and in
six out of ten cases the time overhead is less than 10%, on average the time
performance of the default crawling technique sounds more promising.

The proposed solution imposes a time overhead which is 18.20% on average
and if Facebook.com is excluded from the results, the rest of the experiments
show a time overhead of 6.13%.

6.7 Further Memory Analysis

As mentioned earlier we performed a comprehensive memory analysis on
both the default crawler and the enhanced version. We performed this
analysis to achieve more insight on the way memory is utilized in the heap
so as to crawl a greater number of states by means of improving the memory
performance.

The initial goal of this memory analysis was to discover the inefficiencies
of the proposed version so as to achieve more scalability. This lead to finding
two memory leak points and patching them. However, after finding the
memory leak points and achieving the scalability, we continued the analysis
in more depth so it can be utilized in future memory optimizations.

74

6.7. Further Memory Analysis

Table 6.5: Scalability experiments results: the proposed version outperforms
the default crawler in terms of the number of states crawled.

ID Default States Scalable States Improvement (%)

ggle 257.4 1057.6 310.88

wkpd 347.6 919.6 164.56

live 1407.4 2593.4 84.27

twtr 114 133.2 16.84

qq 130.2 176.4 35.48

amzn 284.8 412.8 44.94

lnkd 1357.8 2506.8 84.62

baid 247 303.4 22.83

facb 1362.4 2096.4 53.88

yaho 331.4 541 63.25

average 584 1074.06 88.16

We have considered two main approaches to compare the efficiency of
memory consumption of the two versions of the crawling algorithm. First,
we can limit the amount of memory available to both crawlers and measure
the number of states crawled before consuming all memory. The other op-
tion is to limit the number of states and measure the amount of memory
consumed in the crawling. Both of these methods have some advantages
and disadvantages.

As the aim of this work was to increase the number of states crawled
given a limited amount of memory (e.g. one Gigabyte), measuring the num-
ber of states is a more intuitive approach for carrying out the experiments.
However, measuring the memory gives us more insight on what internally is
taking place and helps us understand if the memory is used efficiently. More-
over, measuring the memory consumption can pinpoint pointers for finding
inefficient parts of the crawler and fixing them. Hence we use both methods
to achieve a deeper insight over the memory consumption characteristics of
the crawlers.

In order to compare the scalability of the two versions of the crawler we
started off by carrying out an experiment with the specifications listed in
table 6.7.

What we measured here was the number of states crawled given the
limited amount of memory. None of the crawlers exceeded the time limit.
In fact, the time limit was deliberately set to 10 hours as by experience

75

6.7. Further Memory Analysis

ggle wkpd live twtr qq amzn lndk baid facb yaho Average

Scalable vs. Default Time Performance

Web Application

T
im

e
(s

)

0
50

0
10

00
15

00 Default
Scalable

Figure 6.4: Scalable vs. default time performance: the proposed version
overtakes the default crawler only in two cases out of ten and in six cases
time overhead is less than 10 %. However, on average the time overhead is
18.20%.

we knew that this amount of time is enough for both crawlers to exceed
the memory limit. The results however, to our surprise, showed that the
proposed solution did not outperform the default crawler in terms of the
number of states crawled. The default version crawled 533 states while the
proposed solution crawled only 378 states.

Availing from the second approach, we carried out another experiment
by profiling the crawlers using VisualVM profiling tool. We set up a second
experiment with specifications outlined in table 6.8.

The result of the experiment, however, shows that the default version
is consuming less memory than the enhanced version which was surprising
for us. The memory consumption in the default version shown in figure 6.5
reaches a maximum of 78 Megabytes while the enhanced crawler exceeds a
memory consumption of 197 Megabytes which is shown in figure 6.6. As
a result, we repeated the same experiment but changed the object of the
experiment, by crawling www.yahoo.com instead of the previous URL. How-
ever, the results are not still promising. We observe, as shown in the figures
6.7 and 6.8, a spike at the early stages of crawling for both crawlers. Af-
terward, non of the crawlers shows significant improvement over the other
version.

By observing the memory consumption graphs of VisualVM and the

76

6.7. Further Memory Analysis

Table 6.6: Time performance experiments results: the default crawler per-
forms more efficiently on most of the cases. However, in two cases the
proposed solution overtakes the default crawler and in six out of ten cases
the time overhead is less than 10%.

ID Default Time (s) Scalable Time (s) Overhead (%)

ggle 219.2 231.8 5.75

wkpd 439.4 557 26.76

live 510.2 512.4 0.43

twtr 1237.8 1535.8 24.07

qq 837.2 952.4 13.76

amzn 310.2 271.4 -12.51

lndk 196 170.6 -12.96

baid 969.4 1007.6 3.94

facb 137.8 312.6 126.85

yaho 281.6 298.2 5.89

Average 513.88 584.98 18.20

Avg Excl. facb 555.67 615.24 6.13

log output of the crawlers, we come to conclusion that we need to revise
the experiments. First, observing considerable spikes at the beginning of
the crawling proves that 100 state is not a justifiable limit for the number
of states because the memory required for the storage of the states is not
considerable enough to make the maximum happen in the end of the crawling
rather than the beginning. In addition, the graphs produced by VisualVM
do not distinguish between old generation and young generation. Hence we
considered utilizing a more powerful tool providing us with more information
about the memory utilization.

In fact, automatic garbage collection in Java, which cleans the unused
memory in a relatively complicated way, makes memory measurement ex-
periments more cumbersome. The main reason is that, the frequency of
garbage collection is not dependent solely on having unused memory to be
cleaned, i.e. the frequency is not constant. The frequency is also depen-
dent on the amount of memory available to be allocated. The less memory
available in the heap the more frequent garbage collections occur.

In addition, there are two types of garbage collection, major, and minor
garbage collections, each of which affects the used memory measurements

77

6.7. Further Memory Analysis

Table 6.7: Initial memory experiment specifications

Aspect Specification

URL www.yahoo.com

Maximum Number of States Unlimited

Maximum Depth 10

Maximum Time 10 Hour

Maximum Memory 1.5 Gigabyte

Table 6.8: Second memory experiment specifications

URL www.google.com

Maximum Number of States 100

Maximum Depth 10

Maximum Time 10 Hours

Maximum Memory 1.5 Gigabytes

Profiling Tool VisualVM

differently. There is almost always a difference between the amount of mem-
ory allocated and the amount of memory that we expect to be allocated
based on our assumptions about the algorithm of a Java program. Hence,
measuring memory in specific points of times, while not having confidence
whether the garbage collection is performed or not is not the best available
indicator of memory utilization.

In the default crawler, as states’ data is detained in the memory till the
end of the crawling, we expect this data is not garbage collected, neither by
major collection nor by minor collection. On the other hand, when running
the proposed crawler, we expect the states data be garbage collected once
in a while as all references to this data are gone after saving the state data
in the database. As such, we need the young generation and old generation
measurements to understand if the objects related to the state in the memory
is garbage collected or not.

Hence, instead of comparing memory at specific points of time, we need
to have old and young generation data, and observe their trends. What we
expect to observe is that, the states information is freed in the enhanced
crawler by comparing the trends of the old generation in two crawlers. So

78

6.7. Further Memory Analysis

Figure 6.5: Memory consumption of the default version: the experiment is
carried out on google.com and the memory consumption is demonstrated.

we profile both crawlers with Yourkit Java profiler to achieved a better
understanding of the memory consumption in both crawlers.

First of all, we found two leak points in the proposed crawler. In fact
what held us from achieving more scalability was that as the states were
being added to the the stateflow graph one by one, they were also being
referenced in a another sub-component of the crawler that was responsible
for managing the paths of the crawling. By fixing leak points in those
parts we achieved the scalable results presented in the scalability experiment
results.

Utilizing Yourkit profiler, we took snapshots of the memory usage of the
default crawler and discovered the information summarized as follows:

• State machine method in which the new states are created (newState-
For) amounts for 52 percent of the memory allocated to the objects.

• Inspecting the new DOM amounts for 45 percent of the memory allo-
cated to objects.

• 99 percent of the objects created by the newStateFor are state objects.

• Objects allocate by the inspectNewDOM method are mostly DOM
related objects such as HTML element, HTML anchor element, HTML
script element etc.

79

6.7. Further Memory Analysis

Figure 6.6: Memory consumption of the proposed version: the experiment is
carried out on Google.com and the memory consumption is demonstrated.

We conducted the same analysis on the snapshot taken from the scalable
version and the information is summarized in the following:

• State machine method in which the new states are created (newState-
For) amounts for 52 percent of the memory allocated to the objects.

• Inspecting the new DOM amounts for 64 percent of the memory allo-
cated to objects.

• Similar to the default version, Objects allocated by the inspectNew-
DOM method are mostly DOM related objects such as HTML element,
HTML anchor element, HTML script element etc.

• The method follow(), which brings the browser from index to the state
that must be explored, allocates 24 percent of the memory to objects
mostly used for IO.

• States object retain only 2 percent of the memory

• The candidate actions amount for 69 percent of the memory

We performed seven different memory inefficiency inspections on the
both crawlers to diagnose potential memory inefficiencies.

80

6.7. Further Memory Analysis

Figure 6.7: Memory consumption of the default version: the experiment is
carried out on Yahoo.com and the memory consumption is demonstrated.

The plot of memory utilization by two versions are provided in figures
6.9 and 6.10

As it was expected the long generation for the default crawler is ascend-
ing because states are not freed and retained in the memory. However, for
the proposed solution the freeing of states objects makes the graph descend-
ing at times.

As presented in the tables and figures of this chapter, the proposed solution
works correctly in crawling all object Web applications. In addition, the
proposed solution improves the scalability of crawling process by 88.16%.
This improvement is achieved on a time overhead cost. The proposed crawler
imposes a time overhead which is 18.20% on average and if Facebook.com
is not considered, the rest of the experiments suggests a time overhead of
6.13%.

Having illustrated our improvement ideas on the scalability of the crawler
and presented the the results of the experiments, we revisit the questions
and the answers obtained for them in this work in the next chapter.

81

6.7. Further Memory Analysis

Figure 6.8: Memory consumption of the proposed version: the experiment
is carried out on Yahoo.com and the memory consumption is demonstrated.

82

6.7. Further Memory Analysis

0 500 1000 1500 2000 2500 3000 3500

0
20

0
40

0
60

0
80

0
10

00
12

00

Java Heap Memory Consumption of Default Crawler

Time (seconds)

M
em

or
y

(M
eg

ab
yt

es
)

Old Generation
Young Generation
Heap Size

Figure 6.9: Default memory consumption: the lowest curve (in red) shows
old generation allocation. On top of that, the young generation (in salmon)
is presented. The highest curve (in blue) shows the maximum amount of
memory available to be allocated, i.e. Java heap size. The important obser-
vation here is that the old generation allocation never drops as all the states
are detained in memory. In this experiment Java maximum heap size is set
to 1 gigabyte and 330 states are crawled.

83

6.7. Further Memory Analysis

0 2000 4000 6000 8000 10000 12000 14000

0
20

0
40

0
60

0
80

0
10

00
12

00

Java Heap Memory Consumption of Scalable Crawler

Time (seconds)

M
em

or
y

(M
eg

ab
yt

es
)

Old Generation
Young Generation
Heap Size

Figure 6.10: Improved memory consumption: the lowest curve (in red) shows
old generation allocation. On top of that young generation is presented
(in salmon). The highest curve (in blue) shows the maximum Java heap
memory available to be allocated. One of the results of our work is that the
old generation allocation occasionally drops, i.e. states data is freed. This
enables the crawler to discover 542 states using 1 gigabyte of memory.

84

Chapter 7

Discussion

Having presented the proposed enhancements and their evaluations in the
last two chapters, in this chapter we revisit the research questions and dis-
cuss the findings in more details. We review the findings of the state transi-
tion management work first and then continue the section with dissertating
the answers to the research questions of the scalability work. Furthermore,
we discuss the “threats to validity” of the work as well. Finally the ideas
emerged from this thesis for the direction of future work finalizes this chap-
ter.

7.1 State Transition Management

Time performance improvement was the target of the enhancements we put
forward for enhancing the state transition management of the crawling pro-
cess. In order to achieve the improvement, we brought forth and developed
three alternative methods for managing the transition of states in the crawl-
ing process. The results of evaluation of these methods, revised incremen-
tally one after another, are discussed in this section.

7.1.1 RQ1.A: Time Performance of the Proxy-Based
Solution

The goal of the experiments on the proxy-based solutions was to examine
to what extent this method is able to improve the time efficiency of state
transition management. As it is shown in figure 5.5, the time overhead
the proposed enhancement imposes on the crawling process is significantly
greater than the time improvement it brings about. In eight cases out of ten,
the default crawling process performs better than the proposed proxy based.
Moreover, in seven cases out of of the aforementioned eight cases, the default
crawler consumes significantly less time than the proposed solution. The
prospered solution overtakes the default crawling process only in two cases
and the performance difference in these two cases are not as considerable
compared to difference in the cases where it is overtaken by the default one.

85

7.2. Scalability

All in all, as it is shown in the average bar, the default version performs
better than the proposed one. Having performed this experiment, we now
have a better insight on the effects of utilizing a proxy for time optimization,
in the crawling process. In fact, the findings of this part of the work helped
guide the rest of the study to a great extent. For example, we had planned
to form two other projects for which proxy utilization would have been a
pivotal issue.

7.1.2 RQ1.B: Time Performance of the First Plugin-Based
Solution

Similar to the RQ1.a, the goal here was to assess the time performance but
for the second solution we proposed. Having revised this solution based on
the lessons learned from the development and evaluation of the previous
solution, we assessed the time performance of the solution by the same set
of experiments as that of the proxy-based solution.

As it is shown in the bar-chart of figure 5.6, the first plugin-based so-
lution, improves the time performance of the state transition management
to a great extant. The proposed solution overtakes the default version in
6 cases and in the rest of the cases the difference is not very significant.
The proposed solution, on average, improves the time consumption of the
transition management process by 253.34%.

7.1.3 RQ1.C: Time Performance of the Second
Plugin-Based Solution

The time performance of this version of the crawler was assessed in the very
same way as its two predecessors. As it is illustrated in figure 5.7, the third
solution improves the time performance of the state transition management
of the process. Although this version of the crawling process was theoret-
ically more improved than the second solution, the results show that this
version, on average, improves the time performance of the transition man-
agement process by 197.48% which is less than the second solution. However,
this version also significantly overtakes the default version.

7.2 Scalability

In the scalability part of this work, we developed the idea of creating an
alternative solution for storage of web application states’ data. The alterna-
tive solution employs a graph database for storing the data to let the main

86

7.2. Scalability

memory be available to the rest of the tasks in the crawling process. We
devises three research question targeting the correctness memory and time
performances of the crawling process. In the process of carrying out the
work further questions emerged which we seized the opportunity to examine
them.

7.2.1 RQ2.0: Determinism of the Crawler

In the process of designing the experiments for pursuing answers to RQ2.a
which targeted the correctness of the proposed solution, we faced the chal-
lenge of developing an oracle for examining the correctness of the solution.
As we opted to utilize the default solution in shaping the oracle, we had to
figure out if the crawler behave deterministically. Hence, we formed RQ2.0
and carrying out the experiments, the result showed that the default crawler
is completely deterministic.

7.2.2 RQ2.A: Correctness

Having assured the determinism of the default crawler, we built and har-
vested a number of object web applications and assessed the correctness of
the proposed solution. The oracle used for testing the correctness of the
solution was formed over the stateflow graph that the crawler builds out
of crawling a Web application. The results of the experiments show that
the proposes solution crawled all the object Web applications completely
correctly. It discovered the same stateflow graphs as the default crawler.

7.2.3 RQ2.B: Memory Performance

Having obtained full confidence on the correctness of the proposed solution
from the experiments results, we continued with the memory performance
part of the work. RQ2.b investigates to what extent the proposed crawler
increases the number of states crawled. The answer to this question is illus-
trated in figures 6.2 and 6.3. As it is shown in the figures, the proposes so-
lution is able to outperform the default crawler in all instances and achieves
a greater state coverage. The proposed solution, on average, improves the
scalability by 88.16%.

The scalability improvements achieved here can potentially be useful if
the crawler will be deployed as a cloud computing service (e.g. on Amazon
Web Services). Especially, supporting partial locks on the stateflow graph,
the proposed crawler can help implement an efficient concurrent deployment
of the crawler. On the contrary, the default version of the crawler needs to

87

7.3. Threats to Validity

lock the whole stateflow graph when it requires to add states or transitions
to the data structure.

7.2.4 RQ2.C: Time Performance

In order to improve the scalability of the crawling process, we opted for
creating an alternative solution utilizing a graph database. As mentioned in
the discussion of the trade-offs, we investigated the effects of the discussed
counter-effects. As the results of the experiments show, the default version
of the crawler outperforms the proposed solution in most of experiments.
However, in two out of ten instances the proposed solution overtakes the
default version and in five out of ten cases the time overhead imposed by
the proposed solution is less than 10%.

Having provided an overview over the research questions and the answers
obtained by the experiments, we move on with discussing the threats to
validity concerns.

7.3 Threats to Validity

This threat to validity component sheds more light on some of the concerns
we have had during this work. We provide details on how we endeavored to
mitigate them. In this section we address internal and external threats to
validity of this work.

7.3.1 Internal Validity

In the first part of this work, the state transition management improvements,
we encountered a substantial obstacle. The top Alexa Websites are highly
complex Web applications and they are not deterministic by any means. In
order, to mitigate the determinism problem of the experiments, we decided
on running a greater number of experiments on each object and then take av-
erage over results. However, after carrying out the experiments, we observed
the state transition management part of the crawling process amounts for
a tiny portion of the total crawling time. As a result, we strove on finding
a method that could compare the two versions of the crawler on the same
circumstances. Hence, we put forward the idea of having both versions of
the state transition management plugged into the crawler at the same time.
This way, when checking whether the application has transitioned to a new
state or not, we first use the mutation-summary library to inquire about
changes made to the DOM. Afterward, regardless of the report provided by

88

7.4. Future Work

our agent, we perform the default comparison behavior. Now, if the muta-
tion summary reports of no change and the comparison also reaffirms it, the
time spent for the default comparison is regarded as the time that would
have been saved if we had plugged in only the proposed solution. We mea-
sure the time each of the solutions consumes on performing its tasks and
then compare them bases on these times.

7.3.2 External Validity

Regarding the external validity of this work, the most important concern
here is how well the conclusion can be generalized. Firstly, the Web ap-
plications selected as the objects of the experiments can highly affect the
final results. The set of all Web applications on the Internet is too large to
find a fairly acceptable representative subset for it. Hence, to mitigate the
systematic error, i.e. the bias in selecting object Web applications, we opted
to choose the most visited Websites from Alexa top list.

In addition, configurations of the crawler for running the experiments
provide us with a wide set of options; for example, the types of HTML
elements chosen to be clicked on during the crawl can be pivotal to the
final results of the experiments. In order to mitigate this bias, we cared
for selecting the configurations that are most natural, general and mean-
ingful for crawling a Web application for testing, comprehension or analysis
presupposes.

Having discussed the threats to validity of this work, we move on with
outlining the directions this research for future work.

7.4 Future Work

Throughout performing multiple projects that shaped this thesis, we achieved
a greater insight on the area of crawling modern Web applications. From
the experiences learned in this thesis, we bring forth three ideas to move
this work to the next level. These ideas, from a higher level perspective, lie
in the areas of improving the time performance and further improving the
scalability of the crawling process.

7.4.1 Further Scalability through String Optimization

One of our presumptions about the crawling process was that memory al-
located to states’ data is the only obstacle in achieving absolute scalability.
That is, we assumed if the memory is not used for states storage, we can

89

7.4. Future Work

endlessly resume crawling. However, from performing the memory analysis,
we discovered two important areas of limitation. First, one of the diagnostic
tests for the memory consumption of the crawler revealed that a very con-
siderable amount of memory is waisted by having multiple instances of the
same string in the memory. Further investigation showed that these strings
originate predominantly from the HTML attributes and elements extracted
form the DOM-tree. Possible solutions that we can suggest is to employ
string interning techniques. The second area of memory optimization fol-
lows in the next section.

7.4.2 Further Scalability through Candidate Elements
Optimization

Performing the memory analysis, we discovered that storage of candidate
clickable elements is the number one cause for consuming up the memory
resources. As such, we think the next area which is worth investigating
to improve the scalability, is developing alternative methods for storage of
candidate clickables. This can be carried out either by utilizing a graph
database, or changing the order of storage of the elements. That is, it is
possible to change the logic so there is no need for storing all the candidate
clickables of all the stored states in the memory.

7.4.3 Scalability Improvement by Text Compression
Techniques

As string objects containing HTML elements consume a significant amount
of memory in crawling Web applications, we believe that utilizing text
compression techniques has the potential to improve the scalability of the
crawler. Especially, large DOM strings of the same application may share
a considerable portion of content which brings about memory optimization
opportunities.

7.4.4 Improving Time Performance Targeting

RQ1 targeted the time performance of the state transition management of
the crawling process. As presented in the result, the improvements achieved
in the second and the third solutions were very significant. In addition, the
lessons learned from the proxy-based solution were also very instructional in
guiding the directions of the rest of the project, specially which directions
not to pursue. However, we also learned from the second part of the project,
during the memory analysis, that utilizing a tool such as YourKit profiler,

90

7.4. Future Work

we might be able to find more significant areas for optimization. That is, we
are not sure, but it is possible that among manifold areas of optimization,
pinpointed first by our insight over the crawling process, a preliminary com-
parison over the significance of the selected areas, results in more significant
achievements.

91

Chapter 8

Related Work

Web crawlers have been a major area of research [22–34] since the inven-
tion of the Web. Optimizing Web crawlers, as a consequence, has been an
attractive research topic too [35–37]. Here we discuss a number of studies
in the literature focusing on optimizing the performance of different Web
crawlers. In addition, as we performed a comparison on graph databases,
we enumerate some other studies comparing graph databases too.

8.1 Optimizing the Crawling Process

Jourdan et al. propose a strategy for efficient crawling of modern Web ap-
plications (which they call rich Internet applications) [38]. The proposed
method creates a model for predicting the behavior of modern Web applica-
tions, and based on this model produces an execution plan that is optimized
for finding new states in the shortest amount of time. Afterward the model is
updated based on the discovered states if the new states are not compatible
with the previous model. The authors compare their techniques with other
modern Web crawlers and depth-first and breadth-first crawling strategies.

In another study [39], Jourdan et al. improve their previous work [38]
by utilizing statistics gathered during a crawl session to predict optimized
strategies for selecting the next part of the application to be crawled. The
authors compare the performance of their proposed strategy with breadth-
first strategy, depth-first strategy and their previous crawling strategy.

In 1999, Heydon et al. [35] investigated the inefficiencies in their Java
Web crawler called Mercator. In particular they found that they have to
refactor their crawler to make their code more aligned with regards to the
characteristics of Java Runtime Environment such as the mechanism mem-
ory is allocated and deallocated in Java Heap and excessive synchronization.
They investigated the synchronization, memory management and other as-
pects of the Java and achieved performance improvement in the crawler. In
another paper [36], they explain the Web crawler implemented in Java, by
enumerating the components of web crawlers and explaining the alterna-
tives and trade-offs of different approaches. They compare the performance

92

8.2. Graph Database Applications

of their crawler with that of GoogleTMin terms of rate of downloading doc-
uments, the volume of data downloaded, and HTTP request sent.

Another study in the area of optimizing the crawling process in web
applications was done by Edwards et al. [37] at IBM research center. This
study focuses on optimizing the Webfountain web crawler. The Webfountain
is an incremental web crawler, i.e. the crawler updates the versions of the
websites it has already crawled when they are updated.

Edwards’ paper has a target that is relatively different from the aim of
this thesis. They aim to optimize various competing criteria of crawling
Web, such as freshness, in Webfountain. They propose an adaptive model
that optimizes managing the URL queue and internal variables of crawling
in Webfountain. They utilize simulation and computational models to eval-
uate their work, but hope to evaluate it on real data once Webfountain is
operational.

8.2 Graph Database Applications

In this thesis we compared many graph databases to select the graph database
most suited to our applications. Graph databases have been either the tar-
get of research or been utilized in many research projects [40–48]. We found
research focusing on comparing different aspects of graph databases [49–52].
A paper which is to some extent similar to our comparison is performed
on the comparison of models of graph databases; in this paper, Angels et
al. [53] investigate the area of modeling graph databases in a survey. They
focus on the various aspects of modeling such as query languages, data
structures, and integrity constraints. We have availed of these studies, in
performing a comparison of our own, for choosing the best database suited
to our application.

93

Chapter 9

Conclusion

Aiming at improving time consumption and scalability of crawling modern
Web applications, we proposed and evaluated our enhancements ideas in
this thesis. Availing of efficient DOM monitoring techniques, we focused on
providing three alternative solutions for reducing time consumption of the
“state transition management” sub-task of the crawling process. The main
idea for improving the time consumption was to bypass unnecessary steps of
the state transition management by efficient tracking of alterations made to
the DOM. In addition, utilizing a graph database for storage and retrieval
of dynamic Web states, we aimed at increasing the number of states crawled
by freeing the memory detained by states during a crawling session.

We used Crawljax, a modern Web crawler, as the platform for actualizing
our ideas into concrete implementations so as to evaluate them. As such, we
reverse engineered Crawljax to gain insight on the default crawling process
and applying our ideas in terms of enhancements to Crawljax.

In order to improve the time consumption of the state transition manage-
ment, we developed three alternative solutions that were revised incremen-
tally one after another. In all three solutions, an agent for tracking DOM
mutations was developed to be installed on browser side of Web applications.
The first solution, utilized a proxy for installing the monitoring agent and
a Web server for hosting the agent. The proxy was replaced by Crawljax
plugins in the second solution but the Web server was retained for hosting
the agent. Finally, in the third solution, agent installation was carried out
by Crawljax plugins in the same manner as the second solution but the Web
server was eliminated from the design and the agent was incorporated in the
core of the solution.

The crawling process in the crawler captures dynamic state changes and
navigational paths between the states to form a finite-state machine model
called stateflow graph. Aiming at reducing main memory consumption to
increase the number of states crawled, we proposed the idea of providing an
alternative solution for storing the stateflow graph data structure in a graph
database on secondary memory. We conducted a comparison over graph
databases in which Neo4j emerged to be the graph database most suited

94

Chapter 9. Conclusion

for our application. We implemented a scalable solution utilizing the graph
database to free memory from states’ data and provide the rest of crawling
tasks with freed memory to continue the crawling to cover a greater number
of states.

The proposed solutions were evaluated by comparing them with the de-
fault crawler. Five rounds of experiments were carried out on ten Web
applications selected form Alex most visited websites. In experiments on
state transition management, maximum number of states was set to 10 and
the time consumptions of the default crawling process and each enhanced
version were measured simultaneously. In the state coverage improvement,
the scalable crawler output (stateflow graph) was compared with the output
of the default version to ascertain the correctness of the proposed solution.
The maximum amount of Java heap memory was set to one Gigabyte and the
number of states crawled was measured to evaluate the scalability of the pro-
posed solution. To assess the scalable solution in terms of time consumption,
maximum number of states was set to 100 and the total time consumptions
of the scalable solution and the default crawler were measured.

The results of the experiments showed that proxy-based solution was
not able to reduce the time consumption of the “state transition manage-
ment”. Having learned that proxy imposed a significant time overhead on
the crawling process, we changed the direction of the thesis. The second
solution, revised based on the results of the proxy-based solution, was able
to improve the time performance of the state transition management , on
average 253.34%; that means time consumption ratio of default to proposed
is 3.53. For the third solution, the ratio of time consumption of default
version to time consumption of proposed solution is 2.9748 which means
197.48% improvement in time performance.

Comparing stateflow graphs created by scalable and default crawlers
upon crawling deterministic web applications, we observed the scalable so-
lution crawled correctly in the exact same manner as the default crawler.
The proposed solution improved the scalability by increasing the number of
states crawled, on average, by 88.16%. However, this scalability improve-
ment was achieved costing a time overhead of 18.20%.

A memory analysis was conducted both on the scalable solution and the
default solution. The main outcomes of this memory analysis were finding
two memory leak points in the scalable solution, resolving which led to the
achieved state coverage improvements; and identifying scalability obstacles
to bring forward optimization opportunities for future work.

Finally, as a measure to improve reproducibility of the experiments, in
addition to including the object Web applications in the thesis, the imple-

95

Chapter 9. Conclusion

mentation of the scalable solution is accessible as open source software at
https://github.com/saltlab/crawljax-graphdb.

96

Bibliography

[1] J. J. Garrett et al., “Ajax: A new approach to web applications,” 2005.

[2] “Oracle java micro edition embedded client customization guide,” 2012.
http://docs.oracle.com/javame/config/cdc/cdc-opt-impl/

ojmeec/1.1/custom/html/tuning.htm, [retrieved: Sep. 25, 2013].

[3] T. Berners-Lee, L. Masinter, M. McCahill, et al., “Uniform resource
locators (url),” 1994.

[4] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling ajax-based
web applications through dynamic analysis of user interface state
changes,” vol. 6, p. 3, ACM, 2012.

[5] D. Goodman, M. Morrison, and B. Eich, Javascript R© bible. John Wiley
& Sons, Inc., 2007.

[6] E. Ecma, “262: Ecmascript language specification,” ECMA (European
Association for Standardizing Information and Communication Sys-
tems), pub-ECMA: adr, 1999.

[7] D. Raggett, A. Le Hors, I. Jacobs, et al., “Html 4.01 specification,”
W3C recommendation, vol. 24, 1999.

[8] “world wide web consortium.” http://www.w3.org/, [retrieved: Sep.
23, 2013].

[9] “The webkit open source project.” http://www.webkit.org/, [re-
trieved: Sep. 10, 2013].

[10] “Introducing flockdb.” https://blog.twitter.com/2010/

introducing-flockdb, [retrieved: Apr. 16, 2013].

[11] “Twitter.com.” https://twitter.com/, [retrieved: Oct. 7, 2013].

[12] “Seleniumhq browser automation tool.” http://www.seleniumhq.

org/, [retrieved: Aug. 12, 2013].

97

http://docs.oracle.com/javame/config/cdc/cdc-opt-impl/ojmeec/1.1/custom/html/tuning.htm
http://docs.oracle.com/javame/config/cdc/cdc-opt-impl/ojmeec/1.1/custom/html/tuning.htm
http://www.w3.org/
http://www.webkit.org/
https://blog.twitter.com/2010/introducing-flockdb
https://blog.twitter.com/2010/introducing-flockdb
https://twitter.com/
http://www.seleniumhq.org/
http://www.seleniumhq.org/

Bibliography

[13] “Web storage w3c recommendation.” http://www.w3.org/TR/

webstorage/, [retrieved: Sep. 18, 2013].

[14] “Mutation events.” https://developer.mozilla.org/en-US/docs/

Web/Guide/API/DOM/Events/Mutation_events?redirectlocale=

en-, [retrieved: Nov. 21, 2013].

[15] R. Weinstein, “Dom mutation events replacement: The story so
far-existing points of consensus,” Dec. 2011. http://lists.w3.

org/Archives/Public/public-webapps/2011JulSep/0779.html,
[retrieved: Nov. 21, 2013].

[16] “Document object model (dom) level 3 events specification.” http:

//www.w3.org/TR/DOM-Level-3-Events/#events-mutationevents,
[retrieved: Nov. 21, 2013].

[17] “Mutation-summary javascript library.” https://code.google.com/

p/mutation-summary/, [retrieved: Nov. 22, 2013].

[18] “Mutation observers vs. mutation summary.” https://code.google.

com/p/mutation-summary/wiki/DOMMutationObservers, [retrieved:
Nov. 22, 2013].

[19] M. Shapiro, “Structure and encapsulation in distributed systems: the
proxy principle,” in Proc. 6th Int. Conf. on Distributed Computing Sys-
tems(ICDCS), pp. 198–204, May 1986.

[20] “Understanding memory management.” http://docs.oracle.com/

cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_

collect.html, [retrieved: Oct. 1, 2013].

[21] G. B. Tim Lindholm, Frank Yellin and A. Buckley, The Java R©Virtual
Machine Specification. 500 Oracle Parkway, Redwood City, California
94065, U.S.A, java se 7 ed., 2013.

[22] Y. Guo, K. Li, K. Zhang, and G. Zhang, “Board forum crawl-
ing: a web crawling method for web forum,” in Proceedings of the
2006 IEEE/WIC/ACM International Conference on Web Intelligence,
pp. 745–748, IEEE Computer Society, 2006.

[23] V. Shkapenyuk and T. Suel, “Design and implementation of a high-
performance distributed web crawler,” in Data Engineering, 2002. Pro-
ceedings. 18th International Conference on, pp. 357–368, IEEE, 2002.

98

http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/webstorage/
https://developer.mozilla.org/en-US/docs/Web/Guide/API/DOM/Events/Mutation_events?redirectlocale=en-
https://developer.mozilla.org/en-US/docs/Web/Guide/API/DOM/Events/Mutation_events?redirectlocale=en-
https://developer.mozilla.org/en-US/docs/Web/Guide/API/DOM/Events/Mutation_events?redirectlocale=en-
http://lists.w3.org/Archives/Public/public-webapps/2011JulSep/0779.html
http://lists.w3.org/Archives/Public/public-webapps/2011JulSep/0779.html
http://www.w3.org/TR/DOM-Level-3-Events/#events-mutationevents
http://www.w3.org/TR/DOM-Level-3-Events/#events-mutationevents
https://code.google.com/p/mutation-summary/
https://code.google.com/p/mutation-summary/
https://code.google.com/p/mutation-summary/wiki/DOMMutationObservers
https://code.google.com/p/mutation-summary/wiki/DOMMutationObservers
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html

Bibliography

[24] J. Cho and H. Garcia-Molina, “Parallel crawlers,” in Proceedings of the
11th international conference on World Wide Web, pp. 124–135, ACM,
2002.

[25] C. C. Aggarwal, F. Al-Garawi, and P. S. Yu, “Intelligent crawling on
the world wide web with arbitrary predicates,” in Proceedings of the
10th international conference on World Wide Web, pp. 96–105, ACM,
2001.

[26] S. Raghavan and H. Garcia-Molina, “Crawling the hidden web,” 2000.

[27] J. L. Wolf, M. S. Squillante, P. Yu, J. Sethuraman, and L. Ozsen,
“Optimal crawling strategies for web search engines,” in Proceedings of
the 11th international conference on World Wide Web, pp. 136–147,
ACM, 2002.

[28] G. Pant, P. Srinivasan, and F. Menczer, “Crawling the web,” in Web
Dynamics, pp. 153–177, Springer, 2004.

[29] M. Ehrig and A. Maedche, “Ontology-focused crawling of web docu-
ments,” in Proceedings of the 2003 ACM symposium on Applied com-
puting, pp. 1174–1178, ACM, 2003.

[30] S. Chakrabarti, B. E. Dom, and M. H. van den Berg, “System and
method for focussed web crawling,” July 9 2002. US Patent 6,418,433.

[31] G. S. Manku, A. Jain, and A. Das Sarma, “Detecting near-duplicates
for web crawling,” in Proceedings of the 16th international conference
on World Wide Web, pp. 141–150, ACM, 2007.

[32] C. Castillo, “Effective web crawling,” in ACM SIGIR Forum, vol. 39,
pp. 55–56, ACM, 2005.

[33] M. Álvarez, A. Pan, J. Raposo, and J. Hidalgo, “Crawling web pages
with support for client-side dynamism,” in Advances in Web-Age In-
formation Management, pp. 252–262, Springer, 2006.

[34] S. Chakrabarti, M. Van den Berg, and B. Dom, “Focused crawling:
a new approach to topic-specific web resource discovery,” Computer
Networks, vol. 31, no. 11, pp. 1623–1640, 1999.

[35] A. Heydon and M. Najork, “Performance limitations of the java core
libraries,” in Proceedings of the ACM 1999 conference on Java Grande,
pp. 35–41, ACM, 1999.

99

Bibliography

[36] A. Heydon and M. Najork, “Mercator: A scalable, extensible web
crawler,” World Wide Web, vol. 2, no. 4, pp. 219–229, 1999.

[37] J. Edwards, K. McCurley, and J. Tomlin, “An adaptive model for op-
timizing performance of an incremental web crawler,” in Proceedings
of the 10th international conference on World Wide Web, pp. 106–113,
ACM, 2001.

[38] K. Benjamin, G. Von Bochmann, M. E. Dincturk, G.-V. Jourdan, and
I. V. Onut, A strategy for efficient crawling of rich internet applications.
Springer, 2011.

[39] M. E. Dincturk, S. Choudhary, G. Von Bochmann, G.-V. Jourdan, and
I. V. Onut, “A statistical approach for efficient crawling of rich internet
applications,” in Web Engineering, pp. 362–369, Springer, 2012.

[40] S. Zhang, M. Hu, and J. Yang, “Treepi: A novel graph indexing
method,” in Data Engineering, 2007. ICDE 2007. IEEE 23rd Inter-
national Conference on, pp. 966–975, IEEE, 2007.

[41] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Free-
base: a collaboratively created graph database for structuring human
knowledge,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pp. 1247–1250, ACM, 2008.

[42] M. Graves, E. R. Bergeman, and C. B. Lawrence, “Graph database sys-
tems,” Engineering in Medicine and Biology Magazine, IEEE, vol. 14,
no. 6, pp. 737–745, 1995.

[43] B. Iordanov, “Hypergraphdb: a generalized graph database,” in Web-
Age Information Management, pp. 25–36, Springer, 2010.

[44] J. Huan, W. Wang, J. Prins, and J. Yang, “Spin: mining maximal
frequent subgraphs from graph databases,” in Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 581–586, ACM, 2004.

[45] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins,
“A comparison of a graph database and a relational database: a data
provenance perspective,” in Proceedings of the 48th annual Southeast
regional conference, p. 42, ACM, 2010.

100

[46] R. Angles and C. Gutierrez, “Querying rdf data from a graph database
perspective,” in The Semantic Web: Research and Applications,
pp. 346–360, Springer, 2005.

[47] D. W. Williams, J. Huan, and W. Wang, “Graph database indexing us-
ing structured graph decomposition,” in Data Engineering, 2007. ICDE
2007. IEEE 23rd International Conference on, pp. 976–985, IEEE,
2007.

[48] K. Riesen and H. Bunke, “Iam graph database repository for graph
based pattern recognition and machine learning,” in Structural, Syn-
tactic, and Statistical Pattern Recognition, pp. 287–297, Springer, 2008.

[49] S. Jouili and V. Vansteenberghe, “An empirical comparison of graph
databases,” in Social Computing (SocialCom), 2013 International Con-
ference on, pp. 708–715, IEEE, 2013.

[50] M. Buerli and C. P. S. L. Obispo, “The current state of graph
databases,” 2012.

[51] A. Popescu, “A comparison of 7 graph databases,”
2013. http://nosql.mypopescu.com/post/40759505554/

a-comparison-of-7-graph-databases, [retrieved: Feb. 2, 2013].

[52] M. C. Alekh Jindal, “Benchmarking graph databases,” 2013. http:

//istc-bigdata.org/index.php/benchmarking-graph-databases,
[retrieved: Jan. 29, 2013].

[53] R. Angles and C. Gutierrez, “Survey of graph database models,” ACM
Computing Surveys (CSUR), vol. 40, no. 1, p. 1, 2008.

101

http://nosql.mypopescu.com/post/40759505554/a-comparison-of-7-graph-databases
http://nosql.mypopescu.com/post/40759505554/a-comparison-of-7-graph-databases
http://istc-bigdata.org/index.php/benchmarking-graph-databases
http://istc-bigdata.org/index.php/benchmarking-graph-databases

Appendix A

Deterministic Candidates

In this appendix we list all the object Web applications that we crawled to
find deterministic applications. A deterministic was required for forming an
oracle for correctness experiments. The list is as following:

http://www.heatcityreview.com/somervillenews.htm
http://www.martinkrenn.net
http://www.kastanova.nl
http://www.al-awda.org
http://thething.it
http://www.engruppo.com
http://www.turbopatents.com
http://www.ece.ubc.ca
http://www.ubc.ca
http://www.cultofmac.com
http://www.python.org
http://metrics.codahale.com
http://www.uss.de
http://www.facebook.com
https://www.google.ca
http://www.bing.com
https://mail.google.com
https://github.com
https://code.google.com/p/guava-libraries
http://www.vogella.com
http://www.cacno.org
http://sedo.co.uk/search/details.php4?domain=thestart.net
http://www.iltasanomat.fi
http://www.fairvote.org
http://www.beehive.nu
http://www.littlewhitedog.com
http://www.provincetown.com
http://www.expedia.ca/?semcid=ni.ask.12908&kword=DEFAULT.-

102

Appendix A. Deterministic Candidates

NNNN.kid&rfrr=Redirect.From.www.expedia.com/Home.htm
http://www.airtoons.com
http://www.loco.pl/pl
http://www.grudge-match.com/current.html
http://www.kastanova.nl
http://www.acces-local.com/wordpress
http://www.sfchronicle.com
http://www.eldritch.com
http://www.eldritch.com
http://ruyguy15.150m.com
http://www.bghs.org
http://www.axis-of-aevil.net
http://www.infoshop.org
http://www.introducingmonday.co.uk
http://www.linuxdevcenter.com/pub/a/linux/2000/06/29/hdparm.html
http://www.twentysevenrecords.com
http://www.hallwalls.org
http://www.justfood.org
http://bshigley.tumblr.com
http://www.ottawacitizen.com/index.html
http://emeraldforestseattle.com/forums/ubbthreads
http://www.cancernews.com/default2.asp
http://www.usablenet.com
http://www.viz.com/naruto
http://www.viz.com/naruto
http://www.needcoffee.com
http://www.libraryplanet.com
http://www.coversproject.com
http://windows.microsoft.com/en-us/windows/support#top-solutions=windows-
8
http://buffalo.bisons.milb.com/index.jsp?sid=t422
http://www.b3ta.com
http://antiadvertisingagency.com
http://www.sfbike.org
http://www.grimemonster.com
http://www.threadless.com
https://wilwheaton.net
http://www.hasbrouck.org
http://www.uberbin.net
http://www.gaijinagogo.com

103

Appendix A. Deterministic Candidates

http://lalibertad.com.co/dia/p0.html
http://www.wrightfield.com
http://www.modernhumorist.com
http://www.bcdb.com
http://desktopgaming.com
http://www.metalbite.com
http://nowyoulistentomelittlemissy.blogspot.ca
http://www.cimgf.com
http://www.paulmadonna.com
http://dawnm.com
http://typicalculture.com/wordpress
http://www.vegweb.com
http://www.newdream.org
http://www.isc.org/downloads/BIND/
http://hunyyoung.com
http://home.planet.nl/ mooij321
http://www.antique-hangups.com
http://www.project451.com//
http://lmuwnmd.wpengine.com/wp-signup.php?new=www.techblog.com//
http://c-level.org
http://rprogress.org/index.htm
http://www.math.mcgill.ca

104

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Background
	Web Applications
	HTML and DOM
	Modern vs. Classic Web Applications

	Crawling Web Applications
	Crawling Classic Web Applications
	Crawling Modern Web Applications
	Problem and Proposed Solutions

	Performance Improvements
	Time Performance Improvement
	Memory Performance Improvement

	Graph Databases

	Reverse Engineering Crawljax for Optimization
	Crawljax High Level Algorithm
	Reverse Engineering Crawljax
	Investigating Crawljax for Alternative Solutions

	Motivation and Research Goals
	Motivation
	Research Questions
	Improving Time Performance
	 Increasing State Coverage

	Goals
	Time Performance
	Memory Performance

	Methodology

	Optimizing State Transition Management
	Tracking State Changes in Web Applications
	Foundations for the Proposed Techniques
	Tracking DOM Mutations
	Mutation Events
	Mutation Observers
	Mutation-Summary Library
	Proxies

	Alternative Methods for Tracking State Changes
	Shared Characteristics of the Solutions
	Proxy-Based Solution
	Plugin-Based Solution
	Plugin-Based Solution with In-Memory Agent

	Evaluation
	Research Questions Broken Down
	Experimental Design and Methodology
	Results

	Increasing the Number of States Crawled
	Memory Management
	Java Virtual Machine Heap
	Garbage Collection

	Criteria for Alternative Solutions
	Criteria for Selecting a Graph Database
	Required Functionalities
	Licensing
	Partial Locks
	Storing Objects in Nodes and Edges
	API for Java and Maven Availability

	Comparison of Graph Databases
	Scalable Solution
	Memory Performance Trade-Offs
	Time Performance Trade-Offs

	Evaluation
	Research Questions
	Experimental Design and Methodology
	Results

	Further Memory Analysis

	Discussion
	State Transition Management
	RQ1.A: Time Performance of the Proxy-Based Solution
	RQ1.B: Time Performance of the First Plugin-Based Solution
	RQ1.C: Time Performance of the Second Plugin-Based Solution

	Scalability
	RQ2.0: Determinism of the Crawler
	RQ2.A: Correctness
	RQ2.B: Memory Performance
	RQ2.C: Time Performance

	Threats to Validity
	Internal Validity
	External Validity

	Future Work
	Further Scalability through String Optimization
	Further Scalability through Candidate Elements Optimization
	Scalability Improvement by Text Compression Techniques
	Improving Time Performance Targeting

	Related Work
	Optimizing the Crawling Process
	Graph Database Applications

	Conclusion
	Bibliography
	Deterministic Candidates

